WorldWideScience

Sample records for ground-based non-nuclear asats

  1. Sex Bias in ASAT? ACER Research Monograph No. 24.

    Science.gov (United States)

    Adams, Raymond J.

    The Australian Scholastic Test (ASAT) was first used as a moderating device in the Australian Capitol Territory in 1977. Differences have been observed in the average performance of males and females on the test. The study reported in this monograph investigated the nature and origin of the score differences recorded for ASAT The research focused…

  2. The ground based plan

    International Nuclear Information System (INIS)

    1989-01-01

    The paper presents a report of ''The Ground Based Plan'' of the United Kingdom Science and Engineering Research Council. The ground based plan is a plan for research in astronomy and planetary science by ground based techniques. The contents of the report contains a description of:- the scientific objectives and technical requirements (the basis for the Plan), the present organisation and funding for the ground based programme, the Plan, the main scientific features and the further objectives of the Plan. (U.K.)

  3. In vitro data combined with human disease data to improve toxicological hazard assessment: the ASAT Knowledge Base

    NARCIS (Netherlands)

    Venhorst, J; Aarts, Jac; Boorsma, Andre; Caiment, Florian; Soeteman-Hernandez, Lya G.; van der Veen, J; Tsamou, Maria; Russel, Frans G. M.; Groothuis, Genoveva; Stierum, Rob

    2014-01-01

    In line with the Assuring Safety Without Animal Testing (ASAT) principle, risk assessment may ultimately become feasible without the use of animals (Fentem et al., 2004). ASAT assumes that activation of human disease mechanisms in in vitro models can be used for toxicological assessment. Therefore,

  4. Assuring safety without animal testing concept (ASAT). Integration of human disease data with in vitro data to improve toxicology testing

    NARCIS (Netherlands)

    Stierum, Rob; Aarts, Jac; Boorsma, Andre; Bosgra, Sieto; Caiment, Florian; Ezendam, Janine; Greupink, Rick; Hendriksen, Peter; Soeteman-Hernandez, Lya G.; Jennen, Danyel; Kleinjans, Jos; Kroese, Dinant; Kuper, Frieke; van Loveren, Henk; Monshouwer, Mario; Russel, Frans; van Someren, Eugene; Tsamou, Maria; Groothuis, Geny

    2014-01-01

    According to the Assuring Safety Without Animal Testing (ASAT) principle, risk assessment may ultimately become possible without the use of animals (Fentem et al., (2004). Altern. Lab. Anim. 32, 617-623). The ASAT concept takes human disease mechanisms as starting point and tries to define if

  5. Ground-based photo monitoring

    Science.gov (United States)

    Frederick C. Hall

    2000-01-01

    Ground-based photo monitoring is repeat photography using ground-based cameras to document change in vegetation or soil. Assume those installing the photo location will not be the ones re-photographing it. This requires a protocol that includes: (1) a map to locate the monitoring area, (2) another map diagramming the photographic layout, (3) type and make of film such...

  6. Ukraine's non-nuclear option

    International Nuclear Information System (INIS)

    Batiouk, V.

    1992-01-01

    It seems that only yesterday the dilemma confronting our world was not that of war or peace but rather of life or death for mankind, the reason being mainly the prospect of mass annihilation which became increasingly vivid with each and every new explosive nuclear device added to the already existing enormous stockpiles of warheads of mass annihilation. Against this gloomy background of a despairingly reckless arms race, the long-awaited signs began to appear. First the United States and the Soviet Union found it possible to initiate the process by cutting into their immeasurable nuclear arsenals, then Ukraine declared its intention to become non-nuclear by the end of 1994. All the newly independent States, of the former Soviet Union, except Russia, also agreed to renounce possession of nuclear arms. The declarations were put into effect and the most recent specific action was the removal by 6 may 1992 of all short-range nuclear weapons from Ukrainian territory to Russian soil with a view to their ultimate dismantlement. The signature on 23 May 1992 in Lisbon by four ex-Soviet States (Belarus, Kazakhstan, Russia and Ukraine) and the United States of a Protocol to the 1991 Treaty on the Reduction of Strategic Offensive Weapons (START), significantly lowered the risk of nuclear war. By this accord Belarus, Kazakhstan and Ukraine agreed to destroy or turn over to Russia all strategic nuclear warheads and to accede ''in the shortest possible time to the 1968 Nuclear Non-proliferation Treaty''. In early May, Ukraine proposed to remove all nuclear weapons from the Black Sea and make it a zone of peace

  7. Survey on non-nuclear radioactive waste

    International Nuclear Information System (INIS)

    2003-11-01

    On request from the Swedish Radiation Protection Authority, the Swedish government has in May 2002 set up a non-standing committee for non-nuclear radioactive waste. The objective was to elaborate proposals for a national system for the management of all types of non-nuclear radioactive wastes with special consideration of inter alia the polluter pays principle and the responsibility of the producers. The committee will deliver its proposals to the government 1 December 2003. SSI has assisted the committee to the necessary extent to fulfill the investigation. This report is a summery of SSI's background material concerning non-nuclear radioactive waste in Sweden

  8. An investigation into the content validity of the Antimicrobial Self-Assessment Toolkit for NHS Trusts (ASAT v15a) using cognitive interviews with antimicrobial pharmacists.

    Science.gov (United States)

    Bailey, C; Tully, M; Cooke, J

    2015-04-01

    The Antimicrobial Self-Assessment Toolkit for NHS Trusts (ASAT) was developed to evaluate the organizational strategies used to implement hospital-based antimicrobial stewardship programmes. An iterative approach was used to develop ASAT v15a, which has been previously investigated for face validity; however, further investigation into other types of validity was required. Therefore, the aim of this study was to investigate the content validity of ASAT v15a and hence modify and improve the content validity of the toolkit. A purposive sample of eight antimicrobial pharmacists was interviewed using cognitive interviewing techniques from within the former North-west Strategic Health Authority in England. Respondents were asked to 'think aloud' and to verbally express their thought processes as they generated responses to each question with the ASAT. There were no cognitive difficulties reported by respondents in response to 26/83 (31·3%) questions within the ASAT. However, cognitive difficulties were reported by respondents at each stage of the cognitive processing pathway in response to 57/83 (68·7%) questions. These difficulties were comprehension/interpretation in 27/83 (32·5%) questions, information retrieval in 10/83 (12%) questions, judgment/decision in 6/83 (7·2%) questions and response generation/formatting in 13/83 (15·7%) questions. Other findings included disagreement with the weightings applied to 13/83 (15·7%) questions. Respondents recommended that these questions should be modified to reflect their impact on hospital-based antimicrobial stewardship programmes (ASPs). Based on these findings, modifications were made to ASAT v15a to produce the next iteration (ASAT v16). Furthermore, respondents indicated that the role of clinical microbiologists was underrepresented in the current version of the toolkit; therefore, seven proposed questions were drafted, based on a literature review. Cognitive interviews were effectively able to detect problems

  9. Ground-based observations of exoplanet atmospheres

    NARCIS (Netherlands)

    Mooij, Ernst Johan Walter de

    2011-01-01

    This thesis focuses on the properties of exoplanet atmospheres. The results for ground-based near-infrared secondary eclipse observations of three different exoplanets, TrES-3b, HAT-P-1b and WASP-33b, are presented which have been obtained with ground-based telescopes as part of the GROUSE project.

  10. Calibration of Ground -based Lidar instrument

    DEFF Research Database (Denmark)

    Villanueva, Héctor; Yordanova, Ginka

    This report presents the result of the lidar calibration performed for the given Ground-based Lidar at DTU’s test site for large wind turbines at Høvsøre, Denmark. Calibration is here understood as the establishment of a relation between the reference wind speed measurements with measurement...

  11. Space and Ground-Based Infrastructures

    Science.gov (United States)

    Weems, Jon; Zell, Martin

    This chapter deals first with the main characteristics of the space environment, outside and inside a spacecraft. Then the space and space-related (ground-based) infrastructures are described. The most important infrastructure is the International Space Station, which holds many European facilities (for instance the European Columbus Laboratory). Some of them, such as the Columbus External Payload Facility, are located outside the ISS to benefit from external space conditions. There is only one other example of orbital platforms, the Russian Foton/Bion Recoverable Orbital Capsule. In contrast, non-orbital weightless research platforms, although limited in experimental time, are more numerous: sounding rockets, parabolic flight aircraft, drop towers and high-altitude balloons. In addition to these facilities, there are a number of ground-based facilities and space simulators, for both life sciences (for instance: bed rest, clinostats) and physical sciences (for instance: magnetic compensation of gravity). Hypergravity can also be provided by human and non-human centrifuges.

  12. Reactor physics for non-nuclear engineers

    International Nuclear Information System (INIS)

    Lewis, E.E.

    2011-01-01

    A one-term undergraduate course in reactor physics is described. The instructional format is strongly influenced by its intended audience of non-nuclear engineering students. In contrast to legacy treatments of the subject, the course focuses on the physics of nuclear power reactors with no attempt to include instruction in numerical methods. The multi-physics of power reactors is emphasized highlighting the close interactions between neutronic and thermal phenomena in design and analysis. Consequently, the material's sequencing also differs from traditional treatments, for example treating kinetics before the neutron diffusion is introduced. (author)

  13. Illumination compensation in ground based hyperspectral imaging

    Science.gov (United States)

    Wendel, Alexander; Underwood, James

    2017-07-01

    Hyperspectral imaging has emerged as an important tool for analysing vegetation data in agricultural applications. Recently, low altitude and ground based hyperspectral imaging solutions have come to the fore, providing very high resolution data for mapping and studying large areas of crops in detail. However, these platforms introduce a unique set of challenges that need to be overcome to ensure consistent, accurate and timely acquisition of data. One particular problem is dealing with changes in environmental illumination while operating with natural light under cloud cover, which can have considerable effects on spectral shape. In the past this has been commonly achieved by imaging known reference targets at the time of data acquisition, direct measurement of irradiance, or atmospheric modelling. While capturing a reference panel continuously or very frequently allows accurate compensation for illumination changes, this is often not practical with ground based platforms, and impossible in aerial applications. This paper examines the use of an autonomous unmanned ground vehicle (UGV) to gather high resolution hyperspectral imaging data of crops under natural illumination. A process of illumination compensation is performed to extract the inherent reflectance properties of the crops, despite variable illumination. This work adapts a previously developed subspace model approach to reflectance and illumination recovery. Though tested on a ground vehicle in this paper, it is applicable to low altitude unmanned aerial hyperspectral imagery also. The method uses occasional observations of reference panel training data from within the same or other datasets, which enables a practical field protocol that minimises in-field manual labour. This paper tests the new approach, comparing it against traditional methods. Several illumination compensation protocols for high volume ground based data collection are presented based on the results. The findings in this paper are

  14. Strategy for a non-nuclear future

    International Nuclear Information System (INIS)

    Carlson, R.; Freedman, D.; Scott, R.

    1979-01-01

    The need for nuclear power may not be as great as the electric power industry has led the nation to believe, according to the authors. They argue that 64 of the 72 nuclear plants operating in the United States could be shut down immediately if the existing non-nuclear capacity of the electric power industry were fully utilized; and the remaining 8 plants could be phased out within a few years. They cite already-available alternative power sources that could guarantee the additional energy needed for a non-nuclear future. They state that the transition to a nuclear-free electric system could be implemented with little or no increased expense to consumers or taxpayers; that, in fact, elimination of all nuclear plants might actually be cheaper, given the rapid rise in nuclear construction costs as more and more new flaws are discovered or old ones acknowledged. The authors feel that environmental risks of nuclear power plant operation could be eliminated in exchange for a small, temporary increase in air pollution from coal- and oil-fired plants. The increase in sulfur dioxide and particulate pollution could be offset within several years by an accelerated program to install flue-gas scrubbing equipment. Suggestions for meeting a projected shortfall in future capacity are given. The authors also touch lightly on institutional barriers that would have to be overcome before phasing out nuclear power. 4 figures, 4 tables

  15. Calibration of Ground-based Lidar instrument

    DEFF Research Database (Denmark)

    Yordanova, Ginka; Gómez Arranz, Paula

    This report presents the result of the lidar calibration performed for the given Ground-based Lidar at DTU’s test site for large wind turbines at Høvsøre, Denmark. Calibration is here understood as the establishment of a relation between the reference wind speed measurements with measurement...... uncertainties provided by measurement standard and corresponding lidar wind speed indications with associated measurement uncertainties. The lidar calibration concerns the 10 minute mean wind speed measurements. The comparison of the lidar measurements of the wind direction with that from wind vanes...

  16. Ground-Based Telescope Parametric Cost Model

    Science.gov (United States)

    Stahl, H. Philip; Rowell, Ginger Holmes

    2004-01-01

    A parametric cost model for ground-based telescopes is developed using multi-variable statistical analysis, The model includes both engineering and performance parameters. While diameter continues to be the dominant cost driver, other significant factors include primary mirror radius of curvature and diffraction limited wavelength. The model includes an explicit factor for primary mirror segmentation and/or duplication (i.e.. multi-telescope phased-array systems). Additionally, single variable models based on aperture diameter are derived. This analysis indicates that recent mirror technology advances have indeed reduced the historical telescope cost curve.

  17. Space weather effects on ground based technology

    Science.gov (United States)

    Clark, T.

    Space weather can affect a variety of forms of ground-based technology, usually as a result of either the direct effects of the varying geomagnetic field, or as a result of the induced electric field that accompanies such variations. Technologies affected directly by geomagnetic variations include magnetic measurements made d ringu geophysical surveys, and navigation relying on the geomagnetic field as a direction reference, a method that is particularly common in the surveying of well-bores in the oil industry. The most obvious technology affected by induced electric fields during magnetic storms is electric power transmission, where the example of the blackout in Quebec during the March 1989 magnetic storm is widely known. Additionally, space weather effects must be taken into account in the design of active cathodic protection systems on pipelines to protect them against corrosion. Long-distance telecommunication cables may also have to be designed to cope with space weather related effects. This paper reviews the effects of space weather in these different areas of ground-based technology, and provides examples of how mitigation against hazards may be achieved. (The paper does not include the effects of space weather on radio communication or satellite navigation systems).

  18. Maintaining non-nuclear weapon status

    International Nuclear Information System (INIS)

    Muller, H.

    1991-01-01

    Among the some 170 sovereign states in the world, five are legally recognized as nuclear weapon states (NWS) under the terms of the 1968 Non-Proliferation Treaty (NPT). Six countries (Argentina, Brazil, India, Israel, Pakistan, and South Africa) are counted as threshold states: they possess sizeable unsafeguarded nuclear facilities or have passed the brink of a nuclear test or of clandestine weapon production. Six other countries (Iran, Iraq, Libya, Taiwan, and North and South Korea) have been suspected periodically of either considering the nuclear weapon option or of working secretly on the development of weapons. Thus, about 150 non-nuclear weapon states (NNWS) remain which neither possess nuclear weapons nor strive to acquire them. These states are distributed throughout the globe and encompass highly industrialized as well as underdeveloped countries, liberal democracies, socialist states, sheikdoms and dictatorships. Some NNWS face acute military threats; other are far removed from the quarrels of the world, as in the case of some remote fortunate islands. Furthermore, NNWS may be members of nuclear-umbrella alliances or may have opted for a policy of neutrality or non-alignment

  19. SCIENTIFIC EFFICIENCY OF GROUND-BASED TELESCOPES

    International Nuclear Information System (INIS)

    Abt, Helmut A.

    2012-01-01

    I scanned the six major astronomical journals of 2008 for all 1589 papers that are based on new data obtained from ground-based optical/IR telescopes worldwide. Then I collected data on numbers of papers, citations to them in 3+ years, the most-cited papers, and annual operating costs. These data are assigned to four groups by telescope aperture. For instance, while the papers from telescopes with an aperture >7 m average 1.29 more citations than those with an aperture of 2 to 7 m) telescopes. I wonder why the large telescopes do so relatively poorly and suggest possible reasons. I also found that papers based on archival data, such as the Sloan Digital Sky Survey, produce 10.6% as many papers and 20.6% as many citations as those based on new data. Also, the 577.2 papers based on radio data produced 36.3% as many papers and 33.6% as many citations as the 1589 papers based on optical/IR telescopes.

  20. Pilot training of non-nuclear professionals within CORONA project

    International Nuclear Information System (INIS)

    Ilieva, K.; Manolova, M.; Belousov, S.

    2013-01-01

    The pilot training results shown that the used approach is appropriate and could be disseminate among the interested parties. • The interest from the side of the different professionals is an important indicator about the necessity to care such courses for non-nuclear professionals.The effectiveness of the training program for non-nuclear specialists will be assessed using the replies of the Course evaluation form as well as the feedback from employers, trainers and observers

  1. KSC ADVANCED GROUND BASED FIELD MILL V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The Advanced Ground Based Field Mill (AGBFM) network consists of 34 (31 operational) field mills located at Kennedy Space Center (KSC), Florida. The field mills...

  2. The IAEA project on nuclear and non-nuclear wastes

    International Nuclear Information System (INIS)

    Seitz, Roger

    1998-01-01

    Radioactive and chemotoxic agents are common in electricity generation waste. Data and assessments illustrate that nuclear and non-nuclear fuel chains result in waste posing potential long-term hazards. Efforts are focussed on filling data gaps and approaches for comparing impacts of radioactive and chemotoxic agents

  3. The non-nuclear legislation and the communal property

    International Nuclear Information System (INIS)

    Ciallella R, Norberto; Grancelli Cha, Nestor

    1996-01-01

    Since 1984, year in which the Bolson Municipality, Rio Negro province, declared the town a 'Non Nuclear Area', began to appear an abundant legislation that generically, it is know as 'Non Nuclear'. The provinces of Buenos Aires, Chubut, Formosa, La Pampa, Santa Cruz and Tierra del Fuego, have in their respective Constitutions non nuclear articles, while the provinces of Catamarca, Cordoba, Corrientes, Chaco, Entre Rios, Formosa, Rio Negro, San Luis, Santa Cruz, Santa Fe, Tierra del Fuego and Tucuman have sanctioned in their respective jurisdictions non nuclear laws. New projects of these laws are in consideration and treatment in the provinces of Catamarca, La Pampa, Mendoza, Santiago del Estero and Rio Negro. The present work compiles and analyzes the available information on this subject. Although the topic is not regulatory, it could have involved in the regulatory area in an eventual situation that could be presented between regulatory laws of federal and provincials reaches. This work describes the current situation and the probabilities consequences of the mentioned legislation. (author)

  4. Safety culture in the nuclear versus non-nuclear organization

    International Nuclear Information System (INIS)

    Haber, S.B.; Shurberg, D.A.

    1996-01-01

    The importance of safety culture in the safe and reliable operation of nuclear organizations is not a new concept. The greatest barriers to this area of research are twofold: (1) the definition and criteria of safety culture for a nuclear organization and (2) the measurement of those attributes in an objective and systematic fashion. This paper will discuss a proposed resolution of those barriers as demonstrated by the collection of data across nuclear and non-nuclear facilities over a two year period

  5. Modeling ground-based timber harvesting systems using computer simulation

    Science.gov (United States)

    Jingxin Wang; Chris B. LeDoux

    2001-01-01

    Modeling ground-based timber harvesting systems with an object-oriented methodology was investigated. Object-oriented modeling and design promote a better understanding of requirements, cleaner designs, and better maintainability of the harvesting simulation system. The model developed simulates chainsaw felling, drive-to-tree feller-buncher, swing-to-tree single-grip...

  6. The COROT ground-based archive and access system

    Science.gov (United States)

    Solano, E.; González-Riestra, R.; Catala, C.; Baglin, A.

    2002-01-01

    A prototype of the COROT ground-based archive and access system is presented here. The system has been developed at LAEFF and it is based on the experience gained at Laboratorio de Astrofisica Espacial y Fisica Fundamental (LAEFF) with the INES (IUE Newly Extracted System) Archive.

  7. High energy astrophysics with ground-based gamma ray detectors

    International Nuclear Information System (INIS)

    Aharonian, F; Buckley, J; Kifune, T; Sinnis, G

    2008-01-01

    Recent advances in ground-based gamma ray astronomy have led to the discovery of more than 70 sources of very high energy (E γ ≥ 100 GeV) gamma rays, falling into a number of source populations including pulsar wind nebulae, shell type supernova remnants, Wolf-Rayet stars, giant molecular clouds, binary systems, the Galactic Center, active galactic nuclei and 'dark' (yet unidentified) galactic objects. We summarize the history of TeV gamma ray astronomy up to the current status of the field including a description of experimental techniques and highlight recent astrophysical results. We also discuss the potential of ground-based gamma ray astronomy for future discoveries and describe possible directions for future instrumental developments

  8. Ground-based Nuclear Detonation Detection (GNDD) Technology Roadmap

    International Nuclear Information System (INIS)

    Casey, Leslie A.

    2014-01-01

    This GNDD Technology Roadmap is intended to provide guidance to potential researchers and help management define research priorities to achieve technology advancements for ground-based nuclear explosion monitoring science being pursued by the Ground-based Nuclear Detonation Detection (GNDD) Team within the Office of Nuclear Detonation Detection in the National Nuclear Security Administration (NNSA) of the U.S. Department of Energy (DOE). Four science-based elements were selected to encompass the entire scope of nuclear monitoring research and development (R&D) necessary to facilitate breakthrough scientific results, as well as deliver impactful products. Promising future R&D is delineated including dual use associated with the Comprehensive Nuclear-Test-Ban Treaty (CTBT). Important research themes as well as associated metrics are identified along with a progression of accomplishments, represented by a selected bibliography, that are precursors to major improvements to nuclear explosion monitoring.

  9. Ground-based Nuclear Detonation Detection (GNDD) Technology Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    Casey, Leslie A.

    2014-01-13

    This GNDD Technology Roadmap is intended to provide guidance to potential researchers and help management define research priorities to achieve technology advancements for ground-based nuclear explosion monitoring science being pursued by the Ground-based Nuclear Detonation Detection (GNDD) Team within the Office of Nuclear Detonation Detection in the National Nuclear Security Administration (NNSA) of the U.S. Department of Energy (DOE). Four science-based elements were selected to encompass the entire scope of nuclear monitoring research and development (R&D) necessary to facilitate breakthrough scientific results, as well as deliver impactful products. Promising future R&D is delineated including dual use associated with the Comprehensive Nuclear-Test-Ban Treaty (CTBT). Important research themes as well as associated metrics are identified along with a progression of accomplishments, represented by a selected bibliography, that are precursors to major improvements to nuclear explosion monitoring.

  10. Automatic Barometric Updates from Ground-Based Navigational Aids

    Science.gov (United States)

    1990-03-12

    ro fAutomatic Barometric Updates US Department from of Transportation Ground-Based Federal Aviation Administration Navigational Aids Office of Safety...tighter vertical spacing controls , particularly for operations near Terminal Control Areas (TCAs), Airport Radar Service Areas (ARSAs), military climb and...E.F., Ruth, J.C., and Williges, B.H. (1987). Speech Controls and Displays. In Salvendy, G., E. Handbook of Human Factors/Ergonomics, New York, John

  11. Biomass burning aerosols characterization from ground based and profiling measurements

    Science.gov (United States)

    Marin, Cristina; Vasilescu, Jeni; Marmureanu, Luminita; Ene, Dragos; Preda, Liliana; Mihailescu, Mona

    2018-04-01

    The study goal is to assess the chemical and optical properties of aerosols present in the lofted layers and at the ground. The biomass burning aerosols were evaluated in low level layers from multi-wavelength lidar measurements, while chemical composition at ground was assessed using an Aerosol Chemical Speciation Monitor (ACSM) and an Aethalometer. Classification of aerosol type and specific organic markers were used to explore the potential to sense the particles from the same origin at ground base and on profiles.

  12. Silicon carbide optics for space and ground based astronomical telescopes

    Science.gov (United States)

    Robichaud, Joseph; Sampath, Deepak; Wainer, Chris; Schwartz, Jay; Peton, Craig; Mix, Steve; Heller, Court

    2012-09-01

    Silicon Carbide (SiC) optical materials are being applied widely for both space based and ground based optical telescopes. The material provides a superior weight to stiffness ratio, which is an important metric for the design and fabrication of lightweight space telescopes. The material also has superior thermal properties with a low coefficient of thermal expansion, and a high thermal conductivity. The thermal properties advantages are important for both space based and ground based systems, which typically need to operate under stressing thermal conditions. The paper will review L-3 Integrated Optical Systems - SSG’s (L-3 SSG) work in developing SiC optics and SiC optical systems for astronomical observing systems. L-3 SSG has been fielding SiC optical components and systems for over 25 years. Space systems described will emphasize the recently launched Long Range Reconnaissance Imager (LORRI) developed for JHU-APL and NASA-GSFC. Review of ground based applications of SiC will include supporting L-3 IOS-Brashear’s current contract to provide the 0.65 meter diameter, aspheric SiC secondary mirror for the Advanced Technology Solar Telescope (ATST).

  13. Radioprotection - an example for non-nuclear industrial hygiene

    International Nuclear Information System (INIS)

    Chalabreysse, J.

    1977-01-01

    Basing himself on the experience acquired for 14 years with the atomic energy commision in the sphere of radiotoxicological surveyance of the personnel, the author observes that very strict controles are ensured in the nuclear industry. Simultaneously the results of measures that has been taken in respect to diversification for the past six years in many non-nuclear industries spread over the whole of French Territory are described. The different harmful effects that has been involved in controlling: mineral toxics (lead, mercury); organic toxics (vinyl chloride, benzenic solvents, trichlorethylene, perchlorethylene); physical harmful effects (noise), are studied. The results obtained, both from the biological and toxicological point of view, on the man at work and on the conditions of his exposure to non radioactive harmful effects, are analyzed. The author compares the knowledge acquired in the two fields: nuclear field in which the biological effects of radiation, the metabolism of radioelements, the standards of exposure and radiotoxicological surveyance are now well known and codified; non-nuclear field in which many unknown elements continue, the standards of exposure not being agreed at International Level and even inexistant at national level. The example of vinyl chloride, whose considerable toxicity has recently been displayed, is analyzed. The author can thus conclude that the technology and design of the A.E.C. installations ensure excellent prevention. Radioprotection is an example of what should be attained in all work environments for all other effects harmful to man at work [fr

  14. Hazard classification criteria for non-nuclear facilities

    International Nuclear Information System (INIS)

    Mahn, J.A.; Walker, S.A.

    1997-01-01

    Sandia National Laboratories' Integrated Risk Management Department has developed a process for establishing the appropriate hazard classification of a new facility or operation, and thus the level of rigor required for the associated authorization basis safety documentation. This process is referred to as the Preliminary Hazard Screen. DOE Order 5481.1B contains the following hazard classification for non-nuclear facilities: high--having the potential for onsite or offsite impacts to large numbers of persons or for major impacts to the environment; moderate--having the potential for considerable onsite impacts but only minor offsite impacts to people or the environment; low--having the potential for only minor onsite and negligible offsite impacts to people or the environment. It is apparent that the application of such generic criteria is more than likely to be fraught with subjective judgment. One way to remove the subjectivity is to define health and safety classification thresholds for specific hazards that are based on the magnitude of the hazard, rather than on a qualitative assessment of possible accident consequences. This paper presents the results of such an approach to establishing a readily usable set of non-nuclear facility hazard classifications

  15. Campaign for non-nuclear zones launched by action groups

    International Nuclear Information System (INIS)

    Michels, E.

    1982-01-01

    It is the purpose of this campaign for establishing ''non-nuclear zones in regions and communities'' to make the general public realize the vital importance of this issue. The discussion about issues of national safety policy is to be initiated on all political levels, thus making this subject a matter for discussion in the public. It seems likely that many town parliaments will first try to get out of the business by claiming not to be competent to discuss problems of national policy. But it is hoped by the originators of this campaign that a so-to-say symbolic decision of communities - against the stationing of new Pershing II missiles on the premises of the community because this community devies nuclear weapons altogether; for the establishment of a non-nuclear zone in the region this community belongs to because the community supports efforts to clear all European countries from nuclear weapons - will enhance the chance of concrete measures to follow, measures which will at least make the stationing of nuclear weapons more difficult. (orig./HSCH) [de

  16. Augmenting WFIRST Microlensing with a Ground-Based Telescope Network

    Science.gov (United States)

    Zhu, Wei; Gould, Andrew

    2016-06-01

    Augmenting the Wide Field Infrared Survey Telescope (WFIRST) microlensing campaigns with intensive observations from a ground-based network of wide-field survey telescopes would have several major advantages. First, it would enable full two-dimensional (2-D) vector microlens parallax measurements for a substantial fraction of low-mass lenses as well as planetary and binary events that show caustic crossing features. For a significant fraction of the free-floating planet (FFP) events and all caustic-crossing planetary/binary events, these 2-D parallax measurements directly lead to complete solutions (mass, distance, transverse velocity) of the lens object (or lens system). For even more events, the complementary ground-based observations will yield 1-D parallax measurements. Together with the 1-D parallaxes from WFIRST alone, they can probe the entire mass range M > M_Earth. For luminous lenses, such 1-D parallax measurements can be promoted to complete solutions (mass, distance, transverse velocity) by high-resolution imaging. This would provide crucial information not only about the hosts of planets and other lenses, but also enable a much more precise Galactic model. Other benefits of such a survey include improved understanding of binaries (particularly with low mass primaries), and sensitivity to distant ice-giant and gas-giant companions of WFIRST lenses that cannot be detected by WFIRST itself due to its restricted observing windows. Existing ground-based microlensing surveys can be employed if WFIRST is pointed at lower-extinction fields than is currently envisaged. This would come at some cost to the event rate. Therefore the benefits of improved characterization of lenses must be weighed against these costs.

  17. Lidar to lidar calibration of Ground-based Lidar

    DEFF Research Database (Denmark)

    Fernandez Garcia, Sergio; Courtney, Michael

    This report presents the result of the lidar to lidar calibration performed for ground-based lidar. Calibration is here understood as the establishment of a relation between the reference lidar wind speed measurements with measurement uncertainties provided by measurement standard and corresponding...... lidar wind speed indications with associated measurement uncertainties. The lidar calibration concerns the 10 minute mean wind speed measurements. The comparison of the lidar measurements of the wind direction with that from the reference lidar measurements are given for information only....

  18. MODELING ATMOSPHERIC EMISSION FOR CMB GROUND-BASED OBSERVATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Errard, J.; Borrill, J. [Space Sciences Laboratory, University of California, Berkeley, CA 94720 (United States); Ade, P. A. R. [School of Physics and Astronomy, Cardiff University, Cardiff CF10 3XQ (United Kingdom); Akiba, Y.; Chinone, Y. [High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki 305-0801 (Japan); Arnold, K.; Atlas, M.; Barron, D.; Elleflot, T. [Department of Physics, University of California, San Diego, CA 92093-0424 (United States); Baccigalupi, C.; Fabbian, G. [International School for Advanced Studies (SISSA), Trieste I-34014 (Italy); Boettger, D. [Department of Astronomy, Pontifica Universidad Catolica de Chile (Chile); Chapman, S. [Department of Physics and Atmospheric Science, Dalhousie University, Halifax, NS, B3H 4R2 (Canada); Cukierman, A. [Department of Physics, University of California, Berkeley, CA 94720 (United States); Delabrouille, J. [AstroParticule et Cosmologie, Univ Paris Diderot, CNRS/IN2P3, CEA/Irfu, Obs de Paris, Sorbonne Paris Cité (France); Dobbs, M.; Gilbert, A. [Physics Department, McGill University, Montreal, QC H3A 0G4 (Canada); Ducout, A.; Feeney, S. [Department of Physics, Imperial College London, London SW7 2AZ (United Kingdom); Feng, C. [Department of Physics and Astronomy, University of California, Irvine (United States); and others

    2015-08-10

    Atmosphere is one of the most important noise sources for ground-based cosmic microwave background (CMB) experiments. By increasing optical loading on the detectors, it amplifies their effective noise, while its fluctuations introduce spatial and temporal correlations between detected signals. We present a physically motivated 3D-model of the atmosphere total intensity emission in the millimeter and sub-millimeter wavelengths. We derive a new analytical estimate for the correlation between detectors time-ordered data as a function of the instrument and survey design, as well as several atmospheric parameters such as wind, relative humidity, temperature and turbulence characteristics. Using an original numerical computation, we examine the effect of each physical parameter on the correlations in the time series of a given experiment. We then use a parametric-likelihood approach to validate the modeling and estimate atmosphere parameters from the polarbear-i project first season data set. We derive a new 1.0% upper limit on the linear polarization fraction of atmospheric emission. We also compare our results to previous studies and weather station measurements. The proposed model can be used for realistic simulations of future ground-based CMB observations.

  19. Strong Sporadic E Occurrence Detected by Ground-Based GNSS

    Science.gov (United States)

    Sun, Wenjie; Ning, Baiqi; Yue, Xinan; Li, Guozhu; Hu, Lianhuan; Chang, Shoumin; Lan, Jiaping; Zhu, Zhengping; Zhao, Biqiang; Lin, Jian

    2018-04-01

    The ionospheric sporadic E (Es) layer has significant impact on radio wave propagation. The traditional techniques employed for Es layer observation, for example, ionosondes, are not dense enough to resolve the morphology and dynamics of Es layer in spatial distribution. The ground-based Global Navigation Satellite Systems (GNSS) technique is expected to shed light on the understanding of regional strong Es occurrence, owing to the facts that the critical frequency (foEs) of strong Es structure is usually high enough to cause pulse-like disturbances in GNSS total electron content (TEC), and a large number of GNSS receivers have been deployed all over the world. Based on the Chinese ground-based GNSS networks, including the Crustal Movement Observation Network of China and the Beidou Ionospheric Observation Network, a large-scale strong Es event was observed in the middle latitude of China. The strong Es shown as a band-like structure in the southwest-northeast direction extended more than 1,000 km. By making a comparative analysis of Es occurrences identified from the simultaneous observations by ionosondes and GNSS TEC receivers over China middle latitude statistically, we found that GNSS TEC can be well employed to observe strong Es occurrence with a threshold value of foEs, 14 MHz.

  20. Ground-Based Global Positioning System (GPS) Meteorology Integrated Precipitable Water Vapor (IPW)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Ground-Based Global Positioning System (GPS) Meteorology Integrated Precipitable Water Vapor (IPW) data set measures atmospheric water vapor using ground-based...

  1. Reconstruction of Sky Illumination Domes from Ground-Based Panoramas

    Science.gov (United States)

    Coubard, F.; Lelégard, L.; Brédif, M.; Paparoditis, N.; Briottet, X.

    2012-07-01

    The knowledge of the sky illumination is important for radiometric corrections and for computer graphics applications such as relighting or augmented reality. We propose an approach to compute environment maps, representing the sky radiance, from a set of ground-based images acquired by a panoramic acquisition system, for instance a mobile-mapping system. These images can be affected by important radiometric artifacts, such as bloom or overexposure. A Perez radiance model is estimated with the blue sky pixels of the images, and used to compute additive corrections in order to reduce these radiometric artifacts. The sky pixels are then aggregated in an environment map, which still suffers from discontinuities on stitching edges. The influence of the quality of estimated sky radiance on the simulated light signal is measured quantitatively on a simple synthetic urban scene; in our case, the maximal error for the total sensor radiance is about 10%.

  2. Ground-based transmission line conductor motion sensor

    International Nuclear Information System (INIS)

    Jacobs, M.L.; Milano, U.

    1988-01-01

    A ground-based-conductor motion-sensing apparatus is provided for remotely sensing movement of electric-power transmission lines, particularly as would occur during the wind-induced condition known as galloping. The apparatus is comprised of a motion sensor and signal-generating means which are placed underneath a transmission line and will sense changes in the electric field around the line due to excessive line motion. The detector then signals a remote station when a conditioning of galloping is sensed. The apparatus of the present invention is advantageous over the line-mounted sensors of the prior art in that it is easier and less hazardous to install. The system can also be modified so that a signal will only be given when particular conditions, such as specific temperature range, large-amplitude line motion, or excessive duration of the line motion, are occurring

  3. RECONSTRUCTION OF SKY ILLUMINATION DOMES FROM GROUND-BASED PANORAMAS

    Directory of Open Access Journals (Sweden)

    F. Coubard

    2012-07-01

    Full Text Available The knowledge of the sky illumination is important for radiometric corrections and for computer graphics applications such as relighting or augmented reality. We propose an approach to compute environment maps, representing the sky radiance, from a set of ground-based images acquired by a panoramic acquisition system, for instance a mobile-mapping system. These images can be affected by important radiometric artifacts, such as bloom or overexposure. A Perez radiance model is estimated with the blue sky pixels of the images, and used to compute additive corrections in order to reduce these radiometric artifacts. The sky pixels are then aggregated in an environment map, which still suffers from discontinuities on stitching edges. The influence of the quality of estimated sky radiance on the simulated light signal is measured quantitatively on a simple synthetic urban scene; in our case, the maximal error for the total sensor radiance is about 10%.

  4. Satellite and Ground Based Monitoring of Aerosol Plumes

    International Nuclear Information System (INIS)

    Doyle, Martin; Dorling, Stephen

    2002-01-01

    Plumes of atmospheric aerosol have been studied using a range of satellite and ground-based techniques. The Sea-viewing WideField-of-view Sensor (SeaWiFS) has been used to observe plumes of sulphate aerosol and Saharan dust around the coast of the United Kingdom. Aerosol Optical Thickness (AOT) was retrieved from SeaWiFS for two events; a plume of Saharan dust transported over the United Kingdom from Western Africa and a period of elevated sulphate experienced over the Easternregion of the UK. Patterns of AOT are discussed and related to the synoptic and mesoscale weather conditions. Further observation of the sulphate aerosol event was undertaken using the Advanced Very High Resolution Radiometer instrument(AVHRR). Atmospheric back trajectories and weather conditions were studied in order to identify the meteorological conditions which led to this event. Co-located ground-based measurements of PM 10 and PM 2.5 were obtained for 4sites within the UK and PM 2.5/10 ratios were calculated in order to identify any unusually high or low ratios(indicating the dominant size fraction within the plume)during either of these events. Calculated percentiles ofPM 2.5/10 ratios during the 2 events examined show that these events were notable within the record, but were in noway unique or unusual in the context of a 3 yr monitoring record. Visibility measurements for both episodes have been examined and show that visibility degradation occurred during both the sulphate aerosol and Saharan dust episodes

  5. Introducing nuclear power into currently non-nuclear states

    International Nuclear Information System (INIS)

    Gert, Claassen

    2007-01-01

    As the nuclear renaissance gains momentum, many countries that currently have no nuclear power plants will begin to consider introducing them. It is anticipated that smaller reactors such as the Pebble Bed Modular Reactor (PBMR) will not only be sold to current nuclear states to also to states where there is currently no nuclear experience. A range of issues would have to be considered for nuclear plants to be sold to non-nuclear states, such as the appropriate regulatory environment, standardization and codes, non-proliferation, security of supply, obtaining experienced merchant operators, appropriate financial structures and education and training. The paper considers nine major issues that need to be addressed by governments and vendors alike: 1) political enabling framework, 2) regulatory framework, 3) responsible owner, 4) responsible operator, 5) finance, 6) contact management, 7) fuel supply and waste management framework, 8) training and education, and 9) industrial infrastructure. International cooperation by organisations such as the IAEA, financial institutions and international suppliers will be required to ensure that developing countries as well as developed ones share the benefits of the nuclear renaissance. The opportunities that the nuclear industry affords to develop local skills, create job opportunities and to develop local manufacturing industries are among the important reasons that the South African Government has decided to support and fund the development of the Pebble Bed Modular Reactor project. (author)

  6. Introducing nuclear power into currently non-nuclear states

    International Nuclear Information System (INIS)

    Claassen, Gert

    2007-01-01

    As the nuclear renaissance gains momentum, many countries that currently have no nuclear power plants will begin to consider introducing them. It is anticipated that smaller reactors such as the Pebble Bed Modulator Reactor (PBMR) will not only be sold to current nuclear states to also to states where there is currently no nuclear experience. A range of issues would have to be considered for nuclear plants to be solid to non-nuclear states, such as the appropriate regulatory environment, standardization and codes, non-proliferation, security of supply, obtaining experienced merchant operators, appropriate financial structures and education and training. The paper considers nine major issues that need to be addressed by governments and vendors alike. International cooperation by organisations such as the IAEA, financial institutions and international suppliers will be required to ensure that developing countries as well as developed ones share the benefits of the nuclear renaissance. The opportunities that the nuclear industry affords to develop local skills, create job opportunities and to develop local manufacturing industries are among the important reasons that the South African Government has decided to support and fund the development of the Pebble Bed Modular Reactor project. These considerations are included in the paper. (author)

  7. Critical Analysis of Non-Nuclear Electron-Density Maxima and the Maximum Entropy Method

    NARCIS (Netherlands)

    de Vries, R.Y.; Briels, Willem J.; Feil, D.; Feil, D.

    1996-01-01

    Experimental evidence for the existence of non-nuclear maxima in charge densities is questioned. It is shown that the non-nuclear maxima reported for silicon are artifacts of the maximum entropy method that was used to analyze the x-ray diffraction data. This method can be improved by the use of

  8. Non-nuclear power sources for deep space

    Energy Technology Data Exchange (ETDEWEB)

    Kennel, E.B.; Tang, C.; Santarius, J.F.

    1998-07-01

    Electric propulsion and non-nuclear power can be used in tandem as a replacement for the current chemical booster and radioisotope thermoelectric generators now in use for deep space applications (i.e., to the asteroid belt and beyond). In current generation systems, electric propulsion is usually considered to be impractical because of the lack of high power for deep space, and non-nuclear power is thought to be impractical partly due to its high mass. However, when taken in combination, a solar powered electric upper stage can provide ample power and propulsion capability for use in deep space. Radioisotope thermoelectric generator (RTG) systems have generally been selected for missions only when other systems are absolutely unavailable. The disadvantages of radioisotopes include the need for nuclear safety as another dimension of concern in payload integration; the lack of assured availability of plutonium in the post-cold-war world; the enormous cost of plutonium-238; and the system complexity introduced by the need to continuously cool the system during the pre-launch phase. A conservative estimate for the total power for the solar array at beginning of life (BOL) may be in the range of 25 kW in order to provide 500 W continuous power at Jupiter. The availability of {approximately} 25 kW(e) in earth orbit raises the interesting possibility of coupling electric propulsion units to this free electric power. If electric propulsion is used to raise the probe from low-earth-orbit to an earth-escape trajectory, the system could actually save on low-earth orbit mass. Electric propulsion could be used by itself in a spiral trajectory orbit raising maneuver to earth escape velocity, or it could be used in conjunction with a chemical upper stage (either solid rocket or liquid), which would boost the payload to an elliptical orbit. The concept is to begin the Earth-Jupiter trip with a swing-by near the Sun close to the orbit of Venus and perhaps even closer if thermal

  9. Bridge Testing With Ground-Based Interferometric Radar: Experimental Results

    International Nuclear Information System (INIS)

    Chiara, P.; Morelli, A.

    2010-01-01

    The research of innovative non-contact techniques aimed at the vibration measurement of civil engineering structures (also for damage detection and structural health monitoring) is continuously directed to the optimization of measures and methods. Ground-Based Radar Interferometry (GBRI) represents the more recent technique available for static and dynamic control of structures and ground movements.Dynamic testing of bridges and buildings in operational conditions are currently performed: (a) to assess the conformity of the structure to the project design at the end of construction; (b) to identify the modal parameters (i.e. natural frequencies, mode shapes and damping ratios) and to check the variation of any modal parameters over the years; (c) to evaluate the amplitude of the structural response to special load conditions (i.e. strong winds, earthquakes, heavy railway or roadway loads). If such tests are carried out by using a non-contact technique (like GBRI), the classical issues of contact sensors (like accelerometers) are easily overtaken.This paper presents and discusses the results of various tests carried out on full-scale bridges by using a Stepped Frequency-Continuous Wave radar system.

  10. Bridge Testing With Ground-Based Interferometric Radar: Experimental Results

    Science.gov (United States)

    Chiara, P.; Morelli, A.

    2010-05-01

    The research of innovative non-contact techniques aimed at the vibration measurement of civil engineering structures (also for damage detection and structural health monitoring) is continuously directed to the optimization of measures and methods. Ground-Based Radar Interferometry (GBRI) represents the more recent technique available for static and dynamic control of structures and ground movements. Dynamic testing of bridges and buildings in operational conditions are currently performed: (a) to assess the conformity of the structure to the project design at the end of construction; (b) to identify the modal parameters (i.e. natural frequencies, mode shapes and damping ratios) and to check the variation of any modal parameters over the years; (c) to evaluate the amplitude of the structural response to special load conditions (i.e. strong winds, earthquakes, heavy railway or roadway loads). If such tests are carried out by using a non-contact technique (like GBRI), the classical issues of contact sensors (like accelerometers) are easily overtaken. This paper presents and discusses the results of various tests carried out on full-scale bridges by using a Stepped Frequency-Continuous Wave radar system.

  11. Observing Tsunamis in the Ionosphere Using Ground Based GPS Measurements

    Science.gov (United States)

    Galvan, D. A.; Komjathy, A.; Song, Y. Tony; Stephens, P.; Hickey, M. P.; Foster, J.

    2011-01-01

    Ground-based Global Positioning System (GPS) measurements of ionospheric Total Electron Content (TEC) show variations consistent with atmospheric internal gravity waves caused by ocean tsunamis following recent seismic events, including the Tohoku tsunami of March 11, 2011. We observe fluctuations correlated in time, space, and wave properties with this tsunami in TEC estimates processed using JPL's Global Ionospheric Mapping Software. These TEC estimates were band-pass filtered to remove ionospheric TEC variations with periods outside the typical range of internal gravity waves caused by tsunamis. Observable variations in TEC appear correlated with the Tohoku tsunami near the epicenter, at Hawaii, and near the west coast of North America. Disturbance magnitudes are 1-10% of the background TEC value. Observations near the epicenter are compared to estimates of expected tsunami-driven TEC variations produced by Embry Riddle Aeronautical University's Spectral Full Wave Model, an atmosphere-ionosphere coupling model, and found to be in good agreement. The potential exists to apply these detection techniques to real-time GPS TEC data, providing estimates of tsunami speed and amplitude that may be useful for future early warning systems.

  12. A design for a ground-based data management system

    Science.gov (United States)

    Lambird, Barbara A.; Lavine, David

    1988-01-01

    An initial design for a ground-based data management system which includes intelligent data abstraction and cataloging is described. The large quantity of data on some current and future NASA missions leads to significant problems in providing scientists with quick access to relevant data. Human screening of data for potential relevance to a particular study is time-consuming and costly. Intelligent databases can provide automatic screening when given relevent scientific parameters and constraints. The data management system would provide, at a minimum, information of availability of the range of data, the type available, specific time periods covered together with data quality information, and related sources of data. The system would inform the user about the primary types of screening, analysis, and methods of presentation available to the user. The system would then aid the user with performing the desired tasks, in such a way that the user need only specify the scientific parameters and objectives, and not worry about specific details for running a particular program. The design contains modules for data abstraction, catalog plan abstraction, a user-friendly interface, and expert systems for data handling, data evaluation, and application analysis. The emphasis is on developing general facilities for data representation, description, analysis, and presentation that will be easily used by scientists directly, thus bypassing the knowledge acquisition bottleneck. Expert system technology is used for many different aspects of the data management system, including the direct user interface, the interface to the data analysis routines, and the analysis of instrument status.

  13. Use of ground-based wind profiles in mesoscale forecasting

    Science.gov (United States)

    Schlatter, Thomas W.

    1985-01-01

    A brief review is presented of recent uses of ground-based wind profile data in mesoscale forecasting. Some of the applications are in real time, and some are after the fact. Not all of the work mentioned here has been published yet, but references are given wherever possible. As Gage and Balsley (1978) point out, sensitive Doppler radars have been used to examine tropospheric wind profiles since the 1970's. It was not until the early 1980's, however, that the potential contribution of these instruments to operational forecasting and numerical weather prediction became apparent. Profiler winds and radiosonde winds compare favorably, usually within a few m/s in speed and 10 degrees in direction (see Hogg et al., 1983), but the obvious advantage of the profiler is its frequent (hourly or more often) sampling of the same volume. The rawinsonde balloon is launched only twice a day and drifts with the wind. In this paper, I will: (1) mention two operational uses of data from a wind profiling system developed jointly by the Wave Propagation and Aeronomy Laboratories of NOAA; (2) describe a number of displays of these same data on a workstation for mesoscale forecasting developed by the Program for Regional Observing and Forecasting Services (PROFS); and (3) explain some interesting diagnostic calculations performed by meteorologists of the Wave Propagation Laboratory.

  14. Ground-based observations coordinated with Viking satellite measurements

    International Nuclear Information System (INIS)

    Opgenoorth, H.J.; Kirkwood, S.

    1989-01-01

    The instrumentation and the orbit of the Viking satellite made this first Swedish satellite mission ideally suited for coordinated observations with the dense network of ground-based stations in northern Scandinavia. Several arrays of complementing instruments such as magnetometers, all-sky cameras, riometers and doppler radars monitored on a routine basis the ionosphere under the magnetospheric region passed by Viking. For a large number of orbits the Viking passages close to Scandinavia were covered by the operation of specially designed programmes at the European incoherent-scatter facility (EISCAT). First results of coordinated observations on the ground and aboard Viking have shed new light on the most spectacular feature of substorm expansion, the westward-travelling surge. The end of a substorm and the associated decay of a westward-travelling surge have been analysed. EISCAT measurements of high spatial and temporal resolution indicate that the conductivities and electric fields associated with westward-travelling surges are not represented correctly by the existing models. (author)

  15. Tissue Engineering of Cartilage on Ground-Based Facilities

    Science.gov (United States)

    Aleshcheva, Ganna; Bauer, Johann; Hemmersbach, Ruth; Egli, Marcel; Wehland, Markus; Grimm, Daniela

    2016-06-01

    Investigations under simulated microgravity offer the opportunity for a better understanding of the influence of altered gravity on cells and the scaffold-free three-dimensional (3D) tissue formation. To investigate the short-term influence, human chondrocytes were cultivated for 2 h, 4 h, 16 h, and 24 h on a 2D Fast-Rotating Clinostat (FRC) in DMEM/F-12 medium supplemented with 10 % FCS. We detected holes in the vimentin network, perinuclear accumulations of vimentin after 2 h, and changes in the chondrocytes shape visualised by F-actin staining after 4 h of FRC-exposure. Scaffold-free cultivation of chondrocytes for 7 d on the Random Positioning Machine (RPM), the FRC and the Rotating Wall Vessel (RWV) resulted in spheroid formation, a phenomenon already known from spaceflight experiments with chondrocytes (MIR Space Station) and thyroid cancer cells (SimBox/Shenzhou-8 space mission). The experiments enabled by the ESA-CORA-GBF programme gave us an optimal opportunity to study gravity-related cellular processes, validate ground-based facilities for our chosen cell system, and prepare long-term experiments under real microgravity conditions in space

  16. Ground-based detection of G star superflares with NGTS

    Science.gov (United States)

    Jackman, James A. G.; Wheatley, Peter J.; Pugh, Chloe E.; Gänsicke, Boris T.; Gillen, Edward; Broomhall, Anne-Marie; Armstrong, David J.; Burleigh, Matthew R.; Chaushev, Alexander; Eigmüller, Philipp; Erikson, Anders; Goad, Michael R.; Grange, Andrew; Günther, Maximilian N.; Jenkins, James S.; McCormac, James; Raynard, Liam; Thompson, Andrew P. G.; Udry, Stéphane; Walker, Simon; Watson, Christopher A.; West, Richard G.

    2018-04-01

    We present high cadence detections of two superflares from a bright G8 star (V = 11.56) with the Next Generation Transit Survey (NGTS). We improve upon previous superflare detections by resolving the flare rise and peak, allowing us to fit a solar flare inspired model without the need for arbitrary break points between rise and decay. Our data also enables us to identify substructure in the flares. From changing starspot modulation in the NGTS data we detect a stellar rotation period of 59 hours, along with evidence for differential rotation. We combine this rotation period with the observed ROSAT X-ray flux to determine that the star's X-ray activity is saturated. We calculate the flare bolometric energies as 5.4^{+0.8}_{-0.7}× 10^{34}and 2.6^{+0.4}_{-0.3}× 10^{34}erg and compare our detections with G star superflares detected in the Kepler survey. We find our main flare to be one of the largest amplitude superflares detected from a bright G star. With energies more than 100 times greater than the Carrington event, our flare detections demonstrate the role that ground-based instruments such as NGTS can have in assessing the habitability of Earth-like exoplanets, particularly in the era of PLATO.

  17. Monitoring Hydraulic Fracturing Using Ground-Based Controlled Source Electromagnetics

    Science.gov (United States)

    Hickey, M. S.; Trevino, S., III; Everett, M. E.

    2017-12-01

    Hydraulic fracturing allows hydrocarbon production in low permeability formations. Imaging the distribution of fluid used to create a hydraulic fracture can aid in the characterization of fracture properties such as extent of plume penetration as well as fracture azimuth and symmetry. This could contribute to improving the efficiency of an operation, for example, in helping to determine ideal well spacing or the need to refracture a zone. A ground-based controlled-source electromagnetics (CSEM) technique is ideal for imaging the fluid due to the change in field caused by the difference in the conductive properties of the fluid when compared to the background. With advances in high signal to noise recording equipment, coupled with a high-power, broadband transmitter we can show hydraulic fracture extent and azimuth with minimal processing. A 3D finite element code is used to model the complete well casing along with the layered subsurface. This forward model is used to optimize the survey design and isolate the band of frequencies with the best response. In the field, the results of the modeling are also used to create a custom pseudorandom numeric (PRN) code to control the frequencies transmitted through a grounded dipole source. The receivers record the surface voltage across two grounded dipoles, one parallel and one perpendicular to the transmitter. The data are presented as the displays of amplitude ratios across several frequencies with the associated spatial information. In this presentation, we show multiple field results in multiple basins in the United States along with the CSEM theory used to create the survey designs.

  18. OBSERVATIONAL SELECTION EFFECTS WITH GROUND-BASED GRAVITATIONAL WAVE DETECTORS

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Hsin-Yu; Holz, Daniel E. [University of Chicago, Chicago, Illinois 60637 (United States); Essick, Reed; Vitale, Salvatore; Katsavounidis, Erik [LIGO, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)

    2017-01-20

    Ground-based interferometers are not perfect all-sky instruments, and it is important to account for their behavior when considering the distribution of detected events. In particular, the LIGO detectors are most sensitive to sources above North America and the Indian Ocean, and as the Earth rotates, the sensitive regions are swept across the sky. However, because the detectors do not acquire data uniformly over time, there is a net bias on detectable sources’ right ascensions. Both LIGO detectors preferentially collect data during their local night; it is more than twice as likely to be local midnight than noon when both detectors are operating. We discuss these selection effects and how they impact LIGO’s observations and electromagnetic (EM) follow-up. Beyond galactic foregrounds associated with seasonal variations, we find that equatorial observatories can access over 80% of the localization probability, while mid-latitudes will access closer to 70%. Facilities located near the two LIGO sites can observe sources closer to their zenith than their analogs in the south, but the average observation will still be no closer than 44° from zenith. We also find that observatories in Africa or the South Atlantic will wait systematically longer before they can begin observing compared to the rest of the world; though, there is a preference for longitudes near the LIGOs. These effects, along with knowledge of the LIGO antenna pattern, can inform EM follow-up activities and optimization, including the possibility of directing observations even before gravitational-wave events occur.

  19. Project management for complex ground-based instruments: MEGARA plan

    Science.gov (United States)

    García-Vargas, María. Luisa; Pérez-Calpena, Ana; Gil de Paz, Armando; Gallego, Jesús; Carrasco, Esperanza; Cedazo, Raquel; Iglesias, Jorge

    2014-08-01

    The project management of complex instruments for ground-based large telescopes is a challenge itself. A good management is a clue for project success in terms of performance, schedule and budget. Being on time has become a strict requirement for two reasons: to assure the arrival at the telescope due to the pressure on demanding new instrumentation for this first world-class telescopes and to not fall in over-costs. The budget and cash-flow is not always the expected one and has to be properly handled from different administrative departments at the funding centers worldwide distributed. The complexity of the organizations, the technological and scientific return to the Consortium partners and the participation in the project of all kind of professional centers working in astronomical instrumentation: universities, research centers, small and large private companies, workshops and providers, etc. make the project management strategy, and the tools and procedures tuned to the project needs, crucial for success. MEGARA (Multi-Espectrógrafo en GTC de Alta Resolución para Astronomía) is a facility instrument of the 10.4m GTC (La Palma, Spain) working at optical wavelengths that provides both Integral-Field Unit (IFU) and Multi-Object Spectrograph (MOS) capabilities at resolutions in the range R=6,000-20,000. The project is an initiative led by Universidad Complutense de Madrid (Spain) in collaboration with INAOE (Mexico), IAA-CSIC (Spain) and Universidad Politécnica de Madrid (Spain). MEGARA is being developed under contract with GRANTECAN.

  20. OBSERVATIONAL SELECTION EFFECTS WITH GROUND-BASED GRAVITATIONAL WAVE DETECTORS

    International Nuclear Information System (INIS)

    Chen, Hsin-Yu; Holz, Daniel E.; Essick, Reed; Vitale, Salvatore; Katsavounidis, Erik

    2017-01-01

    Ground-based interferometers are not perfect all-sky instruments, and it is important to account for their behavior when considering the distribution of detected events. In particular, the LIGO detectors are most sensitive to sources above North America and the Indian Ocean, and as the Earth rotates, the sensitive regions are swept across the sky. However, because the detectors do not acquire data uniformly over time, there is a net bias on detectable sources’ right ascensions. Both LIGO detectors preferentially collect data during their local night; it is more than twice as likely to be local midnight than noon when both detectors are operating. We discuss these selection effects and how they impact LIGO’s observations and electromagnetic (EM) follow-up. Beyond galactic foregrounds associated with seasonal variations, we find that equatorial observatories can access over 80% of the localization probability, while mid-latitudes will access closer to 70%. Facilities located near the two LIGO sites can observe sources closer to their zenith than their analogs in the south, but the average observation will still be no closer than 44° from zenith. We also find that observatories in Africa or the South Atlantic will wait systematically longer before they can begin observing compared to the rest of the world; though, there is a preference for longitudes near the LIGOs. These effects, along with knowledge of the LIGO antenna pattern, can inform EM follow-up activities and optimization, including the possibility of directing observations even before gravitational-wave events occur.

  1. Space- and Ground-based Coronal Spectro-Polarimetry

    Science.gov (United States)

    Fineschi, Silvano; Bemporad, Alessandro; Rybak, Jan; Capobianco, Gerardo

    This presentation gives an overview of the near-future perspectives of ultraviolet and visible-light spectro-polarimetric instrumentation for probing coronal magnetism from space-based and ground-based observatories. Spectro-polarimetric imaging of coronal emission-lines in the visible-light wavelength-band provides an important diagnostics tool of the coronal magnetism. The interpretation in terms of Hanle and Zeeman effect of the line-polarization in forbidden emission-lines yields information on the direction and strength of the coronal magnetic field. As study case, this presentation will describe the Torino Coronal Magnetograph (CorMag) for the spectro-polarimetric observation of the FeXIV, 530.3 nm, forbidden emission-line. CorMag - consisting of a Liquid Crystal (LC) Lyot filter and a LC linear polarimeter - has been recently installed on the Lomnicky Peak Observatory 20cm Zeiss coronagraph. The preliminary results from CorMag will be presented. The linear polarization by resonance scattering of coronal permitted line-emission in the ultraviolet (UV)can be modified by magnetic fields through the Hanle effect. Space-based UV spectro-polarimeters would provide an additional tool for the disgnostics of coronal magnetism. As a case study of space-borne UV spectro-polarimeters, this presentation will describe the future upgrade of the Sounding-rocket Coronagraphic Experiment (SCORE) to include the capability of imaging polarimetry of the HI Lyman-alpha, 121.6 nm. SCORE is a multi-wavelength imager for the emission-lines, HeII 30.4 nm and HI 121.6 nm, and visible-light broad-band emission of the polarized K-corona. SCORE has flown successfully in 2009. This presentation will describe how in future re-flights SCORE could observe the expected Hanle effect in corona with a HI Lyman-alpha polarimeter.

  2. Simulating the Performance of Ground-Based Optical Asteroid Surveys

    Science.gov (United States)

    Christensen, Eric J.; Shelly, Frank C.; Gibbs, Alex R.; Grauer, Albert D.; Hill, Richard E.; Johnson, Jess A.; Kowalski, Richard A.; Larson, Stephen M.

    2014-11-01

    We are developing a set of asteroid survey simulation tools in order to estimate the capability of existing and planned ground-based optical surveys, and to test a variety of possible survey cadences and strategies. The survey simulator is composed of several layers, including a model population of solar system objects and an orbital integrator, a site-specific atmospheric model (including inputs for seeing, haze and seasonal cloud cover), a model telescope (with a complete optical path to estimate throughput), a model camera (including FOV, pixel scale, and focal plane fill factor) and model source extraction and moving object detection layers with tunable detection requirements. We have also developed a flexible survey cadence planning tool to automatically generate nightly survey plans. Inputs to the cadence planner include camera properties (FOV, readout time), telescope limits (horizon, declination, hour angle, lunar and zenithal avoidance), preferred and restricted survey regions in RA/Dec, ecliptic, and Galactic coordinate systems, and recent coverage by other asteroid surveys. Simulated surveys are created for a subset of current and previous NEO surveys (LINEAR, Pan-STARRS and the three Catalina Sky Survey telescopes), and compared against the actual performance of these surveys in order to validate the model’s performance. The simulator tracks objects within the FOV of any pointing that were not discovered (e.g. too few observations, too trailed, focal plane array gaps, too fast or slow), thus dividing the population into “discoverable” and “discovered” subsets, to inform possible survey design changes. Ongoing and future work includes generating a realistic “known” subset of the model NEO population, running multiple independent simulated surveys in coordinated and uncoordinated modes, and testing various cadences to find optimal strategies for detecting NEO sub-populations. These tools can also assist in quantifying the efficiency of novel

  3. Foundation Investigation for Ground Based Radar Project-Kwajalein Island, Marshall Islands

    Science.gov (United States)

    1990-04-01

    iL_ COPY MISCELLANEOUS PAPER GL-90-5 i iFOUNDATION INVESTIGATION FOR GROUND BASED RADAR PROJECT--KWAJALEIN ISLAND, MARSHALL ISLANDS by Donald E...C!assification) Foundatioa Investigation for Ground Based Radar Project -- Kwajalein Island, Marshall Islands 12. PERSONAL AUTHOR(S) Yule, Donald E...investigation for the Ground Based Radar Project -- Kwajalein Island, Marshall Islands , are presented.- eophysical tests comprised of surface refrac- tion

  4. Survey on non-nuclear radioactive waste; Kartlaeggning av radioaktivt avfall fraan icke kaernteknisk verksamhet

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-11-01

    On request from the Swedish Radiation Protection Authority, the Swedish government has in May 2002 set up a non-standing committee for non-nuclear radioactive waste. The objective was to elaborate proposals for a national system for the management of all types of non-nuclear radioactive wastes with special consideration of inter alia the polluter pays principle and the responsibility of the producers. The committee will deliver its proposals to the government 1 December 2003. SSI has assisted the committee to the necessary extent to fulfill the investigation. This report is a summery of SSI's background material concerning non-nuclear radioactive waste in Sweden.

  5. Long term landslide monitoring with Ground Based SAR

    Science.gov (United States)

    Monserrat, Oriol; Crosetto, Michele; Luzi, Guido; Gili, Josep; Moya, Jose; Corominas, Jordi

    2014-05-01

    In the last decade, Ground-Based (GBSAR) has proven to be a reliable microwave Remote Sensing technique in several application fields, especially for unstable slopes monitoring. GBSAR can provide displacement measurements over few squared kilometres areas and with a very high spatial and temporal resolution. This work is focused on the use of GBSAR technique for long term landslide monitoring based on a particular data acquisition configuration, which is called discontinuous GBSAR (D-GBSAR). In the most commonly used GBSAR configuration, the radar is left installed in situ, acquiring data periodically, e.g. every few minutes. Deformations are estimated by processing sets of GBSAR images acquired during several weeks or months, without moving the system. By contrast, in the D-GBSAR the radar is installed and dismounted at each measurement campaign, revisiting a given site periodically. This configuration is useful to monitor slow deformation phenomena. In this work, two alternative ways for exploiting the D-GBSAR technique will be presented: the DInSAR technique and the Amplitude based Technique. The former is based on the exploitation of the phase component of the acquired SAR images and it allows providing millimetric precision on the deformation estimates. However, this technique presents several limitations like the reduction of measurable points with an increase in the period of observation, the ambiguous nature of the phase measurements, and the influence of the atmospheric phase component that can make it non applicable in some cases, specially when working in natural environments. The second approach, that is based on the use of the amplitude component of GB-SAR images combined with a image matching technique, will allow the estimation of the displacements over specific targets avoiding two of the limitations commented above: the phase unwrapping and atmosphere contribution but reducing the deformation measurement precision. Two successful examples of D

  6. Review of non-nuclear density gauges as possible replacements for ITD's nuclear density gauges.

    Science.gov (United States)

    2015-01-01

    This report examines the possibility of replacing nuclear density gauges (NDGs) with non-nuclear density gauges (NNDGs) to : measure density of hot mix asphalt (HMA) and unbound pavement layers in the field. The research team evaluated the : effectiv...

  7. ACCIDENTS AND UNSCHEDULED EVENTS ASSOCIATED WITH NON-NUCLEAR ENERGY RESOURCES AND TECHNOLOGY

    Science.gov (United States)

    Accidents and unscheduled events associated with non-nuclear energy resources and technology are identified for each step in the energy cycle. Both natural and anthropogenic causes of accidents or unscheduled events are considered. Data concerning these accidents are summarized. ...

  8. A detrimental soil disturbance prediction model for ground-based timber harvesting

    Science.gov (United States)

    Derrick A. Reeves; Matthew C. Reeves; Ann M. Abbott; Deborah S. Page-Dumroese; Mark D. Coleman

    2012-01-01

    Soil properties and forest productivity can be affected during ground-based harvest operations and site preparation. The degree of impact varies widely depending on topographic features and soil properties. Forest managers who understand site-specific limits to ground-based harvesting can alter harvest method or season to limit soil disturbance. To determine the...

  9. Biosensors for EVA: Improved Instrumentation for Ground-based Studies

    Science.gov (United States)

    Soller, B.; Ellerby, G.; Zou, F.; Scott, P.; Jin, C.; Lee, S. M. C.; Coates, J.

    2010-01-01

    During lunar excursions in the EVA suit, real-time measurement of metabolic rate is required to manage consumables and guide activities to ensure safe return to the base. Metabolic rate, or oxygen consumption (VO2), is normally measured from pulmonary parameters but cannot be determined with standard techniques in the oxygen-rich environment of a spacesuit. Our group has developed novel near infrared spectroscopic (NIRS) methods to calculate muscle oxygen saturation (SmO 2), hematocrit, and pH, and we recently demonstrated that we can use our NIRS sensor to measure VO 2 on the leg during cycling. Our NSBRI project has 4 objectives: (1) increase the accuracy of the metabolic rate calculation through improved prediction of stroke volume; (2) investigate the relative contributions of calf and thigh oxygen consumption to metabolic rate calculation for walking and running; (3) demonstrate that the NIRS-based noninvasive metabolic rate methodology is sensitive enough to detect decrement in VO 2 in a space analog; and (4) improve instrumentation to allow testing within a spacesuit. Over the past year we have made progress on all four objectives, but the most significant progress was made in improving the instrumentation. The NIRS system currently in use at JSC is based on fiber optics technology. Optical fiber bundles are used to deliver light from a light source in the monitor to the patient, and light reflected back from the patient s muscle to the monitor for spectroscopic analysis. The fiber optic cables are large and fragile, and there is no way to get them in and out of the test spacesuit used for ground-based studies. With complimentary funding from the US Army, we undertook a complete redesign of the sensor and control electronics to build a novel system small enough to be used within the spacesuit and portable enough to be used by a combat medic. In the new system the filament lamp used in the fiber optic system was replaced with a novel broadband near infrared

  10. Proceedings of the NEA Workshop on the Management of Non-Nuclear Radioactive Waste

    International Nuclear Information System (INIS)

    Zafiropoulos, Demetre; Dilday, Daniel; Siemann, Michael; Ciambrella, Massimo; Lazo, Edward; Sartori, Enrico; ); Dionisi, Mario; Long, Juliet; Nicholson, David; Chambers, Douglas; Garcia Alves, Joao Henrique; McMahon, Ciara; Bruno, Gerard; Fan, Zhiwen; ); Ripani, Marco; Nielsen, Mette; Solente, Nicolas; Templeton, John; Paratore, Angelo; Feinhals, Joerg; Pandolfi, Dana; Sarchiapone, Lucia; Picentino, Bruno; Simms, Helen; Beer, Hans-Frieder; Deryabin, Sergey; Ulrici, Luisa; Bergamaschi, Carlo; Nottestad, Stacy; Anagnostakis, Marios

    2017-05-01

    All NEA member countries, whether or not they have nuclear power plants, are faced with appropriately managing non-nuclear radioactive waste produced through industrial, research and medical activities. Sources of such waste can include national laboratory and university research activities, used and lost industrial gauges and radiography sources, hospital nuclear medicine activities and in some circumstances, naturally occurring radioactive material (NORM) activities. Although many of these wastes are not long-lived, the shear variety of sources makes it difficult to generically assess their physical (e.g. volume, chemical form, mixed waste) or radiological (e.g. activity, half-life, concentration) characteristics. Additionally, the source-specific nature of these wastes poses questions and challenges to their regulatory and practical management at a national level. This had generated interest from both the radiological protection and radioactive waste management communities, and prompted the Committee on Radiological Protection and Public Health (CRPPH) to organise, in collaboration with the Radioactive Waste Management Committee (RWMC), a workshop tackling some of the key issues of this challenging topic. The key objectives of the NEA Workshop on the Management of Non-Nuclear Radioactive Waste were to address the particularities of managing non-nuclear waste in all its sources and forms and to share and exchange national experiences. Presentations and discussions addressed both technical aspects and national frameworks. Technical aspects included: - the range of non-nuclear waste sources, activities, volumes and other relevant characteristics; - waste storage and repository capacities and life cycles; - safety considerations for mixed wastes management; - human resources and knowledge management; - legal, regulatory and financial assurance, and liability issues. Taking into account the entire non-nuclear waste life-cycle, the workshop covered planning and

  11. Exoplanets -New Results from Space and Ground-based Surveys

    Science.gov (United States)

    Udry, Stephane

    The exploration of the outer solar system and in particular of the giant planets and their environments is an on-going process with the Cassini spacecraft currently around Saturn, the Juno mission to Jupiter preparing to depart and two large future space missions planned to launch in the 2020-2025 time frame for the Jupiter system and its satellites (Europa and Ganymede) on the one hand, and the Saturnian system and Titan on the other hand [1,2]. Titan, Saturn's largest satellite, is the only other object in our Solar system to possess an extensive nitrogen atmosphere, host to an active organic chemistry, based on the interaction of N2 with methane (CH4). Following the Voyager flyby in 1980, Titan has been intensely studied from the ground-based large telescopes (such as the Keck or the VLT) and by artificial satellites (such as the Infrared Space Observatory and the Hubble Space Telescope) for the past three decades. Prior to Cassini-Huygens, Titan's atmospheric composition was thus known to us from the Voyager missions and also through the explorations by the ISO. Our perception of Titan had thus greatly been enhanced accordingly, but many questions remained as to the nature of the haze surrounding the satellite and the composition of the surface. The recent revelations by the Cassini-Huygens mission have managed to surprise us with many discoveries [3-8] and have yet to reveal more of the interesting aspects of the satellite. The Cassini-Huygens mission to the Saturnian system has been an extraordinary success for the planetary community since the Saturn-Orbit-Insertion (SOI) in July 2004 and again the very successful probe descent and landing of Huygens on January 14, 2005. One of its main targets was Titan. Titan was revealed to be a complex world more like the Earth than any other: it has a dense mostly nitrogen atmosphere and active climate and meteorological cycles where the working fluid, methane, behaves under Titan conditions the way that water does on

  12. Reliability of sprinkler systems. Exploration and analysis of data from nuclear and non-nuclear installations

    International Nuclear Information System (INIS)

    Roenty, V.; Keski-Rahkonen, O.; Hassinen, J.P.

    2004-12-01

    Sprinkler systems are an important part of fire safety of nuclear installations. As a part of effort to make fire-PSA of our utilities more quantitative a literature survey from open sources worldwide of available reliability data on sprinkler systems was carried out. Since the result of the survey was rather poor quantitatively, it was decided to mine available original Finnish nuclear and non-nuclear data, since nuclear power plants present a rather small device population. Sprinklers are becoming a key element for the fire safety in modern, open non-nuclear buildings. Therefore, the study included both nuclear power plants and non-nuclear buildings protected by sprinkler installations. Data needed for estimating of reliability of sprinkler systems were collected from available sources in Finnish nuclear and non-nuclear installations. Population sizes on sprinkler system installations and components therein as well as covered floor areas were counted individually from Finnish nuclear power plants. From non-nuclear installations corresponding data were estimated by counting relevant things from drawings of 102 buildings, and plotting from that sample needed probability distributions. The total populations of sprinkler systems and components were compiled based on available direct data and these distributions. From nuclear power plants electronic maintenance reports were obtained, observed failures and other reliability relevant data were selected, classified according to failure severity, and stored on spreadsheets for further analysis. A short summary of failures was made, which was hampered by a small sample size. From non-nuclear buildings inspection statistics from years 1985.1997 were surveyed, and observed failures were classified and stored on spreadsheets. Finally, a reliability model is proposed based on earlier formal work, and failure frequencies obtained by preliminary data analysis of this work. For a model utilising available information in the non-nuclear

  13. Spectral Analysis of the Background in Ground-based, Long-slit ...

    Indian Academy of Sciences (India)

    1996-12-08

    Dec 8, 1996 ... Spectral Analysis of the Background in Ground-based,. Long-slit .... Figure 1 plots spectra from the 2-D array, after instrumental calibration and before correction for ..... which would merit attention and a better understanding.

  14. Ground-Based Global Navigation Satellite System Combined Broadcast Ephemeris Data (daily files) from NASA CDDIS

    Data.gov (United States)

    National Aeronautics and Space Administration — This dataset consists of ground-based Global Navigation Satellite System (GNSS) Combined Broadcast Ephemeris Data (daily files of all distinct navigation messages...

  15. Chasing Small Exoplanets with Ground-Based Near-Infrared Transit Photometry

    Science.gov (United States)

    Colon, K. D.; Barentsen, G.; Vinicius, Z.; Vanderburg, A.; Coughlin, J.; Thompson, S.; Mullally, F.; Barclay, T.; Quintana, E.

    2017-11-01

    I will present results from a ground-based survey to measure the infrared radius and other properties of small K2 exoplanets and candidates. The survey is preparation for upcoming discoveries from TESS and characterization with JWST.

  16. Study on the Application of PSA Method on Non-Nuclear Industry Facilities

    International Nuclear Information System (INIS)

    Andi Sofrany E; Anhar R Antariksawan; Sony T, D.T.; Puradwi IW; Sugiyanto; Giarno

    2003-01-01

    A preliminary study related to utilization of probabilistic method in non-nuclear industry facilities has been conducted The study has been performed by examining literature studies and results of research paper related to the topic. The objective of this study is to know how far the method, which is a standard in the nuclear industry, is applied in the non-nuclear fields. The PSA application in the non-nuclear process industry is mainly performed as risk management. The concept of risk management enables a systematic and realistic framework to be established for accident prevention as a whole process of hazard identification, risk estimation, risk evaluation, control measures establishment, its implementation. The most important part of this study is indeed the hazard identification and risk estimation in order to assess the consequences and to estimate event probability. The risk assessment methodology, which is also used in the probabilistic assessment of nuclear and non-nuclear industry, is performed both quantitatively and qualitatively approached by several technique analysis. Based on literature and research paper study, there are 3 main technique analysis, which can be applied in the risk management of non-nuclear industry, which are fault tree analysis (FTA), event tree analysis (ETA), and Hazard and Operability Studies (HAZOPS). The potential hazard arise in the non-nuclear process industry are flammability hazard; toxicity hazard; reactivity hazard; and elevated pressure hazard The fault tree analysis has been practically applied in the petroleum industry, chemical industry, and also other industry for improvement of safety installation by modification in the installation design or operation procedures. The event tree analysis has been applied only limited in the chemical process industry or other process industry. On the other application, HAZOPS technique can be combined with the event tree analysis with approach of accident scenario identification

  17. PUBLIC HEARING TRANSCRIPT: FEDERAL NON-NUCLEAR ENERGY RESEARCH AND DEVELOPMENT PROGRAM

    Science.gov (United States)

    This document presents the proceedings of three days of public hearings on the Federal Non-nuclear Energy Research and Development Program. The document is presented in three sections: (1) Future Energy Patterns and Levels of Coal Use, (2) Solar Energy and Conservation, and (3) O...

