WorldWideScience

Sample records for ground-based radar measurements

  1. Comparison of airborne radar altimeter and ground-based Ku-band radar measurements on the ice cap Austfonna, Svalbard

    Directory of Open Access Journals (Sweden)

    O. Brandt

    2008-11-01

    Full Text Available We compare coincident data from the European Space Agency's Airborne SAR/Interferometric Radar Altimeter System (ASIRAS with ground-based Very High Bandwidth (VHB stepped-frequency radar measurements in the Ku-band. The ASIRAS instrument obtained data from ~700 m above the surface, using a 13.5 GHz center frequency and a 1 GHz bandwidth. The ground-based VHB radar measurements were acquired using the same center frequency, but with a variable bandwidth of either 1 or 8 GHz. Four sites were visited with the VHB radar; two sites within the transition region from superimposed ice to firn, and two sites in the long-term firn area (wet-snow zone. The greater bandwidth VHB measurements show that the first peak in the airborne data is a composite of the return from the surface (i.e. air-snow interface and returns of similar or stronger amplitude from reflectors in the upper ~30 cm of the subsurface. The peak position in the airborne data is thus not necessarily a good proxy for the surface since the maximum and width of the first return depend on the degree of interference between surface and subsurface reflectors. The major response from the winter snowpack was found to be caused by units of thin crust/ice layers (0.5–2 mm surrounded by large crystals (>3 mm. In the airborne data, it is possible to track such layers for tens of kilometers. The winter snowpack lacked thicker ice layers. The last year's summer surface, characterized by a low density large crystal layer overlaying a harder denser layer, gives a strong radar response, frequently the strongest. The clear relationship observed between the VHB and ASIRAS waveforms, justifies the use of ground-based radar measurements in the validation of air- or spaceborne radars.

  2. Comparison of the TRMM Precipitation Radar rainfall estimation with ground-based disdrometer and radar measurements in South Greece

    Science.gov (United States)

    Ioannidou, Melina P.; Kalogiros, John A.; Stavrakis, Adrian K.

    2016-11-01

    The performance of the Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR) rainfall estimation algorithm is assessed, locally, in Crete island, south Greece, using data from a 2D-video disdrometer and a ground-based, X-band, polarimetric radar. A three-parameter, normalized Gamma drop size distribution is fitted to the disdrometer rain spectra; the latter are classified in stratiform and convective rain types characterized by different relations between distribution parameters. The method of moments estimates more accurately the distribution parameters than the best fit technique, which exhibits better agreement with and is more biased by the observed droplet distribution at large diameter values. Power laws between the radar reflectivity factor (Z) and the rainfall rate (R) are derived from the disdrometer data. A significant diversity of the prefactor and the exponent of the estimated power laws is observed, depending on the scattering model and the regression technique. The Z-R relationships derived from the disdrometer data are compared to those obtained from TRMM-PR data. Generally, the power laws estimated from the two datasets are different. Specifically, the greater prefactor found for the disdrometer data suggests an overestimation of rainfall rate by the TRMM-PR algorithm for light and moderate stratiform rain, which was the main rain type in the disdrometer dataset. Finally, contemporary data from the TRMM-PR and a ground-based, X-band, polarimetric radar are analyzed. Comparison of the corresponding surface rain rates for a rain event with convective characteristics indicates a large variability of R in a single TRMM-PR footprint, which typically comprises several hundreds of radar pixels. Thus, the coarse spatial resolution of TRMM-PR may lead to miss of significant high local peaks of convective rain. Also, it was found that the high temporal variability of convective rain may introduce significant errors in the estimation of bias of

  3. On reconciling ground-based with spaceborne normalized radar cross section measurements

    DEFF Research Database (Denmark)

    Baumgartner, Francois; Munk, Jens; Jezek, K C

    2002-01-01

    This study examines differences in the normalized radar cross section, derived from ground-based versus spaceborne radar data. A simple homogeneous half-space model, indicates that agreement between the two improves as 1) the distance from the scatterer is increased; and/or 2) the extinction...

  4. Validation of TRMM Precipitation Radar Through Comparison of its Multi-Year Measurements to Ground-Based Radar

    Science.gov (United States)

    Liao, Liang; Meneghini, Robert

    2010-01-01

    A procedure to accurately resample spaceborne and ground-based radar data is described, and then applied to the measurements taken from the Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR) and the ground-based Weather Surveillance Radar-1988 Doppler (WSR-88D or WSR) for the validation of the PR measurements and estimates. Through comparisons with the well-calibrated, non-attenuated WSR at Melbourne, Florida for the period 1998-2007, the calibration of the Precipitation Radar (PR) aboard the TRMM satellite is checked using measurements near the storm top. Analysis of the results indicates that the PR, after taking into account differences in radar reflectivity factors between the PR and WSR, has a small positive bias of 0.8 dB relative to the WSR, implying a soundness of the PR calibration in view of the uncertainties involved in the comparisons. Comparisons between the PR and WSR reflectivities are also made near the surface for evaluation of the attenuation-correction procedures used in the PR algorithms. It is found that the PR attenuation is accurately corrected in stratiform rain but is underestimated in convective rain, particularly in heavy rain. Tests of the PR estimates of rainfall rate are conducted through comparisons in the overlap area between the TRMM overpass and WSR scan. Analyses of the data are made both on a conditional basis, in which the instantaneous rain rates are compared only at those pixels where both the PR and WSR detect rain, and an unconditional basis, in which the area-averaged rain rates are estimated independently for the PR and WSR. Results of the conditional rain comparisons show that the PR-derived rain is about 9% greater and 19% less than the WSR estimates for stratiform and convective storms, respectively. Overall, the PR tends to underestimate the conditional mean rain rate by 8% for all rain categories, a finding that conforms to the results of the area-averaged rain (unconditional) comparisons.

  5. Comparison of Precipitation Observations from a Prototype Space-based Cloud Radar and Ground-based Radars

    Institute of Scientific and Technical Information of China (English)

    LIU Liping; ZHANG Zhiqiang; YU Danru; YANG Hu; ZHAO Chonghui; ZHONG Lingzhi

    2012-01-01

    A prototype space-based cloud radar has been developed and was installed on an airplane to observe a precipitation system over Tianjin,China in July 2010.Ground-based S-band and Ka-band radars were used to examine the observational capability of the prototype. A cross-comparison algorithm between different wavelengths,spatial resolutions and platform radars is presented.The reflectivity biases,correlation coefficients and standard deviations between the radars are analyzed.The equivalent reflectivity bias between the S- and Ka-band radars were simulated with a given raindrop size distribution.The results indicated that reflectivity bias between the S- and Ka-band radars due to scattering properties was less than 5 dB,and for weak precipitation the bias was negligible. The prototype space-based cloud radar was able to measure a reasonable vertical profile of reflectivity,but the reflectivity below an altitude of 1.5 km above ground level was obscured by ground clutter.The measured reflectivity by the prototype space-based cloud radar was approximately 10.9 dB stronger than that by the S-band Doppler radar (SA radar),and 13.7 dB stronger than that by the ground-based cloud radar.The reflectivity measured by the SA radar was 0.4 dB stronger than that by the ground-based cloud radar.This study could provide a method for the quantitative examination of the observation ability for space-based radars.

  6. Experiments on a Ground-Based Tomographic Synthetic Aperture Radar

    Directory of Open Access Journals (Sweden)

    Hoonyol Lee

    2016-08-01

    Full Text Available This paper presents the development and experiment of three-dimensional image formation by using a ground-based tomographic synthetic aperture radar (GB-TomoSAR system. GB-TomoSAR formulates two-dimensional synthetic aperture by the motion of antennae, both in azimuth and vertical directions. After range compression, three-dimensional image focusing is performed by applying Deramp-FFT (Fast Fourier Transform algorithms, both in azimuth and vertical directions. Geometric and radiometric calibrations were applied to make an image cube, which is then projected into range-azimuth and range-vertical cross-sections for visualization. An experiment with a C-band GB-TomoSAR system with a scan length of 2.49 m and 1.86 m in azimuth and vertical-direction, respectively, shows distinctive three-dimensional radar backscattering of stable buildings and roads with resolutions similar to the theoretical values. Unstable objects such as trees and moving cars generate severe noise due to decorrelation during the eight-hour image-acquisition time.

  7. Exploring microphysical, radiative, dynamic and thermodynamic processes driving fog and low stratus clouds using ground-based Lidar and Radar measurements

    Science.gov (United States)

    Haeffelin, Martial

    2016-04-01

    Radiation fog formation is largely influenced by the chemical composition, size and number concentration of cloud condensation nuclei and by heating/cooling and drying/moistening processes in a shallow mixing layer near the surface. Once a fog water layer is formed, its development and dissipation become predominantly controlled by radiative cooling/heating, turbulent mixing, sedimentation and deposition. Key processes occur in the atmospheric surface layer, directly in contact with the soil and vegetation, and throughout the atmospheric column. Recent publications provide detailed descriptions of these processes for idealized cases using very high-resolution models and proper representation of microphysical processes. Studying these processes in real fog situations require atmospheric profiling capabilities to monitor the temporal evolution of key parameters at several heights (surface, inside the fog, fog top, free troposphere). This could be done with in-situ sensors flown on tethered balloons or drones, during dedicated intensive field campaigns. In addition Backscatter Lidars, Doppler Lidars, Microwave Radiometers and Cloud Doppler Radars can provide more continuous, yet precise monitoring of key parameters throughout the fog life cycle. The presentation will describe how Backscatter Lidars can be used to study the height and kinetics of aerosol activation into fog droplets. Next we will show the potential of Cloud Doppler Radar measurements to characterize the temporal evolution of droplet size, liquid water content, sedimentation and deposition. Contributions from Doppler Lidars and Microwave Radiometers will be discussed. This presentation will conclude on the potential to use Lidar and Radar remote sensing measurements to support operational fog nowcasting.

  8. Validation of GPM Ka-Radar Algorithm Using a Ground-based Ka-Radar System

    Science.gov (United States)

    Nakamura, Kenji; Kaneko, Yuki; Nakagawa, Katsuhiro; Furukawa, Kinji; Suzuki, Kenji

    2016-04-01

    GPM led by the Japan Aerospace Exploration Agency (JAXA) and the National Aeronautics and Space Administration of US (NASA) aims to observe global precipitation. The core satellite is equipped with a microwave radiometer (GMI) and a dual-frequency radar (DPR) which is the first spaceborne Ku/Ka-band dual-wavelength radar dedicated for precipitation measurement. In the DPR algorithm, measured radar reflectivity is converted to effective radar reflectivity by estimating the rain attenuation. Here, the scattering/attenuation characteristics of Ka-band radiowaves are crucial, particularly for wet snow. A melting layer observation using a dual Ka-band radar system developed by JAXA was conducted along the slope of Mt. Zao in Yamagata Prefecture, Japan. The dual Ka-band radar system consists of two nearly identical Ka-band FM-CW radars, and the precipitation systems between two radars were observed in opposite directions. From this experiment, equivalent radar reflectivity (Ze) and specific attenuation (k) were obtained. The experiments were conducted for two winter seasons. During the data analyses, it was found that k estimate easily fluctuates because the estimate is based on double difference calculation. With much temporal and spatial averaging, k-Ze relationship was obtained for melting layers. One of the results is that the height of the peak of k seems slightly higher than that of Ze. The results are compared with in-situ precipitation particle measurements.

  9. DATA PROCESSING AND ANALYSIS TOOLS BASED ON GROUND-BASED SYNTHETIC APERTURE RADAR IMAGERY

    Directory of Open Access Journals (Sweden)

    M. Crosetto

    2017-09-01

    Full Text Available The Ground-Based SAR (GBSAR is a terrestrial remote sensing technique used to measure and monitor deformation. In this paper we describe two complementary approaches to derive deformation measurements using GBSAR data. The first approach is based on radar interferometry, while the second one exploits the GBSAR amplitude. In this paper we consider the so-called discontinuous GBSAR acquisition mode. The interferometric process is not always straightforward: it requires appropriate data processing and analysis tools. One of the main critical steps is phase unwrapping, which can critically affect the deformation measurements. In this paper we describe the procedure used at the CTTC to process and analyse discontinuous GBSAR data. In the second part of the paper we describe the approach based on GBSAR amplitude images and an image-matching method.

  10. A Fast Method for Embattling Optimization of Ground-Based Radar Surveillance Network

    Science.gov (United States)

    Jiang, H.; Cheng, H.; Zhang, Y.; Liu, J.

    A growing number of space activities have created an orbital debris environment that poses increasing impact risks to existing space systems and human space flight. For the safety of in-orbit spacecraft, a lot of observation facilities are needed to catalog space objects, especially in low earth orbit. Surveillance of Low earth orbit objects are mainly rely on ground-based radar, due to the ability limitation of exist radar facilities, a large number of ground-based radar need to build in the next few years in order to meet the current space surveillance demands. How to optimize the embattling of ground-based radar surveillance network is a problem to need to be solved. The traditional method for embattling optimization of ground-based radar surveillance network is mainly through to the detection simulation of all possible stations with cataloged data, and makes a comprehensive comparative analysis of various simulation results with the combinational method, and then selects an optimal result as station layout scheme. This method is time consuming for single simulation and high computational complexity for the combinational analysis, when the number of stations increases, the complexity of optimization problem will be increased exponentially, and cannot be solved with traditional method. There is no better way to solve this problem till now. In this paper, target detection procedure was simplified. Firstly, the space coverage of ground-based radar was simplified, a space coverage projection model of radar facilities in different orbit altitudes was built; then a simplified objects cross the radar coverage model was established according to the characteristics of space objects orbit motion; after two steps simplification, the computational complexity of the target detection was greatly simplified, and simulation results shown the correctness of the simplified results. In addition, the detection areas of ground-based radar network can be easily computed with the

  11. Polarimetric analysis of radar backscatter from ground-based scatterometers and wheat biomass monitoring with advanced synthetic aperture radar images

    Science.gov (United States)

    He, Lei; Tong, Ling; Li, Yuxia; Chen, Yan; Tan, Longfei; Guo, Caizheng

    2016-04-01

    This article presents an analysis of the scattering measurements for an entire wheat growth cycle by ground-based scatterometers at a frequency of 5.3 GHz. Since wheat ears are related to wheat growth and yield, the radar backscatter of wheat was analyzed at two different periods, i.e., with and without wheat ears. Simultaneously, parameters such as wheat and soil characteristics as well as volume scattering and soil scattering were analyzed for the two periods during the entire growth cycle. Wheat ears have been demonstrated to have a great influence on radar backscatter; therefore, a modified version of water-cloud model used for retrieving biomass should consider the effect of wheat ears. This work presents two retrieval models based on the water-cloud model and adopts the advanced integral equation model to simulate the soil backscatter before the heading stage and the backscatter from the layer under wheat ears after the heading stage. The research results showed that the biomass retrieved from the advanced synthetic aperture radar (ASAR) images to agree well with the data measured in situ after setting the modified water-cloud model for the growth stages with ears. Furthermore, it was concluded that wheat ears should form an essential component of theoretical modeling as they influence the final yield.

  12. Measurements of radar ground returns

    NARCIS (Netherlands)

    Loor, G.P. de

    1974-01-01

    The ground based measurement techniques for the determination of the radar back-scatter of vegetation and soils as used in The Netherlands will be described. Two techniques are employed: one covering a large sample area (> 1000 m2) but working at low grazing angels only and one (short range) coverin

  13. Intercomparison of Vertical Structure of Storms Revealed by Ground-Based (NMQ and Spaceborne Radars (CloudSat-CPR and TRMM-PR

    Directory of Open Access Journals (Sweden)

    Veronica M. Fall

    2013-01-01

    Full Text Available Spaceborne radars provide great opportunities to investigate the vertical structure of clouds and precipitation. Two typical spaceborne radars for such a study are the W-band Cloud Profiling Radar (CPR and Ku-band Precipitation Radar (PR, which are onboard NASA’s CloudSat and TRMM satellites, respectively. Compared to S-band ground-based radars, they have distinct scattering characteristics for different hydrometeors in clouds and precipitation. The combination of spaceborne and ground-based radar observations can help in the identification of hydrometeors and improve the radar-based quantitative precipitation estimation (QPE. This study analyzes the vertical structure of the 18 January, 2009 storm using data from the CloudSat CPR, TRMM PR, and a NEXRAD-based National Mosaic and Multisensor QPE (NMQ system. Microphysics above, within, and below the melting layer are studied through an intercomparison of multifrequency measurements. Hydrometeors’ type and their radar scattering characteristics are analyzed. Additionally, the study of the vertical profile of reflectivity (VPR reveals the brightband properties in the cold-season precipitation and its effect on the radar-based QPE. In all, the joint analysis of spaceborne and ground-based radar data increases the understanding of the vertical structure of storm systems and provides a good insight into the microphysical modeling for weather forecasts.

  14. MetaSensing's FastGBSAR: ground based radar for deformation monitoring

    Science.gov (United States)

    Rödelsperger, Sabine; Meta, Adriano

    2014-10-01

    The continuous monitoring of ground deformation and structural movement has become an important task in engineering. MetaSensing introduces a novel sensor system, the Fast Ground Based Synthetic Aperture Radar (FastGBSAR), based on innovative technologies that have already been successfully applied to airborne SAR applications. The FastGBSAR allows the remote sensing of deformations of a slope or infrastructure from up to a distance of 4 km. The FastGBSAR can be setup in two different configurations: in Real Aperture Radar (RAR) mode it is capable of accurately measuring displacements along a linear range profile, ideal for monitoring vibrations of structures like bridges and towers (displacement accuracy up to 0.01 mm). Modal parameters can be determined within half an hour. Alternatively, in Synthetic Aperture Radar (SAR) configuration it produces two-dimensional displacement images with an acquisition time of less than 5 seconds, ideal for monitoring areal structures like dams, landslides and open pit mines (displacement accuracy up to 0.1 mm). The MetaSensing FastGBSAR is the first ground based SAR instrument on the market able to produce two-dimensional deformation maps with this high acquisition rate. By that, deformation time series with a high temporal and spatial resolution can be generated, giving detailed information useful to determine the deformation mechanisms involved and eventually to predict an incoming failure. The system is fully portable and can be quickly installed on bedrock or a basement. The data acquisition and processing can be fully automated leading to a low effort in instrument operation and maintenance. Due to the short acquisition time of FastGBSAR, the coherence between two acquisitions is very high and the phase unwrapping is simplified enormously. This yields a high density of resolution cells with good quality and high reliability of the acquired deformations. The deformation maps can directly be used as input into an Early

  15. SCENARIO AND TARGET SIMULATION FOR A GROUND BASED MULTIFUNCTION PHASED ARRAY RADAR

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    This paper describes a scenario and target simulation which operates in non real-time to provide full closed-loop operation of the ground based multifunction phased array radar simulation system in support of ballistic missile defence experiments against countermeasure.By simulating the target scattering signature and dynamical signature,this scenario and target simulation provide re- alistic scenario source to evaluate the system performance of multifunction phased array radar,and the key algorithms verification and validation such as target tracking,multi-target imaging and target recognition.

  16. Space Fence Ground-Based Radar System Increment 1 (Space Fence Inc 1)

    Science.gov (United States)

    2015-12-01

    Selected Acquisition Report (SAR) RCS: DD-A&T(Q&A)823-438 Space Fence Ground-Based Radar System Increment 1 (Space Fence Inc 1) As of FY 2017...11 Track to Budget 17 Cost and Funding 18 Low Rate Initial Production 23 Foreign Military Sales 24 Nuclear Costs 24 Unit Cost...Document CLIN - Contract Line Item Number CPD - Capability Production Document CY - Calendar Year DAB - Defense Acquisition Board DAE - Defense Acquisition

  17. Ground based interferometric radar initial look at Longview, Blue Springs, Tuttle Creek, and Milford Dams

    Science.gov (United States)

    Deng, Huazeng

    Measuring millimeter and smaller deformation has been demonstrated in the literature using RADAR. To address in part the limitations in current commercial satellite-based SAR datasets, a University of Missouri (MU) team worked with GAMMA Remote Sensing to develop a specialized (dual-frequency, polarimetric, and interferometric) ground-based real-aperture RADAR (GBIR) instrument. The GBIR device is portable with its tripod system and control electronics. It can be deployed to obtain data with high spatial resolution (i.e. on the order of 1 meter) and high temporal resolution (i.e. on the order 1 minute). The high temporal resolution is well suited for measurements of rapid deformation. From the same geodetic position, the GBIR may collect dual frequency data set using C-band and Ku-band. The overall goal of this project is to measure the deformation from various scenarios by applying the GBIR system. Initial efforts have been focusing on testing the system performance on different types of targets. This thesis details a number of my efforts on experimental and processing activities at the start of the MU GBIR imaging project. For improved close range capability, a wideband dual polarized antenna option was produced and tested. For GBIR calibration, several trihedral corner reflectors were designed and fabricated. In addition to experimental activities and site selection, I participated in advanced data processing activities. I processed GBIR data in several ways including single-look-complex (SLC) image generation, imagery registration, and interferometric processing. A number of initial-processed GBIR image products are presented from four dams: Longview, Blue Springs, Tuttle Creek, and Milford. Excellent imaging performance of the MU GBIR has been observed for various target types such as riprap, concrete, soil, rock, metal, and vegetation. Strong coherence of the test scene has been observed in the initial interferograms.

  18. GIFTS EDU Ground-based Measurement Experiment

    Science.gov (United States)

    Zhou, Daniel K.; Smith, W. L., Sr.; Zollinger, L. J.; Huppi, R. J.; Reisse, R. A.; Larar, A. M.; Liu, X.; Tansock, J. J., Jr.; Jensen, S. M.; Revercomb, H. E.; Feltz, W. F.; Bingham, G. E.

    2007-01-01

    Geosynchronous Imaging Fourier Transform Spectrometer (GIFTS) Engineering Demonstration Unit (EDU) is an imaging infrared spectrometer designed for atmospheric soundings. The EDU groundbased measurement experiment was held in Logan, Utah during September 2006 to demonstrate its extensive capabilities for geosynchronous and other applications.

  19. Ground-based radar reflectivity mosaic of mei-yu precipitation systems over the Yangtze River-Huaihe River basins

    Science.gov (United States)

    Luo, Yali; Qian, Weimiao; Gong, Yu; Wang, Hongyan; Zhang, Da-Lin

    2016-11-01

    The 3D radar reflectivity produced by a mosaic software system, with measurements from 29 operational weather radars in the Yangtze River-Huaihe River Basins (YRHRB) during the mei-yu season of 2007, is compared to coincident TRMM PR observations in order to evaluate the value of the ground-based radar reflectivity mosaic in characterizing the 3D structures of mei-yu precipitation. Results show reasonable agreement in the composite radar reflectivity between the two datasets, with a correlation coefficient of 0.8 and a mean bias of -1 dB. The radar mosaic data at constant altitudes are reasonably consistent with the TRMM PR observations in the height range of 2-5 km, revealing essentially the same spatial distribution of radar echo and nearly identical histograms of reflectivity. However, at altitudes above 5 km, the mosaic data overestimate reflectivity and have slower decreasing rates with height compared to the TRMM PR observations. The areas of convective and stratiform precipitation, based on the mosaic reflectivity distribution at 3-km altitude, are highly correlated with the corresponding regions in the TRMM products, with correlation coefficients of 0.92 and 0.97 and mean relative differences of -7.9% and -2.5%, respectively. Finally, the usefulness of the mosaic reflectivity at 3-km altitude at 6-min intervals is illustrated using a mesoscale convective system that occurred over the YRHRB.

  20. Ground-Based Aerosol Measurements | Science Inventory ...

    Science.gov (United States)

    Atmospheric particulate matter (PM) is a complex chemical mixture of liquid and solid particles suspended in air (Seinfeld and Pandis 2016). Measurements of this complex mixture form the basis of our knowledge regarding particle formation, source-receptor relationships, data to test and verify complex air quality models, and how PM impacts human health, visibility, global warming, and ecological systems (EPA 2009). Historically, PM samples have been collected on filters or other substrates with subsequent chemical analysis in the laboratory and this is still the major approach for routine networks (Chow 2005; Solomon et al. 2014) as well as in research studies. In this approach, air, at a specified flow rate and time period, is typically drawn through an inlet, usually a size selective inlet, and then drawn through filters, 1 INTRODUCTION Atmospheric particulate matter (PM) is a complex chemical mixture of liquid and solid particles suspended in air (Seinfeld and Pandis 2016). Measurements of this complex mixture form the basis of our knowledge regarding particle formation, source-receptor relationships, data to test and verify complex air quality models, and how PM impacts human health, visibility, global warming, and ecological systems (EPA 2009). Historically, PM samples have been collected on filters or other substrates with subsequent chemical analysis in the laboratory and this is still the major approach for routine networks (Chow 2005; Solomo

  1. Ground-based microwave weather radar observations and retrievals during the 2014 Holuhraun eruption (Bárðarbunga, Iceland)

    Science.gov (United States)

    Mereu, Luigi; Silvio Marzano, Frank; Barsotti, Sara; Montopoli, Mario; Yeo, Richard; Arngrimsson, Hermann; Björnsson, Halldór; Bonadonna, Costanza

    2015-04-01

    During an eruptive event the real-time forecasting of ash dispersal into the atmosphere is a key factor to prevent air traffic disasters. The ash plume is extremely hazardous to aircraft that inadvertently may fly through it. Real-time monitoring of such phenomena is crucial, particularly to obtain specific data for the initialization of eruption and dispersion models in terms of source parameters. The latter, such as plume height, ash concentration, mass flow rate and size spectra, are usually very difficult to measure or to estimate with a relatively good accuracy. Over the last years different techniques have been developed to improved ash plume detection and retrieval. Satellite-based observations, using multi-frequency visible and infrared radiometers, are usually exploited for monitoring and measuring dispersed ash clouds. The observations from geostationary orbit suffer from a relatively poor spatial resolution, whereas the low orbit level has a relatively poor temporal resolution. Moreover, the field-of-view of infrared radiometric measurements may be reduced by obstructions caused by water and ice clouds lying between the ground and the sensor's antenna. Weather radar-based observations represent an emerging technique to detect and, to a certain extent, mitigate the hazard from the ash plumes. Ground-based microwave scanning radar systems can provide the three-dimensional information about the detected ash volume with a fairly high spatial resolution every few minutes and in all weather conditions. Methodological studies have recently investigated the possibility of using single-polarization and dual-polarization ground-based radar for the remote sensing of volcanic ash cloud. In this respect, radar observations can be complementary to satellite observations. A microphysical electromagnetic characterization of volcanic ash was carried out in terms of dielectric properties, composition, size and orientation of ash particles. An extended Volcanic Ash Radar

  2. Investigation of Rainfall Characteristics Using TRMM PR and Ground Based Radar

    Science.gov (United States)

    Dolan, B.; Lang, T. J.; Nesbitt, S. W.; Cifelli, R.; Rutledge, S. A.

    2011-12-01

    Despite relatively good agreement between reflectivity profiles, comparisons of rainfall statistics derived from TRMM Precipitation Radar (PR) deviate from ground-based radar (GR) observations in various field locations across the globe. TRMM PR rain rate probability distribution functions underestimate the occurrence of high rain rates (> 80 mm hr-1) compared with similar ground-based statistics, and similarly, GR distributes the total rain volume over a larger range of rain rates. Analysis of ten years of TRMM data over three field sites has shown that the greatest disagreements occur in the most intense convection, such as over land and during the east and break wind regimes over the Amazon and Australia, respectively. These differences are investigated further in this study. Ten years of TRMM PR data are analyzed in conjunction with data collected during two field experiments involving the NCAR S-Pol radar. S-Pol was deployed in Brazil in the Amazon during TRMM LBA in 1998-1999 and near Mazatlan, Mexico as part of the North American Monsoon Experiment (NAME) in 2004. Additionally, multiple years of data from the Australian Bureau of Meteorology CPOL radar located in Darwin, Australia, are examined to extend the robustness of the GR observations beyond the relatively short field campaigns. Polarimetric data collected by the two radars are used to characterize the differences between TRMM PR and GR observations as a function of bulk hydrometeor type. For example, profiles with significant graupel, as identified by GR, are analyzed to investigate the role of mixed phase in the PR retrievals. The vertical variability of D0 is examined as a function of reflectivity and related to the underlying microphysical conditions using the polarimetric data provided by the GR observations. Spatial variability of D0 is also explored by correlating D0 values derived from GR at different heights. Several significant changes were made to the TRMM processing algorithms in the

  3. Boost-Phase ballistic missile trajectory estimation with ground based radar

    Institute of Scientific and Technical Information of China (English)

    Tang Yuyan; Huang Peikang

    2006-01-01

    A conditional boost-phase trajectory estimation method based on ballistic missile (BM) information database and classification is developed to estimate and predict boos-phase BM trajectory. The main uncertain factors to describe BM dynamics equation are reduced to the control law of trajectory pitch angle in boost-phase. After the BM mass at the beginning of estimation, the BM attack angle and the modification of engine thrust denoting BM acceleration are modeled reasonably, the boost-phase BM trajectory estimation with ground based radar is well realized. The validity of this estimation method is testified by computer simulation with a typical example.

  4. A Semiautomated Multilayer Picking Algorithm for Ice-sheet Radar Echograms Applied to Ground-Based Near-Surface Data

    Science.gov (United States)

    Onana, Vincent De Paul; Koenig, Lora Suzanne; Ruth, Julia; Studinger, Michael; Harbeck, Jeremy P.

    2014-01-01

    Snow accumulation over an ice sheet is the sole mass input, making it a primary measurement for understanding the past, present, and future mass balance. Near-surface frequency-modulated continuous-wave (FMCW) radars image isochronous firn layers recording accumulation histories. The Semiautomated Multilayer Picking Algorithm (SAMPA) was designed and developed to trace annual accumulation layers in polar firn from both airborne and ground-based radars. The SAMPA algorithm is based on the Radon transform (RT) computed by blocks and angular orientations over a radar echogram. For each echogram's block, the RT maps firn segmented-layer features into peaks, which are picked using amplitude and width threshold parameters of peaks. A backward RT is then computed for each corresponding block, mapping the peaks back into picked segmented-layers. The segmented layers are then connected and smoothed to achieve a final layer pick across the echogram. Once input parameters are trained, SAMPA operates autonomously and can process hundreds of kilometers of radar data picking more than 40 layers. SAMPA final pick results and layer numbering still require a cursory manual adjustment to correct noncontinuous picks, which are likely not annual, and to correct for inconsistency in layer numbering. Despite the manual effort to train and check SAMPA results, it is an efficient tool for picking multiple accumulation layers in polar firn, reducing time over manual digitizing efforts. The trackability of good detected layers is greater than 90%.

  5. Ground-Based Lidar for Atmospheric Boundary Layer Ozone Measurements

    Science.gov (United States)

    Kuang, Shi; Newchurch, Michael J.; Burris, John; Liu, Xiong

    2013-01-01

    Ground-based lidars are suitable for long-term ozone monitoring as a complement to satellite and ozonesonde measurements. However, current ground-based lidars are unable to consistently measure ozone below 500 m above ground level (AGL) due to both engineering issues and high retrieval sensitivity to various measurement errors. In this paper, we present our instrument design, retrieval techniques, and preliminary results that focus on the high-temporal profiling of ozone within the atmospheric boundary layer (ABL) achieved by the addition of an inexpensive and compact mini-receiver to the previous system. For the first time, to the best of our knowledge, the lowest, consistently achievable observation height has been extended down to 125 m AGL for a ground-based ozone lidar system. Both the analysis and preliminary measurements demonstrate that this lidar measures ozone with a precision generally better than 10% at a temporal resolution of 10 min and a vertical resolution from 150 m at the bottom of the ABL to 550 m at the top. A measurement example from summertime shows that inhomogeneous ozone aloft was affected by both surface emissions and the evolution of ABL structures.

  6. Ground-based lidar for atmospheric boundary layer ozone measurements.

    Science.gov (United States)

    Kuang, Shi; Newchurch, Michael J; Burris, John; Liu, Xiong

    2013-05-20

    Ground-based lidars are suitable for long-term ozone monitoring as a complement to satellite and ozonesonde measurements. However, current ground-based lidars are unable to consistently measure ozone below 500 m above ground level (AGL) due to both engineering issues and high retrieval sensitivity to various measurement errors. In this paper, we present our instrument design, retrieval techniques, and preliminary results that focus on the high-temporal profiling of ozone within the atmospheric boundary layer (ABL) achieved by the addition of an inexpensive and compact mini-receiver to the previous system. For the first time, to the best of our knowledge, the lowest, consistently achievable observation height has been extended down to 125 m AGL for a ground-based ozone lidar system. Both the analysis and preliminary measurements demonstrate that this lidar measures ozone with a precision generally better than ±10% at a temporal resolution of 10 min and a vertical resolution from 150 m at the bottom of the ABL to 550 m at the top. A measurement example from summertime shows that inhomogeneous ozone aloft was affected by both surface emissions and the evolution of ABL structures.

  7. Sub-Seasonal Variability of Tropical Rainfall Observed by TRMM and Ground-based Polarimetric Radar

    Science.gov (United States)

    Dolan, Brenda; Rutledge, Steven; Lang, Timothy; Cifelli, Robert; Nesbitt, Stephen

    2010-05-01

    Studies of tropical precipitation characteristics from the TRMM-LBA and NAME field campaigns using ground-based polarimetric S-band data have revealed significant differences in microphysical processes occurring in the various meteorological regimes sampled in those projects. In TRMM-LMA (January-February 1999 in Brazil; a TRMM ground validation experiment), variability is driven by prevailing low-level winds. During periods of low-level easterlies, deeper and more intense convection is observed, while during periods of low-level westerlies, weaker convection embedded in widespread stratiform precipitation is common. In the NAME region (North American Monsoon Experiment, summer 2004 along the west coast of Mexico), strong terrain variability drives differences in precipitation, with larger drops and larger ice mass aloft associated with convection occurring over the coastal plain compared to convection over the higher terrain of the Sierra Madre Occidental, or adjacent coastal waters. Comparisons with the TRMM precipitation radar (PR) indicate that such sub-seasonal variability in these two regions are not well characterized by the TRMM PR reflectivity and rainfall statistics. TRMM PR reflectivity profiles in the LBA region are somewhat lower than S-Pol values, particularly in the more intense easterly regime convection. In NAME, mean reflectivities are even more divergent, with TRMM profiles below those of S-Pol. In both regions, the TRMM PR does not capture rain rates above 80 mm hr-1 despite much higher rain rates estimated from the S-Pol polarimetric data, and rain rates are generally lower for a given reflectivity from TRMM PR compared to S-Pol. These differences between TRMM PR and S-Pol may arise from the inability of Z-R relationships to capture the full variability of microphysical conditions or may highlight problems with TRMM retrievals over land. In addition to the TRMM-LBA and NAME regions, analysis of sub-seasonal precipitation variability and

  8. Precipitation and microphysical processes observed by three polarimetric X-band radars and ground-based instrumentation during HOPE

    OpenAIRE

    Xie, Xinxin; Evaristo, Raquel; Simmer, Clemens; Handwerker, Jan; Trömel, Silke

    2016-01-01

    This study presents a first analysis of precipitation and related microphysical processes observed by three polarimetric X-band Doppler radars (BoXPol, JuXPol and KiXPol) in conjunction with a ground-based network of disdrometers, rain gauges and vertically pointing micro rain radars (MRRs) during the High Definition Clouds and Precipitation for advancing Climate Prediction (HD(CP)2) Observational Prototype Experiment (HOPE) during April and May 2013 in Germany. While JuXPol...

  9. Mobile Ground-Based Radar Sensor for Localization and Mapping: An Evaluation of two Approaches

    Directory of Open Access Journals (Sweden)

    Damien Vivet

    2013-08-01

    Full Text Available This paper is concerned with robotic applications using a ground‐based radar sensor for simultaneous localization and mapping problems. In mobile robotics, radar technology is interesting because of its long range and the robustness of radar waves to atmospheric conditions, making these sensors well‐suited for extended outdoor robotic applications. Two localization and mapping approaches using data obtained from a 360° field of view microwave radar sensor are presented and compared. The first method is a trajectory‐ oriented simultaneous localization and mapping technique, which makes no landmark assumptions and avoids the data association problem. The estimation of the ego‐motion makes use of the Fourier‐Mellin transform for registering radar images in a sequence, from which the rotation and translation of the sensor motion can be estimated. The second approach uses the consequence of using a rotating range sensor in high speed robotics. In such a situation, movement combinations create distortions in the collected data. Velocimetry is achieved here by explicitly analysing these measurement distortions. As a result, the trajectory of the vehicle and then the radar map of outdoor environments can be obtained. The evaluation of experimental results obtained by the two methods is presented on real‐world data from a vehicle moving at 30 km/h over a 2.5 km course.

  10. Evaluation of Radar Vegetation Indices for Vegetation Water Content Estimation Using Data from a Ground-Based SMAP Simulator

    Science.gov (United States)

    Srivastava, Prashant K.; O'Neill, Peggy; Cosh, Michael; Lang, Roger; Joseph, Alicia

    2015-01-01

    Vegetation water content (VWC) is an important component of microwave soil moisture retrieval algorithms. This paper aims to estimate VWC using L band active and passive radar/radiometer datasets obtained from a NASA ground-based Soil Moisture Active Passive (SMAP) simulator known as ComRAD (Combined Radar/Radiometer). Several approaches to derive vegetation information from radar and radiometer data such as HH, HV, VV, Microwave Polarization Difference Index (MPDI), HH/VV ratio, HV/(HH+VV), HV/(HH+HV+VV) and Radar Vegetation Index (RVI) are tested for VWC estimation through a generalized linear model (GLM). The overall analysis indicates that HV radar backscattering could be used for VWC content estimation with highest performance followed by HH, VV, MPDI, RVI, and other ratios.

  11. Intercomparison of snowfall estimates derived from the CloudSat Cloud Profiling Radar and the ground-based weather radar network over Sweden

    Directory of Open Access Journals (Sweden)

    L. Norin

    2015-12-01

    Full Text Available Accurate snowfall estimates are important for both weather and climate applications. Ground-based weather radars and space-based satellite sensors are often used as viable alternatives to rain gauges to estimate precipitation in this context. In particular, the Cloud Profiling Radar (CPR on board CloudSat is proving to be a useful tool to map snowfall globally, in part due to its high sensitivity to light precipitation and its ability to provide near-global vertical structure. CloudSat snowfall estimates play a particularly important role in the high-latitude regions as other ground-based observations become sparse and passive satellite sensors suffer from inherent limitations. In this paper, snowfall estimates from two observing systems – Swerad, the Swedish national weather radar network, and CloudSat – are compared. Swerad offers a well-calibrated data set of precipitation rates with high spatial and temporal resolution, at very high latitudes. The measurements are anchored to rain gauges and provide valuable insights into the usefulness of CloudSat CPR's snowfall estimates in the polar regions. In total, 7.2 × 105 matchups of CloudSat and Swerad observations from 2008 through 2010 were intercompared, covering all but the summer months (June to September. The intercomparison shows encouraging agreement between the two observing systems despite their different sensitivities and user applications. The best agreement is observed when CloudSat passes close to a Swerad station (46–82 km, where the observational conditions for both systems are comparable. Larger disagreements outside this range suggest that both platforms have difficulty with shallow snow but for different reasons. The correlation between Swerad and CloudSat degrades with increasing distance from the nearest Swerad station, as Swerad's sensitivity decreases as a function of distance. Swerad also tends to overshoot low-level precipitating systems further away from the station

  12. Ground-based Measurements of Next Generation Spectroradiometric Standard Stars

    Science.gov (United States)

    McGraw, John T.

    2013-01-01

    Accurate, radiometric standards are essential to the future of ground- and space-based astronomy and astrophysics. While astronomers tend to think of “standard stars” as available calibration sources, progress at NIST to accurately calibrate inexpensive, easy to use photodiode detectors as spectroradiometric standards from 200 nm to 1800 nm allows referencing astronomical measurements to these devices. Direction-, time-, and wavelength-dependent transmission of Earth’s atmosphere is the single largest source of error for ground-based radiometric measurement of astronomical objects. Measurements and impacts of atmospheric extinction - scattering and absorption - on imaging radiometric and spectroradiometric measurements are described. The conclusion is that accurate real-time measurement of extinction in the column of atmosphere through which standard star observations are made, over the spectral region being observed and over the field of view of the telescope are required. New techniques to directly and simultaneously measure extinction in the column of atmosphere through which observations are made are required. Our direct extinction measurement solution employs three small facility-class instruments working in parallel: a lidar to measure rapidly time variable transmission at three wavelengths with uncertainty of 0.25% per airmass, a spectrophotometer to measure rapidly wavelength variable extinction with sub-1% precision per nanometer resolution element from 350 to 1050nm, and a wide-field camera to measure angularly variable extinction over the field of view. These instruments and their operation will be described. We assert that application of atmospheric metadata provided by this instrument suite corrects for a significant fraction of systematic errors currently limiting radiometric precision, and provides a major step towards measurements that are provably dominated by random noise.

  13. Observing Tsunamis in the Ionosphere Using Ground Based GPS Measurements

    Science.gov (United States)

    Galvan, D. A.; Komjathy, A.; Song, Y. Tony; Stephens, P.; Hickey, M. P.; Foster, J.

    2011-01-01

    Ground-based Global Positioning System (GPS) measurements of ionospheric Total Electron Content (TEC) show variations consistent with atmospheric internal gravity waves caused by ocean tsunamis following recent seismic events, including the Tohoku tsunami of March 11, 2011. We observe fluctuations correlated in time, space, and wave properties with this tsunami in TEC estimates processed using JPL's Global Ionospheric Mapping Software. These TEC estimates were band-pass filtered to remove ionospheric TEC variations with periods outside the typical range of internal gravity waves caused by tsunamis. Observable variations in TEC appear correlated with the Tohoku tsunami near the epicenter, at Hawaii, and near the west coast of North America. Disturbance magnitudes are 1-10% of the background TEC value. Observations near the epicenter are compared to estimates of expected tsunami-driven TEC variations produced by Embry Riddle Aeronautical University's Spectral Full Wave Model, an atmosphere-ionosphere coupling model, and found to be in good agreement. The potential exists to apply these detection techniques to real-time GPS TEC data, providing estimates of tsunami speed and amplitude that may be useful for future early warning systems.

  14. Ground-based measurements of UV Index (UVI at Helwan

    Directory of Open Access Journals (Sweden)

    H. Farouk

    2012-12-01

    Full Text Available On October 2010 UV Index (UVI ground-based measurements were carried out by weather station at solar laboratory in NRIAG. The daily variation has maximum values in spring and summer days, while minimum values in autumn and winter days. The low level of UVI between 2.55 and 2.825 was found in December, January and February. The moderate level of UVI between 3.075 and 5.6 was found in March, October and November. The high level of UVI between 6.7 and 7.65 was found in April, May and September. The very high level of UVI between 8 and 8.6 was found in June, July and August. High level of radiation over 6 months per year including 3 months with a very high level UVI. According to the equation {UVI=a[SZA]b} the UVI increases with decreasing SZA by 82% on a daily scale and 88% on a monthly scale. Helwan exposure to a high level of radiation over 6 months per year including 3 months with a very high level UVI, so it is advisable not to direct exposure to the sun from 11 am to 2:00 pm.

  15. Precipitation and microphysical processes observed by three polarimetric X-band radars and ground-based instrumentation during HOPE

    Science.gov (United States)

    Xie, Xinxin; Evaristo, Raquel; Simmer, Clemens; Handwerker, Jan; Trömel, Silke

    2016-06-01

    This study presents a first analysis of precipitation and related microphysical processes observed by three polarimetric X-band Doppler radars (BoXPol, JuXPol and KiXPol) in conjunction with a ground-based network of disdrometers, rain gauges and vertically pointing micro rain radars (MRRs) during the High Definition Clouds and Precipitation for advancing Climate Prediction (HD(CP)2) Observational Prototype Experiment (HOPE) during April and May 2013 in Germany. While JuXPol and KiXPol were continuously observing the central HOPE area near Forschungszentrum Jülich at a close distance, BoXPol observed the area from a distance of about 48.5 km. MRRs were deployed in the central HOPE area and one MRR close to BoXPol in Bonn, Germany. Seven disdrometers and three rain gauges providing point precipitation observations were deployed at five locations within a 5 km × 5 km region, while three other disdrometers were collocated with the MRR in Bonn. The daily rainfall accumulation at each rain gauge/disdrometer location estimated from the three X-band polarimetric radar observations showed very good agreement. Accompanying microphysical processes during the evolution of precipitation systems were well captured by the polarimetric X-band radars and corroborated by independent observations from the other ground-based instruments.

  16. Mapping plasma structures in the high-latitude ionosphere using beacon satellite, incoherent scatter radar and ground-based magnetometer observations

    Directory of Open Access Journals (Sweden)

    T. Neubert

    2002-06-01

    Full Text Available In the autumn of the year 2000, four radio receivers capable of tracking various beacon satellites were set up along the southwestern coast of Greenland. They are used to reconstruct images of the ionospheric plasma density distribution via the tomographic method. In order to test and validate tomographic imaging under the highly variable conditions often prevailing in the high-latitude ionosphere, a time interval was selected when the Sondrestrom incoherent scatter radar conducted measurements of the ionospheric plasma density while the radio receivers tracked a number of beacon satellites. A comparison between two-dimensional images of the plasma density distribution obtained from the radar and the satellite receivers revealed generally good agreement between radar measurements and tomographic images. Observed discrepancies can be attributed to F region plasma patches moving through the field of view with a speed of several hundred meters per second, thereby smearing out the tomographic image. A notable mismatch occurred around local magnetic midnight when a magnetospheric substorm breakup occurred in the vicinity of southwest Greenland (identified from ground-based magnetometer observations. The breakup was associated with a sudden intensification of the westward auroral electrojet which was centered at about 69 and extended up to some 73 corrected geomagnetic latitude. Ground-based magnetometer data may thus have the potential of indicating when the tomographic method is at risk and may fail. We finally outline the application of tomographic imaging, when combined with magnetic field data, to estimate ionospheric Joule heating rates.

  17. Analysis of Terminal Velocity and VHF Backscatter of Precipitation Particles Using Chung-Li VHF Radar Combined with Ground-Based Disdrometer

    Directory of Open Access Journals (Sweden)

    Ching-Lun Su and Yen-Hsyang Chu

    2007-01-01

    Full Text Available The backscatter from precipitation particles observed by the vertically pointed antenna beam of the Chung-Li VHF radar and the drop size distributions measured by a ground-based disdrometer co-located at the radar site are analyzed and studied in this article. We find that the disdrometermeasured drop size distribution can be well approximated to a Gamma distribution. On the basis of this property and a power law approximation to the fallspeed-diameter relation VD = ADB, we derive the theoretical relation between terminal velocity VD and range-corrected VHF backscatter P of the precipitation particles. We find that the VD - P relation follows a power law in the form of VD = _ where _ _ both the functions of the precipitation parameters. Chu et al. (1999 first found that the relation between _ _ be empirically approximated to an exponential form of _ _ where _ a function of B and _ a factor associated with precipitation. In this article, under the assumptions of the Gamma distribution of the drop size distribution and the power-law relation between VD and D, we theoretically show that the analytical relation between _ _ follows an exponential form of _ _ where _ a function of the drop size distribution. The experimental results obtained by the Chung-Li VHF radar combined with the ground-based disdrometer measurements validate the exponential approximation to the _ _ The uses of the _ _ for the investigations of the rainfall rate and properties of drop size distribution are presented and discussed.

  18. Passive Microwave Soil Moisture Retrieval through Combined Radar/Radiometer Ground Based Simulator with Special Reference to Dielectric Schemes

    Science.gov (United States)

    Srivastava, Prashant K., ,, Dr.; O'Neill, Peggy, ,, Dr.

    2014-05-01

    Soil moisture is an important element for weather and climate prediction, hydrological sciences, and applications. Hence, measurements of this hydrologic variable are required to improve our understanding of hydrological processes, ecosystem functions, and the linkages between the Earth's water, energy, and carbon cycles (Srivastava et al. 2013). The retrieval of soil moisture depends not only on parameterizations in the retrieval algorithm but also on the soil dielectric mixing models used (Behari 2005). Although a number of soil dielectric mixing models have been developed, testing these models for soil moisture retrieval has still not been fully explored, especially with SMAP-like simulators. The main objective of this work focuses on testing different dielectric models for soil moisture retrieval using the Combined Radar/Radiometer (ComRAD) ground-based L-band simulator developed jointly by NASA/GSFC and George Washington University (O'Neill et al., 2006). The ComRAD system was deployed during a field experiment in 2012 in order to provide long active/passive measurements of two crops under controlled conditions during an entire growing season. L-band passive data were acquired at a look angle of 40 degree from nadir at both horizontal & vertical polarization. Currently, there are many dielectric models available for soil moisture retrieval; however, four dielectric models (Mironov, Dobson, Wang & Schmugge and Hallikainen) were tested here and found to be promising for soil moisture retrieval (some with higher performances). All the above-mentioned dielectric models were integrated with Single Channel Algorithms using H (SCA-H) and V (SCA-V) polarizations for the soil moisture retrievals. All the ground-based observations were collected from test site-United States Department of Agriculture (USDA) OPE3, located a few miles away from NASA GSFC. Ground truth data were collected using a theta probe and in situ sensors which were then used for validation. Analysis

  19. Ground Based GPS Phase Measurements for Atmospheric Sounding

    Science.gov (United States)

    2016-06-14

    based GPS observations for the correction of radar observations. 6 REFERENCES Alber, C., R. Ware, C. Rocken, and J. Braun, A new method for sensing ...rocken@ucar.edu Award #: N00014-97-1-0258 LONG-TERM GOAL The goal is to develop GPS remote sensing techniques to determine atmospheric signal delay and...agrees best with the observations in a least squares sense is selected. The corresponding refractivity profile is then selected. • We tested this

  20. Combining dual-polarization radar and ground-based observations to study the effect of riming on ice particles

    Science.gov (United States)

    Moisseev, Dmitri; von Lerber, Annakaisa; Tiira, Jussi

    2017-04-01

    Recently a new microphysical scheme based on a single ice-phase category was proposed for the use in numerical weather prediction models. In the proposed scheme, ice particle properties are predicted and vary in time and space. One of the attributes of the proposed scheme is that the prefactor of a power-law relation that links mass and size of ice particles is determined by the rime mass fraction, while the exponent is kept constant. According to this the maximum dimensions of ice particles do not change during riming until graupel growth phase is reached. The dual-polarization radar observations given an additional insight on what are the physical properties of ice particles. Often, it is assumed that differential reflectivity should decrease because of riming. The motivation for this is that heavy riming would transform an ice particle to graupel. A graupel particle typically would have an almost spherical shape and therefore the differential reflectivity will become smaller. On the other hand, at the earlier stages ice particle shape may not change much, while its mass and therefore the density increases. This would lead to the increase of the differential reflectivity, for example. By combining ground-based observations, which allow to quantify the effect of riming on snowfall, and dual-polarization radar observations we investigate the impact of riming on ice particle properties, i.e. mass, density and shape. Furthermore, a connection between, bulk properties of ice particles, liquid water path, radar equivalent reflectivity factor and precipitation rate observations is established. The study is based on data collected during US DOE Biogenic Aerosols - Effects on Clouds and Climate (BAECC) field campaign that took place in Hyytiala, Finland. A detailed analysis of two events is presented to illustrate the method.

  1. Ground-based measurement of surface temperature and thermal emissivity

    Science.gov (United States)

    Owe, M.; Van De Griend, A. A.

    1994-01-01

    Motorized cable systems for transporting infrared thermometers have been used successfully during several international field campaigns. Systems may be configured with as many as four thermal sensors up to 9 m above the surface, and traverse a 30 m transect. Ground and canopy temperatures are important for solving the surface energy balance. The spatial variability of surface temperature is often great, so that averaged point measurements result in highly inaccurate areal estimates. The cable systems are ideal for quantifying both temporal and spatial variabilities. Thermal emissivity is also necessary for deriving the absolute physical temperature, and measurements may be made with a portable measuring box.

  2. Ground-based intercomparison of two isoprene measurement techniques

    Directory of Open Access Journals (Sweden)

    E. Leibrock

    2003-01-01

    Full Text Available An informal intercomparison of two isoprene (C5H8 measurement techniques was carried out during Fall of 1998 at a field site located approximately 3 km west of Boulder, Colorado, USA. A new chemical ionization mass spectrometric technique (CIMS was compared to a well-established gas chromatographic technique (GC. The CIMS technique utilized benzene cation chemistry to ionize isoprene. The isoprene levels measured by the CIMS were often larger than those obtained with the GC. The results indicate that the CIMS technique suffered from an anthropogenic interference associated with air masses from the Denver, CO metropolitan area as well as an additional interference occurring in clean conditions. However, the CIMS technique is also demonstrated to be sensitive and fast. Especially after introduction of a tandem mass spectrometric technique, it is therefore a candidate for isoprene measurements in remote environments near isoprene sources.

  3. Terahertz radar cross section measurements

    DEFF Research Database (Denmark)

    Iwaszczuk, Krzysztof; Heiselberg, Henning; Jepsen, Peter Uhd

    2010-01-01

    We perform angle- and frequency-resolved radar cross section (RCS) measurements on objects at terahertz frequencies. Our RCS measurements are performed on a scale model aircraft of size 5-10 cm in polar and azimuthal configurations, and correspond closely to RCS measurements with conventional radar...

  4. Measuring human behaviour with radar

    NARCIS (Netherlands)

    Dorp, Ph. van

    2001-01-01

    The paper presents human motion measurements with the experimental Frequency Modulated Continuous Wave(FMCW) radar at TNO-FEL. The aim of these measurements is to analyse the Doppler velocity spectrum of humans. These analysis give insight in measuring human behaviour with radar for security applica

  5. Dust optical properties retrieved from ground-based polarimetric measurements.

    Science.gov (United States)

    Li, Zhengqiang; Goloub, Philippe; Blarel, Luc; Damiri, Bahaiddin; Podvin, Thierry; Jankowiak, Isabelle

    2007-03-20

    We have systematically processed one year of sunphotometer measurements (recorded at five AERONET/PHOTONS sites in Africa) in order to assess mineral dust optical properties with the use of a new polarimetry-based algorithm. We consider the Cimel CE318 polarized sunphotometer version to obtain single-scattering albedo, scattering phase matrix elements F(11) and F(12) for dust aerosols selected with Angström exponents ranging from -0.05 to 0.25. Retrieved F(11) and F(12) differ significantly from those of spherical particles. The degree of linear polarization -F(12)/F(11) for single scattering of atmospheric total column dust aerosols in the case of unpolarized incident light is systematically retrieved for the first time to our knowledge from sunphotometer measurements and shows consistency with previous laboratory characterizations of nonspherical particles.

  6. Comparison of HRDI wind measurements with radar and rocket observations

    Energy Technology Data Exchange (ETDEWEB)

    Burrage, M.D.; Skinner, W.R.; Marshall, A.R.; Hays, P.B.; Lieberman, R.S.; Gell, D.A.; Ortland, D.A.; Morton, Y.T.; Wu, D.L.; Franke, S.J.; Schmidlin, F.J.; Vincent, R.A.

    1993-06-18

    This paper reports wind measurements in the mesosphere and lower thermosphere made by the high resolution doppler imager (HRDI) on board the upper atmosphere research satellite (UARS). These measurements are correlated with ground based radar and rocket measurements. The HRDI makes measurements by observing doppler shifts in molecular oxygen lines. The intercomparison helps to validate the remote sensing results, helps to verify the on board calibration system, and also gives a common measurement which other measurements systems can be compared against.

  7. Ground-based Radar Detection of Near-Earth Asteroids%近地小行星地基雷达探测研究现状

    Institute of Scientific and Technical Information of China (English)

    张翔; 季江徽

    2014-01-01

    Ground-based radar detection may act as a powerful means to determine the shape and physical properties of the asteroids in our Solar system. By measuring time delay and doppler frequency of the received echoes, radar systems provide information in ranging and radial velocity of the asteroids. Over the past few decades, more than 500 asteroids (mostly near-Earth ob jects) were detected using radar observations. There are two categories of radar detection: (1) The continuous wave detection, which is adopted to determine the roughness of an asteroid’s surface. (2) The delay-Doppler de-tection,which is likely to produce its three-dimensional model, and to define the rotational state. In the delay-Doppler detection, target asteroids are resolved in line-of-sight distance and line-of-sight velocity, providing two-dimensional images with spatial resolution as fine as meter-scale. Besides radar detection, several other techniques would also provide the shape model of the asteroids, among which the lightcurve inverse method is the most popular one to do that. In comparison with other methods, radar observation may have an advantage on spacial resolution. The lightcurves cannot reveal elaborate information on small features, and the intermediate-scale features of the inversed model are only suggestive. By contrast, radar detection produces resolved images. In this review, we present the radar observation technique and the method for recon-structing three-dimensional models of asteroids from radar measurements. In addition, we also provide several examples of asteroid models by radar detection, and then compare them with other observations for the shape reconstruction for the asteroids.%地基雷达探测是研究太阳系中小行星的重要方法。雷达探测主要有两种方式:(1)连续波探测,可得到小行星表面的粗糙度等参数;(2)延迟多普勒探测,用于反演小行星的三维形状模型并确定自转轴状态。与其他探测方法

  8. A Gaussian Random Field Approach for Merging Radar and Ground-Based Rainfall Data on Small Spatial and Temporal Scales

    Science.gov (United States)

    Krebsbach, K.; Friederichs, P.

    2014-12-01

    The generation of reliable precipitation products that explicitly account for spatial and temporal structures of precipitation events requires a combination of data with a variety of error structures and temporal resolutions. In-situ measurements are relatively accurate, but available only at sparse and irregularly distributed locations, whereas remote measurements cover areas but suffer from spatially and temporally inhomogeneous systematic errors. Besides gauge measurements are available on coarser spatial and temporal resolution in contrast to remote sensing measurements which are given on a fine spatial and temporal resolution. In our study we use precipitation rates from the composit of two X-band radars in Bonn and Jülich in Germany. Our aim is to formulate a statistical space-time model that aggregates and disaggregates precipitation rates from radar and gauge observations. We model a Gaussian random field as underlying process, where we face the task of dealing with a large non-Gaussian data set. To start the analysis of the unadjusted radar rainfall rates, we follow the work of D. Allcroft and C. Glasbey (2003) and transform the data to a truncated Gaussian distribution. The advantage of the latent variable approach is that it takes account of the occurence of rainfall and the intensity using a single process. We proceed by estimating the empirical correlation from these transformed values with maximum likelihood methods and fit a parametric correlation function that gives rise to a Gaussian random field. Since the transformation gives censored values to dry locations, we simulate values for this area that lie below some threshold and extend the Gaussian field to the whole domain. In order to merge gauge and radar data for precipitation, we first aggregate the data to a scale on which the comparison is reasonable and then disaggregate again back to smaller desirable scales. The disaggregation step consists of calculating the difference between radar

  9. Characterizing Olive Grove Canopies by Means of Ground-Based Hemispherical Photography and Spaceborne RADAR Data

    Directory of Open Access Journals (Sweden)

    Carmen Morillo

    2011-07-01

    Full Text Available One of the main strengths of active microwave remote sensing, in relation to frequency, is its capacity to penetrate vegetation canopies and reach the ground surface, so that information can be drawn about the vegetation and hydrological properties of the soil surface. All this information is gathered in the so called backscattering coefficient (s0. The subject of this research have been olive groves canopies, where which types of canopy biophysical variables can be derived by a specific optical sensor and then integrated into microwave scattering models has been investigated. This has been undertaken by means of hemispherical photographs and gap fraction procedures. Then, variables such as effective and true Leaf Area Indices have been estimated. Then, in order to characterize this kind of vegetation canopy, two models based on Radiative Transfer theory have been applied and analyzed. First, a generalized two layer geometry model made up of homogeneous layers of soil and vegetation has been considered. Then, a modified version of the Xu and Steven Water Cloud Model has been assessed integrating the canopy biophysical variables derived by the suggested optical procedure. The backscattering coefficients at various polarized channels have been acquired from RADARSAT 2 (C-band, with 38.5° incidence angle at the scene center. For the soil simulation, the best results have been reached using a Dubois scattering model and the VV polarized channel (r2 = 0.88. In turn, when effective LAI (LAIeff has been taken into account, the parameters of the scattering canopy model are better estimated (r2 = 0.89. Additionally, an inversion procedure of the vegetation microwave model with the adjusted parameters has been undertaken, where the biophysical values of the canopy retrieved by this methodology fit properly with field measured values.

  10. Ground-Based Lidar Measurements During the CALIPSO and Twilight Zone (CATZ) Campaign

    Science.gov (United States)

    Berkoff, Timothy; Qian, Li; Kleidman, Richard; Stewart, Sebastian; Welton, Ellsworth; Li, Zhu; Holbem, Brent

    2008-01-01

    The CALIPSO and Twilight Zone (CATZ) field campaign was carried out between June 26th and August 29th of 2007 in the multi-state Maryland-Virginia-Pennsylvania region of the U.S. to study aerosol properties and cloud-aerosol interactions during overpasses of the CALIPSO satellite. Field work was conducted on selected days when CALIPSO ground tracks occurred in the region. Ground-based measurements included data from multiple Cimel sunphotometers that were placed at intervals along a segment of the CALIPSO ground-track. These measurements provided sky radiance and AOD measurements to enable joints inversions and comparisons with CALIPSO retrievals. As part of this activity, four ground-based lidars provided backscatter measurements (at 523 nm) in the region. Lidars at University of Maryland Baltimore County (Catonsville, MD) and Goddard Space Flight Center (Greenbelt, MD) provided continuous data during the campaign, while two micro-pulse lidar (MPL) systems were temporarily stationed at various field locations directly on CALIPSO ground-tracks. As a result, thirteen on-track ground-based lidar observations were obtained from eight different locations in the region. In some cases, nighttime CALIPSO coincident measurements were also obtained. In most studies reported to date, ground-based lidar validation efforts for CALIPSO rely on systems that are at fixed locations some distance away from the satellite ground-track. The CATZ ground-based lidar data provide an opportunity to examine vertical structure properties of aerosols and clouds both on and off-track simultaneously during a CALIPSO overpass. A table of available ground-based lidar measurements during this campaign will be presented, along with example backscatter imagery for a number of coincident cases with CALIPSO. Results indicate that even for a ground-based measurements directly on-track, comparisons can still pose a challenge due to the differing spatio-temporal properties of the ground and satellite

  11. Validation of Aura OMI by Aircraft and Ground-Based Measurements

    Science.gov (United States)

    McPeters, R. D.; Petropavlovskikh, I.; Kroon, M.

    2006-12-01

    Both aircraft-based and ground-based measurements have been used to validate ozone measurements by the OMI instrument on Aura. Three Aura Validation Experiment (AVE) flights have been conducted, in November 2004 and June 2005 with the NASA WB57, and in January/February 2005 with the NASA DC-8. On these flights, validation of OMI was primarily done using data from the CAFS (CCD Actinic Flux Spectroradiometer) instrument, which is used to measure total column ozone above the aircraft. These measurements are used to differentiate changes in stratospheric ozone from changes in total column ozone. Also, changes in ozone over high clouds measured by OMI were checked in a flight over tropical storm Arlene on a flight on June 11th. Ground-based measurements were made during the SAUNA campaign in Sodankyla, Finland, in March and April 2006. Both total column ozone and the ozone vertical distribution were validated.

  12. Initial Results from the DEEPWAVE Airborne and Ground-Based Measurement Program in New Zealand in 2014

    Science.gov (United States)

    Fritts, Dave; Smith, Ron; Taylor, Mike; Doyle, Jim; Eckermann, Steve; Dörnbrack, Andreas; Rapp, Markus; Williams, Biff; Bossert, Katrina; Pautet, Dominique

    2015-04-01

    The deep-propagating gravity wave experiment (DEEPWAVE) was performed on and over New Zealand, Tasmania, the Tasman Sea, and the Southern Ocean with core airborne measurements extending from 5 June to 21 July 2014 and supporting ground-based measurements beginning in late May and extending beyond the airborne component. DEEPWAVE employed two aircraft, the NSF/NCAR GV and the German DLR Falcon. The GV carried the standard flight-level instruments, dropsondes, and the Microwave Temperature Profiler (MTP). It also hosted new airborne lidar and imaging instruments built specifically to allow quantification of gravity waves (GWs) from sources at lower altitudes (e.g., orography, convection, jet streams, fronts, and secondary GW generation) throughout the stratosphere and into the mesosphere and lower thermosphere (MLT). The new GV lidars included a Rayleigh lidar measuring atmospheric density and temperature from ~20-60 km and a sodium resonance lidar measuring sodium density and temperature at ~75-100 km. An airborne Advanced Mesosphere Temperature Mapper (AMTM) was also developed for the GV, and together with additional IR "wing" cameras, imaged the OH airglow temperature and/or intensity fields extending ~900 km across the GV flight track. The DLR Falcon was equipped with its standard flight-level instruments and an aerosol Doppler lidar able to measure radial winds below the Falcon where aerosol backscatter was sufficient. Additional ground-based instruments included a 449 MHz boundary layer radar, balloons at multiple sites, two ground-based Rayleigh lidars, a second ground-based AMTM, a Fabry Perot interferometer measuring winds and temperatures at ~87 and 95 km, and a meteor radar measuring winds from ~80-100 km. DEEPWAVE performed 26 GV flights, 13 Falcon flights, and an extensive series of ground-based measurements whether or not the aircraft were flying. Together, these observed many diverse cases of GW forcing, propagation, refraction, and dissipation

  13. The interdependence of continental warm cloud properties derived from unexploited solar background signal in ground-based lidar measurements

    Directory of Open Access Journals (Sweden)

    J. C. Chiu

    2014-04-01

    Full Text Available We have extensively analysed the interdependence between cloud optical depth, droplet effective radius, liquid water path (LWP and geometric thickness for stratiform warm clouds using ground-based observations. In particular, this analysis uses cloud optical depths retrieved from untapped solar background signal that is previously unwanted and needs to be removed in most lidar applications. Combining these new optical depth retrievals with radar and microwave observations at the Atmospheric Radiation Measurement (ARM Climate Research Facility in Oklahoma during 2005–2007, we have found that LWP and geometric thickness increase and follow a power-law relationship with cloud optical depth regardless of the presence of drizzle; LWP and geometric thickness in drizzling clouds can be generally 20–40% and at least 10% higher than those in non-drizzling clouds, respectively. In contrast, droplet effective radius shows a negative correlation with optical depth in drizzling clouds, while it increases with optical depth and reaches an asymptote of 10 μm in non-drizzling clouds. This asymptotic behaviour in non-drizzling clouds is found in both droplet effective radius and optical depth, making it possible to use simple thresholds of optical depth, droplet size, or a combination of these two variables for drizzle delineation. This paper demonstrates a new way to enhance ground-based cloud observations and drizzle delineations using existing lidar networks.

  14. Comparison of NO2 vertical profiles from satellite and ground based measurements over Antarctica

    OpenAIRE

    Kulkarni, Pavan; Bortoli, Daniele; Costa, Maria João; Silva, Ana Maria; Ravegnani, Fabrizio; Giovanelli, Giorgio

    2011-01-01

    The Intercomparison of nitrogen dioxide (NO2) vertical profiles, derived from the satellite based HALogen Occultation Experiment (HALOE) measurements and from the ground based UV-VIS spectrometer GASCOD (Gas Analyzer Spectrometer Correlating Optical Differences) observations at the Mario Zucchelli Station (MZS), in Antarctica, are done for the first time. It is shown here that both datasets are in good agreement showing the same features in terms of magnitude, profile structure, a...

  15. Intercomparison of ground-based ozone and NO2 measurements during the MANTRA 2004 campaign

    Directory of Open Access Journals (Sweden)

    K. Strong

    2007-11-01

    Full Text Available The MANTRA (Middle Atmosphere Nitrogen TRend Assessment 2004 campaign took place in Vanscoy, Saskatchewan, Canada (52° N, 107° W from 3 August to 15 September, 2004. In support of the main balloon launch, a suite of five zenith-sky and direct-Sun-viewing UV-visible ground-based spectrometers was deployed, primarily measuring ozone and NO2 total columns. Three Fourier transform spectrometers (FTSs that were part of the balloon payload also performed ground-based measurements of several species, including ozone. Ground-based measurements of ozone and NO2 differential slant column densities from the zenith-viewing UV-visible instruments are presented herein. They are found to partially agree within NDACC (Network for the Detection of Atmospheric Composition Change standards for instruments certified for process studies and satellite validation. Vertical column densities of ozone from the zenith-sky UV-visible instruments, the FTSs, a Brewer spectrophotometer, and ozonesondes are compared, and found to agree within the combined error estimates of the instruments (15%. NO2 vertical column densities from two of the UV-visible instruments are compared, and are also found to agree within combined error (15%.

  16. Synergetic ground-based methods for remote measurements of ozone vertical profiles

    Science.gov (United States)

    Timofeyev, Yuriy; Kostsov, Vladimir; Virolainen, Yana

    2013-05-01

    The technique of combining ground-based measurements in infrared and microwave spectral regions in order to achieve higher accuracy of ozone profile retrieval in extensive altitude ranges is described and analyzed. The information content, errors, altitude ranges and vertical resolution of ozone profile retrieval have been studied on the basis of numerical simulation of synergetic experiments. Optimal conditions of measurements are defined and requirements to additional information are formulated. The first results on ozone vertical profile retrieval using groundbased measurements of FTIR-spectrometer and microwave radiometer are given.

  17. Volcanic Ash Cloud Observation using Ground-based Ka-band Radar and Near-Infrared Lidar Ceilometer during the Eyjafjallajökull eruption

    Directory of Open Access Journals (Sweden)

    Frank S. Marzano

    2015-03-01

    Full Text Available Active remote sensing techniques can probe volcanic ash plumes, but their sensitivity at a given distance depends upon the sensor transmitted power, wavelength and polarization capability. Building on a previous numerical study at centimeter wavelength, this work aims at i simulating the distal ash particles polarimetric response of millimeter-wave radar and multi-wavelength optical lidar; ii developing and applying a model-based statistical retrieval scheme using a multi-sensor approach. The microphysical electromagnetic forward model of volcanic ash particle distribution, previously set up at microwaves, is extended to include non-spherical particle shapes, vesicular composition, silicate content and orientation phenomena for both millimeter and optical bands. Monte Carlo generation of radar and lidar signatures are driven by random variability of volcanic particle main parameters, using constraints from available data and experimental evidences. The considered case study is related to the ground-based observation of the Eyjafjallajökull (Iceland volcanic ash plume on May 15, 2010, carried out by the Atmospheric Research Station at Mace Head (Ireland with a 35-GHz Ka-band Doppler cloud radar and a 1064-nm ceilometer lidar. The detection and estimation of ash layer presence and composition is carried out using a Bayesian approach, which is trained by the Monte Carlo model-based dataset. Retrieval results are corroborated exploiting auxiliary data such as those from a ground-based microwave radiometer also positioned at Mace Head.

  18. Ground-based SMART-COMMIT Measurements for Studying Aerosol and Cloud Properties

    Science.gov (United States)

    Tsay, Si-Chee

    2008-01-01

    From radiometric principles, it is expected that the retrieved properties of extensive aerosols and clouds from reflected/emitted measurements by satellite (and/or aircraft) should be consistent with those retrieved from transmitted/emitted radiance observed at the surface. Although space-borne remote sensing observations cover large spatial domain, they are often plagued by contamination of surface signatures. Thus, ground-based in-situ and remote-sensing measurements, where signals come directly from atmospheric constituents, the sun, and/or the Earth-atmosphere interactions, provide additional information content for comparisons that confirm quantitatively the usefulness of the integrated surface, aircraft, and satellite data sets. The development and deployment of SMARTCOMMIT (Surface-sensing Measurements for Atmospheric Radiative Transfer - Chemical, Optical & Microphysical Measurements of In-situ Troposphere) mobile facilities are aimed for the optimal utilization of collocated ground-based observations as constraints to yield higher fidelity satellite retrievals and to determine any sampling bias due to target conditions. To quantify the energetics of the surface-atmosphere system and the atmospheric processes, SMART-COMMIT instruments fall into three categories: flux radiometer, radiance sensor and in-situ probe. In this paper, we will demonstrate the capability of SMART-COMMIT in recent field campaigns (e.g., CRYSTAL-FACE, UAE 2, BASEASIA, NAMMA) that were designed and executed to study the compelling variability in temporal scale of both anthropogenic and natural aerosols (e.g., biomass-burning smoke, airborne dust) and cirrus clouds. We envision robust approaches in which well-collocated ground-based measurements and space-borne observations will greatly advance our knowledge of extensive aerosols and clouds.

  19. Ground-based microwave measuring of middle atmosphere ozone and temperature profiles during sudden stratospheric warming

    Science.gov (United States)

    Feigin, A. M.; Shvetsov, A. A.; Krasilnikov, A. A.; Kulikov, M. Y.; Karashtin, D. A.; Mukhin, D.; Bolshakov, O. S.; Fedoseev, L. I.; Ryskin, V. G.; Belikovich, M. V.; Kukin, L. M.

    2012-12-01

    We carried out the experimental campaign aimed to study the response of middle atmosphere on a sudden stratospheric warming in winter 2011-2012 above Nizhny Novgorod, Russia (56N, 44E). We employed the ground-based microwave complex for remote sensing of middle atmosphere developed in the Institute of Applied Physics of the Russian Academy of Science. The complex combines two room-temperature radiometers, i.e. microwave ozonometer and the stratospheric thermometer. Ozonometer is a heterodyne spectroradiometer, operating in a range of frequencies that include the rotation transition of ozone molecules with resonance frequency 110.8 GHz. Operating frequency range of the stratospheric thermometer is 52.5-5.4 GHz and includes lower frequency edge of 5 mm molecular oxygen absorption bands and among them two relatively weak lines of O2 emission. Digital fast Fourier transform spectrometers developed by "Acqiris" are employed for signal spectral analysis. The spectrometers have frequency range 0.05-1 GHz and realizes the effective resolution about 61 KHz. For retrieval vertical profiles of ozone and temperature from radiometric data we applied novel method based on Bayesian approach to inverse problem solution, which assumed a construction of probability distribution of the characteristics of retrieved profiles with taking into account measurement noise and available a priori information about possible distributions of ozone and temperature in the middle atmosphere. Here we introduce the results of the campaign in comparison with Aura MLS data. Presented data includes one sudden stratospheric warming event which took place in January 13-14 and was accompanied by temperature increasing up to 310 K at 45 km height. During measurement period, ozone and temperature variations were (almost) anti-correlated, and total ozone abundance achieved a local maxima during the stratosphere cooling phase. In general, results of ground-based measurements are in good agreement with

  20. Improved ground-based FTS measurement for column abundance CO2 retrievals(Conference Presentation)

    Science.gov (United States)

    Goo, Tae-Young

    2016-10-01

    The National Institute of Meteorological Sciences has operated a ground-based Fourier Transform Spectrometer (FTS) at Anmyeondo, Korea since December 2012. Anmyeondo FTS site is a designated operational station of Total Carbon Column Observing Network (TCCON) and belongs to regional Global Atmosphere Watch observatory. A Bruker IFS-125HR model, which has a significantly high spectral resolution by 0.02 cm-1, is employed and instrument specification is almost same as the TCCON configuration. such as a spectrum range of 3,800 16,000 cm-1, a resolution of 1 cm-1, InGaAs and Si-Diode detectors and CaF2 beam splitter. It is found that measured spectra have a good agreement with simulated spectra. In order to improve the spectral accuracy and stability, The Operational Automatic System for Intensity of Sunray (OASIS) has been developed. The OASIS can provide consistent photon energy optimized to detector range by controlling the diameter of solar beam reflected from the mirror of suntracker. As a result, monthly modulation efficiency (ME), which indicates the spectral accuracy of FTS measurement, has been recorded the vicinity of 99.9% since Feb 2015. The ME of 98% is regarded as the error of 0.1% in the ground-based in-situ CO2 measurement. Total column abundances of CO2 and CH4 during 2015 are estimated by using GGG v14 and compared with ground-based in-situ CO2 and CH4 measurements at the height of 86 m above sea level. The seasonality of CO2 is well captured by both FTS and in-situ measurements while there is considerable difference on the amplitude of CO2 seasonal variation due to the insensitivity of column CO2 to the surface carbon cycle dynamics in nature as well as anthropogenic sources. Total column CO2 and CH4 approximately vary from 395 ppm to 405 ppm and from 1.82 ppm to 1.88 ppm, respectively. It should be noted that few measurements obtained in July to August because of a lot of cloud and fog. It is found that enhancement of CH4 from the FTS at Anmyeondo

  1. Estimation of Antarctic ozone loss from Ground-based total column measurements

    Directory of Open Access Journals (Sweden)

    J. Kuttippurath

    2010-03-01

    Full Text Available The passive ozone method is used to estimate ozone loss from ground-based measurements in the Antarctic. A sensitivity study shows that the O3 loss can be estimated within an accuracy of ~4%. The method is then applied to the observations from Amundsen-Scott/South Pole, Arrival Heights, Belgrano, Concordia, Dumont d'Urville, Faraday, Halley, Marambio, Neumayer, Rothera, Syowa and Zhongshan for the diagnosis of ozone loss in the Antarctic. On average, the five-day running mean of the vortex averaged ozone column loss deduced from the ground-based stations shows about 53% in 2009, 59% in 2008, 55% in 2007, 56% in 2006 and 61% in 2005. The observed O3 loss and loss rates are in very good agreement with the satellite observations (Ozone Monitoring Instrument and Sciamachy and are well reproduced by the model (Reprobus and SLIMCAT calculations.

