WorldWideScience

Sample records for ground-based navigation communications

  1. Flight Test Result for the Ground-Based Radio Navigation System Sensor with an Unmanned Air Vehicle.

    Science.gov (United States)

    Jang, Jaegyu; Ahn, Woo-Guen; Seo, Seungwoo; Lee, Jang Yong; Park, Jun-Pyo

    2015-11-11

    The Ground-based Radio Navigation System (GRNS) is an alternative/backup navigation system based on time synchronized pseudolites. It has been studied for some years due to the potential vulnerability issue of satellite navigation systems (e.g., GPS or Galileo). In the framework of our study, a periodic pulsed sequence was used instead of the randomized pulse sequence recommended as the RTCM (radio technical commission for maritime services) SC (special committee)-104 pseudolite signal, as a randomized pulse sequence with a long dwell time is not suitable for applications requiring high dynamics. This paper introduces a mathematical model of the post-correlation output in a navigation sensor, showing that the aliasing caused by the additional frequency term of a periodic pulsed signal leads to a false lock (i.e., Doppler frequency bias) during the signal acquisition process or in the carrier tracking loop of the navigation sensor. We suggest algorithms to resolve the frequency false lock issue in this paper, relying on the use of a multi-correlator. A flight test with an unmanned helicopter was conducted to verify the implemented navigation sensor. The results of this analysis show that there were no false locks during the flight test and that outliers stem from bad dilution of precision (DOP) or fluctuations in the received signal quality.

  2. Flight Test Result for the Ground-Based Radio Navigation System Sensor with an Unmanned Air Vehicle

    Directory of Open Access Journals (Sweden)

    Jaegyu Jang

    2015-11-01

    Full Text Available The Ground-based Radio Navigation System (GRNS is an alternative/backup navigation system based on time synchronized pseudolites. It has been studied for some years due to the potential vulnerability issue of satellite navigation systems (e.g., GPS or Galileo. In the framework of our study, a periodic pulsed sequence was used instead of the randomized pulse sequence recommended as the RTCM (radio technical commission for maritime services SC (special committee-104 pseudolite signal, as a randomized pulse sequence with a long dwell time is not suitable for applications requiring high dynamics. This paper introduces a mathematical model of the post-correlation output in a navigation sensor, showing that the aliasing caused by the additional frequency term of a periodic pulsed signal leads to a false lock (i.e., Doppler frequency bias during the signal acquisition process or in the carrier tracking loop of the navigation sensor. We suggest algorithms to resolve the frequency false lock issue in this paper, relying on the use of a multi-correlator. A flight test with an unmanned helicopter was conducted to verify the implemented navigation sensor. The results of this analysis show that there were no false locks during the flight test and that outliers stem from bad dilution of precision (DOP or fluctuations in the received signal quality.

  3. Conceptual Design of a Communication-Based Deep Space Navigation Network

    Science.gov (United States)

    Anzalone, Evan J.; Chuang, C. H.

    2012-01-01

    As the need grows for increased autonomy and position knowledge accuracy to support missions beyond Earth orbit, engineers must push and develop more advanced navigation sensors and systems that operate independent of Earth-based analysis and processing. Several spacecraft are approaching this problem using inter-spacecraft radiometric tracking and onboard autonomous optical navigation methods. This paper proposes an alternative implementation to aid in spacecraft position fixing. The proposed method Network-Based Navigation technique takes advantage of the communication data being sent between spacecraft and between spacecraft and ground control to embed navigation information. The navigation system uses these packets to provide navigation estimates to an onboard navigation filter to augment traditional ground-based radiometric tracking techniques. As opposed to using digital signal measurements to capture inherent information of the transmitted signal itself, this method relies on the embedded navigation packet headers to calculate a navigation estimate. This method is heavily dependent on clock accuracy and the initial results show the promising performance of a notional system.

  4. Space Mobile Network: A Near Earth Communications and Navigation Architecture

    Science.gov (United States)

    Israel, David J.; Heckler, Gregory W.; Menrad, Robert J.

    2016-01-01

    This paper shares key findings of NASA's Earth Regime Network Evolution Study (ERNESt) team resulting from its 18-month effort to define a wholly new architecture-level paradigm for the exploitation of space by civil space and commercial sector organizations. Since the launch of Sputnik in October 1957 spaceflight missions have remained highly scripted activities from launch through disposal. The utilization of computer technology has enabled dramatic increases in mission complexity; but, the underlying premise that the diverse actions necessary to meet mission goals requires minute-by-minute scripting, defined weeks in advance of execution, for the life of the mission has remained. This archetype was appropriate for a "new frontier" but now risks overtly constraining the potential market-based opportunities for the innovation considered necessary to efficiently address the complexities associated with meeting communications and navigation requirements projected to be characteristics of the next era of space exploration: a growing number of missions in simultaneous execution, increased variance of mission types and growth in location/orbital regime diversity. The resulting ERNESt architectural cornerstone - the Space Mobile Network (SMN) - was envisioned as critical to creating an environment essential to meeting these future challenges in political, programmatic, technological and budgetary terms. The SMN incorporates technologies such as: Disruption Tolerant Networking (DTN) and optical communications, as well as new operations concepts such as User Initiated Services (UIS) to provide user services analogous to today's terrestrial mobile network user. Results developed in collaboration with NASA's Space Communications and Navigation (SCaN) Division and field centers are reported on. Findings have been validated via briefings to external focus groups and initial ground-based demonstrations. The SMN opens new niches for exploitation by the marketplace of mission

  5. Space Communication and Navigation Testbed Communications Technology for Exploration

    Science.gov (United States)

    Reinhart, Richard

    2013-01-01

    NASA developed and launched an experimental flight payload (referred to as the Space Communication and Navigation Test Bed) to investigate software defined radio, networking, and navigation technologies, operationally in the space environment. The payload consists of three software defined radios each compliant to NASAs Space Telecommunications Radio System Architecture, a common software interface description standard for software defined radios. The software defined radios are new technology developed by NASA and industry partners. The payload is externally mounted to the International Space Station truss and available to NASA, industry, and university partners to conduct experiments representative of future mission capability. Experiment operations include in-flight reconfiguration of the SDR waveform functions and payload networking software. The flight system communicates with NASAs orbiting satellite relay network, the Tracking, Data Relay Satellite System at both S-band and Ka-band and to any Earth-based compatible S-band ground station.

  6. Navigation strategy with the spacecraft communications blackout for Mars entry

    Science.gov (United States)

    Wang, Xichen; Xia, Yuanqing

    2015-02-01

    Future Mars missions require precision entry navigation capability, especially in the presence of communications blackout. On the mission of Mars Science Laboratory (MSL), there was a 70-s communications blackout period during atmospheric entry phase. In allusion to the spacecraft communications blackout encountered, this paper predicts an upper-bound for any possible blackout period firstly, improves the default integrated navigation measurements based on IMU and surface radiometric beacons, and proposes innovative attitude observation model based on IMU and range observation model based on orbiters finally. To verify the accuracy and effectiveness of the proposed observation models in the presence of communications blackout, unscented Kalman filter is utilized to demonstrate the navigation performance. The results show that navigation errors based on improved observation models proposed in this paper degrade an order of magnitude compared with the default observation models even if the communications blackout takes place, which satisfies the requirements of future Mars landing missions.

  7. The transmission link of CAPS navigation and communication system

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The Chinese Area Positioning System (CAPS) is based on communication satellites with integrated capability, which is different from the Global Positioning System (GPS), the International Maritime Satellite Organization (Inmarsat) and so on. CAPS works at C-band, and its navigation information is not directly generated from the satellite, but from the master control station on the ground and transmitted to users via the satellite. The slightly inclined geostationary-satellite orbit (SIGSO) satellites are adopted in CAPS. All of these increase the difficulty in the design of the system and terminals. In this paper, the authors study the CAPS configuration parameters of the navigation master control station, information transmission capability, and the selection of the antenna aperture of the communication center station, as well as the impact of satellite parameters on the whole communication system from the perspective of the transmission link budget. The conclusion of availability of the CAPS navigation system is achieved. The results show that the CAPS inbound communication system forms a new low-data-rate satellite communication system, which can accommodate mass communication terminals with the transmission rate of no more than 1 kbps for every terminal. The communication center station should be configured with a large-aperture antenna (about 10-15 m); spread spectrum com- munication technology should be used with the spreading gain as high as about 40 dB; reduction of the satellite transponder gain attenuation is beneficial to improving the signal-to-noise ratio of the system, with the attenuation value of 0 or 2 dB as the best choice. The fact that the CAPS navigation system has been checked and accepted by the experts and the operation is stable till now clarifies the rationality of the analysis results. The fact that a variety of experiments and applications of the satellite communication system designed according to the findings in this paper have been

  8. Knowledge base navigator facilitating regional analysis inter-tool communication.

    Energy Technology Data Exchange (ETDEWEB)

    Hampton, Jeffery Wade; Chael, Eric Paul; Hart, Darren M.; Merchant, Bion John; Chown, Matthew N.

    2004-08-01

    To make use of some portions of the National Nuclear Security Administration (NNSA) Knowledge Base (KB) for which no current operational monitoring applications were available, Sandia National Laboratories have developed a set of prototype regional analysis tools (MatSeis, EventID Tool, CodaMag Tool, PhaseMatch Tool, Dendro Tool, Infra Tool, etc.), and we continue to maintain and improve these. Individually, these tools have proven effective in addressing specific monitoring tasks, but collectively their number and variety tend to overwhelm KB users, so we developed another application - the KB Navigator - to launch the tools and facilitate their use for real monitoring tasks. The KB Navigator is a flexible, extensible java application that includes a browser for KB data content, as well as support to launch any of the regional analysis tools. In this paper, we will discuss the latest versions of KB Navigator and the regional analysis tools, with special emphasis on the new overarching inter-tool communication methodology that we have developed to make the KB Navigator and the tools function together seamlessly. We use a peer-to-peer communication model, which allows any tool to communicate with any other. The messages themselves are passed as serialized XML, and the conversion from Java to XML (and vice versa) is done using Java Architecture for XML Binding (JAXB).

  9. Integrating Communication and Navigation: Next Generation Broadcast Service (NGBS)

    Science.gov (United States)

    Donaldson, Jennifer

    2017-01-01

    NASA Goddard has been investing in technology demonstrations of a beacon service, now called Next Generation Broadcast Services (NGBS). NGBS is a global, space-based, communications and navigation service for users of Global Navigation Satellite Systems (GNSS) and the Tracking and Data Relay Satellite System (TDRSS). NGBS will provide an S-band beacon messaging source and radio navigation available to users at orbital altitudes 1400 km and below, increasing the autonomy and resiliency of onboard communication and navigation. NGBS will deliver both one-way radiometric (Doppler and pseudorange) and fast forward data transport services to users. Portions of the overall forward data volume will be allocated for fixed message types while the remaining data volume will be left for user forward command data. The NGBS signal will reside within the 2106.43 MHz spectrum currently allocated for the Space Networks multiple access forward (MAF) service and a live service demonstration is currently being planned via the 2nd and 3rd generation TDRS satellites.

  10. Directional Navigation Improves Opportunistic Communication for Emergencies

    Directory of Open Access Journals (Sweden)

    Andras Kokuti

    2014-08-01

    Full Text Available We present a novel direction based shortest path search algorithm to guide evacuees during an emergency. It uses opportunistic communications (oppcomms with low-cost wearable mobile nodes that can exchange packets at close range of a few to some tens of meters without help of an infrastructure. The algorithm seeks the shortest path to exits which are safest with regard to a hazard, and is integrated into an autonomous Emergency Support System (ESS to guide evacuees in a built environment. The algorithm proposed that ESSs are evaluated with the DBES (Distributed Building Evacuation Simulator by simulating a shopping centre where fire is spreading. The results show that the directional path finding algorithm can offer significant improvements for the evacuees.

  11. The Principle of Navigation Constellation Composed of SIGSO Communication Satellites

    CERN Document Server

    Ji, Hai-Fu; Ai, Guo-Xiang; Shi, Hu-Li

    2012-01-01

    The Chinese Area Positioning System (CAPS), a navigation system based on GEO communication satellites, was developed in 2002 by astronomers at Chinese Academy of Sciences. Extensive positioning experiments of CAPS have been performed since 2005. On the basis of CAPS, this paper studies the principle of navigation constellation composed of Slightly Inclined Geostationary Orbit (SIGSO) communication satellites. SIGSO satellites are derived from end-of-life Geostationary Orbit (GEO) satellites under inclined orbit operation. Considering the abundant frequency resources of SIGSO satellites, multi-frequency observations could be conducted to enhance the precision of pseudorange measurements and ameliorate the positioning performence. The constellation composed of two GEO satellites and four SIGSO satellites with inclination of 5 degrees can provide the most territory of China with 24-hour maximum PDOP less than 42. With synthetic utilization of the truncated precise (TP) code and physical augmentation factor in fo...

  12. Acoustic Communications and Navigation for Mobile Under-Ice Sensors

    Science.gov (United States)

    2014-09-30

    urethane-filled hose with spiral conductors for the through- ice transition where a cable would be vulnerable. The buoy is designed to float after melting ...project is that it allows a drifting, ice -tethered navigation and communications system to be employed in the Arctic during times when it is not possible...performing tactical missions under Arctic ice . Potential programs for transition include LD-UUV if an Arctic version is fielded in the future. RELATED

  13. Acoustic Communications and Navigation for Mobile Under-Ice Sensors

    Science.gov (United States)

    2017-02-04

    filled hose with spiral conductors for the through- ice transition where a cable would be vulnerable. The buoy is designed to float after melting out...From- To) 04/02/2017 Final Report 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Acoustic Communications and Navigation for Mobile Under- Ice Sensors...Arctic ice . The system consists of ice -tethered sources making GPS-synchronized transmissions and receivers based on the WHOI Micro-Modem that are

  14. Space Mobile Network: A Near Earth Communication and Navigation Architecture

    Science.gov (United States)

    Israel, Dave J.; Heckler, Greg; Menrad, Robert J.

    2016-01-01

    This paper describes a Space Mobile Network architecture, the result of a recently completed NASA study exploring architectural concepts to produce a vision for the future Near Earth communications and navigation systems. The Space Mobile Network (SMN) incorporates technologies, such as Disruption Tolerant Networking (DTN) and optical communications, and new operations concepts, such as User Initiated Services, to provide user services analogous to a terrestrial smartphone user. The paper will describe the SMN Architecture, envisioned future operations concepts, opportunities for industry and international collaboration and interoperability, and technology development areas and goals.

  15. The transmission link of CAPS navigation and communication system

    Institute of Scientific and Technical Information of China (English)

    CUI JunXia; SHI HuLi; CHEN JiBin; PEI Jun

    2009-01-01

    The Chinese Area Positioning System (CAPS) is based on communication satellites with integrated oapability,whioh is different from the Global Positioning System (GPS),the International Maritime Satellite Organization (Inmarsat) and so on.CAPS works at G-band,and its navigation information ie not directly generated from the satellite,but from the master control station on the ground and transmitted to users via the satellite.The slightly inclined geostationary-satellite orbit (SIGSO) satellites are adopted in CAPS.All of these increase the difficulty in the design of the system and terminals.In this paper,the authors study the CAPS oonfiguration parameters of the navigation master control station,information transmission capability,and the selection of the antenna aperture of the communication oenter station,as well as the impact of satellite parameters on the whole communication system from the perspective of the transmission link budget.The conclusion of availability of the GAPS navigation system is achieved.The results show that the GAPS inbound communication system forms a new low-data-rate satellite communicaUon system,which can accommodate mass communication termihale with the transmission rate of no more than 1 kbps for every terminal.The communication center station should be configured with a large-aperture antenna (about 10--15 m); spread spectrum communication technology should be used with the spreading gain as high as about 40 dB; reduction of the satellite transponder gain attenuation is beneficial to improving the signal-to-noise ratio of the system,with the attenuation value of 0 or 2 dB as the best choice.The fact that the GAPS navigation system has been checked and aooepted by the experts and the operation is stable till now larifies the rationality of the analysis results.The fact that a variety of experiments and applications of the satellite communication system designed according to the findings in this paper have been successfully carried out

  16. Architectural Design for a Mars Communications and Navigation Orbital Infrastructure

    Science.gov (United States)

    Ceasrone R. J.; Hastrup, R. C.; Bell, D. J.; Roncoli, R. B.; Nelson, K.

    1999-01-01

    The planet Mars has become the focus of an intensive series of missions that span decades of time, a wide array of international agencies and an evolution from robotics to humans. The number of missions to Mars at any one time, and over a period of time, is unprecedented in the annals of space exploration. To meet the operational needs of this exploratory fleet will require the implementation of new architectural concepts for communications and navigation. To this end, NASA's Jet Propulsion Laboratory has begun to define and develop a Mars communications and navigation orbital infrastructure. This architecture will make extensive use of assets at Mars, as well as use of traditional Earth-based assets, such as the Deep Space Network, DSN. Indeed, the total system can be thought of as an extension of DSN nodes and services to the Mars in-situ region. The concept has been likened to the beginnings of an interplanetary Internet that will bring the exploration of Mars right into our living rooms. The paper will begin with a high-level overview of the concept for the Mars communications and navigation infrastructure. Next, the mission requirements will be presented. These will include the relatively near-term needs of robotic landers, rovers, ascent vehicles, balloons, airplanes, and possibly orbiting, arriving and departing spacecraft. Requirements envisioned for the human exploration of Mars will also be described. The important Mars orbit design trades on telecommunications and navigation capabilities will be summarized, and the baseline infrastructure will be described. A roadmap of NASA's plan to evolve this infrastructure over time will be shown. Finally, launch considerations and delivery to Mars will be briefly treated.

  17. Communications, Navigation, and Network Reconfigurable Test-bed Flight Hardware Compatibility Test S

    Science.gov (United States)

    2010-01-01

    Communications, Navigation, and Network Reconfigurable Test-bed Flight Hardware Compatibility Test Sets and Networks Integration Management Office Testing for the Tracking and Data Relay Satellite System

  18. Npl Ionospheric Model for Radio Communication and Navigational Applications

    Science.gov (United States)

    Singh Dabas, Raj

    In the areas of Radio Communication and Navigation, present day need of the users are to achieve higher performance communication, better navigation, positioning which can only be possible through improved Ionospheric Modeling, its now casting and forecast-ing. Therefore, National Physical Laboratory (NPL), New Delhi has develop a user friendly, Empirical Ionospheric Model (NPL Model) for the Indian zone which gives all the F-region Parameters like foF2, NmF2, hmF2, Ne Profiles and the Ionospheric Electron Content (IEC) for different Radio Communication/Navigational applications. Basically, two HF prediction models for short and long term predictions are developed for equatorial and low latitude iono-sphere. Short term HF prediction model is based on Multiple Regression Analysis (MRA) for the dependence of F-region parameters namely foF2 and M(3000)F2, on solar 2800 MHz flux (F10), and geomagnetic index Ap whereas for long term prediction, Second Degree (SD) coefficients are generated by fitting monthly median foF2 and M(3000)F2 with corresponding 12 monthly mean sunspot numbers (R12) using data over three solar cycles. For generating MRA coefficients, daily foF2, M(3000)F2 values for each hour, obtained from Delhi (28.6N, 77.1E) digital ionosonde for about half a solar cycle are used. MRA coefficients, separately for quiet (Ap25) periods, for foF2 and M(3000)F2, are obtained for every month over 24 UT times using daily F10 and Ap values. Whereas SD coefficients are obtained each month at all local times for all the 14 stations covering a geographic latitude range from about 0 to 45 N. IEC model is developed in two ways. Firstly, IEC model is also developed using monthly median foF2 and hmF2 values for each hours for all the 14 stations which are feed into IRI 2000 model to calculate respective IEC values for two altitudes namely 1000km and 2000km. Then, second degree coefficients are generated by fitting monthly median IEC with corresponding 12 monthly mean

  19. Ionosphere-related products for communication and navigation

    Science.gov (United States)

    Tobiska, W.; Schunk, R. W.; Sojka, J. J.; Carlson, H. C.; Gardner, L. C.; Scherliess, L.; Zhu, L.

    2011-12-01

    Space weather's effects upon the near-Earth environment are due to dynamic changes in the energy transfer processes from the Sun's photons, particles, and fields. Of the space environment domains that are affected by space weather, the ionosphere is the key region that affects communication and navigation systems. The Utah State University (USU) Space Weather Center (SWC) is developing and producing commercial space weather applications. A key system-level component for providing timely information about the effects of space weather is the Global Assimilation of Ionospheric Measurements (GAIM) system. GAIM, operated by SWC, improves real-time communication and navigation systems by continuously ingesting up to 10,000 slant TEC measurements every 15-minutes from approximately 500 stations. Ionosonde data from several dozen global stations is ingested every 15 minutes to improve the vertical profiles within GAIM. The global, CONUS, Europe, Asia, South America, and other regional sectors are run with a 15-minute cadence. These operational runs enable SWC to calculate and report the global radio high frequency (HF) signal strengths and near vertical incidence skywave (NVIS) maps used by amateur radio operators and emergency responders, especially during the Japan Great Earthquake and tsunami recovery period. SWC has established its first fully commercial enterprise called Q-up as a result of this activity. GPS uncertainty maps are produced by SWC to improve single-frequency GPS applications. SWC also provides the space weather smartphone app called SpaceWx for iPhone, iPad, iPod, and Android for professional users and public space weather education. SpaceWx displays the real-time solar, heliosphere, magnetosphere, thermosphere, and ionosphere drivers to changes in the total electron content, for example, as well as global NVIS maps. We describe upcoming improvements for moving space weather information through automated systems into final derivative products.

  20. Global, real-time ionosphere specification for end-user communication and navigation products

    Science.gov (United States)

    Tobiska, W.; Carlson, H. C.; Schunk, R. W.; Thompson, D. C.; Sojka, J. J.; Scherliess, L.; Zhu, L.; Gardner, L. C.

    2010-12-01

    Space weather’s effects upon the near-Earth environment are due to dynamic changes in the energy transfer processes from the Sun’s photons, particles, and fields. Of the space environment domains that are affected by space weather, the ionosphere is the key region that affects communication and navigation systems. The Utah State University (USU) Space Weather Center (SWC) is a developer and producer of commercial space weather applications. A key system-level component for providing timely information about the effects of space weather is the Global Assimilation of Ionospheric Measurements (GAIM) system. GAIM, operated by SWC, improves real-time communication and navigation systems by continuously ingesting up to 10,000 slant TEC measurements every 15-minutes from approximately 500 stations. Using a Kalman filter, the background output from the physics-based Ionosphere Forecast Model (IFM) is adjusted to more accurately represent the actual ionosphere. An improved ionosphere leads to more useful derivative products. For example, SWC runs operational code, using GAIM, to calculate and report the global radio high frequency (HF) signal strengths for 24 world cities. This product is updated every 15 minutes at http://spaceweather.usu.edu and used by amateur radio operators. SWC also developed and provides through Apple iTunes the widely used real-time space weather iPhone app called SpaceWx for public space weather education. SpaceWx displays the real-time solar, heliosphere, magnetosphere, thermosphere, and ionosphere drivers to changes in the total electron content, for example. This smart phone app is tip of the “iceberg” of automated systems that provide space weather data; it permits instant understanding of the environment surrounding Earth as it dynamically changes. SpaceWx depends upon a distributed network that connects satellite and ground-based data streams with algorithms to quickly process the measurements into geophysical data, incorporate those

  1. Potentials and Limitations of CDMA Networks for Combined Inter-Satellite Communication and Relative Navigation

    NARCIS (Netherlands)

    Sun, R.; Guo, J.; Gill, E.K.A.; Maessen, D.C.

    2012-01-01

    Precision formation flying missions require formation acquisition and maintenance through the interactions among spacecraft by the inter-satellite communication and relative navigation. This paper analyses the dedicated system constraints of the network architecture for precision formation flying mi

  2. Impact of Used Communication Technology on the Navigation System for Hybrid Environment

    Directory of Open Access Journals (Sweden)

    Juraj Machaj

    2012-01-01

    Full Text Available This paper deals with navigation of mobile device in outdoor and indoor environment by only navigation system or application. In the paper, the navigation system is proposed in the light of seamless navigation service. Main parts of the system from positioning point of view are based on GPS and WifiLOC system. WifiLOC is an indoor positioning system based on Wi-Fi technology. The proposal of the system will be described in detail. The system is implemented at the University of Zilina as a pilot, noncommercial project; therefore it is called University Mobile Navigation System (UMNS. The navigation system can be characterized as real-time system, that is, the system operations cannot be significantly delayed. Since delay of the system depends significantly on communication platform used for map information downloading or communication with the localization server. We decided to investigate an impact of the used communication platform on the time needs for some of the functions implemented in navigation system. Measurements were performed in the real-world application. Next experiment is focused on testing of the accuracy of used indoor positioning system. Outdoor positioning accuracy is not tested because GPS is utilized in outdoor, and this system was already exhaustively investigated.

  3. The Role of X-Rays in Future Space Navigation and Communication

    Science.gov (United States)

    Winternitz, Luke M. B.; Gendreau, Keith C.; Hasouneh, Monther A.; Mitchell, Jason W.; Fong, Wai H.; Lee, Wing-Tsz; Gavriil, Fotis; Arzoumanian, Zaven

    2013-01-01

    In the near future, applications using X-rays will enable autonomous navigation and time distribution throughout the solar system, high capacity and low-power space data links, highly accurate attitude sensing, and extremely high-precision formation flying capabilities. Each of these applications alone has the potential to revolutionize mission capabilities, particularly beyond Earth orbit. This paper will outline the NASA Goddard Space Flight Center vision and efforts toward realizing the full potential of X-ray navigation and communications.

  4. Enabling Communication and Navigation Technologies for Future Near Earth Science Missions

    Science.gov (United States)

    Israel, David J.; Heckler, Gregory; Menrad, Robert; Hudiburg, John; Boroson, Don; Robinson, Bryan; Cornwell, Donald

    2016-01-01

    In 2015, the Earth Regimes Network Evolution Study (ERNESt) proposed an architectural concept and technologies that evolve to enable space science and exploration missions out to the 2040 timeframe. The architectural concept evolves the current instantiations of the Near Earth Network and Space Network with new technologies to provide a global communication and navigation network that provides communication and navigation services to a wide range of space users in the near Earth domain. The technologies included High Rate Optical Communications, Optical Multiple Access (OMA), Delay Tolerant Networking (DTN), User Initiated Services (UIS), and advanced Position, Navigation, and Timing technology. This paper describes the key technologies and their current technology readiness levels. Examples of science missions that could be enabled by the technologies and the projected operational benefits of the architecture concept to missions are also described.

  5. An Overview of Scientific and Space Weather Results from the Communication/Navigation Outage Forecasting System (C/NOFS) Mission

    Science.gov (United States)

    Pfaff, R.; de la Beaujardiere, O.; Hunton, D.; Heelis, R.; Earle, G.; Strauss, P.; Bernhardt, P.

    2012-01-01

    The Communication/Navigation Outage Forecasting System (C/NOFS) Mission of the Air Force Research Laboratory is described. C/NOFS science objectives may be organized into three categories: (1) to understand physical processes active in the background ionosphere and thermosphere in which plasma instabilities grow; (2) to identify mechanisms that trigger or quench the plasma irregularities responsible for signal degradation; and (3) to determine how the plasma irregularities affect the propagation of electromagnetic waves. The satellite was launched in April, 2008 into a low inclination (13 deg), elliptical (400 x 850 km) orbit. The satellite sensors measure the following parameters in situ: ambient and fluctuating electron densities, AC and DC electric and magnetic fields, ion drifts and large scale ion composition, ion and electron temperatures, and neutral winds. C/NOFS is also equipped with a GPS occultation receiver and a radio beacon. In addition to the satellite sensors, complementary ground-based measurements, theory, and advanced modeling techniques are also important parts of the mission. We report scientific and space weather highlights of the mission after nearly four years in orbit

  6. Iris Transponder-Communications and Navigation for Deep Space

    Science.gov (United States)

    Duncan, Courtney B.; Smith, Amy E.; Aguirre, Fernando H.

    2014-01-01

    The Jet Propulsion Laboratory has developed the Iris CubeSat compatible deep space transponder for INSPIRE, the first CubeSat to deep space. Iris is 0.4 U, 0.4 kg, consumes 12.8 W, and interoperates with NASA's Deep Space Network (DSN) on X-Band frequencies (7.2 GHz uplink, 8.4 GHz downlink) for command, telemetry, and navigation. This talk discusses the Iris for INSPIRE, it's features and requirements; future developments and improvements underway; deep space and proximity operations applications for Iris; high rate earth orbit variants; and ground requirements, such as are implemented in the DSN, for deep space operations.

  7. SBIR Technology Applications to Space Communications and Navigation (SCaN)

    Science.gov (United States)

    Liebrecht, Phil; Eblen, Pat; Rush, John; Tzinis, Irene

    2010-01-01

    This slide presentation reviews the mission of the Space Communications and Navigation (SCaN) Office with particular emphasis on opportunities for technology development with SBIR companies. The SCaN office manages NASA's space communications and navigation networks: the Near Earth Network (NEN), the Space Network (SN), and the Deep Space Network (DSN). The SCaN networks nodes are shown on a world wide map and the networks are described. Two types of technologies are described: Pull technology, and Push technologies. A listing of technology themes is presented, with a discussion on Software defined Radios, Optical Communications Technology, and Lunar Lasercom Space Terminal (LLST). Other technologies that are being investigated are some Game Changing Technologies (GCT) i.e., technologies that offer the potential for improving comm. or nav. performance to the point that radical new mission objectives are possible, such as Superconducting Quantum Interference Filters, Silicon Nanowire Optical Detectors, and Auto-Configuring Cognitive Communications

  8. Conformal, Transparent Printed Antenna Developed for Communication and Navigation Systems

    Science.gov (United States)

    Lee, Richard Q.; Simons, Rainee N.

    1999-01-01

    Conformal, transparent printed antennas have advantages over conventional antennas in terms of space reuse and aesthetics. Because of their compactness and thin profile, these antennas can be mounted on video displays for efficient integration in communication systems such as palmtop computers, digital telephones, and flat-panel television displays. As an array of multiple elements, the antenna subsystem may save weight by reusing space (via vertical stacking) on photovoltaic arrays or on Earth-facing sensors. Also, the antenna could go unnoticed on automobile windshields or building windows, enabling satellite uplinks and downlinks or other emerging high-frequency communications.

  9. Student-Driven Classroom Technologies: Transmedia Navigation and Tranformative Communications

    Science.gov (United States)

    Mills, Leila A.; Knezek, Gerald A.; Wakefield, Jenny S.

    2013-01-01

    This research paper explores middle school student attitudes towards learning with technology and proposes a design-based approach to formulating instruction that includes innovative classroom technology use with computers and communications technologies placed in the hands of students. The intent of this research is to advance practice and theory…

  10. Navigating Change: Employee Communication in Times of Instability

    Science.gov (United States)

    DuFrene, Debbie D.; Lehman, Carol M.

    2014-01-01

    Employees often perceive periods of change--no matter how warranted or beneficial--as crises, exhibiting both cognitive and emotional reactions including feelings of insecurity and uncertainty, even fear, chaos, stress, betrayal, grief, and anger. Management must have a clear strategy for communicating with employees through change, as employee…

  11. Navigating Change: Employee Communication in Times of Instability

    Science.gov (United States)

    DuFrene, Debbie D.; Lehman, Carol M.

    2014-01-01

    Employees often perceive periods of change--no matter how warranted or beneficial--as crises, exhibiting both cognitive and emotional reactions including feelings of insecurity and uncertainty, even fear, chaos, stress, betrayal, grief, and anger. Management must have a clear strategy for communicating with employees through change, as employee…

  12. Architecting the Communication and Navigation Networks for NASA's Space Exploration Systems

    Science.gov (United States)

    Bhassin, Kul B.; Putt, Chuck; Hayden, Jeffrey; Tseng, Shirley; Biswas, Abi; Kennedy, Brian; Jennings, Esther H.; Miller, Ron A.; Hudiburg, John; Miller, Dave; Jeffries, Alan; Sartwell, Tom

    2007-01-01

    NASA is planning a series of short and long duration human and robotic missions to explore the Moon and then Mars. A key objective of the missions is to grow, through a series of launches, a system of systems communication, navigation, and timing infrastructure at minimum cost while providing a network-centric infrastructure that maximizes the exploration capabilities and science return. There is a strong need to use architecting processes in the mission pre-formulation stage to describe the systems, interfaces, and interoperability needed to implement multiple space communication systems that are deployed over time, yet support interoperability with each deployment phase and with 20 years of legacy systems. In this paper we present a process for defining the architecture of the communications, navigation, and networks needed to support future space explorers with the best adaptable and evolable network-centric space exploration infrastructure. The process steps presented are: 1) Architecture decomposition, 2) Defining mission systems and their interfaces, 3) Developing the communication, navigation, networking architecture, and 4) Integrating systems, operational and technical views and viewpoints. We demonstrate the process through the architecture development of the communication network for upcoming NASA space exploration missions.

  13. The principle of a navigation constellation composed of SIGSO communication satellites

    Institute of Scientific and Technical Information of China (English)

    Hai-Fu Ji; Li-Hua Ma; Guo-Xiang Ai; Hu-Li Shi

    2013-01-01

    The Chinese Area Positioning System (CAPS),a navigation system based on geostationary orbit (GEO) communication satellites,was developed in 2002 by astronomers at Chinese Academy of Sciences.Extensive positioning experiments of CAPS have been performed since 2005.On the basis of CAPS,this paper studies the principle of a navigation constellation composed of slightly inclined geostationary orbit (SIGSO) communication satellites.SIGSO satellites are derived from GEO satellites which are near the end of their operational life by inclined orbit operation.Considering the abundant frequency resources of SIGSO satellites,multi-frequency observations could be conducted to enhance the precision of pseudorange measurements and ameliorate the positioning performance.A constellation composed of two GEO satellites and four SIGSO satellites with an inclination of 5° can provide service to most of the territory of China with a maximum position dilution of precision (PDOP) over 24 h of less than 42.With synthetic utilization of the truncated precise code and a physical augmentation factor in four frequencies,the navigation system with this constellation is expected to obtain comparable positioning performance to that of the coarse acquisition code of the Global Positioning System (GPS).When the new method of code-carrier phase combinations is adopted,the system has the potential to possess commensurate accuracy with the precise code in GPS.Additionally,the copious frequency resources can also be used to develop new anti-interference techniques and integrate navigation and communication.

  14. FLYCON-R: Wireless Integrated Communication and Navigation System

    Science.gov (United States)

    Palomo, Jose Maria; Gomez de Aguero, Sergio; Latorre, Antonio; Fernandez, Antonio; Pina, Fernando; Tarziu, Andrei; Balan, Mugurel; Sanchez Gestido, Manuel; Concari, Paolo

    2015-09-01

    This paper presents the FLYCON-R system, which is an integrated communication and ranging system based on OFDM signal. FLYCON-R supports high data rates and flexible data communications, providing also relative ranging measurements based on Time of Arrival (ToA) from the Radio Frequency signals. Deimos Space (Spain and Romania) and ISS are carrying out the FLYCON-R project for ESA under the Romanian task force initiative. FLYCON-R (Prototype of Integrated Nav-Com sensor based on WiMax Standard for Formation Flying) aims to upgrade the previously existing FLYCON proof of concept (PoC) to a more advanced, elegant breadboard version, ready for on-ground flight testing and as near as possible to a future flight version. The paper presents as well the preliminary results of the flight tests performed on the Spanish R&D PERIGEO project, using the FLYCON PoC prototypes.

  15. Passive Thermal Design Approach for the Space Communications and Navigation (SCaN) Testbed Experiment on the International Space Station (ISS)

    Science.gov (United States)

    Siamidis, John; Yuko, Jim

    2014-01-01

    The Space Communications and Navigation (SCaN) Program Office at NASA Headquarters oversees all of NASAs space communications activities. SCaN manages and directs the ground-based facilities and services provided by the Deep Space Network (DSN), Near Earth Network (NEN), and the Space Network (SN). Through the SCaN Program Office, NASA GRC developed a Software Defined Radio (SDR) testbed experiment (SCaN testbed experiment) for use on the International Space Station (ISS). It is comprised of three different SDR radios, the Jet Propulsion Laboratory (JPL) radio, Harris Corporation radio, and the General Dynamics Corporation radio. The SCaN testbed experiment provides an on-orbit, adaptable, SDR Space Telecommunications Radio System (STRS) - based facility to conduct a suite of experiments to advance the Software Defined Radio, Space Telecommunications Radio Systems (STRS) standards, reduce risk (Technology Readiness Level (TRL) advancement) for candidate Constellation future space flight hardware software, and demonstrate space communication links critical to future NASA exploration missions. The SCaN testbed project provides NASA, industry, other Government agencies, and academic partners the opportunity to develop and field communications, navigation, and networking technologies in the laboratory and space environment based on reconfigurable, software defined radio platforms and the STRS Architecture.The SCaN testbed is resident on the P3 Express Logistics Carrier (ELC) on the exterior truss of the International Space Station (ISS). The SCaN testbed payload launched on the Japanese Aerospace Exploration Agency (JAXA) H-II Transfer Vehicle (HTV) and was installed on the ISS P3 ELC located on the inboard RAM P3 site. The daily operations and testing are managed out of NASA GRC in the Telescience Support Center (TSC).

  16. Unified Processing Structure for Communication and Navigation signals in modems for lightweight satellite stations

    Directory of Open Access Journals (Sweden)

    Y.N. Antonov-Antipov (R.I.P.

    2012-10-01

    Full Text Available The present article shows the design and test of a unified-processing device for detection and demodulation of narrowand broadband communication signals, as well as navigation signals from GLONASS and GPS systems. The specificprocessing for each type of signal is described within the general framework of the proposed device. Performanceindicators, such as symbol error probability (SEP and energy losses, were computed using simulations of the deviceand the corresponding results are presented for discussion.

  17. RFID Transponders' RF Emissions in Aircraft Communication and Navigation Radio Bands

    Science.gov (United States)

    Nguyen, Truong X.; Ely, Jay J.; Koppen Sandra V.; Fersch, Mariatheresa S.

    2008-01-01

    Radiated emission data in aircraft communication and navigation bands are presented for several active radio frequency identification (RFID) tags. The individual tags are different in design, operation and transmitting frequencies. The process for measuring the tags emissions in a reverberation chamber is discussed. Measurement issues dealing with tag interrogation, low level measurement in the presence of strong transmissions, and tags low duty factors are discussed. The results show strong emissions, far exceeding aircraft emission limits and can be of potential interference risks.

  18. Information and communication technology solutions for outdoor navigation in dementia.

    Science.gov (United States)

    Teipel, Stefan; Babiloni, Claudio; Hoey, Jesse; Kaye, Jeffrey; Kirste, Thomas; Burmeister, Oliver K

    2016-06-01

    Information and communication technology (ICT) is potentially mature enough to empower outdoor and social activities in dementia. However, actual ICT-based devices have limited functionality and impact, mainly limited to safety. What is an ideal operational framework to enhance this field to support outdoor and social activities? Review of literature and cross-disciplinary expert discussion. A situation-aware ICT requires a flexible fine-tuning by stakeholders of system usability and complexity of function, and of user safety and autonomy. It should operate by artificial intelligence/machine learning and should reflect harmonized stakeholder values, social context, and user residual cognitive functions. ICT services should be proposed at the prodromal stage of dementia and should be carefully validated within the life space of users in terms of quality of life, social activities, and costs. The operational framework has the potential to produce ICT and services with high clinical impact but requires substantial investment. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  19. e-Navigation的数字化通信%The digital communication in e-Navigation

    Institute of Scientific and Technical Information of China (English)

    杨亮

    2012-01-01

    This paper, after a brief introduction oflMO e-Navigation strategy, highlights that the communication system is the one of the most important components m e-Navigation framework. Through cost-benefit analysis on various types of radio communication used at present, it is proposed that the 500kHz band NAVDAT is one of the best communication solution to e-Navigation strategy. The potential application and perspective of NAVDAT is discussed in this paper with some proposals for recent research.%文中介绍了e-Navigation战略的发展情况,明确了通信系统是e-Navigation重要基础、,通过对目前所采用的海上无线电通信手段的性能、费用等方面的分析,提出了采用500kHz频段的NAVDAT通信方式实现e-Navigation中通信手段的观点,并分析了NAVDAT的发展应用文章还对下一步的工作提出了建议

  20. Communications, Navigation, and Timing Constraints for the Solar Imaging Radio Array (SIRA)

    Science.gov (United States)

    Lemaster, E. A.; Byler, E. A.; Aschwanden, M. J.

    2003-12-01

    The Solar Imaging Radio Array (SIRA) is a proposed NASA mission to measure solar radio emissions in the 30kHz to 30MHz region of the electromagnetic spectrum. The baseline design consists of 16 separated spacecraft in an irregular pattern several kilometers across. Each spacecraft is equipped with a pair of crossed dipole antennas that together form a 16-element radio interferometer for Fourier-type image reconstruction (120 baselines in the UV-plane). The required close coordination between this formation of spacecraft places many unique constraints on the SIRA communications, navigation, control, and timing architectures. Current specifications call for knowledge of the relative locations of the spacecraft to approximately meter-level accuracy in order to maintain primary instrument resolution. Knowledge of the relative timing differences between the clocks on the spacecraft must likewise be maintained to tens of nanoseconds or better. This in turn sets a minimum bound on the regularity of communications updates between spacecraft. Although the actual positions of the spacecraft are not tightly constrained, enough control authority and system autonomy must be present to keep the spacecraft from colliding due to orbital perturbations. Each of these constraints has an important effect on the design of the architecture for the entire array. This paper examines the engineering requirements and design tradeoffs for the communications, navigation, and timing architectures for SIRA. Topics include the choice of navigation sensor, communications methodology and modulation schemes, and clock type to meet the overall system performance goals while overcoming issues such as communications dynamic range, bandwidth limitations, power constraints, available antenna beam patterns, and processing limitations. In addition, this paper discusses how the projected use of smaller spacecraft buses with their corresponding payload and cost limits has important consequences for the

  1. Prediction of optical communication link availability: real-time observation of cloud patterns using a ground-based thermal infrared camera

    Science.gov (United States)

    Bertin, Clément; Cros, Sylvain; Saint-Antonin, Laurent; Schmutz, Nicolas

    2015-10-01

    The growing demand for high-speed broadband communications with low orbital or geostationary satellites is a major challenge. Using an optical link at 1.55 μm is an advantageous solution which potentially can increase the satellite throughput by a factor 10. Nevertheless, cloud cover is an obstacle for this optical frequency. Such communication requires an innovative management system to optimize the optical link availability between a satellite and several Optical Ground Stations (OGS). The Saint-Exupery Technological Research Institute (France) leads the project ALBS (French acronym for BroadBand Satellite Access). This initiative involving small and medium enterprises, industrial groups and research institutions specialized in aeronautics and space industries, is currently developing various solutions to increase the telecommunication satellite bandwidth. This paper presents the development of a preliminary prediction system preventing the cloud blockage of an optical link between a satellite and a given OGS. An infrared thermal camera continuously observes (night and day) the sky vault. Cloud patterns are observed and classified several times a minute. The impact of the detected clouds on the optical beam (obstruction or not) is determined by the retrieval of the cloud optical depth at the wavelength of communication. This retrieval is based on realistic cloud-modelling on libRadtran. Then, using subsequent images, cloud speed and trajectory are estimated. Cloud blockage over an OGS can then be forecast up to 30 minutes ahead. With this information, the preparation of the new link between the satellite and another OGS under a clear sky can be prepared before the link breaks due to cloud blockage.

  2. Atmospheric turbulence measurements over desert site using ground-based instruments, kite/tethered-blimp platform, and aircraft relevant to optical communications and imaging systems: preliminary results

    Science.gov (United States)

    Majumdar, Arun K.; Eaton, Frank D.; Jensen, Michael L.; Kyrazis, Demos T.; Schumm, Bryce; Dierking, Matthew P.; Shoemake, Marjorie A.; Dexheimer, Dari; Ricklin, Jennifer C.

    2006-08-01

    New results of the (temperature) refractive index structure parameter (C T2), C n2 are presented from fast response sensor observations near the ground and also using a kite/tethered blimp platform and an aircraft, at the Edward Air Force Base in Mojave Desert, California. Additional optical measurements include near-ground scintillation observations over horizontal paths. Atmospheric turbidity were also calculated from direct beam solar radiation measurements using pyrheliometer. Comparisons were made of the observed profiles of refractive index structure parameters (C n2) with theoretical modeled profiles, and two derived quantities such as transverse coherence length (r 0) and isoplanatic angle (θ 0) for a slant path are discussed. All of these parameters are the major indicators of turbulence and are important to design an aircraft or space-craft-based free-space laser communication and high resolution optical synthetic-aperture imaging systems. Non-isotropic turbulence observations from some of the data will be pointed out. Probability density functions (PDF) of the distribution of C n2 will be described using histograms. Fundamental limits imposed by atmospheric effects in high data rate communication and optical synthetic-aperture imaging systems will be discussed.

  3. Thermal surveillance of Cascade Range volcanoes using ERTS-1 multispectral scanner, aircraft imaging systems, and ground-based data communication platforms

    Science.gov (United States)

    Friedman, J. D.; Frank, D. G.; Preble, D.; Painter, J. E.

    1973-01-01

    A combination of infrared images depicting areas of thermal emission and ground calibration points have proved to be particularly useful in plotting time-dependent changes in surface temperatures and radiance and in delimiting areas of predominantly convective heat flow to the earth's surface in the Cascade Range and on Surtsey Volcano, Iceland. In an integrated experiment group using ERTS-1 multispectral scanner (MSS) and aircraft infrared imaging systems in conjunction with multiple thermistor arrays, volcano surface temperatures are relayed daily to Washington via data communication platform (DCP) transmitters and ERTS-1. ERTS-1 MSS imagery has revealed curvilinear structures at Lassen, the full extent of which have not been previously mapped. Interestingly, the major surface thermal manifestations at Lassen are aligned along these structures, particularly in the Warner Valley.

  4. Development of NASA's Space Communications and Navigation Test Bed Aboard ISS to Investigate SDR, On-Board Networking and Navigation Technologies

    Science.gov (United States)

    Reinhart, Richard C.; Kacpura, Thomas J.; Johnson, Sandra K.; Lux, James P.

    2010-01-01

    NASA is developing an experimental flight payload (referred to as the Space Communication and Navigation (SCAN) Test Bed) to investigate software defined radio (SDR), networking, and navigation technologies, operationally in the space environment. The payload consists of three software defined radios each compliant to NASA s Space Telecommunications Radio System Architecture, a common software interface description standard for software defined radios. The software defined radios are new technology developments underway by NASA and industry partners. Planned for launch in early 2012, the payload will be externally mounted to the International Space Station truss and conduct experiments representative of future mission capability.

  5. Fourth Integrated Communications, Navigation, and Surveillance (ICNS) Conference and Workshop 2004: Conclusions and Recommendations

    Science.gov (United States)

    Phillips, Brent; Swanda, Ronald L.; Lewis, Michael S.; Kenagy, Randy; Donahue, George; Homans, Al; Kerczewski, Robert; Pozesky, Marty

    2004-01-01

    The NASA Glenn Research Center organized and hosted the Fourth Integrated Communications, Navigation, and Surveillance (ICNS) Technologies Conference and Workshop, which took place April 26-30, 2004 at the Hyatt Fair Lakes Hotel in Fairfax, Virginia. This fourth conference of the annual series followed the very successful first ICNS Conference (May 1-3, 2001 in Cleveland, Ohio), second ICNS conference (April 29-May 2, 2002 in Vienna, Virginia), and third ICNS conference (May 19-22, 2003 in Annapolis, Maryland). The purpose of the Fourth ICNS Conference was to assemble government, industry and academic communities performing research and development for advanced digital communications, surveillance and navigation systems and associated applications supporting the national and global air transportation systems to: 1) Understand current efforts and recent results in near- and far-term R&D and technology demonstration; 2) Identify integrated digital communications, navigation and surveillance R&D requirements necessary for a safe, secure and reliable, high-capacity, advanced air transportation system; 3) Provide a forum for fostering collaboration and coordination; and 4) Discuss critical issues and develop recommendations to achieve the future integrated CNS vision for national and global air transportation. The workshop attracted 316 attendees from government, industry and academia to address these purposes through technical presentations, breakout sessions, and individual and group discussions during the workshop and after-hours events, and included 16 international attendees. An Executive Committee consisting of representatives of several key segments of the aviation community concerned with CNS issues met on the day following the workshop to consider the primary outcomes and recommendations of the workshop. This report presents an overview of the conference, workshop breakout session results, and the findings of the Executive Committee.

  6. Principles to enable leaders to navigate the harsh realities of crisis and risk communication.

    Science.gov (United States)

    Reynolds, Barbara J

    2010-07-01

    Leadership during a crisis that involves the physical safety and emotional or financial wellbeing of those being led offers an intense environment that may not allow for on-the-job training. One of the challenges faced by crisis leaders is to communicate effectively the courses of action needed to allow for a reduction of harm to individuals and the ultimate restoration of the group, organisation or community. The six principles of crisis and emergency risk communication (CERC) give leaders tools to navigate the harsh realities of speaking to employees, media, partners and stakeholders during an intense crisis. CERC also helps leaders to avoid the five most common communication mistakes during crises. Much of the harmful individual and group behaviour predicted in a profound crisis can be mitigated with effective crisis and emergency risk communication. A leader must anticipate what mental stresses followers will be experiencing and apply appropriate communication strategies to attempt to manage these stresses among staff or the public and preserve or repair the organisation's reputation. In an emergency, the right message at the right time is a 'resource multiplier' - it helps leaders to get their job done.

  7. Lunar and Lagrangian Point L1 L2 CubeSat Communication and Navigation Considerations

    Science.gov (United States)

    Schaire, Scott; Wong, Yen F.; Altunc, Serhat; Bussey, George; Shelton, Marta; Folta, Dave; Gramling, Cheryl; Celeste, Peter; Anderson, Mile; Perrotto, Trish; hide

    2017-01-01

    CubeSats have grown in sophistication to the point that relatively low-cost mission solutions could be undertaken for planetary exploration. There are unique considerations for lunar and L1/L2 CubeSat communication and navigation compared with low earth orbit CubeSats. This paper explores those considerations as they relate to the Lunar IceCube Mission. The Lunar IceCube is a CubeSat mission led by Morehead State University with participation from NASA Goddard Space Flight Center, Jet Propulsion Laboratory, the Busek Company and Vermont Tech. It will search for surface water ice and other resources from a high inclination lunar orbit. Lunar IceCube is one of a select group of CubeSats designed to explore beyond low-earth orbit that will fly on NASA’s Space Launch System (SLS) as secondary payloads for Exploration Mission (EM) 1. Lunar IceCube and the EM-1 CubeSats will lay the groundwork for future lunar and L1/L2 CubeSat missions. This paper discusses communication and navigation needs for the Lunar IceCube mission and navigation and radiation tolerance requirements related to lunar and L1/L2 orbits. Potential CubeSat radios and antennas for such missions are investigated and compared. Ground station coverage, link analysis, and ground station solutions are also discussed. This paper will describe modifications in process for the Morehead ground station, as well as further enhancements of the Morehead ground station and NASA Near Earth Network (NEN) that are being considered. The potential NEN enhancements include upgrading current NEN Cortex receiver with Forward Error Correction (FEC) Turbo Code, providing X-band uplink capability, and adding ranging options. The benefits of ground station enhancements for CubeSats flown on NASA Exploration Missions (EM) are presented. This paper also describes how the NEN may support lunar and L1/L2 CubeSats without any enhancements. In addition, NEN is studying other initiatives to better support the CubeSat community

  8. Ground based materials science experiments

    Science.gov (United States)

    Meyer, M. B.; Johnston, J. C.; Glasgow, T. K.

    1988-01-01

    The facilities at the Microgravity Materials Science Laboratory (MMSL) at the Lewis Research Center, created to offer immediate and low-cost access to ground-based testing facilities for industrial, academic, and government researchers, are described. The equipment in the MMSL falls into three categories: (1) devices which emulate some aspect of low gravitational forces, (2) specialized capabilities for 1-g development and refinement of microgravity experiments, and (3) functional duplicates of flight hardware. Equipment diagrams are included.

  9. Ground based materials science experiments

    Science.gov (United States)

    Meyer, M. B.; Johnston, J. C.; Glasgow, T. K.

    1988-01-01

    The facilities at the Microgravity Materials Science Laboratory (MMSL) at the Lewis Research Center, created to offer immediate and low-cost access to ground-based testing facilities for industrial, academic, and government researchers, are described. The equipment in the MMSL falls into three categories: (1) devices which emulate some aspect of low gravitational forces, (2) specialized capabilities for 1-g development and refinement of microgravity experiments, and (3) functional duplicates of flight hardware. Equipment diagrams are included.

  10. Variable Coding and Modulation Experiment Using NASA's Space Communication and Navigation Testbed

    Science.gov (United States)

    Downey, Joseph A.; Mortensen, Dale J.; Evans, Michael A.; Tollis, Nicholas S.

    2016-01-01

    National Aeronautics and Space Administration (NASA)'s Space Communication and Navigation Testbed on the International Space Station provides a unique opportunity to evaluate advanced communication techniques in an operational system. The experimental nature of the Testbed allows for rapid demonstrations while using flight hardware in a deployed system within NASA's networks. One example is variable coding and modulation, which is a method to increase data-throughput in a communication link. This paper describes recent flight testing with variable coding and modulation over S-band using a direct-to-earth link between the SCaN Testbed and the Glenn Research Center. The testing leverages the established Digital Video Broadcasting Second Generation (DVB-S2) standard to provide various modulation and coding options. The experiment was conducted in a challenging environment due to the multipath and shadowing caused by the International Space Station structure. Performance of the variable coding and modulation system is evaluated and compared to the capacity of the link, as well as standard NASA waveforms.