  18. Proceedings of the Seminar on Environmental and Radiation Safety Aspect at Non-nuclear Industry

    International Nuclear Information System (INIS)

    Mulyadi Rachmad; Muhammad Fathoni; Topo Suprihadi, PY.; Dumais, Johannes Robert; Eri Hiswara; Alatas, Zubaidah; Dahlan, Kgs.; Muhammad Isnaini

    2003-03-01

    The Seminar on Environmental and Radiation Safety Aspect at Non-nuclear Industry held on March 2003 in Jakarta. The purpose of this Seminar be able to information exchange among research workers in National Nuclear Energy Agency. The Seminar discussed about Science and Technology of Radiation Safety and Environment. There are 17 papers which have separated index. (PPIN)

  19. Radiation Impact to Environment of Non-nuclear Industry in Hunan,Hubei and Jiangxi Provinces

    Institute of Scientific and Technical Information of China (English)

    SONG; Wei-jie; CHENG; Wei-ya

    2015-01-01

    According to the gas,liquid effluent monitoring and survey results of non nuclear industry in Hunan,Hubei and Jiangxi provinces,the radiation effects of which on the surrounding environment were analysis and evaluation.Evaluation industrials includes three coal-fired power plants,two rare earth ores,two cement factories,one

  20. BigBOSS: The Ground-Based Stage IV BAO Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Schlegel, David; Bebek, Chris; Heetderks, Henry; Ho, Shirley; Lampton, Michael; Levi, Michael; Mostek, Nick; Padmanabhan, Nikhil; Perlmutter, Saul; Roe, Natalie; Sholl, Michael; Smoot, George; White, Martin; Dey, Arjun; Abraham, Tony; Jannuzi, Buell; Joyce, Dick; Liang, Ming; Merrill, Mike; Olsen, Knut; Salim, Samir

    2009-04-01

    The BigBOSS experiment is a proposed DOE-NSF Stage IV ground-based dark energy experiment to study baryon acoustic oscillations (BAO) and the growth of structure with an all-sky galaxy redshift survey. The project is designed to unlock the mystery of dark energy using existing ground-based facilities operated by NOAO. A new 4000-fiber R=5000 spectrograph covering a 3-degree diameter field will measure BAO and redshift space distortions in the distribution of galaxies and hydrogen gas spanning redshifts from 0.2< z< 3.5. The Dark Energy Task Force figure of merit (DETF FoM) for this experiment is expected to be equal to that of a JDEM mission for BAO with the lower risk and cost typical of a ground-based experiment.

  1. Heat balance calculation and feasibility analysis for initial startup of Fuqing nuclear turbine unit with non-nuclear steam

    International Nuclear Information System (INIS)

    He Liu; Xiao Bo; Song Yumeng

    2014-01-01

    Non-nuclear steam run up compared with nuclear steam run up, can verify the design, manufacture, installation quality of the unit, at the same time shorten the follow-up duration of the entire group ready to start debugging time. In this paper, starting from the first law of thermodynamics, Analyzed Heat balance Calculation and Feasibility analysis for Initial startup of Fuqing nuclear Turbine unit with Non-nuclear steam, By the above calculation, to the system requirements and device status on the basis of technical specifications, confirmed the feasibility of Non-nuclear steam running up in theory. After the implementation of the Non-nuclear turn of Fuqing unit, confirmed the results fit with the actual process. In summary, the Initial startup of Fuqing turbine unit with Non-nuclear steam is feasible. (authors)

  2. Asteroseismology of solar-type stars with Kepler: III. Ground-based data

    DEFF Research Database (Denmark)

    Karoff, Christoffer; Molenda-Żakowicz , J.

    2010-01-01

    We report on the ground-based follow-up program of spectroscopic and photometric observations of solar-like asteroseismic targets for the Kepler space mission. These stars constitute a large group of more than a thousand objects which are the subject of an intensive study by the Kepler Asteroseis......We report on the ground-based follow-up program of spectroscopic and photometric observations of solar-like asteroseismic targets for the Kepler space mission. These stars constitute a large group of more than a thousand objects which are the subject of an intensive study by the Kepler...

  3. Status of advanced ground-based laser interferometers for gravitational-wave detection

    International Nuclear Information System (INIS)

    Dooley, K L; Akutsu, T; Dwyer, S; Puppo, P

    2015-01-01

    Ground-based laser interferometers for gravitational-wave (GW) detection were first constructed starting 20 years ago and as of 2010 collection of several years’ worth of science data at initial design sensitivities was completed. Upgrades to the initial detectors together with construction of brand new detectors are ongoing and feature advanced technologies to improve the sensitivity to GWs. This conference proceeding provides an overview of the common design features of ground-based laser interferometric GW detectors and establishes the context for the status updates of each of the four gravitational-wave detectors around the world: Advanced LIGO, Advanced Virgo, GEO 600 and KAGRA. (paper)

  4. Status of advanced ground-based laser interferometers for gravitational-wave detection

    Science.gov (United States)

    Dooley, K. L.; Akutsu, T.; Dwyer, S.; Puppo, P.

    2015-05-01

    Ground-based laser interferometers for gravitational-wave (GW) detection were first constructed starting 20 years ago and as of 2010 collection of several years’ worth of science data at initial design sensitivities was completed. Upgrades to the initial detectors together with construction of brand new detectors are ongoing and feature advanced technologies to improve the sensitivity to GWs. This conference proceeding provides an overview of the common design features of ground-based laser interferometric GW detectors and establishes the context for the status updates of each of the four gravitational-wave detectors around the world: Advanced LIGO, Advanced Virgo, GEO 600 and KAGRA.

  5. The Potential of NORM in Non-Nuclear Industry in Indonesia

    International Nuclear Information System (INIS)

    Kunto Wiharto; Syarbaini

    2003-01-01

    Industry with an activity of processing natural resources from crust of earth as raw materials could cause natural radioactivity in crust of earth to be accumulated in waste, by product and or main product of that industry. Natural radioactive elements which are mobilized and then accumulated in end industry process are known as NORM (Naturally Occurring Radioactive Materials). NORM have a potential radiological impact such as external and internal radiation exposure. Therefore, the existence of NORM in these non-nuclear industries should be studied in order to handle properly the radiological impact of those material to the industrial workers, member of the public and the surrounding environment. This paper describes the non nuclear industrial sectors in Indonesia that have potential NORM sources and radiation safety aspects in connecting with NORM. (author)

  6. Nuclear and non-nuclear risk. An exercise in comparability. Final report

    International Nuclear Information System (INIS)

    1980-01-01

    The present report is the result of a study contract given out by the CEC in order to collect useful information and opinions in the area of risk assessment and related concepts such as risk acceptability, risk perception and acceptance. The main objectives of the study are to examine the underlying factors which determine the existing levels of non-nuclear risks, and the extent to which societies are likely to seek means of reducing them, and to suggest means of working towards the derivation of acceptable nuclear risks which will be compatible with practice in relation to non-nuclear risks. The Case Studies which comprise Volume 2 of this Report are based on UK experience

  7. Ground-Based VIS/NIR Reflectance Spectra of 25143 Itokawa: What Hayabusa will See and How Ground-Based Data can Augment Analyses

    Science.gov (United States)

    Vilas, Faith; Abell, P. A.; Jarvis, K. S.

    2004-01-01

    Planning for the arrival of the Hayabusa spacecraft at asteroid 25143 Itokawa includes consideration of the expected spectral information to be obtained using the AMICA and NIRS instruments. The rotationally-resolved spatial coverage the asteroid we have obtained with ground-based telescopic spectrophotometry in the visible and near-infrared can be utilized here to address expected spacecraft data. We use spectrophotometry to simulate the types of data that Hayabusa will receive with the NIRS and AMICA instruments, and will demonstrate them here. The NIRS will cover a wavelength range from 0.85 m, and have a dispersion per element of 250 Angstroms. Thus, we are limited in coverage of the 1.0 micrometer and 2.0 micrometer mafic silicate absorption features. The ground-based reflectance spectra of Itokawa show a large component of olivine in its surface material, and the 2.0 micrometer feature is shallow. Determining the olivine to pyroxene abundance ratio is critically dependent on the attributes of the 1.0- and 2.0 micrometer features. With a cut-off near 2,1 micrometer the longer edge of the 2.0- feature will not be obtained by NIRS. Reflectance spectra obtained using ground-based telescopes can be used to determine the regional composition around space-based spectral observations, and possibly augment the longer wavelength spectral attributes. Similarly, the shorter wavelength end of the 1.0 micrometer absorption feature will be partially lost to the NIRS. The AMICA filters mimic the ECAS filters, and have wavelength coverage overlapping with the NIRS spectral range. We demonstrate how merging photometry from AMICA will extend the spectral coverage of the NIRS. Lessons learned from earlier spacecraft to asteroids should be considered.

  8. The technological prospective of non nuclear channels; La prospective technologique des filieres non nucleaires

    Energy Technology Data Exchange (ETDEWEB)

    Claverie, M.; Clement, D.; Girard, C

    2000-07-15

    This prospective study concerns the electric power demand in 2050. It examines the three non nuclear sectors of production: the natural gas combined cycle power plants, the wind turbines among the renewable energies and the cogeneration electric power - heat in the ternary and building sector. The necessity of the network adaptation to the european competition and the decentralized production of electric power will suppose new investments of transport and storage. (A.L.B.)

  9. Radiological Impacts and Regulation of Rare Earth Elements in Non-Nuclear Energy Production

    Directory of Open Access Journals (Sweden)

    Timothy Ault

    2015-03-01

    Full Text Available Energy industries account for a significant portion of total rare earth usage, both in the US and worldwide. Rare earth minerals are frequently collocated with naturally occurring radioactive material, imparting an occupational radiological dose during recovery. This paper explores the extent to which rare earths are used by various non-nuclear energy industries and estimates the radiological dose which can be attributed to these industries on absolute and normalized scales. It was determined that typical rare earth mining results in an occupational collective dose of approximately 0.0061 person-mSv/t rare earth elements, amounting to a total of 330 person-mSv/year across all non-nuclear energy industries (about 60% of the annual collective dose from one pressurized water reactor operated in the US, although for rare earth mining the impact is spread out over many more workers. About half of the collective dose from non-nuclear energy production results from use of fuel cracking catalysts for oil refining, although given the extent of the oil industry, it is a small dose when normalized to the energy equivalent of the oil that is used annually. Another factor in energy industries’ reliance on rare earths is the complicated state of the regulation of naturally occurring radiological materials; correspondingly, this paper also explores regulatory and management implications.

  10. Take-off and Landing Using Ground Based Power - Landing Simulations Using Multibody Dynamics

    NARCIS (Netherlands)

    Wu, P.; Voskuijl, M.; Van Tooren, M.J.L.

    2014-01-01

    A novel take-off and landing system using ground based power is proposed in the EUFP7 project GABRIEL. The proposed system has the potential benefit to reduce aircraft weight, emissions and noise. A preliminary investigation of the feasibility of the structural design of the connection mechanism

  11. ForestCrowns: a software tool for analyzing ground-based digital photographs of forest canopies

    Science.gov (United States)

    Matthew F. Winn; Sang-Mook Lee; Phillip A. Araman

    2013-01-01

    Canopy coverage is a key variable used to characterize forest structure. In addition, the light transmitted through the canopy is an important ecological indicator of plant and animal habitat and understory climate conditions. A common ground-based method used to document canopy coverage is to take digital photographs from below the canopy. To assist with analyzing...

  12. Estimating and validating ground-based timber harvesting production through computer simulation

    Science.gov (United States)

    Jingxin Wang; Chris B. LeDoux

    2003-01-01

    Estimating ground-based timber harvesting systems production with an object oriented methodology was investigated. The estimation model developed generates stands of trees, simulates chain saw, drive-to-tree feller-buncher, swing-to-tree single-grip harvester felling, and grapple skidder and forwarder extraction activities, and analyzes costs and productivity. It also...

  13. On reconciling ground-based with spaceborne normalized radar cross section measurements

    DEFF Research Database (Denmark)

    Baumgartner, Francois; Munk, Jens; Jezek, K C

    2002-01-01

    This study examines differences in the normalized radar cross section, derived from ground-based versus spaceborne radar data. A simple homogeneous half-space model, indicates that agreement between the two improves as 1) the distance from the scatterer is increased; and/or 2) the extinction...

  14. Validation of the CrIS fast physical NH3 retrieval with ground-based FTIR

    NARCIS (Netherlands)

    Dammers, E.; Shephard, M.W.; Palm, M.; Cady-Pereira, K.; Capps, S.; Lutsch, E.; Strong, K.; Hannigan, J.W.; Ortega, I.; Toon, G.C.; Stremme, W.; Grutter, M.; Jones, N.; Smale, D.; Siemons, J.; Hrpcek, K.; Tremblay, D.; Schaap, M.; Notholt, J.; Willem Erisman, J.

    2017-01-01

    Presented here is the validation of the CrIS (Cross-track Infrared Sounder) fast physical NH3 retrieval (CFPR) column and profile measurements using ground-based Fourier transform infrared (FTIR) observations. We use the total columns and profiles from seven FTIR sites in the Network for the

  15. A cost-performance model for ground-based optical communications receiving telescopes

    Science.gov (United States)

    Lesh, J. R.; Robinson, D. L.

    1986-01-01

    An analytical cost-performance model for a ground-based optical communications receiving telescope is presented. The model considers costs of existing telescopes as a function of diameter and field of view. This, coupled with communication performance as a function of receiver diameter and field of view, yields the appropriate telescope cost versus communication performance curve.

  16. Retrieval of liquid water cloud properties from ground-based remote sensing observations

    NARCIS (Netherlands)

    Knist, C.L.

    2014-01-01

    Accurate ground-based remotely sensed microphysical and optical properties of liquid water clouds are essential references to validate satellite-observed cloud properties and to improve cloud parameterizations in weather and climate models. This requires the evaluation of algorithms for retrieval of

  17. Modern developments for ground-based monitoring of fire behavior and effects

    Science.gov (United States)

    Colin C. Hardy; Robert Kremens; Matthew B. Dickinson

    2010-01-01

    Advances in electronic technology over the last several decades have been staggering. The cost of electronics continues to decrease while system performance increases seemingly without limit. We have applied modern techniques in sensors, electronics and instrumentation to create a suite of ground based diagnostics that can be used in laboratory (~ 1 m2), field scale...

  18. Submillimetric motion detection with a 94 GHz ground based synthetic aperture radar

    OpenAIRE

    Martinez Cervera, Arturo; Lort Cuenca, Marc; Aguasca Solé, Alberto; Broquetas Ibars, Antoni

    2015-01-01

    The paper presents the validation and experimental assessment of a 94 GHz (W-Band) CW-FM Radar that can be configured as a Ground Based SAR for high resolution imaging and interferometry. Several experimental campaigns have been carried out to assess the capability of the system to remotely observe submillimetric deformation and vibration in infrastructures. Peer Reviewed

  19. Ground-based forest harvesting effects on soil physical properties and Douglas-fir growth.

    Science.gov (United States)

    Adrian Ares; Thomas A. Terry; Richard E. Miller; Harry W. Anderson; Barry L. Flaming

    2005-01-01

    Soil properties and forest productivity can be affected by heavy equipment used for harvest and site preparation but these impacts vary greatly with site conditions and operational practices. We assessed the effects of ground-based logging on soil physical properties and subsequent Douglas-fir [Pseudotsuga menziesii (Mirb) Franco] growth on a highly...

  20. Overview of Boundary Layer Clouds Using Satellite and Ground-Based Measurements

    Science.gov (United States)

    Xi, B.; Dong, X.; Wu, P.; Qiu, S.

    2017-12-01

    A comprehensive summary of boundary layer clouds properties based on our few recently studies will be presented. The analyses include the global cloud fractions and cloud macro/micro- physical properties based on satellite measurements using both CERES-MODIS and CloudSat/Caliposo data products,; the annual/seasonal/diurnal variations of stratocumulus clouds over different climate regions (mid-latitude land, mid-latitude ocean, and Arctic region) using DOE ARM ground-based measurements over Southern great plain (SGP), Azores (GRW), and North slope of Alaska (NSA) sites; the impact of environmental conditions to the formation and dissipation process of marine boundary layer clouds over Azores site; characterizing Arctice mixed-phase cloud structure and favorable environmental conditions for the formation/maintainess of mixed-phase clouds over NSA site. Though the presentation has widely spread topics, we will focus on the representation of the ground-based measurements over different climate regions; evaluation of satellite retrieved cloud properties using these ground-based measurements, and understanding the uncertainties of both satellite and ground-based retrievals and measurements.

  1. Ground-Based Global Navigation Satellite System (GNSS) GLONASS Broadcast Ephemeris Data (hourly files) from NASA CDDIS

    Data.gov (United States)

    National Aeronautics and Space Administration — This dataset consists of ground-based Global Navigation Satellite System (GNSS) GLObal NAvigation Satellite System (GLONASS) Broadcast Ephemeris Data (hourly files)...

  2. Space debris removal using a high-power ground-based laser

    Energy Technology Data Exchange (ETDEWEB)

    Monroe, D.K.

    1993-12-31

    The feasibility and practicality of using a ground-based laser (GBL) to remove artificial space debris is examined. Physical constraints indicate that a reactor-pumped laser (RPL) may be best suited for this mission, because of its capabilities for multimegawatt output long run-times, and near-diffraction-limited initial beams. Simulations of a laser-powered debris removal system indicate that a 5-MW RPL with a 10-meter-diameter beam director and adaptive optics capabilities can deorbit 1-kg debris from space station altitudes. Larger debris can be deorbited or transferred to safer orbits after multiple laser engagements. A ground-based laser system may be the only realistic way to access and remove some 10,000 separate objects, having velocities in the neighborhood of 7 km/sec, and being spatially distributed over some 10{sup 10} km{sup 3} of space.

  3. Informing hydrological models with ground-based time-lapse relative gravimetry: potential and limitations

    DEFF Research Database (Denmark)

    Bauer-Gottwein, Peter; Christiansen, Lars; Rosbjerg, Dan

    2011-01-01

    parameter uncertainty decreased significantly when TLRG data was included in the inversion. The forced infiltration experiment caused changes in unsaturated zone storage, which were monitored using TLRG and ground-penetrating radar. A numerical unsaturated zone model was subsequently conditioned on both......Coupled hydrogeophysical inversion emerges as an attractive option to improve the calibration and predictive capability of hydrological models. Recently, ground-based time-lapse relative gravity (TLRG) measurements have attracted increasing interest because there is a direct relationship between...

  4. (DCT-FY08) Target Detection Using Multiple Modality Airborne and Ground Based Sensors

    Science.gov (United States)

    2013-03-01

    resolution SIFT grids in metric-topological SLAM ,” in Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2009. [4] M. Bosse and R...single camera SLAM ,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 29, no. 6, pp. 1052–1067, 2007. [7] D. Nister, O. Naroditsky, and J. Bergen...segmentation with ground-based and airborne LIDAR range data,” in Proceedings of the Fourth International Symposium on 3D Data Processing

  5. The SPARC water vapor assessment II: intercomparison of satellite and ground-based microwave measurements

    Science.gov (United States)

    Nedoluha, Gerald E.; Kiefer, Michael; Lossow, Stefan; Gomez, R. Michael; Kämpfer, Niklaus; Lainer, Martin; Forkman, Peter; Christensen, Ole Martin; Oh, Jung Jin; Hartogh, Paul; Anderson, John; Bramstedt, Klaus; Dinelli, Bianca M.; Garcia-Comas, Maya; Hervig, Mark; Murtagh, Donal; Raspollini, Piera; Read, William G.; Rosenlof, Karen; Stiller, Gabriele P.; Walker, Kaley A.

    2017-12-01

    As part of the second SPARC (Stratosphere-troposphere Processes And their Role in Climate) water vapor assessment (WAVAS-II), we present measurements taken from or coincident with seven sites from which ground-based microwave instruments measure water vapor in the middle atmosphere. Six of the ground-based instruments are part of the Network for the Detection of Atmospheric Composition Change (NDACC) and provide datasets that can be used for drift and trend assessment. We compare measurements from these ground-based instruments with satellite datasets that have provided retrievals of water vapor in the lower mesosphere over extended periods since 1996. We first compare biases between the satellite and ground-based instruments from the upper stratosphere to the upper mesosphere. We then show a number of time series comparisons at 0.46 hPa, a level that is sensitive to changes in H2O and CH4 entering the stratosphere but, because almost all CH4 has been oxidized, is relatively insensitive to dynamical variations. Interannual variations and drifts are investigated with respect to both the Aura Microwave Limb Sounder (MLS; from 2004 onwards) and each instrument's climatological mean. We find that the variation in the interannual difference in the mean H2O measured by any two instruments is typically ˜ 1%. Most of the datasets start in or after 2004 and show annual increases in H2O of 0-1 % yr-1. In particular, MLS shows a trend of between 0.5 % yr-1 and 0.7 % yr-1 at the comparison sites. However, the two longest measurement datasets used here, with measurements back to 1996, show much smaller trends of +0.1 % yr-1 (at Mauna Loa, Hawaii) and -0.1 % yr-1 (at Lauder, New Zealand).

  6. Testing a ground-based canopy model using the wind river canopy crane

    Science.gov (United States)

    Robert Van Pelt; Malcolm P. North

    1999-01-01

    A ground-based canopy model that estimates the volume of occupied space in forest canopies was tested using the Wind River Canopy Crane. A total of 126 trees in a 0.25 ha area were measured from the ground and directly from a gondola suspended from the crane. The trees were located in a low elevation, old-growth forest in the southern Washington Cascades. The ground-...

  7. The SPARC water vapor assessment II: intercomparison of satellite and ground-based microwave measurements

    Directory of Open Access Journals (Sweden)

    G. E. Nedoluha

    2017-12-01

    Full Text Available As part of the second SPARC (Stratosphere–troposphere Processes And their Role in Climate water vapor assessment (WAVAS-II, we present measurements taken from or coincident with seven sites from which ground-based microwave instruments measure water vapor in the middle atmosphere. Six of the ground-based instruments are part of the Network for the Detection of Atmospheric Composition Change (NDACC and provide datasets that can be used for drift and trend assessment. We compare measurements from these ground-based instruments with satellite datasets that have provided retrievals of water vapor in the lower mesosphere over extended periods since 1996. We first compare biases between the satellite and ground-based instruments from the upper stratosphere to the upper mesosphere. We then show a number of time series comparisons at 0.46 hPa, a level that is sensitive to changes in H2O and CH4 entering the stratosphere but, because almost all CH4 has been oxidized, is relatively insensitive to dynamical variations. Interannual variations and drifts are investigated with respect to both the Aura Microwave Limb Sounder (MLS; from 2004 onwards and each instrument's climatological mean. We find that the variation in the interannual difference in the mean H2O measured by any two instruments is typically  ∼  1%. Most of the datasets start in or after 2004 and show annual increases in H2O of 0–1 % yr−1. In particular, MLS shows a trend of between 0.5 % yr−1 and 0.7 % yr−1 at the comparison sites. However, the two longest measurement datasets used here, with measurements back to 1996, show much smaller trends of +0.1 % yr−1 (at Mauna Loa, Hawaii and −0.1 % yr−1 (at Lauder, New Zealand.

  8. Inorganic membranes for separative techniques: from uranium isotope separation to non-nuclear fields

    International Nuclear Information System (INIS)

    Charpin, J.; Rigny, P.

    1989-01-01

    Uranium enrichment leads to the development of inorganic porous barriers - either ceramic or metallic. A wide range of these products had considerable potential for the improvement of filtration techniques in liquid media (ultrafiltration and microfiltration). This is how a new generation of inorganic membranes was created reputed for their performance and especially for their lifetime and their behaviour (mechanical and temperature stability, corrosion resistance). These membranes now have a respectable position in applications in the agro-food biotechnology industries, to give only two examples. Before the non-nuclear applications of inorganic membranes are presented, their success in the nuclear power industry are pointed out

  9. Evaluation of a Non-Nuclear Soil Density Gauge on Fine-Grained Soils

    Science.gov (United States)

    2013-05-01

    U.S. STANDARD SIEVE NUMBERS HYDROMETER fY, in o/. in. 318 in #140 6 in. 3 in. 2 in. 1 in. ’A in #4 ’" #20 #30 #40 ឬ #100 #200 100 J I ’ I I I I I...1 3-20 31 C L-2 U.S. SIEVE OPENING IN INCHES U.S. STANDARD SIEVE NUMBERS HYDROMETER 1Y,in. ’/.in Un~/8 in #140 6 in 3 in. 2 in. 1in. " #4...Particle Size Distribution Reoort Fine PL 14 HYDROMETER %Fines Silt -------,---- PI Project Non-Nuclear Gau_ge Proiect 27 Area Boring No. 3 Date

  10. The non-proliferation policies of non-nuclear-weapon states

    International Nuclear Information System (INIS)

    Marwah, Onkar

    1987-01-01

    Eight countries are considered to be capable of producing nuclear weapons and highly suspect in their intentions to actually produce them. These are Argentina, Brazil, India, Pakistan, Israel, South Africa, the Republic of Korea and Taiwan. The policies of these suspect Non-nuclear-weapon States (NNWS) are considered in this paper. The first part assesses the non-proliferation (or proliferation) policies of the eight suspect NNWS, the second part evaluates their differences in approach from the policies urged upon them by the nuclear-weapon states (NWS) and the third and final part attempts to understand the future evolution of NNWS policies in the nuclear military field. (U.K.)

  11. Study of the unknown hemisphere of mercury by ground-based astronomical facilities

    Science.gov (United States)

    Ksanfomality, L. V.

    2011-08-01

    The short exposure method proved to be very productive in ground-based observations of Mercury. Telescopic observations with short exposures, together with computer codes for the processing of data arrays of many thousands of original electronic photos, make it possible to improve the resolution of images from ground-based instruments to almost the diffraction limit. The resulting composite images are comparable with images from spacecrafts approaching from a distance of about 1 million km. This paper presents images of the hemisphere of Mercury in longitude sectors 90°-180°W, 215°-350°W, and 50°-90°W, including, among others, areas not covered by spacecraft cameras. For the first time a giant S basin was discovered in the sector of longitudes 250°-290°W, which is the largest formation of this type on terrestrial planets. Mercury has a strong phase effects. As a result, the view of the surface changes completely with the change in the planetary phase. But the choice of the phase in the study using spacecrafts is limited by orbital characteristics of the mission. Thus, ground-based observations of the planet provide a valuable support.

  12. Intercomparison of ground-based ozone and NO2 measurements during the MANTRA 2004 campaign

    Directory of Open Access Journals (Sweden)

    K. Strong

    2007-11-01

    Full Text Available The MANTRA (Middle Atmosphere Nitrogen TRend Assessment 2004 campaign took place in Vanscoy, Saskatchewan, Canada (52° N, 107° W from 3 August to 15 September, 2004. In support of the main balloon launch, a suite of five zenith-sky and direct-Sun-viewing UV-visible ground-based spectrometers was deployed, primarily measuring ozone and NO2 total columns. Three Fourier transform spectrometers (FTSs that were part of the balloon payload also performed ground-based measurements of several species, including ozone. Ground-based measurements of ozone and NO2 differential slant column densities from the zenith-viewing UV-visible instruments are presented herein. They are found to partially agree within NDACC (Network for the Detection of Atmospheric Composition Change standards for instruments certified for process studies and satellite validation. Vertical column densities of ozone from the zenith-sky UV-visible instruments, the FTSs, a Brewer spectrophotometer, and ozonesondes are compared, and found to agree within the combined error estimates of the instruments (15%. NO2 vertical column densities from two of the UV-visible instruments are compared, and are also found to agree within combined error (15%.

  13. Non Nuclear Testing of Reactor Systems In The Early Flight Fission Test Facilities (EFF-TF)

    International Nuclear Information System (INIS)

    Van Dyke, Melissa; Martin, James

    2004-01-01

    The Early Flight Fission-Test Facility (EFF-TF) can assist in the design and development of systems through highly effective non-nuclear testing of nuclear systems when technical issues associated with near-term space fission systems are 'non-nuclear' in nature (e.g. system's nuclear operations are understood). For many systems, thermal simulators can be used to closely mimic fission heat deposition. Axial power profile, radial power profile, and fuel pin thermal conductivity can be matched. In addition to component and subsystem testing, operational and lifetime issues associated with the steady state and transient performance of the integrated reactor module can be investigated. Instrumentation at the EFF-TF allows accurate measurement of temperature, pressure, strain, and bulk core deformation (useful for accurately simulating nuclear behavior). Ongoing research at the EFF-TF is geared towards facilitating research, development, system integration, and system utilization via cooperative efforts with DOE laboratories, industry, universities, and other Nasa centers. This paper describes the current efforts for the latter portion of 2003 and beginning of 2004. (authors)

  14. Non-nuclear, low-carbon, or both? The case of Taiwan

    International Nuclear Information System (INIS)

    Chen, Yen-Heng Henry

    2013-01-01

    The Fukushima nuclear accident in Japan has renewed debates on the safety of nuclear power, possibly hurting the role of nuclear power in efforts to limit CO 2 emissions. I develop a dynamic economy-wide model of Taiwan with a detailed set of technology options in the power sector to examine the implications of adopting different carbon and nuclear power policies on CO 2 emissions and the economy. Without a carbon mitigation policy, limiting nuclear power has a small economic cost for Taiwan, but CO 2 emissions may increase by around 4.5% by 2050 when nuclear is replaced by fossil-based generation. With a low-carbon target of a 50% reduction from year 2000 levels by 2050, the costs of cutting CO 2 emissions are greatly reduced if both carbon sequestration and nuclear expansion were viable. This study finds that converting Taiwan's industrial structure into a less energy-intensive one is crucial to carry out the non-nuclear and low-carbon environment. - Highlights: • This study provides an analysis for Taiwan under a low-carbon policy with or without the nuclear option. • A new approach that improves the modeling of non-dispatchable generation is presented. • Emission reduction costs are greatly reduced if both carbon sequestration and nuclear expansion were viable. • A less energy-intensive industrial structure is crucial in pursuing a non-nuclear and low carbon environment

  15. Evaluation of Non-Nuclear Techniques for Well Logging: Technology Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Bond, Leonard J.; Denslow, Kayte M.; Griffin, Jeffrey W.; Dale, Gregory E.; Harris, Robert V.; Moran, Traci L.; Sheen, David M.; Schenkel, Thomas

    2010-11-01

    This report presents an initial review of the state-of-the-art nuclear and non-nuclear well logging methods and seeks to understand the technical and economic issues if AmBe, and potentially other isotope sources, are reduced or even eliminated in the oil-field services industry. Prior to considering alternative logging technologies, there is a definite need to open up discussions with industry regarding the feasibility and acceptability of source replacement. Industry views appear to range from those who see AmBe as vital and irreplaceable to those who believe that, with research and investment, it may be possible to transition to electronic neutron sources and employ combinations of non-nuclear technologies to acquire the desired petro-physical parameters. In one sense, the simple answer to the question as to whether petro-physical parameters can be sensed with technologies other than AmBe is probably "Yes". The challenges come when attention turns to record interpretation. The many decades of existing records form a very valuable proprietary resource, and the interpretation of subtle features contained in these records are of significant value to the oil-gas exploration community to correctly characterize a well. The demonstration of equivalence and correspondence/correlation between established and any new sensing modality, and correlations with historic records is critical to ensuring accurate data interpretation. Establishing the technical basis for such a demonstration represents a significant effort.

  16. Fusion reactor cost reductions by employing non-nuclear grade components

    International Nuclear Information System (INIS)

    Bourque, R.F.; Maya, I.; Schultz, K.R.; Sonn, D.L.; Wise, R.K.

    1987-09-01

    The Cascade inertial confinement fusion reactor fits the requirements of low radioactive inventories and inherent safety and is therefore a candidate for non-nuclear construction throughout. This reactor consists of a rotating blanket of ceramic granules that absorb the energy from D-T target explosions occurring along the rotational axis. Laser energy is beamed in axially from both ends. Two cost estimates were made for an 815 MWe Cascade power plant. One was based on an ''all conventional'' plant, which is constructed and costed using well-established, conventional fossil power plant methods. The second was a ''nuclear plus conventional'' design, constructed and costed using a combination of fossil and fission reactor plant methods and standards that would be typical of advanced fission reactors. The total capital requirements for the ''all conventional'' construction plant were estimated in 1985 dollars at $1490 M, including indirect costs. Similarly, the ''nuclear plus conventional'' construction plant was estimated at $1940 M. The savings of $450 M (23%) represents strictly the difference between Cascade ICF power plants designed and constructed to nuclear safety-related requirements versus all non-nuclear. This example clearly shows that, if fusion plants can take advantage of low activation materials and inherent safety features to eliminate the need for nuclear-related expenses, then such plants may have economic advantages over nuclear-grade systems. 13 refs., 1 fig., 5 tabs

  17. Retrieval and analysis of atmospheric XCO2 using ground-based spectral observation.

    Science.gov (United States)

    Qin, Xiu-Chun; Lei, Li-Ping; Kawasaki, Masahiro; Masafumi, Ohashi; Takahiro, Kuroki; Zeng, Zhao-Cheng; Zhang, Bing

    2014-07-01

    Atmospheric CO2 column concentration (column-averaged dry air mole fractions of atmospheric carbon dioxide) data obtained by ground-based hyperspectral observation is an important source of data for the verification and improvement of the results of CO2 retrieval based on satellite hyperspectral observation. However, few studies have been conducted on atmospheric CO2 column concentration retrieval based on ground-based spectral hyperspectral observation in China. In the present study, we carried out the ground-based hyperspectral observation in Xilingol Grassland, Inner Mongolia of China by using an observation system which is consisted of an optical spectral analyzer, a sun tracker, and some other elements. The atmospheric CO2 column concentration was retrieved using the observed hyperspectral data. The effect of a wavelength shift of the observation spectra and the meteorological parameters on the retrieval precision of the atmospheric CO2 concentration was evaluated and analyzed. The results show that the mean value of atmospheric CO2 concentration was 390.9 microg x mL(-1) in the study area during the observing period from July to September. The shift of wavelength in the range between -0.012 and 0.042 nm will generally lead to 1 microg x mL(-1) deviation in the CO2 retrievals. This study also revealed that the spectral transmittance was sensitive to meteorological parameters in the wavelength range of 6 357-6 358, 6 360-6 361, and 6 363-6 364 cm(-1). By comparing the CO2 retrievals derived from the meteorological parameters observed in synchronous and non-synchronous time, respectively, with the spectral observation, it was showed that the concentration deviation caused by using the non-synchronously observed meteorological parameters is ranged from 0.11 to 4 microg x mL(-1). These results can be used as references for the further improvement of retrieving CO2 column concentration based on spectral observation.

  18. Ground-based SMART-COMMIT Measurements for Studying Aerosol and Cloud Properties

    Science.gov (United States)

    Tsay, Si-Chee

    2008-01-01

    From radiometric principles, it is expected that the retrieved properties of extensive aerosols and clouds from reflected/emitted measurements by satellite (and/or aircraft) should be consistent with those retrieved from transmitted/emitted radiance observed at the surface. Although space-borne remote sensing observations cover large spatial domain, they are often plagued by contamination of surface signatures. Thus, ground-based in-situ and remote-sensing measurements, where signals come directly from atmospheric constituents, the sun, and/or the Earth-atmosphere interactions, provide additional information content for comparisons that confirm quantitatively the usefulness of the integrated surface, aircraft, and satellite data sets. The development and deployment of SMARTCOMMIT (Surface-sensing Measurements for Atmospheric Radiative Transfer - Chemical, Optical & Microphysical Measurements of In-situ Troposphere) mobile facilities are aimed for the optimal utilization of collocated ground-based observations as constraints to yield higher fidelity satellite retrievals and to determine any sampling bias due to target conditions. To quantify the energetics of the surface-atmosphere system and the atmospheric processes, SMART-COMMIT instruments fall into three categories: flux radiometer, radiance sensor and in-situ probe. In this paper, we will demonstrate the capability of SMART-COMMIT in recent field campaigns (e.g., CRYSTAL-FACE, UAE 2, BASEASIA, NAMMA) that were designed and executed to study the compelling variability in temporal scale of both anthropogenic and natural aerosols (e.g., biomass-burning smoke, airborne dust) and cirrus clouds. We envision robust approaches in which well-collocated ground-based measurements and space-borne observations will greatly advance our knowledge of extensive aerosols and clouds.

  19. Kepler and Ground-Based Transits of the exo-Neptune HAT-P-11b

    Science.gov (United States)

    Deming, Drake; Sada, Pedro V.; Jackson, Brian; Peterson, Steven W.; Agol, Eric; Knutson, Heather A.; Jennings, Donald E.; Haase, Plynn; Bays, Kevin

    2011-01-01

    We analyze 26 archival Kepler transits of the exo-Neptune HAT-P-11b, supplemented by ground-based transits observed in the blue (B band) and near-IR (J band). Both the planet and host star are smaller than previously believed; our analysis yields Rp = 4.31 R xor 0.06 R xor and Rs = 0.683 R solar mass 0.009 R solar mass, both about 3 sigma smaller than the discovery values. Our ground-based transit data at wavelengths bracketing the Kepler bandpass serve to check the wavelength dependence of stellar limb darkening, and the J-band transit provides a precise and independent constraint on the transit duration. Both the limb darkening and transit duration from our ground-based data are consistent with the new Kepler values for the system parameters. Our smaller radius for the planet implies that its gaseous envelope can be less extensive than previously believed, being very similar to the H-He envelope of GJ 436b and Kepler-4b. HAT-P-11 is an active star, and signatures of star spot crossings are ubiquitous in the Kepler transit data. We develop and apply a methodology to correct the planetary radius for the presence of both crossed and uncrossed star spots. Star spot crossings are concentrated at phases 0.002 and +0.006. This is consistent with inferences from Rossiter-McLaughlin measurements that the planet transits nearly perpendicular to the stellar equator. We identify the dominant phases of star spot crossings with active latitudes on the star, and infer that the stellar rotational pole is inclined at about 12 deg 5 deg to the plane of the sky. We point out that precise transit measurements over long durations could in principle allow us to construct a stellar Butterfly diagram to probe the cyclic evolution of magnetic activity on this active K-dwarf star.

  20. Toward High Altitude Airship Ground-Based Boresight Calibration of Hyperspectral Pushbroom Imaging Sensors

    Directory of Open Access Journals (Sweden)

    Aiwu Zhang

    2015-12-01

    Full Text Available The complexity of the single linear hyperspectral pushbroom imaging based on a high altitude airship (HAA without a three-axis stabilized platform is much more than that based on the spaceborne and airborne. Due to the effects of air pressure, temperature and airflow, the large pitch and roll angles tend to appear frequently that create pushbroom images highly characterized with severe geometric distortions. Thus, the in-flight calibration procedure is not appropriate to apply to the single linear pushbroom sensors on HAA having no three-axis stabilized platform. In order to address this problem, a new ground-based boresight calibration method is proposed. Firstly, a coordinate’s transformation model is developed for direct georeferencing (DG of the linear imaging sensor, and then the linear error equation is derived from it by using the Taylor expansion formula. Secondly, the boresight misalignments are worked out by using iterative least squares method with few ground control points (GCPs and ground-based side-scanning experiments. The proposed method is demonstrated by three sets of experiments: (i the stability and reliability of the method is verified through simulation-based experiments; (ii the boresight calibration is performed using ground-based experiments; and (iii the validation is done by applying on the orthorectification of the real hyperspectral pushbroom images from a HAA Earth observation payload system developed by our research team—“LanTianHao”. The test results show that the proposed boresight calibration approach significantly improves the quality of georeferencing by reducing the geometric distortions caused by boresight misalignments to the minimum level.

  1. Summer planetary-scale oscillations: aura MLS temperature compared with ground-based radar wind

    Directory of Open Access Journals (Sweden)

    C. E. Meek

    2009-04-01

    Full Text Available The advent of satellite based sampling brings with it the opportunity to examine virtually any part of the globe. Aura MLS mesospheric temperature data are analysed in a wavelet format for easy identification of possible planetary waves (PW and aliases masquerading as PW. A calendar year, 2005, of eastward, stationary, and westward waves at a selected latitude is shown in separate panels for wave number range −3 to +3 for period range 8 h to 30 days (d. Such a wavelet analysis is made possible by Aura's continuous sampling at all latitudes 82° S–82° N. The data presentation is suitable for examination of years of data. However this paper focuses on the striking feature of a "dish-shaped" upper limit to periods near 2 d in mid-summer, with longer periods appearing towards spring and fall, a feature also commonly seen in radar winds. The most probable cause is suggested to be filtering by the summer jet at 70–80 km, the latter being available from ground based medium frequency radar (MFR. Classically, the phase velocity of a wave must be greater than that of the jet in order to propagate through it. As an attempt to directly relate satellite and ground based sampling, a PW event of period 8d and wave number 2, which appears to be the original rather than an alias, is compared with ground based radar wind data. An appendix discusses characteristics of satellite data aliases with regard to their periods and amplitudes.

  2. Methane Emissions from Bangladesh: Bridging the Gap Between Ground-based and Space-borne Estimates

    Science.gov (United States)

    Peters, C.; Bennartz, R.; Hornberger, G. M.

    2015-12-01

    Gaining an understanding of methane (CH4) emission sources and atmospheric dispersion is an essential part of climate change research. Large-scale and global studies often rely on satellite observations of column CH4 mixing ratio whereas high-spatial resolution estimates rely on ground-based measurements. Extrapolation of ground-based measurements on, for example, rice paddies to broad region scales is highly uncertain because of spatio-temporal variability. We explore the use of ground-based river stage measurements and independent satellite observations of flooded area along with satellite measurements of CH4 mixing ratio to estimate the extent of methane emissions. Bangladesh, which comprises most of the Ganges Brahmaputra Meghna (GBM) delta, is a region of particular interest for studying spatio-temporal variation of methane emissions due to (1) broadscale rice cultivation and (2) seasonal flooding and atmospheric convection during the monsoon. Bangladesh and its deltaic landscape exhibit a broad range of environmental, economic, and social circumstances that are relevant to many nations in South and Southeast Asia. We explore the seasonal enhancement of CH4 in Bangladesh using passive remote sensing spectrometer CH4 products from the SCanning Imaging Absorption SpectroMeter for Atmospheric CHartographY (SCIAMACHY) and the Atmospheric Infrared Sounder (AIRS). The seasonal variation of CH4 is compared to independent estimates of seasonal flooding from water gauge stations and space-based passive microwave water-to-land fractions from the Tropical Rainfall Measuring Mission Microwave Imager (TRMM-TMI). Annual cycles in inundation (natural and anthropogenic) and atmospheric CH4 concentrations show highly correlated seasonal signals. NOAA's HYSPLIT model is used to determine atmospheric residence time of ground CH4 fluxes. Using the satellite observations, we can narrow the large uncertainty in extrapolation of ground-based CH4 emission estimates from rice paddies

  3. Development of ground-based wind energy in DOM and Corsica - Joint CGEDD / CGEIET report

    International Nuclear Information System (INIS)

    Joannis de Verclos, Christian de; Albrecht, Patrick; Iselin, Philippe; Legait, Benoit; Vignolles, Denis

    2012-09-01

    Addressing the peculiar cases of the French overseas districts (DOM: Guadeloupe, Martinique, Guyana, Mayotte, La Reunion) and Corsica, this report analyzes four main topics: the objectives and challenges of ground-based wind energy (sustainable development, not-interconnected areas, and public service of electricity supply), the local situations and their cartography, the legal issues and the possible evolution options (energy law, environmental law, urban planning law, local community law), and the modalities of devolution of project. The authors highlight the issues which require a new legal framework, notably governance and the devolution procedure

  4. Remote sensing of high-latitude ionization profiles by ground-based and spaceborne instrumentation

    International Nuclear Information System (INIS)

    Vondrak, R.R.

    1981-01-01

    Ionospheric specification and modeling are now largely based on data provided by active remote sensing with radiowave techniques (ionosondes, incoherent-scatter radars, and satellite beacons). More recently, passive remote sensing techniques have been developed that can be used to monitor quantitatively the spatial distribution of high-latitude E-region ionization. These passive methods depend on the measurement, or inference, of the energy distribution of precipitating kilovolt electrons, the principal source of the nighttime E-region at high latitudes. To validate these techniques, coordinated measurements of the auroral ionosphere have been made with the Chatanika incoherent-scatter radar and a variety of ground-based and spaceborne sensors

  5. Tests of the gravitational redshift effect in space-born and ground-based experiments

    Science.gov (United States)

    Vavilova, I. B.

    2018-02-01

    This paper provides a brief overview of experiments as concerns with the tests of the gravitational redshift (GRS) effect in ground-based and space-born experiments. In particular, we consider the GRS effects in the gravitational field of the Earth, the major planets of the Solar system, compact stars (white dwarfs and neutron stars) where this effect is confirmed with a higher accuracy. We discuss availabilities to confirm the GRS effect for galaxies and galaxy clusters in visible and X-ray ranges of the electromagnetic spectrum.

  6. On mean wind and turbulence profile measurements from ground-based wind lidars

    DEFF Research Database (Denmark)

    Mikkelsen, Torben

    2009-01-01

    Two types of wind lidar?s have become available for ground-based vertical mean wind and turbulence profiling. A continuous wave (CW) wind lidar, and a pulsed wind lidar. Although they both are build upon the same recent 1.55 μ telecom fibre technology, they possess fundamental differences between...... their temporal and spatial resolution capabilities. A literature review of the two lidar systems spatial and temporal resolution characteristics will be presented, and the implication for the two lidar types vertical profile measurements of mean wind and turbulence in the lower atmospheric boundary layer...

  7. Pulsation of IU Per from the Ground-based and ‘Integral’ Photometry

    Directory of Open Access Journals (Sweden)

    Kundra E.

    2013-06-01

    Full Text Available IU Per is an eclipsing semi-detached binary with a pulsating component. Using our own ground-based, as well as INTEGRAL satellite photometric observations in the B and V passbands, we derived geometrical and physical parameters of this system. We detected the short-term variations of IU Per in the residuals of brightness after the subtraction of synthetic light curves. Analysis of these residuals enabled us to characterize and localize the source of short-term variations as the pulsations of the primary component typical to δ Scuti-type stars.

  8. Liquid Structures and Physical Properties -- Ground Based Studies for ISS Experiments

    Science.gov (United States)

    Kelton, K. F.; Bendert, J. C.; Mauro, N. A.

    2012-01-01

    Studies of electrostatically-levitated supercooled liquids have demonstrated strong short- and medium-range ordering in transition metal and alloy liquids, which can influence phase transitions like crystal nucleation and the glass transition. The structure is also related to the liquid properties. Planned ISS experiments will allow a deeper investigation of these results as well as the first investigations of a new type of coupling in crystal nucleation in primary crystallizing liquids, resulting from a linking of the stochastic processes of diffusion with interfacial-attachment. A brief description of the techniques used for ground-based studies and some results relevant to planned ISS investigations are discussed.

  9. Plant diversity to support humans in a CELSS ground based demonstrator

    Science.gov (United States)

    Howe, J. M.; Hoff, J. E.

    1981-01-01

    A controlled ecological life support system (CELSS) for human habitation in preparation for future long duration space flights is considered. The success of such a system depends upon the feasibility of revitalization of food resources and the human nutritional needs which are to be met by these food resources. Edible higher plants are prime candidates for the photoautotrophic components of this system if nutritionally adequate diets can be derived from these plant sources to support humans. Human nutritional requirements information based on current knowledge are developed for inhabitants envisioned in the CELSS ground based demonstrator. Groups of plant products that can provide the nutrients are identified.

  10. The laser calibration system for the STACEE ground-based gamma ray detector

    CERN Document Server

    Hanna, D

    2002-01-01

    We describe the design and performance of the laser system used for calibration monitoring of components of the STACEE detector. STACEE is a ground based gamma ray detector which uses the heliostats of a solar power facility to collect and focus Cherenkov light onto a system of secondary optics and photomultiplier tubes. To monitor the gain and check the linearity and timing properties of the phototubes and associated electronics, a system based on a dye laser, neutral density filters and optical fibres has been developed. In this paper we describe the system and present some results from initial tests made with it.

  11. A National system for the Management of Non-nuclear Radioactive Waste in Sweden

    International Nuclear Information System (INIS)

    Lindhe, J. C.

    2004-01-01

    The Swedish government in May 2002 set up a non-standing committee for non-nuclear radioactive waste. The objective was to suggest a national system for the management of all types of non-nuclear radioactive waste with special consideration to the principle of polluter pays and the responsibility of the producers. The committee delivered its recommendations to the government at the end of last year. Funding for future costs for nuclear waste management and final storage is collected in a state governed funding system. For non-nuclear waste, however, there are no means today to secure the funding. If a company goes bankrupt and leaves radioactive waste behind it might be up to the taxpayers to pay for its safe management. This is due to the fact that the cost for the waste is paid at the time one wants to dispose of it and it is usually the last owner of a product etc. that has to pay. Sometimes the price comes as a surprise and the owner might not have the money available. Thus the waste might be kept longer than otherwise and might even end up as orphan waste. To solve this dilemma the committee recommends a funding system in parallel with the system for the nuclear waste. The cost for the waste should be paid up front before the waste has been created. E.g. when a customer buys a product the cost for the future waste management would be included in the price and he will not have to pay for this the day he disposes the product by returning it to the producer or leaves it to a waste-collecting organisation. It should be the responsibility of the producer (manufacturer, importer or re-seller) to guarantee the funding for the waste management. In summary the non-nuclear radioactive waste is divided into three main groups: waste from products, waste from practices and other waste. Waste from products includes household products as well as products used in research, industry and hospitals etc. For this category it is easy to identify a producer who imports or

  12. Impact of the Application of Exemption Regulation to the Non-nuclear Industry in Indonesia

    International Nuclear Information System (INIS)

    Eri-Hiswara

    2001-01-01

    Nuclear Energy Control Board (BAPETEN) as a nuclear regulatory authority in Indonesia has published the exemption regulation that establishes the value of activity, activity concentration, and dose rate for practices that their operations do not require a licence. From an assessment it was found that the value of activity concentration and dose rate have been exceeded by technologically enhanced naturally occurring radioactive materials (TENORM) present in the raw material and product/waste of some mining and mineral industries known so far as non-nuclear industry. The result has the impact that those industries should be categorized as nuclear industry, with the implication that they need to have licence from regulatory authority, and their activities need to be inspected regularly from the radiation safety point of view by the authority. (author)

  13. Industrial environmental monitoring in non nuclear industry which potential to generate TENORM

    International Nuclear Information System (INIS)

    Veronica Tuka

    2011-01-01

    Constitution of the Republic of Indonesia Year 1945 states that the environment is good and healthy life is a human rights and constitutional rights of every citizen of Indonesia. In Indonesia has many industrial and mining activities that produce Norm (Naturally occurring Radioactive Materials) and TENORM (technologically Enhanced Naturally occurring Radioactive Materials). TENORM is a natural radioactive material which due to human activity or process technology increases the potential exposure when compared to the initial state and the potential radiological impact either external or internal radiation exposure. BAPETEN must ensure that the activities undertaken by non-nuclear industry, especially in the handling of radioactive waste at Norm and TENORM which can lead to chronic exposure, carried out securely and safely, both for workers, public and the environment. (author)

  14. Challenges in Strengthening Regulatory Infrastructure in a Non-Nuclear Country

    International Nuclear Information System (INIS)

    Bosnjak, J.

    2016-01-01

    The State Regulatory Agency for Radiation and Nuclear Safety (SRARNS) is established as the effectively independent regulatory body for radiation and nuclear safety based on the Law on Radiation and Nuclear Safety in Bosnia and Herzegovina promulgated in November 2007. After its complete reorganization in the last few years, the regulatory system is compatible with relevant IAEA Safety Standards and Guides for safety and security of radioactive sources. The paper gives an overview of the new regulatory framework in Bosnia and Herzegovina, with special focus on challenges faced by Bosnia and Herzegovina, which are actually typical challenges for regulator in small non-nuclear country in strengthening regulatory infrastructure in regulating radiation sources and radioactive waste. (author)

  15. Environmental characterization and radiological impacts of non-nuclear industries on the red sea coast

    International Nuclear Information System (INIS)

    Mamoney, M. H. El; Khater, Ashraf E. M.

    2002-01-01

    The Red Sea is a deep semi-enclosed and narrow basin connected to the Indian Ocean by a narrow sill in the south and to the Suez Canal in the north. Oil industries in the Gulf of Suez, phosphate ore mining activities in Safaja- Quseir region and intensified navigation activities are non-nuclear land base pollution sources that could have a serious radiological impacts on the marine environment and the coastal ecosystems of the Red Sea. It is a need and an essential to draw up the radiological base-line data, which is not exist yet and to investigate the radio-ecological impact of non- nuclear industries to protect the coastal environment of the Red Sea. Natural and man- made radionuclides have been measured in shore sediment samples collected from the Egyptian coast of the Red Sea. The specific activities of 226 Ra ( 238 U)series, 232 Th series, 40 K, 137 Cs and 210 Pb (Bq/kg dry weight) were measured using gamma ray spectrometry based on hyper pure germanium detectors. The specific activities of 210 Po ( 210 Pb) and uranium isotopes ( 238 U, 235 U and 234 U), (Bq/kg dry weight) were measured using alpha spectrometry based on surface barrier (PIPS) detectors after radiochemical separation. The absorbed radiation dose rates in air (nGy/h) due to natural radionuclides in shore sediment and radium equivalent activity (Bq/kg) were calculated. The specific activity ratios of 228 Ra/ 226 Ra, 210 Pb/ 226 Ra, 226 Ra/ 238 U and 234 U/ 238 U were calculated for evaluation of geo-chemical behaviour of these radionuclides. These results were represented and discussed. The results gave an indication of the possible radiological impacts of oil industries in the northern region and phosphate mining activities in the Safaja-Quseir region

  16. a Universal De-Noising Algorithm for Ground-Based LIDAR Signal

    Science.gov (United States)

    Ma, Xin; Xiang, Chengzhi; Gong, Wei

    2016-06-01

    Ground-based lidar, working as an effective remote sensing tool, plays an irreplaceable role in the study of atmosphere, since it has the ability to provide the atmospheric vertical profile. However, the appearance of noise in a lidar signal is unavoidable, which leads to difficulties and complexities when searching for more information. Every de-noising method has its own characteristic but with a certain limitation, since the lidar signal will vary with the atmosphere changes. In this paper, a universal de-noising algorithm is proposed to enhance the SNR of a ground-based lidar signal, which is based on signal segmentation and reconstruction. The signal segmentation serving as the keystone of the algorithm, segments the lidar signal into three different parts, which are processed by different de-noising method according to their own characteristics. The signal reconstruction is a relatively simple procedure that is to splice the signal sections end to end. Finally, a series of simulation signal tests and real dual field-of-view lidar signal shows the feasibility of the universal de-noising algorithm.

  17. Ground-based observation of emission lines from the corona of a red-dwarf star.

    Science.gov (United States)

    Schmitt, J H; Wichmann, R

    2001-08-02

    All 'solar-like' stars are surrounded by coronae, which contain magnetically confined plasma at temperatures above 106 K. (Until now, only the Sun's corona could be observed in the optical-as a shimmering envelope during a total solar eclipse.) As the underlying stellar 'surfaces'-the photospheres-are much cooler, some non-radiative process must be responsible for heating the coronae. The heating mechanism is generally thought to be magnetic in origin, but is not yet understood even for the case of the Sun. Ultraviolet emission lines first led to the discovery of the enormous temperature of the Sun's corona, but thermal emission from the coronae of other stars has hitherto been detectable only from space, at X-ray wavelengths. Here we report the detection of emission from highly ionized iron (Fe XIII at 3,388.1 A) in the corona of the red-dwarf star CN Leonis, using a ground-based telescope. The X-ray flux inferred from our data is consistent with previously measured X-ray fluxes, and the non-thermal line width of 18.4 km s-1 indicates great similarities between solar and stellar coronal heating mechanisms. The accessibility and spectral resolution (45,000) of the ground-based instrument are much better than those of X-ray satellites, so a new window to the study of stellar coronae has been opened.

  18. Proceedings of the 30th Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Wetovsky, Marv A [Los Alamos National Laboratory; Aguilar-chang, Julio [Los Alamos National Laboratory; Arrowsmith, Marie [Los Alamos National Laboratory; Arrowsmith, Stephen [Los Alamos National Laboratory; Baker, Diane [Los Alamos National Laboratory; Begnaud, Michael [Los Alamos National Laboratory; Harste, Hans [Los Alamos National Laboratory; Maceira, Monica [Los Alamos National Laboratory; Patton, Howard [Los Alamos National Laboratory; Phillips, Scott [Los Alamos National Laboratory; Randall, George [Los Alamos National Laboratory; Revelle, Douglas [Los Alamos National Laboratory; Rowe, Charlotte [Los Alamos National Laboratory; Stead, Richard [Los Alamos National Laboratory; Steck, Lee [Los Alamos National Laboratory; Whitaker, Rod [Los Alamos National Laboratory; Yang, Xiaoning [Los Alamos National Laboratory

    2008-09-23

    These proceedings contain papers prepared for the 30th Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies, held 23-25 September, 2008 in Portsmouth, Virginia. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Air Force Technical Applications Center (AFTAC), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO), and other invited sponsors. The scientific objectives of the research are to improve the United States’ capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  19. Proceedings of the 27th Seismic Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Wetovsky, Marvin A. [Editor; Benson, Jody [Editor; Patterson, Eileen F. [Editor

    2005-09-20

    These proceedings contain papers prepared for the 27th Seismic Research Review: Ground-Based Nuclear Explosion Monitoring Technologies, held 20-22 September, 2005 in Rancho Mirage, California. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Air Force Technical Applications Center (AFTAC), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  20. Preparing for TESS: Precision Ground-based Light-curves of Newly Discovered Transiting Exoplanets

    Science.gov (United States)

    Li, Yiting; Stefansson, Gudmundur; Mahadevan, Suvrath; Monson, Andy; Hebb, Leslie; Wisniewski, John; Huehnerhoff, Joseph

    2018-01-01

    NASA’s Transiting Exoplanet Survey Satellite (TESS), to be launched in early 2018, is expected to catalog a myriad of transiting exoplanet candidates ranging from Earth-sized to gas giants, orbiting a diverse range of stellar types in the solar neighborhood. In particular, TESS will find small planets orbiting the closest and brightest stars, and will enable detailed atmospheric characterizations of planets with current and future telescopes. In the TESS era, ground-based follow-up resources will play a critical role in validating and confirming the planetary nature of the candidates TESS will discover. Along with confirming the planetary nature of exoplanet transits, high precision ground-based transit observations allow us to put further constraints on exoplanet orbital parameters and transit timing variations. In this talk, we present new observations of transiting exoplanets recently discovered by the K2 mission, using the optical diffuser on the 3.5m ARC Telescope at Apache Point Observatory. These include observations of the mini-Neptunes K2-28b and K2-104b orbiting early-to-mid M-dwarfs. In addition, other recent transit observations performed using the robotic 30cm telescope at Las Campanas Observatory in Chile will be presented.

  1. A hardware-in-the-loop simulation program for ground-based radar

    Science.gov (United States)

    Lam, Eric P.; Black, Dennis W.; Ebisu, Jason S.; Magallon, Julianna

    2011-06-01

    A radar system created using an embedded computer system needs testing. The way to test an embedded computer system is different from the debugging approaches used on desktop computers. One way to test a radar system is to feed it artificial inputs and analyze the outputs of the radar. More often, not all of the building blocks of the radar system are available to test. This will require the engineer to test parts of the radar system using a "black box" approach. A common way to test software code on a desktop simulation is to use breakpoints so that is pauses after each cycle through its calculations. The outputs are compared against the values that are expected. This requires the engineer to use valid test scenarios. We will present a hardware-in-the-loop simulator that allows the embedded system to think it is operating with real-world inputs and outputs. From the embedded system's point of view, it is operating in real-time. The hardware in the loop simulation is based on our Desktop PC Simulation (PCS) testbed. In the past, PCS was used for ground-based radars. This embedded simulation, called Embedded PCS, allows a rapid simulated evaluation of ground-based radar performance in a laboratory environment.

  2. Education and Public Outreach for MSFC's Ground-Based Observations in Support of the HESSI Mission

    Science.gov (United States)

    Adams, Mitzi L.; Hagyard, Mona J.; Newton, Elizabeth K.

    1999-01-01

    A primary focus of NASA is the advancement of science and the communication of these advances to a number of audiences, both within the science research community and outside it. The upcoming High Energy Solar Spectroscopic Imager (HESSI) mission and the MSFC ground-based observing program, provide an excellent opportunity to communicate our knowledge of the Sun, its cycle of activity, the role of magnetic fields in that activity, and its effect on our planet. In addition to ground-based support of the HESSI mission, MSFC's Solar Observatory, located in North Alabama, will involve students and the local education community in its day-to-day operations, an experience which is more immediate, personal, and challenging than their everyday educational experience. Further, by taking advantage of the Internet, our program can reach beyond the immediate community. By joining with Fernbank Science Center in Atlanta, Georgia, we will leverage their almost 30 years'experience in science program delivery in diverse situations to a distance learning opportunity which can encompass the entire Southeast and beyond. This poster will outline our education and public outreach plans in support of the HESSI mission in which we will target middle and high school students and their teachers.

  3. Proceedings of the 29th Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Wetovsky, Marvin A. [Editor; Benson, Jody [Editor; Patterson, Eileen F. [Editor

    2007-09-25

    These proceedings contain papers prepared for the 29th Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies, held 25-27 September, 2007 in Denver, Colorado. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Air Force Technical Applications Center (AFTAC), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO), and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  4. Proceedings of the 2011 Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Wetovsky, Marvin A. [Editor; Patterson, Eileen F. [Editor; Sandoval, Marisa N. [Editor

    2011-09-13

    These proceedings contain papers prepared for the Monitoring Research Review 2011: Ground-Based Nuclear Explosion Monitoring Technologies, held 13-15 September, 2011 in Tucson, Arizona. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Defense Threat Reduction Agency (DTRA), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO), National Science Foundation (NSF), and other invited sponsors. The scientific objectives of the research are to improve the United States' capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  5. Ground-based VHE γ ray astronomy with air Cherenkov imaging telescopes

    International Nuclear Information System (INIS)

    Mirzoyan, R.

    2000-01-01

    The history of astronomy has been one of the scientific discovery following immediately the introduction of new technology. In this report, we will review shortly the basic development of the atmospheric air Cherenkov light detection technique, particularly the imaging telescope technique, which in the last years led to the firm establishment of a new branch in experimental astronomy, namely ground-based very high-energy (VHE) γ ray astronomy. Milestones in the technology and in the analysis of imaging technique will be discussed. The design of the 17 m diameter MAGIC Telescope, being currently under construction, is based on the development of new technologies for all its major parts and sets new standards in the performance of the ground-based γ detectors. MAGIC is one of the next major steps in the development of the technique being the first instrument that will allow one to carry out measurements also in the not yet investigated energy gap i.e. between 10 and 300 GeV

  6. Retrieval of tropospheric HCHO in El Salvador using ground based DOAS

    Science.gov (United States)

    Abarca, W.; Gamez, K.; Rudamas, C.

    2017-12-01

    Formaldehyde (HCHO) is the most abundant carbonyl in the atmosphere, being an intermediate product in the oxidation of most volatile organic compounds (VOCs). HCHO is carcinogenic, and highly water soluble [1]. HCHO can originate from biomass burning and fossil fuel combustion and has been observed from satellite and ground-based sensors by using the Differential Optical Absorption Spectroscopy (DOAS) technique [2].DOAS products can be used for air quality monitoring, validation of chemical transport models, validation of satellite tropospheric column density retrievals, among others [3]. In this study, we report on column density levels of HCHO measured by ground based Multi-Axis -DOAS in different locations of El Salvador in March, 2015. We have not observed large differences of the HCHO column density values at different viewing directions. This result points out a reasonably polluted and hazy atmosphere in the measuring sites, as reported by other authors [4]. Average values ranging from 1016 to 1017 molecules / cm2 has been obtained. The contribution of vehicular traffic and biomass burning to the column density levels in these sites of El Salvador will be discussed. [1] A. R. Garcia et al., Atmos. Chem. Phys. 6, 4545 (2006) [2] E. Peters et al., Atmos. Chem. Phys. 12, 11179 (2012) [3] T. Vlemmix, et al. Atmos. Meas. Tech., 8, 941-963, 2015 [4] A. Heckel et al., Atmos. Chem. Phys. 5, (2005)

  7. Validation of ozone monitoring instrument ultraviolet index against ground-based UV index in Kampala, Uganda.

    Science.gov (United States)

    Muyimbwa, Dennis; Dahlback, Arne; Ssenyonga, Taddeo; Chen, Yi-Chun; Stamnes, Jakob J; Frette, Øyvind; Hamre, Børge

    2015-10-01

    The Ozone Monitoring Instrument (OMI) overpass solar ultraviolet (UV) indices have been validated against the ground-based UV indices derived from Norwegian Institute for Air Research UV measurements in Kampala (0.31° N, 32.58° E, 1200 m), Uganda for the period between 2005 and 2014. An excessive use of old cars, which would imply a high loading of absorbing aerosols, could cause the OMI retrieval algorithm to overestimate the surface UV irradiances. The UV index values were found to follow a seasonal pattern with maximum values in March and October. Under all-sky conditions, the OMI retrieval algorithm was found to overestimate the UV index values with a mean bias of about 28%. When only days with radiation modification factor greater than or equal to 65%, 70%, 75%, and 80% were considered, the mean bias between ground-based and OMI overpass UV index values was reduced to 8%, 5%, 3%, and 1%, respectively. The overestimation of the UV index by the OMI retrieval algorithm was found to be mainly due to clouds and aerosols.

  8. Proceedings of the 2011 Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

    International Nuclear Information System (INIS)

    Wetovsky, Marvin A.; Patterson, Eileen F.; Sandoval, Marisa N.

    2011-01-01

    These proceedings contain papers prepared for the Monitoring Research Review 2011: Ground-Based Nuclear Explosion Monitoring Technologies, held 13-15 September, 2011 in Tucson, Arizona. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Defense Threat Reduction Agency (DTRA), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO), National Science Foundation (NSF), and other invited sponsors. The scientific objectives of the research are to improve the United States' capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  9. The Polarization-Sensitive Bolometers for SPICA and their Potential Use for Ground-Based Application

    Science.gov (United States)

    Reveret, Vincent

    2018-01-01

    CEA is leading the development of Safari-POL, an imaging-polarimeter aboard the SPICA space observatory (ESA M5). SPICA will be able to reach unprecedented sensitivities thanks to its cooled telescope and its ultra-sensitive detectors. The detector assembly of Safari-POL holds three arrays that are cooled down to 50 mK and correspond to three spectral bands : 100, 200 and 350 microns. The detectors (silicon bolometers), benefit from the Herschel/PACS legacy and are also a big step forward in term of sensitivity (improved by two orders of magnitude compared to PACS bolometers) and for polarimetry capabilities. Indeed, each pixel is intrinsically sensitive to two polarization components (Horizontal and Vertical). We will present the Safari-POL concept, the first results of measurements made on the detectors, and future plans for possible ground-based instruments using this technology. We will also present the example of the ArTéMiS camera, installed at APEX, that was developped as a ground-based conterpart of the PACS photometer.

  10. Prospects for Ground-Based Detection and Follow-up of TESS-Discovered Exoplanets

    Science.gov (United States)

    Varakian, Matthew; Deming, Drake

    2018-01-01

    The Transiting Exoplanet Survey Satellite (TESS) will monitor over 200,000 main sequence dwarf stars for exoplanetary transits, with the goal of discovering small planets orbiting stars that are bright enough for follow-up observations. We here evaluate the prospects for ground-based transit detection and follow-up of the TESS-discovered planets. We focus particularly on the TESS planets that only transit once during each 27.4 day TESS observing window per region, and we calculate to what extent ground-based recovery of additional transits will be possible. Using simulated exoplanet systems from Sullivan et al. and assuming the use of a 60-cm telescope at a high quality observing site, we project the S/N ratios for transits of such planets. We use Phoenix stellar models for stars with surface temperatures from 2500K to 12000K, and we account for limb darkening, red atmospheric noise, and missed transits due to the day-night cycle and poor weather.

  11. Nighttime Aerosol Optical Depth Measurements Using a Ground-based Lunar Photometer

    Science.gov (United States)

    Berkoff, Tim; Omar, Ali; Haggard, Charles; Pippin, Margaret; Tasaddaq, Aasam; Stone, Tom; Rodriguez, Jon; Slutsker, Ilya; Eck, Tom; Holben, Brent; hide

    2015-01-01

    In recent years it was proposed to combine AERONET network photometer capabilities with a high precision lunar model used for satellite calibration to retrieve columnar nighttime AODs. The USGS lunar model can continuously provide pre-atmosphere high precision lunar irradiance determinations for multiple wavelengths at ground sensor locations. When combined with measured irradiances from a ground-based AERONET photometer, atmospheric column transmissions can determined yielding nighttime column aerosol AOD and Angstrom coefficients. Additional demonstrations have utilized this approach to further develop calibration methods and to obtain data in polar regions where extended periods of darkness occur. This new capability enables more complete studies of the diurnal behavior of aerosols, and feedback for models and satellite retrievals for the nighttime behavior of aerosols. It is anticipated that the nighttime capability of these sensors will be useful for comparisons with satellite lidars such as CALIOP and CATS in additional to ground-based lidars in MPLNET at night, when the signal-to-noise ratio is higher than daytime and more precise AOD comparisons can be made.

  12. Automatic vetting of planet candidates from ground based surveys: Machine learning with NGTS

    Science.gov (United States)

    Armstrong, David J.; Günther, Maximilian N.; McCormac, James; Smith, Alexis M. S.; Bayliss, Daniel; Bouchy, François; Burleigh, Matthew R.; Casewell, Sarah; Eigmüller, Philipp; Gillen, Edward; Goad, Michael R.; Hodgkin, Simon T.; Jenkins, James S.; Louden, Tom; Metrailler, Lionel; Pollacco, Don; Poppenhaeger, Katja; Queloz, Didier; Raynard, Liam; Rauer, Heike; Udry, Stéphane; Walker, Simon R.; Watson, Christopher A.; West, Richard G.; Wheatley, Peter J.

    2018-05-01

    State of the art exoplanet transit surveys are producing ever increasing quantities of data. To make the best use of this resource, in detecting interesting planetary systems or in determining accurate planetary population statistics, requires new automated methods. Here we describe a machine learning algorithm that forms an integral part of the pipeline for the NGTS transit survey, demonstrating the efficacy of machine learning in selecting planetary candidates from multi-night ground based survey data. Our method uses a combination of random forests and self-organising-maps to rank planetary candidates, achieving an AUC score of 97.6% in ranking 12368 injected planets against 27496 false positives in the NGTS data. We build on past examples by using injected transit signals to form a training set, a necessary development for applying similar methods to upcoming surveys. We also make the autovet code used to implement the algorithm publicly accessible. autovet is designed to perform machine learned vetting of planetary candidates, and can utilise a variety of methods. The apparent robustness of machine learning techniques, whether on space-based or the qualitatively different ground-based data, highlights their importance to future surveys such as TESS and PLATO and the need to better understand their advantages and pitfalls in an exoplanetary context.

  13. Predicting Electron Population Characteristics in 2-D Using Multispectral Ground-Based Imaging

    Science.gov (United States)

    Grubbs, Guy; Michell, Robert; Samara, Marilia; Hampton, Donald; Jahn, Jorg-Micha

    2018-01-01

    Ground-based imaging and in situ sounding rocket data are compared to electron transport modeling for an active inverted-V type auroral event. The Ground-to-Rocket Electrodynamics-Electrons Correlative Experiment (GREECE) mission successfully launched from Poker Flat, Alaska, on 3 March 2014 at 11:09:50 UT and reached an apogee of approximately 335 km over the aurora. Multiple ground-based electron-multiplying charge-coupled device (EMCCD) imagers were positioned at Venetie, Alaska, and aimed toward magnetic zenith. The imagers observed the intensity of different auroral emission lines (427.8, 557.7, and 844.6 nm) at the magnetic foot point of the rocket payload. Emission line intensity data are correlated with electron characteristics measured by the GREECE onboard electron spectrometer. A modified version of the GLobal airglOW (GLOW) model is used to estimate precipitating electron characteristics based on optical emissions. GLOW predicted the electron population characteristics with 20% error given the observed spectral intensities within 10° of magnetic zenith. Predictions are within 30% of the actual values within 20° of magnetic zenith for inverted-V-type aurora. Therefore, it is argued that this technique can be used, at least in certain types of aurora, such as the inverted-V type presented here, to derive 2-D maps of electron characteristics. These can then be used to further derive 2-D maps of ionospheric parameters as a function of time, based solely on multispectral optical imaging data.

  14. Proceedings of the 27th Seismic Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

    International Nuclear Information System (INIS)

    Wetovsky, Marvin A.; Benson, Jody; Patterson, Eileen F.

    2005-01-01

    These proceedings contain papers prepared for the 27th Seismic Research Review: Ground-Based Nuclear Explosion Monitoring Technologies, held 20-22 September, 2005 in Rancho Mirage, California. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Air Force Technical Applications Center (AFTAC), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  15. Development of a Ground-Based Atmospheric Monitoring Network for the Global Mercury Observation System (GMOS

    Directory of Open Access Journals (Sweden)

    Sprovieri F.

    2013-04-01

    Full Text Available Consistent, high-quality measurements of atmospheric mercury (Hg are necessary in order to better understand Hg emissions, transport, and deposition on a global scale. Although the number of atmospheric Hg monitoring stations has increased in recent years, the available measurement database is limited and there are many regions of the world where measurements have not been extensively performed. Long-term atmospheric Hg monitoring and additional ground-based monitoring sites are needed in order to generate datasets that will offer new insight and information about the global scale trends of atmospheric Hg emissions and deposition. In the framework of the Global Mercury Observation System (GMOS project, a coordinated global observational network for atmospheric Hg is being established. The overall research strategy of GMOS is to develop a state-of-the-art observation system able to provide information on the concentration of Hg species in ambient air and precipitation on the global scale. This network is being developed by integrating previously established ground-based atmospheric Hg monitoring stations with newly established GMOS sites that are located both at high altitude and sea level locations, as well as in climatically diverse regions. Through the collection of consistent, high-quality atmospheric Hg measurement data, we seek to create a comprehensive assessment of atmospheric Hg concentrations and their dependence on meteorology, long-range atmospheric transport and atmospheric emissions.

  16. Improving Agricultural Water Resources Management Using Ground-based Infrared Thermometry

    Science.gov (United States)

    Taghvaeian, S.