    The historical ground-based total ozone measurements show that the depletion started in the late 1970s, reached a maximum in the early 1990s, stabilising afterwards at this level until present, with the exception of 2002, the year of an early vortex break-up. There is no indication of significant recovery yet.

    At southern mid-latitudes, a total ozone reduction of 40–50% is observed at the newly installed station Rio Gallegos and 25–35% at Kerguelen in October–November of 2008–2009 and 2005–2009 (except 2008 respectively, and of 10–20% at Macquarie Island in July–August of 2006–2009. This illustrates the significance of measurements at the edges of Antarctica.

  2. Comparison of OMI UV observations with ground-based measurements at high northern latitudes

    Directory of Open Access Journals (Sweden)

    G. Bernhard

    2015-03-01

    Full Text Available The Dutch-Finnish Ozone Monitoring Instrument (OMI on board NASA's Aura spacecraft provides estimates of erythemal (sunburning ultraviolet (UV dose rates and erythemal daily doses. These data were compared with ground-based measurements at 13 stations located throughout the Arctic and Scandinavia from 60 to 83° N. The study corroborates results from earlier work, but is based on a longer time series (eight vs. two years and considers additional data products, such as the erythemal dose rate at the time of the satellite overpass. Furthermore, systematic errors in satellite UV data resulting from inaccuracies in the surface albedo climatology used in the OMI UV algorithm are systematically assessed. At times when the surface albedo is correctly known, OMI data typically exceed ground-based measurements by 0–11%. When the OMI albedo climatology exceeds the actual albedo, OMI data may be biased high by as much as 55%. In turn, when the OMI albedo climatology is too low, OMI data can be biased low by up to 59%. Such large negative biases may occur when reflections from snow and ice, which increase downwelling UV irradiance, are misinterpreted as reflections from clouds, which decrease the UV flux at the surface. Results suggest that a better OMI albedo climatology would greatly improve the accuracy of OMI UV data products even if year-to-year differences of the actual albedo cannot be accounted for. A pathway for improving the OMI albedo climatology is discussed. Results also demonstrate that ground-based measurements from the center of Greenland, where high, homogenous surface albedo is observed year round, are ideally suited to detect systematic problems or temporal drifts in estimates of surface UV irradiance from space.

  3. Ground-based measurements of aerosol optical properties and radiative forcing in North China

    Institute of Scientific and Technical Information of China (English)

    Hongbin Chen; Xiangao Xia; Pucai Wang; Wenxing Zhang

    2007-01-01

    In order to gain an insight into the aerosol properties and their climatic effect over the continental source regions of China, it is of significance to carry out long-term ground-based measurements of aerosol optical properties and radiative forcing. A couple of temporary and permanent Aerosol Robotic Network (AERONET) sites and three comprehensive radiative sites were established in China as a result of international cooperation in recent years. Heavy aerosol loading and significant temporal and spatial variation over North China are revealed by the AERONET data.Aerosol-induced reductions in surface radiation budget are examined on the basis of collocated observations by sun photometers and pyranometers.

  4. A six-beam method to measure turbulence statistics using ground-based wind lidars

    DEFF Research Database (Denmark)

    Sathe, Ameya; Mann, Jakob; Vasiljevic, Nikola

    2015-01-01

    A so-called six-beam method is proposed to measure atmospheric turbulence using a ground-based wind lidar. This method requires measurement of the radial velocity variances at five equally spaced azimuth angles on the base of a scanning cone and one measurement at the centre of the scanning circle...... lidar (WindScanner), and the derived turbulence statistics (using both methods) such as the u and v variances are compared with those obtained from a reference cup anemometer and a wind vane at 89m height under different atmospheric stabilities. The measurements show that in comparison to the reference...... cup anemometer, depending on the atmospheric stability and the wind field component, the six-beam method measures between 85 and 101% of the reference turbulence, whereas the VAD method measures between 66 and 87% of the reference turbulence....

  5. A six-beam method to measure turbulence statistics using ground-based wind lidars

    DEFF Research Database (Denmark)

    Sathe, Ameya; Mann, Jakob; Vasiljevic, Nikola

    2014-01-01

    A so-called six-beam method is proposed to measure atmospheric turbulence using a ground-based wind lidar. This method requires measurement of the radial velocity variances at five equally spaced azimuth angles on the base of a scanning cone and one measurement at the center of the scanning circle...... lidar (WindScanner), and the derived turbulence statistics (using both methods) such as the u and v variances are compared with those obtained from a reference cup anemometer and a wind vane at 89m height under different atmospheric stabilities. The measurements show that in comparison to the reference...... cup anemometer, depending on the atmospheric stability and the wind field component, the six-beam method measures between 85–101% of the reference turbulence, whereas the VAD method measures between 66–87% of the reference turbulence....

  6. Airborne and ground based lidar measurements of the atmospheric pressure profile

    Science.gov (United States)

    Korb, C. Laurence; Schwemmer, Geary K.; Dombrowski, Mark; Weng, Chi Y.

    1989-01-01

    The first high accuracy remote measurements of the atmospheric pressure profile have been made. The measurements were made with a differential absorption lidar system that utilizes tunable alexandrite lasers. The absorption in the trough between two lines in the oxygen A-band near 760 nm was used for probing the atmosphere. Measurements of the two-dimensional structure of the pressure field were made in the troposphere from an aircraft looking down. Also, measurements of the one-dimensional structure were made from the ground looking up. Typical pressure accuracies for the aircraft measurements were 1.5-2 mbar with a 30-m vertical resolution and a 100-shot average (20 s), which corresponds to a 2-km horizontal resolution. Typical accuracies for the upward viewing ground based measurements were 2.0 mbar for a 30-m resolution and a 100-shot average.

  7. Overview and Initial Results from the DEEPWAVE Airborne and Ground-Based Measurement Program

    Science.gov (United States)

    Fritts, D. C.

    2015-12-01

    The deep-propagating gravity wave experiment (DEEPWAVE) was performed on and over New Zealand, the Tasman Sea, and the Southern Ocean with core airborne measurements extending from 5 June to 21 July 2014 and supporting ground-based measurements spanning a longer interval. The NSF/NCAR GV employed standard flight-level measurements and new airborne lidar and imaging measurements of gravity waves (GWs) from sources at lower altitudes throughout the stratosphere and into the mesosphere and lower thermosphere (MLT). The new GV lidars included a Rayleigh lidar measuring atmospheric density and temperature from ~20-60 km and a sodium resonance lidar measuring sodium density and temperature at ~75-105 km. An airborne Advanced Mesosphere Temperature Mapper (AMTM) and two IR "wing" cameras imaged the OH airglow temperature and/or intensity fields extending ~900 km across the GV flight track. The DLR Falcon was equipped with its standard flight-level instruments and an aerosol Doppler lidar measuring radial winds below the Falcon. DEEPWAVE also included extensive ground-based measurements in New Zealand, Tasmania, and Southern Ocean Islands. DEEPWAVE performed 26 GV flights and 13 Falcon flights, and ground-based measurements occurred whether or not the aircraft were flying. Collectively, many diverse cases of GW forcing, propagation, refraction, and dissipation spanning altitudes of 0-100 km were observed. Examples include strong mountain wave (MW) forcing and breaking in the lower and middle stratosphere, weak MW forcing yielding MW penetration into the MLT having very large amplitudes and momentum fluxes, MW scales at higher altitudes ranging from ~10-250 km, large-scale trailing waves from orography refracting into the polar vortex and extending to high altitudes, GW generation by deep convection, large-scale GWs arising from jet stream sources, and strong MWs in the MLT arising from strong surface flow over a small island. DEEPWAVE yielded a number of surprises, among

  8. A review of turbulence measurements using ground-based wind lidars

    DEFF Research Database (Denmark)

    Sathe, Ameya; Mann, Jakob

    2013-01-01

    pioneered in the first 15 yr, i.e., from 1972–1997, when standard techniques could not be used to measure turbulence. Obtaining unfiltered turbulence statistics from the large probe volume of the lidars has been and still remains the most challenging aspect. Until now, most of the processing algorithms......A review of turbulence measurements using ground-based wind lidars is carried out. Works performed in the last 30 yr, i.e., from 1972–2012 are analyzed. More than 80% of the work has been carried out in the last 15 yr, i.e., from 1997–2012. New algorithms to process the raw lidar data were...... that have been developed have shown that by combining an isotropic turbulence model with raw lidar measurements, we can obtain unfiltered statistics.We believe that an anisotropic turbulence model will provide a more realistic measure of turbulence statistics. Future development in algorithms will depend...

  9. Ground based mobile isotopic methane measurements in the Front Range, Colorado

    Science.gov (United States)

    Vaughn, B. H.; Rella, C.; Petron, G.; Sherwood, O.; Mielke-Maday, I.; Schwietzke, S.

    2014-12-01

    Increased development of unconventional oil and gas resources in North America has given rise to attempts to monitor and quantify fugitive emissions of methane from the industry. Emission estimates of methane from oil and gas basins can vary significantly from one study to another as well as from EPA or State estimates. New efforts are aimed at reconciling bottom-up, or inventory-based, emission estimates of methane with top-down estimates based on atmospheric measurements from aircraft, towers, mobile ground-based vehicles, and atmospheric models. Attributing airborne measurements of regional methane fluxes to specific sources is informed by ground-based measurements of methane. Stable isotopic measurements (δ13C) of methane help distinguish between emissions from the O&G industry, Confined Animal Feed Operations (CAFO), and landfills, but analytical challenges typically limit meaningful isotopic measurements to individual point sampling. We are developing a toolbox to use δ13CH4 measurements to assess the partitioning of methane emissions for regions with multiple methane sources. The method was applied to the Denver-Julesberg Basin. Here we present data from continuous isotopic measurements obtained over a wide geographic area by using MegaCore, a 1500 ft. tube that is constantly filled with sample air while driving, then subsequently analyzed at slower rates using cavity ring down spectroscopy (CRDS). Pressure, flow and calibration are tightly controlled allowing precise attribution of methane enhancements to their point of collection. Comparisons with point measurements are needed to confirm regional values and further constrain flux estimates and models. This effort was made in conjunction with several major field campaigns in the Colorado Front Range in July-August 2014, including FRAPPÉ (Front Range Air Pollution and Photochemistry Experiment), DISCOVER-AQ, and the Air Water Gas NSF Sustainability Research Network at the University of Colorado.

  10. Exploring the relationship between monitored ground-based and satellite aerosol measurements over the City of Johannesburg

    CSIR Research Space (South Africa)

    Garland, Rebecca M

    2012-09-01

    Full Text Available This project studied the relationship between aerosol optical depth (AOD) from the Multi-angle Imaging SpectroRadiometer (MISR) instrument on the Terra satellite, and ground-based monitored particulate matter (PM) mass concentrations measured...

  11. High-Resolution Mapping of Sea Ice, Icebergs and Growlers in Kongsfjorden, Svalbard, using Ground Based Radar, Satellite, and UAV

    Science.gov (United States)

    Lauknes, T. R.; Rouyet, L.; Solbø, S. A.; Sivertsen, A.; Storvold, R.; Akbari, V.; Negrel, J.; Gerland, S.

    2016-12-01

    The dynamics of sea ­ice has a well­ recognized role in the climate system and its extent and evolution is impacted by the global warming. In addition, calving of icebergs and growlers at the tidewater glacier fronts is a component of the mass loss in polar regions. Understanding of calving and ice ­ocean interaction, in particular at tidewater glacier front remains elusive, and a problematic uncertainty in climate change projections. Studying the distribution, volumetry and motion of sea ­ice, icebergs and growlers is thus essential to understand their interactions with the environment in order to be able to predict at short­term their drifts, e.g. to mitigate the risk for shipping, and at longer term the multiple relations with climate changes. Here, we present the results from an arctic fieldwork campaign conducted in Kongsfjorden, Svalbard in April 2016, where we used different remote sensing instruments to observe dynamics of sea ice, icebergs, and growlers. We used a terrestrial radar system, imaging the study area every second minute during the observation period. At the front of the Kronebreen glacier, calving events can be detected and the drift of the generated icebergs and growlers tracked with unprecedented spatial and temporal resolution. During the field campaign, we collected four Radarsat-2 quad-pol images, that will be used to classify the different types of sea ice. In addition, we used small unmanned aircraft (UAS) instrumented with high resolution cameras capturing HD video and still pictures. This allows to map and measure the size of icebergs and ice floes. Such information is essential to validate sensitivity and detection limits from the ground and satellite based measurements.

  12. Concurrent aerial and ground-based optical turbulence measurements along a long elevated path

    Science.gov (United States)

    Nowlin, Scott R.; Hahn, Ila L.; Hugo, Ronald J.; Bishop, Kenneth P.

    1999-08-01

    We report concurrent ground-based scintillator/airborne constant-current anemometer (CCA) measurements made along a 51.4 km-long slant path between Salinas and North Oscura peaks, NM. Simultaneous path-averaged refractive index structure parameter (Cn2) measurements from the CCA and the scintillometer show good agreement, with deviations apparently due to localized effects of underlying topography and metrology. Statistics from both data sets are presented in the form of histograms and cumulative distribution functions. CCA Cn2 point measurements are compared to underlying surface topography. We discuss possible effects of instruments anomalies, analysis methods, and atmospheric velocity fluctuation levels. We present conclusions and made recommendations for future similar experimental efforts.

  13. Aerosol Single Scattering Albedo retrieved from ground-based measurements in the UV-visible

    Directory of Open Access Journals (Sweden)

    V. Buchard

    2010-07-01

    Full Text Available Estimates of Aerosol Single Scattering Albedo (SSA from ground-based spectral measurements in the UV-visible are conducted at Villeneuve d'Ascq (VdA in France. In order to estimate this parameter, measurements of global and diffuse UV-visible solar irradiances performed under cloud-free conditions since 2003 with a spectroradiometer operated by the Laboratoire d'Optique Atmosphérique (LOA are used. The technique consists in comparing the measured irradiance values to modelled irradiances computed for various SSA. The retrieval is restricted to the 330–450 nm range to avoid ozone influence.

    For validation purpose, the retrieved values of SSA at 440 nm are compared to the ones obtained from sunphotometer measurements of the AERONET/PHOTONS network available on the LOA site. The results are rather satisfying: in 2003 and 2005–2006 the Root Mean Square (RMS of the differences are about 0.05, these values are within the uncertainty domain of retrieval of both products. Distinction between days characterized by different aerosol content, by means of the aerosol optical thickness (AOT retrieved from ground-based measurements at the same wavelength, shows that the comparisons between both products are better when AOT are higher. Indeed in case AOT are greater than 0.2, the RMS is 0.027 in 2003 and 0.035 in 2005–2006. The SSA estimated at 340 and 380 nm from ground-based spectra are also studied, though no validation can be carried out with sunphotometer data (440 nm is the shortest wavelength at which the SSA is provided by the network. The good comparisons observed at 440 nm can let assume that the SSA retrieved from spectroradiometer measurements at the two other wavelengths are also obtained with a good confidence level. Thus these values in the UV range can be used to complete aerosol data provided by AERONET/PHOTONS at VdA. Moreover they can be used for a best knowledge of the aerosol absorption that is necessary to quantify the

  14. Nighttime Aerosol Optical Depth Measurements Using a Ground-based Lunar Photometer

    Science.gov (United States)

    Berkoff, Tim; Omar, Ali; Haggard, Charles; Pippin, Margaret; Tasaddaq, Aasam; Stone, Tom; Rodriguez, Jon; Slutsker, Ilya; Eck, Tom; Holben, Brent; hide

    2015-01-01

    In recent years it was proposed to combine AERONET network photometer capabilities with a high precision lunar model used for satellite calibration to retrieve columnar nighttime AODs. The USGS lunar model can continuously provide pre-atmosphere high precision lunar irradiance determinations for multiple wavelengths at ground sensor locations. When combined with measured irradiances from a ground-based AERONET photometer, atmospheric column transmissions can determined yielding nighttime column aerosol AOD and Angstrom coefficients. Additional demonstrations have utilized this approach to further develop calibration methods and to obtain data in polar regions where extended periods of darkness occur. This new capability enables more complete studies of the diurnal behavior of aerosols, and feedback for models and satellite retrievals for the nighttime behavior of aerosols. It is anticipated that the nighttime capability of these sensors will be useful for comparisons with satellite lidars such as CALIOP and CATS in additional to ground-based lidars in MPLNET at night, when the signal-to-noise ratio is higher than daytime and more precise AOD comparisons can be made.

  15. Chlorine oxide in the stratospheric ozone layer Ground-based detection and measurement

    Science.gov (United States)

    Parrish, A.; De Zafra, R. L.; Solomon, P. M.; Barrett, J. W.; Carlson, E. R.

    1981-01-01

    Stratospheric chlorine oxide, a significant intermediate product in the catalytic destruction of ozone by atomic chlorine, has been detected and measured by a ground-based 204 GHz, millimeter-wave receiver. Data taken at latitude 42 deg N on 17 days between January 10 and February 18, 1980 yield an average chlorine oxide column density of approximately 1.05 x 10 to the 14th/sq cm or approximately 2/3 that of the average of eight in situ balloon flight measurements (excluding the anomalously high data of July 14, 1977) made over the past four years at 32 deg N. Less chlorine oxide below 35 km and a larger vertical gradient than predicted by theoretical models of the stratospheric ozone layer are found.

  16. Mesospheric minor species determinations from rocket and ground-based i.r. measurements

    Science.gov (United States)

    Ulwick, J. C.; Baker, K. D.; Baker, D. J.; Steed, A. J.; Pendleton, W. R.; Grossmann, K.; Brückelmann, H. G.

    As part of the MAP/WINE campaign the infrared hydroxyl airglow layer was investigated at Kiruna, Sweden, by simultaneous measurements with rocket probes of OH ≠ and O2( a1Δg) infrared emissions and concentrations of odd oxygen species (O and O 3). Coordinated measurements of OH ≠ and O2( a1Δg) zenith radiance and emission spectra and their time histories were made from the ground. The rocket-borne Λ = 1.55 μm radiometer ( ΔΛ ≊ 0.23 μm) provided volume emission rates for OH for both rocket ascent and descent, showing a peak near 87 km with a maximum of nearly 10 6 photons sec -1 cm -3. The atomic oxygen distribution showed a concentration of about 10 11 cm -3 between 88 and 100 km, dropping off sharply below 85 km. The ground-based radiometer at Λ = 1.56 μm, which had a similar filter bandpass to the rocket-borne instrument, yielded an equivalent of 130 kR for the total OH Δv = 2 sequence, which is consistent with the zenith-corrected rocket-based sequence radiance value of ≌ 110 kR. The rotational temperature of the OH night airglow obtained from the rotational structure of the OH M (3,1) band observed by the ground-based interferometer was about 195K at the time of the rocket measurement. Atomic oxygen concentrations were calculated from the OH profile and show agreement with the directly measured values. Atomic hydrogen concentrations of a few times 10 7 cm -3 near 85 km were inferred from the data set.

  17. A six-beam method to measure turbulence statistics using ground-based wind lidars

    Directory of Open Access Journals (Sweden)

    A. Sathe

    2014-10-01

    Full Text Available A so-called six-beam method is proposed to measure atmospheric turbulence using a ground-based wind lidar. This method requires measurement of the radial velocity variances at five equally spaced azimuth angles on the base of a scanning cone and one measurement at the center of the scanning circle, i.e.using a vertical beam at the same height. The scanning configuration is optimized to minimize the sum of the random errors in the measurement of the second-order moments of the components (u,v, w of the wind field. We present this method as an alternative to the so-called velocity azimuth display (VAD method that is routinely used in commercial wind lidars, and which usually results in significant averaging effects of measured turbulence. In the VAD method, the high frequency radial velocity measurements are used instead of their variances. The measurements are performed using a pulsed lidar (WindScanner, and the derived turbulence statistics (using both methods such as the u and v variances are compared with those obtained from a reference cup anemometer and a wind vane at 89 m height under different atmospheric stabilities. The measurements show that in comparison to the reference cup anemometer, depending on the atmospheric stability and the wind field component, the six-beam method measures between 85–101% of the reference turbulence, whereas the VAD method measures between 66–87% of the reference turbulence.

  18. A six-beam method to measure turbulence statistics using ground-based wind lidars

    Science.gov (United States)

    Sathe, A.; Mann, J.; Vasiljevic, N.; Lea, G.

    2015-02-01

    A so-called six-beam method is proposed to measure atmospheric turbulence using a ground-based wind lidar. This method requires measurement of the radial velocity variances at five equally spaced azimuth angles on the base of a scanning cone and one measurement at the centre of the scanning circle, i.e.using a vertical beam at the same height. The scanning configuration is optimized to minimize the sum of the random errors in the measurement of the second-order moments of the components (u,v, w) of the wind field. We present this method as an alternative to the so-called velocity azimuth display (VAD) method that is routinely used in commercial wind lidars, and which usually results in significant averaging effects of measured turbulence. In the VAD method, the high frequency radial velocity measurements are used instead of their variances. The measurements are performed using a pulsed lidar (WindScanner), and the derived turbulence statistics (using both methods) such as the u and v variances are compared with those obtained from a reference cup anemometer and a wind vane at 89 m height under different atmospheric stabilities. The measurements show that in comparison to the reference cup anemometer, depending on the atmospheric stability and the wind field component, the six-beam method measures between 85 and 101% of the reference turbulence, whereas the VAD method measures between 66 and 87% of the reference turbulence.

  19. A proposal on the study of solar-terrestrial coupling processes with atmospheric radars and ground-based observation network

    Science.gov (United States)

    Tsuda, Toshitaka; Yamamoto, Mamoru; Hashiguchi, Hiroyuki; Shiokawa, Kazuo; Ogawa, Yasunobu; Nozawa, Satonori; Miyaoka, Hiroshi; Yoshikawa, Akimasa

    2016-09-01

    The solar energy can mainly be divided into two categories: the solar radiation and the solar wind. The former maximizes at the equator, generating various disturbances over a wide height range and causing vertical coupling processes of the atmosphere between the troposphere and middle and upper atmospheres by upward propagating atmospheric waves. The energy and material flows that occur in all height regions of the equatorial atmosphere are named as "Equatorial Fountain." These processes from the bottom also cause various space weather effects, such as satellite communication and Global Navigation Satellite System positioning. While, the electromagnetic energy and high-energy plasma particles in the solar wind converge into the polar region through geomagnetic fields. These energy/particle inflow results in auroral Joule heating and ion drag of the atmosphere particularly during geomagnetic storms and substorms. The ion outflow from the polar ionosphere controls ambient plasma constituents in the magnetosphere and may cause long-term variation of the atmosphere. We propose to clarify these overall coupling processes in the solar-terrestrial system from the bottom and from above through high-resolution observations at key latitudes in the equator and in the polar region. We will establish a large radar with active phased array antenna, called the Equatorial Middle and Upper atmosphere radar, in west Sumatra, Indonesia. We will participate in construction of the EISCAT_3D radar in northern Scandinavia. These radars will enhance the existing international radar network. We will also develop a global observation network of compact radio and optical remote sensing equipment from the equator to polar region.

  20. Mountain wave PSC dynamics and microphysics from ground-based lidar measurements and meteorological modeling

    Directory of Open Access Journals (Sweden)

    J. Reichardt

    2004-01-01

    Full Text Available The day-long observation of a polar stratospheric cloud (PSC by two co-located ground-based lidars at the Swedish research facility Esrange (67.9° N, 21.1° E on 16 January 1997 is analyzed in terms of PSC dynamics and microphysics. Mesoscale modeling is utilized to simulate the meteorological setting of the lidar measurements. Microphysical properties of the PSC particles are retrieved by comparing the measured particle depolarization ratio and the PSC-averaged lidar ratio with theoretical optical data derived for different particle shapes. In the morning, nitric acid trihydrate (NAT particles and then increasingly coexisting liquid ternary aerosol (LTA were detected as outflow from a mountain wave-induced ice PSC upwind Esrange. The NAT PSC is in good agreement with simulations for irregular-shaped particles with length-to-diameter ratios between 0.75 and 1.25, maximum dimensions from 0.7 to 0.9 µm, and a number density from 8 to 12 cm-3 and the coexisting LTA droplets had diameters from 0.7 to 0.9 µm, a refractive index of 1.39 and a number density from 7 to 11 cm-3. The total amount of condensed HNO3 was in the range of 8–12 ppbv. The data provide further observational evidence that NAT forms via deposition nucleation on ice particles as a number of recently published papers suggest. By early afternoon the mountain-wave ice PSC expanded above the lidar site. Its optical data indicate a decrease in minimum particle size from 3 to 1.9 µm with time. Later on, following the weakening of the mountain wave, wave-induced LTA was observed only. Our study demonstrates that ground-based lidar measurements of PSCs can be comprehensively interpreted if combined with mesoscale meteorological data.

  1. On the Interpretation of Gravity Wave Measurements by Ground-Based Lidars

    Directory of Open Access Journals (Sweden)

    Andreas Dörnbrack

    2017-03-01

    Full Text Available This paper asks the simple question: How can we interpret vertical time series of middle atmosphere gravity wave measurements by ground-based temperature lidars? Linear wave theory is used to show that the association of identified phase lines with quasi-monochromatic waves should be considered with great care. The ambient mean wind has a substantial effect on the inclination of the detected phase lines. The lack of knowledge about the wind might lead to a misinterpretation of the vertical propagation direction of the observed gravity waves. In particular, numerical simulations of three archetypal atmospheric mountain wave regimes show a sensitivity of virtual lidar observations on the position relative to the mountain and on the scale of the mountain.

  2. The Holy Grail of Resource Assessment: Low Cost Ground-Based Measurements with Good Accuracy

    Energy Technology Data Exchange (ETDEWEB)

    Marion, Bill; Smith, Benjamin

    2017-06-22

    Using performance data from some of the millions of installed photovoltaic (PV) modules with micro-inverters may afford the opportunity to provide ground-based solar resource data critical for developing PV projects. The method used back-solves for the direct normal irradiance (DNI) and the diffuse horizontal irradiance (DHI) from the micro-inverter ac production data. When the derived values of DNI and DHI were then used to model the performance of other PV systems, the annual mean bias deviations were within +/- 4%, and only 1% greater than when the PV performance was modeled using high quality irradiance measurements. An uncertainty analysis shows the method better suited for modeling PV performance than using satellite-based global horizontal irradiance.

  3. Intermittency of the turbulent processes in the Earth's magnetosphere detected from the ground-based measurements

    Science.gov (United States)

    Stepanova, Marina; Foppiano, Alberto; Ovalle, Elias; Antonova, Elizavieta; Troshichev, Oleg

    2008-11-01

    Turbulent processes in the Earth's magnetosphere are reflected in the dynamical behavior of the geomagnetic indices and other parameters determined from ground based observations. Intermittent properties of one minute Polar Cap (PC) index and auroral radio wave absorption are studied using 1995-2000 data sets. It was found that the probability distribution functions (PDFs) of both PC-index and absorption fluctuations display a strong non-Gaussian shape. This indicates that they are not characterized by a global time self-similarity but rather exhibit intermittency, as previously reported for solar wind velocity and auroral electrojet index values. In the case of the auroral absorption it was also found that intermittency strongly depends on the magnetic local time, being largest in the nighttime sector. This shows that the acceleration of precipitating particles is intermittent, especially near the substorm eye, where the level of turbulence increases. Application of the Local Intermittency Measure (LIM) technique confirms the aforementioned results to a better precision.

  4. An evaluation of IASI-NH3 with ground-based Fourier transform infrared spectroscopy measurements

    Science.gov (United States)

    Dammers, Enrico; Palm, Mathias; Van Damme, Martin; Vigouroux, Corinne; Smale, Dan; Conway, Stephanie; Toon, Geoffrey C.; Jones, Nicholas; Nussbaumer, Eric; Warneke, Thorsten; Petri, Christof; Clarisse, Lieven; Clerbaux, Cathy; Hermans, Christian; Lutsch, Erik; Strong, Kim; Hannigan, James W.; Nakajima, Hideaki; Morino, Isamu; Herrera, Beatriz; Stremme, Wolfgang; Grutter, Michel; Schaap, Martijn; Wichink Kruit, Roy J.; Notholt, Justus; Coheur, Pierre-F.; Erisman, Jan Willem

    2016-08-01

    Global distributions of atmospheric ammonia (NH3) measured with satellite instruments such as the Infrared Atmospheric Sounding Interferometer (IASI) contain valuable information on NH3 concentrations and variability in regions not yet covered by ground-based instruments. Due to their large spatial coverage and (bi-)daily overpasses, the satellite observations have the potential to increase our knowledge of the distribution of NH3 emissions and associated seasonal cycles. However the observations remain poorly validated, with only a handful of available studies often using only surface measurements without any vertical information. In this study, we present the first validation of the IASI-NH3 product using ground-based Fourier transform infrared spectroscopy (FTIR) observations. Using a recently developed consistent retrieval strategy, NH3 concentration profiles have been retrieved using observations from nine Network for the Detection of Atmospheric Composition Change (NDACC) stations around the world between 2008 and 2015. We demonstrate the importance of strict spatio-temporal collocation criteria for the comparison. Large differences in the regression results are observed for changing intervals of spatial criteria, mostly due to terrain characteristics and the short lifetime of NH3 in the atmosphere. The seasonal variations of both datasets are consistent for most sites. Correlations are found to be high at sites in areas with considerable NH3 levels, whereas correlations are lower at sites with low atmospheric NH3 levels close to the detection limit of the IASI instrument. A combination of the observations from all sites (Nobs = 547) give a mean relative difference of -32.4 ± (56.3) %, a correlation r of 0.8 with a slope of 0.73. These results give an improved estimate of the IASI-NH3 product performance compared to the previous upper-bound estimates (-50 to +100 %).

  5. CO2 Total Column Variability From Ground-Based FTIR Measurements Over Central Mexico

    Science.gov (United States)

    Baylon, J. L.; Stremme, W.; Plaza, E.; Bezanilla, A.; Grutter, M.; Hase, F.; Blumenstock, T.

    2014-12-01

    There are now several space missions dedicated to measure greenhouse gases in order to improve the understanding of the carbon cycle. Ground based measurement sites are of great value in the validation process, however there are only a few stations in tropical latitudes. We present measurements of solar-absorption infrared spectra recorded on two locations over Central Mexico: the High-Altitude Station Altzomoni (19.12 N, 98.65 W), located in the Izta-Popo National Park outside of Mexico City; and the UNAM's Atmospheric Observatory (19.32 N, 99.17 W) in Mexico City. These measurements were performed using a high resolution Fourier transform infrared spectrometer FTIR (Bruker, HR 120/5) at Altzomoni and a moderate resolution FTIR (Bruker, Vertex 80) within the city. In this work, we present the first results for total vertical columns of CO2 derived from near-infrared spectra recorded at both locations using the retrieval code PROFFIT. We present the seasonal cycle and variability from the measurements, as well as the full diagnostics of the retrieval in order assess its quality and discuss the differences of both instruments and locations (altitudes, urban vs remote). This work aims to contribute to generate high quality datasets for satellite validation.

  6. First ground-based column measurements of CO{sub 2} in the tropics

    Energy Technology Data Exchange (ETDEWEB)

    Warneke, T.; Petersen, K.; Macatangay, R.; Notholt, J. [Institute of Environmental Physics, University of Bremen, Bremen (Germany); Koerner, S.; Jordan, A.; Gerbig, C.; Rothe, M. [Max-Planck-Institute for Biogeochemistry (MPI-BGC), Jena (Germany); Schrems, O. [Alfred Wegener Institute for Polar and Marine Research (AWI), Bremerhaven (Germany)

    2009-07-01

    The first ground-based remote sensing measurements of the column averaged volume mixing ratio of CO{sub 2} (X{sub CO{sub 2}}) for the inner tropics have been obtained at Paramaribo, Suriname (5.8 N, 55.2 W). Due to the migration of the ITCZ over the measurement location the probed air masses belong to the northern or southern hemisphere depending on the time of the year. The X{sub CO{sub 2}} shows an average annual increase in the Southern Hemisphere of 2.2 ppm for the time period 2004 to 2007, which agrees within the error with model simulations. Co-located in-situ measurements are strongly influenced by a local source. From the isotopic composition of the air samples the local source component is suggested to be the terrestrial biosphere. Using d{sup {sub 13C}} from the NOAA/ESRL stations Ascension Is. (ASC) and Ragged Point (RPB) the data has been corrected for the local source component. The corrected mixing ratios for the surface agree with model simulations for the measurement campaigns in the LDS (Southern Hemisphere), but not for the SDS (Northern Hemisphere).

  7. Ozone ground-based measurements by the GASCOD near-UV and visible DOAS system

    Science.gov (United States)

    Giovanelli, G.; Bonasoni, P.; Cervino, M.; Evangelisti, F.; Ravegnani, F.

    1994-01-01

    GASCOD, a near-ultraviolet and visible differential optical spectrometer, was developed at CNR's FISBAT Institute in Bologna, Italy, and first tested at Terra Nova Bay station in Antarctica (74.6 deg S, 164.6 deg E) during the summer expeditions 1988-1990 of PNRA (PNRA is the national research program in Antarctica, 'Programma Nazionale di Ricerche in Atartide'). A comparison with coincident O3 total column measurements taken in the same Antarctic area is presented, as is another comparison performed in Italy. Also introduced is an updated model for solar zenith measurements taken from a ground-based, upward-looking GASCOD spectrometer, which was employed for the 1991-92 winter campaign at Aer-Ostersund in Sweden (63.3 deg N, 13.1 deg E) during AESOE (European Arctic Stratospheric Ozone Experiment). The GASCOD can examine the spectra from 300 to 700 nm, in 50 nm steps, by moving the spectrometer's grating. At present, it takes measurements of solar zenith radiation in the 310-342 nm range for O3 and in the 405-463 nm range for NO2.

  8. Using a Ground Based radar interferometer during emergency: the case of A3 motorway (Salerno Reggio-Calabria) treated by landslide

    Science.gov (United States)

    Del Ventisette, Chiara; Intrieri, Emanuele; Luzi, Guido; Casagli, Nicola

    2010-05-01

    An application of Ground Based radar interferometry (GB-InSAR) technique to monitor a landslide threatening infrastructures in emergency conditions is presented. During December 2008 and January 2009 intense rainfalls occurred in Italy, especially in the southern regions. These rain events occurred in the last days of January, worsened the already critical hydrogeological conditions of some areas and triggered many landslides. One of these landslides, named Santa Trada landslide, is located close to a periodical stream called Fiumara di Santa Trada, near Villa San Giovanni municipality (Reggio Calabria, Calabria Region). The volume involved is about 100 000 m3. This estimate represents the case of a collapse of the landslide which destabilize a larger part of the slope, involving other areas delimited by some fractures observed upstream. Nevertheless the landslide does not directly threaten the roadway, its complete collapse would hit the pillars of a motorway viaduct. Through GB-InSAR data it has been possible to obtain an overview of the area affected by movement and to quantify the displacements magnitude. The main benefit of the system was not only limited to the capability of fully characterizing the landslide in spatial terms, it also permitted emergency operators to follow, during the whole campaign, the evolution of the mass movement and to study its cinematic behaviour. This aspect is fundamental to evaluate the volume of the material involved and to assess the temporal evolution of the risk scenario. The GB-InSAR installed at Santa Trada points up toward the landslide from a distance of 250 m. The apparatus produces a synthesized radar image of the observed area every 6 minutes, night and day, with a pixel resolution of about 0.75 m in range and 1.2 m on average in cross range, performing a millimeter accuracy on the final displacement maps. The interferometric analysis of sequences of consecutive images allows the operator to derive the entire line of

  9. Investigating mixed phase clouds using a synergy of ground based remote sensing measurements

    Science.gov (United States)

    Gierens, Rosa; Kneifel, Stefan; Löhnert, Ulrich

    2017-04-01

    Low level mixed phase clouds occur frequently in the Arctic, and can persist from hours to several days. However, the processes that lead to the commonality and persistence of these clouds are not well understood. The aim of our work is to get a more detailed understanding of the dynamics of and the processes in Arctic mixed phase clouds using a combination of instruments operating at the AWIPEV station in Svalbard. In addition, an aircraft campaign collecting in situ measurements inside mixed phase clouds above the station is planned for May-June 2017. The in situ data will be used for developing and validating retrievals for microphysical properties from Doppler cloud radar measurements. Once observational data for cloud properties is obtained, it can be used for evaluating model performance, for studies combining modeling and observational approaches, and eventually lead to developing model parameterizations of mixed phase microphysics. To describe the low-level mixed phase clouds, and the atmospheric conditions in which they occur, we present a case study of a persistent mixed phase cloud observed above the AWIPEV station. In the frame of the Arctic Amplification: Climate Relevant Atmospheric and Surface Processes and Feedback Mechanisms ((AC)3) -project, a millimeter wavelength cloud radar was installed at the site in June 2016. The high vertical (4 m in the lowest layer) and temporal (2.5 sec) resolution allows for a detailed description of the structure of the cloud. In addition to radar reflectivity and mean vertical velocity, we also utilize the higher moments of the Doppler spectra, such as skewness and kurtosis. To supplement the radar measurements, a ceilometer is used to detect liquid layers inside the cloud. Liquid water path and integrated water vapor are estimated using a microwave radiometer, which together with soundings can also provide temperature and humidity profiles in the lower troposphere. Moreover, a three-dimensional wind field is be

  10. The high-resolution extraterrestrial solar spectrum (QASUMEFTS determined from ground-based solar irradiance measurements

    Directory of Open Access Journals (Sweden)

    J. Gröbner

    2017-09-01

    Full Text Available A high-resolution extraterrestrial solar spectrum has been determined from ground-based measurements of direct solar spectral irradiance (SSI over the wavelength range from 300 to 500 nm using the Langley-plot technique. The measurements were obtained at the Izaña Atmospheric Research Centre from the Agencia Estatal de Meteorología, Tenerife, Spain, during the period 12 to 24 September 2016. This solar spectrum (QASUMEFTS was combined from medium-resolution (bandpass of 0.86 nm measurements of the QASUME (Quality Assurance of Spectral Ultraviolet Measurements in Europe spectroradiometer in the wavelength range from 300 to 500 nm and high-resolution measurements (0.025 nm from a Fourier transform spectroradiometer (FTS over the wavelength range from 305 to 380 nm. The Kitt Peak solar flux atlas was used to extend this high-resolution solar spectrum to 500 nm. The expanded uncertainties of this solar spectrum are 2 % between 310 and 500 nm and 4 % at 300 nm. The comparison of this solar spectrum with solar spectra measured in space (top of the atmosphere gave very good agreements in some cases, while in some other cases discrepancies of up to 5 % were observed. The QASUMEFTS solar spectrum represents a benchmark dataset with uncertainties lower than anything previously published. The metrological traceability of the measurements to the International System of Units (SI is assured by an unbroken chain of calibrations leading to the primary spectral irradiance standard of the Physikalisch-Technische Bundesanstalt in Germany.

  11. TEMIS UV product validation using NILU-UV ground-based measurements in Thessaloniki, Greece

    Science.gov (United States)

    Zempila, Melina-Maria; van Geffen, Jos H. G. M.; Taylor, Michael; Fountoulakis, Ilias; Koukouli, Maria-Elissavet; van Weele, Michiel; van der A, Ronald J.; Bais, Alkiviadis; Meleti, Charikleia; Balis, Dimitrios

    2017-06-01

    This study aims to cross-validate ground-based and satellite-based models of three photobiological UV effective dose products: the Commission Internationale de l'Éclairage (CIE) erythemal UV, the production of vitamin D in the skin, and DNA damage, using high-temporal-resolution surface-based measurements of solar UV spectral irradiances from a synergy of instruments and models. The satellite-based Tropospheric Emission Monitoring Internet Service (TEMIS; version 1.4) UV daily dose data products were evaluated over the period 2009 to 2014 with ground-based data from a Norsk Institutt for Luftforskning (NILU)-UV multifilter radiometer located at the northern midlatitude super-site of the Laboratory of Atmospheric Physics, Aristotle University of Thessaloniki (LAP/AUTh), in Greece. For the NILU-UV effective dose rates retrieval algorithm, a neural network (NN) was trained to learn the nonlinear functional relation between NILU-UV irradiances and collocated Brewer-based photobiological effective dose products. Then the algorithm was subjected to sensitivity analysis and validation. The correlation of the NN estimates with target outputs was high (r = 0. 988 to 0.990) and with a very low bias (0.000 to 0.011 in absolute units) proving the robustness of the NN algorithm. For further evaluation of the NILU NN-derived products, retrievals of the vitamin D and DNA-damage effective doses from a collocated Yankee Environmental Systems (YES) UVB-1 pyranometer were used. For cloud-free days, differences in the derived UV doses are better than 2 % for all UV dose products, revealing the reference quality of the ground-based UV doses at Thessaloniki from the NILU-UV NN retrievals. The TEMIS UV doses used in this study are derived from ozone measurements by the SCIAMACHY/Envisat and GOME2/MetOp-A satellite instruments, over the European domain in combination with SEVIRI/Meteosat-based diurnal cycle of the cloud cover fraction per 0. 5° × 0. 5° (lat × long) grid cells. TEMIS

  12. Assessment of the quality of OSIRIS mesospheric temperatures using satellite and ground-based measurements

    Directory of Open Access Journals (Sweden)

    P. E. Sheese

    2012-12-01

    Full Text Available The Optical Spectrograph and InfraRed Imaging System (OSIRIS on the Odin satellite is currently in its 12th year of observing the Earth's limb. For the first time, continuous temperature profiles extending from the stratopause to the upper mesosphere have been derived from OSIRIS measurements of Rayleigh-scattered sunlight. Through most of the mesosphere, OSIRIS temperatures are in good agreement with coincident temperature profiles derived from other satellite and ground-based measurements. In the altitude region of 55–80 km, OSIRIS temperatures are typically within 4–5 K of those from the SABER, ACE-FTS, and SOFIE instruments on the TIMED, SciSat-I, and AIM satellites, respectively. The mean differences between individual OSIRIS profiles and those of the other satellite instruments are typically within the combined uncertainties and previously reported biases. OSIRIS temperatures are typically within 2 K of those from the University of Western Ontario's Purple Crow Lidar in the altitude region of 52–79 km, where the mean differences are within combined uncertainties. Near 84 km, OSIRIS temperatures exhibit a cold bias of 10–15 K, which is due to a cold bias in OSIRIS O2 A-band temperatures at 85 km, the upper boundary of the Rayleigh-scatter derived temperatures; and near 48 km OSIRIS temperatures exhibit a cold bias of 5–15 K, which is likely due to multiple-scatter effects that are not taken into account in the retrieval.

  13. OPUS BBM: Its performance and early results of ground-based measurements

    Science.gov (United States)

    Kuze, A.; Shibasaki, K.; Sano, T.; Kawashima, T.; Miyamura, N.; Tange, Y.; Yui, Y.; Suzuki, M.; Ogawa, T.

    2003-04-01

    OPUS(Ozone and Pollution measuring Ultraviolet Spectrometer) is the satellite-borne instrument for future Japanese mission. Its scientific goal is to monitor the tropospheric urban and severely polluted chemical species such as SO2 and NO2 as well as total and tropospheric ozone. Now its BBM has been constructed and under performance check. Several checks are now being made on performances under thermal and vacum environments suffered in orbit. The OPUS BBM showed very stable perfomance as expected. The CMOS type array detector reveals very low noise and high quantum efficiency suitable for space use. In this paper we show the results of performance check of OPUS BBM. We also carried out the ground-based, zenith sky (scatter light) measurement for checking the S/N ratio of OPUS BBM as well as for demonstrating its ability to derive NO2 in the atmosphere. A preliminary analysis result is shown, and also shown is the result of algorithm study for space mission.

  14. Radiometric modeling and calibration of the Geostationary Imaging Fourier Transform Spectrometer (GIFTS) ground based measurement experiment

    Science.gov (United States)

    Tian, Jialin; Smith, William L.; Gazarik, Michael J.

    2008-12-01

    The ultimate remote sensing benefits of the high resolution Infrared radiance spectrometers will be realized with their geostationary satellite implementation in the form of imaging spectrometers. This will enable dynamic features of the atmosphere's thermodynamic fields and pollutant and greenhouse gas constituents to be observed for revolutionary improvements in weather forecasts and more accurate air quality and climate predictions. As an important step toward realizing this application objective, the Geostationary Imaging Fourier Transform Spectrometer (GIFTS) Engineering Demonstration Unit (EDU) was successfully developed under the NASA New Millennium Program, 2000-2006. The GIFTS-EDU instrument employs three focal plane arrays (FPAs), which gather measurements across the long-wave IR (LWIR), short/mid-wave IR (SMWIR), and visible spectral bands. The GIFTS calibration is achieved using internal blackbody calibration references at ambient (260 K) and hot (286 K) temperatures. In this paper, we introduce a refined calibration technique that utilizes Principle Component (PC) analysis to compensate for instrument distortions and artifacts, therefore, enhancing the absolute calibration accuracy. This method is applied to data collected during the GIFTS Ground Based Measurement (GBM) experiment, together with simultaneous observations by the accurately calibrated AERI (Atmospheric Emitted Radiance Interferometer), both simultaneously zenith viewing the sky through the same external scene mirror at ten-minute intervals throughout a cloudless day at Logan Utah on September 13, 2006. The accurately calibrated GIFTS radiances are produced using the first four PC scores in the GIFTS-AERI regression model. Temperature and moisture profiles retrieved from the PC-calibrated GIFTS radiances are verified against radiosonde measurements collected throughout the GIFTS sky measurement period. Using the GIFTS GBM calibration model, we compute the calibrated radiances from data

  15. Mapping the East African Ionosphere Using Ground-based GPS TEC Measurements

    Science.gov (United States)

    Mengist, Chalachew Kindie; Kim, Yong Ha; Yeshita, Baylie Damtie; Workayehu, Abyiot Bires

    2016-03-01

    The East African ionosphere (3°S-18°N, 32°E-50°E) was mapped using Total Electron Content (TEC) measurements from ground-based GPS receivers situated at Asmara, Mekelle, Bahir Dar, Robe, Arbaminch, and Nairobi. Assuming a thin shell ionosphere at 350 km altitude, we project the Ionospheric Pierce Point (IPP) of a slant TEC measurement with an elevation angle of >10° to its corresponding location on the map. We then infer the estimated values at any point of interest from the vertical TEC values at the projected locations by means of interpolation. The total number of projected IPPs is in the range of 24-66 at any one time. Since the distribution of the projected IPPs is irregularly spaced, we have used an inverse distance weighted interpolation method to obtain a spatial grid resolution of 1°×1° latitude and longitude, respectively. The TEC maps were generated for the year 2008, with a 2 hr temporal resolution. We note that TEC varies diurnally, with a peak in the late afternoon (at 1700 LT), due to the equatorial ionospheric anomaly. We have observed higher TEC values at low latitudes in both hemispheres compared to the magnetic equatorial region, capturing the ionospheric distribution of the equatorial anomaly. We have also confirmed the equatorial seasonal variation in the ionosphere, characterized by minimum TEC values during the solstices and maximum values during the equinoxes. We evaluate the reliability of the map, demonstrating a mean error (difference between the measured and interpolated values) range of 0.04-0.2 TECU (Total Electron Content Unit). As more measured TEC values become available in this region, the TEC map will be more reliable, thereby allowing us to study in detail the equatorial ionosphere of the African sector, where ionospheric measurements are currently very few.

  16. Validation of five years (2003–2007 of SCIAMACHY CO total column measurements using ground-based spectrometer observations

    Directory of Open Access Journals (Sweden)

    A. M. Poberovskii

    2010-10-01

    Full Text Available This paper presents a validation study of SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY carbon monoxide (CO total column measurements from the Iterative Maximum Likelihood Method (IMLM algorithm using ground-based spectrometer observations from twenty surface stations for the five year time period of 2003–2007. Overall we find a good agreement between SCIAMACHY and ground-based observations for both mean values as well as seasonal variations. For high-latitude Northern Hemisphere stations absolute differences between SCIAMACHY and ground-based measurements are close to or fall within the SCIAMACHY CO 2σ precision of 0.2 × 1018 molecules/cm2 (∼10% indicating that SCIAMACHY can observe CO accurately at high Northern Hemisphere latitudes. For Northern Hemisphere mid-latitude stations the validation is complicated due to the vicinity of emission sources for almost all stations, leading to higher ground-based measurements compared to SCIAMACHY CO within its typical sampling area of 8° × 8°. Comparisons with Northern Hemisphere mountain stations are hampered by elevation effects. After accounting for these effects, the validation provides satisfactory results. At Southern Hemisphere mid- to high latitudes SCIAMACHY is systematically lower than the ground-based measurements for 2003 and 2004, but for 2005 and later years the differences between SCIAMACHY and ground-based measurements fall within the SCIAMACHY precision. The 2003–2004 bias is consistent with previously reported results although its origin remains under investigation. No other systematic spatial or temporal biases could be identified based on the validation presented in this paper. Validation results are robust with regard to the choices of the instrument-noise error filter, sampling area, and time averaging required for the validation of SCIAMACHY CO total column measurements. Finally, our results show that the spatial coverage of the ground-based

  17. Investigation of tropical cirrus cloud properties using ground based lidar measurements

    Science.gov (United States)

    Dhaman, Reji K.; Satyanarayana, Malladi; Krishnakumar, V.; Mahadevan Pillai, V. P.; Jayeshlal, G. S.; Raghunath, K.; Venkat Ratnam, M.

    2016-05-01

    Cirrus clouds play a significant role in the Earths radiation budget. Therefore, knowledge of geometrical and optical properties of cirrus cloud is essential for the climate modeling. In this paper, the cirrus clouds microphysical and optical properties are made by using a ground based lidar measurements over an inland tropical station Gadanki (13.5°N, 79.2°E), Andhra Pradesh, India. The variation of cirrus microphysical and optical properties with mid cloud temperature is also studied. The cirrus clouds mean height is generally observed in the range of 9-17km with a peak occurrence at 13- 14km. The cirrus mid cloud temperature ranges from -81°C to -46°C. The cirrus geometrical thickness ranges from 0.9- 4.5km. During the cirrus occurrence days sub-visual, thin and dense cirrus were at 37.5%, 50% and 12.5% respectively. The monthly cirrus optical depth ranges from 0.01-0.47, but most (extinction ranges from 2.8E-06 to 8E-05 and depolarization ratio and lidar ratio varies from 0.13 to 0.77 and 2 to 52 sr respectively. A positive correlation exists for both optical depth and extinction with the mid-cloud temperature. The lidar ratio shows a scattered behavior with mid-cloud temperature.

  18. A ground-based measurement of the relativistic beaming effect in a detached double WD binary

    CERN Document Server

    Shporer, Avi; Steinfadt, Justin D R; Bildsten, Lars; Howell, Steve B; Mazeh, Tsevi

    2010-01-01

    We report on the first ground-based measurement of the relativistic beaming effect (aka Doppler boosting). We observed the beaming effect in the detached, non-interacting eclipsing double white dwarf (WD) binary NLTT 11748. Our observations were motivated by the system's high mass ratio and low luminosity ratio, leading to a large beaming-induced variability amplitude at the orbital period of 5.6 hr. We observed the system during 3 nights at the 2.0m Faulkes Telescope North with the SDSS-g' filter, and fitted the data simultaneously for the beaming, ellipsoidal and reflection effects. Our fitted relative beaming amplitude is (3.0 +/- 0.4) x 10^(-3), consistent with the expected amplitude from a blackbody spectrum given the photometric primary radial velocity amplitude and effective temperature. This result is a first step in testing the relation between the photometric beaming amplitude and the spectroscopic radial velocity amplitude in NLTT 11748 and similar systems. We did not identify any variability due t...

  19. Heavy precipitation retrieval from combined satellite observations and ground-based lightning measurements

    Science.gov (United States)

    Mugnai, A.; Dietrich, S.; Casella, D.; di Paola, F.; Formenton, M.; Sanò, P.

    2010-09-01

    We have developed a series of algorithms for the retrieval of precipitation (especially, heavy precipitation) over the Mediterranean area using satellite observations from the available microwave (MW) radiometers onboard low Earth orbit (LEO) satellites and from the visible-infrared (VIS-IR) SEVIRI radiometer onboard the European geosynchronous (GEO) satellite Meteosat Second Generation (MSG), in conjunction with lightning data from ground-based networks - such as ZEUS and LINET. These are: • A new approach for precipitation retrieval from space (which we call the Cloud Dynamics and Radiation Database approach, CDRD) that incorporates lightning and environmental/dynamical information in addition to the upwelling microwave brightness temperatures (TB’s) so as to reduce the retrieval uncertainty and improve the retrieval performance; • A new combined MW-IR technique for producing frequent precipitation retrievals from space (which we call PM-GCD technique), that uses passive-microwave (PM) retrievals in conjunction with lightning information and the Global Convection Detection (GCD) technique to discriminate deep convective clouds within the GEO observations; • A new morphing approach (which we call the Lightning-based Precipitation Evolving Technique, L-PET) that uses the available lightning measurements for propagating the rainfall estimates from satellite-borne MW radiometers to a much higher time resolution than the MW observations. We will present and discuss our combined MW/IR/lightning precipitation algorithms and analyses with special reference to some case studies over the western Mediterranean.

  20. Retrieval of aerosol composition using ground-based remote sensing measurements

    Science.gov (United States)

    Xie, Yisong; Li, Zhengqiang; Zhang, Ying; Li, Donghui; Li, Kaitao

    2016-04-01

    The chemical composition and mixing states of ambient aerosol are the main factors deciding aerosol microphysical and optical properties, and thus have significant impacts on regional or global climate change and air quality. Traditional approaches to detect atmospheric aerosol composition include sampling with laboratory analysis and in-situ measurements. They can accurately acquire aerosol components, however, the sampling or air exhausting could change the status of ambient aerosol or lead to some mass loss. Additionally, aerosol is usually sampled at the surface level so that it is difficult to detect the columnar aerosol properties. Remote sensing technology, however, can overcome these problems because it is able to detect aerosol information of entire atmosphere by optical and microphysical properties without destructing the natural status of ambient aerosol. This paper introduces a method to acquire aerosol composition by the remote sensing measurements of CIMEL CE318 ground-based sun-sky radiometer. A six component aerosol model is used in this study, including one strong absorbing component Black Carbon (BC), two partly absorbing components Brown Carbon (BrC) and Mineral Dust (MD), two scattering components Ammonia Sulfate-like (AS) and Sea Salt (SS), and Aerosol Water uptake (AW). Sensitivity analysis are performed to find the most sensitive parameters to each component and retrieval method for each component is accordingly developed. Different mixing models such as Maxwell-Garnett (MG), Bruggeman (BR) and Volume Average (VA) are also studied. The residual minimization method is used by comparing remote sensing measurements and simulation outputs to find the optimization of aerosol composition (including volume fraction and mass concentration of each component). This method is applied to measurements obtained from Beijing site under different weather conditions, including polluted haze, dust storm and clean days, to investigate the impacts of mixing

  1. NO2 DOAS measurements from ground and space: comparison of ground based measurements and OMI data in Mexico City

    Science.gov (United States)

    Rivera, C.; Stremme, W.; Grutter, M.

    2012-04-01

    The combination of satellite data and ground based measurements can provide valuable information about atmospheric chemistry and air quality. In this work we present a comparison between measured ground based NO2 differential columns at the Universidad Nacional Autónoma de México (UNAM) in Mexico City, using the Differential Optical Absorption Spectroscopy (DOAS) technique and NO2 total columns measured by the Ozone Monitoring Instrument (OMI) onboard the Aura satellite using the same measurement technique. From these data, distribution maps of average NO2 above the Mexico basin were constructed and hot spots inside the city could be identified. In addition, a clear footprint was detected from the Tula industrial area, ~50 km northwest of Mexico City, where a refinery, a power plant and other industries are located. A less defined footprint was identified in the Cuernavaca basin, South of Mexico City, and the nearby cities of Toluca and Puebla do not present strong enhancements in the NO2 total columns. With this study we expect to cross-validate space and ground measurements and provide useful information for future studies.

  2. Retrieval of atmospheric optical parameters from ground-based sun-photometer measurements for Zanjan, Iran

    Science.gov (United States)

    Bayat, A.; Masoumi, A.; Khalesifard, H. R.

    2011-05-01

    We are reporting the results of ground-based spectroradiometric measurements on aerosols and water vapor in the atmosphere of Zanjan for the period of October 2006 to September 2008 using a CIMEL CE318-2 sun-photometer. Zanjan is a city in Northwest Iran, located at 36.70° N, 48.51° E, and at an altitude of 1800 m a.m.s.l. (above mean sea level). The spectral aerosol optical depth, Ångström exponent, and columnar water vapor have been calculated using the data recorded by the sun-photometer through the direct measurements on the sun radiance (sun-mode). The average values of aerosol optical depth at 440 nm, columnar water vapor, and the Ångström exponent, α, during the mentioned period are measured as, 0.28 ± 0.14, 0.57 ± 0.37 cm and 0.73 ± 0.30, respectively. The maximum (minimum) value of the aerosol optical depth was recorded in May 2007 (November 2007), and that of columnar water vapor, in July 2007 (January 2008). Using the least-squares method, the Ångström exponent was calculated in the spectral interval 440-870 nm along with α1 and α2, the coefficients of a second order polynomial fit to the plotted logarithm of aerosol optical depth versus the logarithm of wavelength. The coefficient α2 shows that most of the aerosols in the Zanjan area have dimensions larger than 1 micron. The calculated values for α2 - α1 indicate that 80 % of the aerosols are in the coarse-mode (>1 μm) and 20 % of them are in the fine-mode (<1 μm). Comparison of α2 - α1 for the atmosphere over Zanjan with other regions indicates dust particles are the most dominant aerosols in the region.

  3. TOMS and Ground-based Measurements: Long-term Trends, Spatial Variability, Cloud Effects, and Data Quality.

    Science.gov (United States)

    Eide, H. A.; Dahlback, A.; Stamnes, K.; Høyskar, B.; Olsen, R.; Schmidlin, F.; Tsay, S.

    2003-12-01

    Ground-based measurements and TOMS measurements are mutually beneficial to each other. Ground-based measurements of UV radiation and total column ozone amounts are important for the validation of TOMS measurements. For example, it has been shown that TOMS measurements has a tendency to under-estimate ground UV exposure. Some of these effects can perhaps be ascribed to local cloud effects or choice of ozone profiles in the retrieval algorithm. More ground-based measurements are needed to establish the cause of these discrepancies. Recent technology advances have made ground-based measurements of UV doses and ozone column amounts with inexpensive multi-channel filter instruments not only possible, but also an attractive alternative to other more labor-intensive and weather dependent methods. Filter instruments can operate unattended for long periods of time, and it is possible to obtain accurate ozone column amounts even on cloudy days. We present results from extensive comparisons of the performance of several ground-based instruments (the NILU-UV and GUV filter instruments, as well as the Dobson and Brewer instruments) against the EP-TOMS instrument. The data used in the comparisons are from three different sites where we have had the opportunity to operate more than one type of UV instruments for extended periods of time. The sites include the University of Oslo, Norway, the NASA Goddard Space Flight Center facilities at Wallops Island, VA, and Greenbelt, MD and the University of Alaska, Fairbanks (during the TOMS3F campaign). Our results show that ozone column amounts obtained with current filter-type instruments are just as good as those obtained with the Dobson instrument, and might even out-perform the Dobson instrument on cloudy days. The TOMS measurements are shown to exhibit some more variability, but there is on average very good agreement with the ground- based measurements even for high solar zenith angles (SZA). Further more, our comparison shows that

  4. Confronting remote sensing product with ground base measurements across time and scale

    Science.gov (United States)

    Pourmokhtarian, A.; Dietze, M.

    2015-12-01

    Ecosystem models are essential tools in forecasting ecosystem responses to global climate change. One of the most challenging issues in ecosystem modeling is scaling while preserving landscape characteristics and minimizing loss of information, when moving from point observation to regional scale. There is a keen interest in providing accurate inputs for ecosystem models which represent ecosystem initial state conditions. Remote sensing land cover products, such as Landsat NLCD and MODIS MCD12Q1, provide extensive spatio-temporal coverage but do not capture forest composition and structure. Lidar and hyperspectral have the potential to meet this need but lack sufficient spatial and historical coverage. Forest inventory measurements provide detailed information on the landscape but in a very small footprint. Combining inventory and land cover could improve estimates of ecosystem state and characteristic across time and space. This study focuses on the challenges associated with fusing and scaling the US Forest Service FIA database and NLCD across regional scales to quantify ecosystem characteristics and reduce associated uncertainties. Across Southeast of U.S. 400 stratified random samples of 10x10 km2 landscapes were selected. Data on plant density, species, age, and DBH of trees in FIA plots within each site were extracted. Using allometry equations, the canopy cover of different plant functional types (PFTs) was estimated using a PPA-style canopy model and used to assign each inventory plot to a land cover class. Inventory and land cover were fused in a Bayesian model that adjusts the fractional coverage of inventory plots while accounting for multiple sources of uncertainty. Results were compared to estimates derived from inventory alone, land cover alone, and model spin-up alone. Our findings create a framework of data assimilation to better interpret remote sensing data using ground-based measurements.

  5. Soil moisture on Polish territory - comparison of satellite and ground-based measurements

    Science.gov (United States)

    Rojek, Edyta; Łukowski, Mateusz; Marczewski, Wojciech; Usowicz, Bogusław

    2014-05-01

    Assessment of water resources due to changing climatic conditions in time and space is still very uncertain. The territory of Poland has a limited resource of waters, occasionally resulting in small agricultural droughts. From the other side intense rainfalls, floods or run-offs, causing soil erosion are observed. Therefore, it is important to predict and prevent of this adverse phenomena. Huge spatial variability of soil moisture does not allow for accurate estimation of its distribution using ground-based measurements. SMOS soil moisture data are quite much inherently consistent in time and space, but their validation is still a challenge for further use in the climate and hydrology studies. This is the motivation for the research: to examine soil moisture from SMOS and ground based stations of the SWEX network held over eastern Poland. The presented results are related to changes of the soil moisture on regional scales for Poland in the period 2010-2013. Some results with SMOS L2 data are extended on continental scales for Europe. Time series from ground and satellite SMOS data sources were compared by regression methods. The region of Poland indicates clearly some genetic spatial distributions in weekly averaged values. In continental scales, the country territory contrasts evidently to Lithuania and in Polesie, and indicates seasonal cycling observed in archives and well known traditional records. The central part of Poland is repeatedly susceptible on droughts with soil moisture values ranging from about 0.02 to 0.20 m3 m-3. SMOS data allows on creating systematic drought data for Poland and watching annual changes, and differences to other drought services kept on national scales for agricultural purposes. We bound that drought susceptibility to the content of sand clay components and the land use there. Lack of rainfall in the late 2011 summer, caused a significant deficit of water in soil moisture content (below 0.05 m3 m-3) throughout the entire country

  6. Simultaneous PMC and PMSE observations with a ground-based lidar and SuperDARN HF radar at Syowa Station, Antarctica

    Directory of Open Access Journals (Sweden)

    H. Suzuki

    2013-10-01

    Full Text Available A Rayleigh–Raman lidar system was installed in January 2011 at Syowa Station, Antarctica (69.0° S, 39.6° E. Polar mesospheric clouds (PMCs were detected by lidar at around 22:30 UTC (LT −3 h on 4 February 2011, which was the first day of observation. This was the first detection of PMCs over Syowa Station by lidar. On the same day, a Super Dual Auroral Radar Network (SuperDARN HF radar with oblique-incidence beams detected polar mesospheric summer echoes (PMSE between 21:30 and 23:00 UTC. This event is regarded as the last PMC activity around Syowa Station during the austral summer season (2010–2011, since no other PMC signals were detected by lidar in February 2011. This is consistent with results of PMC and mesopause temperature observations by satellite-born instruments of AIM (Aeronomy of Ice in the Mesosphere/CIPS (Cloud Imaging and Particle Size and AURA/MLS (Microwave Limb Sounder and horizontal wind measurements taken by a separate MF radar. Doppler velocity of PMSE observed by the HF radar showed motion toward Syowa Station (westward. This westward motion is consistent with the wind velocities obtained by the MF radar. However, the PMSE region showed horizontal motion from a north-to-south direction during the PMC event. This event indicates that the apparent horizontal motion of the PMSE region can deviate from neutral wind directions and observed Doppler velocities.

  7. Simultaneous PMC and PMSE observations with a ground-based lidar and SuperDARN HF radar at Syowa Station, Antarctica

    Science.gov (United States)

    Suzuki, H.; Nakamura, T.; Ejiri, M. K.; Ogawa, T.; Tsutsumi, M.; Abo, M.; Kawahara, T. D.; Tomikawa, Y.; Yukimatu, A. S.; Sato, N.

    2013-10-01

    A Rayleigh-Raman lidar system was installed in January 2011 at Syowa Station, Antarctica (69.0° S, 39.6° E). Polar mesospheric clouds (PMCs) were detected by lidar at around 22:30 UTC (LT -3 h) on 4 February 2011, which was the first day of observation. This was the first detection of PMCs over Syowa Station by lidar. On the same day, a Super Dual Auroral Radar Network (SuperDARN) HF radar with oblique-incidence beams detected polar mesospheric summer echoes (PMSE) between 21:30 and 23:00 UTC. This event is regarded as the last PMC activity around Syowa Station during the austral summer season (2010-2011), since no other PMC signals were detected by lidar in February 2011. This is consistent with results of PMC and mesopause temperature observations by satellite-born instruments of AIM (Aeronomy of Ice in the Mesosphere)/CIPS (Cloud Imaging and Particle Size) and AURA/MLS (Microwave Limb Sounder) and horizontal wind measurements taken by a separate MF radar. Doppler velocity of PMSE observed by the HF radar showed motion toward Syowa Station (westward). This westward motion is consistent with the wind velocities obtained by the MF radar. However, the PMSE region showed horizontal motion from a north-to-south direction during the PMC event. This event indicates that the apparent horizontal motion of the PMSE region can deviate from neutral wind directions and observed Doppler velocities.

  8. Validation of NH3 satellite observations by ground-based FTIR measurements

    Science.gov (United States)

    Dammers, Enrico; Palm, Mathias; Van Damme, Martin; Shephard, Mark; Cady-Pereira, Karen; Capps, Shannon; Clarisse, Lieven; Coheur, Pierre; Erisman, Jan Willem

    2016-04-01

    Global emissions of reactive nitrogen have been increasing to an unprecedented level due to human activities and are estimated to be a factor four larger than pre-industrial levels. Concentration levels of NOx are declining, but ammonia (NH3) levels are increasing around the globe. While NH3 at its current concentrations poses significant threats to the environment and human health, relatively little is known about the total budget and global distribution. Surface observations are sparse and mainly available for north-western Europe, the United States and China and are limited by the high costs and poor temporal and spatial resolution. Since the lifetime of atmospheric NH3 is short, on the order of hours to a few days, due to efficient deposition and fast conversion to particulate matter, the existing surface measurements are not sufficient to estimate global concentrations. Advanced space-based IR-sounders such as the Tropospheric Emission Spectrometer (TES), the Infrared Atmospheric Sounding Interferometer (IASI), and the Cross-track Infrared Sounder (CrIS) enable global observations of atmospheric NH3 that help overcome some of the limitations of surface observations. However, the satellite NH3 retrievals are complex requiring extensive validation. Presently there have only been a few dedicated satellite NH3 validation campaigns performed with limited spatial, vertical or temporal coverage. Recently a retrieval methodology was developed for ground-based Fourier Transform Infrared Spectroscopy (FTIR) instruments to obtain vertical concentration profiles of NH3. Here we show the applicability of retrieved columns from nine globally distributed stations with a range of NH3 pollution levels to validate satellite NH3 products.

  9. Ground-based and airborne measurements of volcanic gas emissions at White Island in New Zealand

    Science.gov (United States)

    Tirpitz, Jan-Lukas; Poehler, Denis; Bobrowski, Nicole; Christenson, Bruce; Platt, Ulrich

    2017-04-01

    Quantitative understanding of volcanic gas emissions has twofold relevance for nature and society: 1) Variation in gas emission and/or in emitted gas ratios are tracers of the dynamic processes in the volcano interior indicating its activity. 2) Volcanic degassing plays an important role for the Earth's climate, for local sometimes even regional air quality and atmospheric chemistry. In autumn 2015, a campaign to White Island Volcano in New Zealand was organized to perform ground-based as well as airborne in-situ and remote sensing gas measurements of sulfur dioxide (SO2), carbon dioxide (CO2) and bromine monoxide (BrO). For all three gases the ratios and total emission rates were determined in different plume types and ages. An overview over the data will be presented with focus on the two most notable outcomes: 1) The first determination of the BrO/SO2 ratio in the White Island plume and a minimum estimate of the volcano's bromine emission rate; two of many parameters, which are important to assess the impact of volcanic degassing on the atmospheric halogen chemistry. 2) In-situ SO2 data was very successfully recorded with the PITSA, a prototype of a portable and cost-effective optical instrument. It is based on the principle of non-dispersive UV absorption spectroscopy and features different advantages over the customary electrochemical sensors, including a sub second response time, negligible cross sensitivities to other gases, and inherent calibration. The campaign data demonstrates the capabilities and limitations of the PITSA and shows, that it can be well applied as substitute for conventional electrochemical systems.

  10. Analysis of ground-based 222Rn measurements over Spain: Filling the gap in southwestern Europe

    Science.gov (United States)

    Grossi, C.; Àgueda, A.; Vogel, F. R.; Vargas, A.; Zimnoch, M.; Wach, P.; Martín, J. E.; López-Coto, I.; Bolívar, J. P.; Morguí, J. A.; Rodó, X.

    2016-09-01

    Harmonized atmospheric 222Rn observations are required by the scientific community: these data have been lacking in southern Europe. We report on three recently established ground-based atmospheric 222Rn monitoring stations in Spain. We characterize the variability of atmospheric 222Rn concentrations at each of these stations in relation to source strengths, local, and regional atmospheric processes. For the study, measured atmospheric 222Rn concentrations, estimated 222Rn fluxes, and regional footprint analysis have been used. In addition, the atmospheric radon monitor operating at each station has been compared to a 222Rn progeny monitor. Annual means of 222Rn concentrations at Gredos (GIC3), Delta de l'Ebre (DEC3), and Huelva (UHU) stations were 17.3 ± 2.0 Bq m-3, 5.8 ± 0.8 Bq m-3, and 5.1 ± 0.7 Bq m-3, respectively. The GIC3 station showed high 222Rn concentration differences during the day and by seasons. The coastal station DEC3 presented background concentrations typical of the region, except when inland 222Rn-rich air masses are transported into the deltaic area. The highest 222Rn concentrations at UHU station were observed when local recirculation facilitates accumulation of 222Rn from nearby source represented by phosphogypsum piles. Results of the comparison performed between monitors revealed that the performance of the direct radon monitor is not affected by meteorological conditions, whereas the 222Rn progeny monitor seems to underestimate 222Rn concentrations under saturated atmospheric conditions. Initial findings indicate that the monitor responses seem to be in agreement for unsaturated atmospheric conditions but a further long-term comparison study will be needed to confirm this result.

  11. Unattended instruments for ground-based hyperspectral measurements: development and application for plant photosynthesis monitoring

    Science.gov (United States)

    Cogliati, S.; Rossini, M.; Meroni, M.; Barducci, A.; Julitta, T.; Colombo, R.