  11. Architecture Modeling and Performance Characterization of Space Communications and Navigation (SCaN) Network Using MACHETE

    Science.gov (United States)

    Jennings, Esther; Heckman, David

    2008-01-01

    As future space exploration missions will involve larger number of spacecraft and more complex systems, theoretical analysis alone may have limitations on characterizing system performance and interactions among the systems. Simulation tools can be useful for system performance characterization through detailed modeling and simulation of the systems and its environment...This paper reports the simulation of the Orion (Crew Exploration Vehicle) to the International Space Station (ISS) mission where Orion is launched by Ares into orbit on a 14-day mission to rendezvous with the ISS. Communications services for the mission are provided by the Space Communication and Navigation (SCaN) network infrastructure which includes the NASA Space Network (SN), Ground Network (GN) and NASA Integrated Services Network (NISN). The objectives of the simulation are to determine whether SCaN can meet the communications needs of the mission, to demonstrate the benefit of using QoS prioritization, and to evaluate network-key parameters of interest such as delay and throughout.

  12. RFID Transponders' Radio Frequency Emissions in Aircraft Communication and Navigation Radio Bands

    Science.gov (United States)

    Nguyen, Truong X.; Ely, Jay J.; Williams, Reuben A.; Koppen, Sandra V.; Salud, Maria Theresa P.

    2006-01-01

    Radiated emissions in aircraft communication and navigation bands are measured from several active radio frequency identification (RFID) tags. The individual tags are different in design and operations. They may also operate in different frequency bands. The process for measuring the emissions is discussed, and includes tag interrogation, reverberation chamber testing, and instrument settings selection. The measurement results are described and compared against aircraft emission limits. In addition, interference path loss for the cargo bays of passenger aircraft is measured. Cargo bay path loss is more appropriate for RFID tags than passenger cabin path loss. The path loss data are reported for several aircraft radio systems on a Boeing 747 and an Airbus A320.

  13. A Universal Communication Framework and Navigation Control Software for Mobile Prototyping Platforms

    Directory of Open Access Journals (Sweden)

    Andreas Mitschele-Thiel

    2010-09-01

    Full Text Available In our contribution we would like to describe two new aspects of our low-cost mobile prototyping platform concept: a new hardware communication framework as well as new software features for navigation and control of our mobile platform. The paper is an extension of the ideas proposed in REV2009 [1] and is based on the therein used hardware platform and the monitoring and management software. This platform is based on the Quadrocopter concept – autonomous flying helicopter-style robots – and includes additional off-the-shelf parts. This leads to a universal mobile prototyping platform for communication tasks providing both mobile phone and WiFi access. However, the platform can provide these functions far more quickly than a technician on the ground might be able to. We will show that with our concept we can easily adapt the platform to the individual needs of the user, which leads to a very flexible and semi-autonomous system.

  14. GAUSS Market Analysis for Integrated Satellite Communication and Navigation Location Based services

    Science.gov (United States)

    Di Fazio, Antonella; Dricot, Fabienne; Tata, Francesco

    2003-07-01

    The demand for mobile information services coupled with positioning technologies for delivering value- added services that depend on a user's location has rapidly increased during last years. In particular, services and applications related with improved mobility safety and transport efficiency look very attractive.Solutions for location services vary in respect of positioning accuracy and the technical infrastructure required, and the associated investment in terminals and networks. From the analysis of the state-of-the art, it comes that various technologies are currently available on the European market, while mobile industry is gearing up to launch a wide variety of location services like tracking, alarming and locating.Nevertheless, when addressing safety of life as well as security applications, severe hurdles have to be posed in the light of existing technologies. Existing navigation (e.g. GPS) and communication systems are not able to completely satisfy the needs and requirements of safety-of-life-critical applications. As a matter of fact, the GPS system's main weaknesses today is its lack of integrity, which means its inability to warn users of a malfunction in a reasonable time, while the other positioning techniques do not provide satisfactory accuracy as well, and terrestrial communication networks are not capable to cope with stringent requirement in terms of service reliability and coverage.In this context, GAUSS proposes an innovative satellite-based solution using novel technology and effective tools for addressing mobility challenges in a cost efficient manner, improving safety and effectiveness.GAUSS (Galileo And UMTS Synergetic System) is a Research and Technological Development project co- funded by European Commission, within the frame of the 5th IST Programme. The project lasted two years, and it was successfully completed in November 2002. GAUSS key concept is the integration of Satellite Navigation GNSS and UMTS communication technology, to

  15. Ultra-Wideband Transceiver for Integrated Communication and Relative Navigation Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Many space missions require relative navigation between several spacecraft systems or between spacecraft and rovers or remote controlled probes, such as spacecraft...

  16. Social networks improve leaderless group navigation by facilitating long-distance communication

    Directory of Open Access Journals (Sweden)

    Nikolai W. F. BODE, A. Jamie WOOD, Daniel W. FRANKS

    2012-04-01

    Full Text Available Group navigation is of great importance for many animals, such as migrating flocks of birds or shoals of fish. One theory states that group membership can improve navigational accuracy compared to limited or less accurate individual navigational ability in groups without leaders (“Many-wrongs principle”. Here, we simulate leaderless group navigation that includes social connections as preferential interactions between individuals. Our results suggest that underlying social networks can reduce navigational errors of groups and increase group cohesion. We use network summary statistics, in particular network motifs, to study which characteristics of networks lead to these improvements. It is networks in which preferences between individuals are not clustered, but spread evenly across the group that are advantageous in group navigation by effectively enhancing long-distance information exchange within groups. We suggest that our work predicts a base-line for the type of social structure we might expect to find in group-living animals that navigate without leaders [Current Zoology 58 (2: 329-341, 2012].

  17. Social networks improve leaderless group navigation by facilitating long-distance communication

    Institute of Scientific and Technical Information of China (English)

    Nikolai W.F.BODE; A.Jamie WOOD; Daniel W.FRANKS

    2012-01-01

    Group navigation is of great importance for many animals,such as migrating flocks of birds or shoals of fish.One theory states that group membership can improve navigational accuracy compared to limited or less accurate individual navigational ability in groups without leaders ("Many-wrongs principle").Here,we simulate leaderless group navigation that includes social connectious as preferential interactions between individuals.Our results suggest that underlying social networks can reduce navigational errors of groups and increase group cohesion.We use network summary statistics,in particular network motifs,to study which characteristics of networks lead to these improvements.It is networks in which preferences between individuals are not clustered,but spread evenly across the group that are advantageous in group navigation by effectively enhancing long-distance information exchange within groups.We suggest that our work predicts a base-line for the type of social structure we might expect to find in group-living animals that navigate without leaders [Current Zoology 58 (2):329-341,2012].

  18. Ground-based observations of exoplanet atmospheres

    NARCIS (Netherlands)

    Mooij, Ernst Johan Walter de

    2011-01-01

    This thesis focuses on the properties of exoplanet atmospheres. The results for ground-based near-infrared secondary eclipse observations of three different exoplanets, TrES-3b, HAT-P-1b and WASP-33b, are presented which have been obtained with ground-based telescopes as part of the GROUSE project.

  19. Ground-based observations of exoplanet atmospheres

    NARCIS (Netherlands)

    Mooij, Ernst Johan Walter de

    2011-01-01

    This thesis focuses on the properties of exoplanet atmospheres. The results for ground-based near-infrared secondary eclipse observations of three different exoplanets, TrES-3b, HAT-P-1b and WASP-33b, are presented which have been obtained with ground-based telescopes as part of the GROUSE project.

  20. Integrated Spacecraft Navigation and Communication Using Radio, Optical, and X-rays Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This program proposes to design and evaluate novel technology of X-ray navigation for augmentation and increased capability of high data-rate spacecraft...

  1. Enabling Future Science and Human Exploration with NASA's Next Generation near Earth and Deep Space Communications and Navigation Architecture

    Science.gov (United States)

    Reinhart, Richard C.; Schier, James S.; Israel, David J.; Tai, Wallace; Liebrecht, Philip E.; Townes, Stephen A.

    2017-01-01

    The National Aeronautics and Space Administration (NASA) is studying alternatives for the United States space communications architecture through the 2040 timeframe. This architecture provides communication and navigation services to both human exploration and science missions throughout the solar system. Several of NASA's key space assets are approaching their end of design life and major systems are in need of replacement. The changes envisioned in the relay satellite architecture and capabilities around both Earth and Mars are significant undertakings and occur only once or twice each generation, and therefore is referred to as NASA's next generation space communications architecture. NASA's next generation architecture will benefit from technology and services developed over recent years. These innovations will provide missions with new operations concepts, increased performance, and new business and operating models. Advancements in optical communications will enable high-speed data channels and the use of new and more complex science instruments. Modern multiple beam/multiple access technologies such as those employed on commercial high throughput satellites will enable enhanced capabilities for on-demand service, and with new protocols will help provide Internet-like connectivity for cooperative spacecraft to improve data return and coordinate joint mission objectives. On-board processing with autonomous and cognitive networking will play larger roles to help manage system complexity. Spacecraft and ground systems will coordinate among themselves to establish communications, negotiate link connectivity, and learn to share spectrum to optimize resource allocation. Spacecraft will autonomously navigate, plan trajectories, and handle off-nominal events. NASA intends to leverage the ever-expanding capabilities of the satellite communications industry and foster its continued growth. NASA's technology development will complement and extend commercial capabilities

  2. Enhanced vehicle navigation unit with wifi 802.11 ranging and communication capabilities

    OpenAIRE

    Tappero, Fabrizio; Ciurana Adell, Marc; de Batlle, Jordi; Uijt de Haag, M.; Martín Escalona, Israel; Fernández Fernández, Daniel

    2012-01-01

    This paper discusses the implementation of a modified IEEE 802.11 transceiver that is employed to enhance the positioning capabilities of a traditional vehicle on-board navigation unit (OBU). In this paper, we propose to use the current wireless local access network (WLAN) as enhancing infrastructure for ubiquitous localisation and positioning. We describe the architecture of a localisation receiver built around a FPGA that is capable of measuring the signal round trip ti...

  3. Landmark-based robust navigation for tactical UGV control in GPS-denied communication-degraded environments

    Science.gov (United States)

    Endo, Yoichiro; Balloch, Jonathan C.; Grushin, Alexander; Lee, Mun Wai; Handelman, David

    2016-05-01

    Control of current tactical unmanned ground vehicles (UGVs) is typically accomplished through two alternative modes of operation, namely, low-level manual control using joysticks and high-level planning-based autonomous control. Each mode has its own merits as well as inherent mission-critical disadvantages. Low-level joystick control is vulnerable to communication delay and degradation, and high-level navigation often depends on uninterrupted GPS signals and/or energy-emissive (non-stealth) range sensors such as LIDAR for localization and mapping. To address these problems, we have developed a mid-level control technique where the operator semi-autonomously drives the robot relative to visible landmarks that are commonly recognizable by both humans and machines such as closed contours and structured lines. Our novel solution relies solely on optical and non-optical passive sensors and can be operated under GPS-denied, communication-degraded environments. To control the robot using these landmarks, we developed an interactive graphical user interface (GUI) that allows the operator to select landmarks in the robot's view and direct the robot relative to one or more of the landmarks. The integrated UGV control system was evaluated based on its ability to robustly navigate through indoor environments. The system was successfully field tested with QinetiQ North America's TALON UGV and Tactical Robot Controller (TRC), a ruggedized operator control unit (OCU). We found that the proposed system is indeed robust against communication delay and degradation, and provides the operator with steady and reliable control of the UGV in realistic tactical scenarios.

  4. High accuracy GNSS based navigation in GEO

    Science.gov (United States)

    Capuano, Vincenzo; Shehaj, Endrit; Blunt, Paul; Botteron, Cyril; Farine, Pierre-André

    2017-07-01

    Although significant improvements in efficiency and performance of communication satellites have been achieved in the past decades, it is expected that the demand for new platforms in Geostationary Orbit (GEO) and for the On-Orbit Servicing (OOS) on the existing ones will continue to rise. Indeed, the GEO orbit is used for many applications including direct broadcast as well as communications. At the same time, Global Navigation Satellites System (GNSS), originally designed for land, maritime and air applications, has been successfully used as navigation system in Low Earth Orbit (LEO) and its further utilization for navigation of geosynchronous satellites becomes a viable alternative offering many advantages over present ground based methods. Following our previous studies of GNSS signal characteristics in Medium Earth Orbit (MEO), GEO and beyond, in this research we specifically investigate the processing of different GNSS signals, with the goal to determine the best navigation performance they can provide in a GEO mission. Firstly, a detailed selection among different GNSS signals and different combinations of them is discussed, taking into consideration the L1 and L5 frequency bands, and the GPS and Galileo constellations. Then, the implementation of an Orbital Filter is summarized, which adaptively fuses the GN1SS observations with an accurate orbital forces model. Finally, simulation tests of the navigation performance achievable by processing the selected combination of GNSS signals are carried out. The results obtained show an achievable positioning accuracy of less than one meter. In addition, hardware-in-the-loop tests are presented using a COTS receiver connected to our GNSS Spirent simulator, in order to collect real-time hardware-in-the-loop observations and process them by the proposed navigation module.

  5. Communication practices of the Karen in Sheffield: Seeking to navigate their three zones of displacement

    OpenAIRE

    Green, Geff; Lockley, Eleanor

    2012-01-01

    This study investigates communication practices of a newly arrived Karen refugee community in the UK who, as well as establishing themselves in a strange country, seek to keep in touch, campaign politically and maintain identity collectively through communication and contact with their global diaspora. We look at the technologies, motivations and inhibiting factors applying to the communication by adult members of this community and construct the idea of three zones of displacement which help...

  6. Navigating communication with families during withdrawal of life-sustaining treatment in intensive care: a qualitative descriptive study in Australia and New Zealand.

    Science.gov (United States)

    Bloomer, Melissa J; Endacott, Ruth; Ranse, Kristen; Coombs, Maureen A

    2017-03-01

    To explore how nurses navigate communication with families during withdrawal of life-sustaining treatment in intensive care. Death in the intensive care unit is seldom unexpected and often happens following the withdrawal of life-sustaining treatment. A family-centred approach to care relies on the development of a therapeutic relationship and understanding of what is happening to the patient. Whilst previous research has focused on the transition from cure to palliation and the nurse's role in supporting families, less is known about how nurses navigate communication with families during treatment withdrawal. A qualitative descriptive approach was used. Semi-structured focus groups were conducted with adult critical care nurses from four intensive care units, two in Australia and two in New Zealand. Twenty-one nurses participated in the study. Inductive content analysis revealed five key themes relating to how nurses navigate family communication: (1) establishing the WHO; (2) working out HOW; (3) judging WHEN; (4) assessing the WHAT; and (5) WHERE these skills were learnt. Navigating an approach to family communication during treatment withdrawal is a complex and multifaceted nursing activity that is known to contribute to family satisfaction with care. There is need for support and ongoing education opportunities that develop the art of communication in this frequently encountered aspect of end-of-life care. How nurses navigate communication with families during treatment withdrawal is just as important as what is communicated. Nurses need access to supports and education opportunities in order to be able to perform this vital role. © 2016 John Wiley & Sons Ltd.

  7. Lightning-Generated Whistler Waves Observed by Probes On The Communication/Navigation Outage Forecast System Satellite at Low Latitudes

    Science.gov (United States)

    Holzworth, R. H.; McCarthy, M. P.; Pfaff, R. F.; Jacobson, A. R.; Willcockson, W. L.; Rowland, D. E.

    2011-01-01

    Direct evidence is presented for a causal relationship between lightning and strong electric field transients inside equatorial ionospheric density depletions. In fact, these whistler mode plasma waves may be the dominant electric field signal within such depletions. Optical lightning data from the Communication/Navigation Outage Forecast System (C/NOFS) satellite and global lightning location information from the World Wide Lightning Location Network are presented as independent verification that these electric field transients are caused by lightning. The electric field instrument on C/NOFS routinely measures lightning ]related electric field wave packets or sferics, associated with simultaneous measurements of optical flashes at all altitudes encountered by the satellite (401.867 km). Lightning ]generated whistler waves have abundant access to the topside ionosphere, even close to the magnetic equator.

  8. The fixed-bias Langmuir probe on the Communication/Navigation Outage Forecast System satellite: calibration and validation.

    Science.gov (United States)

    Klenzing, J; Rowland, D

    2012-11-01

    A fixed-bias spherical Langmuir probe is included as part of the Vector Electric Field Instrument (VEFI) suite on the Communication/Navigation Outage Forecast System (C/NOFS) satellite. C/NOFS gathers data in the equatorial ionosphere between 400 and 860 km, where the primary constituent ions are H(+) and O(+). The ion current collected by the probe surface per unit plasma density is found to be a strong function of ion composition. The calibration of the collected current to an absolute density is discussed, and the performance of the spherical probe is compared to other in situ instruments on board the C/NOFS satellite. The application of the calibration is discussed with respect to future fixed-bias probes; in particular, it is demonstrated that some density fluctuations will be suppressed in the collected current if the plasma composition rapidly changes along with density. This is illustrated in the observation of plasma density enhancements on C/NOFS.

  9. The Fixed-Bias Langmuir Probe on the Communication-Navigation Outage Forecast System Satellite: Calibration and Validation

    Science.gov (United States)

    Klenzing, J.; Rowland, D.

    2012-01-01

    A fixed-bias spherical Langmuir probe is included as part of the Vector Electric Field Instrument (VEFI) suite on the Communication Navigation Outage Forecast System (CNOFS) satellite.CNOFS gathers data in the equatorial ionosphere between 400 and 860 km, where the primary constituent ions are H+ and O+. The ion current collected by the probe surface per unit plasma density is found to be a strong function of ion composition. The calibration of the collected current to an absolute density is discussed, and the performance of the spherical probe is compared to other in situ instruments on board the CNOFS satellite. The application of the calibration is discussed with respect to future fixed-bias probes; in particular, it is demonstrated that some density fluctuations will be suppressed in the collected current if the plasma composition rapidly changes along with density. This is illustrated in the observation of plasma density enhancements on CNOFS.

  10. Fresnel zones for ground-based antennas

    DEFF Research Database (Denmark)

    Andersen, J. Bach

    1964-01-01

    The ordinary Fresnel zone concept is modified to include the influence of finite ground conductivity. This is important for ground-based antennas because the influence on the radiation pattern of irregularities near the antenna is determined by the amplitude and phase of the groundwave. A new...

  11. Calibration of Ground-based Lidar instrument

    DEFF Research Database (Denmark)

    Villanueva, Héctor; Gómez Arranz, Paula

    This report presents the result of the lidar calibration performed for the given Ground-based Lidar at DTU’s test site for large wind turbines at Høvsøre, Denmark. Calibration is here understood as the establishment of a relation between the reference wind speed measurements with measurement unce...

  12. Calibration of Ground -based Lidar instrument

    DEFF Research Database (Denmark)

    Villanueva, Héctor; Yordanova, Ginka

    This report presents the result of the lidar calibration performed for the given Ground-based Lidar at DTU’s test site for large wind turbines at Høvsøre, Denmark. Calibration is here understood as the establishment of a relation between the reference wind speed measurements with measurement unce...

  13. Space and Ground-Based Infrastructures

    Science.gov (United States)

    Weems, Jon; Zell, Martin

    This chapter deals first with the main characteristics of the space environment, outside and inside a spacecraft. Then the space and space-related (ground-based) infrastructures are described. The most important infrastructure is the International Space Station, which holds many European facilities (for instance the European Columbus Laboratory). Some of them, such as the Columbus External Payload Facility, are located outside the ISS to benefit from external space conditions. There is only one other example of orbital platforms, the Russian Foton/Bion Recoverable Orbital Capsule. In contrast, non-orbital weightless research platforms, although limited in experimental time, are more numerous: sounding rockets, parabolic flight aircraft, drop towers and high-altitude balloons. In addition to these facilities, there are a number of ground-based facilities and space simulators, for both life sciences (for instance: bed rest, clinostats) and physical sciences (for instance: magnetic compensation of gravity). Hypergravity can also be provided by human and non-human centrifuges.

  14. Development of Ground-Based Plant Sentinels

    Science.gov (United States)

    2007-11-02

    plants in response to different strains of Pseudomonas syringae. Planta . 217:767-775. De Moraes CM, Schultz JC, Mescher MC, Tumlinson JH. (2004...09-30-2004 Final Technical _ April 2001 - April 2003 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Developing Plants as Ground-based Sentinels 5b. GRANT...SUPPLEMENTARY NOTES 14. ABSTRACT 9 "Z Plants emit volatile mixes characteristic of exposure to both plant and animal (insect) pathogens (bacteria and fungi). The

  15. Illumination compensation in ground based hyperspectral imaging

    Science.gov (United States)

    Wendel, Alexander; Underwood, James

    2017-07-01

    Hyperspectral imaging has emerged as an important tool for analysing vegetation data in agricultural applications. Recently, low altitude and ground based hyperspectral imaging solutions have come to the fore, providing very high resolution data for mapping and studying large areas of crops in detail. However, these platforms introduce a unique set of challenges that need to be overcome to ensure consistent, accurate and timely acquisition of data. One particular problem is dealing with changes in environmental illumination while operating with natural light under cloud cover, which can have considerable effects on spectral shape. In the past this has been commonly achieved by imaging known reference targets at the time of data acquisition, direct measurement of irradiance, or atmospheric modelling. While capturing a reference panel continuously or very frequently allows accurate compensation for illumination changes, this is often not practical with ground based platforms, and impossible in aerial applications. This paper examines the use of an autonomous unmanned ground vehicle (UGV) to gather high resolution hyperspectral imaging data of crops under natural illumination. A process of illumination compensation is performed to extract the inherent reflectance properties of the crops, despite variable illumination. This work adapts a previously developed subspace model approach to reflectance and illumination recovery. Though tested on a ground vehicle in this paper, it is applicable to low altitude unmanned aerial hyperspectral imagery also. The method uses occasional observations of reference panel training data from within the same or other datasets, which enables a practical field protocol that minimises in-field manual labour. This paper tests the new approach, comparing it against traditional methods. Several illumination compensation protocols for high volume ground based data collection are presented based on the results. The findings in this paper are

  16. Space Communications and Navigation (SCaN) Integrated Network Architecture Definition Document (ADD). Volume 1; Executive Summary; Revision 1

    Science.gov (United States)

    Younes, Badri A.; Schier, James S.

    2010-01-01

    The SCaN Program has defined an integrated network architecture that fully meets the Administrator s mandate to the Program, and will result in a NASA infrastructure capable of providing the needed and enabling communications services to future space missions. The integrated network architecture will increase SCaN operational efficiency and interoperability through standardization, commonality and technology infusion. It will enable NASA missions requiring advanced communication and tracking capabilities such as: a. Optical communication b. Antenna arraying c. Lunar and Mars Relays d. Integrated network management (service management and network control) and integrated service execution e. Enhanced tracking for navigation f. Space internetworking with DTN and IP g. End-to-end security h. Enhanced security services Moreover, the SCaN Program has created an Integrated Network Roadmap that depicts an orchestrated and coherent evolution path toward the target architecture, encompassing all aspects that concern network assets (i.e., operations and maintenance, sustaining engineering, upgrade efforts, and major development). This roadmap identifies major NASA ADPs, and shows dependencies and drivers among the various planned undertakings and timelines. The roadmap is scalable to accommodate timely adjustments in response to Agency needs, goals, objectives and funding. Future challenges to implementing this architecture include balancing user mission needs, technology development, and the availability of funding within NASA s priorities. Strategies for addressing these challenges are to: define a flexible architecture, update the architecture periodically, use ADPs to evaluate options and determine when to make decisions, and to engage the stakeholders in these evaluations. In addition, the SCaN Program will evaluate and respond to mission need dates for technical and operational capabilities to be provided by the SCaN integrated network. In that regard, the architecture

  17. Ground based spectroscopy of hot Jupiters

    Science.gov (United States)

    Waldmann, Ingo

    2010-05-01

    It has been shown in recent years with great success that spectroscopy of exoplanetary atmospheres is feasible using space based observatories such as the HST and Spitzer. However, with the end of the Spitzer cold-phase, space based observations in the near to mid infra-red are limited, which will remain true until the the onset of the JWST. The importance of developing methods of ground based spectroscopic analysis of known hot Jupiters is therefore apparent. In the past, various groups have attempted exoplanetary spectroscopy using ground based facilities and various techniques. Here I will present results using a novel spectral retrieval method for near to mid infra-red emission and transmission spectra of exoplanetary atmospheres taken from the ground and discuss the feasibility of future ground-based spectroscopy in a broader context. My recently commenced PhD project is under the supervision of Giovanna Tinetti (University College London) and in collaboration with J. P. Beaulieu (Institut d'Astrophysique de Paris), Mark Swain and Pieter Deroo (Jet Propulsion Laboratory, Caltech).

  18. Cognitive Networking With Regards to NASA's Space Communication and Navigation Program

    Science.gov (United States)

    Ivancic, William D.; Paulsen, Phillip E.; Vaden, Karl R.; Ponchak, Denise S.

    2013-01-01

    This report describes cognitive networking (CN) and its application to NASA's Space Communication and Networking (SCaN) Program. This report clarifies the terminology and framework of CN and provides some examples of cognitive systems. It then provides a methodology for developing and deploying CN techniques and technologies. Finally, the report attempts to answer specific questions regarding how CN could benefit SCaN. It also describes SCaN's current and target networks and proposes places where cognition could be deployed.

  19. An Analysis of the Effects of RFID Tags on Narrowband Navigation and Communication Receivers

    Science.gov (United States)

    LaBerge, E. F. Charles

    2007-01-01

    The simulated effects of the Radio Frequency Identification (RFID) tag emissions on ILS Localizer and ILS Glide Slope functions match the analytical models developed in support of DO-294B provided that the measured peak power levels are adjusted for 1) peak-to-average power ratio, 2) effective duty cycle, and 3) spectrum analyzer measurement bandwidth. When these adjustments are made, simulated and theoretical results are in extraordinarily good agreement. The relationships hold over a large range of potential interference-to-desired signal power ratios, provided that the adjusted interference power is significantly higher than the sum of the receiver noise floor and the noise-like contributions of all other interference sources. When the duty-factor adjusted power spectral densities are applied in the evaluation process described in Section 6 of DO-294B, most narrowband guidance and communications radios performance parameters are unaffected by moderate levels of RFID interference. Specific conclusions and recommendations are provided.

  20. A Common Communications, Navigation and Surveillance Infrastructure for Accommodating Space Vehicles in the Next Generation Air Transportation System

    Science.gov (United States)

    VanSuetendael, RIchard; Hayes, Alan; Birr, Richard

    2008-01-01

    Suborbital space flight and space tourism are new potential markets that could significantly impact the National Airspace System (NAS). Numerous private companies are developing space flight capabilities to capture a piece of an emerging commercial space transportation market. These entrepreneurs share a common vision that sees commercial space flight as a profitable venture. Additionally, U.S. space exploration policy and national defense will impose significant additional demands on the NAS. Air traffic service providers must allow all users fair access to limited airspace, while ensuring that the highest levels of safety, security, and efficiency are maintained. The FAA's Next Generation Air Transportation System (NextGen) will need to accommodate spacecraft transitioning to and from space through the NAS. To accomplish this, space and air traffic operations will need to be seamlessly integrated under some common communications, navigation and surveillance (CNS) infrastructure. As part of NextGen, the FAA has been developing the Automatic Dependent Surveillance Broadcast (ADS-B) which utilizes the Global Positioning System (GPS) to track and separate aircraft. Another key component of NextGen, System-Wide Information Management/ Network Enabled Operations (SWIM/NEO), is an open architecture network that will provide NAS data to various customers, system tools and applications. NASA and DoD are currently developing a space-based range (SBR) concept that also utilizes GPS, communications satellites and other CNS assets. The future SBR will have very similar utility for space operations as ADS-B and SWIM has for air traffic. Perhaps the FAA, NASA, and DoD should consider developing a common space-based CNS infrastructure to support both aviation and space transportation operations. This paper suggests specific areas of research for developing a CNS infrastructure that can accommodate spacecraft and other new types of vehicles as an integrated part of NextGen.

  1. Calibration of Ground-based Lidar instrument

    DEFF Research Database (Denmark)

    Yordanova, Ginka; Gómez Arranz, Paula

    This report presents the result of the lidar calibration performed for the given Ground-based Lidar at DTU’s test site for large wind turbines at Høvsøre, Denmark. Calibration is here understood as the establishment of a relation between the reference wind speed measurements with measurement...... uncertainties provided by measurement standard and corresponding lidar wind speed indications with associated measurement uncertainties. The lidar calibration concerns the 10 minute mean wind speed measurements. The comparison of the lidar measurements of the wind direction with that from wind vanes...

  2. Calibration of Ground-based Lidar instrument

    DEFF Research Database (Denmark)

    Yordanova, Ginka; Gómez Arranz, Paula

    This report presents the result of a test of a ground-based lidar of other type. The test was performed at DTU’s test site for large wind turbines at Høvsøre, Denmark. The result as an establishment of a relation between the reference wind speed measurements with measurement uncertainties provided...... by measurement standard and corresponding lidar wind speed indications with associated measurement uncertainties. The comparison of the lidar measurements of the wind direction with that from the wind vanes is also given....

  3. Calibration of Ground -based Lidar instrument

    DEFF Research Database (Denmark)

    Villanueva, Héctor; Yordanova, Ginka

    This report presents the result of the lidar calibration performed for the given Ground-based Lidar at DTU’s test site for large wind turbines at Høvsøre, Denmark. Calibration is here understood as the establishment of a relation between the reference wind speed measurements with measurement...... uncertainties provided by measurement standard and corresponding lidar wind speed indications with associated measurement uncertainties. The lidar calibration concerns the 10 minute mean wind speed measurements. The comparison of the lidar measurements of the wind direction with that from wind vanes...

  4. Calibration of Ground-based Lidar instrument

    DEFF Research Database (Denmark)

    Yordanova, Ginka; Gómez Arranz, Paula

    This report presents the result of the lidar calibration performed for the given Ground-based Lidar at DTU’s test site for large wind turbines at Høvsøre, Denmark. Calibration is here understood as the establishment of a relation between the reference wind speed measurements with measurement...... uncertainties provided by measurement standard and corresponding lidar wind speed indications with associated measurement uncertainties. The lidar calibration concerns the 10 minute mean wind speed measurements. The comparison of the lidar measurements of the wind direction with that from wind vanes...

  5. Calibration of Ground -based Lidar instrument

    DEFF Research Database (Denmark)

    Villanueva, Héctor; Georgieva Yankova, Ginka

    This report presents the result of the lidar calibration performed for the given Ground-based Lidar at DTU’s test site for large wind turbines at Høvsøre, Denmark. Calibration is here understood as the establishment of a relation between the reference wind speed measurements with measurement...... uncertainties provided by measurement standard and corresponding lidar wind speed indications with associated measurement uncertainties. The lidar calibration concerns the 10 minute mean wind speed measurements. The comparison of the lidar measurements of the wind direction with that from wind vanes...

  6. Development Trend of Marine Communication and Navigation Technology%船舶通信导航技术及发展趋势

    Institute of Scientific and Technical Information of China (English)

    王玲; 张彬祥

    2016-01-01

    Marine communication is the communication system based on the platform of ship and the environment of water sailing ,for the purpose of serving the mission of the ship and using a variety of communication means .Marine naviga-tion is the integrated technology of determining the dynamic status ,location of ships and other parameters through dead reck-oning ,radio signals ,inertia solver ,map matching ,satellite positioning and the combination of various ways .In this paper , marine communication and navigation technology are studied and discussed ,meanwhile ,the developing trend is discussed .%船舶通信是指以船舶为承载平台、以水上航行为使用环境、以服务于船舶使命任务的达成为目的、综合采用各种通信手段构建的通信系统的总称。船舶导航是指通过航位推算、无线电信号、惯性解算、地图匹配、卫星定位及多种方式组合运用,确定船舶的动态状态和位置等参数的综合技术。论文对船舶通信导航技术进行了研究,并对其现状及发展趋势进行了探讨。

  7. Entry Dispersion Analysis for the Hayabusa Spacecraft using Ground Based Optical Observation

    CERN Document Server

    Yamaguchi, T; Yagi, M; Tholen, D J

    2011-01-01

    Hayabusa asteroid explorer successfully released the sample capsule to Australia on June 13, 2010. Since the Earth reentry phase of sample return was critical, many backup plans for predicting the landing location were prepared. This paper investigates the reentry dispersion using ground based optical observation as a backup observation for radiometric observation. Several scenarios are calculated and compared for the reentry phase of the Hayabusa to evaluate the navigation accuracy of the ground-based observation. The optical observation doesn't require any active reaction from a spacecraft, thus these results show that optical observations could be a steady backup strategy even if a spacecraft had some trouble. We also evaluate the landing dispersion of the Hayabusa only with the optical observation.

  8. Low Power Ground-Based Laser Illumination for Electric Propulsion Applications

    Science.gov (United States)

    Lapointe, Michael R.; Oleson, Steven R.

    1994-01-01

    A preliminary evaluation of low power, ground-based laser powered electric propulsion systems is presented. A review of available and near-term laser, photovoltaic, and adaptive optic systems indicates that approximately 5-kW of ground-based laser power can be delivered at an equivalent one-sun intensity to an orbit of approximately 2000 km. Laser illumination at the proper wavelength can double photovoltaic array conversion efficiencies compared to efficiencies obtained with solar illumination at the same intensity, allowing a reduction in array mass. The reduced array mass allows extra propellant to be carried with no penalty in total spacecraft mass. The extra propellant mass can extend the satellite life in orbit, allowing additional revenue to be generated. A trade study using realistic cost estimates and conservative ground station viewing capability was performed to estimate the number of communication satellites which must be illuminated to make a proliferated system of laser ground stations economically attractive. The required number of satellites is typically below that of proposed communication satellite constellations, indicating that low power ground-based laser beaming may be commercially viable. However, near-term advances in low specific mass solar arrays and high energy density batteries for LEO applications would render the ground-based laser system impracticable.

  9. Ground-based observations of Kepler asteroseismic targets

    DEFF Research Database (Denmark)

    Uyttterhoeven , K.; Karoff, Christoffer

    2010-01-01

    We present the ground-based activities within the different working groups of the Kepler Asteroseismic Science Consortium (KASC). The activities aim at the systematic characterization of the 5000+ KASC targets, and at the collection of ground-based follow-up time-series data of selected promising...

  10. Movable Ground Based Recovery System for Reuseable Space Flight Hardware

    Science.gov (United States)

    Sarver, George L. (Inventor)

    2013-01-01

    A reusable space flight launch system is configured to eliminate complex descent and landing systems from the space flight hardware and move them to maneuverable ground based systems. Precision landing of the reusable space flight hardware is enabled using a simple, light weight aerodynamic device on board the flight hardware such as a parachute, and one or more translating ground based vehicles such as a hovercraft that include active speed, orientation and directional control. The ground based vehicle maneuvers itself into position beneath the descending flight hardware, matching its speed and direction and captures the flight hardware. The ground based vehicle will contain propulsion, command and GN&C functionality as well as space flight hardware landing cushioning and retaining hardware. The ground based vehicle propulsion system enables longitudinal and transverse maneuverability independent of its physical heading.

  11. Development of a Zoo Walk Navigation System using the Positional Measurement Technology and the Wireless Communication Technology

    OpenAIRE

    Tomoyuki Ishida; Yuki Shinotsuka; Misaki Iyobea; Noriki Uchida; Kaoru Sugita; Yoshitaka Shibata

    2016-01-01

    In this article, we propose and evaluate a Zoo Walk Navigation System consistings of the Animal Contents Registering and Editing Web Management System and the Animal Contents Browsing and Acquiring Smartphone Application. The Animal Contents Registering and Editing Web Management System for zoo staff enables to register/edit various animal contents. Thereby, this web management system provides real-time and flesh zoo information to the Animal Contents Browsing and Acquiring Smartphone Applica...

  12. Design and Development of the WVU Advanced Technology Satellite for Optical Navigation

    Science.gov (United States)

    Straub, Miranda

    In order to meet the demands of future space missions, it is beneficial for spacecraft to have the capability to support autonomous navigation. This is true for both crewed and uncrewed vehicles. For crewed vehicles, autonomous navigation would allow the crew to safely navigate home in the event of a communication system failure. For uncrewed missions, autonomous navigation reduces the demand on ground-based infrastructure and could allow for more flexible operation. One promising technique for achieving these goals is through optical navigation. To this end, the present work considers how camera images of the Earth's surface could enable autonomous navigation of a satellite in low Earth orbit. Specifically, this study will investigate the use of coastlines and other natural land-water boundaries for navigation. Observed coastlines can be matched to a pre-existing coastline database in order to determine the location of the spacecraft. This paper examines how such measurements may be processed in an on-board extended Kalman filter (EKF) to provide completely autonomous estimates of the spacecraft state throughout the duration of the mission. In addition, future work includes implementing this work on a CubeSat mission within the WVU Applied Space Exploration Lab (ASEL). The mission titled WVU Advanced Technology Satellite for Optical Navigation (WATSON) will provide students with an opportunity to experience the life cycle of a spacecraft from design through operation while hopefully meeting the primary and secondary goals defined for mission success. The spacecraft design process, although simplified by CubeSat standards, will be discussed in this thesis as well as the current results of laboratory testing with the CubeSat model in the ASEL.

  13. Design, Development and Pre-Flight Testing of the Communications, Navigation, and Networking Reconfigurable Testbed (Connect) to Investigate Software Defined Radio Architecture on the International Space Station

    Science.gov (United States)

    Over, Ann P.; Barrett, Michael J.; Reinhart, Richard C.; Free, James M.; Cikanek, Harry A., III

    2011-01-01

    The Communication Navigation and Networking Reconfigurable Testbed (CoNNeCT) is a NASA-sponsored mission, which will investigate the usage of Software Defined Radios (SDRs) as a multi-function communication system for space missions. A softwaredefined radio system is a communication system in which typical components of the system (e.g., modulators) are incorporated into software. The software-defined capability allows flexibility and experimentation in different modulation, coding and other parameters to understand their effects on performance. This flexibility builds inherent redundancy and flexibility into the system for improved operational efficiency, real-time changes to space missions and enhanced reliability/redundancy. The CoNNeCT Project is a collaboration between industrial radio providers and NASA. The industrial radio providers are providing the SDRs and NASA is designing, building and testing the entire flight system. The flight system will be integrated on the Express Logistics Carrier (ELC) on the International Space Station (ISS) after launch on the H-IIB Transfer Vehicle in 2012. This paper provides an overview of the technology research objectives, payload description, design challenges and pre-flight testing results.

  14. C/NOFS satellite observations of equatorial ionospheric plasma structures supported by multiple ground-based diagnostics in October 2008

    Science.gov (United States)

    Nishioka, M.; Basu, Su.; Basu, S.; Valladares, C. E.; Sheehan, R. E.; Roddy, P. A.; Groves, K. M.

    2011-10-01

    In early October 2008, the C/NOFS satellite orbited near the magnetic equator at its perigee altitude of ˜400 km at dusk in the Peruvian sector. This provided an ideal opportunity for a comparison, under the current very low solar flux condition, of equatorial ionospheric disturbances observed with the Communication/Navigation Outage Forecasting System (C/NOFS) in situ measurements and ground-based observations available near Jicamarca Observatory. The primary objective was the comparison of plasma density disturbances measured by a Planar Langmuir Probe (PLP) instrument on the C/NOFS satellite with VHF scintillation activity at Ancon near Jicamarca for this period. Here we discuss in detail two extreme cases: one in which severe in situ disturbances were accompanied by mild scintillation on a particular day, namely, 10 October while there was little in situ disturbance with strong scintillation on 5 October. This apparent contradiction was diagnosed further by a latitudinal ground-based GPS network at Peruvian longitudes, a Digisonde, and the incoherent scatter radar (ISR) at Jicamarca. The crucial distinction was provided by the behavior of the equatorial ionization anomaly (EIA). The EIA was well-developed on the day having severe in situ disturbances (10 Oct). This led to lower equatorial plasma density and total electron content (TEC) at the equator and consequently reduced the scintillations detected at Ancon. On the other hand, on the day with severe scintillations (5 Oct), the EIA was not so well developed as on 10 October, leading to relatively higher equatorial plasma density and TEC. Consequently the severe scintillations at Ancon were likely caused by ionospheric structure located below the altitude of C/NOFS. The NRL SAMI2 model was utilized to gain a greater understanding of the role of neutral winds and electric fields in reproducing the TEC as a function of latitude for both classes of irregularities. Spectral studies with high resolution in situ

  15. AUTOMATIC NAVIGATION.

    Science.gov (United States)

    NAVIGATION, REPORTS), (*CONTROL SYSTEMS, *INFORMATION THEORY), ABSTRACTS, OPTIMIZATION, DYNAMIC PROGRAMMING, GAME THEORY, NONLINEAR SYSTEMS, CORRELATION TECHNIQUES, FOURIER ANALYSIS, INTEGRAL TRANSFORMS, DEMODULATION, NAVIGATION CHARTS, PATTERN RECOGNITION, DISTRIBUTION THEORY , TIME SHARING, GRAPHICS, DIGITAL COMPUTERS, FEEDBACK, STABILITY

  16. Radio Navigation Waveform Experiment Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA is installing the Communications, Navigation, and Networking reConfigurable Testbed (CoNNeCT) onto the truss of the International Space Station to demonstrate...

  17. Work and “Mass Personal” Communication as Means of Navigating Nutrition and Exercise Concerns in an Online Cancer Community

    Science.gov (United States)

    M. Thompson, Charee; Crook, Brittani; Donovan-Kicken, Erin

    2013-01-01

    Background Health and psychosocial outcomes for young adults affected by cancer have improved only minimally in decades, partially due to a lack of relevant support and information. Given significant unmet needs involving nutrition and exercise, it is important to understand how this audience handles information about food and fitness in managing their cancer experiences. Objective Using the theory of illness trajectories as a framework, we explored how four lines of work associated with living with a chronic illness such as cancer (illness, everyday life, biographical, and the recently explicated construct of communication work) impacts and is impacted by nutrition and exercise concerns. Methods Following a search to extract all nutrition- and exercise-related content from the prior 3 years (January 2008 to February 2011), a sample of more than 1000 posts from an online support community for young adults affected by cancer were qualitatively analyzed employing iterative, constant comparison techniques. Sensitized by illness trajectory research and related concepts, 3 coders worked over 4 months to examine the English-language, de-identified text files of content. Results An analysis of discussion board threads in an online community for young adults dealing with cancer shows that nutrition and exercise needs affect the young adults’ illness trajectories, including their management of illness, everyday life, biographical, and communication work. Furthermore, this paper helps validate development of the “communication work” variable, explores the “mass personal” interplay of mediated and interpersonal communication channels, and expands illness trajectory work to a younger demographic than investigated in prior research. Conclusions Applying the valuable concepts of illness, everyday life, biographical, and communication work provides a more nuanced understanding of how young adults affected by cancer handle exercise and nutrition needs. This knowledge can

  18. Beacons for supporting lunar landing navigation

    Science.gov (United States)

    Theil, Stephan; Bora, Leonardo

    2017-03-01

    Current and future planetary exploration missions involve a landing on the target celestial body. Almost all of these landing missions are currently relying on a combination of inertial and optical sensor measurements to determine the current flight state with respect to the target body and the desired landing site. As soon as an infrastructure at the landing site exists, the requirements as well as conditions change for vehicles landing close to this existing infrastructure. This paper investigates the options for ground-based infrastructure supporting the onboard navigation system and analyzes the impact on the achievable navigation accuracy. For that purpose, the paper starts with an existing navigation architecture based on optical navigation and extends it with measurements to support navigation with ground infrastructure. A scenario of lunar landing is simulated and the provided functions of the ground infrastructure as well as the location with respect to the landing site are evaluated. The results are analyzed and discussed.

  19. GLAST and Ground-Based Gamma-Ray Astronomy

    Science.gov (United States)

    McEnery, Julie

    2008-01-01

    The launch of the Gamma-ray Large Area Space Telescope together with the advent of a new generation of ground-based gamma-ray detectors such as VERITAS, HESS, MAGIC and CANGAROO, will usher in a new era of high-energy gamma-ray astrophysics. GLAST and the ground based gamma-ray observatories will provide highly complementary capabilities for spectral, temporal and spatial studies of high energy gamma-ray sources. Joint observations will cover a huge energy range, from 20 MeV to over 20 TeV. The LAT will survey the entire sky every three hours, allowing it both to perform uniform, long-term monitoring of variable sources and to detect flaring sources promptly. Both functions complement the high-sensitivity pointed observations provided by ground-based detectors. Finally, the large field of view of GLAST will allow a study of gamma-ray emission on large angular scales and identify interesting regions of the sky for deeper studies at higher energies. In this poster, we will discuss the science returns that might result from joint GLAST/ground-based gamma-ray observations and illustrate them with detailed source simulations.

  20. GLAST and Ground-Based Gamma-Ray Astronomy

    Science.gov (United States)

    McEnery, Julie

    2008-01-01

    The launch of the Gamma-ray Large Area Space Telescope together with the advent of a new generation of ground-based gamma-ray detectors such as VERITAS, HESS, MAGIC and CANGAROO, will usher in a new era of high-energy gamma-ray astrophysics. GLAST and the ground based gamma-ray observatories will provide highly complementary capabilities for spectral, temporal and spatial studies of high energy gamma-ray sources. Joint observations will cover a huge energy range, from 20 MeV to over 20 TeV. The LAT will survey the entire sky every three hours, allowing it both to perform uniform, long-term monitoring of variable sources and to detect flaring sources promptly. Both functions complement the high-sensitivity pointed observations provided by ground-based detectors. Finally, the large field of view of GLAST will allow a study of gamma-ray emission on large angular scales and identify interesting regions of the sky for deeper studies at higher energies. In this poster, we will discuss the science returns that might result from joint GLAST/ground-based gamma-ray observations and illustrate them with detailed source simulations.

  1. Research on Communication and Navigation Equipment Standard for Chinese Fishing Boat%我国渔船通导设备标准研究

    Institute of Scientific and Technical Information of China (English)

    陈宣杰; 石瑞; 曹建军

    2012-01-01

    文章从不同的角度对现有的渔船通导设备产品标准进行分析,剖析现有产品标准在制修订中存在的问题,如缺乏行之有效的管理标准及渔船通导设备产品标准制定参数较低、标准标龄较老等。针对这些问题提出解决方法,包括技术参数标准和管理标准应该“双管齐下”、渔船通导产品标准参数必须严格把关、加强我国渔船通导产品标准的整合及加强对于渔船通导产品的环境标准的更新修订。%The fishing boat communication and navigation equipment product quality standard is one of the most indispensable foundation documents to the safe operation and the essential operation for the fishermen out sailing. This article analyzes the problems during the revision of product quality standard from various angles and aims at these problems puts forward the solving method.

  2. Application of CCSDS Recommendations in Deep Space Communication and Navigation%CCSDS建议在深空通信导航中的应用研究

    Institute of Scientific and Technical Information of China (English)

    张碧雄; 巨兰

    2011-01-01

    CCSDS (Consultative Committee for Space Data Systems) recommendations related to deep space communication and navigation are sorted out and analyzed following an investigation into the fields of research of CCSDS and space missions that use CCSDS recommendations. CCSDS recommendations for radio frequency and modulation systems, bandwidth-efficient modulations, regenerative pseudorandom-noise ranging systems and Delta-DOR (Delta Differential One-way Ranging) technology for deep space missions are discussed in detail. In particular, the influence of CCSDS recommendations on China's deep space TT&-C is analyzed. Finally, technical requirements meeting CCSDS standards are proposed for hardware development.%结合深空通信导航技术的发展趋势,通过分析CCSDS(空间数据系统咨询委员会)的研究领域、应用CCS-DS建议的空间任务,梳理出与深空通信导航相关的CCSDS建议.详细论述了深空任务中射频与调制、带宽频率调制、再生伪码测距以及相对差分单向测距等技术体制的CCSDS建议内容.并重点分析了CCSDS建议对我国深空测控网建设的影响,提出了我国深空测控设备符合CCSDS标准的技术要求.

  3. Independent Peer Review of Communications, Navigation, and Networking re-Configurable Testbed (CoNNeCT) Project Antenna Pointing Subsystem (APS) Integrated Gimbal Assembly (IGA) Structural Analysis

    Science.gov (United States)

    Raju, Ivatury S.; Larsen, Curtis E.; Pellicciotti, Joseph W.

    2010-01-01

    Glenn Research Center Chief Engineer's Office requested an independent review of the structural analysis and modeling of the Communications, Navigation, and Networking re-Configurable Testbed (CoNNeCT) Project Antenna Pointing Subsystem (APS) Integrated Gimbal Assembly (IGA) to be conducted by the NASA Engineering and Safety Center (NESC). At this time, the IGA had completed its critical design review (CDR). The assessment was to be a peer review of the NEi-NASTRAN1 model of the APS Antenna, and not a peer review of the design and the analysis that had been completed by the GRC team for CDR. Thus, only a limited amount of information was provided on the structural analysis. However, the NESC team had difficulty separating analysis concerns from modeling issues. The team studied the NASTRAN model, but did not fully investigate how the model was used by the CoNNeCT Project and how the Project was interpreting the results. The team's findings, observations, and NESC recommendations are contained in this report.

  4. Ground-based observations of Kepler asteroseismic targets

    CERN Document Server

    Uytterhoeven, K; Southworth, J; Randall, S; Ostensen, R; Molenda-Zakowicz, J; Marconi, M; Kurtz, D W; Kiss, L; Gutierrez-Soto, J; Frandsen, S; De Cat, P; Bruntt, H; Briquet, M; Zhang, X B; Telting, J H; Steslicki, M; Ripepi, V; Pigulski, A; Paparo, M; Oreiro, R; Choong, Ngeow Chow; Niemczura, E; Nemec, J; Narwid, A; Mathias, P; Martin-Ruiz, S; Lehman, H; Kopacki, G; Karoff, C; Jackiewicz, J; Henden, A A; Handler, G; Grigachene, A; Green, E M; Garrido, R; Machado, L Fox; Debosscher, J; Creevey, O L; Catanzaro, G; Bognar, Z; Biazzo, K; Bernabei, S

    2010-01-01

    We present the ground-based activities within the different working groups of the Kepler Asteroseismic Science Consortium (KASC). The activities aim at the systematic characterization of the 5000+ KASC targets, and at the collection of ground-based follow-up time-series data of selected promising Kepler pulsators. So far, 35 different instruments at 30 telescopes on 22 different observatories in 12 countries are in use, and a total of more than 530 observing nights has been awarded. (Based on observations made with the Isaac Newton Telescope, William Herschel Telescope, Nordic Optical Telescope, Telescopio Nazionale Galileo, Mercator Telescope (La Palma, Spain), and IAC-80 (Tenerife, Spain). Also based on observations taken at the observatories of Sierra Nevada, San Pedro Martir, Vienna, Xinglong, Apache Point, Lulin, Tautenburg, Loiano, Serra la Nave, Asiago, McDonald, Skinakas, Pic du Midi, Mauna Kea, Steward Observatory, Bialkow Observatory of the Wroclaw University, Piszkesteto Mountain Station, Observato...

  5. Ground-based Nuclear Detonation Detection (GNDD) Technology Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    Casey, Leslie A.

    2014-01-13

    This GNDD Technology Roadmap is intended to provide guidance to potential researchers and help management define research priorities to achieve technology advancements for ground-based nuclear explosion monitoring science being pursued by the Ground-based Nuclear Detonation Detection (GNDD) Team within the Office of Nuclear Detonation Detection in the National Nuclear Security Administration (NNSA) of the U.S. Department of Energy (DOE). Four science-based elements were selected to encompass the entire scope of nuclear monitoring research and development (R&D) necessary to facilitate breakthrough scientific results, as well as deliver impactful products. Promising future R&D is delineated including dual use associated with the Comprehensive Nuclear-Test-Ban Treaty (CTBT). Important research themes as well as associated metrics are identified along with a progression of accomplishments, represented by a selected bibliography, that are precursors to major improvements to nuclear explosion monitoring.

  6. Ground-Based Calibration Of A Microwave Landing System

    Science.gov (United States)

    Kiriazes, John J.; Scott, Marshall M., Jr.; Willis, Alfred D.; Erdogan, Temel; Reyes, Rolando

    1996-01-01

    System of microwave instrumentation and data-processing equipment developed to enable ground-based calibration of microwave scanning-beam landing system (MSBLS) at distances of about 500 to 1,000 ft from MSBLS transmitting antenna. Ensures accuracy of MSBLS near touchdown point, without having to resort to expense and complex logistics of aircraft-based testing. Modified versions prove useful in calibrating aircraft instrument landing systems.

  7. Ground-Based Lidar for Atmospheric Boundary Layer Ozone Measurements

    Science.gov (United States)

    Kuang, Shi; Newchurch, Michael J.; Burris, John; Liu, Xiong

    2013-01-01

    Ground-based lidars are suitable for long-term ozone monitoring as a complement to satellite and ozonesonde measurements. However, current ground-based lidars are unable to consistently measure ozone below 500 m above ground level (AGL) due to both engineering issues and high retrieval sensitivity to various measurement errors. In this paper, we present our instrument design, retrieval techniques, and preliminary results that focus on the high-temporal profiling of ozone within the atmospheric boundary layer (ABL) achieved by the addition of an inexpensive and compact mini-receiver to the previous system. For the first time, to the best of our knowledge, the lowest, consistently achievable observation height has been extended down to 125 m AGL for a ground-based ozone lidar system. Both the analysis and preliminary measurements demonstrate that this lidar measures ozone with a precision generally better than 10% at a temporal resolution of 10 min and a vertical resolution from 150 m at the bottom of the ABL to 550 m at the top. A measurement example from summertime shows that inhomogeneous ozone aloft was affected by both surface emissions and the evolution of ABL structures.