    2014-12-01

    Irrigated agriculture is the largest user of freshwater resources in arid/semi-arid parts of the world. Meeting rapidly growing demands in food, feed, fiber, and fuel while minimizing environmental pollution under a changing climate requires significant improvements in agricultural water management and irrigation scheduling. Although recent advances in remote sensing techniques and hydrological modeling has provided valuable information on agricultural water resources and their management, real improvements will only occur if farmers, the decision makers on the ground, are provided with simple, affordable, and practical tools to schedule irrigation events. This presentation reviews efforts in developing methods based on ground-based infrared thermometry and thermography for day-to-day management of irrigation systems. The results of research studies conducted in Colorado and Oklahoma show that ground-based remote sensing methods can be used effectively in quantifying water stress and consequently triggering irrigation events. Crop water use estimates based on stress indices have also showed to be in good agreement with estimates based on other methods (e.g. surface energy balance, root zone soil water balance, etc.). Major challenges toward the adoption of this approach by agricultural producers include the reduced accuracy under cloudy and humid conditions and its inability to forecast irrigation date, which is a critical knowledge since many irrigators need to decide about irrigations a few days in advance.

  17. Proceedings of the 2010 Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Wetovsky, Marvin A [Editor; Patterson, Eileen F [Editor

    2010-09-21

    These proceedings contain papers prepared for the Monitoring Research Review 2010: Ground-Based Nuclear Explosion Monitoring Technologies, held 21-23 September, 2010 in Orlando, Florida,. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, National Science Foundation (NSF), Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO), and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  18. Recent successes and emerging challenges for coordinated satellite/ground-based magnetospheric exploration and modeling.

    Science.gov (United States)

    Angelopoulos, Vassilis

    With the availability of a distributed constellation of spacecraft (THEMIS, Geotail, Cluster) and increased capability ground based arrays (SuperDARN, THEMIS/GBOs), it is now pos-sible to infer simply from timing significant information regarding mapping of magnetospheric phenomena. Optical, magnetometer and radar data can pinpoint the location and nature of onset signatures. On the other hand, magnetic field modeling constrained by physical bound-aries (such as the isotropy boundary) the measured magnetic field and total pressure values at a distibuted network of satellites has proven to do a much better job at correlating ionospheric precipitation and diffuse auroral boundaries to magnetospheric phenomena, such as the inward boundary of the dipolarization fronts. It is now possible to routinely compare in-situ measured phase space densities of ion and electron distributions during ionosphere -magnetosphere con-junctions, in the absense of potential drops. It is also possible to not only infer equivalent current systems from the ground, but use reconstruction of the ionospheric current system from space to determine the full electrodynamics evolution of the ionosphere and compare with radars. Assimilation of this emerging ground based and global magnetospheric panoply into a self consistent magnetospheric model will likely be one of the most fruitful endeavors in magnetospheric exploration during the next few years.

  19. Development and calibration of a ground-based active collector for cloud- and fogwater

    Energy Technology Data Exchange (ETDEWEB)

    Kins, L.; Junkermann, W.; Meixner, F.X.; Muller, K.P.; Ehhalt, D.H.

    1986-04-01

    In spring 1985, field experiments were started to study the scavenging processes of atmospheric trace substances. Besides the chemical analysis of precipitation sample, these studies required simultaneous collection of cloud water for chemical analysis. In particular, a ground-based cloud water collector was needed, suitable for use on the top of a TV-tower. Existing designs of ground-based cloud or fogwater samplers be divided into two general classes: a) passive collectors, which utilize the ambient wind to impact the droplets on the collection surface; b) active collectors, which accelerate the droplets to a certain velocity as they approach the collection surface. Teflon-strings are extended between two disks which are 1m apart. The disadvantage of this collector, for these experiments, was that the collector strings are always exposed to the ambient air, so that contamination by aerosol impact during dry periods can not be excluded. Furthermore, because of the length of the strings, impacted droplets need a certain time to drain off, during which they remain exposed to the ambient air stream and continue to scavenge trace gases.

  20. The Monitoring Case of Ground-Based Synthetic Aperture Radar with Frequency Modulated Continuous Wave System

    Science.gov (United States)

    Zhang, H. Y.; Zhai, Q. P.; Chen, L.; Liu, Y. J.; Zhou, K. Q.; Wang, Y. S.; Dou, Y. D.

    2017-09-01

    The features of the landslide geological disaster are wide distribution, variety, high frequency, high intensity, destructive and so on. It has become a natural disaster with harmful and wide range of influence. The technology of ground-based synthetic aperture radar is a novel deformation monitoring technology developed in recent years. The features of the technology are large monitoring area, high accuracy, long distance without contact and so on. In this paper, fast ground-based synthetic aperture radar (Fast-GBSAR) based on frequency modulated continuous wave (FMCW) system is used to collect the data of Ma Liuzui landslide in Chongqing. The device can reduce the atmospheric errors caused by rapidly changing environment. The landslide deformation can be monitored in severe weather conditions (for example, fog) by Fast-GBSAR with acquisition speed up to 5 seconds per time. The data of Ma Liuzui landslide in Chongqing are analyzed in this paper. The result verifies that the device can monitor landslide deformation under severe weather conditions.

  1. Potential use of ground-based sensor technologies for weed detection.

    Science.gov (United States)

    Peteinatos, Gerassimos G; Weis, Martin; Andújar, Dionisio; Rueda Ayala, Victor; Gerhards, Roland

    2014-02-01

    Site-specific weed management is the part of precision agriculture (PA) that tries to effectively control weed infestations with the least economical and environmental burdens. This can be achieved with the aid of ground-based or near-range sensors in combination with decision rules and precise application technologies. Near-range sensor technologies, developed for mounting on a vehicle, have been emerging for PA applications during the last three decades. These technologies focus on identifying plants and measuring their physiological status with the aid of their spectral and morphological characteristics. Cameras, spectrometers, fluorometers and distance sensors are the most prominent sensors for PA applications. The objective of this article is to describe-ground based sensors that have the potential to be used for weed detection and measurement of weed infestation level. An overview of current sensor systems is presented, describing their concepts, results that have been achieved, already utilized commercial systems and problems that persist. A perspective for the development of these sensors is given. © 2013 Society of Chemical Industry.

  2. "Slow-scanning" in Ground-based Mid-infrared Observations

    Science.gov (United States)

    Ohsawa, Ryou; Sako, Shigeyuki; Miyata, Takashi; Kamizuka, Takafumi; Okada, Kazushi; Mori, Kiyoshi; Uchiyama, Masahito S.; Yamaguchi, Junpei; Fujiyoshi, Takuya; Morii, Mikio; Ikeda, Shiro

    2018-04-01

    Chopping observations with a tip-tilt secondary mirror have conventionally been used in ground-based mid-infrared observations. However, it is not practical for next generation large telescopes to have a large tip-tilt mirror that moves at a frequency larger than a few hertz. We propose an alternative observing method, a "slow-scanning" observation. Images are continuously captured as movie data, while the field of view is slowly moved. The signal from an astronomical object is extracted from the movie data by a low-rank and sparse matrix decomposition. The performance of the "slow-scanning" observation was tested in an experimental observation with Subaru/COMICS. The quality of a resultant image in the "slow-scanning" observation was as good as in a conventional chopping observation with COMICS, at least for a bright point-source object. The observational efficiency in the "slow-scanning" observation was better than that in the chopping observation. The results suggest that the "slow-scanning" observation can be a competitive method for the Subaru telescope and be of potential interest to other ground-based facilities to avoid chopping.

  3. Proceedings of the 28th Seismic Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Wetovsky, Marvin A. [Editor; Benson, Jody [Editor; Patterson, Eileen F. [Editor

    2006-09-19

    These proceedings contain papers prepared for the 28th Seismic Research Review: Ground-Based Nuclear Explosion Monitoring Technologies, held 19-21 September, 2006 in Orlando, Florida. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Air Force Technical Applications Center (AFTAC), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO), and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  4. Proceedings of the 2009 Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Wetovsky, Marv A [Los Alamos National Laboratory; Aguilar - Chang, Julio [Los Alamos National Laboratory; Anderson, Dale [Los Alamos National Laboratory; Arrowsmith, Marie [Los Alamos National Laboratory; Arrowsmith, Stephen [Los Alamos National Laboratory; Baker, Diane [Los Alamos National Laboratory; Begnaud, Michael [Los Alamos National Laboratory; Harste, Hans [Los Alamos National Laboratory; Maceira, Monica [Los Alamos National Laboratory; Patton, Howard [Los Alamos National Laboratory; Phillips, Scott [Los Alamos National Laboratory; Randall, George [Los Alamos National Laboratory; Rowe, Charlotte [Los Alamos National Laboratory; Stead, Richard [Los Alamos National Laboratory; Steck, Lee [Los Alamos National Laboratory; Whitaker, Rod [Los Alamos National Laboratory; Yang, Xiaoning ( David ) [Los Alamos National Laboratory

    2009-09-21

    These proceedings contain papers prepared for the Monitoring Research Review 2009: Ground -Based Nuclear Explosion Monitoring Technologies, held 21-23 September, 2009 in Tucson, Arizona,. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, Comprehensive Test Ban Treaty Organization (CTBTO), and other invited sponsors. The scientific objectives of the research are to improve the United States’ capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  5. Proceedings of the 2010 Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

    International Nuclear Information System (INIS)

    Wetovsky, Marvin A.; Patterson, Eileen F.

    2010-01-01

    These proceedings contain papers prepared for the Monitoring Research Review 2010: Ground-Based Nuclear Explosion Monitoring Technologies, held 21-23 September, 2010 in Orlando, Florida,. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, National Science Foundation (NSF), Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO), and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  6. Proceedings of the 28th Seismic Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

    International Nuclear Information System (INIS)

    Wetovsky, Marvin A.; Benson, Jody; Patterson, Eileen F.

    2006-01-01

    These proceedings contain papers prepared for the 28th Seismic Research Review: Ground-Based Nuclear Explosion Monitoring Technologies, held 19-21 September, 2006 in Orlando, Florida. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Air Force Technical Applications Center (AFTAC), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO), and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  7. A New Technique to Observe ENSO Activity via Ground-Based GPS Receivers

    Science.gov (United States)

    Suparta, Wayan; Iskandar, Ahmad; Singh, Mandeep Singh Jit

    In an attempt to study the effects of global climate change in the tropics for improving global climate model, this paper aims to detect the ENSO events, especially El Nino phase by using ground-based GPS receivers. Precipitable water vapor (PWV) obtained from the Global Positioning System (GPS) Meteorology measurements in line with the sea surface temperature anomaly (SSTa) are used to connect their response to El Niño activity. The data gathered from four selected stations over the Southeast Asia, namely PIMO (Philippines), KUAL (Malaysia), NTUS (Singapore) and BAKO (Indonesia) for the year of 2009/2010 were processed. A strong correlation was observed for PIMO station with a correlation coefficient of -0.90, significantly at the 99 % confidence level. In general, the relationship between GPS PWV and SSTa at all stations on a weekly basis showed with a negative correlation. The negative correlation indicates that during the El Niño event, the PWV variation was in decreased trend. Decreased trend of PWV value is caused by a dry season that affected the GPS signals in the ocean-atmospheric coupling. Based on these promising results, we can propose that the ground-based GPS receiver is capable used to monitor ENSO activity and this is a new prospective method that previously unexplored.

  8. Proceedings of the 29th Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

    International Nuclear Information System (INIS)

    Wetovsky, Marvin A.; Benson, Jody; Patterson, Eileen F.

    2007-01-01

    These proceedings contain papers prepared for the 29th Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies, held 25-27 September, 2007 in Denver, Colorado. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Air Force Technical Applications Center (AFTAC), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO), and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  9. Exploring the relationship between monitored ground-based and satellite aerosol measurements over the City of Johannesburg

    CSIR Research Space (South Africa)

    Garland, Rebecca M

    2012-09-01

    Full Text Available This project studied the relationship between aerosol optical depth (AOD) from the Multi-angle Imaging SpectroRadiometer (MISR) instrument on the Terra satellite, and ground-based monitored particulate matter (PM) mass concentrations measured...

  10. Information Technology Management: Select Controls for the Information Security of the Ground-Based Midcourse Defense Communications Network

    National Research Council Canada - National Science Library

    Truex, Kathryn M; Lamar, Karen J; Leighton, George A; Woodruff, Courtney E; Brunetti, Tina N; Russell, Dawn M

    2006-01-01

    ... to the Ground-Based Midcourse Defense Communications Network should read this report to reduce the risk of interruption, misuse, modification, and unauthorized access to information in the system...

  11. Ground-Based Global Navigation Satellite System (GNSS) GPS Broadcast Ephemeris Data (daily files) from NASA CDDIS

    Data.gov (United States)

    National Aeronautics and Space Administration — This dataset consists of ground-based Global Navigation Satellite System (GNSS) GPS Broadcast Ephemeris Data (daily files) from the NASA Crustal Dynamics Data...

  12. Ground-Based Global Navigation Satellite System Mixed Broadcast Ephemeris Data (sub-hourly files) from NASA CDDIS

    Data.gov (United States)

    National Aeronautics and Space Administration — This dataset consists of ground-based Global Navigation Satellite System (GNSS) Mixed Broadcast Ephemeris Data (sub-hourly files) from the NASA Crustal Dynamics Data...

  13. Coordinated Ground-Based Observations and the New Horizons Fly-by of Pluto

    Science.gov (United States)

    Young, Eliot; Young, Leslie; Parker, Joel; Binzel, Richard

    2015-04-01

    The New Horizons (NH) spacecraft is scheduled to make its closest approach to Pluto on July 14, 2015. NH carries seven scientific instruments, including separate UV and Visible-IR spectrographs, a long-focal-length imager, two plasma-sensing instruments and a dust counter. There are three arenas in particular in which ground-based observations should augment the NH instrument suite in synergistic ways: IR spectra at wavelengths longer than 2.5 µm (i.e., longer than the NH Ralph spectrograph), stellar occultation observations near the time of the fly-by, and thermal surface maps and atmospheric CO abundances based on ALMA observations - we discuss the first two of these. IR spectra in the 3 - 5 µm range cover the CH4 absorption band near 3.3 µm. This band can be an important constraint on the state and areal extent of nitrogen frost on Pluto's surface. If this band depth is close to zero (as was observed by Olkin et al. 2007), it limits the area of nitrogen frost, which is bright at that wavelength. Combined with the NH observations of nitrogen frost at 2.15 µm, the ground-based spectra will determine how much nitrogen frost is diluted with methane, which is a basic constraint on the seasonal cycle of sublimation and condensation that takes place on Pluto (and similar objects like Triton and Eris). There is a fortuitous stellar occultation by Pluto on 29-JUN-2015, only two weeks before the NH closest approach. The occulted star will be the brightest ever observed in a Pluto event, about 2 magnitudes brighter than Pluto itself. The track of the event is predicted to cover parts of Australia and New Zealand. Thanks to HST and ground based campaigns to find a TNO target reachable by NH, the position of the shadow path will be known at the +/-100 km level, allowing SOFIA and mobile ground-based observers to reliably cover the central flash region. Ground-based & SOFIA observations in visible and IR wavelengths will characterize the haze opacity and vertical

  14. Matching the results of a theoretical model with failure rates obtained from a population of non-nuclear pressure vessels

    International Nuclear Information System (INIS)

    Harrop, L.P.

    1982-02-01

    Failure rates for non-nuclear pressure vessel populations are often regarded as showing a decrease with time. Empirical evidence can be cited which supports this view. On the other hand theoretical predictions of PWR type reactor pressure vessel failure rates have shown an increasing failure rate with time. It is shown that these two situations are not necessarily incompatible. If adjustments are made to the input data of the theoretical model to treat a non-nuclear pressure vessel population, the model can produce a failure rate which decreases with time. These adjustments are explained and the results obtained are shown. (author)

  15. Atomic oxygen effects on boron nitride and silicon nitride: A comparison of ground based and space flight data

    Science.gov (United States)

    Cross, J. B.; Lan, E. H.; Smith, C. A.; Whatley, W. J.

    1990-01-01

    The effects of atomic oxygen on boron nitride (BN) and silicon nitride (Si3N4) were evaluated in a low Earth orbit (LEO) flight experiment and in a ground based simulation facility. In both the inflight and ground based experiments, these materials were coated on thin (approx. 250A) silver films, and the electrical resistance of the silver was measured in situ to detect any penetration of atomic oxygen through the BN and Si3N4 materials. In the presence of atomic oxygen, silver oxidizes to form silver oxide, which has a much higher electrical resistance than pure silver. Permeation of atomic oxygen through BN, as indicated by an increase in the electrical resistance of the silver underneath, was observed in both the inflight and ground based experiments. In contrast, no permeation of atomic oxygen through Si3N4 was observed in either the inflight or ground based experiments. The ground based results show good qualitative correlation with the LEO flight results, indicating that ground based facilities such as the one at Los Alamos National Lab can reproduce space flight data from LEO.

  16. Study of the relations between cloud properties and atmospheric conditions using ground-based digital images

    Science.gov (United States)

    Bakalova, Kalinka

    The aerosol constituents of the earth atmosphere are of great significance for the radiation budget and global climate of the planet. They are the precursors of clouds that in turn play an essential role in these processes and in the hydrological cycle of the Earth. Understanding the complex aerosol-cloud interactions requires a detailed knowledge of the dynamical processes moving the water vapor through the atmosphere, and of the physical mechanisms involved in the formation and growth of cloud particles. Ground-based observations on regional and short time scale provide valuable detailed information about atmospheric dynamics and cloud properties, and are used as a complementary tool to the global satellite observations. The objective of the present paper is to study the physical properties of clouds as displayed in ground-based visible images, and juxtapose them to the specific surface and atmospheric meteorological conditions. The observations are being carried out over the urban area of the city of Sofia, Bulgaria. The data obtained from visible images of clouds enable a quantitative description of texture and morphological features of clouds such as shape, thickness, motion, etc. These characteristics are related to cloud microphysical properties. The changes of relative humidity and the horizontal visibility are considered to be representative of the variations of the type (natural/manmade) and amount of the atmospheric aerosols near the earth surface, and potentially, the cloud drop number concentration. The atmospheric dynamics is accounted for by means of the values of the atmospheric pressure, temperature, wind velocity, etc., observed at the earth's surface. The advantage of ground-based observations of clouds compared to satellite ones is in the high spatial and temporal resolution of the obtained data about the lowermost cloud layer, which in turn is sensitive to the meteorological regimes that determine cloud formation and evolution. It turns out

  17. Laser Guidestar Satellite for Ground-based Adaptive Optics Imaging of Geosynchronous Satellites and Astronomical Targets

    Science.gov (United States)

    Marlow, W. A.; Cahoy, K.; Males, J.; Carlton, A.; Yoon, H.

    2015-12-01

    Real-time observation and monitoring of geostationary (GEO) satellites with ground-based imaging systems would be an attractive alternative to fielding high cost, long lead, space-based imagers, but ground-based observations are inherently limited by atmospheric turbulence. Adaptive optics (AO) systems are used to help ground telescopes achieve diffraction-limited seeing. AO systems have historically relied on the use of bright natural guide stars or laser guide stars projected on a layer of the upper atmosphere by ground laser systems. There are several challenges with this approach such as the sidereal motion of GEO objects relative to natural guide stars and limitations of ground-based laser guide stars; they cannot be used to correct tip-tilt, they are not point sources, and have finite angular sizes when detected at the receiver. There is a difference between the wavefront error measured using the guide star compared with the target due to cone effect, which also makes it difficult to use a distributed aperture system with a larger baseline to improve resolution. Inspired by previous concepts proposed by A.H. Greenaway, we present using a space-based laser guide starprojected from a satellite orbiting the Earth. We show that a nanosatellite-based guide star system meets the needs for imaging GEO objects using a low power laser even from 36,000 km altitude. Satellite guide star (SGS) systemswould be well above atmospheric turbulence and could provide a small angular size reference source. CubeSatsoffer inexpensive, frequent access to space at a fraction of the cost of traditional systems, and are now being deployed to geostationary orbits and on interplanetary trajectories. The fundamental CubeSat bus unit of 10 cm cubed can be combined in multiple units and offers a common form factor allowing for easy integration as secondary payloads on traditional launches and rapid testing of new technologies on-orbit. We describe a 6U CubeSat SGS measuring 10 cm x 20 cm x

  18. Ground-based acoustic parametric generator impact on the atmosphere and ionosphere in an active experiment

    Directory of Open Access Journals (Sweden)

    Y. G. Rapoport

    2017-01-01

    Full Text Available We develop theoretical basics of active experiments with two beams of acoustic waves, radiated by a ground-based sound generator. These beams are transformed into atmospheric acoustic gravity waves (AGWs, which have parameters that enable them to penetrate to the altitudes of the ionospheric E and F regions where they influence the electron concentration of the ionosphere. Acoustic waves are generated by the ground-based parametric sound generator (PSG at the two close frequencies. The main idea of the experiment is to design the output parameters of the PSG to build a cascade scheme of nonlinear wave frequency downshift transformations to provide the necessary conditions for their vertical propagation and to enable penetration to ionospheric altitudes. The PSG generates sound waves (SWs with frequencies f1 = 600 and f2 = 625 Hz and large amplitudes (100–420 m s−1. Each of these waves is modulated with the frequency of 0.016 Hz. The novelty of the proposed analytical–numerical model is due to simultaneous accounting for nonlinearity, diffraction, losses, and dispersion and inclusion of the two-stage transformation (1 of the initial acoustic waves to the acoustic wave with the difference frequency Δf = f2 − f1 in the altitude ranges 0–0.1 km, in the strongly nonlinear regime, and (2 of the acoustic wave with the difference frequency to atmospheric acoustic gravity waves with the modulational frequency in the altitude ranges 0.1–20 km, which then reach the altitudes of the ionospheric E and F regions, in a practically linear regime. AGWs, nonlinearly transformed from the sound waves, launched by the two-frequency ground-based sound generator can increase the transparency of the ionosphere for the electromagnetic waves in HF (MHz and VLF (kHz ranges. The developed theoretical model can be used for interpreting an active experiment that includes the PSG impact on the atmosphere–ionosphere system

  19. Lightning discrimination by a ground-based nuclear burst detection system

    International Nuclear Information System (INIS)

    Thornbrough, A.D.

    1978-04-01

    Sandia Laboratories is developing for the U.S. Army a Ground-Based Nuclear Burst Detection System to provide pertinent information for its field commanders and higher authorities. The equipment must operate in all kinds of weather and produce very low false alarms under all types of conditions. With these requirements, a study of the effects during thunderstorms, which includes thousands of lightning flashes, was conducted. The results of these studies were that, with suitable discrimination, the system had no false alarms during a period of high thunderstorm activity in the Albuquerque area for the time from September 13 to October 3, 1977. Data and plots are included of those false alarms that were recorded before the final discriminants were implemented to provide an inventory of waveshapes for additional analysis

  20. Lightning discrimination by a ground-based nuclear burst detection system

    Energy Technology Data Exchange (ETDEWEB)

    Thornbrough, A.D.

    1978-04-01

    Sandia Laboratories is developing for the U.S. Army a Ground-Based Nuclear Burst Detection System to provide pertinent information for its field commanders and higher authorities. The equipment must operate in all kinds of weather and produce very low false alarms under all types of conditions. With these requirements, a study of the effects during thunderstorms, which includes thousands of lightning flashes, was conducted. The results of these studies were that, with suitable discrimination, the system had no false alarms during a period of high thunderstorm activity in the Albuquerque area for the time from September 13 to October 3, 1977. Data and plots are included of those false alarms that were recorded before the final discriminants were implemented to provide an inventory of waveshapes for additional analysis.

  1. Using Gaia as an Astrometric Tool for Deep Ground-based Surveys

    Science.gov (United States)

    Casetti-Dinescu, Dana I.; Girard, Terrence M.; Schriefer, Michael

    2018-04-01

    Gaia DR1 positions are used to astrometrically calibrate three epochs' worth of Subaru SuprimeCam images in the fields of globular cluster NGC 2419 and the Sextans dwarf spheroidal galaxy. Distortion-correction ``maps'' are constructed from a combination of offset dithers and reference to Gaia DR1. These are used to derive absolute proper motions in the field of NGC 2419. Notably, we identify the photometrically-detected Monoceros structure in the foreground of NGC 2419 as a kinematically-cold population of stars, distinct from Galactic-field stars. This project demonstrates the feasibility of combining Gaia with deep, ground-based surveys, thus extending high-quality astrometry to magnitudes beyond the limits of Gaia.

  2. Portable laser spectrometer for airborne and ground-based remote sensing of geological CO2 emissions.

    Science.gov (United States)

    Queisser, Manuel; Burton, Mike; Allan, Graham R; Chiarugi, Antonio

    2017-07-15

    A 24 kg, suitcase sized, CW laser remote sensing spectrometer (LARSS) with a ~2 km range has been developed. It has demonstrated its flexibility in measuring both atmospheric CO2 from an airborne platform and terrestrial emission of CO2 from a remote mud volcano, Bledug Kuwu, Indonesia, from a ground-based sight. This system scans the CO2 absorption line with 20 discrete wavelengths, as opposed to the typical two-wavelength online offline instrument. This multi-wavelength approach offers an effective quality control, bias control, and confidence estimate of measured CO2 concentrations via spectral fitting. The simplicity, ruggedness, and flexibility in the design allow for easy transportation and use on different platforms with a quick setup in some of the most challenging climatic conditions. While more refinement is needed, the results represent a stepping stone towards widespread use of active one-sided gas remote sensing in the earth sciences.

  3. Atmospheric effect on the ground-based measurements of broadband surface albedo

    Directory of Open Access Journals (Sweden)

    T. Manninen

    2012-11-01

    Full Text Available Ground-based pyranometer measurements of the (clear-sky broadband surface albedo are affected by the atmospheric conditions (mainly by aerosol particles, water vapour and ozone. A new semi-empirical method for estimating the magnitude of the effect of atmospheric conditions on surface albedo measurements in clear-sky conditions is presented. Global and reflected radiation and/or aerosol optical depth (AOD at two wavelengths are needed to apply the method. Depending on the aerosol optical depth and the solar zenith angle values, the effect can be as large as 20%. For the cases we tested using data from the Cabauw atmospheric test site in the Netherlands, the atmosphere caused typically up to 5% overestimation of surface albedo with respect to corresponding black-sky surface albedo values.

  4. Managing a big ground-based astronomy project: the Thirty Meter Telescope (TMT) project

    Science.gov (United States)

    Sanders, Gary H.

    2008-07-01

    TMT is a big science project and its scale is greater than previous ground-based optical/infrared telescope projects. This paper will describe the ideal "linear" project and how the TMT project departs from that ideal. The paper will describe the needed adaptations to successfully manage real world complexities. The progression from science requirements to a reference design, the development of a product-oriented Work Breakdown Structure (WBS) and an organization that parallels the WBS, the implementation of system engineering, requirements definition and the progression through Conceptual Design to Preliminary Design will be summarized. The development of a detailed cost estimate structured by the WBS, and the methodology of risk analysis to estimate contingency fund requirements will be summarized. Designing the project schedule defines the construction plan and, together with the cost model, provides the basis for executing the project guided by an earned value performance measurement system.

  5. Space situational awareness satellites and ground based radiation counting and imaging detector technology

    International Nuclear Information System (INIS)

    Jansen, Frank; Behrens, Joerg; Pospisil, Stanislav; Kudela, Karel

    2011-01-01

    We review the current status from the scientific and technological point of view of solar energetic particles, solar and galactic cosmic ray measurements as well as high energy UV-, X- and gamma-ray imaging of the Sun. These particles and electromagnetic data are an important tool for space situational awareness (SSA) aspects like space weather storm predictions to avoid failures in space, air and ground based technological systems. Real time data acquisition, position and energy sensitive imaging are demanded by the international space weather forecast services. We present how newly developed, highly miniaturized radiation detectors can find application in space in view of future SSA related satellites as a novel space application due to their counting and imaging capabilities.

  6. Conference on the exploitation, maintenance and resale of ground-based photovoltaic plants

    International Nuclear Information System (INIS)

    Roesner, Sven; Christmann, Ralf; Bozonnat, Cedric; Le Pivert, Xavier; Vaassen, Willi; Dumoulin, Cedric; Kiefer, Klaus; Semmel, Andreas; Doose, Eckhard; Bion, Alain; Sanches, Frederico; Daval, Xavier; Pampouille, Antoine; Goetze, Holger; Stahl, Wolf-Ruediger; Merere, Karine

    2017-11-01

    This document gathers contributions and debate contents of a conference. A first set of contributions addressed the situation and recent developments of ground-based photovoltaic power plants in France and in Germany with presentations of legal frameworks in these both countries. The second set addressed the optimisation of such power plants: meteorological prediction and follow-up at the service of production, risks to which these power plants are exposed during operation, and the issue of right price and good practices for maintenance contracts for these plants. A round table addressed the issue of the balance between optimisation and established practices in a new economic framework. The next set of contributions addressed reasons for and effects of the resale of photovoltaic fleet during their exploitation: actors and financing solutions, value components, point of attention and legal view on re-financing contracts. A round table discussed trends and success factors for the re-financing of photovoltaic projects

  7. Compact binary coalescences in the band of ground-based gravitational-wave detectors

    International Nuclear Information System (INIS)

    Mandel, Ilya; O'Shaughnessy, Richard

    2010-01-01

    As the ground-based gravitational-wave telescopes LIGO, Virgo and GEO 600 approach the era of first detections, we review the current knowledge of the coalescence rates and the mass and spin distributions of merging neutron-star and black-hole binaries. We emphasize the bi-directional connection between gravitational-wave astronomy and conventional astrophysics. Astrophysical input will make possible informed decisions about optimal detector configurations and search techniques. Meanwhile, rate upper limits, detected merger rates and the distribution of masses and spins measured by gravitational-wave searches will constrain astrophysical parameters through comparisons with astrophysical models. Future developments necessary to the success of gravitational-wave astronomy are discussed.

  8. The Holy Grail of Resource Assessment: Low Cost Ground-Based Measurements with Good Accuracy

    Energy Technology Data Exchange (ETDEWEB)

    Marion, Bill; Smith, Benjamin

    2017-06-22

    Using performance data from some of the millions of installed photovoltaic (PV) modules with micro-inverters may afford the opportunity to provide ground-based solar resource data critical for developing PV projects. The method used back-solves for the direct normal irradiance (DNI) and the diffuse horizontal irradiance (DHI) from the micro-inverter ac production data. When the derived values of DNI and DHI were then used to model the performance of other PV systems, the annual mean bias deviations were within +/- 4%, and only 1% greater than when the PV performance was modeled using high quality irradiance measurements. An uncertainty analysis shows the method better suited for modeling PV performance than using satellite-based global horizontal irradiance.

  9. z'-BAND GROUND-BASED DETECTION OF THE SECONDARY ECLIPSE OF WASP-19b

    Energy Technology Data Exchange (ETDEWEB)

    Burton, J. R.; Watson, C. A.; Pollacco, D. [Astrophysics Research Centre, Queen' s University Belfast, Belfast BT7 1NN (United Kingdom); Littlefair, S. P.; Dhillon, V. S. [Department of Physics and Astronomy, University of Sheffield, Sheffield S3 7RH (United Kingdom); Gibson, N. P. [Department of Physics, University of Oxford, Oxford OX1 3RH (United Kingdom); Marsh, T. R., E-mail: jburton04@qub.ac.uk [Department of Physics and Astronomy, University of Warwick, Coventry CV4 7AL (United Kingdom)

    2012-08-01

    We present the ground-based detection of the secondary eclipse of the transiting exoplanet WASP-19b. The observations were made in the Sloan z' band using the ULTRACAM triple-beam CCD camera mounted on the New Technology Telescope. The measurement shows a 0.088% {+-} 0.019% eclipse depth, matching previous predictions based on H- and K-band measurements. We discuss in detail our approach to the removal of errors arising due to systematics in the data set, in addition to fitting a model transit to our data. This fit returns an eclipse center, T{sub 0}, of 2455578.7676 HJD, consistent with a circular orbit. Our measurement of the secondary eclipse depth is also compared to model atmospheres of WASP-19b and is found to be consistent with previous measurements at longer wavelengths for the model atmospheres we investigated.

  10. Coastal wind study based on Sentinel-1 and ground-based scanning lidar

    DEFF Research Database (Denmark)

    Hasager, Charlotte Bay; Badger, Merete; Pena Diaz, Alfredo

    Winds in the coastal zone have importance for near-shore wind farm planning. Recently the Danish Energy Agency gave new options for placing offshore wind farms much closer to the coastlines than previously. The new tender areas are located from 3 to 8 km from the coast. Ground-based scanning lidar...... located on land can partly cover this area out to around 15 km. In order to improve wind farm planning for near-shore coastal areas, the project‘Reducing the Uncertainty of Near-shore Energy estimates from meso- and micro-scale wind models’ (RUNE) is established. The measurement campaign starts October....... The various observation types have advantages and limitations; one advantage of both the Sentinel-1 and the scanning lidar is that they both observe wind fields covering a large area and so can be combined for studying the spatial variability of winds. Sentinel-1 are being processed near-real-time at DTU Wind...

  11. Perturbations of ionosphere-magnetosphere coupling by powerful VLF emissions from ground-based transmitters

    International Nuclear Information System (INIS)

    Belov, A. S.; Markov, G. A.; Ryabov, A. O.; Parrot, M.

    2012-01-01

    The characteristics of the plasma-wave disturbances stimulated in the near-Earth plasma by powerful VLF radiation from ground-based transmitters are investigated. Radio communication VLF transmitters of about 1 MW in power are shown to produce artificial plasma-wave channels (density ducts) in the near-Earth space that originate in the lower ionosphere above the disturbing emission source and extend through the entire ionosphere and magnetosphere of the Earth along the magnetic field lines. Measurements with the onboard equipment of the DEMETER satellite have revealed that under the action of emission from the NWC transmitter, which is one of the most powerful VLF radio transmitters, the generation of quasi-electrostatic (plasma) waves is observed on most of the satellite trajectory along the disturbed magnetic flux tube. This may probably be indicative of stimulated emission of a magnetospheric maser.

  12. Status and plans for future generations of ground-based interferometric gravitational wave antennas

    International Nuclear Information System (INIS)

    Kawamura, Seiji

    2003-01-01

    Several medium- to large-scale ground-based interferometric gravitational-wave antennas have been constructed around the world. Although these antennas of the first generation could detect gravitational waves within a few years, it is necessary to improve the sensitivity of the detectors significantly with advanced technologies to ensure more frequent detection of gravitational waves. Stronger seismic isolation and reduction of thermal noise, especially using cryogenic mirrors, are among the most important technologies that can lead us to the realization of advanced detectors. Some of the advanced technologies are already implemented in some of the existing detectors and others are currently being investigated for the future-generation detectors such as advanced LIGO, LCGT, upgrade of GEO600, AIGO, and EURO. We expect that such advanced detectors will eventually open a new window to the universe and establish a new field, 'gravitational wave astronomy'

  13. Space situational awareness satellites and ground based radiation counting and imaging detector technology

    Energy Technology Data Exchange (ETDEWEB)

    Jansen, Frank, E-mail: frank.jansen@dlr.de [DLR Institute of Space Systems, Robert-Hooke-Str. 7, 28359 Bremen (Germany); Behrens, Joerg [DLR Institute of Space Systems, Robert-Hooke-Str. 7, 28359 Bremen (Germany); Pospisil, Stanislav [Czech Technical University, IEAP, 12800 Prague 2, Horska 3a/22 (Czech Republic); Kudela, Karel [Slovak Academy of Sciences, IEP, 04001 Kosice, Watsonova 47 (Slovakia)

    2011-05-15

    We review the current status from the scientific and technological point of view of solar energetic particles, solar and galactic cosmic ray measurements as well as high energy UV-, X- and gamma-ray imaging of the Sun. These particles and electromagnetic data are an important tool for space situational awareness (SSA) aspects like space weather storm predictions to avoid failures in space, air and ground based technological systems. Real time data acquisition, position and energy sensitive imaging are demanded by the international space weather forecast services. We present how newly developed, highly miniaturized radiation detectors can find application in space in view of future SSA related satellites as a novel space application due to their counting and imaging capabilities.

  14. Quantifying greenhouse gas emissions from coal fires using airborne and ground-based methods

    Science.gov (United States)

    Engle, Mark A.; Radke, Lawrence F.; Heffern, Edward L.; O'Keefe, Jennifer M.K.; Smeltzer, Charles; Hower, James C.; Hower, Judith M.; Prakash, Anupma; Kolker, Allan; Eatwell, Robert J.; ter Schure, Arnout; Queen, Gerald; Aggen, Kerry L.; Stracher, Glenn B.; Henke, Kevin R.; Olea, Ricardo A.; Román-Colón, Yomayara

    2011-01-01

    Coal fires occur in all coal-bearing regions of the world and number, conservatively, in the thousands. These fires emit a variety of compounds including greenhouse gases. However, the magnitude of the contribution of combustion gases from coal fires to the environment is highly uncertain, because adequate data and methods for assessing emissions are lacking. This study demonstrates the ability to estimate CO2 and CH4 emissions for the Welch Ranch coal fire, Powder River Basin, Wyoming, USA, using two independent methods: (a) heat flux calculated from aerial thermal infrared imaging (3.7–4.4 t d−1 of CO2 equivalent emissions) and (b) direct, ground-based measurements (7.3–9.5 t d−1 of CO2 equivalent emissions). Both approaches offer the potential for conducting inventories of coal fires to assess their gas emissions and to evaluate and prioritize fires for mitigation.

  15. Evaluating statistical cloud schemes: What can we gain from ground-based remote sensing?

    Science.gov (United States)

    Grützun, V.; Quaas, J.; Morcrette, C. J.; Ament, F.

    2013-09-01

    Statistical cloud schemes with prognostic probability distribution functions have become more important in atmospheric modeling, especially since they are in principle scale adaptive and capture cloud physics in more detail. While in theory the schemes have a great potential, their accuracy is still questionable. High-resolution three-dimensional observational data of water vapor and cloud water, which could be used for testing them, are missing. We explore the potential of ground-based remote sensing such as lidar, microwave, and radar to evaluate prognostic distribution moments using the "perfect model approach." This means that we employ a high-resolution weather model as virtual reality and retrieve full three-dimensional atmospheric quantities and virtual ground-based observations. We then use statistics from the virtual observation to validate the modeled 3-D statistics. Since the data are entirely consistent, any discrepancy occurring is due to the method. Focusing on total water mixing ratio, we find that the mean ratio can be evaluated decently but that it strongly depends on the meteorological conditions as to whether the variance and skewness are reliable. Using some simple schematic description of different synoptic conditions, we show how statistics obtained from point or line measurements can be poor at representing the full three-dimensional distribution of water in the atmosphere. We argue that a careful analysis of measurement data and detailed knowledge of the meteorological situation is necessary to judge whether we can use the data for an evaluation of higher moments of the humidity distribution used by a statistical cloud scheme.

  16. Enhancing our Understanding of Snowfall Modes with Ground-Based Observations

    Science.gov (United States)

    Pettersen, C.; Kulie, M.; Petersen, W. A.; Bliven, L. F.; Wood, N.

    2016-12-01

    Snowfall can be broadly categorized into deep and shallow events based on the vertical distribution of the precipitating ice. Remotely sensed data refine these precipitation categories and aid in discerning the underlying macro- and microphysical mechanisms. The unique patterns in the remotely sensed instruments observations can potentially connect distinct modes of snowfall to specific processes. Though satellites can observe and recognize these patterns in snowfall, these measurements are limited - particularly in cases of shallow and light precipitation, as the snow may be too close to the surface or below the detection limits of the instrumentation. By enhancing satellite measurements with ground-based instrumentation, whether with limited-term field campaigns or long-term strategic sites, we can further our understanding and assumptions about different snowfall modes and how they are measured from spaceborne instruments. Presented are three years of data from a ground-based instrument suite consisting of a MicroRain Radar (MRR; optimized for snow events) and a Precipitation Imaging Package (PIP). These instruments are located at the Marquette, Michigan National Weather Service Weather Forecast Office to: a) use coincident meteorological measurements and observations to enhance our understanding of the thermodynamic drivers and b) showcase these instruments in an operational setting to enhance forecasts of shallow snow events. Three winters of MRR and PIP measurements are partitioned, based on meteorological surface observations, into two-dimensional histograms of reflectivity and particle size distribution data. These statistics improve our interpretation of deep versus shallow precipitation. Additionally, these statistical techniques are applied to similar datasets from Global Precipitation Measurement field campaigns for further insight into cloud and precipitation macro- and microphysical processes.

  17. Ground based mobile isotopic methane measurements in the Front Range, Colorado

    Science.gov (United States)

    Vaughn, B. H.; Rella, C.; Petron, G.; Sherwood, O.; Mielke-Maday, I.; Schwietzke, S.

    2014-12-01

    Increased development of unconventional oil and gas resources in North America has given rise to attempts to monitor and quantify fugitive emissions of methane from the industry. Emission estimates of methane from oil and gas basins can vary significantly from one study to another as well as from EPA or State estimates. New efforts are aimed at reconciling bottom-up, or inventory-based, emission estimates of methane with top-down estimates based on atmospheric measurements from aircraft, towers, mobile ground-based vehicles, and atmospheric models. Attributing airborne measurements of regional methane fluxes to specific sources is informed by ground-based measurements of methane. Stable isotopic measurements (δ13C) of methane help distinguish between emissions from the O&G industry, Confined Animal Feed Operations (CAFO), and landfills, but analytical challenges typically limit meaningful isotopic measurements to individual point sampling. We are developing a toolbox to use δ13CH4 measurements to assess the partitioning of methane emissions for regions with multiple methane sources. The method was applied to the Denver-Julesberg Basin. Here we present data from continuous isotopic measurements obtained over a wide geographic area by using MegaCore, a 1500 ft. tube that is constantly filled with sample air while driving, then subsequently analyzed at slower rates using cavity ring down spectroscopy (CRDS). Pressure, flow and calibration are tightly controlled allowing precise attribution of methane enhancements to their point of collection. Comparisons with point measurements are needed to confirm regional values and further constrain flux estimates and models. This effort was made in conjunction with several major field campaigns in the Colorado Front Range in July-August 2014, including FRAPPÉ (Front Range Air Pollution and Photochemistry Experiment), DISCOVER-AQ, and the Air Water Gas NSF Sustainability Research Network at the University of Colorado.

  18. An evaluation of IASI-NH3 with ground-based Fourier transform infrared spectroscopy measurements

    Directory of Open Access Journals (Sweden)

    E. Dammers

    2016-08-01

    Full Text Available Global distributions of atmospheric ammonia (NH3 measured with satellite instruments such as the Infrared Atmospheric Sounding Interferometer (IASI contain valuable information on NH3 concentrations and variability in regions not yet covered by ground-based instruments. Due to their large spatial coverage and (bi-daily overpasses, the satellite observations have the potential to increase our knowledge of the distribution of NH3 emissions and associated seasonal cycles. However the observations remain poorly validated, with only a handful of available studies often using only surface measurements without any vertical information. In this study, we present the first validation of the IASI-NH3 product using ground-based Fourier transform infrared spectroscopy (FTIR observations. Using a recently developed consistent retrieval strategy, NH3 concentration profiles have been retrieved using observations from nine Network for the Detection of Atmospheric Composition Change (NDACC stations around the world between 2008 and 2015. We demonstrate the importance of strict spatio-temporal collocation criteria for the comparison. Large differences in the regression results are observed for changing intervals of spatial criteria, mostly due to terrain characteristics and the short lifetime of NH3 in the atmosphere. The seasonal variations of both datasets are consistent for most sites. Correlations are found to be high at sites in areas with considerable NH3 levels, whereas correlations are lower at sites with low atmospheric NH3 levels close to the detection limit of the IASI instrument. A combination of the observations from all sites (Nobs = 547 give a mean relative difference of −32.4 ± (56.3 %, a correlation r of 0.8 with a slope of 0.73. These results give an improved estimate of the IASI-NH3 product performance compared to the previous upper-bound estimates (−50 to +100 %.

  19. Mixed-field GCR Simulations for Radiobiological Research using Ground Based Accelerators

    Science.gov (United States)

    Kim, Myung-Hee Y.; Rusek, Adam; Cucinotta, Francis

    Space radiation is comprised of a large number of particle types and energies, which have differential ionization power from high energy protons to high charge and energy (HZE) particles and secondary neutrons produced by galactic cosmic rays (GCR). Ground based accelerators such as the NASA Space Radiation Laboratory (NSRL) at Brookhaven National Laboratory (BNL) are used to simulate space radiation for radiobiology research and dosimetry, electronics parts, and shielding testing using mono-energetic beams for single ion species. As a tool to support research on new risk assessment models, we have developed a stochastic model of heavy ion beams and space radiation effects, the GCR Event-based Risk Model computer code (GERMcode). For radiobiological research on mixed-field space radiation, a new GCR simulator at NSRL is proposed. The NSRL-GCR simulator, which implements the rapid switching mode and the higher energy beam extraction to 1.5 GeV/u, can integrate multiple ions into a single simulation to create GCR Z-spectrum in major energy bins. After considering the GCR environment and energy limitations of NSRL, a GCR reference field is proposed after extensive simulation studies using the GERMcode. The GCR reference field is shown to reproduce the Z and LET spectra of GCR behind shielding within 20 percents accuracy compared to simulated full GCR environments behind shielding. A major challenge for space radiobiology research is to consider chronic GCR exposure of up to 3-years in relation to simulations with cell and animal models of human risks. We discuss possible approaches to map important biological time scales in experimental models using ground-based simulation with extended exposure of up to a few weeks and fractionation approaches at a GCR simulator.

  20. Validation of OMI UV measurements against ground-based measurements at a station in Kampala, Uganda

    Science.gov (United States)

    Muyimbwa, Dennis; Dahlback, Arne; Stamnes, Jakob; Hamre, Børge; Frette, Øyvind; Ssenyonga, Taddeo; Chen, Yi-Chun

    2015-04-01

    We present solar ultraviolet (UV) irradiance data measured with a NILU-UV instrument at a ground site in Kampala (0.31°N, 32.58°E), Uganda for the period 2005-2014. The data were analyzed and compared with UV irradiances inferred from the Ozone Monitoring Instrument (OMI) for the same period. Kampala is located on the shores of lake Victoria, Africa's largest fresh water lake, which may influence the climate and weather conditions of the region. Also, there is an excessive use of worn cars, which may contribute to a high anthropogenic loading of absorbing aerosols. The OMI surface UV algorithm does not account for absorbing aerosols, which may lead to systematic overestimation of surface UV irradiances inferred from OMI satellite data. We retrieved UV index values from OMI UV irradiances and validated them against the ground-based UV index values obtained from NILU-UV measurements. The UV index values were found to follow a seasonal pattern similar to that of the clouds and the rainfall. OMI inferred UV index values were overestimated with a mean bias of about 28% under all-sky conditions, but the mean bias was reduced to about 8% under clear-sky conditions when only days with radiation modification factor (RMF) greater than 65% were considered. However, when days with RMF greater than 70, 75, and 80% were considered, OMI inferred UV index values were found to agree with the ground-based UV index values to within 5, 3, and 1%, respectively. In the validation we identified clouds/aerosols, which were present in 88% of the measurements, as the main cause of OMI inferred overestimation of the UV index.

  1. Introducing the VISAGE project - Visualization for Integrated Satellite, Airborne, and Ground-based data Exploration

    Science.gov (United States)

    Gatlin, P. N.; Conover, H.; Berendes, T.; Maskey, M.; Naeger, A. R.; Wingo, S. M.

    2017-12-01

    A key component of NASA's Earth observation system is its field experiments, for intensive observation of particular weather phenomena, or for ground validation of satellite observations. These experiments collect data from a wide variety of airborne and ground-based instruments, on different spatial and temporal scales, often in unique formats. The field data are often used with high volume satellite observations that have very different spatial and temporal coverage. The challenges inherent in working with such diverse datasets make it difficult for scientists to rapidly collect and analyze the data for physical process studies and validation of satellite algorithms. The newly-funded VISAGE project will address these issues by combining and extending nascent efforts to provide on-line data fusion, exploration, analysis and delivery capabilities. A key building block is the Field Campaign Explorer (FCX), which allows users to examine data collected during field campaigns and simplifies data acquisition for event-based research. VISAGE will extend FCX's capabilities beyond interactive visualization and exploration of coincident datasets, to provide interrogation of data values and basic analyses such as ratios and differences between data fields. The project will also incorporate new, higher level fused and aggregated analysis products from the System for Integrating Multi-platform data to Build the Atmospheric column (SIMBA), which combines satellite and ground-based observations into a common gridded atmospheric column data product; and the Validation Network (VN), which compiles a nationwide database of coincident ground- and satellite-based radar measurements of precipitation for larger scale scientific analysis. The VISAGE proof-of-concept will target "golden cases" from Global Precipitation Measurement Ground Validation campaigns. This presentation will introduce the VISAGE project, initial accomplishments and near term plans.

  2. Ground-based Observations and Atmospheric Modelling of Energetic Electron Precipitation Effects on Antarctic Mesospheric Chemistry

    Science.gov (United States)

    Newnham, D.; Clilverd, M. A.; Horne, R. B.; Rodger, C. J.; Seppälä, A.; Verronen, P. T.; Andersson, M. E.; Marsh, D. R.; Hendrickx, K.; Megner, L. S.; Kovacs, T.; Feng, W.; Plane, J. M. C.

    2016-12-01

    The effect of energetic electron precipitation (EEP) on the seasonal and diurnal abundances of nitric oxide (NO) and ozone in the Antarctic middle atmosphere during March 2013 to July 2014 is investigated. Geomagnetic storm activity during this period, close to solar maximum, was driven primarily by impulsive coronal mass ejections. Near-continuous ground-based atmospheric measurements have been made by a passive millimetre-wave radiometer deployed at Halley station (75°37'S, 26°14'W, L = 4.6), Antarctica. This location is directly under the region of radiation-belt EEP, at the extremity of magnetospheric substorm-driven EEP, and deep within the polar vortex during Austral winter. Superposed epoch analyses of the ground based data, together with NO observations made by the Solar Occultation For Ice Experiment (SOFIE) onboard the Aeronomy of Ice in the Mesosphere (AIM) satellite, show enhanced mesospheric NO following moderate geomagnetic storms (Dst ≤ -50 nT). Measurements by co-located 30 MHz riometers indicate simultaneous increases in ionisation at 75-90 km directly above Halley when Kp index ≥ 4. Direct NO production by EEP in the upper mesosphere, versus downward transport of NO from the lower thermosphere, is evaluated using a new version of the Whole Atmosphere Community Climate Model incorporating the full Sodankylä Ion Neutral Chemistry Model (WACCM SIC). Model ionization rates are derived from the Polar orbiting Operational Environmental Satellites (POES) second generation Space Environment Monitor (SEM 2) Medium Energy Proton and Electron Detector instrument (MEPED). The model data are compared with observations to quantify the impact of EEP on stratospheric and mesospheric odd nitrogen (NOx), odd hydrogen (HOx), and ozone.

  3. A novel technique for extracting clouds base height using ground based imaging

    Directory of Open Access Journals (Sweden)

    E. Hirsch

    2011-01-01

    Full Text Available The height of a cloud in the atmospheric column is a key parameter in its characterization. Several remote sensing techniques (passive and active, either ground-based or on space-borne platforms and in-situ measurements are routinely used in order to estimate top and base heights of clouds. In this article we present a novel method that combines thermal imaging from the ground and sounded wind profile in order to derive the cloud base height. This method is independent of cloud types, making it efficient for both low boundary layer and high clouds. In addition, using thermal imaging ensures extraction of clouds' features during daytime as well as at nighttime. The proposed technique was validated by comparison to active sounding by ceilometers (which is a standard ground based method, to lifted condensation level (LCL calculations, and to MODIS products obtained from space. As all passive remote sensing techniques, the proposed method extracts only the height of the lowest cloud layer, thus upper cloud layers are not detected. Nevertheless, the information derived from this method can be complementary to space-borne cloud top measurements when deep-convective clouds are present. Unlike techniques such as LCL, this method is not limited to boundary layer clouds, and can extract the cloud base height at any level, as long as sufficient thermal contrast exists between the radiative temperatures of the cloud and its surrounding air parcel. Another advantage of the proposed method is its simplicity and modest power needs, making it particularly suitable for field measurements and deployment at remote locations. Our method can be further simplified for use with visible CCD or CMOS camera (although nighttime clouds will not be observed.

  4. Nutritional status assessment in semiclosed environments: ground-based and space flight studies in humans

    Science.gov (United States)

    Smith, S. M.; Davis-Street, J. E.; Rice, B. L.; Nillen, J. L.; Gillman, P. L.; Block, G.

    2001-01-01

    Adequate nutrition is critical during long-term spaceflight, as is the ability to easily monitor dietary intake. A comprehensive nutritional status assessment profile was designed for use before, during and after flight. It included assessment of both dietary intake and biochemical markers of nutritional status. A spaceflight food-frequency questionnaire (FFQ) was developed to evaluate intake of key nutrients during spaceflight. The nutritional status assessment protocol was evaluated during two ground-based closed-chamber studies (60 and 91 d; n = 4/study), and was implemented for two astronauts during 4-mo stays on the Mir space station. Ground-based studies indicated that the FFQ, administered daily or weekly, adequately estimated intake of key nutrients. Chamber subjects maintained prechamber energy intake and body weight. Astronauts tended to eat 40--50% of WHO-predicted energy requirements, and lost >10% of preflight body mass. Serum ferritin levels were lower after the chamber stays, despite adequate iron intake. Red blood cell folate concentrations were increased after the chamber studies. Vitamin D stores were decreased by > 40% on chamber egress and after spaceflight. Mir crew members had decreased levels of most nutritional indices, but these are difficult to interpret given the insufficient energy intake and loss of body mass. Spaceflight food systems can provide adequate intake of macronutrients, although, as expected, micronutrient intake is a concern for any closed or semiclosed food system. These data demonstrate the utility and importance of nutritional status assessment during spaceflight and of the FFQ during extended-duration spaceflight.

  5. How ground-based observations can support satellite greenhouse gas retrievals

    Science.gov (United States)

    Butler, J. H.; Tans, P. P.; Sweeney, C.; Dlugokencky, E. J.

    2012-04-01

    Global society will eventually accelerate efforts to reduce greenhouse gas emissions in a variety of ways. These would likely involve international treaties, national policies, and regional strategies that will affect a number of economic, social, and environmental sectors. Some strategies will work better than others and some will not work at all. Because trillions of dollars will be involved in pursuing greenhouse gas emission reductions - through realignment of energy production, improvement of efficiencies, institution of taxes, implementation of carbon trading markets, and use of offsets - it is imperative that society be given all the tools at its disposal to ensure the ultimate success of these efforts. Providing independent, globally coherent information on the success of these efforts will give considerable strength to treaties, policies, and strategies. Doing this will require greenhouse gas observations greatly expanded from what we have today. Satellite measurements may ultimately be indispensable in achieving global coverage, but the requirements for accuracy and continuity of measurements over time are demanding if the data are to be relevant. Issues such as those associated with sensor drift, aging electronics, and retrieval artifacts present challenges that can be addressed in part by close coordination with ground-based and in situ systems. This presentation identifies the information that ground-based systems provide very well, but it also looks at what would be deficient even in a greatly expanded surface system, where satellites can fill these gaps, and how on-going, ground and in situ measurements can aid in addressing issues associated with accuracy, long-term continuity, and retrieval artifacts.

  6. Ground-based telescope pointing and tracking optimization using a neural controller.

    Science.gov (United States)

    Mancini, D; Brescia, M; Schipani, P

    2003-01-01

    Neural network models (NN) have emerged as important components for applications of adaptive control theories. Their basic generalization capability, based on acquired knowledge, together with execution rapidity and correlation ability between input stimula, are basic attributes to consider NN as an extremely powerful tool for on-line control of complex systems. By a control system point of view, not only accuracy and speed, but also, in some cases, a high level of adaptation capability is required in order to match all working phases of the whole system during its lifetime. This is particularly remarkable for a new generation ground-based telescope control system. Infact, strong changes in terms of system speed and instantaneous position error tolerance are necessary, especially in case of trajectory disturb induced by wind shake. The classical control scheme adopted in such a system is based on the proportional integral (PI) filter, already applied and implemented on a large amount of new generation telescopes, considered as a standard in this technological environment. In this paper we introduce the concept of a new approach, the neural variable structure proportional integral, (NVSPI), related to the implementation of a standard multi layer perceptron network in new generation ground-based Alt-Az telescope control systems. Its main purpose is to improve adaptive capability of the Variable structure proportional integral model, an already innovative control scheme recently introduced by authors [Proc SPIE (1997)], based on a modified version of classical PI control model, in terms of flexibility and accuracy of the dynamic response range also in presence of wind noise effects. The realization of a powerful well tested and validated telescope model simulation system allowed the possibility to directly compare performances of the two control schemes on simulated tracking trajectories, revealing extremely encouraging results in terms of NVSPI control robustness and

  7. Characterizing the Vertical Distribution of Aerosols using Ground-based Multiwavelength Lidar Data

    Science.gov (United States)

    Ferrare, R. A.; Thorsen, T. J.; Clayton, M.; Mueller, D.; Chemyakin, E.; Burton, S. P.; Goldsmith, J.; Holz, R.; Kuehn, R.; Eloranta, E. W.; Marais, W.; Newsom, R. K.; Liu, X.; Sawamura, P.; Holben, B. N.; Hostetler, C. A.

    2016-12-01

    Observations of aerosol optical and microphysical properties are critical for developing and evaluating aerosol transport model parameterizations and assessing global aerosol-radiation impacts on climate. During the Combined HSRL And Raman lidar Measurement Study (CHARMS), we investigated the synergistic use of ground-based Raman lidar and High Spectral Resolution Lidar (HSRL) measurements to retrieve aerosol properties aloft. Continuous (24/7) operation of these co-located lidars during the ten-week CHARMS mission (mid-July through September 2015) allowed the acquisition of a unique, multiwavelength ground-based lidar dataset for studying aerosol properties above the Southern Great Plains (SGP) site. The ARM Raman lidar measured profiles of aerosol backscatter, extinction and depolarization at 355 nm as well as profiles of water vapor mixing ratio and temperature. The University of Wisconsin HSRL simultaneously measured profiles of aerosol backscatter, extinction and depolarization at 532 nm and aerosol backscatter at 1064 nm. Recent advances in both lidar retrieval theory and algorithm development demonstrate that vertically-resolved retrievals using such multiwavelength lidar measurements of aerosol backscatter and extinction can help constrain both the aerosol optical (e.g. complex refractive index, scattering, etc.) and microphysical properties (e.g. effective radius, concentrations) as well as provide qualitative aerosol classification. Based on this work, the NASA Langley Research Center (LaRC) HSRL group developed automated algorithms for classifying and retrieving aerosol optical and microphysical properties, demonstrated these retrievals using data from the unique NASA/LaRC airborne multiwavelength HSRL-2 system, and validated the results using coincident airborne in situ data. We apply these algorithms to the CHARMS multiwavelength (Raman+HSRL) lidar dataset to retrieve aerosol properties above the SGP site. We present some profiles of aerosol effective

  8. Automated cloud classification using a ground based infra-red camera and texture analysis techniques

    Science.gov (United States)

    Rumi, Emal; Kerr, David; Coupland, Jeremy M.; Sandford, Andrew P.; Brettle, Mike J.

    2013-10-01

    Clouds play an important role in influencing the dynamics of local and global weather and climate conditions. Continuous monitoring of clouds is vital for weather forecasting and for air-traffic control. Convective clouds such as Towering Cumulus (TCU) and Cumulonimbus clouds (CB) are associated with thunderstorms, turbulence and atmospheric instability. Human observers periodically report the presence of CB and TCU clouds during operational hours at airports and observatories; however such observations are expensive and time limited. Robust, automatic classification of cloud type using infrared ground-based instrumentation offers the advantage of continuous, real-time (24/7) data capture and the representation of cloud structure in the form of a thermal map, which can greatly help to characterise certain cloud formations. The work presented here utilised a ground based infrared (8-14 μm) imaging device mounted on a pan/tilt unit for capturing high spatial resolution sky images. These images were processed to extract 45 separate textural features using statistical and spatial frequency based analytical techniques. These features were used to train a weighted k-nearest neighbour (KNN) classifier in order to determine cloud type. Ground truth data were obtained by inspection of images captured simultaneously from a visible wavelength colour camera at the same installation, with approximately the same field of view as the infrared device. These images were classified by a trained cloud observer. Results from the KNN classifier gave an encouraging success rate. A Probability of Detection (POD) of up to 90% with a Probability of False Alarm (POFA) as low as 16% was achieved.

  9. Methods for the performance enhancement and the error characterization of large diameter ground-based diffractive telescopes.

    Science.gov (United States)

    Zhang, Haolin; Liu, Hua; Lizana, Angel; Xu, Wenbin; Caompos, Juan; Lu, Zhenwu

    2017-10-30

    This paper is devoted to the improvement of ground-based telescopes based on diffractive primary lenses, which provide larger aperture and relaxed surface tolerance compared to non-diffractive telescopes. We performed two different studies devised to thoroughly characterize and improve the performance of ground-based diffractive telescopes. On the one hand, we experimentally validated the suitability of the stitching error theory, useful to characterize the error performance of subaperture diffractive telescopes. On the other hand, we proposed a novel ground-based telescope incorporated in a Cassegrain architecture, leading to a telescope with enhanced performance. To test the stitching error theory, a 300 mm diameter, 2000 mm focal length transmissive stitching diffractive telescope, based on a three-belt subaperture primary lens, was designed and implemented. The telescope achieves a 78 cy/mm resolution within 0.15 degree field of view while the working wavelength ranges from 582.8 nm to 682.8 nm without any stitching error. However, the long optical track (35.49 m) introduces air turbulence that reduces the final images contrast in the ground-based test. To enhance this result, a same diameter compacted Cassegrain ground-based diffractive (CGD) telescope with the total track distance of 1.267 m, was implemented within the same wavelength. The ground-based CGD telescope provides higher resolution and better contrast than the transmissive configuration. Star and resolution tests were experimentally performed to compare the CGD and the transmissive configurations, providing the suitability of the proposed ground-based CGD telescope.

  10. The non-nuclear legislation and the communal property; La legislacion no nuclear y el bien comun

    Energy Technology Data Exchange (ETDEWEB)

    Ciallella R, Norberto; Grancelli Cha, Nestor

    1996-07-01

    Since 1984, year in which the Bolson Municipality, Rio Negro province, declared the town a 'Non Nuclear Area', began to appear an abundant legislation that generically, it is know as 'Non Nuclear'. The provinces of Buenos Aires, Chubut, Formosa, La Pampa, Santa Cruz and Tierra del Fuego, have in their respective Constitutions non nuclear articles, while the provinces of Catamarca, Cordoba, Corrientes, Chaco, Entre Rios, Formosa, Rio Negro, San Luis, Santa Cruz, Santa Fe, Tierra del Fuego and Tucuman have sanctioned in their respective jurisdictions non nuclear laws. New projects of these laws are in consideration and treatment in the provinces of Catamarca, La Pampa, Mendoza, Santiago del Estero and Rio Negro. The present work compiles and analyzes the available information on this subject. Although the topic is not regulatory, it could have involved in the regulatory area in an eventual situation that could be presented between regulatory laws of federal and provincials reaches. This work describes the current situation and the probabilities consequences of the mentioned legislation. (author)

  11. Application of nuclear power station design criteria to non-nuclear installations

    International Nuclear Information System (INIS)

    Regan, J.D.; Hughes, D.J.

    1989-01-01

    The nuclear industry is multi faceted, in that it includes large and complex chemical plants, a large number of different types of nuclear power stations, and on shore ship maintenance facilities, each with its own unique problems. Since the early days the industry has been aware of the additional problem which is superimposed on what may be classed as traditional fire risks, that is, the risk of an uncontrolled release of radioactivity. This has led to the development of sophisticated fire prevention and control techniques which are applied to new plants, and to the backfitting of older plants. The techniques of analysis, design and operation can be applied to both nuclear and non-nuclear installations. Passive protection is preferred backed up by active techniques. Segregation of essential plant to increase the probability of sufficient surviving to ensure safety systems operate and the provision of smoke free, protected escape routes are important aspects of layout and design. Reliability assessments, venting of smoke and hot gases, fire severity analysis, application of mathematical models contribute to the final design to protect against fires. Experiences built up in the fire fighting profession is integrated into the numerical approach by frequent involvement of the local Fire Officers at each stage of the design and layout of installations. (author)

  12. Multi-unit Operations in Non-Nuclear Systems: Lessons Learned for Small Modular Reactors

    Energy Technology Data Exchange (ETDEWEB)

    OHara J. M.; Higgins, J.; DAgostino, A.

    2012-01-17

    The nuclear-power community has reached the stage of proposing advanced reactor designs to support power generation for decades to come. Small modular reactors (SMRs) are one approach to meet these energy needs. While the power output of individual reactor modules is relatively small, they can be grouped to produce reactor sites with different outputs. Also, they can be designed to generate hydrogen, or to process heat. Many characteristics of SMRs are quite different from those of current plants and may be operated quite differently. One difference is that multiple units may be operated by a single crew (or a single operator) from one control room. The U.S. Nuclear Regulatory Commission (NRC) is examining the human factors engineering (HFE) aspects of SMRs to support licensing reviews. While we reviewed information on SMR designs to obtain information, the designs are not completed and all of the design and operational information is not yet available. Nor is there information on multi-unit operations as envisioned for SMRs available in operating experience. Thus, to gain a better understanding of multi-unit operations we sought the lesson learned from non-nuclear systems that have experience in multi-unit operations, specifically refineries, unmanned aerial vehicles and tele-intensive care units. In this paper we report the lessons learned from these systems and the implications for SMRs.

  13. ENEA activities on seismic isolation of nuclear and non-nuclear structures

    International Nuclear Information System (INIS)

    Martelli, A.; Masoni, P.; Forni, M.; Indirli, M.; Spadoni, B.; Di Pasquale, G.; Lucarelli, V.; Sano, T.; Bonacina, G.; Castoldi, A.

    1989-01-01

    Work on seismic isolation of nuclear and non-nuclear structures was started by ENEA in cooperation with ISMES in 1988. The first activity consisted of a proposal for guidelines for seismically isolated nuclear plants using high-damping, steel-laminated elastomer bearings. This is being performed in the framework of an agreement with General Electric Company. Furthermore, research and development work has been defined and recently initiated to support development of the seismic isolation guidelines as well as that of qualification procedures for seismic isolation systems in general. The present R and D work includes static and dynamic experiments on single bearings, shake table tests with multi-axial simultaneous excitations on reduced-scale mockups of isolated structures supported by multiple bearings, and dynamic tests on large-scale isolated structures with on-site test techniques. It also includes the development and validation of finite-element nonlinear models of the single bearings, as well as those of simplified design tools for the analysis of the isolated structures dynamic behavior. Extension of this work is foreseen in a wider national frame

  14. Safety Culture Assessment Tools in Nuclear and Non-Nuclear Domains

    Energy Technology Data Exchange (ETDEWEB)

    Mkrtchyan, L; Turcanu, C

    2012-03-15

    Over the last decades, in many domains especially in high risk industries, the authorities paid increasing attention to safety management systems and, in particular, to safety culture. Consequently, in the applied and academic literature a huge amount of studies explored the main challenges, issues and obstacles related with safety culture. We undertake a survey of safety culture experiences in the main safety-critical industries such as nuclear, railways, offshore, aviation, airlines, health care, etc. We review both academic and applied literature up to the year 2011. Our results help to establish a comprehensive view on the subject, its main terminologies, existing tools, and main difficulties. The purpose of this report is to raise awareness about the current tools of safety culture assessment, both in the nuclear as well as in the non-nuclear domain. The report provides also practical recommendations about the possible use of each tool given different circumstances and different factors. We do not aim to rank the tools pointing the best one, but we highlight instead the unique features of these tools, pointing their strong and weak sides.

  15. Safety Culture Assessment Tools in Nuclear and Non-Nuclear Domains

    International Nuclear Information System (INIS)

    Mkrtchyan, L.; Turcanu, C.

    2012-01-01

    Over the last decades, in many domains especially in high risk industries, the authorities paid increasing attention to safety management systems and, in particular, to safety culture. Consequently, in the applied and academic literature a huge amount of studies explored the main challenges, issues and obstacles related with safety culture. We undertake a survey of safety culture experiences in the main safety-critical industries such as nuclear, railways, offshore, aviation, airlines, health care, etc. We review both academic and applied literature up to the year 2011. Our results help to establish a comprehensive view on the subject, its main terminologies, existing tools, and main difficulties. The purpose of this report is to raise awareness about the current tools of safety culture assessment, both in the nuclear as well as in the non-nuclear domain. The report provides also practical recommendations about the possible use of each tool given different circumstances and different factors. We do not aim to rank the tools pointing the best one, but we highlight instead the unique features of these tools, pointing their strong and weak sides

  16. Underwater inspection and maintenance programs within nuclear and non-nuclear related operating systems

    International Nuclear Information System (INIS)

    Vallance, C.; Goulet, B.; Black, S.

    2008-01-01

    The increasing age of the nuclear and non-nuclear power generating facilities requires extended inspection, repair and maintenance (IRM) activities to prolong the operation of these facilities past their original design life. Commercial divers are often utilized to perform critical work at nuclear power plants, fuel reprocessing plants, waste storage facilities, and research institutions. These various tasks include inspection, welding, mechanical modifications and repairs, coating applications, and work associated with plant decommissioning. Programs may take place in areas such as the reactor vessel, equipment pool, spent fuel pool, and suppression chamber using manned intervention and remotely operated vehicles. Some of these tasks can also be conducted using remotely operated vehicles (ROV's). Although specialist robots are not uncommon to the nuclear industry, the use of free-swimming vehicle's and remote systems for the inspection of underwater assets has increased due to improvements of the supporting technologies and information requirements needed to extend the life of these facilities. This paper will provide an overview of the procedures and equipment necessary to perform unique work tasks using manned and unmanned techniques. (author)

  17. Design and Test Plans for a Non-Nuclear Fission Power System Technology Demonstration Unit

    Science.gov (United States)

    Mason, Lee; Palac, Donald; Gibson, Marc; Houts, Michael; Warren, John; Werner, James; Poston, David; Qualls, Arthur Lou; Radel, Ross; Harlow, Scott

    2012-01-01

    A joint National Aeronautics and Space Administration (NASA) and Department of Energy (DOE) team is developing concepts and technologies for affordable nuclear Fission Power Systems (FPSs) to support future exploration missions. A key deliverable is the Technology Demonstration Unit (TDU). The TDU will assemble the major elements of a notional FPS with a non-nuclear reactor simulator (Rx Sim) and demonstrate system-level performance in thermal vacuum. The Rx Sim includes an electrical resistance heat source and a liquid metal heat transport loop that simulates the reactor thermal interface and expected dynamic response. A power conversion unit (PCU) generates electric power utilizing the liquid metal heat source and rejects waste heat to a heat rejection system (HRS). The HRS includes a pumped water heat removal loop coupled to radiator panels suspended in the thermal-vacuum facility. The basic test plan is to subject the system to realistic operating conditions and gather data to evaluate performance sensitivity, control stability, and response characteristics. Upon completion of the testing, the technology is expected to satisfy the requirements for Technology Readiness Level 6 (System Demonstration in an Operational and Relevant Environment) based on the use of high-fidelity hardware and prototypic software tested under realistic conditions and correlated with analytical predictions.

  18. A Ground-based validation of GOSAT-observed atmospheric CO2 in Inner-Mongolian grasslands

    International Nuclear Information System (INIS)

    Qin, X; Lei, L; Zeng, Z; Kawasaki, M; Oohasi, M

    2014-01-01

    Atmospheric carbon dioxide (CO 2 ) is a long-lived greenhouse gas that significantly contributes to global warming. Long-term and continuous measurements of atmospheric CO 2 to investigate its global distribution and concentration variations are important for accurately understanding its potential climatic effects. Satellite measurements from space can offer atmospheric CO 2 data for climate change research. For that, ground-based measurements are required for validation and improving the precision of satellite-measured CO 2 . We implemented observation experiment of CO 2 column densities in the Xilinguole grasslands in Inner Mongolia, China, using a ground-based measurement system, which mainly consists of an optical spectrum analyzer (OSA), a sun tracker and a notebook controller. Measurements from our ground-based system were analyzed and compared with those from the Greenhouse gas Observation SATellite (GOSAT). The ground-based measurements had an average value of 389.46 ppm, which was 2.4 ppm larger than from GOSAT, with a standard deviation of 3.4 ppm. This result is slightly larger than the difference between GOSAT and the Total Carbon Column Observing Network (TCCON). This study highlights the usefulness of the ground-based OSA measurement system for analyzing atmospheric CO 2 column densities, which is expected to supplement the current TCCON network

  19. Assessment of NASA airborne laser altimetry data using ground-based GPS data near Summit Station, Greenland

    Science.gov (United States)

    Brunt, Kelly M.; Hawley, Robert L.; Lutz, Eric R.; Studinger, Michael; Sonntag, John G.; Hofton, Michelle A.; Andrews, Lauren C.; Neumann, Thomas A.

    2017-03-01

    A series of NASA airborne lidars have been used in support of satellite laser altimetry missions. These airborne laser altimeters have been deployed for satellite instrument development, for spaceborne data validation, and to bridge the data gap between satellite missions. We used data from ground-based Global Positioning System (GPS) surveys of an 11 km long track near Summit Station, Greenland, to assess the surface-elevation bias and measurement precision of three airborne laser altimeters including the Airborne Topographic Mapper (ATM), the Land, Vegetation, and Ice Sensor (LVIS), and the Multiple Altimeter Beam Experimental Lidar (MABEL). Ground-based GPS data from the monthly ground-based traverses, which commenced in 2006, allowed for the assessment of nine airborne lidar surveys associated with ATM and LVIS between 2007 and 2016. Surface-elevation biases for these altimeters - over the flat, ice-sheet interior - are less than 0.12 m, while assessments of measurement precision are 0.09 m or better. Ground-based GPS positions determined both with and without differential post-processing techniques provided internally consistent solutions. Results from the analyses of ground-based and airborne data provide validation strategy guidance for the Ice, Cloud, and land Elevation Satellite 2 (ICESat-2) elevation and elevation-change data products.

  20. TEMIS UV product validation using NILU-UV ground-based measurements in Thessaloniki, Greece

    Science.gov (United States)

    Zempila, Melina-Maria; van Geffen, Jos H. G. M.; Taylor, Michael; Fountoulakis, Ilias; Koukouli, Maria-Elissavet; van Weele, Michiel; van der A, Ronald J.; Bais, Alkiviadis; Meleti, Charikleia; Balis, Dimitrios

    2017-06-01

    This study aims to cross-validate ground-based and satellite-based models of three photobiological UV effective dose products: the Commission Internationale de l'Éclairage (CIE) erythemal UV, the production of vitamin D in the skin, and DNA damage, using high-temporal-resolution surface-based measurements of solar UV spectral irradiances from a synergy of instruments and models. The satellite-based Tropospheric Emission Monitoring Internet Service (TEMIS; version 1.4) UV daily dose data products were evaluated over the period 2009 to 2014 with ground-based data from a Norsk Institutt for Luftforskning (NILU)-UV multifilter radiometer located at the northern midlatitude super-site of the Laboratory of Atmospheric Physics, Aristotle University of Thessaloniki (LAP/AUTh), in Greece. For the NILU-UV effective dose rates retrieval algorithm, a neural network (NN) was trained to learn the nonlinear functional relation between NILU-UV irradiances and collocated Brewer-based photobiological effective dose products. Then the algorithm was subjected to sensitivity analysis and validation. The correlation of the NN estimates with target outputs was high (r = 0. 988 to 0.990) and with a very low bias (0.000 to 0.011 in absolute units) proving the robustness of the NN algorithm. For further evaluation of the NILU NN-derived products, retrievals of the vitamin D and DNA-damage effective doses from a collocated Yankee Environmental Systems (YES) UVB-1 pyranometer were used. For cloud-free days, differences in the derived UV doses are better than 2 % for all UV dose products, revealing the reference quality of the ground-based UV doses at Thessaloniki from the NILU-UV NN retrievals. The TEMIS UV doses used in this study are derived from ozone measurements by the SCIAMACHY/Envisat and GOME2/MetOp-A satellite instruments, over the European domain in combination with SEVIRI/Meteosat-based diurnal cycle of the cloud cover fraction per 0. 5° × 0. 5° (lat × long) grid cells. TEMIS

  1. TEMIS UV product validation using NILU-UV ground-based measurements in Thessaloniki, Greece

    Directory of Open Access Journals (Sweden)

    M.-M. Zempila

    2017-06-01

    Full Text Available This study aims to cross-validate ground-based and satellite-based models of three photobiological UV effective dose products: the Commission Internationale de l'Éclairage (CIE erythemal UV, the production of vitamin D in the skin, and DNA damage, using high-temporal-resolution surface-based measurements of solar UV spectral irradiances from a synergy of instruments and models. The satellite-based Tropospheric Emission Monitoring Internet Service (TEMIS; version 1.4 UV daily dose data products were evaluated over the period 2009 to 2014 with ground-based data from a Norsk Institutt for Luftforskning (NILU-UV multifilter radiometer located at the northern midlatitude super-site of the Laboratory of Atmospheric Physics, Aristotle University of Thessaloniki (LAP/AUTh, in Greece. For the NILU-UV effective dose rates retrieval algorithm, a neural network (NN was trained to learn the nonlinear functional relation between NILU-UV irradiances and collocated Brewer-based photobiological effective dose products. Then the algorithm was subjected to sensitivity analysis and validation. The correlation of the NN estimates with target outputs was high (r = 0. 988 to 0.990 and with a very low bias (0.000 to 0.011 in absolute units proving the robustness of the NN algorithm. For further evaluation of the NILU NN-derived products, retrievals of the vitamin D and DNA-damage effective doses from a collocated Yankee Environmental Systems (YES UVB-1 pyranometer were used. For cloud-free days, differences in the derived UV doses are better than 2 % for all UV dose products, revealing the reference quality of the ground-based UV doses at Thessaloniki from the NILU-UV NN retrievals. The TEMIS UV doses used in this study are derived from ozone measurements by the SCIAMACHY/Envisat and GOME2/MetOp-A satellite instruments, over the European domain in combination with SEVIRI/Meteosat-based diurnal cycle of the cloud cover fraction per 0. 5° × 0. 5

  2. NASA's Newest Orbital Debris Ground-based Telescope Assets: MCAT and UKIRT

    Science.gov (United States)

    Lederer, S.; Frith, J.; Pace, L. F.; Cowardin, H. M.; Hickson, P.; Glesne, T.; Maeda, R.; Buckalew, B.; Nishimoto, D.; Douglas, D.; Stansbery, E. G.