    2011-12-01

    The aim of the present work is the development of ground-based hyperspectral systems capable of collecting continuous and long-term hyperspectral measurements of the Earth-surface. The development of such instruments includes the optical design, the development of the data acquisition (Auto3S) and processing software as well as the definition of the calibration procedures. In particular an in-field calibration methodologie based on the comparison between field spectra and data modeled using Radiative Transfer (RT) approach has been proposed to regularly upgrade instrument calibration coefficients. Two different automatic spectrometric systems have been developed: the HyperSpectral Irradiometer (HSI) [Meroni et al., 2011] and the Multiplexer Radiometer Irradiometer (MRI) [Cogliati, 2011]. Both instruments are able to continuously measure: sun incoming irradiance (ETOT) and irradiance (ES, HSI)/radiance (LS, MRI) upwelling from the investigated surface. Both instruments employ two Ocean Optics HR4000 spectrometers sharing the same optical signal that allow to simultaneously collect "fine" (1 nm Full Width at Half Maximum, FWHM) spectra in the 400-1000 nm rangeand "ultra-fine" (0.1 nm FWHM) spectra within the 700-800 nm. The collected optical data allow to estimate biochemical/structural properties of vegetation (e.g. NDVI) as well as its photosynthetic efficiency through the Photochemical Reflectance Index (PRI) and the analysis of sun-induced chlorophyll Fluorescence in the O2-A Fraunhofer line (F@760). The automatic instruments were operated in coordination with eddy covariance flux tower measurements of carbon exchange in the framework of several field campaigns: HSI was employed in a subalpine pasture (2009-ongoing) (www.phenoalp.eu) while MRI was employed in 2009 in the Sen3Exp field survey promoted by the European Space Agency as consolidation study to the future mission Sentinel-3. Results show that the proposed instruments succeeded in collecting continuous

  12. Comparison of GOME tropospheric NO2 columns with NO2 profiles deduced from ground-based in situ measurements

    Directory of Open Access Journals (Sweden)

    D. Schaub

    2006-01-01

    Full Text Available Nitrogen dioxide (NO2 vertical tropospheric column densities (VTCs retrieved from the Global Ozone Monitoring Experiment (GOME are compared to coincident ground-based tropospheric NO2 columns. The ground-based columns are deduced from in situ measurements at different altitudes in the Alps for 1997 to June 2003, yielding a unique long-term comparison of GOME NO2 VTC data retrieved by a collaboration of KNMI (Royal Netherlands Meteorological Institute and BIRA/IASB (Belgian Institute for Space Aeronomy with independently derived tropospheric NO2 profiles. A first comparison relates the GOME retrieved tropospheric columns to the tropospheric columns obtained by integrating the ground-based NO2 measurements. For a second comparison, the tropospheric profiles constructed from the ground-based measurements are first multiplied with the averaging kernel (AK of the GOME retrieval. The second approach makes the comparison independent from the a priori NO2 profile used in the GOME retrieval. This allows splitting the total difference between the column data sets into two contributions: one that is due to differences between the a priori and the ground-based NO2 profile shapes, and another that can be attributed to uncertainties in both the remaining retrieval parameters (such as, e.g., surface albedo or aerosol concentration and the ground-based in situ NO2 profiles. For anticyclonic clear sky conditions the comparison indicates a good agreement between the columns (n=157, R=0.70/0.74 for the first/second comparison approach, respectively. The mean relative difference (with respect to the ground-based columns is −7% with a standard deviation of 40% and GOME on average slightly underestimating the ground-based columns. Both data sets show a similar seasonal behaviour with a distinct maximum of spring NO2 VTCs. Further analysis indicates small GOME columns being systematically smaller than the ground-based ones. The influence of different shapes in the a

  13. The variability of tropical ice cloud properties as a function of the large-scale context from ground-based radar-lidar observations over Darwin, Australia

    Directory of Open Access Journals (Sweden)

    A. Protat

    2010-08-01

    Full Text Available The statistical properties of non-precipitating tropical ice clouds over Darwin, Australia are characterized using ground-based radar-lidar observations from the Atmospheric Radiation Measurement (ARM Program. The ice cloud properties analysed are the frequency of ice cloud occurrence, the morphological properties (cloud top height and thickness, cloud fraction as derived considering a typical large-scale model grid box, and the microphysical and radiative properties (ice water content, visible extinction, effective radius, terminal fall speed, and total concentration. The variability of these tropical ice cloud properties is then studied as a function of the large-scale cloud regimes derived from the International Satellite Cloud Climatology Project (ISCCP, the amplitude and phase of the Madden–Julian Oscillation (MJO, and the large-scale atmospheric regime as derived from a long-term record of radiosonde observations over Darwin. The rationale for characterizing this variability is to provide an observational basis to which model outputs can be compared for the different regimes or large-scale characteristics and from which new parameterizations accounting for the large-scale context can be derived.

    The mean vertical variability of ice cloud occurrence and microphysical properties is large (1.5 order of magnitude for ice water content and extinction, a factor 3 in effective radius, and three orders of magnitude in concentration, typically. 98% of ice clouds in our dataset are characterized by either a small cloud fraction (smaller than 0.3 or a very large cloud fraction (larger than 0.9. Our results also indicate that, at least in the northern Australian region, the upper part of the troposphere can be split into three distinct layers characterized by different statistically-dominant microphysical processes. The variability of the ice cloud properties as a function of the large-scale atmospheric regime, cloud regime, and MJO phase

  14. Greenland Radar Ice Sheet Thickness Measurements

    Data.gov (United States)

    National Aeronautics and Space Administration — Two 150-MHz coherent radar depth sounders were developed and flown over the Greenland ice sheet to obtain ice thickness measurements in support of PARCA...

  15. a Compact Dial LIDAR for Ground-Based Ozone Atmospheric Profiling Measurements

    Science.gov (United States)

    De Young, R.; Carrion, W.; Pliutau, D.; Ganoe, R. E.

    2013-12-01

    A compact differential absorption lidar (DIAL) system has been developed at NASA Langley Research Center to provide ozone, aerosol and cloud atmospheric measurements in a mobile trailer for ground-based atmospheric ozone campaigns. This lidar will be integrated into the Air Quality lidar Network (AQLNet) currently made up of four other ozone lidars across the country. The lidar system consists of a UV and green laser transmitter, a telescope and an optical signal receiver box with associated Licel photon counting and analog channels. The laser transmitter consist of a Coherent Evolution 30 TEM00 1-kHz diode pumped Q-switched Nd:YLF inter-cavity doubled laser pumping a Ce:LiCAF tunable UV laser with all the associated power and lidar control support units on a single system rack. A custom-designed Ce:LiCAF tunable UV laser has a wavelength range of 282 to 300-nm that is selectable between two or more wavelengths. The current wavelengths are online 286.4 nm and offline 293.1 nm. The 527-nm visible beam is transmitted into the atmosphere for aerosol measurements. The fourth harmonic 262 nm beam is split by a beamsplitter into two pump beams that pump each face of the Ce:LiCAF crystal. A short laser cavity consisting of a 60% reflective (1m radius of curvature) output mirror, a dispersive prism and a flat HR mirror is used to produce the UV wavelengths. In order to produce different wavelengths, the high-reflectivity rear mirror is mounted on a servo controlled galvanometer motor to allow rapid tuning between the on and offline ozone wavelengths. Typical laser results are 6.8-W at 527-nm, 800-mW at 262-nm and 130-mW at the UV transmitted wavelengths. The lidar receiver system consists of a receiver telescope with a 40-cm diameter parabolic mirror. A fiber optic cable transmits the received signal from the telescope to the receiver box, which houses the detectors. A separate one inch diameter telescope with PMT and filter is used to sample the very near field to allow

  16. Improving Quantitative Precipitation Estimation via Data Fusion of High-Resolution Ground-based Radar Network and CMORPH Satellite-based Product

    Science.gov (United States)

    Cifelli, R.; Chen, H.; Chandrasekar, V.; Xie, P.

    2015-12-01

    A large number of precipitation products at multi-scales have been developed based upon satellite, radar, and/or rain gauge observations. However, how to produce optimal rainfall estimation for a given region is still challenging due to the spatial and temporal sampling difference of different sensors. In this study, we develop a data fusion mechanism to improve regional quantitative precipitation estimation (QPE) by utilizing satellite-based CMORPH product, ground radar measurements, as well as numerical model simulations. The CMORPH global precipitation product is essentially derived based on retrievals from passive microwave measurements and infrared observations onboard satellites (Joyce et al. 2004). The fine spatial-temporal resolution of 0.05o Lat/Lon and 30-min is appropriate for regional hydrologic and climate studies. However, it is inadequate for localized hydrometeorological applications such as urban flash flood forecasting. Via fusion of the Regional CMORPH product and local precipitation sensors, the high-resolution QPE performance can be improved. The area of interest is the Dallas-Fort Worth (DFW) Metroplex, which is the largest land-locked metropolitan area in the U.S. In addition to an NWS dual-polarization S-band WSR-88DP radar (i.e., KFWS radar), DFW hosts the high-resolution dual-polarization X-band radar network developed by the center for Collaborative Adaptive Sensing of the Atmosphere (CASA). This talk will present a general framework of precipitation data fusion based on satellite and ground observations. The detailed prototype architecture of using regional rainfall instruments to improve regional CMORPH precipitation product via multi-scale fusion techniques will also be discussed. Particularly, the temporal and spatial fusion algorithms developed for the DFW Metroplex will be described, which utilizes CMORPH product, S-band WSR-88DP, and X-band CASA radar measurements. In order to investigate the uncertainties associated with each

  17. A comparison of ground-based hydroxyl airglow temperatures with SABER/TIMED measurements over 23° N, India

    Science.gov (United States)

    Parihar, Navin; Singh, Dupinder; Gurubaran, Subramanian

    2017-03-01

    Ground-based observations of OH (6, 2) Meinel band nightglow were carried out at Ranchi (23.3° N, 85.3° E), India, during January-March 2011, December 2011-May 2012 and December 2012-March 2013 using an all-sky imaging system. Near the mesopause, OH temperatures were derived from the OH (6, 2) Meinel band intensity information. A limited comparison of OH temperatures (TOH) with SABER/TIMED measurements in 30 cases was performed by defining almost coincident criterion of ±1.5° latitude-longitude and ±3 min of the ground-based observations. Using SABER OH 1.6 and 2.0 µm volume emission rate profiles as the weighing function, two sets of OH-equivalent temperature (T1. 6 and T2. 0 respectively) were estimated from its kinetic temperature profile for comparison with OH nightglow measurements. Overall, fair agreement existed between ground-based and SABER measurements in the majority of events within the limits of experimental errors. Overall, the mean value of OH-derived temperatures and SABER OH-equivalent temperatures were 197.3 ± 4.6, 192.0 ± 10.8 and 192.7 ± 10.3 K, and the ground-based temperatures were 4-5 K warmer than SABER values. A difference of 8 K or more is noted between two measurements when the peak of the OH emission layer lies in the vicinity of large temperature inversions. A comparison of OH temperatures derived using different sets of Einstein transition probabilities and SABER measurements was also performed; however, OH temperatures derived using Langhoff et al. (1986) transition probabilities were found to compare well.

  18. Atmospheric greenhouse gases retrieved from SCIAMACHY: comparison to ground-based FTS measurements and model results

    Directory of Open Access Journals (Sweden)

    O. Schneising

    2012-02-01

    Full Text Available SCIAMACHY onboard ENVISAT (launched in 2002 enables the retrieval of global long-term column-averaged dry air mole fractions of the two most important anthropogenic greenhouse gases carbon dioxide and methane (denoted XCO2 and XCH4. In order to assess the quality of the greenhouse gas data obtained with the recently introduced v2 of the scientific retrieval algorithm WFM-DOAS, we present validations with ground-based Fourier Transform Spectrometer (FTS measurements and comparisons with model results at eight Total Carbon Column Observing Network (TCCON sites providing realistic error estimates of the satellite data. Such validation is a prerequisite to assess the suitability of data sets for their use in inverse modelling.

    It is shown that there are generally no significant differences between the carbon dioxide annual increases of SCIAMACHY and the assimilation system CarbonTracker (2.00 ± 0.16 ppm yr−1 compared to 1.94 ± 0.03 ppm yr−1 on global average. The XCO2 seasonal cycle amplitudes derived from SCIAMACHY are typically larger than those from TCCON which are in turn larger than those from CarbonTracker. The absolute values of the northern hemispheric TCCON seasonal cycle amplitudes are closer to SCIAMACHY than to CarbonTracker and the corresponding differences are not significant when compared with SCIAMACHY, whereas they can be significant for a subset of the analysed TCCON sites when compared with CarbonTracker. At Darwin we find discrepancies of the seasonal cycle derived from SCIAMACHY compared to the other data sets which can probably be ascribed to occurrences of undetected thin clouds. Based on the comparison with the reference data, we conclude that the carbon dioxide data set can be characterised by a regional relative precision (mean standard deviation of the differences of about 2.2 ppm and a relative accuracy (standard deviation of the mean differences

  19. Trend analysis of greenhouse gases over Europe measured by a network of ground-based remote FTIR instruments

    Directory of Open Access Journals (Sweden)

    T. Gardiner

    2008-11-01

    Full Text Available This paper describes the statistical analysis of annual trends in long term datasets of greenhouse gas measurements taken over ten or more years. The analysis technique employs a bootstrap resampling method to determine both the long-term and intra-annual variability of the datasets, together with the uncertainties on the trend values. The method has been applied to data from a European network of ground-based solar FTIR instruments to determine the trends in the tropospheric, stratospheric and total columns of ozone, nitrous oxide, carbon monoxide, methane, ethane and HCFC-22. The suitability of the method has been demonstrated through statistical validation of the technique, and comparison with ground-based in-situ measurements and 3-D atmospheric models.

  20. Global Fine Particulate Matter Concentrations and Trends Inferred from Satellite Observations, Modeling, and Ground-Based Measurements

    Science.gov (United States)

    Martin, Randall; van Donkelaar, Aaron; Boys, Brian; Philip, Sajeev; Lee, Colin; Snider, Graydon; Weagle, Crystal

    2014-05-01

    Outdoor fine particulate matter (PM2.5) is a leading environmentally-related cause of premature mortality worldwide. However, ground-level PM2.5 monitors remain sparse in many regions of the world. Satellite remote sensing from MODIS, MISR, and SeaWiFS yields a powerful global data source to address this issue. Global modeling (GEOS-Chem) plays a critical role in relating these observations to ground-level concentrations. The resultant satellite-based estimates of PM2.5 indicate dramatic variation around the world, with implications for global public health. A new ground-based aerosol network (SPARTAN) offers valuable measurements to understand the relationship between satellite observations of aerosol optical depth and ground-level PM2.5 concentrations. This talk will highlight recent advances in combining satellite remote sensing, global modeling, and ground-based measurements to improve understanding of global population exposure to outdoor fine particulate matter.

  1. Towards a Handshake of Ground-Based Measurements and Remote-Sensing of Vegetation Traits at Global Scale?

    Science.gov (United States)

    Kattge, J.; Díaz, S.; Lavorel, S.; Prentice, I. C.; Leadley, P.; Reich, P. B.; Banerjee, A.; Fazayeli, F.; Schrodt, F. I.; Joswig, J.; Mahecha, M. D.; Wirth, C.

    2014-12-01

    Plant traits determine how primary producers respond to environmental factors, affect other trophic levels, influence ecosystem processes and services, and provide a link from species richness to ecosystem functional diversity. Plant traits thus are a key to understand and predict the adaptation of ecosystems to environmental changes. At the same time ground based measurements of plant trait data are dispersed over a wide range of databases, many of these not publicly available. To overcome this deficiency IGBP and DIVERSITAS have initiated the development of a joint database, called TRY, aiming at constructing a standard resource of ground based plant trait observations for the ecological community and for the development of global vegetation models. So far the TRY initiative has united a wide range of the plant trait research community worldwide and gained an unprecedented buy-in of trait data: about 250 trait databases have been contributed and the data repository currently contains about 5.6 million trait entries for 90,000 out of the world's 350,000 plant species. The database includes data for 1100 traits, characterizing the vegetative and regeneration stages of the plant life cycle, including growth, dispersal, establishment and persistence. Based on advanced methods for gap-filling and spatial extrapolation currently being developed in applied statistics and machine learning and in combination with environmental information and species distribution ranges, the unprecedented availability of ground based trait measurements is expected to allow for up-scaling of trait observations from plant to ecosystem level and from point measurements to regional and global scales. These up-scaled data products are expected to provide a link from ground based trait measurements to remote sensing of vegetation function and traits with global coverage.

  2. Improvements to the OMI O2-O2 operational cloud algorithm and comparisons with ground-based radar-lidar observations

    Science.gov (United States)

    Pepijn Veefkind, J.; de Haan, Johan F.; Sneep, Maarten; Levelt, Pieternel F.

    2016-12-01

    The OMI (Ozone Monitoring Instrument on board NASA's Earth Observing System (EOS) Aura satellite) OMCLDO2 cloud product supports trace gas retrievals of for example ozone and nitrogen dioxide. The OMCLDO2 algorithm derives the effective cloud fraction and effective cloud pressure using a DOAS (differential optical absorption spectroscopy) fit of the O2-O2 absorption feature around 477 nm. A new version of the OMI OMCLDO2 cloud product is presented that contains several improvements, of which the introduction of a temperature correction on the O2-O2 slant columns and the updated look-up tables have the largest impact. Whereas the differences in the effective cloud fraction are on average limited to 0.01, the differences of the effective cloud pressure can be up to 200 hPa, especially at cloud fractions below 0.3. As expected, the temperature correction depends on latitude and season. The updated look-up tables have a systematic effect on the cloud pressure at low cloud fractions. The improvements at low cloud fractions are very important for the retrieval of trace gases in the lower troposphere, for example for nitrogen dioxide and formaldehyde. The cloud pressure retrievals of the improved algorithm are compared with ground-based radar-lidar observations for three sites at mid-latitudes. For low clouds that have a limited vertical extent the comparison yields good agreement. For higher clouds, which are vertically extensive and often contain several layers, the satellite retrievals give a lower cloud height. For high clouds, mixed results are obtained.

  3. Comparison of total ozone and erythemal UV data from OMI with ground-based measurements at Rome station

    Directory of Open Access Journals (Sweden)

    I. Ialongo

    2008-02-01

    Full Text Available Ground-based total ozone and surface UV irradiance measurements have been collected since 1992 using Brewer spectrophotometer and Erythemal Dose Rates (EDRs have been determined by a broad-band radiometer (model YES UVB-1 operational since 2000 at Rome station. The methodology to retrieve the EDR and the Erythemal Daily Dose (EDD from the radiometer observations is described. Ground-based measurements were compared with satellite-derived total ozone and UV data from the Ozone Monitoring Instrument (OMI. OMI, onboard the NASA EOS Aura spacecraft, is a nadir viewing spectrometer that provides total ozone and surface UV retrievals. The results of the validation exercise showed satisfactory agreement between OMI and Brewer total ozone data, for both OMI-TOMS and OMI-DOAS ozone alghorithms (biases of −1.8% and −0.7%, respectively. Regarding UV data, OMI data overestimate ground-based erythemally weighted data retrieved from both Brewer and YES Radiometer (biases about 20%, probably because of the effect of absorbing aerosols in an urban site such as Rome.

  4. Comparison of natural and artificial forcing to study the dynamic behaviour of bell towers in low wind context by means of ground-based radar interferometry: the case of the Leaning Tower in Pisa

    Science.gov (United States)

    Marchisio, Mario; Piroddi, Luca; Ranieri, Gaetano; Calcina, Sergio V.; Farina, Paolo

    2014-10-01

    The study of Cultural Heritage assets needs the application of non-destructive and non-invasive monitoring techniques. In particular, monuments and historical buildings which are open to the visitors and/or subject to important stress must be studied for their dynamic response. In the last 10 years the new ground-based radar interferometry technology has been developed allowing to monitor displacements from a point of sight far from the studied targets. It virtually provides a continuous mapping of displacements of the observed structures up to 10 µm with a range resolution of 0.75 m. In this paper, the application of ground-based interferometry on one very important historical building, the Leaning Tower of Pisa in Italy, is reported. The analysis of these kind of structures is important to catch their dynamic response to natural actions in general, and also to assess the effects due to pedestrian and users, and consequently to define functional capabilities and levels of acceptable dynamic stress. The studied structure was subject to artificial loading by synchronous movement of about 20 people. Artificial forcing led the structure to a resonance condition with the same frequency of the one due to the natural noise excitation, which was separately measured, and with an oscillation amplitude more than thirty times greater than the natural one (in conditions of weak wind). During the passive stages of the survey the recorded structural vibrations were very closed to the instrumental sensitivity, making difficult to distinguish vibration amplitudes amplifications of various segments at various heights. Through the spectral analysis of the acquired data it was possible to estimate the vibration frequencies of the first modal shapes of the structure along two orthogonal directions. The power spectra of the passive survey data have the same maximum frequency of the active but contain more noise at low frequency.

  5. Impact of particles on the Planck HFI detectors: Ground-based measurements and physical interpretation

    CERN Document Server

    Catalano, A; Atik, Y; Benoit, A; Bréele, E; Bock, J J; Camus, P; Chabot, M; Charra, M; Crill, B P; Coron, N; Coulais, A; Désert, F -X; Fauvet, L; Giraud-Héraud, Y; Guillaudin, O; Holmes, W; Jones, W C; Lamarre, J -M; Macías-Pérez, J; Martinez, M; Miniussi, A; Monfardini, A; Pajot, F; Patanchon, G; Pelissier, A; Piat, M; Puget, J -L; Renault, C; Rosset, C; Santos, D; Sauvé, A; Spencer, L D; Sudiwala, R

    2014-01-01

    The Planck High Frequency Instrument (HFI) surveyed the sky continuously from August 2009 to January 2012. Its noise and sensitivity performance were excellent, but the rate of cosmic ray impacts on the HFI detectors was unexpectedly high. Furthermore, collisions of cosmic rays with the focal plane produced transient signals in the data (glitches) with a wide range of characteristics. A study of cosmic ray impacts on the HFI detector modules has been undertaken to categorize and characterize the glitches, to correct the HFI time-ordered data, and understand the residual effects on Planck maps and data products. This paper presents an evaluation of the physical origins of glitches observed by the HFI detectors. In order to better understand the glitches observed by HFI in flight, several ground-based experiments were conducted with flight-spare HFI bolometer modules. The experiments were conducted between 2010 and 2013 with HFI test bolometers in different configurations using varying particles and impact ener...

  6. Validation of middle atmospheric campaign-based water vapour measured by the ground-based microwave radiometer MIAWARA-C

    Directory of Open Access Journals (Sweden)

    B. Tschanz

    2013-02-01

    Full Text Available Middle atmospheric water vapour can be used as a tracer for dynamical processes. It is mainly measured by satellite instruments and ground-based microwave radiometers. Ground-based instruments capable of measuring middle atmospheric water vapour are sparse but valuable as they complement satellite measurements, are relatively easy to maintain and have a long lifetime. MIAWARA-C is a ground-based microwave radiometer for middle atmospheric water vapour designed for use on measurement campaigns for both atmospheric case studies and instrument intercomparisons. MIAWARA-C's retrieval version 1.1 (v1.1 is set up in a way to provide a consistent data set even if the instrument is operated from different locations on a campaign basis. The sensitive altitude range for v1.1 extends from 4 hPa (37 km to 0.017 hPa (75 km. MIAWARA-C measures two polarisations of the incident radiation in separate receiver channels and can therefore provide two independent measurements of the same air mass. The standard deviation of the difference between the profiles obtained from the two polarisations is in excellent agreement with the estimated random error of v1.1. In this paper, the quality of v1.1 data is assessed during two measurement campaigns: (1 five months of measurements in the Arctic (Sodankylä, 67.37° N/26.63° E and (2 nine months of measurements at mid-latitudes (Zimmerwald, 46.88° N/7.46° E. For both campaigns MIAWARA-C's profiles are compared to measurements from the satellite experiments Aura MLS and MIPAS. In addition, comparisons to ACE-FTS and SOFIE are presented for the Arctic and to the ground-based radiometer MIAWARA for the mid-latitudinal campaign. In general all intercomparisons show high correlation coefficients, above 0.5 at altitudes above 45 km, confirming the ability of MIAWARA-C to monitor temporal variations on the order of days. The biases are generally below 10% and within the estimated systematic uncertainty of MIAWARA-C. No

  7. Detection Performance Assessment of Ground-Based Phased Array Radar for Ballistic Targets%地基相控阵雷达对弹道目标的探测性能评估

    Institute of Scientific and Technical Information of China (English)

    李星星; 姚汉英; 孙文峰

    2014-01-01

    为解决地基相控阵雷达对弹道目标探测的最优部署问题,建立弹道中段目标轨道运动和进动模型,提出弹道中段多部地基相控阵雷达的弹道目标探测概率模型,以及平均检测概率、稳定跟踪时间和资源冗余时间3种组合的雷达探测性能评估指标。依据弹道目标RCS及探测距离随观测时间的变化情况,通过仿真实验对多种部署方式下地基雷达对弹道目标探测性能评估指标的分析,得出的结论为弹道导弹防御系统中地基雷达的部署方式提供了有效的参考依据。%In order to solve the optimal deployment problem of ground-based phased array radar in detecting ballistic targets,the orbit motion and precession motion models of ballistic targets were built up,and the detection probability model for ballistic targets by using several ground-based phased array radars was proposed.Three evaluation indexes of radars'detection performance were given: average detection probability,stable tracking time and resource redundancy time .According to the variation of RCS and detection range for ballistic targets in midcourse,detection performance evaluation indexes of several radar deployment schemes were analyzed through experiments .The conclusion in this paper may provide some reference for deploying the ground-based radar in ballistic missile defense (BMD) system for targets'optimal detection.

  8. Validation of ACE and OSIRIS ozone and NO2 measurements using ground-based instruments at 80° N

    Directory of Open Access Journals (Sweden)

    A. Pazmino

    2012-05-01

    Full Text Available The Optical Spectrograph and Infra-Red Imager System (OSIRIS and the Atmospheric Chemistry Experiment (ACE have been taking measurements from space since 2001 and 2003, respectively. This paper presents intercomparisons between ozone and NO2 measured by the ACE and OSIRIS satellite instruments and by ground-based instruments at the Polar Environment Atmospheric Research Laboratory (PEARL, which is located at Eureka, Canada (80° N, 86° W and is operated by the Canadian Network for the Detection of Atmospheric Change (CANDAC. The ground-based instruments included in this study are four zenith-sky differential optical absorption spectroscopy (DOAS instruments, one Bruker Fourier transform infrared spectrometer (FTIR and four Brewer spectrophotometers. Ozone total columns measured by the DOAS instruments were retrieved using new Network for the Detection of Atmospheric Composition Change (NDACC guidelines and agree to within 3.2%. The DOAS ozone columns agree with the Brewer spectrophotometers with mean relative differences that are smaller than 1.5%. This suggests that for these instruments the new NDACC data guidelines were successful in producing a homogenous and accurate ozone dataset at 80° N. Satellite 14–52 km ozone and 17–40 km NO2 partial columns within 500 km of PEARL were calculated for ACE-FTS Version 2.2 (v2.2 plus updates, ACE-FTS v3.0, ACE-MAESTRO (Measurements of Aerosol Extinction in the Stratosphere and Troposphere Retrieved by Occultation v1.2 and OSIRIS SaskMART v5.0x ozone and Optimal Estimation v3.0 NO2 data products. The new ACE-FTS v3.0 and the validated ACE-FTS v2.2 partial columns are nearly identical, with mean relative differences of 0.0 ± 0.2% and −0.2 ± 0.1% for v2.2 minus v3.0 ozone and NO2, respectively. Ozone columns were constructed from 14–52 km satellite and 0–14 km ozonesonde partial columns and compared with the ground-based total column measurements. The satellite-plus-sonde measurements agree

  9. Tropospheric BrO column densities in the Arctic derived from satellite: retrieval and comparison to ground-based measurements

    Directory of Open Access Journals (Sweden)

    H. Sihler

    2012-11-01

    Full Text Available During polar spring, halogen radicals like bromine monoxide (BrO play an important role in the chemistry of tropospheric ozone destruction. Satellite measurements of the BrO distribution have become a particularly useful tool to investigate this probably natural phenomenon, but the separation of stratospheric and tropospheric partial columns of BrO is challenging. In this study, an algorithm was developed to retrieve tropospheric vertical column densities of BrO from data of high-resolution spectroscopic satellite instruments such as the second Global Ozone Monitoring Experiment (GOME-2. Unlike recently published approaches, the presented algorithm is capable of separating the fraction of BrO in the activated troposphere from the total BrO column solely based on remotely measured properties. The presented algorithm furthermore allows to estimate a realistic measurement error of the tropospheric BrO column. The sensitivity of each satellite pixel to BrO in the boundary layer is quantified using the measured UV radiance and the column density of the oxygen collision complex O4. A comparison of the sensitivities with CALIPSO LIDAR observations demonstrates that clouds shielding near-surface trace-gas columns can be reliably detected even over ice and snow. Retrieved tropospheric BrO columns are then compared to ground-based BrO measurements from two Arctic field campaigns in the Amundsen Gulf and at Barrow in 2008 and 2009, respectively. Our algorithm was found to be capable of retrieving enhanced near-surface BrO during both campaigns in good agreement with ground-based data. Some differences between ground-based and satellite measurements observed at Barrow can be explained by both elevated and shallow surface layers of BrO. The observations strongly suggest that surface release processes are the dominating source of BrO and that boundary layer meteorology influences the vertical distribution.

  10. Tropospheric BrO column densities in the Arctic from satellite: retrieval and comparison to ground-based measurements

    Directory of Open Access Journals (Sweden)

    H. Sihler

    2012-05-01

    Full Text Available During polar spring, halogen radicals like bromine monoxide (BrO play an important role in the chemistry of tropospheric ozone destruction. Satellite measurements of the BrO-distribution have become a particularly useful tool to investigate this probably natural phenomenon, but the separation of stratospheric and tropospheric partial columns of BrO is challenging. In this study, an algorithm was developed to retrieve tropospheric vertical column densities of BrO from data of high-resolution spectroscopic satellite instruments such as the second Global Ozone Monitoring Experiment (GOME-2. Unlike recently published approaches, the presented algorithm is capable of separating the fraction of BrO in the activated troposphere from the total BrO column solely based on remotely measured properties. The sensitivity of each satellite pixel to BrO in the boundary-layer is quantified using the measured UV-radiance and the column density of the oxygen collision complex O4. A comparison of the sensitivities with CALIPSO LIDAR observations demonstrates that clouds shielding near-surface trace-gas columns can be reliably detected even over ice and snow. Retrieved tropospheric BrO columns are then compared to ground-based BrO measurements from two Arctic field campaigns in the Amundsen Gulf and at Barrow in 2008 and 2009, respectively. Our algorithm was found to be capable of retrieving enhanced near-surface BrO during both campaigns in good agreement to ground-based data. Some differences between ground-based and satellite measurements observed at Barrow can be explained by both, elevated and shallow surface layers of BrO. The observations strongly suggest that surface release processes are the dominating source of BrO and that boundary-layer meteorology influences the vertical distribution.

  11. New-Measurement Techniques to Diagnose Charged Dust and Plasma Layers in the Near-Earth Space Environment Using Ground-Based Ionospheric Heating Facilities

    OpenAIRE

    Mahmoudian, Alireza

    2013-01-01

    Recently, experimental observations have shown that radar echoes from the irregularitysource region associated with mesospheric dusty space plasmas may be modulated by radio wave heating with ground-based ionospheric heating facilities. These experiments show great promise as a diagnostic for the associated dusty plasma in the Near-Earth Space Environment which is believed to have links to global change. This provides an alternative to more complicated and costly space-based observational app...

  12. Measurements of total and tropospheric ozone from IASI: comparison with correlative satellite, ground-based and ozonesonde observations

    Directory of Open Access Journals (Sweden)

    A. Boynard

    2009-08-01

    Full Text Available In this paper, we present measurements of total and tropospheric ozone, retrieved from infrared radiance spectra recorded by the Infrared Atmospheric Sounding Interferometer (IASI, which was launched on board the MetOp-A European satellite in October 2006. We compare IASI total ozone columns to Global Ozone Monitoring Experiment-2 (GOME-2 observations and ground-based measurements from the Dobson and Brewer network for one full year of observations (2008. The IASI total ozone columns are shown to be in good agreement with both GOME-2 and ground-based data, with correlation coefficients of about 0.9 and 0.85, respectively. On average, IASI ozone retrievals exhibit a positive bias of about 9 DU (3.3% compared to both GOME-2 and ground-based measurements. In addition to total ozone columns, the good spectral resolution of IASI enables the retrieval of tropospheric ozone concentrations. Comparisons of IASI tropospheric columns to 490 collocated ozone soundings available from several stations around the globe have been performed for the period of June 2007–August 2008. IASI tropospheric ozone columns compare well with sonde observations, with correlation coefficients of 0.95 and 0.77 for the [surface–6 km] and [surface–12 km] partial columns, respectively. IASI retrievals tend to overestimate the tropospheric ozone columns in comparison with ozonesonde measurements. Positive average biases of 0.15 DU (1.2% and 3 DU (11% are found for the [surface–6 km] and for the [surface–12 km] partial columns respectively.

  13. The "RED Versa NIR" Plane to Retrieve Broken-Cloud Optical Depth from Ground-Based Measurements"

    Science.gov (United States)

    Marshak, A.; Knyazikhin, Y.; Evans, K.; Wiscombe, W.

    2003-01-01

    A new method for retrieving cloud optical depth from ground-based measurements of zenith radiance in the RED and near infrared (MR) spectral regions is introduced. Because zenith radiance does not have a one-to-one relationship with optical depth, it is absolutely impossible to use a monochromatic retrieval. On the other side, algebraic combinations of spectral radiances such as NDCI while largely removing nouniquiness and the radiative effects of cloud inhomogeneity, can result in poor retrievals due to its insensitivity to cloud fraction. Instead, both RED and NIR radiances as points on the 'RED vs. NIR' plane are proposed to be used for retrieval. The proposed retrieval method is applied to Cimel measurements at the Atmospheric Radiation Measurements (ARM) site in Oklahoma. Cimel, a multi-channel sunphotometer, is a part of AERONET - a ground-based network for monitoring aerosol optical properties. The results of retrieval are compared with the ones from Microwave Radiometer (MWR) and Multi-Filter Rotating Shadowband Radiometers (MFRSR) located next to Cimel at the ARM site. In addition, the performance of the retrieval method is assessed using a fractal model of cloud inhomogeneity and broken cloudiness. The preliminary results look very promising both theoretically and from measurements.

  14. Method for validating cloud mask obtained from satellite measurements using ground-based sky camera.

    Science.gov (United States)

    Letu, Husi; Nagao, Takashi M; Nakajima, Takashi Y; Matsumae, Yoshiaki

    2014-11-01

    Error propagation in Earth's atmospheric, oceanic, and land surface parameters of the satellite products caused by misclassification of the cloud mask is a critical issue for improving the accuracy of satellite products. Thus, characterizing the accuracy of the cloud mask is important for investigating the influence of the cloud mask on satellite products. In this study, we proposed a method for validating multiwavelength satellite data derived cloud masks using ground-based sky camera (GSC) data. First, a cloud cover algorithm for GSC data has been developed using sky index and bright index. Then, Moderate Resolution Imaging Spectroradiometer (MODIS) satellite data derived cloud masks by two cloud-screening algorithms (i.e., MOD35 and CLAUDIA) were validated using the GSC cloud mask. The results indicate that MOD35 is likely to classify ambiguous pixels as "cloudy," whereas CLAUDIA is likely to classify them as "clear." Furthermore, the influence of error propagations caused by misclassification of the MOD35 and CLAUDIA cloud masks on MODIS derived reflectance, brightness temperature, and normalized difference vegetation index (NDVI) in clear and cloudy pixels was investigated using sky camera data. It shows that the influence of the error propagation by the MOD35 cloud mask on the MODIS derived monthly mean reflectance, brightness temperature, and NDVI for clear pixels is significantly smaller than for the CLAUDIA cloud mask; the influence of the error propagation by the CLAUDIA cloud mask on MODIS derived monthly mean cloud products for cloudy pixels is significantly smaller than that by the MOD35 cloud mask.

  15. Analysis of global climate variability from homogenously reprocessed ground-based GNSS measurements

    Science.gov (United States)

    Ahmed, Furqan; Hunegnaw, Addisu; Teferle, Felix Norman; Bingley, Richard

    2015-04-01

    The tropospheric delay information obtained through long-term homogenous reprocessing of Global Navigation Satellite System (GNSS) observations can be used for climate change and variability analysis on a global scale. A reprocessed global dataset of GNSS-derived zenith total delay (ZTD) and position estimates, based on the network double differencing (DD) strategy and covering 1994-2012, has been recently produced at the University of Luxembourg using the Bernese GNSS Software 5.2 (BSW5.2) and the reprocessed products from the Centre for Orbit Determination in Europe (CODE). The network of ground-based GNSS stations processed to obtain this dataset consists of over 400 globally distributed stations. The GNSS-derived ZTD has been validated by comparing it to that derived from reanalysis data from the European Centre for Medium-Range Weather Forecasts (ECMWF). After validation and quality control, the ZTD dataset obtained using the DD strategy has been used to investigate the inter-annual, seasonal and diurnal climate variability and trends in the tropospheric delay on various regional to global spatial scales. Precise point positioning (PPP) is a processing strategy for GNSS observations which is based on observations from a single station rather than a network of baselines and is therefore computationally more efficient than the DD strategy. However, the two processing strategies, i.e. DD and PPP, have their own strengths and weaknesses and could affect the solutions differently at different geographical locations. In order to explore the use of PPP strategy for climate monitoring, another experimental dataset covering a shorter period has been produced using the PPP strategy and compared to the DD based ZTD dataset.

  16. Improving the atmospheric wind speed measured accuracy by the ground-based airglow imaging interferometer

    Science.gov (United States)

    Tang, Yuanhe; Yang, Rui; Gao, Haiyang; Zhai, Fengtao; Yu, Yang; Cui, Jin

    2017-02-01

    A prototype ground based airglow imaging interferometer (GBAII) has been constructed to observe the upper atmospheric wind velocity and temperature at an altitude of 90-100 km, but the GBAII's wind speed accuracy was found to be unsatisfactory with a value of 21.0 m/s. Three theoretical aspects have been investigated to improve the accuracy, with the following finding: 1) By replacing the surface coatings of the GBAII's 6 lenses and Michelson interferometer (MI) with a new wind-speed infrared film rather than the original visible light film, the accuracy can be increased by 3.0 m/s. 2) By replacing the original charge-coupled device (CCD) with a quantum efficiency (QE) of 0.38 at the wavelength of approximately 866 nm by an electron multiplying CCD (EMCCD) with QE of 0.95, the accuracy can be increased by 6.7 m/s. By adding all the factors that improve the accuracy of the GBAII, it can be improved by 15.0 m/s, which realizes the original aim of wind speed accuracy of 6.0 m/s. Experimental results have been obtained for two aspects: 1) By replacing the surface film on the GBAII's 6 lenses and MI interface, the wind speed accuracy has been increased by 3.8 m/s. 2) A new GBAII temperature controller has been constructed to control the environmental temperature in 0.2 K steps. The results obtained by the GBAII on Dec. 6, 2013 show an average atmospheric temperature of 206.5 K, zonal wind speed of -26.8 m/s and meridional wind speed of 28.1 m/s. These results are close to those of the TIMED (Thermosphere Ionosphere Mesosphere Energetics and Dynamics) satellite Doppler interferometer (TIDI) data collected at almost the same time.

  17. Radar cross section measurements using terahertz waves

    DEFF Research Database (Denmark)

    Iwaszczuk, Krzysztof; Heiselberg, Henning; Jepsen, Peter Uhd

    2010-01-01

    Radar cross sections at terahertz frequencies are measured on scale models of aircrafts. A time domain broadband THz system generates freely propagating THz pulses measured with sub-picosecond time resolution. The THz radiation is generated using fs laser pulses by optical rectification in a lith......Radar cross sections at terahertz frequencies are measured on scale models of aircrafts. A time domain broadband THz system generates freely propagating THz pulses measured with sub-picosecond time resolution. The THz radiation is generated using fs laser pulses by optical rectification...... in a lithium niobate crystal with application of the tilted wave front method, resulting in high electric field THz pulses with a broad band spectrum from 100 GHz up to 4 THz. The corresponding wave lengths are two orders of magnitude smaller than normal radars and we therefore use scale models of size 5-10 cm...... in order to measure realistic radar cross sections. RCS polar and azimuthal angle plots of F-16 and F-35 are presented....

  18. Motion measurement for synthetic aperture radar

    Energy Technology Data Exchange (ETDEWEB)

    Doerry, Armin W. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-01-01

    Synthetic Aperture Radar (SAR) measures radar soundings from a set of locations typically along the flight path of a radar platform vehicle. Optimal focusing requires precise knowledge of the sounding source locations in 3-D space with respect to the target scene. Even data driven focusing techniques (i.e. autofocus) requires some degree of initial fidelity in the measurements of the motion of the radar. These requirements may be quite stringent especially for fine resolution, long ranges, and low velocities. The principal instrument for measuring motion is typically an Inertial Measurement Unit (IMU), but these instruments have inherent limi ted precision and accuracy. The question is %22How good does an IMU need to be for a SAR across its performance space?%22 This report analytically relates IMU specifications to parametric requirements for SAR. - 4 - Acknowledgements Th e preparation of this report is the result of a n unfunded research and development activity . Although this report is an independent effort, it draws heavily from limited - release documentation generated under a CRADA with General Atomics - Aeronautical System, Inc. (GA - ASI), and under the Joint DoD/DOE Munitions Program Memorandum of Understanding. Sandia National Laboratories is a multi - program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of En ergy's National Nuclear Security Administration under contract AC04-94AL85000.

  19. Motion Measurement for Synthetic Aperture Radar.

    Energy Technology Data Exchange (ETDEWEB)

    Doerry, Armin W.

    2015-01-01

    Synthetic Aperture Radar (SAR) measures radar soundings from a set of locations typically along the flight path of a radar platform vehicle. Optimal focusing requires precise knowledge of the sounding source locations in 3 - D space with respect to the target scene. Even data driven focusing techniques (i.e. autofocus) requires some degree of initial fidelity in the measurements of the motion of the radar. These requirements may be quite stringent especially for fine resolution, long ranges, and low velocities. The principal instrument for measuring motion is typically an Inertial Measurement Unit (IMU), but these instruments have inherent limi ted precision and accuracy. The question is %22How good does an IMU need to be for a SAR across its performance space?%22 This report analytically relates IMU specifications to parametric requirements for SAR. - 4 - Acknowledgements Th e preparation of this report is the result of a n unfunded research and development activity . Although this report is an independent effort, it draws heavily from limited - release documentation generated under a CRADA with General Atomics - Aeronautical System, Inc. (GA - ASI), and under the Joint DoD/DOE Munitions Program Memorandum of Understanding. Sandia National Laboratories is a multi - program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of En ergy's National Nuclear Security Administration under contract DE - AC04 - 94AL85000.

  20. Aerosol optical properties over the Svalbard region of Arctic: ground-based measurements and satellite remote sensing

    Science.gov (United States)

    Gogoi, Mukunda M.; Babu, S. Suresh

    2016-05-01

    In view of the increasing anthropogenic presence and influence of aerosols in the northern polar regions, long-term continuous measurements of aerosol optical parameters have been investigated over the Svalbard region of Norwegian Arctic (Ny-Ålesund, 79°N, 12°E, 8 m ASL). This study has shown a consistent enhancement in the aerosol scattering and absorption coefficients during spring. The relative dominance of absorbing aerosols is more near the surface (lower single scattering albedo), compared to that at the higher altitude. This is indicative of the presence of local anthropogenic activities. In addition, long-range transported biomass burning aerosols (inferred from the spectral variation of absorption coefficient) also contribute significantly to the higher aerosol absorption in the Arctic spring. Aerosol optical depth (AOD) estimates from ground based Microtop sun-photometer measurements reveals that the columnar abundance of aerosols reaches the peak during spring season. Comparison of AODs between ground based and satellite remote sensing indicates that deep blue algorithm of Moderate Resolution Imaging Spectroradiometer (MODIS) retrievals over Arctic snow surfaces overestimate the columnar AOD.

  1. First comparison between ground-based and satellite-borne measurements of tropospheric nitrogen dioxide in the Po basin

    Science.gov (United States)

    Petritoli, Andrea; Bonasoni, Paolo; Giovanelli, Giorgio; Ravegnani, Fabrizio; Kostadinov, Ivan; Bortoli, Daniele; Weiss, Andrea; Schaub, Daniel; Richter, Andreas; Fortezza, Francesco

    2004-08-01

    In this paper we present in situ and tropospheric column measurements of NO2 in the Po river basin (northern Italy). The aim of the work is to provide a quantitative comparison between ground-based and satellite measurements in order to assess the validity of spaceborne measurements for estimating NO2 emissions and evaluate possible climatic effects. The study is carried out using in situ chemiluminescent instrumentation installed in the Po valley, a UV/Vis spectrometer installed at Mount Cimone (44.2°N, 10.7°E, 2165 m asl), and tropospheric column measurements obtained from the Global Ozone Monitoring Experiment (GOME) spectrometer. Results show that the annual cycle in surface concentrations and also some specific pollution periods observed by the air quality network are well reproduced by the GOME measurements. However, tropospheric columns derived from the surface measurements assuming a well-mixed planetary boundary layer (PBL) are much larger than the GOME columns and also have a different seasonal cycle. This is interpreted as indication of a smaller and less variable mixing height for NO2 in the boundary layer. Under particular meteorological conditions the agreement between UV/Vis tropospheric column observations and GOME measurements in the Mount Cimone area is good (R2 = 0.9) with the mixing properties of the atmosphere being the most important parameter for a valid comparison of the measurements. However, even when the atmospheric mixing properties are optimal for comparison, the ratio between GOME and ground-based tropospheric column data may not be unity. It is demonstrated that the values obtained (less than 1) are related to the fraction of the satellite ground pixel occupied by the NO2 hot spot.

  2. Airborne & Ground-based measurements of atmospheric CO2 using the 1.57-μm laser absorption spectrometer

    Science.gov (United States)

    Sakaizawa, D.; Kawakami, S.; Nakajima, M.; Tanaka, T.; Miyamoto, Y.; Morino, I.; Uchino, O.; Asai, K.

    2009-12-01

    Greenhouse gases observing satellite (GOSAT) started the measurement of global CO2 abundances to reveal its continental inventory using two passive remote sensors. The goal that the sensor needs to be done is to achieve an 1% relative accuracy in order to reduce uncertainties of CO2 budget. Nevertheless, in the future global CO2 monitoring, more accurate measurement of global tropospheric CO2 abundances with the monthly regional scale are required to improve the knowledge of CO2 exchanges among the land, ocean, and atmosphere. In order to fulfill demands, a laser remote sensor, such as DIAL or laser absorption spectrometer (LAS), is a potential candidate of future space-based missions. Nowadays, those technologies are required to demonstrate an accuracy of the few-ppm level through airborne & ground-based measurements. We developed the prototype of the 1.57um LAS for a step of the next missions and perform it at the ground-based and airborne platform to show the properly validated performance in the framework of GOSAT validation. Our CO2 LAS is consisted of all optical fiber circuits & compact receiving /transmitting optics to achieve the portable, flexible and rigid system. The optical sources of on- and off-line are distributed feedback lasers, which are tuned at the strong and weak position of the R12 line in the (30012rate and combined and amplified using an erbium doped fiber amplifier. Scattered signals from the hard target are collected by the 11cm receiving telescope and detected and stored into the laptop computer. After that, we evaluated the atmospheric CO2 density using the meteorological parameters and ratio between the on- and off-line signals. The resultant of the ground-based measurement of 3km optical length indicated that the statistical error of the path averaged atmospheric CO2 density is less than 2.8ppm with 25 minutes averaging. The variation of the path averaged atmospheric CO2 is also quite consistent with that obtained from the in

  3. Summer-time Mass Balance of Wolverine Glacier, Alaska, Derived from Ground-based Time-lapse Microgravity Measurements

    Science.gov (United States)

    Young, E. V.; Muto, A.; Babcock, E.

    2016-12-01

    Monitoring the mass balance of alpine glaciers is important because alpine glaciers presently account for about half of the cryospheric contribution to the global sea-level rise. Mass balance measurements of alpine glaciers have predominantly relied upon glaciological and hydrological methods. However, these methods can be logistically costly and have potential extrapolation errors. Remote sensing approaches, such as gravimetric methods using data from GRACE satellite missions, have provided monthly mass-balance estimates of aggregates of alpine glaciers but their spatial resolution is far too large for studying a single glacier. On the other hand, ground-based time-lapse microgravity geophysical measurements can potentially circumvent some of the disadvantages of the glaciological and hydrological methods. It may detect the change in a single glacier's mass and its spatial distribution. We conducted ground-based time-lapse microgravity surveys on Wolverine Glacier, Alaska, in May and August of 2016, using a Scintrex CG-5 Autograv gravimeter. We collected data at seventy-nine individual stations on the glacier, roughly five stations per square kilometer. We included repeat-station and base-station measurements made at least twice a day for instrumental drift control. The uncertainty of our gravity measurements is better than 0.03 mGal, which is about 0.7 meters water equivalent of surface mass balance. Our summer-time mass balance of Wolverine Glacier determined from the time-lapse gravity measurements is independent of that derived from the stake-network or stream-gauge measurements, and could provide spatial insight into the mass balance process on Wolverine Glacier and similar glaciers.

  4. Radar for Measuring Soil Moisture Under Vegetation

    Science.gov (United States)

    Moghaddam, Mahta; Moller, Delwyn; Rodriguez, Ernesto; Rahmat-Samii, Yahya

    2004-01-01

    A two-frequency, polarimetric, spaceborne synthetic-aperture radar (SAR) system has been proposed for measuring the moisture content of soil as a function of depth, even in the presence of overlying vegetation. These measurements are needed because data on soil moisture under vegetation canopies are not available now and are necessary for completing mathematical models of global energy and water balance with major implications for global variations in weather and climate.

  5. Cosmic ray measurements in the knee region: new perspectives for simultaneous air-borne and ground-based observations

    Energy Technology Data Exchange (ETDEWEB)

    Marrocchesi, P.S. [Physics Dept., Univ. of Siena and INFN, 56 via Roma, 53100 Siena (Italy)]. E-mail: marrocchesi@pi.infn.it

    2006-01-15

    Direct measurements of cosmic ray composition and energy spectra in the knee region (10{sup 15} to 10{sup 16} eV) represent a real challenge for balloon and space borne experiments due to their limited exposure. On the other hand, ground-based extensive air shower arrays (EAS) can provide a measurement of the primary particle energy but fail to identify unambiguously its nature. The possibility to couple a large area instrument in flight, dedicated to the charge identification of the primary nucleus, with a ground array is explored. This task is within the reach of today detector technologies but requires a formidable step in the current development of stratospheric airship platforms capable of maintaining a long-duration stationary position above the EAS array.

  6. Signal Processing for Radar with Array Antennas and for Radar with Micro-Doppler Measurements

    OpenAIRE

    Björklund, Svante

    2017-01-01

    Radar (RAdio Detection And Ranging) uses radio waves to detect the presence of a target and measure its position and other properties. This sensor has found many civilian and military applications due to advantages such as possible large surveillance areas and operation day and night and in all weather. The contributions of this thesis are within applied signal processing for radar in two somewhat separate research areas: 1) radar with array antennas and 2) radar with micro-Doppler measuremen...

  7. Precipitable water vapor and its relationship with the Standardized Precipitation Index: ground-based GPS measurements and reanalysis data

    Science.gov (United States)

    Bordi, Isabella; Zhu, Xiuhua; Fraedrich, Klaus

    2016-01-01

    Monthly means of ground-based GPS measurements of precipitable water vapor (PWV) from six stations in the USA covering the period January 2007-December 2012 are analyzed to investigate their usefulness for monitoring meteorological wet/dry spells. For this purpose, the relationship between PWV and the Standardized Precipitation Index (SPI) on 1-month timescale is investigated. The SPI time series at grid points close to the stations are computed using gridded precipitation records from the NOAA Climate Prediction Center (CPC) unified precipitation dataset (January 1948-April 2012). GPS measurements are first verified against PWV data taken from the latest ECMWF reanalysis ERA-Interim; these PWV reanalysis data, which extend back to 1979, are then used jointly with CPC precipitation to compute precipitation efficiency (PE), defined as the percentage of total water vapor content that falls onto the surface as measurable precipitation in a given time period. The overall results suggest that (i) PWV time series are dominated by the seasonal cycle with maximum values during summer months, (ii) the comparison between GPS and ERA-Interim PWV monthly data shows good agreement with differences less than 4 mm, (iii) at all stations and for almost all months, PWV is only poorly correlated with recorded precipitation and the SPI, while PE correlates highly with the SPI, providing an estimate of the water availability at a given location and useful information on wet/dry spell occurrence, and (iv) long data records would allow, for each month of the year, the identification of PE thresholds associated with different SPI classes that, in turn, have potential for forecasting meteorological wet/dry spells. Thus, it is through PE that ground-based GPS measurements appear of relevance for assessing wet/dry spells, although there is not a direct relationship between PWV and SPI.

  8. Ground-based & satellite DOAS measurements integration for air quality evaluation/forecast management in the frame of QUITSAT Project.

    Science.gov (United States)

    Kostadinov, Ivan; Petritoli, Andrea; Giovanelli, Giorgio; Masieri, Samuele; Premuda, Margarita; Bortoli, Daniele; Ravegnani, Fabrizio; Palazzi, Elisa

    The observations of the Earth's atmosphere from space provide excellent opportunities for the exploration of the sophisticated physical-chemical processes on both global and regional scales. The major interest during the last three decades was focused mainly on the stratosphere and the ozone depletion. More recently the continuous improvements of satellite sensors have revealed new opportunities for larger applications of space observations, attracting scientific interest to the lower troposphere and air quality issues. The air quality depends strongly on the anthropogenic activity and therefore regional environmental agencies along with policy makers are in need of appropriate means for its continuous monitoring and control to ensure the adoption of the most appropriate actions. The goal of the pilot project QUITSAT, funded by the Italian Space Agency, is to develop algorithms and procedures for the evaluation and prediction of the air quality in Lombardia and Emilia-Romagna regions (Italy) by means of integrating satellite observations with ground-based in-situ and remote sensing measurements. This work presents dedicated Differential Optical Absorption Spectroscopy (DOAS) measurements performed during the summer of 2007 and the winter of 2008. One of the DOAS instruments operate at Mt.Cimone station (2165m a.s.l) and the other two instruments conducted measurements in/near Bologna (90 m. a.s.l). Different observational geometry was adopted (zenith-sky, multi-axis and long-path) aimed to provide tropospheric NO2 columns and O3, SO2 and HCHO concentrations at ground level as an input data for QUITSAT procedures. Details of the instruments, the radiative transfer model used and the algorithms for retrieving and calculation of the target gases concentrations are presented. The obtained experimental results are correlated with the corresponding ones retrieved from SCIAMACHY /ENVISAT observations during the overpasses above the ground-based instruments. The analysis

  9. The comparison of IR and MW ground-based measurements of total precipitable water

    Science.gov (United States)

    Berezin, I. A.; Virolainen, Ya. A.; Timofeyev, Yu. M.; Poberovskii, A. V.

    2016-05-01

    Water vapor is one of the basic climate gases playing a key role in various processes at different altitudes of the Earth's atmosphere. An intercomparison and validation of different total precipitable water (TPW) measurement methods are important for determining the true accuracy of these methods, the shared use of data from multiple sources, the creation of data archives of different measurements, etc. In this paper, the TPW values obtained from measurements of solar IR spectral radiation (~8-9 μm absorption band) and thermal MW radiation of the atmosphere (1.35 cm absorption line) for 138 days of observation are compared. Measurements have been carried out from March 2013 to June 2014 at Peterhof station of the St. Petersburg State University in (59.88° N, 29.82° E). It is shown that MW measurements usually give higher TPW values than IR measurements. The bias between the two methods varies from 1 to 8% for small and large TPW values, respectively. With increasing TPW values, the bias reduces and for TPW > 1 cm it is ~1%. Standard deviation (SD) between the two methods reaches 7% for TPW 1 cm. These data show the high quality of both remote sensing methods. Moreover, the IR measurements have a higher accuracy than MW measurements for small TPW values.

  10. Ground-based integrated path coherent differential absorption lidar measurement of CO2: hard target return

    Directory of Open Access Journals (Sweden)

    A. Sato

    2012-11-01

    Full Text Available The National Institute of Information and Communications Technology (NICT have made a great deal of effort to develop a coherent 2-μm differential absorption and wind lidar (Co2DiaWiL for measuring CO2 and wind speed. First, coherent Integrated Path Differential Absorption (IPDA lidar experiments were conducted using the Co2DiaWiL and a hard target (surface return located about 7.12 km south of NICT on 11, 27, and 28 December 2010. The detection sensitivity of a 2-μm IPDA lidar was examined in detail using the CO2 concentration measured by the hard target. The precisions of CO2 measurement for the hard target and 900, 4500 and 27 000 shot pairs were 6.5, 2.8, and 1.2%, respectively. The results indicated that a coherent IPDA lidar with a laser operating at a high pulse repetition frequency of a few tens of KHz is necessary for measuring the CO2 concentration of the hard target with a precision of 1–2 ppm. Statistical comparisons indicated that, although a small amount of in situ data and the fact that they were not co-located with the hard target made comparison difficult, the CO2 volume mixing ratio measured with the Co2DiaWiL was about 5 ppm lower than that measured with the in situ sensor. The statistical results indicated that there were no differences between the hard target and atmospheric return measurements. A precision of 1.5% was achieved from the atmospheric return, which is lower than that obtained from the hard-target returns. Although long-range DIfferential Absorption Lidar (DIAL CO2 measurement with the atmospheric return can result in highly precise measurement, the precision of the atmospheric return measurement was widely distributed comparing to that of the hard target return. Our results indicated that it is important to use a Q-switched laser to measure the range-gated differential absorption optical depth with the atmospheric return and that it is better to simultaneously conduct both hard target and atmospheric return

  11. Error analysis for the ground-based microwave ozone measurements during STOIC

    Science.gov (United States)

    Connor, Brian J.; Parrish, Alan; Tsou, Jung-Jung; McCormick, M. Patrick

    1995-01-01

    We present a formal error analysis and characterization of the microwave measurements made during the Stratospheric Ozone Intercomparison Campaign (STOIC). The most important error sources are found to be determination of the tropospheric opacity, the pressure-broadening coefficient of the observed line, and systematic variations in instrument response as a function of frequency ('baseline'). Net precision is 4-6% between 55 and 0.2 mbar, while accuracy is 6-10%. Resolution is 8-10 km below 3 mbar and increases to 17km at 0.2 mbar. We show the 'blind' microwave measurements from STOIC and make limited comparisons to other measurements. We use the averaging kernels of the microwave measurement to eliminate resolution and a priori effects from a comparison to SAGE 2. The STOIC results and comparisons are broadly consistent with the formal analysis.

  12. Tropospheric and total ozone columns over Paris (France) measured using medium-resolution ground-based solar-absorption Fourier-transform infrared spectroscopy

    OpenAIRE

    C. Viatte; B. Gaubert; Eremenko, M.; Hase, F.; Schneider, M; Blumenstock, T.; Ray, M; P. Chelin; J.-M. Flaud; Orphal, J

    2011-01-01

    Ground-based Fourier-transform infrared (FTIR) solar absorption spectroscopy is a powerful remote sensing technique providing information on the vertical distribution of various atmospheric constituents. This work presents the first evaluation of a mid-resolution ground-based FTIR to measure tropospheric ozone, independently of stratospheric ozone. This is demonstrated using a new atmospheric observatory (named OASIS for "Observations of the Atmosphere by Solar absorption Infrared Spectroscop...

  13. Tropospheric and total ozone columns over Paris (France) measured using medium-resolution ground-based solar-absorption Fourier-transform infrared spectroscopy [Discussion paper

    OpenAIRE

    C. Viatte; B. Gaubert; Eremenko, M.; Hase, F.; Schneider, M; Blumenstock, T.; Ray, M; P. Chelin; J.-M. Flaud; Orphal, J

    2011-01-01

    Ground-based Fourier-transform infrared (FTIR) solar absorption spectroscopy is a powerful remote sensing technique providing information on the vertical distribution of various atmospheric constituents. This work presents the first evaluation of a mid-resolution ground-based FTIR to measure tropospheric ozone, independently of stratospheric ozone. This is demonstrated using a new atmospheric observatory (named OASIS for "Observations of the Atmosphere by Solar absorption Infrared Spectroscop...

  14. Anisotropy of seasonal snow measured by polarimetric phase differences in radar time series

    Science.gov (United States)

    Leinss, Silvan; Löwe, Henning; Proksch, Martin; Lemmetyinen, Juha; Wiesmann, Andreas; Hajnsek, Irena

    2016-08-01

    The snow microstructure, i.e., the spatial distribution of ice and pores, generally shows an anisotropy which is driven by gravity and temperature gradients and commonly determined from stereology or computer tomography. This structural anisotropy induces anisotropic mechanical, thermal, and dielectric properties. We present a method based on radio-wave birefringence to determine the depth-averaged, dielectric anisotropy of seasonal snow with radar instruments from space, air, or ground. For known snow depth and density, the birefringence allows determination of the dielectric anisotropy by measuring the copolar phase difference (CPD) between linearly polarized microwaves propagating obliquely through the snowpack. The dielectric and structural anisotropy are linked by Maxwell-Garnett-type mixing formulas. The anisotropy evolution of a natural snowpack in Northern Finland was observed over four winters (2009-2013) with the ground-based radar instrument "SnowScat". The radar measurements indicate horizontal structures for fresh snow and vertical structures in old snow which is confirmed by computer tomographic in situ measurements. The temporal evolution of the CPD agreed in ground-based data compared to space-borne measurements from the satellite TerraSAR-X. The presented dataset provides a valuable basis for the development of new snow metamorphism models which include the anisotropy of the snow microstructure.

  15. Cloud and aerosol optics by polarized micro pulse Lidar and ground based measurements of zenith radiance

    Science.gov (United States)

    Delgadillo, Rodrigo

    Clouds impact Earth's climate through cloud transmission and reflection properties. Clouds reflect approximately 15 percent of the incoming solar radiation at the top of the atmosphere. A key cloud radiative variable is cloud optical depth, which gives information about how much light is transmitted through a cloud. Historically, remote measurements of cloud optical depth have been limited to uniform overcast conditions and had low temporal and spatial resolution. We present a novel method to measure cloud optical depth for coastal regions from spectral zenith radiance measurements for optically thin clouds, which removes some of these limitations. Our measurement site is part of South Florida's Cloud-Aerosol-Rain Observatory (CAROb), located on Virginia Key, FL (6 km from Miami). This work is based on Marshak et al.'s method for finding cloud optical depth from vegetative sites that provide a strong spectral contrast between red and near infrared surface albedo. However, given the unique nature of our site, which contains water, vegetation, beach, and urban surface types, we found no such spectral contrast at those wavelength pairs. We measured albedo, with hyperspectral resolution, for different surface types around our measurement site to estimate the effective spectral albedo for the area centered on the site with a 5km radius. From this analysis, we found the best possible albedo contrast (573.9 and 673.1 nm) for our site. We tested the derived cloud optical depth from zenith radiance at these two wavelengths against a concurrently running polarized micro pulse LIDAR (MPL) and found good agreement.

  16. Ground-based integrated path coherent differential absorption lidar measurement of CO2: foothill target return

    Directory of Open Access Journals (Sweden)

    S. Ishii

    2013-05-01

    Full Text Available The National Institute of Information and Communications Technology (NICT has made a great deal of effort to develop a coherent 2 μm differential absorption and wind lidar (Co2DiaWiL for measuring CO2 and wind speed. First, coherent Integrated Path Differential Absorption (IPDA lidar experiments were conducted using the Co2DiaWiL and a foothill target (tree and ground surface located about 7.12 km south of NICT on 11, 27, and 28 December 2010. The detection sensitivity of a 2 μm IPDA lidar was examined in detail using the CO2 concentration measured by the foothill reflection. The precisions of CO2 measurements for the foothill target and 900, 4500 and 27 000 shot pairs were 6.5, 2.8, and 1.2%, respectively. The results indicated that a coherent IPDA lidar with a laser operating at a high pulse repetition frequency of a few tens of KHz is necessary for XCO2 (column-averaged dry air mixing ratio of CO2 measurement with a precision of 1–2 ppm in order to observe temporal and spatial variations in the CO2. Statistical comparisons indicated that, although a small amount of in situ data and the fact that they were not co-located with the foothill target made comparison difficult, the CO2 volume mixing ratio obtained by the Co2DiaWiL measurements for the foothill target and atmospheric returns was about −5 ppm lower than the 5 min running averages of the in situ sensor. Not only actual difference of sensing volume or the natural variability of CO2 but also the fluctuations of temperature could cause this difference. The statistical results indicated that there were no biases between the foothill target and atmospheric return measurements. The 2 μm coherent IPDA lidar can detect the CO2 volume mixing ratio change of 3% in the 5 min signal integration. In order to detect the position of the foothill target, to measure a range with a high SNR (signal-to-noise ratio, and to reduce uncertainty due to the presence of aerosols and clouds, it is

  17. Analysis of climatically relevant processes in the troposphere using ground-based remote measuring methods (windprofiler/RASS). Final report; Analyse klimatisch relevanter Prozesse in der Troposphaere mit Hilfe bodengebundener Fernerkundungsmethoden (Windprofiler/RASS). Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Steinhagen, H.; Christoph, A.; Engelbart, D.; Goersdorf, U.; Hirsch, L.; Lippmann, J.; Neisser, J.; Wergen, W.

    1995-09-01

    In the framework of the present research project the Meterological Observatory of Lindenberg (MOL) was equipped with the scientific and technical means necessary for the future operational application at the German weather service of ground-based remote sounding technologies such as `windprofiler radar`, radio-acoustic sounding system (RASS). Several case studies were used to demonstrate the multifarious possibilities of analysing mesoscale tropospheric structures by means of windprofiler radar and RASS. Besides this, further information such as mixing layer thickness and heat flux were derived from windprofiler and RASS measurements and the applied algorithms were tried on case examples. (orig./AKF) [Deutsch] Im Rahmen dieses Forschungsvorhabens sind am Meteorologischen Observatorium Lindenberg (MOL) wissenschaftliche und technische Voraussetzungen fuer eine zukuenftige operationelle Anwendung aktiver bodengebundener Fernsondierungstechnologien, wie `Windprofiler-Radar` und `Radio-Akustisches-Sondierungs-System (RASS)` im Deutschen Wetterdienst geschaffen worden. An Hand mehrerer Fallstudien wurden die vielfaeltigen Moeglichkeiten zur Analyse mesoskaliger troposphaerischer Strukturen mit Windprofiler-Radar und RASS demonstriert. Darueber hinaus wurden aus Windprofiler-/RASS-Messungen weiterfuehrende Informationen, wie Mischungsschichthoehe und Waermefluss abgeleitet und die entsprechenden Algorithmen am Fallbeispielen erprobt. (orig./AKF)

  18. Ground based infrared measurements of the global distribution of ozone in the atmosphere of Mars

    Science.gov (United States)

    Kostiuk, Theodor; Espenak, F.; Mumma, M. J.; Zipoy, D.

    1991-01-01

    The global distribution of ozone in the atmosphere of Mars was determined from Doppler-limited infrared heterodyne spectroscopy measurements at the NASA Infrared Telescope Facility (IRTF) facility during June 3-7, 1988. Mars spectra near two O3 lines arising from the v sub 3 band near 1031.45 cm (-1) were used. The lines were Doppler shifted out of the strong terrestrial ozone absorption spectrum and its effect was removed. Ozone measurements were obtained at eight beam positions over a range of latitudes and local solar zenith angles. The beam size of the planet was 1.4 arcsec. A Martian CO2 line appeared in the spectra and was inverted to retrieve local temperature profiles. Using these temperature profiles, the total ozone column abundance at each position was retrieved by fitting the measured line with synthetic spectra generated by a radiative transfer program. The only previous measurement of ozone at this season was made above the South polar cap by Mariner 7 and revealed an abundance of 10 micron-atm. However, the retrieved O3 column abundances from this investigation are less than 2.2 micron-atm at all positions sampled. These results are consistent with mid-spring abundances predicted by photochemical models of Liu and Donahue, and Shimazaki and Shimizu.

  19. Earth's albedo variations 1998-2014 as measured from ground-based earthshine observations

    CERN Document Server

    Palle, E; Montanes-Rodriguez, P Pilar; Shumko, A; Gonzalez-Merino, B; Lombilla, C Martinez; Jimenez-Ibarra, F; Shumko, S; Sanroma, E; Hulist, A; Miles-Paez, P; Murgas, F; Nowak, G; Koonin, SE

    2016-01-01

    The Earth's albedo is a fundamental climate parameter for understanding the radiation budget of the atmosphere. It has been traditionally measured from space platforms, but also from the ground for sixteen years from Big Bear Solar Observatory by observing the Moon. The photometric ratio of the dark (earthshine) to the bright (moonshine) sides of the Moon is used to determine nightly anomalies in the terrestrial albedo, with the aim is of quantifying sustained monthly, annual and/or decadal changes. We find two modest decadal scale cycles in the albedo, but with no significant net change over the sixteen years of accumulated data. Within the evolution of the two cycles, we find periods of sustained annual increases, followed by comparable sustained decreases in albedo. The evolution of the earthshine albedo is in remarkable agreement with that from the CERES instruments, although each method measures different slices of the Earth's Bond albedo.

  20. Earth's albedo variations 1998-2014 as measured from ground-based earthshine observations

    Science.gov (United States)

    Palle, E.; Goode, P. R.; Montañés-Rodríguez, P.; Shumko, A.; Gonzalez-Merino, B.; Lombilla, C. Martinez; Jimenez-Ibarra, F.; Shumko, S.; Sanroma, E.; Hulist, A.; Miles-Paez, P.; Murgas, F.; Nowak, G.; Koonin, S. E.

    2016-05-01

    The Earth's albedo is a fundamental climate parameter for understanding the radiation budget of the atmosphere. It has been traditionally measured not only from space platforms but also from the ground for 16 years from Big Bear Solar Observatory by observing the Moon. The photometric ratio of the dark (earthshine) to the bright (moonshine) sides of the Moon is used to determine nightly anomalies in the terrestrial albedo, with the aim of quantifying sustained monthly, annual, and/or decadal changes. We find two modest decadal scale cycles in the albedo, but with no significant net change over the 16 years of accumulated data. Within the evolution of the two cycles, we find periods of sustained annual increases, followed by comparable sustained decreases in albedo. The evolution of the earthshine albedo is in remarkable agreement with that from the Clouds and the Earth's Radiant Energy System instruments, although each method measures different slices of the Earth's Bond albedo.

  1. Ground-based aerosol measurements during CHARMEX/ADRIMED campaign at Granada station

    Science.gov (United States)

    Granados-Muñoz, Maria Jose; Bravo-Aranda, Juan Antonio; Navas-Guzman, Francisco; Guerro-Rascado, Juan Luis; Titos, Gloria; Lyamani, Hassan; Valenzuela, Antonio; Cazorla, Alberto; Olmo, Francisco Jose; Mallet, Marc; Alados-Arboledas, Lucas

    2015-04-01

    In the framework of ChArMEx/ADRIMED (Chemistry-Aerosol Mediterranean Experiment, http://charmex.lsce.ipsl.fr/; Aerosol Direct Radiative Impact on the regional climate in the MEDiterranean region) projects, a field experiment based on in situ and remote sensing measurements from surface and airborne platforms was performed. The ADRIMED project aimed to capture the high complexity of the Mediterranean region by using an integrated approach based on intensive experimental field campaign and spaceborne observations, radiative transfer calculations and climate modelling with Regional Climate Models better adapted than global circulation models. For this purpose, measurements were performed at different surface super-sites (including Granada station) over the Occidental Mediterranean region during summer 2013 for creating an updated database of the physical, chemical, optical properties and the vertical distribution of the major "Mediterranean aerosols". Namely, measurements at Granada station were performed on 16 and 17 July 2013, in coincidence with the overpasses of the ATR aircraft over the station. The instrumentation used for the campaign includes both remote sensing instruments (a multiwavelength Raman lidar and a sun photometer) and in-situ measurements (a nephelometer, a Multi-Angle Absorption Photometer (MAAP), an Aerodynamic particle sizer (APS), a high volume sampler of PM10 and an aethalometer). During the measurement period a mineral dust event was detected, with similar dust load on both days. According to in-situ measurements, the event reached the surface level on 16 of June. Vertically resolved lidar measurements indicated presence of mineral dust layers up to 5 km asl both on 16 and 17 June 2013. Temporal evolution analysis indicated that on 17 June the dust layer decoupled from the boundary layer and disappeared around 14:00 UTC. In addition, lidar and sun-photometer data were used to retrieve volume concentration profiles by means of LIRIC (Lidar

  2. Ground-based lidar measurements from Ny-Ålesund during ASTAR 2007

    Directory of Open Access Journals (Sweden)

    A. Herber

    2009-11-01

    Full Text Available During the Arctic Study of Tropospheric Aerosol, Clouds and Radiation (ASTAR in March and April 2007, measurements obtained at the AWIPEV Arctic Research Base in Ny-Ålesund, Spitsbergen at 78.9° N, 11.9° E (operated by the Alfred Wegener Institute for Polar and Marine Research – AWI and the Institut polaire français Paul-Emile Victor – IPEV, supported the airborne campaign. This included lidar data from the Koldewey Aerosol Raman Lidar (KARL and the Micro Pulse Lidar (MPL, located in the atmospheric observatory as well as photometer data and the daily launched radiosonde. The MPL features nearly continuous measurements; the KARL was switched on whenever weather conditions allowed observations (145 h in 61 days. From 1 March to 30 April, 71 meteorological balloon soundings were performed and compared with the concurrent MPL measurements; photometer measurements are available from 18 March. For the KARL data, a statistical overview of particle detection based on their optical properties backscatter ratio and volume depolarization can be given. The altitudes of the occurrence of the named features (subvisible and visible ice and water as well as mixed-phase clouds, aerosol layers as well as their dependence on different air mass origins are analyzed. Although the spring 2007 was characterized by rather clean conditions, diverse case studies of cloud and aerosol occurrence during March and April 2007 are presented in more detail, including temporal development and main optical properties as depolarization, backscatter and extinction coefficients. Links between air mass origins and optical properties can be presumed but need further evidence.

  3. Cloud recognition from ground-based solar radiation measurements: preliminary results

    Science.gov (United States)

    Calbo, Josep; Gonzalez, Josep-Abel

    1998-12-01

    Despite cloud recognition techniques that can routinely identify cloud classes form satellite images, observation of clouds from the ground is still needed to acquire a complete description of cloud climatology. Solar radiation in a given site is one of the meteorological magnitudes that are most affected by cloud cover. Presently, the number of stations where both global and diffuse total solar radiation is measured is growing, due basically to energetic applications of solar radiation. Global and diffuse hourly irradiation, along with some measure of the temporal variability of solar radiation, are used in this paper to describe the sky condition, and to classify it into several cloud types. A classical maximum likelihood method is applied for clustering data. One year of solar radiation data and cloud observations at a site in Catalonia, Spain is used to illustrate the ability of solar radiation measurements to describe cloud types. Preliminary results of the above methodology show that three clusters appear using global and diffuse hourly irradiation only. Fog, stratus, and stratocumulus from the first group. A second group includes altocumulus alone or mixed with other clouds, as well as scattered cumulus congestus. In a third group, we find clear skies, cirrus and scattered cumulus. Especially in this third group, variability of solar radiation within an hour helps to separate different situations.

  4. New ground-based lidar enables volcanic CO2 flux measurements.

    Science.gov (United States)

    Aiuppa, Alessandro; Fiorani, Luca; Santoro, Simone; Parracino, Stefano; Nuvoli, Marcello; Chiodini, Giovanni; Minopoli, Carmine; Tamburello, Giancarlo

    2015-09-01

    There have been substantial advances in the ability to monitor the activity of hazardous volcanoes in recent decades. However, obtaining early warning of eruptions remains challenging, because the patterns and consequences of volcanic unrests are both complex and nonlinear. Measuring volcanic gases has long been a key aspect of volcano monitoring since these mobile fluids should reach the surface long before the magma. There has been considerable progress in methods for remote and in-situ gas sensing, but measuring the flux of volcanic CO2-the most reliable gas precursor to an eruption-has remained a challenge. Here we report on the first direct quantitative measurements of the volcanic CO2 flux using a newly designed differential absorption lidar (DIAL), which were performed at the restless Campi Flegrei volcano. We show that DIAL makes it possible to remotely obtain volcanic CO2 flux time series with a high temporal resolution (tens of minutes) and accuracy (volcanic CO2 represents a major step forward in volcano monitoring, and will contribute improved volcanic CO2 flux inventories. Our results also demonstrate the unusually strong degassing behavior of Campi Flegrei fumaroles in the current ongoing state of unrest.

  5. Ground-based infrared measurements of the global distribution of ozone in the atmosphere of Mars

    Science.gov (United States)

    Espenak, Fred; Mumma, Michael J.; Kostiuk, Theodor; Zipoy, David

    1991-01-01

    Doppler-limited IR spectroscopy measurements of the Mars atmosphere's global ozone distribution have been obtained for June 3-7, 1988; surface pressures and temperature profiles are retrieved through inversion of the fully-resolved (C-12)(O-16)2 line. The total O3 column abundance at each position has been retrieved at each of eight positions over a range of Martian latitudes by fitting the lines with synthetic spectra generated by a radiative transfer program: column burdens of O3 are less than 2.2 microns-atm for all latitudes sampled.