  8. Ground-based lidar for atmospheric boundary layer ozone measurements.

    Science.gov (United States)

    Kuang, Shi; Newchurch, Michael J; Burris, John; Liu, Xiong

    2013-05-20

    Ground-based lidars are suitable for long-term ozone monitoring as a complement to satellite and ozonesonde measurements. However, current ground-based lidars are unable to consistently measure ozone below 500 m above ground level (AGL) due to both engineering issues and high retrieval sensitivity to various measurement errors. In this paper, we present our instrument design, retrieval techniques, and preliminary results that focus on the high-temporal profiling of ozone within the atmospheric boundary layer (ABL) achieved by the addition of an inexpensive and compact mini-receiver to the previous system. For the first time, to the best of our knowledge, the lowest, consistently achievable observation height has been extended down to 125 m AGL for a ground-based ozone lidar system. Both the analysis and preliminary measurements demonstrate that this lidar measures ozone with a precision generally better than ±10% at a temporal resolution of 10 min and a vertical resolution from 150 m at the bottom of the ABL to 550 m at the top. A measurement example from summertime shows that inhomogeneous ozone aloft was affected by both surface emissions and the evolution of ABL structures.

  9. Ecodesign Navigator

    DEFF Research Database (Denmark)

    Simon, M; Evans, S.; McAloone, Timothy Charles;

    The Ecodesign Navigator is the product of a three-year research project called DEEDS - DEsign for Environment Decision Support. The initial partners were Manchester Metropolitan University, Cranfield University, Engineering 6 Physical Sciences Resaech Council, Electrolux, ICL, and the Industry...

  10. Communication

    NARCIS (Netherlands)

    Sigafoos, J.; Lancioni, G.E.; O'Reilly, M.F.; Lang, R.; Singh, N.N.; Didden, H.C.M.; Green, V.A.; Marschik, P.B.

    2016-01-01

    Communication disorders are common among people with intellectual disabilities. Consequently, enhancing the communication skills of such individuals is a major intervention priority. This chapter reviews the nature and prevalence of the speech, language, and communication problems associated with

  11. Augmenting WFIRST Microlensing with a Ground-Based Telescope Network

    Science.gov (United States)

    Zhu, Wei; Gould, Andrew

    2016-06-01

    Augmenting the Wide Field Infrared Survey Telescope (WFIRST) microlensing campaigns with intensive observations from a ground-based network of wide-field survey telescopes would have several major advantages. First, it would enable full two-dimensional (2-D) vector microlens parallax measurements for a substantial fraction of low-mass lenses as well as planetary and binary events that show caustic crossing features. For a significant fraction of the free-floating planet (FFP) events and all caustic-crossing planetary/binary events, these 2-D parallax measurements directly lead to complete solutions (mass, distance, transverse velocity) of the lens object (or lens system). For even more events, the complementary ground-based observations will yield 1-D parallax measurements. Together with the 1-D parallaxes from WFIRST alone, they can probe the entire mass range M > M_Earth. For luminous lenses, such 1-D parallax measurements can be promoted to complete solutions (mass, distance, transverse velocity) by high-resolution imaging. This would provide crucial information not only about the hosts of planets and other lenses, but also enable a much more precise Galactic model. Other benefits of such a survey include improved understanding of binaries (particularly with low mass primaries), and sensitivity to distant ice-giant and gas-giant companions of WFIRST lenses that cannot be detected by WFIRST itself due to its restricted observing windows. Existing ground-based microlensing surveys can be employed if WFIRST is pointed at lower-extinction fields than is currently envisaged. This would come at some cost to the event rate. Therefore the benefits of improved characterization of lenses must be weighed against these costs.

  12. The STACEE-32 Ground Based Gamma-ray Detector

    CERN Document Server

    Hanna, D S; Boone, L M; Chantell, M C; Conner, Z; Covault, C E; Dragovan, M; Fortin, P; Gregorich, D T; Hinton, J A; Mukherjee, R; Ong, R A; Oser, S; Ragan, K; Scalzo, R A; Schütte, D R; Theoret, C G; Tümer, T O; Williams, D A; Zweerink, J A

    2002-01-01

    We describe the design and performance of the Solar Tower Atmospheric Cherenkov Effect Experiment detector in its initial configuration (STACEE-32). STACEE is a new ground-based gamma ray detector using the atmospheric Cherenkov technique. In STACEE, the heliostats of a solar energy research array are used to collect and focus the Cherenkov photons produced in gamma-ray induced air showers. The large Cherenkov photon collection area of STACEE results in a gamma-ray energy threshold below that of previous detectors.

  13. The STACEE Ground-Based Gamma-Ray Detector

    CERN Document Server

    Gingrich, D M; Bramel, D; Carson, J; Covault, C E; Fortin, P; Hanna, D S; Hinton, J A; Jarvis, A; Kildea, J; Lindner, T; Müller, C; Mukherjee, R; Ong, R A; Ragan, K; Scalzo, R A; Theoret, C G; Williams, D A; Zweerink, J A

    2005-01-01

    We describe the design and performance of the Solar Tower Atmospheric Cherenkov Effect Experiment (STACEE) in its complete configuration. STACEE uses the heliostats of a solar energy research facility to collect and focus the Cherenkov photons produced in gamma-ray induced air showers. The light is concentrated onto an array of photomultiplier tubes located near the top of a tower. The large Cherenkov photon collection area of STACEE results in a gamma-ray energy threshold below that of previous ground-based detectors. STACEE is being used to observe pulsars, supernova remnants, active galactic nuclei, and gamma-ray bursts.

  14. Research on target accuracy for ground-based lidar

    Science.gov (United States)

    Zhu, Ling; Shi, Ruoming

    2009-05-01

    In ground based Lidar system, the targets are used in the process of registration, georeferencing for point cloud, and also can be used as check points. Generally, the accuracy of capturing the flat target center is influenced by scanning range and scanning angle. In this research, the experiments are designed to extract accuracy index of the target center with 0-90°scan angles and 100-195 meter scan ranges using a Leica HDS3000 laser scanner. The data of the experiments are listed in detail and the related results are analyzed.

  15. Ground-Based Global Positioning System (GPS) Meteorology Integrated Precipitable Water Vapor (IPW)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Ground-Based Global Positioning System (GPS) Meteorology Integrated Precipitable Water Vapor (IPW) data set measures atmospheric water vapor using ground-based...

  16. Statistical Studies of Ground-Based Optical Lightning Signatures

    Science.gov (United States)

    Hunt, C. R.; Nemzek, R. J.; Suszcynsky, D. M.

    2005-12-01

    Most extensive optical studies of lightning have been conducted from orbit, and the statistics of events collected from earth are relatively poorly documented. The time signatures of optical power measured in the presence of clouds are inevitably affected by scattering,which can distort the signatures by extending and delaying the amplitude profile in time. We have deployed two all-sky photodiode detectors, one in New Mexico and one in Oklahoma, which are gathering data alongside electric field change monitors as part of the LANL EDOTX Great Plains Array. Preliminary results show that the photodiode is sensitive to approximately 50% or more of RF events detected at ranges of up to 30 km, and still has some sensitivity at ranges in excess of 60 km (distances determined by the EDOTX field-change array). The shapes of events within this range were assessed, with focus on rise time, width, peak power, and their correlation to corresponding electric field signatures, and these are being compared with published on-orbit and ground-based data. Initial findings suggest a mean characteristic width (ratio of total detected optical energy to peak power) of 291 +/- 12 microseconds and a mean delay between the RF signal peak and optical peak of 121 +/- 17 microseconds. These values fall between prior ground-based measurements of direct return stroke emissions, and scattering-dominated on-orbit measurements. This work will promote better understanding of the correspondence between radio and optical measurements of lightning.

  17. E-navigation Services for Non-SOLAS Ships

    Directory of Open Access Journals (Sweden)

    Kwang An

    2016-06-01

    Full Text Available It is clearly understood that the main benefits of e-navigation are improved safety and better protection of the environment through the promotion of standards of navigational system and a reduction in human error. In order to meet the expectations on the benefit of e-navigation, e-navigation services should be more focused on non-SOLAS ships. The purpose of this paper is to present necessary e-navigation services for non-SOLAS ships in order to prevent marine accidents in Korean coastal waters. To meet the objectives of the study, an examination on the present navigation and communication system for non-SOLAS ships was performed. Based on the IMO's e-navigation Strategy Implementation Plan (SIP and Korea's national SIP for e-navigation, future trends for the development and implementation of e-navigation were discussed. Consequently, Electronic Navigational Chart (ENC download and ENC up-date service, ENC streaming service, route support service and communication support service based on Maritime Cloud were presented as essential e-navigation services for non-SOLAS ships. This study will help for the planning and designing of the Korean e-navigation system. It is expected that the further researches on the navigation support systems based on e-navigation will be carried out in order to implement the essential e-navigation services for non-SOLAS ships.

  18. The STACEE Ground-Based Gamma-ray Observatory

    Science.gov (United States)

    Ragan, Ken

    2002-04-01

    The Solar Tower Atmospheric Cherenkov Effect Experiment (STACEE) is a ground-based instrument designed to study astrophysical sources of gamma rays in the energy range from 50 to 500 GeV using an array of heliostat mirrors at the National Solar Thermal Test Facility in New Mexico. The mirrors collect Cherenkov light generated by gamma-ray air showers and concentrate it onto cameras composed of photomultiplier tubes. The STACEE instrument is now complete, and uses a total of 64 heliostats. Prototype instruments, using smaller numbers of heliostats, have previously detected gamma emission from both the Crab Nebula and the Active Galactic Nucleus Mrk421. The complete instrument has a lower threshold -- approximately 50 GeV -- than those prototypes due to superior triggering and electronics, including flash ADCs for every channel.We will discuss the performance of the complete instrument in its first full season of operation, and present preliminary results of selected observations.

  19. Atmospheric contamination for CMB ground-based observations

    CERN Document Server

    Errard, J; Akiba, Y; Arnold, K; Atlas, M; Baccigalupi, C; Barron, D; Boettger, D; Borrill, J; Chapman, S; Chinone, Y; Cukierman, A; Delabrouille, J; Dobbs, M; Ducout, A; Elleflot, T; Fabbian, G; Feng, C; Feeney, S; Gilbert, A; Goeckner-Wald, N; Halverson, N W; Hasegawa, M; Hattori, K; Hazumi, M; Hill, C; Holzapfel, W L; Hori, Y; Inoue, Y; Jaehnig, G C; Jaffe, A H; Jeong, O; Katayama, N; Kaufman, J; Keating, B; Kermish, Z; Keskitalo, R; Kisner, T; Jeune, M Le; Lee, A T; Leitch, E M; Leon, D; Linder, E; Matsuda, F; Matsumura, T; Miller, N J; Myers, M J; Navaroli, M; Nishino, H; Okamura, T; Paar, H; Peloton, J; Poletti, D; Puglisi, G; Rebeiz, G; Reichardt, C L; Richards, P L; Ross, C; Rotermund, K M; Schenck, D E; Sherwin, B D; Siritanasak, P; Smecher, G; Stebor, N; Steinbach, B; Stompor, R; Suzuki, A; Tajima, O; Takakura, S; Tikhomirov, A; Tomaru, T; Whitehorn, N; Wilson, B; Yadav, A; Zahn, O

    2015-01-01

    Atmosphere is one of the most important noise sources for ground-based Cosmic Microwave Background (CMB) experiments. By increasing optical loading on the detectors, it amplifies their effective noise, while its fluctuations introduce spatial and temporal correlations between detected signals. We present a physically motivated 3d-model of the atmosphere total intensity emission in the millimeter and sub-millimeter wavelengths. We derive an analytical estimate for the correlation between detectors time-ordered data as a function of the instrument and survey design, as well as several atmospheric parameters such as wind, relative humidity, temperature and turbulence characteristics. Using numerical computation, we examine the effect of each physical parameter on the correlations in the time series of a given experiment. We then use a parametric-likelihood approach to validate the modeling and estimate atmosphere parameters from the POLARBEAR-I project first season data set. We compare our results to previous st...

  20. Observational Selection Effects with Ground-based Gravitational Wave Detectors

    CERN Document Server

    Chen, Hsin-Yu; Vitale, Salvatore; Holz, Daniel E; Katsavounidis, Erik

    2016-01-01

    Ground-based interferometers are not perfectly all-sky instruments, and it is important to account for their behavior when considering the distribution of detected events. In particular, the LIGO detectors are most sensitive to sources above North America and the Indian Ocean and, as the Earth rotates, the sensitive regions are swept across the sky. However, because the detectors do not acquire data uniformly over time, there is a net bias on detectable sources' right ascensions. Both LIGO detectors preferentially collect data during their local night; it is more than twice as likely to be local midnight than noon when both detectors are operating. We discuss these selection effects and how they impact LIGO's observations and electromagnetic follow-up. Beyond galactic foregrounds associated with seasonal variations, we find that equatorial observatories can access over $80\\%$ of the localization probability, while mid-latitudes will access closer to $70\\%$. Facilities located near the two LIGO sites can obser...

  1. Progress in the ULTRA 1-m ground-based telescope

    Science.gov (United States)

    Romeo, Robert C.; Martin, Robert N.; Twarog, Bruce; Anthony-Twarog, Barbara; Taghavi, Ray; Hale, Rick; Etzel, Paul; Fesen, Rob; Shawl, Steve

    2006-06-01

    We present the technical status of the Ultra Lightweight Telescope for Research in Astronomy (ULTRA) program. The program is a 3-year Major Research Instrumentation (MRI) program funded by NSF. The MRI is a collaborative effort involving Composite Mirror Applications, Inc. (CMA), University of Kansas, San Diego State University and Dartmouth College. Objectives are to demonstrate the feasibility of carbon fiber reinforced plastic (CFRP) composite mirror technology for ground-based optical telescopes. CMA is spearheading the development of surface replication techniques to produce the optics, fabricating the 1m glass mandrel, and constructing the optical tube assembly (OTA). Presented will be an overview and status of the 1-m mandrel fabrication, optics development, telescope design and CFRP telescope fabrication by CMA for the ULTRA Telescope.

  2. Ground-based optical observation system for LEO objects

    Science.gov (United States)

    Yanagisawa, T.; Kurosaki, H.; Oda, H.; Tagawa, M.

    2015-08-01

    We propose a ground-based optical observation system for monitoring LEO objects, which uses numerous optical sensors to cover a vast region of the sky. Its potential in terms of detection and orbital determination were examined. About 30 cm LEO objects at 1000 km altitude are detectable using an 18 cm telescope, a CCD camera and the analysis software developed. Simulations and a test observation showed that two longitudinally separate observation sites with arrays of optical sensors can identify the same objects from numerous data sets and determine their orbits precisely. The proposed system may complement or replace the current radar observation system for monitoring LEO objects, like space-situation awareness, in the near future.

  3. Identification of rainy periods from ground based microwave radiometry

    Directory of Open Access Journals (Sweden)

    Ada Vittoria Bosisio

    2012-03-01

    Full Text Available In this paper the authors present the results of a study aiming at detecting rainy data in measurements collected by a dual band ground-based radiometer. The proposed criterion is based on the ratio of the brightness temperatures observed in the 20-30 GHz band without need of any ancillary information. A major result obtained from the probability density of the ratio computed over one month of data is the identification of threshold values between clear sky, cloudy sky and rainy sky, respectively. A linear fit performed by using radiometric data and concurrent rain gauge measurements shows a correlation coefficient equal to 0.56 between the temperature ratio and the observed precipitation.

  4. Optical vortex coronagraphs on ground-based telescopes

    CERN Document Server

    Jenkins, Charles

    2007-01-01

    The optical vortex coronagraph is potentially a remarkably effective device, at least for an ideal unobstructed telescope. Most ground-based telescopes however suffer from central obscuration and also have to operate through the aberrations of the turbulent atmosphere. This note analyzes the performance of the optical vortex in these circumstances and compares to some other designs, showing that it performs similarly in this situation. There is a large class of coronagraphs of this general type, and choosing between them in particular applications depends on details of performance at small off-axis distances and uniformity of response in the focal plane. Issues of manufacturability to the necessary tolerances are also likely to be important.

  5. Observational Selection Effects with Ground-based Gravitational Wave Detectors

    Science.gov (United States)

    Chen, Hsin-Yu; Essick, Reed; Vitale, Salvatore; Holz, Daniel; Katsavounidis, Erik

    2017-01-01

    Ground-based interferometers are not perfectly all-sky instruments, and it is important to account for their behavior when considering the distribution of detected events. In particular, the LIGO detectors are most sensitive to sources above North America and the Indian Ocean and, as the Earth rotates, the sensitive regions are swept across the sky. However, because the detectors do not acquire data uniformly over time, there is a net bias on detectable sources' right ascensions. Both LIGO detectors preferentially collect data during their local night; it is more than twice as likely to be local midnight than noon when both detectors are operating. We discuss these selection effects and how they impact LIGO's observations and electromagnetic follow-up. These effects can inform electromagnetic follow-up activities and optimization, including the possibility of directing observations even before gravitational-wave events occur.

  6. Unique cell culture systems for ground based research

    Science.gov (United States)

    Lewis, Marian L.

    1990-01-01

    The horizontally rotating fluid-filled, membrane oxygenated bioreactors developed at NASA Johnson for spacecraft applications provide a powerful tool for ground-based research. Three-dimensional aggregates formed by cells cultured on microcarrier beads are useful for study of cell-cell interactions and tissue development. By comparing electron micrographs of plant seedlings germinated during Shuttle flight 61-C and in an earth-based rotating bioreactor it is shown that some effects of microgravity are mimicked. Bioreactors used in the UAH Bioreactor Laboratory will make it possible to determine some of the effects of altered gravity at the cellular level. Bioreactors can be valuable for performing critical, preliminary-to-spaceflight experiments as well as medical investigations such as in vitro tumor cell growth and chemotherapeutic drug response; the enrichment of stem cells from bone marrow; and the effect of altered gravity on bone and muscle cell growth and function and immune response depression.

  7. Spatial-angular modeling of ground-based biaxial lidar

    Science.gov (United States)

    Agishev, Ravil R.

    1997-10-01

    Results of spatial-angular LIDAR modeling based on an efficiency criterion introduced are represented. Their analysis shows that a low spatial-angular efficiency of traditional VIS and NIR systems is a main cause of a low S/BR ratio at the photodetector input. It determines the considerable measurements errors and the following low accuracy of atmospheric optical parameters retrieval. As we have shown, the most effective protection against intensive sky background radiation for ground-based biaxial LIDAR's consist in forming of their angular field according to spatial-angular efficiency criterion G. Some effective approaches to high G-parameter value achievement to achieve the receiving system optimization are discussed.

  8. 33 CFR 26.07 - Communications.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Communications. 26.07 Section 26.07 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY GENERAL VESSEL BRIDGE-TO-BRIDGE RADIOTELEPHONE REGULATIONS § 26.07 Communications. No person may use the services of,...

  9. NASA HRP Plans for Collaboration at the IBMP Ground-Based Experimental Facility (NEK)

    Science.gov (United States)

    Cromwell, Ronita L.

    2016-01-01

    NASA and IBMP are planning research collaborations using the IBMP Ground-based Experimental Facility (NEK). The NEK offers unique capabilities to study the effects of isolation on behavioral health and performance as it relates to spaceflight. The NEK is comprised of multiple interconnected modules that range in size from 50-250m(sup3). Modules can be included or excluded in a given mission allowing for flexibility of platform design. The NEK complex includes a Mission Control Center for communications and monitoring of crew members. In an effort to begin these collaborations, a 2-week mission is planned for 2017. In this mission, scientific studies will be conducted to assess facility capabilities in preparation for longer duration missions. A second follow-on 2-week mission may be planned for early in 2018. In future years, long duration missions of 4, 8 and 12 months are being considered. Missions will include scenarios that simulate for example, transit to and from asteroids, the moon, or other interplanetary travel. Mission operations will be structured to include stressors such as, high workloads, communication delays, and sleep deprivation. Studies completed at the NEK will support International Space Station expeditions, and future exploration missions. Topics studied will include communication, crew autonomy, cultural diversity, human factors, and medical capabilities.

  10. Haze in Pluto's atmosphere: Results from SOFIA and ground-based observations of the 2015 June 29 Pluto occultation

    Science.gov (United States)

    Bosh, A. S.; Person, M. J.; Zuluaga, C. A.; Sickafoose, A. A.; Levine, S. E.; Pasachoff, J. M.; Babcock, B. A.; Dunham, E. W.; McLean, I.; Wolf, J.; Abe, F.; Becklin, E.; Bida, T. A.; Bright, L. P.; Brothers, T.; Christie, G.; Collins, P. L.; Durst, R. F.; Gilmore, A. C.; Hamilton, R.; Harris, H. C.; Johnson, C.; Kilmartin, P. M.; Kosiarek, M. R.; Leppik, K.; Logsdon, S. E.; Lucas, R.; Mathers, S.; Morley, C. J. K.; Nelson, P.; Ngan, H.; Pfüller, E.; Natusch, T.; Röser, H.-P.; Sallum, S.; Savage, M.; Seeger, C. H.; Siu, H.; Stockdale, C.; Suzuki, D.; Thanathibodee, T.; Tilleman, T.; Tristram, P. J.; Van Cleve, J.; Varughese, C.; Weisenbach, L. W.; Widen, E.; Wiedemann, M.

    2015-11-01

    We observed the 29 June 2015 occultation by Pluto from SOFIA and several ground-based sites in New Zealand. Pre-event astrometry (described in Zuluaga et al., this conference) allowed us to navigate SOFIA into Pluto's central flash (Person et al., this conference). Fortuitously, the central flash also fell over the Mt. John University Observatory (Pasachoff et al., this conference). We combine all of our airborne and ground-based data to produce a geometric solution for the occultation and to investigate the state of Pluto's atmosphere just two weeks before the New Horizons spacecraft's close encounter with Pluto. We find that the atmosphere parameters at half-light are unchanged from our observations in 2011 (Person et al. 2013) and 2013 (Bosh et al. 2015). By combining our light-curve inversion with recent radius measurements from New Horizons, we find strong evidence for an extended haze layer in Pluto's atmosphere. See also Sickafoose et al. (this conference) for an evaluation of the particle sizes and properties.SOFIA is jointly operated by the Universities Space Research Association, Inc. (USRA), under NASA contract NAS2-97001, and the Deutsches SOFIA Institut (DSI) under DLR contract 50 OK 0901 to the University of Stuttgart. Support for this work was provided by NASA SSO grants NNX15AJ82G (Lowell Observatory), NNX10AB27G (MIT), and NNX12AJ29G (Williams College), and by the National Research Foundation of South Africa.

  11. Probing Pluto's Atmosphere Using Ground-Based Stellar Occultations

    Science.gov (United States)

    Sicardy, Bruno; Rio de Janeiro Occultation Team, Granada Team, International Occultation and Timing Association, Royal Astronomical Society New Zealand Occultation Section, Lucky Star associated Teams

    2016-10-01

    Over the last three decades, some twenty stellar occultations by Pluto have been monitored from Earth. They occur when the dwarf planet blocks the light from a star for a few minutes as it moves on the sky. Such events led to the hint of a Pluto's atmosphere in 1985, that was fully confirmed during another occultation in 1988, but it was only in 2002 that a new occultation could be recorded. From then on, the dwarf planet started to move in front of the galactic center, which amplified by a large factor the number of events observable per year.Pluto occultations are essentially refractive events during which the stellar rays are bent by the tenuous atmosphere, causing a gradual dimming of the star. This provides the density, pressure and temperature profiles of the atmosphere from a few kilometers above the surface up to about 250 km altitude, corresponding respectively to pressure levels of about 10 and 0.1 μbar. Moreover, the extremely fine spatial resolution (a few km) obtained through this technique allows the detection of atmospheric gravity waves, and permits in principle the detection of hazes, if present.Several aspects make Pluto stellar occultations quite special: first, they are the only way to probe Pluto's atmosphere in detail, as the dwarf planet is far too small on the sky and the atmosphere is far too tenuous to be directly imaged from Earth. Second, they are an excellent example of participative science, as many amateurs have been able to record those events worldwide with valuable scientific returns, in collaboration with professional astronomers. Third, they reveal Pluto's climatic changes on decade-scales and constrain the various seasonal models currently explored.Finally, those observations are fully complementary to space exploration, in particular with the New Horizons (NH) mission. I will show how ground-based occultations helped to better calibrate some NH profiles, and conversely, how NH results provide some key boundary conditions

  12. Independet Component Analyses of Ground-based Exoplanetary Transits

    Science.gov (United States)

    Silva Martins-Filho, Walter; Griffith, Caitlin Ann; Pearson, Kyle; Waldmann, Ingo; Biddle, Lauren; Zellem, Robert Thomas; Alvarez-Candal, Alvaro

    2016-10-01

    Most observations of exoplanetary atmospheres are conducted when a "Hot Jupiter" exoplanet transits in front of its host star. These Jovian-sized planets have small orbital periods, on the order of days, and therefore a short transit time, making them more ameanable to observations. Measurements of Hot Jupiter transits must achieve a 10-4 level of accuracy in the flux to determine the spectral modulations of the exoplanetary atmosphere. In order to accomplish this level of precision, we need to extract systematic errors, and, for ground-based measurements, the effects of Earth's atmosphere, from the signal due to the exoplanet, which is several orders of magnitudes smaller. Currently, the effects of the terrestrial atmosphere and the some of the time-dependent systematic errors are treated by dividing the host star by a reference star at each wavelength and time step of the transit. More recently, Independent Component Analyses (ICA) have been used to remove systematic effects from the raw data of space-based observations (Waldmann 2014,2012; Morello et al.,2015,2016). ICA is a statistical method born from the ideas of the blind-source separation studies, which can be used to de-trend several independent source signals of a data set (Hyvarinen and Oja, 2000). One strength of this method is that it requires no additional prior knowledge of the system. Here, we present a study of the application of ICA to ground-based transit observations of extrasolar planets, which are affected by Earth's atmosphere. We analyze photometric data of two extrasolar planets, WASP-1b and GJ3470b, recorded by the 61" Kuiper Telescope at Stewart Observatory using the Harris B and U filters. The presentation will compare the light curve depths and their dispersions as derived from the ICA analysis to those derived by analyses that ratio of the host star to nearby reference stars.References: Waldmann, I.P. 2012 ApJ, 747, 12, Waldamann, I. P. 2014 ApJ, 780, 23; Morello G. 2015 ApJ, 806

  13. 飞行目标探测导航通信中的码间干扰抑制技术研究%Research on Inter Symbol Interference Suppression Technology in Flight Target Detection Navigation communication

    Institute of Scientific and Technical Information of China (English)

    陈雪莹; 桑文玲; 纪晓晗; 张孜铭

    2016-01-01

    Flying target detection navigation, communication, due to the uneven distribution of communication channel characteristics, easy to receive extended losses and a communication channel attenuation loss produced intersymbol in-terference, the influence of the need for intersymbol interference suppression, improve communication performance. Put forward a kind of based on signal time reversal mirror restructuring of intersymbol interference suppression tech-nology. Build the flying target detection navigation communication channel model and signal transmission model, de-sign of passive time reversal mirror matched filter, noise suppression, to time reversal mirror multipath channel reorga-nization, realize the intersymbol interference suppression. Simulation experiments show that the proposed algorithm can effectively reduce the error rate in the process of communication, improve the quality of communication, improving channel transmission performance.%飞行目标探测导航通信中,由于通信信道分布不均匀的特性,通信信道容易收到扩展损失和衰减损失的影响产生码间干扰,需要进行码间干扰抑制,改善通信性能。提出一种基于通信信号时间反转镜重组的码间干扰抑制技术。构建了飞行目标探测导航通信的信道模型和信号传输模型,设计被动时间反转镜匹配滤波器,进行噪声抑制,对多径信道进行时间反转镜重组,实现码间干扰抑制。仿真实验表明,该算法能有效降低通信过程中的误码率,改善通信质量,提高信道传输性能。

  14. Observing Tsunamis in the Ionosphere Using Ground Based GPS Measurements

    Science.gov (United States)

    Galvan, D. A.; Komjathy, A.; Song, Y. Tony; Stephens, P.; Hickey, M. P.; Foster, J.

    2011-01-01

    Ground-based Global Positioning System (GPS) measurements of ionospheric Total Electron Content (TEC) show variations consistent with atmospheric internal gravity waves caused by ocean tsunamis following recent seismic events, including the Tohoku tsunami of March 11, 2011. We observe fluctuations correlated in time, space, and wave properties with this tsunami in TEC estimates processed using JPL's Global Ionospheric Mapping Software. These TEC estimates were band-pass filtered to remove ionospheric TEC variations with periods outside the typical range of internal gravity waves caused by tsunamis. Observable variations in TEC appear correlated with the Tohoku tsunami near the epicenter, at Hawaii, and near the west coast of North America. Disturbance magnitudes are 1-10% of the background TEC value. Observations near the epicenter are compared to estimates of expected tsunami-driven TEC variations produced by Embry Riddle Aeronautical University's Spectral Full Wave Model, an atmosphere-ionosphere coupling model, and found to be in good agreement. The potential exists to apply these detection techniques to real-time GPS TEC data, providing estimates of tsunami speed and amplitude that may be useful for future early warning systems.

  15. Tissue Engineering of Cartilage on Ground-Based Facilities

    Science.gov (United States)

    Aleshcheva, Ganna; Bauer, Johann; Hemmersbach, Ruth; Egli, Marcel; Wehland, Markus; Grimm, Daniela

    2016-06-01

    Investigations under simulated microgravity offer the opportunity for a better understanding of the influence of altered gravity on cells and the scaffold-free three-dimensional (3D) tissue formation. To investigate the short-term influence, human chondrocytes were cultivated for 2 h, 4 h, 16 h, and 24 h on a 2D Fast-Rotating Clinostat (FRC) in DMEM/F-12 medium supplemented with 10 % FCS. We detected holes in the vimentin network, perinuclear accumulations of vimentin after 2 h, and changes in the chondrocytes shape visualised by F-actin staining after 4 h of FRC-exposure. Scaffold-free cultivation of chondrocytes for 7 d on the Random Positioning Machine (RPM), the FRC and the Rotating Wall Vessel (RWV) resulted in spheroid formation, a phenomenon already known from spaceflight experiments with chondrocytes (MIR Space Station) and thyroid cancer cells (SimBox/Shenzhou-8 space mission). The experiments enabled by the ESA-CORA-GBF programme gave us an optimal opportunity to study gravity-related cellular processes, validate ground-based facilities for our chosen cell system, and prepare long-term experiments under real microgravity conditions in space

  16. Theoretical validation of ground-based microwave ozone observations

    Directory of Open Access Journals (Sweden)

    P. Ricaud

    Full Text Available Ground-based microwave measurements of the diurnal and seasonal variations of ozoneat 42±4.5 and 55±8 km are validated by comparing with results from a zero-dimensional photochemical model and a two-dimensional (2D chemical/radiative/dynamical model, respectively. O3 diurnal amplitudes measured in Bordeaux are shown to be in agreement with theory to within 5%. For the seasonal analysis of O3 variation, at 42±4.5 km, the 2D model underestimates the yearly averaged ozone concentration compared with the measurements. A double maximum oscillation (~3.5% is measured in Bordeaux with an extended maximum in September and a maximum in February, whilst the 2D model predicts only a single large maximum (17% in August and a pronounced minimum in January. Evidence suggests that dynamical transport causes the winter O3 maximum by propagation of planetary waves, phenomena which are not explicitly reproduced by the 2D model. At 55±8 km, the modeled yearly averaged O3 concentration is in very good agreement with the measured yearly average. A strong annual oscillation is both measured and modeled with differences in the amplitude shown to be exclusively linked to temperature fields.

  17. Models of ionospheric VLF absorption of powerful ground based transmitters

    Science.gov (United States)

    Cohen, M. B.; Lehtinen, N. G.; Inan, U. S.

    2012-12-01

    Ground based Very Low Frequency (VLF, 3-30 kHz) radio transmitters play a role in precipitation of energetic Van Allen electrons. Initial analyses of the contribution of VLF transmitters to radiation belt losses were based on early models of trans-ionospheric propagation known as the Helliwell absorption curves, but some recent studies have found that the model overestimates (by 20-100 dB) the VLF energy reaching the magnetosphere. It was subsequently suggested that conversion of wave energy into electrostatic modes may be responsible for the error. We utilize a newly available extensive record of VLF transmitter energy reaching the magnetosphere, taken from the DEMETER satellite, and perform a direct comparison with a sophisticated full wave model of trans-ionospheric propagation. Although the model does not include the effect of ionospheric irregularities, it correctly predicts the average total power injected into the magnetosphere within several dB. The results, particularly at nighttime, appear to be robust against the variability of the ionospheric electron density. We conclude that the global effect of irregularity scattering on whistler mode conversion to quasi-electrostatic may be no larger than 6 dB.

  18. Atmospheric Refraction Path Integrals in Ground-Based Interferometry

    CERN Document Server

    Mathar, R J

    2004-01-01

    The basic effect of the earth's atmospheric refraction on telescope operation is the reduction of the true zenith angle to the apparent zenith angle, associated with prismatic aberrations due to the dispersion in air. If one attempts coherent superposition of star images in ground-based interferometry, one is in addition interested in the optical path length associated with the refracted rays. In a model of a flat earth, the optical path difference between these is not concerned as the translational symmetry of the setup means no net effect remains. Here, I evaluate these interferometric integrals in the more realistic arrangement of two telescopes located on the surface of a common earth sphere and point to a star through an atmosphere which also possesses spherical symmetry. Some focus is put on working out series expansions in terms of the small ratio of the baseline over the earth radius, which allows to bypass some numerics which otherwise is challenged by strong cancellation effects in building the opti...

  19. Experiments on a Ground-Based Tomographic Synthetic Aperture Radar

    Directory of Open Access Journals (Sweden)

    Hoonyol Lee

    2016-08-01

    Full Text Available This paper presents the development and experiment of three-dimensional image formation by using a ground-based tomographic synthetic aperture radar (GB-TomoSAR system. GB-TomoSAR formulates two-dimensional synthetic aperture by the motion of antennae, both in azimuth and vertical directions. After range compression, three-dimensional image focusing is performed by applying Deramp-FFT (Fast Fourier Transform algorithms, both in azimuth and vertical directions. Geometric and radiometric calibrations were applied to make an image cube, which is then projected into range-azimuth and range-vertical cross-sections for visualization. An experiment with a C-band GB-TomoSAR system with a scan length of 2.49 m and 1.86 m in azimuth and vertical-direction, respectively, shows distinctive three-dimensional radar backscattering of stable buildings and roads with resolutions similar to the theoretical values. Unstable objects such as trees and moving cars generate severe noise due to decorrelation during the eight-hour image-acquisition time.

  20. A comparative study of satellite and ground-based phenology.

    Science.gov (United States)

    Studer, S; Stöckli, R; Appenzeller, C; Vidale, P L

    2007-05-01

    Long time series of ground-based plant phenology, as well as more than two decades of satellite-derived phenological metrics, are currently available to assess the impacts of climate variability and trends on terrestrial vegetation. Traditional plant phenology provides very accurate information on individual plant species, but with limited spatial coverage. Satellite phenology allows monitoring of terrestrial vegetation on a global scale and provides an integrative view at the landscape level. Linking the strengths of both methodologies has high potential value for climate impact studies. We compared a multispecies index from ground-observed spring phases with two types (maximum slope and threshold approach) of satellite-derived start-of-season (SOS) metrics. We focus on Switzerland from 1982 to 2001 and show that temporal and spatial variability of the multispecies index correspond well with the satellite-derived metrics. All phenological metrics correlate with temperature anomalies as expected. The slope approach proved to deviate strongly from the temporal development of the ground observations as well as from the threshold-defined SOS satellite measure. The slope spring indicator is considered to indicate a different stage in vegetation development and is therefore less suited as a SOS parameter for comparative studies in relation to ground-observed phenology. Satellite-derived metrics are, however, very susceptible to snow cover, and it is suggested that this snow cover should be better accounted for by the use of newer satellite sensors.

  1. Satellite Type Estination from Ground-based Photometric Observation

    Science.gov (United States)

    Endo, T.; Ono, H.; Suzuki, J.; Ando, T.; Takanezawa, T.

    2016-09-01

    The optical photometric observation is potentially a powerful tool for understanding of the Geostationary Earth Orbit (GEO) objects. At first, we measured in laboratory the surface reflectance of common satellite materials, for example, Multi-layer Insulation (MLI), mono-crystalline silicon cells, and Carbon Fiber Reinforced Plastic (CFRP). Next, we calculated visual magnitude of a satellite by simplified shape and albedo. In this calculation model, solar panels have dimensions of 2 by 8 meters, and the bus area is 2 meters squared with measured optical properties described above. Under these conditions, it clarified the brightness can change the range between 3 and 4 magnitudes in one night, but color index changes only from 1 to 2 magnitudes. Finally, we observed the color photometric data of several GEO satellites visible from Japan multiple times in August and September 2014. We obtained that light curves of GEO satellites recorded in the B and V bands (using Johnson filters) by a ground-base optical telescope. As a result, color index changed approximately from 0.5 to 1 magnitude in one night, and the order of magnitude was not changed in all cases. In this paper, we briefly discuss about satellite type estimation using the relation between brightness and color index obtained from the photometric observation.

  2. Ground-based measurements of UV Index (UVI at Helwan

    Directory of Open Access Journals (Sweden)

    H. Farouk

    2012-12-01

    Full Text Available On October 2010 UV Index (UVI ground-based measurements were carried out by weather station at solar laboratory in NRIAG. The daily variation has maximum values in spring and summer days, while minimum values in autumn and winter days. The low level of UVI between 2.55 and 2.825 was found in December, January and February. The moderate level of UVI between 3.075 and 5.6 was found in March, October and November. The high level of UVI between 6.7 and 7.65 was found in April, May and September. The very high level of UVI between 8 and 8.6 was found in June, July and August. High level of radiation over 6 months per year including 3 months with a very high level UVI. According to the equation {UVI=a[SZA]b} the UVI increases with decreasing SZA by 82% on a daily scale and 88% on a monthly scale. Helwan exposure to a high level of radiation over 6 months per year including 3 months with a very high level UVI, so it is advisable not to direct exposure to the sun from 11 am to 2:00 pm.

  3. Architectural design of a ground-based deep-space optical reception antenna

    Science.gov (United States)

    Kerr, E. L.

    1989-01-01

    An architectural design of a ground-based antenna (telescope) for receiving optical communications from deep space is presented. Physical and optical parameters, and their effect on the performance and cost considerations, are described. The channel capacity of the antenna is 100 kbits/s from Saturn and 5 Mbits/s from Mars. A novel sunshade is designed to permit optical communication even when the deep-space laser source is as close to the sun as 12 deg. Inserts in the tubes of the sunshade permit operations at solar elongations as small as 6 or 3 deg. The Nd:YAG source laser and the Fraunhofer filter (a narrow-band predetection optical filter) are tuned to match the Doppler shifts of the source and background. A typical Saturn-to-earth data link can reduce its source power requirement from 8.2 W to 2 W of laser output by employing a Fraunhofer filter instead of a conventional multilayer dielectric filter.

  4. Architectural design of a ground-based deep-space optical reception antenna

    Science.gov (United States)

    Kerr, E. L.

    1989-01-01

    An architectural design of a ground-based antenna (telescope) for receiving optical communications from deep space is presented. Physical and optical parameters, and their effect on the performance and cost considerations, are described. The channel capacity of the antenna is 100 kbits/s from Saturn and 5 Mbits/s from Mars. A novel sunshade is designed to permit optical communication even when the deep-space laser source is as close to the sun as 12 deg. Inserts in the tubes of the sunshade permit operations at solar elongations as small as 6 or 3 deg. The Nd:YAG source laser and the Fraunhofer filter (a narrow-band predetection optical filter) are tuned to match the Doppler shifts of the source and background. A typical Saturn-to-earth data link can reduce its source power requirement from 8.2 W to 2 W of laser output by employing a Fraunhofer filter instead of a conventional multilayer dielectric filter.

  5. The use of products from ground-based GNSS observations in meteorological nowcasting

    Science.gov (United States)

    Terradellas, E.; Callado, A.; Pascual, R.; Téllez, B.

    2009-09-01

    Heavy rainfall is often focalized in areas of moisture convergence. A close relationship between precipitation and fast variations of vertically-integrated water vapour (IWV) has been found in numerous cases. Furthermore, a latency of several tens of minutes of the precipitation relative to a rapid increase of the water vapour contents appears to be a common truth. Therefore, continuous monitoring of atmospheric humidity and its spatial distribution is crucial to the operational forecaster for a proper nowcasting of heavy rainfall events. Radiosonde releases yield measurements of atmospheric humidity, but they are very sparse and present a limited time resolution of 6 to 12 hours. The microwave signals continuously broadcasted by the Global Navigation Satellite System (GNSS) satellites are influenced by the water vapour as they travel through the atmosphere to ground-based receivers. The total zenith delay (ZTD) of these signals, a by-product of the geodetic processing, is already operationally assimilated into numerical weather prediction (NWP) models and has positive impact on the prediction of precipitation events, as it has been reported after the analysis of parallel runs. Estimates of IWV retrieved from ground-based GNSS observations may also constitute a source of information on the horizontal distribution and the time evolution of atmospheric humidity that can be presented to the forecaster. Several advantages can be attributed to the ground-based GNSS as a meteorological observing system. First, receiving networks can be built and maintained at a relatively low cost, which it can, additionally, be shared among different users. Second, the quality of the processed observations is insensitive to the weather conditions and, third, the temporal resolution of its products is very high. On the other hand, the current latency of the data disposal, ranging between one and two hours, is acceptable for the NWP community, but appears to be excessive for nowcasting

  6. Observational Selection Effects with Ground-based Gravitational Wave Detectors

    Science.gov (United States)

    Chen, Hsin-Yu; Essick, Reed; Vitale, Salvatore; Holz, Daniel E.; Katsavounidis, Erik

    2017-01-01

    Ground-based interferometers are not perfect all-sky instruments, and it is important to account for their behavior when considering the distribution of detected events. In particular, the LIGO detectors are most sensitive to sources above North America and the Indian Ocean, and as the Earth rotates, the sensitive regions are swept across the sky. However, because the detectors do not acquire data uniformly over time, there is a net bias on detectable sources’ right ascensions. Both LIGO detectors preferentially collect data during their local night; it is more than twice as likely to be local midnight than noon when both detectors are operating. We discuss these selection effects and how they impact LIGO’s observations and electromagnetic (EM) follow-up. Beyond galactic foregrounds associated with seasonal variations, we find that equatorial observatories can access over 80% of the localization probability, while mid-latitudes will access closer to 70%. Facilities located near the two LIGO sites can observe sources closer to their zenith than their analogs in the south, but the average observation will still be no closer than 44° from zenith. We also find that observatories in Africa or the South Atlantic will wait systematically longer before they can begin observing compared to the rest of the world though, there is a preference for longitudes near the LIGOs. These effects, along with knowledge of the LIGO antenna pattern, can inform EM follow-up activities and optimization, including the possibility of directing observations even before gravitational-wave events occur.

  7. Ground-based Measurements of Next Generation Spectroradiometric Standard Stars

    Science.gov (United States)

    McGraw, John T.

    2013-01-01

    Accurate, radiometric standards are essential to the future of ground- and space-based astronomy and astrophysics. While astronomers tend to think of “standard stars” as available calibration sources, progress at NIST to accurately calibrate inexpensive, easy to use photodiode detectors as spectroradiometric standards from 200 nm to 1800 nm allows referencing astronomical measurements to these devices. Direction-, time-, and wavelength-dependent transmission of Earth’s atmosphere is the single largest source of error for ground-based radiometric measurement of astronomical objects. Measurements and impacts of atmospheric extinction - scattering and absorption - on imaging radiometric and spectroradiometric measurements are described. The conclusion is that accurate real-time measurement of extinction in the column of atmosphere through which standard star observations are made, over the spectral region being observed and over the field of view of the telescope are required. New techniques to directly and simultaneously measure extinction in the column of atmosphere through which observations are made are required. Our direct extinction measurement solution employs three small facility-class instruments working in parallel: a lidar to measure rapidly time variable transmission at three wavelengths with uncertainty of 0.25% per airmass, a spectrophotometer to measure rapidly wavelength variable extinction with sub-1% precision per nanometer resolution element from 350 to 1050nm, and a wide-field camera to measure angularly variable extinction over the field of view. These instruments and their operation will be described. We assert that application of atmospheric metadata provided by this instrument suite corrects for a significant fraction of systematic errors currently limiting radiometric precision, and provides a major step towards measurements that are provably dominated by random noise.

  8. Ozone profiles above Kiruna from two ground-based radiometers

    Science.gov (United States)

    Ryan, Niall J.; Walker, Kaley A.; Raffalski, Uwe; Kivi, Rigel; Gross, Jochen; Manney, Gloria L.

    2016-09-01

    This paper presents new atmospheric ozone concentration profiles retrieved from measurements made with two ground-based millimetre-wave radiometers in Kiruna, Sweden. The instruments are the Kiruna Microwave Radiometer (KIMRA) and the Millimeter wave Radiometer 2 (MIRA 2). The ozone concentration profiles are retrieved using an optimal estimation inversion technique, and they cover an altitude range of ˜ 16-54 km, with an altitude resolution of, at best, 8 km. The KIMRA and MIRA 2 measurements are compared to each other, to measurements from balloon-borne ozonesonde measurements at Sodankylä, Finland, and to measurements made by the Microwave Limb Sounder (MLS) aboard the Aura satellite. KIMRA has a correlation of 0.82, but shows a low bias, with respect to the ozonesonde data, and MIRA 2 shows a smaller magnitude low bias and a 0.98 correlation coefficient. Both radiometers are in general agreement with each other and with MLS data, showing high correlation coefficients, but there are differences between measurements that are not explained by random errors. An oscillatory bias with a peak of approximately ±1 ppmv is identified in the KIMRA ozone profiles over an altitude range of ˜ 18-35 km, and is believed to be due to baseline wave features that are present in the spectra. A time series analysis of KIMRA ozone for winters 2008-2013 shows the existence of a local wintertime minimum in the ozone profile above Kiruna. The measurements have been ongoing at Kiruna since 2002 and late 2012 for KIMRA and MIRA 2, respectively.

  9. Project management for complex ground-based instruments: MEGARA plan

    Science.gov (United States)

    García-Vargas, María. Luisa; Pérez-Calpena, Ana; Gil de Paz, Armando; Gallego, Jesús; Carrasco, Esperanza; Cedazo, Raquel; Iglesias, Jorge

    2014-08-01

    The project management of complex instruments for ground-based large telescopes is a challenge itself. A good management is a clue for project success in terms of performance, schedule and budget. Being on time has become a strict requirement for two reasons: to assure the arrival at the telescope due to the pressure on demanding new instrumentation for this first world-class telescopes and to not fall in over-costs. The budget and cash-flow is not always the expected one and has to be properly handled from different administrative departments at the funding centers worldwide distributed. The complexity of the organizations, the technological and scientific return to the Consortium partners and the participation in the project of all kind of professional centers working in astronomical instrumentation: universities, research centers, small and large private companies, workshops and providers, etc. make the project management strategy, and the tools and procedures tuned to the project needs, crucial for success. MEGARA (Multi-Espectrógrafo en GTC de Alta Resolución para Astronomía) is a facility instrument of the 10.4m GTC (La Palma, Spain) working at optical wavelengths that provides both Integral-Field Unit (IFU) and Multi-Object Spectrograph (MOS) capabilities at resolutions in the range R=6,000-20,000. The project is an initiative led by Universidad Complutense de Madrid (Spain) in collaboration with INAOE (Mexico), IAA-CSIC (Spain) and Universidad Politécnica de Madrid (Spain). MEGARA is being developed under contract with GRANTECAN.

  10. Analysis of global climate variability from homogenously reprocessed ground-based GNSS measurements

    Science.gov (United States)

    Ahmed, Furqan; Hunegnaw, Addisu; Teferle, Felix Norman; Bingley, Richard

    2015-04-01

    The tropospheric delay information obtained through long-term homogenous reprocessing of Global Navigation Satellite System (GNSS) observations can be used for climate change and variability analysis on a global scale. A reprocessed global dataset of GNSS-derived zenith total delay (ZTD) and position estimates, based on the network double differencing (DD) strategy and covering 1994-2012, has been recently produced at the University of Luxembourg using the Bernese GNSS Software 5.2 (BSW5.2) and the reprocessed products from the Centre for Orbit Determination in Europe (CODE). The network of ground-based GNSS stations processed to obtain this dataset consists of over 400 globally distributed stations. The GNSS-derived ZTD has been validated by comparing it to that derived from reanalysis data from the European Centre for Medium-Range Weather Forecasts (ECMWF). After validation and quality control, the ZTD dataset obtained using the DD strategy has been used to investigate the inter-annual, seasonal and diurnal climate variability and trends in the tropospheric delay on various regional to global spatial scales. Precise point positioning (PPP) is a processing strategy for GNSS observations which is based on observations from a single station rather than a network of baselines and is therefore computationally more efficient than the DD strategy. However, the two processing strategies, i.e. DD and PPP, have their own strengths and weaknesses and could affect the solutions differently at different geographical locations. In order to explore the use of PPP strategy for climate monitoring, another experimental dataset covering a shorter period has been produced using the PPP strategy and compared to the DD based ZTD dataset.

  11. Navigation Lights - USACE IENC

    Data.gov (United States)

    Department of Homeland Security — These inland electronic Navigational charts (IENCs) were developed from available data used in maintenance of Navigation channels. Users of these IENCs should be...

  12. Behavioral Mapless Navigation Using Rings

    Science.gov (United States)

    Monroe, Randall P.; Miller, Samuel A.; Bradley, Arthur T.

    2012-01-01

    This paper presents work on the development and implementation of a novel approach to robotic navigation. In this system, map-building and localization for obstacle avoidance are discarded in favor of moment-by-moment behavioral processing of the sonar sensor data. To accomplish this, we developed a network of behaviors that communicate through the passing of rings, data structures that are similar in form to the sonar data itself and express the decisions of each behavior. Through the use of these rings, behaviors can moderate each other, conflicting impulses can be mediated, and designers can easily connect modules to create complex emergent navigational techniques. We discuss the development of a number of these modules and their successful use as a navigation system in the Trinity omnidirectional robot.

  13. Communications

    Science.gov (United States)

    Bailenson, Jeremy; Buzzanell, Patrice; Deetz, Stanley; Tewksbury, David; Thompson, Robert J.; Turow, Joseph; Bichelmeyer, Barbara; Bishop, M. J.; Gayeski, Diane

    2013-01-01

    Scholars representing the field of communications were asked to identify what they considered to be the most exciting and imaginative work currently being done in their field, as well as how that work might change our understanding. The scholars included Jeremy Bailenson, Patrice Buzzanell, Stanley Deetz, David Tewksbury, Robert J. Thompson, and…

  14. Navigation services of the Mars Network

    Science.gov (United States)

    Ely, T. A.; Guinn, J.; Quintanilla, E.

    2003-01-01

    The Mars Network provides proximity based communications and navigation services to support Mars exploration. The network will be comprised of science orbiters with a MN relay transceiver, and potentially, dedicated telecommunication orbiters. The common MN transceiver, called Electra, is currently in deployment, and is being designed for both communications and radiometric tracking.

  15. Ground Based Investigation of Electrostatic Accelerometer in HUST

    Science.gov (United States)

    Bai, Y.; Zhou, Z.

    2013-12-01

    High-precision electrostatic accelerometers with six degrees of freedom (DOF) acceleration measurement were successfully used in CHAMP, GRACE and GOCE missions which to measure the Earth's gravity field. In our group, space inertial sensor based on the capacitance transducer and electrostatic control technique has been investigated for test of equivalence principle (TEPO), searching non-Newtonian force in micrometer range, and satellite Earth's field recovery. The significant techniques of capacitive position sensor with the noise level at 2×10-7pF/Hz1/2 and the μV/Hz1/2 level electrostatic actuator are carried out and all the six servo loop controls by using a discrete PID algorithm are realized in a FPGA device. For testing on ground, in order to compensate one g earth's gravity, the fiber torsion pendulum facility is adopt to measure the parameters of the electrostatic controlled inertial sensor such as the resolution, and the electrostatic stiffness, the cross couple between different DOFs. A short distance and a simple double capsule equipment the valid duration about 0.5 second is set up in our lab for the free fall tests of the engineering model which can directly verify the function of six DOF control. Meanwhile, high voltage suspension method is also realized and preliminary results show that the horizontal axis of acceleration noise is about 10-8m/s2/Hz1/2 level which limited mainly by the seismic noise. Reference: [1] Fen Gao, Ze-Bing Zhou, Jun Luo, Feasibility for Testing the Equivalence Principle with Optical Readout in Space, Chin. Phys. Lett. 28(8) (2011) 080401. [2] Z. Zhu, Z. B. Zhou, L. Cai, Y. Z. Bai, J. Luo, Electrostatic gravity gradiometer design for the advanced GOCE mission, Adv. Sp. Res. 51 (2013) 2269-2276. [3] Z B Zhou, L Liu, H B Tu, Y Z Bai, J Luo, Seismic noise limit for ground-based performance measurements of an inertial sensor using a torsion balance, Class. Quantum Grav. 27 (2010) 175012. [4] H B Tu, Y Z Bai, Z B Zhou, L Liu, L

  16. Ground-Based Observing Campaign of Briz-M Debris

    Science.gov (United States)

    Lederer, S. M.; Buckalew, B.; Frith, J.; Cowardin, H. M.; Hickson, P.; Matney, M.; Anz-Meador, P.