    2014-09-01

    NASAs Orbital Debris Program Office (ODPO) will break ground on Ascension Island in 2014 to build the newest optical (0.30 1.06 microns) ground-based telescope asset dedicated to the study of orbital debris. The Meter Class Autonomous Telescope (MCAT) is a 1.3m optical telescope designed to track objects in orbits ranging from Low Earth Orbit (LEO) to Geosynchronous Earth Orbit (GEO). Ascension Island is located in the South Atlantic Ocean, offering longitudinal sky coverage not afforded by the Ground-based Electro-Optical Deep Space Surveillance (GEODSS) network. With a fast-tracking dome, a suite of visible wide-band filters, and a time-delay integration (TDI) capable camera, MCAT is capable of multiple observing modes ranging from tracking cataloged debris targets to surveying the overall debris environment. Access to the United Kingdom Infrared Telescope (UKIRT) will extend our spectral coverage into the near- (0.8-5 micron) and mid- to far-infrared (8-25 micron) regime. UKIRT is a 3.8m telescope located on Mauna Kea on the Big Island of Hawaii. At nearly 14,000-feet and above the atmospheric inversion layer, this is one of the premier astronomical sites in the world and is an ideal setting for an infrared telescope. An unprecedented one-third of this telescopes time has been allocated to collect orbital debris data for NASAs ODPO over a 2-year period. UKIRT has several instruments available to obtain low-resolution spectroscopy in both the near-IR and the mid/far-IR. Infrared spectroscopy is ideal for constraining the material types, albedos and sizes of debris targets, and potentially gaining insight into reddening effects caused by space weathering. In addition, UKIRT will be used to acquire broadband photometric imaging at GEO with the Wide Field Camera (WFCAM) for studying known objects of interest as well as collecting data in survey-mode to discover new targets. Results from the first stage of the debris campaign will be presented. The combination of

  3. Ground-based Polarization Remote Sensing of Atmospheric Aerosols and the Correlation between Polarization Degree and PM2.5

    International Nuclear Information System (INIS)

    Cheng, Chen; Zhengqiang, Li; Weizhen, Hou; Yisong, Xie; Donghui, Li; Kaitao, Li; Ying, Zhang

    2014-01-01

    The ground-based polarization remote sensing adds the polarization dimension information to traditional intensity detection, which provides a new method to detect atmospheric aerosols properties. In this paper, the polarization measurements achieved by a new multi-wavelength sun photometer, CE318-DP, are used for the ground-based remote sensing of atmospheric aerosols. In addition, a polarized vector radiative transfer model is introduced to simulate the DOLP (Degree Of Linear Polarization) under different sky conditions. At last, the correlative analysis between mass density of PM 2.5 and multi-wavelength and multi-angular DOLP is carried out. The result shows that DOLP has a high correlation with mass density of PM 2.5 , R 2 >0.85. As a consequence, this work provides a new method to estimate the mass density of PM 2.5 by using the comprehensive network of ground-based sun photometer

  4. TESTING GROUND BASED GEOPHYSICAL TECHNIQUES TO REFINE ELECTROMAGNETIC SURVEYS NORTH OF THE 300 AREA, HANFORD, WASHINGTON

    International Nuclear Information System (INIS)

    Petersen, S.W.

    2010-01-01

    Airborne electromagnetic (AEM) surveys were flown during fiscal year (FY) 2008 within the 600 Area in an attempt to characterize the underlying subsurface and to aid in the closure and remediation design study goals for the 200-PO-1 Groundwater Operable Unit (OU). The rationale for using the AEM surveys was that airborne surveys can cover large areas rapidly at relatively low costs with minimal cultural impact, and observed geo-electrical anomalies could be correlated with important subsurface geologic and hydrogeologic features. Initial interpretation of the AEM surveys indicated a tenuous correlation with the underlying geology, from which several anomalous zones likely associated with channels/erosional features incised into the Ringold units were identified near the River Corridor. Preliminary modeling resulted in a slightly improved correlation but revealed that more information was required to constrain the modeling (SGW-39674, Airborne Electromagnetic Survey Report, 200-PO-1 Groundwater Operable Unit, 600 Area, Hanford Site). Both time-and frequency domain AEM surveys were collected with the densest coverage occurring adjacent to the Columbia River Corridor. Time domain surveys targeted deeper subsurface features (e.g., top-of-basalt) and were acquired using the HeliGEOTEM(reg s ign) system along north-south flight lines with a nominal 400 m (1,312 ft) spacing. The frequency domain RESOLVE system acquired electromagnetic (EM) data along tighter spaced (100 m (328 ft) and 200 m (656 ft)) north-south profiles in the eastern fifth of the 200-PO-1 Groundwater OU (immediately adjacent to the River Corridor). The overall goal of this study is to provide further quantification of the AEM survey results, using ground based geophysical methods, and to link results to the underlying geology and/or hydrogeology. Specific goals of this project are as follows: (1) Test ground based geophysical techniques for the efficacy in delineating underlying geology; (2) Use ground

  5. TESTING GROUND BASED GEOPHYSICAL TECHNIQUES TO REFINE ELECTROMAGNETIC SURVEYS NORTH OF THE 300 AREA HANFORD WASHINGTON

    Energy Technology Data Exchange (ETDEWEB)

    PETERSEN SW

    2010-12-02

    Airborne electromagnetic (AEM) surveys were flown during fiscal year (FY) 2008 within the 600 Area in an attempt to characterize the underlying subsurface and to aid in the closure and remediation design study goals for the 200-PO-1 Groundwater Operable Unit (OU). The rationale for using the AEM surveys was that airborne surveys can cover large areas rapidly at relatively low costs with minimal cultural impact, and observed geo-electrical anomalies could be correlated with important subsurface geologic and hydrogeologic features. Initial interpretation of the AEM surveys indicated a tenuous correlation with the underlying geology, from which several anomalous zones likely associated with channels/erosional features incised into the Ringold units were identified near the River Corridor. Preliminary modeling resulted in a slightly improved correlation but revealed that more information was required to constrain the modeling (SGW-39674, Airborne Electromagnetic Survey Report, 200-PO-1 Groundwater Operable Unit, 600 Area, Hanford Site). Both time-and frequency domain AEM surveys were collected with the densest coverage occurring adjacent to the Columbia River Corridor. Time domain surveys targeted deeper subsurface features (e.g., top-of-basalt) and were acquired using the HeliGEOTEM{reg_sign} system along north-south flight lines with a nominal 400 m (1,312 ft) spacing. The frequency domain RESOLVE system acquired electromagnetic (EM) data along tighter spaced (100 m [328 ft] and 200 m [656 ft]) north-south profiles in the eastern fifth of the 200-PO-1 Groundwater OU (immediately adjacent to the River Corridor). The overall goal of this study is to provide further quantification of the AEM survey results, using ground based geophysical methods, and to link results to the underlying geology and/or hydrogeology. Specific goals of this project are as follows: (1) Test ground based geophysical techniques for the efficacy in delineating underlying geology; (2) Use ground

  6. Evaluation of the National Solar Radiation Database (NSRDB) Using Ground-Based Measurements

    Science.gov (United States)

    Xie, Y.; Sengupta, M.; Habte, A.; Lopez, A.

    2017-12-01

    Solar resource is essential for a wide spectrum of applications including renewable energy, climate studies, and solar forecasting. Solar resource information can be obtained from ground-based measurement stations and/or from modeled data sets. While measurements provide data for the development and validation of solar resource models and other applications modeled data expands the ability to address the needs for increased accuracy and spatial and temporal resolution. The National Renewable Energy Laboratory (NREL) has developed and regular updates modeled solar resource through the National Solar Radiation Database (NSRDB). The recent NSRDB dataset was developed using the physics-based Physical Solar Model (PSM) and provides gridded solar irradiance (global horizontal irradiance (GHI), direct normal irradiance (DNI), and diffuse horizontal irradiance) at a 4-km by 4-km spatial and half-hourly temporal resolution covering 18 years from 1998-2015. A comprehensive validation of the performance of the NSRDB (1998-2015) was conducted to quantify the accuracy of the spatial and temporal variability of the solar radiation data. Further, the study assessed the ability of NSRDB (1998-2015) to accurately capture inter-annual variability, which is essential information for solar energy conversion projects and grid integration studies. Comparisons of the NSRDB (1998-2015) with nine selected ground-measured data were conducted under both clear- and cloudy-sky conditions. These locations provide a high quality data covering a variety of geographical locations and climates. The comparison of the NSRDB to the ground-based data demonstrated that biases were within +/- 5% for GHI and +/-10% for DNI. A comprehensive uncertainty estimation methodology was established to analyze the performance of the gridded NSRDB and includes all sources of uncertainty at various time-averaged periods, a method that is not often used in model evaluation. Further, the study analyzed the inter

  7. Validation of OMI erythemal doses with multi-sensor ground-based measurements in Thessaloniki, Greece

    Science.gov (United States)

    Zempila, Melina Maria; Fountoulakis, Ilias; Taylor, Michael; Kazadzis, Stelios; Arola, Antti; Koukouli, Maria Elissavet; Bais, Alkiviadis; Meleti, Chariklia; Balis, Dimitrios

    2018-06-01

    The aim of this study is to validate the Ozone Monitoring Instrument (OMI) erythemal dose rates using ground-based measurements in Thessaloniki, Greece. In the Laboratory of Atmospheric Physics of the Aristotle University of Thessaloniki, a Yankee Environmental System UVB-1 radiometer measures the erythemal dose rates every minute, and a Norsk Institutt for Luftforskning (NILU) multi-filter radiometer provides multi-filter based irradiances that were used to derive erythemal dose rates for the period 2005-2014. Both these datasets were independently validated against collocated UV irradiance spectra from a Brewer MkIII spectrophotometer. Cloud detection was performed based on measurements of the global horizontal radiation from a Kipp & Zonen pyranometer and from NILU measurements in the visible range. The satellite versus ground observation validation was performed taking into account the effect of temporal averaging, limitations related to OMI quality control criteria, cloud conditions, the solar zenith angle and atmospheric aerosol loading. Aerosol optical depth was also retrieved using a collocated CIMEL sunphotometer in order to assess its impact on the comparisons. The effect of total ozone columns satellite versus ground-based differences on the erythemal dose comparisons was also investigated. Since most of the public awareness alerts are based on UV Index (UVI) classifications, an analysis and assessment of OMI capability for retrieving UVIs was also performed. An overestimation of the OMI erythemal product by 3-6% and 4-8% with respect to ground measurements is observed when examining overpass and noontime estimates respectively. The comparisons revealed a relatively small solar zenith angle dependence, with the OMI data showing a slight dependence on aerosol load, especially at high aerosol optical depth values. A mean underestimation of 2% in OMI total ozone columns under cloud-free conditions was found to lead to an overestimation in OMI erythemal

  8. Geospace Science from Ground-based Magnetometer Arrays: Advances in Sensors, Data Collection, and Data Integration

    Science.gov (United States)

    Mann, Ian; Chi, Peter

    2016-07-01

    Networks of ground-based magnetometers now provide the basis for the diagnosis of magnetic disturbances associated with solar wind-magnetosphere-ionosphere coupling on a truly global scale. Advances in sensor and digitisation technologies offer increases in sensitivity in fluxgate, induction coil, and new micro-sensor technologies - including the promise of hybrid sensors. Similarly, advances in remote connectivity provide the capacity for truly real-time monitoring of global dynamics at cadences sufficient for monitoring and in many cases resolving system level spatio-temporal ambiguities especially in combination with conjugate satellite measurements. A wide variety of the plasmaphysical processes active in driving geospace dynamics can be monitored based on the response of the electrical current system, including those associated with changes in global convection, magnetospheric substorms and nightside tail flows, as well as due to solar wind changes in both dynamic pressure and in response to rotations of the direction of the IMF. Significantly, any changes to the dynamical system must be communicated by the propagation of long-period Alfven and/or compressional waves. These wave populations hence provide diagnostics for not only the energy transport by the wave fields themselves, but also provide a mechanism for diagnosing the structure of the background plasma medium through which the waves propagate. Ultra-low frequency (ULF) waves are especially significant in offering a monitor for mass density profiles, often invisible to particle detectors because of their very low energy, through the application of a variety of magneto-seismology and cross-phase techniques. Renewed scientific interest in the plasma waves associated with near-Earth substorm dynamics, including magnetosphere-ionosphere coupling at substorm onset and their relation to magnetotail flows, as well the importance of global scale ultra-low frequency waves for the energisation, transport

  9. Cross Validation of Rain Drop Size Distribution between GPM and Ground Based Polarmetric radar

    Science.gov (United States)

    Chandra, C. V.; Biswas, S.; Le, M.; Chen, H.

    2017-12-01

    Dual-frequency precipitation radar (DPR) on board the Global Precipitation Measurement (GPM) core satellite has reflectivity measurements at two independent frequencies, Ku- and Ka- band. Dual-frequency retrieval algorithms have been developed traditionally through forward, backward, and recursive approaches. However, these algorithms suffer from "dual-value" problem when they retrieve medium volume diameter from dual-frequency ratio (DFR) in rain region. To this end, a hybrid method has been proposed to perform raindrop size distribution (DSD) retrieval for GPM using a linear constraint of DSD along rain profile to avoid "dual-value" problem (Le and Chandrasekar, 2015). In the current GPM level 2 algorithm (Iguchi et al. 2017- Algorithm Theoretical Basis Document) the Solver module retrieves a vertical profile of drop size distributionn from dual-frequency observations and path integrated attenuations. The algorithm details can be found in Seto et al. (2013) . On the other hand, ground based polarimetric radars have been used for a long time to estimate drop size distributions (e.g., Gorgucci et al. 2002 ). In addition, coincident GPM and ground based observations have been cross validated using careful overpass analysis. In this paper, we perform cross validation on raindrop size distribution retrieval from three sources, namely the hybrid method, the standard products from the solver module and DSD retrievals from ground polarimetric radars. The results are presented from two NEXRAD radars located in Dallas -Fort Worth, Texas (i.e., KFWS radar) and Melbourne, Florida (i.e., KMLB radar). The results demonstrate the ability of DPR observations to produce DSD estimates, which can be used subsequently to generate global DSD maps. References: Seto, S., T. Iguchi, T. Oki, 2013: The basic performance of a precipitation retrieval algorithm for the Global Precipitation Measurement mission's single/dual-frequency radar measurements. IEEE Transactions on Geoscience and

  10. MetaSensing's FastGBSAR: ground based radar for deformation monitoring

    Science.gov (United States)

    Rödelsperger, Sabine; Meta, Adriano

    2014-10-01

    The continuous monitoring of ground deformation and structural movement has become an important task in engineering. MetaSensing introduces a novel sensor system, the Fast Ground Based Synthetic Aperture Radar (FastGBSAR), based on innovative technologies that have already been successfully applied to airborne SAR applications. The FastGBSAR allows the remote sensing of deformations of a slope or infrastructure from up to a distance of 4 km. The FastGBSAR can be setup in two different configurations: in Real Aperture Radar (RAR) mode it is capable of accurately measuring displacements along a linear range profile, ideal for monitoring vibrations of structures like bridges and towers (displacement accuracy up to 0.01 mm). Modal parameters can be determined within half an hour. Alternatively, in Synthetic Aperture Radar (SAR) configuration it produces two-dimensional displacement images with an acquisition time of less than 5 seconds, ideal for monitoring areal structures like dams, landslides and open pit mines (displacement accuracy up to 0.1 mm). The MetaSensing FastGBSAR is the first ground based SAR instrument on the market able to produce two-dimensional deformation maps with this high acquisition rate. By that, deformation time series with a high temporal and spatial resolution can be generated, giving detailed information useful to determine the deformation mechanisms involved and eventually to predict an incoming failure. The system is fully portable and can be quickly installed on bedrock or a basement. The data acquisition and processing can be fully automated leading to a low effort in instrument operation and maintenance. Due to the short acquisition time of FastGBSAR, the coherence between two acquisitions is very high and the phase unwrapping is simplified enormously. This yields a high density of resolution cells with good quality and high reliability of the acquired deformations. The deformation maps can directly be used as input into an Early

  11. Integration between ground based and satellite SAR data in landslide mapping: The San Fratello case study

    Science.gov (United States)

    Bardi, Federica; Frodella, William; Ciampalini, Andrea; Bianchini, Silvia; Del Ventisette, Chiara; Gigli, Giovanni; Fanti, Riccardo; Moretti, Sandro; Basile, Giuseppe; Casagli, Nicola

    2014-10-01

    The potential use of the integration of PSI (Persistent Scatterer Interferometry) and GB-InSAR (Ground-based Synthetic Aperture Radar Interferometry) for landslide hazard mitigation was evaluated for mapping and monitoring activities of the San Fratello landslide (Sicily, Italy). Intense and exceptional rainfall events are the main factors that triggered several slope movements in the study area, which is susceptible to landslides, because of its steep slopes and silty-clayey sedimentary cover. In the last three centuries, the town of San Fratello was affected by three large landslides, developed in different periods: the oldest one occurred in 1754, damaging the northeastern sector of the town; in 1922 a large landslide completely destroyed a wide area in the western hillside of the town. In this paper, the attention is focussed on the most recent landslide that occurred on 14 February 2010: in this case, the phenomenon produced the failure of a large sector of the eastern hillside, causing severe damages to buildings and infrastructures. In particular, several slow-moving rotational and translational slides occurred in the area, making it suitable to monitor ground instability through different InSAR techniques. PS-InSAR™ (permanent scatterers SAR interferometry) techniques, using ERS-1/ERS-2, ENVISAT, RADARSAT-1, and COSMO-SkyMed SAR images, were applied to analyze ground displacements during pre- and post-event phases. Moreover, during the post-event phase in March 2010, a GB-InSAR system, able to acquire data continuously every 14 min, was installed collecting ground displacement maps for a period of about three years, until March 2013. Through the integration of space-borne and ground-based data sets, ground deformation velocity maps were obtained, providing a more accurate delimitation of the February 2010 landslide boundary, with respect to the carried out traditional geomorphological field survey. The integration of GB-InSAR and PSI techniques proved to

  12. New advanced netted ground based and topside radio diagnostics for Space Weather Program

    Science.gov (United States)

    Rothkaehl, Hanna; Krankowski, Andrzej; Morawski, Marek; Atamaniuk, Barbara; Zakharenkova, Irina; Cherniak, Iurii

    2014-05-01

    To give a more detailed and complete understanding of physical plasma processes that govern the solar-terrestrial space, and to develop qualitative and quantitative models of the magnetosphere-ionosphere-thermosphere coupling, it is necessary to design and build the next generation of instruments for space diagnostics and monitoring. Novel ground- based wide-area sensor networks, such as the LOFAR (Low Frequency Array) radar facility, comprising wide band, and vector-sensing radio receivers and multi-spacecraft plasma diagnostics should help solve outstanding problems of space physics and describe long-term environmental changes. The LOw Frequency ARray - LOFAR - is a new fully digital radio telescope designed for frequencies between 30 MHz and 240 MHz located in Europe. The three new LOFAR stations will be installed until summer 2015 in Poland. The LOFAR facilities in Poland will be distributed among three sites: Lazy (East of Krakow), Borowiec near Poznan and Baldy near Olsztyn. All they will be connected via PIONIER dedicated links to Poznan. Each site will host one LOFAR station (96 high-band+96 low-band antennas). They will most time work as a part of European network, however, when less charged, they can operate as a national network The new digital radio frequency analyzer (RFA) on board the low-orbiting RELEC satellite was designed to monitor and investigate the ionospheric plasma properties. This two-point ground-based and topside ionosphere-located space plasma diagnostic can be a useful new tool for monitoring and diagnosing turbulent plasma properties. The RFA on board the RELEC satellite is the first in a series of experiments which is planned to be launched into the near-Earth environment. In order to improve and validate the large scales and small scales ionospheric structures we will used the GPS observations collected at IGS/EPN network employed to reconstruct diurnal variations of TEC using all satellite passes over individual GPS stations and the

  13. Validation of CALIPSO space-borne-derived attenuated backscatter coefficient profiles using a ground-based lidar in Athens, Greece

    Directory of Open Access Journals (Sweden)

    R. E. Mamouri

    2009-09-01

    Full Text Available We present initial aerosol validation results of the space-borne lidar CALIOP -onboard the CALIPSO satellite- Level 1 attenuated backscatter coefficient profiles, using coincident observations performed with a ground-based lidar in Athens, Greece (37.9° N, 23.6° E. A multi-wavelength ground-based backscatter/Raman lidar system is operating since 2000 at the National Technical University of Athens (NTUA in the framework of the European Aerosol Research LIdar NETwork (EARLINET, the first lidar network for tropospheric aerosol studies on a continental scale. Since July 2006, a total of 40 coincidental aerosol ground-based lidar measurements were performed over Athens during CALIPSO overpasses. The ground-based measurements were performed each time CALIPSO overpasses the station location within a maximum distance of 100 km. The duration of the ground–based lidar measurements was approximately two hours, centred on the satellite overpass time. From the analysis of the ground-based/satellite correlative lidar measurements, a mean bias of the order of 22% for daytime measurements and of 8% for nighttime measurements with respect to the CALIPSO profiles was found for altitudes between 3 and 10 km. The mean bias becomes much larger for altitudes lower that 3 km (of the order of 60% which is attributed to the increase of aerosol horizontal inhomogeneity within the Planetary Boundary Layer, resulting to the observation of possibly different air masses by the two instruments. In cases of aerosol layers underlying Cirrus clouds, comparison results for aerosol tropospheric profiles become worse. This is attributed to the significant multiple scattering effects in Cirrus clouds experienced by CALIPSO which result in an attenuation which is less than that measured by the ground-based lidar.

  14. International meeting 'Selected topics on nuclear methods for non-nuclear applications'. Proceedings

    International Nuclear Information System (INIS)

    Stoyanov, Ch.

    2007-01-01

    The volume includes the presentations given on the International Meeting 'Selected Topics on Nuclear Methods for Non-nuclear Applications'. The meeting was organized by the Project CECOA. The Project 'CEnter for COoerative Activities' (CECOA) of the Institute for Nuclear Research and Nuclear Energy (INRNE) of Bulgarian Academy of Sciences is part of the Program 'Creating of Infrastructure' of Bulgarian Ministry of Science and Education. The CECOA-project unifies the groups of INRNE doing research in the field of nuclear methods. Four Laboratories of INRNE are members of CECOA-project: Moessbauer Spectroscopy and Low Radioactivity Measurements, High-Resolution Gamma-Spectroscopy, Neutron Methods in Condensed Matter, Neutron Optics and Structure Analysis. Taking into account the leading role of education on nuclear physics the Project includes program devoted to the training on nuclear physics. The presented volume contains 23 contributed papers. The contributions are separated in 6 sections. The section 'Nano technology' includes 5 papers. The activity in this field within the Project reveals the collaboration with other Institutes of Bulgarian Academy of Sciences as well as large international contacts. The section 'Radioecology and Radioactive Waste' is two fold. Part of the contributions of the section manifests the connection of the CECOA with small enterprises. The contacts are on the level of common projects concerning the investigations, remediation and release of radioactively contaminated terrain, soils, water, buildings and materials around the former uranium processing industry. Another part of the section is devoted to the application of nuclear methods to the treatment of radioactive waste produced by nuclear power stations. The section 'Neutron Physics' reveals the activity within the Project connected with the study of new materials using polarized neutrons and neutron diffraction methods. The section 'Nuclear Physics' is an introduction to some

  15. Screening calculations for radioactive waste releases from non-nuclear facilities

    International Nuclear Information System (INIS)

    Xu, Shulan; Soederman, Ann-Louis

    2009-02-01

    A series of screening calculations have been performed to assess the potential radiological consequences of discharges of radioactive substances to the environment arising from waste from non-nuclear practices. Solid waste, as well as liquids that are not poured to the sewer, are incinerated and ashes from incineration and sludge from waste water treatment plants are disposed or reused at municipal disposal facilities. Airborne discharges refer to releases from an incineration facility and liquid discharges refer both to releases from hospitals and laboratories to the sewage system, as well as leakage from waste disposal facilities. The external exposure of workers is estimated both in the waste water treatment plant and at the disposal facility. The calculations follow the philosophy of the IAEA's safety guidance starting with a simple assessment based on very conservative assumptions which may be iteratively refined using progressively more complex models, with more realistic assumptions, as necessary. In the assessments of these types of disposal, with cautious assumptions, carried out in this report we conclude that the radiological impacts on representative individuals in the public are negligible in that they are small with respect to the target dose of 10 μSv/a. A Gaussian plume model was used to estimate the doses from airborne discharges from the incinerator and left a significant safety margin in the results considering the conservative assumptions in the calculations. For the sewage plant workers the realistic approach included a reduction in working hours and the shorter exposure time resulted in maximum doses around 10 μSv/a. The calculations for the waste disposal facility show that the doses are higher or in the range of the target dose. The excess for public exposure is mainly caused by H-3 and C-14. The assumption used in the calculation is that all of the radioactive substances sent to the incineration facility and waste water treatment plant

  16. Incineration of European non-nuclear radioactive waste in the USA

    International Nuclear Information System (INIS)

    Moloney, B. P.; Ferguson, D.; Stephenson, B.

    2013-01-01

    Incineration of dry low level radioactive waste from nuclear stations is a well established process achieving high volume reduction factors to minimise disposal costs and to stabilise residues for disposal. Incineration has also been applied successfully in many European Union member countries to wastes arising from use of radionuclides in medicine, nonnuclear research and industry. However, some nations have preferred to accumulate wastes over many years in decay stores to reduce the radioactive burden at point of processing. After decay and sorting the waste, they then require a safe, industrial scale and affordable processing solution for the large volumes accumulated. This paper reports the regulatory, logistical and technical issues encountered in a programme delivered for Eckert and Ziegler Nuclitec to incinerate safely 100 te of waste collected originally from German research, hospital and industrial centres, applying for the first time a 'burn and return' process model for European waste in the US. The EnergySolutions incinerators at Bear Creek, Oak Ridge, Tennessee, USA routinely incinerate waste arising from the non-nuclear user community. To address the requirement from Germany, EnergySolutions had to run a dedicated campaign to reduce cross-contamination with non-German radionuclides to the practical minimum. The waste itself had to be sampled in a carefully controlled programme to ensure the exacting standards of Bear Creek's license and US emissions laws were maintained. Innovation was required in packaging of the waste to minimise transportation costs, including sea freight. The incineration was inspected on behalf of the German regulator (the BfS) to ensure suitability for return to Germany and disposal. This first 'burn and return' programme has safely completed the incineration phase in February and the arising ash will be returned to Germany presently. The paper reports the main findings and lessons learned on this first

  17. Computer-aided mathematical analysis of probability of intercept for ground-based communication intercept system

    Science.gov (United States)

    Park, Sang Chul

    1989-09-01

    We develop a mathematical analysis model to calculate the probability of intercept (POI) for the ground-based communication intercept (COMINT) system. The POI is a measure of the effectiveness of the intercept system. We define the POI as the product of the probability of detection and the probability of coincidence. The probability of detection is a measure of the receiver's capability to detect a signal in the presence of noise. The probability of coincidence is the probability that an intercept system is available, actively listening in the proper frequency band, in the right direction and at the same time that the signal is received. We investigate the behavior of the POI with respect to the observation time, the separation distance, antenna elevations, the frequency of the signal, and the receiver bandwidths. We observe that the coincidence characteristic between the receiver scanning parameters and the signal parameters is the key factor to determine the time to obtain a given POI. This model can be used to find the optimal parameter combination to maximize the POI in a given scenario. We expand this model to a multiple system. This analysis is conducted on a personal computer to provide the portability. The model is also flexible and can be easily implemented under different situations.

  18. Architectural design of a ground-based deep-space optical reception antenna

    Science.gov (United States)

    Kerr, E. L.

    1989-01-01

    An architectural design of a ground-based antenna (telescope) for receiving optical communications from deep space is presented. Physical and optical parameters, and their effect on the performance and cost considerations, are described. The channel capacity of the antenna is 100 kbits/s from Saturn and 5 Mbits/s from Mars. A novel sunshade is designed to permit optical communication even when the deep-space laser source is as close to the sun as 12 deg. Inserts in the tubes of the sunshade permit operations at solar elongations as small as 6 or 3 deg. The Nd:YAG source laser and the Fraunhofer filter (a narrow-band predetection optical filter) are tuned to match the Doppler shifts of the source and background. A typical Saturn-to-earth data link can reduce its source power requirement from 8.2 W to 2 W of laser output by employing a Fraunhofer filter instead of a conventional multilayer dielectric filter.

  19. Coupling Fine-Scale Root and Canopy Structure Using Ground-Based Remote Sensing

    Directory of Open Access Journals (Sweden)

    Brady S. Hardiman

    2017-02-01

    Full Text Available Ecosystem physical structure, defined by the quantity and spatial distribution of biomass, influences a range of ecosystem functions. Remote sensing tools permit the non-destructive characterization of canopy and root features, potentially providing opportunities to link above- and belowground structure at fine spatial resolution in functionally meaningful ways. To test this possibility, we employed ground-based portable canopy LiDAR (PCL and ground penetrating radar (GPR along co-located transects in forested sites spanning multiple stages of ecosystem development and, consequently, of structural complexity. We examined canopy and root structural data for coherence (i.e., correlation in the frequency of spatial variation at multiple spatial scales ≤10 m within each site using wavelet analysis. Forest sites varied substantially in vertical canopy and root structure, with leaf area index and root mass more becoming even vertically as forests aged. In all sites, above- and belowground structure, characterized as mean maximum canopy height and root mass, exhibited significant coherence at a scale of 3.5–4 m, and results suggest that the scale of coherence may increase with stand age. Our findings demonstrate that canopy and root structure are linked at characteristic spatial scales, which provides the basis to optimize scales of observation. Our study highlights the potential, and limitations, for fusing LiDAR and radar technologies to quantitatively couple above- and belowground ecosystem structure.

  20. Detection Techniques of Microsecond Gamma-Ray Bursts Using Ground-based Telescopes

    International Nuclear Information System (INIS)

    Krennrich, F.; Le Bohec, S.; Weekes, T. C.

    2000-01-01

    Gamma-ray observations above 200 MeV are conventionally made by satellite-based detectors. The EGRET detector on the Compton Gamma Ray Observatory has provided good sensitivity for the detection of bursts lasting for more than 200 ms. Theoretical predictions of high-energy gamma-ray bursts produced by quantum mechanical decay of primordial black holes (Hawking) suggest the emission of bursts on shorter timescales. The final stage of a primordial black hole results in a burst of gamma rays, peaking around 250 MeV and lasting for 1/10 of a microsecond or longer depending on particle physics. In this work we show that there is an observational window using ground-based imaging Cerenkov detectors to measure gamma-ray burst emission at energies E>200 MeV. This technique, with a sensitivity for bursts lasting nanoseconds to several microseconds, is based on the detection of multiphoton-initiated air showers. (c) (c) 2000. The American Astronomical Society

  1. Ground-based adaptive optics coronagraphic performance under closed-loop predictive control

    Science.gov (United States)

    Males, Jared R.; Guyon, Olivier

    2018-01-01

    The discovery of the exoplanet Proxima b highlights the potential for the coming generation of giant segmented mirror telescopes (GSMTs) to characterize terrestrial-potentially habitable-planets orbiting nearby stars with direct imaging. This will require continued development and implementation of optimized adaptive optics systems feeding coronagraphs on the GSMTs. Such development should proceed with an understanding of the fundamental limits imposed by atmospheric turbulence. Here, we seek to address this question with a semianalytic framework for calculating the postcoronagraph contrast in a closed-loop adaptive optics system. We do this starting with the temporal power spectra of the Fourier basis calculated assuming frozen flow turbulence, and then apply closed-loop transfer functions. We include the benefits of a simple predictive controller, which we show could provide over a factor of 1400 gain in raw point spread function contrast at 1 λ/D on bright stars, and more than a factor of 30 gain on an I=7.5 mag star such as Proxima. More sophisticated predictive control can be expected to improve this even further. Assuming a photon-noise limited observing technique such as high-dispersion coronagraphy, these gains in raw contrast will decrease integration times by the same large factors. Predictive control of atmospheric turbulence should therefore be seen as one of the key technologies that will enable ground-based telescopes to characterize terrestrial planets.

  2. A ground-based near-infrared emission spectrum of the exoplanet HD 189733b.

    Science.gov (United States)

    Swain, Mark R; Deroo, Pieter; Griffith, Caitlin A; Tinetti, Giovanna; Thatte, Azam; Vasisht, Gautam; Chen, Pin; Bouwman, Jeroen; Crossfield, Ian J; Angerhausen, Daniel; Afonso, Cristina; Henning, Thomas

    2010-02-04

    Detection of molecules using infrared spectroscopy probes the conditions and compositions of exoplanet atmospheres. Water (H(2)O), methane (CH(4)), carbon dioxide (CO(2)), and carbon monoxide (CO) have been detected in two hot Jupiters. These previous results relied on space-based telescopes that do not provide spectroscopic capability in the 2.4-5.2 microm spectral region. Here we report ground-based observations of the dayside emission spectrum for HD 189733b between 2.0-2.4 microm and 3.1-4.1 microm, where we find a bright emission feature. Where overlap with space-based instruments exists, our results are in excellent agreement with previous measurements. A feature at approximately 3.25 microm is unexpected and difficult to explain with models that assume local thermodynamic equilibrium (LTE) conditions at the 1 bar to 1 x 10(-6) bar pressures typically sampled by infrared measurements. The most likely explanation for this feature is that it arises from non-LTE emission from CH(4), similar to what is seen in the atmospheres of planets in our own Solar System. These results suggest that non-LTE effects may need to be considered when interpreting measurements of strongly irradiated exoplanets.

  3. Evidence of Urban Precipitation Anomalies from Satellite and Ground-Based Measurements

    Science.gov (United States)

    Shepherd, J. Marshall; Manyin, M.; Negri, Andrew

    2004-01-01

    Urbanization is one of the extreme cases of land use change. Most of world's population has moved to urban areas. Although currently only 1.2% of the land is considered urban, the spatial coverage and density of cities are expected to rapidly increase in the near future. It is estimated that by the year 2025, 60% of the world's population will live in cities. Human activity in urban environments also alters weather and climate processes. However, our understanding of urbanization on the total Earth-weather-climate system is incomplete. Recent literature continues to provide evidence that anomalies in precipitation exist over and downwind of major cities. Current and future research efforts are actively seeking to verify these literature findings and understand potential cause-effect relationships. The novelty of this study is that it utilizes rainfall data from multiple satellite data sources (e.g. TRMM precipitation radar, TRMM-geosynchronous-rain gauge merged product, and SSM/I) and ground-based measurements to identify spatial anomalies and temporal trends in precipitation for cities around the world. Early results will be presented and placed within the context of weather prediction, climate assessment, and societal applications.

  4. A Ground-Based Validation System of Teleoperation for a Space Robot

    Directory of Open Access Journals (Sweden)

    Xueqian Wang

    2012-10-01

    Full Text Available Teleoperation of space robots is very important for future on-orbit service. In order to assure the task is accomplished successfully, ground experiments are required to verify the function and validity of the teleoperation system before a space robot is launched. In this paper, a ground-based validation subsystem is developed as a part of a teleoperation system. The subsystem is mainly composed of four parts: the input verification module, the onboard verification module, the dynamic and image workstation, and the communication simulator. The input verification module, consisting of hardware and software of the master, is used to verify the input ability. The onboard verification module, consisting of the same hardware and software as the onboard processor, is used to verify the processor's computing ability and execution schedule. In addition, the dynamic and image workstation calculates the dynamic response of the space robot and target, and generates emulated camera images, including the hand-eye cameras, global-vision camera and rendezvous camera. The communication simulator provides fidelity communication conditions, i.e., time delays and communication bandwidth. Lastly, we integrated a teleoperation system and conducted many experiments on the system. Experiment results show that the ground system is very useful for verified teleoperation technology.

  5. Evidence of rock slope breathing using ground-based InSAR

    Science.gov (United States)

    Rouyet, Line; Kristensen, Lene; Derron, Marc-Henri; Michoud, Clément; Blikra, Lars Harald; Jaboyedoff, Michel; Lauknes, Tom Rune

    2017-07-01

    Ground-Based Interferometric Synthetic Aperture Radar (GB-InSAR) campaigns were performed in summer 2011 and 2012 in the Romsdalen valley (Møre & Romsdal county, western Norway) in order to assess displacements on Mannen/Børa rock slope. Located 1 km northwest, a second GB-InSAR system continuously monitors the large Mannen rockslide. The availability of two GB-InSAR positions creates a wide coverage of the rock slope, including a slight dataset overlap valuable for validation. A phenomenon of rock slope breathing is detected in a remote and hard-to-access area in mid-slope. Millimetric upward displacements are recorded in August 2011. Analysis of 2012 GB-InSAR campaign, combined with the large dataset from the continuous station, shows that the slope is affected by inflation/deflation phenomenon between 5 and 10 mm along the line-of-sight. The pattern is not homogenous in time and inversions of movement have a seasonal recurrence. These seasonal changes are confirmed by satellite InSAR observations and can possibly be caused by hydrogeological variations. In addition, combination of GB-InSAR results, in situ measurements and satellite InSAR analyses contributes to a better overview of movement distribution over the whole area.

  6. On advanced estimation techniques for exoplanet detection and characterization using ground-based coronagraphs

    Science.gov (United States)

    Lawson, Peter R.; Poyneer, Lisa; Barrett, Harrison; Frazin, Richard; Caucci, Luca; Devaney, Nicholas; Furenlid, Lars; Gładysz, Szymon; Guyon, Olivier; Krist, John; Maire, Jérôme; Marois, Christian; Mawet, Dimitri; Mouillet, David; Mugnier, Laurent; Pearson, Iain; Perrin, Marshall; Pueyo, Laurent; Savransky, Dmitry

    2012-07-01

    The direct imaging of planets around nearby stars is exceedingly difficult. Only about 14 exoplanets have been imaged to date that have masses less than 13 times that of Jupiter. The next generation of planet-finding coronagraphs, including VLT-SPHERE, the Gemini Planet Imager, Palomar P1640, and Subaru HiCIAO have predicted contrast performance of roughly a thousand times less than would be needed to detect Earth-like planets. In this paper we review the state of the art in exoplanet imaging, most notably the method of Locally Optimized Combination of Images (LOCI), and we investigate the potential of improving the detectability of faint exoplanets through the use of advanced statistical methods based on the concepts of the ideal observer and the Hotelling observer. We propose a formal comparison of techniques using a blind data challenge with an evaluation of performance using the Receiver Operating Characteristic (ROC) and Localization ROC (LROC) curves. We place particular emphasis on the understanding and modeling of realistic sources of measurement noise in ground-based AO-corrected coronagraphs. The work reported in this paper is the result of interactions between the co-authors during a week-long workshop on exoplanet imaging that was held in Squaw Valley, California, in March of 2012.

  7. Ground-based infrared surveys: imaging the thermal fields at volcanoes and revealing the controlling parameters.

    Science.gov (United States)

    Pantaleo, Michele; Walter, Thomas

    2013-04-01

    Temperature monitoring is a widespread procedure in the frame of volcano hazard monitoring. Indeed temperature changes are expected to reflect changes in volcanic activity. We propose a new approach, within the thermal monitoring, which is meant to shed light on the parameters controlling the fluid pathways and the fumarole sites by using infrared measurements. Ground-based infrared cameras allow one to remotely image the spatial distribution, geometric pattern and amplitude of fumarole fields on volcanoes at metre to centimetre resolution. Infrared mosaics and time series are generated and interpreted, by integrating geological field observations and modeling, to define the setting of the volcanic degassing system at shallow level. We present results for different volcano morphologies and show that lithology, structures and topography control the appearance of fumarole field by the creation of permeability contrasts. We also show that the relative importance of those parameters is site-dependent. Deciphering the setting of the degassing system is essential for hazard assessment studies because it would improve our understanding on how the system responds to endogenous or exogenous modification.

  8. Ozone ground-based measurements by the GASCOD near-UV and visible DOAS system

    Science.gov (United States)

    Giovanelli, G.; Bonasoni, P.; Cervino, M.; Evangelisti, F.; Ravegnani, F.

    1994-01-01

    GASCOD, a near-ultraviolet and visible differential optical spectrometer, was developed at CNR's FISBAT Institute in Bologna, Italy, and first tested at Terra Nova Bay station in Antarctica (74.6 deg S, 164.6 deg E) during the summer expeditions 1988-1990 of PNRA (PNRA is the national research program in Antarctica, 'Programma Nazionale di Ricerche in Atartide'). A comparison with coincident O3 total column measurements taken in the same Antarctic area is presented, as is another comparison performed in Italy. Also introduced is an updated model for solar zenith measurements taken from a ground-based, upward-looking GASCOD spectrometer, which was employed for the 1991-92 winter campaign at Aer-Ostersund in Sweden (63.3 deg N, 13.1 deg E) during AESOE (European Arctic Stratospheric Ozone Experiment). The GASCOD can examine the spectra from 300 to 700 nm, in 50 nm steps, by moving the spectrometer's grating. At present, it takes measurements of solar zenith radiation in the 310-342 nm range for O3 and in the 405-463 nm range for NO2.

  9. PSC and volcanic aerosol routine observations in Antarctica by UV-visible ground-based spectrometry

    Science.gov (United States)

    Sarkissian, A.; Pommereau, J. P.; Goutail, F.

    1994-01-01

    Polar statospheric clouds (PSC) and stratospheric aerosol can be observed by ground-based UV-visible spectrometry by looking at the variation of the color of the sky during twilight. A radiative transfer model shows that reddenings are caused by high altitude (22-28 km) thin layers of scatterers, while low altitude (12-20 km) thick ones result in blueings. The color index method applied on 4 years of observations at Dumont d'Urville (67 deg S), from 1988 to 1991, shows that probably because the station is located at the edge of the vortex, dense PSC are uncommon. More unexpected is the existence of a systematic seasonal variation of the color of the twilight sky - bluer at spring - which reveals the formation of a dense scattering layer at or just above the tropopause at the end of the winter. Large scattering layers are reported above the station in 1991, first in August around 12-14 km, later in September at 22-24 km. They are attributed to volcanic aerosol from Mt Hudson and Mt Pinatubo respectively, which erupted in 1991. Inspection of the data shows that the lowest entered rapidly into the polar vortex but not the highest which remained outside, demonstrating that the vortex was isolated at 22-26 km.

  10. Ground-based thermal imaging of stream surface temperatures: Technique and evaluation

    Science.gov (United States)

    Bonar, Scott A.; Petre, Sally J.

    2015-01-01

    We evaluated a ground-based handheld thermal imaging system for measuring water temperatures using data from eight southwestern USA streams and rivers. We found handheld thermal imagers could provide considerably more spatial information on water temperature (for our unit one image = 19,600 individual temperature measurements) than traditional methods could supply without a prohibitive amount of effort. Furthermore, they could provide measurements of stream surface temperature almost instantaneously compared with most traditional handheld thermometers (e.g., >20 s/reading). Spatial temperature analysis is important for measurement of subtle temperature differences across waterways, and identification of warm and cold groundwater inputs. Handheld thermal imaging is less expensive and equipment intensive than airborne thermal imaging methods and is useful under riparian canopies. Disadvantages of handheld thermal imagers include their current higher expense than thermometers, their susceptibility to interference when used incorrectly, and their slightly lower accuracy than traditional temperature measurement methods. Thermal imagers can only measure surface temperature, but this usually corresponds to subsurface temperatures in well-mixed streams and rivers. Using thermal imaging in select applications, such as where spatial investigations of water temperature are needed, or in conjunction with stationary temperature data loggers or handheld electronic or liquid-in-glass thermometers to characterize stream temperatures by both time and space, could provide valuable information on stream temperature dynamics. These tools will become increasingly important to fisheries biologists as costs continue to decline.

  11. Real-time threat evaluation in a ground based air defence environment

    Directory of Open Access Journals (Sweden)

    JN Roux

    2008-06-01

    Full Text Available In a military environment a ground based air defence operator is required to evaluate the tactical situation in real-time and protect Defended Assets (DAs on the ground against aerial threats by assigning available Weapon Systems (WSs to engage enemy aircraft. Since this aerial environment requires rapid operational planning and decision making in stress situations, the associated responsibilities are typically divided between a number of operators and computerized systems that aid these operators during the decision making processes. One such a Decision Support System (DSS, a threat evaluation and weapon assignment system, assigns threat values to aircraft (with respect to DAs in real-time and uses these values to propose possible engagements of observed enemy aircraft by anti-aircraft WSs. In this paper a design of the threat evaluation part of such a DSS is put forward. The design follows the structured approach suggested in [Roux JN & van Vuuren JH, 2007, Threat evaluation and weapon assignment decision support: A review of the state of the art, ORiON, 23(2, pp. 151-187], phasing in a suite of increasingly complex qualitative and quantitative model components as more (reliable data become available.

  12. Characterization of aerosol pollution events in France using ground-based and POLDER-2 satellite data

    Directory of Open Access Journals (Sweden)

    M. Kacenelenbogen

    2006-01-01

    Full Text Available We analyze the relationship between daily fine particle mass concentration (PM2.5 and columnar aerosol optical thickness derived from the Polarization and Directionality of Earth's Reflectances (POLDER satellite sensor. The study is focused over France during the POLDER-2 lifetime between April and October 2003. We have first compared the POLDER derived aerosol optical thickness (AOT with integrated volume size distribution derived from ground-based Sun Photometer observations. The good correlation (R=0.72 with sub-micron volume fraction indicates that POLDER derived AOT is sensitive to the fine aerosol mass concentration. Considering 1974 match-up data points over 28 fine particle monitoring sites, the POLDER-2 derived AOT is fairly well correlated with collocated PM2.5 measurements, with a correlation coefficient of 0.55. The correlation coefficient reaches a maximum of 0.80 for particular sites. We have analyzed the probability to find an appropriate air quality category (AQC as defined by U.S. Environmental Protection Agency (EPA from POLDER-2 AOT measurements. The probability can be up to 88.8% (±3.7% for the "Good" AQC and 89.1% (±3.6% for the "Moderate" AQC.

  13. GROUND-BASED TRANSIT OBSERVATIONS OF THE SUPER-EARTH 55 Cnc e

    Energy Technology Data Exchange (ETDEWEB)

    De Mooij, E. J. W. [Astronomy and Astrophysics, University of Toronto, Toronto (Canada); López-Morales, M. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA (United States); Karjalainen, R.; Hrudkova, M. [Isaac Newton Group of Telescopes, La Palma (Spain); Jayawardhana, Ray, E-mail: demooij@astro.utoronto.ca [Physics and Astronomy, York University, Toronto (Canada)

    2014-12-20

    We report the first ground-based detections of the shallow transit of the super-Earth exoplanet 55 Cnc e using a 2 m class telescope. Using differential spectrophotometry, we observed one transit in 2013 and another in 2014, with average spectral resolutions of ∼700 and ∼250, spanning the Johnson BVR photometric bands. We find a white light planet-to-star radius ratio of 0.0190{sub −0.0027}{sup +0.0023} from the 2013 observations and 0.0200{sub −0.0018}{sup +0.0017} from the 2014 observations. The two data sets combined result in a radius ratio of 0.0198{sub −0.0014}{sup +0.0013}. These values are all in agreement with previous space-based results. Scintillation noise in the data prevents us from placing strong constraints on the presence of an extended hydrogen-rich atmosphere. Nevertheless, our detections of 55 Cnc e in transit demonstrate that moderate-sized telescopes on the ground will be capable of routine follow-up observations of super-Earth candidates discovered by the Transiting Exoplanet Survey Satellite around bright stars. We expect it also will be possible to place constraints on the atmospheric characteristics of those planets by devising observational strategies to minimize scintillation noise.

  14. Estimating atmospheric visibility using synergy of MODIS data and ground-based observations

    Science.gov (United States)

    Komeilian, H.; Mohyeddin Bateni, S.; Xu, T.; Nielson, J.

    2015-05-01

    Dust events are intricate climatic processes, which can have adverse effects on human health, safety, and the environment. In this study, two data mining approaches, namely, back-propagation artificial neural network (BP ANN) and supporting vector regression (SVR), were used to estimate atmospheric visibility through the synergistic use of Moderate Resolution Imaging Spectroradiometer (MODIS) Level 1B (L1B) data and ground-based observations at fourteen stations in the province of Khuzestan (southwestern Iran), during 2009-2010. Reflectance and brightness temperature in different bands (from MODIS) along with in situ meteorological data were input to the models to estimate atmospheric visibility. The results show that both models can accurately estimate atmospheric visibility. The visibility estimates from the BP ANN network had a root-mean-square error (RMSE) and Pearson's correlation coefficient (R) of 0.67 and 0.69, respectively. The corresponding RMSE and R from the SVR model were 0.59 and 0.71, implying that the SVR approach outperforms the BP ANN.

  15. Spent coffee grounds-based activated carbon preparation for sequestering of malachite green

    Science.gov (United States)

    Lim, Jun-Wei; Lam, Keat-Ying; Bashir, Mohammed J. K.; Yeong, Yin-Fong; Lam, Man-Kee; Ho, Yeek-Chia

    2016-11-01

    The key of reported work was to optimize the fabricating factors of spent coffee grounds-based activated carbon (SCG-bAC) used to sequester Malachite Green (MG) form aqueous solution via adsorption process. The fabricating factors of impregnation ratio with ortho-phosphoric acid, activation temperature and activation time were simultaneously optimized by central composite design (CCD) of response surface methodology (RSM) targeting on maximum removal of MG. At the optimum condition, 96.3% of MG was successfully removed by SCG-bAC at the impregnation ratio with ortho-phosphoric acid of 0.50, activation temperature of 554°C and activation time of 31.4 min. Statistical model that could predict the MG removal percentage was also derived and had been statistically confirmed to be significant. Subsequently, the MG adsorption equilibrium data was found well-fitted to Langmuir isotherm model, indicating the predominance of monolayer adsorption of MG on SCG-bAC surface. To conclude, the findings from the this study unveil the potential of spent coffee grounds as an alternative precursor in fabricating low-cost AC for the treatment of wastewater loaded with MG pollutant.

  16. Remote sensing of Sonoran Desert vegetation structure and phenology with ground-based LiDAR

    Science.gov (United States)

    Sankey, Joel B.; Munson, Seth M.; Webb, Robert H.; Wallace, Cynthia S.A.; Duran, Cesar M.

    2015-01-01

    Long-term vegetation monitoring efforts have become increasingly important for understanding ecosystem response to global change. Many traditional methods for monitoring can be infrequent and limited in scope. Ground-based LiDAR is one remote sensing method that offers a clear advancement to monitor vegetation dynamics at high spatial and temporal resolution. We determined the effectiveness of LiDAR to detect intra-annual variability in vegetation structure at a long-term Sonoran Desert monitoring plot dominated by cacti, deciduous and evergreen shrubs. Monthly repeat LiDAR scans of perennial plant canopies over the course of one year had high precision. LiDAR measurements of canopy height and area were accurate with respect to total station survey measurements of individual plants. We found an increase in the number of LiDAR vegetation returns following the wet North American Monsoon season. This intra-annual variability in vegetation structure detected by LiDAR was attributable to a drought deciduous shrub Ambrosia deltoidea, whereas the evergreen shrub Larrea tridentata and cactus Opuntia engelmannii had low variability. Benefits of using LiDAR over traditional methods to census desert plants are more rapid, consistent, and cost-effective data acquisition in a high-resolution, 3-dimensional context. We conclude that repeat LiDAR measurements can be an effective method for documenting ecosystem response to desert climatology and drought over short time intervals and at detailed-local spatial scale.

  17. A ground-based optical transmission spectrum of WASP-6b

    International Nuclear Information System (INIS)

    Jordán, Andrés; Espinoza, Néstor; Rabus, Markus; Eyheramendy, Susana; Sing, David K.; Désert, Jean-Michel; Bakos, Gáspár Á.; Fortney, Jonathan J.; López-Morales, Mercedes; Szentgyorgyi, Andrew; Maxted, Pierre F. L.; Triaud, Amaury H. M. J.

    2013-01-01

    We present a ground-based optical transmission spectrum of the inflated sub-Jupiter-mass planet WASP-6b. The spectrum was measured in 20 spectral channels from 480 nm to 860 nm using a series of 91 spectra over a complete transit event. The observations were carried out using multi-object differential spectrophotometry with the Inamori-Magellan Areal Camera and Spectrograph on the Baade Telescope at Las Campanas Observatory. We model systematic effects on the observed light curves using principal component analysis on the comparison stars and allow for the presence of short and long memory correlation structure in our Monte Carlo Markov Chain analysis of the transit light curves for WASP-6. The measured transmission spectrum presents a general trend of decreasing apparent planetary size with wavelength and lacks evidence for broad spectral features of Na and K predicted by clear atmosphere models. The spectrum is consistent with that expected for scattering that is more efficient in the blue, as could be caused by hazes or condensates in the atmosphere of WASP-6b. WASP-6b therefore appears to be yet another massive exoplanet with evidence for a mostly featureless transmission spectrum, underscoring the importance that hazes and condensates can have in determining the transmission spectra of exoplanets.

  18. Mobile Ground-Based Radar Sensor for Localization and Mapping: An Evaluation of two Approaches

    Directory of Open Access Journals (Sweden)

    Damien Vivet

    2013-08-01

    Full Text Available This paper is concerned with robotic applications using a ground-based radar sensor for simultaneous localization and mapping problems. In mobile robotics, radar technology is interesting because of its long range and the robustness of radar waves to atmospheric conditions, making these sensors well-suited for extended outdoor robotic applications. Two localization and mapping approaches using data obtained from a 360° field of view microwave radar sensor are presented and compared. The first method is a trajectory-oriented simultaneous localization and mapping technique, which makes no landmark assumptions and avoids the data association problem. The estimation of the ego-motion makes use of the Fourier-Mellin transform for registering radar images in a sequence, from which the rotation and translation of the sensor motion can be estimated. The second approach uses the consequence of using a rotating range sensor in high speed robotics. In such a situation, movement combinations create distortions in the collected data. Velocimetry is achieved here by explicitly analysing these measurement distortions. As a result, the trajectory of the vehicle and then the radar map of outdoor environments can be obtained. The evaluation of experimental results obtained by the two methods is presented on real-world data from a vehicle moving at 30 km/h over a 2.5 km course.

  19. Suitability assessment of OPC UA as the backbone of ground-based observatory control systems

    International Nuclear Information System (INIS)

    Pessemier, W.; Raskin, G.; Van Winckel, H.; Deconinck, G.; Saey, P.

    2012-01-01

    A common requirement of modern observatory control systems is to allow interaction between various heterogeneous subsystems in a transparent way. However, the integration of off-the-shelf (OTS) industrial products - such as Programmable Logic Controllers (PLCs) and Supervisory Control And Data Acquisition (SCADA) software - has long been hampered by the lack of an adequate interfacing method. With the advent of the Unified Architecture (UA) version of OPC (Object Linking and Embedding for Process Control), the limitations of the original industry accepted interface are now lifted, and also much more functionality has been defined. In this paper the most important features of OPC UA are matched against the requirements of ground-based observatory control systems in general and in particular of the 1.2 m Mercator Telescope. We investigate the opportunities of the 'information modelling' idea behind OPC UA, which could allow an extensive standardization in the field of astronomical instrumentation, similar to the efforts emerging in several industry domains. Because OPC UA is designed for both horizontal and vertical integration of heterogeneous subsystems, we explore its capabilities to serve as the backbone of a dependable and scalable observatory control system, treating industrial components like PLCs no differently than custom software components. Performance measurements and tests with a sample of OTS OPC UA products are presented. (authors)

  20. Remote sensing of the lightning heating effect duration with ground-based microwave radiometer

    Science.gov (United States)

    Jiang, Sulin; Pan, Yun; Lei, Lianfa; Ma, Lina; Li, Qing; Wang, Zhenhui

    2018-06-01

    Artificially triggered lightning events from May 26, 2017 to July 16, 2017 in Guangzhou Field Experiment Site for Lightning Research and Test (GFESL) were intentionally remotely sensed with a ground-based microwave radiometer for the first time in order to obtain the features of lightning heating effect. The microwave radiometer antenna was adjusted to point at a certain elevation angle towards the expected artificially triggered lightning discharging path. Eight of the 16 successfully artificially triggered lightning events were captured and the brightness temperature data at four frequencies in K and V bands were obtained. The results from data time series analysis show that artificially triggered lightning can make the radiometer generate brightness temperature pulses, and the amplitudes of these pulses are in the range of 2.0 K to 73.8 K. The brightness temperature pulses associated with 7 events can be used to estimate the duration of lightning heating effect through accounting the number of the pulses in the continuous pulse sequence and the sampling interval between four frequencies. The maximum duration of the lightning heating effect is 1.13 s, the minimum is 0.172 s, and the average is 0.63 s.

  1. Ground-based grasslands data to support remote sensing and ecosystem modeling of terrestrial primary production

    Science.gov (United States)

    Olson, R. J.; Scurlock, J. M. O.; Turner, R. S.; Jennings, S. V.

    1995-01-01

    Estimating terrestrial net primary production (NPP) using remote-sensing tools and ecosystem models requires adequate ground-based measurements for calibration, parameterization, and validation. These data needs were strongly endorsed at a recent meeting of ecosystem modelers organized by the International Geosphere-Biosphere Program's (IGBP's) Data and Information System (DIS) and its Global Analysis, Interpretation, and Modelling (GAIM) Task Force. To meet these needs, a multinational, multiagency project is being coordinated by the IGBP DIS to compile existing NPP data from field sites and to regionalize NPP point estimates to various-sized grid cells. Progress at Oak Ridge National Laboratory (ORNL) on compiling NPP data for grasslands as part of the IGBP DIS data initiative is described. Site data and associated documentation from diverse field studies are being acquired for selected grasslands and are being reviewed for completeness, consistency, and adequacy of documentation, including a description of sampling methods. Data are being compiled in a database with spatial, temporal, and thematic characteristics relevant to remote sensing and global modeling. NPP data are available from the ORNL Distributed Active Archive Center (DAAC) for biogeochemical dynamics. The ORNL DAAC is part of the Earth Observing System Data and Information System, of the US National Aeronautics and Space Administration.

  2. Monitoring geospace disturbances through coordinated space-borne and ground-based magnetometer observations

    Science.gov (United States)

    Balasis, Georgios

    2014-05-01

    Recently automated methods of deriving the characteristics of ultra low frequency (ULF) waves in the magnetosphere have been developed (Balasis et al., 2012, 2013), which can be effectively applied to the huge datasets from the new ESA Swarm mission, in order to retrieve, on an operational basis, new information about the near-Earth electromagnetic environment. Processing Swarm measurements with these methods will help to elucidate the processes influencing the generation and propagation of ULF waves, which in turn play a crucial role in magnetospheric dynamics. Moreover, a useful platform based on a combination of wavelet transforms and artificial neural networks has been developed to monitor the wave evolution from the outer boundaries of Earth's magnetosphere through the topside ionosphere down to the surface. Data from a Low Earth Orbit (LEO) satellite (CHAMP) and two magnetospheric missions (Cluster and Geotail) along with three ground-based magnetic networks (CARISMA, GIMA and IMAGE), during the Halloween 2003 magnetic superstorm when the Cluster and CHAMP spacecraft were in good local time (LT) conjunction, are used to demonstrate the potential of the analysis technique in studying wave evolution in detail.

  3. New efforts using helicopter-borne and ground based electromagnetics for mineral exploration

    Science.gov (United States)

    Meyer, U.; Siemon, B.; Noell, U.; Gutzmer, J.; Spitzer, K.; Becken, M.

    2014-12-01

    Throughout the last decades mineral resources, especially rare earth elements, gained a steadily growing importance in industry and therefore as well in exploration. New targets for mineral investigations came into focus and known sources have been and will be revisited. Since most of the mining for mineral resources in the past took place in the upper hundred metres below surface new techniques made deeper mining economically feasible. Consequently, mining engineers need the best possible knowledge about the full spatial extent of prospective geological structures, including their maximum depths. Especially in Germany and Europe, politics changed in terms not to rely only on the global mineral trade market but on national resources, if available. BGR and partners therefore started research programs on different levels to evaluate and develop new technologies on environmental friendly, non-invasive spatial exploration using airborne and partly ground-based electromagnetic methods. Mining waste heaps have been explored for valuable residual minerals (research project ROBEHA), a promising tin bearing ore body is being explored by airborne electromagnetics (research project E3) and a new airborne technology is aimed at to be able to reach investigation depths of about 1 km (research project DESMEX). First results of the projects ROBEHA and E3 will be presented and the project layout of DESMEX will be discussed.

  4. Statistical retrieval of thin liquid cloud microphysical properties using ground-based infrared and microwave observations

    Science.gov (United States)

    Marke, Tobias; Ebell, Kerstin; Löhnert, Ulrich; Turner, David D.

    2016-12-01

    In this article, liquid water cloud microphysical properties are retrieved by a combination of microwave and infrared ground-based observations. Clouds containing liquid water are frequently occurring in most climate regimes and play a significant role in terms of interaction with radiation. Small perturbations in the amount of liquid water contained in the cloud can cause large variations in the radiative fluxes. This effect is enhanced for thin clouds (liquid water path, LWP cloud properties crucial. Due to large relative errors in retrieving low LWP values from observations in the microwave domain and a high sensitivity for infrared methods when the LWP is low, a synergistic retrieval based on a neural network approach is built to estimate both LWP and cloud effective radius (reff). These statistical retrievals can be applied without high computational demand but imply constraints like prior information on cloud phase and cloud layering. The neural network retrievals are able to retrieve LWP and reff for thin clouds with a mean relative error of 9% and 17%, respectively. This is demonstrated using synthetic observations of a microwave radiometer (MWR) and a spectrally highly resolved infrared interferometer. The accuracy and robustness of the synergistic retrievals is confirmed by a low bias in a radiative closure study for the downwelling shortwave flux, even for marginally invalid scenes. Also, broadband infrared radiance observations, in combination with the MWR, have the potential to retrieve LWP with a higher accuracy than a MWR-only retrieval.

  5. FINDING EXTRATERRESTRIAL LIFE USING GROUND-BASED HIGH-DISPERSION SPECTROSCOPY

    International Nuclear Information System (INIS)

    Snellen, I. A. G.; Le Poole, R.; Brogi, M.; Birkby, J.; De Kok, R. J.

    2013-01-01

    Exoplanet observations promise one day to unveil the presence of extraterrestrial life. Atmospheric compounds in strong chemical disequilibrium would point to large-scale biological activity just as oxygen and methane do in the Earth's atmosphere. The cancellation of both the Terrestrial Planet Finder and Darwin missions means that it is unlikely that a dedicated space telescope to search for biomarker gases in exoplanet atmospheres will be launched within the next 25 years. Here we show that ground-based telescopes provide a strong alternative for finding biomarkers in exoplanet atmospheres through transit observations. Recent results on hot Jupiters show the enormous potential of high-dispersion spectroscopy to separate the extraterrestrial and telluric signals, making use of the Doppler shift of the planet. The transmission signal of oxygen from an Earth-twin orbiting a small red dwarf star is only a factor of three smaller than that of carbon monoxide recently detected in the hot Jupiter τ Boötis b, albeit such a star will be orders of magnitude fainter. We show that if Earth-like planets are common, the planned extremely large telescopes can detect oxygen within a few dozen transits. Ultimately, large arrays of dedicated flux-collector telescopes equipped with high-dispersion spectrographs can provide the large collecting area needed to perform a statistical study of life-bearing planets in the solar neighborhood.

  6. Reaching for the stars - New developments in ground-based astronomy

    CERN Document Server

    CERN. Geneva

    2015-01-01

    I will briefly review the state-of-the-art in ground-based astronomy - both on the telescope side and the instrument side. Interesting parallels can be drawn in cost, construction and operations with the particle physics facilities. I will then present some recent results in the two hottest topics in astronomy, driving the requests for more advanced facilities: exoplanets and the hunt for life beyond the solar system (calling for Extremely Large Telescope); and cosmology and the understanding of dark energy (calling for large survey telescopes). This will lead to a description of the latest telescope project developments on the ground: the on-going construction of the Large Synoptic Telescope on a quest to better understand dark energy, and the start of the construction of three Extremely Large Telescopes by European and US-led international consortia, hoping to find life on planets around nearby stars.   ATS Seminars Organisers: H. Burkhardt (BE), M. Modena (TE), T. Stora (EN) Coffee / tea will ...

  7. The SPQR experiment: detecting damage to orbiting spacecraft with ground-based telescopes

    Science.gov (United States)

    Paolozzi, Antonio; Porfilio, Manfredi; Currie, Douglas G.; Dantowitz, Ronald F.

    2007-09-01

    The objective of the Specular Point-like Quick Reference (SPQR) experiment was to evaluate the possibility of improving the resolution of ground-based telescopic imaging of manned spacecraft in orbit. The concept was to reduce image distortions due to atmospheric turbulence by evaluating the Point Spread Function (PSF) of a point-like light reference and processing the spacecraft image accordingly. The target spacecraft was the International Space Station (ISS) and the point-like reference was provided by a laser beam emitted by the ground station and reflected back to the telescope by a Cube Corner Reflector (CCR) mounted on an ISS window. The ultimate objective of the experiment was to demonstrate that it is possible to image spacecraft in Low Earth Orbit (LEO) with a resolution of 20 cm, which would have probably been sufficient to detect the damage which caused the Columbia disaster. The experiment was successfully performed from March to May 2005. The paper provides an overview of the SPQR experiment.

  8. Ground-based grasslands data to support remote sensing and ecosystem modeling of terrestrial primary production

    Energy Technology Data Exchange (ETDEWEB)

    Olson, R.J.; Turner, R.S. [Oak Ridge National Lab., TN (United States); Scurlock, J.M.O. [King`s College London, (England); Jennings, S.V. [Tennessee Univ., Knoxville, TN (United States)

    1995-12-31

    Estimating terrestrial net primary production (NPP) using remote- sensing tools and ecosystem models requires adequate ground-based measurements for calibration, parameterization, and validation. These data needs were strongly endorsed at a recent meeting of ecosystem modelers organized by the International Geosphere-Biosphere Programme`s (IGBP`s) Data and Information System (DIS) and its Global Analysis, Interpretation, and Modelling (GAIM) Task Force. To meet these needs, a multinational, multiagency project is being coordinated by the IGBP DIS to compile existing NPP data from field sites and to regionalize NPP point estimates to various-sized grid cells. Progress at Oak Ridge National Laboratory (ORNL) on compiling NPP data for grasslands as part of the IGBP DIS data initiative is described. Site data and associated documentation from diverse field studies are being acquired for selected grasslands and are being reviewed for completeness, consistency, and adequacy of documentation, including a description of sampling methods. Data are being compiled in a database with spatial, temporal, and thematic characteristics relevant to remote sensing and global modeling. NPP data are available from the ORNL Distributed Active Archive Center (DAAC) for biogeochemical dynamics. The ORNL DAAC is part of the Earth Observing System Data and Information System, of the US National Aeronautics and Space Administration.

  9. Component design challenges for the ground-based SP-100 nuclear assembly test

    International Nuclear Information System (INIS)

    Markley, R.A.; Disney, R.K.; Brown, G.B.

    1989-01-01

    The SP-100 ground engineering system (GES) program involves a ground test of the nuclear subsystems to demonstrate their design. The GES nuclear assembly test (NAT) will be performed in a simulated space environment within a vessel maintained at ultrahigh vacuum. The NAT employs a radiation shielding system that is comprised of both prototypical and nonprototypical shield subsystems to attenuate the reactor radiation leakage and also nonprototypical heat transport subsystems to remove the heat generated by the reactor. The reactor is cooled by liquid lithium, which will operate at temperatures prototypical of the flight system. In designing the components for these systems, a number of design challenges were encountered in meeting the operational requirements of the simulated space environment (and where necessary, prototypical requirements) while also accommodating the restrictions of a ground-based test facility with its limited available space. This paper presents a discussion of the design challenges associated with the radiation shield subsystem components and key components of the heat transport systems

  10. Ground-based PIV and numerical flow visualization results from the Surface Tension Driven Convection Experiment

    Science.gov (United States)

    Pline, Alexander D.; Werner, Mark P.; Hsieh, Kwang-Chung

    1991-01-01

    The Surface Tension Driven Convection Experiment (STDCE) is a Space Transportation System flight experiment to study both transient and steady thermocapillary fluid flows aboard the United States Microgravity Laboratory-1 (USML-1) Spacelab mission planned for June, 1992. One of the components of data collected during the experiment is a video record of the flow field. This qualitative data is then quantified using an all electric, two dimensional Particle Image Velocimetry (PIV) technique called Particle Displacement Tracking (PDT), which uses a simple space domain particle tracking algorithm. Results using the ground based STDCE hardware, with a radiant flux heating mode, and the PDT system are compared to numerical solutions obtained by solving the axisymmetric Navier Stokes equations with a deformable free surface. The PDT technique is successful in producing a velocity vector field and corresponding stream function from the raw video data which satisfactorily represents the physical flow. A numerical program is used to compute the velocity field and corresponding stream function under identical conditions. Both the PDT system and numerical results were compared to a streak photograph, used as a benchmark, with good correlation.

  11. The emission function of ground-based light sources: State of the art and research challenges

    Science.gov (United States)

    Solano Lamphar, Héctor Antonio

    2018-05-01

    To understand the night sky radiance generated by the light emissions of urbanised areas, different researchers are currently proposing various theoretical approaches. The distribution of the radiant intensity as a function of the zenith angle is one of the most unknown properties on modelling skyglow. This is due to the collective effects of the artificial radiation emitted from the ground-based light sources. The emission function is a key property in characterising the sky brightness under arbitrary conditions, therefore it is required by modellers, environmental engineers, urban planners, light pollution researchers, and experimentalists who study the diffuse light of the night sky. As a matter of course, the emission function considers the public lighting system, which is in fact the main generator of the skyglow. Still, another class of light-emitting devices are gaining importance since their overuse and the urban sprawl of recent years. This paper will address the importance of the emission function in modelling skyglow and the factors involved in its characterization. On this subject, the author's intention is to organise, integrate, and evaluate previously published research in order to state the progress of current research toward clarifying this topic.

  12. Overview of diffraction gratings technologies for spaceflight satellites and ground-based telescopes

    Science.gov (United States)

    Cotel, A.; Liard, A.; Desserouer, F.; Pichon, P.

    2017-11-01

    The diffraction gratings are widely used in Space-flight satellites for spectrograph instruments or in ground-based telescopes in astronomy. The diffraction gratings are one of the key optical components of such systems and have to exhibit very high optical performances. HORIBA Jobin Yvon S.A.S. (part of HORIBA Group) is in the forefront of such gratings development for more than 40 years. During the past decades, HORIBA Jobin Yvon (HJY) has developed a unique expertise in diffraction grating design and manufacturing processes for holographic, ruled or etched gratings. We will present in this paper an overview of diffraction grating technologies especially designed for space and astronomy applications. We will firstly review the heritage of the company in this field with the space qualification of different grating types. Then, we will describe several key grating technologies developed for specific space or astronomy projects: ruled blazed low groove density plane reflection grating, high-groove density holographic toroidal and spherical grating, and finally transmission Fused Silica Etched (FSE) grism-assembled grating. We will not present the Volume Phase Holographic (VPHG) grating type which is used in Astronomy.

  13. Comparison of GOME tropospheric NO2 columns with NO2 profiles deduced from ground-based in situ measurements

    Science.gov (United States)

    Schaub, D.; Boersma, K. F.; Kaiser, J. W.; Weiss, A. K.; Folini, D.; Eskes, H. J.; Buchmann, B.

    2006-08-01

    Nitrogen dioxide (NO2) vertical tropospheric column densities (VTCs) retrieved from the Global Ozone Monitoring Experiment (GOME) are compared to coincident ground-based tropospheric NO2 columns. The ground-based columns are deduced from in situ measurements at different altitudes in the Alps for 1997 to June 2003, yielding a unique long-term comparison of GOME NO2 VTC data retrieved by a collaboration of KNMI (Royal Netherlands Meteorological Institute) and BIRA/IASB (Belgian Institute for Space Aeronomy) with independently derived tropospheric NO2 profiles. A first comparison relates the GOME retrieved tropospheric columns to the tropospheric columns obtained by integrating the ground-based NO2 measurements. For a second comparison, the tropospheric profiles constructed from the ground-based measurements are first multiplied with the averaging kernel (AK) of the GOME retrieval. The second approach makes the comparison independent from the a priori NO2 profile used in the GOME retrieval. This allows splitting the total difference between the column data sets into two contributions: one that is due to differences between the a priori and the ground-based NO2 profile shapes, and another that can be attributed to uncertainties in both the remaining retrieval parameters (such as, e.g., surface albedo or aerosol concentration) and the ground-based in situ NO2 profiles. For anticyclonic clear sky conditions the comparison indicates a good agreement between the columns (n=157, R=0.70/0.74 for the first/second comparison approach, respectively). The mean relative difference (with respect to the ground-based columns) is -7% with a standard deviation of 40% and GOME on average slightly underestimating the ground-based columns. Both data sets show a similar seasonal behaviour with a distinct maximum of spring NO2 VTCs. Further analysis indicates small GOME columns being systematically smaller than the ground-based ones. The influence of different shapes in the a priori and

  14. Comparison of GOME tropospheric NO2 columns with NO2 profiles deduced from ground-based in situ measurements

    Directory of Open Access Journals (Sweden)

    D. Schaub

    2006-01-01

    Full Text Available Nitrogen dioxide (NO2 vertical tropospheric column densities (VTCs retrieved from the Global Ozone Monitoring Experiment (GOME are compared to coincident ground-based tropospheric NO2 columns. The ground-based columns are deduced from in situ measurements at different altitudes in the Alps for 1997 to June 2003, yielding a unique long-term comparison of GOME NO2 VTC data retrieved by a collaboration of KNMI (Royal Netherlands Meteorological Institute and BIRA/IASB (Belgian Institute for Space Aeronomy with independently derived tropospheric NO2 profiles. A first comparison relates the GOME retrieved tropospheric columns to the tropospheric columns obtained by integrating the ground-based NO2 measurements. For a second comparison, the tropospheric profiles constructed from the ground-based measurements are first multiplied with the averaging kernel (AK of the GOME retrieval. The second approach makes the comparison independent from the a priori NO2 profile used in the GOME retrieval. This allows splitting the total difference between the column data sets into two contributions: one that is due to differences between the a priori and the ground-based NO2 profile shapes, and another that can be attributed to uncertainties in both the remaining retrieval parameters (such as, e.g., surface albedo or aerosol concentration and the ground-based in situ NO2 profiles. For anticyclonic clear sky conditions the comparison indicates a good agreement between the columns (n=157, R=0.70/0.74 for the first/second comparison approach, respectively. The mean relative difference (with respect to the ground-based columns is −7% with a standard deviation of 40% and GOME on average slightly underestimating the ground-based columns. Both data sets show a similar seasonal behaviour with a distinct maximum of spring NO2 VTCs. Further analysis indicates small GOME columns being systematically smaller than the ground-based ones. The influence of different shapes in the a

  15. Ground-Based Observations and Modeling of the Visibility and Radar Reflectivity in a Radiation Fog Layer

    NARCIS (Netherlands)

    Boers, R.; Baltink, K.H.; Hemink, H.J.; Bosveld, F.C.; Moerman, M.