  6. High precision ground-based measurements of solar diameter in support of Picard mission

    CERN Document Server

    Sigismondi, Costantino

    2011-01-01

    The measurement of the solar diameter is introduced in the wider framework of solar variability, and, consequently of the influences of the Sun upon the Earth's climate. It is possible to measure the solar diameter with enough accuracy to study climate changes and irradiation variations using ancient eclipses. This would permit to extend the knowledge of the solar luminosity back to three centuries, through the parameter W=dLogL/dLog R. The method of eclipses and Baily beads is discussed, and a significant improvement with respect to the last 40 years, has been obtained by reconstructing the Limb Darkening Function from the Baily's bead light curve, and the search of its inflexion point. The case of the Jan 15, 2010 annular eclipse has been studied in detail, while the atlas of Baily's beads with worldwide contributions by IOTA members, along with the solar diameter during the eclipse of 2006, have been published. The transition between the photographic atlas of the lunar limb (Watts, 1963) and the laser-alti...

  7. Wind measurements in Saturn's atmosphere with UVES/VLT ground-based Doppler velocimetry

    Science.gov (United States)

    Machado, Pedro; Silva, Miguel; Peralta, Javier; Luz, David; Sánchez-Lavega, Agustin; Hueso, Ricardo

    2016-04-01

    We will present preliminary Doppler wind velocity results of Saturn's zonal flow at cloud level. Our aim is help to constrain the characterization of the equatorial jet at cloud level and the latitudinal variation of the zonal winds, to measure its spatial and temporal variability, to contribute to monitor the variability in order to achieve a better understanding of the dynamics of Saturn's zonal winds, whose equatorial jet has a complex vertical structure and temporal variability (Sanchez-Lavega et al., Nature, 423, 623, 3003; Garcia-Melendo et al., Geophys. Res. Lett., 37, L22204. 2010). Finally, the complementarity with Cassini, providing an independent set of observations. The UVES/VLT instrument has been used, which simultaneously achieves high spectral resolving power and high spatial resolution. The field has been derotated in order to have the aperture aligned perpendicularly to Saturn's rotation axis. In this configuration, spatial information in the East-West direction is preserved in a set of spectra in the direction perpendicular to dispersion. The technique of absolute accelerometry (AA, Connes, 1985, ApSS 110, 211) has been applied to the backscattered solar spectrum in order to determine the Doppler shift associated with the zonal circulation. Our measurements have been made in the wavelength range of 480-680 nm. Previously we successfully adapted this Doppler velocimetry technique for measuring winds at Venus cloud tops (Machado et al. 2012). In the present study we will show the adaptation of this method for Saturn's case. Since the AA technique only allows to compare spectra where the line shifts are within the line width, in fast rotating atmospheres (as is the case of Saturn) the spectra must be compared by pairs from adjacent areas of the disk (adjacent pixels in the slit). We will use coordinated observations from the Cassini's Visible and Infrared Mapping Spectrometer (VIMS), in order to compare with the Doppler winds obtained from the UVES

  8. Diurnal variation of atmospheric water vapor at Gale crater: Analysis from ground-based measurements

    Science.gov (United States)

    Martinez, German; McConnochie, Timothy; Renno, Nilton; Meslin, Pierre-Yves; Fischer, Erik; Vicente-Retortillo, Alvaro; Borlina, Caue; Kemppinen, Osku; Genzer, Maria; Harri, Ari-Matti; de la Torre-Juárez, Manuel; Zorzano, Mari-Paz; Martin-Torres, Javier; Bridges, Nathan; Maurice, Sylvestre; Gasnault, Olivier; Gomez-Elvira, Javier; Wiens, Roger

    2016-04-01

    We analyze measurements obtained by Curiosity's Rover Environmental Monitoring Station (REMS) and ChemCam (CCAM) instruments to shed light on the hydrological cycle at Gale crater. In particular, we use nighttime REMS measurements taken when the atmospheric volume mixing ratio (VMR) and its uncertainty are the lowest (between 05:00 and 06:00 LTST) [1], and daytime CCAM passive sky measurements taken when the VMR is expected to be the highest (between 10:00 and 14:00 LTST) [2]. VMR is calculated from simultaneous REMS measurements of pressure (P), temperature (T) and relative humidity (RH) at 1.6 m (VMR is defined as RH×es(T)/P , where es is the saturation water vapor pressure over ice). The REMS relative humidity sensor has recently been recalibrated (June 2015), providing RH values slightly lower than those in the previous calibration (Dec 2014). The full diurnal cycle of VMR cannot be analyzed using only REMS data because the uncertainty in daytime VMR derived from REMS measurements is extremely high. Daytime VMR is inferred by fitting the output of a multiple-scattering discrete-ordinates radiative transfer model to CCAM passive sky observations [3]. CCAM makes these observations predominately in the vicinity of 11:00 - 12:00 LTST, but occasionally in the early morning near 08:00 LTST. We find that throughout the Martian year, the daytime VMR is higher than at night, with a maximum day-to-night ratio of about 6 during winter. Various processes might explain the differences between nighttime REMS and daytime CCAM VMR values. Potential explanations include: (i) surface nighttime frost formation followed by daytime sublimation [1], (ii) surface nighttime adsorption of water vapor by the regolith followed by daytime desorption and (iii) large scale circulations changing vertical H2O profiles at different times of the year. Potential formation of surface frost can only occur in late fall and winter [1], coinciding with the time when the diurnal amplitude of the near

  9. Volcanic ash from Iceland over Munich: mass concentration retrieved from ground-based remote sensing measurements

    Science.gov (United States)

    Gasteiger, J.; Gro{ß}, S.; Freudenthaler, V.; Wiegner, M.

    2011-03-01

    Volcanic ash plumes, emitted by the Eyjafjallajökull volcano (Iceland) in spring 2010, were observed by the lidar systems MULIS and POLIS in Maisach (near Munich, Germany), and by a CIMEL Sun photometer and a JenOptik ceilometer in Munich. We retrieve mass concentrations of volcanic ash from the lidar measurements; spectral optical properties, i.e.~extinction coefficients, backscatter coefficients, and linear depolarization ratios, are used as input for an inversion. The inversion algorithm searches for model aerosol ensembles with optical properties that agree with the measured values within their uncertainty ranges. The non-sphericity of ash particles is considered by assuming spheroids. Optical particle properties are calculated using the T-matrix method supplemented by the geometric optics approach. The lidar inversion is applied to observations of the pure volcanic ash plume in the morning of 17 April 2010. We find 1.45 g m-2 for the ratio between the mass concentration and the extinction coefficient at λ = 532 nm, assuming an ash density of 2.6 g cm-3. The uncertainty range for this ratio is from 0.87 g m-2 to 2.32 g m-2. At the peak of the ash concentration over Maisach the extinction coefficient at λ = 532 nm was 0.75 km-1 (1-h-average), which corresponds to a maximum mass concentration of 1.1 mg m-3 (0.65 to 1.8 mg m-3). Model calculations show that particle backscatter at our lidar wavelengths (λ ≤ 1064 nm), and thus the lidar retrieval, is hardly sensitive to large particles (r ≳ 3 μm); large particles, however, may contain significant amounts of mass. Therefore, as an independent cross check of the lidar retrieval and to investigate the presence of large particles in more detail, we model ratios of sky radiances in the aureole of the Sun and compare them to measurements of the CIMEL. These ratios are sensitive to particles up to r ≈ 10 μm. This approach confirms the mass concentrations from the lidar retrieval. We conclude that synergistic

  10. Near-infrared thermal emissivity from ground based atmospheric dust measurements at ORM

    CERN Document Server

    Lombardi, G; Ortolani, S; Melnick, J; Ghedina, A; Garcia, A; Molinari, E; Gatica, C

    2011-01-01

    We present an analysis of the atmospheric content of aerosols measured at Observatorio del Roque de los Muchachos (ORM; Canary Islands). Using a laser diode particle counter located at the Telescopio Nazionale Galileo (TNG) we have detected particles of 0.3, 0.5, 1.0, 3.0, 5.0 and 10.0 um size. The seasonal behavior of the dust content in the atmosphere is calculated. The Spring has been found to be dustier than the Summer, but dusty conditions may also occur in Winter. A method to estimate the contribution of the aerosols emissivity to the sky brightness in the near-infrared (NIR) is presented. The contribution of dust emission to the sky background in the NIR has been found to be negligible comparable to the airglow, with a maximum contribution of about 8-10% in the Ks band in the dusty days.

  11. Ground based measurements of particulate emissions from supersonic transports. Concorde olympus engine

    Energy Technology Data Exchange (ETDEWEB)

    Whitefield, Ph.D.; Hagen, D.E. [Missouri Univ., Rolla, MO (United States). Cloud and Aerosol Sciences Lab.; Lilenfeld, H.V. [McDonnell Douglas Corp., St. Louis, MO (United States)

    1997-12-31

    The application of a mobile aerosol monitoring facility, the Mobile Aerosol Sampling System (MASS) is described to characterize engine aerosol emissions from the Rolls Royce Olympus Engine. The multi-configurational MASS has been employed in both ground and airborne field operations. It has been successfully flown on research aircrafts. In ground tests the MASS has participated in numerous jet engine related ground tests, and has been deployed to resolve aerosol generation problems in a high power chemical laser system. In all cases the measurements were made on samples taken from a harsh physical and chemical environment, with both high and low temperature and pressure, and in the presence of highly reactive gases. (R.P.) 9 refs.

  12. Comparison of columnar water vapor over northern China derived from ground-based measurements and MODIS

    Science.gov (United States)

    Liu, Chaoshun; Shi, Runhe; Gao, Wei; Bai, Kaixu

    2011-09-01

    Water vapor represents a small but environmentally significant constituent of the atmosphere. This study retrieved columnar water vapor (CWV) with the 939.3 nm band of a Multi-filter Rotating Shadowband Radiometer (MFRSR) using the modified Langley technique from September 23, 2004 to June 20, 2005 at the XiangHe site.To improve the credibility, the MFRSR results were compared with those obtained from the AERONET (AErosol RObotic NETwork) CIMEL sun-photometer measurements, co-located at the XiangHe site, and the Moderate Resolution Imaging Spectroradiometer (MODIS) Near-Infrared Total Precipitable Water Product (MOD05), respectively. These comparisons show a good agreement in terms of correlation coefficients, slopes, and offsets, revealing that the accuracy of CWV estimation using the MFRSR instrument is reliable and suitable for extended studies in northern China.

  13. MIAWARA-C, a new ground based water vapor radiometer for measurement campaigns

    Directory of Open Access Journals (Sweden)

    C. Straub

    2010-09-01

    Full Text Available In this paper a new 22 GHz water vapor spectro-radiometer which has been specifically designed for profile measurement campaigns of the middle atmosphere is presented. The instrument is of a compact design and has a simple set up procedure. It can be operated as a standalone instrument as it maintains its own weather station and a calibration scheme that does not rely on other instruments or the use of liquid nitrogen. The optical system of MIAWARA-C combines a choked gaussian horn antenna with a parabolic mirror which reduces the size of the instrument in comparison with currently existing radiometers. For the data acquisition a correlation receiver is used together with a digital cross correlating spectrometer. The complete backend section, including the computer, is located in the same housing as the instrument. The receiver section is temperature stabilized to minimize gain fluctuations. Calibration of the instrument is achieved through a balancing scheme with the sky used as the cold load and the tropospheric properties are determined by performing regular tipping curves. Since MIAWARA-C is used in measurement campaigns it is important to be able to determine the elevation pointing in a simple manner as this is a crucial parameter in the calibration process. Here we present two different methods; scanning the sky and the Sun. Finally, we report on the first spectra and retrieved water vapor profiles acquired during the Lapbiat campaign at the Finnish Meteorological Institute Arctic Research Centre in Sodankylä, Finland. The performance of MIAWARA-C is validated here by comparison of the presented profiles against the equivalent profiles from the Microwave Limb Sounder on the EOS/Aura satellite.

  14. Solar-absorption measurements of ozone from two ground based FTIR sites

    Science.gov (United States)

    Plaza, Eddy; Stremme, Wolfgang; Bezanilla, Alejandro; Grutter, Michel; Blumenstock, Thomas; Hase, Frank; Gisi, Michael

    2013-04-01

    Ozone reduces the amount of ultraviolet light entering earths atmosphere and continuous monitoring of total ozone column especially in higher latitudes has been a major task since the discovery of the stratospheric ozone depletion. As tropospheric ozone is a main greenhouse gas, monitoring of ozone in the lower atmosphere and also in the tropics gains importance. Tropospheric ozone also plays an important role in air quality and high levels of ozone in the boundary layer affects the public health. Ozone is produced through a complicated path of photochemistry processes from volatile organic compounds and nitrogen oxides (NOx)[1]. In large cities, these ozone precursors are mainly emitted from anthropogenic activities and in Mexico City the ozone concentration frequently exceedes the local standard for air quality (e.g. on 80% of the days of the year 2002)[2]. Since May 2012 high resolution Fourier transform infrared solar absorption spectra have been used for determining the total column and profile of ozone at the high altitude remote site Altzomoni (19°.12`N, 98°.65`E) located 60 km southeast of Mexico City at 4000 m a.s.l. These measurements are complemented with solar absorption spectra recorded with a moderate resolution FTIR spectrometer at the UNAM campus in Mexcio City (19°25`N, 99°10`W, 2240 m a.s.l.). The vertical profiles and total columns of ozone are inferred from solar spectra by using the retrieval code PROFFIT. The results are compared with simulations of the Whole Atmosphere Community Climate Model (WACCM) and other correlative data. The ozone column amount in the polluted mixing layer of Mexico City is estimated from the intercomparison of measurements at the urban and remote sites and discussed. [1] Tie, X.; Brasseur, G.; Ying, Z. Impact of Model Resolution on Chemical Ozone Formation in Mexico City: Application of the Wrf-Chem Model. Atmospheric Chemistry and Physics. 2010, 10, 8983-8995. [2] McKinley, G.; Zuk, M.; Hojer, M.; Avalos, M

  15. Tracking of urban aerosols using combined lidar-based remote sensing and ground-based measurements

    Directory of Open Access Journals (Sweden)

    T.-Y. He

    2011-10-01

    Full Text Available A measuring campaign was performed over the neighboring towns of Nova Gorica in Slovenia and Gorizia in Italy on 24 and 25 May 2010, to investigate the concentration and distribution of urban aerosols. Tracking of two-dimensional spatial and temporal aerosol distributions was performed using scanning elastic lidar operating at 1064 nm. In addition, PM10 concentrations of particles, NOx and meteorological data were continuously monitored within the lidar scanning region. Based on the collected data, we investigated the flow dynamics and the aerosol concentrations within the lower troposphere and an evidence for daily aerosol cycles. We observed a number of cases with spatially localized increased lidar returns, which were found to be due to the presence of point sources of particulate matter. Daily aerosol concentration cycles were also clearly visible with a peak in aerosol concentration during the morning rush hours and daily maximum at around 17:00 Central European Time. We also found that the averaged horizontal atmospheric extinction within the scanning region 200 m above the ground is correlated to the PM10 concentration at the ground level with a correlation coefficient of 0.64, which may be due to relatively quiet meteorological conditions and basin-like terrain configuration.

  16. Measuring galaxy [OII] emission line doublet with future ground-based wide-field spectroscopic surveys

    CERN Document Server

    Comparat, Johan; Bacon, Roland; Mostek, Nick J; Newman, Jeffrey A; Schlegel, David J; Yèche, Christophe

    2013-01-01

    The next generation of wide-field spectroscopic redshift surveys will map the large-scale galaxy distribution in the redshift range 0.7< z<2 to measure baryonic acoustic oscillations (BAO). The primary optical signature used in this redshift range comes from the [OII] emission line doublet, which provides a unique redshift identification that can minimize confusion with other single emission lines. To derive the required spectrograph resolution for these redshift surveys, we simulate observations of the [OII] (3727,3729) doublet for various instrument resolutions, and line velocities. We foresee two strategies about the choice of the resolution for future spectrographs for BAO surveys. For bright [OII] emitter surveys ([OII] flux ~30.10^{-17} erg /cm2/s like SDSS-IV/eBOSS), a resolution of R~3300 allows the separation of 90 percent of the doublets. The impact of the sky lines on the completeness in redshift is less than 6 percent. For faint [OII] emitter surveys ([OII] flux ~10.10^{-17} erg /cm2/s like ...

  17. Using Lidar and Radar measurements to constrain predictions of forest ecosystem structure and function.

    Science.gov (United States)

    Antonarakis, Alexander S; Saatchi, Sassan S; Chazdon, Robin L; Moorcroft, Paul R

    2011-06-01

    Insights into vegetation and aboveground biomass dynamics within terrestrial ecosystems have come almost exclusively from ground-based forest inventories that are limited in their spatial extent. Lidar and synthetic-aperture Radar are promising remote-sensing-based techniques for obtaining comprehensive measurements of forest structure at regional to global scales. In this study we investigate how Lidar-derived forest heights and Radar-derived aboveground biomass can be used to constrain the dynamics of the ED2 terrestrial biosphere model. Four-year simulations initialized with Lidar and Radar structure variables were compared against simulations initialized from forest-inventory data and output from a long-term potential-vegtation simulation. Both height and biomass initializations from Lidar and Radar measurements significantly improved the representation of forest structure within the model, eliminating the bias of too many large trees that arose in the potential-vegtation-initialized simulation. The Lidar and Radar initializations decreased the proportion of larger trees estimated by the potential vegetation by approximately 20-30%, matching the forest inventory. This resulted in improved predictions of ecosystem-scale carbon fluxes and structural dynamics compared to predictions from the potential-vegtation simulation. The Radar initialization produced biomass values that were 75% closer to the forest inventory, with Lidar initializations producing canopy height values closest to the forest inventory. Net primary production values for the Radar and Lidar initializations were around 6-8% closer to the forest inventory. Correcting the Lidar and Radar initializations for forest composition resulted in improved biomass and basal-area dynamics as well as leaf-area index. Correcting the Lidar and Radar initializations for forest composition and fine-scale structure by combining the remote-sensing measurements with ground-based inventory data further improved

  18. Ground-Based Measurement Experiment and First Results with Geosynchronous-Imaging Fourier Transform Spectrometer Engineering Demonstration Unit

    Science.gov (United States)

    Zhou, Daniel K.; Smith, William L.; Bingham, Gail E.; Huppi, Ronald J.; Revercomb, Henry E.; Zollinger, Lori J.; Larar, Allen M.; Liu, Xu; Tansock, Joseph J.; Reisse, Robert A.; Hooker, Ronald

    2007-01-01

    The geosynchronous-imaging Fourier transform spectrometer (GIFTS) engineering demonstration unit (EDU) is an imaging infrared spectrometer designed for atmospheric soundings. It measures the infrared spectrum in two spectral bands (14.6 to 8.8 microns, 6.0 to 4.4 microns) using two 128 x 128 detector arrays with a spectral resolution of 0.57 cm(exp -1) with a scan duration of approximately 11 seconds. From a geosynchronous orbit, the instrument will have the capability of taking successive measurements of such data to scan desired regions of the globe, from which atmospheric status, cloud parameters, wind field profiles, and other derived products can be retrieved. The GIFTS EDU provides a flexible and accurate testbed for the new challenges of the emerging hyperspectral era. The EDU ground-based measurement experiment, held in Logan, Utah during September 2006, demonstrated its extensive capabilities and potential for geosynchronous and other applications (e.g., Earth observing environmental measurements). This paper addresses the experiment objectives and overall performance of the sensor system with a focus on the GIFTS EDU imaging capability and proof of the GIFTS measurement concept.

  19. observation and analysis of the structure of winter precipitation-generating clouds using ground-based sensor measurements

    Science.gov (United States)

    Menéndez José Luis, Marcos; Gómez José Luis, Sánchez; Campano Laura, López; Ortega Eduardo, García; Suances Andrés, Merino; González Sergio, Fernández; Salvador Estíbaliz, Gascón; González Lucía, Hermida

    2015-04-01

    In this study, we used a 28-day database corresponding to December, January and February of 2011/2012 and 2012/2013 campaigns to analyze cloud structure that produced precipitation in the Sierra Norte near Madrid, Spain. We used remote sensing measurements, both active type like the K-band Micro Rain Radar (MRR) and passive type like the Radiometrics MP-3000A multichannel microwave radiometer. Using reflectivity data from the MRR, we determined the important microphysical parameters of Ice Water Content (IWC) and its integrated value over the atmospheric column, or Ice Water Path (IWP). Among the measurements taken by the MP-3000A were Liquid Water Path (LWP) and Integrated Water Vapor (IWV). By representing these data together, sharp declines in LWP and IWV were evident, coincident with IWP increases. This result indicates the ability of a K-band radar to measure the amount of ice in the atmospheric column, simultaneously revealing the Wegener-Bergeron-Findeisen mechanism. We also used a Present Weather Sensor (VPF-730; Biral Ltd., Bristol, UK) to determine the type and amount of precipitation at the surface. With these data, we used regression equations to establish the relationship between visibility and precipitation intensity. In addition, through theoretical precipitation visibility-intensity relationships, we estimated the type of crystal, degree of accretion (riming), and moisture content of fallen snow crystals.

  20. Investigation the optical and radiative properties of aerosol vertical profile of boundary layer by lidar and ground based measurements

    Science.gov (United States)

    Chen, W.; Chou, C.; Lin, P.; Wang, S.

    2011-12-01

    The planetary boundary layer is the air layer near the ground directly affected by diurnal heat, moisture, aerosol, and cloud transfer to or from the surface. In the daytime solar radiation heats the surface, initiating thermal instability or convection. Whereas, the scattering and absorption of aerosols or clouds might decrease the surface radiation or heat atmosphere which induce feedbacks such as the enhanced stratification and change in relative humidity in the boundary layer. This study is aimed to understand the possible radiative effect of aerosols basing on ground based aerosol measurements and lidar installed in National Taiwan University in Taipei. The optical and radiative properties of aerosols are dominated by aerosol composition, particle size, hygroscopicity property, and shape. In this study, aerosol instruments including integrating nephelometer, open air nephelometer, aethalometer are applied to investigate the relationship between aerosol hygroscopicity properties and aerosol types. The aerosol hygroscopicity properties are further applied to investigate the effect of relative humidity on aerosol vertical profiles measured by a dual-wavelength and depolarization lidar. The possible radiative effect of aerosols are approached by vertical atmospheric extinction profiles measured by lidar. Calculated atmospheric and aerosol heating effects was compared with vertical meteorological parameters measured by radiosonde. The result shows light-absorbing aerosol has the potential to affect the stability of planetary boundary layer.

  1. Ground-based measurements of the vertical E-field in mountainous regions and the "Austausch" effect

    Science.gov (United States)

    Yaniv, Roy; Yair, Yoav; Price, Colin; Mkrtchyan, Hripsime; Lynn, Barry; Reymers, Artur

    2017-06-01

    Past measurements of the atmospheric vertical electric field (Ez or potential gradient) at numerous land stations showed a strong response of the daily electric field to a morning local effect known as ;Austausch; - the transport of electrical charges due to increased turbulence. In mountainous regions, nocturnal charge accumulation, followed by an attachment process to aerosols near the surface in valleys, known as the electrode effect, is lifted as a charged aerosol layer by anabatic (upslope) winds during the morning hours due to solar heating. Ground-based measurements during fair weather days were conducted at three mountain stations in Israel and Armenia. We present results of the mean diurnal variation of Ez and make comparisons with the well-known Carnegie curve and with past measurements of Ez on mountains. We report a good agreement between the mean diurnal curves of Ez at various mountain stations and the time of local sunrise when the Ez is found to increase. We attribute this morning maximum to the Austausch (or exchange) layer effect. We support our findings with conduction and turbulent current measurements showing high values of ions and charged aerosols being transported by winds from morning to noon local time, and by model simulations showing the convergence of winds in the early morning hours toward the mountain peak.

  2. Co-located ground-based remote sensing and in situ measurements at the tropical atmospheric observatory in Suriname

    Science.gov (United States)

    Warneke, T.; Petersen, K.; Gerbig, C.; Macatangay, R.; Koerner, S.; Jordan, A.; Rothe, M.; Notholt, J.; Schrems, O.

    2009-04-01

    The first ground-based remote sensing measurements of the column averaged volume mixing ratio of CO2 (XCO2) for the inner tropics have been obtained at Paramaribo, Suriname (5.8°N, 55.2°W). Due to the migration of the ITCZ over the measurement location the probed air masses belong to the northern or southern hemisphere depending on the time of the year. The XCO2 shows an average annual increase in the Southern Hemisphere of 2.2 ppm for the time period 2004 to 2007, which agrees within the error with model simulations. Co-located in-situ measurements are strongly influenced by a local source. From the isotopic composition of the air samples the local source component is suggested to be the terrestrial biosphere. Using d13C from the NOAA/ESRL stations Ascension Is. (ASC) and Ragged Point (RPB) the data has been corrected for the local source component. The corrected mixing ratios for the surface as well as the XCO2 qualitatively agree with model simulations.

  3. Simultaneous Retrieval of Aerosol and Surface Optical Properties from Combined Airborne- and Ground-Based Direct and Diffuse Radiometric Measurements

    Science.gov (United States)

    Gatebe, C. K.; Dubovik, O.; King, M. D.; Sinyuk, A.

    2010-01-01

    This paper presents a new method for simultaneously retrieving aerosol and surface reflectance properties from combined airborne and ground-based direct and diffuse radiometric measurements. The method is based on the standard Aerosol Robotic Network (AERONET) method for retrieving aerosol size distribution, complex index of refraction, and single scattering albedo, but modified to retrieve aerosol properties in two layers, below and above the aircraft, and parameters on surface optical properties from combined datasets (Cloud Absorption Radiometer (CAR) and AERONET data). A key advantage of this method is the inversion of all available spectral and angular data at the same time, while accounting for the influence of noise in the inversion procedure using statistical optimization. The wide spectral (0.34-2.30 m) and angular range (180 ) of the CAR instrument, combined with observations from an AERONET sunphotometer, provide sufficient measurement constraints for characterizing aerosol and surface properties with minimal assumptions. The robustness of the method was tested on observations made during four different field campaigns: (a) the Southern African Regional Science Initiative 2000 over Mongu, Zambia, (b) the Intercontinental Transport Experiment-Phase B over Mexico City, Mexico (c) Cloud and Land Surface Interaction Campaign over the Atmospheric Radiation Measurement (ARM) Central Facility, Oklahoma, USA, and (d) the Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) over Elson Lagoon in Barrow, Alaska, USA. The four areas are dominated by different surface characteristics and aerosol types, and therefore provide good test cases for the new inversion method.

  4. Simultaneous ground-based thermospheric wind measurements using Doppler asymmetric spatial heterodyne spectroscopy (DASH) and Fabry-Perot Interferometry

    Science.gov (United States)

    Englert, C. R.; Harlander, J. M.; Meriwether, J. W.; Brown, C. M.; Drob, D. P.; Emmert, J. T.; Castelaz, M.; Roesler, F. L.

    2011-12-01

    The concept of Doppler Asymmetric Spatial Heterodyne (DASH) instruments to measure upper atmospheric winds was initially published in 2006. The DASH approach is identical to the concept of Spatial Heterodyne Spectroscopy (SHS) except that one interferometer arm includes an additional fixed optical path offset, similar to the phase stepping Michelson technique which was used for the WINDII (Wind Imaging Interferometer) experiment. The advantages of DASH include having no moving parts, high sensitivity, and the ability to simultaneously observe multiple isolated emission lines, including a known light source for real time calibration. Since it was first proposed, the development of the DASH technique has progressed significantly. Major milestones include a proof of concept in the laboratory, the design, fabrication and test of a monolithic DASH interferometer for the thermospheric red line (O I 630nm), and initial ground based thermospheric wind measurements using this interferometer. To further increase the technical readiness level (TRL) of DASH for a future satellite instrument, we have conducted coordinated measurements with a DASH prototype and Fabry-Perot interferometer (FPI) from the Pisgah Astronomical Research Institute in North Carolina in the summer of 2011. We will present a comparison of the two experimental data sets and examine how they compare with the empirical horizontal wind model HWM-07.

  5. Re-analysis of ground-based microwave ClO measurements from Mauna Kea, 1992 to early 2012

    Directory of Open Access Journals (Sweden)

    B. J. Connor

    2013-09-01

    Full Text Available We present a re-analysis of upper stratospheric ClO measurements from the ground-based millimeter-wave instrument from January 1992 to February 2012. These measurements are made as part of the Network for the Detection of Atmospheric Composition Change (NDACC from Mauna Kea, Hawaii, (19.8° N, 204.5° E. Here, we use daytime and nighttime measurements together to form a day–night spectrum, from which the difference in the day and night profiles is retrieved. These results are then compared to the day–night difference profiles from the Upper Atmosphere Research Satellite (UARS and Aura Microwave Limb Sounder (MLS instruments. We also compare them to our previous analyses of the same data, in which we retrieved the daytime ClO profile. The major focus will be on comparing the year-to-year and long-term changes in ClO derived by the two analysis methods, and comparing these results to the long-term changes reported by others. We conclude that the re-analyzed data set has less short-term variability and exhibits a more constant long-term trend that is more consistent with other observations. Data from 1995 to 2012 indicate a linear decline of mid-stratospheric ClO of 0.64 ± 0.15% yr−1 (2σ.

  6. Re-analysis of ground-based microwave ClO measurements from Mauna Kea, 1992 to early 2012

    Directory of Open Access Journals (Sweden)

    B. J. Connor

    2012-11-01

    Full Text Available We present a re-analysis of upper stratospheric ClO measurements from the ground-based millimeter-wave instrument from January 1992 to February 2012. These measurements are made as part of the Network for the Detection of Atmospheric Composition Change (NDACC from Mauna Kea, Hawaii, (19.8° N, 204.5° E. Here, we use daytime and nighttime measurements together to form a day-night spectrum, from which the difference in the day and night profiles is retrieved. These results are then compared to the day-night difference profiles from the UARS and Aura Microwave Limb Sounder (MLS instruments. We also compare them to our previous analyses of the same data, in which we retrieved the daytime ClO profile. The major focus will be on comparing the year-to-year and long-term changes in ClO derived by the two analysis methods. We conclude that the re-analyzed data set has less short-term variability and exhibits a more constant long-term trend. Data from 1995–2012 indicate a linear decline of mid-stratospheric ClO of 0.64 ± 0.08% yr−1.

  7. Retrieval and validation of O3 measurements from ground-based FTIR spectrometer at equatorial station: Addis Ababa, Ethiopia

    Science.gov (United States)

    Takele Kenea, S.; Mengistu Tsidu, G.; Blumenstock, T.; Hase, F.; von Clarmann, T.; Stiller, G. P.

    2012-09-01

    Since May 2009 high-resolution Fourier transform infrared (FTIR) solar absorption spectra are recorded at Addis Ababa (9.01° N latitude, 38.76° E longitude, 2443 m altitude a.s.l.), Ethiopia. The vertical profiles and total column amounts of ozone (O3) are deduced from the spectra by using the retrieval code PROFFIT (V9.5) and regularly determined instrumental line shape (ILS). A detailed error analysis of the O3 retrieval is performed. Averaging kernels analysis of the target gas shows that the major contribution to the retrieved information always comes from the measurement. We obtained 2.1 degrees of freedom on average for signals in the retrieval of O3 from the observed FTIR spectra. We have compared the FTIR retrieval of ozone Volume Mixing Ratio (VMR) profiles and column amounts with the coincident satellite observations of Microwave Limb Sounding (MLS), Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) and Tropospheric Emission Spectrometer (TES), Ozone Monitoring Instrument (OMI), Atmospheric Infrared Sounding (AIRS) and Global Ozone Monitoring Experiment (GOME-2) instrument. The mean relative differences are generally found below +15% in the altitude range of 27 to 36 km for comparison of VMR profiles made between MLS and MIPAS, whereas comparison with TES has shown below 9.4% relative difference. Furthermore, the mean relative difference is positive above 31 km, suggesting positive bias in the FTIR measurement of O3 VMR with respect to MLS, MIPAS and TES. The overall comparisons of column amounts of satellite measurements with the ground-based FTIR instruments show better agreement exhibiting mean relative differences of ground-based FTIR with respect to MLS and GOME-2 within +0.4% to +4.0% and corresponding standard deviations of 2.2 to 4.3% whereas, in the case of OMI, TES, AIRS, the mean relative differences are from -0.38 to -6.8%. Thus, the retrieved O3 VMR and column amounts from a tropical site, Addis Ababa, is found to exhibit

  8. Ground-based multispectral measurements for airborne data verification in non-operating open pit mine "Kremikovtsi"

    Science.gov (United States)

    Borisova, Denitsa; Nikolov, Hristo; Petkov, Doyno

    2013-10-01

    The impact of mining industry and metal production on the environment is presented all over the world. In our research we set focus on the impact of already non-operating ferrous "Kremikovtsi"open pit mine and related waste dumps and tailings which we consider to be the major factor responsible for pollution of one densely populated region in Bulgaria. The approach adopted is based on correct estimation of the distribution of the iron oxides inside open pit mines and the neighboring regions those considered in this case to be the key issue for the ecological state assessment of soils, vegetation and water. For this study the foremost source of data are those of airborne origin and those combined with ground-based in-situ and laboratory acquired data were used for verification of the environmental variables and thus in process of assessment of the present environmental status influenced by previous mining activities. The percentage of iron content was selected as main indicator for presence of metal pollution since it could be reliably identified by multispectral data used in this study and also because the iron compounds are widely spread in the most of the minerals, rocks and soils. In our research the number of samples from every source (air, field, lab) was taken in the way to be statistically sound and confident. In order to establish relationship between the degree of pollution of the soil and mulspectral data 40 soil samples were collected during a field campaign in the study area together with GPS measurements for two types of laboratory measurements: the first one, chemical and mineralogical analysis and the second one, non-destructive spectroscopy. In this work for environmental variables verification over large areas mulspectral satellite data from Landsat instruments TM/ETM+ and from ALI/OLI (Operational Land Imager) were used. Ground-based (laboratory and in-situ) spectrometric measurements were performed using the designed and constructed in Remote

  9. Comparison of 7 years of satellite-borne and ground-based tropospheric NO2 measurements around Milan, Italy

    Science.gov (United States)

    OrdóñEz, C.; Richter, A.; Steinbacher, M.; Zellweger, C.; Nüß, H.; Burrows, J. P.; PréVôT, A. S. H.

    2006-03-01

    Tropospheric NO2 vertical column densities (VCDs) over the Lombardy region were retrieved from measurements of the Global Ozone Monitoring Experiment (GOME) spectrometer for the period 1996-2002 using a differential optical absorption method. This data set was compared with in situ measurements of NO2 at around 100 ground stations in the Lombardy region, northern Italy. The tropospheric NO2 VCDs are reasonably well correlated with the near-surface measurements under cloud-free conditions. However, the slope of the tropospheric VCDs versus ground measurements is higher in autumn-winter than in spring-summer. This effect is clearly reduced when the peroxyacetyl nitrate and nitric acid (HNO3) interferences of conventional NOx analyzers are taken into account. For a more quantitative comparison, the NO2 ground measurements were scaled to tropospheric VCDs using a seasonal NO2 vertical profile over northern Italy calculated by the Model of Ozone and Related Tracers 2 (MOZART-2). The tropospheric VCDs retrieved from satellite and those determined from ground measurements agree well, with a correlation coefficient R = 0.78 and a slope close to 1 for slightly polluted stations. GOME cannot reproduce the high NO2 amounts over the most polluted stations, mainly because of the large spatial variability in the distribution of pollution within the GOME footprint. The yearly and weekly cycles of the tropospheric NO2 VCDs are similar for both data sets, with significantly lower values in the summer months and on Sundays, respectively. Considering the pollution level and high aerosol concentrations of this region, the agreement is very good. Furthermore, uncertainties in the ground-based measurements, including the extrapolation to NO2 VCDs, might be as important as those of the NO2 satellite retrieval itself.

  10. Optical and geometrical properties of cirrus clouds in Amazonia derived from 1 year of ground-based lidar measurements

    Science.gov (United States)

    Gouveia, Diego A.; Barja, Boris; Barbosa, Henrique M. J.; Seifert, Patric; Baars, Holger; Pauliquevis, Theotonio; Artaxo, Paulo

    2017-03-01

    Cirrus clouds cover a large fraction of tropical latitudes and play an important role in Earth's radiation budget. Their optical properties, altitude, vertical and horizontal coverage control their radiative forcing, and hence detailed cirrus measurements at different geographical locations are of utmost importance. Studies reporting cirrus properties over tropical rain forests like the Amazon, however, are scarce. Studies with satellite profilers do not give information on the diurnal cycle, and the satellite imagers do not report on the cloud vertical structure. At the same time, ground-based lidar studies are restricted to a few case studies. In this paper, we derive the first comprehensive statistics of optical and geometrical properties of upper-tropospheric cirrus clouds in Amazonia. We used 1 year (July 2011 to June 2012) of ground-based lidar atmospheric observations north of Manaus, Brazil. This dataset was processed by an automatic cloud detection and optical properties retrieval algorithm. Upper-tropospheric cirrus clouds were observed more frequently than reported previously for tropical regions. The frequency of occurrence was found to be as high as 88 % during the wet season and not lower than 50 % during the dry season. The diurnal cycle shows a minimum around local noon and maximum during late afternoon, associated with the diurnal cycle of precipitation. The mean values of cirrus cloud top and base heights, cloud thickness, and cloud optical depth were 14.3 ± 1.9 (SD) km, 12.9 ± 2.2 km, 1.4 ± 1.1 km, and 0.25 ± 0.46, respectively. Cirrus clouds were found at temperatures down to -90 °C. Frequently cirrus were observed within the tropical tropopause layer (TTL), which are likely associated to slow mesoscale uplifting or to the remnants of overshooting convection. The vertical distribution was not uniform, and thin and subvisible cirrus occurred more frequently closer to the tropopause. The mean lidar ratio was 23.3 ± 8.0 sr. However, for

  11. Comparing multiple model-derived aerosol optical properties to spatially collocated ground-based and satellite measurements

    Science.gov (United States)

    Ocko, Ilissa B.; Ginoux, Paul A.

    2017-04-01

    Anthropogenic aerosols are a key factor governing Earth's climate and play a central role in human-caused climate change. However, because of aerosols' complex physical, optical, and dynamical properties, aerosols are one of the most uncertain aspects of climate modeling. Fortunately, aerosol measurement networks over the past few decades have led to the establishment of long-term observations for numerous locations worldwide. Further, the availability of datasets from several different measurement techniques (such as ground-based and satellite instruments) can help scientists increasingly improve modeling efforts. This study explores the value of evaluating several model-simulated aerosol properties with data from spatially collocated instruments. We compare aerosol optical depth (AOD; total, scattering, and absorption), single-scattering albedo (SSA), Ångström exponent (α), and extinction vertical profiles in two prominent global climate models (Geophysical Fluid Dynamics Laboratory, GFDL, CM2.1 and CM3) to seasonal observations from collocated instruments (AErosol RObotic NETwork, AERONET, and Cloud-Aerosol Lidar with Orthogonal Polarization, CALIOP) at seven polluted and biomass burning regions worldwide. We find that a multi-parameter evaluation provides key insights on model biases, data from collocated instruments can reveal underlying aerosol-governing physics, column properties wash out important vertical distinctions, and improved models does not mean all aspects are improved. We conclude that it is important to make use of all available data (parameters and instruments) when evaluating aerosol properties derived by models.

  12. Radar Cross-section Measurement Techniques

    Directory of Open Access Journals (Sweden)

    V.G. Borkar

    2010-03-01

    Full Text Available Radar cross-section (RCS is an important study parameter for defence applications specially dealing with airborne weapon system. The RCS parameter guides the detection range for a target and is therefore studied to understand the effectiveness of a weapon system. It is not only important to understand the RCS characteristics of a target but also to look into the diagnostic mode of study where factors contributing to a particular RCS values are studied. This further opens up subject like RCS suppression and stealth. The paper discusses the RCS principle, control, and need of measurements. Classification of RCS in terms of popular usage is explained with detailed theory of RF imaging and inverse synthetic aperture radar (ISAR. The various types of RCS measurement ranges are explained with brief discussion on outdoor RCS measurement range. The RCS calibration plays a critical role in referencing the measurement to absolute values and has been described.The RCS facility at Reseach Centre Imarat, Hyderabad, is explained with some details of different activities that are carried out including RAM evaluation, scale model testing, and diagnostic imaging.Defence Science Journal, 2010, 60(2, pp.204-212, DOI:http://dx.doi.org/10.14429/dsj.60.341

  13. Comparison of OMI NO2 observations and their seasonal and weekly cycles with ground-based measurements in Helsinki

    Science.gov (United States)

    Ialongo, Iolanda; Herman, Jay; Krotkov, Nick; Lamsal, Lok; Folkert Boersma, K.; Hovila, Jari; Tamminen, Johanna

    2016-10-01

    We present the comparison of satellite-based OMI (Ozone Monitoring Instrument) NO2 products with ground-based observations in Helsinki. OMI NO2 total columns, available from NASA's standard product (SP) and KNMI DOMINO product, are compared with the measurements performed by the Pandora spectrometer in Helsinki in 2012. The relative difference between Pandora no. 21 and OMI SP total columns is 4 and -6 % for clear-sky and all-sky conditions, respectively. DOMINO NO2 retrievals showed slightly lower total columns with median differences about -5 and -14 % for clear-sky and all-sky conditions, respectively. Large differences often correspond to cloudy fall-winter days with solar zenith angles above 65°. Nevertheless, the differences remain within the retrieval uncertainties. The average difference values are likely the result of different factors partly canceling each other: the overestimation of the stratospheric columns causes a positive bias partly compensated by the limited spatial representativeness of the relatively coarse OMI pixel for sharp NO2 gradients. The comparison between Pandora and the new version (V3) of OMI NO2 retrievals shows a larger negative difference (about -30 %) than the current version (V2.1) because the revised spectral fitting procedure reduces the overestimation of the stratospheric column. The weekly and seasonal cycles from OMI, Pandora and NO2 surface concentrations are also compared. Both satellite- and ground-based data show a similar weekly cycle, with lower NO2 levels during the weekend compared to the weekdays as a result of reduced emissions from traffic and industrial activities. The seasonal cycle also shows a similar behavior, even though the results are affected by the fact that most of the data are available during spring-summer because of cloud cover in other seasons. This is one of few works in which OMI NO2 retrievals are evaluated in a urban site at high latitudes (60° N). Despite the city of Helsinki having

  14. Radiometric Modeling and Calibration of the Geostationary Imaging Fourier Transform Spectrometer (GIFTS)Ground Based Measurement Experiment

    Science.gov (United States)

    Tian, Jialin; Smith, William L.; Gazarik, Michael J.

    2008-01-01

    The ultimate remote sensing benefits of the high resolution Infrared radiance spectrometers will be realized with their geostationary satellite implementation in the form of imaging spectrometers. This will enable dynamic features of the atmosphere s thermodynamic fields and pollutant and greenhouse gas constituents to be observed for revolutionary improvements in weather forecasts and more accurate air quality and climate predictions. As an important step toward realizing this application objective, the Geostationary Imaging Fourier Transform Spectrometer (GIFTS) Engineering Demonstration Unit (EDU) was successfully developed under the NASA New Millennium Program, 2000-2006. The GIFTS-EDU instrument employs three focal plane arrays (FPAs), which gather measurements across the long-wave IR (LWIR), short/mid-wave IR (SMWIR), and visible spectral bands. The GIFTS calibration is achieved using internal blackbody calibration references at ambient (260 K) and hot (286 K) temperatures. In this paper, we introduce a refined calibration technique that utilizes Principle Component (PC) analysis to compensate for instrument distortions and artifacts, therefore, enhancing the absolute calibration accuracy. This method is applied to data collected during the GIFTS Ground Based Measurement (GBM) experiment, together with simultaneous observations by the accurately calibrated AERI (Atmospheric Emitted Radiance Interferometer), both simultaneously zenith viewing the sky through the same external scene mirror at ten-minute intervals throughout a cloudless day at Logan Utah on September 13, 2006. The accurately calibrated GIFTS radiances are produced using the first four PC scores in the GIFTS-AERI regression model. Temperature and moisture profiles retrieved from the PC-calibrated GIFTS radiances are verified against radiosonde measurements collected throughout the GIFTS sky measurement period. Using the GIFTS GBM calibration model, we compute the calibrated radiances from data

  15. Intermittency of the turbulent processes in the Earth's magnetosphere detected from the ground-based measurements

    Energy Technology Data Exchange (ETDEWEB)

    Stepanova, Marina [Physical Department, Universidad de Santiago de Chile (Chile); Foppiano, Alberto; Ovalle, Elias [Departmento de Geofisica, Universidad de Conception (Chile); Antonova, Elizavieta [Skobeltsyn Institute of Nuclear Physics, Moscow State University, Moscow (Russian Federation); Troshichev, Oleg [Department of Geophysics, Arctic and Antarctic Research Institute, St. Petersburg (Russian Federation)], E-mail: mstepano@usach.cl

    2008-11-01

    Turbulent processes in the Earth's magnetosphere are reflected in the dynamical behavior of the geomagnetic indices and other parameters determined from ground based observations. Intermittent properties of one minute Polar Cap (PC) index and auroral radio wave absorption are studied using 1995-2000 data sets. It was found that the probability distribution functions (PDFs) of both PC-index and absorption fluctuations display a strong non-Gaussian shape. This indicates that they are not characterized by a global time self-similarity but rather exhibit intermittency, as previously reported for solar wind velocity and auroral electrojet index values. In the case of the auroral absorption it was also found that intermittency strongly depends on the magnetic local time, being largest in the nighttime sector. This shows that the acceleration of precipitating particles is intermittent, especially near the substorm eye, where the level of turbulence increases. Application of the Local Intermittency Measure (LIM) technique confirms the aforementioned results to a better precision.

  16. Validation of ACE-FTS measurements of CFC-11, CFC-12, and HCFC-22 using ground-based FTIR spectrometers

    Science.gov (United States)

    Kolonjari, F.; Walker, K. A.; Mahieu, E.; Batchelor, R. L.; Bernath, P. F.; Boone, C.; Conway, S. A.; Dan, L.; Griffin, D.; Harrett, A.; Kasai, Y.; Kagawa, A.; Lindenmaier, R.; Strong, K.; Whaley, C.

    2013-12-01

    Satellite datasets can be an effective global monitoring tool for long-lived compounds in the atmosphere. The Atmospheric Chemistry Experiment (ACE) is a mission on-board the Canadian satellite SCISAT-1. The primary instrument on SCISAT-1 is a high-resolution infrared Fourier transform spectrometer (ACE-FTS) which is capable of measuring a range of gases including key chlorofluorocarbon (CFC) and hydrochlorofluorocarbon (HCFC) species. These families of species are of interest because of their significant contribution to anthropogenic ozone depletion and to global warming. To assess the quality of data derived from satellite measurements, validation using other data sources is essential. Ground-based Fourier transform infrared (FTIR) spectrometers are particularly useful for this purpose. In this study, five FTIR spectrometers located at four sites around the world are used to validate the CFC-11 (CCl3F), CFC-12 (CCl2F2), and HCFC-22 (CHClF2) retrieved profiles from ACE-FTS measurements. These species are related because HCFC-22 was the primary replacement for CFC-11 and CFC-12 in refrigerant and propellant applications. The FTIR spectrometers used in this study record solar absorption spectra at Eureka (Canada), Jungfraujoch (Switzerland), Poker Flat (USA), and Toronto (Canada). The retrieval of CFC-11, CFC-12, and HCFC-22 are not standard products for many of these instruments, and as such, a harmonization of retrieval parameters between the sites has been conducted. The retrievals of these species from the FTIR spectra are sensitive from the surface to approximately 20 km, while the ACE-FTS profiles extend from approximately 6 to 30 km. For each site, partial column comparisons between coincident measurements of the three species and a validation of the observed trends will be discussed.

  17. Characterization of downwelling radiance measured from a ground-based microwave radiometer using numerical weather prediction model data

    Science.gov (United States)

    Ahn, M.-H.; Won, H. Y.; Han, D.; Kim, Y.-H.; Ha, J.-C.

    2016-01-01

    The ground-based microwave sounding radiometers installed at nine weather stations of Korea Meteorological Administration alongside with the wind profilers have been operating for more than 4 years. Here we apply a process to assess the characteristics of the observation data by comparing the measured brightness temperature (Tb) with reference data. For the current study, the reference data are prepared by the radiative transfer simulation with the temperature and humidity profiles from the numerical weather prediction model instead of the conventional radiosonde data. Based on the 3 years of data, from 2010 to 2012, we were able to characterize the effects of the absolute calibration on the quality of the measured Tb. We also showed that when clouds are present the comparison with the model has a high variability due to presence of cloud liquid water therefore making cloudy data not suitable for assessment of the radiometer's performance. Finally we showed that differences between modeled and measured brightness temperatures are unlikely due to a shift in the selection of the center frequency but more likely due to spectroscopy issues in the wings of the 60 GHz absorption band. With a proper consideration of data affected by these two effects, it is shown that there is an excellent agreement between the measured and simulated Tb. The regression coefficients are better than 0.97 along with the bias value of better than 1.0 K except for the 52.28 GHz channel which shows a rather large bias and variability of -2.6 and 1.8 K, respectively.

  18. Elevated aerosol layers modify the O2–O2 absorption measured by ground-based MAX-DOAS

    Energy Technology Data Exchange (ETDEWEB)

    Ortega, Ivan; Berg, Larry K.; Ferrare, Richard A.; Hair, Johnathan W.; Hostetler, Chris A.; Volkamer, Rainer

    2016-06-01

    The oxygen collisional complex (O2-O2, or O4) is a greenhouse gas, and a calibration trace gas used to infer aerosol and cloud properties by Differential Optical Absorption Spectroscopy (DOAS). Recent reports suggest the need for an O4 correction factor (CFO4) when comparing simulated and measured O4 differential slant column densities (dSCD) by passive DOAS. We investigate the sensitivity of O4 dSCD simulations at ultraviolet (360 nm) and visible (477 nm) wavelengths towards separately measured aerosol extinction profiles. Measurements were conducted by the University of Colorado 2D-MAX-DOAS instrument and NASA’s multispectral High Spectral Resolution Lidar (HSRL-2) during the Two Column Aerosol Project (TCAP) at Cape Cod, MA in July 2012. During two case study days with (1) high aerosol load (17 July, AOD ~ 0.35 at 477 nm), and (2) near molecular scattering conditions (22 July, AOD < 0.10 at 477 nm) the measured and calculated O4 dSCDs agreed within 6.4±0.4% (360 nm) and 4.7±0.6% (477 nm) if the HSRL-2 profiles were used as input to the calculations. However, if in the calculations the aerosol is confined to the surface layer (while keeping AOD constant) we find 0.53ground-based MAX-DOAS. Opportunities to identify and better characterize these layers are also discussed.

  19. Spatial extent of new particle formation events over the Mediterranean Basin from multiple ground-based and airborne measurements

    Science.gov (United States)

    Berland, Kevin; Rose, Clémence; Pey, Jorge; Culot, Anais; Freney, Evelyn; Kalivitis, Nikolaos; Kouvarakis, Giorgios; Cerro, José Carlos; Mallet, Marc; Sartelet, Karine; Beckmann, Matthias; Bourriane, Thierry; Roberts, Greg; Marchand, Nicolas; Mihalopoulos, Nikolaos; Sellegri, Karine

    2017-08-01

    Over the last two decades, new particle formation (NPF), i.e., the formation of new particle clusters from gas-phase compounds followed by their growth to the 10-50 nm size range, has been extensively observed in the atmosphere at a given location, but their spatial extent has rarely been assessed. In this work, we use aerosol size distribution measurements performed simultaneously at Ersa (Corsica) and Finokalia (Crete) over a 1-year period to analyze the occurrence of NPF events in the Mediterranean area. The geographical location of these two sites, as well as the extended sampling period, allows us to assess the spatial and temporal variability in atmospheric nucleation at a regional scale. Finokalia and Ersa show similar seasonalities in the monthly average nucleation frequencies, growth rates, and nucleation rates, although the two stations are located more than 1000 km away from each other. Within this extended period, aerosol size distribution measurements were performed during an intensive campaign (3 July to 12 August 2013) from a ground-based station on the island of Mallorca, as well as onboard the ATR-42 research aircraft. This unique combination of stationary and mobile measurements provides us with detailed insights into the horizontal and vertical development of the NPF process on a daily scale. During the intensive campaign, nucleation events occurred simultaneously both at Ersa and Mallorca over delimited time slots of several days, but different features were observed at Finokalia. The results show that the spatial extent of the NPF events over the Mediterranean Sea might be as large as several hundreds of kilometers, mainly determined by synoptic conditions. Airborne measurements gave additional information regarding the origin of the clusters detected above the sea. The selected cases depicted contrasting situations, with clusters formed in the marine boundary layer or initially nucleated above the continent or in the free troposphere (FT) and

  20. Elevated aerosol layers modify the O2–O2 absorption measured by ground-based MAX-DOAS

    Energy Technology Data Exchange (ETDEWEB)

    Ortega, Ivan; Berg, Larry K.; Ferrare, Richard A.; Hair, Johnathan W.; Hostetler, Chris A.; Volkamer, Rainer

    2016-06-01

    The oxygen collisional complex (O2-O2, or O4) is a greenhouse gas, and a calibration trace gas used to infer aerosol and cloud properties by Differential Optical Absorption Spectroscopy (DOAS). Recent reports suggest the need for an O4 correction factor (CFO4) when comparing simulated and measured O4 differential slant column densities (dSCD) by passive DOAS. We investigate the sensitivity of O4 dSCD simulations at ultraviolet (360 nm) and visible (477 nm) wavelengths towards separately measured aerosol extinction profiles. Measurements were conducted by the University of Colorado 2D-MAX-DOAS instrument and NASA’s multispectral High Spectral Resolution Lidar (HSRL-2) during the Two Column Aerosol Project (TCAP) at Cape Cod, MA in July 2012. During two case study days with (1) high aerosol load (17 July, AOD ~ 0.35 at 477 nm), and (2) near molecular scattering conditions (22 July, AOD < 0.10 at 477 nm) the measured and calculated O4 dSCDs agreed within 6.4±0.4% (360 nm) and 4.7±0.6% (477 nm) if the HSRL-2 profiles were used as input to the calculations. However, if in the calculations the aerosol is confined to the surface layer (while keeping AOD constant) we find 0.53ground-based MAX-DOAS. Opportunities to identify and better characterize these layers are also discussed.

  1. Spectrum Analysis of Wind Profiling Radar Measurements

    Institute of Scientific and Technical Information of China (English)

    阮征; 慕瑞琪; 魏鸣; 葛润生

    2014-01-01

    Unlike previous studies on wind turbulence spectrum in the planetary boundary layer, this investigation focuses on high-altitude (1-5 km) wind energy spectrum and turbulence spectrum under various weather conditions. A fast Fourier transform (FFT) is used to calculate the wind energy and turbulence spectrum density at high altitudes (1-5 km) based on wind profiling radar (WPR) measurements. The turbulence spectrum under stable weather conditions at high altitudes is expressed in powers within a frequency range of 2 × 10-5-10-3 s-1, and the slope b is between -0.82 and -1.04, indicating that the turbulence is in the transition from the energetic area to the inertial sub-range. The features of strong weather are reflected less obviously in the wind energy spectrum than in the turbulence spectrum, with peaks showing up at different heights in the latter spectrum. Cold windy weather appears over a period of 1.5 days in the turbulence spectrum. Wide-range rainstorms exhibit two or three peaks in the spectrum over a period of 15-20 h, while in severe convective weather conditions, there are two peaks at 13 and 9 h. The results indicate that spectrum analysis of wind profiling radar measurements can be used as a supplemental and helpful method for weather analysis.

  2. An automated radar-signature measurement system

    Science.gov (United States)

    Kruse, Juergen

    The design and operation of an automated measurement facility permitting determination of radar cross sections and location and characterization of scattering centers on aircraft models up to 4.5 m in length are described and illustrated with diagrams, drawings, graphs, and photographs. The facility comprises a 15 x 5.8 x 3.8-m measurement chamber, a rotating platform with maximum load 270 kg and elevation range from -5 to +35 deg (precision 0.1 deg), a tunable broadband 2-18-GHz transmitter, a phase-sensitive receiver, and control and data-processing computers. The analytical techniques employed to correct for measurement errors and to resolve scattering centers both longitudinally and transversely (two-dimensional representation) are explained and demonstrated. The facility is currently being used to develop and evaluate stealth-type aircraft designs.

  3. Simultaneous retrieval of aerosol and surface optical properties from combined airborne- and ground-based direct and diffuse radiometric measurements

    Directory of Open Access Journals (Sweden)

    C. K. Gatebe

    2009-12-01

    Full Text Available This paper presents a new method for simultaneously retrieving aerosol and surface reflectance properties from combined airborne and ground-based direct and diffuse radiometric measurements. The method is based on the standard Aerosol Robotic Network (AERONET method for retrieving aerosol size distribution, complex index of refraction, and single scattering albedo, but modified to retrieve aerosol properties in two layers, below and above the aircraft, and parameters on surface optical properties from combined datasets (Cloud Absorption Radiometer, CAR, and AERONET data. A key advantage of this method is the inversion of all available spectral and angular data at the same time, while accounting for the influence of noise in the inversion procedure using statistical optimization. The wide spectral (0.34–2.30 μm and angular range (180° of the CAR instrument, combined with observations from an AERONET sunphotometer, provide sufficient measurement constraints for characterizing aerosol and surface properties with minimal assumptions. The robustness of the method was tested on observations made during four different field campaigns: (a the Southern African Regional Science Initiative 2000 over Mongu, Zambia, (b the Intercontinental Transport Experiment-Phase B over Mexico City, Mexico (c Cloud and Land Surface Interaction Campaign over the Atmospheric Radiation Measurement (ARM Central Facility, Oklahoma, USA, and (d the Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS over Elson Lagoon in Barrow, Alaska, USA. The four areas are dominated by different surface characteristics and aerosol types, and therefore provide good test cases for the new inversion method.

  4. A new ground-based differential absorption sunphotometer for measuring atmospheric columnar CO2 and preliminary applications

    Science.gov (United States)

    Xie, Yisong; Li, Zhengqiang; Zhang, Xingying; Xu, Hua; Li, Donghui; Li, Kaitao

    2015-10-01

    Carbon dioxide is commonly considered as the most important greenhouse gas. Ground-based remote sensing technology of acquiring CO2 columnar concentration is needed to provide validation for spaceborne CO2 products. A new groundbased sunphotometer prototype for remotely measuring atmospheric CO2 is introduced in this paper, which is designed to be robust, portable, automatic and suitable for field observation. A simple quantity, Differential Absorption Index (DAI) related to CO2 optical depth, is proposed to derive the columnar CO2 information based on the differential absorption principle around 1.57 micron. Another sun/sky radiometer CE318, is used to provide correction parameters of aerosol extinction and water vapor absorption. A cloud screening method based on the measurement stability is developed. A systematic error assessment of the prototype and DAI is also performed. We collect two-year DAI observation from 2010 to 2012 in Beijing, analyze the DAI seasonal variation and find that the daily average DAI decreases in growing season and reaches to a minimum on August, while increases after that until January of the next year, when DAI reaches its highest peak, showing generally the seasonal cycle of CO2. We also investigate the seasonal differences of DAI variation and attribute the tendencies of high in the morning and evening while low in the noon to photosynthesis efficiency variation of vegetation and anthropogenic emissions. Preliminary comparison between DAI and model simulated XCO2 (Carbon Tracker 2011) is conducted, showing that DAI roughly reveals some temporal characteristics of CO2 when using the average of multiple measurements.

  5. Simultaneous retrieval of aerosol and surface optical properties from combined airborne- and ground-based direct and diffuse radiometric measurements

    Directory of Open Access Journals (Sweden)

    C. K. Gatebe

    2010-03-01

    Full Text Available This paper presents a new method for simultaneously retrieving aerosol and surface reflectance properties from combined airborne and ground-based direct and diffuse radiometric measurements. The method is based on the standard Aerosol Robotic Network (AERONET method for retrieving aerosol size distribution, complex index of refraction, and single scattering albedo, but modified to retrieve aerosol properties in two layers, below and above the aircraft, and parameters on surface optical properties from combined datasets (Cloud Absorption Radiometer (CAR and AERONET data. A key advantage of this method is the inversion of all available spectral and angular data at the same time, while accounting for the influence of noise in the inversion procedure using statistical optimization. The wide spectral (0.34–2.30 μm and angular range (180° of the CAR instrument, combined with observations from an AERONET sunphotometer, provide sufficient measurement constraints for characterizing aerosol and surface properties with minimal assumptions. The robustness of the method was tested on observations made during four different field campaigns: (a the Southern African Regional Science Initiative 2000 over Mongu, Zambia, (b the Intercontinental Transport Experiment-Phase B over Mexico City, Mexico (c Cloud and Land Surface Interaction Campaign over the Atmospheric Radiation Measurement (ARM Central Facility, Oklahoma, USA, and (d the Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS over Elson Lagoon in Barrow, Alaska, USA. The four areas are dominated by different surface characteristics and aerosol types, and therefore provide good test cases for the new inversion method.

  6. Mapping the bathymetry of a turbid, sand-bed river using ground-based reflectance measurements and hyperspectral image data

    Science.gov (United States)

    Legleiter, C. J.; Kinzel, P. J.; Nelson, J. M.

    2010-12-01

    The Platte River in central Nebraska encompasses relatively stable, single-thread to island-braided reaches as well as wider, fully braided segments with highly mobile bar forms. Across this range of morphologies, suspended sediment and organic material contribute to turbid water conditions. In addition, the Platte is the focus of management activities intended to mitigate encroachment of vegetation and improve habitat for various migratory bird species, primarily by increasing the areal extent of shallow to slightly emergent mid-channel sand bars. The diversity of channel types and optical properties make this a challenging environment in which to implement a remote sensing approach, but the Platte also provides an opportunity for these methods to support management objectives. To evaluate the potential utility of remote sensing techniques along the Platte, we acquired hyperspectral image data, collected field spectra, and surveyed bed topography for three reaches. Ground-based measurements of reflectance Rλ were made above the water surface for flow depths d from 5 - 67 cm and a range of substrate types. An optimal band ratio analysis (OBRA) of these data, whereby regressions of log-transformed band ratios against measured depths were performed for all possible band combinations, yielded a strong, linear relationship (R2 = 0.95) between ln ({R593}/{R{647}) and d. Similar band ratio analyses were performed using reflectance spectra extracted from the hyperspectral image data for locations at which bed elevations were surveyed and compared to measured water surface elevations to calculate flow depths. Image-based OBRA produced variable results for the three sites. For a narrower, deeper reach lacking mobile mid-channel bars, a ln ({R490}/{R{638}) vs. d relation had an R2 of 0.83; applying this expression to the image generated a bathymetric map that agreed closely with our survey data. The other two sites featured fully braided morphologies, shallower depths, and

  7. High Resolution Radar Measurements of Snow Avalanches

    Science.gov (United States)

    McElwaine, Jim; Sovilla, Betty; Vriend, Nathalie; Brennan, Paul; Ash, Matt; Keylock, Chris

    2013-04-01

    Geophysical mass flows, such as snow avalanches, are a major hazard in mountainous areas and have a significant impact on the infrastructure, economy and tourism of such regions. Obtaining a thorough understanding of the dynamics of snow avalanches is crucial for risk assessment and the design of defensive structures. However, because the underlying physics is poorly understood there are significant uncertainties concerning current models, which are poorly validated due to a lack of high resolution data. Direct observations of the denser core of a large avalanche are particularly difficult, since it is frequently obscured by the dilute powder cloud. We have developed and installed a phased array FMCW radar system that penetrates the powder cloud and directly images the dense core with a resolution of around 1 m at 50 Hz over the entire slope. We present data from recent avalanches at Vallee de la Sionne that show a wealth of internal structure and allow the tracking of individual fronts, roll waves and surges down the slope for the first time. We also show good agreement between the radar results and existing measurement systems that record data at particular points on the avalanche track.

  8. Three methods to retrieve slant total electron content measurements from ground-based GPS receivers and performance assessment

    Science.gov (United States)

    Zhang, Baocheng

    2016-07-01

    The high sampling rate along with the global coverage of ground-based receivers makes Global Positioning System (GPS) data particularly ideal for sensing the Earth's ionosphere. Retrieval of slant total electron content measurements (TECMs) constitutes a key first step toward extracting various ionospheric parameters from GPS data. Within the ionospheric community, the interpretation of TECM is widely recognized as the slant total electron content along the satellite receiver line of sight, biased by satellite and receiver differential code biases (DCBs). The Carrier-to-Code Leveling (CCL) has long been used as a geometry-free method for retrieving TECM, mainly because of its simplicity and effectiveness. In fact, however, the CCL has proven inaccurate as it may give rise to TECM very susceptible to so-called leveling errors. With the goal of attaining more accurate TECM retrieval, we report in this contribution two other methods than the CCL, namely, the Precise Point Positioning (PPP) and the Array-aided PPP (A-PPP). The PPP further exploits the International GPS Service (IGS) orbit and clock products and turns out to be a geometry-based method. The A-PPP is designed to retrieve TECM from an array of colocated receivers, taking advantage of the broadcast orbit and clock products. Moreover, A-PPP also takes into account the fact that the ionospheric effects measured from one satellite to all colocated receivers ought to be the same, thus leading to the estimability of interreceiver DCB. We perform a comparative study of the formal precision and the empirical accuracy of the TECM that are retrieved, respectively, by three methods from the same set of GPS data. Results of such a study can be used to assess the actual performance of the three methods. In addition, we check the temporal stability in A-PPP-derived interreceiver DCB estimates over time periods ranging from 1 to 3 days.

  9. Comparison Between IASI/Metop-A and OMI/Aura Ozone Column Amounts with EUBREWNET Ground-Based Measurements

    Science.gov (United States)

    Lopez-Baeza, Ernesto

    2016-07-01

    This work addresses the comparison of {bf IASI (Infrared Atmospheric Sounding Interferometer)} on board Metop-A and {bf OMI (Ozone Monitoring Instrument)} on board Aura to several ground-based Brewer spectrophotometers belonging to the {bf European Brewer Network (EUBREWNET)} for the period September 2010 to December 2015. The focus of this study is to examine how well the satellite retrieval products capture the total ozone column amounts (TOC) at different latitudes and evaluate the different levels of Brewer spectrophotometer data. On this comparison Level 1, 1.5 and 2 Brewer data will be used to evaluate satellite data, where: 1) Level 1 Brewer data are the TOC calculated with the standard Brewer algorithm from the direct sun measurements; 2) Level 1.5 Brewer data are Level 1.0 observations filtered and corrected from instrumental issues: and 3) Level 2.0 Brewer data are 1.5 observations, but validated with a posteriori calibration. The IASI retrievals examined are operational IASI Level 2 products, version 5 from September 2010 to October 2014, and version 6 from October 2014 to December 2015, from {it EUMETSAT Data Centre}, while OMI retrievals are OMI-DOAS TOC products extracted from the {it NASA Goddard Earth Sciences Data and Information Services Center (GES DISC)}. The differences and their implications for the retrieved products will be discussed and, in order to evaluate the quality and sensitivity of each product, special attention will be put on analyzing the instrumental errors from these different measurement techniques. Furthermore, those parameters that could affect the comparison of the different datasets such as the different viewing geometry, the satellite data vertical sensitivity, cloudiness conditions, spectral region used for retrievals, and so on, will be analyzed in detail.

  10. All satellites total ozone evaluation in the tropics by comparison with SAOZ-NDACC ground-based measurements

    Science.gov (United States)

    Pommereau, Jean-Pierre; Lerot, Christophe; Van Roozendael, Michel; Goutail, Florence; Pazmino, Andrea; Frihi, Aymen; Bekki, Slimane; Clerbaux, Cathy

    2016-07-01

    All satellites total ozone measurements available from SBUV, OMI-T, OMI-D, OMI-CCI, GOME-CCI, GOME2-CCI, SCIAMACHY-CCI, NPP and IASI, since 2001 until 2015 are compared to those provided by the UV-Vis SAOZ/NDACC spectrometer at the two tropical stations of Reunion Island in the Indian Ocean and Bauru in Southern Brazil. The differences between satellites and SAOZ except IASI do show systematic seasonal variations of 0-3% (0-9 DU) amplitude and sharp negative peaks in Jan-Mar in Reunion Is in the austral summer. Whereas the summer negative peaks seen particularly on IASI, OMI-T, NPP and OMI-CCI at Reunion are shown to correlate with hurricanes and those seen in Brazil with high altitude overshooting convective clouds both not properly removed, ozone minima outside these events are shown to correlate with high altitude volcanic plumes impacting all satellites as well as ground-based total ozone measurements The seasonality of the Sat-SAOZ difference of varying amplitude from 0 to 3% with the satellite is attributed to the satellite retrieval. Surprisingly and though there has been no change in either SAOZ instruments or data analysis processes, the amplitude of the seasonal cycle of the Sat-SAOZ difference reduces in 2012 and drops to less than ± 0.5% (1.5 DU) after 2013 in Reunion Island and less than ±1% in Bauru, reduction for which there is no clear explanation yet. Shown in the presentation will be the demonstration of the impact of hurricanes, high altitude convective clouds and volcanic plumes on satellites total ozone retrievals, followed by a discussion of possible causes of seasonality of Sat-SAOZ amplitude drop after 2012.

  11. First middle-atmospheric zonal wind profile measurements with a new ground-based microwave Doppler-spectro-radiometer

    Directory of Open Access Journals (Sweden)

    R. Rüfenacht

    2012-11-01

    Full Text Available We report on the wind radiometer WIRA, a new ground-based microwave Doppler-spectro-radiometer specifically designed for the measurement of middle-atmospheric horizontal wind by observing ozone emission spectra at 142.17504 GHz. Currently, wind speeds in five levels between 30 and 79 km can be retrieved which makes WIRA the first instrument able to continuously measure horizontal wind in this altitude range. For an integration time of one day the measurement error on each level lies at around 25 m s−1. With a planned upgrade this value is expected to be reduced by a factor of 2 in the near future. On the altitude levels where our measurement can be compared to wind data from the European Centre for Medium-Range Weather Forecasts (ECMWF very good agreement in the long-term statistics as well as in short time structures with a duration of a few days has been found.

    WIRA uses a passive double sideband heterodyne receiver together with a digital Fourier transform spectrometer for the data acquisition. A big advantage of the radiometric approach is that such instruments can also operate under adverse weather conditions and thus provide a continuous time series for the given location. The optics enables the instrument to scan a wide range of azimuth angles including the directions east, west, north, and south for zonal and meridional wind measurements. The design of the radiometer is fairly compact and its calibration does not rely on liquid nitrogen which makes it transportable and suitable for campaign use. WIRA is conceived in a way that it can be operated remotely and does hardly require any maintenance.

    In the present paper, a description of the instrument is given, and the techniques used for the wind retrieval based on the determination of the Doppler shift of the measured atmospheric ozone emission spectra are outlined. Their reliability was tested using Monte Carlo simulations. Finally, a time series of 11

  12. Question No. 5: What Role Can Satellites Take, as a Complement to Ground Based Measurement Systems, to Provide Sustained Observations to Monitor GHG Emissions?

    Science.gov (United States)

    Chahine, Moustafa; Olsen, Edward

    2011-01-01

    What role can satellites take, as a complement to ground based measurement systems, to provide sustained observations to monitor GHG emissions (e.g., CO2, CH4, O3, N2O, CFC s, NH3, and NF3) that contribute to global warming?

  13. Ground-Based Lidar Measurements of Forest Canopy Structure as Predictors of Net Primary Production Across Successional Time

    Science.gov (United States)

    Scheuermann, C. M.; Gough, C. M.; Nave, L. E.

    2015-12-01

    Forest canopy structure is a key predictor of gas exchange processes that control carbon (C) uptake, including the allocation of photosynthetically fixed C to new plant biomass growth, or net primary production (NPP). Prior work suggests forest canopy structural complexity (CSC), the arrangement of leaves within a volume of canopy, changes as forests develop and is a strong predictor of NPP. However, the expressions of CSC that best predict NPP over decadal to century timescales is unknown. Our objectives were to use multiple remote sensing observations to characterize forest canopy structure in increasing dimensional complexity over a forest age gradient, and to identify which expressions of physical structure best served as proxies of NPP. The study at the University of Michigan Biological Station in Pellston, MI, USA uses two parallel forest chronosequences with different harvesting and fire disturbance histories and includes three old-growth ecosystems varying in canopy composition. We have derived several expressions of 2-D and 3-D forest canopy structure from hemispherical images, a ground-based portable canopy lidar (PCL), and a 3-D terrestrial lidar scanner (TLS), and are relating these structural metrics with NPP and light and nitrogen allocation within the canopy. Preliminary analysis shows that old-growth stands converged on a common mean CSC, but with substantially higher within-stand variation in complexity as deciduous tree species increased in forest canopy dominance. Forest stands that were more intensely disturbed were slower to recover leaf area index (LAI) as they regrew, but 2-D measures of CSC increased similarly as forests aged, regardless of disturbance history. Ongoing work will relate long-term trends in forest CSC with NPP and resource allocation to determine which forest structure remote sensing products are most useful for modeling and scaling C cycling processes through different stages of forest development.

  14. Retrieval of aerosol optical and physical properties from ground-based measurements for Zanjan, a city in Northwest Iran

    Science.gov (United States)

    Masoumi, A.; Khalesifard, H. R.; Bayat, A.; Moradhaseli, R.

    2013-02-01

    A ground-based sun and sky scanning radiometer, CIMEL CE 318-2 sunphotometer, has been used to study the atmosphere of Zanjan, a city in Northwest Iran (36.70°N, 48.51°E, and 1800 m above the mean sea level) in the periods of October 2006-October 2008, and January-September 2010. Direct sun and solar principal plane sky radiance measurements by the sunphotometer have been used to retrieve the optical and physical properties of atmospheric aerosols, such as aerosol optical depth (AOD), Ångström exponent (α), single scattering albedo (SSA), refractive index, and volume size distributions. About 50 dusty days (daily averaged AOD (870) > 0.35, α < 0.5) have been recorded during the mentioned periods. Considering the different values obtained for SSA, real part of refractive index, and volume size distributions, it has been found that just dust and anthropogenic aerosols are making the atmospheric aerosols in this region. In these recordings it has been observed that AODs (Ångström exponents) were increasing (decreasing) during spring and early summer. This was accompanied by increase of SSA, real part of refractive index, and coarse mode part of volume size distributions of aerosols. This behavior could be due to transport of dust, mostly from Tigris-Euphrates basin or sometimes with lower probability from the region between Caspian and Aral seas and rarely from sources inside the Iran plateau like the Qom dry lake, especially in dry seasons. In this work NCEP/NCAR reanalysis, HYSPLIT model back trajectories, and MODIS Deep Blue AODs have been used to track the air masses and dust plumes during the recorded dust events.