    2017-01-01

    In 2015, NASA's Orbital Debris Program Office (ODPO) completed the installation of the Meter Class Autonomous Telescope (MCAT) on Ascension Island. MCAT is a 1.3m optical telescope designed with a fast tracking capability for observing orbital debris at all orbital regimes (Low-Erath orbits to Geosyncronous (GEO) orbits) from a low latitude site. This new asset is dedicated year-round for debris observations, and its location fills a geographical gap in the Ground-based Electro Optical Space Surveillance (GEODSS) network. A commercial off the shelf (COTS) research grade 0.4m telescope (named the Benbrook telescope) will also be installed on Ascension at the end of 2016. This smaller version is controlled by the same master software, designed by Euclid Research, and can be tasked to work independently or in concert with MCAT. Like MCAT, it has a the same suite of filters, a similar field of view, and a fast-tracking Astelco mount, and is also capable of tracking debris at all orbital regimes. These assets are well suited for targeted campagins or surveys of debris. Since 2013, NASA's ODPO has also had extensive access to the 3.8m infrared UKIRT telescope, located on Mauna Kea. At nearly 14,000-ft, this site affords excellent conditions for collecting both photometery and spectroscopy at near-IR (0.9 - 2.5 micrometers SWIR) and thermal-IR (8 - 25 micrometers; LWIR) regimes, ideal for investigating material properties as well as thermal characteristics and sizes of debris. For the purposes of understanding orbital debris, taking data in both survey mode as well as targeting individual objects for more in-depth characterizations are desired. With the recent break-ups of Briz-M rocket bodies, we have collected a suite of data in the optical, near-infrared, and mid-infrared of in-tact objects as well as those classified as debris. A break-up at GEO of a Briz-M rocket occurred in January, 2016, well timed for the first remote observing survey-campaign with MCAT. Access to

  17. Evidence toward an expanded international civil aviation organization (ICAO) concept of a single unified global communication navigation surveillance air traffic management (CNS/ATM) system: A quantitative analysis of ADS-B technology within a CNS/ATM system

    Science.gov (United States)

    Gardner, Gregory S.

    This research dissertation summarizes research done on the topic of global air traffic control, to include technology, controlling world organizations and economic considerations. The International Civil Aviation Organization (ICAO) proposed communication, navigation, surveillance, air traffic management system (CNS/ATM) plan is the basis for the development of a single global CNS/ATM system concept as it is discussed within this study. Research will be evaluated on the efficacy of a single technology, Automatic Dependent Surveillance-Broadcast (ADS-B) within the scope of a single global CNS/ATM system concept. ADS-B has been used within the Federal Aviation Administration's (FAA) Capstone program for evaluation since the year 2000. The efficacy of ADS-B was measured solely by using National Transportation Safety Board (NTSB) data relating to accident and incident rates within the Alaskan airspace (AK) and that of the national airspace system (NAS).

  18. Bio-inspired odor-based navigation

    Science.gov (United States)

    Porter, Maynard J., III; Vasquez, Juan R.

    2006-05-01

    The ability of many insects, especially moths, to locate either food or a member of the opposite sex is an amazing achievement. There are numerous scenarios where having this ability embedded into ground-based or aerial vehicles would be invaluable. This paper presents results from a 3-D computer simulation of an Unmanned Aerial Vehicle (UAV) autonomously tracking a chemical plume to its source. The simulation study includes a simulated dynamic chemical plume, 6-degree of freedom, nonlinear aircraft model, and a bio-inspired navigation algorithm. The emphasis of this paper is the development and analysis of the navigation algorithm. The foundation of this algorithm is a fuzzy controller designed to categorize where in the plume the aircraft is located: coming into the plume, in the plume, exiting the plume, or out of the plume.

  19. Navigation of space VLBI missions: Radioastron and VSOP

    Science.gov (United States)

    Ellis, Jordan

    1993-01-01

    In the mid-1990s, Russian and Japanese space agencies will each place into highly elliptic earth orbit a radio telescope consisting of a large antenna and radio astronomy receivers. Very long baseline interferometry (VLBI) techniques will be used to obtain high resolution images of radio sources observed by the space and ground based antennas. Stringent navigation accuracy requirements are imposed on the space VLBI missions by the need to transfer an ultra-stable ground reference frequency standard to the spacecraft and by the demands of the VLBI correlation process. Orbit determination for the mission will be the joint responsibility of navigation centers in the U.S., Russia, and Japan with orbit estimates based on combining tracking data from NASA, Russian, and Japanese sites. This paper describes the operational plans, the inter-agency coordination, and data exchange between the navigation centers required for space VLBI navigation.

  20. Navigating the thin-ideal in an athletic world: influence of coach communication on female athletes' body image and health choices.

    Science.gov (United States)

    Beckner, Brittany N; Record, Rachael A

    2016-01-01

    This study sought to investigate how interpersonal communication between coaches and female athletes influences the female athletes' perceptions of body image and health choices. Much of the current literature has focused on the fact that female athletes are at risk for disordered eating and a distorted body image due to susceptibility to the feminine "thin-ideal" while maintaining the fitness levels necessary to compete in their sport. However, very little research has examined how interpersonal interaction plays a role in female athletes' body image perceptions and health behaviors. Utilizing the Communication Theory of Identity (CTI) as a lens to examine communication between female athletes and their coaches, the researchers analyzed transcripts from in-depth interviews with 28 female athletes and identified themes within the personal, relational, enacted, and communal layers of identity. Coach communication with their female athletes was found to be influential to the athletes' body images and health choices.

  1. Project ORION: Orbital Debris Removal Using Ground-Based Sensors and Lasers

    Science.gov (United States)

    Campbell, J. W.

    1996-01-01

    About 100,000 pieces of 1 to 10-cm debris in low-Earth orbit are too small to track reliably but large enough to cripple or destroy spacecraft. The ORION team studied the feasibility of removing the debris with ground-based laser impulses. Photoablation experiments were surveyed and applied to likely debris materials. Laser intensities needed for debris orbit modification call for pulses on the order of lOkJ or continuous wave lasers on the order of 1 MW. Adaptive optics are necessary to correct for atmospheric turbulence. Wavelength and pulse duration windows were found that limit beam degradation due to nonlinear atmospheric processes. Debris can be detected and located to within about 10 microrads with existing radar and passive optical technology. Fine targeting would be accomplished with laser illumination, which might also be used for detection. Bistatic detection with communications satellites may also be possible. We recommend that existing technology be used to demonstrate the concept at a loss of about $20 million. We calculate that an installation to clear altitudes up to 800 km of 1 to 10-cm debris over 2 years of operation would cost about $80 million. Clearing altitudes up to 1,500 km would take about 3 years and cost about $160 million.

  2. Development of ground-based ELF/VLF receiver system in Wuhan and its first results

    Science.gov (United States)

    Chen, Yanping; Yang, Guobin; Ni, Binbin; Zhao, Zhengyu; Gu, Xudong; Zhou, Chen; Wang, Feng

    2016-05-01

    A new digital low-frequency receiver system has been developed at Wuhan University for sensitive reception of low-latitude broadband Extremely Low Frequency (ELF) and Very Low Frequency (VLF) radio waves originating from either natural or artificial sources. These low-frequency radio waves are useful for ionospheric remote sensing, geospace environment monitoring, and submarine communications. This paper presents the principle and architecture of the system framework, including magnetic loop antenna design, low-noise analog front-end and digital receiver with data sampling and transmission. A new structure is adopted in the analog front end to provide high common-mode rejection and to reduce interference. On basis of field programmable gate array (FPGA) device and Universal Serial Bus (USB) architecture, the digital receiver is developed along with time keeping and synchronization module. The validity and feasibility of the self-developed ground-based ELF/VLF receiver system is evaluated by first results of experimental data that show the temporal variation of broadband ELF/VLF wave spectral intensity in Wuhan (30.54 °N, 114.37 °E). In addition to the acquisition of VLF transmitter signals at various frequencies, tweek atmospherics are also clearly captured to occur at multiple modes up to n = 6.

  3. Hybrid onboard and ground based digital channelizer beam-forming for SATCOM interference mitigation and protection

    Science.gov (United States)

    Xiong, Wenhao; Wang, Gang; Tian, Xin; Pham, Khanh; Blasch, Erik; Chen, Genshe

    2016-05-01

    In this work, we propose a novel beam-forming power allocation method for a satellite communication (SATCOM) multiple-input multiple-output (MIMO) system to mitigate the co-channel interference (CCI) as well as limiting the signal leakage to the adversary users. In SATCOM systems, the beam-forming technique is a conventional way of avoiding interference, controlling the antenna beams, and mitigating undesired signals. We propose to use an advanced beam-forming technique which considers the number of independent channels used and transmitting power deployed to reduce and mitigate the unintentional interference effect. With certain quality of service (QoS) for the SATCOM system, independent channels components will be selected. It is desired to use less and stronger channel components when possible. On the other hand, considering that SATCOM systems often face the problem that adversary receiver detects the signal, a proposed power allocation method can efficiently reduce the received power at the adversary receiver. To reduce the computational burden on the transponder in order to minimize the size, mass, power consumption and delay for the satellite, we apply a hybrid onboard and ground based beam-forming design to distribute the calculation between the transponder and ground terminals. Also the digital channelizer beam-forming (DCB) technique is employed to achieve dynamic spatial control.

  4. Navigation in spatial networks: A survey

    Science.gov (United States)

    Huang, Wei; Chen, Shengyong; Wang, Wanliang

    2014-01-01

    The study on the navigation process in spatial networks has attracted much attention in recent years due to the universal applications in real communication networks. This article surveys recent advances of the navigation problem in spatial networks. Due to the ability to overcome scaling limitations in utilizing geometric information for designing navigation algorithms in spatial networks, we summarize here several important navigation algorithms based on geometric information on both homogeneous and heterogeneous spatial networks. Due to the geometric distance employed, the cost associated with the lengths of additional long-range connections is also taken into account in this survey. Therefore, some contributions reporting how the distribution of long-range links’ lengths affects the average navigation time are summarized. We also briefly discuss two other related processes, i.e. the random walk process and the transportation process. Finally, a few open discussions are included at the end of this survey.

  5. Ground-based monitoring of solar radiation in Moldova

    Science.gov (United States)

    Aculinin, Alexandr; Smicov, Vladimir

    2010-05-01

    Integrated measurements of solar radiation in Kishinev, Moldova have been started by Atmospheric Research Group (ARG) at the Institute of Applied Physics from 2003. Direct, diffuse and total components of solar and atmospheric long-wave radiation are measured by using of the radiometric complex at the ground-based solar radiation monitoring station. Measurements are fulfilled at the stationary and moving platforms equipped with the set of 9 broadband solar radiation sensors overlapping wavelength range from UV-B to IR. Detailed description of the station can be found at the site http://arg.phys.asm.md. Ground station is placed in an urban environment of Kishinev city (47.00N; 28.56E). Summary of observation data acquired at the station in the course of short-term period from 2004 to 2009 are presented below. Solar radiation measurements were fulfilled by using CM11(280-3000 nm) and CH1 sensors (Kipp&Zonen). In the course of a year maximum and minimum of monthly sums of total radiation was ~706.4 MJm-2 in June and ~82.1MJm-2 in December, respectively. Monthly sums of direct solar radiation (on horizontal plane) show the maximum and minimum values of the order ~456.9 MJm-2 in July and ~25.5MJm-2 in December, respectively. In an average, within a year should be marked the predominance of direct radiation over the scattered radiation, 51% and 49%, respectively. In the course of a year, the percentage contribution of the direct radiation into the total radiation is ~55-65% from May to September. In the remaining months, the percentage contribution decreases and takes the minimum value of ~ 28% in December. In an average, annual sum of total solar radiation is ~4679.9 MJm-2. For the period from April to September accounts for ~76% of the annual amount of total radiation. Annual sum of sunshine duration accounts for ~2149 hours, which is of ~ 48% from the possible sunshine duration. In an average, within a year maximum and minimum of sunshine duration is ~ 304 hours in

  6. Biosensors for EVA: Improved Instrumentation for Ground-based Studies

    Science.gov (United States)

    Soller, B.; Ellerby, G.; Zou, F.; Scott, P.; Jin, C.; Lee, S. M. C.; Coates, J.

    2010-01-01

    During lunar excursions in the EVA suit, real-time measurement of metabolic rate is required to manage consumables and guide activities to ensure safe return to the base. Metabolic rate, or oxygen consumption (VO2), is normally measured from pulmonary parameters but cannot be determined with standard techniques in the oxygen-rich environment of a spacesuit. Our group has developed novel near infrared spectroscopic (NIRS) methods to calculate muscle oxygen saturation (SmO 2), hematocrit, and pH, and we recently demonstrated that we can use our NIRS sensor to measure VO 2 on the leg during cycling. Our NSBRI project has 4 objectives: (1) increase the accuracy of the metabolic rate calculation through improved prediction of stroke volume; (2) investigate the relative contributions of calf and thigh oxygen consumption to metabolic rate calculation for walking and running; (3) demonstrate that the NIRS-based noninvasive metabolic rate methodology is sensitive enough to detect decrement in VO 2 in a space analog; and (4) improve instrumentation to allow testing within a spacesuit. Over the past year we have made progress on all four objectives, but the most significant progress was made in improving the instrumentation. The NIRS system currently in use at JSC is based on fiber optics technology. Optical fiber bundles are used to deliver light from a light source in the monitor to the patient, and light reflected back from the patient s muscle to the monitor for spectroscopic analysis. The fiber optic cables are large and fragile, and there is no way to get them in and out of the test spacesuit used for ground-based studies. With complimentary funding from the US Army, we undertook a complete redesign of the sensor and control electronics to build a novel system small enough to be used within the spacesuit and portable enough to be used by a combat medic. In the new system the filament lamp used in the fiber optic system was replaced with a novel broadband near infrared

  7. Biosensors for EVA: Improved Instrumentation for Ground-based Studies

    Science.gov (United States)

    Soller, B.; Ellerby, G.; Zou, F.; Scott, P.; Jin, C.; Lee, S. M. C.; Coates, J.

    2010-01-01

    During lunar excursions in the EVA suit, real-time measurement of metabolic rate is required to manage consumables and guide activities to ensure safe return to the base. Metabolic rate, or oxygen consumption (VO2), is normally measured from pulmonary parameters but cannot be determined with standard techniques in the oxygen-rich environment of a spacesuit. Our group has developed novel near infrared spectroscopic (NIRS) methods to calculate muscle oxygen saturation (SmO 2), hematocrit, and pH, and we recently demonstrated that we can use our NIRS sensor to measure VO 2 on the leg during cycling. Our NSBRI project has 4 objectives: (1) increase the accuracy of the metabolic rate calculation through improved prediction of stroke volume; (2) investigate the relative contributions of calf and thigh oxygen consumption to metabolic rate calculation for walking and running; (3) demonstrate that the NIRS-based noninvasive metabolic rate methodology is sensitive enough to detect decrement in VO 2 in a space analog; and (4) improve instrumentation to allow testing within a spacesuit. Over the past year we have made progress on all four objectives, but the most significant progress was made in improving the instrumentation. The NIRS system currently in use at JSC is based on fiber optics technology. Optical fiber bundles are used to deliver light from a light source in the monitor to the patient, and light reflected back from the patient s muscle to the monitor for spectroscopic analysis. The fiber optic cables are large and fragile, and there is no way to get them in and out of the test spacesuit used for ground-based studies. With complimentary funding from the US Army, we undertook a complete redesign of the sensor and control electronics to build a novel system small enough to be used within the spacesuit and portable enough to be used by a combat medic. In the new system the filament lamp used in the fiber optic system was replaced with a novel broadband near infrared

  8. Ground-based Space Weather Monitoring with LOFAR

    Science.gov (United States)

    Wise, Michael; van Haarlem, Michiel; Lawrence, Gareth; Reid, Simon; Bos, Andre; Rawlings, Steve; Salvini, Stef; Mitchell, Cathryn; Soleimani, Manuch; Amado, Sergio; Teresa, Vital

    As one of the first of a new generation of radio instruments, the International LOFAR Telescope (ILT) will provide a number of unique and novel capabilities for the astronomical community. These include remote configuration and operation, dynamic real-time processing and system response, and the ability to provide multiple simultaneous streams of data to a community whose scientific interests run the gamut from lighting in the atmospheres of distant planets to the origins of the universe itself. The LOFAR (LOw Frequency ARray) system is optimized for a frequency range from 30-240 MHz and consists of multiple antenna fields spread across Europe. In the Netherlands, a total 36 LOFAR stations are nearing completion with an initial 8 international stations currently being deployed in Germany, France, Sweden, and the UK. Digital beam-forming techniques make the LOFAR system agile and allow for rapid repointing of the telescope as well as the potential for multiple simultaneous observations. With its dense core array and long interferometric baselines, LOFAR has the potential to achieve unparalleled sensitivity and spatial resolution in the low frequency radio regime. LOFAR will also be one of the first radio observatories to feature automated processing pipelines to deliver fully calibrated science products to its user community. As we discuss in this presentation, the same capabilities that make LOFAR a powerful tool for radio astronomy also provide an excellent platform upon which to build a ground-based monitoring system for space weather events. For example, the ability to monitor Solar activity in near real-time is one of the key scientific capabilities being developed for LOFAR. With only a fraction of its total observing capacity, LOFAR will be able to provide continuous monitoring of the Solar spectrum over the entire 10-240 MHz band down to microsecond timescales. Autonomous routines will scan these incoming spectral data for evidence of Solar flares and be

  9. Apollo Onboard Navigation Techniques

    Science.gov (United States)

    Interbartolo, Michael

    2009-01-01

    This viewgraph presentation reviews basic navigation concepts, describes coordinate systems and identifies attitude determination techniques including Primary Guidance, Navigation and Control System (PGNCS) IMU management and Command and Service Module Stabilization and Control System/Lunar Module (LM) Abort Guidance System (AGS) attitude management. The presentation also identifies state vector determination techniques, including PGNCS coasting flight navigation, PGNCS powered flight navigation and LM AGS navigation.

  10. Inertial Navigation Sensors

    Science.gov (United States)

    2010-03-01

    Capteurs de navigation a faible cout et technologie d’integration) RTO-EN-SET-116(2010) 14. ABSTRACT For many navigation applications , improved...ABSTRACT For many navigation applications , improved accuracy/performance is not necessarily the most important issue, but meeting performance at...reduced cost and size is. In particular, small navigation sensor size allows the introduction of guidance, navigation, and control into applications

  11. An integrated platform for inertial navigation systems

    Science.gov (United States)

    Dumitrascu, Ana; Tamas, Razvan D.; Caruntu, George; Bobirca, Daniel

    2015-02-01

    In this paper we propose a new configuration for an inertial navigation system (INS), type strap down, designed to be used onboard a ship. The system consists of an inertial navigation unit (IMU), using a 9-axis inertial sensor and pressure and temperature sensors, a GPS module, various interfaces for optimal communication and command, a microcontroller for data processing and computing and a power supply.

  12. Super Short Baseline Underwater Acoustic Positioning Supported by Inertial Navigation Data Using Spread Spectrum Communication for Autonomous Underwater Vehicle and Error Analysis in Deep Water

    Science.gov (United States)

    Watanabe, Yoshitaka; Ochi, Hiroshi; Shimura, Takuya; Hattori, Takehito

    2009-07-01

    A tracking and positioning method achieved by integration of the super short baseline (SSBL) and inertial navigation system (INS) data for an autonomous underwater vehicle (AUV) is introduced. The proposed method uses a continuous acoustic signal as the response signal from the target AUV. The INS data obtained in the AUV is transmitted with the acoustic signal by the direct-sequence spread spectrum (DSSS) technique and the SSBL estimation is achieved using the same signal. The error of the SSBL, particularly the influence of a multipath, was analyzed. The use of a continuous signal showed that the multipath is influential even if its level is small relative to the direct wave. This influence was observed under actual conditions in an ocean experiment in a deep-water area. The proposed method was confirmed to be available and useful by simulations and experimental results.

  13. Geospace Science from Ground-based Magnetometer Arrays: Advances in Sensors, Data Collection, and Data Integration

    Science.gov (United States)

    Mann, Ian; Chi, Peter

    2016-07-01

    Networks of ground-based magnetometers now provide the basis for the diagnosis of magnetic disturbances associated with solar wind-magnetosphere-ionosphere coupling on a truly global scale. Advances in sensor and digitisation technologies offer increases in sensitivity in fluxgate, induction coil, and new micro-sensor technologies - including the promise of hybrid sensors. Similarly, advances in remote connectivity provide the capacity for truly real-time monitoring of global dynamics at cadences sufficient for monitoring and in many cases resolving system level spatio-temporal ambiguities especially in combination with conjugate satellite measurements. A wide variety of the plasmaphysical processes active in driving geospace dynamics can be monitored based on the response of the electrical current system, including those associated with changes in global convection, magnetospheric substorms and nightside tail flows, as well as due to solar wind changes in both dynamic pressure and in response to rotations of the direction of the IMF. Significantly, any changes to the dynamical system must be communicated by the propagation of long-period Alfven and/or compressional waves. These wave populations hence provide diagnostics for not only the energy transport by the wave fields themselves, but also provide a mechanism for diagnosing the structure of the background plasma medium through which the waves propagate. Ultra-low frequency (ULF) waves are especially significant in offering a monitor for mass density profiles, often invisible to particle detectors because of their very low energy, through the application of a variety of magneto-seismology and cross-phase techniques. Renewed scientific interest in the plasma waves associated with near-Earth substorm dynamics, including magnetosphere-ionosphere coupling at substorm onset and their relation to magnetotail flows, as well the importance of global scale ultra-low frequency waves for the energisation, transport

  14. Dynamic Transportation Navigation

    Science.gov (United States)

    Meng, Xiaofeng; Chen, Jidong

    Miniaturization of computing devices, and advances in wireless communication and sensor technology are some of the forces that are propagating computing from the stationary desktop to the mobile outdoors. Some important classes of new applications that will be enabled by this revolutionary development include intelligent traffic management, location-based services, tourist services, mobile electronic commerce, and digital battlefield. Some existing application classes that will benefit from the development include transportation and air traffic control, weather forecasting, emergency response, mobile resource management, and mobile workforce. Location management, i.e., the management of transient location information, is an enabling technology for all these applications. In this chapter, we present the applications of moving objects management and their functionalities, in particular, the application of dynamic traffic navigation, which is a challenge due to the highly variable traffic state and the requirement of fast, on-line computations.

  15. COMMUNICATIONS

    CERN Document Server

    A. Petrilli

    2013-01-01

    The organisation of the Open Days at the end of September was the single biggest effort of the CMS Communications Group this year. We would like to thank all volunteers for their hard work to show our Point 5 facilities and explain science and technology to the general public. During two days more than 5,000 people visited the CMS detector underground and profited from the surface activities, which included an exhibition on CMS, a workshop on superconductivity, and an activity for our younger visitors involving wooden Kapla blocks. The Communications Group took advantage of the preparations to produce new CMS posters that can be reused at other venues. Event display images have been produced not just for this occasion but also for other exhibits, education purposes, publications etc. During the Open Days, Gilles Jobin, 2012 winner of CERN Collide@CERN prize, performed his Quantum show in Point 5, with the light installation of German artist Julius von Bismarck. Image 3: CERN Open Days at CMS wel...

  16. COMMUNICATIONS

    CERN Multimedia

    L. Taylor and D. Barney

    2010-01-01

    CMS Centres, Outreach and the 7 TeV Media Event The new CMS Communications group is now established and is addressing three areas that are critical to CMS as it enters the physics operations phase: - Communications Infrastructure, including almost 50 CMS Centres Worldwide, videoconferencing systems, and CERN meeting rooms - Information systems, including the internal and external Web sites as well as the document preparation and management systems - Outreach and Education activities, including working with print, radio and TV media, visits to CMS, and exhibitions. The group has been active in many areas, with the highest priority being accorded to needs of CMS operations and preparations for the major media event planned for 7 TeV collisions. Unfortunately the CMS Centre@CERN suffered a major setback when, on 21st December, a cooling water pipe froze and burst on the floor above the CMS Centre main room. Water poured through the ceiling, flooding the floor and soaking some of the consoles, before e...

  17. Advanced Communication & Navigation (C&N) Architectures for Deep-Space Missions%用于深空探测任务的先进通信与导航体制

    Institute of Scientific and Technical Information of China (English)

    冯礼和; 平劲松

    2011-01-01

    介绍了一套用于深空探测的先进通信与导航体制.在综述美国国家航空航天局相关研究进展、讨论这套体制中的关键特征技术的同时,文章利用飞行在地月平动点L3/L4/L5的晕轨道上的中继通信和跟踪卫星,建议了一种超长距离干涉测量(ELBI)技术.探讨了ELBI技术对先进通信与导航体制进行增强的可能性和应用潜力.%Advanced deep-space communication & navigation architectures based mainly on a recent NASA/SCAWG report are reviewed.Some of the key features are discussed, and a novel Extremely Long Baseline Interferometry (ELBI) approach that puts communication, relay and tracking satellites in the Earth- Moon L3/L4/L5 halo orbits is proposed to enhance the overall system capability and performance.

  18. Downlink Fiber Laser Transmitter for Deep Space Communication Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA's Space Communications and Navigation (SCaN) roadmap, calls for an integrated network approach to communication and navigation needs for robotic and human space...

  19. Downlink Fiber Laser Transmitter for Deep Space Communication Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA's Space Communications and Navigation (SCaN) roadmap, calls for an integrated network approach to communication and navigation needs for robotic and human space...

  20. Ground-based phase wind-up and its application in yaw angle determination

    Science.gov (United States)

    Cai, M.; Chen, W.; Dong, D.; Yu, C.; Zheng, Z.; Zhou, F.; Wang, M.; Yue, W.

    2016-08-01

    Ground-based phase wind-up effect (GPWU) is caused by the rotation of receiving antenna. It had been studied and applied in rapidly rotation platforms, such as sounding rocket, guided missile and deep space exploration. In Global Navigation Satellite System high accuracy positioning applications, however, most studies treated it as an error source and focused on eliminating this effect in Precision Point Positioning and Real Time Kinematic (RTK) positioning. The GPWU effect is also sensitive to the rotational status of the antenna, in particular the yaw angle variations. In this paper we explore the feasibility of yaw angle determination of relatively slow rotation platforms based on the GPWU effect. We use the geometry-free carrier phase observations from a RTK base and a moving station receivers to estimate the cumulative yaw angle of the moving platform. Several experiments, including rotating platform tests, vehicle and shipborne tests were carried out. The cumulative errors of rotating platform tests are under 0.38°, indicating good long-term accuracy of the GPWU determined yaw angle. But the RMS are in a range of 11.98° and 17.39°, indicating the errors, such as multipath effect, are not negligible and should be further investigated. The RMS of vehicle and shipborne tests using a base station of 9-11 km are 24.77° and 23.66°. In order to evaluate the influence of the differential ionospheric delay, another vehicle test was carried out using a base station located less than 1 km to the vehicle. The RMS reduces to 15.11°, which gains 39.00 % improvement than before, and demonstrates that the differential ionospheric delay even from a few kilometers long baseline still cannot be neglected. These tests validate the feasibility of GPWU for real-time yaw angle determination. Since this method is able to determine the yaw angle with a minimum one satellite, such a unique feature provides potential applications for attitude determination in the environment with

  1. Ground-based Infrared Observations of Water Vapor and Hydrogen Peroxide in the Atmosphere of Mars

    Science.gov (United States)

    Encrenaz, T.; Greathouse, T. K.; Bitner, M.; Kruger, A.; Richter, M. J.; Lacy, J. H.; Bézard, B.; Fouchet, T.; Lefevre, F.; Forget, F.; Atreya, S. K.

    2008-11-01

    Ground-based observations of water vapor and hydrogen peroxide have been obtained in the thermal infrared range, using the TEXES instrument at the NASA Infrared Telescope Facility, for different times of the seasonal cycle.

  2. Informing hydrological models with ground-based time-lapse relative gravimetry: potential and limitations

    DEFF Research Database (Denmark)

    Bauer-Gottwein, Peter; Christiansen, Lars; Rosbjerg, Dan

    2011-01-01

    Coupled hydrogeophysical inversion emerges as an attractive option to improve the calibration and predictive capability of hydrological models. Recently, ground-based time-lapse relative gravity (TLRG) measurements have attracted increasing interest because there is a direct relationship between ...

  3. Changes in ground-based solar ultraviolet radiation during fire episodes: a case study

    CSIR Research Space (South Africa)

    Wright, CY

    2013-09-01

    Full Text Available about the relationship between fires and solar UVR without local high-quality column or ground-based ambient air pollution (particulate matter in particular) data; however, the threat to public health from fires was acknowledged....

  4. System Identification and Automatic Mass Balancing of Ground-Based Three-Axis Spacecraft Simulator

    Science.gov (United States)

    2006-08-01

    System Identification and Automatic Mass Balancing of Ground-Based Three-Axis Spacecraft Simulator Jae-Jun Kim∗ and Brij N. Agrawal † Department of...TITLE AND SUBTITLE System Identification and Automatic Mass Balancing of Ground-Based Three-Axis Spacecraft Simulator 5a. CONTRACT NUMBER 5b...and Dynamics, Vol. 20, No. 4, July-August 1997, pp. 625-632. 6Schwartz, J. L. and Hall, C. D., “ System Identification of a Spherical Air-Bearing

  5. Time and Motion Study of a Community Patient Navigator

    Directory of Open Access Journals (Sweden)

    Sara S. Phillips

    2014-04-01

    Full Text Available Research on patient navigation has focused on validating the utility of navigators by defining their roles and analyzing their effects on patient outcomes, patient satisfaction, and cost effectiveness. Patient navigators are increasingly used outside the research context, and their roles without research responsibilities may look very different. This pilot study captured the activities of a community patient navigator for uninsured women with a positive screening test for breast cancer, using a time and motion approach over a period of three days. We followed the actions of this navigator minute by minute to assess the relative ratios of actions performed and to identify areas for time efficiency improvement to increase direct time with patients. This novel approach depicts the duties of a community patient navigator no longer fettered by navigation logs, research team meetings, surveys, and the consent process. We found that the community patient navigator was able to spend more time with patients in the clinical context relative to performing paperwork or logging communication with patients as a result of her lack of research responsibilities. By illuminating how community patient navigation functions as separate from the research setting, our results will inform future hiring and training of community patient navigators, system design and operations for improving the efficiency and efficacy of navigators, and our understanding of what community patient navigators do in the absence of research responsibilities.

  6. Optical Navigation System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal is for a flexible navigation system for deep space operations that does not require GPS measurements. The navigation solution is computed using an...

  7. Optical Navigation System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal is for a flexible navigation system for deep space operations that does not require GPS measurements. The navigation solution is computed using an...

  8. 33 CFR 67.40-10 - Communication with owner.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Communication with owner. 67.40... Communication with owner. Communication with the owners of private aids to navigation by the District Commander shall be addressed to their usual or last known place of business, or to their local representative, if...

  9. Ground Optical Navigation for the Stardust-Next Mission to Comet 9P/TEMPEL1

    Science.gov (United States)

    Gillam, Stephen D.; Riedel, J. Ed.; Owen, William M., Jr.; Wang, Tseng-Chan Mike; Werner, Robert A.; Bhaskaran, Shyam; Chesley, Steven R.; Thompson, Paul F.; Wolf, Aron A.

    2011-01-01

    Ground-based optical navigation (OpNav) using pictures taken by the Naviga-tion camera on the Stardust spacecraft provided the target-relative information needed to design maneuvers during its approach to comet Tempel 1. Hardware problems, limited downlink bandwidth, and changes in the flight profile affected the OpNav picture schedule, sometimes in near-real time. The Stardust naviga-tion camera and attitude control presented challenges. Picture-processing techniques were developed during approach that included background estimation, co-addition, and co-registration. These techniques, along with adaptive picture scheduling, successfully addressed the challenges.

  10. Securing underwater wireless communication networks

    OpenAIRE

    Domingo Aladrén, Mari Carmen

    2011-01-01

    Underwater wireless communication networks are particularly vulnerable to malicious attacks due to the high bit error rates, large and variable propagation delays, and low bandwidth of acoustic channels. The unique characteristics of the underwater acoustic communication channel, and the differences between underwater sensor networks and their ground-based counterparts require the development of efficient and reliable security mechanisms. In this article, a compl...

  11. A dialogue agent for navigation support in virtual reality

    NARCIS (Netherlands)

    Luin, van J.; Akker, op den H.J.A.; Nijholt, A.; Jacko, J.; Sears, A.

    2001-01-01

    We describe our work on designing a natural language accessible navigation agent for a virtual reality (VR) environment. The agent is part of an agent framework, which means that it can communicate with other agents. Its navigation task consists of guiding the visitors in the environment and to answ

  12. 47 CFR 24.55 - Antenna structures; air navigation safety.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Antenna structures; air navigation safety. 24... SERVICES PERSONAL COMMUNICATIONS SERVICES Technical Standards § 24.55 Antenna structures; air navigation safety. Licensees that own their antenna structures must not allow these antenna structures to become...

  13. 47 CFR 27.56 - Antenna structures; air navigation safety.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Antenna structures; air navigation safety. 27... SERVICES MISCELLANEOUS WIRELESS COMMUNICATIONS SERVICES Technical Standards § 27.56 Antenna structures; air navigation safety. A licensee that owns its antenna structure(s) must not allow such antenna structure(s)...

  14. A comprehensive assessment of ionospheric gradients observed in Ecuador during 2013 and 2014 for ground based augmentation systems

    Science.gov (United States)

    Sánchez-Naranjo, S.; Rincón, W.; Ramos-Pollán, R.; González, F. A.; Soley, S.

    2017-04-01

    Ground Based Augmentation Systems GBAS provide differential corrections to approaching and landing aircrafts in the vicinities of an airport. The ionosphere can introduce an error not accountable by those differential corrections, and a threat model for the Conterminous United States region CONUS was developed in order to consider the highest gradients measured. This study presents the first extensive analysis of ionospheric gradients for Ecuador, from data fully covering 2013 and 2014 collected by their national Global Navigation Satellite System GNSS monitoring network (REGME). In this work it is applied an automated methodology adapted for low latitudes for processing data from dual frequency receivers networks, by considering data from all available days in the date range of the study regardless the geomagnetic indices values. The events found above the CONUS threat model occurred during days of nominal geomagnetic indices, confirming: (1) the higher bounds required for an ionospheric threat model for Ecuador, and (2) that geomagnetic indices are not enough to indicate relevant ionospheric anomalies in low latitude regions, reinforcing the necessity of a continuous monitoring of ionosphere. As additional contribution, the events database is published online, making it available to other researchers.

  15. Radar and electronic navigation

    CERN Document Server

    Sonnenberg, G J

    2013-01-01

    Radar and Electronic Navigation, Sixth Edition discusses radar in marine navigation, underwater navigational aids, direction finding, the Decca navigator system, and the Omega system. The book also describes the Loran system for position fixing, the navy navigation satellite system, and the global positioning system (GPS). It reviews the principles, operation, presentations, specifications, and uses of radar. It also describes GPS, a real time position-fixing system in three dimensions (longitude, latitude, altitude), plus velocity information with Universal Time Coordinated (UTC). It is accur

  16. Space Shuttle navigation validation

    Science.gov (United States)

    Ragsdale, A.

    The validation of the guidance, navigation, and control system of the Space Shuttle is explained. The functions of the ascent, on-board, and entry mission phases software of the navigation system are described. The common facility testing, which evaluates the simulations to be used in the navigation validation, is examined. The standard preflight analysis of the operational modes of the navigation software and the post-flight navigation analysis are explained. The conversion of the data into a useful reference frame and the use of orbit parameters in the analysis of the data are discussed. Upon entry the data received are converted to flags, ratios, and residuals in order to evaluate performance and detect errors. Various programs developed to support navigation validation are explained. A number of events that occurred with the Space Shuttle's navigation system are described.

  17. A Novel Navigation Robustness and Accuracy Improvement System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — To address NASA's need for L1 C/A-based navigation with better anti-spoofing ability and higher accuracy, Broadata Communications, Inc. (BCI) proposes to develop a...

  18. 33 CFR 104.245 - Communications.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Communications. 104.245 Section... MARITIME SECURITY: VESSELS Vessel Security Requirements § 104.245 Communications. (a) The Vessel Security... board the vessel. (b) Communications systems and procedures must allow effective and...

  19. 33 CFR 154.560 - Communications.

    Science.gov (United States)

    2010-07-01

    ... laboratory or other certification organization approved by the Commandant as defined in 46 CFR 111.105-11. As... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Communications. 154.560 Section... Communications. (a) Each facility must have a means that enables continuous two-way voice communication...

  20. 33 CFR 105.235 - Communications.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Communications. 105.235 Section... MARITIME SECURITY: FACILITIES Facility Security Requirements § 105.235 Communications. (a) The Facility... conditions at the facility. (b) Communication systems and procedures must allow effective and...

  1. Precision optical navigation guidance system

    Science.gov (United States)

    Starodubov, D.; McCormick, K.; Nolan, P.; Johnson, D.; Dellosa, M.; Volfson, L.; Fallahpour, A.; Willner, A.

    2016-05-01

    We present the new precision optical navigation guidance system approach that provides continuous, high quality range and bearing data to fixed wing aircraft during landing approach to an aircraft carrier. The system uses infrared optical communications to measure range between ship and aircraft with accuracy and precision better than 1 meter at ranges more than 7.5 km. The innovative receiver design measures bearing from aircraft to ship with accuracy and precision better than 0.5 mRad. The system provides real-time range and bearing updates to multiple aircraft at rates up to several kHz, and duplex data transmission between ship and aircraft.

  2. 47 CFR 80.1183 - Remote control for maneuvering or navigation.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Remote control for maneuvering or navigation... Communications § 80.1183 Remote control for maneuvering or navigation. (a) An on-board station may be used for remote control of maneuvering or navigation control systems aboard the same ship or, where that ship...

  3. Ground-based follow-up in relation to Kepler Asteroseismic Investigation

    CERN Document Server

    Uytterhoeven, K; Bruntt, H; De Cat, P; Frandsen, S; Gutierrez-Soto, J; Kiss, L; Kurtz, D W; Marconi, M; Molenda-Zakowicz, J; Ostensen, R; Randall, S; Southworth, J; Szabo, R

    2010-01-01

    The Kepler space mission, successfully launched in March 2009, is providing continuous, high-precision photometry of thousands of stars simultaneously. The uninterrupted time-series of stars of all known pulsation types are a precious source for asteroseismic studies. The Kepler data do not provide information on the physical parameters, such as effective temperature, surface gravity, metallicity, and vsini, which are crucial for successful asteroseismic modelling. Additional ground-based time-series data are needed to characterize mode parameters in several types of pulsating stars. Therefore, ground-based multi-colour photometry and mid/high-resolution spectroscopy are needed to complement the space data. We present ground-based activities within KASC on selected asteroseismic Kepler targets of several pulsation types. (Based on observations made with the Isaac Newton Telescope, William Herschel Telescope, Nordic Optical Telescope, Telescopio Nazionale Galileo, Mercator Telescope (La Palma, Spain), and IAC-...

  4. BigBOSS: The Ground-Based Stage IV BAO Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Schlegel, David; Bebek, Chris; Heetderks, Henry; Ho, Shirley; Lampton, Michael; Levi, Michael; Mostek, Nick; Padmanabhan, Nikhil; Perlmutter, Saul; Roe, Natalie; Sholl, Michael; Smoot, George; White, Martin; Dey, Arjun; Abraham, Tony; Jannuzi, Buell; Joyce, Dick; Liang, Ming; Merrill, Mike; Olsen, Knut; Salim, Samir

    2009-04-01

    The BigBOSS experiment is a proposed DOE-NSF Stage IV ground-based dark energy experiment to study baryon acoustic oscillations (BAO) and the growth of structure with an all-sky galaxy redshift survey. The project is designed to unlock the mystery of dark energy using existing ground-based facilities operated by NOAO. A new 4000-fiber R=5000 spectrograph covering a 3-degree diameter field will measure BAO and redshift space distortions in the distribution of galaxies and hydrogen gas spanning redshifts from 0.2< z< 3.5. The Dark Energy Task Force figure of merit (DETF FoM) for this experiment is expected to be equal to that of a JDEM mission for BAO with the lower risk and cost typical of a ground-based experiment.

  5. Comparing Dawn, Hubble Space Telescope, and Ground-Based Interpretations of (4) Vesta

    CERN Document Server

    Reddy, Vishnu; Corre, Lucille Le; Scully, Jennifer E C; Gaskell, Robert; Russell, Christopher T; Park, Ryan S; Nathues, Andreas; Raymond, Carol; Gaffey, Michael J; Sierks, Holger; Becker, Kris J; McFadden, Lucy A

    2013-01-01

    Observations of asteroid 4 Vesta by NASA's Dawn spacecraft are interesting because its surface has the largest range of albedo, color and composition of any other asteroid visited by spacecraft to date. These hemispherical and rotational variations in surface brightness and composition have been attributed to impact processes since Vesta's formation. Prior to Dawn's arrival at Vesta, its surface properties were the focus of intense telescopic investigations for nearly a hundred years. Ground-based photometric and spectroscopic observations first revealed these variations followed later by those using Hubble Space Telescope. Here we compare interpretations of Vesta's rotation period, pole, albedo, topographic, color, and compositional properties from ground-based telescopes and HST with those from Dawn. Rotational spectral variations observed from ground-based studies are also consistent with those observed by Dawn. While the interpretation of some of these features was tenuous from past data, the interpretati...

  6. Ka-band bistatic ground-based SAR using noise signals

    Science.gov (United States)

    Lukin, K.; Mogyla, A.; Vyplavin, P.; Palamarchuk, V.; Zemlyaniy, O.; Tarasenko, V.; Zaets, N.; Skretsanov, V.; Shubniy, A.; Glamazdin, V.; Natarov, M.; Nechayev, O.

    2008-01-01

    Currently, one of the actual problems is remote monitoring of technical state of large objects. Different methods can be used for that purpose. The most promising of them relies on application of ground based synthetic aperture radars (SAR) and differential interferometry. We have designed and tested Ground Based Noise Waveform SAR based on noise radar technology [1] and synthetic aperture antennas [2]. It enabled to build an instrument for precise all-weather monitoring of large objects in real-time. We describe main performance of ground-based interferometric SAR which uses continuous Ka-band noise waveform as a probe signal. Besides, results of laboratory trials and evaluation of its main performance are presented as well.

  7. Feedback from video for virtual reality Navigation

    Energy Technology Data Exchange (ETDEWEB)

    Tsap, L V

    2000-10-27

    Important preconditions for wide acceptance of virtual reality (VR) systems include their comfort, ease and naturalness to use. Most existing trackers super from discomfort-related issues. For example, body-based trackers (hand controllers, joysticks, helmet attachments, etc.) restrict spontaneity and naturalness of motion, while ground-based devices (e.g., hand controllers) limit the workspace by literally binding an operator to the ground. There are similar problems with controls. This paper describes using real-time video with registered depth information (from a commercially available camera) for virtual reality navigation. Camera-based setup can replace cumbersome trackers. The method includes selective depth processing for increased speed, and a robust skin-color segmentation for accounting illumination variations.

  8. First ground-based FTIR-observations of methane in the tropics

    Directory of Open Access Journals (Sweden)

    A. K. Petersen

    2010-02-01

    Full Text Available Total column concentrations and volume mixing ratio profiles of methane have been retrieved from ground-based solar absorption FTIR spectra in the near-infrared recorded in Paramaribo (Suriname. The methane FTIR observations are compared with TM5 model simulations and satellite observations from SCIAMACHY, and represent the first validation of SCIAMACHY retrievals in the tropics using ground-based remote sensing techniques. Apart from local biomass burning features, our methane FTIR observations agree well with the SCIAMACHY retrievals and TM5 model simulations.

  9. Extended lateral heating of the nighttime ionosphere by ground-based VLF transmitters

    OpenAIRE

    İnan, Umran Savaş; Graf, K. L.; Spasojevic, M.; Marshall, R. A.; Lehtinen, N. G.; Foust, F. R.

    2013-01-01

    JOURNAL OF GEOPHYSICAL RESEARCH: SPACE PHYSICS, VOL. 118, 7783–7797, doi:10.1002/2013JA019337, 2013 Extended lateral heating of the nighttime ionosphere by ground-based VLF transmitters K. L. Graf,1 M. Spasojevic,1 R. A. Marshall,2 N. G. Lehtinen,1 F. R. Foust,1 and U. S. Inan1,3 Received 16 August 2013; revised 9 October 2013; accepted 11 November 2013; published 3 December 2013. [1] The effects of ground-based very low frequency (VLF) transmitters on the lower ionospher...

  10. Status of advanced ground-based laser interferometers for gravitational-wave detection

    CERN Document Server

    Dooley, Katherine L; Dwyer, Sheila; Puppo, Paola

    2014-01-01

    Ground-based laser interferometers for gravitational-wave (GW) detection were first constructed starting 20 years ago and as of 2010 collection of several years' worth of science data at initial design sensitivities was completed. Upgrades to the initial detectors together with construction of brand new detectors are ongoing and feature advanced technologies to improve the sensitivity to GWs. This conference proceeding provides an overview of the common design features of ground-based laser interferometric GW detectors and establishes the context for the status updates of each of the four gravitational-wave detectors around the world: Advanced LIGO, Advanced Virgo, GEO600 and KAGRA.

  11. Asteroseismology of solar-type stars with Kepler: III. Ground-based data

    DEFF Research Database (Denmark)

    Karoff, Christoffer; Molenda-Żakowicz , J.

    2010-01-01

    We report on the ground-based follow-up program of spectroscopic and photometric observations of solar-like asteroseismic targets for the Kepler space mission. These stars constitute a large group of more than a thousand objects which are the subject of an intensive study by the Kepler Asteroseis......We report on the ground-based follow-up program of spectroscopic and photometric observations of solar-like asteroseismic targets for the Kepler space mission. These stars constitute a large group of more than a thousand objects which are the subject of an intensive study by the Kepler...

  12. Estimation of solar irradiance using ground-based whole sky imagers

    CERN Document Server

    Dev, Soumyabrata; Lee, Yee Hui; Winkler, Stefan

    2016-01-01

    Ground-based whole sky imagers (WSIs) can provide localized images of the sky of high temporal and spatial resolution, which permits fine-grained cloud observation. In this paper, we show how images taken by WSIs can be used to estimate solar radiation. Sky cameras are useful here because they provide additional information about cloud movement and coverage, which are otherwise not available from weather station data. Our setup includes ground-based weather stations at the same location as the imagers. We use their measurements to validate our methods.

  13. Image Based Indoor Navigation

    OpenAIRE

    Noreikis, Marius

    2014-01-01

    Over the last years researchers proposed numerous indoor localisation and navigation systems. However, solutions that use WiFi or Radio Frequency Identification require infrastructure to be deployed in the navigation area and infrastructureless techniques, e.g. the ones based on mobile cell ID or dead reckoning suffer from large accuracy errors. In this Thesis, we present a novel approach of infrastructure-less indoor navigation system based on computer vision Structure from Motion techniques...

  14. NFC Internal: An Indoor Navigation System

    Directory of Open Access Journals (Sweden)

    Busra Ozdenizci

    2015-03-01

    Full Text Available Indoor navigation systems have recently become a popular research field due to the lack of GPS signals indoors. Several indoors navigation systems have already been proposed in order to eliminate deficiencies; however each of them has several technical and usability limitations. In this study, we propose NFC Internal, a Near Field Communication (NFC-based indoor navigation system, which enables users to navigate through a building or a complex by enabling a simple location update, simply by touching NFC tags those are spread around and orient users to the destination. In this paper, we initially present the system requirements, give the design details and study the viability of NFC Internal with a prototype application and a case study. Moreover, we evaluate the performance of the system and compare it with existing indoor navigation systems. It is seen that NFC Internal has considerable advantages and significant contributions to existing indoor navigation systems in terms of security and privacy, cost, performance, robustness, complexity, user preference and commercial availability.

  15. NFC Internal: An Indoor Navigation System

    Science.gov (United States)

    Ozdenizci, Busra; Coskun, Vedat; Ok, Kerem

    2015-01-01

    Indoor navigation systems have recently become a popular research field due to the lack of GPS signals indoors. Several indoors navigation systems have already been proposed in order to eliminate deficiencies; however each of them has several technical and usability limitations. In this study, we propose NFC Internal, a Near Field Communication (NFC)-based indoor navigation system, which enables users to navigate through a building or a complex by enabling a simple location update, simply by touching NFC tags those are spread around and orient users to the destination. In this paper, we initially present the system requirements, give the design details and study the viability of NFC Internal with a prototype application and a case study. Moreover, we evaluate the performance of the system and compare it with existing indoor navigation systems. It is seen that NFC Internal has considerable advantages and significant contributions to existing indoor navigation systems in terms of security and privacy, cost, performance, robustness, complexity, user preference and commercial availability. PMID:25825976

  16. NFC internal: an indoor navigation system.

    Science.gov (United States)

    Ozdenizci, Busra; Coskun, Vedat; Ok, Kerem

    2015-03-27

    Indoor navigation systems have recently become a popular research field due to the lack of GPS signals indoors. Several indoors navigation systems have already been proposed in order to eliminate deficiencies; however each of them has several technical and usability limitations. In this study, we propose NFC Internal, a Near Field Communication (NFC)-based indoor navigation system, which enables users to navigate through a building or a complex by enabling a simple location update, simply by touching NFC tags those are spread around and orient users to the destination. In this paper, we initially present the system requirements, give the design details and study the viability of NFC Internal with a prototype application and a case study. Moreover, we evaluate the performance of the system and compare it with existing indoor navigation systems. It is seen that NFC Internal has considerable advantages and significant contributions to existing indoor navigation systems in terms of security and privacy, cost, performance, robustness, complexity, user preference and commercial availability.

  17. Indoor wayfinding and navigation

    CERN Document Server

    2015-01-01

    Due to the widespread use of navigation systems for wayfinding and navigation in the outdoors, researchers have devoted their efforts in recent years to designing navigation systems that can be used indoors. This book is a comprehensive guide to designing and building indoor wayfinding and navigation systems. It covers all types of feasible sensors (for example, Wi-Fi, A-GPS), discussing the level of accuracy, the types of map data needed, the data sources, and the techniques for providing routes and directions within structures.

  18. Ground-Based VIS/NIR Reflectance Spectra of 25143 Itokawa: What Hayabusa will See and How Ground-Based Data can Augment Analyses

    Science.gov (United States)

    Vilas, Faith; Abell, P. A.; Jarvis, K. S.

    2004-01-01

    Planning for the arrival of the Hayabusa spacecraft at asteroid 25143 Itokawa includes consideration of the expected spectral information to be obtained using the AMICA and NIRS instruments. The rotationally-resolved spatial coverage the asteroid we have obtained with ground-based telescopic spectrophotometry in the visible and near-infrared can be utilized here to address expected spacecraft data. We use spectrophotometry to simulate the types of data that Hayabusa will receive with the NIRS and AMICA instruments, and will demonstrate them here. The NIRS will cover a wavelength range from 0.85 m, and have a dispersion per element of 250 Angstroms. Thus, we are limited in coverage of the 1.0 micrometer and 2.0 micrometer mafic silicate absorption features. The ground-based reflectance spectra of Itokawa show a large component of olivine in its surface material, and the 2.0 micrometer feature is shallow. Determining the olivine to pyroxene abundance ratio is critically dependent on the attributes of the 1.0- and 2.0 micrometer features. With a cut-off near 2,1 micrometer the longer edge of the 2.0- feature will not be obtained by NIRS. Reflectance spectra obtained using ground-based telescopes can be used to determine the regional composition around space-based spectral observations, and possibly augment the longer wavelength spectral attributes. Similarly, the shorter wavelength end of the 1.0 micrometer absorption feature will be partially lost to the NIRS. The AMICA filters mimic the ECAS filters, and have wavelength coverage overlapping with the NIRS spectral range. We demonstrate how merging photometry from AMICA will extend the spectral coverage of the NIRS. Lessons learned from earlier spacecraft to asteroids should be considered.

  19. Mars Atmospheric Entry Integrated Navigation with Partial Intermittent Measurements

    Directory of Open Access Journals (Sweden)

    Tai-shan Lou

    2017-01-01

    Full Text Available Signal degradation suffered by the vehicle is a combination brownout and blackout during Mars atmospheric entry. The communications brownout means that signal fades and blackout means that the signal is lost completely. The communications brownout and blackout periods are analyzed and predicted with an altitude and velocity profiles. In the brownout period, the range measurements between the vehicle and the orbiters are modeled as intermittent measurements with the radio signal arrival probabilities, which are distributed as a Rayleigh distribution of the electron number density around the entry vehicle. A new integrated navigation strategy during the Mars atmospheric entry phase is proposed to consider the probabilities of the radio measurements in the communications brownout and blackout periods under the IMU/beacon scenario based on the information filter with intermittent measurements. Numerical navigation simulations are designed to show the performance of the proposed navigation strategy under the integrated navigation scenario.