    2013-01-01

    The development of a radiation fog layer at the Cabauw Experimental Site for Atmospheric Research(51.97°N, 4.93°E) on 23 March 2011 was observed with ground-based in situ and remote sensing observationsto investigate the relationship between visibility and radar reflectivity. The fog layer thickness

  16. Productivity and cost estimators for conventional ground-based skidding on steep terrain using preplanned skid roads

    Science.gov (United States)

    Michael D. Erickson; Curt C. Hassler; Chris B. LeDoux

    1991-01-01

    Continuous time and motion study techniques were used to develop productivity and cost estimators for the skidding component of ground-based logging systems, operating on steep terrain using preplanned skid roads. Comparisons of productivity and costs were analyzed for an overland random access skidding method, verses a skidding method utilizing a network of preplanned...

  17. Predicted buffer zones to protect temporary pond invertebrates from ground-based insecticide applications against desert locusts.

    NARCIS (Netherlands)

    Lahr, J.; Gadji, B.; Dia, D.

    2000-01-01

    To estimate safe downwind distances (i.e. buffer zone widths) for temporary ponds from ULV-treatments with current locust insecticides, experimental trials with two ground-based sprayers, the hand-held Micro-Ulva® and the vehicle-mounted Ulva-Mast® X15 Mark I, were conducted with fenitrothion

  18. Characteristics of Volcanic Stratospheric Aerosol Layer Observed by CALIOP and Ground Based Lidar at Equatorial Atmosphere Radar Site

    Science.gov (United States)

    Abo, Makoto; Shibata, Yasukuni; Nagasawa, Chikao

    2018-04-01

    We investigated the relation between major tropical volcanic eruptions in the equatorial region and the stratospheric aerosol data, which have been collected by the ground based lidar observations at at Equatorial Atmosphere Radar site between 2004 and 2015 and the CALIOP observations in low latitude between 2006 and 2015. We found characteristic dynamic behavior of volcanic stratospheric aerosol layers over equatorial region.

  19. Validation of GOME (ERS-2) NO2 vertical column data with ground-based measurements at Issyk-Kul (Kyrgyzstan)

    Science.gov (United States)

    Ionov, D.; Sinyakov, V.; Semenov, V.

    Starting from 1995 the global monitoring of atmospheric nitrogen dioxide is carried out by the measurements of nadir-viewing GOME spectrometer aboard ERS-2 satellite. Continuous validation of that data by means of comparisons with well-controlled ground-based measurements is important to ensure the quality of GOME data products and improve related retrieval algorithms. At the station of Issyk-Kul (Kyrgyzstan) the ground-based spectroscopic observations of NO2 vertical column have been started since 1983. The station is located on the northern shore of Issyk-Kul lake, 1650 meters above the sea level (42.6 N, 77.0 E). The site is equipped with grating spectrometer for the twilight measurements of zenith-scattered solar radiation in the visible range, and applies the DOAS technique to retrieve NO2 vertical column. It is included in the list of NDSC stations as a complementary one. The present study is focused on validation of GOME NO2 vertical column data, based on 8-year comparison with correlative ground-based measurements at Issyk-Kul station in 1996-2003. Within the investigation, an agreement of both individual and monthly averaged GOME measurements with corresponding twilight ground-based observations is examined. Such agreement is analyzed with respect to different conditions (season, sun elevation), temporal/spatial criteria choice (actual overpass location, correction for diurnal variation) and data processing (GDP version 2.7, 3.0). In addition, NO2 vertical columns were integrated from simultaneous stratospheric profile measurements by NASA HALOE and SAGE-II/III satellite instruments and introduced to explain the differences with ground-based observations. In particular cases, NO2 vertical profiles retrieved from the twilight ground-based measurements at Issuk-Kul were also included into comparison. Overall, summertime GOME NO2 vertical columns were found to be systematicaly lower than ground-based data. This work was supported by International Association

  20. Airborne and Ground-Based Measurements Using a High-Performance Raman Lidar

    Science.gov (United States)

    Whiteman, David N.; Rush, Kurt; Rabenhorst, Scott; Welch, Wayne; Cadirola, Martin; McIntire, Gerry; Russo, Felicita; Adam, Mariana; Venable, Demetrius; Connell, Rasheen; hide

    2010-01-01

    A high-performance Raman lidar operating in the UV portion of the spectrum has been used to acquire, for the first time using a single lidar, simultaneous airborne profiles of the water vapor mixing ratio, aerosol backscatter, aerosol extinction, aerosol depolarization and research mode measurements of cloud liquid water, cloud droplet radius, and number density. The Raman Airborne Spectroscopic Lidar (RASL) system was installed in a Beechcraft King Air B200 aircraft and was flown over the mid-Atlantic United States during July August 2007 at altitudes ranging between 5 and 8 km. During these flights, despite suboptimal laser performance and subaperture use of the telescope, all RASL measurement expectations were met, except that of aerosol extinction. Following the Water Vapor Validation Experiment Satellite/Sondes (WAVES_2007) field campaign in the summer of 2007, RASL was installed in a mobile trailer for groundbased use during the Measurements of Humidity and Validation Experiment (MOHAVE-II) field campaign held during October 2007 at the Jet Propulsion Laboratory s Table Mountain Facility in southern California. This ground-based configuration of the lidar hardware is called Atmospheric Lidar for Validation, Interagency Collaboration and Education (ALVICE). During theMOHAVE-II field campaign, during which only nighttime measurements were made, ALVICE demonstrated significant sensitivity to lower-stratospheric water vapor. Numerical simulation and comparisons with a cryogenic frost-point hygrometer are used to demonstrate that a system with the performance characteristics of RASL ALVICE should indeed be able to quantify water vapor well into the lower stratosphere with extended averaging from an elevated location like Table Mountain. The same design considerations that optimize Raman lidar for airborne use on a small research aircraft are, therefore, shown to yield significant dividends in the quantification of lower-stratospheric water vapor. The MOHAVE

  1. Ultraviolet radiation modelling from ground-based and satellite measurements on Reunion Island, southern tropics

    Directory of Open Access Journals (Sweden)

    K. Lamy

    2018-01-01

    Full Text Available Surface ultraviolet radiation (SUR is not an increasing concern after the implementation of the Montreal Protocol and the recovery of the ozone layer Morgenstern et al.(2008. However, large uncertainties remain in the prediction of future changes of SUR Bais et al.(2015. Several studies pointed out that UV-B impacts the biosphere Erickson et al.(2015, especially the aquatic system, which plays a central part in the biogeochemical cycle Hader et al.(2007. It can affect phytoplankton productivity Smith and Cullen(1995. This influence can result in either positive or negative feedback on climate (Zepp et al., 2007. Global circulation model simulations predict an acceleration of the Brewer-Dobson circulation over the next century (Butchart, 2014, which would lead to a decrease in ozone levels in the tropics and an enhancement at higher latitudes (Hegglin and Shepherd, 2009. Reunion Island is located in the tropics (21° S, 55° E, in a part of the world where the amount of ozone in the ozone column is naturally low. In addition, this island is mountainous and the marine atmosphere is often clean with low aerosol concentrations. Thus, measurements show much higher SUR than at other sites at the same latitude or at midlatitudes. Ground-based measurements of SUR have been taken on Reunion Island by a Bentham DTMc300 spectroradiometer since 2009. This instrument is affiliated with the Network for the Detection of Atmospheric Composition Change (NDACC. In order to quantify the future evolution of SUR in the tropics, it is necessary to validate a model against present observations. This study is designed to be a preliminary parametric and sensitivity study of SUR modelling in the tropics. We developed a local parameterisation using the Tropospheric Ultraviolet and Visible Model (TUV; Madronich, 1993 and compared the output of TUV to multiple years of Bentham spectral measurements. This comparison started in early 2009 and continued until 2016

  2. Preservation of Multiple Mammalian Tissues to Maximize Science Return from Ground Based and Spaceflight Experiments.

    Science.gov (United States)

    Choi, Sungshin; Ray, Hami E; Lai, San-Huei; Alwood, Joshua S; Globus, Ruth K

    2016-01-01

    Even with recent scientific advancements, challenges posed by limited resources and capabilities at the time of sample dissection continue to limit the collection of high quality tissues from experiments that can be conducted only infrequently and at high cost, such as in space. The resources and time it takes to harvest tissues post-euthanasia, and the methods and duration of long duration storage, potentially have negative impacts on sample quantity and quality, thereby limiting the scientific outcome that can be achieved. The goals of this study were to optimize methods for both sample recovery and science return from rodent experiments, with possible relevance to both ground based and spaceflight studies. The first objective was to determine the impacts of tissue harvest time post-euthanasia, preservation methods, and storage duration, focusing on RNA quality and enzyme activities in liver and spleen as indices of sample quality. The second objective was to develop methods that will maximize science return by dissecting multiple tissues after long duration storage in situ at -80°C. Tissues of C57Bl/6J mice were dissected and preserved at various time points post-euthanasia and stored at -80°C for up to 11 months. In some experiments, tissues were recovered from frozen carcasses which had been stored at -80°C up to 7 months. RNA quantity and quality was assessed by measuring RNA Integrity Number (RIN) values using an Agilent Bioanalyzer. Additionally, the quality of tissues was assessed by measuring activities of hepatic enzymes (catalase, glutathione reductase and GAPDH). Fresh tissues were collected up to one hour post-euthanasia, and stored up to 11 months at -80°C, with minimal adverse effects on the RNA quality of either livers or RNAlater-preserved spleens. Liver enzyme activities were similar to those of positive controls, with no significant effect observed at any time point. Tissues dissected from frozen carcasses that had been stored for up to 7

  3. Ultraviolet radiation modelling from ground-based and satellite measurements on Reunion Island, southern tropics

    Science.gov (United States)

    Lamy, Kévin; Portafaix, Thierry; Brogniez, Colette; Godin-Beekmann, Sophie; Bencherif, Hassan; Morel, Béatrice; Pazmino, Andrea; Metzger, Jean Marc; Auriol, Frédérique; Deroo, Christine; Duflot, Valentin; Goloub, Philippe; Long, Charles N.

    2018-01-01

    Surface ultraviolet radiation (SUR) is not an increasing concern after the implementation of the Montreal Protocol and the recovery of the ozone layer (Morgenstern et al., 2008). However, large uncertainties remain in the prediction of future changes of SUR (Bais et al., 2015). Several studies pointed out that UV-B impacts the biosphere (Erickson et al., 2015), especially the aquatic system, which plays a central part in the biogeochemical cycle (Hader et al., 2007). It can affect phytoplankton productivity (Smith and Cullen, 1995). This influence can result in either positive or negative feedback on climate (Zepp et al., 2007). Global circulation model simulations predict an acceleration of the Brewer-Dobson circulation over the next century (Butchart, 2014), which would lead to a decrease in ozone levels in the tropics and an enhancement at higher latitudes (Hegglin and Shepherd, 2009). Reunion Island is located in the tropics (21° S, 55° E), in a part of the world where the amount of ozone in the ozone column is naturally low. In addition, this island is mountainous and the marine atmosphere is often clean with low aerosol concentrations. Thus, measurements show much higher SUR than at other sites at the same latitude or at midlatitudes. Ground-based measurements of SUR have been taken on Reunion Island by a Bentham DTMc300 spectroradiometer since 2009. This instrument is affiliated with the Network for the Detection of Atmospheric Composition Change (NDACC). In order to quantify the future evolution of SUR in the tropics, it is necessary to validate a model against present observations. This study is designed to be a preliminary parametric and sensitivity study of SUR modelling in the tropics. We developed a local parameterisation using the Tropospheric Ultraviolet and Visible Model (TUV; Madronich, 1993) and compared the output of TUV to multiple years of Bentham spectral measurements. This comparison started in early 2009 and continued until 2016. Only

  4. Supporting a Diverse Community of Undergraduate Researchers in Satellite and Ground-Based Remote Sensing

    Science.gov (United States)

    Blake, R.; Liou-Mark, J.

    2012-12-01

    The U.S. remains in grave danger of losing its global competitive edge in STEM. To find solutions to this problem, the Obama Administration proposed two new national initiatives: the Educate to Innovate Initiative and the $100 million government/private industry initiative to train 100,000 STEM teachers and graduate 1 million additional STEM students over the next decade. To assist in ameliorating the national STEM plight, the New York City College of Technology has designed its NSF Research Experience for Undergraduate (REU) program in satellite and ground-based remote sensing to target underrepresented minority students. Since the inception of the program in 2008, a total of 45 undergraduate students of which 38 (84%) are considered underrepresented minorities in STEM have finished or are continuing with their research or are pursuing their STEM endeavors. The program is comprised of the three primary components. The first component, Structured Learning Environments: Preparation and Mentorship, provides the REU Scholars with the skill sets necessary for proficiency in satellite and ground-based remote sensing research. The students are offered mini-courses in Geographic Information Systems, MATLAB, and Remote Sensing. They also participate in workshops on the Ethics of Research. Each REU student is a member of a team that consists of faculty mentors, post doctorate/graduate students, and high school students. The second component, Student Support and Safety Nets, provides undergraduates a learning environment that supports them in becoming successful researchers. Special networking and Brown Bag sessions, and an annual picnic with research scientists are organized so that REU Scholars are provided with opportunities to expand their professional community. Graduate school support is provided by offering free Graduate Record Examination preparation courses and workshops on the graduate school application process. Additionally, students are supported by college

  5. Screening calculations for radioactive waste releases from non-nuclear facilities

    Energy Technology Data Exchange (ETDEWEB)

    Shulan Xu; Soederman, Ann-Louis

    2009-02-15

    A series of screening calculations have been performed to assess the potential radiological consequences of discharges of radioactive substances to the environment arising from waste from non-nuclear practices. Solid waste, as well as liquids that are not poured to the sewer, are incinerated and ashes from incineration and sludge from waste water treatment plants are disposed or reused at municipal disposal facilities. Airborne discharges refer to releases from an incineration facility and liquid discharges refer both to releases from hospitals and laboratories to the sewage system, as well as leakage from waste disposal facilities. The external exposure of workers is estimated both in the waste water treatment plant and at the disposal facility. The calculations follow the philosophy of the IAEA's safety guidance starting with a simple assessment based on very conservative assumptions which may be iteratively refined using progressively more complex models, with more realistic assumptions, as necessary. In the assessments of these types of disposal, with cautious assumptions, carried out in this report we conclude that the radiological impacts on representative individuals in the public are negligible in that they are small with respect to the target dose of 10 muSv/a. A Gaussian plume model was used to estimate the doses from airborne discharges from the incinerator and left a significant safety margin in the results considering the conservative assumptions in the calculations. For the sewage plant workers the realistic approach included a reduction in working hours and the shorter exposure time resulted in maximum doses around 10 muSv/a. The calculations for the waste disposal facility show that the doses are higher or in the range of the target dose. The excess for public exposure is mainly caused by H-3 and C-14. The assumption used in the calculation is that all of the radioactive substances sent to the incineration facility and waste water treatment

  6. PhotoSpec - Ground-based Remote Sensing of Solar-Induced Chlorophyll Fluorescence: First Results

    Science.gov (United States)

    Grossmann, K.; Magney, T. S.; Frankenberg, C.; Seibt, U.; Pivovaroff, A. L.; Hurlock, S. C.; Stutz, J.

    2016-12-01

    Solar-Induced Chlorophyll Fluorescence (SIF) emitted from vegetation can be used as a proxy for photosynthetic activity and is observable on a global scale from space. However, many issues on a leaf-to-canopy scale remain poorly understood, such as influences on the SIF signal from environmental conditions, water stress, or radiation. We have developed a novel ground-based spectrometer system for measuring SIF from natural ecosystems. The instrumental set-up, requirements, and measurement technique are based on decades of experience using Differential Optical Absorption Spectroscopy (DOAS), an established method to measure atmospheric trace gases. The instrument consists of three thermally stabilized commercial spectrometers that are linked to a 2D scanning telescope unit via optical fiber bundles, and also includes a commercial photosynthetic active radiation (PAR) sensor. The spectrometers cover a SIF retrieval wavelength range at high spectral resolution (670 - 780 nm, 0.1 nm FWHM), and also provide moderate resolution spectra (400 - 800 nm, 1.5 nm FWHM) to retrieve vegetation indices and the photochemical reflectance index (PRI). We report on results of the first continuous field measurements of this novel system at Stunt Ranch Santa Monica Mountains UC Reserve, where the PhotoSpec instrument was monitoring SIF of four native Californian shrubland species with different adaptations to seasonal summer drought. We report on the correlation with CO2 fluxes over both the growing season and the hot summer period in 2016. We also show detailed measurements of the diurnal cycle of the SIF signal of single broad leaves, as well as dark-light transitions, under controlled experimental conditions. In addition to demonstrating the instrumental set-up, retrieval algorithm, and instrument performance, our results illustrate that SIF measurements at the leaf to ecosystem scale are needed to understand and interpret the SIF signals retrieved at larger scales.

  7. Sounding rocket/ground-based observation campaign to study Medium-Scale Traveling Ionospheric Disturbances (MSTID)

    Science.gov (United States)

    Yamamoto, M.; Yokoyama, T.; Saito, A.; Otsuka, Y.; Yamamoto, M.; Abe, T.; Watanabe, S.; Ishisaka, K.; Saito, S.; Larsen, M.; Pfaff, R. F.; Bernhardt, P. A.

    2012-12-01

    An observation campaign is under preparation. It is to launch sounding rockets S-520-27 and S-310-42 from Uchinoura Space Center of JAXA while ground-based instruments measure waves in the ionosphere. It is scheduled in July/August 2013. The main purpose of the experiment is to reveal generation mechanism of Medium-Scale Traveling Ionospheric Disturbance (MSTID). The MSTID is the ionospheric wave with 1-2 hour periodicity, 100-200 km horizontal wavelength, and southwestward propagation. It is enhanced in the summer nighttime of the mid-latitude ionosphere. The MSTID is not only a simple atmospheric-wave modulation of the ionosphere, but shows similarity to characteristics of the Perkins instability. A problem is that growth rate of the Perkins instability is too small to explain the phenomena. We now hypothesize a generation mechanism that electromagnetic coupling of the F- and E-regions help rapid growth of the MSTID especially at its initial stage. In the observation campaign, we will use the sounding rocket S-520-27 for in-situ measurement of ionospheric parameters, i.e., electron density and electric fields. Wind velocity measurements in both F- and E-regions are very important as well. For the F-region winds, we will conduct Lithium-release experiment under the full-moon condition. This is a big technical challenge. Another rocket S-310-42 will be used for the E-region wind measurement with the TMA release. On the ground, we will use GEONET (Japanese vast GPS receiver network) to monitor horizontal distribution of GPS-TEC on the realtime bases. In the presentation we will show MSTID characteristics and the proposed generation mechanism, and discuss plan and current status of the project.

  8. The high-resolution extraterrestrial solar spectrum (QASUMEFTS determined from ground-based solar irradiance measurements

    Directory of Open Access Journals (Sweden)

    J. Gröbner

    2017-09-01

    Full Text Available A high-resolution extraterrestrial solar spectrum has been determined from ground-based measurements of direct solar spectral irradiance (SSI over the wavelength range from 300 to 500 nm using the Langley-plot technique. The measurements were obtained at the Izaña Atmospheric Research Centre from the Agencia Estatal de Meteorología, Tenerife, Spain, during the period 12 to 24 September 2016. This solar spectrum (QASUMEFTS was combined from medium-resolution (bandpass of 0.86 nm measurements of the QASUME (Quality Assurance of Spectral Ultraviolet Measurements in Europe spectroradiometer in the wavelength range from 300 to 500 nm and high-resolution measurements (0.025 nm from a Fourier transform spectroradiometer (FTS over the wavelength range from 305 to 380 nm. The Kitt Peak solar flux atlas was used to extend this high-resolution solar spectrum to 500 nm. The expanded uncertainties of this solar spectrum are 2 % between 310 and 500 nm and 4 % at 300 nm. The comparison of this solar spectrum with solar spectra measured in space (top of the atmosphere gave very good agreements in some cases, while in some other cases discrepancies of up to 5 % were observed. The QASUMEFTS solar spectrum represents a benchmark dataset with uncertainties lower than anything previously published. The metrological traceability of the measurements to the International System of Units (SI is assured by an unbroken chain of calibrations leading to the primary spectral irradiance standard of the Physikalisch-Technische Bundesanstalt in Germany.

  9. Method for validating cloud mask obtained from satellite measurements using ground-based sky camera.

    Science.gov (United States)

    Letu, Husi; Nagao, Takashi M; Nakajima, Takashi Y; Matsumae, Yoshiaki

    2014-11-01

    Error propagation in Earth's atmospheric, oceanic, and land surface parameters of the satellite products caused by misclassification of the cloud mask is a critical issue for improving the accuracy of satellite products. Thus, characterizing the accuracy of the cloud mask is important for investigating the influence of the cloud mask on satellite products. In this study, we proposed a method for validating multiwavelength satellite data derived cloud masks using ground-based sky camera (GSC) data. First, a cloud cover algorithm for GSC data has been developed using sky index and bright index. Then, Moderate Resolution Imaging Spectroradiometer (MODIS) satellite data derived cloud masks by two cloud-screening algorithms (i.e., MOD35 and CLAUDIA) were validated using the GSC cloud mask. The results indicate that MOD35 is likely to classify ambiguous pixels as "cloudy," whereas CLAUDIA is likely to classify them as "clear." Furthermore, the influence of error propagations caused by misclassification of the MOD35 and CLAUDIA cloud masks on MODIS derived reflectance, brightness temperature, and normalized difference vegetation index (NDVI) in clear and cloudy pixels was investigated using sky camera data. It shows that the influence of the error propagation by the MOD35 cloud mask on the MODIS derived monthly mean reflectance, brightness temperature, and NDVI for clear pixels is significantly smaller than for the CLAUDIA cloud mask; the influence of the error propagation by the CLAUDIA cloud mask on MODIS derived monthly mean cloud products for cloudy pixels is significantly smaller than that by the MOD35 cloud mask.

  10. Development and verification of ground-based tele-robotics operations concept for Dextre

    Science.gov (United States)

    Aziz, Sarmad

    2013-05-01

    The Special Purpose Dextreous Manipulator (Dextre) is the latest addition to the on-orbit segment of the Mobile Servicing System (MSS); Canada's contribution to the International Space Station (ISS). Launched in March 2008, the advanced two-armed robot is designed to perform various ISS maintenance tasks on robotically compatible elements and on-orbit replaceable units using a wide variety of tools and interfaces. The addition of Dextre has increased the capabilities of the MSS, and has introduced significant complexity to ISS robotics operations. While the initial operations concept for Dextre was based on human-in-the-loop control by the on-orbit astronauts, the complexities of robotic maintenance and the associated costs of training and maintaining the operator skills required for Dextre operations demanded a reexamination of the old concepts. A new approach to ISS robotic maintenance was developed in order to utilize the capabilities of Dextre safely and efficiently, while at the same time reducing the costs of on-orbit operations. This paper will describe the development, validation, and on-orbit demonstration of the operations concept for ground-based tele-robotics control of Dextre. It will describe the evolution of the new concepts from the experience gained from the development and implementation of the ground control capability for the Space Station Remote Manipulator System; Canadarm 2. It will discuss the various technical challenges faced during the development effort, such as requirements for high positioning accuracy, force/moment sensing and accommodation, failure tolerance, complex tool operations, and the novel operational tools and techniques developed to overcome them. The paper will also describe the work performed to validate the new concepts on orbit and will discuss the results and lessons learned from the on-orbit checkout and commissioning of Dextre using the newly developed tele-robotics techniques and capabilities.

  11. Ground-based remote sensing of tropospheric water vapour isotopologues within the project MUSICA

    Directory of Open Access Journals (Sweden)

    M. Schneider

    2012-12-01

    Full Text Available Within the project MUSICA (MUlti-platform remote Sensing of Isotopologues for investigating the Cycle of Atmospheric water, long-term tropospheric water vapour isotopologue data records are provided for ten globally distributed ground-based mid-infrared remote sensing stations of the NDACC (Network for the Detection of Atmospheric Composition Change. We present a new method allowing for an extensive and straightforward characterisation of the complex nature of such isotopologue remote sensing datasets. We demonstrate that the MUSICA humidity profiles are representative for most of the troposphere with a vertical resolution ranging from about 2 km (in the lower troposphere to 8 km (in the upper troposphere and with an estimated precision of better than 10%. We find that the sensitivity with respect to the isotopologue composition is limited to the lower and middle troposphere, whereby we estimate a precision of about 30‰ for the ratio between the two isotopologues HD16O and H216O. The measurement noise, the applied atmospheric temperature profiles, the uncertainty in the spectral baseline, and the cross-dependence on humidity are the leading error sources. We introduce an a posteriori correction method of the cross-dependence on humidity, and we recommend applying it to isotopologue ratio remote sensing datasets in general. In addition, we present mid-infrared CO2 retrievals and use them for demonstrating the MUSICA network-wide data consistency. In order to indicate the potential of long-term isotopologue remote sensing data if provided with a well-documented quality, we present a climatology and compare it to simulations of an isotope incorporated AGCM (Atmospheric General Circulation Model. We identify differences in the multi-year mean and seasonal cycles that significantly exceed the estimated errors, thereby indicating deficits in the modeled atmospheric water cycle.

  12. Ground-based remote sensing of tropospheric water vapour isotopologues within the project MUSICA

    Science.gov (United States)

    Schneider, M.; Barthlott, S.; Hase, F.; González, Y.; Yoshimura, K.; García, O. E.; Sepúlveda, E.; Gomez-Pelaez, A.; Gisi, M.; Kohlhepp, R.; Dohe, S.; Blumenstock, T.; Wiegele, A.; Christner, E.; Strong, K.; Weaver, D.; Palm, M.; Deutscher, N. M.; Warneke, T.; Notholt, J.; Lejeune, B.; Demoulin, P.; Jones, N.; Griffith, D. W. T.; Smale, D.; Robinson, J.

    2012-12-01

    Within the project MUSICA (MUlti-platform remote Sensing of Isotopologues for investigating the Cycle of Atmospheric water), long-term tropospheric water vapour isotopologue data records are provided for ten globally distributed ground-based mid-infrared remote sensing stations of the NDACC (Network for the Detection of Atmospheric Composition Change). We present a new method allowing for an extensive and straightforward characterisation of the complex nature of such isotopologue remote sensing datasets. We demonstrate that the MUSICA humidity profiles are representative for most of the troposphere with a vertical resolution ranging from about 2 km (in the lower troposphere) to 8 km (in the upper troposphere) and with an estimated precision of better than 10%. We find that the sensitivity with respect to the isotopologue composition is limited to the lower and middle troposphere, whereby we estimate a precision of about 30‰ for the ratio between the two isotopologues HD16O and H216O. The measurement noise, the applied atmospheric temperature profiles, the uncertainty in the spectral baseline, and the cross-dependence on humidity are the leading error sources. We introduce an a posteriori correction method of the cross-dependence on humidity, and we recommend applying it to isotopologue ratio remote sensing datasets in general. In addition, we present mid-infrared CO2 retrievals and use them for demonstrating the MUSICA network-wide data consistency. In order to indicate the potential of long-term isotopologue remote sensing data if provided with a well-documented quality, we present a climatology and compare it to simulations of an isotope incorporated AGCM (Atmospheric General Circulation Model). We identify differences in the multi-year mean and seasonal cycles that significantly exceed the estimated errors, thereby indicating deficits in the modeled atmospheric water cycle.

  13. Multiple ground-based and satellite observations of global Pi 2 magnetic pulsations

    International Nuclear Information System (INIS)

    Yumoto, K.; Takahashi, K.; Sakurai, T.; Sutcliffe, P.R.; Kokubun, S.; Luehr, H.; Saito, T.; Kuwashima, M.; Sato, N.

    1990-01-01

    Four Pi 2 magnetic pulsations, observed on the ground at L = 1.2-6.9 in the interval from 2,300 UT on May 22 to 0300 UT on May 23, 1985, provide new evidence of a global nature of Pi 2 pulsations in the inner (L approx-lt 7) region of the magnetosphere bounded by the plasma sheet during quiet geomagnetic conditions. In the present study, magnetic data have been collected from stations distributed widely both in local time and in latitude, including conjugate stations, and from the AMPTE/CCE spacecraft located in the magnetotail. On the basis of high time resolution magnetic field data, the following characteristics of Pi 2 have been established: horizontal components, H and D, of the Pi 2 oscillate nearly antiphase and in-phase, respectively, between the high- and low-altitude stations in the midnight southern hemisphere. Both the H and D components of the Pi 2 have nearly in-phase relationships between the nightside and the dayside stations at low latitude. The Pi 2 amplitude is larger at the high-latitude station and decreases toward lower latitudes. The dominant periods of the Pi 2 are nearly identical at all stations. Although a direct coincidence between spacecraft-observed and ground-based global Pi 2 events does not exist for these events, the Pi 2 events are believed to be a forced field line oscillation of global scale, coupled with the magnetospheric cavity resonance wave in the inner magnetosphere during the substorm expansive phase

  14. Coastal change analysis of Lovells Island using high resolution ground based LiDAR imagery

    Science.gov (United States)

    Ly, Jennifer K.

    Many methods have been employed to study coastline change. These methods range from historical map analysis to GPS surveys to modern airborne LiDAR and satellite imagery. These previously used methods can be time consuming, labor intensive, and expensive and have varying degrees of accuracy and temporal coverage. Additionally, it is often difficult to apply such techniques in direct response to an isolated event within an appropriate temporal framework. Here we utilize a new ground based Canopy Biomass LiDAR (CBL) system built at The University of Massachusetts Boston (in collaboration with the Rochester Institute of Technology) in order to identify and analyze coastal change on Lovells Island, Boston Harbor. Surveys of a bluff developing in an eroding drumlin and beach cusps on a high-energy cobble beach on Lovells Island were conducted in June, September and December of 2013. At each site for each survey, the CBL was set up and multiple scans of each feature were taken on a predetermined transect that was established parallel to the high-water mark at distances relative to the scale of the bluff and cusps. The scans from each feature were compiled, integrated and visualized using Meshlab. Results from our surveys indicate that the highly portable and easy to deploy CBL system produces images of exceptional clarity, with the capacity to resolve small-scale changes to coastal features and systems. The CBL, while still under development (and coastal surveying protocols with it are just being established), appears to be an ideal tool for analyzing coastal geological features and is anticipated to prove to be a useful tool for the observation and analysis of coastal change. Furthermore, there is significant potential for utilizing the low cost ultra-portable CBL in frequent deployments to develop small-scale erosion rate and sediment budget analyses.

  15. Characterization of Oribtal Debris via Hyper-Velocity Ground-Based Tests

    Science.gov (United States)

    Cowardin, H.

    2015-01-01

    Existing DoD and NASA satellite breakup models are based on a key laboratory-based test, Satellite Orbital debris Characterization Impact Test (SOCIT), which has supported many applications and matched on-orbit events involving older satellite designs reasonably well over the years. In order to update and improve the break-up models and the NASA Size Estimation Model (SEM) for events involving more modern satellite designs, the NASA Orbital Debris Program Office has worked in collaboration with the University of Florida to replicate a hypervelocity impact using a satellite built with modern-day spacecraft materials and construction techniques. The spacecraft, called DebriSat, was intended to be a representative of modern LEO satellites and all major designs decisions were reviewed and approved by subject matter experts at Aerospace Corporation. DebriSat is composed of 7 major subsystems including attitude determination and control system (ADCS), command and data handling (C&DH), electrical power system (EPS), payload, propulsion, telemetry tracking and command (TT&C), and thermal management. To reduce cost, most components are emulated based on existing design of flight hardware and fabricated with the same materials. All fragments down to 2 mm is size will be characterized via material, size, shape, bulk density, and the associated data will be stored in a database for multiple users to access. Laboratory radar and optical measurements will be performed on a subset of fragments to provide a better understanding of the data products from orbital debris acquired from ground-based radars and telescopes. The resulting data analysis from DebriSat will be used to update break-up models and develop the first optical SEM in conjunction with updates into the current NASA SEM. The characterization of the fragmentation will be discussed in the subsequent presentation.

  16. Solar energy prediction and verification using operational model forecasts and ground-based solar measurements

    International Nuclear Information System (INIS)

    Kosmopoulos, P.G.; Kazadzis, S.; Lagouvardos, K.; Kotroni, V.; Bais, A.

    2015-01-01

    The present study focuses on the predictions and verification of these predictions of solar energy using ground-based solar measurements from the Hellenic Network for Solar Energy and the National Observatory of Athens network, as well as solar radiation operational forecasts provided by the MM5 mesoscale model. The evaluation was carried out independently for the different networks, for two forecast horizons (1 and 2 days ahead), for the seasons of the year, for varying solar elevation, for the indicative energy potential of the area, and for four classes of cloud cover based on the calculated clearness index (k_t): CS (clear sky), SC (scattered clouds), BC (broken clouds) and OC (overcast). The seasonal dependence presented relative rRMSE (Root Mean Square Error) values ranging from 15% (summer) to 60% (winter), while the solar elevation dependence revealed a high effectiveness and reliability near local noon (rRMSE ∼30%). An increment of the errors with cloudiness was also observed. For CS with mean GHI (global horizontal irradiance) ∼ 650 W/m"2 the errors are 8%, for SC 20% and for BC and OC the errors were greater (>40%) but correspond to much lower radiation levels (<120 W/m"2) of consequently lower energy potential impact. The total energy potential for each ground station ranges from 1.5 to 1.9 MWh/m"2, while the mean monthly forecast error was found to be consistently below 10%. - Highlights: • Long term measurements at different atmospheric cases are needed for energy forecasting model evaluations. • The total energy potential at the Greek sites presented ranges from 1.5 to 1.9 MWh/m"2. • Mean monthly energy forecast errors are within 10% for all cases analyzed. • Cloud presence results of an additional forecast error that varies with the cloud cover.

  17. Satellite- and ground-based observations of atmospheric water vapor absorption in the 940 nm region

    International Nuclear Information System (INIS)

    Albert, P.; Smith, K.M.; Bennartz, R.; Newnham, D.A.; Fischer, J.

    2004-01-01

    Ground-based measurements of direct absorption of solar radiation between 9000 and 13,000 cm -1 (770-1100 nm) with a spectral resolution of 0.05 cm -1 are compared with line-by-line simulations of atmospheric absorption based on different molecular databases (HITRAN 2000, HITRAN 99, HITRAN 96 and ESA-WVR). Differences between measurements and simulations can be reduced to a great amount by scaling the individual line intensities with spectral and database dependent scaling factors. Scaling factors are calculated for the selected databases using a Marquardt non-linear least-squares fit together with a forward model for 100 cm -1 wide intervals between 10,150 and 11,250 cm -1 as well as for the water vapor absorption channels of the Medium Resolution Imaging Spectrometer (MERIS) onboard the European Space Agency's (ESA) ENVISAT platform and the Modular Optoelectronic Scanner (MOS) on the Indian IRSP-3 platform, developed by the German Aerospace Centre (DLR). For the latter, the scaling coefficients are converted into correction factors for retrieved total columnar water vapor content and used for a comparison of MOS-based retrievals of total columnar atmospheric water vapor above cloud-free land surfaces with radio soundings. The scaling factors determined for 100 cm -1 wide intervals range from 0.85 for the ESA-WVR molecular database to 1.15 for HITRAN 96. The best agreement between measurements and simulations is achieved with HITRAN 99 and HITRAN 2000, respectively, using scaling factors between 0.9 and 1. The effects on the satellite-based retrievals of columnar atmospheric water vapor range from 2% (HITRAN 2000) to 12% (ESA-WVR)

  18. Eight-component retrievals from ground-based MAX-DOAS observations

    Directory of Open Access Journals (Sweden)

    H. Irie

    2011-06-01

    Full Text Available We attempt for the first time to retrieve lower-tropospheric vertical profile information for 8 quantities from ground-based Multi-Axis Differential Optical Absorption Spectroscopy (MAX-DOAS observations. The components retrieved are the aerosol extinction coefficients at two wavelengths, 357 and 476 nm, and NO2, HCHO, CHOCHO, H2O, SO2, and O3 volume mixing ratios. A Japanese MAX-DOAS profile retrieval algorithm, version 1 (JM1, is applied to observations performed at Cabauw, the Netherlands (51.97° N, 4.93° E, in June–July 2009 during the Cabauw Intercomparison campaign of Nitrogen Dioxide measuring Instruments (CINDI. Of the retrieved profiles, we focus here on the lowest-layer data (mean values at altitudes 0–1 km, where the sensitivity is usually highest owing to the longest light path. In support of the capability of the multi-component retrievals, we find reasonable overall agreement with independent data sets, including a regional chemical transport model (CHIMERE and in situ observations performed near the surface (2–3 m and at the 200-m height level of the tall tower in Cabauw. Plumes of enhanced HCHO and SO2 were likely affected by biogenic and ship emissions, respectively, and an improvement in their emission strengths is suggested for better agreement between CHIMERE simulations and MAX-DOAS observations. Analysis of air mass factors indicates that the horizontal spatial representativeness of MAX-DOAS observations is about 3–15 km (depending mainly on aerosol extinction, comparable to or better than the spatial resolution of current UV-visible satellite observations and model calculations. These demonstrate that MAX-DOAS provides multi-component data useful for the evaluation of satellite observations and model calculations and can play an important role in bridging different data sets having different spatial resolutions.

  19. Simulation of submillimetre atmospheric spectra for characterising potential ground-based remote sensing observations

    Directory of Open Access Journals (Sweden)

    E. C. Turner

    2016-11-01

    Full Text Available The submillimetre is an understudied region of the Earth's atmospheric electromagnetic spectrum. Prior technological gaps and relatively high opacity due to the prevalence of rotational water vapour lines at these wavelengths have slowed progress from a ground-based remote sensing perspective; however, emerging superconducting detector technologies in the fields of astronomy offer the potential to address key atmospheric science challenges with new instrumental methods. A site study, with a focus on the polar regions, is performed to assess theoretical feasibility by simulating the downwelling (zenith angle = 0° clear-sky submillimetre spectrum from 30 mm (10 GHz to 150 µm (2000 GHz at six locations under annual mean, summer, winter, daytime, night-time and low-humidity conditions. Vertical profiles of temperature, pressure and 28 atmospheric gases are constructed by combining radiosonde, meteorological reanalysis and atmospheric chemistry model data. The sensitivity of the simulated spectra to the choice of water vapour continuum model and spectroscopic line database is explored. For the atmospheric trace species hypobromous acid (HOBr, hydrogen bromide (HBr, perhydroxyl radical (HO2 and nitrous oxide (N2O the emission lines producing the largest change in brightness temperature are identified. Signal strengths, centre frequencies, bandwidths, estimated minimum integration times and maximum receiver noise temperatures are determined for all cases. HOBr, HBr and HO2 produce brightness temperature peaks in the mK to µK range, whereas the N2O peaks are in the K range. The optimal submillimetre remote sensing lines for the four species are shown to vary significantly between location and scenario, strengthening the case for future hyperspectral instruments that measure over a broad wavelength range. The techniques presented here provide a framework that can be applied to additional species of interest and taken forward to simulate

  20. Investigation of ground-based microwave radiometer calibration techniques at 530 hPa

    Directory of Open Access Journals (Sweden)

    G. Maschwitz

    2013-10-01

    Full Text Available Ground-based microwave radiometers (MWR are becoming more and more common for remotely sensing the atmospheric temperature and humidity profile as well as path-integrated cloud liquid water content. The calibration accuracy of the state-of-the-art MWR HATPRO-G2 (Humidity And Temperature Profiler – Generation 2 was investigated during the second phase of the Radiative Heating in Underexplored Bands Campaign (RHUBC-II in northern Chile (5320 m above mean sea level, 530 hPa conducted by the Atmospheric Radiation Measurement (ARM program conducted between August and October 2009. This study assesses the quality of the two frequently used liquid nitrogen and tipping curve calibrations by performing a detailed error propagation study, which exploits the unique atmospheric conditions of RHUBC-II. Both methods are known to have open issues concerning systematic offsets and calibration repeatability. For the tipping curve calibration an uncertainty of ±0.1 to ±0.2 K (K-band and ±0.6 to ±0.7 K (V-band is found. The uncertainty in the tipping curve calibration is mainly due to atmospheric inhomogeneities and the assumed air mass correction for the Earth curvature. For the liquid nitrogen calibration the estimated uncertainty of ±0.3 to ±1.6 K is dominated by the uncertainty of the reflectivity of the liquid nitrogen target. A direct comparison between the two calibration techniques shows that for six of the nine channels that can be calibrated with both methods, they agree within the assessed uncertainties. For the other three channels the unexplained discrepancy is below 0.5 K. Systematic offsets, which may cause the disagreement of both methods within their estimated uncertainties, are discussed.

  1. Investigation of tropical cirrus cloud properties using ground based lidar measurements

    Science.gov (United States)

    Dhaman, Reji K.; Satyanarayana, Malladi; Krishnakumar, V.; Mahadevan Pillai, V. P.; Jayeshlal, G. S.; Raghunath, K.; Venkat Ratnam, M.

    2016-05-01

    Cirrus clouds play a significant role in the Earths radiation budget. Therefore, knowledge of geometrical and optical properties of cirrus cloud is essential for the climate modeling. In this paper, the cirrus clouds microphysical and optical properties are made by using a ground based lidar measurements over an inland tropical station Gadanki (13.5°N, 79.2°E), Andhra Pradesh, India. The variation of cirrus microphysical and optical properties with mid cloud temperature is also studied. The cirrus clouds mean height is generally observed in the range of 9-17km with a peak occurrence at 13- 14km. The cirrus mid cloud temperature ranges from -81°C to -46°C. The cirrus geometrical thickness ranges from 0.9- 4.5km. During the cirrus occurrence days sub-visual, thin and dense cirrus were at 37.5%, 50% and 12.5% respectively. The monthly cirrus optical depth ranges from 0.01-0.47, but most (<80%) of the cirrus have values less than 0.1. Optical depth shows a strong dependence with cirrus geometrical thickness and mid-cloud height. The monthly mean cirrus extinction ranges from 2.8E-06 to 8E-05 and depolarization ratio and lidar ratio varies from 0.13 to 0.77 and 2 to 52 sr respectively. A positive correlation exists for both optical depth and extinction with the mid-cloud temperature. The lidar ratio shows a scattered behavior with mid-cloud temperature.

  2. Spatio-temporal representativeness of ground-based downward solar radiation measurements

    Science.gov (United States)

    Schwarz, Matthias; Wild, Martin; Folini, Doris

    2017-04-01

    Surface solar radiation (SSR) is most directly observed with ground based pyranometer measurements. Besides measurement uncertainties, which arise from the pyranometer instrument itself, also errors attributed to the limited spatial representativeness of observations from single sites for their large-scale surrounding have to be taken into account when using such measurements for energy balance studies. In this study the spatial representativeness of 157 homogeneous European downward surface solar radiation time series from the Global Energy Balance Archive (GEBA) and the Baseline Surface Radiation Network (BSRN) were examined for the period 1983-2015 by using the high resolution (0.05°) surface solar radiation data set from the Satellite Application Facility on Climate Monitoring (CM-SAF SARAH) as a proxy for the spatiotemporal variability of SSR. By correlating deseasonalized monthly SSR time series form surface observations against single collocated satellite derived SSR time series, a mean spatial correlation pattern was calculated and validated against purely observational based patterns. Generally decreasing correlations with increasing distance from station, with high correlations (R2 = 0.7) in proximity to the observational sites (±0.5°), was found. When correlating surface observations against time series from spatially averaged satellite derived SSR data (and thereby simulating coarser and coarser grids), very high correspondence between sites and the collocated pixels has been found for pixel sizes up to several degrees. Moreover, special focus was put on the quantification of errors which arise in conjunction to spatial sampling when estimating the temporal variability and trends for a larger region from a single surface observation site. For 15-year trends on a 1° grid, errors due to spatial sampling in the order of half of the measurement uncertainty for monthly mean values were found.

  3. Weak-lensing detection of intracluster filaments with ground-based data

    Science.gov (United States)

    Maturi, Matteo; Merten, Julian

    2013-11-01

    According to the current standard model of cosmology, matter in the Universe arranges itself along a network of filamentary structure. These filaments connect the main nodes of this so-called "cosmic web", which are clusters of galaxies. Although its large-scale distribution is clearly characterized by numerical simulations, constraining the dark-matter content of the cosmic web in reality turns out to be difficult. The natural method of choice is gravitational lensing. However, the direct detection and mapping of the elusive filament signal is challenging and in this work we present two methods that are specifically tailored to achieve this task. A linear matched filter aims at detecting the smooth mass-component of filaments and is optimized to perform a shear decomposition that follows the anisotropic component of the lensing signal. Filaments clearly inherit this property due to their morphology. At the same time, the contamination arising from the central massive cluster is controlled in a natural way. The filament 1σ detection is of about κ ~ 0.01 - 0.005 according to the filter's template width and length, enabling the detection of structures beyond reach with other approaches. The second, complementary method seeks to detect the clumpy component of filaments. The detection is determined by the number density of subclump identifications in an area enclosing the potential filament, as was found within the observed field with the filter approach. We tested both methods against mocked observations based on realistic N-body simulations of filamentary structure and proved the feasibility of detecting filaments with ground-based data.

  4. Quantifying the effect of riming on snowfall using ground-based observations

    Science.gov (United States)

    Moisseev, Dmitri; von Lerber, Annakaisa; Tiira, Jussi

    2017-04-01

    Ground-based observations of ice particle size distribution and ensemble mean density are used to quantify the effect of riming on snowfall. The rime mass fraction is derived from these measurements by following the approach that is used in a single ice-phase category microphysical scheme proposed for the use in numerical weather prediction models. One of the characteristics of the proposed scheme is that the prefactor of a power law relation that links mass and size of ice particles is determined by the rime mass fraction, while the exponent does not change. To derive the rime mass fraction, a mass-dimensional relation representative of unrimed snow is also determined. To check the validity of the proposed retrieval method, the derived rime mass fraction is converted to the effective liquid water path that is compared to microwave radiometer observations. Since dual-polarization radar observations are often used to detect riming, the impact of riming on dual-polarization radar variables is studied for differential reflectivity measurements. It is shown that the relation between rime mass fraction and differential reflectivity is ambiguous, other factors such as change in median volume diameter need also be considered. Given the current interest on sensitivity of precipitation to aerosol pollution, which could inhibit riming, the importance of riming for surface snow accumulation is investigated. It is found that riming is responsible for 5% to 40% of snowfall mass. The study is based on data collected at the University of Helsinki field station in Hyytiälä during U.S. Department of Energy Biogenic Aerosols Effects on Clouds and Climate (BAECC) field campaign and the winter 2014/2015. In total 22 winter storms were analyzed, and detailed analysis of two events is presented to illustrate the study.

  5. Tentative detection of clear-air turbulence using a ground-based Rayleigh lidar.

    Science.gov (United States)

    Hauchecorne, Alain; Cot, Charles; Dalaudier, Francis; Porteneuve, Jacques; Gaudo, Thierry; Wilson, Richard; Cénac, Claire; Laqui, Christian; Keckhut, Philippe; Perrin, Jean-Marie; Dolfi, Agnès; Cézard, Nicolas; Lombard, Laurent; Besson, Claudine

    2016-05-01

    Atmospheric gravity waves and turbulence generate small-scale fluctuations of wind, pressure, density, and temperature in the atmosphere. These fluctuations represent a real hazard for commercial aircraft and are known by the generic name of clear-air turbulence (CAT). Numerical weather prediction models do not resolve CAT and therefore provide only a probability of occurrence. A ground-based Rayleigh lidar was designed and implemented to remotely detect and characterize the atmospheric variability induced by turbulence in vertical scales between 40 m and a few hundred meters. Field measurements were performed at Observatoire de Haute-Provence (OHP, France) on 8 December 2008 and 23 June 2009. The estimate of the mean squared amplitude of bidimensional fluctuations of lidar signal showed excess compared to the estimated contribution of the instrumental noise. This excess can be attributed to atmospheric turbulence with a 95% confidence level. During the first night, data from collocated stratosphere-troposphere (ST) radar were available. Altitudes of the turbulent layers detected by the lidar were roughly consistent with those of layers with enhanced radar echo. The derived values of turbulence parameters Cn2 or CT2 were in the range of those published in the literature using ST radar data. However, the detection was at the limit of the instrumental noise and additional measurement campaigns are highly desirable to confirm these initial results. This is to our knowledge the first successful attempt to detect CAT in the free troposphere using an incoherent Rayleigh lidar system. The built lidar device may serve as a test bed for the definition of embarked CAT detection lidar systems aboard airliners.

  6. Ground-based solar radio observations of the August 1972 events

    International Nuclear Information System (INIS)

    Bhonsle, R.V.; Degaonkar, S.S.; Alurkar, S.K.

    1976-01-01

    Ground-based observations of the variable solar radio emission ranging from few millimetres to decametres have been used here as a diagnostic tool to gain coherent phenomenological understanding of the great 2, 4 and 7 August, 1972 solar events in terms of dominant physical processes like generation and propagation of shock waves in the solar atmosphere, particle acceleration and trapping. Four major flares are selected for detailed analysis on the basis of their ability to produce energetic protons, shock waves, polar cap absorptions (PCA) and sudden commencement (SC) geomagnetic storms. A comparative study of their radio characteristics is made. Evidence is seen for the pulsations during microwave bursts by the mechanism similar to that proposed by McLean et al. (1971), to explain the pulsations in the metre wavelength continuum radiation. It is suggested that the multiple peaks observed in some microwave bursts may be attributable to individual flares occurring sequentially due to a single initiating flare. Attempts have been made to establish identification of Type II bursts with the interplanetary shock waves and SC geomagnetic storms. Furthermore, it is suggested that it is the mass behind the shock front which is the deciding factor for the detection of shock waves in the interplantary space. It appears that more work is necessary in order to identify which of the three moving Type IV bursts (Wild and Smerd, 1972), namely, advancing shock front, expanding magnetic arch and ejected plasma blob serves as the piston-driver behind the interplanetary shocks. The existing criteria for proton flare prediction have been summarized and two new criteria have been proposed. (Auth.)

  7. Exploring the Diversity of Exoplanet Atmospheres Using Ground-Based Transit Spectroscopy

    Science.gov (United States)

    Bean, Jacob

    This is a proposal to fund an observational study of the atmospheres of exoplanets in order to improve our understanding of the nature and origins of these mysterious worlds. The observations will be performed using our new approach for ground-based transit spectroscopy measurements that yields space-telescope quality data. We will also carry out supporting theoretical calculations with new abundance retrieval codes to interpret the measurements. Our project includes a survey of giant exoplanets, and intensive study of especially compelling exoplanets. For the survey, optical and near-infrared transmission spectra, and near-infrared emission spectra will be measured for giant exoplanets with a wide range of estimated temperatures, heavy element abundance, and mass. This comprehensive characterization of a large sample of these planets is now crucial to investigate such issues for their atmospheres as the carbon-to-oxygen ratios and overall metallicities, cause of thermal inversions, and prevalence and nature of high-altitude hazes. The intensive study of compelling individual planets will focus on low-mass (M spectroscopy, and leveraging its particular sensitivity to the atmospheric scale height. Observations for the project will be carried out with Magellan, Keck, Gemini, and VLT. The team has institutional access to Magellan and Keck, and a demonstrated record of obtaining time on Gemini and VLT for these observations through public channels. This proposal is highly relevant for current and future NASA projects. We are seeking to understand the diversity of exoplanets revealed by planet searches like Kepler and the Eta-Earth survey. Our observations will complement, extend, and provide context for similar observations with HST and Spitzer. We will investigate the fundamental nature of the closest kin to Earth-size exoplanets, and this is an important foundation that must be laid down before studying habitable planets with JWST and a future TPF-like mission.

  8. Subtropical and Polar Cirrus Clouds Characterized by Ground-Based Lidars and CALIPSO/CALIOP Observations

    Directory of Open Access Journals (Sweden)

    Córdoba-Jabonero Carmen

    2016-01-01

    Full Text Available Cirrus clouds are product of weather processes, and then their occurrence and macrophysical/optical properties can vary significantly over different regions of the world. Lidars can provide height-resolved measurements with a relatively good both vertical and temporal resolutions, making them the most suitable instrumentation for high-cloud observations. The aim of this work is to show the potential of lidar observations on Cirrus clouds detection in combination with a recently proposed methodology to retrieve the Cirrus clouds macrophysical and optical features. In this sense, a few case studies of cirrus clouds observed at both subtropical and polar latitudes are examined and compared to CALIPSO/CALIOP observations. Lidar measurements are carried out in two stations: the Metropolitan city of Sao Paulo (MSP, Brazil, 23.3°S 46.4°W, located at subtropical latitudes, and the Belgrano II base (BEL, Argentina, 78ºS 35ºW in the Antarctic continent. Optical (COD-cloud optical depth and LR-Lidar Ratio and macrophysical (top/base heights and thickness properties of both the subtropical and polar cirrus clouds are reported. In general, subtropical Cirrus clouds present lower LR values and are found at higher altitudes than those detected at polar latitudes. In general, Cirrus clouds are detected at similar altitudes by CALIOP. However, a poor agreement is achieved in the LR retrieved between ground-based lidars and space-borne CALIOP measurements, likely due to the use of a fixed (or low-variable LR value in CALIOP inversion procedures.

  9. Ground based interferometric radar initial look at Longview, Blue Springs, Tuttle Creek, and Milford Dams

    Science.gov (United States)

    Deng, Huazeng

    Measuring millimeter and smaller deformation has been demonstrated in the literature using RADAR. To address in part the limitations in current commercial satellite-based SAR datasets, a University of Missouri (MU) team worked with GAMMA Remote Sensing to develop a specialized (dual-frequency, polarimetric, and interferometric) ground-based real-aperture RADAR (GBIR) instrument. The GBIR device is portable with its tripod system and control electronics. It can be deployed to obtain data with high spatial resolution (i.e. on the order of 1 meter) and high temporal resolution (i.e. on the order 1 minute). The high temporal resolution is well suited for measurements of rapid deformation. From the same geodetic position, the GBIR may collect dual frequency data set using C-band and Ku-band. The overall goal of this project is to measure the deformation from various scenarios by applying the GBIR system. Initial efforts have been focusing on testing the system performance on different types of targets. This thesis details a number of my efforts on experimental and processing activities at the start of the MU GBIR imaging project. For improved close range capability, a wideband dual polarized antenna option was produced and tested. For GBIR calibration, several trihedral corner reflectors were designed and fabricated. In addition to experimental activities and site selection, I participated in advanced data processing activities. I processed GBIR data in several ways including single-look-complex (SLC) image generation, imagery registration, and interferometric processing. A number of initial-processed GBIR image products are presented from four dams: Longview, Blue Springs, Tuttle Creek, and Milford. Excellent imaging performance of the MU GBIR has been observed for various target types such as riprap, concrete, soil, rock, metal, and vegetation. Strong coherence of the test scene has been observed in the initial interferograms.

  10. Radiometric modeling and calibration of the Geostationary Imaging Fourier Transform Spectrometer (GIFTS) ground based measurement experiment

    Science.gov (United States)

    Tian, Jialin; Smith, William L.; Gazarik, Michael J.

    2008-12-01

    The ultimate remote sensing benefits of the high resolution Infrared radiance spectrometers will be realized with their geostationary satellite implementation in the form of imaging spectrometers. This will enable dynamic features of the atmosphere's thermodynamic fields and pollutant and greenhouse gas constituents to be observed for revolutionary improvements in weather forecasts and more accurate air quality and climate predictions. As an important step toward realizing this application objective, the Geostationary Imaging Fourier Transform Spectrometer (GIFTS) Engineering Demonstration Unit (EDU) was successfully developed under the NASA New Millennium Program, 2000-2006. The GIFTS-EDU instrument employs three focal plane arrays (FPAs), which gather measurements across the long-wave IR (LWIR), short/mid-wave IR (SMWIR), and visible spectral bands. The GIFTS calibration is achieved using internal blackbody calibration references at ambient (260 K) and hot (286 K) temperatures. In this paper, we introduce a refined calibration technique that utilizes Principle Component (PC) analysis to compensate for instrument distortions and artifacts, therefore, enhancing the absolute calibration accuracy. This method is applied to data collected during the GIFTS Ground Based Measurement (GBM) experiment, together with simultaneous observations by the accurately calibrated AERI (Atmospheric Emitted Radiance Interferometer), both simultaneously zenith viewing the sky through the same external scene mirror at ten-minute intervals throughout a cloudless day at Logan Utah on September 13, 2006. The accurately calibrated GIFTS radiances are produced using the first four PC scores in the GIFTS-AERI regression model. Temperature and moisture profiles retrieved from the PC-calibrated GIFTS radiances are verified against radiosonde measurements collected throughout the GIFTS sky measurement period. Using the GIFTS GBM calibration model, we compute the calibrated radiances from data

  11. SIRTA, a ground-based atmospheric observatory for cloud and aerosol research

    Directory of Open Access Journals (Sweden)

    M. Haeffelin

    2005-02-01

    Full Text Available Ground-based remote sensing observatories have a crucial role to play in providing data to improve our understanding of atmospheric processes, to test the performance of atmospheric models, and to develop new methods for future space-borne observations. Institut Pierre Simon Laplace, a French research institute in environmental sciences, created the Site Instrumental de Recherche par Télédétection Atmosphérique (SIRTA, an atmospheric observatory with these goals in mind. Today SIRTA, located 20km south of Paris, operates a suite a state-of-the-art active and passive remote sensing instruments dedicated to routine monitoring of cloud and aerosol properties, and key atmospheric parameters. Detailed description of the state of the atmospheric column is progressively archived and made accessible to the scientific community. This paper describes the SIRTA infrastructure and database, and provides an overview of the scientific research associated with the observatory. Researchers using SIRTA data conduct research on atmospheric processes involving complex interactions between clouds, aerosols and radiative and dynamic processes in the atmospheric column. Atmospheric modellers working with SIRTA observations develop new methods to test their models and innovative analyses to improve parametric representations of sub-grid processes that must be accounted for in the model. SIRTA provides the means to develop data interpretation tools for future active remote sensing missions in space (e.g. CloudSat and CALIPSO. SIRTA observation and research activities take place in networks of atmospheric observatories that allow scientists to access consistent data sets from diverse regions on the globe.

  12. The thin border between cloud and aerosol: Sensitivity of several ground based observation techniques

    Science.gov (United States)

    Calbó, Josep; Long, Charles N.; González, Josep-Abel; Augustine, John; McComiskey, Allison

    2017-11-01

    Cloud and aerosol are two manifestations of what it is essentially the same physical phenomenon: a suspension of particles in the air. The differences between the two come from the different composition (e.g., much higher amount of condensed water in particles constituting a cloud) and/or particle size, and also from the different number of such particles (10-10,000 particles per cubic centimeter depending on conditions). However, there exist situations in which the distinction is far from obvious, and even when broken or scattered clouds are present in the sky, the borders between cloud/not cloud are not always well defined, a transition area that has been coined as the ;twilight zone;. The current paper presents a discussion on the definition of cloud and aerosol, the need for distinguishing or for considering the continuum between the two, and suggests a quantification of the importance and frequency of such ambiguous situations, founded on several ground-based observing techniques. Specifically, sensitivity analyses are applied on sky camera images and broadband and spectral radiometric measurements taken at Girona (Spain) and Boulder (Co, USA). Results indicate that, at these sites, in more than 5% of the daytime hours the sky may be considered cloudless (but containing aerosols) or cloudy (with some kind of optically thin clouds) depending on the observing system and the thresholds applied. Similarly, at least 10% of the time the extension of scattered or broken clouds into clear areas is problematic to establish, and depends on where the limit is put between cloud and aerosol. These findings are relevant to both technical approaches for cloud screening and sky cover categorization algorithms and radiative transfer studies, given the different effect of clouds and aerosols (and the different treatment in models) on the Earth's radiation balance.

  13. Rates for parallax-shifted microlensing events from ground-based observations of the galactic bulge

    International Nuclear Information System (INIS)

    Buchalter, A.; Kamionkowski, M.

    1997-01-01

    The parallax effect in ground-based microlensing (ML) observations consists of a distortion to the standard ML light curve arising from the Earth's orbital motion. This can be used to partially remove the degeneracy among the system parameters in the event timescale, t 0 . In most cases, the resolution in current ML surveys is not accurate enough to observe this effect, but parallax could conceivably be detected with frequent follow-up observations of ML events in progress, providing the photometric errors are small enough. We calculate the expected fraction of ML events where the shape distortions will be observable by such follow-up observations, adopting Galactic models for the lens and source distributions that are consistent with observed microlensing timescale distributions. We study the dependence of the rates for parallax-shifted events on the frequency of follow-up observations and on the precision of the photometry. For example, we find that for hourly observations with typical photometric errors of 0.01 mag, 6% of events where the lens is in the bulge, and 31% of events where the lens is in the disk (or ∼10% of events overall), will give rise to a measurable parallax shift at the 95% confidence level. These fractions may be increased by improved photometric accuracy and increased sampling frequency. While long-duration events are favored, the surveys would be effective in picking out such distortions in events with timescales as low as t 0 ∼20 days. We study the dependence of these fractions on the assumed disk mass function and find that a higher parallax incidence is favored by mass functions with higher mean masses. Parallax measurements yield the reduced transverse speed, v, which gives both the relative transverse speed and lens mass as a function of distance. We give examples of the accuracies with which v may be measured in typical parallax events. (Abstract Truncated)

  14. Simultaneous and synergistic profiling of cloud and drizzle properties using ground-based observations

    Science.gov (United States)

    Rusli, Stephanie P.; Donovan, David P.; Russchenberg, Herman W. J.

    2017-12-01

    Despite the importance of radar reflectivity (Z) measurements in the retrieval of liquid water cloud properties, it remains nontrivial to interpret Z due to the possible presence of drizzle droplets within the clouds. So far, there has been no published work that utilizes Z to identify the presence of drizzle above the cloud base in an optimized and a physically consistent manner. In this work, we develop a retrieval technique that exploits the synergy of different remote sensing systems to carry out this task and to subsequently profile the microphysical properties of the cloud and drizzle in a unified framework. This is accomplished by using ground-based measurements of Z, lidar attenuated backscatter below as well as above the cloud base, and microwave brightness temperatures. Fast physical forward models coupled to cloud and drizzle structure parameterization are used in an optimal-estimation-type framework in order to retrieve the best estimate for the cloud and drizzle property profiles. The cloud retrieval is first evaluated using synthetic signals generated from large-eddy simulation (LES) output to verify the forward models used in the retrieval procedure and the vertical parameterization of the liquid water content (LWC). From this exercise it is found that, on average, the cloud properties can be retrieved within 5 % of the mean truth. The full cloud-drizzle retrieval method is then applied to a selected ACCEPT (Analysis of the Composition of Clouds with Extended Polarization Techniques) campaign dataset collected in Cabauw, the Netherlands. An assessment of the retrieval products is performed using three independent methods from the literature; each was specifically developed to retrieve only the cloud properties, the drizzle properties below the cloud base, or the drizzle fraction within the cloud. One-to-one comparisons, taking into account the uncertainties or limitations of each retrieval, show that our results are consistent with what is derived

  15. Confronting remote sensing product with ground base measurements across time and scale

    Science.gov (United States)

    Pourmokhtarian, A.; Dietze, M.

    2015-12-01

    Ecosystem models are essential tools in forecasting ecosystem responses to global climate change. One of the most challenging issues in ecosystem modeling is scaling while preserving landscape characteristics and minimizing loss of information, when moving from point observation to regional scale. There is a keen interest in providing accurate inputs for ecosystem models which represent ecosystem initial state conditions. Remote sensing land cover products, such as Landsat NLCD and MODIS MCD12Q1, provide extensive spatio-temporal coverage but do not capture forest composition and structure. Lidar and hyperspectral have the potential to meet this need but lack sufficient spatial and historical coverage. Forest inventory measurements provide detailed information on the landscape but in a very small footprint. Combining inventory and land cover could improve estimates of ecosystem state and characteristic across time and space. This study focuses on the challenges associated with fusing and scaling the US Forest Service FIA database and NLCD across regional scales to quantify ecosystem characteristics and reduce associated uncertainties. Across Southeast of U.S. 400 stratified random samples of 10x10 km2 landscapes were selected. Data on plant density, species, age, and DBH of trees in FIA plots within each site were extracted. Using allometry equations, the canopy cover of different plant functional types (PFTs) was estimated using a PPA-style canopy model and used to assign each inventory plot to a land cover class. Inventory and land cover were fused in a Bayesian model that adjusts the fractional coverage of inventory plots while accounting for multiple sources of uncertainty. Results were compared to estimates derived from inventory alone, land cover alone, and model spin-up alone. Our findings create a framework of data assimilation to better interpret remote sensing data using ground-based measurements.

  16. Validation of MOPITT carbon monoxide using ground-based Fourier transform infrared spectrometer data from NDACC

    Science.gov (United States)

    Buchholz, Rebecca R.; Deeter, Merritt N.; Worden, Helen M.; Gille, John; Edwards, David P.; Hannigan, James W.; Jones, Nicholas B.; Paton-Walsh, Clare; Griffith, David W. T.; Smale, Dan; Robinson, John; Strong, Kimberly; Conway, Stephanie; Sussmann, Ralf; Hase, Frank; Blumenstock, Thomas; Mahieu, Emmanuel; Langerock, Bavo

    2017-06-01

    The Measurements of Pollution in the Troposphere (MOPITT) satellite instrument provides the longest continuous dataset of carbon monoxide (CO) from space. We perform the first validation of MOPITT version 6 retrievals using total column CO measurements from ground-based remote-sensing Fourier transform infrared spectrometers (FTSs). Validation uses data recorded at 14 stations, that span a wide range of latitudes (80° N to 78° S), in the Network for the Detection of Atmospheric Composition Change (NDACC). MOPITT measurements are spatially co-located with each station, and different vertical sensitivities between instruments are accounted for by using MOPITT averaging kernels (AKs). All three MOPITT retrieval types are analyzed: thermal infrared (TIR-only), joint thermal and near infrared (TIR-NIR), and near infrared (NIR-only). Generally, MOPITT measurements overestimate CO relative to FTS measurements, but the bias is typically less than 10 %. Mean bias is 2.4 % for TIR-only, 5.1 % for TIR-NIR, and 6.5 % for NIR-only. The TIR-NIR and NIR-only products consistently produce a larger bias and lower correlation than the TIR-only. Validation performance of MOPITT for TIR-only and TIR-NIR retrievals over land or water scenes is equivalent. The four MOPITT detector element pixels are validated separately to account for their different uncertainty characteristics. Pixel 1 produces the highest standard deviation and lowest correlation for all three MOPITT products. However, for TIR-only and TIR-NIR, the error-weighted average that includes all four pixels often provides the best correlation, indicating compensating pixel biases and well-captured error characteristics. We find that MOPITT bias does not depend on latitude but rather is influenced by the proximity to rapidly changing atmospheric CO. MOPITT bias drift has been bound geographically to within ±0.5 % yr-1 or lower at almost all locations.

  17. Geocenter variations derived from a combined processing of LEO- and ground-based GPS observations

    Science.gov (United States)

    Männel, Benjamin; Rothacher, Markus

    2017-08-01

    GNSS observations provided by the global tracking network of the International GNSS Service (IGS, Dow et al. in J Geod 83(3):191-198, 2009) play an important role in the realization of a unique terrestrial reference frame that is accurate enough to allow a detailed monitoring of the Earth's system. Combining these ground-based data with GPS observations tracked by high-quality dual-frequency receivers on-board low earth orbiters (LEOs) is a promising way to further improve the realization of the terrestrial reference frame and the estimation of geocenter coordinates, GPS satellite orbits and Earth rotation parameters. To assess the scope of the improvement on the geocenter coordinates, we processed a network of 53 globally distributed and stable IGS stations together with four LEOs (GRACE-A, GRACE-B, OSTM/Jason-2 and GOCE) over a time interval of 3 years (2010-2012). To ensure fully consistent solutions, the zero-difference phase observations of the ground stations and LEOs were processed in a common least-squares adjustment, estimating all the relevant parameters such as GPS and LEO orbits, station coordinates, Earth rotation parameters and geocenter motion. We present the significant impact of the individual LEO and a combination of all four LEOs on the geocenter coordinates. The formal errors are reduced by around 20% due to the inclusion of one LEO into the ground-only solution, while in a solution with four LEOs LEO-specific characteristics are significantly reduced. We compare the derived geocenter coordinates w.r.t. LAGEOS results and external solutions based on GPS and SLR data. We found good agreement in the amplitudes of all components; however, the phases in x- and z-direction do not agree well.

  18. Characterizing GEO Titan IIIC Transtage Fragmentations Using Ground-based and Telescopic Measurements

    Science.gov (United States)

    Cowardin, H.; Anz-Meador, P.; Reyes, J. A.

    In a continued effort to better characterize the geosynchronous orbit (GEO) environment, NASA’s Orbital Debris Program Office (ODPO) utilizes various ground-based optical assets to acquire photometric and spectral data of known debris associated with fragmentations in or near GEO. The Titan IIIC Transtage upper stage is known to have fragmented four times. Two of the four fragmentations were in GEO while the Transtage fragmented a third time in GEO transfer orbit. The forth fragmentation occurred in low Earth orbit. To better assess and characterize these fragmentations, the NASA ODPO acquired a Titan Transtage test and display article previously in the custody of the 309th Aerospace Maintenance and Regeneration Group (AMARG) in Tucson, Arizona. After initial inspections at AMARG demonstrated that it was of sufficient fidelity to be of interest, the test article was brought to NASA Johnson Space Center (JSC) to continue material analysis and historical documentation. The Transtage has undergone two separate spectral measurement campaigns to characterize the reflectance spectroscopy of historical aerospace materials. These data have been incorporated into the NASA Spectral Database, with the goal of using telescopic data comparisons for potential material identification. A Light Detection and Ranging (LIDAR) system scan also has been completed and a scale model has been created for use in the Optical Measurement Center (OMC) for photometric analysis of an intact Transtage, including bidirectional reflectance distribution function (BRDF) measurements. An historical overview of the Titan IIIC Transtage, the current analysis that has been done to date, and the future work to be completed in support of characterizing the GEO and near GEO orbital debris environment will be discussed in the subsequent presentation.

  19. OGLE-2015-BLG-0196: GROUND-BASED GRAVITATIONAL MICROLENS PARALLAX CONFIRMED BY SPACE-BASED OBSERVATION

    Energy Technology Data Exchange (ETDEWEB)

    Han, C. [Department of Physics, Chungbuk National University, Cheongju 361-763 (Korea, Republic of); Udalski, A.; Szymański, M. K.; Soszyński, I.; Skowron, J.; Mróz, P.; Poleski, R.; Pietrukowicz, P.; Kozłowski, S.; Ulaczyk, K.; Pawlak, M. [Warsaw University Observatory, Al. Ujazdowskie 4, 00-478 Warszawa (Poland); Gould, A.; Zhu, Wei; Fausnaugh, M.; Gaudi, B. S. [Department of Astronomy, Ohio State University, 140 W. 18th Ave., Columbus, OH 43210 (United States); Yee, J. C. [Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138 (United States); Beichman, C. [NASA Exoplanet Science Institute, MS 100-22, California Institute of Technology, Pasadena, CA 91125 (United States); Novati, S. Calchi [Dipartimento di Fisica “E. R. Caianiello,” Uńiversitá di Salerno, Via Giovanni Paolo II, I-84084 Fisciano (Italy); Carey, S. [Spitzer Science Center, MS 220-6, California Institute of Technology, Pasadena, CA (United States); Bryden, C. [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Dr., Pasadena, CA 91109 (United States); Collaboration: OGLE Collaboration; Spitzer Microlensing Team; and others

    2017-01-01

    In this paper, we present an analysis of the binary gravitational microlensing event OGLE-2015-BLG-0196. The event lasted for almost a year, and the light curve exhibited significant deviations from the lensing model based on the rectilinear lens-source relative motion, enabling us to measure the microlens parallax. The ground-based microlens parallax is confirmed by the data obtained from space-based microlens observations using the Spitzer telescope. By additionally measuring the angular Einstein radius from the analysis of the resolved caustic crossing, the physical parameters of the lens are determined up to the twofold degeneracy, u {sub 0} < 0 and u {sub 0} > 0, solutions caused by the well-known “ecliptic” degeneracy. It is found that the binary lens is composed of two M dwarf stars with similar masses, M {sub 1} = 0.38 ± 0.04 M {sub ⊙} (0.50 ± 0.05 M {sub ⊙}) and M {sub 2} = 0.38 ± 0.04 M {sub ⊙} (0.55 ± 0.06 M {sub ⊙}), and the distance to the lens is D {sub L} = 2.77 ± 0.23 kpc (3.30 ± 0.29 kpc). Here the physical parameters outside and inside the parentheses are for the u {sub 0} < 0 and u {sub 0} > 0 solutions, respectively.

  20. Macrophysical and optical properties of midlatitude cirrus clouds from four ground-based lidars and collocated CALIOP observations

    Energy Technology Data Exchange (ETDEWEB)

    Dupont, Jean-Charles; Haeffelin, M.; Morille, Y.; Noel, V.; Keckhut, P.; Winker, D.; Comstock, Jennifer M.; Chervet, P.; Roblin, A.

    2010-05-27

    Ground-based lidar and CALIOP datasets gathered over four mid-latitude sites, two US and two French sites, are used to evaluate the consistency of cloud macrophysical and optical property climatologies that can be derived by such datasets. The consistency in average cloud height (both base and top height) between the CALIOP and ground datasets ranges from -0.4km to +0.5km. The cloud geometrical thickness distributions vary significantly between the different datasets, due in part to the original vertical resolutions of the lidar profiles. Average cloud geometrical thicknesses vary from 1.2 to 1.9km, i.e. by more than 50%. Cloud optical thickness distributions in subvisible, semi-transparent and moderate intervals differ by more than 50% between ground and space-based datasets. The cirrus clouds with 2 optical thickness below 0.1 (not included in historical cloud climatologies) represent 30-50% of the non-opaque cirrus class. The differences in average cloud base altitude between ground and CALIOP datasets of 0.0-0.1 km, 0.0-0.2 km and 0.0-0.2 km can be attributed to irregular sampling of seasonal variations in the ground-based data, to day-night differences in detection capabilities by CALIOP, and to the restriction to situations without low-level clouds in ground-based data, respectively. The cloud geometrical thicknesses are not affected by irregular sampling of seasonal variations in the ground-based data, while up to 0.0-0.2 km and 0.1-0.3 km differences can be attributed to day-night differences in detection capabilities by CALIOP, and to the restriction to situations without lowlevel clouds in ground-based data, respectively.