  15. A Ground-based Measurement of the Relativistic Beaming Effect in a Detached Double White Dwarf Binary

    Science.gov (United States)

    Shporer, Avi; Kaplan, David L.; Steinfadt, Justin D. R.; Bildsten, Lars; Howell, Steve B.; Mazeh, Tsevi

    2010-12-01

    We report on the first ground-based measurement of the relativistic beaming effect (aka Doppler boosting). We observed the beaming effect in the detached, non-interacting eclipsing double white dwarf (WD) binary NLTT 11748. Our observations were motivated by the system's high mass-ratio and low-luminosity ratio, leading to a large beaming-induced variability amplitude at the orbital period of 5.6 hr. We observed the system during three nights at the 2.0 m Faulkes Telescope North with the SDSS-g' filter and fitted the data simultaneously for the beaming, ellipsoidal, and reflection effects. Our fitted relative beaming amplitude is (3.0 ± 0.4) × 10-3, consistent with the expected amplitude from a blackbody spectrum given the photometric primary radial velocity (RV) amplitude and effective temperature. This result is a first step in testing the relation between the photometric beaming amplitude and the spectroscopic RV amplitude in NLTT 11748 and similar systems. We did not identify any variability due to the ellipsoidal or reflection effects, consistent with their expected undetectable amplitude for this system. Low-mass, helium-core WDs are expected to reside in binary systems, where in some of those systems the binary companion is a faint C/O WD and the two stars are detached and non-interacting, as in the case of NLTT 11748. The beaming effect can be used to search for the faint binary companion in those systems using wide-band photometry.

  16. Ground based measurements of the gas emission from the Holuhraun volcanic fissure eruption on Iceland 2014/2015

    Science.gov (United States)

    Galle, Bo; Arellano, Santiago; Conde, Vladimir; Pfeffer, Melissa; Barsotti, Sara; Stefansdottir, Gerður; Bergsson, Baldur; Bergsson, Bergur; Ingvarsson, Thorgils; Weber, Konradin

    2015-04-01

    The since 31 August 2014 ongoing volcanic eruption at Holuhraun on Iceland is by far the strongest source of sulfur dioxide in Europe over the last 230 years with sustained emission rates exceeding 100 000 ton/day. This gas emission severely affects local population and has become a concern also for air traffic. The eruption has in December continued at constant pace for 3.5 months. Three scenarios are envisaged for the future; (1) the eruption stops, (2) the fissure extends under the Vattnajökul glacier and (3) Bardarbunga volcano erupts. The two later scenarios will cause increased gas emission, severe ash emissions and extended flooding. Under the scope of the EU-project FUTUREVOLC, a project with 3.5 years duration, aiming at making Iceland a supersite for volcanological research as a European contribution to GEO, we are developing a version of the Scanning DOAS instrument that is adapted to high latitudes with low UV radiation and severe meteorological conditions. Since the first day of the eruption several of these novel instruments has been monitoring the SO2 emission from the eruption. Data from our instruments are still after 3.5 months the only sustained ground-based monitoring of this gas emission. A lot of work is however needed to sustain this operation at a very remote site and under severe field conditions. At the same time the very high concentrations in the gas plume, in combination with bad meteorological conditions require the development of novel methods to derive reliable flux estimates. In this presentation we will discuss the instrumental issues and present the latest version of the emission estimates made from our measurements.

  17. A compact ground-based laser heterodyne radiometer for global column measurements of CO2 and CH4

    Science.gov (United States)

    Steel, Emily; Clarke, Gregory; Ramanathan, Anand; Mao, Jianping; Ott, Lesley; Duncan, Bryan; Melroy, Hilary; McLinden, Matthew; Holben, Brent; Houston Miller, J.

    2015-04-01

    Implementing effective global strategies to understand climate change is hindered by a lack of understanding of both anthropogenic emissions and land and ocean carbon reservoirs. Though in situ surface measurements and satellites provide valuable information for estimating carbon fluxes, areas not well covered by current observing systems (e.g. high latitude regions, tropical forests and wetlands) remain poorly understood. Deficiencies in understanding the processes governing carbon flux introduce considerable uncertainty to predictions of climate change over the coming century. Our vision is to enhance worldwide carbon monitoring by developing a low-cost ground network of miniaturized laser heterodyne radiometer (Mini-LHR) instruments that measure CO2 and CH4 in the atmospheric column. Ground-based remote sensing has the potential to fill gaps in the satellite data record while providing a complementary long-term observational record. This uninterrupted data record, would both bridge gaps in data sets and offer validation for key flight missions such as OCO-2, OCO-3 and ASCENDS. Mini-LHR instruments will be deployed as an accompaniment to AERONET. In addition to the complementary aerosol optical depth measurement, tandem operation with AERONET provides a clear pathway for the Mini-LHR to be expanded into a global monitoring network. AERONET has more than 500 instruments worldwide offering coverage in key arctic regions (not covered by OCO-2) where accelerated warming due to the release of CO2 and CH4 from thawing tundra and permafrost is a concern. Mini-LHR instruments at AERONET locations could also greatly improve data coverage in regions with large flux uncertainties such as North America and Western Europe, and under-sampled areas such as South America and Asia. Currently, the only ground global network that routinely measures multiple greenhouse gases in the atmospheric column is TCCON with 18 operational sites worldwide and two in the US. Cost and size of

  18. Ground-based measurements of tropospheric and stratospheric bromine monoxide above Nairobi (1° S, 36° E

    Directory of Open Access Journals (Sweden)

    M. van Roozendael

    2007-05-01

    Full Text Available Ground based observations of stratospheric and tropospheric bromine monoxide, BrO, from a multi axial differential optical absorption spectrometer, MAXDOAS, located at the UNEP/UNON site in Nairobi (1° S, 36° E are presented for the year 2003. Differences in BrO slant column densities at 90° and 80° solar zenith angle retrieved from the zenith-sky measurements are used to study stratospheric BrO. They show only small variations with season, as expected for the small seasonality in stratospheric Bry and NO2 in this region. A pronounced diurnal variation can be observed, the average value for the morning being 1.3×1014 molecules/cm2 and for the evening 1.5×1014 molecules/cm2. The measurements are compared with simulations from a one-dimensional photochemical stacked box model which is coupled with a radiative transfer model to allow direct comparisons between the observations and the model calculations. In general the model reproduces the measurements very well. The differences in the absolute values are 15% for the evening and 20% for the morning which is within the limits of the combined uncertainties. Both seasonality and diurnal variation are well reproduced by the model. A sensitivity study shows that inclusion of the reaction BrONO2 + O(3P significantly improves the agreement between model calculations and measurements, indicating an important role of this reaction in the stratosphere near to the equator. Tropospheric BrO columns and profile information is derived from the combined results obtained in the different viewing directions for the average over several clear days. The resulting tropospheric BrO columns are in the range of 4–7.5×1012 molecules/cm2 which is significant but lower than in previous studies at mid and high latitudes. The vertical distribution of the tropospheric BrO peaks at about 3 km indicating the absence of local sources at this high altitude site.

  19. Inferring hydroxyl layer peak heights from ground-based measurements of OH(6-2 band integrated emission rate at Longyearbyen (78° N, 16° E

    Directory of Open Access Journals (Sweden)

    F. Sigernes

    2009-11-01

    Full Text Available Measurements of hydroxyl nightglow emissions over Longyearbyen (78° N, 16° E recorded simultaneously by the SABER instrument onboard the TIMED satellite and a ground-based Ebert-Fastie spectrometer have been used to derive an empirical formula for the height of the OH layer as a function of the integrated emission rate (IER. Altitude profiles of the OH volume emission rate (VER derived from SABER observations over a period of more than six years provided a relation between the height of the OH layer peak and the integrated emission rate following the procedure described by Liu and Shepherd (2006. An extended period of overlap of SABER and ground-based spectrometer measurements of OH(6-2 IER during the 2003–2004 winter season allowed us to express ground-based IER values in terms of their satellite equivalents. The combination of these two formulae provided a method for inferring an altitude of the OH emission layer over Longyearbyen from ground-based measurements alone. Such a method is required when SABER is in a southward looking yaw cycle. In the SABER data for the period 2002–2008, the peak altitude of the OH layer ranged from a minimum near 76 km to a maximum near 90 km. The uncertainty in the inferred altitude of the peak emission, which includes a contribution for atmospheric extinction, was estimated to be ±2.7 km and is comparable with the ±2.6 km value quoted for the nominal altitude (87 km of the OH layer. Longer periods of overlap of satellite and ground-based measurements together with simultaneous on-site measurements of atmospheric extinction could reduce the uncertainty to approximately 2 km.

  20. NDACC UV-visible total ozone measurements: improved retrieval and comparison with correlative satellite and ground-based observations

    Directory of Open Access Journals (Sweden)

    F. Hendrick

    2010-08-01

    tropospheric ozone column being ignored by zonal climatologies. For those measurements sensitive to stratospheric temperature like TOMS, OMI-TOMS, Dobson and Brewer, the application of a temperature correction results in the almost complete removal of the seasonal difference with SAOZ, improving significantly the consistency between all ground-based and satellite total ozone observations.

  1. Calibration and evaluation of CCD spectroradiometers for ground-based and airborne measurements of spectral actinic flux densities

    Science.gov (United States)

    Bohn, Birger; Lohse, Insa

    2017-09-01

    The properties and performance of charge-coupled device (CCD) array spectroradiometers for the measurement of atmospheric spectral actinic flux densities (280-650 nm) and photolysis frequencies were investigated. These instruments are widely used in atmospheric research and are suitable for aircraft applications because of high time resolutions and high sensitivities in the UV range. The laboratory characterization included instrument-specific properties like the wavelength accuracy, dark signal, dark noise and signal-to-noise ratio (SNR). Spectral sensitivities were derived from measurements with spectral irradiance standards. The calibration procedure is described in detail, and a straightforward method to minimize the influence of stray light on spectral sensitivities is introduced. From instrument dark noise, minimum detection limits ≈ 1 × 1010 cm-2 s-1 nm-1 were derived for spectral actinic flux densities at wavelengths around 300 nm (1 s integration time). As a prerequisite for the determination of stray light under field conditions, atmospheric cutoff wavelengths were defined using radiative transfer calculations as a function of the solar zenith angle (SZA) and total ozone column (TOC). The recommended analysis of field data relies on these cutoff wavelengths and is also described in detail taking data from a research flight on HALO (High Altitude and Long Range Research Aircraft) as an example. An evaluation of field data was performed by ground-based comparisons with a double-monochromator-based, highly sensitive reference spectroradiometer. Spectral actinic flux densities were compared as well as photolysis frequencies j(NO2) and j(O1D), representing UV-A and UV-B ranges, respectively. The spectra expectedly revealed increased daytime levels of stray-light-induced signals and noise below atmospheric cutoff wavelengths. The influence of instrument noise and stray-light-induced noise was found to be insignificant for j(NO2) and rather limited for j(O1D

  2. OMI/Aura UV product validation using NILU-UV ground-based measurements in Thessaloniki, Greece

    Science.gov (United States)

    Zempila, Melina-Maria; Koukouli, Maria-Elissavet; Bais, Alkiviadis; Fountoulakis, Ilias; Arola, Antti; Kouremeti, Natalia; Balis, Dimitris

    2016-09-01

    The main aim of this work is to evaluate the NASA EOS AURA Ozone Monitoring Instrument (OMI) UV irradiance estimates through ground-based measurements performed by a NILU-UV multichannel radiometer (NILU-UV) operating in Thessaloniki, Greece, for the time period between January 2005 and December 2014. NILU-UV multi-filter radiometers can provide measurements at 5 UV wavelength bands with full width at half maximum (FWHM) of 10 nm approximately and a time analysis of 1 min. An additional channel measuring the Photosynthetically Active Radiation (PAR) is also incorporated to the instrument and is used for the stringent characterization of the cloud free instances. The OMI instrument estimates solar UV irradiances at four wavelengths close to those of the NILU-UV in Thessaloniki. Clear and all-sky overpass-time, as well as solar local-noon time, UV estimates are provided by the NASA Aura Data Validation Center. Spectra measured from a collocated MKIII Brewer spectrophotometer with serial number 086 (Brewer #086) were utilized for the whole period (2005-2014) in order to estimate the NILU-UV irradiances at the OMI wavelength irradiances and therefore provide a direct comparison and validation to the NILU UV measurements provided by OMI. For the nominal comparisons, using un-flagged OMI data within a 50 km radius from Thessaloniki, the linear determination coefficient, R2, ranges between 0.91 and 0.97 for the 305 nm and between 0.75 and 0.92 for 380 nm depending on the choice of overpass or local-noon time data and the cloudiness flags. The best agreement is found for the clear-sky overpass-time comparisons as well as the both PAR- and satellite algorithm-deduced clear-sky overpass and local-noon comparisons for all wavelengths. The OMI irradiances were found to overestimate the NILU-UV observations in Thessaloniki between ∼4.5% and 13.5% for the 305 nm and between ∼1.5% and ∼10.0% for the 310 nm wavelength depending on the choice of time [overpass vs local noon

  3. Optimal frequency range for medical radar measurements of human heartbeats using body-contact radar.

    Science.gov (United States)

    Brovoll, Sverre; Aardal, Øyvind; Paichard, Yoann; Berger, Tor; Lande, Tor Sverre; Hamran, Svein-Erik

    2013-01-01

    In this paper the optimal frequency range for heartbeat measurements using body-contact radar is experimentally evaluated. A Body-contact radar senses electromagnetic waves that have penetrated the human body, but the range of frequencies that can be used are limited by the electric properties of the human tissue. The optimal frequency range is an important property needed for the design of body-contact radar systems for heartbeat measurements. In this study heartbeats are measured using three different antennas at discrete frequencies from 0.1 - 10 GHz, and the strength of the received heartbeat signal is calculated. To characterize the antennas, when in contact with the body, two port S-parameters(†) are measured for the antennas using a pork rib as a phantom for the human body. The results shows that frequencies up to 2.5 GHz can be used for heartbeat measurements with body-contact radar.

  4. Retrieval and satellite intercomparison of O3 measurements from ground-based FTIR Spectrometer at Equatorial Station: Addis Ababa, Ethiopia

    Directory of Open Access Journals (Sweden)

    T. von Clarmann

    2013-02-01

    Full Text Available Since May 2009, high-resolution Fourier Transform Infrared (FTIR solar absorption spectra have been recorded at Addis Ababa (9.01° N latitude, 38.76° E longitude, 2443 m altitude above sea level, Ethiopia. The vertical profiles and total column amounts of ozone (O3 are deduced from the spectra by using the retrieval code PROFFIT (V9.5 and regularly determined instrumental line shape (ILS. A detailed error analysis of the O3 retrieval is performed. Averaging kernels of the target gas shows that the major contribution to the retrieved information comes from the measurement. The degrees of freedom for signals is found to be 2.1 on average for the retrieval of O3 from the observed FTIR spectra. The ozone Volume Mixing Ratio (VMR profiles and column amounts retrieved from FTIR spectra are compared with the coincident satellite observations of Microwave Limb Sounding (MLS, Michelson Interferometer for Passive Atmospheric Sounding (MIPAS, Tropospheric Emission Spectrometer (TES, Ozone Monitoring Instrument (OMI, Atmospheric Infrared Sounding (AIRS and Global Ozone Monitoring Experiment (GOME-2 instruments. The mean relative differences in ozone profiles of FTIR from MLS and MIPAS are generally lower than 15% within the altitude range of 27 to 36 km, whereas difference from TES is lower than 1%. Comparisons of measurements of column amounts from the satellite and the ground-based FTIR show very good agreement as exhibited by relative differences within +0.2% to +2.8% for FTIR versus MLS and GOME-2; and −0.9 to −9.0% for FTIR versus OMI, TES and AIRS. The corresponding standard deviations are within 2.0 to 2.8% for FTIR versus MLS and GOME-2 comparisons whereas that of FTIR versus OMI, TES and AIRS are within 3.5 to 7.3%. Thus, the retrieved O3 VMR and column amounts from a tropical site, Addis Ababa, is found to exhibit very good agreement with all coincident satellite observations over an approximate 3-yr period.

  5. Retrieval and satellite intercomparison of O3 measurements from ground-based FTIR Spectrometer at Equatorial Station: Addis Ababa, Ethiopia

    Science.gov (United States)

    Takele Kenea, S.; Mengistu Tsidu, G.; Blumenstock, T.; Hase, F.; von Clarmann, T.; Stiller, G. P.

    2013-02-01

    Since May 2009, high-resolution Fourier Transform Infrared (FTIR) solar absorption spectra have been recorded at Addis Ababa (9.01° N latitude, 38.76° E longitude, 2443 m altitude above sea level), Ethiopia. The vertical profiles and total column amounts of ozone (O3) are deduced from the spectra by using the retrieval code PROFFIT (V9.5) and regularly determined instrumental line shape (ILS). A detailed error analysis of the O3 retrieval is performed. Averaging kernels of the target gas shows that the major contribution to the retrieved information comes from the measurement. The degrees of freedom for signals is found to be 2.1 on average for the retrieval of O3 from the observed FTIR spectra. The ozone Volume Mixing Ratio (VMR) profiles and column amounts retrieved from FTIR spectra are compared with the coincident satellite observations of Microwave Limb Sounding (MLS), Michelson Interferometer for Passive Atmospheric Sounding (MIPAS), Tropospheric Emission Spectrometer (TES), Ozone Monitoring Instrument (OMI), Atmospheric Infrared Sounding (AIRS) and Global Ozone Monitoring Experiment (GOME-2) instruments. The mean relative differences in ozone profiles of FTIR from MLS and MIPAS are generally lower than 15% within the altitude range of 27 to 36 km, whereas difference from TES is lower than 1%. Comparisons of measurements of column amounts from the satellite and the ground-based FTIR show very good agreement as exhibited by relative differences within +0.2% to +2.8% for FTIR versus MLS and GOME-2; and -0.9 to -9.0% for FTIR versus OMI, TES and AIRS. The corresponding standard deviations are within 2.0 to 2.8% for FTIR versus MLS and GOME-2 comparisons whereas that of FTIR versus OMI, TES and AIRS are within 3.5 to 7.3%. Thus, the retrieved O3 VMR and column amounts from a tropical site, Addis Ababa, is found to exhibit very good agreement with all coincident satellite observations over an approximate 3-yr period.

  6. Aerosol physical and chemical properties retrieved from ground-based remote sensing measurements during heavy haze days in Beijing winter

    Science.gov (United States)

    Li, Z.; Gu, X.; Wang, L.; Li, D.; Xie, Y.; Li, K.; Dubovik, O.; Schuster, G.; Goloub, P.; Zhang, Y.; Li, L.; Ma, Y.; Xu, H.

    2013-10-01

    With the increase in economic development over the past thirty years, many large cities in eastern and southwestern China are experiencing increased haze events and atmospheric pollution, causing significant impacts on the regional environment and even climate. However, knowledge on the aerosol physical and chemical properties in heavy haze conditions is still insufficient. In this study, two winter heavy haze events in Beijing that occurred in 2011 and 2012 were selected and investigated by using the ground-based remote sensing measurements. We used a CIMEL CE318 sun-sky radiometer to retrieve haze aerosol optical, physical and chemical properties, including aerosol optical depth (AOD), size distribution, complex refractive indices and aerosol fractions identified as black carbon (BC), brown carbon (BrC), mineral dust (DU), ammonium sulfate-like (AS) components and aerosol water content (AW). The retrieval results from a total of five haze days showed that the aerosol loading and properties during the two winter haze events were comparable. Therefore, average heavy haze property parameters were drawn to present a research case for future studies. The average AOD is about 3.0 at 440 nm, and the Ångström exponent is 1.3 from 440 to 870 nm. The fine-mode AOD is 2.8 corresponding to a fine-mode fraction of 0.93. The coarse particles occupied a considerable volume fraction of the bimodal size distribution in winter haze events, with the mean particle radius of 0.21 and 2.9 μm for the fine and coarse modes respectively. The real part of the refractive indices exhibited a relatively flat spectral behavior with an average value of 1.48 from 440 to 1020 nm. The imaginary part showed spectral variation, with the value at 440 nm (about 0.013) higher than the other three wavelengths (about 0.008 at 675 nm). The aerosol composition retrieval results showed that volume fractions of BC, BrC, DU, AS and AW are 1, 2, 49, 15 and 33%, respectively, on average for the investigated

  7. Ultrawideband radar clutter measurements of forested terrain, 1991--1992

    Energy Technology Data Exchange (ETDEWEB)

    Sheen, D.M.; Severtsen, R.H.; Prince, J.M.; Davis, K.C.; Collins, H.D.

    1993-06-01

    The ultrawideband (UWB) radar clutter measurements project was conducted to provide radar clutter data for new ultrawideband radar systems which are currently under development. A particular goal of this project is to determine if conventional narrow band clutter data may be extrapolated to the UWB case. This report documents measurements conducted in 1991 and additional measurements conducted in 1992. The original project consisted of clutter measurements of forested terrain in the Olympic National Forest near Sequim, WA. The impulse radar system used a 30 kW peak impulse source with a 2 Gigasample/second digitizer to form a UHF (300--1000 MHz) ultrawideband impulse radar system. Additional measurements were conducted in parallel using a Systems Planning Corporation (SPC) step-chirp radar system. This system utilized pulse widths of 1330 nanoseconds over a bandwidth of 300--1000 MHz to obtain similar resolution to the impulse system. Due to the slow digitizer data throughput in the impulse radar system, data collection rates were significantly higher using the step-chirp system. Additional forest clutter measurements were undertaken in 1992 to increase the amount of data available, and especially to increase the amount of data from the impulse radar system.

  8. Ultrawideband radar clutter measurements of forested terrain, 1991--1992

    Energy Technology Data Exchange (ETDEWEB)

    Sheen, D.M.; Severtsen, R.H.; Prince, J.M.; Davis, K.C.; Collins, H.D.

    1993-06-01

    The ultrawideband (UWB) radar clutter measurements project was conducted to provide radar clutter data for new ultrawideband radar systems which are currently under development. A particular goal of this project is to determine if conventional narrow band clutter data may be extrapolated to the UWB case. This report documents measurements conducted in 1991 and additional measurements conducted in 1992. The original project consisted of clutter measurements of forested terrain in the Olympic National Forest near Sequim, WA. The impulse radar system used a 30 kW peak impulse source with a 2 Gigasample/second digitizer to form a UHF (300--1000 MHz) ultrawideband impulse radar system. Additional measurements were conducted in parallel using a Systems Planning Corporation (SPC) step-chirp radar system. This system utilized pulse widths of 1330 nanoseconds over a bandwidth of 300--1000 MHz to obtain similar resolution to the impulse system. Due to the slow digitizer data throughput in the impulse radar system, data collection rates were significantly higher using the step-chirp system. Additional forest clutter measurements were undertaken in 1992 to increase the amount of data available, and especially to increase the amount of data from the impulse radar system.

  9. Integration of Remote Sensing Products with Ground-Based Measurements to Understand the Dynamics of Nepal's Forests and Plantation Sites

    Science.gov (United States)

    Gilani, H.; Jain, A. K.

    2016-12-01

    This study assembles information from three sources - remote sensing, terrestrial photography and ground-based inventory data, to understand the dynamics of Nepal's tropical and sub-tropical forests and plantation sites for the period 1990-2015. Our study focuses on following three specific district areas, which have conserved forests through social and agroforestry management practices: 1. Dolakha district: This site has been selected to study the impact of community-based forest management on land cover change using repeat photography and satellite imagery, in combination with interviews with community members. The study time period is during the period 1990-2010. We determined that satellite data with ground photographs can provide transparency for long term monitoring. The initial results also suggests that community-based forest management program in the mid-hills of Nepal was successful. 2. Chitwan district: Here we use high resolution remote sensing data and optimized community field inventories to evaluate potential application and operational feasibility of community level REDD+ measuring, reporting and verification (MRV) systems. The study uses temporal dynamics of land cover transitions, tree canopy size classes and biomass over a Kayar khola watershed REDD+ study area with community forest to evaluate satellite Image segmentation for land cover, linear regression model for above ground biomass (AGB), and estimation and monitoring field data for tree crowns and AGB. We study three specific years 2002, 2009, 2012. Using integration of WorldView-2 and airborne LiDAR data for tree species level. 3. Nuwakot district: This district was selected to study the impact of establishment of tree plantation on total barren/fallow. Over the last 40 year, this area has went through a drastic changes, from barren land to forest area with tree species consisting of Dalbergia sissoo, Leucaena leucocephala, Michelia champaca, etc. In 1994, this district area was registered

  10. A strategic outlook for coordination of ground-based measurement networks of atmospheric state variables and atmospheric composition

    Science.gov (United States)

    Bodeker, G. E.; Thorne, P.; Braathen, G.; De Maziere, M.; Thompson, A. M.; Kurylo, M. J., III

    2016-12-01

    There are a number of ground-based global observing networks that collectively aim to make key measurements of atmospheric state variables and atmospheric chemical composition. These networks include, but are not limited to:NDACC: Network for the Detection of Atmospheric Composition Change GUAN: GCOS Upper Air Network GRUAN: GCOS Reference Upper Air Network EARLINET: the European Aerosol Research Lidar Network GAW: Global Atmosphere Watch SHADOZ: Southern Hemisphere ADditional OZonesondes TCCON: Total Carbon Column Observing Network BSRN: Baseline Surface Radiation Network While each network brings unique capabilities to the global observing system, there are many instances where the activities and capabilities of the networks overlap. These commonalities across multiple networks can confound funding agencies when allocating scarce financial resources. Overlaps between networks may also result in some duplication of effort and a resultant sub-optimal use of funding resource for the global observing system. While some degree of overlap is useful for quality assurance, it is essential to identify the degree to which one network can take on a specific responsibility on behalf of all other networks to avoid unnecessary duplication, to identify where expertise in any one network may serve other networks, and to develop a long-term strategy for the evolution of these networks that clarifies to funding agencies where new investment is required. This presentation will briefly summarise the key characteristics of each network listed above, adopt a matrix approach to identify commonalities and, in particular, where there may be a danger of duplication of effort, and where gaps between the networks may be compromising the services that these networks are expected to collectively deliver to the global atmospheric and climate science research communities. The presentation will also examine where sharing of data and tools between networks may result in a more efficient delivery

  11. Analysis of Dual- and Full-Circular Polarimetric SAR Modes for Rice Phenology Monitoring: An Experimental Investigation through Ground-Based Measurements

    Directory of Open Access Journals (Sweden)

    Yuta Izumi

    2017-04-01

    Full Text Available Circularly polarized synthetic aperture radar (CP-SAR is known to be insensitive to polarization mismatch losses caused by the Faraday rotation effect and antenna misalignment. Additionally, the dual-circular polarimetric (DCP mode has proven to have more polarimetric information than that of the corresponding mode of linear polarization, i.e., the dual-linear polarimetric (DLP mode. Owing to these benefits, this paper investigates the feasibility of CP-SAR for rice monitoring. A ground-based CP-radar system was exploited, and C-band anechoic chamber data of a self-cultivated Japanese rice paddy were acquired from germination to ripening stages. Temporal variations of polarimetric observables derived from full-circular polarimetric (FCP and DCP as well as synthetically generated DLP data are analyzed and assessed with regard to their effectiveness in phenology retrieval. Among different observations, the H / α ¯ plane and triangle plots obtained by three scattering components (surface, double-bounce, and volume scattering for both the FCP and DCP modes are confirmed to have reasonable capability in discriminating the relevant intervals of rice growth.

  12. Empirical model for mean temperature for Indian zone and estimation of precipitable water vapor from ground based GPS measurements

    Directory of Open Access Journals (Sweden)

    C. Suresh Raju

    2007-10-01

    Full Text Available Estimation of precipitable water (PW in the atmosphere from ground-based Global Positioning System (GPS essentially involves modeling the zenith hydrostatic delay (ZHD in terms of surface Pressure (Ps and subtracting it from the corresponding values of zenith tropospheric delay (ZTD to estimate the zenith wet (non-hydrostatic delay (ZWD. This further involves establishing an appropriate model connecting PW and ZWD, which in its simplest case assumed to be similar to that of ZHD. But when the temperature variations are large, for the accurate estimate of PW the variation of the proportionality constant connecting PW and ZWD is to be accounted. For this a water vapor weighted mean temperature (Tm has been defined by many investigations, which has to be modeled on a regional basis. For estimating PW over the Indian region from GPS data, a region specific model for Tm in terms of surface temperature (Ts is developed using the radiosonde measurements from eight India Meteorological Department (IMD stations spread over the sub-continent within a latitude range of 8.5°–32.6° N. Following a similar procedure Tm-based models are also evolved for each of these stations and the features of these site-specific models are compared with those of the region-specific model. Applicability of the region-specific and site-specific Tm-based models in retrieving PW from GPS data recorded at the IGS sites Bangalore and Hyderabad, is tested by comparing the retrieved values of PW with those estimated from the altitude profile of water vapor measured using radiosonde. The values of ZWD estimated at 00:00 UTC and 12:00 UTC are used to test the validity of the models by estimating the PW using the models and comparing it with those obtained from radiosonde data. The region specific Tm-based model is found to be in par with if not better than a

  13. Tropospheric and total ozone columns over Paris (France measured using medium-resolution ground-based solar-absorption Fourier-transform infrared spectroscopy

    Directory of Open Access Journals (Sweden)

    C. Viatte

    2011-10-01

    Full Text Available Ground-based Fourier-transform infrared (FTIR solar absorption spectroscopy is a powerful remote sensing technique providing information on the vertical distribution of various atmospheric constituents. This work presents the first evaluation of a mid-resolution ground-based FTIR to measure tropospheric ozone, independently of stratospheric ozone. This is demonstrated using a new atmospheric observatory (named OASIS for "Observations of the Atmosphere by Solar absorption Infrared Spectroscopy", installed in Créteil (France. The capacity of the technique to separate stratospheric and tropospheric ozone is demonstrated. Daily mean tropospheric ozone columns derived from the Infrared Atmospheric Sounding Interferometer (IASI and from OASIS measurements are compared for summer 2009 and a good agreement of −5.6 (±16.1 % is observed. Also, a qualitative comparison between in-situ surface ozone measurements and OASIS data reveals OASIS's capacity to monitor seasonal tropospheric ozone variations, as well as ozone pollution episodes in summer 2009 around Paris. Two extreme pollution events are identified (on the 1 July and 6 August 2009 for which ozone partial columns from OASIS and predictions from a regional air-quality model (CHIMERE are compared following strict criteria of temporal and spatial coincidence. An average bias of 0.2%, a mean square error deviation of 7.6%, and a correlation coefficient of 0.91 is found between CHIMERE and OASIS, demonstrating the potential of a mid-resolution FTIR instrument in ground-based solar absorption geometry for tropospheric ozone monitoring.

  14. Validation of GOME-2/Metop total column water vapour with ground-based and in situ measurements

    Science.gov (United States)

    Kalakoski, Niilo; Kujanpää, Jukka; Sofieva, Viktoria; Tamminen, Johanna; Grossi, Margherita; Valks, Pieter

    2016-04-01

    The total column water vapour product from the Global Ozone Monitoring Experiment-2 on board Metop-A and Metop-B satellites (GOME-2/Metop-A and GOME-2/Metop-B) produced by the Satellite Application Facility on Ozone and Atmospheric Chemistry Monitoring (O3M SAF) is compared with co-located radiosonde observations and global positioning system (GPS) retrievals. The validation is performed using recently reprocessed data by the GOME Data Processor (GDP) version 4.7. The time periods for the validation are January 2007-July 2013 (GOME-2A) and December 2012-July 2013 (GOME-2B). The radiosonde data are from the Integrated Global Radiosonde Archive (IGRA) maintained by the National Climatic Data Center (NCDC). The ground-based GPS observations from the COSMIC/SuomiNet network are used as the second independent data source. We find a good general agreement between the GOME-2 and the radiosonde/GPS data. The median relative difference of GOME-2 to the radiosonde observations is -2.7 % for GOME-2A and -0.3 % for GOME-2B. Against the GPS, the median relative differences are 4.9 % and 3.2 % for GOME-2A and B, respectively. For water vapour total columns below 10 kg m-2, large wet biases are observed, especially against the GPS retrievals. Conversely, at values above 50 kg m-2, GOME-2 generally underestimates both ground-based observations.

  15. MU radar measurements of orbital debris

    Science.gov (United States)

    Sato, Toru; Kayama, Hidetoshi; Furusawa, Akira; Kimura, Iwane

    1990-04-01

    Distributions of orbital debris versus height and scattering cross section are determined from a series of observations made with a high-power VHF Doppler radar (MU radar) of Japan. An automated data processing algorithm has been developed to discriminate echoes of orbiting objects from those of undesired signals such as meteor trail echoes or lightning atmospherics. Although the results are preliminary, they showed good agreement with those from NORAD tracking radar observations using a much higher frequency. It is found that the collision frequency of a Space Station of 1 km x 1 km size at an altitude of 500 km with orbiting debris is expected to be as high as once per two years.

  16. Preliminary results of ground reflectivity measurements using noise radar

    Science.gov (United States)

    Maślikowski, Łukasz; Krysik, Piotr; Dąbrowska-Zielińska, Katarzyna; Kowalik, Wanda; Bartold, Maciej

    2011-10-01

    The paper describes experimental L-band ground reflectivity measurement using noise radar demonstrator working as a scatterometer. The radar ground return is usually described with a scattering coefficient, a quantity that is independent from the scatterometer system. To calculate the coefficient in a function of incidence angle, range profile values obtained after range compression were used. In order to improve dynamic range of the measurement, antenna cross-path interference was removed using lattice filter. The ground return was measured at L band both for HH and VV polarizations of radar wave as well as for HV and VH crosspolarizations using log-periodic antennas placed at a 10 m high mast directed towards a meadow surface. In the paper the theoretical considerations, noise radar setup, measurement campaign and the results are described.

  17. Ice measurements by Geosat radar altimetry

    Science.gov (United States)

    Zwally, H. Jay; Bindschadler, Robert A.; Major, Judy A.; Brenner, Anita C.

    1987-01-01

    Radar altimetry for ice-covered ocean and land is more complex and variable than open ocean radar altimetry; attention is presently given to Geosat ice-sheet topography for the Greenland and Antarctic ice sheets between 72 deg N and 72 deg S which owes its excellent accuracy to the well separated spacing of the orbital tracks and an 18-month geodetic mission duration. A surface elevation map of southern Greenland, produced from 110 days of retracked Geosat data, is presented in color-coded three-dimensional perspective. Comparisons are made between Seasat and Geosat data for ice mass elevations in Greenland.

  18. Ozone columns obtained by ground-based remote sensing in Kiev for Aura Ozone Measuring Instrument validation

    Science.gov (United States)

    Shavrina, A. V.; Pavlenko, Y. V.; Veles, A.; Syniavskyi, I.; Kroon, M.

    2007-12-01

    Ground-based observations with a Fourier transform spectrometer in the infrared region (FTIR) were performed in Kiev (Ukraine) during the time frames August-October 2005 and June-October 2006 within the Ozone Monitoring Instrument (OMI) validation project 2907 entitled "OMI validation by ground based remote sensing: ozone columns and profiles" in the frame of the international European Space Agency/Netherlands Agency for Aerospace Programmes/Royal Dutch Meteorological Institute OMI Announcement of Opportunity effort. Ozone column data for 2005 were obtained by modeling the ozone spectral band at 9.6 μm with the radiative transfer code MODTRAN3.5. Our total ozone column values were found to be lower than OMI Differential Optical Absorption Spectroscopy (DOAS) total ozone column data by 8-10 Dobson units (DU, 1 DU = 0.001 atm cm) on average, while our observations have a relatively small standard error of about 2 DU. Improved modeling of the ozone spectral band, now based on HITRAN-2004 spectral data as calculated by us, moves our results toward better agreement with the OMI DOAS total ozone column data. The observations made during 2006 with a modernized FTIR spectrometer and higher signal-to-noise ratio were simulated by the MODTRAN4 model computations. For ozone column estimates the Aqua Atmospheric Infrared Sounder satellite water vapor and temperature profiles were combined with the Aura Microwave Limb Sounder stratospheric ozone profiles and Tropospheric Emission Monitoring Internet Service-Koninklijk Nederlands Meteorologisch Instituut climatological profiles to create a priori input files for spectral modeling. The MODTRAN4 estimates of ozone columns from the 2006 observations compare rather well with the OMI total ozone column data: standard errors are of 1.11 DU and 0.68 DU, standard deviation are of 8.77 DU and 5.37 DU for OMI DOAS and OMI Total Ozone Mapping Spectrometer, respectively.

  19. Cloud Properties under Different Synoptic Circulations: Comparison of Radiosonde and Ground-Based Active Remote Sensing Measurements

    Directory of Open Access Journals (Sweden)

    Jinqiang Zhang

    2016-11-01

    Full Text Available In this study, long-term (10 years radiosonde-based cloud data are compared with the ground-based active remote sensing product under six prevailing large-scale synoptic patterns, i.e., cyclonic center (CC, weak pressure pattern (WP, the southeast bottom of cyclonic center (CB, cold front (CF, anticyclone edge (AE and anticyclone center (AC over the Southern Great Plains (SGP site. The synoptic patterns are generated by applying the self-organizing map weather classification method to the daily National Centers for Environmental Protection mean sea level pressure records from the North American Regional Reanalysis. It reveals that the large-scale synoptic circulations can strongly influence the regional cloud formation, and thereby have impact on the consistency of cloud retrievals from the radiosonde and ground-based cloud product. The total cloud cover at the SGP site is characterized by the least in AC and the most in CF. The minimum and maximum differences between the two cloud methods are 10.3% for CC and 13.3% for WP. Compared to the synoptic patterns characterized by scattered cloudy and clear skies (AE and AC, the agreement of collocated cloud boundaries between the two cloud approaches tends to be better under the synoptic patterns dominated by overcast and cloudy skies (CC, WP and CB. The rainy and windy weather conditions in CF synoptic pattern influence the consistency of the two cloud retrieval methods associated with the limited capabilities inherent to the instruments. The cloud thickness distribution from the two cloud datasets compares favorably with each other in all synoptic patterns, with relative discrepancy of ≤0.3 km.

  20. Radar cross section measurements using terahertz waves

    DEFF Research Database (Denmark)

    Iwaszczuk, Krzysztof; Heiselberg, Henning; Jepsen, Peter Uhd

    2010-01-01

    in a lithium niobate crystal with application of the tilted wave front method, resulting in high electric field THz pulses with a broad band spectrum from 100 GHz up to 4 THz. The corresponding wave lengths are two orders of magnitude smaller than normal radars and we therefore use scale models of size 5-10 cm...

  1. Seawave Measurements using a Ships Radar

    NARCIS (Netherlands)

    Hoogeboom, F.; Kleijweg, J.C.M.; Halsema, D. van

    1986-01-01

    The directional spectrum of a wavefield can be determined from a ships radar image with 180 degree ambiguity. The nondirectional waveheight spectrum follows by integration over all azimuth angles. These spectra are influenced by noise and interference from several sources, such as speckle, wind infl

  2. A method for the retrieval of atomic oxygen density and temperature profiles from ground-based measurements of the O(+)(2D-2P) 7320 A twilight airglow

    Science.gov (United States)

    Fennelly, J. A.; Torr, D. G.; Richards, P. G.; Torr, M. R.; Sharp, W. E.

    1991-01-01

    This paper describes a technique for extracting thermospheric profiles of the atomic-oxygen density and temperature, using ground-based measurements of the O(+)(2D-2P) doublet at 7320 and 7330 A in the twilight airglow. In this method, a local photochemical model is used to calculate the 7320-A intensity; the method also utilizes an iterative inversion procedure based on the Levenberg-Marquardt method described by Press et al. (1986). The results demonstrate that, if the measurements are only limited by errors due to Poisson noise, the altitude profiles of neutral temperature and atomic oxygen concentration can be determined accurately using currently available spectrometers.

  3. Assessing uncertainty in radar measurements on simplified meteorological scenarios

    Directory of Open Access Journals (Sweden)

    L. Molini

    2006-01-01

    Full Text Available A three-dimensional radar simulator model (RSM developed by Haase (1998 is coupled with the nonhydrostatic mesoscale weather forecast model Lokal-Modell (LM. The radar simulator is able to model reflectivity measurements by using the following meteorological fields, generated by Lokal Modell, as inputs: temperature, pressure, water vapour content, cloud water content, cloud ice content, rain sedimentation flux and snow sedimentation flux. This work focuses on the assessment of some uncertainty sources associated with radar measurements: absorption by the atmospheric gases, e.g., molecular oxygen, water vapour, and nitrogen; attenuation due to the presence of a highly reflecting structure between the radar and a "target structure". RSM results for a simplified meteorological scenario, consisting of a humid updraft on a flat surface and four cells placed around it, are presented.

  4. Investigating the Dominant Source for the Generation of Gravity Waves during Indian Summer Monsoon Using Ground-based Measurements

    Institute of Scientific and Technical Information of China (English)

    Debashis NATH; CHEN Wen

    2013-01-01

    Over the tropics,convection,wind shear (i.e.,vertical and horizontal shear of wind and/or geostrophic adjustment comprising spontaneous imbalance in jet streams) and topography are the major sources for the generation of gravity waves.During the summer monsoon season (June-August) over the Indian subcontinent,convection and wind shear coexist.To determine the dominant source of gravity waves during monsoon season,an experiment was conducted using mesosphere-stratosphere-troposphere (MST) radar situated at Gadanki (13.5°N,79.2°E),a tropical observatory in the southern part of the Indian subcontinent.MST radar was operated continuously for 72 h to capture high-frequency gravity waves.During this time,a radiosonde was released every 6 h in addition to the regular launch (once daily to study low-frequency gravity waves) throughout the season.These two data sets were utilized effectively to characterize the jet stream and the associated gravity waves.Data available from collocated instruments along with satellite-based brightness temperature (TBB) data were utilized to characterize the convection in and around Gadanki,Despite the presence of two major sources of gravity wave generation (i.e.,convection and wind shear) during the monsoon season,wind shear (both vertical shear and geostrophic adjustment) contributed the most to the generation of gravity waves on various scales.

  5. Investigating rainfall estimation from radar measurements using neural networks

    Directory of Open Access Journals (Sweden)

    A. Alqudah

    2013-03-01

    Full Text Available Rainfall observed on the ground is dependent on the four dimensional structure of precipitation aloft. Scanning radars can observe the four dimensional structure of precipitation. Neural network is a nonparametric method to represent the nonlinear relationship between radar measurements and rainfall rate. The relationship is derived directly from a dataset consisting of radar measurements and rain gauge measurements. The performance of neural network based rainfall estimation is subject to many factors, such as the representativeness and sufficiency of the training dataset, the generalization capability of the network to new data, seasonal changes, and regional changes. Improving the performance of the neural network for real time applications is of great interest. The goal of this paper is to investigate the performance of rainfall estimation based on Radial Basis Function (RBF neural networks using radar reflectivity as input and rain gauge as the target. Data from Melbourne, Florida NEXRAD (Next Generation Weather Radar ground radar (KMLB over different years along with rain gauge measurements are used to conduct various investigations related to this problem. A direct gauge comparison study is done to demonstrate the improvement brought in by the neural networks and to show the feasibility of this system. The principal components analysis (PCA technique is also used to reduce the dimensionality of the training dataset. Reducing the dimensionality of the input training data will reduce the training time as well as reduce the network complexity which will also avoid over fitting.

  6. Water erosion as a cause for agricultural soil loss: modeling of dynamic processes using high-resolution ground based LiDAR measurements

    Science.gov (United States)

    Oz, Imri; Filin, Sagi; Assouline, Shmuel; Shtain, Zachi; Furman, Alexander

    2016-04-01

    Soil erosion by rainfall and water flow is a frequent natural geomorphic process shaping the earth's surface at various scales. Conventional agrotechnical methods enhance soil erosion at the field scale and are at the origin of the reduction of the upper soil layer depth. This reduction is expressed in two aspects: decrease of soil depth, mainly due to erosion, and the diminution of soil quality, mainly due to the loss of fine material, nutrients and organic matter. Rain events, not even the most extremes, cause detachment and transport of fertile soil rich in organic matter and nutrients away from the fields, filling and plugging drainage channels, blocking infrastructure and contaminating water sources. Empirical, semi-empirical and mechanistic models are available to estimate soil erosion by water flow and sediment transport (e.g. WEPP, KINEROSS, EUROSEM). Calibration of these models requires data measured at high spatial and temporal resolutions. Development of high-resolution measurement tools (for both spatial and temporal aspects) should improve the calibration of functions related to particles detachment and transport from the soil surface. In addition, despite the great impact of different tillage systems on the soil erosion process, the vast majority of the models ignore this fundamental factor. The objective of this study is to apply high-resolution ground-based LiDAR measurements to different tillage schemes and scales to improve the ability of models to accurately describe the process of soil erosion induced by rainfall and overland flow. Ground-based laser scans provide high resolution accurate and subtle geomorphic changes, as well as larger-scale deformations. As such, it allows frequent monitoring, so that even the effect of a single storm can be measured, thus improving the calibration of the erosion models. Preliminary results for scans made in the field show the potential and limitations of ground-based LiDAR, and at this point qualitatively can

  7. Comparing the Cloud Vertical Structure Derived from Several Methods Based on Radiosonde Profiles and Ground-based Remote Sensing Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Costa-Suros, M.; Calbo, J.; Gonzalez, J. A.; Long, Charles N.

    2014-08-27

    The cloud vertical distribution and especially the cloud base height, which is linked to cloud type, is an important characteristic in order to describe the impact of clouds in a changing climate. In this work several methods to estimate the cloud vertical structure (CVS) based on atmospheric sounding profiles are compared, considering number and position of cloud layers, with a ground based system which is taken as a reference: the Active Remote Sensing of Clouds (ARSCL). All methods establish some conditions on the relative humidity, and differ on the use of other variables, the thresholds applied, or the vertical resolution of the profile. In this study these methods are applied to 125 radiosonde profiles acquired at the ARM Southern Great Plains site during all seasons of year 2009 and endorsed by GOES images, to confirm that the cloudiness conditions are homogeneous enough across their trajectory. The overall agreement for the methods ranges between 44-88%; four methods produce total agreements around 85%. Further tests and improvements are applied on one of these methods. In addition, we attempt to make this method suitable for low resolution vertical profiles, which could be useful in atmospheric modeling. The total agreement, even when using low resolution profiles, can be improved up to 91% if the thresholds for a moist layer to become a cloud layer are modified to minimize false negatives with the current data set, thus improving overall agreement.

  8. Global consistency check of AIRS and IASI total CO2 column concentrations using WDCGG ground-based measurements

    Science.gov (United States)

    Diao, Anyuan; Shu, Jiong; Song, Ci; Gao, Wei

    2017-03-01

    This article describes a global consistency check of CO2 satellite retrieval products from the Atmospheric Infrared Sounder (AIRS) and Infrared Atmospheric Sounding Interferometer (IASI) using statistical analysis and data from the World Data Centre for Greenhouse Gases (WDCGG). We use the correlation coefficient (r), relative difference (RD), root mean square errors (RMSE), and mean bias error (MBE) as evaluation indicators for this study. Statistical results show that a linear positive correlation between AIRS/IASI and WDCGG data occurs for most regions around the world. Temporal and spatial variations of these statistical quantities reflect obvious differences between satellite-derived and ground-based data based on geographic position, especially for stations near areas of intense human activities in the Northern Hemisphere. It is noteworthy that there appears to be a very weak correlation between AIRS/IASI data and ten groundbased observation stations in Europe, Asia, and North America. These results indicate that retrieval products from the two satellite-based instruments studied should be used with great caution.

  9. Tropospheric and total ozone columns over Paris (France measured using medium-resolution ground-based solar-absorption Fourier-transform infrared spectroscopy

    Directory of Open Access Journals (Sweden)

    C. Viatte

    2011-05-01

    Full Text Available Ground-based Fourier-transform infrared (FTIR solar absorption spectroscopy is a powerful remote sensing technique providing information on the vertical distribution of various atmospheric constituents. This work presents the first evaluation of a mid-resolution ground-based FTIR to measure tropospheric ozone, independently of stratospheric ozone. This is demonstrated using a new atmospheric observatory (named OASIS for "Observations of the Atmosphere by Solar absorption Infrared Spectroscopy", installed in Créteil (France. Indeed, the information content of OASIS ozone retrievals is clearly sufficient to monitor separately tropospheric (from the surface up to 8 km and stratospheric ozone. Daily mean tropospheric ozone columns derived from the Infrared Atmospheric Sounding Interferometer (IASI and from OASIS measurements have been compared for summer 2009 and a good agreement of −5.6 (±16.1 % is observed. Also, a qualitative comparison between in-situ surface ozone measurements and OASIS data clearly shows OASIS's capacity to monitor seasonal tropospheric ozone variations, as well as ozone pollution episodes in summer 2009 around Paris. Two extreme pollution events were identified (on the 1 July and 6 August 2009 for which ozone partial columns from OASIS and predictions from a regional air-quality model (CHIMERE were compared by respecting temporal and spatial coincidence criteria. Quantitatively, an average bias of 0.2 %, a mean square error deviation of 7.6 %, and a correlation coefficient of 0.91 was found between CHIMERE and OASIS. This demonstrates that a mid-resolution FTIR instrument in ground-based solar absorption geometry is a promising technique for monitoring tropospheric ozone.

  10. Cloud boundary height measurements using lidar and radar

    CERN Document Server

    Venema, V; Apituley, A; Van Lammeren, J A; Ligthart, L; Venema, Victor; Russchenberg, Herman; Apituley, Arnoud; Lammeren, Andre van; Ligthart, Leo

    2000-01-01

    Using only lidar or radar an accurate cloud boundary height estimate is often not possible. The combination of lidar and radar can give a reliable cloud boundary estimate in a much broader range of cases. However, also this combination with standard methods still can not measure the cloud boundaries in all cases. This will be illustrated with data from the Clouds and Radiation measurement campaigns, CLARA. Rain is a problem: the radar has problems to measure the small cloud droplets in the presence of raindrops. Similarly, few large particles below cloud base can obscure the cloud base in radar measurements. And the radar reflectivity can be very low at the cloud base of water clouds or in large regions of ice clouds, due to small particles. Multiple cloud layers and clouds with specular reflections can pose problems for lidar. More advanced measurement techniques are suggested to solve these problems. An angle scanning lidar can, for example, detect specular reflections, while using information from the rada...

  11. Radar activities of the DFVLR Institute for Radio Frequency Technology

    Science.gov (United States)

    Keydel, W.

    1983-01-01

    Aerospace research and the respective applications microwave tasks with respect to remote sensing, position finding and communication are discussed. The radar activities are directed at point targets, area targets and volume targets; they center around signature research for earth and ocean remote sensing, target recognition, reconnaissance and camouflage and imaging and area observation radar techniques (SAR and SLAR). The radar activities cover a frequency range from 1 GHz up to 94 GHz. The radar program is oriented to four possible application levels: ground, air, shuttle orbits and satellite orbits. Ground based studies and measurements, airborne scatterometers and imaging radars, a space shuttle radar, the MRSE, and follow on experiments are considered.

  12. Radar activities of the DFVLR Institute for Radio Frequency Technology

    Science.gov (United States)

    Keydel, W.

    1983-01-01

    Aerospace research and the respective applications microwave tasks with respect to remote sensing, position finding and communication are discussed. The radar activities are directed at point targets, area targets and volume targets; they center around signature research for earth and ocean remote sensing, target recognition, reconnaissance and camouflage and imaging and area observation radar techniques (SAR and SLAR). The radar activities cover a frequency range from 1 GHz up to 94 GHz. The radar program is oriented to four possible application levels: ground, air, shuttle orbits and satellite orbits. Ground based studies and measurements, airborne scatterometers and imaging radars, a space shuttle radar, the MRSE, and follow on experiments are considered.

  13. Measuring Effective Leaf Area Index, Foliage Profile, and Stand Height in New England Forest Stands Using a Full-Waveform Ground-Based Lidar

    Science.gov (United States)

    Zhao, Feng; Yang, Xiaoyuan; Schull, Mithcell A.; Roman-Colon, Miguel O.; Yao, Tian; Wang, Zhuosen; Zhang, Qingling; Jupp, David L. B.; Lovell, Jenny L.; Culvenor, Darius; Newnham, Glenn J.; Richardson, Andrew D.; Ni-Meister, Wenge; Schaaf, Crystal L.; Woodcock, Curtis E.; Strahler, Alan H.

    2011-01-01

    Effective leaf area index (LAI) retrievals from a scanning, ground-based, near-infrared (1064 nm) lidar that digitizes the full return waveform, the Echidna Validation Instrument (EVI), are in good agreement with those obtained from both hemispherical photography and the Li-Cor LAI-2000 Plant Canopy Analyzer. We conducted trials at 28 plots within six stands of hardwoods and conifers of varying height and stocking densities at Harvard Forest, Massachusetts, Bartlett Experimental Forest, New Hampshire, and Howland Experimental Forest, Maine, in July 2007. Effective LAI values retrieved by four methods, which ranged from 3.42 to 5.25 depending on the site and method, were not significantly different ( b0.1 among four methods). The LAI values also matched published values well. Foliage profiles (leaf area with height) retrieved from the lidar scans, although not independently validated, were consistent with stand structure as observed and as measured by conventional methods. Canopy mean top height, as determined from the foliage profiles, deviated from mean RH100 values obtained from the Lidar Vegetation Imaging Sensor (LVIS) airborne large-footprint lidar system at 27 plots by .0.91 m with RMSE=2.04 m, documenting the ability of the EVI to retrieve stand height. The Echidna Validation Instrument is the first realization of the Echidna lidar concept, devised by Australia's Commonwealth Scientific and Industrial Research Organization (CSIRO), for measuring forest structure using full-waveform, ground-based, scanning lidar.

  14. Measuring Effective Leaf Area Index, Foliage Profile, and Stand Height in New England Forest Stands Using a Full-Waveform Ground-Based Lidar

    Science.gov (United States)

    Zhao, Feng; Yang, Xiaoyuan; Schull, Mithcell A.; Roman-Colon, Miguel O.; Yao, Tian; Wang, Zhuosen; Zhang, Qingling; Jupp, David L. B.; Lovell, Jenny L.; Culvenor, Darius; hide

    2011-01-01

    Effective leaf area index (LAI) retrievals from a scanning, ground-based, near-infrared (1064 nm) lidar that digitizes the full return waveform, the Echidna Validation Instrument (EVI), are in good agreement with those obtained from both hemispherical photography and the Li-Cor LAI-2000 Plant Canopy Analyzer. We conducted trials at 28 plots within six stands of hardwoods and conifers of varying height and stocking densities at Harvard Forest, Massachusetts, Bartlett Experimental Forest, New Hampshire, and Howland Experimental Forest, Maine, in July 2007. Effective LAI values retrieved by four methods, which ranged from 3.42 to 5.25 depending on the site and method, were not significantly different ( b0.1 among four methods). The LAI values also matched published values well. Foliage profiles (leaf area with height) retrieved from the lidar scans, although not independently validated, were consistent with stand structure as observed and as measured by conventional methods. Canopy mean top height, as determined from the foliage profiles, deviated from mean RH100 values obtained from the Lidar Vegetation Imaging Sensor (LVIS) airborne large-footprint lidar system at 27 plots by .0.91 m with RMSE=2.04 m, documenting the ability of the EVI to retrieve stand height. The Echidna Validation Instrument is the first realization of the Echidna lidar concept, devised by Australia's Commonwealth Scientific and Industrial Research Organization (CSIRO), for measuring forest structure using full-waveform, ground-based, scanning lidar.

  15. Radar measurement of ionospheric scintillation in the polar region

    Science.gov (United States)

    Knepp, Dennis L.

    2015-10-01

    This paper considers several estimators that use radar data to measure the S4 scintillation index that characterizes the severity of amplitude scintillation that may occur during RF propagation through ionospheric irregularities. S4 is defined to be the standard deviation of the fluctuations in received power normalized by division by the mean power. Estimates of S4 are based on radar returns obtained during track of targets which may themselves have intrinsic radar cross-section fluctuations. Key to this work is the consideration of thresholding, which is used in many radars to remove (from further processing) signals whose SNR is considered too low. We consider several estimators here. The "direct" estimator attempts to estimate S4 through the direct calculation of the mean and standard deviation of the SNR from a number of radar returns. The maximum likelihood (ML) estimator uses multiple hypothesis testing and the assumption of Nakagami-m statistics to estimate the scintillation index that best fits the radar returns from some number of pulses. The ML estimator has perfect knowledge of the number of radar returns that are below the threshold. The direct estimator is accurate for the case where there is no threshold and there are many returns or samples from which to estimate S4. However, the direct estimator is flawed (especially for strong scintillation) if deep fades that fall below the radar threshold are ignored. The modified ML estimator here is based on the ML technique but is useful if the count of missed returns is unavailable. We apply the modified ML estimator to several years of radar tracks of large calibration satellites to obtain the statistics of UHF scintillation as viewed from the early warning radar at Thule, Greenland. One-way S4 was measured from 5000 low Earth orbit tracks during the 3 year period after solar maximum in May 2000. The data are analyzed to quantify the exceedance or the level of scintillation experienced at various

  16. Estimating Radar Velocity using Direction of Arrival Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Doerry, Armin Walter [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Horndt, Volker [General Atomics Aeronautical Systems, Inc., San Diego, CA (United States); Bickel, Douglas Lloyd [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Naething, Richard M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-09-01

    Direction of Arrival (DOA) measurements, as with a monopulse antenna, can be compared against Doppler measurements in a Synthetic Aperture Radar ( SAR ) image to determine an aircraft's forward velocity as well as its crab angle, to assist the aircraft's navigation as well as improving high - performance SAR image formation and spatial calibration.

  17. Going the distance solids level measurement with radar

    CERN Document Server

    Little, Tim

    2012-01-01

    From industry newcomers to experienced veterans in the field of process instrumentation, this book offers a comprehensive guide to radar level measurement for solids that is both detailed and approachable. Beginning with a brief history of solids level measurement, the book covers topics such as frequency and performance, installation of radar devices, and connection to communication networks. Also included is a helpful guide on process intelligence troubleshooting. Explanatory diagrams accompany the text, along with a collection of interesting - and often humorous - anecdotes gathered over au

  18. Validation of middle-atmospheric campaign-based water vapour measured by the ground-based microwave radiometer MIAWARA-C

    Directory of Open Access Journals (Sweden)

    B. Tschanz

    2013-07-01

    Full Text Available Middle atmospheric water vapour can be used as a tracer for dynamical processes. It is mainly measured by satellite instruments and ground-based microwave radiometers. Ground-based instruments capable of measuring middle-atmospheric water vapour are sparse but valuable as they complement satellite measurements, are relatively easy to maintain and have a long lifetime. MIAWARA-C is a ground-based microwave radiometer for middle-atmospheric water vapour designed for use on measurement campaigns for both atmospheric case studies and instrument intercomparisons. MIAWARA-C's retrieval version 1.1 (v1.1 is set up in a such way as to provide a consistent data set even if the instrument is operated from different locations on a campaign basis. The sensitive altitude range for v1.1 extends from 4 hPa (37 km to 0.017 hPa (75 km. For v1.1 the estimated systematic error is approximately 10% for all altitudes. At lower altitudes it is dominated by uncertainties in the calibration, with altitude the influence of spectroscopic and temperature uncertainties increases. The estimated random error increases with altitude from 5 to 25%. MIAWARA-C measures two polarisations of the incident radiation in separate receiver channels, and can therefore provide two measurements of the same air mass with independent instrumental noise. The standard deviation of the difference between the profiles obtained from the two polarisations is in excellent agreement with the estimated random measurement error of v1.1. In this paper, the quality of v1.1 data is assessed for measurements obtained at two different locations: (1 a total of 25 months of measurements in the Arctic (Sodankylä, 67.37° N, 26.63° E and (2 nine months of measurements at mid-latitudes (Zimmerwald, 46.88° N, 7.46° E. For both locations MIAWARA-C's profiles are compared to measurements from the satellite experiments Aura MLS and MIPAS. In addition, comparisons to ACE-FTS and SOFIE are presented for the

  19. Polarimetric monopulse radar scattering measurements of targets at 95 GHz

    Science.gov (United States)

    Wellman, R. J.; Nemarich, J.; Dropkin, H.; Hutchins, D. R.; Silvious, J. L.; Wikner, D. A.

    1991-09-01

    This paper describes a 95-GHz polarimetric monopulse instrumentation radar and selected scattering measurement results for an armored vehicle. The radar is all-solid-state, coherent, frequency steppable over a 640-MHz bandwidth, and completely polarimetric for linearly or circularly polarized radiation. Details of the methods used to perform the amplitude and phase calibrations and the effectiveness of polarization distortion matrix corrections are included in the paper. Measurements made with the radar of various vehicles on a turntable have allowed quasi-three-dimensional polarimetric ISAR images of the targets to be generated. Sample images for an infantry combat vehicle are presented together with high-resolution range profiles of the target for all monopulse channels.

  20. Radar measurements of melt zones on the Greenland Ice Sheet

    Science.gov (United States)

    Jezek, Kenneth C.; Gogineni, Prasad; Shanableh, M.

    1994-01-01

    Surface-based microwave radar measurements were performed at a location on the western flank of the Greenland Ice Sheet. Here, firn metamorphasis is dominated by seasonal melt, which leads to marked contrasts in the vertical structure of winter and summer firn. This snow regime is also one of the brightest radar targets on Earth with an average backscatter coefficient of 0 dB at 5.3 GHz and an incidence angle of 25 deg. By combining detailed observations of firn physical properties with ranging radar measurements we find that the glaciological mechanism associated with this strong electromagnetic response is summer ice lens formation within the previous winter's snow pack. This observation has important implications for monitoring and understanding changes in ice sheet volume using spaceborne microwave sensors.

  1. Radar studies of the planets. [radar measurements of lunar surface, Mars, Mercury, and Venus

    Science.gov (United States)

    Ingalls, R. P.; Pettengill, G. H.; Rogers, A. E. E.; Sebring, P. B. (Editor); Shapiro, I. I.

    1974-01-01

    The radar measurements phase of the lunar studies involving reflectivity and topographic mapping of the visible lunar surface was ended in December 1972, but studies of the data and production of maps have continued. This work was supported by Manned Spacecraft Center, Houston. Topographic mapping of the equatorial regions of Mars has been carried out during the period of each opposition since that of 1967. The method comprised extended precise traveling time measurements to a small area centered on the subradar point. As measurements continued, planetary motions caused this point to sweep out extensive areas in both latitude and longitude permitting the development of a fairly extensive topographical map in the equatorial region. Radar observations of Mercury and Venus have also been made over the past few years. Refinements of planetary motions, reflectivity maps and determinations of rotation rates have resulted.

  2. Comments to the Article by Thuillier et al. "The Infrared Solar Spectrum Measured by the SOLSPEC Spectrometer Onboard the International Space Station" on the Interpretation of Ground-based Measurements at the Izaña Site

    Science.gov (United States)

    Bolsée, D.; Pereira, N.; Cuevas, E.; García, R.; Redondas, A.

    2016-10-01

    Thuillier et al. ( Solar Phys. 290, 1581, 2015) article compares ATLAS-3 reference composite solar spectral irradiance (SSI) with more recent spatial measurements, as well as ground-based ones, including IRSPERAD. With respect to the IRSPERAD spectrum of Bolsée et al. ( Solar Phys. 289, 2433, 2014), Thuillier et al. (2015) presents an analysis based on a set of meteorological parameters retrieved at the moment of the respective ground-based campaign. This comment is intended to give a new insight to the said analysis which is based upon revised values of the meteorological parameters incorrectly used in Thuillier et al. (2015).

  3. Quality assessment of ground-based microwave measurements of chlorine monoxide, ozone, and nitrogen dioxide from the NDSC radiometer at the plateau de bure

    Energy Technology Data Exchange (ETDEWEB)

    Ricaud, P.; Noe, J. de la [Observatoire Aquitain des Sciences de l' Univers (OASU), Lab. d' Astrodynamique, d' Astrophysique et d' Aeronomie de Bordeaux, Floirac (France); Baron, P. [Noveltis, Toulouse (France)

    2004-07-01

    A ground-based microwave radiometer dedicated to chlorine monoxide (ClO) measurements around 278 GHz has been in operation from December 1993-June 1996 at the Plateau de Bure, France (45 N, 5.9 E, 2500 m altitude). It belongs to the international network for the detection of stratospheric change. A detailed study of both measurements and retrieval schemes has been undertaken. Although dedicated to the measurements of ClO, simultaneous profiles of O{sub 3}, ClO and NO{sub 2}, together with information about the instrumental baseline, have been retrieved using the optimal estimation method. The vertical profiles have been compared with other ground-based microwave data, satellite-borne data and model results. Data quality shows: 1) the weak sensitivity of the instrument that obliges to make time averages over several hours; 2) the site location where measurements of good opacities are possible for only a few days per year; 3) the baseline undulation affecting all the spectra, an issue common to all the microwave instruments; 4) the slow drift of some components affecting frequencies by 3-4 MHz within a couple of months. Nevertheless, when temporally averaging data over a few days, ClO temporal variations (diurnal and over several weeks in winter 1995) from 35-50 km are consistent with model results and satellite data, particularly at the peak altitude around 40 km, although temporal coincidences are infrequent in winter 1995. In addition to ClO, it is possible to obtain O{sub 3} information from 30-60 km whilst the instrument is not optimized at all for this molecule. Retrievals of O{sub 3} are reasonable when compared with model and another ground-based data set, although the lowermost layers are affected by the contamination of baseline remnants. Monthly-averaged diurnal variations of NO{sub 2} are detected at 40 km and appear in agreement with photochemical model results and satellite zonally-averaged data, although the amplitude is weaker than the other data sets

  4. Comparisons of ground-based tropospheric NO2 MAX-DOAS measurements to satellite observations with the aid of an air quality model over the Thessaloniki area, Greece

    Science.gov (United States)

    Drosoglou, Theano; Bais, Alkiviadis F.; Zyrichidou, Irene; Kouremeti, Natalia; Poupkou, Anastasia; Liora, Natalia; Giannaros, Christos; Elissavet Koukouli, Maria; Balis, Dimitris; Melas, Dimitrios

    2017-05-01

    One of the main issues arising from the comparison of ground-based and satellite measurements is the difference in spatial representativeness, which for locations with inhomogeneous spatial distribution of pollutants may lead to significant differences between the two data sets. In order to investigate the spatial variability of tropospheric NO2 within a sub-satellite pixel, a campaign which lasted for about 6 months was held in the greater area of Thessaloniki, Greece. Three multi-axial differential optical absorption spectroscopy (MAX-DOAS) systems performed measurements of tropospheric NO2 columns at different sites representative of urban, suburban and rural conditions. The direct comparison of these ground-based measurements with corresponding products from the Ozone Monitoring Instrument onboard NASA's Aura satellite (OMI/Aura) showed good agreement over the rural and suburban areas, while the comparison with the Global Ozone Monitoring Experiment-2 (GOME-2) onboard EUMETSAT's Meteorological Operational satellites' (MetOp-A and MetOp-B) observations is good only over the rural area. GOME-2A and GOME-2B sensors show an average underestimation of tropospheric NO2 over the urban area of about 10.51 ± 8.32 × 1015 and 10.21 ± 8.87 × 1015 molecules cm-2, respectively. The mean difference between ground-based and OMI observations is significantly lower (6.60 ± 5.71 × 1015 molecules cm-2). The differences found in the comparisons of MAX-DOAS data with the different satellite sensors can be attributed to the higher spatial resolution of OMI, as well as the different overpass times and NO2 retrieval algorithms of the satellites. OMI data were adjusted using factors calculated by an air quality modeling tool, consisting of the Weather Research and Forecasting (WRF) mesoscale meteorological model and the Comprehensive Air Quality Model with Extensions (CAMx) multiscale photochemical transport model. This approach resulted in significant improvement of the

  5. Quality assessment of ground-based microwave measurements of chlorine monoxide, ozone, and nitrogen dioxide from the NDSC radiometer at the Plateau de Bure

    Directory of Open Access Journals (Sweden)

    P. Ricaud

    2004-06-01

    Full Text Available A ground-based microwave radiometer dedicated to chlorine monoxide (ClO measurements around 278GHz has been in operation from December 1993-June 1996 at the Plateau de Bure, France (45° N, 5.9° E, 2500m altitude. It belongs to the international Network for the Detection of Stratospheric Change. A detailed study of both measurements and retrieval schemes has been undertaken. Although dedicated to the measurements of ClO, simultaneous profiles of O3, ClO and NO2, together with information about the instrumental baseline, have been retrieved using the optimal estimation method. The vertical profiles have been compared with other ground-based microwave data, satellite-borne data and model results. Data quality shows: 1 the weak sensitivity of the instrument that obliges to make time averages over several hours; 2 the site location where measurements of good opacities are possible for only a few days per year; 3 the baseline undulation affecting all the spectra, an issue common to all the microwave instruments; 4 the slow drift of some components affecting frequencies by 3-4MHz within a couple of months. Nevertheless, when temporally averaging data over a few days, ClO temporal variations (diurnal and over several weeks in winter 1995 from 35-50km are consistent with model results and satellite data, particularly at the peak altitude around 40km, although temporal coincidences are infrequent in winter 1995. In addition to ClO, it is possible to obtain O3 information from 30-60km whilst the instrument is not optimized at all for this molecule. Retrievals of O3 are reasonable when compared with model and another ground-based data set, although the lowermost layers are affected by the contamination of baseline remnants. Monthly-averaged diurnal variations of NO2 are detected at 40km and appear in agreement with photochemical model results and satellite zonally-averaged data, although the amplitude

  6. Measurement of electromagnetic fields generated by air traffic control radar systems with spectrum analysers.

    Science.gov (United States)

    Barellini, A; Bogi, L; Licitra, G; Silvi, A M; Zari, A

    2009-12-01

    Air traffic control (ATC) primary radars are 'classical' radars that use echoes of radiofrequency (RF) pulses from aircraft to determine their position. High-power RF pulses radiated from radar antennas may produce high electromagnetic field levels in the surrounding area. Measurement of electromagnetic fields produced by RF-pulsed radar by means of a swept-tuned spectrum analyser are investigated here. Measurements have been carried out both in the laboratory and in situ on signals generated by an ATC primary radar.

  7. Evaluating the quality of ground-based microwave radiometer measurements and retrievals using detrended fluctuation and spectral analysis methods

    CERN Document Server

    Ivanova, K; Shirer, H N; Ackerman, T P; Liljegren, J C; Ausloos, M

    2001-01-01

    Time series both of microwave radiometer brightness temperature measurements at 23.8 and 31.4 GHz and of retrievals of water vapor and liquid water path from these brightness temperatures are evaluated using the detrended fluctuation analysis method. As quantified by the parameter $\\alpha$, this method (i) enables identification of the time scales over which noise dominates the time series and (ii) characterizes the temporal range of correlations in the time series. The more common spectral analysis method is also used to assess the data and its results are compared with those from detrended fluctuation analysis method. The assumption that measurements should have certain scaling properties allows the quality of the measurements to be characterized. The additional assumption that the scaling properties of the measurements of an atmospheric quantity are preserved in a useful retrieval provides a means for evaluating the retrieval itself. Applying these two assumptions to microwave radiometer measurements and r...

  8. Small Scale Variability of Rain: Impact On Radar Measurement

    Science.gov (United States)

    Gosset, M.; Delrieu, G.

    Most retrieval algorithmes used to convert radar data assume (at least implicitely) that the field observed, rain for example, is uniform within the radar beam. In this presentation we use simple models and simulations tools to analyse some effects of nonuniform beamfilling (NUBF) This study focuses specially on NUBF effects at attenuating frequencies. We find that a combination of non uniform rain and accumulated attenuation can affect the param- eters measured with a radar operating at attenuating wavelength. We analyse how the apparant attenuation is affected and analyse the practical conse- quences on attenuation correction scheme. A second point of interest is polarimetric parameters. We focus in particular on differ- ential polarimetric propagation parameters such as propagation phase shift, which are potentially useful for attenuation correction. We found some interesting and surprising results.

  9. Ground-Based Remote or In Situ Measurement of Vertical Profiles of Wind in the Lower Troposphere

    Energy Technology Data Exchange (ETDEWEB)

    Clifton, Andrew; Newman, Jennifer

    2017-02-24

    Knowledge of winds in the lower troposphere is essential for a range of applications, including weather forecasting, transportation, natural hazards, and wind energy. This presentation focuses on the measurement of vertical profiles of wind in the lower troposphere for wind energy applications. This presentation introduces the information that wind energy site development and operations require, how it used, and the benefits and problems of current measurements from in-situ measurements and remote sensing. The development of commercial Doppler wind lidar systems over the last 10 years are shown, along with the lessons learned from this experience. Finally, potential developments in wind profiling aimed at reducing uncertainty and increasing data availability are introduced.

  10. Planar Near-Field Measurements of Ground Penetrating Radar Antennas

    DEFF Research Database (Denmark)

    Meincke, Peter; Hansen, Thorkild

    2004-01-01

    Planar near-field measurements are formulated for a general ground penetrating radar (GPR) antenna. A total plane-wave scattering matrix is defined for the system consisting of the GPR antenna and the planar air-soil interface. The transmitting spectrum of the GPR antenna is expressed in terms...

  11. Meteor radar measurements of MLT winds near the equatorial electro jet region over Thumba (8.5° N, 77° E: comparison with TIDI observations

    Directory of Open Access Journals (Sweden)

    S. R. John

    2011-07-01

    Full Text Available The All-Sky interferometric meteor (SKYiMET radar (MR derived winds in the vicinity of the equatorial electrojet (EEJ are discussed. As Thumba (8.5° N, 77° E; dip lat. 0.5° N is under the EEJ belt, there has been some debate on the reliability of the meteor radar derived winds near the EEJ height region. In this regard, the composite diurnal variations of zonal wind profiles in the mesosphere-lower thermosphere (MLT region derived from TIMED Doppler Interferometer (TIDI and ground based meteor radar at Thumba are compared. In this study, emphasis is given to verify the meteor radar observations at 98 km height region, especially during the EEJ peaking time (11:00 to 14:00 LT. The composite diurnal cycles of zonal winds over Thumba are constructed during four seasons of the year 2006 using TIDI and meteor radar observations, which showed good agreement especially during the peak EEJ hours, thus assuring the reliability of meteor radar measurements of neutral winds close to the EEJ height region. It is evident from the present study that on seasonal scales, the radar measurements are not biased by the EEJ. The day-time variations of HF radar measured E-region drifts at the EEJ region are also compared with MR measurements to show there are large differences between ionospheric drifts and MR measurements. The significance of the present study lies in validating the meteor radar technique over Thumba located at magnetic equator by comparing with other than the radio technique for the first time.

  12. Roughness parameters and surface deformation measured by coherence radar

    Science.gov (United States)

    Ettl, Peter; Schmidt, Berthold E.; Schenk, M.; Laszlo, Ildiko; Haeusler, Gerd

    1998-09-01

    The 'coherence radar' was introduced as a method to measure the topology of optically rough surfaces. The basic principle is white light interferometry in individual speckles. We will discuss the potentials and limitations of the coherence radar to measure the microtopology, the roughness parameters, and the out of plane deformation of smooth and rough object surfaces. We have to distinguish objects with optically smooth (polished) surfaces and with optically rough surfaces. Measurements at polished surfaces with simple shapes (flats, spheres) are the domain of classical interferometry. We demonstrate new methods to evaluate white light interferograms and compare them to the standard Fourier evaluation. We achieve standard deviations of the measured signals of a few nanometers. We further demonstrate that we can determine the roughness parameters of a surface by the coherence radar. We use principally two approaches: with very high aperture the surface topology is laterally resolved. From the data we determine the roughness parameters according to standardized evaluation procedures, and compare them with mechanically acquired data. The second approach is by low aperture observation (unresolved topology). Here the coherence radar supplies a statistical distance signal from which we can determine the standard deviation of the surface height variations. We will further discuss a new method to measure the deformation of optically rough surfaces, based on the coherence radar. Unless than with standard speckle interferometry, the new method displays absolute deformation. For small out-of-plane deformation (correlated speckle), the potential sensitivity is in the nanometer regime. Large deformations (uncorrelated speckle) can be measured with an uncertainty equal to the surface roughness.