  20. Emergency navigation without an infrastructure.

    Science.gov (United States)

    Gelenbe, Erol; Bi, Huibo

    2014-08-18

    Emergency navigation systems for buildings and other built environments, such as sport arenas or shopping centres, typically rely on simple sensor networks to detect emergencies and, then, provide automatic signs to direct the evacuees. The major drawbacks of such static wireless sensor network (WSN)-based emergency navigation systems are the very limited computing capacity, which makes adaptivity very difficult, and the restricted battery power, due to the low cost of sensor nodes for unattended operation. If static wireless sensor networks and cloud-computing can be integrated, then intensive computations that are needed to determine optimal evacuation routes in the presence of time-varying hazards can be offloaded to the cloud, but the disadvantages of limited battery life-time at the client side, as well as the high likelihood of system malfunction during an emergency still remain. By making use of the powerful sensing ability of smart phones, which are increasingly ubiquitous, this paper presents a cloud-enabled indoor emergency navigation framework to direct evacuees in a coordinated fashion and to improve the reliability and resilience for both communication and localization. By combining social potential fields (SPF) and a cognitive packet network (CPN)-based algorithm, evacuees are guided to exits in dynamic loose clusters. Rather than relying on a conventional telecommunications infrastructure, we suggest an ad hoc cognitive packet network (AHCPN)-based protocol to adaptively search optimal communication routes between portable devices and the network egress nodes that provide access to cloud servers, in a manner that spares the remaining battery power of smart phones and minimizes the time latency. Experimental results through detailed simulations indicate that smart human motion and smart network management can increase the survival rate of evacuees and reduce the number of drained smart phones in an evacuation process.

  1. Crew-Aided Autonomous Navigation

    Science.gov (United States)

    Holt, Greg N.

    2015-01-01

    A sextant provides manual capability to perform star/planet-limb sightings and offers a cheap, simple, robust backup navigation source for exploration missions independent from the ground. Sextant sightings from spacecraft were first exercised in Gemini and flew as the lost-communication backup for all Apollo missions. This study characterized error sources of navigation-grade sextants for feasibility of taking star and planetary limb sightings from inside a spacecraft. A series of similar studies was performed in the early/mid-1960s in preparation for Apollo missions. This study modernized and updated those findings in addition to showing feasibility using Linear Covariance analysis techniques. The human eyeball is a remarkable piece of optical equipment and provides many advantages over camera-based systems, including dynamic range and detail resolution. This technique utilizes those advantages and provides important autonomy to the crew in the event of lost communication with the ground. It can also provide confidence and verification of low-TRL automated onboard systems. The technique is extremely flexible and is not dependent on any particular vehicle type. The investigation involved procuring navigation-grade sextants and characterizing their performance under a variety of conditions encountered in exploration missions. The JSC optical sensor lab and Orion mockup were the primary testing locations. For the accuracy assessment, a group of test subjects took sextant readings on calibrated targets while instrument/operator precision was measured. The study demonstrated repeatability of star/planet-limb sightings with bias and standard deviation around 10 arcseconds, then used high-fidelity simulations to verify those accuracy levels met the needs for targeting mid-course maneuvers in preparation for Earth reen.

  2. Emergency Navigation without an Infrastructure

    Directory of Open Access Journals (Sweden)

    Erol Gelenbe

    2014-08-01

    Full Text Available Emergency navigation systems for buildings and other built environments, such as sport arenas or shopping centres, typically rely on simple sensor networks to detect emergencies and, then, provide automatic signs to direct the evacuees. The major drawbacks of such static wireless sensor network (WSN-based emergency navigation systems are the very limited computing capacity, which makes adaptivity very difficult, and the restricted battery power, due to the low cost of sensor nodes for unattended operation. If static wireless sensor networks and cloud-computing can be integrated, then intensive computations that are needed to determine optimal evacuation routes in the presence of time-varying hazards can be offloaded to the cloud, but the disadvantages of limited battery life-time at the client side, as well as the high likelihood of system malfunction during an emergency still remain. By making use of the powerful sensing ability of smart phones, which are increasingly ubiquitous, this paper presents a cloud-enabled indoor emergency navigation framework to direct evacuees in a coordinated fashion and to improve the reliability and resilience for both communication and localization. By combining social potential fields (SPF and a cognitive packet network (CPN-based algorithm, evacuees are guided to exits in dynamic loose clusters. Rather than relying on a conventional telecommunications infrastructure, we suggest an ad hoc cognitive packet network (AHCPN-based protocol to adaptively search optimal communication routes between portable devices and the network egress nodes that provide access to cloud servers, in a manner that spares the remaining battery power of smart phones and minimizes the time latency. Experimental results through detailed simulations indicate that smart human motion and smart network management can increase the survival rate of evacuees and reduce the number of drained smart phones in an evacuation process.

  3. On reconciling ground-based with spaceborne normalized radar cross section measurements

    DEFF Research Database (Denmark)

    Baumgartner, Francois; Munk, Jens; Jezek, K C

    2002-01-01

    This study examines differences in the normalized radar cross section, derived from ground-based versus spaceborne radar data. A simple homogeneous half-space model, indicates that agreement between the two improves as 1) the distance from the scatterer is increased; and/or 2) the extinction...

  4. Precision simulation of ground-based lensing data using observations from space

    CERN Document Server

    Mandelbaum, Rachel; Leauthaud, Alexie; Massey, Richard J; Rhodes, Jason

    2011-01-01

    Current and upcoming wide-field, ground-based, broad-band imaging surveys promise to address a wide range of outstanding problems in galaxy formation and cosmology. Several such uses of ground-based data, especially weak gravitational lensing, require highly precise measurements of galaxy image statistics with careful correction for the effects of the point-spread function (PSF). In this paper, we introduce the SHERA (SHEar Reconvolution Analysis) software to simulate ground-based imaging data with realistic galaxy morphologies and observing conditions, starting from space-based data (from COSMOS, the Cosmological Evolution Survey) and accounting for the effects of the space-based PSF. This code simulates ground-based data, optionally with a weak lensing shear applied, in a model-independent way using a general Fourier space formalism. The utility of this pipeline is that it allows for a precise, realistic assessment of systematic errors due to the method of data processing, for example in extracting weak len...

  5. Analysis of the substorm trigger phase using multiple ground-based instrumentation

    Energy Technology Data Exchange (ETDEWEB)

    Kauristie, K.; Pulkkinen, T.I.; Pellinen, R.J. [Finnish Meteorological Institute, Helsinki (Finland)] [and others

    1995-08-01

    The authors discuss in detail the observation of an event of auroral activity fading during the trigger, or growth phase of a magnetic storm. This event was observed by all-sky cameras, EISCAT radar and magnetometers, riometers, and pulsation magnetometers, from ground based stations in Finland and Scandanavia. Based on their detailed analysis, they present a possible cause for the observed fading.

  6. Simulation of the imaging quality of ground-based telescopes affected by atmospheric disturbances

    Science.gov (United States)

    Ren, Yubin; Kou, Songfeng; Gu, Bozhong

    2014-08-01

    Ground-based telescope imaging model is developed in this paper, the relationship between the atmospheric disturbances and the ground-based telescope image quality is studied. Simulation of the wave-front distortions caused by atmospheric turbulences has long been an important method in the study of the propagation of light through the atmosphere. The phase of the starlight wave-front is changed over time, but in an appropriate short exposure time, the atmospheric disturbances can be considered as "frozen". In accordance with Kolmogorov turbulence theory, simulating atmospheric disturbances of image model based on the phase screen distorted by atmospheric turbulences is achieved by the fast Fourier transform (FFT). Geiger mode avalanche photodiode array (APD arrays) model is used for atmospheric wave-front detection, the image is achieved by inversion method of photon counting after the target starlight goes through phase screens and ground-based telescopes. Ground-based telescope imaging model is established in this paper can accurately achieve the relationship between the quality of telescope imaging and monolayer or multilayer atmosphere disturbances, and it is great significance for the wave-front detection and optical correction in a Multi-conjugate Adaptive Optics system (MCAO).

  7. Ground-based LIDAR: a novel approach to quantify fine-scale fuelbed characteristics

    Science.gov (United States)

    E.L. Loudermilk; J.K. Hiers; J.J. O’Brien; R.J. Mitchell; A. Singhania; J.C. Fernandez; W.P. Cropper; K.C. Slatton

    2009-01-01

    Ground-based LIDAR (also known as laser ranging) is a novel technique that may precisely quantify fuelbed characteristics important in determining fire behavior. We measured fuel properties within a south-eastern US longleaf pine woodland at the individual plant and fuelbed scale. Data were collected using a mobile terrestrial LIDAR unit at sub-cm scale for individual...

  8. Use of neural networks in ground-based aerosol retrievals from multi-angle spectropolarimetric observations

    NARCIS (Netherlands)

    Di Noia, A.; Hasekamp, O.P.; Harten, G. van; Rietjens, J.H.H.; Smit, J.M.; Snik, F.; Henzing, J.S.; Boer, J. de; Keller, C.U.; Volten, H.

    2015-01-01

    In this paper, the use of a neural network algorithm for the retrieval of the aerosol properties from ground-based spectropolarimetric measurements is discussed. The neural network is able to retrieve the aerosol properties with an accuracy that is almost comparable to that of an iterative retrieval

  9. Retrieval of liquid water cloud properties from ground-based remote sensing observations

    NARCIS (Netherlands)

    Knist, C.L.

    2014-01-01

    Accurate ground-based remotely sensed microphysical and optical properties of liquid water clouds are essential references to validate satellite-observed cloud properties and to improve cloud parameterizations in weather and climate models. This requires the evaluation of algorithms for retrieval of

  10. Ground-based remote sensing scheme for monitoring aerosol–cloud interactions (discussion)

    NARCIS (Netherlands)

    Sarna, K.; Russchenberg, H.W.J.

    2015-01-01

    A method for continuous observation of aerosol–cloud interactions with ground-based remote sensing instruments is presented. The main goal of this method is to enable the monitoring of cloud microphysical changes due to the changing aerosol concentration. We use high resolution measurements from lid

  11. Ground-based remote sensing scheme for monitoring aerosol-cloud interactions

    NARCIS (Netherlands)

    Sarna, K.; Russchenberg, H.W.J.

    2016-01-01

    A new method for continuous observation of aerosol–cloud interactions with ground-based remote sensing instruments is presented. The main goal of this method is to enable the monitoring of the change of the cloud droplet size due to the change in the aerosol concentration. We use high-resolution mea

  12. Asteroseismology of solar-type stars with Kepler: III. Ground-based data

    DEFF Research Database (Denmark)

    Karoff, Christoffer; Molenda-Żakowicz , J.

    2010-01-01

    We report on the ground-based follow-up program of spectroscopic and photometric observations of solar-like asteroseismic targets for the Kepler space mission. These stars constitute a large group of more than a thousand objects which are the subject of an intensive study by the Kepler Asteroseis...

  13. Open-loop GPS signal tracking at low elevation angles from a ground-based observation site

    Science.gov (United States)

    Beyerle, Georg; Zus, Florian

    2016-04-01

    For more than a decade space-based global navigation satellite system (GNSS) radio occultation (RO) observations are used by meteorological services world-wide for their numerical weather prediction models. In addition, climate studies increasingly rely on validated GNSS-RO data sets of atmospheric parameters. GNSS-RO profiles typically cover an altitude range from the boundary layer up to the upper stratosphere; their highest accuracy and precision, however, are attained at the tropopause level. In the lower troposphere, multipath ray propagation tend to induce signal amplitude and frequency fluctuations which lead to the development and implementation of open-loop signal tracking methods in GNSS-RO receiver firmwares. In open-loop mode the feed-back values for the carrier tracking loop are derived not from measured data, but from a Doppler frequency model which usually is extracted from an atmospheric climatology. In order to ensure that this receiver-internal parameter set, does not bias the carrier phase path observables, dual-channel open-loop GNSS-RO signal tracking was suggested. Following this proposal the ground-based "GLESER" (GPS low-elevation setting event recorder) campaign was established. Its objective was to disproof the existence of model-induced frequency biases using ground-based GPS observations at very low elevation angles. Between January and December 2014 about 2600 validated setting events, starting at geometric elevation angles of +2° and extending to -1°… - 1.5°, were recorded by the single frequency "OpenGPS" GPS receiver at a measurement site located close to Potsdam, Germany (52.3808°N, 13.0642°E). The study is based on the assumption that these ground-based observations may be used as proxies for space-based RO measurements, even if the latter occur on a one order of magnitude faster temporal scale. The "GLESER" data analysis shows that the open-loop Doppler model has negligible influence on the derived frequency profile

  14. A Fast Method for Embattling Optimization of Ground-Based Radar Surveillance Network

    Science.gov (United States)

    Jiang, H.; Cheng, H.; Zhang, Y.; Liu, J.

    A growing number of space activities have created an orbital debris environment that poses increasing impact risks to existing space systems and human space flight. For the safety of in-orbit spacecraft, a lot of observation facilities are needed to catalog space objects, especially in low earth orbit. Surveillance of Low earth orbit objects are mainly rely on ground-based radar, due to the ability limitation of exist radar facilities, a large number of ground-based radar need to build in the next few years in order to meet the current space surveillance demands. How to optimize the embattling of ground-based radar surveillance network is a problem to need to be solved. The traditional method for embattling optimization of ground-based radar surveillance network is mainly through to the detection simulation of all possible stations with cataloged data, and makes a comprehensive comparative analysis of various simulation results with the combinational method, and then selects an optimal result as station layout scheme. This method is time consuming for single simulation and high computational complexity for the combinational analysis, when the number of stations increases, the complexity of optimization problem will be increased exponentially, and cannot be solved with traditional method. There is no better way to solve this problem till now. In this paper, target detection procedure was simplified. Firstly, the space coverage of ground-based radar was simplified, a space coverage projection model of radar facilities in different orbit altitudes was built; then a simplified objects cross the radar coverage model was established according to the characteristics of space objects orbit motion; after two steps simplification, the computational complexity of the target detection was greatly simplified, and simulation results shown the correctness of the simplified results. In addition, the detection areas of ground-based radar network can be easily computed with the

  15. Ground-Based Lidar Measurements During the CALIPSO and Twilight Zone (CATZ) Campaign

    Science.gov (United States)

    Berkoff, Timothy; Qian, Li; Kleidman, Richard; Stewart, Sebastian; Welton, Ellsworth; Li, Zhu; Holbem, Brent

    2008-01-01

    The CALIPSO and Twilight Zone (CATZ) field campaign was carried out between June 26th and August 29th of 2007 in the multi-state Maryland-Virginia-Pennsylvania region of the U.S. to study aerosol properties and cloud-aerosol interactions during overpasses of the CALIPSO satellite. Field work was conducted on selected days when CALIPSO ground tracks occurred in the region. Ground-based measurements included data from multiple Cimel sunphotometers that were placed at intervals along a segment of the CALIPSO ground-track. These measurements provided sky radiance and AOD measurements to enable joints inversions and comparisons with CALIPSO retrievals. As part of this activity, four ground-based lidars provided backscatter measurements (at 523 nm) in the region. Lidars at University of Maryland Baltimore County (Catonsville, MD) and Goddard Space Flight Center (Greenbelt, MD) provided continuous data during the campaign, while two micro-pulse lidar (MPL) systems were temporarily stationed at various field locations directly on CALIPSO ground-tracks. As a result, thirteen on-track ground-based lidar observations were obtained from eight different locations in the region. In some cases, nighttime CALIPSO coincident measurements were also obtained. In most studies reported to date, ground-based lidar validation efforts for CALIPSO rely on systems that are at fixed locations some distance away from the satellite ground-track. The CATZ ground-based lidar data provide an opportunity to examine vertical structure properties of aerosols and clouds both on and off-track simultaneously during a CALIPSO overpass. A table of available ground-based lidar measurements during this campaign will be presented, along with example backscatter imagery for a number of coincident cases with CALIPSO. Results indicate that even for a ground-based measurements directly on-track, comparisons can still pose a challenge due to the differing spatio-temporal properties of the ground and satellite

  16. Restricted Navigation Areas - USACE IENC

    Data.gov (United States)

    Department of Homeland Security — These inland electronic Navigational charts (IENCs) were developed from available data used in maintenance of Navigation channels. Users of these IENCs should be...

  17. The solutions of navigation observation equations for CAPS

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Chinese scientists invent the navigation and positioning system based on commercial communications satellites and develop them successfully into China Area Positioning System (CAPS). In principle, this system is different from the GPS broadcasting satellite navigation class, where the propagation epoch of original navigation signals for pseudo-range measurement is from a ground master control station rather than from satellite transponders. This paper addresses the establishment of the three observation equation models for the navigation and positioning system based on communications satellites, and expresses them identically to operator equations and optimized models. Furthermore, both algorithms of the linear solution for the observable characteristic equation and the least-squares solution for the condition number more than 4 are discussed, with several methods for the exact solution, such as improving the behavior of coefficient matrices, right estimation for the weighted right hand side and selection of iteration forms of solutions, and the influence of the condition number on improving navigation and positioning accuracy is also analyzed carefully. Hopefully, all the works would be contributive to further development of the navigation and positioning system based on communications satellites, and be potentially valuable to other satellite navigation and positioning systems.

  18. The solutions of navigation observation equations for CAPS

    Institute of Scientific and Technical Information of China (English)

    SHI HuLi; PEI Jun

    2009-01-01

    Chinese scientists invent the navigation and positioning system based on oommeroial communications satellites and develop them successfully into China Area Positioning System (CAPS).In principle,this system is different from the GPS broadcasting satellite navigation class,where the propagation epoch of original navigation signals for pseudo-range measurement is from a ground master control station rather than from satellite transponders.This paper addresses the establishment of the three observation equation models for the navigation and positioning system based on communications satellites,and expresses them identically to operator equations and optimized models.Furthermore,both algorithms of the linear solution for the observable characteristic equation and the least-squares solution for the oondiUon number more than 4 are discussed,with several methods for the exact solution,such as improving the behavior of coefficient matrices,right estimation for the weighted right hand side and selection of iteration forms of solutions,and the influence of the condition number on improving navigation and positioning accuracy is also analyzed carefully.Hopefully,all the works would be contributive to further development of the navigation and positioning system based on communications satellites,and be potentially valuable to other satellite navigation and positioning systems.

  19. Active-imaging-based underwater navigation

    Science.gov (United States)

    Monnin, David; Schmitt, Gwenaël.; Fischer, Colin; Laurenzis, Martin; Christnacher, Frank

    2015-10-01

    Global navigation satellite systems (GNSS) are widely used for the localization and the navigation of unmanned and remotely operated vehicles (ROV). In contrast to ground or aerial vehicles, GNSS cannot be employed for autonomous underwater vehicles (AUV) without the use of a communication link to the water surface, since satellite signals cannot be received underwater. However, underwater autonomous navigation is still possible using self-localization methods which determines the relative location of an AUV with respect to a reference location using inertial measurement units (IMU), depth sensors and even sometimes radar or sonar imaging. As an alternative or a complementary solution to common underwater reckoning techniques, we present the first results of a feasibility study of an active-imaging-based localization method which uses a range-gated active-imaging system and can yield radiometric and odometric information even in turbid water.

  20. Water governement and inland navigation. Veneto in Late Middle Ages

    Directory of Open Access Journals (Sweden)

    Ermanno Orlando

    2011-09-01

    Full Text Available This contribution focuses on rivers and navigable canals of  Veneto in the Late Middle Ages as trade and transport routes: they covered a main and hegemonic role in the traffic of the region, guaranteeing communication and providing the backbone for the communication network of that time. In particular, the contribution seeks to analyze the policies of the greatest communes of Veneto concerning government and guardianship of the rivers and discipline of navigation. The sources are primarily normative and legal sources, particularly the abundant production of communal statutes and pacts, the series of international agreements and privileges established between the communes in terms of traffic, communication networks and transport.

  1. 78 FR 68861 - Certain Navigation Products, Including GPS Devices, Navigation and Display Systems, Radar Systems...

    Science.gov (United States)

    2013-11-15

    ... COMMISSION Certain Navigation Products, Including GPS Devices, Navigation and Display Systems, Radar Systems... the United States after importation of certain navigation products, including GPS devices, navigation... products, including GPS devices, navigation and display systems, radar systems, navigational aids,...

  2. The Survey on Near Field Communication

    National Research Council Canada - National Science Library

    Coskun, Vedat; Ozdenizci, Busra; Ok, Kerem

    2015-01-01

    Near Field Communication (NFC) is an emerging short-range wireless communication technology that offers great and varied promise in services such as payment, ticketing, gaming, crowd sourcing, voting, navigation, and many others...

  3. Algorithms for vehicle navigation

    OpenAIRE

    Storandt, Sabine

    2012-01-01

    Nowadays, navigation systems are integral parts of most cars. They allow the user to drive to a preselected destination on the shortest or quickest path by giving turn-by-turn directions. To fulfil this task the navigation system must be aware of the current position of the vehicle at any time, and has to compute the optimal route to the destination on that basis. Both of these subproblems have to be solved frequently, because the navigation system must react immediately if the vehicle leaves...

  4. Mobile Robot Navigation

    DEFF Research Database (Denmark)

    Andersen, Jens Christian

    2007-01-01

    Abstract Robots will soon take part in everyone’s daily life. In industrial production this has been the case for many years, but up to now the use of mobile robots has been limited to a few and isolated applications like lawn mowing, surveillance, agricultural production and military applications....... The research is now progressing towards autonomous robots which will be able to assist us in our daily life. One of the enabling technologies is navigation, and navigation is the subject of this thesis. Navigation of an autonomous robot is concerned with the ability of the robot to direct itself from...

  5. Navigation Architecture for a Space Mobile Network

    Science.gov (United States)

    Valdez, Jennifer E.; Ashman, Benjamin; Gramling, Cheryl; Heckler, Gregory W.; Carpenter, Russell

    2016-01-01

    The Tracking and Data Relay Satellite System (TDRSS) Augmentation Service for Satellites (TASS) is a proposed beacon service to provide a global, space based GPS augmentation service based on the NASA Global Differential GPS (GDGPS) System. The TASS signal will be tied to the GPS time system and usable as an additional ranging and Doppler radiometric source. Additionally, it will provide data vital to autonomous navigation in the near Earth regime, including space weather information, TDRS ephemerides, Earth Orientation Parameters (EOP), and forward commanding capability. TASS benefits include enhancing situational awareness, enabling increased autonomy, and providing near real-time command access for user platforms. As NASA Headquarters' Space Communication and Navigation Office (SCaN) begins to move away from a centralized network architecture and towards a Space Mobile Network (SMN) that allows for user initiated services, autonomous navigation will be a key part of such a system. This paper explores how a TASS beacon service enables the Space Mobile Networking paradigm, what a typical user platform would require, and provides an in-depth analysis of several navigation scenarios and operations concepts. This paper provides an overview of the TASS beacon and its role within the SMN and user community. Supporting navigation analysis is presented for two user mission scenarios: an Earth observing spacecraft in low earth orbit (LEO), and a highly elliptical spacecraft in a lunar resonance orbit. These diverse flight scenarios indicate the breadth of applicability of the TASS beacon for upcoming users within the current network architecture and in the SMN.

  6. Ground-based walking training improves quality of life and exercise capacity in COPD.

    Science.gov (United States)

    Wootton, Sally L; Ng, L W Cindy; McKeough, Zoe J; Jenkins, Sue; Hill, Kylie; Eastwood, Peter R; Hillman, David R; Cecins, Nola; Spencer, Lissa M; Jenkins, Christine; Alison, Jennifer A

    2014-10-01

    This study was designed to determine the effect of ground-based walking training on health-related quality of life and exercise capacity in people with chronic obstructive pulmonary disease (COPD). People with COPD were randomised to either a walking group that received supervised, ground-based walking training two to three times a week for 8-10 weeks, or a control group that received usual medical care and did not participate in exercise training. 130 out of 143 participants (mean±sd age 69±8 years, forced expiratory volume in 1 s 43±15% predicted) completed the study. Compared to the control group, the walking group demonstrated greater improvements in the St George's Respiratory Questionnaire total score (mean difference -6 points (95% CI -10- -2), pimproves quality of life and endurance exercise capacity in people with COPD.

  7. Nulling interferometry: performance comparison between space and ground-based sites for exozodiacal disc detection

    CERN Document Server

    Defrère, D; Foresto, V Coudé du; Danchi, W C; Hartog, R den

    2008-01-01

    Characterising the circumstellar dust around nearby main sequence stars is a necessary step in understanding the planetary formation process and is crucial for future life-finding space missions such as ESA's Darwin or NASA's Terrestrial Planet Finder (TPF). Besides paving the technological way to Darwin/TPF, the space-based infrared interferometers Pegase and FKSI (Fourier-Kelvin Stellar Interferometer) will be valuable scientific precursors in that respect. In this paper, we investigate the performance of Pegase and FKSI for exozodiacal disc detection and compare the results with ground-based nulling interferometers. Besides their main scientific goal (characterising hot giant extrasolar planets), Pegase and FKSI are very efficient in assessing within a few minutes the level of circumstellar dust in the habitable zone around nearby main sequence stars. They are capable of detecting exozodiacal discs respectively 5 and 1 time as dense as the solar zodiacal cloud and they outperform any ground-based instrumen...

  8. Techniques to extend the reach of ground based gravitational wave detectors

    Science.gov (United States)

    Dwyer, Sheila

    2016-03-01

    While the current generation of advanced ground based detectors will open the gravitational wave universe to observation, ground based interferometry has the potential to extend the reach of these observatories to high redshifts. Several techniques have the potential to improve the advanced detectors beyond design sensitivity, including the use of squeezed light, upgraded suspensions, and possibly new optical coatings, new test mass materials, and cryogenic suspensions. To improve the sensitivity by more than a factor of 10 compared to advanced detectors new, longer facilities will be needed. Future observatories capable of hosting interferometers 10s of kilometers long have the potential to extend the reach of gravitational wave astronomy to cosmological distances, enabling detection of binary inspirals from throughout the history of star formation.

  9. Ground-based near-infrared imaging of the HD141569 circumstellar disk

    CERN Document Server

    Boccaletti, A; Marchis, F; Hanh, J

    2003-01-01

    We present the first ground-based near-infrared image of the circumstellar disk around the post-Herbig Ae/Be star HD141569A initially detected with the HST. Observations were carried out in the near-IR (2.2 $\\mu$m) at the Palomar 200-inch telescope using the adaptive optics system PALAO. The main large scale asymmetric features of the disk are detected on our ground-based data. In addition, we measured that the surface brightness of the disk is slightly different than that derived by HST observations (at 1.1 $\\mu$m and 1.6 $\\mu$m). We interpret this possible color-effect in terms of dust properties and derive a minimal

  10. Validation of Aura OMI by Aircraft and Ground-Based Measurements

    Science.gov (United States)

    McPeters, R. D.; Petropavlovskikh, I.; Kroon, M.

    2006-12-01

    Both aircraft-based and ground-based measurements have been used to validate ozone measurements by the OMI instrument on Aura. Three Aura Validation Experiment (AVE) flights have been conducted, in November 2004 and June 2005 with the NASA WB57, and in January/February 2005 with the NASA DC-8. On these flights, validation of OMI was primarily done using data from the CAFS (CCD Actinic Flux Spectroradiometer) instrument, which is used to measure total column ozone above the aircraft. These measurements are used to differentiate changes in stratospheric ozone from changes in total column ozone. Also, changes in ozone over high clouds measured by OMI were checked in a flight over tropical storm Arlene on a flight on June 11th. Ground-based measurements were made during the SAUNA campaign in Sodankyla, Finland, in March and April 2006. Both total column ozone and the ozone vertical distribution were validated.

  11. REMOTE SENSING OF WATER VAPOR CONTENT USING GROUND-BASED GPS DATA

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Spatial and temporal resolution of water vapor content is useful in improving the accuracy of short-term weather prediction.Dense and continuously tracking regional GPS arrays will play an important role in remote sensing atmospheric water vapor content.In this study,a piecewise linear solution method was proposed to estimate the precipitable water vapor (PWV) content from ground-based GPS observations in Hong Kong.To evaluate the solution accuracy of the water vapor content sensed by GPS,the upper air sounding data (radiosonde) that are collected locally was used to calculate the precipitable water vapor during the same period.One-month results of PWV from both ground-based GPS sensing technique and radiosonde method are in agreement within 1~2 mm.This encouraging result will motivate the GPS meteorology application based on the establishment of a dense GPS array in Hong Kong.

  12. DEM extraction and its accuracy analysis with ground-based SAR interferometry

    Science.gov (United States)

    Dong, J.; Yue, J. P.; Li, L. H.

    2014-03-01

    Two altimetry models extracting DEM (Digital Elevation Model) with the GBSAR (Ground-Based Synthetic Aperture Radar) technology are studied and their accuracies are analyzed in detail. The approximate and improved altimetry models of GBSAR were derived from the spaceborne radar altimetry based on the principles of the GBSAR technology. The error caused by the parallel ray approximation in the approximate model was analyzed quantitatively, and the results show that the errors cannot be ignored for the ground-based radar system. For the improved altimetry model, the elevation error expression can be acquired by simulating and analyzing the error propagation coefficients of baseline length, wavelength, differential phase and range distance in the mathematical model. By analyzing the elevation error with the baseline and range distance, the results show that the improved altimetry model is suitable for high-precision DEM and the accuracy can be improved by adjusting baseline and shortening slant distance.

  13. Science Benefits of Onboard Spacecraft Navigation

    Science.gov (United States)

    Cangahuala, Al; Bhaskaran, Shyam; Owen, Bill

    2012-01-01

    navigation can be accomplished through a self- contained system that by eliminating light time restrictions dramatically improves the relative trajectory knowledge and control and subsequently increases the amount of quality data collected. Flybys are one-time events, so the system's underlying algorithms and software must be extremely robust. The autonomous software must also be able to cope with the unknown size, shape, and orientation of the previously unseen comet nucleus. Furthermore, algorithms must be reliable in the presence of imperfections and/or damage to onboard cameras accrued after many years of deep-space operations. The AutoNav operational flight software packages, developed by scientists at the Jet Propulsion Laboratory (JPL) under contract with NASA, meet all these requirements. They have been directly responsible for the successful encounters on all of NASA's close-up comet-imaging missions (see Figure !1). AutoNav is the only system to date that has autonomously tracked comet nuclei during encounters and performed autonomous interplanetary navigation. AutoNav has enabled five cometary flyby missions (Table!1) residing on four NASA spacecraft provided by three different spacecraft builders. Using this software, missions were able to process a combined total of nearly 1000 images previously unseen by humans. By eliminating the need to navigate spacecraft from Earth, the accuracy gained by AutoNav during flybys compared to ground-based navigation is about 1!order of magnitude in targeting and 2!orders of magnitude in time of flight. These benefits ensure that pointing errors do not compromise data gathered during flybys. In addition, these benefits can be applied to flybys of other solar system objects, flybys at much slower relative velocities, mosaic imaging campaigns, and other proximity activities (e.g., orbiting, hovering, and descent/ascent).

  14. Investigating the long-term evolution of subtropical ozone profiles applying ground-based FTIR spectrometry

    OpenAIRE

    García, O.E.; Schneider, M; A. Redondas; Y. González; Hase, F.; Blumenstock, T.; Sepúlveda, E.

    2012-01-01

    This study investigates the long-term evolution of subtropical ozone profile time series (1999–2010) obtained from ground-based FTIR (Fourier Transform InfraRed) spectrometry at the Izaña Observatory ozone super-site. Different ozone retrieval strategies are examined, analysing the influence of an additional temperature retrieval and different constraints. The theoretical assessment reveals that the FTIR system is able to resolve four independent ozone layers with a precision of better than 6...

  15. Space Fence Ground-Based Radar System Increment 1 (Space Fence Inc 1)

    Science.gov (United States)

    2015-12-01

    Selected Acquisition Report (SAR) RCS: DD-A&T(Q&A)823-438 Space Fence Ground-Based Radar System Increment 1 (Space Fence Inc 1) As of FY 2017...11 Track to Budget 17 Cost and Funding 18 Low Rate Initial Production 23 Foreign Military Sales 24 Nuclear Costs 24 Unit Cost...Document CLIN - Contract Line Item Number CPD - Capability Production Document CY - Calendar Year DAB - Defense Acquisition Board DAE - Defense Acquisition

  16. Particle production during inflation and gravitational waves detectable by ground-based interferometers

    OpenAIRE

    Cook, Jessica L.; Sorbo, Lorenzo

    2011-01-01

    Inflation typically predicts a quasi scale-invariant spectrum of gravitational waves. In models of slow-roll inflation, the amplitude of such a background is too small to allow direct detection without a dedicated space-based experiment such as the proposed BBO or DECIGO. In this paper we note that particle production during inflation can generate a feature in the spectrum of primordial gravitational waves. We discuss the possibility that such a feature might be detected by ground-based laser...

  17. NASA Requirements for Ground-Based Pressure Vessels and Pressurized Systems (PVS). Revision C

    Science.gov (United States)

    Greulich, Owen Rudolf

    2017-01-01

    The purpose of this document is to ensure the structural integrity of PVS through implementation of a minimum set of requirements for ground-based PVS in accordance with this document, NASA Policy Directive (NPD) 8710.5, NASA Safety Policy for Pressure Vessels and Pressurized Systems, NASA Procedural Requirements (NPR) 8715.3, NASA General Safety Program Requirements, applicable Federal Regulations, and national consensus codes and standards (NCS).

  18. Comparison of NO2 vertical profiles from satellite and ground based measurements over Antarctica

    OpenAIRE

    Kulkarni, Pavan; Bortoli, Daniele; Costa, Maria João; Silva, Ana Maria; Ravegnani, Fabrizio; Giovanelli, Giorgio

    2011-01-01

    The Intercomparison of nitrogen dioxide (NO2) vertical profiles, derived from the satellite based HALogen Occultation Experiment (HALOE) measurements and from the ground based UV-VIS spectrometer GASCOD (Gas Analyzer Spectrometer Correlating Optical Differences) observations at the Mario Zucchelli Station (MZS), in Antarctica, are done for the first time. It is shown here that both datasets are in good agreement showing the same features in terms of magnitude, profile structure, a...

  19. The Gaia Era: synergy between space missions and ground based surveys

    CERN Document Server

    Vallenari, A

    2008-01-01

    The Gaia mission is expected to provide highly accurate astrometric, photometric, and spectroscopic measurements for about $10^9$ objects. Automated classification of detected sources is a key part of the data processing. Here a few aspects of the Gaia classification process are presented. Information from other surveys at longer wavelengths, and from follow-up ground based observations will be complementary to Gaia data especially at faint magnitudes, and will offer a great opportunity to understand our Galaxy.

  20. First-generation Science Cases for Ground-based Terahertz Telescopes

    CERN Document Server

    Hirashita, Hiroyuki; Matsushita, Satoki; Takakuwa, Shigehisa; Nakamura, Masanori; Asada, Keiichi; Liu, Hauyu Baobab; Urata, Yuji; Wang, Ming-Jye; Wang, Wei-Hao; Takahashi, Satoko; Tang, Ya-Wen; Chang, Hsian-Hong; Huang, Kuiyun; Morata, Oscar; Otsuka, Masaaki; Lin, Kai-Yang; Tsai, An-Li; Lin, Yen-Ting; Srinivasan, Sundar; Martin-Cocher, Pierre; Pu, Hung-Yi; Kemper, Francisca; Patel, Nimesh; Grimes, Paul; Huang, Yau-De; Han, Chih-Chiang; Huang, Yen-Ru; Nishioka, Hiroaki; Lin, Lupin Chun-Che; Zhang, Qizhou; Keto, Eric; Burgos, Roberto; Chen, Ming-Tang; Inoue, Makoto; Ho, Paul T P

    2015-01-01

    Ground-based observations at terahertz (THz) frequencies are a newly explorable area of astronomy for the next ten years. We discuss science cases for a first-generation 10-m class THz telescope, focusing on the Greenland Telescope as an example of such a facility. We propose science cases and provide quantitative estimates for each case. The largest advantage of ground-based THz telescopes is their higher angular resolution (~ 4 arcsec for a 10-m dish), as compared to space or airborne THz telescopes. Thus, high-resolution mapping is an important scientific argument. In particular, we can isolate zones of interest for Galactic and extragalactic star-forming regions. The THz windows are suitable for observations of high-excitation CO lines and [N II] 205 um lines, which are scientifically relevant tracers of star formation and stellar feedback. Those lines are the brightest lines in the THz windows, so that they are suitable for the initiation of ground-based THz observations. THz polarization of star-forming...

  1. Interactive dynamic three-dimensional scene for the ground-based three-dimensional display

    Science.gov (United States)

    Hou, Peining; Sang, Xinzhu; Guo, Nan; Chen, Duo; Yan, Binbin; Wang, Kuiru; Dou, Wenhua; Xiao, Liquan

    2016-10-01

    Three-dimensional (3D) displays provides valuable tools for many fields, such as scientific experiment, education, information transmission, medical imaging and physical simulation. Ground based 360° 3D display with dynamic and controllable scene can find some special applications, such as design and construction of buildings, aeronautics, military sand table and so on. It can be utilized to evaluate and visualize the dynamic scene of the battlefield, surgical operation and the 3D canvas of art. In order to achieve the ground based 3D display, the public focus plane should be parallel to the camera's imaging planes, and optical axes should be offset to the center of public focus plane in both vertical and horizontal directions. Virtual cameras are used to display 3D dynamic scene with Unity 3D engine. Parameters of virtual cameras for capturing scene are designed and analyzed, and locations of virtual cameras are determined by the observer's eye positions in the observing space world. An interactive dynamic 3D scene for ground based 360° 3D display is demonstrated, which provides high-immersion 3D visualization.

  2. Intercomparison of ground-based ozone and NO2 measurements during the MANTRA 2004 campaign

    Directory of Open Access Journals (Sweden)

    K. Strong

    2007-11-01

    Full Text Available The MANTRA (Middle Atmosphere Nitrogen TRend Assessment 2004 campaign took place in Vanscoy, Saskatchewan, Canada (52° N, 107° W from 3 August to 15 September, 2004. In support of the main balloon launch, a suite of five zenith-sky and direct-Sun-viewing UV-visible ground-based spectrometers was deployed, primarily measuring ozone and NO2 total columns. Three Fourier transform spectrometers (FTSs that were part of the balloon payload also performed ground-based measurements of several species, including ozone. Ground-based measurements of ozone and NO2 differential slant column densities from the zenith-viewing UV-visible instruments are presented herein. They are found to partially agree within NDACC (Network for the Detection of Atmospheric Composition Change standards for instruments certified for process studies and satellite validation. Vertical column densities of ozone from the zenith-sky UV-visible instruments, the FTSs, a Brewer spectrophotometer, and ozonesondes are compared, and found to agree within the combined error estimates of the instruments (15%. NO2 vertical column densities from two of the UV-visible instruments are compared, and are also found to agree within combined error (15%.

  3. Limitation of Ground-based Estimates of Solar Irradiance Due to Atmospheric Variations

    Science.gov (United States)

    Wen, Guoyong; Cahalan, Robert F.; Holben, Brent N.

    2003-01-01

    The uncertainty in ground-based estimates of solar irradiance is quantitatively related to the temporal variability of the atmosphere's optical thickness. The upper and lower bounds of the accuracy of estimates using the Langley Plot technique are proportional to the standard deviation of aerosol optical thickness (approx. +/- 13 sigma(delta tau)). The estimates of spectral solar irradiance (SSI) in two Cimel sun photometer channels from the Mauna Loa site of AERONET are compared with satellite observations from SOLSTICE (Solar Stellar Irradiance Comparison Experiment) on UARS (Upper Atmospheric Research Satellite) for almost two years of data. The true solar variations related to the 27-day solar rotation cycle observed from SOLSTICE are about 0.15% at the two sun photometer channels. The variability in ground-based estimates is statistically one order of magnitude larger. Even though about 30% of these estimates from all Level 2.0 Cimel data fall within the 0.4 to approx. 0.5% variation level, ground-based estimates are not able to capture the 27-day solar variation observed from SOLSTICE.

  4. Kepler and Ground-based Transits of the Exo-Neptune HAT-P-11b

    CERN Document Server

    Deming, Drake; Jackson, Brian; Peterson, Steven W; Agol, Eric; Knutson, Heather A; Jennings, Donald E; Haase, Flynn; Bays, Kevin

    2011-01-01

    We analyze 26 archival Kepler transits of the exo-Neptune HAT-P-11b, supplemented by ground-based transits observed in the blue (B-band) and near-IR (J-band). Both the planet and host star are smaller than previously believed; our analysis yields Rp=4.31 +/-0.06 Earth-radii, and Rs = 0.683 +/-0.009 solar radii, both about 3-sigma smaller than the discovery values. Our ground-based transit data at wavelengths bracketing the Kepler bandpass serve to check the wavelength dependence of stellar limb darkening, and the J-band transit provides a precise and independent constraint on the transit duration. Both the limb darkening and transit duration from our ground-based data are consistent with the new Kepler values for the system parameters. Our smaller radius for the planet implies that its gaseous envelope can be less extensive than previously believed, being very similar to the H-He envelope of GJ436b and Kepler-4b. HAT-P-11 is an active star, and signatures of star spot crossings are ubiquitous in the Kepler tr...

  5. Structure and evolution of Pluto's Atmosphere from ground-based stellar occultations between 2002 and 2015

    Science.gov (United States)

    Meza, Erick; Sicardy, Bruno; Rio de Janeiro occultation team, Granada occultation team, International Occultation and Timing Association

    2016-10-01

    Ground-Based stellar occultations probe Pluto's atmosphere from about 3 km altitude (~ 10 μbar pressure level) up to 260 km altitude (~0.1 μbar). Our main goal is to derive Pluto's atmosphere evolution using thirteen ground-based occultations observed between 2002 and 2015 (plus 2016, if available). We consistently analyze the light curves using the Dias et al. (ApJ 811, 53, 2015) model, and confirm the general pressure increase by a factor of about 1.5 between 2002 and 2015 and a factor of almost three between 1988 and 2015. Implications for Pluto's seasonal evolution will be briefly discussed in the context of the New Horizons (NH) findings.Ground-based-derived temperature profiles will be compared with NH's results, where we use new temperature boundary conditions in our inversion procedures, as given by NH near 260 km altitude. Although the profiles reasonably agree, significant discrepancies are observed both in the deeper stratospheric zone (altitude topographic features revealed by NH.Finally, possible correlations between spike activity in the occultation light-curves and local underlying presence of free nitrogen ice terrains will be investigated.Part of the research leading to these results has received funding from the European Research Council under the European Community's H2020 (2014-2020/ ERC Grant Agreement n 669416 "LUCKY STAR").

  6. Flow Characteristics of Tidewater Glaciers in Greenland and Alaska using Ground-Based LiDAR

    Science.gov (United States)

    Finnegan, D. C.; Stearns, L. A.; Hamilton, G. S.; O'Neel, S.

    2010-12-01

    LiDAR scanning systems have been employed to characterize and quantify multi-temporal glacier and ice sheet changes for nearly three decades. Until recently, LiDAR scanning systems were limited to airborne and space-based platforms which come at a significant cost to deploy and are limited in spatial and temporal sampling capabilities necessary to compare with in-situ field measurements. Portable ground-based LiDAR scanning systems are now being used as a glaciological tool. We discuss research efforts to employ ground-based near-infrared LiDAR systems at two differing tidewater glacier systems in the spring of 2009; Helheim Glacier in southeast Greenland and Columbia Glacier in southeast Alaska. Preliminary results allow us to characterize short term displacement rates and detailed observations of calving processes. These results highlight the operational limitations and capabilities of commercially available LiDAR systems, and allow us to identify optimal operating characteristics for monitoring small to large-scale tidewater glaciers in near real-time. Furthermore, by identifying the operational limitations of these sensors it allows for optimal design characteristics of new sensors necessary to meet ground-based calibration and validation requirements of ongoing scientific missions.

  7. Phase-coherent mapping of gravitational-wave backgrounds using ground-based laser interferometers

    CERN Document Server

    Romano, Joseph D; Cornish, Neil J; Gair, Jonathan; Mingarelli, Chiara M F; van Haasteren, Rutger

    2015-01-01

    We extend the formalisms developed in Gair et al. and Cornish and van Haasteren to create maps of gravitational-wave backgrounds using a network of ground-based laser interferometers. We show that in contrast to pulsar timing arrays, which are insensitive to half of the gravitational-wave sky (the curl modes), a network of ground-based interferometers is sensitive to both the gradient and curl components of the background. The spatial separation of a network of interferometers, or of a single interferometer at different times during its rotational and orbital motion around the Sun, allows for recovery of both components. We derive expressions for the response functions of a laser interferometer in the small-antenna limit, and use these expressions to calculate the overlap reduction function for a pair of interferometers. We also construct maximum-likelihood estimates of the + and x-polarization modes of the gravitational-wave sky in terms of the response matrix for a network of ground-based interferometers, e...

  8. A Ground-Based Array to Observe Geospace Electrodynamics During Adverse Space Weather Conditions

    Science.gov (United States)

    Sojka, J. J.; Eccles, J. V.; Rice, D.

    2004-05-01

    Geomagnetic Storms occur with surprising frequency and create adverse space weather conditions. During these periods, our knowledge and ability to specify or forecast in adequate detail for user needs is negligible. Neither experimental observations nor theoretical developments have made a significant new impact on the problem for over two decades. Although we can now map Total Electron Content (TEC) in the ionosphere over a continent with sufficient resolution to see coherent long-lived structures, these do not provide constraints on the geospace electrodynamics that is at the heart of our lack of understanding. We present arguments for the need of a continental deployment of ground-based sensors to stepwise advance our understanding of the geospace electrodynamics when it is most adverse from a space weather perspective and also most frustrating from an understanding of Magnetosphere-Ionosphere coupling. That a continental-scale deployment is more productive at addressing the problem than a realizable global distribution is shown. Each measurement is discussed from the point-of-view of either providing new knowledge or becoming a key for future real-time specification and forecasting for user applications. An example of a storm database from one mid-latitude station for the 31 March 2002 is used as a conceptual point in a ground-based array. The presentation focuses on scientific questions that have eluded a quantitative solution for over three decades and view a ground-based array as an "IGY" type of catalyst for answering these questions.

  9. USACE Navigation Channels 2012

    Data.gov (United States)

    California Department of Resources — This dataset represents both San Francisco and Los Angeles District navigation channel lines. All San Francisco District channel lines were digitized from CAD files...

  10. 33 CFR 106.240 - Communications.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Communications. 106.240 Section... Requirements § 106.240 Communications. (a) The Facility Security Officer (FSO) must have a means to effectively notify OCS facility personnel of changes in security conditions at the OCS facility. (b)...

  11. Coastal Navigation Portfolio Management

    Science.gov (United States)

    2015-02-19

    the entire navigation portfolio of projects , both inland and coastal. The Coastal Structures Management , Analysis, and Ranking Tool (CSMART) is a...FEB 2015 2. REPORT TYPE 3. DATES COVERED 00-00-2015 to 00-00-2015 4. TITLE AND SUBTITLE Coastal Navigatoin Portfolio Management 5a. CONTRACT...CIRP.aspx Coastal Inlets Research Program Coastal Navigation Portfolio Management The Coastal Navigatoin Portfolio Management work unit

  12. Cooperative wireless communications

    CERN Document Server

    Zhang, Yan

    2009-01-01

    Cooperative devices and mechanisms are increasingly important to enhance the performance of wireless communications and networks, with their ability to decrease power consumption and packet loss rate and increase system capacity, computation, and network resilience. Considering the wide range of applications, strategies, and benefits associated with cooperative wireless communications, researchers and product developers need a succinct understanding of relevant theory, fundamentals, and techniques to navigate this challenging field. ""Cooperative Wireless Communications"" provides just that. I

  13. Development and hardware-in-the-loop test of a guidance, navigation and control system for on-orbit servicing

    Science.gov (United States)

    Benninghoff, Heike; Rems, Florian; Boge, Toralf

    2014-09-01

    The rendezvous phase is one of the most important phases in future orbital servicing missions. To ensure a safe approach to a non-cooperative target satellite, a guidance, navigation and control system which uses measurements from optical sensors like cameras was designed and developed. During ground-based rendezvous, stability problems induced by delayed position measurements can be compensated by using a specially adapted navigation filter. Within the VIBANASS (VIsion BAsed NAvigation Sensor System) test campaign, hardware-in-the-loop tests on the terrestrial, robotic based facility EPOS 2.0 were performed to test and verify the developed guidance, navigation and control algorithms using real sensor measurements. We could demonstrate several safe rendezvous test cases in a closed loop mode integrating the VIBANASS camera system and the developed guidance, navigation and control system to a dynamic rendezvous simulation.

  14. Comparison of Thermal Structure Results from Venus Express and Ground Based Observations since Vira

    Science.gov (United States)

    Limaye, Sanjay

    2016-07-01

    An international team was formed in 2013 through the International Space Studies Institute (Bern, Switzerland) to compare recent results of the Venus atmospheric thermal structure from spacecraft and ground based observations made since the Venus International Reference Atmosphere (VIRA) was developed (Kliore et al., 1985, Keating et al., 1985). Five experiments on European Space Agency's Venus Express orbiter mission have yielded results on the atmospheric structure during is operational life (April 2006 - November 2014). Three of these were from occultation methods: at near infrared wavelengths from solar occultations, (SOIR, 70 - 170 km), at ultraviolet wavelengths from stellar occultations (SPICAV, 90-140 km), and occultation of the VEx-Earth radio signal (VeRa, 40-90 km). In-situ drag measurements from three different techniques (accelerometry, torque, and radio tracking, 130 - 200 km) were also obtained using the spacecraft itself while passive infrared remote sensing was used by the VIRTIS experiment (70 - 120 km). The only new data in the -40-70 km altitude range are from radio occultation, as no new profiles of the deep atmosphere have been obtained since the VeGa 2 lander measurements in 1985 (not included in VIRA). Some selected ground based results available to the team were also considered by team in the inter comparisons. The temperature structure in the lower thermosphere from disk resolved ground based observations (except for one ground based investigation), is generally consistent with the Venus Express results. These experiments sampled at different periods, at different locations and at different local times and have different vertical and horizontal resolution and coverage. The data were therefore binned in latitude and local time bins and compared, ignoring temporal variations over the life time of the Venus Express mission and assumed north-south symmetry. Alternating warm and cooler layers are present in the 120-160 altitude range in results

  15. 33 CFR 209.325 - Navigation lights, aids to navigation, navigation charts, and related data policy, practices and...

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Navigation lights, aids to navigation, navigation charts, and related data policy, practices and procedure. 209.325 Section 209.325 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF...

  16. Space weather monitoring by ground-based means carried out in Polar Geophysical Center at Arctic and Antarctic Research Institute

    Science.gov (United States)

    Janzhura, Alexander

    A real-time information on geophysical processes in polar regions is very important for goals of Space Weather monitoring by the ground-based means. The modern communication systems and computer technology makes it possible to collect and process the data from remote sites without significant delays. A new acquisition equipment based on microprocessor modules and reliable in hush climatic conditions was deployed at the Roshydromet networks of geophysical observations in Arctic and is deployed at observatories in Antarctic. A contemporary system for on-line collecting and transmitting the geophysical data from the Arctic and Antarctic stations to AARI has been realized and the Polar Geophysical Center (PGC) arranged at AARI ensures the near-real time processing and analyzing the geophysical information from 11 stations in Arctic and 5 stations in Antarctic. The space weather monitoring by the ground based means is one of the main tasks standing before the Polar Geophysical Center. As studies by Troshichev and Janzhura, [2012] showed, the PC index characterizing the polar cap magnetic activity appeared to be an adequate indicator of the solar wind energy that entered into the magnetosphere and the energy that is accumulating in the magnetosphere. A great advantage of the PC index application over other methods based on satellite data is a permanent on-line availability of information about magnetic activity in both northern and southern polar caps. A special procedure agreed between Arctic and Antarctic Research Institute (AARI) and Space Institute of the Danish Technical University (DTUSpace) ensures calculation of the unified PC index in quasi-real time by magnetic data from the Thule and Vostok stations (see public site: http://pc-index.org). The method for estimation of AL and Dst indices (as indicators of state of the disturbed magnetosphere) based on data on foregoing PC indices has been elaborated and testified in the Polar Geophysical Center. It is

  17. Simulation platform of navigation system for autonomous underwater vehicle

    Institute of Scientific and Technical Information of China (English)

    QIN Zheng; BIAN Xin-qian

    2006-01-01

    In view of the characteristics of underwater navigation, the simulation platform of navigation system for autonomous underwater vehicle has been developed based on Windows platform. The system architecture, net communication and the information flow are discussed. The methods of software realization and some key techniques of the Vehicle Computer and the Navigation Equipment Computer are introduced in particular. The software design of Terrain Matching Computer is introduced also. The simulation platform is verified and analyzed through simulation. The results show that the architecture of the platform is reasonable and reliable, and the mathematic models and simulation algorithms of sub-systems are also valid and practicable.

  18. Image processing and applications based on visualizing navigation service

    Science.gov (United States)

    Hwang, Chyi-Wen

    2015-07-01

    When facing the "overabundant" of semantic web information, in this paper, the researcher proposes the hierarchical classification and visualizing RIA (Rich Internet Application) navigation system: Concept Map (CM) + Semantic Structure (SS) + the Knowledge on Demand (KOD) service. The aim of the Multimedia processing and empirical applications testing, was to investigating the utility and usability of this visualizing navigation strategy in web communication design, into whether it enables the user to retrieve and construct their personal knowledge or not. Furthermore, based on the segment markets theory in the Marketing model, to propose a User Interface (UI) classification strategy and formulate a set of hypermedia design principles for further UI strategy and e-learning resources in semantic web communication. These research findings: (1) Irrespective of whether the simple declarative knowledge or the complex declarative knowledge model is used, the "CM + SS + KOD navigation system" has a better cognition effect than the "Non CM + SS + KOD navigation system". However, for the" No web design experience user", the navigation system does not have an obvious cognition effect. (2) The essential of classification in semantic web communication design: Different groups of user have a diversity of preference needs and different cognitive styles in the CM + SS + KOD navigation system.