  1. Ground-based aerosol characterization during the South American Biomass Burning Analysis (SAMBBA field experiment

    Directory of Open Access Journals (Sweden)

    J. Brito

    2014-11-01

    Full Text Available This paper investigates the physical and chemical characteristics of aerosols at ground level at a site heavily impacted by biomass burning. The site is located near Porto Velho, Rondônia, in the southwestern part of the Brazilian Amazon rainforest, and was selected for the deployment of a large suite of instruments, among them an Aerosol Chemical Speciation Monitor. Our measurements were made during the South American Biomass Burning Analysis (SAMBBA field experiment, which consisted of a combination of aircraft and ground-based measurements over Brazil, aimed to investigate the impacts of biomass burning emissions on climate, air quality, and numerical weather prediction over South America. The campaign took place during the dry season and the transition to the wet season in September/October 2012. During most of the campaign, the site was impacted by regional biomass burning pollution (average CO mixing ratio of 0.6 ppm, occasionally superimposed by intense (up to 2 ppm of CO, freshly emitted biomass burning plumes. Aerosol number concentrations ranged from ~1000 cm−3 to peaks of up to 35 000 cm−3 (during biomass burning (BB events, corresponding to an average submicron mass mean concentrations of 13.7 μg m−3 and peak concentrations close to 100 μg m−3. Organic aerosol strongly dominated the submicron non-refractory composition, with an average concentration of 11.4 μg m−3. The inorganic species, NH4, SO4, NO3, and Cl, were observed, on average, at concentrations of 0.44, 0.34, 0.19, and 0.01 μg m−3, respectively. Equivalent black carbon (BCe ranged from 0.2 to 5.5 μg m−3, with an average concentration of 1.3 μg m−3. During BB peaks, organics accounted for over 90% of total mass (submicron non-refractory plus BCe, among the highest values described in the literature. We examined the ageing of biomass burning organic aerosol (BBOA using the changes in the H : C and O : C ratios, and found that throughout most of the

  2. An Overview of the Regulation of Low Dose Radiation in the Nuclear and Non-nuclear Industries

    International Nuclear Information System (INIS)

    Menon, Shankar; Valencia, Luis; Teunckens, Lucien

    2003-01-01

    Now that increasing numbers of nuclear power stations are reaching the end of their commercially useful lives, the management of the large quantities of very low level radioactive material that arises during their decommissioning has become a major subject of discussion, with very significant economic implications. Much of this material can, in an environmentally advantageous manner, be recycled for reuse without radiological restrictions. Much larger quantities--2-3 orders of magnitude larger--of material, radiologically similar to the candidate material for recycling from the nuclear industry, arise in non-nuclear industries like coal, fertilizer, oil and gas, mining, etc. In such industries, naturally occurring radioactivity is artificially concentrated in products, by-products or waste to form TENORM (Technologically Enhanced Naturally Occurring Radioactive Material). It is only in the last decade that the international community has become aware of the prevalence of TENORM, specially the activity levels and quantities arising in so many non-nuclear industries. The first reaction of international organizations seems to have been to propose different standards for the nuclear and non-nuclear industries, with very stringent release criteria for radioactive material from the regulated nuclear industry and up to thirty to a hundred times more liberal criteria for the release/exemption of TENORM from the as yet unregulated non-nuclear industries. There are significant strategic issues that need to be discussed and resolved. Some examples of these are: - Disposal aspects of long-lived nuclides, - The use of radioactive residues in building materials, - Commercial aspects of differing and discriminating criteria in competing power industries in a world of deregulated electric power production. Of even greater importance is the need for the discussion of certain basic issues, such as - The quantitative risk levels of exposure to ionizing radiation, - The need for in

  3. Suborbital Reusable Launch Vehicles as an Opportunity to Consolidate and Calibrate Ground Based and Satellite Instruments

    Science.gov (United States)

    Papadopoulos, K.

    2014-12-01

    XCOR Aerospace, a commercial space company, is planning to provide frequent, low cost access to near-Earth space on the Lynx suborbital Reusable Launch Vehicle (sRLV). Measurements in the external vacuum environment can be made and can launch from most runways on a limited lead time. Lynx can operate as a platform to perform suborbital in situ measurements and remote sensing to supplement models and simulations with new data points. These measurements can serve as a quantitative link to existing instruments and be used as a basis to calibrate detectors on spacecraft. Easier access to suborbital data can improve the longevity and cohesiveness of spacecraft and ground-based resources. A study of how these measurements can be made on Lynx sRLV will be presented. At the boundary between terrestrial and space weather, measurements from instruments on Lynx can help develop algorithms to optimize the consolidation of ground and satellite based data as well as assimilate global models with new data points. For example, current tides and the equatorial electrojet, essential to understanding the Thermosphere-Ionosphere system, can be measured in situ frequently and on short notice. Furthermore, a negative-ion spectrometer and a Faraday cup, can take measurements of the D-region ion composition. A differential GPS receiver can infer the spatial gradient of ionospheric electron density. Instruments and optics on spacecraft degrade over time, leading to calibration drift. Lynx can be a cost effective platform for deploying a reference instrument to calibrate satellites with a frequent and fast turnaround and a successful return of the instrument. A calibrated reference instrument on Lynx can make collocated observations as another instrument and corrections are made for the latter, thus ensuring data consistency and mission longevity. Aboard a sRLV, atmospheric conditions that distort remotely sensed data (ground and spacecraft based) can be measured in situ. Moreover, an

  4. Blowing snow detection in Antarctica, from space borne and ground-based remote sensing

    Science.gov (United States)

    Gossart, A.; Souverijns, N.; Lhermitte, S.; Lenaerts, J.; Gorodetskaya, I.; Schween, J. H.; Van Lipzig, N. P. M.

    2017-12-01

    Surface mass balance (SMB) strongly controls spatial and temporal variations in the Antarctic Ice Sheet (AIS) mass balance and its contribution to sea level rise. Currently, the scarcity of observational data and the challenges of climate modelling over the ice sheet limit our understanding of the processes controlling AIS SMB. Particularly, the impact of blowing snow on local SMB is not yet constrained and is subject to large uncertainties. To assess the impact of blowing snow on local SMB, we investigate the attenuated backscatter profiles from ceilometers at two East Antarctic locations in Dronning Maud Land. Ceilometers are robust ground-based remote sensing instruments that yield information on cloud base height and vertical structure, but also provide information on the particles present in the boundary layer. We developed a new algorithm to detect blowing snow (snow particles lifted by the wind from the surface to substantial height) from the ceilometer attenuated backscatter. The algorithm successfully allows to detect strong blowing snow signal from layers thicker than 15 m at the Princess Elisabeth (PE, (72°S, 23°E)) and Neumayer (70°S, 8° W) stations. Applying the algorithm to PE, we retrieve the frequency and annual cycle of blowing snow as well as discriminate between clear sky and overcast conditions during blowing snow. We further apply the blowing snow algorithm at PE to evaluate the blowing snow events detection by satellite imagery (Palm et al., 2011): the near-surface blowing snow layers are apparent in lidar backscatter profiles and enable snowdrift events detection (spatial and temporal frequency, height and optical depth). These data are processed from CALIPSO, at a high resolution (1x1 km digital elevation model). However, the remote sensing detection of blowing snow events by satellite is limited to layers of a minimal thickness of 20-30 m. In addition, thick clouds, mostly occurring during winter storms, can impede drifting snow

  5. Mesoscale ionospheric electrodynamics of omega bands determined from ground-based electromagnetic and satellite optical observations

    Directory of Open Access Journals (Sweden)

    O. Amm

    2005-02-01

    Full Text Available We present ground-based electromagnetic data from the MIRACLE and BEAR networks and satellite optical observations from the UVI and PIXIE instruments on the Polar satellite of an omega band event over Northern Scandinavia on 26 June 1998, which occured close to the morning side edge of a substorm auroral bulge. Our analysis of the data concentrates on one omega band period from 03:18-03:27 UT, for which we use the method of characteristics combined with an analysis of the UVI and PIXIE data to derive a time series of instantaneous, solely data-based distributions of the mesoscale ionospheric electrodynamic parameters with a 1-min time resolution. In addition, the AMIE method is used to derive global Hall conductance patterns. Our results show that zonally alternating regions of enhanced ionospheric conductances ("tongues" up to ~60S and low conductance regions are associated with the omega bands. The tongues have a poleward extension of ~400km from their base and a zonal extension of ~380km. While they are moving coherently eastward with a velocity of ~770ms-1, the structures are not strictly stationary. The current system of the omega band can be described as a superposition of two parts: one consists of anticlockwise rotating Hall currents around the tongues, along with Pedersen currents, with a negative divergence in their centers. The sign of this system is reversing in the low conductance areas. It causes the characteristic ground magnetic signature. The second part consists of zonally aligned current wedges of westward flowing Hall currents and is mostly magnetically invisible below the ionosphere. This system dominates the field-aligned current (FAC pattern and causes alternating upward and downward FAC at the flanks of the tongues with maximum upward FAC of ~25µA m-2. The total FAC of ~2MA are comparable to the ones diverted inside a westward traveling surge. Throughout the event, the overwhelming part of the FAC are associated with

  6. Mesoscale ionospheric electrodynamics of omega bands determined from ground-based electromagnetic and satellite optical observations

    Directory of Open Access Journals (Sweden)

    O. Amm

    2005-02-01

    Full Text Available We present ground-based electromagnetic data from the MIRACLE and BEAR networks and satellite optical observations from the UVI and PIXIE instruments on the Polar satellite of an omega band event over Northern Scandinavia on 26 June 1998, which occured close to the morning side edge of a substorm auroral bulge. Our analysis of the data concentrates on one omega band period from 03:18-03:27 UT, for which we use the method of characteristics combined with an analysis of the UVI and PIXIE data to derive a time series of instantaneous, solely data-based distributions of the mesoscale ionospheric electrodynamic parameters with a 1-min time resolution. In addition, the AMIE method is used to derive global Hall conductance patterns. Our results show that zonally alternating regions of enhanced ionospheric conductances ("tongues" up to ~60S and low conductance regions are associated with the omega bands. The tongues have a poleward extension of ~400km from their base and a zonal extension of ~380km. While they are moving coherently eastward with a velocity of ~770ms-1, the structures are not strictly stationary. The current system of the omega band can be described as a superposition of two parts: one consists of anticlockwise rotating Hall currents around the tongues, along with Pedersen currents, with a negative divergence in their centers. The sign of this system is reversing in the low conductance areas. It causes the characteristic ground magnetic signature. The second part consists of zonally aligned current wedges of westward flowing Hall currents and is mostly magnetically invisible below the ionosphere. This system dominates the field-aligned current (FAC pattern and causes alternating upward and downward FAC at the flanks of the tongues with maximum upward FAC of ~25µA m-2. The total FAC of ~2MA are comparable to the ones diverted inside a westward traveling surge. Throughout the event, the overwhelming part of the FAC

  7. Tropospheric nitrogen dioxide column retrieval based on ground-based zenith-sky DOAS observations

    Science.gov (United States)

    Tack, F. M.; Hendrick, F.; Pinardi, G.; Fayt, C.; Van Roozendael, M.

    2013-12-01

    A retrieval approach has been developed to derive tropospheric NO2 vertical column amounts from ground-based zenith-sky measurements of scattered sunlight. Zenith radiance spectra are observed in the visible range by the BIRA-IASB Multi-Axis Differential Optical Absorption Spectroscopy (MAX-DOAS) instrument and analyzed by the DOAS technique, based on a least-squares spectral fitting. In recent years, this technique has shown to be a well-suited remote sensing tool for monitoring atmospheric trace gases. The retrieval algorithm is developed and validated based on a two month dataset acquired from June to July 2009 in the framework of the Cabauw (51.97° N, 4.93° E) Intercomparison campaign for Nitrogen Dioxide measuring Instruments (CINDI). Once fully operational, the retrieval approach can be applied to observations from stations of the Network for the Detection of Atmospheric Composition Change (NDACC). The obtained tropospheric vertical column amounts are compared with the multi-axis retrieval from the BIRA-IASB MAX-DOAS instrument and the retrieval from a zenith-viewing only SAOZ instrument (Système d'Analyse par Observations Zénithales), owned by Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS). First results show a good agreement for the whole time series with the multi-axis retrieval (R = 0.82; y = 0.88x + 0.30) as well as with the SAOZ retrieval (R = 0.85; y = 0.76x + 0.28 ). Main error sources arise from the uncertainties in the determination of tropospheric and stratospheric air mass factors, the stratospheric NO2 abundances and the residual amount in the reference spectrum. However zenith-sky measurements have been commonly used over the last decades for stratospheric monitoring, this study also illustrates the suitability for retrieval of tropospheric column amounts. As there are long time series of zenith-sky acquisitions available, the developed approach offers new perspectives with regard to the use of observations from the NDACC

  8. Ground-based lidar and microwave radiometry synergy for high vertical resolution absolute humidity profiling

    Science.gov (United States)

    Barrera-Verdejo, María; Crewell, Susanne; Löhnert, Ulrich; Orlandi, Emiliano; Di Girolamo, Paolo

    2016-08-01

    Continuous monitoring of atmospheric humidity profiles is important for many applications, e.g., assessment of atmospheric stability and cloud formation. Nowadays there are a wide variety of ground-based sensors for atmospheric humidity profiling. Unfortunately there is no single instrument able to provide a measurement with complete vertical coverage, high vertical and temporal resolution and good performance under all weather conditions, simultaneously. For example, Raman lidar (RL) measurements can provide water vapor with a high vertical resolution, albeit with limited vertical coverage, due to sunlight contamination and the presence of clouds. Microwave radiometers (MWRs) receive water vapor information throughout the troposphere, though their vertical resolution is poor. In this work, we present an MWR and RL system synergy, which aims to overcome the specific sensor limitations. The retrieval algorithm combining these two instruments is an optimal estimation method (OEM), which allows for an uncertainty analysis of the retrieved profiles. The OEM combines measurements and a priori information, taking the uncertainty of both into account. The measurement vector consists of a set of MWR brightness temperatures and RL water vapor profiles. The method is applied to a 2-month field campaign around Jülich (Germany), focusing on clear sky periods. Different experiments are performed to analyze the improvements achieved via the synergy compared to the individual retrievals. When applying the combined retrieval, on average the theoretically determined absolute humidity uncertainty is reduced above the last usable lidar range by a factor of ˜ 2 with respect to the case where only RL measurements are used. The analysis in terms of degrees of freedom per signal reveal that most information is gained above the usable lidar range, especially important during daytime when the lidar vertical coverage is limited. The retrieved profiles are further evaluated using

  9. Comparing distinct ground-based lightning location networks covering the Netherlands

    Science.gov (United States)

    de Vos, Lotte; Leijnse, Hidde; Schmeits, Maurice; Beekhuis, Hans; Poelman, Dieter; Evers, Läslo; Smets, Pieter

    2015-04-01

    Lightning can be detected using a ground-based sensor network. The Royal Netherlands Meteorological Institute (KNMI) monitors lightning activity in the Netherlands with the so-called FLITS-system; a network combining SAFIR-type sensors. This makes use of Very High Frequency (VHF) as well as Low Frequency (LF) sensors. KNMI has recently decided to replace FLITS by data from a sub-continental network operated by Météorage which makes use of LF sensors only (KNMI Lightning Detection Network, or KLDN). KLDN is compared to the FLITS system, as well as Met Office's long-range Arrival Time Difference (ATDnet), which measures Very Low Frequency (VLF). Special focus lies on the ability to detect Cloud to Ground (CG) and Cloud to Cloud (CC) lightning in the Netherlands. Relative detection efficiency of individual flashes and lightning activity in a more general sense are calculated over a period of almost 5 years. Additionally, the detection efficiency of each system is compared to a ground-truth that is constructed from flashes that are detected by both of the other datasets. Finally, infrasound data is used as a fourth lightning data source for several case studies. Relative performance is found to vary strongly with location and time. As expected, it is found that FLITS detects significantly more CC lightning (because of the strong aptitude of VHF antennas to detect CC), though KLDN and ATDnet detect more CG lightning. We analyze statistics computed over the entire 5-year period, where we look at CG as well as total lightning (CC and CG combined). Statistics that are considered are the Probability of Detection (POD) and the so-called Lightning Activity Detection (LAD). POD is defined as the percentage of reference flashes the system detects compared to the total detections in the reference. LAD is defined as the fraction of system recordings of one or more flashes in predefined area boxes over a certain time period given the fact that the reference detects at least one

  10. Techniques For Near-Earth Interplanetary Matter Detection And Characterisation From Optical Ground-Based Observatories

    Science.gov (United States)

    Ocaña, Francisco

    2017-05-01

    PhD Thesis defended the 5th June 2017. Universidad Complutense de Madrid.This dissertation undertakes the research of the interplanetary matter near the Earth using two different observational approaches.The first one is based on the detection of the sunlight reflected by the bodies. The detection and characterisation of these nearby population require networks of medium-sized telescopes to survey and track them. We design a robotic system (the TBT telescopes) for the European Space Agency as a prototype for a future network. The first unit is already installed in Spain and we present the results of the commissioning. Additionally we evaluate the expected performance of such an instrument using a simulation with a synthetic population. We consider that the system designed is a powerful instrument for nearby asteroid discovery and tracking. It is based on commercial components, and therefore ready for a scalable implementation in a global network.Meanwhile the bodies smaller than asteroids are observed using the atmosphere as a detector. When these particles collide with the atmospheric molecules they are heated, ablated, sublimated, and finally light is emitted by these hot vapours, what we call meteors. We conduct the investigation of these meteors to study the meteoroids. In particular we address two different topics: On one hand we explore the size/mass frequency distribution of meteoroids using flux determination when the collide into the atmosphere. We develop a method to determine this flux using video observations of meteors and analyse the properties of meteors as an optical proxy to meteoroids in order to maximise the detection. It yields three ground-based observational solutions that we transform into instrumental designs. First we design and develop a meteor all-sky detection station for Observatorio UCM and use the Draconids 2011 campaign as a showcase for the flux determination, with successful results. Then we investigate the observation of meteors

  11. Characteristics of greenhouse gas concentrations derived from ground-based FTS spectra at Anmyeondo, South Korea

    Science.gov (United States)

    Oh, Young-Suk; Takele Kenea, S.; Goo, Tae-Young; Chung, Kyu-Sun; Rhee, Jae-Sang; Ou, Mi-Lim; Byun, Young-Hwa; Wennberg, Paul O.; Kiel, Matthäus; DiGangi, Joshua P.; Diskin, Glenn S.; Velazco, Voltaire A.; Griffith, David W. T.

    2018-04-01

    Since the late 1990s, the meteorological observatory established in Anmyeondo (36.5382° N, 126.3311° E, and 30 m above mean sea level) has been monitoring several greenhouse gases such as CO2, CH4, N2O, CFCs, and SF6 as a part of the Global Atmosphere Watch (GAW) Program. A high resolution ground-based (g-b) Fourier transform spectrometer (FTS) was installed at this observation site in 2013 and has been operated within the frame work of the Total Carbon Column Observing Network (TCCON) since August 2014. The solar spectra recorded by the g-b FTS cover the spectral range 3800 to 16 000 cm-1 at a resolution of 0.02 cm-1. In this work, the GGG2014 version of the TCCON standard retrieval algorithm was used to retrieve total column average CO2 and CH4 dry mole fractions (XCO2, XCH4) and from the FTS spectra. Spectral bands of CO2 (at 6220.0 and 6339.5 cm-1 center wavenumbers, CH4 at 6002 cm-1 wavenumber, and O2 near 7880 cm-1 ) were used to derive the XCO2 and XCH4. In this paper, we provide comparisons of XCO2 and XCH4 between the aircraft observations and g-b FTS over Anmyeondo station. A comparison of 13 coincident observations of XCO2 between g-b FTS and OCO-2 (Orbiting Carbon Observatory) satellite measurements are also presented for the measurement period between February 2014 and November 2017. OCO-2 observations are highly correlated with the g-b FTS measurements (r2 = 0.884) and exhibited a small positive bias (0.189 ppm). Both data set capture seasonal variations of the target species with maximum and minimum values in spring and late summer, respectively. In the future, it is planned to further utilize the FTS measurements for the evaluation of satellite observations such as Greenhouse Gases Observing Satellite (GOSAT, GOSAT-2). This is the first report of the g-b FTS observations of XCO2 species over the Anmyeondo station.

  12. Ground-Based Observations of Terrestrial Gamma Ray Flashes Associated with Downward-Directed Lightning Leaders

    Science.gov (United States)

    Belz, J.; Abbasi, R.; Krehbiel, P. R.; LeVon, R.; Remington, J.; Rison, W.; Thomas, R. J.

    2017-12-01

    Terrestrial Gamma Flashes (TGFs) have been observed in satellite-borne gamma ray detectors for several decades, starting with the BATSE instrument on the Compton Gamma-Ray observatory in 1994. TGFs consist of bursts of upwards of 1018 primary gamma rays, with a duration of up to a few milliseconds, originating in the Earth's atmosphere. More recent observations have shown that satellite-observed TGFs are generated in upward-propagating negative leaders of intracloud lightning, suggesting that they may be sensitive to the processes responsible for the initial lightning breakdown. Here, we present the first evidence that TGFs are also produced at the beginning of negative cloud-to-ground flashes, and that they may provide a new window through which ground-based observatories may contribute to understanding the breakdown process. The Telescope Array Surface Detector (TASD) is a 700 square kilometer cosmic ray observatory, an array of 507 3m2 scintillators on a 1.2 km grid. The array is triggered and read out when at least three adjacent detectors observe activity within an 8 μs window. Following the observation of bursts of anomalous TASD triggers, lasting a few hundred microseconds and correlated with local lightning activity, a Lightning Mapping Array (LMA) and slow electric field antenna were installed at the TASD site in order to study the effect. From data obtained between 2014 and 2016, correlated observations were obtained for ten -CG flashes. In 9 out of 10 cases, bursts of up to five anomalous triggers were detected during the first ms of the flash, as negative breakdown was descending into lower positive storm charge. The triggers occurred when the LMA-detected VHF radiation sources were at altitudes between 1.5 to 4.5 km AGL. The tenth flash was initiated by an unusually energetic leader that reached the ground in 2.5 ms and produced increasingly powerful triggers down to about 500 m AGL. While the TASD is not optimized for individual gamma ray detection

  13. Validation of the CrIS fast physical NH3 retrieval with ground-based FTIR

    Directory of Open Access Journals (Sweden)

    E. Dammers

    2017-07-01

    Full Text Available Presented here is the validation of the CrIS (Cross-track Infrared Sounder fast physical NH3 retrieval (CFPR column and profile measurements using ground-based Fourier transform infrared (FTIR observations. We use the total columns and profiles from seven FTIR sites in the Network for the Detection of Atmospheric Composition Change (NDACC to validate the satellite data products. The overall FTIR and CrIS total columns have a positive correlation of r  =  0.77 (N  =  218 with very little bias (a slope of 1.02. Binning the comparisons by total column amounts, for concentrations larger than 1.0  ×  1016 molecules cm−2, i.e. ranging from moderate to polluted conditions, the relative difference is on average ∼ 0–5 % with a standard deviation of 25–50 %, which is comparable to the estimated retrieval uncertainties in both CrIS and the FTIR. For the smallest total column range (< 1.0  × 1016 molecules cm−2 where there are a large number of observations at or near the CrIS noise level (detection limit the absolute differences between CrIS and the FTIR total columns show a slight positive column bias. The CrIS and FTIR profile comparison differences are mostly within the range of the single-level retrieved profile values from estimated retrieval uncertainties, showing average differences in the range of  ∼ 20 to 40 %. The CrIS retrievals typically show good vertical sensitivity down into the boundary layer which typically peaks at  ∼ 850 hPa (∼ 1.5 km. At this level the median absolute difference is 0.87 (std  =  ±0.08 ppb, corresponding to a median relative difference of 39 % (std  =  ±2 %. Most of the absolute and relative profile comparison differences are in the range of the estimated retrieval uncertainties. At the surface, where CrIS typically has lower sensitivity, it tends to overestimate in low-concentration conditions and underestimate

  14. An assessment of the performance of global rainfall estimates without ground-based observations

    Directory of Open Access Journals (Sweden)

    C. Massari

    2017-09-01

    Full Text Available Satellite-based rainfall estimates over land have great potential for a wide range of applications, but their validation is challenging due to the scarcity of ground-based observations of rainfall in many areas of the planet. Recent studies have suggested the use of triple collocation (TC to characterize uncertainties associated with rainfall estimates by using three collocated rainfall products. However, TC requires the simultaneous availability of three products with mutually uncorrelated errors, a requirement which is difficult to satisfy with current global precipitation data sets. In this study, a recently developed method for rainfall estimation from soil moisture observations, SM2RAIN, is demonstrated to facilitate the accurate application of TC within triplets containing two state-of-the-art satellite rainfall estimates and a reanalysis product. The validity of different TC assumptions are indirectly tested via a high-quality ground rainfall product over the contiguous United States (CONUS, showing that SM2RAIN can provide a truly independent source of rainfall accumulation information which uniquely satisfies the assumptions underlying TC. On this basis, TC is applied with SM2RAIN on a global scale in an optimal configuration to calculate, for the first time, reliable global correlations (vs. an unknown truth of the aforementioned products without using a ground benchmark data set. The analysis is carried out during the period 2007–2012 using daily rainfall accumulation products obtained at 1° × 1° spatial resolution. Results convey the relatively high performance of the satellite rainfall estimates in eastern North and South America, southern Africa, southern and eastern Asia, eastern Australia, and southern Europe, as well as complementary performances between the reanalysis product and SM2RAIN, with the first performing reasonably well in the Northern Hemisphere and the second providing very good performance in the Southern

  15. Reliability-centered maintenance for ground-based large optical telescopes and radio antenna arrays

    Science.gov (United States)

    Marchiori, G.; Formentin, F.; Rampini, F.

    2014-07-01

    In the last years, EIE GROUP has been more and more involved in large optical telescopes and radio antennas array projects. In this frame, the paper describes a fundamental aspect of the Logistic Support Analysis (LSA) process, that is the application of the Reliability-Centered Maintenance (RCM) methodology for the generation of maintenance plans for ground-based large optical telescopes and radio antennas arrays. This helps maintenance engineers to make sure that the telescopes continue to work properly, doing what their users require them to do in their present operating conditions. The main objective of the RCM process is to establish the complete maintenance regime, with the safe minimum required maintenance, carried out without any risk to personnel, telescope and subsystems. At the same time, a correct application of the RCM allows to increase the cost effectiveness, telescope uptime and items availability, and to provide greater understanding of the level of risk that the organization is managing. At the same time, engineers shall make a great effort since the initial phase of the project to obtain a telescope requiring easy maintenance activities and simple replacement of the major assemblies, taking special care on the accesses design and items location, implementation and design of special lifting equipment and handling devices for the heavy items. This maintenance engineering framework is based on seven points, which lead to the main steps of the RCM program. The initial steps of the RCM process consist of: system selection and data collection (MTBF, MTTR, etc.), definition of system boundaries and operating context, telescope description with the use of functional block diagrams, and the running of a FMECA to address the dominant causes of equipment failure and to lay down the Critical Items List. In the second part of the process the RCM logic is applied, which helps to determine the appropriate maintenance tasks for each identified failure mode. Once

  16. Detection of greenbug infestation on wheat using ground-based radiometry

    Science.gov (United States)

    Yang, Zhiming

    Scope of methods of study. The purpose of this greenhouse study was to characterize stress in wheat caused by greenbugs using ground-based radiometry. Experiments were conducted to (a) identify spectral bands and vegetation indices sensitive to greenbug infestation; (b) differentiate stress caused due to greenbugs from water stress; (c) examine the impacts of plant growth stage on detection of greenbug infestation; and (d) compare infestations due to greenbug and Russian wheat aphid. Wheat (variety-TAM 107) was planted (seed spacing 1 in. x 3 in.) in plastic flats with dimension 24 in. x 16 in. x 8.75 in. Fifteen days after sowing, wheat seedlings were infested with greenbugs (biotype-E). Nadir measurement of canopy reflectance started the day after infestation and lasted until most infested plants were dead. Using a 16-band Cropscan radiometer, spectral reflectance data were collected daily (between 13:00--14:00 hours) and 128 vegetation indices were derived in addition to greenbug counts per tiller. Using SAS PROC MIXED, sensitivity of band and vegetation indices was identified based on Threshold Day. Subsequent to Threshold Day there was a consistent significant spectral difference between control and infested plants. Sensitivity of band and vegetation indices was further examined using correlation and relative sensitivity analyses. Findings and conclusions. Results show that it is possible to detect greenbug-induced stress on wheat using hand-held radiometers, such as Cropscan. Band 694 nm and the ratio-based vegetation index (RVI) derived from the band 694 nm and 800 nm were identified as most sensitive to greenbug infestation. Landsat TM bands and their derived vegetation indices also show potential for detecting wheat stress caused by greenbug infestation. Also, RVIs particularly derived using spectral band 694 nm and 800 nm were found useful in differentiating greenbug infestation from water stress. Furthermore, vegetation indices such as Normalized total

  17. Characteristics of greenhouse gas concentrations derived from ground-based FTS spectra at Anmyeondo, South Korea

    Directory of Open Access Journals (Sweden)

    Y.-S. Oh

    2018-04-01

    Full Text Available Since the late 1990s, the meteorological observatory established in Anmyeondo (36.5382° N, 126.3311° E, and 30 m above mean sea level has been monitoring several greenhouse gases such as CO2, CH4, N2O, CFCs, and SF6 as a part of the Global Atmosphere Watch (GAW Program. A high resolution ground-based (g-b Fourier transform spectrometer (FTS was installed at this observation site in 2013 and has been operated within the frame work of the Total Carbon Column Observing Network (TCCON since August 2014. The solar spectra recorded by the g-b FTS cover the spectral range 3800 to 16 000 cm−1 at a resolution of 0.02 cm−1. In this work, the GGG2014 version of the TCCON standard retrieval algorithm was used to retrieve total column average CO2 and CH4 dry mole fractions (XCO2, XCH4 and from the FTS spectra. Spectral bands of CO2 (at 6220.0 and 6339.5 cm−1 center wavenumbers, CH4 at 6002 cm−1 wavenumber, and O2 near 7880 cm−1 were used to derive the XCO2 and XCH4. In this paper, we provide comparisons of XCO2 and XCH4 between the aircraft observations and g-b FTS over Anmyeondo station. A comparison of 13 coincident observations of XCO2 between g-b FTS and OCO-2 (Orbiting Carbon Observatory satellite measurements are also presented for the measurement period between February 2014 and November 2017. OCO-2 observations are highly correlated with the g-b FTS measurements (r2 = 0.884 and exhibited a small positive bias (0.189 ppm. Both data set capture seasonal variations of the target species with maximum and minimum values in spring and late summer, respectively. In the future, it is planned to further utilize the FTS measurements for the evaluation of satellite observations such as Greenhouse Gases Observing Satellite (GOSAT, GOSAT-2. This is the first report of the g-b FTS observations of XCO2 species over the Anmyeondo station.

  18. Characterization of large instabilities displacements using Ground-Based InSAR

    Science.gov (United States)

    Rouyet, L.; Kristensen, L.; Derron, M.-H.; Michoud, C.; Blikra, L. H.; Jaboyedoff, M.

    2012-04-01

    A master thesis in progress at the Lausanne University (IGAR) in cooperation with the Åknes/Tafjord Early Warning Centre in Norway aims to characterize various instabilities displacements using Ground-Based Interferometric Synthetic Aperture Radar system (GB-InSAR). The main goal is to evaluate the potential of GB-InSAR to determine displacement velocities and mechanical behaviours of several large rock instabilities in Norway. GB-InSAR data are processed and interpreted for three case studies. The first test site is the unstable complex area of Mannen located in the Romsdalen valley (Møre og Romsdal county), threatening infrastructures and potentially able to cause a debacle event downstream. Its total volume is estimated to 15-25 mill m3. Mannen instability is monitored permanently with GB-InSAR since February 2010 and shows displacements towards the radar up to -8 mm per month during the most sensitive period. Børa area located on the southwest side of Mannen instability shows also some signs of activity. It monitored temporarily between August and October 2011 and could help to understand the behaviour of Mannen site. The second, Indre Nordnes rockslide in Lyngenfjord (Troms county), is directly located above an important fjord in North Norway causing a significant risk of tsunami. The volume is estimated to be around 10-15 mill m3. The site was monitored temporarily between June and August 2011. The data show displacements towards the radar up to -12 mm in 2 weeks. The third case concerns rock falls along the road between Oppdølsstranda and Sunndalsøra (Møre og Romsdal county). Even if the volume of rock is less important than the first two cases, rock falls are an important problem for the road 70 underneath. Several campaigns are done between beginning of 2010 and end of 2011. In June 2011 an important rock fall occurs in an area where significant movements were previously detected by GB-InSAR. In order to understand the behaviour of these

  19. University centres of nuclear competence as TSO's in small non-nuclear countries

    International Nuclear Information System (INIS)

    Jovanovic, Slobodan

    2010-01-01

    Montenegro is small, developing 'non-nuclear' country, the use of radiation sources being modest and limited to ordinary medical and industrial applications. Even though - and taking into account current and near-future status of the field - there is (or will be) significant need in nuclear knowledge. It goes about the following areas: (i) medical applications (diagnostics, radiotherapy, palliation, sterilization of equipment, consumables, blood products, etc.), (ii) environmental protection (radioecology, low and medium activity radioactive waste management, analytical and monitoring services, etc.), (iii) industrial, geological, hydrological, agricultural, biochemical and archaeological applications (non-destructive testing, various gauges, radioisotope labeling, etc.), (iv) scientific and educational applications, (v) radiation protection, emphasizing safety and security of radiation sources, (vi) legislative and regulatory aspects, including complying to international safety/ security norms and joining international conventions in the field, (vii) preparedness and response to radiological and nuclear emergency situations, (viii) combating illicit trafficking of nuclear and radioactive materials, (ix) forensic applications, (x) security systems based on X-ray and other nuclear methods, (xi) introduction of some future topics (e.g. nuclear power for electricity generation and sea water desalination) and (xii) information and communication with media. At present, there is clear a shortage in NK in the country, resulting i.a. from long lasting poor interest of young students for the subject University of Montenegro - the only state university in the country - effectuates practically complete high education in natural and technical sciences. At the Faculty of Natural Sciences and Mathematics, Department of Physics, there is a basic education in nuclear physics, while some post-graduate curricula offer topics in radioecology, medical physics and radiation protection

  20. First retrievals of methane isotopologues from FTIR ground-based observations

    Science.gov (United States)

    Bader, Whitney; Strong, Kimberly; Walker, Kaley; Buzan, Eric

    2017-04-01

    Atmospheric methane concentrations have reached a new high at 1845 ± 2 ppb, accounting for an increase of 256 % since pre-industrial times (WMO, 2016). In the last ten years, methane has been on the rise again at rates of ˜0.3%/year (e.g., Bader et al., 2016), after a period of stabilization of about 5 years. This recent increase is not fully understood due to remaining uncertainties in the methane budget, influenced by numerous anthropogenic and natural emission sources. In order to examine the cause(s) of this increase, we focus on the two main methane isotopologues, i.e. CH3D and 13CH4. Both CH3D and 13CH4 are emitted in the atmosphere with different ratio depending on the emission processes involved. As heavier isotopologues will react more slowly than 12CH4, each isotopologue will be depleted from the atmosphere at a specific rate depending on the removal process. Methane isotopologues are therefore good tracers of the methane budget. In this contribution, the first development and optimization of the retrieval strategy of CH3D as well as the preliminary tests for 13CH4 will be presented and discussed , using FTIR (Fourier Transform infrared) solar spectra collected at the Eureka (80.05 ˚ N, -86.42 ˚ E, 610 m a.s.l.) and Toronto (43.66˚ N, -79.4˚ E, 174 m a.s.l.) ground-based sites. Mixing ratio vertical profiles from a Whole Atmosphere Community Climate Model (WACCM v.4, Marsh et al., 2013) simulation developed by Buzan et al. (2016) are used as a priori inputs. A discussion on the type of regularization constraints used for the retrievals will be presented as well as an evaluation of available spectroscopy (primarily the different editions of the HITRAN database, see Rothman et al., 2013 and references therein). The uncertainties affecting the retrieved columns as well as information content evaluation will be discussed in order to assess the best strategy to be employed based on its altitude sensitivity range and complete error budget. Acknowledgments

  1. Preliminary Assessment of Detection Efficiency for the Geostationary Lightning Mapper Using Intercomparisons with Ground-Based Systems

    Science.gov (United States)

    Bateman, Monte; Mach, Douglas; Blakeslee, Richard J.; Koshak, William

    2018-01-01

    As part of the calibration/validation (cal/val) effort for the Geostationary Lightning Mapper (GLM) on GOES-16, we need to assess instrument performance (detection efficiency and accuracy). One major effort is to calculate the detection efficiency of GLM by comparing to multiple ground-based systems. These comparisons will be done pair-wise between GLM and each other source. A complication in this process is that the ground-based systems sense different properties of the lightning signal than does GLM (e.g., RF vs. optical). Also, each system has a different time and space resolution and accuracy. Preliminary results indicate that GLM is performing at or above its specification.

  2. Satellite and ground-based sensors for the Urban Heat Island analysis in the city of Rome

    DEFF Research Database (Denmark)

    Fabrizi, Roberto; Bonafoni, Stefania; Biondi, Riccardo

    2010-01-01

    In this work, the trend of the Urban Heat Island (UHI) of Rome is analyzed by both ground-based weather stations and a satellite-based infrared sensor. First, we have developed a suitable algorithm employing satellite brightness temperatures for the estimation of the air temperature belonging...... and nighttime scenes taken between 2003 and 2006 have been processed. Analysis of the Canopy Layer Heat Island (CLHI) during summer months reveals a mean growth in magnitude of 3-4 K during nighttime and a negative or almost zero CLHI intensity during daytime, confirmed by the weather stations. © 2010...... by the authors; licensee MDPI, Basel, Switzerland. Keyword: Thermal pollution,Summer months,Advanced-along track scanning radiometers,Urban heat island,Remote sensing,Canopy layer,Atmospheric temperature,Ground based sensors,Weather information services,Satellite remote sensing,Infra-red sensor,Weather stations...

  3. TANGOO: A ground-based tilting-filter spectrometer for deriving the temperature in the mesopause region

    Science.gov (United States)

    Wildner, S.; Bittner, M.

    2009-04-01

    TANGOO (Tilting-filter spectrometer for Atmospheric Nocturnal Ground-based Oxygen & hydrOxyl emission measurements) is a passive, ground-based optical instrument for the purpose of a simultanously automatic long-term monitoring of OH(6-2) and O2 atm. Band (0-1) emissions (called "airglow"), yielding rotational temperatures in about 87 and 95 km, respectively. TANGOO, being a transportable and comparatively easy-to-use instrument, is the enhancement of the Argentine Airglow Spectrometer (Scheer, 1987) and shows significant improvements in the temporal resolution and throughput. It will be located on the German Enviromental Research Station "Schneefernerhaus", Zugspitze (47°,4 N, 11° E) and will start measurements in 2009. Objectives of TANGOO cover the analysis of dynamical processes such as gravity waves as well as the identification of climate signals. The observation method will be presented.

  4. Ground-based simulation of telepresence for materials science experiments. [remote viewing and control of processes aboard Space Station

    Science.gov (United States)

    Johnston, James C.; Rosenthal, Bruce N.; Bonner, Mary JO; Hahn, Richard C.; Herbach, Bruce

    1989-01-01

    A series of ground-based telepresence experiments have been performed to determine the minimum video frame rate and resolution required for the successive performance of materials science experiments in space. The approach used is to simulate transmission between earth and space station with transmission between laboratories on earth. The experiments include isothermal dendrite growth, physical vapor transport, and glass melting. Modifications of existing apparatus, software developed, and the establishment of an inhouse network are reviewed.

  5. Ground-Based Midcourse Defense (GMD) Initial Defensive Operations Capability (IDOC) at Vandenberg Air Force Base Environmental Assessment

    Science.gov (United States)

    2003-08-28

    Zielinski , EDAW, Inc., concerning utilities supply and demand for Vandenberg Air Force Base, 1 August. Rush, P., 2002. Personal communication between...Pernell W. Rush, Technical Sergeant, Water Utilities/Water Treatment NCO, USAF 30th CES/CEOIU, Vandenberg Air Force Base, and James E. Zielinski ... Dave Savinsky, Environmental Consultant, 30 CES/CEVC, Vandenberg Air Force Base, on the Preliminary Draft Ground-Based Midcourse Defense (GMD

  6. A comparison of ground-based hydroxyl airglow temperatures with SABER/TIMED measurements over 23° N, India

    Science.gov (United States)

    Parihar, Navin; Singh, Dupinder; Gurubaran, Subramanian

    2017-03-01

    Ground-based observations of OH (6, 2) Meinel band nightglow were carried out at Ranchi (23.3° N, 85.3° E), India, during January-March 2011, December 2011-May 2012 and December 2012-March 2013 using an all-sky imaging system. Near the mesopause, OH temperatures were derived from the OH (6, 2) Meinel band intensity information. A limited comparison of OH temperatures (TOH) with SABER/TIMED measurements in 30 cases was performed by defining almost coincident criterion of ±1.5° latitude-longitude and ±3 min of the ground-based observations. Using SABER OH 1.6 and 2.0 µm volume emission rate profiles as the weighing function, two sets of OH-equivalent temperature (T1. 6 and T2. 0 respectively) were estimated from its kinetic temperature profile for comparison with OH nightglow measurements. Overall, fair agreement existed between ground-based and SABER measurements in the majority of events within the limits of experimental errors. Overall, the mean value of OH-derived temperatures and SABER OH-equivalent temperatures were 197.3 ± 4.6, 192.0 ± 10.8 and 192.7 ± 10.3 K, and the ground-based temperatures were 4-5 K warmer than SABER values. A difference of 8 K or more is noted between two measurements when the peak of the OH emission layer lies in the vicinity of large temperature inversions. A comparison of OH temperatures derived using different sets of Einstein transition probabilities and SABER measurements was also performed; however, OH temperatures derived using Langhoff et al. (1986) transition probabilities were found to compare well.

  7. An In Depth Look at Lightning Trends in Hurricane Harvey using Satellite and Ground-Based Measurements

    Science.gov (United States)

    Ringhausen, J.

    2017-12-01

    This research combines satellite measurements of lightning in Hurricane Harvey with ground-based lightning measurements to get a better sense of the total lightning occurring in the hurricane, both intra-cloud (IC) and cloud-to-ground (CG), and how it relates to the intensification and weakening of the tropical system. Past studies have looked at lightning trends in hurricanes using the space based Lightning Imaging Sensor (LIS) or ground-based lightning detection networks. However, both of these methods have drawbacks. For instance, LIS was in low earth orbit, which limited lightning observations to 90 seconds for a particular point on the ground; hence, continuous lightning coverage of a hurricane was not possible. Ground-based networks can have a decreased detection efficiency, particularly for ICs, over oceans where hurricanes generally intensify. With the launch of the Geostationary Lightning Mapper (GLM) on the GOES-16 satellite, researchers can study total lightning continuously over the lifetime of a tropical cyclone. This study utilizes GLM to investigate total lightning activity in Hurricane Harvey temporally; this is augmented with spatial analysis relative to hurricane structure, similar to previous studies. Further, GLM and ground-based network data are combined using Bayesian techniques in a new manner to leverage the strengths of each detection method. This methodology 1) provides a more complete estimate of lightning activity and 2) enables the derivation of the IC:CG ratio (Z-ratio) throughout the time period of the study. In particular, details of the evolution of the Z-ratio in time and space are presented. In addition, lightning stroke spatiotemporal trends are compared to lightning flash trends. This research represents a new application of lightning data that can be used in future study of tropical cyclone intensification and weakening.

  8. Monitoring Strategies of Earth Dams by Ground-Based Radar Interferometry: How to Extract Useful Information for Seismic Risk Assessment.

    Science.gov (United States)

    Di Pasquale, Andrea; Nico, Giovanni; Pitullo, Alfredo; Prezioso, Giuseppina

    2018-01-16

    The aim of this paper is to describe how ground-based radar interferometry can provide displacement measurements of earth dam surfaces and of vibration frequencies of its main concrete infrastructures. In many cases, dams were built many decades ago and, at that time, were not equipped with in situ sensors embedded in the structure when they were built. Earth dams have scattering properties similar to landslides for which the Ground-Based Synthetic Aperture Radar (GBSAR) technique has been so far extensively applied to study ground displacements. In this work, SAR and Real Aperture Radar (RAR) configurations are used for the measurement of earth dam surface displacements and vibration frequencies of concrete structures, respectively. A methodology for the acquisition of SAR data and the rendering of results is described. The geometrical correction factor, needed to transform the Line-of-Sight (LoS) displacement measurements of GBSAR into an estimate of the horizontal displacement vector of the dam surface, is derived. Furthermore, a methodology for the acquisition of RAR data and the representation of displacement temporal profiles and vibration frequency spectra of dam concrete structures is presented. For this study a Ku-band ground-based radar, equipped with horn antennas having different radiation patterns, has been used. Four case studies, using different radar acquisition strategies specifically developed for the monitoring of earth dams, are examined. The results of this work show the information that a Ku-band ground-based radar can provide to structural engineers for a non-destructive seismic assessment of earth dams.

  9. Spatio-temporal monitoring of cotton cultivation using ground-based and airborne multispectral sensors in GIS environment.

    Science.gov (United States)

    Papadopoulos, Antonis; Kalivas, Dionissios; Theocharopoulos, Sid

    2017-07-01

    Multispectral sensor capability of capturing reflectance data at several spectral channels, together with the inherent reflectance responses of various soils and especially plant surfaces, has gained major interest in crop production. In present study, two multispectral sensing systems, a ground-based and an aerial-based, were applied for the multispatial and temporal monitoring of two cotton fields in central Greece. The ground-based system was Crop Circle ACS-430, while the aerial consisted of a consumer-level quadcopter (Phantom 2) and a modified Hero3+ Black digital camera. The purpose of the research was to monitor crop growth with the two systems and investigate possible interrelations between the derived well-known normalized difference vegetation index (NDVI). Five data collection campaigns were conducted during the cultivation period and concerned scanning soil and plants with the ground-based sensor and taking aerial photographs of the fields with the unmanned aerial system. According to the results, both systems successfully monitored cotton growth stages in terms of space and time. The mean values of NDVI changes through time as retrieved by the ground-based system were satisfactorily modelled by a second-order polynomial equation (R 2 0.96 in Field 1 and 0.99 in Field 2). Further, they were highly correlated (r 0.90 in Field 1 and 0.74 in Field 2) with the according values calculated via the aerial-based system. The unmanned aerial system (UAS) can potentially substitute crop scouting as it concerns a time-effective, non-destructive and reliable way of soil and plant monitoring.

  10. White Paper on the Status and Future of Ground-based Gamma-Ray Astronomy - Extragalactic Science Working Group

    Science.gov (United States)

    Krawczynski, H.; Coppi, P.; Dermer, C.; Dwek, E.; Georganopoulos, M.; Horan, D.; Jones, T.; Krennrich, F.; Mukherjee, R.; Perlman, E.; Vassiliev, V.

    2007-04-01

    In fall 2006, the Division of Astrophysics of the American Physical Society requested a white paper about the status and future of ground based gamma-ray astronomy. The white paper will largely be written in the year 2007. Interested scientists are invited to join the science working groups. In this contribution, we will report on some preliminary results of the extragalactic science working group. We will discuss the potential of future ground based gamma-ray experiments to elucidate how supermassive black holes accrete matter, form jets, and accelerate particles, and to study in detail the acceleration and propagation of cosmic rays in extragalactic systems like infrared galaxies and galaxy clusters. Furthermore, we discuss avenues to constrain the spectrum of the extragalactic infrared to optical background radiation, and to measure the extragalactic magnetic fields based on gamma-ray observations. Eventually, we discuss the potential of ground based experiments for conducting gamma-ray source surveys. More information about the white paper can be found at: http://cherenkov.physics.iastate.edu/wp/

  11. Preliminary Results from Powell Research Group on Integrating GRACE Satellite and Ground-based Estimates of Groundwater Storage Changes

    Science.gov (United States)

    Scanlon, B. R.; Zhang, Z.; Reitz, M.; Rodell, M.; Sanford, W. E.; Save, H.; Wiese, D. N.; Croteau, M. J.; McGuire, V. L.; Pool, D. R.; Faunt, C. C.; Zell, W.

    2017-12-01

    Groundwater storage depletion is a critical issue for many of the major aquifers in the U.S., particularly during intense droughts. GRACE (Gravity Recovery and Climate Experiment) satellite-based estimates of groundwater storage changes have attracted considerable media attention in the U.S. and globally and interest in GRACE products continues to increase. For this reason, a Powell Research Group was formed to: (1) Assess variations in groundwater storage using a variety of GRACE products and other storage components (snow, surface water, and soil moisture) for major aquifers in the U.S., (2) Quantify long-term trends in groundwater storage from ground-based monitoring and regional and national modeling, and (3) Use ground-based monitoring and modeling to interpret GRACE water storage changes within the context of extreme droughts and over-exploitation of groundwater. The group now has preliminary estimates from long-term trends and seasonal fluctuations in water storage using different GRACE solutions, including CSR, JPL and GSFC. Approaches to quantifying uncertainties in GRACE data are included. This work also shows how GRACE sees groundwater depletion in unconfined versus confined aquifers, and plans for future work will link GRACE data to regional groundwater models. The wealth of ground-based observations for the U.S. provides a unique opportunity to assess the reliability of GRACE-based estimates of groundwater storage changes.

  12. Comparison of the characteristic energy of precipitating electrons derived from ground-based and DMSP satellite data

    Directory of Open Access Journals (Sweden)

    M. Ashrafi

    2005-01-01

    Full Text Available Energy maps are important for ionosphere-magnetosphere coupling studies, because quantitative determination of field-aligned currents requires knowledge of the conductances and their spatial gradients. By combining imaging riometer absorption and all-sky auroral optical data it is possible to produce high temporal and spatial resolution maps of the Maxwellian characteristic energy of precipitating electrons within a 240240 common field of view. These data have been calibrated by inverting EISCAT electron density profiles into equivalent energy spectra. In this paper energy maps produced by ground-based instruments (optical and riometer are compared with DMSP satellite data during geomagnetic conjunctions. For the period 1995-2002, twelve satellite passes over the ground-based instruments' field of view for the cloud-free conditions have been considered. Four of the satellite conjunctions occurred during moderate geomagnetic, steady-state conditions and without any ion precipitation. In these cases with Maxwellian satellite spectra, there is 71% agreement between the characteristic energies derived from the satellite and the ground-based energy map method.

  13. Comparison of the characteristic energy of precipitating electrons derived from ground-based and DMSP satellite data

    Directory of Open Access Journals (Sweden)

    M. Ashrafi

    2005-01-01

    Full Text Available Energy maps are important for ionosphere-magnetosphere coupling studies, because quantitative determination of field-aligned currents requires knowledge of the conductances and their spatial gradients. By combining imaging riometer absorption and all-sky auroral optical data it is possible to produce high temporal and spatial resolution maps of the Maxwellian characteristic energy of precipitating electrons within a 240240 common field of view. These data have been calibrated by inverting EISCAT electron density profiles into equivalent energy spectra. In this paper energy maps produced by ground-based instruments (optical and riometer are compared with DMSP satellite data during geomagnetic conjunctions. For the period 1995-2002, twelve satellite passes over the ground-based instruments' field of view for the cloud-free conditions have been considered. Four of the satellite conjunctions occurred during moderate geomagnetic, steady-state conditions and without any ion precipitation. In these cases with Maxwellian satellite spectra, there is 71% agreement between the characteristic energies derived from the satellite and the ground-based energy map method.

  14. Atmospheric greenhouse gases retrieved from SCIAMACHY: comparison to ground-based FTS measurements and model results

    Directory of Open Access Journals (Sweden)

    O. Schneising

    2012-02-01

    Full Text Available SCIAMACHY onboard ENVISAT (launched in 2002 enables the retrieval of global long-term column-averaged dry air mole fractions of the two most important anthropogenic greenhouse gases carbon dioxide and methane (denoted XCO2 and XCH4. In order to assess the quality of the greenhouse gas data obtained with the recently introduced v2 of the scientific retrieval algorithm WFM-DOAS, we present validations with ground-based Fourier Transform Spectrometer (FTS measurements and comparisons with model results at eight Total Carbon Column Observing Network (TCCON sites providing realistic error estimates of the satellite data. Such validation is a prerequisite to assess the suitability of data sets for their use in inverse modelling.

    It is shown that there are generally no significant differences between the carbon dioxide annual increases of SCIAMACHY and the assimilation system CarbonTracker (2.00 ± 0.16 ppm yr−1 compared to 1.94 ± 0.03 ppm yr−1 on global average. The XCO2 seasonal cycle amplitudes derived from SCIAMACHY are typically larger than those from TCCON which are in turn larger than those from CarbonTracker. The absolute values of the northern hemispheric TCCON seasonal cycle amplitudes are closer to SCIAMACHY than to CarbonTracker and the corresponding differences are not significant when compared with SCIAMACHY, whereas they can be significant for a subset of the analysed TCCON sites when compared with CarbonTracker. At Darwin we find discrepancies of the seasonal cycle derived from SCIAMACHY compared to the other data sets which can probably be ascribed to occurrences of undetected thin clouds. Based on the comparison with the reference data, we conclude that the carbon dioxide data set can be characterised by a regional relative precision (mean standard deviation of the differences of about 2.2 ppm and a relative accuracy (standard deviation of the mean differences

  15. Tracking morphological changes and slope instability using spaceborne and ground-based SAR data

    Science.gov (United States)

    Di Traglia, Federico; Nolesini, Teresa; Ciampalini, Andrea; Solari, Lorenzo; Frodella, William; Bellotti, Fernando; Fumagalli, Alfio; De Rosa, Giuseppe; Casagli, Nicola

    2018-01-01

    Stromboli (Aeolian Archipelago, Italy) is an active volcano that is frequently affected by moderate to large mass wasting, which has occasionally triggered tsunamis. With the aim of understanding the relationship between the geomorphologic evolution and slope instability of Stromboli, remote sensing information from space-born Synthetic Aperture Radar (SAR) change detection and interferometry (InSAR) () and Ground Based InSAR (GBInSAR) was compared with field observations and morphological analyses. Ground reflectivity and SqueeSAR™ (an InSAR algorithm for surface deformation monitoring) displacement measurements from X-band COSMO-SkyMed satellites (CSK) were analysed together with displacement measurements from a permanent-sited, Ku-band GBInSAR system. Remote sensing results were compared with a preliminary morphological analysis of the Sciara del Fuoco (SdF) steep volcanic flank, which was carried out using a high-resolution Digital Elevation Model (DEM). Finally, field observations, supported by infrared thermographic surveys (IRT), allowed the interpretation and validation of remote sensing data. The analysis of the entire dataset (collected between January 2010 and December 2014) covers a period characterized by a low intensity of Strombolian activity. This period was punctuated by the occurrence of lava overflows, occurring from the crater terrace evolving downslope toward SdF, and flank eruptions, such as the 2014 event. The amplitude of the CSK images collected between February 22nd, 2010, and December 18th, 2014, highlights that during periods characterized by low-intensity Strombolian activity, the production of materials ejected from the crater terrace towards the SdF is generally low, and erosion is the prevailing process mainly affecting the central sector of the SdF. CSK-SqueeSAR™ and GBInSAR data allowed the identification of low displacements in the SdF, except for high displacement rates (up to 1.5 mm/h) that were measured following both lava

  16. Further Studies of Forest Structure Parameter Retrievals Using the Echidna® Ground-Based Lidar

    Science.gov (United States)

    Strahler, A. H.; Yao, T.; Zhao, F.; Yang, X.; Schaaf, C.; Wang, Z.; Li, Z.; Woodcock, C. E.; Culvenor, D.; Jupp, D.; Newnham, G.; Lovell, J.

    2012-12-01

    Ongoing work with the Echidna® Validation Instrument (EVI), a full-waveform, ground-based scanning lidar (1064 nm) developed by Australia's CSIRO and deployed by Boston University in California conifers (2008) and New England hardwood and softwood (conifer) stands (2007, 2009, 2010), confirms the importance of slope correction in forest structural parameter retrieval; detects growth and disturbance over periods of 2-3 years; provides a new way to measure the between-crown clumping factor in leaf area index retrieval using lidar range; and retrieves foliage profiles with more lower-canopy detail than a large-footprint aircraft scanner (LVIS), while simulating LVIS foliage profiles accurately from a nadir viewpoint using a 3-D point cloud. Slope correction is important for accurate retrieval of forest canopy structural parameters, such as mean diameter at breast height (DBH), stem count density, basal area, and above-ground biomass. Topographic slope can induce errors in parameter retrievals because the horizontal plane of the instrument scan, which is used to identify, measure, and count tree trunks, will intersect trunks below breast height in the uphill direction and above breast height in the downhill direction. A test of three methods at southern Sierra Nevada conifer sites improved the range of correlations of these EVI-retrieved parameters with field measurements from 0.53-0.68 to 0.85-0.93 for the best method. EVI scans can detect change, including both growth and disturbance, in periods of two to three years. We revisited three New England forest sites scanned in 2007-2009 or 2007-2010. A shelterwood stand at the Howland Experimental Forest, Howland, Maine, showed increased mean DBH, above-ground biomass and leaf area index between 2007 and 2009. Two stands at the Harvard Forest, Petersham, Massachusetts, suffered reduced leaf area index and reduced stem count density as the result of an ice storm that damaged the stands. At one stand, broken tops were

  17. Climatological lower thermosphere winds as seen by ground-based and space-based instruments

    Directory of Open Access Journals (Sweden)

    J. M. Forbes

    2004-06-01

    Full Text Available Comparisons are made between climatological dynamic fields obtained from ground-based (GB and space-based (SB instruments with a view towards identifying SB/GB intercalibration issues for TIMED and other future aeronomy satellite missions. SB measurements are made from the High Resolution Doppler Imager (HRDI instrument on the Upper Atmosphere Research Satellite (UARS. The GB data originate from meteor radars at Obninsk, (55° N, 37° E, Shigaraki (35° N, 136° E and Jakarta (6° S, 107° E and MF spaced-antenna radars at Hawaii (22° N, 160° W, Christmas I. (2° N, 158° W and Adelaide (35° S, 138° E. We focus on monthly-mean prevailing, diurnal and semidiurnal wind components at 96km, averaged over the 1991-1999 period. We perform space-based (SB analyses for 90° longitude sectors including the GB sites, as well as for the zonal mean. Taking the monthly prevailing zonal winds from these stations as a whole, on average, SB zonal winds exceed GB determinations by ~63%, whereas meridional winds are in much better agreement. The origin of this discrepancy remains unknown, and should receive high priority in initial GB/SB comparisons during the TIMED mission. We perform detailed comparisons between monthly climatologies from Jakarta and the geographically conjugate sites of Shigaraki and Adelaide, including some analyses of interannual variations. SB prevailing, diurnal and semidiurnal tides exceed those measured over Jakarta by factors, on the average, of the order of 2.0, 1.6, 1.3, respectively, for the eastward wind, although much variability exists. For the meridional component, SB/GB ratios for the diurnal and semidiurnal tide are about 1.6 and 1.7. Prevailing and tidal amplitudes at Adelaide are significantly lower than SB values, whereas similar net differences do not occur at the conjugate Northern Hemisphere location of Shigaraki. Adelaide diurnal phases lag SB phases by several hours, but excellent agreement between the two data

  18. Safety Management in Non-Nuclear Contexts. Examples from Swedish Railway Regulatory and Company Perspectives

    International Nuclear Information System (INIS)

    Salo, Ilkka; Svensson, Ola

    2005-06-01

    Nuclear power operations demand safe procedures. In the context of this report, safety management is considered as a key instrument to achieve safety in technology, organization and operations. Outside the area of nuclear operations there exist a number of other technological areas that also demand safe operations. From the perspective of knowledge management, there exists an enormous pool of safety experiences that may be possible to shear or reformulate from one context to another. From this point of view, it seems highly relevant to make efforts to utilize, and try to understand how safety in general is managed in other contexts. There is much to gain from such an approach, not at least from economical, societal, and systems points of views. Because of the vast diversity between technological areas and their operations, a common framework that allow elaboration with common concepts for understanding, must be generated. In preceding studies a number of steps have been taken towards finding such a general framework for modeling safety management. In an initial step a system theoretical framework was outlined. In subsequent steps central concepts from this framework has been applied and evaluated in relation to a number of non-nuclear organizations. The present report brings this intention one step further, and for the first time, a complete analysis of a system consisting of both the regulator and the licensee was carried out, in the above respects. This report focused the Swedish railway system, and the organizations studied were the Swedish Rail Agency (SRA) and SJ (the main rail traffic operator). The data used for this report consisted of various documents about the organizations, and interview data. This report is basically structured around three, more or less, independent studies that are presented in separate chapters. They are: the system theoretical framework that in the following chapters is applied to the two organizations, and one chapter each for the

  19. Safety Management in Non-Nuclear Contexts. Examples from Swedish Railway Regulatory and Company Perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Salo, Ilkka; Svensson, Ola (Risk Analysis, Social and Decision Research Unit, Dept. of Psychology, Stockholm Univ., Stockholm (Sweden))

    2005-06-15

    Nuclear power operations demand safe procedures. In the context of this report, safety management is considered as a key instrument to achieve safety in technology, organization and operations. Outside the area of nuclear operations there exist a number of other technological areas that also demand safe operations. From the perspective of knowledge management, there exists an enormous pool of safety experiences that may be possible to shear or reformulate from one context to another. From this point of view, it seems highly relevant to make efforts to utilize, and try to understand how safety in general is managed in other contexts. There is much to gain from such an approach, not at least from economical, societal, and systems points of views. Because of the vast diversity between technological areas and their operations, a common framework that allow elaboration with common concepts for understanding, must be generated. In preceding studies a number of steps have been taken towards finding such a general framework for modeling safety management. In an initial step a system theoretical framework was outlined. In subsequent steps central concepts from this framework has been applied and evaluated in relation to a number of non-nuclear organizations. The present report brings this intention one step further, and for the first time, a complete analysis of a system consisting of both the regulator and the licensee was carried out, in the above respects. This report focused the Swedish railway system, and the organizations studied were the Swedish Rail Agency (SRA) and SJ (the main rail traffic operator). The data used for this report consisted of various documents about the organizations, and interview data. This report is basically structured around three, more or less, independent studies that are presented in separate chapters. They are: the system theoretical framework that in the following chapters is applied to the two organizations, and one chapter each for the

  20. Modeling of Rocket Fuel Heating and Cooling Processes in the Interior Receptacle Space of Ground-Based Systems

    Directory of Open Access Journals (Sweden)

    K. I. Denisova

    2016-01-01

    Full Text Available The propellant to fill the fuel tanks of the spacecraft, upper stages, and space rockets on technical and ground-based launch sites before fueling should be prepared to ensure many of its parameters, including temperature, in appropriate condition. Preparation of fuel temperature is arranged through heating and cooling the rocket propellants (RP in the tanks of fueling equipment. Processes of RP temperature preparation are the most energy-intensive and timeconsuming ones, which require that a choice of sustainable technologies and modes of cooling (heating RP provided by the ground-based equipment has been made through modeling of the RP [1] temperature preparation processes at the stage of design and operation of the groundbased fueling equipment.The RP temperature preparation in the tanks of the ground-based systems can be provided through the heat-exchangers built-in the internal space and being external with respect to the tank in which antifreeze, air or liquid nitrogen may be used as the heat transfer media. The papers [1-12], which note a promising use of the liquid nitrogen to cool PR, present schematic diagrams and modeling systems for the RP temperature preparation in the fueling equipment of the ground-based systems.We consider the RP temperature preparation using heat exchangers to be placed directly in RP tanks. Feeding the liquid nitrogen into heat exchanger with the antifreeze provides the cooling mode of PR while a heated air fed there does that of heating. The paper gives the systems of equations and results of modeling the processes of RP temperature preparation, and its estimated efficiency.The systems of equations of cooling and heating RP are derived on the assumption that the heat exchange between the fuel and the antifreeze, as well as between the storage tank and the environment is quasi-stationary.The paper presents calculation results of the fuel temperature in the tank, and coolant temperature in the heat exchanger, as

  1. ESO Signs Largest-Ever European Industrial Contract For Ground-Based Astronomy Project ALMA

    Science.gov (United States)

    2005-12-01

    ESO, the European Organisation for Astronomical Research in the Southern Hemisphere, announced today that it has signed a contract with the consortium led by Alcatel Alenia Space and composed also of European Industrial Engineering (Italy) and MT Aerospace (Germany), to supply 25 antennas for the Atacama Large Millimeter Array (ALMA) project, along with an option for another seven antennas. The contract, worth 147 million euros, covers the design, manufacture, transport and on-site integration of the antennas. It is the largest contract ever signed in ground-based astronomy in Europe. The ALMA antennas present difficult technical challenges, since the antenna surface accuracy must be within 25 microns, the pointing accuracy within 0.6 arc seconds, and the antennas must be able to be moved between various stations on the ALMA site. This is especially remarkable since the antennas will be located outdoor in all weather conditions, without any protection. Moreover, the ALMA antennas can be pointed directly at the Sun. ALMA will have a collecting area of more than 5,600 square meters, allowing for unprecedented measurements of extremely faint objects. The signing ceremony took place on December 6, 2005 at ESO Headquarters in Garching, Germany. "This contract represents a major milestone. It allows us to move forward, together with our American and Japanese colleagues, in this very ambitious and unique project," said ESO's Director General, Dr. Catherine Cesarsky. "By building ALMA, we are giving European astronomers access to the world's leading submillimetre facility at the beginning of the next decade, thereby fulfilling Europe's desire to play a major role in this field of fundamental research." Pascale Sourisse, Chairman and CEO of Alcatel Alenia Space, said: "We would like to thank ESO for trusting us to take on this new challenge. We are bringing to the table not only our recognized expertise in antenna development, but also our long-standing experience in

  2. Atmospheric methane variability at the Peterhof station (Russia): ground-based observations and modeling

    Science.gov (United States)

    Makarova, Maria; Kirner, Oliver; Poberovskii, Anatoliy; Imhasin, Humud; Timofeyev, Yuriy; Virolainen, Yana; Makarov, Boris

    2014-05-01

    MF from the true ones were detected for the Peterhof station (0.4% for TC and -0.2% for MF). It should be also noted that the limited number of sunny days may distort the annual cycle estimated from FTIR data (comparing to true). This fact have to take into account when mean levels of CH4 TC and MF obtained from FTIR compare against climatological or averaged model data. Ground-based in situ (local) observations of CH4 mole fraction (LMF) are being performed by LGR GGA-24r-EP gas analyzer since 2013 (at the Peterhof station). The monthly averaged amplitude of LMF diurnal cycle shows variations which are similar to the temporal behavior of MF CH4 retrieved from FTIR for 2013. It is suggested that the value of the amplitude of CH4 LMF diurnal variation characterizes the intensity of methane sources for the North-western region of Russia and can be used to explain the observed features of the annual variation of FTIR MF CH4. However, to prove this statement further simultaneous FTIR and in situ measurements of CH4 should be continued. Both, FTIR observations and EMAC simulations, revealed the positive trend of CH4 over 2009-2012 of about 0.2% per year (statistically significant). FTIR data for 2013 that were taken into account led to a decrease in trend value from 0.2%/yr (2009-2012) to 0.13%/yr (2009-2013). It may indicate the end of the period of extremely high growth rates of methane in the atmosphere that have been registered by different observational systems since 2006. Acknowledgements: This study was funded by Saint-Petersburg State University (grant No.11.0.44.2010), Russian Foundation for Basic Research (grants No.12-05-00596, 14-05-897). Measurement facilities were provided by Geo Environmental Research Center "Geomodel" of Saint-Petersburg State University.

  3. Relevance of near-Earth magnetic field modeling in deriving SEP properties using ground-based data

    Science.gov (United States)

    Kanellakopoulos, Anastasios; Plainaki, Christina; Mavromichalaki, Helen; Laurenza, Monica; Gerontidou, Maria; Storini, Marisa; Andriopoulou, Maria

    2014-05-01

    Ground Level Enhancements (GLEs) are short-term increases observed in cosmic ray intensity records of ground-based particle detectors such as neutron monitors (NMs) or muon detectors; they are related to the arrival of solar relativistic particles in the terrestrial environment. Hence, GLE events are related to the most energetic class of solar energetic particle (SEP) events. In this work we investigate how the use of different magnetospheric field models can influence the derivation of the relativistic SEP properties when modeling GLE events. As a case study, we examine the event of 2012 May 17 (also known as GLE71), registered by ground-based NMs. We apply the Tsyganenko 89 and the Tsyganenko 96 models in order to calculate the trajectories of the arriving SEPs in the near-Earth environment. We show that the intersection of the SEP trajectories with the atmospheric layer at ~20 km from the Earth's surface (i.e., where the flux of the generated secondary particles is maximum), forms for each ground-based neutron monitor a specified viewing region that is dependent on the magnetospheric field configuration. Then, we apply the Neutron Monitor Based Anisotropic GLE Pure Power Law (NMBANGLE PPOLA) model (Plainaki et al. 2010, Solar Phys, 264, 239), in order to derive the spectral properties of the related SEP event and the spatial distributions of the SEP fluxes impacting the Earth's atmosphere. We examine the dependence of the results on the used magnetic field models and evaluate their range of validity. Finally we discuss information derived by modeling the SEP spectrum in the frame of particle acceleration scenarios.

  4. Astrid-2 and ground-based observations of the auroral bulge in the middle of the nightside convection throat

    Directory of Open Access Journals (Sweden)

    G. T. Marklund

    2001-06-01

    Full Text Available Results concerning the electrodynamics of the nightside auroral bulge are presented based on simultaneous satellite and ground-based observations. The satellite data include Astrid-2 measurements of electric fields, currents and particles from a midnight auroral oval crossing and Polar UVI images of the large-scale auroral distribution. The ground-based observations include STARE and SuperDARN electric fields and magnetic records from the Greenland and MIRACLE magnetometer network, the latter including stations from northern Scandinavia north to Svalbard. At the time of the Astrid-2 crossing the ground-based data reveal intense electrojet activity, both to the east and west of the Astrid-2 trajectory, related to the Polar observations of the auroral bulge but not necessarily to a typical substorm. The energetic electron fluxes measured by Astrid-2 across the auroral oval were generally weak being consistent with a gap observed in the auroral luminosity distribution. The electric field across the oval was directed westward, intensifying close to the poleward boundary followed by a decrease in the polar cap. The combined observations suggests that Astrid-2 was moving close to the separatrix between the dusk and dawn convection cells in a region of low conductivity. The constant westward direction of the electric field across the oval indicates that current continuity was maintained, not by polarisation electric fields (as in a Cowling channel, but solely by localized up- and downward field-aligned currents in good agreement with the Astrid-2 magnetometer data. The absence of a polarisation electric field and thus of an intense westward closure current between the dawn and dusk convection cells is consistent with the relatively weak precipitation and low conductivity in the convection throat. Thus, the Cowling current model is not adequate for describing the electrodynamics of the nightside auroral bulge treated here.Key words. Ionosphere (auroral

  5. Measurements of total and tropospheric ozone from IASI: comparison with correlative satellite, ground-based and ozonesonde observations

    Directory of Open Access Journals (Sweden)

    A. Boynard

    2009-08-01

    Full Text Available In this paper, we present measurements of total and tropospheric ozone, retrieved from infrared radiance spectra recorded by the Infrared Atmospheric Sounding Interferometer (IASI, which was launched on board the MetOp-A European satellite in October 2006. We compare IASI total ozone columns to Global Ozone Monitoring Experiment-2 (GOME-2 observations and ground-based measurements from the Dobson and Brewer network for one full year of observations (2008. The IASI total ozone columns are shown to be in good agreement with both GOME-2 and ground-based data, with correlation coefficients of about 0.9 and 0.85, respectively. On average, IASI ozone retrievals exhibit a positive bias of about 9 DU (3.3% compared to both GOME-2 and ground-based measurements. In addition to total ozone columns, the good spectral resolution of IASI enables the retrieval of tropospheric ozone concentrations. Comparisons of IASI tropospheric columns to 490 collocated ozone soundings available from several stations around the globe have been performed for the period of June 2007–August 2008. IASI tropospheric ozone columns compare well with sonde observations, with correlation coefficients of 0.95 and 0.77 for the [surface–6 km] and [surface–12 km] partial columns, respectively. IASI retrievals tend to overestimate the tropospheric ozone columns in comparison with ozonesonde measurements. Positive average biases of 0.15 DU (1.2% and 3 DU (11% are found for the [surface–6 km] and for the [surface–12 km] partial columns respectively.

  6. Evaluation of tropospheric and stratospheric ozone trends over Western Europe from ground-based FTIR network observations

    Directory of Open Access Journals (Sweden)

    C. Vigouroux

    2008-12-01

    Full Text Available Within the European project UFTIR (Time series of Upper Free Troposphere observations from an European ground-based FTIR network, six ground-based stations in Western Europe, from 79° N to 28° N, all equipped with Fourier Transform infrared (FTIR instruments and part of the Network for the Detection of Atmospheric Composition Change (NDACC, have joined their efforts to evaluate the trends of several direct and indirect greenhouse gases over the period 1995–2004. The retrievals of CO, CH4, C2H6, N2O, CHClF2, and O3 have been optimized. Using the optimal estimation method, some vertical information can be obtained in addition to total column amounts. A bootstrap resampling method has been implemented to determine annual partial and total column trends for the target gases. The present work focuses on the ozone results. The retrieved time series of partial and total ozone columns are validated with ground-based correlative data (Brewer, Dobson, UV-Vis, ozonesondes, and Lidar. The observed total column ozone trends are in agreement with previous studies: 1 no total column ozone trend is seen at the lowest latitude station Izaña (28° N; 2 slightly positive total column trends are seen at the two mid-latitude stations Zugspitze and Jungfraujoch (47° N, only one of them being significant; 3 the highest latitude stations Harestua (60° N, Kiruna (68° N and Ny-Ålesund (79° N show significant positive total column trends. Following the vertical information contained in the ozone FTIR retrievals, we provide partial columns trends for the layers: ground-10 km, 10–18 km, 18–27 km, and 27–42 km, which helps to distinguish the contributions from dynamical and chemical changes on the total column ozone trends. We obtain no statistically significant trends in the ground-10 km layer for five out of the six ground-based stations. We find significant positive trends for the lowermost

  7. Observations of Upper Thermospheric Temperatures Using a Ground-Based Optical Instrument at the King Sejong Station, Antarctic

    OpenAIRE

    Jong-Kyun Chung; Young-In Won; Bang Yong Lee; Jhoon Kim

    1998-01-01

    We measured the terrestrial nightglow of OI 6300A in the thermosphere(~250km) using a ground-based Fabry-Perot interferometer at the King Sejong Station, Antarctic from March through September, 1997. The King Sejong Station is located at high latitude geographically (62.22 deg S, 301.25 deg E) but at mid-latitude geomagnetically (50.65 deg S, 7.51 deg E). It is therefore the strategic location to measure the temperatures of the thermosphere in the Southern Hemisphere associated with both sola...

  8. Gamma/hadron segregation for a ground based imaging atmospheric Cherenkov telescope using machine learning methods: Random Forest leads

    International Nuclear Information System (INIS)

    Sharma Mradul; Koul Maharaj Krishna; Mitra Abhas; Nayak Jitadeepa; Bose Smarajit

    2014-01-01

    A detailed case study of γ-hadron segregation for a ground based atmospheric Cherenkov telescope is presented. We have evaluated and compared various supervised machine learning methods such as the Random Forest method, Artificial Neural Network, Linear Discriminant method, Naive Bayes Classifiers, Support Vector Machines as well as the conventional dynamic supercut method by simulating triggering events with the Monte Carlo method and applied the results to a Cherenkov telescope. It is demonstrated that the Random Forest method is the most sensitive machine learning method for γ-hadron segregation. (research papers)

  9. Combining ground-based and airborne EM through Artificial Neural Networks for modelling glacial till under saline groundwater conditions

    DEFF Research Database (Denmark)

    Gunnink, J.L.; Bosch, A.; Siemon, B.