  13. Ground-based FTIR measurements of CO from the Jungfraujoch: characterisation and comparison with in situ surface and MOPITT data

    Directory of Open Access Journals (Sweden)

    B. Barret

    2003-01-01

    Full Text Available CO vertical profiles have been retrieved from solar absorption FTIR spectra recorded at the NDSC station of the Jungfraujoch (46.5º N, 8º E and 3580 m a.s.l. for the period from January 1997 to May 2001. The characterisation of these profiles has been established by an information content analysis and an estimation of the error budgets. A partial validation of the profiles has been performed through comparisons with correlative measurements. The average volume mixing ratios (vmr in the 3 km layer above the station have been compared with coincident surface measurements. The agreement between monthly means from both measurement techniques is very good, with a correlation coefficient of 0.87, and no significant bias observed. The FTIR total columns have also been compared to CO partial columns above 3580 m a.s.l. derived from the MOPITT (Measurement Of Pollution In The Troposphere instrument for the period March 2000 to May 2001. Relative to the FTIR columns, the MOPITT partial columns exhibit a positive bias of 8±8% for daytime and of 4±7% for nighttime measurements.

  14. Ground-based instrumentation for measurements of atmospheric conduction current and electric field at the South Pole

    Science.gov (United States)

    Byrne, G. J.; Benbrook, J. R.; Bering, E. A.; Few, A. A.; Morris, G. A.; Trabucco, W. J.; Paschal, E. W.

    1993-01-01

    Attention is given to instruments constructed to measure the atmospheric conduction current and the atmospheric electric field - two fundamental parameters of the global-electric circuit. The instruments were deployed at the Amundsen-Scott South Pole Station in January 1991 and are designed to operate continuously for up to one year without operator intervention. The atmospheric current flows into one hemisphere, through the electronics where it is measured, and out the other hemisphere. The electric field is measured by a field mill of the rotating dipole type. Sample data from the first days of operation at the South Pole indicate variations in the global circuit over time scales from minutes to hours to days.

  15. Comparison of ground-based and Viking Orbiter measurements of Martian water vapor - Variability of the seasonal cycle

    Science.gov (United States)

    Jakosky, B. M.; Barker, E. S.

    1984-03-01

    Earth-based observations of Mars atmospheric water vapor are presented for the 1975-1976, 1977-1978, and 1983 apparitions. Comparisons are made with near-simultaneous spacecraft measurements made from the Viking Orbiter Mars Atmospheric Water Detection experiment during 1976-1978 and with previous earth-based measurements. Differences occur between the behavior in the different years, and may be related to the Mars climate. Measurements during the southern summer in 1969 indicate a factor of three times as much water as is present at this same season in other years. This difference may have resulted from the sublimation of water from the south polar residual cap upon removal of most or all of the CO2 ice present; sublimation of all of the CO2 ice during some years could be a result of a greater thermal load being placed on the cap due to the presence of differing amounts of atmospheric dust.

  16. Studies on aerosol properties during ICARB–2006 campaign period at Hyderabad, India using ground-based measurements and satellite data

    Indian Academy of Sciences (India)

    K V S Badarinath; Shailesh Kumar Kharol

    2008-07-01

    Continuous and campaign-based aerosol field measurements are essential in understanding fundamental atmospheric aerosol processes and for evaluating their effect on global climate, environment and human life. Synchronous measurements of Aerosol Optical Depth (AOD), Black Carbon (BC) aerosol mass concentration and aerosol particle size distribution were carried out during the campaign period at tropical urban regions of Hyderabad, India. Daily satellite datasets of DMSP-OLS were processed for night-time forest fires over the Indian region in order to understand the additional sources (forest fires) of aerosol. The higher values in black carbon aerosol mass concentration and aerosol optical depth correlated well with forest fires occurring over the region. Ozone Monitoring Instrument (OMI) aerosol index (AI) variations showed absorbing aerosols over the region and correlated with ground measurements.

  17. MAX-DOAS measurements in southern China: retrieval of aerosol extinctions and validation using ground-based in-situ data

    Directory of Open Access Journals (Sweden)

    X. Li

    2010-03-01

    Full Text Available We performed MAX-DOAS measurements during the PRiDe-PRD2006 campaign in the Pearl River Delta region 50 km north of Guangzhou, China, for 4 weeks in June 2006. We used an instrument sampling at 7 different elevation angles between 3° and 90°. During 9 cloud-free days, differential slant column densities (DSCDs of O4 (O2 dimer absorptions between 351 nm and 389 nm were evaluated for 6 elevation angles. Here, we show that radiative transfer modeling of the DSCDS can be used to retrieve the aerosol extinction and the height of the boundary layer. A comparison of the aerosol extinction with simultaneously recorded, ground based nephelometer data shows excellent agreement.

  18. Accuracy of three-dimensional glacier surface volocities derived from radar interfeometry and ice-soundin radar measurements

    DEFF Research Database (Denmark)

    Mohr, Johan Jacob; Reeh, Niels; Madsen, Søren Nørvang

    2003-01-01

    We present a method for analyzing the errors involved in measuring three-dimensional glacier velocities with interferometric radar. We address the surface-parallel flow assumption and an augmented approach with a flux-divergence (FD) term. The errors in an interferometric ERS-1/-2 satellite radar...... dataset with ascending- and descending-orbit data covering Storstrommen glacier, northeast Greenland, are assessed. The FD error assessment is carried out on airborne 60 MHz ice-sounding radar data from the same area. A simple model of an interferometric radar system is developed and analyzed. The error...

  19. Accuracy of three-dimensional glacier surface volocities derived from radar interfeometry and ice-soundin radar measurements

    DEFF Research Database (Denmark)

    Mohr, Johan Jacob; Reeh, Niels; Madsen, Søren Nørvang

    2003-01-01

    We present a method for analyzing the errors involved in measuring three-dimensional glacier velocities with interferometric radar. We address the surface-parallel flow assumption and an augmented approach with a flux-divergence (FD) term. The errors in an interferometric ERS-1/-2 satellite radar...... dataset with ascending- and descending-orbit data covering Storstrommen glacier, northeast Greenland, are assessed. The FD error assessment is carried out on airborne 60 MHz ice-sounding radar data from the same area. A simple model of an interferometric radar system is developed and analyzed. The error...

  20. EVALUATION OF OPPORTUNITIES OF SOLAR ENERGETICS ON THE BASIS OF ACCURATE GROUND-BASED MEASUREMENTS OF SOLAR RADIATION

    Directory of Open Access Journals (Sweden)

    Aculinin A.

    2008-04-01

    Full Text Available Expected quantity of a solar energy received by solar panel is estimated on the basis of accurate measurements of solar radiation in Kishinev. Optimal orientation of solar panels and apparent volume of the electric power generated by solar panels are determined.

  1. L-band active/passive time series measurements over a growing season usign the COMRAD ground-based SMAP

    Science.gov (United States)

    Scheduled to launch in October 2014, NASA’s Soil Moisture Active Passive (SMAP) mission will provide high-resolution global mapping of soil moisture and freeze/thaw state every 2-3 days. These new measurements of the hydrological condition of the Earth’s surface will build on data from European Spa...

  2. Coordinated airborne, spaceborne, and ground-based measurements of massive thick aerosol layers during the dry season in southern Africa

    NARCIS (Netherlands)

    Schmid, B.; Redemann, J.; Russell, P.B.; Hobbs, P.V.; Hlavka, D.L.; McGill, M.J.; Holben, B.N.; Welton, E.J.; Campbell, J.R.; Torres, O.; Kahn, R.A.; Diner, D.J.; Helmlinger, M.C.; Chu, D.A.; Robles-Gonzalez, C.; Leeuw, G.de

    2003-01-01

    During the dry season airborne campaign of the Southern African Regional Science Initiative (SAFARI 2000), coordinated observations were made of massive thick aerosol layers. These layers were often dominated by aerosols from biomass burning. We report on airborne Sun photometer measurements of aero

  3. Coordinated airborne, spaceborne, and ground-based measurements of massive thick aerosol layers during the dry season in southern Africa

    NARCIS (Netherlands)

    Schmid, B.; Redemann, J.; Russell, P.B.; Hobbs, P.V.; Hlavka, D.L.; McGill, M.J.; Holben, B.N.; Welton, E.J.; Campbell, J.R.; Torres, O.; Kahn, R.A.; Diner, D.J.; Helmlinger, M.C.; Chu, D.A.; Robles-Gonzalez, C.; Leeuw, G.de

    2003-01-01

    During the dry season airborne campaign of the Southern African Regional Science Initiative (SAFARI 2000), coordinated observations were made of massive thick aerosol layers. These layers were often dominated by aerosols from biomass burning. We report on airborne Sun photometer measurements of

  4. The Impact of Sunlight Conditions on the Consistency of Vegetation Indices in Croplands—Effective Usage of Vegetation Indices from Continuous Ground-Based Spectral Measurements

    Directory of Open Access Journals (Sweden)

    Mitsunori Ishihara

    2015-10-01

    Full Text Available A ground-based network of spectral observations is useful for ecosystem monitoring and validation of satellite data. However, these observations contain inherent uncertainties due to the change of sunlight conditions. This study investigated the impact of changing solar zenith angles and diffuse/direct light conditions on the consistency of vegetation indices (normalized difference vegetation index (NDVI and green-red vegetation index (GRVI derived from ground-based spectral measurements in three different types of cropland (paddy field, upland field, cultivated grassland in Japan. In general, the vegetation indices decreased with decreasing solar zenith angle. This response was affected significantly by the growth stage and diffuse/direct light conditions. The decreasing response of the NDVI to the decreasing solar zenith angle was high during the middle growth stage (0.4 < NDVI < 0.8. On the other hand, a similar response of the GRVI was evident except in the early growth stage (GRVI < 0. The response of vegetation indices to the solar zenith angle was evident under clear sky conditions but almost negligible under cloudy sky conditions. At large solar zenith angles, neither the NDVI nor the GRVI were affected by diffuse/direct light conditions in any growth stage. These experimental results were supported well by the results of simulations based on a physically-based canopy reflectance model (PROSAIL. Systematic selection of the data from continuous diurnal spectral measurements in consideration of the solar light conditions would be effective for accurate and consistent assessment of the canopy structure and functioning.

  5. The signal selection and processing method for polarization measurement radar

    Institute of Scientific and Technical Information of China (English)

    CHANG YuLiang; WANG XueSong; LI YongZhen; XIAO ShunPing

    2009-01-01

    Based on the ambiguity function, a novel signal processing method for the polarization measurement radar is developed. One advantage of this method is that the two orthogonal polarized signals do not have to be perpendicular to each other, which is required by traditional methods. The error due to the correlation of the two transmitting signals in the traditional method, can be reduced by this new approach. A concept called ambiguity function matrix (AFM) is introduced based on this method. AFM is a promising tool for the signal selection and design in the polarization scattering matrix measurement. The waveforms of the polarimetric radar are categorized and analyzed based on AFM in this paper. The signal processing flow of this method is explained. And the polarization scattering matrix measurement performance is testified by simulation. Furthermore, this signal processing method can be used in the inter-pulse interval measurement technique as well as in the instantaneous measurement technique.

  6. Ground based NO2 and O3 measurements by visible spectrometer at Syowa Base (69 deg S), Antarctica

    Science.gov (United States)

    Kondo, Y.; Matthews, W. A.; Johnston, Paul V.; Hayashi, M.; Koike, M.; Iwasaka, Y.; Shimizu, A.; Budiyono, A.; Yamanouchi, T.; Aoki, S.

    1994-01-01

    The column amounts of NO2 and ozone have been measured using visible spectroscopy at Syowa Base (69 deg S) since March 1990. Ozone was also measured at the same location with a Dobson spectrometer as well as ozonesondes being flown regularly. The characteristic features of the seasonal and diurnal variations of NO2 are presented. The column ozone values from the visible spectrometers are compared with the Dobson data. The very low values of NO2 in midwinter and early spring are consistent with the conditions predicted to be needed for heterogeneous ozone destruction in early spring. In late spring and summer of 1991, NO2 amounts were considerably smaller than in 1990, presumably due to the effect of Mt. Pinatubo eruption.

  7. Tropospheric BrO column densities in the Arctic derived from satellite: retrieval and comparison to ground-based measurements

    OpenAIRE

    H Sihler; Platt, U.; Beirle, S.; Marbach, T.; S. Kühl; S. Dörner; Verschaeve, J.; Frieß, U.; Pöhler, D.; Vogel, L.; Sander, R.; T. Wagner

    2012-01-01

    During polar spring, halogen radicals like bromine monoxide (BrO) play an important role in the chemistry of tropospheric ozone destruction. Satellite measurements of the BrO distribution have become a particularly useful tool to investigate this probably natural phenomenon, but the separation of stratospheric and tropospheric partial columns of BrO is challenging. In this study, an algorithm was developed to retrieve tropospheric vertical...

  8. Comparison of Cloud Base Height Derived from a Ground-Based Infrared Cloud Measurement and Two Ceilometers

    Directory of Open Access Journals (Sweden)

    Lei Liu

    2015-01-01

    Full Text Available The cloud base height (CBH derived from the whole-sky infrared cloud-measuring system (WSIRCMS and two ceilometers (Vaisala CL31 and CL51 from November 1, 2011, to June 12, 2012, at the Chinese Meteorological Administration (CMA Beijing Observatory Station are analysed. Significant differences can be found by comparing the measurements of different instruments. More exactly, the cloud occurrence retrieved from CL31 is 3.8% higher than that from CL51, while WSIRCMS data shows 3.6% higher than ceilometers. More than 75.5% of the two ceilometers’ differences are within ±200 m and about 89.5% within ±500 m, while only 30.7% of the differences between WSIRCMS and ceilometers are within ±500 m and about 55.2% within ±1000 m. These differences may be caused by the measurement principles and CBH retrieval algorithm. A combination of a laser ceilometer and an infrared cloud instrument is recommended to improve the capability for determining cloud occurrence and retrieving CBHs.

  9. Background CO2 levels and error analysis from ground-based solar absorption IR measurements in central Mexico

    Science.gov (United States)

    Baylon, Jorge L.; Stremme, Wolfgang; Grutter, Michel; Hase, Frank; Blumenstock, Thomas

    2017-07-01

    In this investigation we analyze two common optical configurations to retrieve CO2 total column amounts from solar absorption infrared spectra. The noise errors using either a KBr or a CaF2 beam splitter, a main component of a Fourier transform infrared spectrometer (FTIR), are quantified in order to assess the relative precisions of the measurements. The configuration using a CaF2 beam splitter, as deployed by the instruments which contribute to the Total Carbon Column Observing Network (TCCON), shows a slightly better precision. However, we show that the precisions in XCO2 ( = 0.2095 ṡ size: .7em; color: #68;">Total Column CO2size: .7em; color: #68;">Total Column O2) retrieved from > 96 % of the spectra measured with a KBr beam splitter fall well below 0.2 %. A bias in XCO2 (KBr - CaF2) of +0.56 ± 0.25 ppm was found when using an independent data set as reference. This value, which corresponds to +0.14 ± 0.064 %, is slightly larger than the mean precisions obtained. A 3-year XCO2 time series from FTIR measurements at the high-altitude site of Altzomoni in central Mexico presents clear annual and diurnal cycles, and a trend of +2.2 ppm yr-1 could be determined.

  10. Estimation of leaf area index using ground-based remote sensed NDVI measurements: validation and comparison with two indirect techniques

    Energy Technology Data Exchange (ETDEWEB)

    Pontailler, J.-Y. [Univ. Paris-Sud XI, Dept. d' Ecophysiologie Vegetale, Orsay Cedex (France); Hymus, G.J.; Drake, B.G. [Smithsonian Environmental Research Center, Kennedy Space Center, Florida (United States)

    2003-06-01

    This study took place in an evergreen scrub oak ecosystem in Florida. Vegetation reflectance was measured in situ with a laboratory-made sensor in the red (640-665 nm) and near-infrared (750-950 nm) bands to calculate the normalized difference vegetation index (NDVI) and derive the leaf area index (LAI). LAI estimates from this technique were compared with two other nondestructive techniques, intercepted photosynthetically active radiation (PAR) and hemispherical photographs, in four contrasting 4 m{sup 2} plots in February 2000 and two 4m{sup 2} plots in June 2000. We used Beer's law to derive LAI from PAR interception and gap fraction distribution to derive LAI from photographs. The plots were harvested manually after the measurements to determine a 'true' LAI value and to calculate a light extinction coefficient (k). The technique based on Beer's law was affected by a large variation of the extinction coefficient, owing to the larger impact of branches in winter when LAI was low. Hemispherical photographs provided satisfactory estimates, slightly overestimated in winter because of the impact of branches or underestimated in summer because of foliage clumping. NDVI provided the best fit, showing only saturation in the densest plot (LAI = 3.5). We conclude that in situ measurement of NDVI is an accurate and simple technique to nondestructively assess LAI in experimental plots or in crops if saturation remains acceptable. (author)

  11. Annual variation of strato-mesospheric carbon monoxide measured by ground-based Fourier transform infrared spectrometry

    Directory of Open Access Journals (Sweden)

    V. Velazco

    2007-01-01

    Full Text Available We present long-term time-series of strato-mesospheric CO vertical columns measured from stations located in Antarctica, mid-latitudes and the Arctic, covering the period from 1997–2005. The instrument and the measurement technique allows the separation of tropospheric and strato-mesospheric contributions to the CO column, therefore providing information on the chemistry and dynamics both at low and high altitudes. Data from polar stations show a similar annual variability of strato-mesospheric CO with a strong maximum in late winter and spring. A small enhancement in late summer for some stations, which we call the "summer bulge", can be seen occasionally. Generally, the mid-latitude stations show no significant annual variability of strato-mesospheric CO columns. Measurements were compared with a two-dimensional chemistry-transport model of the middle atmosphere. The annual and latitudinal variations of CO are reproduced well by a model run including thermospheric CO. Comparison with two model scenarios show that the polar winter maximum is due solely to downward transport of thermospheric CO, while CHOx chemistry in the stratosphere could probably contribute to the summer maximum.

  12. Monitoring middle-atmospheric dynamics using independent ground-based wind and temperature measurements at Reunion Island

    Science.gov (United States)

    Le Pichon, Alexis; Hauchecorne, Alain; Keckhut, Philippe; Khaykin, Sergey; Camas, Jean Pierre; Payen, Guillaume; Kämpfer, Niklaus; Rüfenacht, Rolf; Ceranna, Lars

    2016-04-01

    There are very few multi-instrumented sites in the tropics and particularly in the Southern Hemisphere. In these regions, developing atmospheric sounding methods in the middle and high-atmosphere provides valuable means to improve the physical representation of deep convection in atmospheric models (breaking of gravity waves, coupling between layers) and to better characterize large-scale atmospheric perturbations (cyclones, storms, tropical convection). The Maïdo observatory at Reunion Island (21°S, 55°E) offers trans-national access to host experiments or measurement campaigns for high resolution measurements of dynamic atmospheric processes in a wide range of altitude such as Rayleigh lidar, Doppler lidar, Modem radiosonde, or microwave Doppler spectro-radiometer (WIRA, operated by Institute of Applied Physics, University of Bern). Collocated to the existing instruments, a small aperture infrasound array (CEA) has been operating continuously since 2014. In the 0.1-1 Hz band, the coherent energy is dominated by microbarom signals resulting from the non-linear interaction of large swells systems which circulate along the Antarctic Circumpolar Current (ACC). The seasonal transition in the bearings along with the stratospheric general circulation between summer and winter is clearly noted. Interestingly, the semiannual oscillation (SAO) of the zonal stratospheric wind is well captured by infrasound measurements. It manifests by opposite ducts between 30 and 60 km that persist for several weeks during the equinox period. For the ARISE project (http://arise-project.eu/), this multi-technology site opens new perspectives to study the climatology of SAO as well as poorly resolved atmospheric disturbances of the tropical middle atmosphere where data coverage is sparse.

  13. Ground based measurements on reflectance towards validating atmospheric correction algorithms on IRS-P6 AWiFS data

    Science.gov (United States)

    Rani Sharma, Anu; Kharol, Shailesh Kumar; Kvs, Badarinath; Roy, P. S.

    In Earth observation, the atmosphere has a non-negligible influence on the visible and infrared radiation which is strong enough to modify the reflected electromagnetic signal and at-target reflectance. Scattering of solar irradiance by atmospheric molecules and aerosol generates path radiance, which increases the apparent surface reflectance over dark surfaces while absorption by aerosols and other molecules in the atmosphere causes loss of brightness to the scene, as recorded by the satellite sensor. In order to derive precise surface reflectance from satellite image data, it is indispensable to apply the atmospheric correction which serves to remove the effects of molecular and aerosol scattering. In the present study, we have implemented a fast atmospheric correction algorithm to IRS-P6 AWiFS satellite data which can effectively retrieve surface reflectance under different atmospheric and surface conditions. The algorithm is based on MODIS climatology products and simplified use of Second Simulation of Satellite Signal in Solar Spectrum (6S) radiative transfer code, which is used to generate look-up-tables (LUTs). The algorithm requires information on aerosol optical depth for correcting the satellite dataset. The proposed method is simple and easy to implement for estimating surface reflectance from the at sensor recorded signal, on a per pixel basis. The atmospheric correction algorithm has been tested for different IRS-P6 AWiFS False color composites (FCC) covering the ICRISAT Farm, Patancheru, Hyderabad, India under varying atmospheric conditions. Ground measurements of surface reflectance representing different land use/land cover, i.e., Red soil, Chick Pea crop, Groundnut crop and Pigeon Pea crop were conducted to validate the algorithm and found a very good match between surface reflectance and atmospherically corrected reflectance for all spectral bands. Further, we aggregated all datasets together and compared the retrieved AWiFS reflectance with

  14. Information operator approach applied to the retrieval of the vertical distribution of atmospheric constituents from ground-based high-resolution FTIR measurements

    Directory of Open Access Journals (Sweden)

    C. Senten

    2012-01-01

    Full Text Available The analysis of high spectral resolution Fourier Transform infrared (FTIR solar absorption spectra is an important issue in remote sensing. If this is done carefully, one can obtain information, not only about the total column abundances, but also about the vertical distribution of various constituents in the atmosphere. This work introduces the application of the information operator approach for extracting vertical profile information from ground-based FTIR measurements. The algorithm is implemented and tested within the well-known retrieval code SFIT2, adapting the optimal estimation method such as to take into account only the significant contributions to the solution. In particular, we demonstrate the feasibility of the method in an application to ground-based FTIR spectra taken in the framework of the Network for the Detection of Atmospheric Composition Change (NDACC at Ile de La Réunion (21° S, 55° E. A thorough comparison is made between the original optimal estimation method, Tikhonov regularization and this alternative retrieval algorithm, regarding information content, retrieval robustness and corresponding full error budget evaluation for the target species ozone (O3, nitrous oxide (N2O, methane (CH4, and carbon monoxide (CO. It is shown that the information operator approach performs well and in most cases yields both a better accuracy and stability than the optimal estimation method. Additionally, the information operator approach has the advantage of being less sensitive to the choice of a priori information than the optimal estimation method and Tikhonov regularization. On the other hand, in general the Tikhonov regularization results seem to be slightly better than the optimal estimation method and information operator approach results when it comes to error budgets and column stability.

  15. The contribution of NOAA/CMDL ground-based measurements to understanding long-term stratospheric changes

    Science.gov (United States)

    Montzka, S. A.; Butler, J. H.; Dutton, G.; Thompson, T. M.; Hall, B.; Mondeel, D. J.; Elkins, J. W.

    2005-05-01

    The El-Nino/Southern-Oscillation (ENSO) dominates interannual climate variability and plays, therefore, a key role in seasonal-to-interannual prediction. Much is known by now about the main physical mechanisms that give rise to and modulate ENSO, but the values of several parameters that enter these mechanisms are an important unknown. We apply Extended Kalman Filtering (EKF) for both model state and parameter estimation in an intermediate, nonlinear, coupled ocean--atmosphere model of ENSO. The coupled model consists of an upper-ocean, reduced-gravity model of the Tropical Pacific and a steady-state atmospheric response to the sea surface temperature (SST). The model errors are assumed to be mainly in the atmospheric wind stress, and assimilated data are equatorial Pacific SSTs. Model behavior is very sensitive to two key parameters: (i) μ, the ocean-atmosphere coupling coefficient between SST and wind stress anomalies; and (ii) δs, the surface-layer coefficient. Previous work has shown that δs determines the period of the model's self-sustained oscillation, while μ measures the degree of nonlinearity. Depending on the values of these parameters, the spatio-temporal pattern of model solutions is either that of a delayed oscillator or of a westward propagating mode. Estimation of these parameters is tested first on synthetic data and allows us to recover the delayed-oscillator mode starting from model parameter values that correspond to the westward-propagating case. Assimilation of SST data from the NCEP-NCAR Reanalysis-2 shows that the parameters can vary on fairly short time scales and switch between values that approximate the two distinct modes of ENSO behavior. Rapid adjustments of these parameters occur, in particular, during strong ENSO events. Ways to apply EKF parameter estimation efficiently to state-of-the-art coupled ocean--atmosphere GCMs will be discussed.

  16. Dust impact on surface solar irradiance assessed with model simulations, satellite observations and ground-based measurements

    Science.gov (United States)

    Kosmopoulos, Panagiotis G.; Kazadzis, Stelios; Taylor, Michael; Athanasopoulou, Eleni; Speyer, Orestis; Raptis, Panagiotis I.; Marinou, Eleni; Proestakis, Emmanouil; Solomos, Stavros; Gerasopoulos, Evangelos; Amiridis, Vassilis; Bais, Alkiviadis; Kontoes, Charalabos

    2017-07-01

    This study assesses the impact of dust on surface solar radiation focussing on an extreme dust event. For this purpose, we exploited the synergy of AERONET measurements and passive and active satellite remote sensing (MODIS and CALIPSO) observations, in conjunction with radiative transfer model (RTM) and chemical transport model (CTM) simulations and the 1-day forecasts from the Copernicus Atmosphere Monitoring Service (CAMS). The area of interest is the eastern Mediterranean where anomalously high aerosol loads were recorded between 30 January and 3 February 2015. The intensity of the event was extremely high, with aerosol optical depth (AOD) reaching 3.5, and optical/microphysical properties suggesting aged dust. RTM and CTM simulations were able to quantify the extent of dust impact on surface irradiances and reveal substantial reduction in solar energy exploitation capacity of PV and CSP installations under this high aerosol load. We found that such an extreme dust event can result in Global Horizontal Irradiance (GHI) attenuation by as much as 40-50 % and a much stronger Direct Normal Irradiance (DNI) decrease (80-90 %), while spectrally this attenuation is distributed to 37 % in the UV region, 33 % in the visible and around 30 % in the infrared. CAMS forecasts provided a reliable available energy assessment (accuracy within 10 % of that obtained from MODIS). Spatially, the dust plume resulted in a zonally averaged reduction of GHI and DNI of the order of 150 W m-2 in southern Greece, and a mean increase of 20 W m-2 in the northern Greece as a result of lower AOD values combined with local atmospheric processes. This analysis of a real-world scenario contributes to the understanding and quantification of the impact range of high aerosol loads on solar energy and the potential for forecasting power generation failures at sunshine-privileged locations where solar power plants exist, are under construction or are being planned.

  17. Comparing data obtained from ground-based measurements of the total contents of O3, HNO3,HCl, and NO2 and from their numerical simulation

    Science.gov (United States)

    Virolainen, Ya. A.; Timofeyev, Yu. M.; Polyakov, A. V.; Ionov, D. V.; Kirner, O.; Poberovskii, A. V.; Imhasin, H. Kh.

    2016-01-01

    Chemistry climate models of the gas composition of the atmosphere make it possible to simulate both space and time variations in atmospheric trace-gas components (TGCs) and predict their changes. Both verification and improvement of such models on the basis of a comparison with experimental data are of great importance. Data obtained from the 2009-2012 ground-based spectrometric measurements of the total contents (TCs) of a number of TGCs (ozone, HNO3, HCl, and NO2) in the atmosphere over the St. Petersburg region (Petergof station, St. Petersburg State University) have been compared to analogous EMAC model data. Both daily and monthly means of their TCs for this period have been analyzed in detail. The seasonal dependences of the TCs of the gases under study are shown to be adequately reproduced by the EMAC model. At the same time, a number of disagreements (including systematic ones) have been revealed between model and measurement data. Thus, for example, the EMAC model underestimates the TCs of NO2, HCl, and HNO3, when compared to measurement data, on average, by 14, 22, and 35%, respectively. However, the TC of ozone is overestimated by the EMAC model (on average, by 12%) when compared to measurement data. In order to reveal the reasons for such disagreements between simulated and measured data on the TCs of TGCs, it is necessary to continue studies on comparisons of the contents of TGCs in different atmospheric layers.

  18. Measuring Gap Fraction, Element Clumping Index and LAI in Sierra Forest Stands Using a Full-Waveform Ground-Based Lidar

    Science.gov (United States)

    Zhao, Feng; Strahler, Alan H.; Crystal L. Schaaf; Yao, Tian; Yang, Xiaoyuan; Wang, Zhuosen; Schull, Mitchell A.; Roman, Miguel O.; Woodcock, Curtis E.; Olofsson, Pontus; Ni-Meister, Wenge; Jupp, David L. B.; Lovell, Jenny L.; Culvenor, Darius S.; Newnham, Glenn J.

    2012-01-01

    The Echidna Validation Instrument (EVI), a ground-based, near-infrared (1064 nm) scanning lidar, provides gap fraction measurements, element clumping index measurements, effective leaf area index (LAIe) and leaf area index (LAI) measurements that are statistically similar to those from hemispherical photos. In this research, a new method integrating the range dimension is presented for retrieving element clumping index using a unique series of images of gap probability (Pgap) with range from EVI. From these images, we identified connected gap components and found the approximate physical, rather than angular, size of connected gap component. We conducted trials at 30 plots within six conifer stands of varying height and stocking densities in the Sierra National Forest, CA, in August 2008. The element clumping index measurements retrieved from EVI Pgap image series for the hinge angle region are highly consistent (R2=0.866) with those of hemispherical photos. Furthermore, the information contained in connected gap component size profiles does account for the difference between our method and gap-size distribution theory based method, suggesting a new perspective to measure element clumping index with EVI Pgap image series and also a potential advantage of three dimensional Lidar data for element clumping index retrieval. Therefore further exploration is required for better characterization of clumped condition from EVI Pgap image series.

  19. Comparison of Beijing MST radar and radiosonde horizontal wind measurements

    Science.gov (United States)

    Tian, Yufang; Lü, Daren

    2017-01-01

    To determine the performance and data accuracy of the 50 MHz Beijing Mesosphere-Stratosphere-Troposphere (MST) radar, comparisons of radar measured horizontal winds in the height range 3-25 km with radiosonde observations were made during 2012. A total of 427 profiles and 15 210 data pairs were compared. There was very good agreement between the two types of measurement. Standard deviations of difference (mean difference) for wind direction, wind speed, zonal wind and meridional wind were 24.86° (0.77°), 3.37 (-0.44), 3.33 (-0.32) and 3.58 (-0.25) m s-1, respectively. The annual standard deviations of differences for wind speed were within 2.5-3 m s-1 at all heights apart from 10-15 km, the area of strong winds, where the values were 3-4 m s-1. The relatively larger differences were mainly due to wind field variations in height regions with larger wind speeds, stronger wind shear and the quasi-zero wind layer. A lower MST radar SNR and a lower percentage of data pairs compared will also result in larger inconsistencies. Importantly, this study found that differences between the MST radar and radiosonde observations did not simply increase when balloon drift resulted in an increase in the real-time distance between the two instruments, but also depended on spatiotemporal structures and their respective positions in the contemporary synoptic systems. In this sense, the MST radar was shown to be a unique observation facility for atmospheric dynamics studies, as well as an operational meteorological observation system with a high temporal and vertical resolution.

  20. Measurement Matrix Design for Compressive Sensing Based MIMO Radar

    CERN Document Server

    Yu, Y; Poor, H V

    2011-01-01

    In colocated multiple-input multiple-output (MIMO) radar using compressive sensing (CS), a receive node compresses its received signal via a linear transformation, referred to as measurement matrix. The samples are subsequently forwarded to a fusion center, where an L1-optimization problem is formulated and solved for target information. CS-based MIMO radar exploits the target sparsity in the angle-Doppler-range space and thus achieves the high localization performance of traditional MIMO radar but with many fewer measurements. The measurement matrix is vital for CS recovery performance. This paper considers the design of measurement matrices that achieve an optimality criterion that depends on the coherence of the sensing matrix (CSM) and/or signal-to-interference ratio (SIR). The first approach minimizes a performance penalty that is a linear combination of CSM and the inverse SIR. The second one imposes a structure on the measurement matrix and determines the parameters involved so that the SIR is enhanced...

  1. Dielectric Property Measurements to Support Interpretation of Cassini Radar Data

    Science.gov (United States)

    Jamieson, Corey; Barmatz, M.

    2012-10-01

    Radar observations are useful for constraining surface and near-surface compositions and illuminating geologic processes on Solar System bodies. The interpretation of Cassini radiometric and radar data at 13.78 GHz (2.2 cm) of Titan and other Saturnian icy satellites is aided by laboratory measurements of the dielectric properties of relevant materials. However, existing dielectric measurements of candidate surface materials at microwave frequencies and low temperatures is sparse. We have set up a microwave cavity and cryogenic system to measure the complex dielectric properties of liquid hydrocarbons relevant to Titan, specifically methane, ethane and their mixtures to support the interpretation of spacecraft instrument and telescope radar observations. To perform these measurements, we excite and detect the TM020 mode in a custom-built cavity with small metal loop antennas powered by a Vector Network Analyzer. The hydrocarbon samples are condensed into a cylindrical quartz tube that is axially oriented in the cavity. Frequency sweeps through a resonance are performed with an empty cavity, an empty quartz tube inserted into the cavity, and with a sample-filled quartz tube in the cavity. These sweeps are fit by a Lorentzian line shape, from which we obtain the resonant frequency, f, and quality factor, Q, for each experimental arrangement. We then derive dielectric constants and loss tangents for our samples near 13.78 GHz using a new technique ideally suited for measuring liquid samples. We will present temperature-dependent, dielectric property measurements for liquid methane and ethane. The full interpretation of the radar and radiometry observations of Saturn’s icy satellites depends critically on understanding the dielectric properties of potential surface materials. By investigating relevant liquids and solids we will improve constrains on lake depths, volumes and compositions, which are important to understand Titan’s carbon/organic cycle and inevitably

  2. Design and application of a mobile ground-based observatory for continuous measurements of atmospheric trace-gas and criteria pollutant species

    Directory of Open Access Journals (Sweden)

    S. E. Bush

    2015-01-01

    Full Text Available Ground-based measurements of atmospheric trace gas species and criteria pollutants are essential for understanding emissions dynamics across space and time. Gas composition in the surface 50 m has the greatest direct impacts on human health as well as ecosystem processes, hence data at this level is necessary for addressing carbon cycle and public health related questions. However, such surface data are generally associated with stationary measurement towers, where spatial representation is limited due to the high cost of establishing and maintaining an extensive network of measurement stations. We describe here a compact mobile laboratory equipped to provide high-precision, high-frequency, continuous, on-road synchronous measurements of CO2, CO, CH4, H2O, NOx, O3, aerosol, meteorological, and geospatial position data. The mobile laboratory has been deployed across the western USA. In addition to describing the vehicle and its capacity, we present data that illustrate the use of the laboratory as a powerful tool for investigating the spatial structure of urban trace gas emissions and criteria pollutants at spatial scales ranging from single streets to whole ecosystem and regional scales. We identify fugitive urban CH4 emissions and assess the magnitude of CH4 emissions from known point sources. We illustrate how such a mobile laboratory can be used to better understand emissions dynamics and quantify emissions ratios associated with trace gas emissions from wildfire incidents. Lastly, we discuss additional mobile laboratory applications in health and urban metabolism.

  3. Design and application of a mobile ground-based observatory for continuous measurements of atmospheric trace gas and criteria pollutant species

    Science.gov (United States)

    Bush, S. E.; Hopkins, F. M.; Randerson, J. T.; Lai, C.-T.; Ehleringer, J. R.

    2015-08-01

    Ground-based measurements of atmospheric trace gas species and criteria pollutants are essential for understanding emissions dynamics across space and time. Gas composition in the lower 50 m of the atmosphere has the greatest direct impacts on human health as well as ecosystem processes; hence data at this level are necessary for addressing carbon-cycle- and public-health-related questions. However, such surface data are generally associated with stationary measurement towers, where spatial representation is limited due to the high cost of establishing and maintaining an extensive network of measurement stations. We describe here a compact mobile laboratory equipped to provide high-precision, high-frequency, continuous, on-road synchronous measurements of CO2, CO, CH4, H2O, NOx, O3, aerosol, meteorological, and geospatial position data. The mobile laboratory has been deployed across the western USA. In addition to describing the vehicle and its capacity, we present data that illustrate the use of the laboratory as a powerful tool for investigating the spatial structure of urban trace gas emissions and criteria pollutants at spatial scales ranging from single streets to whole ecosystem and regional scales. We assess the magnitude of known point sources of CH4 and also identify fugitive urban CH4 emissions. We illustrate how such a mobile laboratory can be used to better understand emissions dynamics and quantify emissions ratios associated with trace gas emissions from wildfire incidents. Lastly, we discuss additional mobile laboratory applications in health and urban metabolism.

  4. Design and application of a mobile ground-based observatory for continuous measurements of atmospheric trace-gas and criteria pollutant species

    Science.gov (United States)

    Bush, S. E.; Hopkins, F. M.; Randerson, J. T.; Lai, C.-T.; Ehleringer, J. R.

    2015-01-01

    Ground-based measurements of atmospheric trace gas species and criteria pollutants are essential for understanding emissions dynamics across space and time. Gas composition in the surface 50 m has the greatest direct impacts on human health as well as ecosystem processes, hence data at this level is necessary for addressing carbon cycle and public health related questions. However, such surface data are generally associated with stationary measurement towers, where spatial representation is limited due to the high cost of establishing and maintaining an extensive network of measurement stations. We describe here a compact mobile laboratory equipped to provide high-precision, high-frequency, continuous, on-road synchronous measurements of CO2, CO, CH4, H2O, NOx, O3, aerosol, meteorological, and geospatial position data. The mobile laboratory has been deployed across the western USA. In addition to describing the vehicle and its capacity, we present data that illustrate the use of the laboratory as a powerful tool for investigating the spatial structure of urban trace gas emissions and criteria pollutants at spatial scales ranging from single streets to whole ecosystem and regional scales. We identify fugitive urban CH4 emissions and assess the magnitude of CH4 emissions from known point sources. We illustrate how such a mobile laboratory can be used to better understand emissions dynamics and quantify emissions ratios associated with trace gas emissions from wildfire incidents. Lastly, we discuss additional mobile laboratory applications in health and urban metabolism.

  5. Climatology of Ultra Violet (UV) irradiance as measured through the Belgian ground-based monitoring network during the time period of 1995-2014

    Science.gov (United States)

    Pandey, Praveen; Gillotay, Didier; Depiesse, Cedric

    2016-04-01

    In this study we describe the network of ground-based ultraviolet (UV) radiation monitoring stations in Belgium. The evolution of the entire network, together with the details of measuring instruments is given. The observed cumulative irradiances -UVB, UVA and total solar irradiance (TSI)- over the course of measurement for three stations -a northern (Ostende), central (Uccle) and a southern (Redu)- are shown. The longest series of measurement shown in this study is at Uccle, Brussels, from 1995 till 2014. Thus, the variation of the UV index (UVI), together with the variation of irradiances during summer and winter months at Uccle are shown as a part of this climatological study. The trend of UVB irradiance over the above mentioned three stations is shown. This UVB trend is studied in conjunction with the long-term satellite-based total column ozone value over Belgium, which shows two distinct trends marked by a change point. The total column ozone trend following the change point is positive. It is also seen that the UVB trend is positive for the urban/sub-urban sites: Uccle and Redu. Whereas the UVB trend at Ostende, which is a coastal site, is not positive. A possible explanation of this relation between total column ozone and UVB trend could be associated with aerosols, which is shown in this paper by means of a radiative transfer model based study -as a part of a preliminary investigation. It is seen that the UVI is influenced by the type of aerosols.

  6. An Investigation of Widespread Ozone Damage to the Soybean Crop in the Upper Midwest Determined From Ground-Based and Satellite Measurements

    Science.gov (United States)

    Fishman, Jack; Creilson, John K.; Parker, Peter A.; Ainsworth, Elizabeth A.; Vining, G. Geoffrey; Szarka, John; Booker, Fitzgerald L.; Xu, Xiaojing

    2010-01-01

    Elevated concentrations of ground-level ozone (O3) are frequently measured over farmland regions in many parts of the world. While numerous experimental studies show that O3 can significantly decrease crop productivity, independent verifications of yield losses at current ambient O3 concentrations in rural locations are sparse. In this study, soybean crop yield data during a 5-year period over the Midwest of the United States were combined with ground and satellite O3 measurements to provide evidence that yield losses on the order of 10% could be estimated through the use of a multiple linear regression model. Yield loss trends based on both conventional ground-based instrumentation and satellite-derived tropospheric O3 measurements were statistically significant and were consistent with results obtained from open-top chamber experiments and an open-air experimental facility (SoyFACE, Soybean Free Air Concentration Enrichment) in central Illinois. Our analysis suggests that such losses are a relatively new phenomenon due to the increase in background tropospheric O3 levels over recent decades. Extrapolation of these findings supports previous studies that estimate the global economic loss to the farming community of more than $10 billion annually.

  7. A long-term study of aerosol-cloud interactions and their radiative effect at the Southern Great Plains using ground-based measurements

    Science.gov (United States)

    Sena, Elisa T.; McComiskey, Allison; Feingold, Graham

    2016-09-01

    Empirical estimates of the microphysical response of cloud droplet size distribution to aerosol perturbations are commonly used to constrain aerosol-cloud interactions in climate models. Instead of empirical microphysical estimates, here macroscopic variables are analyzed to address the influence of aerosol particles and meteorological descriptors on instantaneous cloud albedo and the radiative effect of shallow liquid water clouds. Long-term ground-based measurements from the Atmospheric Radiation Measurement (ARM) program over the Southern Great Plains are used. A broad statistical analysis was performed on 14 years of coincident measurements of low clouds, aerosol, and meteorological properties. Two cases representing conflicting results regarding the relationship between the aerosol and the cloud radiative effect were selected and studied in greater detail. Microphysical estimates are shown to be very uncertain and to depend strongly on the methodology, retrieval technique and averaging scale. For this continental site, the results indicate that the influence of the aerosol on the shallow cloud radiative effect and albedo is weak and that macroscopic cloud properties and dynamics play a much larger role in determining the instantaneous cloud radiative effect compared to microphysical effects. On a daily basis, aerosol shows no correlation with cloud radiative properties (correlation = -0.01 ± 0.03), whereas the liquid water path shows a clear signal (correlation = 0.56 ± 0.02).

  8. Antenna Pattern Measurements for Oceanographic Radars Using Small Aerial Drones

    Science.gov (United States)

    Washburn, L.; Romero, E.; Johnson, C.; Emery, B.; Gotschalk, C.

    2016-12-01

    We describe a method employing small, quadrotor drone aircraft for antenna pattern measurements (APMs) of high-frequency (HF) oceanographic radars used for observing ocean surface currents. During APMs, the drones carry small radio signal sources in circular arcs centered on receive antenna arrays at HF radar sites, similarly to conventional boat-based APMs. Previous studies have shown that accurate surface current measurements using HF radar require APMs. In the absence of APMs so-called "ideal" antenna patterns are assumed and these can differ substantially from measured patterns. Typically APMs are obtained using small research vessels, an expensive procedure requiring sea-going technicians, a vessel, and other equipment necessary to support small boat operations. Adverse sea conditions and obstacles in the water can limit the ability of small vessels to conduct APMs. In contrast, drones can successfully conduct APMs at much lower cost and in a broader range of sea states with comparable accuracy. Drone-based patterns can extend farther shoreward since they are not affected by the surf zone and thereby expand the range of bearings over which APMs are conducted. We describe recent progress in the use of drones for APMs including: (1) evaluation of the accuracy APM flight trajectories; (2) estimates of radial velocity components due to deviation of flight paths from circular arcs; and (3) the effects of altitude with respect to ground wave versus direct signal propagation. Use of drones simplifies APMs and it is hoped that this will lead to more frequent APMs and improved surface current measurements from HF radar networks.

  9. Maritime target and sea clutter measurements with a coherent Doppler polarimetric surveillance radar

    NARCIS (Netherlands)

    Smith, A.J.E.; Gelsema, S.J.; Kester, L.J.H.M.; Melief, H.W.; Premel Cabic, G.; Theil, A.; Woudenberg, E.

    2002-01-01

    Doppler polarimetry in a surveillance radar for the maritime surface picture is considered. This radar must be able to detect low-RCS targets in littoral environments. Measurements on such targets have been conducted with a coherent polarimetric measurement radar in March 2001 and preliminary

  10. Maritime target and sea clutter measurements with a coherent Doppler polarimetric surveillance radar

    NARCIS (Netherlands)

    Smith, A.J.E.; Gelsema, S.J.; Kester, L.J.H.M.; Melief, H.W.; Premel Cabic, G.; Theil, A.; Woudenberg, E.

    2002-01-01

    Doppler polarimetry in a surveillance radar for the maritime surface picture is considered. This radar must be able to detect low-RCS targets in littoral environments. Measurements on such targets have been conducted with a coherent polarimetric measurement radar in March 2001 and preliminary result

  11. Surface Current Measurements In Terra Nova Bay By Hf Radar

    Science.gov (United States)

    Flocco, D.; Falco, P.; Wadhams, P.; Spezie, G.

    We present the preliminary results of a field experiment carried out within frame- work of the CLIMA project of the Italian National Programme for Antarctic Research (PNRA) and in cooperation with the Scott Polar Research Institute of Cambridge. Dur- ing the second period (02/12/1999-23/01/2000) of the XV Italian expedition a coastal radar was used to characterize the current field in the area of Terra Nova Bay (TNB). One of the aims of the CLIMA (Climatic Long-term Interactions for the Mass balance in Antarctica) project is to determine the role of the polynya in the sea ice mass bal- ance, water structure and local climate. The OSCR-II experiment was planned in order to provide surface current measurements in the area of TNB polynya, one of the most important coastal polynya of the Ross Sea. OSCR (Ocean Surface Current Radar) is a shore based, remote sensing system designed to measure sea surface currents in coastal waters. Two radar sites (a master and a slave) provide with radial current mea- surements; data combined from both sites yield the total current vector. Unfortunately the master and slave stations did not work together throughout the whole period of the experiment. A description of the experiment and a discussion of the results, will be proposed.

  12. CO measurements from the ACE-FTS satellite instrument: data analysis and validation using ground-based, airborne and spaceborne observations

    Directory of Open Access Journals (Sweden)

    C. Clerbaux

    2007-10-01

    Full Text Available The Atmospheric Chemistry Experiment (ACE mission was launched in August 2003 to sound the atmosphere by solar occultation. Carbon monoxide (CO, a good tracer of pollution plumes and atmospheric dynamics, is one of the key species provided by the primary instrument, the ACE-Fourier Transform Spectrometer (ACE-FTS. This instrument performs measurements in both the CO 1-0 and 2-0 ro-vibrational bands, from which vertically resolved CO concentration profiles are retrieved, from the mid-troposphere to the thermosphere. This paper presents an updated description of the ACE-FTS version 2.2 CO data product, along with a comprehensive validation of these profiles using available observations (February 2004 to December 2006. We have compared the CO partial columns with ground-based measurements using Fourier transform infrared spectroscopy and millimeter wave radiometry, and the volume mixing ratio profiles with airborne (both high-altitude balloon flight and airplane observations. CO satellite observations provided by nadir-looking instruments (MOPITT and TES as well as limb-viewing remote sensors (MIPAS, SMR and MLS were also compared with the ACE-FTS CO products. We show that the ACE-FTS measurements provide CO profiles with small retrieval errors (better than 5% from the upper troposphere to 40 km, and better than 10% above. These observations agree well with the correlative measurements, considering the rather loose coincidence criteria in some cases. Based on the validation exercise we assess the following uncertainties to the ACE-FTS measurement data: better than 15% in the upper troposphere (8–12 km, than 30% in the lower stratosphere (12–30 km, and than 25% from 30 to 100 km.

  13. CO measurements from the ACE-FTS satellite instrument: data analysis and validation using ground-based, airborne and spaceborne observations

    Directory of Open Access Journals (Sweden)

    C. Clerbaux

    2008-05-01

    Full Text Available The Atmospheric Chemistry Experiment (ACE mission was launched in August 2003 to sound the atmosphere by solar occultation. Carbon monoxide (CO, a good tracer of pollution plumes and atmospheric dynamics, is one of the key species provided by the primary instrument, the ACE-Fourier Transform Spectrometer (ACE-FTS. This instrument performs measurements in both the CO 1-0 and 2-0 ro-vibrational bands, from which vertically resolved CO concentration profiles are retrieved, from the mid-troposphere to the thermosphere. This paper presents an updated description of the ACE-FTS version 2.2 CO data product, along with a comprehensive validation of these profiles using available observations (February 2004 to December 2006. We have compared the CO partial columns with ground-based measurements using Fourier transform infrared spectroscopy and millimeter wave radiometry, and the volume mixing ratio profiles with airborne (both high-altitude balloon flight and airplane observations. CO satellite observations provided by nadir-looking instruments (MOPITT and TES as well as limb-viewing remote sensors (MIPAS, SMR and MLS were also compared with the ACE-FTS CO products. We show that the ACE-FTS measurements provide CO profiles with small retrieval errors (better than 5% from the upper troposphere to 40 km, and better than 10% above. These observations agree well with the correlative measurements, considering the rather loose coincidence criteria in some cases. Based on the validation exercise we assess the following uncertainties to the ACE-FTS measurement data: better than 15% in the upper troposphere (8–12 km, than 30% in the lower stratosphere (12–30 km, and than 25% from 30 to 100 km.

  14. Establishing a long-term, global stratospheric HNO3 data record combining UARS MLS with Aura MLS data by means of ground-based measurements

    Science.gov (United States)

    Fiorucci, I.; Muscari, G.; Froidevaux, L.; Santee, M. L.; de Zafra, R. L.

    2009-12-01

    Nitric Acid (HNO3) is a major player in processes controlling stratospheric ozone depletion. It is a primary reservoir for reactive nitrogen in the stratosphere and has a key role in both the activation and the deactivation of chlorine and bromine species. Since 1993 HNO3 observations have been carried out by means of a Ground-Based Millimeter-wave Spectrometer (GBMS) from a variety of sites in both hemispheres, at polar and mid-latitudes. The GBMS observes a cluster of weak emission lines centered at 269 GHz, with a pass band of 600 MHz and a resolution of 1 MHz. The retrieval of vertical profiles from the pressure-blended multiple line spectra is carried out with an Optimal Estimation Method. The GBMS provides HNO3 profiles from ~15 up to 50 km, with a vertical resolution of 6-8 km and a total uncertainty of ~15%. GBMS HNO3 measurements have been used within GOZCARDS (Global Ozone Chemistry and Related Trace gas Data Records for the Stratosphere), a multi-year MEaSUREs project, aimed at developing a long-term, commonly-formatted Earth system data record (ESDR) of stratospheric constituents relevant to the issues of ozone decline and expected recovery. This data record is based mainly on satellite-derived measurements. Nevertheless, ground-based observations can be critically used for assessing offsets between satellite data sets, as well as to fill gaps in temporal coverage when possible. Since the GBMS has been operated for more than 15 years (with minor instrumental upgrading), the GBMS HNO3 data record is well-suited for the GOZCARDS objectives; it offers a unique opportunity for the cross-calibration of HNO3 measurements from the NASA/JPL Microwave Limb Sounder (MLS) experiments (aboard the Upper Atmosphere Research Satellite (UARS) from 1991 to 1999, and on the Earth Observing System (EOS) Aura mission from 2004 to date). In this study we compare Aura MLS observations and GBMS HNO3 measurements obtained from the Italian Alpine station of Plateau Rosa, during

  15. Summertime tropospheric ozone enhancement associated with a cold front passage due to stratosphere-to-troposphere transport and biomass burning: Simultaneous ground-based lidar and airborne measurements

    Science.gov (United States)

    Kuang, Shi; Newchurch, Michael J.; Johnson, Matthew S.; Wang, Lihua; Burris, John; Pierce, Robert B.; Eloranta, Edwin W.; Pollack, Ilana B.; Graus, Martin; de Gouw, Joost; Warneke, Carsten; Ryerson, Thomas B.; Markovic, Milos Z.; Holloway, John S.; Pour-Biazar, Arastoo; Huang, Guanyu; Liu, Xiong; Feng, Nan

    2017-01-01

    Stratosphere-to-troposphere transport (STT) and biomass burning (BB) are two important natural sources for tropospheric ozone that can result in elevated ozone and air-quality episode events. High-resolution observations of multiple related species are critical for complex ozone source attribution. In this article, we present an analysis of coinciding ground-based and airborne observations, including ozone lidar, ozonesonde, high spectral resolution lidar (HSRL), and multiple airborne in situ measurements, made on 28 and 29 June 2013 during the Southeast Nexus field campaign. The ozone lidar and HSRL reveal detailed ozone and aerosol structures as well as the temporal evolution associated with a cold front passage. The observations also captured two enhanced (+30 ppbv) ozone layers in the free troposphere (FT), which were determined from this study to be caused by a mixture of BB and stratospheric sources. The mechanism for this STT is tropopause folding associated with a cutoff upper level low-pressure system according to the analysis of its potential vorticity structure. The depth of the tropopause fold appears to be shallow for this case compared to events observed in other seasons; however, the impact on lower tropospheric ozone was clearly observed. This event suggests that strong STT may occur in the southeast United States during the summer and can potentially impact lower troposphere during these times. Statistical analysis of the airborne observations of trace gases suggests a coincident influence of BB transport in the FT impacting the vertical structure of ozone during this case study.

  16. Aerosol backscatter measurements at 10. 6 micrometers with airborne and ground-based CO sub 2 Doppler lidars over the Colorado high plains. 2. Backscatter structure

    Energy Technology Data Exchange (ETDEWEB)

    Bowdle, D.A. (Univ. of Alabama, Huntsville (USA)); Rothermel, J. (NASA Marshall Space Flight Center, Huntsville, AL (USA)); Vaughan, J.M. (Royal Signals and Radar Establishment, Worcestershire (England)); Post, M.J. (National Oceanic and Atmospheric Administration, Boulder, CO (USA))

    1991-03-20

    Measurements of tropospheric aerosol volume backscatter coefficients at 10.6-{mu}m wavelength were obtained with airborne continuous wave and ground-based pulsed CO{sub 2} Doppler lidars over the Colorado High Plains during a 20-day period in summer 1982. A persistent 'background' layer was found between 6- and 10-km altitude, with a generally uniform backscatter mixing ratio of {approximately}10{sup {minus}10} m{sup 2} kg{sup {minus}1} sr{sup {minus}1}. The upper boundary of this background layer varied with the tropopause height; the lower boundary varied with the strength and diurnal cycle of convective mixing in the planetary boundary layer (PBL). For quiescent meteorological conditions the transition from the PBL to the background layer was usually very sharp, with backscatter decreases sometimes as large as 3 decades in {approximately}70 m. Sharp gradients were also found at the boundaries of shallow (tens of meters) subvisible cirrus clouds. For less stable conditions, associated with vertical aerosol transport by deep comuliform clouds, backscatter tended to decrease exponentially with altitude.

  17. Aerosol backscatter measurements at 10. 6 micrometers with airborne and ground-based CO sub 2 Doppler lidars over the Colorado high plains. 1. Lidar intercomparison

    Energy Technology Data Exchange (ETDEWEB)

    Bowdle, D.A. (Univ. of Alabama, Huntsville (USA)); Rothermel, J. (NASA Marshall Space Flight Center, Huntsville, AL (USA)); Vaughan, J.M.; Brown, D.W. (Royal Signals and Radar Establishment, Worcestershire (England)); Post, M.J. (National Oceanic and Atmospheric Administration, Boulder, CO (USA))

    1991-03-20

    An airborne continuous wave (CW) focused CO{sub 2} Doppler lidar and a ground-based pulsed CO{sub 2} Doppler lidar were used to obtain seven pairs of comparative measurements of tropospheric aerosol backscatter profiles at 10.6 {mu}m wavelength, near Denver, Colorado, during a 20-day period in July 1982. In regions of uniform backscatter the two lidars show good agreement, with differences usually less than {approximately}50% near 8-km altitude and less than a factor of 2 or 3 elsewhere but with the pulsed lidar often lower than the CW lidar. Near sharp backscatter gradients the two lidars show poorer agreement, with the pulsed lidar usually higher than the CW lidar. Most discrepancies arise from a combination of atmospheric factors and instrument factors, particularly small-scale areal and temporal backscatter heterogeneity above the planetary boundary layer, unusual large-scale vertical backscatter structure in the upper troposphere and lower stratosphere, and differences in the spatial resolution, detection threshold, and noise estimation for the two lidars.

  18. Simultaneous ground-based and airborne measurements of biogenic VOC oxidation products using iodide-adduct HR-ToF-CIMS in the Southeast U.S

    Science.gov (United States)

    Lee, B.; Mohr, C.; Lopez-Hilfiker, F.; Warneke, C.; Graus, M.; Gilman, J.; Lerner, B. M.; Pollack, I. B.; Ryerson, T. B.; Roberts, J. M.; Edwards, P. M.; Brown, S. S.; Holloway, J.; Aikin, K.; Dube, W. P.; Liao, J.; Welti, A.; Middlebrook, A. M.; Nowak, J. B.; Neuman, J. A.; Brioude, J. F.; McKeen, S. A.; Hanisco, T. F.; Kaiser, J.; Keutsch, F. N.; Wolfe, G. M.; Hallquist, M.; Trainer, M.; De Gouw, J. A.; Thornton, J. A.

    2013-12-01

    We present measurements by two high-resolution time-of-flight chemical-ionization mass spectrometers (HR-ToF-CIMS) during the Southeast Atmosphere Study in June and July of 2013. Both HR-ToF-CIMS used iodide as the reagent ion, which provides minimum fragmentation during ionization. Isoprene and monoterpene oxidation byproducts such as hydroxy hydroperoxides, carboxylic acids and organic nitrates, were ubiquitous in the mass spectra. In addition, we observed select inorganic gases such as N2O5 and ClNO2. The flight instrument was deployed aboard the NOAA WP-3D during SENEX, which explored the lower atmosphere over the Southeast U.S., logging a total of 125 flight hours. These measurements provide insight into the spatial and temporal variation of these types of compounds and the influence of natural gas fields, power plants, biomass burning, urban and biogenic emissions on their abundance under both day and nighttime conditions. The ground-based instrument was located near Brent, Alabama as part of the SOAS campaign and utilized the Filter Inlet for Gas and AEROsol (FIGAERO) - developed at the University of Washington - which allows measurement of both the gas and particle phases. Continuous observations spanning more than 4 weeks show the diurnal variability and the influence of meteorology and anthropogenic emissions on the gas-particle partitioning. Flights during SENEX over the ground site provide a unique opportunity to investigate the vertical distribution of a whole suite of these chemical species measured by these two cross-calibrated nearly identical instruments.

  19. Methane cross-validation between three Fourier transform spectrometers: SCISAT ACE-FTS, GOSAT TANSO-FTS, and ground-based FTS measurements in the Canadian high Arctic

    Science.gov (United States)

    Holl, Gerrit; Walker, Kaley A.; Conway, Stephanie; Saitoh, Naoko; Boone, Chris D.; Strong, Kimberly; Drummond, James R.

    2016-05-01

    We present cross-validation of remote sensing measurements of methane profiles in the Canadian high Arctic. Accurate and precise measurements of methane are essential to understand quantitatively its role in the climate system and in global change. Here, we show a cross-validation between three data sets: two from spaceborne instruments and one from a ground-based instrument. All are Fourier transform spectrometers (FTSs). We consider the Canadian SCISAT Atmospheric Chemistry Experiment (ACE)-FTS, a solar occultation infrared spectrometer operating since 2004, and the thermal infrared band of the Japanese Greenhouse Gases Observing Satellite (GOSAT) Thermal And Near infrared Sensor for carbon Observation (TANSO)-FTS, a nadir/off-nadir scanning FTS instrument operating at solar and terrestrial infrared wavelengths, since 2009. The ground-based instrument is a Bruker 125HR Fourier transform infrared (FTIR) spectrometer, measuring mid-infrared solar absorption spectra at the Polar Environment Atmospheric Research Laboratory (PEARL) Ridge Laboratory at Eureka, Nunavut (80° N, 86° W) since 2006. For each pair of instruments, measurements are collocated within 500 km and 24 h. An additional collocation criterion based on potential vorticity values was found not to significantly affect differences between measurements. Profiles are regridded to a common vertical grid for each comparison set. To account for differing vertical resolutions, ACE-FTS measurements are smoothed to the resolution of either PEARL-FTS or TANSO-FTS, and PEARL-FTS measurements are smoothed to the TANSO-FTS resolution. Differences for each pair are examined in terms of profile and partial columns. During the period considered, the number of collocations for each pair is large enough to obtain a good sample size (from several hundred to tens of thousands depending on pair and configuration). Considering full profiles, the degrees of freedom for signal (DOFS) are between 0.2 and 0.7 for TANSO-FTS and

  20. Measurements of mesospheric ice aerosols using radars and rockets

    Energy Technology Data Exchange (ETDEWEB)

    Strelnikova, Irina; Li, Qiang; Strelnikov, Boris; Rapp, Markus [Leibniz Institute of Atmospheric Physics, Kuehlungsborn (Germany)

    2010-07-01

    Polar summer mesopause is the coldest region of Earth's atmosphere with temperatures as low as minus 130 C. In this extreme environment ice aerosol layers have appeared. Larger aerosols can be seen from the ground as clouds known as NLC (Noctilucent clouds). Ice aerosols from sub-visible range give rise to the phenomena known as Polar Mesosphere Sommer Echo (PMSE). For efficient scattering, electron number density must be structured at the radar half wavelength (Bragg condition). The general requirement to allow for the observation of structures at VHF and higher frequencies is that the dust size (and charge number) must be large enough to extend the convective-diffusive subrange of the energy spectrum of electrons (by reducing their diffusivity) to the wavelength which is shorter than the Bragg-scale of the probing radar. In this paper we present main results of ice particles measurements inside the PMSE layers obtained from in situ rocket soundings and newly developed radar techniques.

  1. Planar Near-Field Measurements of Ground Penetrating Radar Antennas

    DEFF Research Database (Denmark)

    Meincke, Peter; Hansen, Thorkild

    2004-01-01

    Planar near-field measurements are formulated for a general ground penetrating radar (GPR) antenna. A total plane-wave scattering matrix is defined for the system consisting of the GPR antenna and the planar air-soil interface. The transmitting spectrum of the GPR antenna is expressed in terms...... of measurements obtained with a buried probe as the GPR antenna moves over a scan plane on the ground. A numerical example in which the scan plane is finite validates the expressions for the spectrum of the GPR antenna....

  2. Radar Measurement of Human Polarimetric Micro-Doppler

    Directory of Open Access Journals (Sweden)

    David Tahmoush

    2013-01-01

    Full Text Available We use polarimetric micro-Doppler for the detection of arm motion, especially for the classification of whether someone has their arms swinging and is thus unloaded. The arm is often bent at the elbow, providing a surface somewhat similar to a dihedral. This is distinct from the more planar surfaces of the body which allows us to isolate the signals of the arm (and knee. The dihedral produces a double bounce that can be seen in polarimetric radar data by measuring the phase difference between HH and VV. This measurement can then be used to determine whether the subject is unloaded.

  3. Radar Measurements of Small Debris from HUSIR and HAX

    Science.gov (United States)

    Hamilton J.; Blackwell, C.; McSheehy, R.; Juarez, Q.; Anz-Meador, P.

    2017-01-01

    For many years, the NASA Orbital Debris Program Office has been collecting measurements of the orbital debris environment from the Haystack Ultra-wideband Satellite Imaging Radar (HUSIR) and its auxiliary (HAX). These measurements sample the small debris population in low earth orbit (LEO). This paper will provide an overview of recent observations and highlight trends in selected debris populations. Using the NASA size estimation model, objects with a characteristic size of 1 cm and larger observed from HUSIR will be presented. Also, objects with a characteristic size of 2 cm and larger observed from HAX will be presented.

  4. Radar Measurements of Small Debris from HUSIR and HAX

    Science.gov (United States)

    Hamilton, Joseph; Blackwell, Chris; McSheehy, Richard; Juarez, Quanette

    2017-01-01

    For many years, the NASA Orbital Debris Program Office has been collecting measurements of the orbital debris environment from the Haystack Ultra-wideband Satellite Imaging Radar (HUSIR) and its auxiliary (HAX). These measurements sample the small debris population in low earth orbit (LEO). This paper will provide an overview of recent observations and highlight trends in selected debris populations. Using the NASA size estimation model, objects with a characteristic size of 1 cm and larger observed from HUSIR will be presented. Also, objects with a characteristic size of 2 cm and larger observed from HAX will be presented.

  5. First HF radar measurements of summer mesopause echoes at SURA

    Directory of Open Access Journals (Sweden)

    A. N. Karashtin

    Full Text Available HF sounding of the mesosphere was first carried out at SURA in summer 1994 at frequencies in the range 8–9 MHz using one of the sub-arrays of the SURA heating facility. The observations had a range resolution of 3 km. Almost all measurements indicated the presence of strong radar returns from altitudes between 83 and 90 km with features very similar to VHF measurements of mesopause summer echoes at mid-latitudes and polar mesopause summer echoes. In contrast to VHF observations, HF mesopause echoes are almost always present.

  6. First HF radar measurements of summer mesopause echoes at SURA

    Science.gov (United States)

    Karashtin, A. N.; Shlyugaev, Y. V.; Abramov, V. I.; Belov, I. F.; Berezin, I. V.; Bychkov, V. V.; Eryshev, E. B.; Komrakov, G. P.

    1997-07-01

    HF sounding of the mesosphere was first carried out at SURA in summer 1994 at frequencies in the range 8-9 MHz using one of the sub-arrays of the SURA heating facility. The observations had a range resolution of 3 km. Almost all measurements indicated the presence of strong radar returns from altitudes between 83 and 90 km with features very similar to VHF measurements of mesopause summer echoes at mid-latitudes and polar mesopause summer echoes. In contrast to VHF observations, HF mesopause echoes are almost always present.

  7. Time series analysis of ground-based microwave measurements at K- and V-bands to detect temporal changes in water vapor and temperature profiles

    Science.gov (United States)

    Panda, Sibananda; Sahoo, Swaroop; Pandithurai, Govindan

    2017-01-01

    Ground-based microwave measurements performed at water vapor and oxygen absorption line frequencies are widely used for remote sensing of tropospheric water vapor density and temperature profiles, respectively. Recent work has shown that Bayesian optimal estimation can be used for improving accuracy of radiometer retrieved water vapor and temperature profiles. This paper focuses on using Bayesian optimal estimation along with time series of independent frequency measurements at K- and V-bands. The measurements are used along with statistically significant but short background data sets to retrieve and sense temporal variations and gradients in water vapor and temperature profiles. To study this capability, the Indian Institute of Tropical Meteorology (IITM) deployed a microwave radiometer at Mahabubnagar, Telangana, during August 2011 as part of the Integrated Ground Campaign during the Cloud Aerosol Interaction and Precipitation Enhancement Experiment (CAIPEEX-IGOC). In this study, temperature profiles for the first time have been estimated using short but statistically significant background information so as to improve the accuracy of the retrieved profiles as well as to be able to detect gradients. Estimated water vapor and temperature profiles are compared with those taken from the reanalysis data updated by the Earth System Research Laboratory, National Oceanic and Atmospheric Administration (NOAA), to determine the range of possible errors. Similarly, root mean square errors are evaluated for a month for water vapor and temperature profiles to estimate the accuracy of the retrievals. It is found that water vapor and temperature profiles can be estimated with an acceptable accuracy by using a background information data set compiled over a period of 1 month.

  8. Characterization and error analysis of an operational retrieval algorithm for estimating column ozone and aerosol properties from ground-based ultra-violet irradiance measurements

    Science.gov (United States)

    Taylor, Thomas E.; L'Ecuyer, Tristan; Slusser, James; Stephens, Graeme; Krotkov, Nick; Davis, John; Goering, Christian

    2005-08-01

    Extensive sensitivity and error characteristics of a recently developed optimal estimation retrieval algorithm which simultaneously determines aerosol optical depth (AOD), aerosol single scatter albedo (SSA) and total ozone column (TOC) from ultra-violet irradiances are described. The algorithm inverts measured diffuse and direct irradiances at 7 channels in the UV spectral range obtained from the United States Department of Agriculture's (USDA) UV-B Monitoring and Research Program's (UVMRP) network of 33 ground-based UV-MFRSR instruments to produce aerosol optical properties and TOC at all seven wavelengths. Sensitivity studies of the Tropospheric Ultra-violet/Visible (TUV) radiative transfer model performed for various operating modes (Delta-Eddington versus n-stream Discrete Ordinate) over domains of AOD, SSA, TOC, asymmetry parameter and surface albedo show that the solutions are well constrained. Realistic input error budgets and diagnostic and error outputs from the retrieval are analyzed to demonstrate the atmospheric conditions under which the retrieval provides useful and significant results. After optimizing the algorithm for the USDA site in Panther Junction, Texas the retrieval algorithm was run on a cloud screened set of irradiance measurements for the month of May 2003. Comparisons to independently derived AOD's are favorable with root mean square (RMS) differences of about 3% to 7% at 300nm and less than 1% at 368nm, on May 12 and 22, 2003. This retrieval method will be used to build an aerosol climatology and provide ground-truthing of satellite measurements by running it operationally on the USDA UV network database.

  9. Calibration of Ground-based Lidar instrument

    DEFF Research Database (Denmark)

    Villanueva, Héctor; Gómez Arranz, Paula

    This report presents the result of the lidar calibration performed for the given Ground-based Lidar at DTU’s test site for large wind turbines at Høvsøre, Denmark. Calibration is here understood as the establishment of a relation between the reference wind speed measurements with measurement unce...

  10. Calibration of Ground -based Lidar instrument

    DEFF Research Database (Denmark)

    Villanueva, Héctor; Yordanova, Ginka

    This report presents the result of the lidar calibration performed for the given Ground-based Lidar at DTU’s test site for large wind turbines at Høvsøre, Denmark. Calibration is here understood as the establishment of a relation between the reference wind speed measurements with measurement unce...

  11. NDACC/SAOZ UV-visible total ozone measurements: improved retrieval and comparison with correlative ground-based and satellite observations

    Directory of Open Access Journals (Sweden)

    F. Hendrick

    2011-06-01

    Full Text Available Accurate long-term monitoring of total ozone is one of the most important requirements for identifying possible natural or anthropogenic changes in the composition of the stratosphere. For this purpose, the NDACC (Network for the Detection of Atmospheric Composition Change UV-visible Working Group has made recommendations for improving and homogenizing the retrieval of total ozone columns from twilight zenith-sky visible spectrometers. These instruments, deployed all over the world in about 35 stations, allow measuring total ozone twice daily with limited sensitivity to stratospheric temperature and cloud cover. The NDACC recommendations address both the DOAS spectral parameters and the calculation of air mass factors (AMF needed for the conversion of O3 slant column densities into vertical column amounts. The most important improvement is the use of O3 AMF look-up tables calculated using the TOMS V8 (TV8 O3 profile climatology, that allows accounting for the dependence of the O3 AMF on the seasonal and latitudinal variations of the O3 vertical distribution. To investigate their impact on the retrieved ozone columns, the recommendations have been applied to measurements from the NDACC/SAOZ (Système d'Analyse par Observation Zénithale network. The revised SAOZ ozone data from eight stations deployed at all latitudes have been compared to TOMS, GOME-GDP4, SCIAMACHY-TOSOMI, SCIAMACHY-OL3, OMI-TOMS, and OMI-DOAS satellite overpass observations, as well as to those of collocated Dobson and Brewer instruments at Observatoire de Haute Provence (44° N, 5.5° E and Sodankyla (67° N, 27° E, respectively. A significantly better agreement is obtained between SAOZ and correlative reference ground-based measurements after applying the new O3 AMFs. However, systematic seasonal differences between SAOZ and satellite instruments remain. These are shown to mainly originate from (i a possible

  12. Particulate matter pollution in the coal-producing regions of the Appalachian Mountains: Integrated ground-based measurements and satellite analysis.

    Science.gov (United States)

    Aneja, Viney P; Pillai, Priya R; Isherwood, Aaron; Morgan, Peter; Aneja, Saurabh P

    2017-04-01

    This study integrates the relationship between measured surface concentrations of particulate matter 10 μm or less in diameter (PM10), satellite-derived aerosol optical depth (AOD), and meteorology in Roda, Virginia, during 2008. A multiple regression model was developed to predict the concentrations of particles 2.5 μm or less in diameter (PM2.5) at an additional location in the Appalachia region, Bristol, TN. The model was developed by combining AOD retrievals from Moderate Resolution Imaging Spectro-radiometer (MODIS) sensor on board the EOS Terra and Aqua Satellites with the surface meteorological observations. The multiple regression model predicted PM2.5 (r(2) = 0.62), and the two-variable (AOD-PM2.5) model predicted PM2.5 (r(2) = 0.4). The developed model was validated using particulate matter recordings and meteorology observations from another location in the Appalachia region, Hazard, Kentucky. The model was extrapolated to the Roda, VA, sampling site to predict PM2.5 mass concentrations. We used 10 km x 10 km resolution MODIS 550 nm AOD to predict ground level PM2.5. For the relevant period in 2008, in Roda, VA, the predicted PM2.5 mass concentration is 9.11 ± 5.16 μg m(-3) (mean ± 1SD). This is the first study that couples ground-based Particulate Matter measurements with satellite retrievals to predict surface air pollution at Roda, Virginia. Roda is representative of the Appalachian communities that are commonly located in narrow valleys, or "hollows," where homes are placed directly along the roads in a region of active mountaintop mining operations. Our study suggests that proximity to heavy coal truck traffic subjects these communities to chronic exposure to coal dust and leads us to conclude that there is an urgent need for new regulations to address the primary sources of this particulate matter.