  19. Beginnings of Satellite Navigation

    Directory of Open Access Journals (Sweden)

    Miljenko Solarić

    2008-05-01

    Full Text Available The first satellite navigation system called the Navy Navigation Satellite System (NNSS or TRANSIT was planned in the USA in 1958. It consisted of 5-6 artificial Earth satellites, was set in motion for the USA military in 1964, and in 1967 for civilian purposes. The frequency shift of received radio waves emitted from the satellite and caused by the Doppler effect was measured. The TRANSIT satellite speed of approaching or moving away was derived from that; the TRANSIT satellites emmited also their own coordinates. Then the ship's position was determined by an intersection of three hyperboloids, which were determined from differences of distances in three time intervals. Maintenance of this navigation system was stopped in 1996, but it is still being used in the USA Navy for exploring the ionosphere. Furthermore, results of Doppler measurements in international projects at the Hvar Observatory from 1982 and 1983. This was the first time in Croatia and the former country that the coordinates of the Hvar Observatory were determined in the unique world coordinate system WGS'72. The paper ends with a brief representation of the Tsiklon Doppler navigation system produced in the former Soviet Union, and there is a list of some of numerous produced and designed satellite navigation systems.Ključne riječi

  20. Kepler and Ground-Based Transits of the exo-Neptune HAT-P-11b

    Science.gov (United States)

    Deming, Drake; Sada, Pedro V.; Jackson, Brian; Peterson, Steven W.; Agol, Eric; Knutson, Heather A.; Jennings, Donald E.; Haase, Plynn; Bays, Kevin

    2011-01-01

    We analyze 26 archival Kepler transits of the exo-Neptune HAT-P-11b, supplemented by ground-based transits observed in the blue (B band) and near-IR (J band). Both the planet and host star are smaller than previously believed; our analysis yields Rp = 4.31 R xor 0.06 R xor and Rs = 0.683 R solar mass 0.009 R solar mass, both about 3 sigma smaller than the discovery values. Our ground-based transit data at wavelengths bracketing the Kepler bandpass serve to check the wavelength dependence of stellar limb darkening, and the J-band transit provides a precise and independent constraint on the transit duration. Both the limb darkening and transit duration from our ground-based data are consistent with the new Kepler values for the system parameters. Our smaller radius for the planet implies that its gaseous envelope can be less extensive than previously believed, being very similar to the H-He envelope of GJ 436b and Kepler-4b. HAT-P-11 is an active star, and signatures of star spot crossings are ubiquitous in the Kepler transit data. We develop and apply a methodology to correct the planetary radius for the presence of both crossed and uncrossed star spots. Star spot crossings are concentrated at phases 0.002 and +0.006. This is consistent with inferences from Rossiter-McLaughlin measurements that the planet transits nearly perpendicular to the stellar equator. We identify the dominant phases of star spot crossings with active latitudes on the star, and infer that the stellar rotational pole is inclined at about 12 deg 5 deg to the plane of the sky. We point out that precise transit measurements over long durations could in principle allow us to construct a stellar Butterfly diagram to probe the cyclic evolution of magnetic activity on this active K-dwarf star.

  1. Toward High Altitude Airship Ground-Based Boresight Calibration of Hyperspectral Pushbroom Imaging Sensors

    Directory of Open Access Journals (Sweden)

    Aiwu Zhang

    2015-12-01

    Full Text Available The complexity of the single linear hyperspectral pushbroom imaging based on a high altitude airship (HAA without a three-axis stabilized platform is much more than that based on the spaceborne and airborne. Due to the effects of air pressure, temperature and airflow, the large pitch and roll angles tend to appear frequently that create pushbroom images highly characterized with severe geometric distortions. Thus, the in-flight calibration procedure is not appropriate to apply to the single linear pushbroom sensors on HAA having no three-axis stabilized platform. In order to address this problem, a new ground-based boresight calibration method is proposed. Firstly, a coordinate’s transformation model is developed for direct georeferencing (DG of the linear imaging sensor, and then the linear error equation is derived from it by using the Taylor expansion formula. Secondly, the boresight misalignments are worked out by using iterative least squares method with few ground control points (GCPs and ground-based side-scanning experiments. The proposed method is demonstrated by three sets of experiments: (i the stability and reliability of the method is verified through simulation-based experiments; (ii the boresight calibration is performed using ground-based experiments; and (iii the validation is done by applying on the orthorectification of the real hyperspectral pushbroom images from a HAA Earth observation payload system developed by our research team—“LanTianHao”. The test results show that the proposed boresight calibration approach significantly improves the quality of georeferencing by reducing the geometric distortions caused by boresight misalignments to the minimum level.

  2. Estimation of Antarctic ozone loss from Ground-based total column measurements

    Directory of Open Access Journals (Sweden)

    J. Kuttippurath

    2010-03-01

    Full Text Available The passive ozone method is used to estimate ozone loss from ground-based measurements in the Antarctic. A sensitivity study shows that the O3 loss can be estimated within an accuracy of ~4%. The method is then applied to the observations from Amundsen-Scott/South Pole, Arrival Heights, Belgrano, Concordia, Dumont d'Urville, Faraday, Halley, Marambio, Neumayer, Rothera, Syowa and Zhongshan for the diagnosis of ozone loss in the Antarctic. On average, the five-day running mean of the vortex averaged ozone column loss deduced from the ground-based stations shows about 53% in 2009, 59% in 2008, 55% in 2007, 56% in 2006 and 61% in 2005. The observed O3 loss and loss rates are in very good agreement with the satellite observations (Ozone Monitoring Instrument and Sciamachy and are well reproduced by the model (Reprobus and SLIMCAT calculations.

    The historical ground-based total ozone measurements show that the depletion started in the late 1970s, reached a maximum in the early 1990s, stabilising afterwards at this level until present, with the exception of 2002, the year of an early vortex break-up. There is no indication of significant recovery yet.

    At southern mid-latitudes, a total ozone reduction of 40–50% is observed at the newly installed station Rio Gallegos and 25–35% at Kerguelen in October–November of 2008–2009 and 2005–2009 (except 2008 respectively, and of 10–20% at Macquarie Island in July–August of 2006–2009. This illustrates the significance of measurements at the edges of Antarctica.

  3. Comparison of OMI UV observations with ground-based measurements at high northern latitudes

    Directory of Open Access Journals (Sweden)

    G. Bernhard

    2015-03-01

    Full Text Available The Dutch-Finnish Ozone Monitoring Instrument (OMI on board NASA's Aura spacecraft provides estimates of erythemal (sunburning ultraviolet (UV dose rates and erythemal daily doses. These data were compared with ground-based measurements at 13 stations located throughout the Arctic and Scandinavia from 60 to 83° N. The study corroborates results from earlier work, but is based on a longer time series (eight vs. two years and considers additional data products, such as the erythemal dose rate at the time of the satellite overpass. Furthermore, systematic errors in satellite UV data resulting from inaccuracies in the surface albedo climatology used in the OMI UV algorithm are systematically assessed. At times when the surface albedo is correctly known, OMI data typically exceed ground-based measurements by 0–11%. When the OMI albedo climatology exceeds the actual albedo, OMI data may be biased high by as much as 55%. In turn, when the OMI albedo climatology is too low, OMI data can be biased low by up to 59%. Such large negative biases may occur when reflections from snow and ice, which increase downwelling UV irradiance, are misinterpreted as reflections from clouds, which decrease the UV flux at the surface. Results suggest that a better OMI albedo climatology would greatly improve the accuracy of OMI UV data products even if year-to-year differences of the actual albedo cannot be accounted for. A pathway for improving the OMI albedo climatology is discussed. Results also demonstrate that ground-based measurements from the center of Greenland, where high, homogenous surface albedo is observed year round, are ideally suited to detect systematic problems or temporal drifts in estimates of surface UV irradiance from space.

  4. Ground-based microwave measuring of middle atmosphere ozone and temperature profiles during sudden stratospheric warming

    Science.gov (United States)

    Feigin, A. M.; Shvetsov, A. A.; Krasilnikov, A. A.; Kulikov, M. Y.; Karashtin, D. A.; Mukhin, D.; Bolshakov, O. S.; Fedoseev, L. I.; Ryskin, V. G.; Belikovich, M. V.; Kukin, L. M.

    2012-12-01

    We carried out the experimental campaign aimed to study the response of middle atmosphere on a sudden stratospheric warming in winter 2011-2012 above Nizhny Novgorod, Russia (56N, 44E). We employed the ground-based microwave complex for remote sensing of middle atmosphere developed in the Institute of Applied Physics of the Russian Academy of Science. The complex combines two room-temperature radiometers, i.e. microwave ozonometer and the stratospheric thermometer. Ozonometer is a heterodyne spectroradiometer, operating in a range of frequencies that include the rotation transition of ozone molecules with resonance frequency 110.8 GHz. Operating frequency range of the stratospheric thermometer is 52.5-5.4 GHz and includes lower frequency edge of 5 mm molecular oxygen absorption bands and among them two relatively weak lines of O2 emission. Digital fast Fourier transform spectrometers developed by "Acqiris" are employed for signal spectral analysis. The spectrometers have frequency range 0.05-1 GHz and realizes the effective resolution about 61 KHz. For retrieval vertical profiles of ozone and temperature from radiometric data we applied novel method based on Bayesian approach to inverse problem solution, which assumed a construction of probability distribution of the characteristics of retrieved profiles with taking into account measurement noise and available a priori information about possible distributions of ozone and temperature in the middle atmosphere. Here we introduce the results of the campaign in comparison with Aura MLS data. Presented data includes one sudden stratospheric warming event which took place in January 13-14 and was accompanied by temperature increasing up to 310 K at 45 km height. During measurement period, ozone and temperature variations were (almost) anti-correlated, and total ozone abundance achieved a local maxima during the stratosphere cooling phase. In general, results of ground-based measurements are in good agreement with

  5. Ground-Based Network and Supersite Observations to Complement and Enrich EOS Research

    Science.gov (United States)

    Tsay, Si-Chee; Holben, Brent N.; Welton, Ellsworth J.

    2011-01-01

    Since 1997 NASA has been successfully launching a series of satellites - the Earth Observing System (EOS) - to intensively study, and gain a better understanding of, the Earth as an integrated system. Space-borne remote sensing observations, however, are often plagued by contamination of surface signatures. Thus, ground-based in-situ and remote-sensing measurements, where signals come directly from atmospheric constituents, the sun, and/or the Earth-atmosphere interactions, provide additional information content for comparisons that confirm quantitatively the usefulness of the integrated surface, aircraft, and satellite datasets. Through numerous participations, particularly but not limited to the EOS remote-sensing/retrieval and validation projects over the years, NASA/GSFC has developed and continuously refined ground-based networks and mobile observatories that proved to be vital in providing high temporal measurements, which complement and enrich the satellite observations. These are: the AERO NET (AErosol RObotic NETwork) a federation of ground-based globally distributed network of spectral sun-sky photometers; the MPLNET (Micro-Pulse Lidar NETwork, a similarly organized network of micro-pulse lidar systems measuring aerosol and cloud vertical structure continuously; and the SMART-COMMIT (Surface-sensing Measurements for Atmospheric Radiative Transfer - Chemical, Optical & Microphysical Measurements of In-situ Troposphere, mobile observatories, a suite of spectral radiometers and in-situ probes acquiring supersite measurements. Most MPLNET sites are collocated with those of AERONET, and both networks always support the deployment of SMART-COMMIT worldwide. These data products follow the data structure of EOS conventions: Level-0, instrument archived raw data; Level-1 (or 1.5), real-time data with no (or limited) quality assurance; Level-2, not real high temporal and spectral resolutions. In this talk, we will present NASA/GSFC groundbased facilities, serving

  6. Ground-based SMART-COMMIT Measurements for Studying Aerosol and Cloud Properties

    Science.gov (United States)

    Tsay, Si-Chee

    2008-01-01

    From radiometric principles, it is expected that the retrieved properties of extensive aerosols and clouds from reflected/emitted measurements by satellite (and/or aircraft) should be consistent with those retrieved from transmitted/emitted radiance observed at the surface. Although space-borne remote sensing observations cover large spatial domain, they are often plagued by contamination of surface signatures. Thus, ground-based in-situ and remote-sensing measurements, where signals come directly from atmospheric constituents, the sun, and/or the Earth-atmosphere interactions, provide additional information content for comparisons that confirm quantitatively the usefulness of the integrated surface, aircraft, and satellite data sets. The development and deployment of SMARTCOMMIT (Surface-sensing Measurements for Atmospheric Radiative Transfer - Chemical, Optical & Microphysical Measurements of In-situ Troposphere) mobile facilities are aimed for the optimal utilization of collocated ground-based observations as constraints to yield higher fidelity satellite retrievals and to determine any sampling bias due to target conditions. To quantify the energetics of the surface-atmosphere system and the atmospheric processes, SMART-COMMIT instruments fall into three categories: flux radiometer, radiance sensor and in-situ probe. In this paper, we will demonstrate the capability of SMART-COMMIT in recent field campaigns (e.g., CRYSTAL-FACE, UAE 2, BASEASIA, NAMMA) that were designed and executed to study the compelling variability in temporal scale of both anthropogenic and natural aerosols (e.g., biomass-burning smoke, airborne dust) and cirrus clouds. We envision robust approaches in which well-collocated ground-based measurements and space-borne observations will greatly advance our knowledge of extensive aerosols and clouds.

  7. Ground-based measurements of aerosol optical properties and radiative forcing in North China

    Institute of Scientific and Technical Information of China (English)

    Hongbin Chen; Xiangao Xia; Pucai Wang; Wenxing Zhang

    2007-01-01

    In order to gain an insight into the aerosol properties and their climatic effect over the continental source regions of China, it is of significance to carry out long-term ground-based measurements of aerosol optical properties and radiative forcing. A couple of temporary and permanent Aerosol Robotic Network (AERONET) sites and three comprehensive radiative sites were established in China as a result of international cooperation in recent years. Heavy aerosol loading and significant temporal and spatial variation over North China are revealed by the AERONET data.Aerosol-induced reductions in surface radiation budget are examined on the basis of collocated observations by sun photometers and pyranometers.

  8. Estimation of above ground biomass in boreal forest using ground-based Lidar

    Science.gov (United States)

    Taheriazad, L.; Moghadas, H.; Sanchez-Azofeifa, A.

    2017-05-01

    Assessing above ground biomass of forest is important for carbon storage monitoring in boreal forest. In this study, a new model is developed to estimate the above ground biomass using ground based Lidar data. 21 trees were measured and scanned across the plot area study in boreal forests of Alberta, Canada. The study area was scanned in the summer season 2014 to quantify the green biomass. The average of total crown biomass and green biomass in this study was 377 kg (standard deviation, S.D. = 243 kg) and 6.42 kg (S.D. = 2.69 m), respectively.

  9. Synergetic ground-based methods for remote measurements of ozone vertical profiles

    Science.gov (United States)

    Timofeyev, Yuriy; Kostsov, Vladimir; Virolainen, Yana

    2013-05-01

    The technique of combining ground-based measurements in infrared and microwave spectral regions in order to achieve higher accuracy of ozone profile retrieval in extensive altitude ranges is described and analyzed. The information content, errors, altitude ranges and vertical resolution of ozone profile retrieval have been studied on the basis of numerical simulation of synergetic experiments. Optimal conditions of measurements are defined and requirements to additional information are formulated. The first results on ozone vertical profile retrieval using groundbased measurements of FTIR-spectrometer and microwave radiometer are given.

  10. Solar diameter, eclipses and transits: the importance of ground-based observations

    CERN Document Server

    Sigismondi, Costantino

    2012-01-01

    According to satellite measurements the difference between polar and equatorial radius does not exceed 10 milliarcsec. These measurements are differential, and the absolute value of the solar diameter is not precisely known to a level of accuracy needed for finding variations during years or decades. Moreover the lifetime of a satellite is limited, and its calibration is not stable. This shows the need to continue ground-based observations of the Sun exploiting in particular the methods less affected by atmospheric turbulence, as the planetary transits and the total and annular eclipses. The state of art, the advantages and the limits of these two methods are here considered.

  11. Asteroseismology of Solar-type stars with Kepler III. Ground-based Data

    CERN Document Server

    Molenda-Zakowicz, Joanna; Sousa, Sergio; Frasca, Antonio; Biazzo, Katia; Huber, Daniel; Ireland, Mike; Bedding, Tim; Stello, Dennis; Uytterhoeven, Katrien; Dreizler, Stefan; De Cat, Peter; Briquet, Maryline; Catanzaro, Giovanni; Karoff, Chistoffer; Frandsen, Soeren; Spezzi, Loredana; Catala, Claude

    2010-01-01

    We report on the ground-based follow-up program of spectroscopic and photometric observations of solar-like asteroseismic targets for the Kepler space mission. These stars constitute a large group of more than thousand objects which are the subject of an intensive study of the Kepler Asteroseismic Science Consortium Working Group 1 (KASC WG-1). The main goal of this coordinated research is the determination of the fundamental stellar atmospheric parameters, which are used for the computing of their asteroseismic models, as well as for the verification of the Kepler Input Catalogue (KIC).

  12. Boost-Phase ballistic missile trajectory estimation with ground based radar

    Institute of Scientific and Technical Information of China (English)

    Tang Yuyan; Huang Peikang

    2006-01-01

    A conditional boost-phase trajectory estimation method based on ballistic missile (BM) information database and classification is developed to estimate and predict boos-phase BM trajectory. The main uncertain factors to describe BM dynamics equation are reduced to the control law of trajectory pitch angle in boost-phase. After the BM mass at the beginning of estimation, the BM attack angle and the modification of engine thrust denoting BM acceleration are modeled reasonably, the boost-phase BM trajectory estimation with ground based radar is well realized. The validity of this estimation method is testified by computer simulation with a typical example.

  13. Integrated interpretation of helicopter and ground-based geophysical data recorded within the Okavango Delta, Botswana

    DEFF Research Database (Denmark)

    Podgorski, Joel E.; Green, Alan G.; Kalscheuer, Thomas

    2015-01-01

    ) data recorded across most of the delta, (ii) 2D models and images derived from ground-based electrical resistance tomographic, transient electromagnetic, and high resolution seismic reflection/refraction tomographic data acquired at four selected sites in western and north-central regions of the delta...... resistivities and very low to low P-wave velocities. Except for images of several buried abandoned river channels, it is non-reflective. The laterally extensive underlying unit of low resistivities, low P-wave velocity, and subhorizontal reflectors very likely contains saline-water-saturated sands and clays...... reflectivity. The interface between the POM unit and basement is a prominent seismic reflector....

  14. Hypergravity Facilities in the ESA Ground-Based Facility Program - Current Research Activities and Future Tasks

    Science.gov (United States)

    Frett, Timo; Petrat, Guido; W. A. van Loon, Jack J.; Hemmersbach, Ruth; Anken, Ralf

    2016-06-01

    Research on Artificial Gravity (AG) created by linear acceleration or centrifugation has a long history and could significantly contribute to realize long-term human spaceflight in the future. Employing centrifuges plays a prominent role in human physiology and gravitational biology. This article gives a short review about the background of Artificial Gravity with respect to hypergravity (including partial gravity) and provides information about actual ESA ground-based facilities for research on a variety of biosystems such as cells, plants, animals or, particularly, humans.

  15. Images of Neptune's ring arcs obtained by a ground-based telescope

    Science.gov (United States)

    Sicardy, B.; Roddier, F.; Roddier, C.; Perozzi, E.; Graves, J. E.; Guyon, O.; Northcott, M. J.

    1999-08-01

    Neptune has a collection of incomplete narrow rings, known as ring arcs, which should in isolation be destroyed by differential motion in a matter of months. Yet since first discovered by stellar occultations in 1984, they appear to have persisted, perhaps through a gravitational resonance effect involving the satellite Galatea. Here we report ground-based observations of the ring arcs, obtained using an adaptive optics system. Our data, and those obtained using the Hubble Space Telescope (reported in a companion paper), indicate that the ring arcs are near, but not within the resonance with Galatea, in contrast to what is predicted by some models.

  16. SCENARIO AND TARGET SIMULATION FOR A GROUND BASED MULTIFUNCTION PHASED ARRAY RADAR

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    This paper describes a scenario and target simulation which operates in non real-time to provide full closed-loop operation of the ground based multifunction phased array radar simulation system in support of ballistic missile defence experiments against countermeasure.By simulating the target scattering signature and dynamical signature,this scenario and target simulation provide re- alistic scenario source to evaluate the system performance of multifunction phased array radar,and the key algorithms verification and validation such as target tracking,multi-target imaging and target recognition.

  17. Improved ground-based FTS measurement for column abundance CO2 retrievals(Conference Presentation)

    Science.gov (United States)

    Goo, Tae-Young

    2016-10-01

    The National Institute of Meteorological Sciences has operated a ground-based Fourier Transform Spectrometer (FTS) at Anmyeondo, Korea since December 2012. Anmyeondo FTS site is a designated operational station of Total Carbon Column Observing Network (TCCON) and belongs to regional Global Atmosphere Watch observatory. A Bruker IFS-125HR model, which has a significantly high spectral resolution by 0.02 cm-1, is employed and instrument specification is almost same as the TCCON configuration. such as a spectrum range of 3,800 16,000 cm-1, a resolution of 1 cm-1, InGaAs and Si-Diode detectors and CaF2 beam splitter. It is found that measured spectra have a good agreement with simulated spectra. In order to improve the spectral accuracy and stability, The Operational Automatic System for Intensity of Sunray (OASIS) has been developed. The OASIS can provide consistent photon energy optimized to detector range by controlling the diameter of solar beam reflected from the mirror of suntracker. As a result, monthly modulation efficiency (ME), which indicates the spectral accuracy of FTS measurement, has been recorded the vicinity of 99.9% since Feb 2015. The ME of 98% is regarded as the error of 0.1% in the ground-based in-situ CO2 measurement. Total column abundances of CO2 and CH4 during 2015 are estimated by using GGG v14 and compared with ground-based in-situ CO2 and CH4 measurements at the height of 86 m above sea level. The seasonality of CO2 is well captured by both FTS and in-situ measurements while there is considerable difference on the amplitude of CO2 seasonal variation due to the insensitivity of column CO2 to the surface carbon cycle dynamics in nature as well as anthropogenic sources. Total column CO2 and CH4 approximately vary from 395 ppm to 405 ppm and from 1.82 ppm to 1.88 ppm, respectively. It should be noted that few measurements obtained in July to August because of a lot of cloud and fog. It is found that enhancement of CH4 from the FTS at Anmyeondo

  18. The laser calibration system for the STACEE ground-based gamma ray detector

    CERN Document Server

    Hanna, D

    2002-01-01

    We describe the design and performance of the laser system used for calibration monitoring of components of the STACEE detector. STACEE is a ground based gamma ray detector which uses the heliostats of a solar power facility to collect and focus Cherenkov light onto a system of secondary optics and photomultiplier tubes. To monitor the gain and check the linearity and timing properties of the phototubes and associated electronics, a system based on a dye laser, neutral density filters and optical fibres has been developed. In this paper we describe the system and present some results from initial tests made with it.

  19. Ground-Based Gas-Liquid Flow Research in Microgravity Conditions: State of Knowledge

    Science.gov (United States)

    McQuillen, J.; Colin, C.; Fabre, J.

    1999-01-01

    During the last decade, ground-based microgravity facilities have been utilized in order to obtain predictions for spacecraft system designers and further the fundamental understanding of two-phase flow. Although flow regime, pressure drop and heat transfer coefficient data has been obtained for straight tubes and a limited number of fittings, measurements of the void fraction, film thickness, wall shear stress, local velocity and void information are also required in order to develop general mechanistic models that can be utilized to ascertain the effects of fluid properties, tube geometry and acceleration levels. A review of this research is presented and includes both empirical data and mechanistic models of the flow behavior.

  20. Ground-based and spaceborn observations of the type II burst with developed fine structure

    Science.gov (United States)

    Dorovskyy, V.; Melnik, V.; Konovalenko, A.; Brazhenko, A.; Rucker, H.; Stanislavskyy, A.; Panchenko, M.

    2012-09-01

    The combination of two huge ground-based radio telescopes (UTR-2 and URAN-2) operated in decameter wavelengths with three spatially separated spacecrafts (SOHO, STEREO-A and STEREO-B) equipped with white light coronagraphs, UV telescopes and decameter-hectometer band radio telescopes created a unique opportunity to investigate the high energy solar transients, such as CMEs and their manifestations in radio bands - type II bursts. In this paper we made detailed analysis of the powerful and complex event occurred on 7 June 2011 consisted of Halo-CME and type II burst with rich fine structure.

  1. Advanced ground-based gravitational-wave detectors' potential to detect generic deviations from general relativity

    CERN Document Server

    Narikawa, Tatsuya

    2016-01-01

    We discuss the potential of the advanced ground-based gravitational-wave detectors, such as LIGO, Virgo, and KAGRA, to detect generic deviations of gravitational waveforms from the prediction of General Relativity. We use the parameterized post-Einsteinian formalism to characterize the deviations, and assess how much magnitude of the deviations are detectable by using an approximate decision scheme based on Bayesian statistics. We find that there exist detectable regions of the parameterized post-Einsteinian parameters by using a single gravitational wave event. The regions are not excluded by currently existing binary pulsar observations for the parameterized post-Einsteinian parameters at higher post-Newtonian order.

  2. Navigating Distributed Services

    DEFF Research Database (Denmark)

    Beute, Berco

    2002-01-01

    , to a situation where they are distributedacross the Internet. The second trend is the shift from a virtual environment that solelyconsists of distributed documents to a virtual environment that consists of bothdistributed documents and distributed services. The third and final trend is theincreasing diversity...... of devices used to access information on the Internet.The focal point of the thesis is an initial exploration of the effects of the trends onusers as they navigate the virtual environment of distributed documents and services.To begin the thesis uses scenarios as a heuristic device to identify and analyse...... themain effects of the trends. This is followed by an exploration of theory of navigationInformation Spaces, which is in turn followed by an overview of theories, and the stateof the art in navigating distributed services. These explorations of both theory andpractice resulted in a large number of topics...

  3. Requirements for e-Navigation Architectures

    Directory of Open Access Journals (Sweden)

    Axel Hahn

    2016-12-01

    Full Text Available Technology is changing the way of navigation. New technologies for communication and navigation can be found on virtually every vessel. System architectures define structure and cooperation of components and subsystems. IMO, IALA, costal authorities, technology provider and many more actually propose new architectures for e-Navigation. This paper looks at other transportation domains and technical as normative requirements for e-Navigation architectures. With the aim of identifying possible synergies in the research, development, certification and standardization, this paper sets out to compare requirements and approaches of these two domains with respect to safety and security aspects. Since from an autonomy perspective, the automotive domain has started earlier and therefore has achieved a higher degree of technical progress, we will start with an overview of the developments in this domain. After that, the paper discusses the requirements on automation and assistance systems in the maritime domain and gives an overview of the developments into this direction within the maritime domain. This then allows us to compare developments in both domains and to derive recommendations for further developments in the maritime domain at the end of this paper.

  4. The attack navigator

    DEFF Research Database (Denmark)

    Probst, Christian W.; Willemson, Jan; Pieters, Wolter

    2016-01-01

    The need to assess security and take protection decisions is at least as old as our civilisation. However, the complexity and development speed of our interconnected technical systems have surpassed our capacity to imagine and evaluate risk scenarios. This holds in particular for risks...... that are caused by the strategic behaviour of adversaries. Therefore, technology-supported methods are needed to help us identify and manage these risks. In this paper, we describe the attack navigator: a graph-based approach to security risk assessment inspired by navigation systems. Based on maps of a socio...

  5. Navigational Planning in Orienteering

    Science.gov (United States)

    Murakoshi, Shin

    Navigation is a human activity with the aim being to arrive at a predetermined destination. In order to find the way to the destination, the use of current input from the actual environment while travelling is needed as well as stored and organized knowledge of the local geography. Although the knowledge requirement has been studied extensively in the form of cognitive maps or other spatial representation, few studies deal with how the knowledge is used together with the input from the actual environment while navigating.

  6. Exploring the relationship between monitored ground-based and satellite aerosol measurements over the City of Johannesburg

    CSIR Research Space (South Africa)

    Garland, Rebecca M

    2012-09-01

    Full Text Available This project studied the relationship between aerosol optical depth (AOD) from the Multi-angle Imaging SpectroRadiometer (MISR) instrument on the Terra satellite, and ground-based monitored particulate matter (PM) mass concentrations measured...

  7. Improving Canada's Marine Navigation System through e-Navigation

    Directory of Open Access Journals (Sweden)

    Daniel Breton

    2016-06-01

    The conclusion proposed is that on-going work with key partners and stakeholders can be used as the primary mechanism to identify e-Navigation related innovation and needs, and to prioritize next steps. Moving forward in Canada, implementation of new e-navigation services will continue to be stakeholder driven, and used to drive improvements to Canada's marine navigation system.

  8. A Process Model for Deployment Planning of Ground-based Air Defense System Against Asymmetric Homeland Threat

    Science.gov (United States)

    2009-01-01

    A Process Model for Deployment Planning of Ground-based Air Defense System Against Asymmetric Homeland Threat Ronald L. Cypert Scientific...units, along with coordination at the state and federal agency level, a dynamic process modeling capability was chosen to chart the myriad...COVERED 00-00-2009 to 00-00-2009 4. TITLE AND SUBTITLE A Process Model for Deployment Planning of Ground-based Air Defense System Against

  9. Development of a Ground-Based Atmospheric Monitoring Network for the Global Mercury Observation System (GMOS

    Directory of Open Access Journals (Sweden)

    Sprovieri F.

    2013-04-01

    Full Text Available Consistent, high-quality measurements of atmospheric mercury (Hg are necessary in order to better understand Hg emissions, transport, and deposition on a global scale. Although the number of atmospheric Hg monitoring stations has increased in recent years, the available measurement database is limited and there are many regions of the world where measurements have not been extensively performed. Long-term atmospheric Hg monitoring and additional ground-based monitoring sites are needed in order to generate datasets that will offer new insight and information about the global scale trends of atmospheric Hg emissions and deposition. In the framework of the Global Mercury Observation System (GMOS project, a coordinated global observational network for atmospheric Hg is being established. The overall research strategy of GMOS is to develop a state-of-the-art observation system able to provide information on the concentration of Hg species in ambient air and precipitation on the global scale. This network is being developed by integrating previously established ground-based atmospheric Hg monitoring stations with newly established GMOS sites that are located both at high altitude and sea level locations, as well as in climatically diverse regions. Through the collection of consistent, high-quality atmospheric Hg measurement data, we seek to create a comprehensive assessment of atmospheric Hg concentrations and their dependence on meteorology, long-range atmospheric transport and atmospheric emissions.

  10. Potential use of ground-based sensor technologies for weed detection.

    Science.gov (United States)

    Peteinatos, Gerassimos G; Weis, Martin; Andújar, Dionisio; Rueda Ayala, Victor; Gerhards, Roland

    2014-02-01

    Site-specific weed management is the part of precision agriculture (PA) that tries to effectively control weed infestations with the least economical and environmental burdens. This can be achieved with the aid of ground-based or near-range sensors in combination with decision rules and precise application technologies. Near-range sensor technologies, developed for mounting on a vehicle, have been emerging for PA applications during the last three decades. These technologies focus on identifying plants and measuring their physiological status with the aid of their spectral and morphological characteristics. Cameras, spectrometers, fluorometers and distance sensors are the most prominent sensors for PA applications. The objective of this article is to describe-ground based sensors that have the potential to be used for weed detection and measurement of weed infestation level. An overview of current sensor systems is presented, describing their concepts, results that have been achieved, already utilized commercial systems and problems that persist. A perspective for the development of these sensors is given. © 2013 Society of Chemical Industry.

  11. Ground-based observation of emission lines from the corona of a red-dwarf star.

    Science.gov (United States)

    Schmitt, J H; Wichmann, R

    2001-08-02

    All 'solar-like' stars are surrounded by coronae, which contain magnetically confined plasma at temperatures above 106 K. (Until now, only the Sun's corona could be observed in the optical-as a shimmering envelope during a total solar eclipse.) As the underlying stellar 'surfaces'-the photospheres-are much cooler, some non-radiative process must be responsible for heating the coronae. The heating mechanism is generally thought to be magnetic in origin, but is not yet understood even for the case of the Sun. Ultraviolet emission lines first led to the discovery of the enormous temperature of the Sun's corona, but thermal emission from the coronae of other stars has hitherto been detectable only from space, at X-ray wavelengths. Here we report the detection of emission from highly ionized iron (Fe XIII at 3,388.1 A) in the corona of the red-dwarf star CN Leonis, using a ground-based telescope. The X-ray flux inferred from our data is consistent with previously measured X-ray fluxes, and the non-thermal line width of 18.4 km s-1 indicates great similarities between solar and stellar coronal heating mechanisms. The accessibility and spectral resolution (45,000) of the ground-based instrument are much better than those of X-ray satellites, so a new window to the study of stellar coronae has been opened.

  12. Proceedings of the 2011 Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Wetovsky, Marvin A. [Editor; Patterson, Eileen F. [Editor; Sandoval, Marisa N. [Editor

    2011-09-13

    These proceedings contain papers prepared for the Monitoring Research Review 2011: Ground-Based Nuclear Explosion Monitoring Technologies, held 13-15 September, 2011 in Tucson, Arizona. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Defense Threat Reduction Agency (DTRA), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO), National Science Foundation (NSF), and other invited sponsors. The scientific objectives of the research are to improve the United States' capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  13. Ground-based Observations of the Solar Sources of Space Weather (Invited Review)

    CERN Document Server

    Veronig, Astrid M

    2016-01-01

    Monitoring of the Sun and its activity is a task of growing importance in the frame of space weather research and awareness. Major space weather disturbances at Earth have their origin in energetic outbursts from the Sun: solar flares, coronal mass ejections and associated solar energetic particles. In this review we discuss the importance and complementarity of ground-based and space-based observations for space weather studies. The main focus is drawn on ground-based observations in the visible range of the spectrum, in particular in the diagnostically manifold H$\\alpha$ spectral line, which enables us to detect and study solar flares, filaments, filament eruptions, and Moreton waves. Existing H$\\alpha$ networks such as the GONG and the Global High-Resolution H$\\alpha$ Network are discussed. As an example of solar observations from space weather research to operations, we present the system of real-time detection of H$\\alpha$ flares and filaments established at Kanzelh\\"ohe Observatory (KSO; Austria) in the...

  14. Proceedings of the 27th Seismic Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Wetovsky, Marvin A. [Editor; Benson, Jody [Editor; Patterson, Eileen F. [Editor

    2005-09-20

    These proceedings contain papers prepared for the 27th Seismic Research Review: Ground-Based Nuclear Explosion Monitoring Technologies, held 20-22 September, 2005 in Rancho Mirage, California. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Air Force Technical Applications Center (AFTAC), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  15. Modelling systematics of ground-based transit photometry I. Implications on transit timing variations

    CERN Document Server

    von Essen, C; Mallonn, M; Tingley, B; Marcussen, M

    2016-01-01

    The transit timing variation technique (TTV) has been widely used to detect and characterize multiple planetary systems. Due to the observational biases imposed mainly by the photometric conditions and instrumentation and the high signal-to-noise required to produce primary transit observations, ground-based data acquired using small telescopes limit the technique to the follow-up of hot Jupiters. However, space-based missions such as Kepler and CoRoT have already revealed that hot Jupiters are mainly found in single systems. Thus, it is natural to question ourselves if we are properly using the observing time at hand carrying out such follow-ups, or if the use of medium-to-low quality transit light curves, combined with current standard techniques of data analysis, could be playing a main role against exoplanetary search via TTVs. The purpose of this work is to investigate to what extent ground-based observations treated with current modelling techniques are reliable to detect and characterize additional pla...

  16. Pc5 Oscillation Analysis by the Satellite and Ground-Based Data

    Institute of Scientific and Technical Information of China (English)

    A. Potapov; T. Polyushkina; T. L. Zhang; H. Zhao; A. Guglielmi; J. Kultima

    2005-01-01

    Large amplitude Pc5 event was observed in the space and on ground on August 3, 2001, about three hours after contact of the strong discontinuity in the solar wind with the magnetosphere according to data from ACE and Wind satellites. The Pc5 amplitude was as high as 15 nT in the tail of magnetosphere and about 5 nT at the ground based stations. In the magnetosphere Pc5 waves were observed by Cluster and Polar satellites, which occupied positions in the morning part of the near tail at the close field lines but were parted by distance of 11.5 Re, mainly along the x-axis of the GSM coordinate system. Both compressional and transverse components of the Pc5 wave activity were observed in the space, with the transverse component having the larger amplitude. Time delay between the Cluster and Polar satellites was about 8 minutes, which could be interpreted as a wave propagation from the geomagnetic tail to the Earth with the 150km/s group velocity.The ground-based Pc5 activity was analysed by using data from the Image magnetometer network. Doubtless demonstrations of a field line resonant structure were found in variations of amplitude and polarization with latitude. Finnish chain of search coil magnetometers observed modulated Pc1 emission simultaneously with the Pc5 wave train. A possibility of non-linear impact of Pc5 wave energy on the plasma and waves in the magnetosphere is discussed.

  17. CRRES/Ground-based multi-instrument observations of an interval of substorm activity

    Directory of Open Access Journals (Sweden)

    T. K. Yeoman

    Full Text Available Observations are presented of data taken during a 3-h interval in which five clear substorm onsets/intensifications took place. During this interval ground-based data from the EISCAT incoherent scatter radar, a digital CCD all sky camera, and an extensive array of magnetometers were recorded. In addition data from the CRRES and DMSP spacecraft, whose footprints passed over Scandinavia very close to most of the ground-based instrumentation, are available. The locations and movements of the substorm current system in latitude and longitude, determined from ground and spacecraft magnetic field data, have been correlated with the locations and propagation of increased particle precipitation in the E-region at EISCAT, increased particle fluxes measured by CRRES and DMSP, with auroral luminosity and with ionospheric convection velocities. The onsets and propagation of the injection of magnetospheric particle populations and auroral luminosity have been compared. CRRES was within or very close to the substorm expansion phase onset sector during the interval. The onset region was observed at low latitudes on the ground, and has been confirmed to map back to within L=7 in the magnetotail. The active region was then observed to propagate tailward and poleward. Delays between the magnetic signature of the substorm field aligned currents and field dipolarisation have been measured. The observations support a near-Earth plasma instability mechanism for substorm expansion phase onset.

  18. Towards the development of tamper-resistant, ground-based mobile sensor nodes

    Science.gov (United States)

    Mascarenas, David; Stull, Christopher; Farrar, Charles

    2011-11-01

    Mobile sensor nodes hold great potential for collecting field data using fewer resources than human operators would require and potentially requiring fewer sensors than a fixed-position sensor array. It would be very beneficial to allow these mobile sensor nodes to operate unattended with a minimum of human intervention. In order to allow mobile sensor nodes to operate unattended in a field environment, it is imperative that they be capable of identifying and responding to external agents that may attempt to tamper with, damage or steal the mobile sensor nodes, while still performing their data collection mission. Potentially hostile external agents could include animals, other mobile sensor nodes, or humans. This work will focus on developing control policies to help enable a mobile sensor node to identify and avoid capture by a hostile un-mounted human. The work is developed in a simulation environment, and demonstrated using a non-holonomic, ground-based mobile sensor node. This work will be a preliminary step toward ensuring the cyber-physical security of ground-based mobile sensor nodes that operate unattended in potentially unfriendly environments.

  19. a Universal De-Noising Algorithm for Ground-Based LIDAR Signal

    Science.gov (United States)

    Ma, Xin; Xiang, Chengzhi; Gong, Wei

    2016-06-01

    Ground-based lidar, working as an effective remote sensing tool, plays an irreplaceable role in the study of atmosphere, since it has the ability to provide the atmospheric vertical profile. However, the appearance of noise in a lidar signal is unavoidable, which leads to difficulties and complexities when searching for more information. Every de-noising method has its own characteristic but with a certain limitation, since the lidar signal will vary with the atmosphere changes. In this paper, a universal de-noising algorithm is proposed to enhance the SNR of a ground-based lidar signal, which is based on signal segmentation and reconstruction. The signal segmentation serving as the keystone of the algorithm, segments the lidar signal into three different parts, which are processed by different de-noising method according to their own characteristics. The signal reconstruction is a relatively simple procedure that is to splice the signal sections end to end. Finally, a series of simulation signal tests and real dual field-of-view lidar signal shows the feasibility of the universal de-noising algorithm.

  20. Understanding the Laminar Distribution of Tropospheric Ozone from Ground-Based, Airborne, Spaceborne, and Modeling Perspectives

    Science.gov (United States)

    Newchurch, Mike; Johnson, Matthew S.; Huang, Guanyu; Kuang, Shi; Wang, Lihua; Chance, Kelly; Liu, Xiong

    2016-01-01

    Laminar ozone structure is a ubiquitous feature of tropospheric-ozone distributions resulting from dynamic and chemical atmospheric processes. Understanding the characteristics of these ozone laminae and the mechanisms responsible for producing them is important to outline the transport pathways of trace gases and to quantify the impact of different sources on tropospheric background ozone. In this study, we present a new method to detect ozone laminae to understand their climatological characteristics of occurrence frequency in terms of thickness and altitude. We employ both ground-based and airborne ozone lidar measurements and other synergistic observations and modeling to investigate the sources and mechanisms such as biomass burning transport, stratospheric intrusion, lightning-generated NOx, and nocturnal low-level jets that are responsible for depleted or enhanced tropospheric ozone layers. Spaceborne (e.g., OMI (Ozone Monitoring Instrument), TROPOMI (Tropospheric Monitoring Instrument), TEMPO (Tropospheric Emissions: Monitoring of Pollution)) measurements of these laminae will observe greater horizontal extent and lower vertical resolution than balloon-borne or lidar measurements will quantify. Using integrated ground-based, airborne, and spaceborne observations in a modeling framework affords insight into how to gain knowledge of both the vertical and horizontal evolution of these ubiquitous ozone laminae.

  1. Ground Based Retrievals of Small Ice Crystals and Water Phase in Arctic Cirrus

    Science.gov (United States)

    Mishra, Subhashree; Mitchell, David L.; DeSlover, Daniel

    2009-03-01

    The microphysical properties of cirrus clouds are uncertain due to the problem of ice particles shattering at the probe inlet upon sampling. To facilitate better estimation of small ice crystal concentrations in cirrus clouds, a new ground-based remote sensing technique has been used in combination with in situ aircraft measurements. Data from the Mixed-Phase Arctic Cloud Experiment (M-PACE), conducted at the north slope of Alaska (winter 2004), have been used to test a new method for retrieving the liquid water path (LWP) and ice water path (IWP) in mixed phase clouds. The framework of the retrieval algorithm consists of the modified anomalous diffraction approximation or MADA (for mixed phase cloud optical properties), a radar reflectivity-ice microphysics relationship and a temperature-dependent ice particle size distribution (PSD) scheme. Cloud thermal emission measurements made by the ground-based Atmospheric Emitted Radiance Interferometer (AERI) yield information on the total water path (TWP) while reflectivity measurements from the Millimeter Cloud Radar (MMCR) are used to derive the IWP. The AERI is also used to indicate the concentration of small ice crystals (DBeer's law absorption. While this is still a work in progress, the anticipated products from this AERI-radar retrieval scheme are the IWP, LWP, small-to-large ice crystal number concentration ratio and effective diameter for cirrus, as well as the ice particle number concentration for a given ice water content (IWC).

  2. Synchronized observations by using the STEREO and the largest ground-based decametre radio telescope

    Science.gov (United States)

    Konovalenko, A. A.; Stanislavsky, A. A.; Rucker, H. O.; Lecacheux, A.; Mann, G.; Bougeret, J.-L.; Kaiser, M. L.; Briand, C.; Zarka, P.; Abranin, E. P.; Dorovsky, V. V.; Koval, A. A.; Mel'nik, V. N.; Mukha, D. V.; Panchenko, M.

    2013-08-01

    We consider the approach to simultaneous (synchronous) solar observations of radio emission by using the STEREO-WAVES instruments (frequency range 0.125-16 MHz) and the largest ground-based low-frequency radio telescope. We illustrate it by the UTR-2 radio telescope implementation (10-30 MHz). The antenna system of the radio telescope is a T-shape-like array of broadband dipoles and is located near the village Grakovo in the Kharkiv region (Ukraine). The third observation point on the ground in addition to two space-based ones improves the space-mission performance capabilities for the determination of radio-emission source directivity. The observational results from the high sensitivity antenna UTR-2 are particularly useful for analysis of STEREO data in the condition of weak event appearances during solar activity minima. In order to improve the accuracy of flux density measurements, we also provide simultaneous observations with a large part of the UTR-2 radio telescope array and its single dipole close to the STEREO-WAVES antennas in sensitivity. This concept has been studied by comparing the STEREO data with ground-based records from 2007-2011 and shown to be effective. The capabilities will be useful in the implementation of new instruments (LOFAR, LWA, MWA, etc.) and during the future Solar Orbiter mission.

  3. Ground-based and spacecraft observations of lightning activity on Saturn

    Science.gov (United States)

    Zakharenko, V.; Mylostna, C.; Konovalenko, A.; Zarka, P.; Fischer, G.; Grießmeier, J.-M.; Litvinenko, G.; Rucker, H.; Sidorchuk, M.; Ryabov, B.; Vavriv, D.; Ryabov, V.; Cecconi, B.; Coffre, A.; Denis, L.; Fabrice, C.; Pallier, L.; Schneider, J.; Kozhyn, R.; Vinogradov, V.; Mukha, D.; Weber, R.; Shevchenko, V.; Nikolaenko, V.

    2012-02-01

    In late 2007, Saturn electrostatic discharges (SED) were simultaneously observed at the radio telescope UTR-2 and with the Cassini spacecraft. Observations at UTR-2 were performed with a multichannel receiver in the frequency range 12-33 MHz, and those performed on Cassini-with a swept frequency receiver that is part of the RPWS (Radio and Plasma Wave Science) instrument in the frequency band 1.8-16 MHz. We got a very good coincidence between data of UTR-2 and Cassini. It is shown for the first time that ground-based radio astronomy lets us detect Saturn's lightning with a high degree of reliability despite terrestrial interferences. This is the necessary basis for further detailed study of the temporal and spectral characteristics of the SEDs with ground based radio telescopes. Based on six observation sessions, several parameters of SEDs were determined, in particularly a correlation of 0.77±0.15 between the average intensity of storms and the e-folding time.

  4. Nighttime Aerosol Optical Depth Measurements Using a Ground-based Lunar Photometer

    Science.gov (United States)

    Berkoff, Tim; Omar, Ali; Haggard, Charles; Pippin, Margaret; Tasaddaq, Aasam; Stone, Tom; Rodriguez, Jon; Slutsker, Ilya; Eck, Tom; Holben, Brent; hide

    2015-01-01

    In recent years it was proposed to combine AERONET network photometer capabilities with a high precision lunar model used for satellite calibration to retrieve columnar nighttime AODs. The USGS lunar model can continuously provide pre-atmosphere high precision lunar irradiance determinations for multiple wavelengths at ground sensor locations. When combined with measured irradiances from a ground-based AERONET photometer, atmospheric column transmissions can determined yielding nighttime column aerosol AOD and Angstrom coefficients. Additional demonstrations have utilized this approach to further develop calibration methods and to obtain data in polar regions where extended periods of darkness occur. This new capability enables more complete studies of the diurnal behavior of aerosols, and feedback for models and satellite retrievals for the nighttime behavior of aerosols. It is anticipated that the nighttime capability of these sensors will be useful for comparisons with satellite lidars such as CALIOP and CATS in additional to ground-based lidars in MPLNET at night, when the signal-to-noise ratio is higher than daytime and more precise AOD comparisons can be made.

  5. Evaluation of brightness temperature from a forward model of ground-based microwave radiometer

    Indian Academy of Sciences (India)

    S Rambabu; J S Pillai; A Agarwal; G Pandithurai

    2014-06-01

    Ground-based microwave radiometers are getting great attention in recent years due to their capability to profile the temperature and humidity at high temporal and vertical resolution in the lower troposphere. The process of retrieving these parameters from the measurements of radiometric brightness temperature () includes the inversion algorithm, which uses the background information from a forward model. In the present study, an algorithm development and evaluation of this forward model for a ground-based microwave radiometer, being developed by Society for Applied Microwave Electronics Engineering and Research (SAMEER) of India, is presented. Initially, the analysis of absorption coefficient and weighting function at different frequencies was made to select the channels. Further the range of variation of for these selected channels for the year 2011, over the two stations Mumbai and Delhi is discussed. Finally the comparison between forward-model simulated s and radiometer measured s at Mahabaleshwar (73.66°E and 17.93°N) is done to evaluate the model. There is good agreement between model simulations and radiometer observations, which suggests that these forward model simulations can be used as background for inversion models for retrieving the temperature and humidity profiles.

  6. Proceedings of the 29th Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Wetovsky, Marvin A. [Editor; Benson, Jody [Editor; Patterson, Eileen F. [Editor

    2007-09-25

    These proceedings contain papers prepared for the 29th Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies, held 25-27 September, 2007 in Denver, Colorado. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Air Force Technical Applications Center (AFTAC), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO), and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  7. Proceedings of the 28th Seismic Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Wetovsky, Marvin A. [Editor; Benson, Jody [Editor; Patterson, Eileen F. [Editor

    2006-09-19

    These proceedings contain papers prepared for the 28th Seismic Research Review: Ground-Based Nuclear Explosion Monitoring Technologies, held 19-21 September, 2006 in Orlando, Florida. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Air Force Technical Applications Center (AFTAC), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO), and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  8. Proceedings of the 30th Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Wetovsky, Marv A [Los Alamos National Laboratory; Aguilar-chang, Julio [Los Alamos National Laboratory; Arrowsmith, Marie [Los Alamos National Laboratory; Arrowsmith, Stephen [Los Alamos National Laboratory; Baker, Diane [Los Alamos National Laboratory; Begnaud, Michael [Los Alamos National Laboratory; Harste, Hans [Los Alamos National Laboratory; Maceira, Monica [Los Alamos National Laboratory; Patton, Howard [Los Alamos National Laboratory; Phillips, Scott [Los Alamos National Laboratory; Randall, George [Los Alamos National Laboratory; Revelle, Douglas [Los Alamos National Laboratory; Rowe, Charlotte [Los Alamos National Laboratory; Stead, Richard [Los Alamos National Laboratory; Steck, Lee [Los Alamos National Laboratory; Whitaker, Rod [Los Alamos National Laboratory; Yang, Xiaoning [Los Alamos National Laboratory

    2008-09-23

    These proceedings contain papers prepared for the 30th Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies, held 23-25 September, 2008 in Portsmouth, Virginia. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Air Force Technical Applications Center (AFTAC), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO), and other invited sponsors. The scientific objectives of the research are to improve the United States’ capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  9. Proceedings of the 2010 Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Wetovsky, Marvin A [Editor; Patterson, Eileen F [Editor

    2010-09-21

    These proceedings contain papers prepared for the Monitoring Research Review 2010: Ground-Based Nuclear Explosion Monitoring Technologies, held 21-23 September, 2010 in Orlando, Florida,. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, National Science Foundation (NSF), Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO), and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  10. Proceedings of the 2009 Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Wetovsky, Marv A [Los Alamos National Laboratory; Aguilar - Chang, Julio [Los Alamos National Laboratory; Anderson, Dale [Los Alamos National Laboratory; Arrowsmith, Marie [Los Alamos National Laboratory; Arrowsmith, Stephen [Los Alamos National Laboratory; Baker, Diane [Los Alamos National Laboratory; Begnaud, Michael [Los Alamos National Laboratory; Harste, Hans [Los Alamos National Laboratory; Maceira, Monica [Los Alamos National Laboratory; Patton, Howard [Los Alamos National Laboratory; Phillips, Scott [Los Alamos National Laboratory; Randall, George [Los Alamos National Laboratory; Rowe, Charlotte [Los Alamos National Laboratory; Stead, Richard [Los Alamos National Laboratory; Steck, Lee [Los Alamos National Laboratory; Whitaker, Rod [Los Alamos National Laboratory; Yang, Xiaoning ( David ) [Los Alamos National Laboratory

    2009-09-21

    These proceedings contain papers prepared for the Monitoring Research Review 2009: Ground -Based Nuclear Explosion Monitoring Technologies, held 21-23 September, 2009 in Tucson, Arizona,. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, Comprehensive Test Ban Treaty Organization (CTBTO), and other invited sponsors. The scientific objectives of the research are to improve the United States’ capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  11. De-mystifying earned value management for ground based astronomy projects, large and small

    Science.gov (United States)

    Norton, Timothy; Brennan, Patricia; Mueller, Mark

    2014-08-01

    The scale and complexity of today's ground based astronomy projects have justifiably required Principal Investigator's and their project teams to adopt more disciplined management processes and tools in order to achieve timely and accurate quantification of the progress and relative health of their projects. Earned Value Management (EVM) is one such tool. Developed decades ago and used extensively in the defense and construction industries, and now a requirement of NASA projects greater than $20M; EVM has gained a foothold in ground-based astronomy projects. The intent of this paper is to de-mystify EVM by discussing the fundamentals of project management, explaining how EVM fits with existing principles, and describing key concepts every project can use to implement their own EVM system. This paper also discusses pitfalls to avoid during implementation and obstacles to its success. The authors report on their organization's most recent experience implementing EVM for the GMT-Consortium Large Earth Finder (G-CLEF) project. G-CLEF is a fiber-fed, optical echelle spectrograph that has been selected as a first light instrument for the Giant Magellan Telescope (GMT), planned for construction at the Las Campanas Observatory in Chile's Atacama Desert region.