    2012-01-01

    Airborne electromagnetic (AEM) methods supply data over large areas in a cost-effective way. We used ArtificialNeural Networks (ANN) to classify the geophysical signal into a meaningful geological parameter. By using examples of known relations between ground-based geophysical data (in this case...... electrical conductivity, EC, from electrical cone penetration tests) and geological parameters (presence of glacial till), we extracted learning rules that could be applied to map the presence of a glacial till using the EC profiles from the airborne EM data. The saline groundwater in the area was obscuring...

  10. Airborne and ground-based transient electromagnetic mapping of groundwater salinity in the Machile–Zambezi Basin, southwestern Zambia

    DEFF Research Database (Denmark)

    Chongo, Mkhuzo; Vest Christiansen, Anders; Tembo, Alice

    2015-01-01

    The geological and morphological evolution of the Kalahari Basin of Southern Africa has given rise to a complex hydrogeological regime that is affected by water quality issues. Among these concerns is the occurrence of saline groundwater. Airborne and ground-based electromagnetic surveying...... of a low-resistivity (below 13 Ωm) valley that extends southwestwards into the Makgadikgadi salt pans. The electrical resistivity distribution is indicative of a full graben related to the Okavango–Linyati Fault system as a result of propagation of the East African Rift Valley System into Southern Africa...

  11. Aerosol optical properties over the Svalbard region of Arctic: ground-based measurements and satellite remote sensing

    Science.gov (United States)

    Gogoi, Mukunda M.; Babu, S. Suresh

    2016-05-01

    In view of the increasing anthropogenic presence and influence of aerosols in the northern polar regions, long-term continuous measurements of aerosol optical parameters have been investigated over the Svalbard region of Norwegian Arctic (Ny-Ålesund, 79°N, 12°E, 8 m ASL). This study has shown a consistent enhancement in the aerosol scattering and absorption coefficients during spring. The relative dominance of absorbing aerosols is more near the surface (lower single scattering albedo), compared to that at the higher altitude. This is indicative of the presence of local anthropogenic activities. In addition, long-range transported biomass burning aerosols (inferred from the spectral variation of absorption coefficient) also contribute significantly to the higher aerosol absorption in the Arctic spring. Aerosol optical depth (AOD) estimates from ground based Microtop sun-photometer measurements reveals that the columnar abundance of aerosols reaches the peak during spring season. Comparison of AODs between ground based and satellite remote sensing indicates that deep blue algorithm of Moderate Resolution Imaging Spectroradiometer (MODIS) retrievals over Arctic snow surfaces overestimate the columnar AOD.

  12. Temporal Variability of Total Ozone in the Asian Region Inferred from Ground-Based and Satellite Measurement Data

    Science.gov (United States)

    Visheratin, K. N.; Nerushev, A. F.; Orozaliev, M. D.; Zheng, Xiangdong; Sun, Shumen; Liu, Li

    2017-12-01

    This paper reports investigation data on the temporal variability of total ozone content (TOC) in the Central Asian and Tibet Plateau mountain regions obtained by conventional methods, as well as by spectral, cross-wavelet, and composite analyses. The data of ground-based observation stations located at Huang He, Kunming, and Lake Issyk-Kul, along with the satellite data obtained at SBUV/SBUV2 (SBUV merged total and profile ozone data, Version 8.6) for 1980-2013 and OMI (Ozone Monitoring Instrument) and TOU (Total Ozone Unit) for 2009-2013 have been used. The average relative deviation from the SBUV/SBUV2 data is less than 1% in Kunming and Issyk-Kul for the period of 1980-2013, while the Huang He Station is characterized by an excess of the satellite data over the ground-based information at an average deviation of 2%. According to the Fourier analysis results, the distribution of amplitudes and the periods of TOC oscillations within a range of over 14 months is similar for all series analyzed. Meanwhile, according to the cross-wavelet and composite analyses results, the phase relationships between the series may considerably differ, especially in the periods of 5-7 years. The phase of quasi-decennial oscillations in the Kunming Station is close to the 11-year oscillations of the solar cycle, while in the Huang He and Issyk-Kul stations the TOC variations go ahead of the solar cycle.

  13. Traveling magnetopause distortion related to a large-scale magnetosheath plasma jet: THEMIS and ground-based observations

    Science.gov (United States)

    Dmitriev, A. V.; Suvorova, A. V.

    2012-08-01

    Here, we present a case study of THEMIS and ground-based observations of the perturbed dayside magnetopause and the geomagnetic field in relation to the interaction of an interplanetary directional discontinuity (DD) with the magnetosphere on 16 June 2007. The interaction resulted in a large-scale local magnetopause distortion of an "expansion - compression - expansion" (ECE) sequence that lasted for ˜15 min. The compression was caused by a very dense, cold, and fast high-βmagnetosheath plasma flow, a so-called plasma jet, whose kinetic energy was approximately three times higher than the energy of the incident solar wind. The plasma jet resulted in the effective penetration of magnetosheath plasma inside the magnetosphere. A strong distortion of the Chapman-Ferraro current in the ECE sequence generated a tripolar magnetic pulse "decrease - peak- decrease" (DPD) that was observed at low and middle latitudes by some ground-based magnetometers of the INTERMAGNET network. The characteristics of the ECE sequence and the spatial-temporal dynamics of the DPD pulse were found to be very different from any reported patterns of DD interactions with the magnetosphere. The observed features only partially resembled structures such as FTE, hot flow anomalies, and transient density events. Thus, it is difficult to explain them in the context of existing models.

  14. NO2 DOAS measurements from ground and space: comparison of ground based measurements and OMI data in Mexico City

    Science.gov (United States)

    Rivera, C.; Stremme, W.; Grutter, M.

    2012-04-01

    The combination of satellite data and ground based measurements can provide valuable information about atmospheric chemistry and air quality. In this work we present a comparison between measured ground based NO2 differential columns at the Universidad Nacional Autónoma de México (UNAM) in Mexico City, using the Differential Optical Absorption Spectroscopy (DOAS) technique and NO2 total columns measured by the Ozone Monitoring Instrument (OMI) onboard the Aura satellite using the same measurement technique. From these data, distribution maps of average NO2 above the Mexico basin were constructed and hot spots inside the city could be identified. In addition, a clear footprint was detected from the Tula industrial area, ~50 km northwest of Mexico City, where a refinery, a power plant and other industries are located. A less defined footprint was identified in the Cuernavaca basin, South of Mexico City, and the nearby cities of Toluca and Puebla do not present strong enhancements in the NO2 total columns. With this study we expect to cross-validate space and ground measurements and provide useful information for future studies.

  15. GLM Proxy Data Generation: Methods for Stroke/Pulse Level Inter-Comparison of Ground-Based Lightning Reference Networks

    Science.gov (United States)

    Cummins, Kenneth L.; Carey, Lawrence D.; Schultz, Christopher J.; Bateman, Monte G.; Cecil, Daniel J.; Rudlosky, Scott D.; Petersen, Walter Arthur; Blakeslee, Richard J.; Goodman, Steven J.

    2011-01-01

    In order to produce useful proxy data for the GOES-R Geostationary Lightning Mapper (GLM) in regions not covered by VLF lightning mapping systems, we intend to employ data produced by ground-based (regional or global) VLF/LF lightning detection networks. Before using these data in GLM Risk Reduction tasks, it is necessary to have a quantitative understanding of the performance of these networks, in terms of CG flash/stroke DE, cloud flash/pulse DE, location accuracy, and CLD/CG classification error. This information is being obtained through inter-comparison with LMAs and well-quantified VLF/LF lightning networks. One of our approaches is to compare "bulk" counting statistics on the spatial scale of convective cells, in order to both quantify relative performance and observe variations in cell-based temporal trends provided by each network. In addition, we are using microsecond-level stroke/pulse time correlation to facilitate detailed inter-comparisons at a more-fundamental level. The current development status of our ground-based inter-comparison and evaluation tools will be presented, and performance metrics will be discussed through a comparison of Vaisala s Global Lightning Dataset (GLD360) with the NLDN at locations within and outside the U.S.

  16. Atmospheric mercury concentrations observed at ground-based monitoring sites globally distributed in the framework of the GMOS network

    Directory of Open Access Journals (Sweden)

    F. Sprovieri

    2016-09-01

    Full Text Available Long-term monitoring of data of ambient mercury (Hg on a global scale to assess its emission, transport, atmospheric chemistry, and deposition processes is vital to understanding the impact of Hg pollution on the environment. The Global Mercury Observation System (GMOS project was funded by the European Commission (http://www.gmos.eu and started in November 2010 with the overall goal to develop a coordinated global observing system to monitor Hg on a global scale, including a large network of ground-based monitoring stations, ad hoc periodic oceanographic cruises and measurement flights in the lower and upper troposphere as well as in the lower stratosphere. To date, more than 40 ground-based monitoring sites constitute the global network covering many regions where little to no observational data were available before GMOS. This work presents atmospheric Hg concentrations recorded worldwide in the framework of the GMOS project (2010–2015, analyzing Hg measurement results in terms of temporal trends, seasonality and comparability within the network. Major findings highlighted in this paper include a clear gradient of Hg concentrations between the Northern and Southern hemispheres, confirming that the gradient observed is mostly driven by local and regional sources, which can be anthropogenic, natural or a combination of both.

  17. Using Open Access Satellite Data Alongside Ground Based Remote Sensing: An Assessment, with Case Studies from Egypt’s Delta

    Directory of Open Access Journals (Sweden)

    Sarah Parcak

    2017-09-01

    Full Text Available This paper will assess the most recently available open access high-resolution optical satellite data (0.3 m–0.6 m and its detection of buried ancient features versus ground based remote sensing tools. It also discusses the importance of CORONA satellite data to evaluate landscape changes over the past 50 years surrounding sites. The study concentrates on Egypt’s Nile Delta, which is threatened by rising sea and water tables and urbanization. Many ancient coastal sites will be lost in the next few decades, thus this paper emphasizes the need to map them before they disappear. It shows that high resolution satellites can sometimes provide the same general picture on ancient sites in the Egyptian Nile Delta as ground based remote sensing, with relatively sandier sedimentary and degrading tell environments, during periods of rainfall, and higher groundwater conditions. Research results also suggest potential solutions for rapid mapping of threatened Delta sites, and urge a collaborative global effort to maps them before they disappear.

  18. Ground-Based Remote Sensing of Volcanic CO2 Fluxes at Solfatara (Italy—Direct Versus Inverse Bayesian Retrieval

    Directory of Open Access Journals (Sweden)

    Manuel Queißer

    2018-01-01

    Full Text Available CO2 is the second most abundant volatile species of degassing magma. CO2 fluxes carry information of incredible value, such as periods of volcanic unrest. Ground-based laser remote sensing is a powerful technique to measure CO2 fluxes in a spatially integrated manner, quickly and from a safe distance, but it needs accurate knowledge of the plume speed. The latter is often difficult to estimate, particularly for complex topographies. So, a supplementary or even alternative way of retrieving fluxes would be beneficial. Here, we assess Bayesian inversion as a potential technique for the case of the volcanic crater of Solfatara (Italy, a complex terrain hosting two major CO2 degassing fumarolic vents close to a steep slope. Direct integration of remotely sensed CO2 concentrations of these vents using plume speed derived from optical flow analysis yielded a flux of 717 ± 121 t day−1, in agreement with independent measurements. The flux from Bayesian inversion based on a simple Gaussian plume model was in excellent agreement under certain conditions. In conclusion, Bayesian inversion is a promising retrieval tool for CO2 fluxes, especially in situations where plume speed estimation methods fail, e.g., optical flow for transparent plumes. The results have implications beyond volcanology, including ground-based remote sensing of greenhouse gases and verification of satellite soundings.

  19. Global Three-Dimensional Ionospheric Data Assimilation Model Using Ground-based GPS and Radio Occultation Total Electron Content

    Science.gov (United States)

    Jann-Yenq Liu, Tiger; Lin, Chi-Yen; Matsuo, Tomoko; Lin, Charles C. H.; Tsai, Ho-Fang; Chen, Chao-Yen

    2017-04-01

    An ionospheric data assimilation approach presented here is based on the Gauss-Markov Kalman filter with International Reference Ionosphere (IRI) as the background model and designed to assimilate the total electron content (TEC) observed from ground-based GPS receivers and space-based radio occultation (RO) of FORMOSAT-3/COSMIC (F3/C) or FORMOSAT-7/COSMIC-2 (F7/C2). The Kalman filter consists of the forecast step according to Gauss-Markov process and measurement update step. Observing System Simulation Experiments (OSSEs) show that the Gauss-Markov Kalman filter procedure can increase the accuracy of the data assimilation analysis over the procedure consisting of the measurement update step alone. Moreover, in comparing to F3/C, the dense F7/C2 RO observation can further increase the model accuracy significantly. Validating the data assimilation results with the vertical TEC in Global Ionosphere Maps and that derived from ground-based GPS measurements, as well as the ionospheric F2-peak height and electron density sounded by ionosondes is also carried out. Both the OSSE results and the observation validations confirm that the developed data assimilation model can be used to reconstruct the three-dimensional electron density in the ionosphere satisfactorily.

  20. DEM Development from Ground-Based LiDAR Data: A Method to Remove Non-Surface Objects

    Directory of Open Access Journals (Sweden)

    Maneesh Sharma

    2010-11-01

    Full Text Available Topography and land cover characteristics can have significant effects on infiltration, runoff, and erosion processes on watersheds. The ability to model the timing and routing of surface water and erosion is affected by the resolution of the digital elevation model (DEM. High resolution ground-based Light Detecting and Ranging (LiDAR technology can be used to collect detailed topographic and land cover characteristic data. In this study, a method was developed to remove vegetation from ground-based LiDAR data to create high resolution DEMs. Research was conducted on intensively studied rainfall–runoff plots on the USDA-ARS Walnut Gulch Experimental Watershed in Southeast Arizona. LiDAR data were used to generate 1 cm resolution digital surface models (DSM for 5 plots. DSMs created directly from LiDAR data contain non-surface objects such as vegetation cover. A vegetation removal method was developed which used a slope threshold and a focal mean filter method to remove vegetation and create bare earth DEMs. The method was validated on a synthetic plot, where rocks and vegetation were added incrementally. Results of the validation showed a vertical error of ±7.5 mm in the final DEM.

  1. Integrated ground-based hyperspectral imaging and geochemical study of the Eagle Ford Group in West Texas

    Science.gov (United States)

    Sun, Lei; Khan, Shuhab; Godet, Alexis

    2018-01-01

    This study used ground-based hyperspectral imaging to map an outcrop of the Eagle Ford Group in west Texas. The Eagle Ford Group consists of alternating layers of mudstone - wackestone, grainstone - packstone facies and volcanic ash deposits with high total organic content deposited during the Cenomanian - Turonian time period. It is one of the few unconventional source rock and reservoirs that have surface representations. Ground-based hyperspectral imaging scanned an outcrop and hand samples at close ranges with very fine spatial resolution (centimeter to sub-millimeter). Spectral absorption modeling of clay minerals and calcite with the modified Gaussian model (MGM) allowed quantification of variations of mineral abundances. Petrographic analysis confirmed mineral identifications and shed light on sedimentary textures, and major element geochemistry supported the mineral quantification. Mineral quantification resulted in mapping of mudstone - wackestone, grainstone - packstone facies and bentonites (volcanic ash beds). The lack of spatial associations between the grainstones and bentonites on the outcrop calls into question the hypothesis that the primary productivity is controlled by iron availability from volcanic ash beds. Enrichment of molybdenum (Mo) and uranium (U) indicated "unrestricted marine" paleo-hydrogeology and anoxic to euxinic paleo-redox bottom water conditions. Hyperspectral remote sensing data also helped in creating a virtual outcrop model with detailed mineralogical compositions, and provided reservoir analog to extract compositional and geo-mechanical characteristics and variations. The utilization of these new techniques in geo-statistical analysis provides a workflow for employing remote sensing in resource exploration and exploitation.

  2. Study and use of an infrared camera optimized for ground based observations in the 10 micron wavelength range

    International Nuclear Information System (INIS)

    Remy, Sophie

    1991-01-01

    Astronomical observations in the 10 micron atmospheric window provide very important information for many of astrophysical topics. But because of the very large terrestrial photon background at that wavelength, ground based observations have been impeded. On the other band, the ground based telescopes offer a greater angular resolution than the spatially based telescopes. The recent development of detector arrays for the mid infrared range made easier the development of infrared cameras with optimized detectors for astronomical observations from the ground. The CAMIRAS infrared camera, built by the 'Service d'Astrophysique' in Saclay is the instrument we have studied and we present its performances. Its sensitivity, given for an integration time of one minute on source and a signal to noise ratio of 3, is 0.15 Jy for punctual sources, and 20 mJy arcs"-"2 for extended sources. But we need to get rid of the enormous photon background so we have to find a better way of observation based on modulation techniques as 'chopping' or 'nodding'. Thus we show that a modulation about 1 Hz is satisfactory with our detectors arrays without perturbing the signal to noise ratio. As we have a good instrument and because we are able to get rid of the photon background, we can study astronomical objects. Results from a comet, dusty stellar disks, and an ultra-luminous galaxy are presented. (author) [fr

  3. Tracking and Interception of Ground-Based RF Sources Using Autonomous Guided Munitions with Passive Bearings-Only Sensors and Tracking Algorithms

    National Research Council Canada - National Science Library

    Ezal, Kenan; Agate, Craig

    2006-01-01

    This paper considers the problem of tracking and intercepting a potentially moving ground-based RF source with an autonomous guided munition that has a passive bearings-only sensor located on its nose...

  4. Ground-Based Global Navigation Satellite System GLONASS (GLObal NAvigation Satellite System) Combined Broadcast Ephemeris Data (daily files) from NASA CDDIS

    Data.gov (United States)

    National Aeronautics and Space Administration — This dataset consists of ground-based Global Navigation Satellite System (GNSS) GLONASS Combined Broadcast Ephemeris Data (daily files of all distinct navigation...

  5. Ground-Based Global Navigation Satellite System (GNSS) Compact Observation Data (1-second sampling, sub-hourly files) from NASA CDDIS

    Data.gov (United States)

    National Aeronautics and Space Administration — This dataset consists of ground-based Global Navigation Satellite System (GNSS) Observation Data (1-second sampling, sub-hourly files) from the NASA Crustal Dynamics...

  6. Helicopter-borne observations of the continental background aerosol in combination with remote sensing and ground-based measurements

    Science.gov (United States)

    Düsing, Sebastian; Wehner, Birgit; Seifert, Patric; Ansmann, Albert; Baars, Holger; Ditas, Florian; Henning, Silvia; Ma, Nan; Poulain, Laurent; Siebert, Holger; Wiedensohler, Alfred; Macke, Andreas

    2018-01-01

    This paper examines the representativeness of ground-based in situ measurements for the planetary boundary layer (PBL) and conducts a closure study between airborne in situ and ground-based lidar measurements up to an altitude of 2300 m. The related measurements were carried out in a field campaign within the framework of the High-Definition Clouds and Precipitation for Advancing Climate Prediction (HD(CP)2) Observational Prototype Experiment (HOPE) in September 2013 in a rural background area of central Europe.The helicopter-borne probe ACTOS (Airborne Cloud and Turbulence Observation System) provided measurements of the aerosol particle number size distribution (PNSD), the aerosol particle number concentration (PNC), the number concentration of cloud condensation nuclei (CCN-NC), and meteorological atmospheric parameters (e.g., temperature and relative humidity). These measurements were supported by the ground-based 3+2 wavelength polarization lidar system PollyXT, which provided profiles of the particle backscatter coefficient (σbsc) for three wavelengths (355, 532, and 1064 nm). Particle extinction coefficient (σext) profiles were obtained by using a fixed backscatter-to-extinction ratio (also lidar ratio, LR). A new approach was used to determine profiles of CCN-NC for continental aerosol. The results of this new approach were consistent with the airborne in situ measurements within the uncertainties.In terms of representativeness, the PNSD measurements on the ground showed a good agreement with the measurements provided with ACTOS for lower altitudes. The ground-based measurements of PNC and CCN-NC are representative of the PBL when the PBL is well mixed. Locally isolated new particle formation events on the ground or at the top of the PBL led to vertical variability in the cases presented here and ground-based measurements are not entirely representative of the PBL. Based on Mie theory (Mie, 1908), optical aerosol properties under ambient conditions for

  7. Helicopter-borne observations of the continental background aerosol in combination with remote sensing and ground-based measurements

    Directory of Open Access Journals (Sweden)

    S. Düsing

    2018-01-01

    Full Text Available This paper examines the representativeness of ground-based in situ measurements for the planetary boundary layer (PBL and conducts a closure study between airborne in situ and ground-based lidar measurements up to an altitude of 2300 m. The related measurements were carried out in a field campaign within the framework of the High-Definition Clouds and Precipitation for Advancing Climate Prediction (HD(CP2 Observational Prototype Experiment (HOPE in September 2013 in a rural background area of central Europe.The helicopter-borne probe ACTOS (Airborne Cloud and Turbulence Observation System provided measurements of the aerosol particle number size distribution (PNSD, the aerosol particle number concentration (PNC, the number concentration of cloud condensation nuclei (CCN-NC, and meteorological atmospheric parameters (e.g., temperature and relative humidity. These measurements were supported by the ground-based 3+2 wavelength polarization lidar system PollyXT, which provided profiles of the particle backscatter coefficient (σbsc for three wavelengths (355, 532, and 1064 nm. Particle extinction coefficient (σext profiles were obtained by using a fixed backscatter-to-extinction ratio (also lidar ratio, LR. A new approach was used to determine profiles of CCN-NC for continental aerosol. The results of this new approach were consistent with the airborne in situ measurements within the uncertainties.In terms of representativeness, the PNSD measurements on the ground showed a good agreement with the measurements provided with ACTOS for lower altitudes. The ground-based measurements of PNC and CCN-NC are representative of the PBL when the PBL is well mixed. Locally isolated new particle formation events on the ground or at the top of the PBL led to vertical variability in the cases presented here and ground-based measurements are not entirely representative of the PBL. Based on Mie theory (Mie, 1908, optical aerosol properties under ambient

  8. Observations of the neutral atmosphere between 100 and 200 km using ARIA rocket-borne and ground-based instruments

    International Nuclear Information System (INIS)

    Hecht, J.H.; Christensen, A.B.; Gutierrez, D.J.

    1995-01-01

    The atmospheric response in the aurora (ARIA) rocket was launched at 1406 UT on March 3, 1992, from Poker Flat, Alaska, into a pulsating diffuse aurora; rocket-borne instruments included an eight-channel photometer, a far ultraviolet spectrometer, a 130.4-nm atomic oxygen resonance lamp, and two particle spectrometers covering the energy range of 1-400 eV and 10 eV to 20 keV. The photometer channels were isolated using narrow-band interference filters and included measurements of the strong permitted auroral emissions N 2 (337.1 nm), N 2 + (391.4 nm), and O I (844.6 nm). A ground-based photometer measured the premitted N 2 + (427.8 nm), the forbidden O I (630.0 nm), and the premitted O I (844.6 nm) emissions. The ground-based instrument was pointed in the magnetic zenith. Also, the rocket payload was pointed in the magnetic zenith from 100 to 200 km on the upleg. The data were analyzed using the Strickland electron transport code, and the rocket and ground-based results were found to be in good agreement regarding the inferred characteristic energy of the precipitating auroral flux and the composition of the neutral atmosphere during the rocket flight. In particular, it was found that the O/N 2 density ratio in the neutral atmosphere diminished during the auroral substorm, which started about 2 hours before the ARIA rocket flight. The data showed that there was about a 10-min delay between the onset of the substorm and the decrease of the O/N 2 density ratio. At the time of the ARIA flight this ratio had nearly returned to its presubstorm value. However, the data also showed that the O/N 2 density ratio did not recover to its presubstorm value until nearly 30 min after the particle and joule heating had subsided. Both the photometer and oxygen densities in the region above 130 km. The observed auroral brightness ratio B 337.1 /B 391.4 equaled 0.29 and was in agreement with other recent measurements

  9. Justifying a Set of Basic Characteristics of High Temperature Cold Accumulators in Their Designing for the Ground-Based Systems

    Directory of Open Access Journals (Sweden)

    E. S. Khromov

    2015-01-01

    Full Text Available The ground-based systems use a wide variety of heat-emitting equipment. For temperature control of equipment and facilities, the thermal management systems (TMS are included in the ground-based systems. However, in operation, the off-nominal situations with increased heat emission are possible. To avoid overheating of equipment or environment in facilities, where equipment is placed, is possible through completing a set of TMS by high-temperature cold accumulators (CA.When filling CA by thermal accumulating materials (TAM with change in phase at the temperature level exceeding the ambient temperature, CA integration in TMS is simplified and the need to increase the cooling capacity of the sources of its cold is eliminated. Among the known multiple-cycle TAMs with change in phase "melting-solidification" in a set of characteristics, the most promising are crystal hydrates of salts and their systems, as well as paraffin, especially clean. However, advantages and disadvantages of these classes of TAM are different and disable us to develop a generic version of the CA design.The objective of this work is to identify a set of the main characteristics that significantly affect the CA efficiency. To achieve the goal is used a mathematical simulation of heat exchange and phase change processes, using CA with intermediate coolant as an example. Simulation is based on generation and solution of the system of equations of a thermal balance for the coolant circulating through the inner tube of CA container. The system of equations is solved using Excel tools.Varying values of studied characteristics and generalization of results allowed to us define a following set: TAM thermal conductivity, temperature difference in the coolant – TAM system, TAM container dimensions. The results can be applied when developing a CA, as a part of the "TMS-CA heat generation facility" of the ground-based systems with a specified heat absorption capacity at given temperature

  10. The Composition and Chemistry of the Deep Tropospheres of Saturn and Uranus from Ground-Based Radio Observations

    Science.gov (United States)

    Hofstadter, M. D.; Adumitroaie, V.; Atreya, S. K.; Butler, B.

    2017-12-01

    Ground-based radio observations of the giant planets at wavelengths from 1 millimeter to 1 meter have long been the primary means to study the deep tropospheres of both gas- and ice-giant planets (e.g. de Pater and Massie 1985, Icarus 62; Hofstadter and Butler 2003, Icarus 165). Most recently, radiometers aboard the Cassini and Juno spacecraft at Saturn and Jupiter, respectively, have demonstrated the ability of spaceborne systems to study composition and weather beneath the visible cloud tops with high spatial resolution (Janssen et al. 2013, Icarus 226; Bolton et al. 2016, this meeting). Ground-based observations remain, however, an excellent way to study the tropospheres of the ice giants, particularly the temporal and spatial distribution of condensible species, and to study the deep troposphere of Saturn in the region of the water cloud. This presentation focuses on two ground-based data sets, one for Uranus and one for Saturn. The Uranus data were all collected near the 2007 equinox, and span wavelengths from 0.1 to 20 cm. These data provide a snapshot of atmospheric composition at a single season. The Saturn observations were recently made with the EVLA observatory at wavelengths from 3 to 90 cm, augmented by published observations at shorter and longer wavelengths. It is expected that these data will allow us to constrain conditions in the water cloud region on Saturn. At the time of this writing, both data sets are being analyzed using an optimal estimation retrieval algorithm fed with the latest published information on the chemical and electrical properties of relevant atmospheric species (primarily H2O, NH3, H2S, PH3, and free electrons). At Uranus, we find that—consistent with previously published work—ammonia in the 1 to 50-bar range is strongly depleted from solar values. The relative volume mixing ratios of the above species satisfy PH3 < NH3 < H2S < H2O, which is interesting because based on cosmic abundances one would expect H2S < NH3. At the

  11. Metrology of ground-based satellite validation: co-location mismatch and smoothing issues of total ozone comparisons

    Directory of Open Access Journals (Sweden)

    T. Verhoelst

    2015-12-01

    Full Text Available Comparisons with ground-based correlative measurements constitute a key component in the validation of satellite data on atmospheric composition. The error budget of these comparisons contains not only the measurement errors but also several terms related to differences in sampling and smoothing of the inhomogeneous and variable atmospheric field. A versatile system for Observing System Simulation Experiments (OSSEs, named OSSSMOSE, is used here to quantify these terms. Based on the application of pragmatic observation operators onto high-resolution atmospheric fields, it allows a simulation of each individual measurement, and consequently, also of the differences to be expected from spatial and temporal field variations between both measurements making up a comparison pair. As a topical case study, the system is used to evaluate the error budget of total ozone column (TOC comparisons between GOME-type direct fitting (GODFITv3 satellite retrievals from GOME/ERS2, SCIAMACHY/Envisat, and GOME-2/MetOp-A, and ground-based direct-sun and zenith–sky reference measurements such as those from Dobsons, Brewers, and zenith-scattered light (ZSL-DOAS instruments, respectively. In particular, the focus is placed on the GODFITv3 reprocessed GOME-2A data record vs. the ground-based instruments contributing to the Network for the Detection of Atmospheric Composition Change (NDACC. The simulations are found to reproduce the actual measurements almost to within the measurement uncertainties, confirming that the OSSE approach and its technical implementation are appropriate. This work reveals that many features of the comparison spread and median difference can be understood as due to metrological differences, even when using strict co-location criteria. In particular, sampling difference errors exceed measurement uncertainties regularly at most mid- and high-latitude stations, with values up to 10 % and more in extreme cases. Smoothing difference errors only

  12. The thermal signature of Aso Volcano during unrest episodes detected from space and ground-based measurements

    Science.gov (United States)

    Cigolini, Corrado; Coppola, Diego; Yokoo, Akihiko; Laiolo, Marco

    2018-04-01

    The thermal signature of Aso Volcano (Nakadake) during unrest episodes has been analyzed by combining the MODIS-MIROVA data set (2000-2017) with high-resolution images (LANDSAT 8 OLI and Sentinel 2) and ground-based thermal observations (2013-2017). The site of major activity (crater 1) is located at the summit of the volcano and is composed by a fumarole field (located in the South Area) and an acidic lake (replaced by a Central Pit during Strombolian phases). The volcanic radiative power (VRP) obtained by nighttime satellite data during the reference period was mainly below 3 MW. This thermal threshold marks the transition from high fumarole activity (HFA) to Strombolian eruptions (SE). However, periods characterized by sporadic phreatic eruptions (PE, eventually bearing phreatomagmatic episodes), which is the prevalent phase during unrest episodes, exhibit very low VRP values, being around 0.5 MW, or below. The statistical analysis of satellite data shows that the transition from HFA to Strombolian activity (which started on August 2014 and ceased in May 2015) occurs when VRP values are above the cited 3 MW threshold. In particular during marked Strombolian phases (November-December 2014), the radiative power was higher than 4 MW, reaching peak values up to 15.6 MW (on December 7, 2014, i.e., 10 days after the major Strombolian explosion of November 27). Conversely, ground-based measurements show that heat fluxes recorded by FLIR T440 Thermo-camera on the fumarole field of the South Area has been relatively stable around 2 MW until February 2015. Their apparent temperatures were fluctuating around 490-575 °C before the major Strombolian explosive event, whereas those recorded at the active vent, named Central Pit, reached their maxima slightly above 600 °C; then both exhibited a decreasing trend in the following days. During the Strombolian activity, the crater lake dried out and was then replenished by early July, 2016. Then, volcanic activity shifted back to

  13. Characterization of Jupiter's Atmosphere from Observation of Thermal Emission by Juno and Ground-Based Supporting Observations

    Science.gov (United States)

    Orton, G. S.; Momary, T.; Tabataba-Vakili, F.; Janssen, M. A.; Hansen, C. J.; Bolton, S. J.; Li, C.; Adriani, A.; Mura, A.; Grassi, D.; Fletcher, L. N.; Brown, S. T.; Fujiyoshi, T.; Greathouse, T. K.; Kasaba, Y.; Sato, T. M.; Stephens, A.; Donnelly, P.; Eichstädt, G.; Rogers, J.

    2017-12-01

    Ground-breaking measurements of thermal emission at very long wavelengths have been made by the Juno mission's Microwave Radiometer (MWR). We examine the relationship between these and other thermal emission measurements by the Jupiter Infrared Auroral Mapper (JIRAM) at 5 µm and ground-based supporting observations in the thermal infrared that cover the 5-25 µm range. The relevant ground-based observations of thermal emission are constituted from imaging and scanning spectroscopy obtained at the NASA Infrared Telescope Facility (IRTF), the Gemini North Telescope, the Subaru Telescope and the Very Large Telescope. A comparison of these results clarifies the physical properties responsible for the observed emissions, i.e. variability of the temperature field, the cloud field or the distribution of gaseous ammonia. Cross-references to the visible cloud field from Juno's JunoCam experiment and Earth-based images are also useful. This work continues an initial comparison by Orton et al. (2017, GRL 44, doi: 10.1002/2017GL073019) between MWR and JIRAM results, together with ancillary 5-µm IRTF imaging and with JunoCam and ground-based visible imaging. These showed a general agreement between MWR and JIRAM results for the 5-bar NH3 abundance in specific regions of low cloud opacity but only a partial correlation between MWR and 5-µm radiances emerging from the 0.5-5 bar levels of the atmosphere in general. Similar to the latter, there appears to be an inconsistent correlation between MWR channels sensitive to 0.5-10 bars and shorter-wavelength radiances in the "tails" of 5-µm hot spots , which may be the result of the greater sensitivity of the latter to particulate opacity that could depend on the evolution history of the particular features sampled. Of great importance is the interpretation of MWR radiances in terms of the variability of temperature vs. NH3 abundances in the 0.5-5 bar pressure range. This is particularly important to understand MWR results in

  14. Applications of Ground-based Mobile Atmospheric Monitoring: Real-time Characterization of Source Emissions and Ambient Concentrations

    Science.gov (United States)

    Goetz, J. Douglas

    Gas and particle phase atmospheric pollution are known to impact human and environmental health as well as contribute to climate forcing. While many atmospheric pollutants are regulated or controlled in the developed world uncertainty still remains regarding the impacts from under characterized emission sources, the interaction of anthropogenic and naturally occurring pollution, and the chemical and physical evolution of emissions in the atmosphere, among many other uncertainties. Because of the complexity of atmospheric pollution many types of monitoring have been implemented in the past, but none are capable of perfectly characterizing the atmosphere and each monitoring type has known benefits and disadvantages. Ground-based mobile monitoring with fast-response in-situ instrumentation has been used in the past for a number of applications that fill data gaps not possible with other types of atmospheric monitoring. In this work, ground-based mobile monitoring was implemented to quantify emissions from under characterized emission sources using both moving and portable applications, and used in a novel way for the characterization of ambient concentrations. In the Marcellus Shale region of Pennsylvania two mobile platforms were used to estimate emission rates from infrastructure associated with the production and transmission of natural gas using two unique methods. One campaign investigated emissions of aerosols, volatile organic compounds (VOCs), methane, carbon monoxide (CO), nitrogen dioxide (NO2), and carbon dioxide (CO 2) from natural gas wells, well development practices, and compressor stations using tracer release ratio methods and a developed fenceline tracer release correction factor. Another campaign investigated emissions of methane from Marcellus Shale gas wells and infrastructure associated with two large national transmission pipelines using the "Point Source Gaussian" method described in the EPA OTM-33a. During both campaigns ambient concentrations

  15. Information operator approach applied to the retrieval of vertical distributions of atmospheric constituents from ground-based FTIR measurements

    Science.gov (United States)

    Senten, Cindy; de Mazière, Martine; Vanhaelewyn, Gauthier; Vigouroux, Corinne; Delmas, Robert

    2010-05-01

    The retrieval of information about the vertical distribution of an atmospheric absorber from high spectral resolution ground-based Fourier Transform infrared (FTIR) solar absorption spectra is an important issue in remote sensing. A frequently used technique at present is the optimal estimation method. This work introduces the application of an alternative method, namely the information operator approach (Doicu et al., 2007; Hoogen et al., 1999), for extracting the available information from such FTIR measurements. This approach has been implemented within the well-known retrieval code SFIT2, by adapting the optimal estimation method such as to take into account only the significant contributions to the solution. In particular, we demonstrate the feasibility of the method when applied to ground-based FTIR spectra taken at the southern (sub)tropical site Ile de La Réunion (21° S, 55° E) in 2007. A thorough comparison has been made between the retrieval results obtained with the original optimal estimation method and the ones obtained with the information operator approach, regarding profile and column stability, information content and corresponding full error budget evaluation. This has been done for the target species ozone (O3), methane (CH4), nitrous oxide (N2O), and carbon monoxide (CO). It is shown that the information operator approach performs well and is capable of achieving the same accuracy as optimal estimation, with a gain of stability and with the additional advantage of being less sensitive to the choice of a priori information as well as to the actual signal-to-noise ratio. Keywords: ground-based FTIR, solar absorption spectra, greenhouse gases, information operator approach References Doicu, A., Hilgers, S., von Bargen, A., Rozanov, A., Eichmann, K.-U., von Savigny, C., and Burrows, J.P.: Information operator approach and iterative regularization methods for atmospheric remote sensing, J. Quant. Spectrosc. Radiat. Transfer, 103, 340-350, 2007

  16. Environmental characterization and radio-ecological impacts of non-nuclear industries on the Red Sea coast

    International Nuclear Information System (INIS)

    El Mamoney, M.H.; Khater, Ashraf E.M.

    2004-01-01

    The Red Sea is a deep semi-enclosed and narrow basin connected to the Indian Ocean by a narrow sill in the south and to the Suez Canal in the north. Oil industries in the Gulf of Suez, phosphate ore mining activities in Safaga-Quseir region and intensified navigation activities are non-nuclear pollution sources that could have serious radiological impacts on the marine environment and the coastal ecosystems of the Red Sea. It is essential to establish the radiological base-line data, which does not exist yet, and to investigate the present radio-ecological impact of the non-nuclear industries to preserve and protect the coastal environment of the Red Sea. Some natural and man-made radionuclides have been measured in shore sediment samples collected from the Egyptian coast of the Red Sea. The specific activities of 226 Ra and 210 Pb ( 238 U) series, 232 Th series, 40 K and 137 Cs (Bq/kg dry weight) were measured using gamma ray spectrometers based on hyper-pure germanium detectors. The specific activities of 210 Po ( 210 Pb) and uranium isotopes ( 238 U, 235 U and 234 U) (Bq/kg dry weight) were measured using alpha spectrometers based on surface barrier (PIPS) detectors after radiochemical separation. The absorbed radiation dose rates in air (nGy/h) due to natural radionuclides in shore sediment and radium equivalent activity index (Bq/kg) were calculated. The specific activity ratios of 228 Ra/ 226 Ra, 210 Pb/ 226 Ra, 226 Ra/ 238 U and 234 U/ 238 U were calculated for evaluation of the geo-chemical behaviour of these radionuclides. The average specific activity of 226 Ra ( 238 U) series, 232 Th series, 40 K and 210 Pb were 24.7, 31.4, 427.5 and 25.6 Bq/kg, respectively. The concentration of 137 Cs in the sediment samples was less than the lower limit of detection. The Red Sea coast is an arid region with very low rainfall and the sediment is mainly composed of sand. The specific activity of 238 U, 235 U and 234 U were 25.3, 2.9 and 25.0 Bq/kg. The average specific

  17. Soil water content and evaporation determined by thermal parameters obtained from ground-based and remote measurements

    Science.gov (United States)

    Reginato, R. J.; Idso, S. B.; Jackson, R. D.; Vedder, J. F.; Blanchard, M. B.; Goettelman, R.

    1976-01-01

    Soil water contents from both smooth and rough bare soil were estimated from remotely sensed surface soil and air temperatures. An inverse relationship between two thermal parameters and gravimetric soil water content was found for Avondale loam when its water content was between air-dry and field capacity. These parameters, daily maximum minus minimum surface soil temperature and daily maximum soil minus air temperature, appear to describe the relationship reasonably well. These two parameters also describe relative soil water evaporation (actual/potential). Surface soil temperatures showed good agreement among three measurement techniques: in situ thermocouples, a ground-based infrared radiation thermometer, and the thermal infrared band of an airborne multispectral scanner.

  18. A Ground-Based Study on Extruder Standoff Distance for the 3D Printing in Zero Gravity Technology Demonstration Mission

    Science.gov (United States)

    Prater, T. J.; Bean, Q. A.; Werkheiser, N. J.; Beshears, R. D.; Rolin, T. D.; Rabenberg, E. M.; Soohoo, H. A.; Ledbetter, F. E., III; Bell, S. C.

    2017-01-01

    Analysis of phase I specimens produced as part of the 3D printing in zero G technology demonstration mission exhibited some differences in structure and performance for specimens printed onboard the International Space Station (ISS) and specimens produced on the ground with the same printer prior to its launch. This study uses the engineering test unit for the printer, identical to the unit on ISS, to conduct a ground-based investigation of the impact of the distance between the extruder tip and the build tray on material outcomes. This standoff distance was not held constant for the phase I flight prints and is hypothesized to be a major source of the material variability observed in the phase I data set.

  19. Costs and profitability of renewable energies in metropolitan France - ground-based wind energy, biomass, solar photovoltaic. Analysis

    International Nuclear Information System (INIS)

    2014-04-01

    After a general presentation of the framework of support to renewable energies and co-generation (purchasing obligation, tendering, support funding), of the missions of the CRE (Commission for Energy Regulation) within the frame of the purchasing obligation, and of the methodology adopted for this analysis, this document reports an analysis of production costs for three different renewable energy sectors: ground-based wind energy, biomass energy, and solar photovoltaic energy. For each of them, the report recalls the context (conditions of purchasing obligation, winning bid installations, installed fleet in France at the end of 2012), indicates the installations taken into consideration in this study, analyses the installation costs and funding (investment costs, exploitation and maintenance costs, project funding, production costs), and assesses the profitability in terms of capital and for stakeholders

  20. The ten-year pattern (1978-1987) of stratospheric aerosol loading using ground-based radiometry

    International Nuclear Information System (INIS)

    Michalsky, J.J.; Pearson, E.W.; LeBaron, B.A.

    1988-09-01

    In this paper the procedures used to obtain a stratospheric measurement with ground-based sun radiometry are reviewed briefly. The five-wavelength optical depths are then used to study the evolution of aerosol size during the decade. The time history of loading from the instruments described are compared. Particular emphasis will be placed on the Garmisch-Partenkirchen data because their latitude is very nearly that of the PNL site. The most useful data for this study are those observational records that measure total stratospheric aerosol burden and include the early period and continue throughout the eruption and decay of El Chichon. The lidar data from Langley Research Center and Fraunhofer-Institute for Atmospheric Environmental Research at Garmisch-Partenkirchen, the SAM II satellite data, and the Pacific Northwest Laboratory (PNL) sun radiometry are the published contiguous measurements of the stratosphere aerosol burden during this period. 16 refs., 6 figs

  1. The influence on the interferometry due to the instability of ground-based synthetic aperture radar work platform

    Science.gov (United States)

    Tao, Gang; Wei, Guohua; Wang, Xu; Kong, Ming

    2018-03-01

    There has been increased interest over several decades for applying ground-based synthetic aperture radar (GB-SAR) for monitoring terrain displacement. GB-SAR can achieve multitemporal surface deformation maps of the entire terrain with high spatial resolution and submilimetric accuracy due to the ability of continuous monitoring a certain area day and night regardless of the weather condition. The accuracy of the interferometric measurement result is very important. In this paper, the basic principle of InSAR is expounded, the influence of the platform's instability on the interferometric measurement results are analyzed. The error sources of deformation detection estimation are analyzed using precise geometry of imaging model. Finally, simulation results demonstrates the validity of our analysis.

  2. Satellite and Ground-Based Sensors for the Urban Heat Island Analysis in the City of Rome

    Directory of Open Access Journals (Sweden)

    Roberto Fabrizi

    2010-05-01

    Full Text Available In this work, the trend of the Urban Heat Island (UHI of Rome is analyzed by both ground-based weather stations and a satellite-based infrared sensor. First, we have developed a suitable algorithm employing satellite brightness temperatures for the estimation of the air temperature belonging to the layer of air closest to the surface. UHI spatial characteristics have been assessed using air temperatures measured by both weather stations and brightness temperature maps from the Advanced Along Track Scanning Radiometer (AATSR on board ENVISAT polar-orbiting satellite. In total, 634 daytime and nighttime scenes taken between 2003 and 2006 have been processed. Analysis of the Canopy Layer Heat Island (CLHI during summer months reveals a mean growth in magnitude of 3–4 K during nighttime and a negative or almost zero CLHI intensity during daytime, confirmed by the weather stations.

  3. Ergonomic problems regarding the interactive touch input via screens in onboard and ground-based flight control

    Science.gov (United States)

    Holzhausen, K. P.; Gaertner, K. P.

    1985-01-01

    A significant problem concerning the integration of display and switching functions is related to the fact that numerous informative data which have to be processed by man must be read from only a few display devices. A satisfactory ergonomic design of integrated display devices and keyboards is in many cases difficult, because not all functions which can be displayed and selected are simultaneously available. A technical solution which provides an integration of display and functional elements on the basis of the highest flexibility is obtained by using a cathode ray tube with a touch-sensitive screen. The employment of an integrated data input/output system is demonstrated for the cases of onboard and ground-based flight control. Ergonomic studies conducted to investigate the suitability of an employment of touch-sensitive screens are also discussed.

  4. Ground-based remote sensing observation of the complex behaviour of the Marseille boundary layer during ESCOMPTE

    Science.gov (United States)

    Delbarre, H.; Augustin, P.; Saïd, F.; Campistron, B.; Bénech, B.; Lohou, F.; Puygrenier, V.; Moppert, C.; Cousin, F.; Fréville, P.; Fréjafon, E.

    2005-03-01

    Ground-based remote sensing systems have been used during the ESCOMPTE campaign, to continuously characterize the boundary-layer behaviour through many atmospheric parameters (wind, extinction and ozone concentration distribution, reflectivity, turbulence). This analysis is focused on the comparison of the atmospheric stratification retrieved from a UV angular ozone lidar, an Ultra High Frequency wind profiler and a sodar, above the area of Marseille, on June 26th 2001 (Intensive Observation Period 2b). The atmospheric stratification is shown to be very complex including two superimposed sea breezes, with an important contribution of advection. The temporal and spatial evolution of the stratification observed by the UV lidar and by the UHF radar are in good agreement although the origin of the echoes of these systems is quite different. The complexity of the dynamic situation has only partially been retrieved by a non-hydrostatic mesoscale model used with a 3 km resolution.

  5. Assessment of surface solar irradiance derived from real-time modelling techniques and verification with ground-based measurements

    Science.gov (United States)

    Kosmopoulos, Panagiotis G.; Kazadzis, Stelios; Taylor, Michael; Raptis, Panagiotis I.; Keramitsoglou, Iphigenia; Kiranoudis, Chris; Bais, Alkiviadis F.

    2018-02-01

    This study focuses on the assessment of surface solar radiation (SSR) based on operational neural network (NN) and multi-regression function (MRF) modelling techniques that produce instantaneous (in less than 1 min) outputs. Using real-time cloud and aerosol optical properties inputs from the Spinning Enhanced Visible and Infrared Imager (SEVIRI) on board the Meteosat Second Generation (MSG) satellite and the Copernicus Atmosphere Monitoring Service (CAMS), respectively, these models are capable of calculating SSR in high resolution (1 nm, 0.05°, 15 min) that can be used for spectrally integrated irradiance maps, databases and various applications related to energy exploitation. The real-time models are validated against ground-based measurements of the Baseline Surface Radiation Network (BSRN) in a temporal range varying from 15 min to monthly means, while a sensitivity analysis of the cloud and aerosol effects on SSR is performed to ensure reliability under different sky and climatological conditions. The simulated outputs, compared to their common training dataset created by the radiative transfer model (RTM) libRadtran, showed median error values in the range -15 to 15 % for the NN that produces spectral irradiances (NNS), 5-6 % underestimation for the integrated NN and close to zero errors for the MRF technique. The verification against BSRN revealed that the real-time calculation uncertainty ranges from -100 to 40 and -20 to 20 W m-2, for the 15 min and monthly mean global horizontal irradiance (GHI) averages, respectively, while the accuracy of the input parameters, in terms of aerosol and cloud optical thickness (AOD and COT), and their impact on GHI, was of the order of 10 % as compared to the ground-based measurements. The proposed system aims to be utilized through studies and real-time applications which are related to solar energy production planning and use.

  6. Stratospheric NO2 vertical profile retrieved from ground-based Zenith-Sky DOAS observations at Kiruna, Sweden

    Science.gov (United States)

    Gu, Myojeong; Enell, Carl-Fredrik; Hendrick, François; Pukite, Janis; Van Roozendael, Michel; Platt, Ulrich; Raffalski, Uwe; Wagner, Thomas

    2014-05-01

    Stratospheric NO2 destroys ozone and acts as a buffer against halogen-catalyzed ozone loss through the formation of reservoir species (ClONO2, BrONO2). Since the importance of both mechanisms depends on the altitude, the investigation of stratospheric NO2 vertical distribution can provide more insight into the role of nitrogen compounds in the destruction of ozone. Here we present stratospheric NO2 vertical profiles retrieved from twilight ground-based zenith-sky DOAS observations at Kiruna, Sweden (68.84°N, 20.41°E) covering 1997 - 2013 periods. This instrument observes zenith scattered sunlight. The sensitivity for stratospheric trace gases is highest during twilight due to the maximum altitude of the scattering profile and the light path through the stratosphere, which vary with the solar zenith angle. The profiling algorithm, based on the Optimal Estimation Method, has been developed by IASB-BIRA and successfully applied at other stations (Hendrick et al., 2004). The basic principle behind this profiling approach is that during twilight, the mean Rayleigh scattering altitude scans the stratosphere rapidly, providing height-resolved information on the absorption by stratospheric NO2. In this study, the long-term evolution of the stratospheric NO2 profile at polar latitude will be investigated. Hendrick, F., B. Barret, M. Van Roozendael, H. Boesch, A. Butz, M. De Mazière, F. Goutail, C. Hermans, J.-C. Lambert, K. Pfeilsticker, and J.-P. Pommereau, Retrieval of nitrogen dioxide stratospheric profiles from ground-based zenith-sky UV-visible observations: Validation of the technique through correlative comparisons, Atmospheric Chemistry and Physics, 4, 2091-2106, 2004

  7. The effect of spectroscopic parameter inaccuracies on ground-based millimeter wave remote sensing of the atmosphere

    International Nuclear Information System (INIS)

    Ryan, Niall J.; Walker, Kaley A.

    2015-01-01

    A sensitivity study was performed to assess the impact that uncertainties in the spectroscopic parameters of atmospheric species have on the retrieval of gas concentrations using the 265–280 GHz region of the electromagnetic spectrum. Errors in the retrieval of O 3 , N 2 O, HNO 3 , and ClO from spectra measured by ground-based radiometers were investigated. The goal of the study was to identify the spectroscopic parameters of these target species, and other interfering species, available in the JPL and HITRAN 2008 catalogues, which contribute the largest error to retrieved atmospheric concentration profiles in order to provide recommendations for new laboratory measurements. The parameters investigated were the line position, line strength, broadening coefficients and their temperature dependence, and pressure shift. Uncertainties in the air broadening coefficients of gases tend to contribute the largest error to retrieved atmospheric concentration profiles. For O 3 and N 2 O, gases with relatively strong spectral signatures, the retrieval is sensitive to uncertainties in the parameters of the main spectral line that is observed. For HNO 3 , the uncertainties in many closely spaced HNO 3 lines can cause large errors in the retrieved profile, and for ClO, the error in the profile is dominated by uncertainties in nearby, stronger O 3 lines. Fourteen spectroscopic parameters are identified, for which updated measurements would have the most impact on the accuracy of ground-based remote sensing of the target species at 265–280 GHz. - Highlights: • The sensitivity of retrievals to spectroscopic parameters is assessed. • Air broadening parameters contribute the most to the error budget. • O 3 and N 2 O retrievals are sensitive to parameters of the target spectral lines. • Many HNO 3 lines in close proximity can cause large errors in HNO 3 retrievals. • ClO retrievals are sensitive to uncertainties in parameters of nearby O 3 lines

  8. Estimation of High-Frequency Earth-Space Radio Wave Signals via Ground-Based Polarimetric Radar Observations

    Science.gov (United States)

    Bolen, Steve; Chandrasekar, V.

    2002-01-01

    Expanding human presence in space, and enabling the commercialization of this frontier, is part of the strategic goals for NASA's Human Exploration and Development of Space (HEDS) enterprise. Future near-Earth and planetary missions will support the use of high-frequency Earth-space communication systems. Additionally, increased commercial demand on low-frequency Earth-space links in the S- and C-band spectra have led to increased interest in the use of higher frequencies in regions like Ku and Ka-band. Attenuation of high-frequency signals, due to a precipitating medium, can be quite severe and can cause considerable disruptions in a communications link that traverses such a medium. Previously, ground radar measurements were made along the Earth-space path and compared to satellite beacon data that was transmitted to a ground station. In this paper, quantitative estimation of the attenuation along the propagation path is made via inter-comparisons of radar data taken from the Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR) and ground-based polarimetric radar observations. Theoretical relationships between the expected specific attenuation (k) of spaceborne measurements with ground-based measurements of reflectivity (Zh) and differential propagation phase shift (Kdp) are developed for various hydrometeors that could be present along the propagation path, which are used to estimate the two-way path-integrated attenuation (PIA) on the PR return echo. Resolution volume matching and alignment of the radar systems is performed, and a direct comparison of PR return echo with ground radar attenuation estimates is made directly on a beam-by-beam basis. The technique is validated using data collected from the TExas and Florida UNderflights (TEFLUN-B) experiment and the TRMM large Biosphere-Atmosphere experiment in Amazonia (LBA) campaign. Attenuation estimation derived from this method can be used for strategiC planning of communication systems for

  9. First ground-based optical analysis of Hβ Doppler profiles close to local noon in the cusp

    Directory of Open Access Journals (Sweden)

    S. C. Robertson

    2006-10-01

    Full Text Available Observations of hydrogen emissions along the magnetic zenith at Longyearbyen (78.2 N, 15.8 E geographic are used to investigate the energy and source of protons precipitating into the high latitude region. During the hours around local solar noon (11:00 UT, measurements of the hydrogen Balmer β line are severely affected by sunlight, such that most data until now have been disregarded during these times. Here we use a simple technique to subtract sunlight contamination from such spectral data. An example is shown in which the removal of twilight contamination reveals a brightening of Hβ aurora over Svalbard on 27 November 2000 between 08:00 UT and 10:00 UT, which is centred on magnetic noon (08:48 UT. These data were measured by the High Throughput Imaging Echelle Spectrograph (HiTIES, one instrument on the Southampton-UCL Spectrographic Imaging Facility (SIF. Data from the IMAGE satellite confirms the location of a cusp "spot" over Svalbard at the time of the ground-based measurements, which moved in response to changes in the IMF conditions. A coincident pass of the DMSP F12 satellite provided input spectra for modelling studies of the Hβ profiles, which confirm that the method for removing the twilight contamination is robust. The results described here are the first ground-based optical measurements of Hβ Doppler profiles from the cusp region close to local solar noon, when scattered sunlight swamps the raw data.

  10. Ground-based hyperspectral imaging and terrestrial laser scanning for fracture characterization in the Mississippian Boone Formation

    Science.gov (United States)

    Sun, Lei; Khan, Shuhab D.; Sarmiento, Sergio; Lakshmikantha, M. R.; Zhou, Huawei

    2017-12-01

    Petroleum geoscientists have been using cores and well logs to study source rocks and reservoirs, however, the inherent discontinuous nature of these data cannot account for horizontal heterogeneities. Modern exploitation requires better understanding of important source rocks and reservoirs at outcrop scale. Remote sensing of outcrops is becoming a first order tool for reservoir analog studies including horizontal heterogeneities. This work used ground-based hyperspectral imaging, terrestrial laser scanning (TLS), and high-resolution photography to study a roadcut of the Boone Formation at Bella Vista, northwest Arkansas, and developed an outcrop model for reservoir analog analyses. The petroliferous Boone Formation consists of fossiliferous limestones interbedded with chert of early Mississippian age. We used remote sensing techniques to identify rock types and to collect 3D geometrical data. Mixture tuned matched filtering classification of hyperspectral data show that the outcrop is mostly limestones with interbedded chert nodules. 1315 fractures were classified according to their strata-bounding relationships, among these, larger fractures are dominantly striking in ENE - WSW directions. Fracture extraction data show that chert holds more fractures than limestones, and both vertical and horizontal heterogeneities exist in chert nodule distribution. Utilizing ground-based remote sensing, we have assembled a virtual outcrop model to extract mineral composition as well as fracture data from the model. We inferred anisotropy in vertical fracture permeability based on the dominancy of fracture orientations, the preferential distribution of fractures and distribution of chert nodules. These data are beneficial in reservoir analogs to study rock mechanics and fluid flow, and to improve well performances.

  11. Practical Applications of Cosmic Ray Science: Spacecraft, Aircraft, Ground Based Computation and Control Systems and Human Health and Safety

    Science.gov (United States)

    Atwell, William; Koontz, Steve; Normand, Eugene

    2012-01-01

    In this paper we review the discovery of cosmic ray effects on the performance and reliability of microelectronic systems as well as on human health and safety, as well as the development of the engineering and health science tools used to evaluate and mitigate cosmic ray effects in earth surface, atmospheric flight, and space flight environments. Three twentieth century technological developments, 1) high altitude commercial and military aircraft; 2) manned and unmanned spacecraft; and 3) increasingly complex and sensitive solid state micro-electronics systems, have driven an ongoing evolution of basic cosmic ray science into a set of practical engineering tools (e.g. ground based test methods as well as high energy particle transport and reaction codes) needed to design, test, and verify the safety and reliability of modern complex electronic systems as well as effects on human health and safety. The effects of primary cosmic ray particles, and secondary particle showers produced by nuclear reactions with spacecraft materials, can determine the design and verification processes (as well as the total dollar cost) for manned and unmanned spacecraft avionics systems. Similar considerations apply to commercial and military aircraft operating at high latitudes and altitudes near the atmospheric Pfotzer maximum. Even ground based computational and controls systems can be negatively affected by secondary particle showers at the Earth's surface, especially if the net target area of the sensitive electronic system components is large. Accumulation of both primary cosmic ray and secondary cosmic ray induced particle shower radiation dose is an important health and safety consideration for commercial or military air crews operating at high altitude/latitude and is also one of the most important factors presently limiting manned space flight operations beyond low-Earth orbit (LEO).

  12. Comparison of OMI NO2 Observations and Their Seasonal and Weekly Cycles with Ground-Based Measurements in Helsinki

    Science.gov (United States)

    Ialongo, Iolanda; Herman, Jay; Krotkov, Nick; Lamsal, Lok; Boersma, Folkert; Hovila, Jari; Tamminen, Johanna

    2016-01-01

    We present the comparison of satellite-based OMI (Ozone Monitoring Instrument) NO2 products with ground-based observations in Helsinki. OMI NO2 total columns, available from standard product (SP) and DOMINO algorithm, are compared with the measurements performed by the Pandora spectrometer in Helsinki in 2012. The relative difference between Pandora 21 and OMI SP retrievals is 4 and 6 for clear sky and all sky conditions, respectively. DOMINO NO2 retrievals showed slightly lower total columns with median differences about 5 and 14 for clear sky and all sky conditions, respectively. Large differences often correspond to cloudy autumn-winter days with solar zenith angles above 65. Nevertheless, the differences remain within the retrieval uncertainties. Furthermore, the weekly and seasonal cycles from OMI, Pandora and NO2 surface concentrations are compared. Both satellite- and ground-based data show a similar weekly cycle, with lower NO2 levels during the weekend compared to the weekdays as result of reduced emissions from traffic and industrial activities. Also the seasonal cycle shows a similar behavior, even though the results are affected by the fact that most of the data are available during spring-summer because of cloud cover in other seasons. This is one of few works in which OMI NO2 retrievals are evaluated in an urban site at high latitudes (60N). Despite the city of Helsinki having relatively small pollution sources, OMI retrievals have proved to be able to describe air quality features and variability similar to surface observations. This adds confidence in using satellite observations for air quality monitoring also at high latitudes.

  13. ON THE RETRIEVAL OF MESOSPHERIC WINDS ON MARS AND VENUS FROM GROUND-BASED OBSERVATIONS AT 10 μm

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Valverde, M. A. [Instituto de Astrofisica de Andalucia, IAA/CSIC, Granada (Spain); Montabone, L. [Space Science Institute, Boulder, CO (United States); Sornig, M.; Sonnabend, G., E-mail: valverde@iaa.es [University of Cologne, KOSMA, Köln (Germany)

    2016-01-10

    A detailed analysis is presented of ground-based observations of atmospheric emissions on Mars and Venus under non-local thermodynamic equilibrium (non-LTE) conditions at high spectral resolution. Our first goal is to comprehend the difficulties behind the derivation of wind speeds from ground-based observations. A second goal is to set a framework to permit comparisons with other observations and with atmospheric models. A forward model including non-LTE radiative transfer is used to evaluate the information content within the telescopic beam, and is later convolved with the beam function and a typical wind field to discern the major contributions to the measured radiance, including limb and nadir views. The emission mostly arises from the non-LTE limb around altitudes of 75 km on Mars and 110 km on Venus. We propose a parameterization of the limb emission using few geophysical parameters which can be extended to other hypothetical CO{sub 2} planetary atmospheres. The tropospheric or LTE component of the emission varies with the temperature and is important at low solar illumination but only for the emerging radiance, not for the wind determinations since these are derived from the Doppler shift at the non-LTE line cores. We evaluated the sources of uncertainty and found that the forward model errors amount to approximately 12% of the measured winds, which is normally smaller than the instrumental errors. We applied this study to revise a set of measurements extending for three Martian years and confirmed previous results suggesting winds that are too large simulated by current Martian circulation models at equatorial latitudes during solstice. We encourage new observational campaigns, particularly for the strong jet at mid–high latitudes on Mars, and propose general guidelines and recommendations for future observations.

  14. ON THE RETRIEVAL OF MESOSPHERIC WINDS ON MARS AND VENUS FROM GROUND-BASED OBSERVATIONS AT 10 μm

    International Nuclear Information System (INIS)

    Lopez-Valverde, M. A.; Montabone, L.; Sornig, M.; Sonnabend, G.

    2016-01-01

    A detailed analysis is presented of ground-based observations of atmospheric emissions on Mars and Venus under non-local thermodynamic equilibrium (non-LTE) conditions at high spectral resolution. Our first goal is to comprehend the difficulties behind the derivation of wind speeds from ground-based observations. A second goal is to set a framework to permit comparisons with other observations and with atmospheric models. A forward model including non-LTE radiative transfer is used to evaluate the information content within the telescopic beam, and is later convolved with the beam function and a typical wind field to discern the major contributions to the measured radiance, including limb and nadir views. The emission mostly arises from the non-LTE limb around altitudes of 75 km on Mars and 110 km on Venus. We propose a parameterization of the limb emission using few geophysical parameters which can be extended to other hypothetical CO 2 planetary atmospheres. The tropospheric or LTE component of the emission varies with the temperature and is important at low solar illumination but only for the emerging radiance, not for the wind determinations since these are derived from the Doppler shift at the non-LTE line cores. We evaluated the sources of uncertainty and found that the forward model errors amount to approximately 12% of the measured winds, which is normally smaller than the instrumental errors. We applied this study to revise a set of measurements extending for three Martian years and confirmed previous results suggesting winds that are too large simulated by current Martian circulation models at equatorial latitudes during solstice. We encourage new observational campaigns, particularly for the strong jet at mid–high latitudes on Mars, and propose general guidelines and recommendations for future observations

  15. A multi-sensor study of the impact of ground-based glaciogenic seeding on orogrpahic clouds and precipitation

    Science.gov (United States)

    Pokharel, Binod

    This dissertation examines reflectivity data from three different radar systems, as well as airborne and ground-based in situ particle imaging data, to study the impact of ground-based glaciogenic seeding on orographic clouds and precipitation formed over the mountains in southern Wyoming. The data for this study come from the AgI Seeding Cloud Impact Investigation (ASCII) field campaign conducted over the Sierra Madre mountains in 2012 (ASCII-12) and over the Medicine Bow mountains in 2013 (ASCII-13) in the context of the Wyoming Weather Modification Pilot Project (WWMPP). The campaigns were supported by a network of ground-based instruments, including a microwave radiometer, two profiling Ka-band Micro Rain Radars (MRRs), a Doppler on Wheels (DOW), rawinsondes, a Cloud Particle Imager, and a Parsivel disdrometer. The University of Wyoming King Air with profiling Wyoming Cloud Radar (WCR) conducted nine successful flights in ASCII-12, and eight flights in ASCII-13. WCR profiles from these flights are combined with those from seven other flights, which followed the same geographically-fixed pattern in 2008-09 (pre-ASCII) over the Medicine Bow range. All sampled storms were relatively shallow, with low-level air forced over the target mountain, and cold enough to support ice initiation by silver iodide (AgI) nuclei in cloud. Three detailed case studies are conducted, each with different atmospheric conditions and different cloud and snow growth properties: one case (21 Feb 2012) is stratiform, with strong winds and cloud droplets too small to enable snow growth by accretion (riming). A second case (13 Feb 2012) contains shallow convective cells. Clouds in the third case study (22 Feb 2012) are stratiform but contain numerous large droplets (mode ~35 microm in diameter), large enough for ice particle growth by riming. These cases and all others, each with a treated period following an untreated period, show that a clear seeding signature is not immediately apparent

  16. Application of a Virtual Reactivity Feedback Control Loop in Non-Nuclear Testing of a Fast Spectrum Reactor

    International Nuclear Information System (INIS)

    Bragg-Sitton, Shannon M.; Forsbacka, Matthew

    2004-01-01

    For a compact, fast-spectrum reactor, reactivity feedback is dominated by core deformation at elevated temperature. Given the use of accurate deformation measurement techniques, it is possible to simulate nuclear feedback in non-nuclear electrically heated reactor tests. Implementation of simulated reactivity feedback in response to measured deflection is being tested at the Nasa Marshall Space Flight Center Early Flight Fission Test Facility (EFF-TF). During tests of the SAFE-100 reactor prototype, core deflection was monitored using a high resolution camera. 'Virtual' reactivity feedback was accomplished by applying the results of Monte Carlo calculations (MCNPX) to core deflection measurements; the computational analysis was used to establish the reactivity worth of various core deformations. The power delivered to the SAFE-100 prototype was then adjusted accordingly via kinetics calculations. The work presented in this paper will demonstrate virtual reactivity feedback as core power was increased from 1 kWt to 10 kWt, held approximately constant at 10 kWt, and then allowed to decrease based on the negative thermal reactivity coefficient. (authors)

  17. Safety Management. An Introduction to a Frame of Reference Exemplified with Case Studies from Non-Nuclear Contexts

    Energy Technology Data Exchange (ETDEWEB)

    Svensson, Ola (Risk Analysis, Social and Decision Research Unit, Dept. of Psychology, Stockholm Univ., Stockholm (Sweden)); Salo, Ilkka (Dept. of Psychology, Lund Univ., Lund (Sweden))

    2004-11-15

    A systems perspective on safety management is introduced followed by two briefly presented case studies of safety management in non-nuclear contexts. The first study concerns a car manufacturer and the second study a road traffic tunnel system. The risks of a car accident in the first case study are evident. The great exposure generates many incidents and accidents. In the second study, the rather low traffic intensity through the tunnel produces few incidents and accidents and only a few fatal accidents over the years. Yet, the risk of the individual traveler is much greater in the tunnel than on the average road. The case studies are presented in a systems perspective with emphasis on information feedback about the risks of the systems. The first case study illustrates high quality safety management, while the second case study shows many weaknesses of the safety management in the tunnel system. Some differences in safety management between the case studies are noted. The last part of the study presents an organizational perspective on safety management and offers alternative theoretical perspectives on the concept of safety management. The report shows that further studies are needed both (1) to develop a frame of reference for describing safety management across industries and activities and (2) to collect data illustrating of good and poor safety management. Then, the results can be used to strengthen and/or improving safety management in the nuclear power industry and its regulators

  18. Safety Management. An Introduction to a Frame of Reference Exemplified with Case Studies from Non-Nuclear Contexts

    International Nuclear Information System (INIS)

    Svensson, Ola; Salo, Ilkka

    2004-11-01

    A systems perspective on safety management is introduced followed by two briefly presented case studies of safety management in non-nuclear contexts. The first study concerns a car manufacturer and the second study a road traffic tunnel system. The risks of a car accident in the first case study are evident. The great exposure generates many incidents and accidents. In the second study, the rather low traffic intensity through the tunnel produces few incidents and accidents and only a few fatal accidents over the years. Yet, the risk of the individual traveler is much greater in the tunnel than on the average road. The case studies are presented in a systems perspective with emphasis on information feedback about the risks of the systems. The first case study illustrates high quality safety management, while the second case study shows many weaknesses of the safety management in the tunnel system. Some differences in safety management between the case studies are noted. The last part of the study presents an organizational perspective on safety management and offers alternative theoretical perspectives on the concept of safety management. The report shows that further studies are needed both (1) to develop a frame of reference for describing safety management across industries and activities and (2) to collect data illustrating of good and poor safety management. Then, the results can be used to strengthen and/or improving safety management in the nuclear power industry and its regulators

  19. The fundamentals of the Russian Federation National Policy in the non-nuclear fuel cycle radioactive waste management

    International Nuclear Information System (INIS)

    Latypov, E.M.; Rikunov, V.A.

    1995-01-01

    Extensive manufacture and use of sources of ionizing radiation result inevitably in the generation of a considerable amount of radioactive waste. The crucial objective within the context of the general problem of radioactive waste management involves the safe isolation of radioactive waste from the environment for the entire period of the existence of their potential hazardous impacts upon it. The complex nature of the problem requires substantial efforts to be placed for the establishment of an integrated radioactive waste management system providing a national control in medicine, industry and science. To this end, the fundamentals of the national policy for the safe management of radioactive waste from non-nuclear fuel cycle activities are being developed in the Russian Federation. The essential components of the national policy are: development of a scientifically sound concept of radioactive waste management; adoption of legislative documents such as standards and acts, relevant to this area; implementation and enforcement of state regulations and supervision of the relevant activities; development of a national programme on radioactive waste management; provision and maintaining of a national radioactive waste inventory; radiation monitoring

  20. Comparison of flying qualities derived from in-flight and ground-based simulators for a jet-transport airplane for the approach and landing pilot tasks

    Science.gov (United States)

    Grantham, William D.

    1989-01-01

    The primary objective was to provide information to the flight controls/flying qualities engineer that will assist him in determining the incremental flying qualities and/or pilot-performance differences that may be expected between results obtained via ground-based simulation (and, in particular, the six-degree-of-freedom Langley Visual/Motion Simulator (VMS)) and flight tests. Pilot opinion and performance parameters derived from a ground-based simulator and an in-flight simulator are compared for a jet-transport airplane having 32 different longitudinal dynamic response characteristics. The primary pilot tasks were the approach and landing tasks with emphasis on the landing-flare task. The results indicate that, in general, flying qualities results obtained from the ground-based simulator may be considered conservative-especially when the pilot task requires tight pilot control as during the landing flare. The one exception to this, according to the present study, was that the pilots were more tolerant of large time delays in the airplane response on the ground-based simulator. The results also indicated that the ground-based simulator (particularly the Langley VMS) is not adequate for assessing pilot/vehicle performance capabilities (i.e., the sink rate performance for the landing-flare task when the pilot has little depth/height perception from the outside scene presentation).

  1. Non-nuclear energies

    International Nuclear Information System (INIS)

    Nifenecker, H.