  13. Physical and optical properties of 2010 Eyjafjallajökull volcanic eruption aerosol: ground-based, Lidar and airborne measurements in France

    Directory of Open Access Journals (Sweden)

    M. Hervo

    2012-02-01

    Full Text Available During the Eyjafjallajökull eruption (14 April to 24 May 2010, the volcanic aerosol cloud was observed across Europe by several airborne in situ and ground-based remote-sensing instruments. On 18 and 19 May, layers of depolarizing particles (i.e. non-spherical particles were detected in the free troposphere above the Puy de Dôme station, (PdD, France with a Rayleigh-Mie LIDAR emitting at a wavelength of 355 nm, with parallel and crossed polarization channels. These layers in the free troposphere (FT were also well captured by simulations with the Lagrangian particle dispersion model FLEXPART, which furthermore showed that the ash was eventually entrained into the planetary boundary layer (PBL. Indeed, the ash cloud was then detected and characterized with a comprehensive set of in situ instruments at the Puy de Dôme station (PdD. In agreement with the FLEXPART simulation, up to 65 μg m−3 of particle mass and 2.2 ppb of SO2 were measured at PdD, corresponding to concentrations higher than the 95 percentile of 2 yr of measurements at PdD. Moreover, the number concentration of particles increased to 24 000 cm−3, mainly in the submicronic mode, but a supermicronic mode was also detected with a modal diameter of 2 μm. The resulting optical properties of the ash aerosol were characterized by a low scattering Ångström exponent (0.98, showing the presence of supermicronic particles. For the first time to our knowledge, the combination of in situ optical and physical characterization of the volcanic ash allowed the calculation of the mass-to-extinction ratio (η with no assumptions on the aerosol density. The mass-to-extinction ratio was found to be significantly different from the background boundary layer aerosol (max: 1.57 g m−2 as opposed to 0.33 ± 0.03 g m−2. Using this ratio, ash mass concentration in the volcanic plume derived from LIDAR measurements was found to be 655 ± 23

  14. Physical and optical properties of 2010 Eyjafjallajökull volcanic eruption aerosol: ground-based, Lidar and airborne measurements in France

    Science.gov (United States)

    Hervo, M.; Quennehen, B.; Kristiansen, N. I.; Boulon, J.; Stohl, A.; Fréville, P.; Pichon, J.-M.; Picard, D.; Labazuy, P.; Gouhier, M.; Roger, J.-C.; Colomb, A.; Schwarzenboeck, A.; Sellegri, K.

    2012-02-01

    During the Eyjafjallajökull eruption (14 April to 24 May 2010), the volcanic aerosol cloud was observed across Europe by several airborne in situ and ground-based remote-sensing instruments. On 18 and 19 May, layers of depolarizing particles (i.e. non-spherical particles) were detected in the free troposphere above the Puy de Dôme station, (PdD, France) with a Rayleigh-Mie LIDAR emitting at a wavelength of 355 nm, with parallel and crossed polarization channels. These layers in the free troposphere (FT) were also well captured by simulations with the Lagrangian particle dispersion model FLEXPART, which furthermore showed that the ash was eventually entrained into the planetary boundary layer (PBL). Indeed, the ash cloud was then detected and characterized with a comprehensive set of in situ instruments at the Puy de Dôme station (PdD). In agreement with the FLEXPART simulation, up to 65 μg m-3 of particle mass and 2.2 ppb of SO2 were measured at PdD, corresponding to concentrations higher than the 95 percentile of 2 yr of measurements at PdD. Moreover, the number concentration of particles increased to 24 000 cm-3, mainly in the submicronic mode, but a supermicronic mode was also detected with a modal diameter of 2 μm. The resulting optical properties of the ash aerosol were characterized by a low scattering Ångström exponent (0.98), showing the presence of supermicronic particles. For the first time to our knowledge, the combination of in situ optical and physical characterization of the volcanic ash allowed the calculation of the mass-to-extinction ratio (η) with no assumptions on the aerosol density. The mass-to-extinction ratio was found to be significantly different from the background boundary layer aerosol (max: 1.57 g m-2 as opposed to 0.33 ± 0.03 g m-2). Using this ratio, ash mass concentration in the volcanic plume derived from LIDAR measurements was found to be 655 ± 23 μg m-3 when the plume was located in the FT (3000 m above the sea level

  15. Ground Based Retrievals of Small Ice Crystals and Water Phase in Arctic Cirrus

    Science.gov (United States)

    Mishra, Subhashree; Mitchell, David L.; DeSlover, Daniel

    2009-03-01

    The microphysical properties of cirrus clouds are uncertain due to the problem of ice particles shattering at the probe inlet upon sampling. To facilitate better estimation of small ice crystal concentrations in cirrus clouds, a new ground-based remote sensing technique has been used in combination with in situ aircraft measurements. Data from the Mixed-Phase Arctic Cloud Experiment (M-PACE), conducted at the north slope of Alaska (winter 2004), have been used to test a new method for retrieving the liquid water path (LWP) and ice water path (IWP) in mixed phase clouds. The framework of the retrieval algorithm consists of the modified anomalous diffraction approximation or MADA (for mixed phase cloud optical properties), a radar reflectivity-ice microphysics relationship and a temperature-dependent ice particle size distribution (PSD) scheme. Cloud thermal emission measurements made by the ground-based Atmospheric Emitted Radiance Interferometer (AERI) yield information on the total water path (TWP) while reflectivity measurements from the Millimeter Cloud Radar (MMCR) are used to derive the IWP. The AERI is also used to indicate the concentration of small ice crystals (DBeer's law absorption. While this is still a work in progress, the anticipated products from this AERI-radar retrieval scheme are the IWP, LWP, small-to-large ice crystal number concentration ratio and effective diameter for cirrus, as well as the ice particle number concentration for a given ice water content (IWC).

  16. Vertical mass impact and features of Saharan dust intrusions derived from ground-based remote sensing in synergy with airborne in-situ measurements

    Science.gov (United States)

    Córdoba-Jabonero, Carmen; Andrey-Andrés, Javier; Gómez, Laura; Adame, José Antonio; Sorribas, Mar; Navarro-Comas, Mónica; Puentedura, Olga; Cuevas, Emilio; Gil-Ojeda, Manuel

    2016-10-01

    A study of the vertical mass impact of Saharan dust intrusions is presented in this work. Simultaneous ground-based remote-sensing and airborne in-situ measurements performed during the AMISOC-TNF campaign over the Tenerife area (Canary Islands) in summertime from 01 July to 11 August 2013 were used for that purpose. A particular dusty (DD) case, associated to a progressively arriving dust intrusion lasting for two days on 31 July (weak incidence) and 01 August (strong incidence), is especially investigated. AERONET AOD and AEx values were ranging, respectively, from 0.2 to 1.4 and 0.35 to 0.05 along these two days. Vertical particle size distributions within fine and coarse modes (0.16-2.8 μm range) were obtained from aircraft aerosol spectrometer measurements. Extinction profiles and Lidar Ratio (LR) values were derived from MPLNET/Micro Pulse Lidar observations. MAXDOAS measurements were also used to retrieve the height-resolved aerosol extinction for evaluation purposes in comparison to Lidar-derived profiles. The synergy between Lidar observations and airborne measurements is established in terms of the Mass Extinction Efficiency (MEE) to calculate the vertical mass concentration of Saharan dust particles. Both the optical and microphysical profilings show dust particles mostly confined in a layer of 4.3 km thickness from 1.7 to 6 km height. LR ranged between 50 and 55 sr, typical values for Saharan dust particles. In addition, this 2-day dust event mostly affected the Free Troposphere (FT), being less intense in the Boundary Layer (BL). In particular, rather high Total Mass Concentrations (TMC) were found on the stronger DD day (01 August 2013): 124, 70 and 21 μg m-3 were estimated, respectively, at FT and BL altitudes and on the near-surface level. This dust impact was enhanced due to the increase of large particles affecting the FT, but also the BL, likely due to their gravitational settling. However, the use of an assumed averaged MEE value can be

  17. HCOOH distributions from IASI for 2008-2014: comparison with ground-based FTIR measurements and a global chemistry-transport model

    Science.gov (United States)

    Pommier, Matthieu; Clerbaux, Cathy; Coheur, Pierre-François; Mahieu, Emmanuel; Müller, Jean-François; Paton-Walsh, Clare; Stavrakou, Trissevgeni; Vigouroux, Corinne

    2016-07-01

    Formic acid (HCOOH) is one of the most abundant volatile organic compounds in the atmosphere. It is a major contributor to rain acidity in remote areas. There are, however, large uncertainties on the sources and sinks of HCOOH and therefore HCOOH is misrepresented by global chemistry-transport models. This work presents global distributions from 2008 to 2014 as derived from the measurements of the Infrared Atmospheric Sounding Interferometer (IASI), based on conversion factors between brightness temperature differences and representative retrieved total columns over seven regions: Northern Africa, southern Africa, Amazonia, Atlantic, Australia, Pacific, and Russia. The dependence of the measured HCOOH signal on the thermal contrast is taken into account in the conversion method. This conversion presents errors lower than 20 % for total columns ranging between 0.5 and 1 × 1016 molec cm-2 but reaches higher values, up to 78 %, for columns that are lower than 0.3 × 1016 molec cm-2. Signatures from biomass burning events are highlighted, such as in the Southern Hemisphere and in Russia, as well as biogenic emission sources, e.g., over the eastern USA. A comparison between 2008 and 2014 with ground-based Fourier transform infrared spectroscopy (FTIR) measurements obtained at four locations (Maido and Saint-Denis at La Réunion, Jungfraujoch, and Wollongong) is shown. Although IASI columns are found to correlate well with FTIR data, a large bias (> 100 %) is found over the two sites at La Réunion. A better agreement is found at Wollongong with a negligible bias. The comparison also highlights the difficulty of retrieving total columns from IASI measurements over mountainous regions such as Jungfraujoch. A comparison of the retrieved columns with the global chemistry-transport model IMAGESv2 is also presented, showing good representation of the seasonal and interannual cycles over America, Australia, Asia, and Siberia. A global model underestimation of the distribution

  18. CFC-11, CFC-12 and HCFC-22 ground-based remote sensing FTIR measurements at Réunion Island and comparisons with MIPAS/ENVISAT data

    Science.gov (United States)

    Zhou, Minqiang; Vigouroux, Corinne; Langerock, Bavo; Wang, Pucai; Dutton, Geoff; Hermans, Christian; Kumps, Nicolas; Metzger, Jean-Marc; Toon, Geoff; De Mazière, Martine

    2016-11-01

    Profiles of CFC-11 (CCl3F), CFC-12 (CCl2F2) and HCFC-22 (CHF2Cl) have been obtained from Fourier transform infrared (FTIR) solar absorption measurements above the Saint-Denis (St Denis) and Maïdo sites at Réunion Island (21° S, 55° E) with low vertical resolution. FTIR profile retrievals are performed by the well-established SFIT4 program and the detail retrieval strategies along with the systematic/random uncertainties of CFC-11, CFC-12 and HCFC-22 are discussed in this study. The FTIR data of all three species are sensitive to the whole troposphere and the lowermost stratosphere, with the peak sensitivity between 5 and 10 km. The ground-based FTIR data have been compared with the collocated Michelson Interferometer for Passive Atmospheric Sounding (MIPAS/ENVISAT) data and found to be in good agreement: the observed mean relative biases and standard deviations of the differences between the smoothed MIPAS and FTIR partial columns (6-30 km) are (-4.3 and 4.4 %), (-2.9 and 4.6 %) and (-0.7 and 4.8 %) for CFC-11, CFC-12 and HCFC-22, respectively, which are within the combined error budgets from both measurements. The season cycles of CFC-11, CFC-12 and HCFC-22 from FTIR measurements and MIPAS data show a similar variation: concentration is highest in February-April and lowest in August-October. The trends derived from the combined St Denis and Maïdo FTIR time series are -0.86 ± 0.12 and 2.84 ± 0.06 % year-1 for CFC-11 and HCFC-22, respectively, for the period 2004 to 2016, and -0.76 ± 0.05 % year-1 for CFC-12 for 2009 to 2016. These measurements are consistent with the trends observed by the National Oceanic and Atmospheric Administration (NOAA) Global Monitoring Division's (GMD) Halocarbons & other Atmospheric Trace Species Group (HATS) measurements at Samoa (14.2° S, 170.5° W) for CFC-11 (-0.87 ± 0.04 % year-1), but slightly weaker for HCFC-22 (3.46 ± 0.05 %) year-1 and stronger for CFC-12 (-0.60 ± 0.02 % year-1).

  19. Radar and Laser Sensors for High Frequency Ocean Wave Measurement.

    Science.gov (United States)

    Kennedy, C. R.

    2016-02-01

    Experimental measurement of air-sea fluxes invariably take place using shipbourne instrumentation and simultaneous measurement of wave height and direction is desired. A number of researchers have shown that range measuring sensors combined with inertial motion compensation can be successful on board stationary or very slowly moving ships. In order to measure wave characteristics from ships moving at moderate to full speed the sensors are required to operate at higher frequency so as to overcome the Doppler shift caused by ship motion. This work presents results from some preliminary testing of laser, radar and ultrasonic range sensors in the laboratory and on board ship. The characteristics of the individual sensors are discussed and comparison of the wave spectra produced by each is presented.

  20. Critical Evaluation of 0-30 km Profile Information in Ground-Based Zenith-Sky and Satellite-Measured Backscattered UV Radiation

    Science.gov (United States)

    Bhartia, Pawan; Petropavlovskikh, Irina; Deluishi, John; Einaudi, Franco (Technical Monitor)

    2000-01-01

    We now have several decades of experience in deriving vertical ozone profiles from the measurements of diffuse ultraviolet radiation by both ground and satellite-based instruments using Umkehr and BUV techniques. Continuing technological advances are pushing the state-of-the-art of these measurements to high spectral resolution and broader wavelength coverage. These modern instruments include the ground-based Brewer and satellite-based Global Ozone Monitoring Experiment (GOME) instruments, as well as advanced instruments being developed by ESA(SCIAMACHY), Netherlands(OMI) and Japan(ODUS). However, one of the issues that remains unresolved is the 0-30 km ozone profile information retrievable from these measurements. Though it is commonly believed that both the Umkehr and the satellite-based BUV techniques have very limited profile information below 30 km, there are those who argue that the data from these instruments should continue to be reported in this altitude range for they compare well with ozonesondes and hence there is useful scientific information. Others claim that the limitations of the Umkehr and BUV techniques are largely due to their low spectral resolution, and that the profile information below 30 km can be greatly improved by going to high spectral resolution instruments, such as Brewer and GOME. The purpose of this paper is to provide a critical evaluation of the 0-30 km ozone profile information in the various UV remote sensing techniques. We use a database of individual ozone profiles created using ozonesondes and SAGE and 4D ozone fields generated by data assimilation techniques to simulate radiances measured by the various techniques. We then apply a common inversion approach to all the methods to systematically examine how much profile information is available simply from the knowledge of total ozone, how much additional profile information is added by the traditional Dobson Umkehr and satellite buv techniques, and how much better one can do

  1. Ground-based, integrated path differential absorption LIDAR measurement of CO2, CH4, and H2O near 1.6  μm.

    Science.gov (United States)

    Wagner, Gerd A; Plusquellic, David F

    2016-08-10

    A ground-based, integrated path, differential absorption light detection and ranging (IPDA LIDAR) system is described and characterized for a series of nighttime studies of CO2, CH4, and H2O. The transmitter is based on an actively stabilized, continuous-wave, single-frequency external-cavity diode laser (ECDL) operating from 1.60 to 1.65 μm. The fixed frequency output of the ECDL is microwave sideband tuned using an electro-optical phase modulator driven by an arbitrary waveform generator and filtered using a confocal cavity to generate a sequence of 123 frequencies separated by 300 MHz. The scan sequence of single sideband frequencies of 600 ns duration covers a 37 GHz region at a spectral scan rate of 10 kHz (100 μs per scan). Simultaneously, an eye-safe backscatter LIDAR system at 1.064 μm is used to monitor the atmospheric boundary layer. IPDA LIDAR measurements of the CO2 and CH4 dry air mixing ratios are presented in comparison with those from a commercial cavity ring-down (CRD) instrument. Differences between the IPDA LIDAR and CRD concentrations in several cases appear to be well correlated with the atmospheric aerosol structure from the backscatter LIDAR measurements. IPDA LIDAR dry air mixing ratios of CO2 and CH4 are determined with fit uncertainties of 2.8 μmol/mol (ppm) for CO2 and 22 nmol/mol (ppb) for CH4 over 30 s measurement periods. For longer averaging times (up to 1200 s), improvements in these detection limits by up to 3-fold are estimated from Allan variance analyses. Two sources of systematic error are identified and methods to remove them are discussed, including speckle interference from wavelength decorrelation and the seed power dependence of amplified spontaneous emission. Accuracies in the dry air retrievals of CO2 and CH4 in a 30 s measurement period are estimated at 4 μmol/mol (1% of ambient levels) and 50 nmol/mol (3%), respectively.

  2. Technical Note: New ground-based FTIR measurements at Ile de La Réunion: observations, error analysis, and comparisons with independent data

    Directory of Open Access Journals (Sweden)

    C. Senten

    2008-07-01

    Full Text Available Ground-based high spectral resolution Fourier-transform infrared (FTIR solar absorption spectroscopy is a powerful remote sensing technique to obtain information on the total column abundances and on the vertical distribution of various constituents in the atmosphere. This work presents results from two FTIR measurement campaigns in 2002 and 2004, held at Ile de La Réunion (21° S, 55° E. These campaigns represent the first FTIR observations carried out at a southern (subtropical site. They serve the initiation of regular, long-term FTIR monitoring at this site in the near future. To demonstrate the capabilities of the FTIR measurements at this location for tropospheric and stratospheric monitoring, a detailed report is given on the retrieval strategy, information content and corresponding full error budget evaluation for ozone (O3, methane (CH4, nitrous oxide (N2O, carbon monoxide (CO, ethane (C2H6, hydrogen chloride (HCl, hydrogen fluoride (HF and nitric acid (HNO3 total and partial column retrievals. Moreover, we have made a thorough comparison of the capabilities at sea level altitude (St.-Denis and at 2200 m a.s.l. (Maïdo. It is proved that the performances of the technique are such that the atmospheric variability can be observed, at both locations and in distinct altitude layers. Comparisons with literature and with correlative data from ozone sonde and satellite (i.e., ACE-FTS, HALOE and MOPITT measurements are given to confirm the results. Despite the short time series available at present, we have been able to detect the seasonal variation of CO in the biomass burning season, as well as the impact of particular biomass burning events in Africa and Madagascar on the atmospheric composition above Ile de La Réunion. We also show that differential measurements between St.-Denis and Maïdo provide useful information about the concentrations in the boundary layer.

  3. Measurements of ozone columns in different atmospheric layers over St. Petersburg (Russia) using ground-based FTIR spectrometer in comparison with IASI satellite data

    Science.gov (United States)

    Virolainen, Yana; Eremenko, Maxim; Timofeyev, Yury; Dufour, Gaelle; Poberovsky, Anatoly; Polyakov, Alexander; Imhasin, Hamud

    2014-05-01

    Ozone plays a key role in the photochemical equilibrium of the atmosphere. In the stratosphere, it absorbs harmful ultraviolet solar radiation, in the troposphere it is one of the main air pollutant, greenhouse gases and it is involved in the troposphere's oxidative capacity. In this study, we analyze the ozone variability in different atmospheric layers over St. Petersburg (Russia) measured with the ground-based FTIR spectrometer Bruker 125 HR at the Peterhof station (59.82 N, 29.88 E), and compare it to the satellite Infrared Atmospheric Sounding Interferometer (IASI) ozone retrievals. The FTIR spectrometer has a maximum optical path difference of 180 cm, yielding an apodized spectral resolution of 0.008 cm-1, and has been recording IR spectra since 2009. The high spectral resolution of the registered spectra allows the retrieval of the ozone content in four atmospheric layers. We applied the PROFFIT inversion code to the ozone vertical profiles retrievals in 9.6-µm O3 absorption band and calculated the daily means of ozone partial columns for about 300 days between 2009 and 2013. The IASI instrument onboard the satellite MetOp-A measures the thermal infrared radiation emitted by the Earth's surface and the atmosphere with an apodized spectral resolution of 0.5 cm-1. We used the LISA (Laboratoire Inter-universitaire des Systemes Atmospheriques) retrieval algorithm for deriving the ozone profiles between 0 and 60 km for the region of 2 degrees around the Peterhof station in coincidence with FTIR-observation dates, and averaged profiles daily over all the pixels in the considered region. In this study, we compare and discuss the both types of ozone retrievals: total and partial columns in four atmospheric layers (0-12 km, 12-18 km, 18-25 km, and 25-60 km) for 285 coincident days in 2009-2013. This study was partly supported by Saint-Petersburg State University (project No. 11.0.44.2010) and Russian Foundation for Basic Research (grants No. 12-05-00596, 12

  4. Trends, interannual and seasonal variations of tropospheric CO, C2H6 and HCN columns measured from ground-based FTIR at Lauder and Arrival Heights

    Directory of Open Access Journals (Sweden)

    N. B. Jones

    2012-02-01

    Full Text Available We analyse the carbon monoxide (CO, ethane (C2H6 and hydrogen cyanide (HCN partial columns (from the ground to 12 km derived from measurements by ground-based solar Fourier Transform Spectroscopy at Lauder, New Zealand (45° S, 170° E and at Arrival Heights, Antarctica (78° S, 167° E from 1997 to 2009. Significant negative trends are calculated for all species at both locations: CO (−0.90 ± 0.31% yr−1 and C2H6 (−3.10 ± 1.07% yr−1 at Arrival Heights and CO (−0.87 ± 0.30% yr−1, C2H6 (−2.70 ± 0.94% yr−1 and HCN (−0.93 ± 0.32% yr−1 at Lauder. The uncertainties reflect the 95% confidence limits. The dominant seasonal trends of CO and C2H6 at Lauder, and to a lesser degree at Arrival Heights, occur in austral spring when the correlations between CO and C2H6 and between CO and HCN maximize. Tropospheric columns of all three species are characterised by minima in March–June and maxima from August to November; this season is the southern-hemisphere tropical and sub-tropical biomass burning period. A tropospheric chemistry-climate model is used to simulate CO and C2H6 columns for the period of 1997–2009 using interannually varying biomass burning emissions; the model simulated tropospheric columns of CO and C2H6 compare well with the measured partial columns of both species. However, the model does not re-produce the significant negative trends of observed CO and C2H6 partial columns at both locations. Weak negative trends are calculated from model data. The model sensitivity calculations indicate that long-range transport of biomass burning emissions from Southern Africa and South America dominate the seasonal cycles of CO and C2H6 at both Lauder and Arrival Heights. Interannual variability of these compounds at both locations is largely triggered by variations in biomass burning emissions associated with large-scale El Nino Southern Oscillation and prolonged biomass burning events, e.g. the Australian bush fires.

  5. Hydrometeor classification from polarimetric radar measurements: a clustering approach

    Directory of Open Access Journals (Sweden)

    J. Grazioli

    2015-01-01

    Full Text Available A data-driven approach to the classification of hydrometeors from measurements collected with polarimetric weather radars is proposed. In a first step, the optimal number of hydrometeor classes (nopt that can be reliably identified from a large set of polarimetric data is determined. This is done by means of an unsupervised clustering technique guided by criteria related both to data similarity and to spatial smoothness of the classified images. In a second step, the nopt clusters are assigned to the appropriate hydrometeor class by means of human interpretation and comparisons with the output of other classification techniques. The main innovation in the proposed method is the unsupervised part: the hydrometeor classes are not defined a priori, but they are learned from data. The approach is applied to data collected by an X-band polarimetric weather radar during two field campaigns (from which about 50 precipitation events are used in the present study. Seven hydrometeor classes (nopt = 7 have been found in the data set, and they have been identified as light rain (LR, rain (RN, heavy rain (HR, melting snow (MS, ice crystals/small aggregates (CR, aggregates (AG, and rimed-ice particles (RI.

  6. Pulse compression radar reflectometry for density measurements on fusion plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Costley, A.; Prentice, R. [Commission of the European Communities, Abingdon (United Kingdom). JET Joint Undertaking; Laviron, C. [Compagnie Generale des Matieres Nucleaires (COGEMA), 78 - Velizy-Villacoublay (France); Prentice, R. [Toulouse-3 Univ., 31 (France). Centre d`Etude Spatiale des Rayonnements

    1994-07-01

    On tokamaks and other toroidal machines, reflectometry is a very rapidly developing technique for density profile measurements, particularly near the edge. Its principle relies on the total reflection of an electromagnetic wave at a cutoff layer, where the critical density is reached and the local refractive index goes to zero. With the new fast frequency synthesizers now available, a method based on pulse compression radar is proposed for plasma reflectometry, overcoming the limitations of the previous reflectometry methods. The measurement can be made on a time-scale which is effectively very short relatively to the plasma fluctuations, and the very high reproducibility and stability of the source allows an absolute calibration of the waveguides to be made, which corrects for the effects of the parasitic reflections. 2 refs., 5 figs.

  7. Active calibration target for bistatic radar cross-section measurements

    Science.gov (United States)

    Pienaar, M.; Odendaal, J. W.; Joubert, J.; Cilliers, J. E.; Smit, J. C.

    2016-05-01

    Either passive calibration targets are expensive and complex to manufacture or their bistatic radar cross section (RCS) levels are significantly lower than the monostatic RCS levels of targets such as spheres, dihedral, and trihedral corner reflectors. In this paper the performance of an active calibration target with relative high bistatic RCS values is illustrated as a reference target for bistatic RCS measurements. The reference target is simple to manufacture, operates over a wide frequency range, and can be configured to calibrate all four polarizations (VV, HH, HV, and VH). Bistatic RCS measurements of canonical targets, performed in a controlled environment, are calibrated with the reference target and the results are compared to simulated results using FEKO.

  8. Landslide kinematics and their potential controls from hourly to decadal timescales: Insights from integrating ground-based InSAR measurements with structural maps and long-term monitoring data

    Science.gov (United States)

    Schulz, William H.; Coe, Jeffrey A.; Ricci, Pier P.; Smoczyk, Gregory M.; Shurtleff, Brett L.; Panosky, Joanna

    2017-05-01

    Knowledge of kinematics is rudimentary for understanding landslide controls and is increasingly valuable with greater spatiotemporal coverage. However, characterizing landslide-wide kinematics is rare, especially at broadly ranging timescales. We used highly detailed kinematic data obtained using photogrammetry and field mapping during the 1980s and 1990s and our 4.3-day ground-based InSAR survey during 2010 to study kinematics of the large, persistently moving Slumgullion landslide. The landslide was segregated into 11 kinematic elements using the 1980s-1990s data and the InSAR survey revealed most of these elements within a few hours. Averages of InSAR-derived displacement point measures within each element agreed well with higher quality in situ observations; averaging was deemed necessary because adverse look angles for the radar coupled with tree cover on the landslide introduced error in the InSAR results. We found that the landslide moved during 2010 at about half its 1985-1990 speed, but slowing was most pronounced at the landslide head. Gradually decreased precipitation and increased temperature between the periods likely resulted in lower groundwater levels and consequent slowing of the landslide. We used GPS survey results and limit-equilibrium modeling to analyze changing stability of the landslide head from observed thinning and found that its stability increased between the two periods, which would result in its slowing, and the consequent slowing of the entire landslide. Additionally, InSAR results suggested movement of kinematic element boundaries in the head region and our field mapping verified that they moved and changed character, likely because of the long-term increasing head stability. On an hourly basis, InSAR results were near error bounds but suggested landslide acceleration in response to seemingly negligible rainfall. Pore-pressure diffusion modeling suggested that rainfall infiltration affected frictional strength only to shallow depths

  9. Landslide kinematics and their potential controls from hourly to decadal timescales: Insights from integrating ground-based InSAR measurements with structural maps and long-term monitoring data

    Science.gov (United States)

    Schulz, William; Coe, Jeffrey A.; Ricci, P.P; Smoczyk, Gregory M.; Shurtleff, Brett L; Panosky, J

    2017-01-01

    Knowledge of kinematics is rudimentary for understanding landslide controls and is increasingly valuable with greater spatiotemporal coverage. However, characterizing landslide-wide kinematics is rare, especially at broadly ranging timescales. We used highly detailed kinematic data obtained using photogrammetry and field mapping during the 1980s and 1990s and our 4.3-day ground-based InSAR survey during 2010 to study kinematics of the large, persistently moving Slumgullion landslide. The landslide was segregated into 11 kinematic elements using the 1980s–1990s data and the InSAR survey revealed most of these elements within a few hours. Averages of InSAR-derived displacement point measures within each element agreed well with higher quality in situ observations; averaging was deemed necessary because adverse look angles for the radar coupled with tree cover on the landslide introduced error in the InSAR results. We found that the landslide moved during 2010 at about half its 1985–1990 speed, but slowing was most pronounced at the landslide head. Gradually decreased precipitation and increased temperature between the periods likely resulted in lower groundwater levels and consequent slowing of the landslide. We used GPS survey results and limit-equilibrium modeling to analyze changing stability of the landslide head from observed thinning and found that its stability increased between the two periods, which would result in its slowing, and the consequent slowing of the entire landslide. Additionally, InSAR results suggested movement of kinematic element boundaries in the head region and our field mapping verified that they moved and changed character, likely because of the long-term increasing head stability. On an hourly basis, InSAR results were near error bounds but suggested landslide acceleration in response to seemingly negligible rainfall. Pore-pressure diffusion modeling suggested that rainfall infiltration affected frictional strength only to shallow

  10. Multi-year comparison of stratospheric BrO vertical profiles retrieved from SCIAMACHY limb and ground-based UV-visible measurements

    Directory of Open Access Journals (Sweden)

    M. Van Roozendael

    2009-06-01

    Full Text Available Vertical profiles of stratospheric bromine monoxide (BrO retrieved daily from ENVISAT/SCIAMACHY (ENVIronmental SATellite/SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY limb scatter data and from ground-based UV-visible observations performed at Harestua (60° N, 11° E, Observatoire de Haute-Provence (44° N, 5.5° E, and Lauder (45° S, 170° E are compared in the 15–27 km altitude range for the 2002–2006, 2005–2006, and 2002–2005 periods, respectively. At the three stations, the SCIAMACHY and ground-based UV-visible mean profiles agree reasonably well, with relative difference smaller than 23%. When comparing the BrO partial columns, the agreement obtained is good, with mean relative differences smaller than 11% and corresponding standard deviations in the 13–19% range. These comparison results are obtained, however, using different BrO cross sections in SCIAMACHY limb and ground-based UV-visible retrievals. The seasonal variation of the BrO columns at the three stations is consistently captured by both retrievals as well as large BrO column events occurring during the winter and early spring at Harestua which are associated with bromine activation.

  11. To the question on accuracy of forest heights’ measurements by the TanDEM-X radar interferometry data

    Directory of Open Access Journals (Sweden)

    T. N. Chimitdorzhiev

    2016-08-01

    Full Text Available The paper presents the validation results of the InSAR method for determining the forest canopy height, based on TanDEM-X and ALOS PALSAR data. The research conducted on the territory of the Baikal-Kudara forest area of the Republic of Buryatia (52°10'N, 106°48'E. Forest vegetation is represented mainly by conifers – pine, and spruce, with a small admixture of deciduous trees – aspen, birch, etc. The forest vegetation height was determined by subtracting the digital elevation model (DEM of the digital terrain model (DTM. DEM is built according to the L-band (wavelength of 23.5 cm ALOS PALSAR satellite with horizontal co-polarization mode. In the investigation it was assumed that a radar signal of ALOS PALSAR passes all forest thickness and reflected from the underlying surface, made it possible to recover terrain under forest canopy. DTM has been built using the TanDEM-X data (wavelength 3 cm. In this case, it was assumed that the radar echoes scattered from a some virtual phase centers of scattering surface, which characterizes the upper limit of the continuous forest canopy. To check the accuracy of satellite definitions of forest height in study area were made high-precision geodetic measurement of trees heights using electronic total station and the coordinates of geographic control points using differential GPS receivers. The discrepancy between the satellite and ground-based measurements at 11 test sites did not exceed 2 m, which is mainly due to the difference in measurement techniques: height of individual trees by ground methods and continuous forest canopy height using radar interferometry.

  12. Automated ground-based remote sensing measurements of greenhouse gases at the Bialystok site in comparison with collocated in situ measurements and model data

    NARCIS (Netherlands)

    Messerschmidt, J.; Chen, H.; Deutscher, N. M.; Gerbig, C.; Grupe, P.; Katrynski, K.; Koch, F. -T.; Lavric, J. V.; Notholt, J.; Roedenbeck, C.; Ruhe, W.; Warneke, T.; Weinzierl, C.

    2012-01-01

    The in situ boundary layer measurement site in Bialystok (Poland) has been upgraded with a fully automated observatory for total greenhouse gas column measurements. The automated Fourier Transform Spectrometer (FTS) complements the on-site in situ facilities and FTS solar absorption measurements hav

  13. Automated ground-based remote sensing measurements of greenhouse gases at the Bialystok site in comparison with collocated in situ measurements and model data

    NARCIS (Netherlands)

    Messerschmidt, J.; Chen, H.; Deutscher, N. M.; Gerbig, C.; Grupe, P.; Katrynski, K.; Koch, F. -T.; Lavric, J. V.; Notholt, J.; Roedenbeck, C.; Ruhe, W.; Warneke, T.; Weinzierl, C.

    2012-01-01

    The in situ boundary layer measurement site in Bialystok (Poland) has been upgraded with a fully automated observatory for total greenhouse gas column measurements. The automated Fourier Transform Spectrometer (FTS) complements the on-site in situ facilities and FTS solar absorption measurements hav

  14. Bam earthquake: Surface deformation measurement using radar interferometry

    Institute of Scientific and Technical Information of China (English)

    XIA Ye

    2005-01-01

    On the 26th December 2003 an earthquake with Mw=6.5 shook a large area of the Kerman Province in Iran. The epicenter of the devastating earthquake was located near the city of Bam. This paper described the application of differential synthetic aperture radar interferometry (D-INSAR) and ENVISAT ASAR data to map the coseismic surface deformation caused by the Bam earthquake including the interferometric data processing and results in detail. Based on the difference in the coherence images before and after the event and edge search of the deformation field, a new fault ruptured on the surface was detected and used as a data source for parameter extraction of a theoretical seismic modeling. The simulated deformation field from the model perfectly coincides with the result derived from the SAR interferometric measurement.

  15. Application of Technical Measures and Software in Constructing Photorealistic 3D Models of Historical Building Using Ground-Based and Aerial (UAV) Digital Images

    Science.gov (United States)

    Zarnowski, Aleksander; Banaszek, Anna; Banaszek, Sebastian

    2015-12-01

    Preparing digital documentation of historical buildings is a form of protecting cultural heritage. Recently there have been several intensive studies using non-metric digital images to construct realistic 3D models of historical buildings. Increasingly often, non-metric digital images are obtained with unmanned aerial vehicles (UAV). Technologies and methods of UAV flights are quite different from traditional photogrammetric approaches. The lack of technical guidelines for using drones inhibits the process of implementing new methods of data acquisition. This paper presents the results of experiments in the use of digital images in the construction of photo-realistic 3D model of a historical building (Raphaelsohns' Sawmill in Olsztyn). The aim of the study at the first stage was to determine the meteorological and technical conditions for the acquisition of aerial and ground-based photographs. At the next stage, the technology of 3D modelling was developed using only ground-based or only aerial non-metric digital images. At the last stage of the study, an experiment was conducted to assess the possibility of 3D modelling with the comprehensive use of aerial (UAV) and ground-based digital photographs in terms of their labour intensity and precision of development. Data integration and automatic photo-realistic 3D construction of the models was done with Pix4Dmapper and Agisoft PhotoScan software Analyses have shown that when certain parameters established in an experiment are kept, the process of developing the stock-taking documentation for a historical building moves from the standards of analogue to digital technology with considerably reduced cost.

  16. Micro-Doppler measurement of insect wing-beat frequencies with W-band coherent radar.

    Science.gov (United States)

    Wang, Rui; Hu, Cheng; Fu, Xiaowei; Long, Teng; Zeng, Tao

    2017-05-03

    The wingbeat frequency of insect migrant is regarded potentially valuable for species identification and has long drawn widespread attention in radar entomology. Principally, the radar echo signal can be used to extract wingbeat information, because both the signal amplitude and phase could be modulated by wing-beating. With respect to existing entomological radars, signal amplitude modulation has been used for wingbeat frequency measurement of large insects for many years, but the wingbeat frequency measurement of small insects remains a challenge. In our research, W-band and S-band coherent radars are used to measure the insect wingbeat frequency. The results show that the wingbeat-induced amplitude modulation of W-band radar is more intense than that of the S-band radar and the W-band radar could measure the wingbeat frequency of smaller insects. In addition, it is validated for the first time that the signal phase could also be used to measure the insect wingbeat frequency based on micro-Doppler effect. However, whether the wingbeat frequency measurement is based on the amplitude or phase modulation, it is found that the W-band coherent radar has better performance on both the measurement precision and the measurable minimum size of the insect.

  17. A comparison on radar range profiles between in-flight measurements and RCS-predictions

    NARCIS (Netherlands)

    Heiden, R. van der; Ewijk, L.J. van; Groen, F.C.A.

    1998-01-01

    The validation of Radar Cross Section (RCS) prediction techniques against real measurements is crucial to acquire confidence in predictions when measurements are nut available. In this paper we present the results of a comparison on one-dimensional signatures, i.e. radar range profiles. The profiles

  18. Performance of high-resolution X-band radar for rainfall measurement in The Netherlands

    Directory of Open Access Journals (Sweden)

    C. Z. van de Beek

    2010-02-01

    Full Text Available This study presents an analysis of 195 rainfall events gathered with the X-band weather radar SOLIDAR and a tipping bucket rain gauge network near Delft, The Netherlands, between May 1993 and April 1994. The aim of this paper is to present a thorough analysis of a climatological dataset using a high spatial (120 m and temporal (16 s resolution X-band radar. This makes it a study of the potential for high-resolution rainfall measurements with non-polarimetric X-band radar over flat terrain. An appropriate radar reflectivity – rain rate relation is derived from measurements of raindrop size distributions and compared with radar – rain gauge data. The radar calibration is assessed using a long-term comparison of rain gauge measurements with corresponding radar reflectivities as well as by analyzing the evolution of the stability of ground clutter areas over time. Three different methods for ground clutter correction as well as the effectiveness of forward and backward attenuation correction algorithms have been studied. Five individual rainfall events are discussed in detail to illustrate the strengths and weaknesses of high-resolution X-band radar and the effectiveness of the presented correction methods. X-band radar is found to be able to measure the space-time variation of rainfall at high resolution, far greater than what can be achieved by rain gauge networks or a typical operational C-band weather radar. On the other hand, SOLIDAR can suffer from receiver saturation, wet radome attenuation as well as signal loss along the path. During very strong convective situations the signal can even be lost completely. In combination with several rain gauges for quality control, high resolution X-band radar is considered to be suitable for rainfall monitoring over relatively small (urban catchments. These results offer great prospects for the new high resolution polarimetric doppler X-band radar IDRA.

  19. Performance of high-resolution X-band radar for rainfall measurement in The Netherlands

    Directory of Open Access Journals (Sweden)

    C. Z. van de Beek

    2009-09-01

    Full Text Available This study presents an analysis of 195 rainfall events gathered with the X-band weather radar SOLIDAR and a tipping bucket rain gauge network near Delft, The Netherlands, between May 1993 and April 1994. The high spatial (120 m and temporal (16 s resolution of the radar combined with the extent of the database make this study a climatological analysis of the potential for high-resolution rainfall measurement with non-polarimetric X-band radar over completely flat terrain. An appropriate radar reflectivity – rain rate relation is derived from measurements of raindrop size distributions and compared with radar – rain gauge data. The radar calibration is assessed using a long-term comparison of rain gauge measurements with corresponding radar reflectivities as well as by analyzing the evolution of the stability of ground clutter areas over time. Three different methods for ground clutter correction as well as the effectiveness of forward and backward attenuation correction algorithms have been studied. Five individual rainfall events are discussed in detail to illustrate the strengths and weaknesses of high-resolution X-band radar and the effectiveness of the presented correction methods. X-band radar is found to be able to measure the space-time variation of rainfall at high resolution, far greater than can be achieved by rain gauge networks or a typical operational C-band weather radar. On the other hand, SOLIDAR can suffer from receiver saturation, wet radome attenuation as well as signal loss along the path. During very strong convective situations the signal can even be lost completely. In combination with several rain gauges for quality control, high resolution X-band radar is considered to be suitable for rainfall monitoring over relatively small (urban catchments. These results offer great prospects for the new high resolution polarimetric doppler X-band radar IDRA.

  20. Automated ground-based remote sensing measurements of greenhouse gases at the Białystok site in comparison with collocated in situ measurements and model data

    Directory of Open Access Journals (Sweden)

    J. Messerschmidt

    2012-08-01

    Full Text Available The in situ boundary layer measurement site in Białystok (Poland has been upgraded with a fully automated observatory for total greenhouse gas column measurements. The automated Fourier Transform Spectrometer (FTS complements the on-site in situ facilities and FTS solar absorption measurements have been recorded nearly continuously in clear and partially cloudy conditions since March 2009. Here, the FTS measurements are compared with the collocated tall tower data. Additionally, simulations of the Jena CO2 inversion model are evaluated with the Białystok measurement facilities. The simulated seasonal CO2 cycle is slightly overestimated by a mean difference of 1.2 ppm ± 0.9 ppm (1σ in comparison with the FTS measurements. CO2 concentrations at the surface, measured at the tall tower (5 m, 90 m, 300 m, are slightly underestimated by −1.5 ppm, −1.6 ppm, and −0.7 ppm respectively during the day and by −9.1 ppm, −5.9 ppm, and −1.3 ppm during the night. The comparison of the simulated CO2 profiles with low aircraft profiles shows a slight overestimation of the lower troposphere (by up to 1 ppm and an underestimation in near-surface heights until 800 m (by up to 2.5 ppm. In an appendix the automated FTS observatory, including the hardware components and the automation software, is described in its basics.

  1. Calibration of Ground-based Lidar instrument

    DEFF Research Database (Denmark)

    Yordanova, Ginka; Gómez Arranz, Paula

    This report presents the result of the lidar calibration performed for the given Ground-based Lidar at DTU’s test site for large wind turbines at Høvsøre, Denmark. Calibration is here understood as the establishment of a relation between the reference wind speed measurements with measurement...... uncertainties provided by measurement standard and corresponding lidar wind speed indications with associated measurement uncertainties. The lidar calibration concerns the 10 minute mean wind speed measurements. The comparison of the lidar measurements of the wind direction with that from wind vanes...

  2. Calibration of Ground -based Lidar instrument

    DEFF Research Database (Denmark)

    Villanueva, Héctor; Yordanova, Ginka

    This report presents the result of the lidar calibration performed for the given Ground-based Lidar at DTU’s test site for large wind turbines at Høvsøre, Denmark. Calibration is here understood as the establishment of a relation between the reference wind speed measurements with measurement...... uncertainties provided by measurement standard and corresponding lidar wind speed indications with associated measurement uncertainties. The lidar calibration concerns the 10 minute mean wind speed measurements. The comparison of the lidar measurements of the wind direction with that from wind vanes...

  3. Calibration of Ground-based Lidar instrument

    DEFF Research Database (Denmark)

    Yordanova, Ginka; Gómez Arranz, Paula

    This report presents the result of the lidar calibration performed for the given Ground-based Lidar at DTU’s test site for large wind turbines at Høvsøre, Denmark. Calibration is here understood as the establishment of a relation between the reference wind speed measurements with measurement...... uncertainties provided by measurement standard and corresponding lidar wind speed indications with associated measurement uncertainties. The lidar calibration concerns the 10 minute mean wind speed measurements. The comparison of the lidar measurements of the wind direction with that from wind vanes...

  4. Calibration of Ground -based Lidar instrument

    DEFF Research Database (Denmark)

    Villanueva, Héctor; Georgieva Yankova, Ginka

    This report presents the result of the lidar calibration performed for the given Ground-based Lidar at DTU’s test site for large wind turbines at Høvsøre, Denmark. Calibration is here understood as the establishment of a relation between the reference wind speed measurements with measurement...... uncertainties provided by measurement standard and corresponding lidar wind speed indications with associated measurement uncertainties. The lidar calibration concerns the 10 minute mean wind speed measurements. The comparison of the lidar measurements of the wind direction with that from wind vanes...

  5. Autonomous landing of a helicopter UAV with a ground-based multisensory fusion system

    Science.gov (United States)

    Zhou, Dianle; Zhong, Zhiwei; Zhang, Daibing; Shen, Lincheng; Yan, Chengping

    2015-02-01

    In this study, this paper focus on the vision-based autonomous helicopter unmanned aerial vehicle (UAV) landing problems. This paper proposed a multisensory fusion to autonomous landing of an UAV. The systems include an infrared camera, an Ultra-wideband radar that measure distance between UAV and Ground-Based system, an PAN-Tilt Unit (PTU). In order to identify all weather UAV targets, we use infrared cameras. To reduce the complexity of the stereovision or one-cameral calculating the target of three-dimensional coordinates, using the ultra-wideband radar distance module provides visual depth information, real-time Image-PTU tracking UAV and calculate the UAV threedimensional coordinates. Compared to the DGPS, the test results show that the paper is effectiveness and robustness.

  6. Airborne Field Campaign Results of Ka-band Precipitation Measuring Radar in China%我国Ka频段降水测量雷达机载校飞试验结果

    Institute of Scientific and Technical Information of China (English)

    商建; 郭杨; 吴琼; 杨虎; 尹红刚

    2011-01-01

    conditions, observe simultaneously with ground-based radar and microwave radiometer and compare satellite-airplane-ground observation data, validate the functionality and performance of precipitation measuring radar, and explore data processing and retrieval algorithms of precipitation measuring radar. Numerous data are obtained from various instruments in the field campaign, including airborne precipitation measuring radar, ground-based weather radar, ground-based multi-channel microwave radiometer, GPS radiosonde, 10 GHz and 37 GHz radiometer, portable wind measuring device, and temperature measuring device. Initial analysis is accomplished with observation data obtained from BH-RM 2010. Observation results of Ka-band precipitation measuring radar working in pulse compression mode and short pulse mode are presented, which show clearly the vertical and horizontal structure of rainfall. Due to the radar different scan modes, resolutions, frequencies, and dynamic range, it's difficult to compare airborne radar data and ground-based radar data accurately, and the unstable attitude of the airplane makes the comparison more difficult. Spatial matching of Ka-band airborne radar data and Tianjin S-band ground-based Doppler radar data is carried out and detailed procedures are introduced. Quantitative indexes are further computed to indicate the observation consistency statistically. In rain retrieval algorithms, attenuation correction is a critical step. Using GPS radiosonde data, ground-based multi-channel microwave radiometer data and microwave radiative transfer model, the integrated attenuation of Ka-band radar is computed and attenuation correction is accomplished. The result is reasonable, which lays a basis for future rain retrieval. Data obtained by various instruments in the field campaign will be analyzed thoroughly, propelling development and rain rate retrieval of our spaceborne precipitation measuring radar.

  7. Multi-year comparison of stratospheric BrO vertical profiles retrieved from SCIAMACHY limb and ground-based UV-visible measurements

    Directory of Open Access Journals (Sweden)

    F. Hendrick

    2008-12-01

    Full Text Available Vertical profiles of stratospheric bromine monoxide (BrO daily retrieved from ENVISAT/SCIAMACHY (ENVIronmental SATellite/SCanning Imaging Absorption spectrometer for Atmospheric CHartographY limb scatter data and from ground-based UV-visible observations performed at Harestua (60° N, 11° E, Observatoire de Haute-Provence (44° N, 5.5° E, and Lauder (45° S, 170° E are compared in the 15–27 km altitude range for the period from 2002 until 2006. At the three stations, the SCIAMACHY and ground-based UV-visible profiles agree reasonably well, with relative difference smaller than 23% on average. When comparing the BrO partial columns, the agreement obtained is good, with mean relative differences smaller than 11% and corresponding standard deviations in the 13–19% range. The seasonal variation of the BrO columns at the three stations is consistently captured by both retrievals as well as large BrO column events occurring during the winter and early spring at Harestua which are associated with chlorine activation.

  8. Observing convection with satellite, radar, and lightning measurements

    Science.gov (United States)

    Hamann, Ulrich; Nisi, Luca; Clementi, Lorenzo; Ventura, Jordi Figueras i.; Gabella, Marco; Hering, Alessandro M.; Sideris, Ioannis; Trefalt, Simona; Germann, Urs

    2015-04-01

    Heavy precipitation, hail, and wind gusts are the fundamental meteorological hazards associated with strong convection and thunderstorms. The thread is particularly severe in mountainous areas, e.g. it is estimated that on average between 50% and 80% of all weather-related damage in Switzerland is caused by strong thunderstorms (Hilker et al., 2010). Intense atmospheric convection is governed by processes that range from the synoptic to the microphysical scale and are considered to be one of the most challenging and difficult weather phenomena to predict. Even though numerical weather prediction models have some skills to predict convection, in general the exact location of the convective initialization and its propagation cannot be forecasted by these models with sufficient precision. Hence, there is a strong interest to improve the short-term forecast by using statistical, object oriented and/or heuristic nowcasting methods. MeteoSwiss has developed several operational nowcasting systems for this purpose such as TRT (Hering, 2008) and COALITION (Nisi, 2014). In this contribution we analyze the typical development of convection using measurements of the Swiss C-band Dual Polarization Doppler weather radar network, the MSG SEVIRI satellite, and the Météorage lighting network. The observations are complemented with the analysis and forecasts of the COSMO model. Special attention is given to the typical evolutionary stages like the pre-convective environment, convective initiation, cloud top glaciation, start, maximum, and end of precipitation and lightning activity. The pre-convective environment is examined using instability indices derived from SEVIRI observations and the COSMO forecasts. During the early development satellite observations are used to observe the rise of the cloud top, the growth of the cloud droplet or crystals, and the glaciation of the cloud top. SEVIRI brightness temperatures, channel differences, and temporal trends as suggested by

  9. Validation of SCIAMACHY O2 A band cloud heights using Cloudnet radar/lidar measurements

    Directory of Open Access Journals (Sweden)

    P. Wang

    2013-10-01

    Full Text Available For the first time two SCIAMACHY O2 A band cloud height products are validated using ground-based radar/lidar measurements between January 2003 and December 2011. The products are the ESA Level 2 (L2 version 5.02 cloud top height and the FRESCO (Fast Retrieval Scheme for Clouds from the Oxygen A band version 6 cloud height. The radar/lidar profiles are obtained at the Cloudnet sites of Cabauw and Lindenberg, and are averaged for one hour centered at the SCIAMACHY overpass time to achieve an optimal temporal and spatial match. In total we have about 220 cases of single layer clouds and 200 cases of multi-layer clouds. The FRESCO cloud height and ESA L2 cloud top height are compared with the Cloudnet cloud top height and Cloudnet cloud middle height. We find that the ESA L2 cloud top height has a better agreement with the Cloudnet cloud top height than the Cloudnet cloud middle height. The ESA L2 cloud top height is on average 0.44 km higher than the Cloudnet cloud top height, with a standard deviation of 3.07 km. The FRESCO cloud height is closer to the Cloudnet cloud middle height than the Cloudnet cloud top height. The mean difference between the FRESCO cloud height and the Cloudnet cloud middle height is −0.14 km with a standard deviation of 1.88 km. The SCIAMACHY cloud height products are further compared to the Cloudnet cloud top height and the Cloudnet cloud middle height in 1 km bins. For single layer clouds, the difference between the ESA L2 cloud top height and the Cloudnet cloud top height is less than 1 km for each cloud bin at 3–7 km, which is 24 % percent of the data. The difference between the FRESCO cloud height and the Cloudnet cloud middle height is less than 1 km for each cloud bin at 0–6 km, which is 85 % percent of the data. The results are similar for multi-layer clouds, but the percentage of cases having a bias within 1 km is smaller than for single layer clouds. Since globally about 60 % of all clouds are low clouds

  10. Mixing height measurements from UHF wind profiling radar

    Energy Technology Data Exchange (ETDEWEB)

    Angevine, W.M.; Grimsdell, A.W. [CIRES, Univ. of Colorado, and NOAA Aeronomy Lab., Boulder, Colorado (United States)

    1997-10-01

    Mixing height in convective boundary layers can be detected by wind profiling radars (profilers) operating at or near 915 MHZ. We have made such measurements in a variety of settings including Alabama in 1992; Nova Scotia, Canada, during the North Atlantic Regional Experiment (NARE) 1993; Tennessee during the Southern Oxidant Study (SOS) 1994; near a 450 m tower in Wisconsin in 1995; and extensively in Illinois during the Flatland95, `96, and `97 experiments, as well as continuous operations at the Flatland Atmospheric Observatory. Profiler mixing height measurements, like all measurements, are subject to some limitations. The most important of these are due to rainfall, minimum height, and height resolution. Profilers are very sensitive to rain, which dominates the reflectivity and prevents the mixing height from being detected. Because the best height resolution is currently 60 m and the minimum height is 120-150 m AGL, the profiler is not suited for detecting mixing height in stable or nocturnal boundary layers. Problems may also arise in very dry or cold environments. (au) 12 refs.

  11. Calibration of Ground-based Lidar instrument

    DEFF Research Database (Denmark)

    Yordanova, Ginka; Gómez Arranz, Paula

    This report presents the result of a test of a ground-based lidar of other type. The test was performed at DTU’s test site for large wind turbines at Høvsøre, Denmark. The result as an establishment of a relation between the reference wind speed measurements with measurement uncertainties provided...... by measurement standard and corresponding lidar wind speed indications with associated measurement uncertainties. The comparison of the lidar measurements of the wind direction with that from the wind vanes is also given....

  12. X-Band high range resolution radar measurements of sea surface forward scatter at low grazing angles

    CSIR Research Space (South Africa)

    Smit, JC

    2008-05-01

    Full Text Available Radar measurements of a radar calibration sphere test target suspended in sea surface multipath propagation conditions are reported. Wideband measurements together with high range resolution (HRR) processing were employed to resolve the direct...

  13. Measure short separation for space debris based on radar angle error measurement information

    Science.gov (United States)

    Zhang, Yao; Wang, Qiao; Zhou, Lai-jian; Zhang, Zhuo; Li, Xiao-long

    2016-11-01

    With the increasingly frequent human activities in space, number of dead satellites and space debris has increased dramatically, bring greater risks to the available spacecraft, however, the current widespread use of measuring equipment between space target has a lot of problems, such as high development costs or the limited conditions of use. To solve this problem, use radar multi-target measure error information to the space, and combining the relationship between target and the radar station point of view, building horizontal distance decoding model. By adopting improved signal quantization digit, timing synchronization and outliers processing method, improve the measurement precision, satisfies the requirement of multi-objective near distance measurements, and the using efficiency is analyzed. By conducting the validation test, test the feasibility and effectiveness of the proposed methods.

  14. Radar measurement of L-band signal fluctuations caused by propagation through trees

    Science.gov (United States)

    Durden, Stephen L.; Klein, Jeffrey D.; Zebker, Howard A.

    1991-01-01

    Fluctuations of an L-band, horizontally polarized signal that was transmitted from the ground through a coniferous forest canopy to an airborne radar are examined. The azimuth synthetic aperture radar (SAR) impulse response in the presence of the measured magnitude fluctuations shows increased sidelobes over the case with no trees. Statistics of the observed fluctuations are similar to other observations.

  15. Long-term ground-based microwave radiometric measurements of atmospheric brightness temperature in SKYNET Hefei (31.90N, 117.17E) site

    Science.gov (United States)

    Wang, Zhenzhu; Liu, Dong; Xie, Chenbo; Wang, Bangxin; Zhong, Zhiqing; Wang, Yingjian; Chen, Bin

    2017-02-01

    A dual-frequency, ground-based microwave radiometer (WVR-1100) is used to investigate the behavior of the atmosphere in terms of zenith brightness temperature (TB) at 23.8 and 31.4 GHz respectively. Some experimental findings in SKYNET Hefei site from September 2002 to August 2012 are presented. The cumulative distributions of TB at both frequencies for all sky conditions show four different regions, while only two regions can be identified for clear, lightly cloudy and cloudy condition. Annual cycle of TB at 23.8 GHz is apparently remarkable, indicating the large annual cycle of atmospheric water vapor. Regular seasonal variations of TB are observed with the strongest value in summer and the weakest in winter.

  16. Ground based materials science experiments

    Science.gov (United States)

    Meyer, M. B.; Johnston, J. C.; Glasgow, T. K.

    1988-01-01

    The facilities at the Microgravity Materials Science Laboratory (MMSL) at the Lewis Research Center, created to offer immediate and low-cost access to ground-based testing facilities for industrial, academic, and government researchers, are described. The equipment in the MMSL falls into three categories: (1) devices which emulate some aspect of low gravitational forces, (2) specialized capabilities for 1-g development and refinement of microgravity experiments, and (3) functional duplicates of flight hardware. Equipment diagrams are included.

  17. Ground based materials science experiments

    Science.gov (United States)

    Meyer, M. B.; Johnston, J. C.; Glasgow, T. K.

    1988-01-01

    The facilities at the Microgravity Materials Science Laboratory (MMSL) at the Lewis Research Center, created to offer immediate and low-cost access to ground-based testing facilities for industrial, academic, and government researchers, are described. The equipment in the MMSL falls into three categories: (1) devices which emulate some aspect of low gravitational forces, (2) specialized capabilities for 1-g development and refinement of microgravity experiments, and (3) functional duplicates of flight hardware. Equipment diagrams are included.

  18. Tracking method based on separation and combination of the measurements for radar and IR fusion system

    Institute of Scientific and Technical Information of China (English)

    Wang Qingchao; Wang Wenfei

    2009-01-01

    A new distributed fusion method of radar/infrared (IR) tracking system based on separation and combination of the measurements is proposed by analyzing the influence of rate measurement. The rate information separated from the radar measurements together with measurements of IR form a pseudo vector of IR, and the corresponding filter is designed. The results indicate that the method not only makes a great improvement to the local tracker's performance, but also improves the global tracking precision efficiently.

  19. Field intercomparison of channel master ADCP with RiverSonde Radar for measuring river discharge

    Science.gov (United States)

    Spain, P.; Marsden, R.; Barrick, D.; Teague, C.; Ruhl, C.

    2005-01-01

    The RiverSonde radar makes non-contact measurement of a horizontal swath of surface velocity across a river section. This radar, which has worked successfully at several rivers in the Western USA, has shown encouraging correlation with simultaneous measurements of average currents at one level recorded by an acoustic travel-time system. This work reports a field study intercomparing data sets from a 600 kHz Channel Master ADCP with the RiverSonde radar. The primary goal was to begin to explore the robustness of the radar data as a reliable index of discharge. This site Is at Three Mile Slough in Northern California, USA. The larger intent of the work is to examine variability in space and time of the radar's surface currents compared with subsurface flows across the river section. Here we examine data from a couple of periods with strong winds. ?? 2005 IEEE.

  20. Correlating Flight Behavior and Radar Measurements for Species Based Classification of Bird Radar Echoes for Wind Energy Site Assessment

    Science.gov (United States)

    Werth, S. P.; Frasier, S. J.

    2015-12-01

    Wind energy is one of the fastest-growing segments of the world energy market, offering a clean and abundant source of electricity. However, wind energy facilities can have detrimental effects on wildlife, especially birds and bats. Monitoring systems based on marine navigation radar are often used to quantify migration near potential wind sites, but the ability to reliably distinguish between bats and different varieties of birds has not been practically achieved. This classification capability would enable wind site selection that protects more vulnerable species, such as bats and raptors. Flight behavior, such as wing beat frequency, changes in speed, or changes in orientation, are known to vary by species [1]. The ability to extract these properties from radar data could ultimately enable a species based classification scheme. In this work, we analyze the relationship between radar measurements and bird flight behavior in echoes from avifauna. During the 2014 fall migration season, the UMass dual polarized weather radar was used to collect low elevation observations of migrating birds as they traversed through a fixed antenna beam. The radar was run during the night time, in clear-air conditions. Data was coherently integrated, and detections of biological targets exceeding an SNR threshold were extracted. Detections without some dominant frequency content (i.e. clear periodicity, potentially the wing beat frequency) were removed from the sample in order to isolate observations suspected to contain a single species or bird. For the remaining detections, measurements including the polarimetric products and the Doppler spectrum were extracted at each time step over the duration of the observation. The periodic and time changing nature of some of these different measurements was found to have a strong correlation with flight behavior (i.e. flapping vs. gliding behavior). Assumptions about flight behavior and orientation were corroborated through scattering

  1. Illumination compensation in ground based hyperspectral imaging

    Science.gov (United States)

    Wendel, Alexander; Underwood, James

    2017-07-01

    Hyperspectral imaging has emerged as an important tool for analysing vegetation data in agricultural applications. Recently, low altitude and ground based hyperspectral imaging solutions have come to the fore, providing very high resolution data for mapping and studying large areas of crops in detail. However, these platforms introduce a unique set of challenges that need to be overcome to ensure consistent, accurate and timely acquisition of data. One particular problem is dealing with changes in environmental illumination while operating with natural light under cloud cover, which can have considerable effects on spectral shape. In the past this has been commonly achieved by imaging known reference targets at the time of data acquisition, direct measurement of irradiance, or atmospheric modelling. While capturing a reference panel continuously or very frequently allows accurate compensation for illumination changes, this is often not practical with ground based platforms, and impossible in aerial applications. This paper examines the use of an autonomous unmanned ground vehicle (UGV) to gather high resolution hyperspectral imaging data of crops under natural illumination. A process of illumination compensation is performed to extract the inherent reflectance properties of the crops, despite variable illumination. This work adapts a previously developed subspace model approach to reflectance and illumination recovery. Though tested on a ground vehicle in this paper, it is applicable to low altitude unmanned aerial hyperspectral imagery also. The method uses occasional observations of reference panel training data from within the same or other datasets, which enables a practical field protocol that minimises in-field manual labour. This paper tests the new approach, comparing it against traditional methods. Several illumination compensation protocols for high volume ground based data collection are presented based on the results. The findings in this paper are

  2. Novel Analytic Method for Determining Micro-Doppler Measurement Sensitivity in Life-detection Radar

    Directory of Open Access Journals (Sweden)

    Hu Cheng

    2016-10-01

    Full Text Available In recent years, a new non-contact life detecting device has been developed, known as life-detection radar, which can measure bodily movement and locate human subjects. Typically, the amplitude of the vibration being measured is quite small, so the measurement is easily contaminated by noise in the radar system. To date, there is no effective index for judging the influence of noise on the vibration measurements in this radar system. To solve this problem, in this paper, we define the micro-Doppler measurement sensitivity to analyze the influence of noise on the measurement. We then perform a simulation to generate a performance curve for the radar system.

  3. Improving radar rainfall estimation by merging point rainfall measurements within a model combination framework

    Science.gov (United States)

    Hasan, Mohammad Mahadi; Sharma, Ashish; Mariethoz, Gregoire; Johnson, Fiona; Seed, Alan

    2016-11-01

    While the value of correcting raw radar rainfall estimates using simultaneous ground rainfall observations is well known, approaches that use the complete record of both gauge and radar measurements to provide improved rainfall estimates are much less common. We present here two new approaches for estimating radar rainfall that are designed to address known limitations in radar rainfall products by using a relatively long history of radar reflectivity and ground rainfall observations. The first of these two approaches is a radar rainfall estimation algorithm that is nonparametric by construction. Compared to the traditional gauge adjusted parametric relationship between reflectivity (Z) and ground rainfall (R), the suggested new approach is based on a nonparametric radar rainfall estimation method (NPR) derived using the conditional probability distribution of reflectivity and gauge rainfall. The NPR method is applied to the densely gauged Sydney Terrey Hills radar network, where it reduces the RMSE in rainfall estimates by 10%, with improvements observed at 90% of the gauges. The second of the two approaches is a method to merge radar and spatially interpolated gauge measurements. The two sources of information are combined using a dynamic combinatorial algorithm with weights that vary in both space and time. The weight for any specific period is calculated based on the error covariance matrix that is formulated from the radar and spatially interpolated rainfall errors of similar reflectivity periods in a cross-validation setting. The combination method reduces the RMSE by about 20% compared to the traditional Z-R relationship method, and improves estimates compared to spatially interpolated point measurements in sparsely gauged areas.

  4. [Numerical modeling analysis of secondary organic aerosol (SOA) combined with the ground-based measurements in the Pearl River Delta region].

    Science.gov (United States)

    Guo, Xiao-Shuang; Situ, Shu-Ping; Wang, Xue-Mei; Ding, Xiang; Wang, Xin-Ming; Yan, Cai-Qing; Li, Xiao-Ying; Zheng, Mei

    2014-05-01

    Two simulations were conducted with different secondary organic aerosol (SOA) methods-VBS (volatile basis set) approach and SORGAM (secondary organic aerosol model) , which have been coupled in the WRF/Chem (weather research and forecasting model with chemistry) model. Ground-based observation data from 18th to 25th November 2008 were used to examine the model performance of SOA in the Pearl River Delta(PRD)region. The results showed that VBS approach could better reproduce the temporal variation and magnitude of SOA compared with SORGAM, and the mean absolute deviation and correlation coefficient between the observed and the simulated data using VBS approach were -4.88 microg m-3 and 0.91, respectively, while they were -5.32 microg.m-3 and 0. 18 with SORGAM. This is mainly because the VBS approach considers SOA precursors with a wider volatility range and the process of chemical aging in SOA formation. Spatiotemporal distribution of SOA in the PRD from the VBS simulation was also analyzed. The results indicated that the SOA has a significant diurnal variation, and the maximal SOA concentration occurred at noon and in the early afternoon. Because of the transport and the considerable spatial distribution of O3 , the SOA concentrations were different in different PRD cities, and the highest concentration of SOA was observed in the downwind area, including Zhongshan, Zhuhai and Jiangmen.

  5. Retrieve Optically Thick Ice Cloud Microphysical Properties by Using Airborne Dual-Wavelength Radar Measurements

    Science.gov (United States)

    Wang, Zhien; Heymsfield, Gerald M.; Li, Lihua; Heymsfield, Andrew J.

    2005-01-01

    An algorithm to retrieve optically thick ice cloud microphysical property profiles is developed by using the GSFC 9.6 GHz ER-2 Doppler Radar (EDOP) and the 94 GHz Cloud Radar System (CRS) measurements aboard the high-altitude ER-2 aircraft. In situ size distribution and total water content data from the CRYSTAL-FACE field campaign are used for the algorithm development. To reduce uncertainty in calculated radar reflectivity factors (Ze) at these wavelengths, coincident radar measurements and size distribution data are used to guide the selection of mass-length relationships and to deal with the density and non-spherical effects of ice crystals on the Ze calculations. The algorithm is able to retrieve microphysical property profiles of optically thick ice clouds, such as, deep convective and anvil clouds, which are very challenging for single frequency radar and lidar. Examples of retrieved microphysical properties for a deep convective clouds are presented, which show that EDOP and CRS measurements provide rich information to study cloud structure and evolution. Good agreement between IWPs derived from an independent submillimeter-wave radiometer, CoSSIR, and dual-wavelength radar measurements indicates accuracy of the IWC retrieved from the two-frequency radar algorithm.

  6. Cognitive bio-radar: The natural evolution of bio-signals measurement.

    Science.gov (United States)

    Malafaia, Daniel; Oliveira, Beatriz; Ferreira, Pedro; Varum, Tiago; Vieira, José; Tomé, Ana

    2016-10-01

    In this article we discuss a novel approach to Bio-Radar, contactless measurement of bio-signals, called Cognitive Bio-Radar. This new approach implements the Bio-Radar in a Software Defined Radio (SDR) platform in order to obtain awareness of the environment where it operates. Due to this, the Cognitive Bio-Radar can adapt to its surroundings in order to have an intelligent usage of the radio frequency spectrum to improve its performance. In order to study the feasibility of such implementation, a SDR based Bio-Radar testbench was developed and evaluated. The prototype is shown to be able to acquire the heartbeat activity and the respiratory effort. The acquired data is compared with the acquisitions from a Biopac research data acquisition system, showing coherent results for both heartbeat and breathing rate.

  7. Ground-Based Global Positioning System (GPS) Meteorology Integrated Precipitable Water Vapor (IPW)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Ground-Based Global Positioning System (GPS) Meteorology Integrated Precipitable Water Vapor (IPW) data set measures atmospheric water vapor using ground-based...

  8. A high-precision K-band LFMCW radar for range measurement

    Science.gov (United States)

    Jia, Yingzhuo; Chen, Xiuwei; Zou, Yongliao

    2016-11-01

    K-band LFMCW radar may be applied in high-precision range measurement, if its range resolution is made be close to mm magnitude, good performance is not only needed in hardware design, algorithm selection and optimization is but also needed. In K-band LFMCW radar system, CZT algorithm is modified according to practical radar echo signal, its simulation model is built in the System Generator tool software, the corresponding algorithm is implemented in FPGA. K-band LFMCW radar may be applied in range measurement of great volume storage tank, the outfield experiment was done according to application, experiment result shows that range measurement precision may reach mm magnitude, the system can meet the requirement of remote high-precision measurement.

  9. Pulse Doppler radar

    CERN Document Server

    Alabaster, Clive

    2012-01-01

    This book is a practitioner's guide to all aspects of pulse Doppler radar. It concentrates on airborne military radar systems since they are the most used, most complex, and most interesting of the pulse Doppler radars; however, ground-based and non-military systems are also included. It covers the fundamental science, signal processing, hardware issues, systems design and case studies of typical systems. It will be a useful resource for engineers of all types (hardware, software and systems), academics, post-graduate students, scientists in radar and radar electronic warfare sectors and milit

  10. A Radar Vector Slope Gauge for Ocean Measurements

    Science.gov (United States)

    1994-05-01

    University of Kansas. Examples include TRAMAS and the HELOSCAT radars. Milberger (1973) describes the original design of the range tracker. Figure 2.5...the modulating signal. For linear triangular modulation, the 3 resulting phase modulation is a square wave that results in the familiar (sinxlx)2

  11. MEASURING SEA ICE DRIFT VIA CROSS-CORRELATION OF RADAR ICE IMAGES

    Institute of Scientific and Technical Information of China (English)

    SUN He-quan; SHEN Yong-ming; Qiu Da-hong

    2004-01-01

    The motion of sea ice has a great effect on winter navigation, and oil field exploration in the Bohai Sea. It is very important to measure the ice drift accurately and efficiently. As a practical technique, radar imagery has been used for sea ice monitoring and forecasting for a long time. Combining with the radar imagery and cross-correlation technique, a new measurement method based on the cross-correlation of radar ice images is specified in this paper to obtain full field measurement of sea ice drift. The theory and fast implementation of cross-correlation are presented briefly in the paper, including the filtering method to modify the invalid vectors. To show deeply the validity of the present method, the velocity maps of sea ice drift are provided in the paper, which are calculated from the radar images grabbed in the Liaodong Gulf. The comparison with the traditional tracing method is also conducted.

  12. Comparison and error analysis of remotely measured waveheight by high frequency ground wave radar

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    High frequency ground wave radar (HFGWR) has unique advantage in the survey of dynamical factors, such as sea surface current, sea wave, and sea surface wind in marine conditions in coastal sea area.Compared to marine satellite remote sensing, it involves lower cost, has higher measuring accuracy and spatial resolution and sampling frequency. High frequency ground wave radar is a new land based remote sensing instrument with superior vision and greater application potentials. This paper reviews the development history and application status of high frequency wave radar, introduces its remote-sensing principle and method to inverse offshore fluid, and wave and wind field. Based on the author's "863 Project", this paper recounts comparison and verification of radar remote-sensing value, the physical calibration of radar-measured data and methods to control the quality of radar-sensing data. The authors discuss the precision of radar-sensing data's inversing on offshore fluid field and application of the assimilated data on assimilation.

  13. On the use of borehole radar measurements for 3D assessment of structures in rock volumes

    Energy Technology Data Exchange (ETDEWEB)

    Tiren, S.A. [GEOSIGMA AB, Uppsala (Sweden)

    1998-09-01

    Construction of a three-dimensional model of an area, for example a site for radioactive waste disposal, requires subsurface extrapolation of surface data and interpolation of subsurface and surface data. Such structural interpretation is based on local information in the perspective of the regional structural setting of the site. The SKB borehole radar, which can detect structures within a radius of 15 to 25 m around the borehole, is one of the most important sources of geometrical information from boreholes. Directional borehole radar measurements produce information on the angle ({alpha}) at which a feature intersects the borehole and the location (azimuth) relative to the borehole. Although the azimuthal information is important for the subsequent interpretation, the critical parameter that determines whether the feature is detected by the radar appears to be the {alpha}-angle. In this paper, the performance of the radar tool concerning {alpha}-angles is studied. The reason for undertaking the study was that predicted low angle intersections between boreholes and structures were not identified. This suggests that the relationship between the sampled population and the target population needs to be investigated. The analysed data sets comprise 307 reflectors from the Romuvaara site in Finland and 307 reflectors from the cored boreholes in the Hard Rock Laboratory at Aespoe. In the Aespoe bedrock, the shape of the frequency histogram displaying the {alpha}-angles is very consistent throughout the area. A brief comparison of amplitudes and reflectivity shows that the shape of the frequency histogram is tool-dependent rather than depending on the physical properties of the zones. The potential of the borehole radar to detect structures intersecting the borehole at very high angles is low due to the transmitter-receiver configuration of the tool. In the Aespoe radar data, the range of the borehole radar appears to be narrower than expected, with very few radar

  14. Assessment of C-band Polarimetric Radar Rainfall Measurements During Strong Attenuation.

    Science.gov (United States)

    Paredes-Victoria, P. N.; Rico-Ramirez, M. A.; Pedrozo-Acuña, A.

    2016-12-01

    In the modern hydrological modelling and their applications on flood forecasting systems and climate modelling, reliable spatiotemporal rainfall measurements are the keystone. Raingauges are the foundation in hydrology to collect rainfall data, however they are prone to errors (e.g. systematic, malfunctioning, and instrumental errors). Moreover rainfall data from gauges is often used to calibrate and validate weather radar rainfall, which is distributed in space. Therefore, it is important to apply techniques to control the quality of the raingauge data in order to guarantee a high level of confidence in rainfall measurements for radar calibration and numerical weather modelling. Also, the reliability of radar data is often limited because of the errors in the radar signal (e.g. clutter, variation of the vertical reflectivity profile, beam blockage, attenuation, etc) which need to be corrected in order to increase the accuracy of the radar rainfall estimation. This paper presents a method for raingauge-measurement quality-control correction based on the inverse distance weighted as a function of correlated climatology (i.e. performed by using the reflectivity from weather radar). Also a Clutter Mitigation Decision (CMD) algorithm is applied for clutter filtering process, finally three algorithms based on differential phase measurements are applied for radar signal attenuation correction. The quality-control method proves that correlated climatology is very sensitive in the first 100 kilometres for this area. The results also showed that ground clutter affects slightly the radar measurements due to the low gradient of the terrain in the area. However, strong radar signal attenuation is often found in this data set due to the heavy storms that take place in this region and the differential phase measurements are crucial to correct for attenuation at C-band frequencies. The study area is located in Sabancuy-Campeche, Mexico (Latitude 18.97 N, Longitude 91.17º W) and

  15. ESTIMATION OF TROPICAL FOREST STRUCTURE AND BIOMASS FROM FUSION OF RADAR AND LIDAR MEASUREMENTS (Invited)

    Science.gov (United States)

    Saatchi, S. S.; Dubayah, R.; Clark, D. B.; Chazdon, R.