  12. Augmenting WFIRST Microlensing with a Ground-based Optical Telescope Network

    CERN Document Server

    Zhu, Wei

    2016-01-01

    Augmenting the WFIRST microlensing campaigns with intensive observations from a ground-based network of wide-field survey telescopes would have several major advantages. First, it would enable one-dimensional (1-D) microlens parallax measurements over the entire mass range $M\\gtrsim M_\\oplus$. For luminous lenses, such 1-D parallax measurements can be promoted to complete solutions (mass, distance, transverse velocity) by high-resolution imaging a few years after the observations. This would provide crucial information not only about the hosts of planets and other lenses, but also enable a much more precise Galactic model. The addition of such a ground-based survey would also yield full 2-D vector parallax measurements, with largest sensitivity to low-mass lenses, which (being non-luminous) are not subject to followup imaging. These 2-D parallax measurements will directly yield mass and distance measurements for most planetary and binary events. It would also yield additional complete solutions for single-len...

  13. Which future for electromagnetic Astronomy: Ground Based vs Space Borne Large Astrophysical Facilities

    Science.gov (United States)

    Ubertini, Pietro

    2015-08-01

    The combined use of large ground based facilities and large space observatories is playing a key role in the advance of astrophysics by providing access to the entire electromagnetic spectrum, allowing high sensitivity observations from the lower radio wavelength to the higher energy gamma rays.It is nowadays clear that a forward steps in the understanding of the Universe evolution and large scale structure formation is essential and only possible with the combined use of multiwavelength imaging and spectral high resolution instruments.The increasing size, complexity and cost of large ground and space observatories places a growing emphasis on international collaboration. If the present set of astronomical facilities is impressive and complete, with nicely complementary space and ground based telescopes, the scenario becomes worrisome and critical in the next two decades. In fact, only a few ‘Large’ main space missions are planned and there is a need to ensure proper ground facility coverage: the synergy Ground-Space is not escapable in the timeframe 2020-2030.The scope of this talk is to review the current astronomical instrumentation panorama also in view of the recent major national agencies and international bodies programmatic decisions.This Division B meeting give us a unique opportunity to review the current situation and discuss the future perspectives taking advantage of the large audience ensured by the IAU GA.

  14. Inland Electronic Navigational Charts (IENC)

    Data.gov (United States)

    Army Corps of Engineers, Department of the Army, Department of Defense — These Inland Electronic Navigational Charts (IENCs) were developed from available data used in maintenance of Navigation channels. Users of these IENCs should be...

  15. Nautical Navigation Aids (NAVAID) Locations

    Data.gov (United States)

    Department of Homeland Security — Structures intended to assist a navigator to determine position or safe course, or to warn of dangers or obstructions to navigation. This dataset includes lights,...

  16. Cloud Absorption Radiometer Autonomous Navigation System - CANS

    Science.gov (United States)

    Kahle, Duncan; Gatebe, Charles; McCune, Bill; Hellwig, Dustan

    2013-01-01

    , the software aligns the precision navigation sensors and initializes the communications interfaces with the sensor and the remote computing system. It also monitors the navigation data state for quality and ensures that the system maintains the required fidelity for attitude and positional information. In the operational mode, the software runs at 12.5 Hz and gathers the required navigation/attitude data, computes the required sensor correction values, and then commands the sensor to the required roll correction. In this manner, the sensor will stay very near to vertical at all times, greatly improving the resulting collected data and imagery. CANS greatly improves quality of resulting imagery and data collected. In addition, the software component of the system outputs a concisely formatted, high-speed data stream that can be used for further science data processing. This precision, time-stamped data also can benefit other instruments on the same aircraft platform by providing extra information from the mission flight.

  17. A CubeSat for Calibrating Ground-Based and Sub-Orbital Millimeter-Wave Polarimeters (CalSat)

    Science.gov (United States)

    Johnson, Bradley R.; Vourch, Clement J.; Drysdale, Timothy D.; Kalman, Andrew; Fujikawa, Steve; Keating, Brian; Kaufman, Jon

    2015-10-01

    We describe a low-cost, open-access, CubeSat-based calibration instrument that is designed to support ground-based and sub-orbital experiments searching for various polarization signals in the cosmic microwave background (CMB). All modern CMB polarization experiments require a robust calibration program that will allow the effects of instrument-induced signals to be mitigated during data analysis. A bright, compact and linearly polarized astrophysical source with polarization properties known to adequate precision does not exist. Therefore, we designed a space-based millimeter-wave calibration instrument, called CalSat, to serve as an open-access calibrator, and this paper describes the results of our design study. The calibration source on board CalSat is composed of five “tones” with one each at 47.1, 80.0, 140, 249 and 309GHz. The five tones we chose are well matched to (i) the observation windows in the atmospheric transmittance spectra, (ii) the spectral bands commonly used in polarimeters by the CMB community and (iii) the Amateur Satellite Service bands in the Table of Frequency Allocations used by the Federal Communications Commission. CalSat would be placed in a polar orbit allowing visibility from observatories in the Northern Hemisphere, such as Mauna Kea in Hawaii and Summit Station in Greenland, and the Southern Hemisphere, such as the Atacama Desert in Chile and the South Pole. CalSat also would be observable by balloon-borne instruments launched from a range of locations around the world. This global visibility makes CalSat the only source that can be observed by all terrestrial and sub-orbital observatories, thereby providing a universal standard that permits comparison between experiments using appreciably different measurement approaches.

  18. A CubeSat for Calibrating Ground-Based and Sub-Orbital Millimeter-Wave Polarimeters

    Science.gov (United States)

    Johnson, Bradley

    2016-06-01

    We describe a low-cost, open-access, CubeSat-based calibration instrument that is designed to support ground-based and sub-orbital experiments searching for various polarization signals in the cosmic microwave background (CMB). All modern CMB polarization experiments require a robust calibration program that will allow the effects of instrument-induced signals to be mitigated during data analysis. A bright, compact, and linearly polarized astrophysical source with polarization properties known to adequate precision does not exist. Therefore, we designed a space-based millimeter-wave calibration instrument, called CalSat, to serve as an open-access calibrator, and this paper describes the results of our design study. The calibration source on board CalSat is composed of five "tones'" with one each at 47.1, 80.0, 140, 249 and 309 GHz. The five tones we chose are well matched to (i) the observation windows in the atmospheric transmittance spectra, (ii) the spectral bands commonly used in polarimeters by the CMB community, and (iii) The Amateur Satellite Service bands in the Table of Frequency Allocations used by the Federal Communications Commission. CalSat will be placed in a polar orbit allowing visibility from observatories in the Northern Hemisphere, such as Mauna~Kea in Hawaii and Summit Station in Greenland, and the Southern Hemisphere, such as the Atacama Desert in Chile and the South Pole. CalSat also will be observable by balloon-borne instruments launched from a range of locations around the world. This global visibility makes CalSat the only source that can be observed by all terrestrial and sub-orbital observatories, thereby providing a universal standard that permits comparison between experiments using appreciably different measurement approaches.

  19. Navigating Hypermasculine Terrains

    DEFF Research Database (Denmark)

    Henriksen, Ann-Karina Eske

    2015-01-01

    The study addresses how young women navigate urban terrains that are characterized by high levels of interpersonal aggression and crime. It is argued that young women apply a range of gendered tactics to establish safety and social mastery, and that these are framed by the limits and possibilitie...

  20. Personal Navigation System

    Science.gov (United States)

    2005-10-31

    GPS Satellite Simulator PC I B us PC I B us Embedded C language software TMS320VC33 DSP • Sensor I/O • Navigation Equations • Deep Integration...Simulator Test Display Simulation Controller 22 Figure 12. PNS Prototype Software System Integration Environment Embedded C language

  1. The attack navigator

    DEFF Research Database (Denmark)

    Probst, Christian W.; Willemson, Jan; Pieters, Wolter

    2016-01-01

    -technical system, the attack navigator identifies routes to an attacker goal. Specific attacker properties such as skill or resources can be included through attacker profiles. This enables defenders to explore attack scenarios and the effectiveness of defense alternatives under different threat conditions....

  2. Navigating ‘riskscapes’

    DEFF Research Database (Denmark)

    Gee, Stephanie; Skovdal, Morten

    2017-01-01

    This paper draws on interview data to examine how international health care workers navigated risk during the unprecedented Ebola outbreak in West Africa. It identifies the importance of place in risk perception, including how different spatial localities give rise to different feelings of threat...

  3. Power Beaming, Orbital Debris Removal, and Other Space Applications of a Ground Based Free Electron Laser

    Science.gov (United States)

    2010-03-01

    successful interstellar propagation of a laser communications signal. A casual survey of the night’s sky indicates that light can travel across...laser illumination of objects within the solar system for scientific study, and interstellar laser illumination for communications. Power beaming...these ranges. FEL illumination at interstellar ranges is modeled and discussed to determine our ability to communicate or detect laser communications

  4. Mitigating Aviation Communication and Satellite Orbit Operations Surprises from Adverse Space Weather

    Science.gov (United States)

    Tobiska, W. Kent

    2008-01-01

    Adverse space weather affects operational activities in aviation and satellite systems. For example, large solar flares create highly variable enhanced neutral atmosphere and ionosphere electron density regions. These regions impact aviation communication frequencies as well as precision orbit determination. The natural space environment, with its dynamic space weather variability, is additionally changed by human activity. The increase in orbital debris in low Earth orbit (LEO), combined with lower atmosphere CO2 that rises into the lower thermosphere and causes increased cooling that results in increased debris lifetime, adds to the environmental hazards of navigating in near-Earth space. This is at a time when commercial space endeavors are posed to begin more missions to LEO during the rise of the solar activity cycle toward the next maximum (2012). For satellite and aviation operators, adverse space weather results in greater expenses for orbit management, more communication outages or aviation and ground-based high frequency radio used, and an inability to effectively plan missions or service customers with space-based communication, imagery, and data transferal during time-critical activities. Examples of some revenue-impacting conditions and solutions for mitigating adverse space weather are offered.

  5. Optical Navigation for the Orion Vehicle

    Science.gov (United States)

    Crain, Timothy; Getchius, Joel; D'Souza, Christopher

    2008-01-01

    The Orion vehicle is being designed to provide nominal crew transport to the lunar transportation stack in low Earth orbit, crew abort prior during transit to the moon, and crew return to Earth once lunar orbit is achieved. One of the design requirements levied on the Orion vehicle is the ability to return to the vehicle and crew to Earth in the case of loss of communications and command with the Mission Control Center. Central to fulfilling this requirement, is the ability of Orion to navigate autonomously. In low-Earth orbit, this may be solved with the use of GPS, but in cis-lunar and lunar orbit this requires optical navigation. This paper documents the preliminary analyses performed by members of the Orion Orbit GN&C System team.

  6. Control algorithms for autonomous robot navigation

    Energy Technology Data Exchange (ETDEWEB)

    Jorgensen, C.C.

    1985-09-20

    This paper examines control algorithm requirements for autonomous robot navigation outside laboratory environments. Three aspects of navigation are considered: navigation control in explored terrain, environment interactions with robot sensors, and navigation control in unanticipated situations. Major navigation methods are presented and relevance of traditional human learning theory is discussed. A new navigation technique linking graph theory and incidental learning is introduced.

  7. 33 CFR 401.53 - Obstructing navigation.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Obstructing navigation. 401.53 Section 401.53 Navigation and Navigable Waters SAINT LAWRENCE SEAWAY DEVELOPMENT CORPORATION, DEPARTMENT OF TRANSPORTATION SEAWAY REGULATIONS AND RULES Regulations Seaway Navigation § 401.53...

  8. Comparison of Human Pilot (Remote Control Systems in Multirotor Unmanned Aerial Vehicle Navigation

    Directory of Open Access Journals (Sweden)

    Zainal Rasyid Mahayuddin

    2017-02-01

    Full Text Available This paper concerns about the human pilot or remote control system in UAV navigation. Demands for Unmanned Aerial Vehicle (UAV are increasing tremendously in aviation industry and research area. UAV is a flying machine that can fly with no pilot onboard and can be controlled by ground-based operators. In this paper, a comparison was made between different proposed remote control systems and devices to navigate multirotor UAV, like hand-controllers, gestures and body postures techniques, and vision-based techniques. The overall reviews discussed in this paper have been studied in various research sources related to UAV and its navigation system. Every method has its pros and cons depends on the situation. At the end of the study, those methods will be analyzed and the best method will be chosen in term of accuracy and efficiency.

  9. Monitoring greenhouse gas emissions in Australian landscapes: Comparing ground based mobile surveying data to GOSAT observations

    Science.gov (United States)

    Bashir, S.; Iverach, C.; Kelly, B. F. J.

    2016-12-01

    Climate change is threatening the health and stability of the natural world and human society. Such concerns were emphasized at COP21 conference in Paris 2015 which highlighted the global need to improve our knowledge of sources of greenhouse gas and to develop methods to mitigate the effects of their emissions. Ongoing spatial and temporal measurements of greenhouse gases at both point and regional scales is important for clarification of climate change mechanisms and accounting. The Greenhouse gas Observing SATellite (GOSAT) is designed to monitor the global distribution of carbon dioxide (CO2) and methane (CH4) from orbit. As existing ground monitoring stations are limited and still unevenly distributed, satellite observations provide important frequent, spatially extensive, but low resolution observations. Recent developments in portable laser based greenhouse gas measurement systems have enabled the rapid measurement of greenhouse gases in ppb at the ground surface. This study was conducted to map major sources of CO2 and CH4 in the eastern states of Australia at the landscape scale and to compare the results to GOSAT observations. During April 2016 we conducted a regional CH4 and CO2 mobile survey, using an LGR greenhouse gas analyzer. Measurements were made along a 4000 KM circuit through major cities, country towns, dry sclerophyll forests, coastal wetlands, coal mining regions, coal seam gas developments, dryland farming and irrigated agricultural landscapes. The ground-based survey data were then compared with the data (L2) from GOSAT. Ground-based mobile surveys showed that there are clear statistical differences in the ground level atmospheric concentration of CH4 and CO2 associated with all major changes in land use. These changes extend for kilometers, and cover one or more GOSAT pixels. In the coal mining districts the ground-level atmospheric concentration of CH4 exceeded 2 ppm for over 40 km, yet this was not discernable in the retrieved data (L2

  10. Aerosol Single Scattering Albedo retrieved from ground-based measurements in the UV-visible

    Directory of Open Access Journals (Sweden)

    V. Buchard

    2010-07-01

    Full Text Available Estimates of Aerosol Single Scattering Albedo (SSA from ground-based spectral measurements in the UV-visible are conducted at Villeneuve d'Ascq (VdA in France. In order to estimate this parameter, measurements of global and diffuse UV-visible solar irradiances performed under cloud-free conditions since 2003 with a spectroradiometer operated by the Laboratoire d'Optique Atmosphérique (LOA are used. The technique consists in comparing the measured irradiance values to modelled irradiances computed for various SSA. The retrieval is restricted to the 330–450 nm range to avoid ozone influence.

    For validation purpose, the retrieved values of SSA at 440 nm are compared to the ones obtained from sunphotometer measurements of the AERONET/PHOTONS network available on the LOA site. The results are rather satisfying: in 2003 and 2005–2006 the Root Mean Square (RMS of the differences are about 0.05, these values are within the uncertainty domain of retrieval of both products. Distinction between days characterized by different aerosol content, by means of the aerosol optical thickness (AOT retrieved from ground-based measurements at the same wavelength, shows that the comparisons between both products are better when AOT are higher. Indeed in case AOT are greater than 0.2, the RMS is 0.027 in 2003 and 0.035 in 2005–2006. The SSA estimated at 340 and 380 nm from ground-based spectra are also studied, though no validation can be carried out with sunphotometer data (440 nm is the shortest wavelength at which the SSA is provided by the network. The good comparisons observed at 440 nm can let assume that the SSA retrieved from spectroradiometer measurements at the two other wavelengths are also obtained with a good confidence level. Thus these values in the UV range can be used to complete aerosol data provided by AERONET/PHOTONS at VdA. Moreover they can be used for a best knowledge of the aerosol absorption that is necessary to quantify the

  11. Investigation of Rainfall Characteristics Using TRMM PR and Ground Based Radar

    Science.gov (United States)

    Dolan, B.; Lang, T. J.; Nesbitt, S. W.; Cifelli, R.; Rutledge, S. A.

    2011-12-01

    Despite relatively good agreement between reflectivity profiles, comparisons of rainfall statistics derived from TRMM Precipitation Radar (PR) deviate from ground-based radar (GR) observations in various field locations across the globe. TRMM PR rain rate probability distribution functions underestimate the occurrence of high rain rates (> 80 mm hr-1) compared with similar ground-based statistics, and similarly, GR distributes the total rain volume over a larger range of rain rates. Analysis of ten years of TRMM data over three field sites has shown that the greatest disagreements occur in the most intense convection, such as over land and during the east and break wind regimes over the Amazon and Australia, respectively. These differences are investigated further in this study. Ten years of TRMM PR data are analyzed in conjunction with data collected during two field experiments involving the NCAR S-Pol radar. S-Pol was deployed in Brazil in the Amazon during TRMM LBA in 1998-1999 and near Mazatlan, Mexico as part of the North American Monsoon Experiment (NAME) in 2004. Additionally, multiple years of data from the Australian Bureau of Meteorology CPOL radar located in Darwin, Australia, are examined to extend the robustness of the GR observations beyond the relatively short field campaigns. Polarimetric data collected by the two radars are used to characterize the differences between TRMM PR and GR observations as a function of bulk hydrometeor type. For example, profiles with significant graupel, as identified by GR, are analyzed to investigate the role of mixed phase in the PR retrievals. The vertical variability of D0 is examined as a function of reflectivity and related to the underlying microphysical conditions using the polarimetric data provided by the GR observations. Spatial variability of D0 is also explored by correlating D0 values derived from GR at different heights. Several significant changes were made to the TRMM processing algorithms in the

  12. Ground-based Observations of the Solar Sources of Space Weather

    Science.gov (United States)

    Veronig, A. M.; Pötzi, W.

    2016-04-01

    Monitoring of the Sun and its activity is a task of growing importance in the frame of space weather research and awareness. Major space weather disturbances at Earth have their origin in energetic outbursts from the Sun: solar flares, coronal mass ejections and associated solar energetic particles. In this review we discuss the importance and complementarity of ground-based and space-based observations for space weather studies. The main focus is drawn on ground-based observations in the visible range of the spectrum, in particular in the diagnostically manifold Hα spectral line, which enables us to detect and study solar flares, filaments (prominences), filament (prominence) eruptions, and Moreton waves. Existing Hα networks such as the GONG and the Global High-Resolution Hα Network are discussed. As an example of solar observations from space weather research to operations, we present the system of real-time detection of Hα flares and filaments established at Kanzelhöhe Observatory (KSO; Austria) in the frame of the space weather segment of the ESA Space Situational Awareness programme (swe.ssa.esa.int). An evaluation of the system, which is continuously running since July 2013 is provided, covering an evaluation period of almost 2.5 years. During this period, KSO provided 3020 hours of real-time Hα observations at the ESA SWE portal. In total, 824 Hα flares were detected and classified by the real-time detection system, including 174 events of Hα importance class 1 and larger. For the total sample of events, 95 % of the automatically determined flare peak times lie within ±5 min of the values given in the official optical flares reports (by NOAA and KSO), and 76 % of the start times. The heliographic positions determined are better than ±5°. The probability of detection of flares of importance 1 or larger is 95 %, with a false alarm rate of 16 %. These numbers confirm the high potential of automatic flare detection and alerting from ground-based

  13. Ground-based follow-up in relation to Kepler asteroseismic investigation

    Science.gov (United States)

    Uytterhoeven, K.; Briquet, M.; Bruntt, H.; De Cat, P.; Frandsen, S.; Gutiérrez-Soto, J.; Kiss, L.; Kurtz, D. W.; Marconi, M.; Molenda-Żakowicz, J.; Østensen, R.; Randall, S.; Southworth, J.; Szabó, R.

    2010-12-01

    The Kepler space mission, successfully launched in March 2009, is providing continuous and high-precision photometry of thousands of stars simultaneously. The uninterrupted time-series of stars of all known pulsation types are a precious source for asteroseismic studies. The Kepler data do not provide information on the physical parameters, such as T_eff, log g, metallicity, and v sin i, which are crucial for successful asteroseismic modelling. Additional ground-based time-series data are needed to characterize mode parameters in several types of pulsating stars. Therefore, ground-based multi-colour photometry and mid/high-resolution spectroscopy are needed to complement the space data. We present ground-based activities within KASC on selected asteroseismic Kepler targets of several pulsation types. Based on observations made with the Isaac Newton Telescope and William Herschel Telescope operated by the Isaac Newton Group, with the Nordic Optical Telescope, operated jointly by Denmark, Finland, Iceland, Norway, and Sweden, with the Italian Telescopio Nazionale Galileo (TNG) operated by the Fundación Galileo Galilei of the INAF (Istituto Nazionale di Astrofisica), and with the Mercator telescope, operated by the Flemish Community, all on the island of La Palma at the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias (IAC). Based on observations made with the IAC-80 operated on the island of Tenerife by the IAC at the Spanish Observatorio del Teide. Also based on observations taken at the observatories of Sierra Nevada, San Pedro Mártir, Vienna, Xinglong, Apache Point, Lulin, Tautenburg, McDonald, Skinakas, Pic du Midi, Mauna Kea, Steward Observatory, Mt. Wilson, Białków Observatory of the Wrocław University, Piszkésteto Mountain Station, and Observatoire de Haute Provence. Based on spectra taken at the Loiano (INAF - OA Bologna), Serra La Nave (INAF - OA Catania) and Asiago (INAF - OA Padova) observatories. Also

  14. Ground-based acoustic parametric generator impact on the atmosphere and ionosphere in an active experiment

    Science.gov (United States)

    Rapoport, Yuriy G.; Cheremnykh, Oleg K.; Koshovy, Volodymyr V.; Melnik, Mykola O.; Ivantyshyn, Oleh L.; Nogach, Roman T.; Selivanov, Yuriy A.; Grimalsky, Vladimir V.; Mezentsev, Valentyn P.; Karataeva, Larysa M.; Ivchenko, Vasyl. M.; Milinevsky, Gennadi P.; Fedun, Viktor N.; Tkachenko, Eugen N.

    2017-01-01

    We develop theoretical basics of active experiments with two beams of acoustic waves, radiated by a ground-based sound generator. These beams are transformed into atmospheric acoustic gravity waves (AGWs), which have parameters that enable them to penetrate to the altitudes of the ionospheric E and F regions where they influence the electron concentration of the ionosphere. Acoustic waves are generated by the ground-based parametric sound generator (PSG) at the two close frequencies. The main idea of the experiment is to design the output parameters of the PSG to build a cascade scheme of nonlinear wave frequency downshift transformations to provide the necessary conditions for their vertical propagation and to enable penetration to ionospheric altitudes. The PSG generates sound waves (SWs) with frequencies f1 = 600 and f2 = 625 Hz and large amplitudes (100-420 m s-1). Each of these waves is modulated with the frequency of 0.016 Hz. The novelty of the proposed analytical-numerical model is due to simultaneous accounting for nonlinearity, diffraction, losses, and dispersion and inclusion of the two-stage transformation (1) of the initial acoustic waves to the acoustic wave with the difference frequency Δf = f2 - f1 in the altitude ranges 0-0.1 km, in the strongly nonlinear regime, and (2) of the acoustic wave with the difference frequency to atmospheric acoustic gravity waves with the modulational frequency in the altitude ranges 0.1-20 km, which then reach the altitudes of the ionospheric E and F regions, in a practically linear regime. AGWs, nonlinearly transformed from the sound waves, launched by the two-frequency ground-based sound generator can increase the transparency of the ionosphere for the electromagnetic waves in HF (MHz) and VLF (kHz) ranges. The developed theoretical model can be used for interpreting an active experiment that includes the PSG impact on the atmosphere-ionosphere system, measurements of electromagnetic and acoustic fields, study of

  15. Overview and Initial Results from the DEEPWAVE Airborne and Ground-Based Measurement Program

    Science.gov (United States)

    Fritts, D. C.

    2015-12-01

    The deep-propagating gravity wave experiment (DEEPWAVE) was performed on and over New Zealand, the Tasman Sea, and the Southern Ocean with core airborne measurements extending from 5 June to 21 July 2014 and supporting ground-based measurements spanning a longer interval. The NSF/NCAR GV employed standard flight-level measurements and new airborne lidar and imaging measurements of gravity waves (GWs) from sources at lower altitudes throughout the stratosphere and into the mesosphere and lower thermosphere (MLT). The new GV lidars included a Rayleigh lidar measuring atmospheric density and temperature from ~20-60 km and a sodium resonance lidar measuring sodium density and temperature at ~75-105 km. An airborne Advanced Mesosphere Temperature Mapper (AMTM) and two IR "wing" cameras imaged the OH airglow temperature and/or intensity fields extending ~900 km across the GV flight track. The DLR Falcon was equipped with its standard flight-level instruments and an aerosol Doppler lidar measuring radial winds below the Falcon. DEEPWAVE also included extensive ground-based measurements in New Zealand, Tasmania, and Southern Ocean Islands. DEEPWAVE performed 26 GV flights and 13 Falcon flights, and ground-based measurements occurred whether or not the aircraft were flying. Collectively, many diverse cases of GW forcing, propagation, refraction, and dissipation spanning altitudes of 0-100 km were observed. Examples include strong mountain wave (MW) forcing and breaking in the lower and middle stratosphere, weak MW forcing yielding MW penetration into the MLT having very large amplitudes and momentum fluxes, MW scales at higher altitudes ranging from ~10-250 km, large-scale trailing waves from orography refracting into the polar vortex and extending to high altitudes, GW generation by deep convection, large-scale GWs arising from jet stream sources, and strong MWs in the MLT arising from strong surface flow over a small island. DEEPWAVE yielded a number of surprises, among

  16. System-level view of geospace dynamics: Challenges for high-latitude ground-based observations

    Science.gov (United States)

    Donovan, E.

    2014-12-01

    Increasingly, research programs including GEM, CEDAR, GEMSIS, GO Canada, and others are focusing on how geospace works as a system. Coupling sits at the heart of system level dynamics. In all cases, coupling is accomplished via fundamental processes such as reconnection and plasma waves, and can be between regions, energy ranges, species, scales, and energy reservoirs. Three views of geospace are required to attack system level questions. First, we must observe the fundamental processes that accomplish the coupling. This "observatory view" requires in situ measurements by satellite-borne instruments or remote sensing from powerful well-instrumented ground-based observatories organized around, for example, Incoherent Scatter Radars. Second, we need to see how this coupling is controlled and what it accomplishes. This demands quantitative observations of the system elements that are being coupled. This "multi-scale view" is accomplished by networks of ground-based instruments, and by global imaging from space. Third, if we take geospace as a whole, the system is too complicated, so at the top level we need time series of simple quantities such as indices that capture important aspects of the system level dynamics. This requires a "key parameter view" that is typically provided through indices such as AE and DsT. With the launch of MMS, and ongoing missions such as THEMIS, Cluster, Swarm, RBSP, and ePOP, we are entering a-once-in-a-lifetime epoch with a remarkable fleet of satellites probing processes at key regions throughout geospace, so the observatory view is secure. With a few exceptions, our key parameter view provides what we need. The multi-scale view, however, is compromised by space/time scales that are important but under-sampled, combined extent of coverage and resolution that falls short of what we need, and inadequate conjugate observations. In this talk, I present an overview of what we need for taking system level research to its next level, and how

  17. Multi-antenna synchronized global navigation satellite system receiver and its advantages in high-precision positioning applications

    Science.gov (United States)

    Dong, Danan; Chen, Wen; Cai, Miaomiao; Zhou, Feng; Wang, Minghua; Yu, Chao; Zheng, Zhengqi; Wang, Yuanfei

    2016-12-01

    The multi-antenna synchronized global navigation satellite system receiver is a high precision, low cost, and widely used emerging receiver. Using this type of receiver, the satellite and receiver clock errors can be eliminated simultaneously by forming between antenna single-differences, which is equivalent to the conventional double-difference model. However, current multi-antenna synchronized global navigation satellite system receiver products have not fully realized their potential to achieve better accuracy, efficiency, and broader applications. This paper introduces the conceptual design and derivable products of multi-antenna synchronized global navigation satellite system receivers involving the aspects of attitude determination, multipath effect mitigation, phase center variation correction, and ground-based carrier phase windup calibration. Through case studies, the advantages of multi-antenna synchronized global navigation satellite system receivers in high-precision positioning applications are demonstrated.

  18. Ground-Based Sub-Millimagnitude CCD Photometry of Bright Stars using Snapshot Observations

    CERN Document Server

    Mann, Andrew W; Aldering, Greg

    2011-01-01

    We demonstrate ground-based sub-millimagnitude (10^7 electrons) to be acquired in a single integration; (iii) pointing the telescope so that all stellar images fall on the same detector pixels; and (iv) using a region of the CCD detector that is free of non-linear or aberrant pixels. We describe semi-automated observations with the Supernova Integrated Field Spectrograph (SNIFS) on the University of Hawaii 2.2m telescope on Mauna Kea, with which we achieved photometric precision as good as 5.2x10^-4 (0.56 mmag) with a 5 minute cadence over a two hour interval. In one experiment, we monitored 8 stars, each separated by several degrees, and achieved sub-mmag precision with a cadence (per star) of ~17 min. Our snapshot technique is suitable for automated searches for planetary transits among multiple, bright-stars.

  19. Global impacts of a Foreshock Bubble: Magnetosheath, magnetopause and ground-based observations

    CERN Document Server

    Archer, Martin; Eastwood, Jonathan; Schwartz, Steven; Horbury, Timothy

    2014-01-01

    Using multipoint observations we show, for the first time, that Foreshock Bubbles (FBs) have a global impact on Earth's magnetosphere. We show that an FB, a transient kinetic phenomenon due to the interaction of backstreaming suprathermal ions with a discontinuity, modifies the total pressure upstream of the bow shock showing a decrease within the FB's core and sheath regions. Magnetosheath plasma is accelerated towards the the intersection of the FB's current sheet with the bow shock resulting in fast, sunward, flows as well as outward motion of the magnetopause. Ground-based magnetometers also show signatures of this magnetopause motion simultaneously across at least 7 hours of magnetic local time, corresponding to a distance of 21.5 RE transverse to the Sun-Earth line along the magnetopause. These observed global impacts of the FB are in agreement with previous simulations and in stark contrast to the known localised, smaller scale effects of Hot Flow Anomalies (HFAs).

  20. Heat-stop structure design with high cooling efficiency for large ground-based solar telescope.

    Science.gov (United States)

    Liu, Yangyi; Gu, Naiting; Rao, Changhui; Li, Cheng

    2015-07-20

    A heat-stop is one of the most important thermal control devices for a large ground-based solar telescope. For controlling the internal seeing effect, the temperature difference between the heat-stop and the ambient environment needs to be reduced, and a heat-stop with high cooling efficiency is required. In this paper, a novel design concept for the heat-stop, in which a multichannel loop cooling system is utilized to obtain higher cooling efficiency, is proposed. To validate the design, we analyze and compare the cooling efficiency for the multichannel and existing single-channel loop cooling system under the same conditions. Comparative results show that the new design obviously enhances the cooling efficiency of the heat-stop, and the novel design based on the multichannel loop cooling system is obviously better than the existing design by increasing the thermal transfer coefficient.

  1. Chlorine oxide in the stratospheric ozone layer Ground-based detection and measurement

    Science.gov (United States)

    Parrish, A.; De Zafra, R. L.; Solomon, P. M.; Barrett, J. W.; Carlson, E. R.

    1981-01-01

    Stratospheric chlorine oxide, a significant intermediate product in the catalytic destruction of ozone by atomic chlorine, has been detected and measured by a ground-based 204 GHz, millimeter-wave receiver. Data taken at latitude 42 deg N on 17 days between January 10 and February 18, 1980 yield an average chlorine oxide column density of approximately 1.05 x 10 to the 14th/sq cm or approximately 2/3 that of the average of eight in situ balloon flight measurements (excluding the anomalously high data of July 14, 1977) made over the past four years at 32 deg N. Less chlorine oxide below 35 km and a larger vertical gradient than predicted by theoretical models of the stratospheric ozone layer are found.

  2. Autonomous landing of a helicopter UAV with a ground-based multisensory fusion system

    Science.gov (United States)

    Zhou, Dianle; Zhong, Zhiwei; Zhang, Daibing; Shen, Lincheng; Yan, Chengping

    2015-02-01

    In this study, this paper focus on the vision-based autonomous helicopter unmanned aerial vehicle (UAV) landing problems. This paper proposed a multisensory fusion to autonomous landing of an UAV. The systems include an infrared camera, an Ultra-wideband radar that measure distance between UAV and Ground-Based system, an PAN-Tilt Unit (PTU). In order to identify all weather UAV targets, we use infrared cameras. To reduce the complexity of the stereovision or one-cameral calculating the target of three-dimensional coordinates, using the ultra-wideband radar distance module provides visual depth information, real-time Image-PTU tracking UAV and calculate the UAV threedimensional coordinates. Compared to the DGPS, the test results show that the paper is effectiveness and robustness.

  3. Optical turbulence forecast: toward a new era of ground-based astronomy

    CERN Document Server

    Masciadri, E

    2009-01-01

    The simulation of the optical turbulence (OT) for astronomical applications obtained with non-hydrostatic atmospherical models at meso-scale presents, with respect to measurements, some advantages. The future of the ground-based astronomy relies upon the potentialities and feasibility of the ELTs. Our ability in knowing, controlling and 'managing' the effects of the turbulence on such a new generation telescopes and facilities are determinant to assure their competitiveness with respect to the space astronomy. In the past several studies have been carried out proving the feasibility of the simulation of realistic Cn2 profiles above astronomical sites. The European Community (FP6 Program) decided recently to fund a Project aiming, from one side, to prove the feasibility of the OT forecasts and the ability of meso-scale models in discriminating astronomical sites from optical turbulence point of view and, from the other side, to boost the development of this discipline at the borderline between the astrophysics...

  4. (21) Lutetia spectrophotometry from Rosetta-OSIRIS images and comparison to ground-based observations

    Science.gov (United States)

    Magrin, S.; La Forgia, F.; Pajola, M.; Lazzarin, M.; Massironi, M.; Ferri, F.; da Deppo, V.; Barbieri, C.; Sierks, H.; Osiris Team

    2012-06-01

    Here we present some preliminary results on surface variegation found on (21) Lutetia from ROSETTA-OSIRIS images acquired on 2010-07-10. The spectrophotometry obtained by means of the two cameras NAC and WAC (Narrow and Wide Angle Cameras) is consistent with ground based observations, and does not show surface diversity above the data error bars. The blue and UV images (shortward 500 nm) may, however, indicate a variegation of the optical properties of the asteroid surface on the Baetica region (Sierks et al., 2011). We also speculate on the contribution due to different illumination and to different ground properties (composition or, more probably, grain size diversity). In particular a correlation with geologic units independently defined by Massironi et al. (2012) is evident, suggesting that the variegation of the ground optical properties is likely to be real.

  5. DATA PROCESSING AND ANALYSIS TOOLS BASED ON GROUND-BASED SYNTHETIC APERTURE RADAR IMAGERY

    Directory of Open Access Journals (Sweden)

    M. Crosetto

    2017-09-01

    Full Text Available The Ground-Based SAR (GBSAR is a terrestrial remote sensing technique used to measure and monitor deformation. In this paper we describe two complementary approaches to derive deformation measurements using GBSAR data. The first approach is based on radar interferometry, while the second one exploits the GBSAR amplitude. In this paper we consider the so-called discontinuous GBSAR acquisition mode. The interferometric process is not always straightforward: it requires appropriate data processing and analysis tools. One of the main critical steps is phase unwrapping, which can critically affect the deformation measurements. In this paper we describe the procedure used at the CTTC to process and analyse discontinuous GBSAR data. In the second part of the paper we describe the approach based on GBSAR amplitude images and an image-matching method.

  6. Quantitative analysis results of CE-1 X-ray fluorescence spectrometer ground base experiment

    Institute of Scientific and Technical Information of China (English)

    CUI Xing-Zhu; GAO Min; YANG Jia-Wei; WANG Huan-Yu; ZHANG Cheng-Mo; CHEN Yong; ZHANG Jia-Yu; PENG Wen-Xi; CAO Xue-Lei; LIANG Xiao-Hua; WANG Jin-Zhou

    2008-01-01

    As the nearest celestial body to the earth, the moon has become a hot spot again in astronomy field recently. The element analysis is a much important subject in many lunar projects. Remote X-ray spectrometry plays an important role in the geochemical exploration of the solar bodies. Because of th equasi-vacuum atmosphere on the moon, which has no absorption of X-ray, the X-ray fluorescence analysis is an effective way to determine the elemental abundance of lunar surface. The CE-1 X-ray fluorescence spectrometer (CE-1/XFS) aims to map the major elemental compositions on the lunar surface. This paper describes a method for quantitative analysis of elemental compositions. A series of ground base experiments are done to examine the capability of XFS. The obtained results, which show a reasonable agreement with the certified values at a 30% uncertainty level for major elements, are presented.

  7. A 14-day ground-based hypokinesia study in nonhuman primates: A compilation of results

    Science.gov (United States)

    Kazarian, L.; Cann, C. E.; Parfitt, M.; Simmons, D.; Morey-Holton, E.

    1981-01-01

    A 14 day ground based hypokinesia study with rhesus monkeys was conducted to determine if a spaceflight of similar duration might affect bone remodeling and calcium homeostatis. The monkeys were placed in total body casts and sacrificed either immediately upon decasting or 14 days after decasting. Changes in vertebral strength were noted and further deterioration of bone strength continued during the recovery phase. Resorption in the vertebrae increased dramatically while formation decreased. Cortical bone formation was impaired in the long bones. The immobilized animals showed a progressive decrease in total serum calcium which rebounded upon remobilization. Most mandibular parameters remained unchanged during casting except for retardation of osteon birth or maturation rate and density distribution of matrix and mineral moieties.

  8. Ground-based Gamma-Ray Observations of Pulsars and their Nebulae: Towards a New Order

    CERN Document Server

    De Jager, O C

    2005-01-01

    The excellent sensitivity and high resolution capability of wide FoV ground-based imaging atmospheric Cerenkov telescopes allow us for the first time to resolve the morphological structures of pulsar wind nebulae (PWN) which are older and more extended than the Crab Nebula. VHE gamma-ray observations of such extended nebulae (with field strengths below ~ 20 micro Gauss) probe the electron component corresponding to the unseen extreme ultraviolet (EUV) synchrotron component, which measures electron injection from earlier evolutionary epochs. VHE observations of PWN therefore introduce a new window on PWN research. This review paper also identifies conditions for maximal VHE visbility of PWN. Regarding pulsar pulsed emission, it is becoming clear that the threshold energies of current telescopes are not sufficient to probe the pulsed gamma-ray component from canonical pulsars. Theoretical estimates of pulsed gamma-ray emission from millisecond pulsars seem to converge and it becomes clear that such detections w...

  9. On the Interpretation of Gravity Wave Measurements by Ground-Based Lidars

    Directory of Open Access Journals (Sweden)

    Andreas Dörnbrack

    2017-03-01

    Full Text Available This paper asks the simple question: How can we interpret vertical time series of middle atmosphere gravity wave measurements by ground-based temperature lidars? Linear wave theory is used to show that the association of identified phase lines with quasi-monochromatic waves should be considered with great care. The ambient mean wind has a substantial effect on the inclination of the detected phase lines. The lack of knowledge about the wind might lead to a misinterpretation of the vertical propagation direction of the observed gravity waves. In particular, numerical simulations of three archetypal atmospheric mountain wave regimes show a sensitivity of virtual lidar observations on the position relative to the mountain and on the scale of the mountain.

  10. Concurrent aerial and ground-based optical turbulence measurements along a long elevated path

    Science.gov (United States)

    Nowlin, Scott R.; Hahn, Ila L.; Hugo, Ronald J.; Bishop, Kenneth P.

    1999-08-01

    We report concurrent ground-based scintillator/airborne constant-current anemometer (CCA) measurements made along a 51.4 km-long slant path between Salinas and North Oscura peaks, NM. Simultaneous path-averaged refractive index structure parameter (Cn2) measurements from the CCA and the scintillometer show good agreement, with deviations apparently due to localized effects of underlying topography and metrology. Statistics from both data sets are presented in the form of histograms and cumulative distribution functions. CCA Cn2 point measurements are compared to underlying surface topography. We discuss possible effects of instruments anomalies, analysis methods, and atmospheric velocity fluctuation levels. We present conclusions and made recommendations for future similar experimental efforts.

  11. Space life sciences: ground-based iron-ion biology and physics, including shielding.

    Science.gov (United States)

    2005-01-01

    This session of the 35th Scientific Assembly of COSPAR focuses on recent advances in ground-based studies of high-energy (mainly 1 GeV/nucleon) iron ions. The theme is interdisciplinary in nature and encompasses both physics and biology reports. Manned space missions, including those of the International Space Station and the planned Mars mission, will require the extended presence of crew members in space. As such, a better understanding in shielding design--in radiation detection as well as radio-protection based on simulating studies--is much needed. On the other hand, a better understanding of the basic mechanisms that modulate radiation sensitivity; in determining DNA double strand breaks, chromosomal aberrations, and the induction of apoptosis, will provide important information for an interventional approach.

  12. Space situational awareness satellites and ground based radiation counting and imaging detector technology

    Energy Technology Data Exchange (ETDEWEB)

    Jansen, Frank, E-mail: frank.jansen@dlr.de [DLR Institute of Space Systems, Robert-Hooke-Str. 7, 28359 Bremen (Germany); Behrens, Joerg [DLR Institute of Space Systems, Robert-Hooke-Str. 7, 28359 Bremen (Germany); Pospisil, Stanislav [Czech Technical University, IEAP, 12800 Prague 2, Horska 3a/22 (Czech Republic); Kudela, Karel [Slovak Academy of Sciences, IEP, 04001 Kosice, Watsonova 47 (Slovakia)

    2011-05-15

    We review the current status from the scientific and technological point of view of solar energetic particles, solar and galactic cosmic ray measurements as well as high energy UV-, X- and gamma-ray imaging of the Sun. These particles and electromagnetic data are an important tool for space situational awareness (SSA) aspects like space weather storm predictions to avoid failures in space, air and ground based technological systems. Real time data acquisition, position and energy sensitive imaging are demanded by the international space weather forecast services. We present how newly developed, highly miniaturized radiation detectors can find application in space in view of future SSA related satellites as a novel space application due to their counting and imaging capabilities.

  13. Ground-based testing of the dynamics of flexible space structures using band mechanisms

    Science.gov (United States)

    Yang, L. F.; Chew, Meng-Sang

    1991-01-01

    A suspension system based on a band mechanism is studied to provide the free-free conditions for ground based validation testing of flexible space structures. The band mechanism consists of a noncircular disk with a convex profile, preloaded by torsional springs at its center of rotation so that static equilibrium of the test structure is maintained at any vertical location; the gravitational force will be directly counteracted during dynamic testing of the space structure. This noncircular disk within the suspension system can be configured to remain unchanged for test articles with the different weights as long as the torsional spring is replaced to maintain the originally designed frequency ratio of W/k sub s. Simulations of test articles which are modeled as lumped parameter as well as continuous parameter systems, are also presented.

  14. Impact of particles on the Planck HFI detectors: Ground-based measurements and physical interpretation

    CERN Document Server

    Catalano, A; Atik, Y; Benoit, A; Bréele, E; Bock, J J; Camus, P; Chabot, M; Charra, M; Crill, B P; Coron, N; Coulais, A; Désert, F -X; Fauvet, L; Giraud-Héraud, Y; Guillaudin, O; Holmes, W; Jones, W C; Lamarre, J -M; Macías-Pérez, J; Martinez, M; Miniussi, A; Monfardini, A; Pajot, F; Patanchon, G; Pelissier, A; Piat, M; Puget, J -L; Renault, C; Rosset, C; Santos, D; Sauvé, A; Spencer, L D; Sudiwala, R

    2014-01-01

    The Planck High Frequency Instrument (HFI) surveyed the sky continuously from August 2009 to January 2012. Its noise and sensitivity performance were excellent, but the rate of cosmic ray impacts on the HFI detectors was unexpectedly high. Furthermore, collisions of cosmic rays with the focal plane produced transient signals in the data (glitches) with a wide range of characteristics. A study of cosmic ray impacts on the HFI detector modules has been undertaken to categorize and characterize the glitches, to correct the HFI time-ordered data, and understand the residual effects on Planck maps and data products. This paper presents an evaluation of the physical origins of glitches observed by the HFI detectors. In order to better understand the glitches observed by HFI in flight, several ground-based experiments were conducted with flight-spare HFI bolometer modules. The experiments were conducted between 2010 and 2013 with HFI test bolometers in different configurations using varying particles and impact ener...

  15. Ground-based activities in preparation of SELENE ISS experiment on self-rewetting fluids

    Science.gov (United States)

    Savino, R.; Abe, Y.; Castagnolo, D.; Celata, G. P.; Kabov, O.; Kawaji, M.; Sato, M.; Tanaka, K.; Thome, J. R.; Van Vaerenbergh, S.

    2011-12-01

    SELENE (SELf rewetting fluids for thermal ENErgy management) is a microgravity experiment proposed to the European Space Agency (ESA) in response to the Announcement of Opportunities for Physical Sciences. Main objectives of the microgravity research onboard ISS include the quantitative investigation of heat transfer performances of "self-rewetting fluids" and "nano self-rewetting fluids" in model heat pipes and validation of adequate theoretical and numerical modelling able to predict their behaviour in microgravity conditions. This article summarizes the results of ground-based research activities in preparation of the microgravity experiments. They include: 1) thermophysical properties measurements; 2) study of thermo-soluto-capillary effects in micro-channels; 3) numerical modelling; 4) thermal and concentration distribution measurements with optical (e.g. interferometric) and intrusive techniques; 5) surface tension-driven effects and thermal performances test on different capillary structures and heat pipes; 6) breadboards development and support to definition of scientific requirements.

  16. Cloud Base Height and Effective Cloud Emissivity Retrieval with Ground-Based Infrared Interferometer

    Institute of Scientific and Technical Information of China (English)

    PAN Lin-Jun; LU Da-Ren

    2012-01-01

    Based on ground-based Atmospheric Emitted Radiance Interferometer (AERI) observations in Shouxian, Anhui province, China, the authors retrieve the cloud base height (CBH) and effective cloud emissivity by using the minimum root-mean-square difference method. This method was originally developed for satellite remote sensing. The high-temporal-resolution retrieval results can depict the trivial variations of the zenith clouds continu- ously. The retrieval results are evaluated by comparing them with observations by the cloud radar. The compari- son shows that the retrieval bias is smaller for the middle and low cloud, especially for the opaque cloud. When two layers of clouds exist, the retrieval results reflect the weighting radiative contribution of the multi-layer cloud. The retrieval accuracy is affected by uncertainties of the AERI radiances and sounding profiles, in which the role of uncertainty in the temperature profile is dominant.

  17. Future Ground-Based Solar System Research: a Prospective Workshop Summary

    Science.gov (United States)

    Boehnhardt, H.; Käufl, H. U.

    2009-09-01

    The article tries to provide a perspective summary of the planetary science to be performed with future extremely large telescopes (ELTs) as an outcome of the workshop on ‘Future Ground-based Solar System Research: Synergies between Space Probes and Space Telescopes’ held on 8-12 September 2008 in Portoferraio on Isola d’ Elba, Italy. It addresses science cases on solar system objects that might challenge the capabilities of ELTs and that provide a major step forward in the knowledge and understanding of planetary system objects per se and all populations. We also compile high-level requirements for such telescopes and their instrumentation that should enable successful ELT usage for research on objects in the Solar System, the ‘disturbing foreground to real astronomy’.

  18. Finding extraterrestrial life using ground-based high-resolution spectroscopy

    CERN Document Server

    Snellen, Ignas; Poole, Rudolf Le; Brogi, Matteo; Birkby, Jayne

    2013-01-01

    Exoplanet observations promise one day to unveil the presence of extraterrestrial life. Atmospheric compounds in strong chemical disequilibrium would point to large-scale biological activity just as oxygen and methane do in the Earth's atmosphere. The cancellation of both the Terrestrial Planet Finder and Darwin missions means that it is unlikely that a dedicated space telescope to search for biomarker gases in exoplanet atmospheres will be launched within the next 25 years. Here we show that ground-based telescopes provide a strong alternative for finding biomarkers in exoplanet atmospheres through transit observations. Recent results on hot Jupiters show the enormous potential of high-dispersion spectroscopy to separate the extraterrestrial and telluric signals making use of the Doppler shift of the planet. The transmission signal of oxygen from an Earth-twin orbiting a small red dwarf star is only a factor 3 smaller than that of carbon monoxide recently detected in the hot Jupiter tau Bootis b, albeit such...

  19. Ground-based multisite observations of two transits of HD 80606b

    CERN Document Server

    Shporer, A; Dreizler, S; Colon, K D; Wood-Vasey, W M; Choi, P I; Morley, C; Moutou, C; Welsh, W F; Pollaco, D; Starkey, D; Adams, E; Barros, S C C; Bouchy, F; Cabrera-Lavers, A; Cerutti, S; Coban, L; Costello, K; Deeg, H; Diaz, R F; Esquerdo, G A; Fernandez, J; Fleming, S W; Ford, E B; Fulton, B J; Good, M; Hebrard, G; Holman, M J; Hunt, M; Kadakia, S; Lander, G; Lockhart, M; Mazeh, T; Morehead, R C; Nelson, B E; Nortmann, L; Reyes, F; Roebuck, E; Rudy, A R; Ruth, R; Simpson, E; Vincent, C; Weaver, G; Xie, J -W

    2010-01-01

    We present ground-based optical observations of the September 2009 and January 2010 transits of HD 80606b. Based on 3 partial light curves of the September 2009 event, we derive a midtransit time of T_c [HJD] = 2455099.196 +- 0.026, which is about 1 sigma away from the previously predicted time. We observed the January 2010 event from 9 different locations, with most phases of the transit being observed by at least 3 different teams. We determine a midtransit time of T_c [HJD] = 2455210.6502 +- 0.0064, which is within 1.3 sigma of the time derived from a Spitzer observation of the same event.

  20. AOLI: Near-diffraction limited imaging in the visible on large ground-based telescopes

    CERN Document Server

    Mackay, Craig; King, David; Labadie, Lucas; Antolin, Marta Puga; Garrido, Antonio; Colodro-Conde, Carlos; Lopez, Roberto; Muthusubramanian, Balaji; Oscoz, Alejandro; Rodriguez-Ramos, Jose; Rodriquez-Ramos, Luis; Fernandez-Valdivia, Jose; Velasco, Sergio

    2016-01-01

    The combination of Lucky Imaging with a low order adaptive optics system was demonstrated very successfully on the Palomar 5m telescope nearly 10 years ago. It is still the only system to give such high-resolution images in the visible or near infrared on ground-based telescope of faint astronomical targets. The development of AOLI for deployment initially on the WHT 4.2 m telescope in La Palma, Canary Islands, will be described in this paper. In particular, we will look at the design and status of our low order curvature wavefront sensor which has been somewhat simplified to make it more efficient, ensuring coverage over much of the sky with natural guide stars as reference object. AOLI uses optically butted electron multiplying CCDs to give an imaging array of 2000 x 2000 pixels.

  1. Bubble motion in a rotating liquid body. [ground based tests for space shuttle experiments

    Science.gov (United States)

    Annamalai, P.; Subramanian, R. S.; Cole, R.

    1982-01-01

    The behavior of a single gas bubble inside a rotating liquid-filled sphere has been investigated analytically and experimentally as part of ground-based investigations aimed at aiding in the design and interpretation of Shuttle experiments. In the analysis, a quasi-static description of the motion of a bubble was developed in the limit of small values of the Taylor number. A series of rotation experiments using air bubbles and silicone oils were designed to match the conditions specified in the analysis, i.e., the bubble size, sphere rotation rate, and liquid kinematic viscosity were chosen such that the Taylor number was much less than unity. The analytical description predicts the bubble velocity and its asymptotic location. It is shown that the asymptotic position is removed from the axis of rotation.

  2. The Holy Grail of Resource Assessment: Low Cost Ground-Based Measurements with Good Accuracy

    Energy Technology Data Exchange (ETDEWEB)

    Marion, Bill; Smith, Benjamin

    2017-06-22

    Using performance data from some of the millions of installed photovoltaic (PV) modules with micro-inverters may afford the opportunity to provide ground-based solar resource data critical for developing PV projects. The method used back-solves for the direct normal irradiance (DNI) and the diffuse horizontal irradiance (DHI) from the micro-inverter ac production data. When the derived values of DNI and DHI were then used to model the performance of other PV systems, the annual mean bias deviations were within +/- 4%, and only 1% greater than when the PV performance was modeled using high quality irradiance measurements. An uncertainty analysis shows the method better suited for modeling PV performance than using satellite-based global horizontal irradiance.

  3. A six-beam method to measure turbulence statistics using ground-based wind lidars

    DEFF Research Database (Denmark)

    Sathe, Ameya; Mann, Jakob; Vasiljevic, Nikola

    2015-01-01

    A so-called six-beam method is proposed to measure atmospheric turbulence using a ground-based wind lidar. This method requires measurement of the radial velocity variances at five equally spaced azimuth angles on the base of a scanning cone and one measurement at the centre of the scanning circle...... lidar (WindScanner), and the derived turbulence statistics (using both methods) such as the u and v variances are compared with those obtained from a reference cup anemometer and a wind vane at 89m height under different atmospheric stabilities. The measurements show that in comparison to the reference...... cup anemometer, depending on the atmospheric stability and the wind field component, the six-beam method measures between 85 and 101% of the reference turbulence, whereas the VAD method measures between 66 and 87% of the reference turbulence....