    2007-01-01

    The different meanings of the word 'energy', as understood by economists, are reviewed and explained. Present rates of consumption of fossil and nuclear fuels are given as well as corresponding reserves and resources. The time left before exhaustion of these reserves is calculated for different energy consumption scenarios. On finds that coal and nuclear only allow to reach the end of this century. Without specific dispositions, the predicted massive use of coal is not compatible with any admissible value of global heating. Thus, we discuss the clean coal techniques, including carbon dioxide capture and storage. One proceeds with the discussion of availability and feasibility of renewable energies, with special attention to electricity production. One distinguishes controllable renewable energies from those which are intermittent. Among the first we find hydroelectricity, biomass, and geothermal and among the second, wind and solar. At world level, hydroelectricity will, most probably, remain the main renewable contributor to electricity production. Photovoltaic is extremely promising for providing villages remote deprived from access to a centralized network. Biomass should be an important source of bio-fuels. Geothermal energy should be an interesting source of low temperature heat. Development of wind energy will be inhibited by the lack of cheap and massive electricity storage; its contribution should not exceed 10% of electricity production. Its present development is totally dependent upon massive public support. A large part of this paper follows chapters of the monograph 'L'energie de demain: technique, environnement, economie', EDP Sciences, 2005. (author)

  2. Non-nuclear energies

    International Nuclear Information System (INIS)

    Nifenecker, Herve

    2006-01-01

    The different meanings of the word 'energy', as understood by economists, are reviewed and explained. Present rates of consumption of fossil and nuclear fuels are given as well as corresponding reserves and resources. The time left before exhaustion of these reserves is calculated for different energy consumption scenarios. On finds that coal and nuclear only allow to reach the end of this century. Without specific dispositions, the predicted massive use of coal is not compatible with any admissible value of global heating. Thus, we discuss the clean coal techniques, including carbon dioxide capture and storage. On proceeds with the discussion of availability and feasibility of renewable energies, with special attention to electricity production. One distinguishes controllable renewable energies from those which are intermittent. Among the first we find hydroelectricity, biomass, and geothermal and among the second, wind and solar. At world level, hydroelectricity will, most probably, remain the main renewable contributor to electricity production. Photovoltaic is extremely promising for providing villages remote deprived from access to a centralized network. Biomass should be an important source of biofuels. Geothermal energy should be an interesting source of low temperature heat. Development of wind energy will be inhibited by the lack of cheap and massive electricity storage; its contribution should not exceed 10% of electricity production. Its present development is totally dependent upon massive public support. (author)

  3. Ground-based and satellite observations of high-latitude auroral activity in the dusk sector of the auroral oval

    Directory of Open Access Journals (Sweden)

    K. Kauristie

    Full Text Available On 7 December 2000, during 13:30–15:30 UT the MIRACLE all-sky camera at Ny Ålesund observed auroras at high-latitudes (MLAT ~ 76 simultaneously when the Cluster spacecraft were skimming the magnetopause in the same MLT sector (at ~ 16:00–18:00 MLT. The location of the auroras (near the ionospheric convection reversal boundary and the clear correlation between their dynamics and IMF variations suggests their close relationship with R1 currents. Consequently, we can assume that the Cluster spacecraft were making observations in the magnetospheric region associated with the auroras, although exact magnetic conjugacy between the ground-based and satellite observations did not exist. The solar wind variations appeared to control both the behaviour of the auroras and the magnetopause dynamics. Auroral structures were observed at Ny Ålesund especially during periods of negative IMF BZ. In addition, the Cluster spacecraft experienced periodic (T ~ 4 - 6 min encounters between magnetospheric and magnetosheath plasmas. These undulations of the boundary can be interpreted as a consequence of tailward propagating magnetopause surface waves. Simultaneous dusk sector ground-based observations show weak, but discernible magnetic pulsations (Pc 5 and occasionally periodic variations (T ~ 2 - 3 min in the high-latitude auroras. In the dusk sector, Pc 5 activity was stronger and had characteristics that were consistent with a field line resonance type of activity. When IMF BZ stayed positive for a longer period, the auroras were dimmer and the spacecraft stayed at the outer edge of the magnetopause where they observed electromagnetic pulsations with T ~ 1 min. We find these observations interesting especially from the viewpoint of previously presented studies relating poleward-moving high-latitude auroras with pulsation activity and MHD waves propagating at the magnetospheric boundary layers

  4. Optical and geometrical properties of cirrus clouds in Amazonia derived from 1 year of ground-based lidar measurements

    Science.gov (United States)

    Gouveia, Diego A.; Barja, Boris; Barbosa, Henrique M. J.; Seifert, Patric; Baars, Holger; Pauliquevis, Theotonio; Artaxo, Paulo

    2017-03-01

    Cirrus clouds cover a large fraction of tropical latitudes and play an important role in Earth's radiation budget. Their optical properties, altitude, vertical and horizontal coverage control their radiative forcing, and hence detailed cirrus measurements at different geographical locations are of utmost importance. Studies reporting cirrus properties over tropical rain forests like the Amazon, however, are scarce. Studies with satellite profilers do not give information on the diurnal cycle, and the satellite imagers do not report on the cloud vertical structure. At the same time, ground-based lidar studies are restricted to a few case studies. In this paper, we derive the first comprehensive statistics of optical and geometrical properties of upper-tropospheric cirrus clouds in Amazonia. We used 1 year (July 2011 to June 2012) of ground-based lidar atmospheric observations north of Manaus, Brazil. This dataset was processed by an automatic cloud detection and optical properties retrieval algorithm. Upper-tropospheric cirrus clouds were observed more frequently than reported previously for tropical regions. The frequency of occurrence was found to be as high as 88 % during the wet season and not lower than 50 % during the dry season. The diurnal cycle shows a minimum around local noon and maximum during late afternoon, associated with the diurnal cycle of precipitation. The mean values of cirrus cloud top and base heights, cloud thickness, and cloud optical depth were 14.3 ± 1.9 (SD) km, 12.9 ± 2.2 km, 1.4 ± 1.1 km, and 0.25 ± 0.46, respectively. Cirrus clouds were found at temperatures down to -90 °C. Frequently cirrus were observed within the tropical tropopause layer (TTL), which are likely associated to slow mesoscale uplifting or to the remnants of overshooting convection. The vertical distribution was not uniform, and thin and subvisible cirrus occurred more frequently closer to the tropopause. The mean lidar ratio was 23.3 ± 8.0 sr. However, for

  5. THE IMPACT OF THE IONOSPHERE ON GROUND-BASED DETECTION OF THE GLOBAL EPOCH OF REIONIZATION SIGNAL

    Energy Technology Data Exchange (ETDEWEB)

    Sokolowski, Marcin; Wayth, Randall B.; Tremblay, Steven E.; Tingay, Steven J.; Waterson, Mark; Tickner, Jonathan; Emrich, David; Schlagenhaufer, Franz; Kenney, David; Padhi, Shantanu, E-mail: marcin.sokolowski@curtin.edu.au [International Centre for Radio Astronomy Research, Curtin University, G.P.O Box U1987, Perth, WA 6845 (Australia)

    2015-11-01

    The redshifted 21 cm line of neutral hydrogen (H i), potentially observable at low radio frequencies (∼50–200 MHz), is a promising probe of the physical conditions of the intergalactic medium during Cosmic Dawn and the Epoch of Reionization (EoR). The sky-averaged H i signal is expected to be extremely weak (∼100 mK) in comparison to the Galactic foreground emission (∼10{sup 4} K). Moreover, the sky-averaged spectra measured by ground-based instruments are affected by chromatic propagation effects (∼tens of kelvin) originating in the ionosphere. We analyze data collected with the upgraded Broadband Instrument for Global Hydrogen Reionization Signal system deployed at the Murchison Radio-astronomy Observatory to assess the significance of ionospheric effects on the detection of the global EoR signal. The ionospheric effects identified in these data are, particularly during nighttime, dominated by absorption and emission. We measure some properties of the ionosphere, such as the electron temperature (T{sub e} ≈ 470 K at nighttime), magnitude, and variability of optical depth (τ{sub 100} {sub MHz} ≈ 0.01 and δτ ≈ 0.005 at nighttime). According to the results of a statistical test applied on a large data sample, very long integrations (∼100 hr collected over approximately 2 months) lead to increased signal-to-noise ratio even in the presence of ionospheric variability. This is further supported by the structure of the power spectrum of the sky temperature fluctuations, which has flicker noise characteristics at frequencies ≳10{sup −5} Hz, but becomes flat below ≈10{sup −5} Hz. Hence, we conclude that the stochastic error introduced by the chromatic ionospheric effects tends to zero in an average. Therefore, the ionospheric effects and fluctuations are not fundamental impediments preventing ground-based instruments from integrating down to the precision required by global EoR experiments, provided that the ionospheric contribution is

  6. Ground-based structure from motion - multi view stereo (SFM-MVS) for upland soil erosion assessment.

    Science.gov (United States)

    McShane, Gareth; James, Mike; Quniton, John; Farrow, Luke; Glendell, Miriam; Jones, Lee; Kirkham, Matthew; Morgan, David; Evans, Martin; Anderson, Karen; Lark, Murray; Rawlins, Barry; Rickson, Jane; Quine, Timothy; Benaud, Pia; Brazier, Richard

    2016-04-01

    In upland environments, quantifying soil loss through erosion processes at a high resolution can be time consuming, costly and logistically difficult. In this pilot study 'A cost effective framework for monitoring soil erosion in England and Wales', funded by the UK Department for Environment, Food and Rural Affairs (Defra), we evaluate the use of annually repeated ground-based photography surveys, processed using structure-from-motion and multi-view stereo (SfM-MVS) 3-D reconstruction software (Agisoft Photoscan). The aim is to enable efficient but detailed site-scale studies of erosion forms in inaccessible UK upland environments, in order to quantify dynamic processes, such as erosion and mass movement. The evaluation of the SfM-MVS technique is particularly relevant in upland landscapes, where the remoteness and inaccessibility of field sites may render some of the more established survey techniques impractical. We present results from 5 upland sites across the UK, acquired over a 2-year period. Erosion features of varying width (3 m to 35 m) and length (20 m to 60 m), representing a range of spatial scales (from 100 m2 to 1000 m2) were surveyed, in upland habitats including bogs, peatland, upland grassland and moorland. For each feature, around 150 to 600 ground-based photographs were taken at oblique angles over a 10 to 20 minute period, using an uncalibrated Canon 600D SLR camera with a 28 mm lens (focal length set to infinity). Camera settings varied based upon light conditions (exposure 100-400 ISO, aperture F4.5 to F8, shutter speed 1/100 to 1/250 second). For inter-survey comparisons, models were geo-referenced using 20 to 30 ground control points (numbered black markers with a white target) placed around and within the feature, with their co-ordinates measured by survey-grade differential GNSS (Trimble R4). Volumetric estimates of soil loss were quantified using digital surface models (DSMs) derived from the repeat survey data and subtracted from a

  7. GNSS as a sea ice sensor - detecting coastal freeze states with ground-based GNSS-R

    Science.gov (United States)

    Strandberg, Joakim; Hobiger, Thomas; Haas, Rüdiger

    2017-04-01

    Based on the idea of using freely available signals for remote sensing, ground-based GNSS-reflectometry (GNSS-R) has found more and more applications in hydrology, oceanography, agriculture and other Earth sciences. GNSS-R is based on analysing the elevation dependent SNR patterns of GNSS signals, and traditionally only the oscillation frequency and phase have been studied to retrieve parameters from the reflecting surfaces. However, recently Strandberg et al. (2016) developed an inversion algorithm that has changed the paradigms of ground-based GNSS-R as it enables direct access to the radiometric properties of the reflector. Using the signal envelope and the rate at which the magnitude of the SNR oscillations are damped w.r.t. satellite elevation, the algorithm retrieves the roughness of the reflector surface amongst other parameters. Based on this idea, we demonstrate for the first time that a GNSS installation situated close to the coastline can detect the presence of sea-ice unambiguously. Using data from the GTGU antenna at the Onsala Space Observatory, Sweden, the time series of the derived damping parameter clearly matches the occurrence of ice in the bay where the antenna is situated. Our results were validated against visual inspection logs as well as with the help of ice charts from the Swedish Meteorological and Hydrological Institute. Our method is even sensitive to partial and intermediate ice formation stages, with clear difference in response between frazil ice and both open and solidly frozen water surfaces. As the GTGU installation is entirely built with standard geodetic equipment, the method can be applied directly to any coastal GNSS site, allowing analysis of both new and historical data. One can use the method as an automatic way of retrieving independent ground truth data for ice extent measurements for use in hydrology, cryosphere studies, and even societal interest fields such as sea transportation. Finally, the new method opens up for

  8. Practical Applications of Cosmic Ray Science: Spacecraft, Aircraft, Ground-Based Computation and Control Systems, and Human Health and Safety

    Science.gov (United States)

    Atwell, William; Koontz, Steve; Normand, Eugene

    2012-01-01

    Three twentieth century technological developments, 1) high altitude commercial and military aircraft; 2) manned and unmanned spacecraft; and 3) increasingly complex and sensitive solid state micro-electronics systems, have driven an ongoing evolution of basic cosmic ray science into a set of practical engineering tools needed to design, test, and verify the safety and reliability of modern complex technological systems. The effects of primary cosmic ray particles and secondary particle showers produced by nuclear reactions with the atmosphere, can determine the design and verification processes (as well as the total dollar cost) for manned and unmanned spacecraft avionics systems. Similar considerations apply to commercial and military aircraft operating at high latitudes and altitudes near the atmospheric Pfotzer maximum. Even ground based computational and controls systems can be negatively affected by secondary particle showers at the Earth s surface, especially if the net target area of the sensitive electronic system components is large. Finally, accumulation of both primary cosmic ray and secondary cosmic ray induced particle shower radiation dose is an important health and safety consideration for commercial or military air crews operating at high altitude/latitude and is also one of the most important factors presently limiting manned space flight operations beyond low-Earth orbit (LEO). In this paper we review the discovery of cosmic ray effects on the performance and reliability of microelectronic systems as well as human health and the development of the engineering and health science tools used to evaluate and mitigate cosmic ray effects in ground-based atmospheric flight, and space flight environments. Ground test methods applied to microelectronic components and systems are used in combinations with radiation transport and reaction codes to predict the performance of microelectronic systems in their operating environments. Similar radiation transport

  9. Spatial and Temporal Analysis of Winter Fog Episodes over South Asia by exploiting ground-based and satellite observations

    Science.gov (United States)

    Fahim Khokhar, Muhammad; Yasmin, Naila; Zaib, Naila; Murtaza, Rabia; Noreen, Asma; Ishtiaq, Hira; Khayyam, Junaid; Panday, Arnico

    2016-04-01

    The South Asian region in general and the Indo-Gangetic Plains (IGP) in particular hold about 1/6th of the world's population and is considered as one of the major hotspots with increasing air pollution. Due to growing population and globalization, South Asia is experiencing high transformations in the urban and industrial sectors. Fog is one of the meteorological/environmental phenomena which can generate significant social and economic problems especially havoc to air and road traffic. Meteorological stations provide information about the fog episodes only on the basis of point observation. Continuous monitoring as well as a spatially coherent picture of fog distribution can only be possible through the use of satellite imagery. Current study focus on winter fog episodes over South Asian region using Moderate Resolution Image Spectrometer (MODIS) Level 2 Terra Product and other MODIS Aerosol Product in addition to ground-based sampling and AERONET measurements. MODIS Corrected Reflectance RGBs are used to analyse the spatial extent of fog over study area. MOD04 level 2 Collection 6 data is used to study aerosol load and distribution which are further characterised by using aerosol type land product of MODIS. In order to study the variation of ground based observations from satellite data MODIS, AERONET and high volume air Sampler were used. Main objective of this study was to explore the spatial extent of fog, its causes and to analyse the Aerosol Optical Depth (AOD) over South Asia with particular focus over Indo-Gangetic Plains (IGP). Current studies show a descent increase in AOD from past few decades over South Asia and is contributing to poor air quality in the region due to growing population, urbanization, and industrialization. Smoke and absorbing aerosol are major constituent of fog over South Asia. Furthermore, winter 2014-15 extended span of Fog was also observed over South Asia. A significant correlation between MODIS (AOD) and AERONET Station (AOD

  10. Exploring the relationship between a ground-based network and airborne CCN spectra observed at the cloud level

    Science.gov (United States)

    Corrigan, C.; Roberts, G. C.; Ritchie, J.; Creamean, J.; White, A. B.

    2011-12-01

    Cloud condensation nuclei (CCN) are aerosol particles that participate in the formation of clouds, and consequently, play a significant role in the influence of anthropogenic aerosols on atmospheric processes and climate change. Ultimately, the CCN of the most interest occupy the part of the atmosphere where cloud processes are occurring. A question arises as to whether in-cloud CCN are properly represented by the measurements of CCN at the ground level. While different locations may result in different answers depending upon local meteorology, the data set collected during CalWater 2011 may allow us to answer to what degree the ground-based observations of CCN are sufficient for evaluating cloud micro-physics over California's Central Valley and the lower slopes of the Sierra Nevada Mountains. During CalWater 2011, ground observations were performed at three different altitudes to assess the evolution of cloud-active aerosols as they were transported from sources in California's Central Valley to the lower slopes of the Sierra Nevada Mountains. CCN spectra were collected over a supersaturation range of 0.08 to 0.80%. Results from these data sets show a diurnal cycle with aerosol concentrations increasing during the afternoon and retreating during the night. In addition, a CCN instrument was placed aboard aircraft for several flights and was able to collect vertical profiles that encompassed the altitudes of the ground sites. The flight data shows a large drop in CCN concentration above the boundary layer and suggests the highest altitude ground site at China Wall ( 1540 masl)was sometimes above the Central Valley boundary layer. By using estimates of boundary layer heights over the mid-altitude site at Sugar Pine Dam (1060 masl), the events when the China Wall site is near or above the boundary layer are identified. During these events, the CCN measurements at China Wall best represent in-cloud CCN behavior. The results of this analysis may be applied towards a

  11. Comparison of in-flight and ground-based simulator derived flying qualities and pilot performance for approach and landing tasks

    Science.gov (United States)

    Grantham, William D.; Williams, Robert H.

    1987-01-01

    For the case of an approach-and-landing piloting task emphasizing response to the landing flare, pilot opinion and performance parameters derived from jet transport aircraft six-degree-of-freedom ground-based and in-flight simulators were compared in order to derive data for the flight-controls/flying-qualities engineers. The data thus obtained indicate that ground simulation results tend to be conservative, and that the effect of control sensitivity is more pronounced for ground simulation. The pilot also has a greater tendency to generate pilot-induced oscillation in ground-based simulation than in flight.

  12. A comparison of radiation doses and risks between spent fuel transport/storage and selected non-nuclear activities

    International Nuclear Information System (INIS)

    Pennington, C.W.

    2003-01-01

    Spent fuel transport and storage have achieved an exemplary safety record over four decades within both the United States (US) and the global community at large. This paper offers an assessment demonstrating the safety of spent fuel transport and storage packagings relative to currently accepted but unregulated non-nuclear activities and practices within society. Over the last quarter of a century, several spent fuel transport and storage packaging test programmes have produced data that allow calculation of potential releases and population doses resulting from a terrorist attack. The US Department of Energy (DOE) has used this information to develop projected worst-case, low probability population exposures as part of the Final Environmental Impact Statement (FEIS) for the Yucca Mountain repository. The paper discusses potential population exposures from these packagings based on analysis and testing under beyond-design-basis (BDB) events, including missile attacks, and then defines and defends an acceptance criterion for the bounding outcomes of these events, based upon current accepted activities within society that produce high radiation doses to the general public. These activities involve unregulated technologies and practices within society that yield population doses significantly exceeding those that would result from such hypothetical and highly improbable events as a terrorist missile attack on a spent fuel transport or storage packaging. In particular, technologically enhanced natural radiation (TENR) exposures from building materials, farming, and masonry construction are highlighted. Recent landmark work by the US National Academy of Sciences (NAS) and by the United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) are cited in support of this assessment, along with work from the US Environmental Protection Agency (EPA). From this compelling evidence, it is concluded that spent fuel transport and storage represent a low

  13. Estimation of impact from natural sources of radiation sources in two non nuclear plant workers and nearby residents

    International Nuclear Information System (INIS)

    Sousa, Wanderson de Oliveira

    2005-09-01

    Naturally occurring radioactive materials, often referred to as NORM, are and always have been a part of our world. Our planet 'Earth' and its atmosphere contain many different types of naturally occurring radioactive species , mainly minerals containing radionuclides of uranium and thorium decay series. Human activities for e x p l o i t a t i o n of mineral resources as mining, necessarily, do not enhance the concentration of NORM in products , by-products or residues, but can be a concern, simply due to the increased potential for human exposure. The goal of this work is to assess the impact of the presence of two non-nuclear plants (coal mining and monazite extraction plant) to workers and general population living in the vicinities of plants, by calculating their internal exposure to natural radionuclides . Excreta samples (urine and feces) were collected from workers and inhabitants of the two small towns where workers reside. The activities of 238 U, 234 U ( o n l y in feces), 226 Ra , 210 Pb and 210 Po (only in urine),- present in the samples were determined. The results of daily excretion in urine and feces of the groups, indicate that workers from coal mining, are exposed to natural radionuclides by inhalation and ingestion. The intake of some radionuclides ( 238 U and 210 Po ) are influenced by the professional activity . The results also indicate a chronic intake of 226 Ra by workers of the coal mining and their neighbors. Workers from the monazite extraction plant and inhabitants of the vicinity of the plant are exposed, mainly by ingestion. The intake through diet is the major source of incorporation of natural radionuclides. (author)

  14. Analysis of a dryline-like feature in northern Germany detected by ground-based microwave profiling

    Energy Technology Data Exchange (ETDEWEB)

    Spaenkuch, Dietrich [Leibniz-Soziaetet der Wissenschaften zu Berlin e.V. (Germany); Gueldner, Juergen [Deutscher Wetterdienst, Lindenberg (Germany). Meteorologisches Observatorium Lindenberg - Richard-Assmann-Observatorium; Bender, Michael [Helmholtz-Zentrum Potsdam, Potsdam (DE). Deutsches GeoForschungsZentrum (GFZ); Steinhagen, Hans

    2011-08-15

    Two dryline-like humidity drops without considerable temperature change were detected by the ground-based microwave radiometer profiler (MWRP) at the Richard-Assmann-Observatory Lindenberg (52.21 N, 14.12 E) on April 28, 2007. The detailed analysis of these two events includes cloud radar and radar wind profiler measurements at the site as well as data from the surface synoptic network and from integrated water vapour (IWV) maps derived from GPS. The first more pronounced humidity drop is part of a roughly 200 km long line that meets the criterion of a classical dryline or dewpoint front, namely of a moisture gradient larger 3.5 g m{sup -3} per 100 km. This dewpoint front is ahead of an approaching cold front and is caused by strong downdraft induced by low tropospheric wind shear due to weakening of a midtropospheric high over Germany. It consisted in particular in two kernels of variable size depending on their stage. The fate of the kernels - migration, speed, unification and divorce - is described in detail. Their lifetime was a bit more than 9 hours. The second humidity drop at the site was observed after the passage of the cold front and was caused by dry advection behind the front. Both events are predicted by the numerical weather prediction model COSMO-EU of the German Weather Service to some extent.

  15. HE 1113-0641: THE SMALLEST-SEPARATION QUADRUPLE LENS IDENTIFIED BY A GROUND-BASED OPTICAL TELESCOPE

    International Nuclear Information System (INIS)

    Blackburne, Jeffrey A.; Schechter, Paul L.; Wisotzki, Lutz

    2008-01-01

    The Hamburg/ESO quasar HE 1113-0641 is found to be a quadruple gravitational lens, based on observations with the twin 6.5 m Magellan telescopes at the Las Campanas Observatory, and subsequently with the Hubble Space Telescope. The z S = 1.235 quasar appears in a cross configuration, with i' band magnitudes ranging from 18.0 to 18.8. With a maximum image separation of 0''.67, this is the smallest-separation quadruple ever identified using a ground-based optical telescope. Point-spread function (PSF) subtraction reveals a faint lensing galaxy. A simple lens model succeeds in predicting the observed positions of the components, but fails to match their observed flux ratios by up to a magnitude. We estimate the redshift of the lensing galaxy to be z L ∼ 0.7. Time delay estimates are on the order of a day, suggesting that the flux ratio anomalies are not due to variability of the quasar, but may result from substructure or microlensing in the lens galaxy.

  16. Loss of signal transduction and inhibition of lymphocyte locomotion in a ground-based model of microgravity

    Science.gov (United States)

    Sundaresan, Alamelu; Risin, Diana; Pellis, Neal R.; McIntire, L. V. (Principal Investigator)

    2002-01-01

    Inflammatory adherence to, and locomotion through the interstitium is an important component of the immune response. Conditions such as microgravity and modeled microgravity (MMG) severely inhibit lymphocyte locomotion in vitro through gelled type I collagen. We used the NASA rotating wall vessel bioreactor or slow-turning lateral vessel as a prototype for MMG in ground-based experiments. Previous experiments from our laboratory revealed that when lymphocytes (human peripheral blood mononuclear cells [PBMCs]) were first activated with phytohemaglutinin followed by exposure to MMG, locomotory capacity was not affected. In the present study, MMG inhibits lymphocyte locomotion in a manner similar to that observed in microgravity. Phorbol myristate acetate (PMA) treatment of PBMCs restored lost locomotory capacity by a maximum of 87%. Augmentation of cellular calcium flux with ionomycin had no restorative effect. Treatment of lymphocytes with mitomycin C prior to exposure to MMG, followed by PMA, restored locomotion to the same extent as when nonmitomycin C-treated lymphocytes were exposed to MMG (80-87%), suggesting that deoxyribonucleic acid replication is not essential for the restoration of locomotion. Thus, direct activation of protein kinase C (PKC) with PMA was effective in restoring locomotion in MMG comparable to the normal levels seen in Ig cultures. Therefore, in MMG, lymphocyte calcium signaling pathways were functional, with defects occurring at either the level of PKC or upstream of PKC.

  17. Multi-point ground-based ULF magnetic field observations in Europe during seismic active periods in 2004 and 2005

    Directory of Open Access Journals (Sweden)

    G. Prattes

    2008-05-01

    Full Text Available We present the results of ground-based Ultra Low Frequency (ULF magnetic field measurements observed from June to August 2004 during the Bovec earthquake on 12 July 2004. Further we give information about the seismic activity in the local observatory region for an extended time span 2004 and 2005. ULF magnetic field data are provided by the South European Geomagnetic Array (SEGMA where the experience and heritage from the CHInese MAGnetometer (CHIMAG fluxgate magnetometer comes to application. The intensities of the horizontal H and vertical Z magnetic field and the polarization ratio R of the vertical and horizontal magnetic field intensity are analyzed taking into consideration three SEGMA observatories located at different close distances and directions from the earthquake epicenter. We observed a significant increase of high polarization ratios during strong seismic activity at the observatory nearest to the Bovec earthquake epicenter. Apart from indirect ionospheric effects electromagnetic noise could be emitted in the lithosphere due to tectonic effects in the earthquake focus region causing anomalies of the vertical magnetic field intensity. Assuming that the measured vertical magnetic field intensities are of lithospheric origin, we roughly estimate the amplitude of electromagnetic noise in the Earths crust considering an average electrical conductivity of <σ>=10−3 S/m and a certain distance of the observatory to the earthquake epicenter.

  18. A new software suite for NO2 vertical profile retrieval from ground-based zenith-sky spectrometers

    International Nuclear Information System (INIS)

    Denis, L.; Roscoe, H.K.; Chipperfield, M.P.; Roozendael, M. van; Goutail, F.

    2005-01-01

    Here we present an operational method to improve accuracy and information content of ground-based measurements of stratospheric NO 2 . The motive is to improve the investigation of trends in NO 2 , and is important because the current trend in NO 2 appears to contradict the trend in its source, suggesting that the stratospheric circulation has changed. To do so, a new software package for retrieving NO 2 vertical profiles from slant columns measured by zenith-sky spectrometers has been created. It uses a Rodgers optimal linear inverse method coupled with a radiative transfer model for calculations of transfer functions between profiles and columns, and a chemical box model for taking into account the NO 2 variations during twilight and during the day. Each model has parameters that vary according to season and location. Forerunners of each model have been previously validated. The scheme maps random errors in the measurements and systematic errors in the models and their parameters on to the retrieved profiles. Initialisation for models is derived from well-established climatologies. The software has been tested by comparing retrieved profiles to simultaneous balloon-borne profiles at mid-latitudes in spring

  19. Hubble Space Telescope and Ground-Based Observations of the Type Iax Supernovae SN 2005hk and SN 2008A

    Energy Technology Data Exchange (ETDEWEB)

    McCully, Curtis; Jha, Saurabh W.; Foley, Ryan J.; Chornock, Ryan; Holtzman, Jon A.; Balam, David D.; Branch, David; Filippenko, Alexei V.; Frieman, Joshua; Fynbo, Johan; Galbany, Lluis; Ganeshalingam, Mohan; Garnavich, Peter M.; Graham, Melissa L.; Hsiao, Eric Y.; Leloudas, Giorgos; Leonard, Douglas C.; Li, Weidong; Riess, Adam G.; Sako, Masao; Schneider, Donald P.; Silverman, Jeffrey M.; Sollerman, Jesper; Steele, Thea N.; Thomas, Rollin C.; Wheeler, J. Craig; Zheng, Chen

    2014-04-24

    We present Hubble Space Telescope (HST) and ground-based optical and near-infrared observations of SN 2005hk and SN 2008A, typical members of the Type Iax class of supernovae (SNe). Here we focus on late-time observations, where these objects deviate most dramatically from all other SN types. Instead of the dominant nebular emission lines that are observed in other SNe at late phases, spectra of SNe 2005hk and 2008A show lines of Fe II, Ca II, and Fe I more than a year past maximum light, along with narrow [Fe II] and [Ca II] emission. We use spectral features to constrain the temperature and density of the ejecta, and find high densities at late times, with ne109 cm–3. Such high densities should yield enhanced cooling of the ejecta, making these objects good candidates to observe the expected "infrared catastrophe," a generic feature of SN Ia models. However, our HST photometry of SN 2008A does not match the predictions of an infrared catastrophe. Moreover, our HST observations rule out a "complete deflagration" that fully disrupts the white dwarf for these peculiar SNe, showing no evidence for unburned material at late times. Deflagration explosion models that leave behind a bound remnant can match some of the observed properties of SNe Iax, but no published model is consistent with all of our observations of SNe 2005hk and 2008A.

  20. Effect of eccentricity on searches for gravitational waves from coalescing compact binaries in ground-based detectors

    International Nuclear Information System (INIS)

    Brown, Duncan A.; Zimmerman, Peter J.

    2010-01-01

    Inspiralling compact binaries are expected to circularize before their gravitational-wave signals reach the sensitive frequency band of ground-based detectors. Current searches for gravitational waves from compact binaries using the LIGO and Virgo detectors therefore use circular templates to construct matched filters. Binary formation models have been proposed which suggest that some systems detectable by the LIGO-Virgo network may have non-negligible eccentricity. We investigate the ability of the restricted 3.5 post-Newtonian order TaylorF2 template bank, used by LIGO and Virgo to search for gravitational waves from compact binaries with masses M≤35M · , to detect binaries with nonzero eccentricity. We model the gravitational waves from eccentric binaries using the x-model post-Newtonian formalism proposed by Hinder et al.[I. Hinder, F. Hermann, P. Laguna, and D. Shoemaker, arXiv:0806.1037v1]. We find that small residual eccentricities (e 0 · · . For eccentricities e 0 > or approx. 0.1, the loss in matched filter signal-to-noise ratio due to eccentricity can be significant and so templates which include eccentric effects will be required to perform optimal searches for such systems.

  1. Gravitational-Wave Tests of General Relativity with Ground-Based Detectors and Pulsar-Timing Arrays

    Directory of Open Access Journals (Sweden)

    Nicolás Yunes

    2013-11-01

    Full Text Available This review is focused on tests of Einstein's theory of general relativity with gravitational waves that are detectable by ground-based interferometers and pulsar-timing experiments. Einstein’s theory has been greatly constrained in the quasi-linear, quasi-stationary regime, where gravity is weak and velocities are small. Gravitational waves will allow us to probe a complimentary, yet previously unexplored regime: the non-linear and dynamical strong-field regime. Such a regime is, for example, applicable to compact binaries coalescing, where characteristic velocities can reach fifty percent the speed of light and gravitational fields are large and dynamical. This review begins with the theoretical basis and the predicted gravitational-wave observables of modified gravity theories. The review continues with a brief description of the detectors, including both gravitational-wave interferometers and pulsar-timing arrays, leading to a discussion of the data analysis formalism that is applicable for such tests. The review ends with a discussion of gravitational-wave tests for compact binary systems.

  2. First measurements of a carbon dioxide plume from an industrial source using a ground based mobile differential absorption lidar.

    Science.gov (United States)

    Robinson, R A; Gardiner, T D; Innocenti, F; Finlayson, A; Woods, P T; Few, J F M

    2014-08-01

    The emission of carbon dioxide (CO2) from industrial sources is one of the main anthropogenic contributors to the greenhouse effect. Direct remote sensing of CO2 emissions using optical methods offers the potential for the identification and quantification of CO2 emissions. We report the development and demonstration of a ground based mobile differential absorption lidar (DIAL) able to measure the mass emission rate of CO2 in the plume from a power station. To our knowledge DIAL has not previously been successfully applied to the measurement of emission plumes of CO2 from industrial sources. A significant challenge in observing industrial CO2 emission plumes is the ability to discriminate and observe localised concentrations of CO2 above the locally observed background level. The objectives of the study were to modify our existing mobile infrared DIAL system to enable CO2 measurements and to demonstrate the system at a power plant to assess the feasibility of the technique for the identification and quantification of CO2 emissions. The results of this preliminary study showed very good agreement with the expected emissions calculated by the site. The detection limit obtained from the measurements, however, requires further improvement to provide quantification of smaller emitters of CO2, for example for the detection of fugitive emissions. This study has shown that in principle, remote optical sensing technology will have the potential to provide useful direct data on CO2 mass emission rates.

  3. Hubble space telescope and ground-based observations of the type Iax supernovae SN 2005hk and SN 2008A

    International Nuclear Information System (INIS)

    McCully, Curtis; Jha, Saurabh W.; Foley, Ryan J.; Chornock, Ryan; Holtzman, Jon A.; Balam, David D.; Branch, David; Filippenko, Alexei V.; Ganeshalingam, Mohan; Li, Weidong; Frieman, Joshua; Fynbo, Johan; Leloudas, Giorgos; Galbany, Lluis; Garnavich, Peter M.; Graham, Melissa L.; Hsiao, Eric Y.; Leonard, Douglas C.

    2014-01-01

    We present Hubble Space Telescope (HST) and ground-based optical and near-infrared observations of SN 2005hk and SN 2008A, typical members of the Type Iax class of supernovae (SNe). Here we focus on late-time observations, where these objects deviate most dramatically from all other SN types. Instead of the dominant nebular emission lines that are observed in other SNe at late phases, spectra of SNe 2005hk and 2008A show lines of Fe II, Ca II, and Fe I more than a year past maximum light, along with narrow [Fe II] and [Ca II] emission. We use spectral features to constrain the temperature and density of the ejecta, and find high densities at late times, with n e ≳ 10 9 cm –3 . Such high densities should yield enhanced cooling of the ejecta, making these objects good candidates to observe the expected 'infrared catastrophe', a generic feature of SN Ia models. However, our HST photometry of SN 2008A does not match the predictions of an infrared catastrophe. Moreover, our HST observations rule out a 'complete deflagration' that fully disrupts the white dwarf for these peculiar SNe, showing no evidence for unburned material at late times. Deflagration explosion models that leave behind a bound remnant can match some of the observed properties of SNe Iax, but no published model is consistent with all of our observations of SNe 2005hk and 2008A.

  4. Multiscale influence of woody riparian vegetation on fluvial topography quantified with ground-based and airborne lidar

    Science.gov (United States)

    Bywater-Reyes, Sharon; Wilcox, Andrew C.; Diehl, Rebecca M.

    2017-06-01

    Coupling between riparian vegetation and river processes can result in the coevolution of plant communities and channel morphology. Quantifying biotic-abiotic interactions remains difficult because of the challenges in making and analyzing appropriately scaled observations. We measure the influence of woody vegetation on channel topography at the patch and reach scales in a sand bed, dryland river system (Santa Maria River, Arizona) with native Populus and invasive Tamarix. At the patch scale, we use ground-based lidar to relate plant morphology to "tail bars" formed in the lee of vegetation. We find vegetation roughness density (λf) to most influence tail-bar shape and size, suggesting coherent flow structures associated with roughness density are responsible for sediment deposition at this scale. Using airborne lidar, we test whether relationships between topography and vegetation morphology observed at the patch scale are persistent at the reach scale. We find that elevation of the channel (relative to the local mean) covaries with a metric of vegetation density, indicating analogous influences of vegetation density on topography across spatial scales. While these results are expected, our approach provides insight regarding interactions between woody riparian vegetation and channel topography at multiple scales, and a means to quantify such interactions for use in other field settings.

  5. Exergy and Exergoeconomic Model of a Ground-Based CAES Plant for Peak-Load Energy Production

    Directory of Open Access Journals (Sweden)

    Giampaolo Manfrida

    2013-02-01

    Full Text Available Compressed Air Energy Storage is recognized as a promising technology for applying energy storage to grids which are more and more challenged by the increasing contribution of renewable such as solar or wind energy. The paper proposes a medium-size ground-based CAES system, based on pressurized vessels and on a multiple-stage arrangement of compression and expansion machinery; the system includes recovery of heat from the intercoolers, and its storage as sensible heat in two separate (hot/cold water reservoirs, and regenerative reheat of the expansions. The CAES plant parameters were adapted to the requirements of existing equipment (compressors, expanders and heat exchangers. A complete exergy analysis of the plant was performed. Most component cost data were procured from the market, asking specific quotations to the industrial providers. It is thus possible to calculate the final cost of the electricity unit (kWh produced under peak-load mode, and to identify the relative contribution between the two relevant groups of capital and component inefficiencies costs.

  6. Seasonal variations of leaf and canopy properties tracked by ground-based NDVI imagery in a temperate forest.

    Science.gov (United States)

    Yang, Hualei; Yang, Xi; Heskel, Mary; Sun, Shucun; Tang, Jianwu

    2017-04-28

    Changes in plant phenology affect the carbon flux of terrestrial forest ecosystems due to the link between the growing season length and vegetation productivity. Digital camera imagery, which can be acquired frequently, has been used to monitor seasonal and annual changes in forest canopy phenology and track critical phenological events. However, quantitative assessment of the structural and biochemical controls of the phenological patterns in camera images has rarely been done. In this study, we used an NDVI (Normalized Difference Vegetation Index) camera to monitor daily variations of vegetation reflectance at visible and near-infrared (NIR) bands with high spatial and temporal resolutions, and found that the infrared camera based NDVI (camera-NDVI) agreed well with the leaf expansion process that was measured by independent manual observations at Harvard Forest, Massachusetts, USA. We also measured the seasonality of canopy structural (leaf area index, LAI) and biochemical properties (leaf chlorophyll and nitrogen content). We found significant linear relationships between camera-NDVI and leaf chlorophyll concentration, and between camera-NDVI and leaf nitrogen content, though weaker relationships between camera-NDVI and LAI. Therefore, we recommend ground-based camera-NDVI as a powerful tool for long-term, near surface observations to monitor canopy development and to estimate leaf chlorophyll, nitrogen status, and LAI.

  7. Validating MODIS and Sentinel-2 NDVI Products at a Temperate Deciduous Forest Site Using Two Independent Ground-Based Sensors.

    Science.gov (United States)

    Lange, Maximilian; Dechant, Benjamin; Rebmann, Corinna; Vohland, Michael; Cuntz, Matthias; Doktor, Daniel

    2017-08-11

    Quantifying the accuracy of remote sensing products is a timely endeavor given the rapid increase in Earth observation missions. A validation site for Sentinel-2 products was hence established in central Germany. Automatic multispectral and hyperspectral sensor systems were installed in parallel with an existing eddy covariance flux tower, providing spectral information of the vegetation present at high temporal resolution. Normalized Difference Vegetation Index (NDVI) values from ground-based hyperspectral and multispectral sensors were compared with NDVI products derived from Sentinel-2A and Moderate-resolution Imaging Spectroradiometer (MODIS). The influence of different spatial and temporal resolutions was assessed. High correlations and similar phenological patterns between in situ and satellite-based NDVI time series demonstrated the reliability of satellite-based phenological metrics. Sentinel-2-derived metrics showed better agreement with in situ measurements than MODIS-derived metrics. Dynamic filtering with the best index slope extraction algorithm was nevertheless beneficial for Sentinel-2 NDVI time series despite the availability of quality information from the atmospheric correction procedure.

  8. Observations of Upper Thermospheric Temperatures Using a Ground-Based Optical Instrument at the King Sejong Station, Antarctic

    Directory of Open Access Journals (Sweden)

    Jong-Kyun Chung

    1998-06-01

    Full Text Available We measured the terrestrial nightglow of OI 6300A in the thermosphere(~250km using a ground-based Fabry-Perot interferometer at the King Sejong Station, Antarctic from March through September, 1997. The King Sejong Station is located at high latitude geographically (62.22 deg S, 301.25 deg E but at mid-latitude geomagnetically (50.65 deg S, 7.51 deg E. It is therefore the strategic location to measure the temperatures of the thermosphere in the Southern Hemisphere associated with both solar and geomagnetic activities. In this study, we analyzed the observed temperatures in relation to F10.7 and Kp indices to examine the effect of the solar and the geomagnetic activities on high-latitude neutral thermosphere. During the observing period, the solar activity was at its minimum. The measured temperatures are usually in the range between about 600~1000 K with some seasonal variation and are higher than those predicted by semi-empirical model, VSH (Vector Spherical Harmonics and empirical model, MSIS (Mass-Spectrometer-Incoherent-Scatter-86.

  9. Observations of Upper Thermospheric Temperatures Using a Ground-Based Optical Instrument at the King Sejong Station, Antarctic

    Science.gov (United States)

    Chung, Jong-Kyun; Won, Young-In; Lee, Bang Yong; Kim, Jhoon

    1998-06-01

    We measured the terrestrial nightglow of OI 6300A in the thermosphere(~250km) using a ground-based Fabry-Perot interferometer at the King Sejong Station, Antarctic from March through September, 1997. The King Sejong Station is located at high latitude geographically (62.22 deg S, 301.25 deg E) but at mid-latitude geomagnetically (50.65 deg S, 7.51 deg E). It is therefore the strategic location to measure the temperatures of the thermosphere in the Southern Hemisphere associated with both solar and geomagnetic activities. In this study, we analyzed the observed temperatures in relation to F10.7 and Kp indices to examine the effect of the solar and the geomagnetic activities on high-latitude neutral thermosphere. During the observing period, the solar activity was at its minimum. The measured temperatures are usually in the range between about 600~1000 K with some seasonal variation and are higher than those predicted by semi-empirical model, VSH (Vector Spherical Harmonics) and empirical model, MSIS (Mass-Spectrometer-Incoherent-Scatter)-86.

  10. The height variation of supergranular velocity fields determined from simultaneous OSO 8 satellite and ground-based observations

    Science.gov (United States)

    November, L. J.; Toomre, J.; Gebbie, K. B.; Simon, G. W.

    1979-01-01

    Results are reported for simultaneous satellite and ground-based observations of supergranular velocities in the sun, which were made using a UV spectrometer aboard OSO 8 and a diode-array instrument operating at the exit slit of an echelle spectrograph attached to a vacuum tower telescope. Observations of the steady Doppler velocities seen toward the limb in the middle chromosphere and the photosphere are compared; the observed spectral lines of Si II at 1817 A and Fe I at 5576 A are found to differ in height of formation by about 1400 km. The results show that supergranular motions are able to penetrate at least 11 density scale heights into the middle chromosphere, that the patterns of motion correlate well with the cellular structure seen in the photosphere, and that the motion increases from about 800 m/s in the photosphere to at least 3000 m/s in the middle chromosphere. These observations imply that supergranular velocities should be evident in the transition region and that strong horizontal shear layers in supergranulation should produce turbulence and internal gravity waves.

  11. Hubble space telescope and ground-based observations of the type Iax supernovae SN 2005hk and SN 2008A

    Energy Technology Data Exchange (ETDEWEB)

    McCully, Curtis; Jha, Saurabh W. [Department of Physics and Astronomy, Rutgers, the State University of New Jersey, 136 Frelinghuysen Road, Piscataway, NJ 08854 (United States); Foley, Ryan J. [Astronomy Department, University of Illinois at Urbana-Champaign, 1002 West Green Street, Urbana, IL 61801 (United States); Chornock, Ryan [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Holtzman, Jon A. [Department of Astronomy, MSC 4500, New Mexico State University, P.O. Box 30001, Las Cruces, NM 88003 (United States); Balam, David D. [Dominion Astrophysical Observatory, Herzberg Institute of Astrophysics, 5071 West Saanich Road, Victoria, BC V9E 2E7 (Canada); Branch, David [Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, Norman, OK 73019 (United States); Filippenko, Alexei V.; Ganeshalingam, Mohan; Li, Weidong [Department of Astronomy, University of California, Berkeley, CA 94720-3411 (United States); Frieman, Joshua [Kavli Institute for Cosmological Physics and Department of Astronomy and Astrophysics, University of Chicago, 5640 South Ellis Avenue, Chicago, IL 60637 (United States); Fynbo, Johan; Leloudas, Giorgos [Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-2100 Copenhagen Ø (Denmark); Galbany, Lluis [Institut de Física d' Altes Energies, Universitat Autònoma de Barcelona, E-08193 Bellaterra (Barcelona) (Spain); Garnavich, Peter M. [Department of Physics, University of Notre Dame, Notre Dame, IN 46556 (United States); Graham, Melissa L. [Las Cumbres Observatory Global Telescope Network, Goleta, CA 93117 (United States); Hsiao, Eric Y. [Carnegie Observatories, Las Campanas Observatory, Colina El Pino, Casilla 601 (Chile); Leonard, Douglas C., E-mail: cmccully@physics.rutgers.edu [Department of Astronomy, San Diego State University, San Diego, CA 92182 (United States); and others

    2014-05-10

    We present Hubble Space Telescope (HST) and ground-based optical and near-infrared observations of SN 2005hk and SN 2008A, typical members of the Type Iax class of supernovae (SNe). Here we focus on late-time observations, where these objects deviate most dramatically from all other SN types. Instead of the dominant nebular emission lines that are observed in other SNe at late phases, spectra of SNe 2005hk and 2008A show lines of Fe II, Ca II, and Fe I more than a year past maximum light, along with narrow [Fe II] and [Ca II] emission. We use spectral features to constrain the temperature and density of the ejecta, and find high densities at late times, with n{sub e} ≳ 10{sup 9} cm{sup –3}. Such high densities should yield enhanced cooling of the ejecta, making these objects good candidates to observe the expected 'infrared catastrophe', a generic feature of SN Ia models. However, our HST photometry of SN 2008A does not match the predictions of an infrared catastrophe. Moreover, our HST observations rule out a 'complete deflagration' that fully disrupts the white dwarf for these peculiar SNe, showing no evidence for unburned material at late times. Deflagration explosion models that leave behind a bound remnant can match some of the observed properties of SNe Iax, but no published model is consistent with all of our observations of SNe 2005hk and 2008A.

  12. Ground based measurements of SO2 and NO2 emissions from the oil refinery 'la Teja' in Montevideo city

    International Nuclear Information System (INIS)

    Frins, Erna; Casaballe, Nicolas; Osorio, Matias; Arismendi, Federico; Ibrahim, Ossama; Wagner, Thomas; Platt, Ulrich

    2011-01-01

    We present preliminary results of ground based measurements of SO 2 and NO 2 emissions from 'La Teja' oil refinery located in the northern part of Montevideo Bay. Our study is part of a long term effort to localize and monitor relevant emission sources in the city area of Montevideo. These measurements were performed with a Miniature Multi AXis Differential Optical Absorption Spectrometry (MiniMAX-DOAS) instrument, which is basically a temperature controlled medium-resolution spectrometer (∼ 0.5 nm) equipped with a small telescope and a stepper motor allowing automatic scans in one dimension. We present a discussion about the evolution and transformation of both above species in the atmosphere. Our observation site was approximately 1.9 km away from the oil refinery and we were able to perform vertical and horizontal scans of the plume emitted (during our measurements) almost horizontally from its stacks. The maximum value of the SO 2 slant column density (SCD) was found to be ∼ 4x10 17 molec cm -2 directly over the oil refinery, decreasing as the plume disperses. In contrast, the NO 2 SCD peaks at ∼ 1x10 16 molec cm -2 directly over the source and increases continuously as the plume disperses. The SO 2 flux measured immediately downwind of the refinery was found to be about 1200 kg h -1 (±40% uncertainty).

  13. Comparing multiple model-derived aerosol optical properties to spatially collocated ground-based and satellite measurements

    Science.gov (United States)

    Ocko, Ilissa B.; Ginoux, Paul A.

    2017-04-01

    Anthropogenic aerosols are a key factor governing Earth's climate and play a central role in human-caused climate change. However, because of aerosols' complex physical, optical, and dynamical properties, aerosols are one of the most uncertain aspects of climate modeling. Fortunately, aerosol measurement networks over the past few decades have led to the establishment of long-term observations for numerous locations worldwide. Further, the availability of datasets from several different measurement techniques (such as ground-based and satellite instruments) can help scientists increasingly improve modeling efforts. This study explores the value of evaluating several model-simulated aerosol properties with data from spatially collocated instruments. We compare aerosol optical depth (AOD; total, scattering, and absorption), single-scattering albedo (SSA), Ångström exponent (α), and extinction vertical profiles in two prominent global climate models (Geophysical Fluid Dynamics Laboratory, GFDL, CM2.1 and CM3) to seasonal observations from collocated instruments (AErosol RObotic NETwork, AERONET, and Cloud-Aerosol Lidar with Orthogonal Polarization, CALIOP) at seven polluted and biomass burning regions worldwide. We find that a multi-parameter evaluation provides key insights on model biases, data from collocated instruments can reveal underlying aerosol-governing physics, column properties wash out important vertical distinctions, and improved models does not mean all aspects are improved. We conclude that it is important to make use of all available data (parameters and instruments) when evaluating aerosol properties derived by models.

  14. Remote Sensing of Sonoran Desert Vegetation Structure and Phenology with Ground-Based LiDAR

    Directory of Open Access Journals (Sweden)

    Joel B. Sankey

    2014-12-01

    Full Text Available Long-term vegetation monitoring efforts have become increasingly important for understanding ecosystem response to global change. Many traditional methods for monitoring can be infrequent and limited in scope. Ground-based LiDAR is one remote sensing method that offers a clear advancement to monitor vegetation dynamics at high spatial and temporal resolution. We determined the effectiveness of LiDAR to detect intra-annual variability in vegetation structure at a long-term Sonoran Desert monitoring plot dominated by cacti, deciduous and evergreen shrubs. Monthly repeat LiDAR scans of perennial plant canopies over the course of one year had high precision. LiDAR measurements of canopy height and area were accurate with respect to total station survey measurements of individual plants. We found an increase in the number of LiDAR vegetation returns following the wet North American Monsoon season. This intra-annual variability in vegetation structure detected by LiDAR was attributable to a drought deciduous shrub Ambrosia deltoidea, whereas the evergreen shrub Larrea tridentata and cactus Opuntia engelmannii had low variability. Benefits of using LiDAR over traditional methods to census desert plants are more rapid, consistent, and cost-effective data acquisition in a high-resolution, 3-dimensional context. We conclude that repeat LiDAR measurements can be an effective method for documenting ecosystem response to desert climatology and drought over short time intervals and at detailed-local spatial scale.

  15. Ground-based measurements of the vertical E-field in mountainous regions and the "Austausch" effect

    Science.gov (United States)

    Yaniv, Roy; Yair, Yoav; Price, Colin; Mkrtchyan, Hripsime; Lynn, Barry; Reymers, Artur

    2017-06-01

    Past measurements of the atmospheric vertical electric field (Ez or potential gradient) at numerous land stations showed a strong response of the daily electric field to a morning local effect known as ;Austausch; - the transport of electrical charges due to increased turbulence. In mountainous regions, nocturnal charge accumulation, followed by an attachment process to aerosols near the surface in valleys, known as the electrode effect, is lifted as a charged aerosol layer by anabatic (upslope) winds during the morning hours due to solar heating. Ground-based measurements during fair weather days were conducted at three mountain stations in Israel and Armenia. We present results of the mean diurnal variation of Ez and make comparisons with the well-known Carnegie curve and with past measurements of Ez on mountains. We report a good agreement between the mean diurnal curves of Ez at various mountain stations and the time of local sunrise when the Ez is found to increase. We attribute this morning maximum to the Austausch (or exchange) layer effect. We support our findings with conduction and turbulent current measurements showing high values of ions and charged aerosols being transported by winds from morning to noon local time, and by model simulations showing the convergence of winds in the early morning hours toward the mountain peak.

  16. Electric field conjugation for ground-based high-contrast imaging: robustness study and tests with the Project 1640 coronagraph

    Science.gov (United States)

    Matthews, Christopher T.; Crepp, Justin R.; Vasisht, Gautam; Cady, Eric

    2017-10-01

    The electric field conjugation (EFC) algorithm has shown promise for removing scattered starlight from high-contrast imaging measurements, both in numerical simulations and laboratory experiments. To prepare for the deployment of EFC using ground-based telescopes, we investigate the response of EFC to unaccounted for deviations from an ideal optical model. We explore the linear nature of the algorithm by assessing its response to a range of inaccuracies in the optical model generally present in real systems. We find that the algorithm is particularly sensitive to unresponsive deformable mirror (DM) actuators, misalignment of the Lyot stop, and misalignment of the focal plane mask. Vibrations and DM registration appear to be less of a concern compared to values expected at the telescope. We quantify how accurately one must model these core coronagraph components to ensure successful EFC corrections. We conclude that while the condition of the DM can limit contrast, EFC may still be used to improve the sensitivity of high-contrast imaging observations. Our results have informed the development of a full EFC implementation using the Project 1640 coronagraph at Palomar observatory. While focused on a specific instrument, our results are applicable to the many coronagraphs that may be interested in employing EFC.

  17. Simultaneous observation of auroral substorm onset in Polar satellite global images and ground-based all-sky images

    Science.gov (United States)

    Ieda, Akimasa; Kauristie, Kirsti; Nishimura, Yukitoshi; Miyashita, Yukinaga; Frey, Harald U.; Juusola, Liisa; Whiter, Daniel; Nosé, Masahito; Fillingim, Matthew O.; Honary, Farideh; Rogers, Neil C.; Miyoshi, Yoshizumi; Miura, Tsubasa; Kawashima, Takahiro; Machida, Shinobu

    2018-05-01

    Substorm onset has originally been defined as a longitudinally extended sudden auroral brightening (Akasofu initial brightening: AIB) followed a few minutes later by an auroral poleward expansion in ground-based all-sky images (ASIs). In contrast, such clearly marked two-stage development has not been evident in satellite-based global images (GIs). Instead, substorm onsets have been identified as localized sudden brightenings that expand immediately poleward. To resolve these differences, optical substorm onset signatures in GIs and ASIs are compared in this study for a substorm that occurred on December 7, 1999. For this substorm, the Polar satellite ultraviolet global imager was operated with a fixed-filter (170 nm) mode, enabling a higher time resolution (37 s) than usual to resolve the possible two-stage development. These data were compared with 20-s resolution green-line (557.7 nm) ASIs at Muonio in Finland. The ASIs revealed the AIB at 2124:50 UT and the subsequent poleward expansion at 2127:50 UT, whereas the GIs revealed only an onset brightening that started at 2127:49 UT. Thus, the onset in the GIs was delayed relative to the AIB and in fact agreed with the poleward expansion in the ASIs. The fact that the AIB was not evident in the GIs may be attributed to the limited spatial resolution of GIs for thin auroral arc brightenings. The implications of these results for the definition of substorm onset are discussed herein.[Figure not available: see fulltext.

  18. Simultaneous Retrieval of Aerosol and Surface Optical Properties from Combined Airborne- and Ground-Based Direct and Diffuse Radiometric Measurements

    Science.gov (United States)

    Gatebe, C. K.; Dubovik, O.; King, M. D.; Sinyuk, A.

    2010-01-01

    This paper presents a new method for simultaneously retrieving aerosol and surface reflectance properties from combined airborne and ground-based direct and diffuse radiometric measurements. The method is based on the standard Aerosol Robotic Network (AERONET) method for retrieving aerosol size distribution, complex index of refraction, and single scattering albedo, but modified to retrieve aerosol properties in two layers, below and above the aircraft, and parameters on surface optical properties from combined datasets (Cloud Absorption Radiometer (CAR) and AERONET data). A key advantage of this method is the inversion of all available spectral and angular data at the same time, while accounting for the influence of noise in the inversion procedure using statistical optimization. The wide spectral (0.34-2.30 m) and angular range (180 ) of the CAR instrument, combined with observations from an AERONET sunphotometer, provide sufficient measurement constraints for characterizing aerosol and surface properties with minimal assumptions. The robustness of the method was tested on observations made during four different field campaigns: (a) the Southern African Regional Science Initiative 2000 over Mongu, Zambia, (b) the Intercontinental Transport Experiment-Phase B over Mexico City, Mexico (c) Cloud and Land Surface Interaction Campaign over the Atmospheric Radiation Measurement (ARM) Central Facility, Oklahoma, USA, and (d) the Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) over Elson Lagoon in Barrow, Alaska, USA. The four areas are dominated by different surface characteristics and aerosol types, and therefore provide good test cases for the new inversion method.

  19. Big data managing in a landslide early warning system: experience from a ground-based interferometric radar application

    Directory of Open Access Journals (Sweden)

    E. Intrieri

    2017-10-01

    Full Text Available A big challenge in terms or landslide risk mitigation is represented by increasing the resiliency of society exposed to the risk. Among the possible strategies with which to reach this goal, there is the implementation of early warning systems. This paper describes a procedure to improve early warning activities in areas affected by high landslide risk, such as those classified as critical infrastructures for their central role in society. This research is part of the project LEWIS (Landslides Early Warning Integrated System: An Integrated System for Landslide Monitoring, Early Warning and Risk Mitigation along Lifelines. LEWIS is composed of a susceptibility assessment methodology providing information for single points and areal monitoring systems, a data transmission network and a data collecting and processing center (DCPC, where readings from all monitoring systems and mathematical models converge and which sets the basis for warning and intervention activities. The aim of this paper is to show how logistic issues linked to advanced monitoring techniques, such as big data transfer and storing, can be dealt with compatibly with an early warning system. Therefore, we focus on the interaction between an areal monitoring tool (a ground-based interferometric radar and the DCPC. By converting complex data into ASCII strings and through appropriate data cropping and average, and by implementing an algorithm for line-of-sight correction, we managed to reduce the data daily output without compromising the capability for performing.

  20. A Semiautomated Multilayer Picking Algorithm for Ice-sheet Radar Echograms Applied to Ground-Based Near-Surface Data

    Science.gov (United States)

    Onana, Vincent De Paul; Koenig, Lora Suzanne; Ruth, Julia; Studinger, Michael; Harbeck, Jeremy P.

    2014-01-01

    Snow accumulation over an ice sheet is the sole mass input, making it a primary measurement for understanding the past, present, and future mass balance. Near-surface frequency-modulated continuous-wave (FMCW) radars image isochronous firn layers recording accumulation histories. The Semiautomated Multilayer Picking Algorithm (SAMPA) was designed and developed to trace annual accumulation layers in polar firn from both airborne and ground-based radars. The SAMPA algorithm is based on the Radon transform (RT) computed by blocks and angular orientations over a radar echogram. For each echogram's block, the RT maps firn segmented-layer features into peaks, which are picked using amplitude and width threshold parameters of peaks. A backward RT is then computed for each corresponding block, mapping the peaks back into picked segmented-layers. The segmented layers are then connected and smoothed to achieve a final layer pick across the echogram. Once input parameters are trained, SAMPA operates autonomously and can process hundreds of kilometers of radar data picking more than 40 layers. SAMPA final pick results and layer numbering still require a cursory manual adjustment to correct noncontinuous picks, which are likely not annual, and to correct for inconsistency in layer numbering. Despite the manual effort to train and check SAMPA results, it is an efficient tool for picking multiple accumulation layers in polar firn, reducing time over manual digitizing efforts. The trackability of good detected layers is greater than 90%.

  1. Metadata database and data analysis software for the ground-based upper atmospheric data developed by the IUGONET project

    Science.gov (United States)

    Hayashi, H.; Tanaka, Y.; Hori, T.; Koyama, Y.; Shinbori, A.; Abe, S.; Kagitani, M.; Kouno, T.; Yoshida, D.; Ueno, S.; Kaneda, N.; Yoneda, M.; Tadokoro, H.; Motoba, T.; Umemura, N.; Iugonet Project Team

    2011-12-01

    The Inter-university Upper atmosphere Global Observation NETwork (IUGONET) is a Japanese inter-university project by the National Institute of Polar Research (NIPR), Tohoku University, Nagoya University, Kyoto University, and Kyushu University to build a database of metadata for ground-based observations of the upper atmosphere. The IUGONET institutes/universities have been collecting various types of data by radars, magnetometers, photometers, radio telescopes, helioscopes, etc. at various locations all over the world and at various altitude layers from the Earth's surface to the Sun. The metadata database will be of great help to researchers in efficiently finding and obtaining these observational data spread over the institutes/universities. This should also facilitate synthetic analysis of multi-disciplinary data, which will lead to new types of research in the upper atmosphere. The project has also been developing a software to help researchers download, visualize, and analyze the data provided from the IUGONET institutes/universities. The metadata database system is built on the platform of DSpace, which is an open source software for digital repositories. The data analysis software is written in the IDL language with the TDAS (THEMIS Data Analysis Software suite) library. These products have been just released for beta-testing.

  2. A STUDY OF THE ELEMENTS COPPER THROUGH URANIUM IN SIRIUS A: CONTRIBUTIONS FROM STIS AND GROUND-BASED SPECTRA

    International Nuclear Information System (INIS)

    Cowley, C. R.; Ayres, T. R.; Castelli, F.; Gulliver, A. F.; Monier, R.; Wahlgren, G. M.

    2016-01-01

    We determine abundances or upper limits for all of the 55 stable elements from copper to uranium for the A1 Vm star Sirius. The purpose of the study is to assemble the most complete picture of elemental abundances with the hope of revealing the chemical history of the brightest star in the sky, apart from the Sun. We also explore the relationship of this hot metallic-line (Am) star to its cooler congeners, as well as the hotter, weakly- or non-magnetic Mercury-manganese (HgMn) stars. Our primary observational material consists of Hubble Space Telescope ( HST ) spectra taken with the Space Telescope Imaging Spectrograph in the ASTRAL project. We have also used archival material from the COPERNICUS satellite, and from the HST Goddard High-Resolution Spectrograph, as well as ground-based spectra from Furenlid, Westin, Kurucz, Wahlgren, and their coworkers, ESO spectra from the UVESPOP project, and NARVAL spectra retrieved from PolarBase. Our analysis has been primarily by spectral synthesis, and in this work we have had the great advantage of extensive atomic data unavailable to earlier workers. We find most abundances as well as upper limits range from 10 to 100 times above solar values. We see no indication of the huge abundance excesses of 1000 or more that occur among many chemically peculiar stars of the upper main sequence. The picture of Sirius as a hot Am star is reinforced.

  3. Electron and ion temperatures: a comparison of ground-based incoherent scatter and AE-C satellite measurements

    International Nuclear Information System (INIS)

    Benson, R.F.; Bauer, P.; Brace, L.H.; Carlson, H.C.; Hagen, J.; Hanson, W.B.; Hoegy, W.R.; Torr, M.R.; Wickwar, V.B.

    1977-01-01

    The Atmosphere Exploere-C satellite (AE-C) is uniquely suited for correlative studies with ground-based stations because its on-board propulsion system enables a desired ground station overflight condition to be maintained for a period of several weeks. It also provides the first low-altitude (below 260 km) comparison of satellite and incoherent scatter electron and ion temperatures. More than 40 comparisons of remote and in situ measurements were made by using data from AE-C and four incoherent scatter stations (Arecibo, Chatanika, Millstone Hill, and St. Santin). The results indicate very good agreement between satellite and ground measurements of the ion temperature, the average satellite retarding potential analyzer temperatures differing from the average incoherent scatter temperatures by -2% at St. Santin, +3% at Millstone Hill, and +2% at Arecibo. The electron temperatures also agree well, the average satellite temperatures exceeding the average incoherent scatter temperatures by 3% at St. Santin, 2% at Arecibo, and 11% at Millstone Hill. Several temperature comparisons were made between AE-C and Chatanika. In spite of the highly variable ionosphere often encountered at this high-latitude location, good agreement was obtained between the in situ and remote measurements of electron and ion temperatures. Longitudinal variations are found to be very important in the comparisons of electron temperature in some locations. The agreement between the electron temperatures is considerably better than that found in some earlier comparisons involving satellities at higher altitudes

  4. Flight Test Result for the Ground-Based Radio Navigation System Sensor with an Unmanned Air Vehicle.

    Science.gov (United States)

    Jang, Jaegyu; Ahn, Woo-Guen; Seo, Seungwoo; Lee, Jang Yong; Park, Jun-Pyo

    2015-11-11

    The Ground-based Radio Navigation System (GRNS) is an alternative/backup navigation system based on time synchronized pseudolites. It has been studied for some years due to the potential vulnerability issue of satellite navigation systems (e.g., GPS or Galileo). In the framework of our study, a periodic pulsed sequence was used instead of the randomized pulse sequence recommended as the RTCM (radio technical commission for maritime services) SC (special committee)-104 pseudolite signal, as a randomized pulse sequence with a long dwell time is not suitable for applications requiring high dynamics. This paper introduces a mathematical model of the post-correlation output in a navigation sensor, showing that the aliasing caused by the additional frequency term of a periodic pulsed signal leads to a false lock (i.e., Doppler frequency bias) during the signal acquisition process or in the carrier tracking loop of the navigation sensor. We suggest algorithms to resolve the frequency false lock issue in this paper, relying on the use of a multi-correlator. A flight test with an unmanned helicopter was conducted to verify the implemented navigation sensor. The results of this analysis show that there were no false locks during the flight test and that outliers stem from bad dilution of precision (DOP) or fluctuations in the received signal quality.

  5. Dust events in Beijing, China (2004–2006: comparison of ground-based measurements with columnar integrated observations

    Directory of Open Access Journals (Sweden)

    Z. J. Wu

    2009-09-01

    Full Text Available Ambient particle number size distributions spanning three years were used to characterize the frequency and intensity of atmospheric dust events in the urban areas of Beijing, China in combination with AERONET sun/sky radiometer data. Dust events were classified into two types based on the differences in particle number and volume size distributions and local weather conditions. This categorization was confirmed by aerosol index images, columnar aerosol optical properties, and vertical potential temperature profiles. During the type-1 events, dust particles dominated the total particle volume concentration (<10 μm, with a relative share over 70%. Anthropogenic particles in the Aitken and accumulation mode played a subordinate role here because of high wind speeds (>4 m s−1. The type-2 events occurred in rather stagnant air masses and were characterized by a lower volume fraction of coarse mode particles (on average, 55%. Columnar optical properties showed that the superposition of dust and anthropogenic aerosols in type-2 events resulted in a much higher AOD (average: 1.51 than for the rather pure dust aerosols in type-1 events (average AOD: 0.36. A discrepancy was found between the ground-based and column integrated particle volume size distributions, especially for the coarse mode particles. This discrepancy likely originates from both the limited comparability of particle volume size distributions derived from Sun photometer and in situ number size distributions, and the inhomogeneous vertical distribution of particles during dust events.

  6. A STUDY OF THE ELEMENTS COPPER THROUGH URANIUM IN SIRIUS A: CONTRIBUTIONS FROM STIS AND GROUND-BASED SPECTRA

    Energy Technology Data Exchange (ETDEWEB)

    Cowley, C. R. [Department of Astronomy, University of Michigan, Ann Arbor, MI 48109-1107 (United States); Ayres, T. R. [Center for Astrophysics and Space Astronomy, University of Colorado, Boulder, CO 80309-0389 (United States); Castelli, F. [Instituto Nazionale di Astrofisica, Osservatorio Astronomico di Trieste, Via Tiepolo 11, I-34143 Trieste (Italy); Gulliver, A. F. [Department of Physics and Astronomy, Brandon University, Brandon MB RTA 6A9 (Canada); Monier, R. [LESIA, UMR 8109, Observatoire de Paris, Place J. Janssen, F-92195 Meudon (France); Wahlgren, G. M., E-mail: cowley@umich.edu [CSRA/STScI, 3700 San Martin Drive, Baltimore, MD 21218 (United States)

    2016-08-01

    We determine abundances or upper limits for all of the 55 stable elements from copper to uranium for the A1 Vm star Sirius. The purpose of the study is to assemble the most complete picture of elemental abundances with the hope of revealing the chemical history of the brightest star in the sky, apart from the Sun. We also explore the relationship of this hot metallic-line (Am) star to its cooler congeners, as well as the hotter, weakly- or non-magnetic Mercury-manganese (HgMn) stars. Our primary observational material consists of Hubble Space Telescope ( HST ) spectra taken with the Space Telescope Imaging Spectrograph in the ASTRAL project. We have also used archival material from the COPERNICUS satellite, and from the HST Goddard High-Resolution Spectrograph, as well as ground-based spectra from Furenlid, Westin, Kurucz, Wahlgren, and their coworkers, ESO spectra from the UVESPOP project, and NARVAL spectra retrieved from PolarBase. Our analysis has been primarily by spectral synthesis, and in this work we have had the great advantage of extensive atomic data unavailable to earlier workers. We find most abundances as well as upper limits range from 10 to 100 times above solar values. We see no indication of the huge abundance excesses of 1000 or more that occur among many chemically peculiar stars of the upper main sequence. The picture of Sirius as a hot Am star is reinforced.

  7. The DKIST Data Center: Meeting the Data Challenges for Next-Generation, Ground-Based Solar Physics

    Science.gov (United States)

    Davey, A. R.; Reardon, K.; Berukoff, S. J.; Hays, T.; Spiess, D.; Watson, F. T.; Wiant, S.

    2016-12-01

    The Daniel K. Inouye Solar Telescope (DKIST) is under construction on the summit of Haleakalā in Maui, and scheduled to start science operations in 2020. The DKIST design includes a four-meter primary mirror coupled to an adaptive optics system, and a flexible instrumentation suite capable of delivering high-resolution optical and infrared observations of the solar chromosphere, photosphere, and corona. Through investigator-driven science proposals, the facility will generate an average of 8 TB of data daily, comprised of millions of images and hundreds of millions of metadata elements. The DKIST Data Center is responsible for the long-term curation and calibration of data received from the DKIST, and for distributing it to the user community for scientific use. Two key elements necessary to meet the inherent big data challenge are the development of flexible public/private cloud computing and coupled relational and non-relational data storage mechanisms. We discuss how this infrastructure is being designed to meet the significant expectation of automatic and manual calibration of ground-based solar physics data, and the maximization the data's utility through efficient, long-term data management practices implemented with prudent process definition and technology exploitation.

  8. Big data managing in a landslide early warning system: experience from a ground-based interferometric radar application

    Science.gov (United States)

    Intrieri, Emanuele; Bardi, Federica; Fanti, Riccardo; Gigli, Giovanni; Fidolini, Francesco; Casagli, Nicola; Costanzo, Sandra; Raffo, Antonio; Di Massa, Giuseppe; Capparelli, Giovanna; Versace, Pasquale

    2017-10-01

    A big challenge in terms or landslide risk mitigation is represented by increasing the resiliency of society exposed to the risk. Among the possible strategies with which to reach this goal, there is the implementation of early warning systems. This paper describes a procedure to improve early warning activities in areas affected by high landslide risk, such as those classified as critical infrastructures for their central role in society. This research is part of the project LEWIS (Landslides Early Warning Integrated System): An Integrated System for Landslide Monitoring, Early Warning and Risk Mitigation along Lifelines. LEWIS is composed of a susceptibility assessment methodology providing information for single points and areal monitoring systems, a data transmission network and a data collecting and processing center (DCPC), where readings from all monitoring systems and mathematical models converge and which sets the basis for warning and intervention activities. The aim of this paper is to show how logistic issues linked to advanced monitoring techniques, such as big data transfer and storing, can be dealt with compatibly with an early warning system. Therefore, we focus on the interaction between an areal monitoring tool (a ground-based interferometric radar) and the DCPC. By converting complex data into ASCII strings and through appropriate data cropping and average, and by implementing an algorithm for line-of-sight correction, we managed to reduce the data daily output without compromising the capability for performing.

  9. The History of Ground-Based Very High Energy Gamma-Ray Astrophysics with the Atmospheric Air Cherenkov Telescope Technique

    Energy Technology Data Exchange (ETDEWEB)

    Mirzoyan, Razmik

    2013-06-15

    In the recent two decades the ground-based technique of imaging atmosphericescopes has established itself as a powerful new discipline in science. As of today some ∼ 150 sources of gamma rays of very different types, of both galactic and extragalactic origin, have been discovered due to this technique. The study of these sources is providing clues to many basic questions in astrophysics, astro-particle physics, physics of cosmic rays and cosmology. The current generation of telescopes, despite the young age of the technique, offers a solid performance. The technique is still maturing, leading to the next generation large instrument known under the name Cherenkov Telescope Array. The latter's sensitivity will be an order of magnitude higher than that of the currently best instruments VERITAS, H.E.S.S. and MAGIC. This article is devoted to outlining the milestones in a long history that step-by-step have given shape to this technique and have brought about today's successful source marathon.

  10. A comprehensive assessment of ionospheric gradients observed in Ecuador during 2013 and 2014 for ground based augmentation systems

    Science.gov (United States)

    Sánchez-Naranjo, S.; Rincón, W.; Ramos-Pollán, R.; González, F. A.; Soley, S.

    2017-04-01

    Ground Based Augmentation Systems GBAS provide differential corrections to approaching and landing aircrafts in the vicinities of an airport. The ionosphere can introduce an error not accountable by those differential corrections, and a threat model for the Conterminous United States region CONUS was developed in order to consider the highest gradients measured. This study presents the first extensive analysis of ionospheric gradients for Ecuador, from data fully covering 2013 and 2014 collected by their national Global Navigation Satellite System GNSS monitoring network (REGME). In this work it is applied an automated methodology adapted for low latitudes for processing data from dual frequency receivers networks, by considering data from all available days in the date range of the study regardless the geomagnetic indices values. The events found above the CONUS threat model occurred during days of nominal geomagnetic indices, confirming: (1) the higher bounds required for an ionospheric threat model for Ecuador, and (2) that geomagnetic indices are not enough to indicate relevant ionospheric anomalies in low latitude regions, reinforcing the necessity of a continuous monitoring of ionosphere. As additional contribution, the events database is published online, making it available to other researchers.

  11. Modeling erosion and accretion along the Illinois Lake Michigan shore using integrated airborne, waterborne and ground-based method

    Science.gov (United States)

    Mwakanyamale, K. E.; Brown, S.; Larson, T. H.; Theuerkauf, E.; Ntarlagiannis, D.; Phillips, A.; Anderson, A.

    2017-12-01

    Sediment distribution at the Illinois Lake Michigan shoreline is constantly changing in response to increased human activities and complex natural coastal processes associated with wave action, short and long term fluctuations in lake level, and the influence of coastal ice. Understanding changes to volume, distribution and thickness of sand along the shore through time, is essential for modeling shoreline changes and predicting changes due to extreme weather events and lake-level fluctuation. The use of helicopter transient electromagnetic (HTEM) method and integration with ground-based and waterborne geophysical and geologic methods provides high resolution spatial rich data required for modeling the extent of erosion and accretion at this dynamic coastal system. Analysis and interpretation of HTEM, ground and waterborne geophysical and geological data identify spatial distribution and thickness of beach and lake-bottom sand. The results provide information on existence of littoral sand deposits and identify coastal hazards such as lakebed down-cutting that occurs in sand-starved areas.

  12. Impact of Alternative Jet Fuels on Engine Exhaust Composition During the 2015 ECLIF Ground-Based Measurements Campaign.

    Science.gov (United States)

    Schripp, Tobias; Anderson, Bruce; Crosbie, Ewan C; Moore, Richard H; Herrmann, Friederike; Oßwald, Patrick; Wahl, Claus; Kapernaum, Manfred; Köhler, Markus; Le Clercq, Patrick; Rauch, Bastian; Eichler, Philipp; Mikoviny, Tomas; Wisthaler, Armin

    2018-04-17

    The application of fuels from renewable sources ("alternative fuels") in aviation is important for the reduction of anthropogenic carbon dioxide emissions, but may also attribute to reduced release of particles from jet engines. The present experiment describes ground-based measurements in the framework of the ECLIF (Emission and Climate Impact of Alternative Fuels) campaign using an Airbus A320 (V2527-A5 engines) burning six fuels of chemically different composition. Two reference Jet A-1 with slightly different chemical parameters were applied and further used in combination with a Fischer-Tropsch synthetic paraffinic kerosene (FT-SPK) to prepare three semi synthetic jet fuels (SSJF) of different aromatic content. In addition, one commercially available fully synthetic jet fuel (FSJF) featured the lowest aromatic content of the fuel selection. Neither the release of nitrogen oxide or carbon monoxide was significantly affected by the different fuel composition. The measured particle emission indices showed a reduction up to 50% (number) and 70% (mass) for two alternative jet fuels (FSJF, SSJF2) at low power settings in comparison to the reference fuels. The reduction is less pronounced at higher operating conditions but the release of particle number and particle mass is still significantly lower for the alternative fuels than for both reference fuels. The observed correlation between emitted particle mass and fuel aromatics is not strict. Here, the H/C ratio is a better indicator for soot emission.

  13. Combining satellite-based fire observations and ground-based lightning detections to identify lightning fires across the conterminous USA

    Science.gov (United States)

    Bar-Massada, A.; Hawbaker, T.J.; Stewart, S.I.; Radeloff, V.C.

    2012-01-01

    Lightning fires are a common natural disturbance in North America, and account for the largest proportion of the area burned by wildfires each year. Yet, the spatiotemporal patterns of lightning fires in the conterminous US are not well understood due to limitations of existing fire databases. Our goal here was to develop and test an algorithm that combined MODIS fire detections with lightning detections from the National Lightning Detection Network to identify lightning fires across the conterminous US from 2000 to 2008. The algorithm searches for spatiotemporal conjunctions of MODIS fire clusters and NLDN detected lightning strikes, given a spatiotemporal lag between lightning strike and fire ignition. The algorithm revealed distinctive spatial patterns of lightning fires in the conterminous US While a sensitivity analysis revealed that the algorithm is highly sensitive to the two thresholds that are used to determine conjunction, the density of fires it detected was moderately correlated with ground based fire records. When only fires larger than 0.4 km2 were considered, correlations were higher and the root-mean-square error between datasets was less than five fires per 625 km2 for the entire study period. Our algorithm is thus suitable for detecting broad scale spatial patterns of lightning fire occurrence, and especially lightning fire hotspots, but has limited detection capability of smaller fires because these cannot be consistently detected by MODIS. These results may enhance our understanding of large scale patterns of lightning fire activity, and can be used to identify the broad scale factors controlling fire occurrence.

  14. Gravitational-Wave Tests of General Relativity with Ground-Based Detectors and Pulsar-Timing Arrays.

    Science.gov (United States)

    Yunes, Nicolás; Siemens, Xavier

    2013-01-01

    This review is focused on tests of Einstein's theory of general relativity with gravitational waves that are detectable by ground-based interferometers and pulsar-timing experiments. Einstein's theory has been greatly constrained in the quasi-linear, quasi-stationary regime, where gravity is weak and velocities are small. Gravitational waves will allow us to probe a complimentary, yet previously unexplored regime: the non-linear and dynamical strong-field regime . Such a regime is, for example, applicable to compact binaries coalescing, where characteristic velocities can reach fifty percent the speed of light and gravitational fields are large and dynamical. This review begins with the theoretical basis and the predicted gravitational-wave observables of modified gravity theories. The review continues with a brief description of the detectors, including both gravitational-wave interferometers and pulsar-timing arrays, leading to a discussion of the data analysis formalism that is applicable for such tests. The review ends with a discussion of gravitational-wave tests for compact binary systems.

  15. Municipality Level Simulations of Dengue Fever Incidence in Puerto Rico Using Ground