    2009-12-01

    Radar and Lidar instruments are active remote sensing sensors with the potential of measuring forest vertical and horizontal structure and the aboveground biomass (AGB). In this paper, we present the analysis of radar and lidar data acquired over the La Selva Biological Station in Costa Rica. Radar polarimetry at L-band (25 cm wavelength), P-band (70 cm wavelength) and interferometry at C-band (6 cm wavelength) and VV polarization were acquired by the NASA/JPL airborne synthetic aperture radar (AIRSAR) system. Lidar images were provided by a large footprint airborne scanning Lidar known as the Laser Vegetation Imaging Sensor (LVIS). By including field measurements of structure and biomass over a variety of forest types, we examined: 1) sensitivity of radar and lidar measurements to forest structure and biomass, 2) accuracy of individual sensors for AGB estimation, and 3) synergism of radar imaging measurements with lidar imaging and sampling measurements for improving the estimation of 3-dimensional forest structure and AGB. The results showed that P-band radar combined with any interformteric measurement of forest height can capture approximately 85% of the variation of biomass in La Selva at spatial scales larger than 1 hectare. Similar analysis at L-band frequency captured only 70% of the variation. However, combination of lidar and radar measurements improved estimates of forest three-dimensional structure and biomass to above 90% for all forest types. We present a novel data fusion approach based on a Baysian estimation model with the capability of incorporating lidar samples and radar imagery. The model was used to simulate the potential of data fusion in future satellite mission scenarios as in BIOMASS (planned by ESA) at P-band and DESDynl (planned by NASA) at L-band. The estimation model was also able to quantify errors and uncertainties associated with the scale of measurements, spatial variability of forest structure, and differences in radar and lidar

  16. Mid-latitude E-region bulk motions inferred from digital ionosonde and HF radar measurements

    Directory of Open Access Journals (Sweden)

    J. Delloue

    2004-11-01

    Full Text Available In the mid-latitude E-region there is now evidence suggesting that neutral winds play a significant role in driving the local plasma instabilities and electrodynamics inside sporadicE layers. Neutral winds can be inferred from coherent radar backscatter measurements of the range-/azimuth-time-intensity (RTI/ATI striations of quasi-periodic (QP echoes, or from radar interferometer/imaging observations. In addition, neutral winds in the E-region can be estimated from angle-of-arrival ionosonde measurements of sporadic-E layers. In the present paper we analyse concurrent ionosonde and HF coherent backscatter observations obtained when a Canadian Advanced Digital Ionosonde (CADI was operated under a portion of the field-of-view of the Valensole high frequency (HF radar. The Valensole radar, a mid-latitude radar located in the south of France with a large azimuthal scanning capability of 82° (24° E to 58° W, was used to deduce zonal bulk motions of QP echoing regions using ATI analysis. The CADI was used to measure angle-of-arrival information in two orthogonal horizontal directions and thus derive the motion of sporadic-E patches drifting with the neutral wind. This paper compares the neutral wind drifts of the unstable sporadic-E patches as determined by the two instruments. The CADI measurements show a predominantly westward aligned motion, but the measured zonal drifts are underestimated relative to those observed with the Valensole radar.

  17. Analysis of global and regional CO burdens measured from space between 2000 and 2009 and validated by ground-based solar tracking spectrometers

    Directory of Open Access Journals (Sweden)

    L. Yurganov

    2010-04-01

    Full Text Available Interannual variations in AIRS and MOPITT retrieved CO burdens are validated, corrected, and compared with CO emissions from wild fires from the Global Fire Emission Dataset (GFED2 inventory. Validation of daily mean CO total column (TC retrievals from MOPITT version 3 and AIRS version 5 is performed through comparisons with archived TC data from the Network for Detection of Atmospheric Composition Change (NDACC ground-based Fourier Transform Spectrometers (FTS between March 2000 and December 2007. MOPITT V3 retrievals exhibit an increasing temporal bias with a rate of 1.4–1.8% per year; thus far, AIRS retrievals appear to be more stable. For the lowest CO values in the Southern Hemisphere (SH, AIRS TC retrievals overestimate FTS TC by 20%. MOPITT's bias and standard deviation do not depend on CO TC absolute values. Empirical corrections are derived for AIRS and MOPITT retrievals based on the observed annually averaged bias versus the FTS TC. Recently published MOPITT V4 is found to be in a good agreement with MOPITT V3 corrected by us (with exception of 2000–2001 period. With these corrections, CO burdens from AIRS V5 and MOPITT V3 (as well as MOPITT V4 come into good agreement in the mid-latitudes of the Northern Hemisphere (NH and in the tropical belt. In the SH, agreement between AIRS and MOPITT CO burdens is better for the larger CO TC in austral winter and worse in austral summer when CO TC are smaller. Before July 2008, all variations in retrieved CO burden can be explained by changes in fire emissions. After July 2008, global and tropical CO burdens decreased until October before recovering by the beginning of 2009. The NH CO burden also decreased but reached a minimum in January 2009 before starting to recover. The decrease in tropical CO burdens is explained by lower than usual fire emissions in South America and Indonesia. This decrease in tropical emissions also accounts for most of the change in the global CO burden. However, no

  18. Measuring Water Vapor and Ash in Volcanic Eruptions with a Millimeter-Wave Radar/Imager

    CERN Document Server

    Bryan, Sean; Vanderkluysen, Loÿc; Groppi, Christopher; Paine, Scott; Bliss, Daniel W; Aberle, James; Mauskopf, Philip

    2016-01-01

    Millimeter-wave remote sensing technology can significantly improve measurements of volcanic eruptions, yielding new insights into eruption processes and improving forecasts of drifting volcanic ash for aviation safety. Radiometers can measure water vapor density and temperature inside eruption clouds, improving on existing measurements with infrared cameras that are limited to measuring the outer cloud surface. Millimeter-wave radar can measure the 3D mass flow of volcanic ash inside eruption plumes and drifting fine ash clouds, offering better sensitivity than existing weather radar measurements and the unique ability to measure ash particle size in-situ. Here we present sensitivity calculations in the context of developing the WAMS (Water and Ash Millimeter-wave Spectrometer) instrument. WAMS, a radar/radiometer system constructed with off-the-shelf components, would be able to measure water vapor and ash throughout an entire eruption cloud, a unique capability.

  19. Statistical and neural classifiers in estimating rain rate from weather radar measurements

    Directory of Open Access Journals (Sweden)

    S. C. Michaelides

    2007-04-01

    Full Text Available Weather radars are used to measure the electromagnetic radiation backscattered by cloud raindrops. Clouds that backscatter more electromagnetic radiation consist of larger droplets of rain and therefore they produce more rain. The idea is to estimate rain rate by using weather radar as an alternative to rain-gauges measuring rainfall on the ground. In an experiment during two days in June and August 1997 over the Italian-Swiss Alps, data from weather radar and surrounding rain-gauges were collected at the same time. The statistical KNN and the neural SOM classifiers were implemented for the classification task using the radar data as input and the rain-gauge measurements as output. The proposed system managed to identify matching pattern waveforms and the rainfall rate on the ground was estimated based on the radar reflectivities with a satisfactory error rate, outperforming the traditional Z/R relationship. It is anticipated that more data, representing a variety of possible meteorological conditions, will lead to improved results. The results in this work show that an estimation of rain rate based on weather radar measurements treated with statistical and neural classifiers is possible.

  20. Evolution processes of a group of equatorial plasma bubble (EPBs) simultaneously observed by ground-based and satellite measurements in the equatorial region of China

    Science.gov (United States)

    Sun, Longchang; Xu, Jiyao; Wang, Wenbin; Yuan, Wei; Zhu, Yajun

    2017-04-01

    This paper for the first time reports conjugate observations of a group of evolving equatorial plasma bubbles (EPBs) generated in the longitudinal sector of China on 4/5 November 2013 using simultaneous airglow and Communication/Navigation Outage Forecasting System (C/NOFS) observations. The airglow depletion structures seen by two all-sky airglow imagers had the same zonal wavelength as that of the longitudinally periodic electron density depletions observed by the C/NOFS satellite which occurred at almost the same time but at magnetically conjugate latitudes. Data from a VHF radar and a Digisonde were combined to investigate the evolution of the EPB group, including their generation, development, and dissipation. Results indicate that the EPB group developed from the bottomside large-scale wave-like structure (LSWS) at about 195-210 km height with a characteristic zonal wavelength and longitudinal extension of about 450 km and 2250 km, respectively. The EPB group also caused periodic bottomside type spread F associated with the LSWS. We found that the development of the EPB group and their associated spread F could be limited by the equatorward motion of equatorial ionization anomaly (EIA) and the southwestward motion of an extremely bright airglow region (SMEBAR). The SMEBAR is a newly discovered structure of plasma density increase but not a plasma blob reported before. Both EIA and SMEBAR could feed high plasma density into an EPB airglow depletion structure that was eventually seen as a bright airglow structure or disappeared. Meanwhile, spread F associated with the EPBs did not evolve from the bottomside type into the strong range type.

  1. Analysis of Active Lava Flows on Kilauea Volcano, Hawaii, Using SIR-C Radar Correlation Measurements

    Science.gov (United States)

    Zebker, H. A.; Rosen, P.; Hensley, S.; Mouginis-Mark, P. J.

    1995-01-01

    Precise eruption rates of active pahoehoe lava flows on Kilauea volcano, Hawaii, have been determined using spaceborne radar data acquired by the Space Shuttle Imaging Radar-C (SIR-C). Measurement of the rate of lava flow advance, and the determination of the volume of new material erupted in a given period of time, are among the most important observations that can be made when studying a volcano.

  2. Radar polarimeter measures orientation of calibration corner reflectors

    Science.gov (United States)

    Zebker, Howard A.; Norikane, Lynne

    1987-01-01

    Radar polarimeter signals from a set of trihedral corner reflectors located in the Goldstone Dry Lake in California were analyzed, and three types of scattering behavior were observed: (1) Bragg-like slightly rough surface scattering that represents the background signal from the dry lake, (2) trihedral corner reflector scattering that returns the incident polarization, and (3) two-bounce corner reflector scattering resulting from a particular alignment of a trihedral reflector. A radar calibration approach using trihedral corner reflectors should be designed such that precise alignment of the reflectors is ensured, as three-bounce and two-bounce geometries lead to very different cross sections and hence very different inferred calibration factors.

  3. Radar Cross Section measurements on the stealth metamaterial objects

    DEFF Research Database (Denmark)

    Iwaszczuk, Krzysztof; Fan, Kim; Strikwerda, Andrew C.

    have been realized in the form of thin, flexible metallized films of polyimide [1]. Here we apply a near-unity absorbing MM as a way to reduce the radar cross section of an object, and consider the real-life situation where the probe beam is significantly larger than the MM film and the object under...... investigation. We use a terahertz radar cross section (RCS) setup [2] for the characterization of the RCS of a real object covered with an absorbing MM film designed for high absorption in the THz frequency range, specifically at 0.8 THz. The results are in a form of 2D maps (sinograms), from which the RCS...

  4. A quantum inspired model of radar range and range-rate measurements with applications to weak value measurements

    Science.gov (United States)

    Escalante, George

    2017-05-01

    Weak Value Measurements (WVMs) with pre- and post-selected quantum mechanical ensembles were proposed by Aharonov, Albert, and Vaidman in 1988 and have found numerous applications in both theoretical and applied physics. In the field of precision metrology, WVM techniques have been demonstrated and proven valuable as a means to shift, amplify, and detect signals and to make precise measurements of small effects in both quantum and classical systems, including: particle spin, the Spin-Hall effect of light, optical beam deflections, frequency shifts, field gradients, and many others. In principal, WVM amplification techniques are also possible in radar and could be a valuable tool for precision measurements. However, relatively limited research has been done in this area. This article presents a quantum-inspired model of radar range and range-rate measurements of arbitrary strength, including standard and pre- and post-selected measurements. The model is used to extend WVM amplification theory to radar, with the receive filter performing the post-selection role. It is shown that the description of range and range-rate measurements based on the quantum-mechanical measurement model and formalism produces the same results as the conventional approach used in radar based on signal processing and filtering of the reflected signal at the radar receiver. Numerical simulation results using simple point scatterrer configurations are presented, applying the quantum-inspired model of radar range and range-rate measurements that occur in the weak measurement regime. Potential applications and benefits of the quantum inspired approach to radar measurements are presented, including improved range and Doppler measurement resolution.

  5. Beam Forming HF Radar Beam Pattern Measurements and Phase Offset Calibration Using a UAV

    Science.gov (United States)

    Cahl, D.; Voulgaris, G.

    2016-12-01

    It has been shown that measuring antenna patterns for direction finding radars improves surface current measurements. For beam forming radars, the beam pattern of the receive array is assumed to be similar to that derived using theoretical calculations. However, local environmental conditions may lead to deviations (i.e., larger sidelobes and beamwidth) from this idealized beam pattern. This becomes particularly important for wave measurements that are sensitive to interference from sidelobes. Common techniques for beam forming HF radar phase calibration include "cross calibration", using a secondary beam forming site as the signal source, or calibration using a ship. The former method is limited to only one direction; on straight coastlines this is often at a large angle from the radar bore site where the beam width and uncertainty in phase calibration might be large. The latter technique requires chartering a ship with an appropriate reflector or transmitter, or the identification of ships of opportunity. Recent advances in UAV technology combined with an easement of FAA restrictions (Part 107) allows phase calibrations and beam pattern measurements to be completed on an HF radar site using a small transmitter attached to a UAV. This presentation describes the use of a UAV and the development of a method for beam forming phase calibration and beam pattern measurements. This method uses the UAV as a moving signal source to provide true sidelobe and beamwidth measurements. Results are shown from a calibration carried out at a beam forming (WERA) radar site (8.3 MHz) located in Georgetown, SC and are compared with results from a cross calibration. Phase calibrations acquired by the UAV showed a dependence on azimuthal angle from the radar bore site. Also, the beam patterns obtained were found to be narrower than those derived using the stationary source method. The effect of the new phase values derived using this method on the accuracy of radial velocities will be

  6. Surface current dynamics under sea breeze conditions observed by simultaneous HF radar, ADCP and drifter measurements

    Science.gov (United States)

    Sentchev, Alexei; Forget, Philippe; Fraunié, Philippe

    2017-02-01

    Ocean surface boundary layer dynamics off the southern coast of France in the NW Mediterranean is investigated by using velocity observations by high-frequency (HF) radars, surface drifting buoys and a downward-looking drifting acoustic Doppler current profiler (ADCP). The analysis confirms that velocities measured by HF radars correspond to those observed by an ADCP at the effective depth z f = k -1, where k is wavenumber of the radio wave emitted by the radar. The radials provided by the radars were in a very good agreement with in situ measurements, with the relative errors of 1 and 9 % and root mean square (RMS) differences of 0.02 and 0.04 m/s for monostatic and bistatic radar, respectively. The total radar-based velocities appeared to be slightly underestimated in magnitude and somewhat biased in direction. At the end of the survey period, the difference in the surface current direction, based on HF radar and ADCP data, attained 10°. It was demonstrated that the surface boundary layer dynamics cannot be reconstructed successfully without taking into the account velocity variation with depth. A significant misalignment of ˜30° caused by the sea breeze was documented between the HF radar (HFR-derived) surface current and the background current. It was also found that the ocean response to a moderate wind forcing was confined to the 4-m-thick upper layer. The respective Ekman current attained the maximum value of 0.15 m/s, and the current rotation was found to be lagging the wind by approximately 40 min, with the current vector direction being 15-20° to the left of the wind. The range of velocity variability due to wind forcing was found comparable with the magnitude of the background current variability.

  7. The importance of measuring peak power in radar systems; La importancia de la medida de potencia de pico en sistemas de radar

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-11-01

    radar systems are widely used in civil aviation and military, also on Weather monitoring equipment and road traffic control to name a few. Of these systems depends largely on our security and require power measurements with accuracy. This paper focuses on those radars such as aviation that use bursts of pulses, or pulse modulated to obtain more precise details of the target and are highly sensitive receptors for low-noise measures. (Author)

  8. A comparison of vertical velocity variance measurements from wind profiling radars and sonic anemometers

    Science.gov (United States)

    McCaffrey, Katherine; Bianco, Laura; Johnston, Paul; Wilczak, James M.

    2017-03-01

    Observations of turbulence in the planetary boundary layer are critical for developing and evaluating boundary layer parameterizations in mesoscale numerical weather prediction models. These observations, however, are expensive and rarely profile the entire boundary layer. Using optimized configurations for 449 and 915 MHz wind profiling radars during the eXperimental Planetary boundary layer Instrumentation Assessment (XPIA), improvements have been made to the historical methods of measuring vertical velocity variance through the time series of vertical velocity, as well as the Doppler spectral width. Using six heights of sonic anemometers mounted on a 300 m tower, correlations of up to R2 = 0. 74 are seen in measurements of the large-scale variances from the radar time series and R2 = 0. 79 in measurements of small-scale variance from radar spectral widths. The total variance, measured as the sum of the small and large scales, agrees well with sonic anemometers, with R2 = 0. 79. Correlation is higher in daytime convective boundary layers than nighttime stable conditions when turbulence levels are smaller. With the good agreement with the in situ measurements, highly resolved profiles up to 2 km can be accurately observed from the 449 MHz radar and 1 km from the 915 MHz radar. This optimized configuration will provide unique observations for the verification and improvement to boundary layer parameterizations in mesoscale models.

  9. Microwave signatures of ice hydrometeors from ground-based observations above Summit, Greenland

    Directory of Open Access Journals (Sweden)

    C. Pettersen

    2015-12-01

    Full Text Available Multi-instrument, ground-based measurements provide unique and comprehensive datasets of the atmosphere for a specific location over long periods of time and resulting data compliments past and existing global satellite observations. This paper explores the effect of ice hydrometeors on ground-based, high frequency passive microwave measurements and attempts to isolate an ice signature for summer seasons at Summit, Greenland from 2010–2013. Data from a combination of passive microwave, cloud radar, radiosonde, and ceilometer were examined to isolate the ice signature at microwave wavelengths. By limiting the study to a cloud liquid water path of 40 g m−2 or less, the cloud radar can identify cases where the precipitation was dominated by ice. These cases were examined using liquid water and gas microwave absorption models, and brightness temperatures were calculated for the high frequency microwave channels: 90, 150, and 225 GHz. By comparing the measured brightness temperatures from the microwave radiometers and the calculated brightness temperature using only gas and liquid contributions, any residual brightness temperature difference is due to emission and scattering of microwave radiation from the ice hydrometeors in the column. The ice signature in the 90, 150, and 225 GHz channels for the Summit Station summer months was isolated. This measured ice signature was then compared to an equivalent brightness temperature difference calculated with a radiative transfer model including microwave single scattering properties for several ice habits. Initial model results compare well against the four years of summer season isolated ice signature in the high-frequency microwave channels.

  10. Ground-based measurements of O3, NO2, OClO, and BrO during the 1987 Antarctic ozone depletion event

    Science.gov (United States)

    Sanders, R. W.; Solomon, S.; Carroll, M. A.; Schmeltekopf, A. L.

    1988-01-01

    Near-ultraviolet absorption spectroscopy in the wavelength range from 330 to 370 nm was used to measure O3, NO2, OClO, and BrO at McMurdo Station (78S) during 1987. Visible absorption measurements of O3, NO2, and OClO were also obtained using the wavelength range from about 403 to 453 nm. These data are described and compared to observations obtained in 1986. It is shown that comparisons of observations in the two wavelength ranges provide a sensitive measure of the altitude where the bulk of atmospheric absorption takes place.

  11. The measurement of sea surface profile with X-band coherent marine radar

    Institute of Scientific and Technical Information of China (English)

    WANG Yunhua; LI Huimin; ZHANG Yanmin; GUO Lixin

    2015-01-01

    The line-of-sight velocity of scattering facets is related to the Doppler signals of X-band coherent marine radar from the oceanic surface. First, the sign Doppler Estimator is applied to estimate the Doppler shift of each radar resolution cell. And then, in terms of the Doppler shift, a retrieval algorithm extracting the vertical displacement of the sea surface has been proposed. The effects induced by radar look-direction and radar spatial resolution are both taken into account in this retrieval algorithm. The comparison between the sea surface spectrum of buoy data and the retrieved spectrum reveals that the function of the radar spatial resolution is equivalent to a low pass filter, impacting especially the spectrum of short gravity waves. The experimental data collected by McMaster IPIX radar are also used to validate the performance of the retrieval algorithm. The derived significant wave height and wave period are compared with the in situ measurements, and the agreement indicates the practicality of the retrieval technology.

  12. Imaging and EISCAT radar measurements of an auroral prebreakup event

    Directory of Open Access Journals (Sweden)

    V. Safargaleev

    Full Text Available The results of coordinated EISCAT and TV-camera observations of a prebreakup event on 15 November 1993 have been considered. The variations of the luminosity of two parallel auroral arcs, plasma depletion on the poleward edge of one of these arcs as well as electron and ion temperatures in front of a westward travelling surge were studied. It was found that a short-lived brightening of a weak zenith arc before an auroral breakup was accompanied by fading of an equatorial arc and, vice versa. A plasma depletion in the E region was detected by the EISCAT radar on the poleward edge of the zenith arc just before the auroral breakup. The plasma depletion was associated with an enhancement of ion (at the altitudes of 150–200 km and electron (in E region temperatures. During its occurrence, the electric field in the E-region was extremely large (~150 mV/m. A significant increase in ion temperature was also observed 1 min before the arrival of a westward travelling surge (WTS at the radar zenith. This was interpreted as the existence of an extended area of enhanced electric field ahead of the WTS.

  13. Ground-based FTIR measurements of CO from the Jungfraujoch: characterisation and comparison with in situ surface andMOPITT data

    Directory of Open Access Journals (Sweden)

    E. Mahieu

    2003-09-01

    Full Text Available CO vertical profiles have been retrieved from solar absorption FTIR spectra recorded at the NDSC station of the Jungfraujoch (46.5° N, 8° E and 3580 m a.s.l. for the period from January 1997 to May 2001. The characterisation of these profiles has been established by an information content analysis and an estimation of the error budgets. A partial validation of the profiles has been performed through comparisons with correlative measurements. The average volume mixing ratios (vmr in the 3 km layer above the station have been compared with coincident surface measurements. The agreement between monthly means from both measurement techniques is very good, with a correlation coefficient of 0.87, and no significant bias observed. The FTIR total columns have also been compared to CO partial columns above 3580 m a.s.l. derived from the MOPITT (Measurement Of Pollution In The Troposphere instrument for the period March 2000 to May 2001. Relative to the FTIR columns, the MOPITT partial columns exhibit a positive bias of 8±8% for daytime and of 4±7% for nighttime measurements.

  14. MODIS GPP/NPP for complex land use area: a case study of comparison between MODIS GPP/NPP and ground-based measurements over Korea

    Science.gov (United States)

    Shim, C.

    2013-12-01

    The Moderate Resolution Imaging Radiometer (MODIS) Gross Primary Productivity (GPP)/Net Primary Productivity (NPP) has been widely used for the study on global terrestrial ecosystem and carbon cycle. The current MODIS product with ~ 1 km spatial resolution, however, has limitation on the information on local scale environment (Pinus densiflora) agreed well with -0.2% of bias (1.6 gCm-2yr-1). The fairly comparable values of the MODIS here however, cannot assure the quality of the MOD17 over the complex vegetation area of Korea since the ground measurements except the eddy covariance tower flux measurements are highly inconsistent. Therefore, the comprehensive experiments to represents GPP/NPP over diverse vegetation types for a comparable scale of MODIS with a consistent measurement technique are necessary in order to evaluate the MODIS vegetation productivity data over Korea, which contains a large portion of highly heterogeneous vegetation area.

  15. Pathway to the Galactic Distribution of Planets: Combined Spitzer and Ground-Based Microlens Parallax Measurements of 21 Single-Lens Events

    CERN Document Server

    Novati, S Calchi; Udalski, A; Menzies, J W; Bond, I A; Shvartzvald, Y; Street, R A; Hundertmark, M; Beichman, C A; Yee, J C; Carey, S; Poleski, R; Skowron, J; Kozlowski, S; Mroz, P; Pietrukowicz, P; Pietrzynski, G; Szymanski, M K; Soszynski, I; Ulaczyk, K; Wyrzykowski, L; Albrow, M; Beaulieu, J P; Caldwell, J A R; Cassan, A; Coutures, C; Danielski, C; Prester, D Dominis; Donatowicz, J; Lonvcaric, K; McDougall, A; Morales, J C; Ranc, C; Zhu, W; Abe, F; Barry, R K; Bennett, D P; Bhattacharya, A; Fukunaga, D; Inayama, K; Koshimoto, N; Namba, S; Sumi, T; Suzuki, D; Tristram, P J; Wakiyama, Y; Yonehara, A; Maoz, D; Kaspi, S; Friedmann, M; Bachelet, E; Jaimes, R Figuera; Bramich, D M; Tsapras, Y; Horne, K; Snodgrass, C; Wambsganss, J; Steele, I A; Kains, N; Bozza, V; Dominik, M; Jorgensen, U G; Alsubai, K A; Ciceri, S; D'Ago, G; Haugbolle, T; Hessman, F V; Hinse, T C; Juncher, D; Korhonen, H; Mancini, L; Popovas, A; Rabus, M; Rahvar, S; Scarpetta, G; Schmidt, R W; Skottfelt, J; Southworth, J; Starkey, D; Surdej, J; Wertz, O; Zarucki, M; Gaudi, B S; Pogge, R W; DePoy, D L

    2014-01-01

    We present microlens parallax measurements for 21 (apparently) isolated lenses observed toward the Galactic bulge that were imaged simultaneously from Earth and Spitzer, which was ~1 AU West of Earth in projection. We combine these measurements with a kinematic model of the Galaxy to derive distance estimates for each lens, with error bars that are small compared to the Sun's Galactocentric distance. The ensemble therefore yields a well-defined cumulative distribution of lens distances. In principle it is possible to compare this distribution against a set of planets detected in the same experiment in order to measure the Galactic distribution of planets. Since these Spitzer observations yielded only one planet, this is not yet possible in practice. However, it will become possible as larger samples are accumulated.

  16. Pathway to the Galactic Distribution of Planets: Combined Spitzer and Ground-Based Microlens Parallax Measurements of 21 Single-Lens Events

    Science.gov (United States)

    Novati, S. Calchi; Gould, A.; Udalski, A.; Menzies, J. W.; Bond, I. A.; Shvartzvald, Y.; Street, R. A.; Hundertmark, M.; Beichman, C. A.; Barry, R. K.

    2015-01-01

    We present microlens parallax measurements for 21 (apparently) isolated lenses observed toward the Galactic bulge that were imaged simultaneously from Earth and Spitzer, which was approximately 1 Astronomical Unit west of Earth in projection. We combine these measurements with a kinematic model of the Galaxy to derive distance estimates for each lens, with error bars that are small compared to the Sun's galactocentric distance. The ensemble therefore yields a well-defined cumulative distribution of lens distances. In principle, it is possible to compare this distribution against a set of planets detected in the same experiment in order to measure the Galactic distribution of planets. Since these Spitzer observations yielded only one planet, this is not yet possible in practice. However, it will become possible as larger samples are accumulated.

  17. Study of aerosol microphysical properties profiles retrieved from ground-based remote sensing and aircraft in-situ measurements during a Saharan dust event

    Science.gov (United States)

    Granados-Muñoz, M. J.; Bravo-Aranda, J. A.; Baumgardner, D.; Guerrero-Rascado, J. L.; Pérez-Ramírez, D.; Navas-Guzmán, F.; Veselovskii, I.; Lyamani, H.; Valenzuela, A.; Olmo, F. J.; Titos, G.; Andrey, J.; Chaikovsky, A.; Dubovik, O.; Gil-Ojeda, M.; Alados-Arboledas, L.

    2015-09-01

    In this work we present an analysis of mineral dust optical and microphysical properties obtained from different retrieval techniques applied to active and passive remote sensing measurements, including a comparison with simultaneous in-situ aircraft measurements. Data were collected in a field campaign performed during a mineral dust outbreak a Granada, Spain, experimental site (37.16° N, 3.61° W, 680 m a.s.l.) on the 27 June 2011. Column-integrated properties are provided by sun- and star-photometry which allows a continuous evaluation of the mineral dust optical properties during both day and night-time. Both the Linear Estimation and AERONET (Aerosol Robotic Network) inversion algorithms are applied for the retrieval of the column-integrated microphysical particle properties. In addition, vertically-resolved microphysical properties are obtained from a multi-wavelength Raman lidar system included in EARLINET (European Aerosol Research Lidar Network), by using both LIRIC (Lidar Radiometer Inversion Code) algorithm during daytime and an algorithm applied to the Raman measurements based on the regularization technique during night-time. LIRIC retrievals reveal several dust layers between 3 and 5 km a.s.l. with volume concentrations of the coarse spheroid mode up to 60 μm3 cm-3. The combined use of the regularization and LIRIC methods reveals the night-to-day evolution of the vertical structure of the mineral dust microphysical properties and offers complementary information to that from column-integrated variables retrieved from passive remote sensing. Additionally, lidar depolarization profiles and LIRIC retrieved volume concentration are compared with aircraft in-situ measurements. This study presents for the first time a comparison of both volume concentration and dust particle polarization ratios measured with in-situ and remote sensing techniques. Results for the depolarization measurements in the dust layer indicate reasonable agreement within the

  18. Trends of HCl, ClONO 2 and HF column abundances from ground-based FTIR measurements in Kiruna (Sweden in comparison with KASIMA model calculations

    Directory of Open Access Journals (Sweden)

    U. Raffalski

    2011-01-01

    Full Text Available Trends of hydrogen chloride (HCl, chlorine nitrate (ClONO2 and hydrogen fluoride (HF column abundances above Kiruna (Northern Sweden, 67.84° N, 20.41° E derived from nearly 14 years (1996–2009 of measurement and model data are presented. The measurements have been performed with a Bruker 120 HR (later Bruker 125 HR Fourier transform infrared (FTIR spectrometer and the model used was KASIMA (KArlsruhe SImulation model of the Middle Atmosphere. To calculate the long-term trends, a linear function combined with an annual cycle was fitted to the data using a least squares method. The precision of the resulting trends was estimated with the so-called bootstrap resampling method. The relative trends were calculated on the basis of the linear fit result on 1 January 2000, 12:00 UTC. For hydrogen fluoride, both model and measurements show a positive trend that seems to decrease in the last few years. This suggests a stabilisation of the HF total column abundance. For the summer data (August to November, the FTIR trend of (+1.25 ± 0.28%/yr agrees within errors with the KASIMA one of (+1.55 ± 0.11%/yr. The trends determined for HCl and ClONO2 are significantly negative over the time period considered here. This corresponds to the expectations because the emission of their precursors (chlorofluorocarbons and hydrochlorofluorocarbons has been restricted in the Montreal Protocol in 1987 and its amendments and adjustments. The relative trend for ClONO2 from the FTIR measurements amounts to (−3.28 ± 0.56%/yr and the one for HCl to (−0.81± 0.23%/yr. KASIMA simulates a weaker decrease: For ClONO2, the result is (−0.90 ± 0.10%/yr and for HCl (−0.17± 0.06%/yr. Part of the difference between measurement and model data can be explained by sampling and the stronger annual cycle indicated by the measurements. There is a factor of about four between the trends of HCl and ClONO2 above Kiruna for both measurement and model data. The absolute values of

  19. Validation and understanding of Moderate Resolution Imaging Spectroradiometer aerosol products (C5) using ground-based measurements from the handheld Sun photometer network in China

    Science.gov (United States)

    Zhanqing Li; Feng Niu; Kwon-Ho Lee; Jinyuan Xin; Wei Min Hao; Bryce L. Nordgren; Yuesi Wang; Pucai Wang

    2007-01-01

    The Moderate Resolution Imaging Spectroradiometer (MODIS) currently provides the most extensive aerosol retrievals on a global basis, but validation is limited to a small number of ground stations. This study presents a comprehensive evaluation of Collection 4 and 5 MODIS aerosol products using ground measurements from the Chinese Sun Hazemeter Network (CSHNET). The...

  20. Ground-based water vapor Raman lidar measurements up to the upper troposphere and lower stratosphere – Part 2: Data analysis and calibration for long-term monitoring

    Directory of Open Access Journals (Sweden)

    T. Leblanc

    2011-08-01

    Full Text Available The well-recognized, key role of water vapor in the upper troposphere and lower stratosphere (UT/LS and the scarcity of high-quality, long-term measurements triggered the development by JPL of a powerful Raman lidar to try to meet these needs. This development started in 2005 and was endorsed by the Network for the Detection of Atmospheric Composition Change (NDACC and the validation program for the EOS-Aura satellite. In this paper we review all the stages of the instrument data acquisition, data analysis, profile retrieval and calibration procedures, as well as selected results from the recent validation campaign MOHAVE-2009 (Measurements of Humidity in the Atmosphere and Validation Experiments. The stages in the instrumental development and the conclusions from three validation campaigns (including MOHAVE-2009 are presented in details in a companion paper (McDermid et al., 2011. In its current configuration, the lidar demonstrated capability to measure water vapor profiles from ~1 km above the ground to the lower stratosphere with an estimated accuracy of 5 %. Since 2005, nearly 1000 profiles have been routinely measured with a precision of 10 % or better near 13 km. Since 2009, the profiles have typically reached 14 km for 1 h integration times and 1.5 km vertical resolution, and can reach 21 km for 6-h integration times using degraded vertical resolutions.

  1. Characterizing the seasonal cycle and vertical structure of ozone in Paris, France using four years of ground based LIDAR measurements in the lowermost troposphere

    Science.gov (United States)

    Klein, Amélie; Ancellet, Gérard; Ravetta, François; Thomas, Jennie L.; Pazmino, Andrea

    2017-10-01

    Systematic ozone LIDAR measurements were completed during a 4 year period (2011-2014) in Paris, France to study the seasonal variability of the vertical structure of ozone in the urban boundary layer. In addition, we use in-situ measurements from the surface air quality network that is located in Paris (AIRPARIF). Specifically, we use ozone and NO2 measurements made at two urban stations: Paris13 (60 m ASL) and the Eiffel Tower (310 m ASL) to validate and interpret the LIDAR profiles. Remote sensed tropospheric NO2 integrated columns from the SAOZ instrument located in Paris are also used to interpret ozone measurements. Comparison between ozone LIDAR measurements averaged from 250 m to 500 m and the Eiffel Tower in-situ measurements shows that the accuracy of the LIDAR (originally ±14 μg·m-3) is significantly improved (±7 μg·m-3) when a small telescope with a wide angular aperture is used. Results for the seasonal cycle of the ozone vertical gradient are found to be similar using two methods: (1) measured differences between AIRPARIF stations with measurements at 60 m ASL and 310 m ASL and (2) using LIDAR profiles from 300 m to the top of the Planetary Boundary Layer (PBL). Ozone concentrations measured by the LIDAR increase with altitude within the PBL, with a steeper gradient in winter (60 μg·m-3·km-1) and a less strong gradient in summer (20 μg·m-3·km-1). Results show that in winter, there is a sharp positive gradient of ozone at the surface, which is explained by ozone titration by NO combined with increased atmospheric stability in winter. In the afternoon during summer, photochemistry and vertical mixing are large enough to compensate for ozone titration near the surface, where NOx is emitted, and there is no gradient in ozone observed. In contrast, in the summer during the morning, ozone has a sharper positive vertical gradient similar to the winter values. Comparison of the vertically averaged ozone concentrations up to (0-3 km) and urban layer

  2. Retrieval of HCFC-142b (CH3CClF2) from ground-based high-resolution infrared solar spectra: Atmospheric increase since 1989 and comparison with surface and satellite measurements

    Science.gov (United States)

    Mahieu, Emmanuel; Lejeune, Bernard; Bovy, Benoît; Servais, Christian; Toon, Geoffrey C.; Bernath, Peter F.; Boone, Christopher D.; Walker, Kaley A.; Reimann, Stefan; Vollmer, Martin K.; O'Doherty, Simon

    2017-01-01

    We have developed an approach for retrieving HCFC-142b (CH3CClF2) from ground-based high-resolution infrared solar spectra, using its ν7 band Q branch in the 900-906 cm-1 interval. Interferences by HNO3, CO2 and H2O have to be accounted for. Application of this approach to observations recorded within the framework of long-term monitoring activities carried out at the northern mid-latitude, high-altitude Jungfraujoch station in Switzerland (46.5°N, 8.0°E, 3580 m above sea level) has provided a total column times series spanning the 1989 to mid-2015 time period. A fit to the HCFC-142b daily mean total column time series shows a statistically-significant long-term trend of (1.23±0.08×1013 molec cm-2) per year from 2000 to 2010, at the 2-σ confidence level. This corresponds to a significant atmospheric accumulation of (0.94±0.06) ppt (1 ppt=1/1012) per year for the mean tropospheric mixing ratio, at the 2-σ confidence level. Over the subsequent time period (2010-2014), we note a significant slowing down in the HCFC-142b buildup. Our ground-based FTIR (Fourier Transform Infrared) results are compared with relevant data sets derived from surface in situ measurements at the Mace Head and Jungfraujoch sites of the AGAGE (Advanced Global Atmospheric Gases Experiment) network and from occultation measurements by the ACE-FTS (Atmospheric Chemistry Experiment-Fourier Transform Spectrometer) instrument on-board the SCISAT satellite.

  3. Projectile Impact Point Prediction Based on Self-Propelled Artillery Dynamics and Doppler Radar Measurements

    Directory of Open Access Journals (Sweden)

    Mostafa Khalil

    2013-01-01

    Full Text Available Any trajectory calculation method has three primary sources of errors, which are model error, parameter error, and initial state error. In this paper, based on initial projectile flight trajectory data measured using Doppler radar system; a new iterative method is developed to estimate the projectile attitude and the corresponding impact point to improve the second shot hit probability. In order to estimate the projectile initial state, the launch dynamics model of practical 155 mm self-propelled artillery is defined, and hence, the vibration characteristics of the self-propelled artillery is obtained using the transfer matrix method of linear multibody system MSTMM. A discrete time transfer matrix DTTM-4DOF is developed using the modified point mass equations of motion to compute the projectile trajectory and set a direct algebraic relation between any two successive radar data. During iterations, adjustments to the repose angle are made until an agreement with acceptable tolerance occurs between the Doppler radar measurements and the estimated values. Simulated Doppler radar measurements are generated using the nonlinear six-degree-of-freedom trajectory model using the resulted initial disturbance. Results demonstrate that the data estimated using the proposed algorithm agrees well with the simulated Doppler radar data obtained numerically using the nonlinear six-degree-of-freedom model.

  4. Study of aerosol microphysical properties profiles retrieved from ground-based remote sensing and aircraft in-situ measurements during a Saharan dust event

    Directory of Open Access Journals (Sweden)

    M. J. Granados-Muñoz

    2015-09-01

    Full Text Available In this work we present an analysis of mineral dust optical and microphysical properties obtained from different retrieval techniques applied to active and passive remote sensing measurements, including a comparison with simultaneous in-situ aircraft measurements. Data were collected in a field campaign performed during a mineral dust outbreak a Granada, Spain, experimental site (37.16° N, 3.61° W, 680 m a.s.l. on the 27 June 2011. Column-integrated properties are provided by sun- and star-photometry which allows a continuous evaluation of the mineral dust optical properties during both day and night-time. Both the Linear Estimation and AERONET (Aerosol Robotic Network inversion algorithms are applied for the retrieval of the column-integrated microphysical particle properties. In addition, vertically-resolved microphysical properties are obtained from a multi-wavelength Raman lidar system included in EARLINET (European Aerosol Research Lidar Network, by using both LIRIC (Lidar Radiometer Inversion Code algorithm during daytime and an algorithm applied to the Raman measurements based on the regularization technique during night-time. LIRIC retrievals reveal several dust layers between 3 and 5 km a.s.l. with volume concentrations of the coarse spheroid mode up to 60 μm3 cm−3. The combined use of the regularization and LIRIC methods reveals the night-to-day evolution of the vertical structure of the mineral dust microphysical properties and offers complementary information to that from column-integrated variables retrieved from passive remote sensing. Additionally, lidar depolarization profiles and LIRIC retrieved volume concentration are compared with aircraft in-situ measurements. This study presents for the first time a comparison of both volume concentration and dust particle polarization ratios measured with in-situ and remote sensing techniques. Results for the depolarization measurements in the dust layer indicate reasonable agreement

  5. Design of a white-light interferometric measuring system for co-phasing the primary mirror segments of the next generation of ground-based telescope

    Science.gov (United States)

    Song, Helun; Xian, Hao; Jiang, Wenhan; Rao, Changhui; Wang, Shengqian

    2007-12-01

    With the increase of telescope size, the manufacture of monolithic primaries becomes increasingly difficult. Instead, the use of segmented mirrors, where many individual mirrors (the segments) work together to provide good image quality and an aperture equivalent to that of a large monolithic mirror, is considered a more appropriate strategy. But, with the introduction of large telescope mirror comprised of many individual segments, the problem of insuring a smooth continuous mirror surface (co-phased mirrors) becomes critical. One of the main problems arising in the co-phasing of the segmented mirrors telescope is the problem of measurements of the vertical displacements between the individual segments (piston errors). Because of such mirrors to exhibit diffraction-limited performance, a phasing process is required in order to guarantee that the segments have to be positioned with an accuracy of a fraction of a wavelength of the incoming light.The measurements become especially complicated when the piston error is in order of wavelength fractions. To meet the performance capabilities, a novel method for phasing the segmented mirrors optical system is described. The phasing method is based on a high-aperture Michelson interferometer. The use of an interferometric technique allows the measurement of segment misalignment during daytime with high accuracy, which is a major design guideline. The innovation introduced in the optical design of the interferometer is the simultaneous use of both monochromatic and white-light sources that allows the system to measure the piston error with an uncertainty of 6nm in 50µm range. The description about the expected monochromatic and white-light illumination interferograms and the feasibility of the phasing method are presented here.

  6. Ground-based water vapor Raman lidar measurements up to the upper troposphere and lower stratosphere – Part 1: Instrument development, optimization, and validation

    Directory of Open Access Journals (Sweden)

    I. S. McDermid

    2011-08-01

    Full Text Available Recognizing the importance of water vapor in the upper troposphere and lower stratosphere (UT/LS and the scarcity of high-quality, long-term measurements, JPL began the development of a powerful Raman lidar in 2005 to try to meet these needs. This development was endorsed by the Network for the Detection of Atmospheric Composition Change (NDACC and the validation program for the EOS-Aura satellite. In this paper we review the stages in the instrumental development of the lidar and the conclusions from three validation campaigns: MOHAVE, MOHAVE-II, and MOHAVE 2009 (Measurements of Humidity in the Atmosphere and Validation Experiments. The data analysis, profile retrieval and calibration procedures, as well as additional results from MOHAVE-2009 are presented in detail in a companion paper (Leblanc et al., 2011a. Ultimately the lidar has demonstrated capability to measure water vapor profiles from ~1 km above the ground to the lower stratosphere, reaching 14 km for 1-h integrated profiles and 21 km for 6-h integrated profiles, with a precision of 10 % or better near 13 km and below, and an estimated accuracy of 5 %.

  7. Comparison of optical-feedback cavity-enhanced absorption spectroscopy and gas chromatography for ground-based and airborne measurements of atmospheric CO concentration

    Science.gov (United States)

    Ventrillard, Irène; Xueref-Remy, Irène; Schmidt, Martina; Yver Kwok, Camille; Faïn, Xavier; Romanini, Daniele

    2017-05-01

    We present the first comparison of carbon monoxide (CO) measurements performed with a portable laser spectrometer that exploits the optical-feedback cavity-enhanced absorption spectroscopy (OF-CEAS) technique, against a high-performance automated gas chromatograph (GC) with a mercuric oxide reduction gas detector (RGD). First, measurements of atmospheric CO mole fraction were continuously collected in a Paris (France) suburb over 1 week. Both instruments showed an excellent agreement within typically 2 ppb (part per billion in volume), fulfilling the World Meteorological Organization (WMO) recommendation for CO inter-laboratory comparison. The compact size and robustness of the OF-CEAS instrument allowed its operation aboard a small aircraft employed for routine tropospheric air analysis over the French Orléans forest area. Direct OF-CEAS real-time CO measurements in tropospheric air were then compared with later analysis of flask samples by the gas chromatograph. Again, a very good agreement was observed. This work establishes that the OF-CEAS laser spectrometer can run unattended at a very high level of sensitivity ( < 1 ppb) and stability without any periodic calibration.

  8. CRRES/Ground-based multi-instrument observations of an interval of substorm activity

    Directory of Open Access Journals (Sweden)

    T. K. Yeoman

    Full Text Available Observations are presented of data taken during a 3-h interval in which five clear substorm onsets/intensifications took place. During this interval ground-based data from the EISCAT incoherent scatter radar, a digital CCD all sky camera, and an extensive array of magnetometers were recorded. In addition data from the CRRES and DMSP spacecraft, whose footprints passed over Scandinavia very close to most of the ground-based instrumentation, are available. The locations and movements of the substorm current system in latitude and longitude, determined from ground and spacecraft magnetic field data, have been correlated with the locations and propagation of increased particle precipitation in the E-region at EISCAT, increased particle fluxes measured by CRRES and DMSP, with auroral luminosity and with ionospheric convection velocities. The onsets and propagation of the injection of magnetospheric particle populations and auroral luminosity have been compared. CRRES was within or very close to the substorm expansion phase onset sector during the interval. The onset region was observed at low latitudes on the ground, and has been confirmed to map back to within L=7 in the magnetotail. The active region was then observed to propagate tailward and poleward. Delays between the magnetic signature of the substorm field aligned currents and field dipolarisation have been measured. The observations support a near-Earth plasma instability mechanism for substorm expansion phase onset.

  9. A comparative study of aerosol microphysical properties retrieved from ground-based remote sensing and aircraft in situ measurements during a Saharan dust event

    Science.gov (United States)

    José Granados-Muñoz, María; Bravo-Aranda, Juan Antonio; Baumgardner, Darrel; Guerrero-Rascado, Juan Luis; Pérez-Ramírez, Daniel; Navas-Guzmán, Francisco; Veselovskii, Igor; Lyamani, Hassan; Valenzuela, Antonio; José Olmo, Francisco; Titos, Gloria; Andrey, Javier; Chaikovsky, Anatoli; Dubovik, Oleg; Gil-Ojeda, Manuel; Alados-Arboledas, Lucas

    2016-03-01

    In this work we present an analysis of aerosol microphysical properties during a mineral dust event taking advantage of the combination of different state-of-the-art retrieval techniques applied to active and passive remote sensing measurements and the evaluation of some of those techniques using independent data acquired from in situ aircraft measurements. Data were collected in a field campaign performed during a mineral dust outbreak at the Granada, Spain, experimental site (37.16° N, 3.61° W, 680 m a.s.l.) on 27 June 2011. Column-integrated properties are provided by sun- and star-photometry, which allows for a continuous evaluation of the mineral dust optical properties during both day and nighttime. Both the linear estimation and AERONET (Aerosol Robotic Network) inversion algorithms are applied for the retrieval of the column-integrated microphysical particle properties. In addition, vertically resolved microphysical properties are obtained from a multi-wavelength Raman lidar system included in EARLINET (European Aerosol Research Lidar Network), by using both LIRIC (Lidar Radiometer Inversion Code) algorithm during daytime and an algorithm applied to the Raman measurements based on the regularization technique during nighttime. LIRIC retrievals reveal the presence of dust layers between 3 and 5 km a.s.l. with volume concentrations of the coarse spheroid mode up to 60 µm3 cm-3. The combined use of the regularization and LIRIC methods reveals the night-to-day evolution of the vertical structure of the mineral dust microphysical properties and offers complementary information to that from column-integrated variables retrieved from passive remote sensing. Additionally, lidar depolarization profiles and LIRIC retrieved volume concentration are compared with aircraft in situ measurements. This study presents for the first time a comparison of the total volume concentration retrieved with LIRIC with independent in situ measurements, obtaining agreement within

  10. Simulated Radiative Transfer DOAS - A new method for improving volcanic SO2 emissions retrievals from ground-based UV-spectroscopic measurements of scattered solar radiation

    Science.gov (United States)

    Kern, C.; Deutschmann, T.; Vogel, L.; Bobrowski, N.; Hoermann, C.; Werner, C. A.; Sutton, A. J.; Elias, T.

    2011-12-01

    Passive Differential Optical Absorption Spectroscopy (DOAS) has become a standard tool for measuring SO2 at volcanoes. More recently, ultra-violet (UV) cameras have also been applied to obtain 2D images of SO2-bearing plumes. Both techniques can be used to derive SO2 emission rates by measuring SO2 column densities, integrating these along the plume cross-section, and multiplying by the wind speed. Recent measurements and model studies have revealed that the dominating source of uncertainty in these techniques often originates from an inaccurate assessment of radiative transfer through the volcanic plume. The typical assumption that all detected radiation is scattered behind the volcanic plume and takes a straight path from there to the instrument is often incorrect. We recently showed that the straight path assumption can lead to column density errors of 50% or more in cases where plumes with high SO2 and aerosol concentrations are measured from several kilometers distance, or where the background atmosphere contains a large amount of scattering aerosols. Both under- and overestimation are possible depending on the atmospheric conditions and geometry during spectral acquisition. Simulated Radiative Transfer (SRT) DOAS is a new evaluation scheme that combines radiative transfer modeling with spectral analysis of passive DOAS measurements in the UV region to derive more accurate SO2 column densities than conventional DOAS retrievals, which in turn leads to considerably more accurate emission rates. A three-dimensional backward Monte Carlo radiative transfer model is used to simulate realistic light paths in and around the volcanic plume containing variable amounts of SO2 and aerosols. An inversion algorithm is then applied to derive the true SO2 column density. For fast processing of large datasets, a linearized algorithm based on lookup tables was developed and tested on a number of example datasets. In some cases, the information content of the spectral data is

  11. Ground-based Measurements of Vertical Profiles and Columns of Atmospheric Trace Gases Over Toronto Using a New High-Resolution Fourier Transform Infrared Spectrometer

    Science.gov (United States)

    Wiacek, A.; Yashcov, D.; Strong, K.; Boudreau, L.; Rochette, L.; Roy, C.

    2002-12-01

    The University of Toronto Atmospheric Observatory (TAO) has recently been established at Toronto, Canada. TAO includes several instruments, with a DA8 Fourier Transform Spectrometer (DA8 FTS, manufactured by ABB Bomem Inc., Québec, Canada) serving as the primary instrument at the facility. The geographic position of TAO (43.66°N, 79.40°W) makes it well suited for long-term measurements of mid-latitude stratospheric ozone and related species, while its urban setting enables measurements of tropospheric pollution. The DA8 FTS is based on a Michelson interferometer with a maximum optical path difference of 250 cm, providing a maximum unapodized resolution of 0.0026 cm-1. It is currently equipped with KBr and CaF2 beamsplitters, and InSb and HgCdTe detectors, for coverage of the spectral range from 700 to 4100 cm-1. A new heliostat (manufactured by Aim Controls Inc., California, USA) provides active solar tracking, collecting the incoming solar radiation and directing it into the FTS. The TAO DA8 FTS incorporates a new optical design recently developed by ABB Bomem Inc., which results in a fixed optical axis through the beamsplitter (and a fixed focal point on the detector) as well as a more stable modulation efficiency. The new instrument optics will be discussed. Next, the performance of the instrument will be examined in the context of standard NDSC (Network for the Detection of Stratospheric Change) trace gas column and vertical profile retrieval techniques, which use least squares fitting algorithms (SFIT, SFIT2). TAO has been operational (weather permitting) since October 2001. We have been retrieving columns and vertical profiles of HCl, HF, CH4, OCS, C2H6, CO, N2O and NO2 since May 2002. A detailed error analysis of retrieved columns and vertical profiles has been undertaken for the above species. Future plans for the TAO FTS include comparing our measurements with satellite measurements made by MOPITT, OSIRIS, and the upcoming ACE and MAESTRO instruments

  12. Meteorological radar methods for validating space observations of precipitation

    Science.gov (United States)

    Thiele, Otto W.

    1991-01-01

    Meteorological approaches to verification of space measurements of rainfall are examined; validation of Tropical Rainfall Measuring Mission (TRMM) observations is expected to depend significantly on ground-based radars. Two methods of comparison are initially contemplated. TRMM rainfall data over time periods of a month for large areas (500 x 500 km) are averaged and compared with similarly averaged ground truth measurements. Both the rainfall and height distribution data from TRMM are compared with the instantaneous values observed at one or more 'ground truth' stations and from airborne radar and radiometers as available.

  13. Emission factors of SO2, NOx and particles from ships in Neva Bay from ground-based and helicopter-borne measurements and AIS-based modeling

    Directory of Open Access Journals (Sweden)

    J. Beecken

    2014-10-01

    Full Text Available Emission factors of SO2, NOx and size distributed particle numbers were measured for approximately 300 different ships in the Gulf of Finland and Neva Bay area during two campaigns in August/September 2011 and June/July 2012. The measurements were carried out from a harbor vessel and from an MI-8 helicopter downwind of passing ships. Other measurements were carried out from shore sites near the island of Kronstadt and along the river Neva in the city area of Saint Petersburg. Most ships were running at reduced speed (10 knots, i.e. not at their optimal load. Vessels for domestic and international shipping were monitored. It was seen that the distribution of the SO2 emission factors is bi-modal with averages of 4.6 gSO2 kgfuel−1 and 18.2 gSO2 kgfuel−1 for the lower and the higher mode, respectively. The emission factors show compliance with the 1% fuel sulfur content SECA limit for 90% of the vessels in 2011 and 97% in 2012. The distribution of the NOx emission factor is mono-modal with an average of 58 gNOx kgfuel−1. The corresponding emission related to the generated power yields an average of 12.1 gNOx kWh−1. The distribution of the emission factors for particulate number shows that nearly 90% of all particles in the 5.6 nm to 10 μm size range were below 70 nm in diameter. The distribution of the corresponding emission factors for the mass indicates two separated main modes, one for particles between 30 and 300 nm the other above 2 μm. The average particle emission factors were found to be in the range from 0.7 to 2.7 × 1016 particles kgfuel−1 and 0.2 to 3.4 gPM kgfuel−1, respectively. The NOx and particulate emissions are comparable with other studies. The measured emission factors were compared, for individual ships, to modeled ones using the Ship Traffic Emission Assessment Model (STEAM of the Finnish Meteorological Institute. A reasonably good agreement for gaseous sulfur and nitrogen emissions can be seen for ships in

  14. Influence of synoptic meteorological conditions on urban air quality -A study over Hyderabad, India using satellite data and ground based measurements

    Science.gov (United States)

    Rani Sharma, Anu; Kharol, Shailesh Kumar; Kvs, Badarinath

    Urban areas were considered to be a major source of atmospheric pollution due to popula-tion growth, migration, increasing industrialization and energy use particularly in developing countries. The air quality in urban areas is governed by temporal distribution of emissions from various activities in the city, the topography, and the weather, including atmospheric circulation patterns in the region. The extensive coastal belt of India is very vulnerable to low pressure systems in the Bay of Bengal (BoB) or the Arabian Sea. Most importantly, the formation of a low pressure system in the ocean is one of the most prominent weather systems characterized by high atmospheric pressure gradients and wind. In the present study, variation in aerosol properties and ground reaching solar irradiance were analyzed over a tropical urban environment of Hyderabad associated with a low pressure system during December, 3-10, 2008 over Bay of Bengal (BoB). The low pressure system formed over southeast BoB on Decem-ber 4, 2008, moved westwards and lay centered at 23:30 Indian Standard Time. The study area of Hyderabad is located between 17° 10' and 17° 50' N latitude and 78° 10' and 78° 50' E longitude, in the southeastern part of the Indian region, 300 km from the BoB. Synchronous measurements of aerosol optical depth were carried out using handheld MICROTOPS -II in the premises of the National Remote Sensing Centre (NRSC) campus located at Balanagar, Hyderabad. Along with the daytime measurements of AOD500, continuous measurements of the vertical profile of aerosols and planetary boundary layer were carried out using a portable micropulse lidar (MPL) system at 532 nm. An ultraviolet (UV)-B radiometer from Solar Light Company was used to measure UVery in the range 280-320 nm. Continuous measurements of the Particulate-matter (PM) size distributions were performed with GRIMM aerosol spectrom-eter model 1-108. Ground-reaching solar radiation in 310 to 2800 nm broadband was carried

  15. Optical and microphysical properties of aerosol vertical distribution over Vipava valley retrieved by ground-based elastic lidar and in-situ measurements

    Science.gov (United States)

    Wang, Longlong; Gregorič, Asta; Stanič, Samo; Mole, Maruška; Bergant, Klemen; Močnik, Griša; Drinovec, Luka; Vaupotič, Janja; Miler, Miloš; Gosar, Mateja

    2017-04-01

    Atmospheric aerosols influence Earth's radiation budget, visibility and air quality, as well as the cloud formation processes and precipitation. The structure of the vertical aerosol distribution, in particular that of black carbon, significantly influences the aerosol direct radiative effect, followed by feedbacks on cloud and planetary boundary layer dynamics. The knowledge on aerosol vertical distribution and properties therefore provides an important insight into many atmospheric processes. In order to retrieve the vertical distribution of aerosol properties in the Vipava valley (Slovenia) and the influence of planetary boundary layer height on the local air quality, in-situ and LIDAR measurements were performed. In-situ methods consisted of aerosol size distribution and number concentration and black carbon concentration measurements which were performed during a one-month extensive measurement campaign in spring 2016. Aerosol size distribution (10 nm to 30 µm) was measured at the valley floor using scanning mobility particle sizer (SMPS, Grimm Aerosol Technique, Germany) and optical particle counter (OPC, Grimm Aerosol Technique, Germany). Black carbon concentrations were measured by Aethalometer AE33 (Aerosol d.o.o., Slovenia) at the valley floor (125 m a.s.l.) and at the top of the adjacent mountain ridge (951 m a.s.l.), the later representing regional background conditions. The in-situ measurements were combined with LIDAR remote sensing, where the vertical profiles of aerosol backscattering coefficients were retrieved using the Klett method. In addition, aerosol samples were analyzed by SEM-EDX to obtain aerosol morphology and chemical composition. Two different cases with expected dominant presence of specific aerosol types were investigated in more detail. They show significantly different aerosol properties and distributions within the valley, which has an important implication for the direct radiative effect. In the first case, during a Saharan dust

  16. Measurement of velocities in noisy environments with a microwave Doppler-effect radar

    Energy Technology Data Exchange (ETDEWEB)

    Lozano-Rogado, J. [Departamento de Fisica Aplicada III, Facultad de Fisicas, Universidad Complutense de Madrid, Madrid (Spain)]. E-mail: jesloz@eucmos.sim.ucm.es; Miranda-Pantoja, J.M.; Sebastian, J.L. [Departamento de Fisica Aplicada III, Facultad de Fisicas, Universidad Complutense de Madrid, Madrid (Spain)

    2001-05-01

    An undergraduate experiment is proposed to facilitate the understanding of the basic principles related to radar systems and signal analysis. A Doppler-effect radar has been installed and used to measure the velocities of a target under different conditions. This system features the use of a low-power generator and a general purpose data acquisition card. The analysis of the measured IF (intermediate frequency) voltage has been made by using the fast Fourier transform in order to illustrate the relevance of the basic spectral techniques for the characterization of weak signals in noisy environments. (author)

  17. Evaluating CALIOP Nighttime Level 2 Aerosol Profile Retrievals Using a Global Transport Model Equipped with Two-Dimensional Variational Data Assimilation and Ground-Based Lidar Measurements

    Science.gov (United States)

    Campbell, J. R.; Tackett, J. L.; Reid, J. S.; Zhang, J.; Westphal, D. L.; Vaughan, M.; Winker, D. M.; Welton, E. J.; Prospero, J. M.; Shimizu, A.; Sugimoto, N.

    2011-12-01

    Launched in 2006, the Cloud Aerosol Lidar with Orthogonal Polarization instrument (CALIOP) flown aboard the NASA/CNES Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellite has collected the first high-resolution global, inter-seasonal and multi-year measurements of aerosol structure. Profiles for aerosol particle extinction coefficient and column-integrated optical depth (AOD) are unique and highly synergistic satellite measurements, given the limitations of passive aerosol remote sensors from resolving information vertically. However, accurate value-added (Level 2.0) CALIOP aerosol products require comprehensive validation of retrieval techniques and calibration stability. Daytime Level 2.0 CALIOP AOD retrievals have been evaluated versus co-located NASA Moderate Resolution Imaging Spectroradiometer (MODIS-AQUA) data. To date, no corresponding investigation of nighttime retrieval performance has been conducted from a lack of requisite global nighttime validation datasets. In this paper, Version 3.01 CALIOP 5-km retrievals of nighttime 0.532 μm AOD from 2007 are evaluated versus corresponding 0.550 μm AOD analyses derived with the global 1° x 1° U. S. Navy Aerosol Analysis and Prediction System (NAAPS). Mean regional profiles of CALIOP nighttime 0.532 μm extinction coefficient are assessed versus NASA Micropulse Lidar Network and NIES Skynet Lidar Network measurements. NAAPS features a two-dimensional variational assimilation procedure for quality-assured MODIS and NASA Multi-angle Imaging Spectroradiometer (MISR) AOD products. Whereas NAAPS nighttime AOD datasets represent a nominal 12-hr forecast field, from lack of MODIS/MISR retrievals for assimilation in the dark sector of the model, evaluation of NAAPS 00-hr analysis and 24-hr forecast skill versus MODIS and NASA Aerosol Robotic Network (AERONET) indicates adequate stability for conducting this study. Corresponding daytime comparisons of CALIOP retrievals with NAAPS

  18. The science and technology case for a global network of compact, low cost ground-based laser heterodyne radiometers for column measurements of CO2 and CH4

    Science.gov (United States)

    Mao, J.; Clarke, G.; Wilson, E. L.; Palmer, P. I.; Feng, L.; Ramanathan, A. K.; Ott, L. E.; Duncan, B. N.; Melroy, H.; McLinden, M.; DiGregorio, A.

    2015-12-01

    The importance of atmospheric carbon dioxide (CO2) and methane (CH4) in determining Earth's climate is well established. Recent technological developments in space-borne instrumentation have enabled us to observe changes in these gases to a precision necessary to infer for the responsible geographical fluxes. The Total Carbon Column Observing Network (TCCON), comprising a network of upward-looking Fourier transform spectrometers, was established to provide an accurate ground truth and minimize regional systematic bias. NASA Goddard Space Flight Center (GSFC) has developed a compact, low-cost laser heterodyne radiometer (LHR) for global column measurements CO2 and CH4. This Mini-LHR is a passive instrument that uses sunlight as the primary light source to measure absorption of CO2 and CH4in the shortwave infrared near 1.6 microns. It uses compact telecommunications lasers to offer a low cost (RObotic NETwork (AERONET) which has more than 500 sites worldwide. In addition, the NASA Micro-Pulse Lidar Network (MPLNET) provides both column and vertically resolved aerosol and cloud data in active remote sensing at nearly 50 sites worldwide. Tandem operation with AERONET/MPLNET provides a clear pathway for the Mini-LHR to be expanded into a global monitoring network for carbon cycle science and satellite data validation, offering coverage in cloudy regions (e.g., Amazon basin) and key regions such as the Arctic where accelerated warming due to the release of CO2 and CH4from thawing tundra and permafrost is a concern. These vulnerable geographic regions are not well covered by current space-based CO2 and CH4 measurements. We will present an overview of our instrument development and the implementation of a network based on current and future resources. We will also present preliminary Observing System Simulation Experiments to demonstrate the effectiveness of a network Mini-LHR instruments in quantify regional CO2 fluxes, including an analysis of measurement sensitivity

  19. Atmospheric turbulence measurements over desert site using ground-based instruments, kite/tethered-blimp platform, and aircraft relevant to optical communications and imaging systems: preliminary results

    Science.gov (United States)

    Majumdar, Arun K.; Eaton, Frank D.; Jensen, Michael L.; Kyrazis, Demos T.; Schumm, Bryce; Dierking, Matthew P.; Shoemake, Marjorie A.; Dexheimer, Dari; Ricklin, Jennifer C.

    2006-08-01

    New results of the (temperature) refractive index structure parameter (C T2), C n2 are presented from fast response sensor observations near the ground and also using a kite/tethered blimp platform and an aircraft, at the Edward Air Force Base in Mojave Desert, California. Additional optical measurements include near-ground scintillation observations over horizontal paths. Atmospheric turbidity were also calculated from direct beam solar radiation measurements using pyrheliometer. Comparisons were made of the observed profiles of refractive index structure parameters (C n2) with theoretical modeled profiles, and two derived quantities such as transverse coherence length (r 0) and isoplanatic angle (θ 0) for a slant path are discussed. All of these parameters are the major indicators of turbulence and are important to design an aircraft or space-craft-based free-space laser communication and high resolution optical synthetic-aperture imaging systems. Non-isotropic turbulence observations from some of the data will be pointed out. Probability density functions (PDF) of the distribution of C n2 will be described using histograms. Fundamental limits imposed by atmospheric effects in high data rate communication and optical synthetic-aperture imaging systems will be discussed.

  20. On the factors governing water vapor turbulence mixing in the convective boundary layer over land: Concept and data analysis technique using ground-based lidar measurements

    Energy Technology Data Exchange (ETDEWEB)

    Pal, Sandip, E-mail: sup252@PSU.EDU

    2016-06-01

    The convective boundary layer (CBL) turbulence is the key process for exchanging heat, momentum, moisture and trace gases between the earth's surface and the lower part of the troposphere. The turbulence parameterization of the CBL is a challenging but important component in numerical models. In particular, correct estimation of CBL turbulence features, parameterization, and the determination of the contribution of eddy diffusivity are important for simulating convection initiation, and the dispersion of health hazardous air pollutants and Greenhouse gases. In general, measurements of higher-order moments of water vapor mixing ratio (q) variability yield unique estimates of turbulence in the CBL. Using the high-resolution lidar-derived profiles of q variance, third-order moment, and skewness and analyzing concurrent profiles of vertical velocity, potential temperature, horizontal wind and time series of near-surface measurements of surface flux and meteorological parameters, a conceptual framework based on bottom up approach is proposed here for the first time for a robust characterization of the turbulent structure of CBL over land so that our understanding on the processes governing CBL q turbulence could be improved. Finally, principal component analyses will be applied on the lidar-derived long-term data sets of q turbulence statistics to identify the meteorological factors and the dominant physical mechanisms governing the CBL turbulence features. - Highlights: • Lidar based study for CBL turbulence features • Water vapor and aerosol turbulence profiles • Processes governing boundary layer turbulence profiles using lidars.

  1. On the factors governing water vapor turbulence mixing in the convective boundary layer over land: Concept and data analysis technique using ground-based lidar measurements.

    Science.gov (United States)

    Pal, Sandip

    2016-06-01

    The convective boundary layer (CBL) turbulence is the key process for exchanging heat, momentum, moisture and trace gases between the earth's surface and the lower part of the troposphere. The turbulence parameterization of the CBL is a challenging but important component in numerical models. In particular, correct estimation of CBL turbulence features, parameterization, and the determination of the contribution of eddy diffusivity are important for simulating convection initiation, and the dispersion of health hazardous air pollutants and Greenhouse gases. In general, measurements of higher-order moments of water vapor mixing ratio (q) variability yield unique estimates of turbulence in the CBL. Using the high-resolution lidar-derived profiles of q variance, third-order moment, and skewness and analyzing concurrent profiles of vertical velocity, potential temperature, horizontal wind and time series of near-surface measurements of surface flux and meteorological parameters, a conceptual framework based on bottom up approach is proposed here for the first time for a robust characterization of the turbulent structure of CBL over land so that our understanding on the processes governing CBL q turbulence could be improved. Finally, principal component analyses will be applied on the lidar-derived long-term data sets of q turbulence statistics to identify the meteorological factors and the dominant physical mechanisms governing the CBL turbulence features.

  2. Comparison of Mixed Layer Heights from Airborne High Spectral Resolution Lidar, Ground-based Measurements, and the WRP-Chem Model during CalNex and CARES

    Energy Technology Data Exchange (ETDEWEB)

    Scarino, Amy Jo; Obland, Michael; Fast, Jerome D.; Burton, S. P.; Ferrare, R. A.; Hostetler, Chris A.; Berg, Larry K.; Lefer, Barry; Haman, C.; Hair, John; Rogers, Ray; Butler, Carolyn; Cook, A. L.; Harper, David

    2014-06-05

    The California Research at the Nexus of Air Quality and Climate Change (CalNex) and Carbonaceous Aerosol and Radiative Effects Study (CARES) field campaigns during May and June 2010 provided a data set appropriate for studying characteristics of the planetary boundary layer (PBL). The NASA Langley Research Center (LaRC) airborne High Spectral Resolution Lidar (HSRL) was deployed to California onboard the NASA LaRC B-200 aircraft to aid incharacterizing aerosol properties during these two field campaigns. Measurements of aerosol extinction (532 nm), backscatter (532 and 1064 nm), and depolarization (532 and 1064 nm) profiles during 31 flights, many in coordination with other research aircraft and ground sites, constitute a diverse data set for use in characterizing the spatial and temporal distribution of aerosols, as well as the depth and variability of the daytime mixed layer (ML), which is a subset within the PBL. This work illustrates the temporal and spatial variability of the ML in the vicinity of Los Angeles and Sacramento, CA. ML heights derived from HSRL measurements are compared to PBL heights derived from radiosonde profiles, ML heights measured from ceilometers, and simulated PBL heights from the Weather Research and Forecasting Chemistry (WRF-Chem) community model. Comparisons between the HSRL ML heights and the radiosonde profiles in Sacramento result in a correlation coefficient value (R) of 0.93 (root7 mean-square (RMS) difference of 157 m and bias difference (HSRL radiosonde) of 5 m). HSRL ML heights compare well with those from the ceilometer in the LA Basin with an R of 0.89 (RMS difference of 108 m and bias difference (HSRL Ceilometer) of -9.7 m) for distances of up to 30 km between the B-200 flight track and the ceilometer site. Simulated PBL heights from WRF-Chem were compared with those obtained from all flights for each campaign, producing an R of 0.58 (RMS difference of 604 m and a bias difference (WRF-Chem HSRL) of -157 m) for CalNex and 0

  3. High-frequency scannerless imaging laser radar for industrial inspection and measurement applications

    Energy Technology Data Exchange (ETDEWEB)

    Schmitt, R.L.; Williams, R.J.; Matthews, J.D.

    1996-11-01

    This report describes the development and testing of a high-frequency scannerless imaging laser radar system to evaluate its viability as an industrial inspection and measurement sensor. We modified an existing 5.5-Mhz scannerless laser radar to operate at 150 Mhz, and measured its performance including its spatial resolution and range resolution. We also developed new algorithms that allow rapid data reduction with improved range resolution. The resulting 150-Mhz ladar system demonstrated a range resolution of better than 3 mm, which represents nearly a factor-of-100 improvement in range resolution over the existing scannerless laser radar system. Based on this work, we believe that a scannerless range imager with 1- to 2-mm range resolution is feasible. This work was performed as part of a small-business CRADA between Sandia National Laboratories and Perceptron, Inc.

  4. Impacts of elevated-aerosol-layer and aerosol type on the correlation of AOD and particulate matter with ground-based and satellite measurements in Nanjing, southeast China.

    Science.gov (United States)

    Han, Yong; Wu, Yonghua; Wang, Tijian; Zhuang, Bingliang; Li, Shu; Zhao, Kun

    2015-11-01

    Assessment of the correlation between aerosol optical depth (AOD) and particulate matter (PM) is critical to satellite remote sensing of air quality, e.g. ground PM10 and ground PM2.5. This study evaluates the impacts of aloft-aerosol-plume and aerosol-type on the correlation of AOD-PM by using synergistic measurement of a polarization-sensitive Raman-Mie lidar, CIMEL sunphotometer (SP) and TEOM PM samplers, as well as the satellite MODIS and CALIPSO, during April to July 2011 in Nanjing city (32.05(○)N/118.77(○)E), southeast China. Aloft-aerosol-layer and aerosol types (e.g. dust and non-dust or urban aerosol) are identified with the range-resolved polarization lidar and SP measurements. The results indicate that the correlations for AOD-PM10 and AOD-PM2.5 can be much improved when screening out the aloft-aerosol-layer. The linear regression slopes show significant differences for the dust and non-dust dominant aerosols in the planetary boundary layer (PBL). In addition, we evaluate the recent released MODIS-AOD product (Collection 6) from the "dark-target" (DT) and "deep-blue" (DB) algorithms and their correlation with the PM in Nanjing urban area. The results verify that the MODIS-DT AODs show a good correlation (R = 0.89) with the SP-AOD but with a systematic overestimate. In contrast, the MODIS-DB AOD shows a moderate correlation (R = 0.66) with the SP-AOD but with a smaller regression intercept (0.07). Furthermore, the moderately high correlations between the MODIS-AOD and PM10 (PM2.5) are indicated, which suggests the feasibility of PM estimate using the MODIS-AOD in Nanjing city.

  5. Error Ellipsoid Analysis for the Diameter Measurement of Cylindroid Components Using a Laser Radar Measurement System.

    Science.gov (United States)

    Du, Zhengchun; Wu, Zhaoyong; Yang, Jianguo

    2016-05-19

    The use of three-dimensional (3D) data in the industrial measurement field is becoming increasingly popular because of the rapid development of laser scanning techniques based on the time-of-flight principle. However, the accuracy and uncertainty of these types of measurement methods are seldom investigated. In this study, a mathematical uncertainty evaluation model for the diameter measurement of standard cylindroid components has been proposed and applied to a 3D laser radar measurement system (LRMS). First, a single-point error ellipsoid analysis for the LRMS was established. An error ellipsoid model and algorithm for diameter measurement of cylindroid components was then proposed based on the single-point error ellipsoid. Finally, four experiments were conducted using the LRMS to measure the diameter of a standard cylinder in the laboratory. The experimental results of the uncertainty evaluation consistently matched well with the predictions. The proposed uncertainty evaluation model for cylindrical diameters can provide a reliable method for actual measurements and support further accuracy improvement of the LRMS.

  6. Vertical profiles and ground-based measurements of Black Carbon, Particulate matter and Optical properties over New Delhi during the foggy winters of 2015-16

    Science.gov (United States)

    Tiwari, S.; Bisht, D. S.; Srivastava, A. K.; Hopke, P. K.; Chakrabarty, R. K.

    2016-12-01

    Ground level and vertical observations of particulate matter were made as part of a pilot experiment using an air-quality monitory tethered balloon flown in the lower troposphere (1000 m) during the foggy winters of New Delhi, India. Measurements of black carbon (BC), the dominant absorber of visible light, particulate matter (PM), and the particulate optical properties along with meteorological parameters were conducted during the winter of 2015-16 in Delhi. During the study period, the mean concentrations of PM2.5, BC370nm, and BC880nm were observed to be 144.0 ± 39.7, 25.3 ± 8.5, and 19.4 ± 6.9 μg/m3, respectively. The mean value of PM2.5 is 12 times higher than the daily US-EPA air quality standard. The contribution of BC370nm in PM2.5 is 18 %. During the foggy period, the ground level concentrations of fine (PM2.5) and soot (BC370nm) particles increased substantially (59% and 26%, respectively) in comparison to clear days. Also, the aerosol light extinction coefficient (σext) was much higher (mean: 610 Mm-1) indicating that atmosphere was not transparent resulting in lower visibility. High concentrations of PM2.5 (89 µg/m3) and BC880nm (25.7 µg/m3) were observed up to 200 m (fog persists in this layer) in January. The BC880nm and PM2.5 concentrations near 1 km were significantly higher ( 1.9 and 12 µg/m3), respectively. Direct radiative forcing (DRF) due to BC was estimated at the top of the atmosphere (TOA), surface (SFC), and atmospheric (ATM) and its resultant forcing were - 46.2 Wm-2 at SFC indicates the cooling effect. However, a positive value ( 20.8 Wm-2) of BC DRF at TOA indicates the warming effect over the study region. The resultant ATM DRF due to BC was positive (67.0 Wm-2) indicating a net warming effect in the atmosphere. The contribution of fossil fuel climate forcing due to BC was 79% and 21% was due to burning of biomass/biofuels. The higher mean atmospheric heating rate (2.05 K day-1) by BC in the winter season would probably