  4. A review of turbulence measurements using ground-based wind lidars

    DEFF Research Database (Denmark)

    Sathe, Ameya; Mann, Jakob

    2013-01-01

    pioneered in the first 15 yr, i.e., from 1972–1997, when standard techniques could not be used to measure turbulence. Obtaining unfiltered turbulence statistics from the large probe volume of the lidars has been and still remains the most challenging aspect. Until now, most of the processing algorithms......A review of turbulence measurements using ground-based wind lidars is carried out. Works performed in the last 30 yr, i.e., from 1972–2012 are analyzed. More than 80% of the work has been carried out in the last 15 yr, i.e., from 1997–2012. New algorithms to process the raw lidar data were...... that have been developed have shown that by combining an isotropic turbulence model with raw lidar measurements, we can obtain unfiltered statistics.We believe that an anisotropic turbulence model will provide a more realistic measure of turbulence statistics. Future development in algorithms will depend...

  5. A six-beam method to measure turbulence statistics using ground-based wind lidars

    DEFF Research Database (Denmark)

    Sathe, Ameya; Mann, Jakob; Vasiljevic, Nikola

    2014-01-01

    A so-called six-beam method is proposed to measure atmospheric turbulence using a ground-based wind lidar. This method requires measurement of the radial velocity variances at five equally spaced azimuth angles on the base of a scanning cone and one measurement at the center of the scanning circle...... lidar (WindScanner), and the derived turbulence statistics (using both methods) such as the u and v variances are compared with those obtained from a reference cup anemometer and a wind vane at 89m height under different atmospheric stabilities. The measurements show that in comparison to the reference...... cup anemometer, depending on the atmospheric stability and the wind field component, the six-beam method measures between 85–101% of the reference turbulence, whereas the VAD method measures between 66–87% of the reference turbulence....

  6. Airborne and ground based lidar measurements of the atmospheric pressure profile

    Science.gov (United States)

    Korb, C. Laurence; Schwemmer, Geary K.; Dombrowski, Mark; Weng, Chi Y.

    1989-01-01

    The first high accuracy remote measurements of the atmospheric pressure profile have been made. The measurements were made with a differential absorption lidar system that utilizes tunable alexandrite lasers. The absorption in the trough between two lines in the oxygen A-band near 760 nm was used for probing the atmosphere. Measurements of the two-dimensional structure of the pressure field were made in the troposphere from an aircraft looking down. Also, measurements of the one-dimensional structure were made from the ground looking up. Typical pressure accuracies for the aircraft measurements were 1.5-2 mbar with a 30-m vertical resolution and a 100-shot average (20 s), which corresponds to a 2-km horizontal resolution. Typical accuracies for the upward viewing ground based measurements were 2.0 mbar for a 30-m resolution and a 100-shot average.

  7. Flight validation of ground-based assessment for control power requirements at high angles of attack

    Science.gov (United States)

    Ogburn, Marilyn E.; Ross, Holly M.; Foster, John V.; Pahle, Joseph W.; Sternberg, Charles A.; Traven, Ricardo; Lackey, James B.; Abbott, Troy D.

    1994-01-01

    A review is presented in viewgraph format of an ongoing NASA/U.S. Navy study to determine control power requirements at high angles of attack for the next generation high-performance aircraft. This paper focuses on recent flight test activities using the NASA High Alpha Research Vehicle (HARV), which are intended to validate results of previous ground-based simulation studies. The purpose of this study is discussed, and the overall program structure, approach, and objectives are described. Results from two areas of investigation are presented: (1) nose-down control power requirements and (2) lateral-directional control power requirements. Selected results which illustrate issues and challenges that are being addressed in the study are discussed including test methodology, comparisons between simulation and flight, and general lessons learned.

  8. Precision in ground based solar polarimetry: Simulating the role of adaptive optics

    CERN Document Server

    Nagaraju, K

    2012-01-01

    Accurate measurement of polarization in spectral lines is important for the reliable inference of magnetic fields on the Sun. For ground based observations, polarimetric precision is severely limited by the presence of Earth's atmosphere. Atmospheric turbulence (seeing) produces signal fluctuations which combined with the non-simultaneous nature of the measurement process cause intermixing of the Stokes parameters known as seeing induced polarization cross-talk. Previous analysis of this effect (Judge et al., 2004) suggests that cross-talk is reduced not only with increase in modulation frequency but also by compensating the seeing induced image aberrations by an Adaptive Optics (AO) system. However, in those studies the effect of higher order image aberrations than those corrected by the AO system was not taken into account. We present in this paper an analysis of seeing induced cross-talk in the presence of higher order image aberrations through numerical simulation. In this analysis we find that the amount...

  9. Intermittency of the turbulent processes in the Earth's magnetosphere detected from the ground-based measurements

    Science.gov (United States)

    Stepanova, Marina; Foppiano, Alberto; Ovalle, Elias; Antonova, Elizavieta; Troshichev, Oleg

    2008-11-01

    Turbulent processes in the Earth's magnetosphere are reflected in the dynamical behavior of the geomagnetic indices and other parameters determined from ground based observations. Intermittent properties of one minute Polar Cap (PC) index and auroral radio wave absorption are studied using 1995-2000 data sets. It was found that the probability distribution functions (PDFs) of both PC-index and absorption fluctuations display a strong non-Gaussian shape. This indicates that they are not characterized by a global time self-similarity but rather exhibit intermittency, as previously reported for solar wind velocity and auroral electrojet index values. In the case of the auroral absorption it was also found that intermittency strongly depends on the magnetic local time, being largest in the nighttime sector. This shows that the acceleration of precipitating particles is intermittent, especially near the substorm eye, where the level of turbulence increases. Application of the Local Intermittency Measure (LIM) technique confirms the aforementioned results to a better precision.

  10. Integrated ground-based and remotely sensed data to support global studies of environmental change

    Energy Technology Data Exchange (ETDEWEB)

    Olson, R.J.; Turner, R.S.; Garten, C.T.

    1994-09-15

    Data centers routinely archive and distribute large databases of high quality and with rigorous documentation but, to meet the needs of global studies effectively and efficiently, data centers must go beyond these traditional roles. Global studies of environmental change require integrated databases of multiple data types that are accurately coordinated in terms of spatial, temporal and thematic properties. Such datasets must be designed and developed jointly by scientific researchers, computer specialists, and policy analysts. The presentation focuses on our approach for organizing data from ground-based research programs so that the data can be linked with remotely sensed data and other map data into integrated databases with spatial, temporal, and thematic characteristics relevant to global studies. The development of an integrated database for Net Primary Productivity is described to illustrate the process.

  11. Coastal wind study based on Sentinel-1 and ground-based scanning lidar

    DEFF Research Database (Denmark)

    Ahsbahs, Tobias Torben; Badger, Merete; Pena Diaz, Alfredo

    , the project "Reducing the Uncertainty of Near-shore Energy estimates from meso- and micro-scale wind models" (RUNE) was established. The lidar measurement campaign started November 2015 and ended in February 2016 at the Danish North Sea coast at around 56.5 ◦N, 8.2 ◦E. 107 satellite SAR scenes were collected...... fields from the Sentinel-1A satellite using APL/NOAA’s SAROPS system with GFS model wind directions as input. For the presented cases CMOD5.n is used. Ground-based scanning lidar located on land can also cover near shore areas. In order to improve wind farm planning for near-shore coastal areas...

  12. Dynamical study of low Earth orbit debris collision avoidance using ground based laser

    Directory of Open Access Journals (Sweden)

    N.S. Khalifa

    2015-06-01

    Full Text Available The objective of this paper was to investigate the orbital velocity changes due to the effect of ground based laser force. The resulting perturbations of semi-major axis, miss distance and collision probability of two approaching objects are studied. The analytical model is applied for low Earth orbit debris of different eccentricities and area to mass ratio and the numerical test shows that laser of medium power ∼5 kW can perform a small change ΔV‾ of an average magnitude of 0.2 cm/s which can be accumulated over time to be about 3 cm/day. Moreover, it is confirmed that applying laser ΔV‾ results in decreasing collision probability and increasing miss distance in order to avoid collision.

  13. Improved Modeling in a Matlab-Based Navigation System

    Science.gov (United States)

    Deutschmann, Julie; Bar-Itzhack, Itzhack; Harman, Rick; Larimore, Wallace E.

    1999-01-01

    An innovative approach to autonomous navigation is available for low earth orbit satellites. The system is developed in Matlab and utilizes an Extended Kalman Filter (EKF) to estimate the attitude and trajectory based on spacecraft magnetometer and gyro data. Preliminary tests of the system with real spacecraft data from the Rossi X-Ray Timing Explorer Satellite (RXTE) indicate the existence of unmodeled errors in the magnetometer data. Incorporating into the EKF a statistical model that describes the colored component of the effective measurement of the magnetic field vector could improve the accuracy of the trajectory and attitude estimates and also improve the convergence time. This model is identified as a first order Markov process. With the addition of the model, the EKF attempts to identify the non-white components of the noise allowing for more accurate estimation of the original state vector, i.e. the orbital elements and the attitude. Working in Matlab allows for easy incorporation of new models into the EKF and the resulting navigation system is generic and can easily be applied to future missions resulting in an alternative in onboard or ground-based navigation.

  14. Ground-based RGB imaging to determine the leaf water potential of potato plants

    Science.gov (United States)

    Zakaluk, Robert F.

    The determination of plant water status from leaf water potential (Psi L) data obtained by conventional methods is impractical for meeting real time irrigation monitoring requirements. This research, undertaken first, in a greenhouse and then in the field, examined the use of artificial neural network (ANN) modeling of RGB (red green blue) images, captured by a ground-based, five mega pixel digital camera, to predict the leaf water potential of potato (Solanum tuberosum L). The greenhouse study examined cv. Russet Burbank, while the field study examined cv. Sangre. The protocol was similar in both studies: (1) images were acquired over different soil nitrate (N) and volumetric water content levels, (2) images were radiometrically calibrated, (3) green foliage was classified and extracted from the images, and (4) image transformations, and vegetation indices were calculated and transformed using principal components analysis (PCA). The findings from both studies were similar: (1) the R and G bands were more important than the B image band in the classification of green leaf pigment, (2) soil N showed an inverse linear relationship against leaf reflectance in the G image band, (3) the ANN model input neuron weights with more separation between soil N and PsiL were more important than other input neurons in predicting PsiL, and (4) the measured and predicted PsiL validation datasets were normally distributed with equal variances and means that were not significantly different. Based on these research findings, the ground-based digital camera proved to be an adequate sensor for image acquisition and a practical tool for acquiring data for predicting the PsiL of potato plants. Keywords: nitrogen, IHS transformation, chromaticity transformation, principal components, vegetation indices, remote sensing, artificial neural network, digital camera.

  15. Detection and quantification of localized groundwater inflow in small streams using ground-based infrared thermography

    Science.gov (United States)

    Schuetz, Tobias; Weiler, Markus

    2010-05-01

    Localized groundwater (GW) inflow into small streams can be a major source of runoff during low flow periods in headwater catchments. The localization and determination of the fraction of runoff corresponding to a certain area may give insights into aquifer type, flow processes, the composition of base-flow concerning the spatial distribution of catchment storage and water quality issues. Though GW temperature has a small amplitude during the year compared to surface water, a significant temperature difference between stream water and groundwater can be expected in summer and winter. As the technical development of infrared thermography is progressing (the spatial resolution of infrared camera systems is increasing and the measuring error is decreasing) we tested ground based infrared thermography as a non-invasive and remote applicable method to detect and quantify GW entries in small streams during baseflow periods (INFRATEC). In addition, water temperature and electric conductivity of the groundwater entering the stream and of the stream water up- and downstream of localized GW inflow were measured with temperature and EC sensors. Though the zones of complete mixing were identified, point measurements and surface radiation temperatures were taken from the same areas. Discharge measurements were conducted using the salt dilution method with continuous injection. End-member mixing calculations were done using the measured EC and water temperature data and compared to the results of mixing calculations of observed water surface radiation temperatures. The discharge observations were used to validate the fraction calculations. Calculated GW entries using thermogramms had comparable deviations from the measured runoff fractions to those from direct temperature and EC measurements. This leads to the conclusion that the use of ground-based infrared thermography for the detection and quantification of localized groundwater inflows into small streams is a valuable and

  16. An evaluation of IASI-NH3 with ground-based Fourier transform infrared spectroscopy measurements

    Science.gov (United States)

    Dammers, Enrico; Palm, Mathias; Van Damme, Martin; Vigouroux, Corinne; Smale, Dan; Conway, Stephanie; Toon, Geoffrey C.; Jones, Nicholas; Nussbaumer, Eric; Warneke, Thorsten; Petri, Christof; Clarisse, Lieven; Clerbaux, Cathy; Hermans, Christian; Lutsch, Erik; Strong, Kim; Hannigan, James W.; Nakajima, Hideaki; Morino, Isamu; Herrera, Beatriz; Stremme, Wolfgang; Grutter, Michel; Schaap, Martijn; Wichink Kruit, Roy J.; Notholt, Justus; Coheur, Pierre-F.; Erisman, Jan Willem

    2016-08-01

    Global distributions of atmospheric ammonia (NH3) measured with satellite instruments such as the Infrared Atmospheric Sounding Interferometer (IASI) contain valuable information on NH3 concentrations and variability in regions not yet covered by ground-based instruments. Due to their large spatial coverage and (bi-)daily overpasses, the satellite observations have the potential to increase our knowledge of the distribution of NH3 emissions and associated seasonal cycles. However the observations remain poorly validated, with only a handful of available studies often using only surface measurements without any vertical information. In this study, we present the first validation of the IASI-NH3 product using ground-based Fourier transform infrared spectroscopy (FTIR) observations. Using a recently developed consistent retrieval strategy, NH3 concentration profiles have been retrieved using observations from nine Network for the Detection of Atmospheric Composition Change (NDACC) stations around the world between 2008 and 2015. We demonstrate the importance of strict spatio-temporal collocation criteria for the comparison. Large differences in the regression results are observed for changing intervals of spatial criteria, mostly due to terrain characteristics and the short lifetime of NH3 in the atmosphere. The seasonal variations of both datasets are consistent for most sites. Correlations are found to be high at sites in areas with considerable NH3 levels, whereas correlations are lower at sites with low atmospheric NH3 levels close to the detection limit of the IASI instrument. A combination of the observations from all sites (Nobs = 547) give a mean relative difference of -32.4 ± (56.3) %, a correlation r of 0.8 with a slope of 0.73. These results give an improved estimate of the IASI-NH3 product performance compared to the previous upper-bound estimates (-50 to +100 %).

  17. A novel technique for extracting clouds base height using ground based imaging

    Directory of Open Access Journals (Sweden)

    E. Hirsch

    2011-01-01

    Full Text Available The height of a cloud in the atmospheric column is a key parameter in its characterization. Several remote sensing techniques (passive and active, either ground-based or on space-borne platforms and in-situ measurements are routinely used in order to estimate top and base heights of clouds. In this article we present a novel method that combines thermal imaging from the ground and sounded wind profile in order to derive the cloud base height. This method is independent of cloud types, making it efficient for both low boundary layer and high clouds. In addition, using thermal imaging ensures extraction of clouds' features during daytime as well as at nighttime. The proposed technique was validated by comparison to active sounding by ceilometers (which is a standard ground based method, to lifted condensation level (LCL calculations, and to MODIS products obtained from space. As all passive remote sensing techniques, the proposed method extracts only the height of the lowest cloud layer, thus upper cloud layers are not detected. Nevertheless, the information derived from this method can be complementary to space-borne cloud top measurements when deep-convective clouds are present. Unlike techniques such as LCL, this method is not limited to boundary layer clouds, and can extract the cloud base height at any level, as long as sufficient thermal contrast exists between the radiative temperatures of the cloud and its surrounding air parcel. Another advantage of the proposed method is its simplicity and modest power needs, making it particularly suitable for field measurements and deployment at remote locations. Our method can be further simplified for use with visible CCD or CMOS camera (although nighttime clouds will not be observed.

  18. Characterizing the Vertical Distribution of Aerosols using Ground-based Multiwavelength Lidar Data

    Science.gov (United States)

    Ferrare, R. A.; Thorsen, T. J.; Clayton, M.; Mueller, D.; Chemyakin, E.; Burton, S. P.; Goldsmith, J.; Holz, R.; Kuehn, R.; Eloranta, E. W.; Marais, W.; Newsom, R. K.; Liu, X.; Sawamura, P.; Holben, B. N.; Hostetler, C. A.

    2016-12-01

    Observations of aerosol optical and microphysical properties are critical for developing and evaluating aerosol transport model parameterizations and assessing global aerosol-radiation impacts on climate. During the Combined HSRL And Raman lidar Measurement Study (CHARMS), we investigated the synergistic use of ground-based Raman lidar and High Spectral Resolution Lidar (HSRL) measurements to retrieve aerosol properties aloft. Continuous (24/7) operation of these co-located lidars during the ten-week CHARMS mission (mid-July through September 2015) allowed the acquisition of a unique, multiwavelength ground-based lidar dataset for studying aerosol properties above the Southern Great Plains (SGP) site. The ARM Raman lidar measured profiles of aerosol backscatter, extinction and depolarization at 355 nm as well as profiles of water vapor mixing ratio and temperature. The University of Wisconsin HSRL simultaneously measured profiles of aerosol backscatter, extinction and depolarization at 532 nm and aerosol backscatter at 1064 nm. Recent advances in both lidar retrieval theory and algorithm development demonstrate that vertically-resolved retrievals using such multiwavelength lidar measurements of aerosol backscatter and extinction can help constrain both the aerosol optical (e.g. complex refractive index, scattering, etc.) and microphysical properties (e.g. effective radius, concentrations) as well as provide qualitative aerosol classification. Based on this work, the NASA Langley Research Center (LaRC) HSRL group developed automated algorithms for classifying and retrieving aerosol optical and microphysical properties, demonstrated these retrievals using data from the unique NASA/LaRC airborne multiwavelength HSRL-2 system, and validated the results using coincident airborne in situ data. We apply these algorithms to the CHARMS multiwavelength (Raman+HSRL) lidar dataset to retrieve aerosol properties above the SGP site. We present some profiles of aerosol effective

  19. Ground-based imaging remote sensing of ice clouds: uncertainties caused by sensor, method and atmosphere

    Science.gov (United States)

    Zinner, Tobias; Hausmann, Petra; Ewald, Florian; Bugliaro, Luca; Emde, Claudia; Mayer, Bernhard

    2016-09-01

    In this study a method is introduced for the retrieval of optical thickness and effective particle size of ice clouds over a wide range of optical thickness from ground-based transmitted radiance measurements. Low optical thickness of cirrus clouds and their complex microphysics present a challenge for cloud remote sensing. In transmittance, the relationship between optical depth and radiance is ambiguous. To resolve this ambiguity the retrieval utilizes the spectral slope of radiance between 485 and 560 nm in addition to the commonly employed combination of a visible and a short-wave infrared wavelength.An extensive test of retrieval sensitivity was conducted using synthetic test spectra in which all parameters introducing uncertainty into the retrieval were varied systematically: ice crystal habit and aerosol properties, instrument noise, calibration uncertainty and the interpolation in the lookup table required by the retrieval process. The most important source of errors identified are uncertainties due to habit assumption: Averaged over all test spectra, systematic biases in the effective radius retrieval of several micrometre can arise. The statistical uncertainties of any individual retrieval can easily exceed 10 µm. Optical thickness biases are mostly below 1, while statistical uncertainties are in the range of 1 to 2.5.For demonstration and comparison to satellite data the retrieval is applied to observations by the Munich hyperspectral imager specMACS (spectrometer of the Munich Aerosol and Cloud Scanner) at the Schneefernerhaus observatory (2650 m a.s.l.) during the ACRIDICON-Zugspitze campaign in September and October 2012. Results are compared to MODIS and SEVIRI satellite-based cirrus retrievals (ACRIDICON - Aerosol, Cloud, Precipitation, and Radiation Interactions and Dynamics of Convective Cloud Systems; MODIS - Moderate Resolution Imaging Spectroradiometer; SEVIRI - Spinning Enhanced Visible and Infrared Imager). Considering the identified

  20. Mixed-field GCR Simulations for Radiobiological Research Using Ground Based Accelerators

    Science.gov (United States)

    Kim, Myung-Hee Y.; Rusek, Adam; Cucinotta, Francis A.

    2014-01-01

    Space radiation is comprised of a large number of particle types and energies, which have differential ionization power from high energy protons to high charge and energy (HZE) particles and secondary neutrons produced by galactic cosmic rays (GCR). Ground based accelerators such as the NASA Space Radiation Laboratory (NSRL) at Brookhaven National Laboratory (BNL) are used to simulate space radiation for radiobiology research and dosimetry, electronics parts, and shielding testing using mono-energetic beams for single ion species. As a tool to support research on new risk assessment models, we have developed a stochastic model of heavy ion beams and space radiation effects, the GCR Event-based Risk Model computer code (GERMcode). For radiobiological research on mixed-field space radiation, a new GCR simulator at NSRL is proposed. The NSRL-GCR simulator, which implements the rapid switching mode and the higher energy beam extraction to 1.5 GeV/u, can integrate multiple ions into a single simulation to create GCR Z-spectrum in major energy bins. After considering the GCR environment and energy limitations of NSRL, a GCR reference field is proposed after extensive simulation studies using the GERMcode. The GCR reference field is shown to reproduce the Z and LET spectra of GCR behind shielding within 20% accuracy compared to simulated full GCR environments behind shielding. A major challenge for space radiobiology research is to consider chronic GCR exposure of up to 3-years in relation to simulations with cell and animal models of human risks. We discuss possible approaches to map important biological time scales in experimental models using ground-based simulation with extended exposure of up to a few weeks and fractionation approaches at a GCR simulator.

  1. Mountain wave PSC dynamics and microphysics from ground-based lidar measurements and meteorological modeling

    Directory of Open Access Journals (Sweden)

    J. Reichardt

    2004-01-01

    Full Text Available The day-long observation of a polar stratospheric cloud (PSC by two co-located ground-based lidars at the Swedish research facility Esrange (67.9° N, 21.1° E on 16 January 1997 is analyzed in terms of PSC dynamics and microphysics. Mesoscale modeling is utilized to simulate the meteorological setting of the lidar measurements. Microphysical properties of the PSC particles are retrieved by comparing the measured particle depolarization ratio and the PSC-averaged lidar ratio with theoretical optical data derived for different particle shapes. In the morning, nitric acid trihydrate (NAT particles and then increasingly coexisting liquid ternary aerosol (LTA were detected as outflow from a mountain wave-induced ice PSC upwind Esrange. The NAT PSC is in good agreement with simulations for irregular-shaped particles with length-to-diameter ratios between 0.75 and 1.25, maximum dimensions from 0.7 to 0.9 µm, and a number density from 8 to 12 cm-3 and the coexisting LTA droplets had diameters from 0.7 to 0.9 µm, a refractive index of 1.39 and a number density from 7 to 11 cm-3. The total amount of condensed HNO3 was in the range of 8–12 ppbv. The data provide further observational evidence that NAT forms via deposition nucleation on ice particles as a number of recently published papers suggest. By early afternoon the mountain-wave ice PSC expanded above the lidar site. Its optical data indicate a decrease in minimum particle size from 3 to 1.9 µm with time. Later on, following the weakening of the mountain wave, wave-induced LTA was observed only. Our study demonstrates that ground-based lidar measurements of PSCs can be comprehensively interpreted if combined with mesoscale meteorological data.

  2. Critical Evaluation of the ISCCP Simulator Using Ground-Based Remote Sensing Data

    Energy Technology Data Exchange (ETDEWEB)

    Mace, G G; Houser, S; Benson, S; Klein, S A; Min, Q

    2009-11-02

    Given the known shortcomings in representing clouds in Global Climate Models (GCM) comparisons with observations are critical. The International Satellite Cloud Climatology Project (ISCCP) diagnostic products provide global descriptions of cloud top pressure and column optical depth that extends over multiple decades. The necessary limitations of the ISCCP retrieval algorithm require that before comparisons can be made between model output and ISCCP results the model output must be modified to simulate what ISCCP would diagnose under the simulated circumstances. We evaluate one component of the so-called ISCCP simulator in this study by comparing ISCCP and a similar algorithm with various long-term statistics derived from the Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) Climate Research Facility ground-based remote sensors. We find that were a model to simulate the cloud radiative profile with the same accuracy as can be derived from the ARM data, then the likelihood of that occurrence being placed in the same cloud top pressure and optical depth bin as ISCCP of the 9 bins that have become standard ranges from 30% to 70% depending on optical depth. While the ISCCP simulator improved the agreement of cloud-top pressure between ground-based remote sensors and satellite observations, we find minor discrepancies due to the parameterization of cloud top pressure in the ISCCP simulator. The primary source of error seems to be related to discrepancies in visible optical depth that are not accounted for in the ISCCP simulator. We show that the optical depth discrepancies are largest when the assumptions necessary for plane parallel radiative transfer optical depths retrievals are violated.

  3. Evaluation of satellite soil moisture products over Norway using ground-based observations

    Science.gov (United States)

    Griesfeller, A.; Lahoz, W. A.; Jeu, R. A. M. de; Dorigo, W.; Haugen, L. E.; Svendby, T. M.; Wagner, W.

    2016-03-01

    In this study we evaluate satellite soil moisture products from the advanced SCATterometer (ASCAT) and the Advanced Microwave Scanning Radiometer - Earth Observing System (AMSR-E) over Norway using ground-based observations from the Norwegian water resources and energy directorate. The ASCAT data are produced using the change detection approach of Wagner et al. (1999), and the AMSR-E data are produced using the VUA-NASA algorithm (Owe et al., 2001, 2008). Although satellite and ground-based soil moisture data for Norway have been available for several years, hitherto, such an evaluation has not been performed. This is partly because satellite measurements of soil moisture over Norway are complicated owing to the presence of snow, ice, water bodies, orography, rocks, and a very high coastline-to-area ratio. This work extends the European areas over which satellite soil moisture is validated to the Nordic regions. Owing to the challenging conditions for soil moisture measurements over Norway, the work described in this paper provides a stringent test of the capabilities of satellite sensors to measure soil moisture remotely. We show that the satellite and in situ data agree well, with averaged correlation (R) values of 0.72 and 0.68 for ASCAT descending and ascending data vs in situ data, and 0.64 and 0.52 for AMSR-E descending and ascending data vs in situ data for the summer/autumn season (1 June-15 October), over a period of 3 years (2009-2011). This level of agreement indicates that, generally, the ASCAT and AMSR-E soil moisture products over Norway have high quality, and would be useful for various applications, including land surface monitoring, weather forecasting, hydrological modelling, and climate studies. The increasing emphasis on coupled approaches to study the earth system, including the interactions between the land surface and the atmosphere, will benefit from the availability of validated and improved soil moisture satellite datasets, including those

  4. Plans of a test bed for ionospheric modelling based on Fennoscandian ground-based instrumentation

    Science.gov (United States)

    Kauristie, Kirsti; Kero, Antti; Verronen, Pekka T.; Aikio, Anita; Vierinen, Juha; Lehtinen, Markku; Turunen, Esa; Pulkkinen, Tuija; Virtanen, Ilkka; Norberg, Johannes; Vanhamäki, Heikki; Kallio, Esa; Kestilä, Antti; Partamies, Noora; Syrjäsuo, Mikko

    2016-07-01

    One of the recommendations for teaming among research groups in the COSPAR/ILWS roadmap is about building test beds in which coordinated observing supports model development. In the presentation we will describe a test bed initiative supporting research on ionosphere-thermosphere-magnetosphere interactions. The EISCAT incoherent scatter radars with their future extension, EISCAT3D, form the backbone of the proposed system. The EISCAT radars are surrounded by versatile and dense arrays of ground-based instrumentation: magnetometers and auroral cameras (the MIRACLE and IMAGE networks), ionospheric tomography receivers (the TomoScand network) and other novel technology for upper atmospheric probing with radio waves (e.g. the KAIRA facility, riometers and the ionosonde maintained by the Sodankylä Geophysical Observatory). As a new opening, close coordination with the Finnish national cubesat program is planned. We will investigate opportunities to establish a cost efficient nanosatellite program which would support the ground-based observations in a systematic and persistent manner. First experiences will be gathered with the Aalto-1 and Aalto-2 satellites, latter of which will be the Finnish contribution to the international QB50 mission. We envisage close collaboration also in the development of data analysis tools with the goal to integrate routines and models from different research groups to one system, where the different elements support each other. In the longer run we are aiming for a modelling framework with observational guidance which gives a holistic description on ionosphere-thermosphere processes and this way enables reliable forecasts on upper atmospheric space weather activity.

  5. Ground based mobile isotopic methane measurements in the Front Range, Colorado

    Science.gov (United States)

    Vaughn, B. H.; Rella, C.; Petron, G.; Sherwood, O.; Mielke-Maday, I.; Schwietzke, S.

    2014-12-01

    Increased development of unconventional oil and gas resources in North America has given rise to attempts to monitor and quantify fugitive emissions of methane from the industry. Emission estimates of methane from oil and gas basins can vary significantly from one study to another as well as from EPA or State estimates. New efforts are aimed at reconciling bottom-up, or inventory-based, emission estimates of methane with top-down estimates based on atmospheric measurements from aircraft, towers, mobile ground-based vehicles, and atmospheric models. Attributing airborne measurements of regional methane fluxes to specific sources is informed by ground-based measurements of methane. Stable isotopic measurements (δ13C) of methane help distinguish between emissions from the O&G industry, Confined Animal Feed Operations (CAFO), and landfills, but analytical challenges typically limit meaningful isotopic measurements to individual point sampling. We are developing a toolbox to use δ13CH4 measurements to assess the partitioning of methane emissions for regions with multiple methane sources. The method was applied to the Denver-Julesberg Basin. Here we present data from continuous isotopic measurements obtained over a wide geographic area by using MegaCore, a 1500 ft. tube that is constantly filled with sample air while driving, then subsequently analyzed at slower rates using cavity ring down spectroscopy (CRDS). Pressure, flow and calibration are tightly controlled allowing precise attribution of methane enhancements to their point of collection. Comparisons with point measurements are needed to confirm regional values and further constrain flux estimates and models. This effort was made in conjunction with several major field campaigns in the Colorado Front Range in July-August 2014, including FRAPPÉ (Front Range Air Pollution and Photochemistry Experiment), DISCOVER-AQ, and the Air Water Gas NSF Sustainability Research Network at the University of Colorado.

  6. Microwave signatures of ice hydrometeors from ground-based observations above Summit, Greenland

    Directory of Open Access Journals (Sweden)

    C. Pettersen

    2015-12-01

    Full Text Available Multi-instrument, ground-based measurements provide unique and comprehensive datasets of the atmosphere for a specific location over long periods of time and resulting data compliments past and existing global satellite observations. This paper explores the effect of ice hydrometeors on ground-based, high frequency passive microwave measurements and attempts to isolate an ice signature for summer seasons at Summit, Greenland from 2010–2013. Data from a combination of passive microwave, cloud radar, radiosonde, and ceilometer were examined to isolate the ice signature at microwave wavelengths. By limiting the study to a cloud liquid water path of 40 g m−2 or less, the cloud radar can identify cases where the precipitation was dominated by ice. These cases were examined using liquid water and gas microwave absorption models, and brightness temperatures were calculated for the high frequency microwave channels: 90, 150, and 225 GHz. By comparing the measured brightness temperatures from the microwave radiometers and the calculated brightness temperature using only gas and liquid contributions, any residual brightness temperature difference is due to emission and scattering of microwave radiation from the ice hydrometeors in the column. The ice signature in the 90, 150, and 225 GHz channels for the Summit Station summer months was isolated. This measured ice signature was then compared to an equivalent brightness temperature difference calculated with a radiative transfer model including microwave single scattering properties for several ice habits. Initial model results compare well against the four years of summer season isolated ice signature in the high-frequency microwave channels.

  7. Nutritional status assessment in semiclosed environments: ground-based and space flight studies in humans

    Science.gov (United States)

    Smith, S. M.; Davis-Street, J. E.; Rice, B. L.; Nillen, J. L.; Gillman, P. L.; Block, G.

    2001-01-01

    Adequate nutrition is critical during long-term spaceflight, as is the ability to easily monitor dietary intake. A comprehensive nutritional status assessment profile was designed for use before, during and after flight. It included assessment of both dietary intake and biochemical markers of nutritional status. A spaceflight food-frequency questionnaire (FFQ) was developed to evaluate intake of key nutrients during spaceflight. The nutritional status assessment protocol was evaluated during two ground-based closed-chamber studies (60 and 91 d; n = 4/study), and was implemented for two astronauts during 4-mo stays on the Mir space station. Ground-based studies indicated that the FFQ, administered daily or weekly, adequately estimated intake of key nutrients. Chamber subjects maintained prechamber energy intake and body weight. Astronauts tended to eat 40--50% of WHO-predicted energy requirements, and lost >10% of preflight body mass. Serum ferritin levels were lower after the chamber stays, despite adequate iron intake. Red blood cell folate concentrations were increased after the chamber studies. Vitamin D stores were decreased by > 40% on chamber egress and after spaceflight. Mir crew members had decreased levels of most nutritional indices, but these are difficult to interpret given the insufficient energy intake and loss of body mass. Spaceflight food systems can provide adequate intake of macronutrients, although, as expected, micronutrient intake is a concern for any closed or semiclosed food system. These data demonstrate the utility and importance of nutritional status assessment during spaceflight and of the FFQ during extended-duration spaceflight.

  8. Issues for Simulation of Galactic Cosmic Ray Exposures for Radiobiological Research at Ground Based Accelerators

    Directory of Open Access Journals (Sweden)

    Myung-Hee Y Kim

    2015-06-01

    Full Text Available For research on the health risks of galactic cosmic rays (GCR ground-based accelerators have been used for radiobiology research with mono-energetic beams of single high charge, Z and energy, E (HZE particles. In this paper we consider the pros and cons of a GCR reference field at a particle accelerator. At the NASA Space Radiation Laboratory (NSRL we have proposed a GCR simulator, which implements a new rapid switching mode and higher energy beam extraction to 1.5 GeV/u, in order to integrate multiple ions into a single simulation within hours or longer for chronic exposures. After considering the GCR environment and energy limitations of NSRL, we performed extensive simulation studies using the stochastic transport code, GERMcode (GCR Event Risk Model to define a GCR reference field using 9 HZE particle beam-energy combinations each with a unique absorber thickness to provide fragmentation and 10 or more energies of proton and 4He beams. The reference field is shown to well represent the charge dependence of GCR dose in several energy bins behind shielding compared to a simulated GCR environment. However a more significant challenge for space radiobiology research is to consider chronic GCR exposure of up to 3 years in relation to simulations with animal models of human risks. We discuss issues in approaches to map important biological time scales in experimental models using ground-based simulation with extended exposure of up to a few weeks using chronic or fractionation exposures. A kinetics model of HZE particle hit probabilities suggests that experimental simulations of several weeks will be needed to avoid high fluence rate artifacts, which places limitations on the experiments to be performed. Ultimately risk estimates are limited by theoretical understanding, and focus on improving understanding of mechanisms and development of experimental models to improve this understanding should remain the highest priority for space radiobiology

  9. Comparing Aerosol Retrievals from Ground-Based Instruments at the Impact-Pm Field Campaign

    Science.gov (United States)

    Kupinski, M.; Bradley, C. L.; Kalashnikova, O. V.; Xu, F.; Diner, D. J.; Clements, C. B.; Camacho, C.

    2016-12-01

    Detection of aerosol types, components having different size and chemical composition, over urban areas is important for understanding their impact on health and climate. In particular, sustained contact with size-differentiated airborne particulate matter: PM10 and PM2.5 can lead to adverse health effects such as asthma attacks, heart and lung diseases, and premature mortality. Multi-angular polarimetric measurements have been advocated in recent years as an additional tool to better understand and retrieve the aerosol properties needed for improved predictions of aerosol impart on air quality and climate. We deployed the ground-based Multiangle SpectroPolarimetric Imager (GroundMSPI) for accurate spectropolarimetric and radiance measurements co-located with the AERONET CIMEL sun photometer and a Halo Doppler 18 m resolution lidar from San José State University at the Garland-Fresno Air Quality supersite in Fresno, CA on July 7 during the Imaging Polarimetric Assessment and Characterization of Tropospheric Particulate Matter (ImPACT-PM) field experiment. GroundMSPI sampled the atmospheric scattering phase function in and 90 degrees out of the principal plane every 15 minutes in an automated manner, utilizing the 2-axis gimbal mount in elevation and azimuth. The goal of this work is verify atmospheric measurement of GroundMSPI with the coincident CIMEL sun photometer and ground-based lidar. Diffuse-sky radiance measurements of GroundMSPI are compared with the CIMEL sun photometer throughout the day. AERONET aerosol parameters such as size, shape, and index of refraction as well as lidar aerosol extinction profiles will be used in a forward radiative transfer model to compare with GroundMSPI observations and optimize these parameters to best match GroundMSPI data.

  10. Ground-based Light Curves Two Pluto Days Before the New Horizons Passage

    Science.gov (United States)

    Bosh, A. S.; Pasachoff, J. M.; Babcock, B. A.; Durst, R. F.; Seeger, C. H.; Levine, S. E.; Abe, F.; Suzuki, D.; Nagakane, M.; Sickafoose, A. A.; Person, M. J.; Zuluaga, C.; Kosiarek, M. R.

    2015-12-01

    We observed the occultation of a 12th magnitude star, one of the two brightest occultation stars ever in our dozen years of continual monitoring of Pluto's atmosphere through such studies, on 29 June 2015 UTC. At Canterbury University's Mt. John University Observatory on the south island of New Zealand, in clear sky, we used our POETS frame-transfer CCD at 10 Hz with GPS timing on the 1-m McLellan telescope as well as an infrared camera on an 0.6-m telescope and three-color photometry at a slower cadence on a second 0.6-m telescope. The light curves show a central flash, indicating that we were close to the center of the occultation path, and allowing us to explore Pluto's atmosphere lower than usual. The light curves show that Pluto's atmosphere remained robust. Observations from 0.5- and 0.4-m telescopes at the Auckland Observatory gave the first half of the occultation before clouds came in. We coordinated our observations with aircraft observations with NASA's Stratospheric Observatory for Infrared Astronomy (SOFIA) and its High Speed Imaging Photometer for Occultations (HIPO). Our ground-based and airborne stellar-occultation effort came only just over two weeks of Earth days and two Pluto days (based on Pluto's rotational period) before the flyby of NASA's New Horizons spacecraft, meaning that the mission's exquisite snapshot of Pluto's atmosphere can be placed in the context of our series of ground-based occultation observations carried out on a regular basis since 2002 following a first Pluto occultation observed in 1988 from aloft. Our observations were supported by NASA Planetary Astronomy grants NNX12AJ29G to Williams College, NNX15AJ82G to Lowell Observatory, and NNX10AB27G to MIT, and by the National Research Foundation of South Africa. We thank Alan Gilmore, Pam Kilmartin, Robert Lucas, Paul Tristam, and Carolle Varughese for assistance at Mt. John.

  11. Mesospheric CO above Troll station, Antarctica observed by a ground based microwave radiometer

    Directory of Open Access Journals (Sweden)

    C. Straub

    2013-01-01

    Full Text Available This paper presents mesospheric carbon monoxide (CO data acquired by the ground-based microwave radiometer of the British Antarctic Survey (BAS radiometer stationed at Troll station in Antarctica (72° S, 2.5° E, 1270 a.m.s.l.. The data set covers the period from February 2008 to January 2010, however, due to very low CO concentrations below approximately 80 km altitude in summer, profiles can only be retrieved during Antarctic winter. CO is measured for approximately 2 h each day and profiles are retrieved approximately every half hour. The retrieved profiles, covering the pressure range from 1 to 0.01 hPa (approximately 48 to 80 km, are compared to measurements from Aura/MLS and SD-WACCM. This intercomparison reveals a low bias of 0.5 to 1 ppmv at 0.1 hPa (approximately 64 km and 2.5 to 3.5 ppmv at 0.01 hPa (approximately 80 km of the BAS microwave radiometer compared to both reference datasets. One explanation for this low bias could be the known high bias of MLS which is in the same order of magnitude. The ground based radiometer shows high and significant correlation (coefficients higher than 0.9/0.65 compared to MLS/SD-WACCM at all altitudes compared with both reference datasets. doi:10.5285/DE3E2092-406D-47A9-9205-3971A8DFB4A9

  12. Mesospheric CO above Troll station, Antarctica observed by a ground based microwave radiometer

    Directory of Open Access Journals (Sweden)

    C. Straub

    2013-06-01

    Full Text Available This paper presents mesospheric carbon monoxide (CO data acquired by the ground-based microwave radiometer of the British Antarctic Survey (BAS radiometer stationed at Troll station in Antarctica (72° S, 2.5° E, 1270 m a.s.l.. The dataset covers the period from February 2008 to January 2010, however, due to very low CO concentrations below approximately 80 km altitude in summer, profiles are only presented during the Antarctic winter. CO is measured for approximately 2 h each day and profiles are retrieved approximately every half hour. The retrieved profiles, covering the pressure range from 1 to 0.01 hPa (approximately 48 to 80 km, are compared to measurements from Microwave Limb Sounder on the Aura satellite (Aura/MLS and Whole Atmosphere Community Climate Model with Specified Dynamics (SD-WACCM. This intercomparison reveals a low bias of 0.5 to 1 ppmv at 0.1 hPa (approximately 64 km and 2.5 to 3.5 ppmv at 0.01 hPa (approximately 80 km of the BAS microwave radiometer compared to both reference datasets. One explanation for this low bias could be the known high bias of MLS which is on the same order of magnitude. The ground based radiometer shows high and significant correlation (coefficients higher than 0.9/0.7 compared to MLS/SD-WACCM at all altitudes compared with both reference datasets. The dataset can be accessed under http://dx.doi.org/10/mhq.

  13. High Resolution Spectral Analysis of Hiss and Chorus Emissions in Ground Based Data

    Science.gov (United States)

    Hosseini Aliabad, S. P.; Golkowski, M.; Gibby, A. R.

    2015-12-01

    The dynamic evolution of the radiation belts is believed to be controlled in large part by two separate but related classes of naturally occurring plasma waves: ELF/VLF chorus and hiss emissions. Although whistler mode chorus has been extensively studied since the first reports by Storey in 1953, the source mechanism and properties are still subjects of active research. Moreover, the origin of plasmaspheric hiss, the electromagnetic emission believed to be responsible for the gap between the inner and outer radiation belts, has been debated for over four decades. Although these waves can be observed in situ on spacecraft, ground-based observing stations can provide orders of magnitude higher data volumes and decades long data coverage essential for certain long-term and statistical studies of wave properties. Recent observational and theoretical works suggest that high resolution analysis of the spectral features of both hiss and chorus emissions can provide insight into generation processes and be used to validate existing theories. Application of the classic Fourier (FFT) technique unfortunately yields a tradeoff between time and frequency resolution. In additional to Fourier spectra, we employ novel methods to make spectrograms with high time and frequency resolutions, independently using minimum variance distortionless response (MVDR). These techniques are applied to ground based data observations of hiss and chorus made in Alaska. Plasmaspheric hiss has been widely regarded as a broadband, structure less, incoherent emission. We quantify the extent to which plasmaspheric hiss can be a coherent emission with complex fine structure. Likewise, to date, researchers have differentiated between hiss and chorus coherency primarily using qualitative "naked eye" approaches to amplitude spectra. Using a quantitative approach to observed amplitude and we present more rigorous classification criteria for these emissions.

  14. Network operability of ground-based microwave radiometers: Calibration and standardization efforts

    Science.gov (United States)

    Pospichal, Bernhard; Löhnert, Ulrich; Küchler, Nils; Czekala, Harald

    2017-04-01

    Ground-based microwave radiometers (MWR) are already widely used by national weather services and research institutions all around the world. Most of the instruments operate continuously and are beginning to be implemented into data assimilation for atmospheric models. Especially their potential for continuously observing boundary-layer temperature profiles as well as integrated water vapor and cloud liquid water path makes them valuable for improving short-term weather forecasts. However until now, most MWR have been operated as stand-alone instruments. In order to benefit from a network of these instruments, standardization of calibration, operation and data format is necessary. In the frame of TOPROF (COST Action ES1303) several efforts have been undertaken, such as uncertainty and bias assessment, or calibration intercomparison campaigns. The goal was to establish protocols for providing quality controlled (QC) MWR data and their uncertainties. To this end, standardized calibration procedures for MWR have been developed and recommendations for radiometer users compiled. Based on the results of the TOPROF campaigns, a new, high-accuracy liquid-nitrogen calibration load has been introduced for MWR manufactured by Radiometer Physics GmbH (RPG). The new load improves the accuracy of the measurements considerably and will lead to even more reliable atmospheric observations. Next to the recommendations for set-up, calibration and operation of ground-based MWR within a future network, we will present homogenized methods to determine the accuracy of a running calibration as well as means for automatic data quality control. This sets the stage for the planned microwave calibration center at JOYCE (Jülich Observatory for Cloud Evolution), which will be shortly introduced.

  15. Mesospheric minor species determinations from rocket and ground-based i.r. measurements

    Science.gov (United States)

    Ulwick, J. C.; Baker, K. D.; Baker, D. J.; Steed, A. J.; Pendleton, W. R.; Grossmann, K.; Brückelmann, H. G.

    As part of the MAP/WINE campaign the infrared hydroxyl airglow layer was investigated at Kiruna, Sweden, by simultaneous measurements with rocket probes of OH ≠ and O2( a1Δg) infrared emissions and concentrations of odd oxygen species (O and O 3). Coordinated measurements of OH ≠ and O2( a1Δg) zenith radiance and emission spectra and their time histories were made from the ground. The rocket-borne Λ = 1.55 μm radiometer ( ΔΛ ≊ 0.23 μm) provided volume emission rates for OH for both rocket ascent and descent, showing a peak near 87 km with a maximum of nearly 10 6 photons sec -1 cm -3. The atomic oxygen distribution showed a concentration of about 10 11 cm -3 between 88 and 100 km, dropping off sharply below 85 km. The ground-based radiometer at Λ = 1.56 μm, which had a similar filter bandpass to the rocket-borne instrument, yielded an equivalent of 130 kR for the total OH Δv = 2 sequence, which is consistent with the zenith-corrected rocket-based sequence radiance value of ≌ 110 kR. The rotational temperature of the OH night airglow obtained from the rotational structure of the OH M (3,1) band observed by the ground-based interferometer was about 195K at the time of the rocket measurement. Atomic oxygen concentrations were calculated from the OH profile and show agreement with the directly measured values. Atomic hydrogen concentrations of a few times 10 7 cm -3 near 85 km were inferred from the data set.

  16. Sensitivity analysis of helicopter IMC decelerating steep approach and landing performance to navigation system parameters. [Instrument Meteorological Conditions

    Science.gov (United States)

    Karmali, M. S.; Phatak, A. V.; Bull, J. S.; Peach, L. L.; Demko, P. S.

    1984-01-01

    The present investigation is concerned with a sensitivity analysis of the Decelerated Steep Approach and Landing (DSAL) maneuver to on-board and ground-based navigation system parameters. The Instrument Meteorological Conditions (IMC) DSAL maneuver involves decelerating to zero range rate while tracking the localizer and glideslope. The considered study investigated the performance of the navigation systems using Constant Deceleration Profile (CDP) guidance and a six degrees glideslope trajectory. A closed-loop computer simulation of the UH1H helicopter DSAL system was developed for the sensitivity analysis. Conclusions on system performance parameter sensitivity are discussed.

  17. Integrated navigation method based on inertial navigation system and Lidar

    Science.gov (United States)

    Zhang, Xiaoyue; Shi, Haitao; Pan, Jianye; Zhang, Chunxi

    2016-04-01

    An integrated navigation method based on the inertial navigational system (INS) and Lidar was proposed for land navigation. Compared with the traditional integrated navigational method and dead reckoning (DR) method, the influence of the inertial measurement unit (IMU) scale factor and misalignment was considered in the new method. First, the influence of the IMU scale factor and misalignment on navigation accuracy was analyzed. Based on the analysis, the integrated system error model of INS and Lidar was established, in which the IMU scale factor and misalignment error states were included. Then the observability of IMU error states was analyzed. According to the results of the observability analysis, the integrated system was optimized. Finally, numerical simulation and a vehicle test were carried out to validate the availability and utility of the proposed INS/Lidar integrated navigational method. Compared with the test result of a traditional integrated navigation method and DR method, the proposed integrated navigational method could result in a higher navigation precision. Consequently, the IMU scale factor and misalignment error were effectively compensated by the proposed method and the new integrated navigational method is valid.

  18. Navigating in higher education

    DEFF Research Database (Denmark)

    Thingholm, Hanne Balsby; Reimer, David; Keiding, Tina Bering

    Denne rapport er skrevet på baggrund af spørgeskemaundersøgelsen – Navigating in Higher Education (NiHE) – der rummer besvarelser fra 1410 bachelorstuderende og 283 undervisere fordelt på ni uddannelser fra Aarhus Universitet: Uddannelsesvidenskab, Historie, Nordisk sprog og litteratur, Informati......Denne rapport er skrevet på baggrund af spørgeskemaundersøgelsen – Navigating in Higher Education (NiHE) – der rummer besvarelser fra 1410 bachelorstuderende og 283 undervisere fordelt på ni uddannelser fra Aarhus Universitet: Uddannelsesvidenskab, Historie, Nordisk sprog og litteratur......, Informationsteknologi, Biologi, Fysik, Medicin, Odontologi og Folkesundhedsvidenskab. NiHE undersøgelsen er gennemført i efteråret 2015 og vinter 2016, og den har til formål at generere data til almen undervisningsudvikling og rummer derfor både faglige, sociale og personlige perspektiver på undervisning....

  19. Robot navigation in cluttered 3-D environments using preference-based fuzzy behaviors.

    Science.gov (United States)

    Shi, Dongqing; Collins, Emmanuel G; Dunlap, Damion

    2007-12-01

    Autonomous navigation systems for mobile robots have been successfully deployed for a wide range of planar ground-based tasks. However, very few counterparts of previous planar navigation systems were developed for 3-D motion, which is needed for both unmanned aerial and underwater vehicles. A novel fuzzy behavioral scheme for navigating an unmanned helicopter in cluttered 3-D spaces is developed. The 3-D navigation problem is decomposed into several identical 2-D navigation subproblems, each of which is solved by using preference-based fuzzy behaviors. Due to the shortcomings of vector summation during the fusion of the 2-D subproblems, instead of directly outputting steering subdirections by their own defuzzification processes, the intermediate preferences of the subproblems are fused to create a 3-D solution region, representing degrees of preference for the robot movement. A new defuzzification algorithm that steers the robot by finding the centroid of a 3-D convex region of maximum volume in the 3-D solution region is developed. A fuzzy speed-control system is also developed to ensure efficient and safe navigation. Substantial simulations have been carried out to demonstrate that the proposed algorithm can smoothly and effectively guide an unmanned helicopter through unknown and cluttered urban and forest environments.

  20. Waves at Navigation Structures

    Science.gov (United States)

    2014-10-27

    ABSTRACT 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT Same as Report (SAR) 18. NUMBER OF PAGES 2 19a. NAME...upgrades the Coastal Modeling System’s ( CMS ) wave model CMS -Wave, a phase-averaged spectral wave model, and BOUSS-2D, a Boussinesq-type nonlinear wave...provided by this work unit address these critical needs of the Corps’ navigation mission. Description Issue Addressed CMS -Wave application at Braddock

  1. Invisible Navigation (or Impossible?).

    OpenAIRE

    Özcan, Oğuzhan; O'Neil, Mary Lou

    2013-01-01

    Abstract: This article introduces an experimental artwork on moving mobile interfaces. It aims to answer the question: Is it possible to navigate a part of a large image composition, moving a smaller interface of a mobile device in a certain direction such as left and right, back and forth or up and down? The article then outlines the new concept of “Invisible (or impossible) Navigation” and discusses the output of artistic practices which address the “Labyrinth of Art”.

  2. Self-navigating robot

    Science.gov (United States)

    Thompson, A. M.

    1978-01-01

    Rangefinding equipment and onboard navigation system determine best route from point to point. Research robot has two TV cameras and laser for scanning and mapping its environment. Path planner finds most direct, unobstructed route that requires minimum expenditure of energy. Distance is used as measure of energy expense, although other measures such as time or power consumption (which would depend on the topography of the path) may be used.

  3. Mobile satellite communications for consumers

    Science.gov (United States)

    Noreen, Gary K.

    1991-11-01

    The RadioSat system based on MSAT satellites and scheduled for launch in 1994 is described. The RadioSat system will provide integrated communications and navigation services to consumers, including nationwide digital audio broadcasts, data broadcasts, precision navigation, and two-way voice and data communications. Particular attention is given to the MSAT satellite system capabilities and economics. It is concluded that the RadioSat system will be capable of providing a low-cost, highly flexible two-way communications for consumers that can be adapted to various applications.

  4. UGV navigation in wireless sensor and actuator network environments

    Science.gov (United States)

    Zhang, Guyu; Li, Jianfeng; Duncan, Christian A.; Kanno, Jinko; Selmic, Rastko R.

    2012-06-01

    We consider a navigation problem in a distributed, self-organized and coordinate-free Wireless Sensor and Ac- tuator Network (WSAN). We rst present navigation algorithms that are veried using simulation results. Con- sidering more than one destination and multiple mobile Unmanned Ground Vehicles (UGVs), we introduce a distributed solution to the Multi-UGV, Multi-Destination navigation problem. The objective of the solution to this problem is to eciently allocate UGVs to dierent destinations and carry out navigation in the network en- vironment that minimizes total travel distance. The main contribution of this paper is to develop a solution that does not attempt to localize either the UGVs or the sensor and actuator nodes. Other than some connectivity as- sumptions about the communication graph, we consider that no prior information about the WSAN is available. The solution presented here is distributed, and the UGV navigation is solely based on feedback from neigh- boring sensor and actuator nodes. One special case discussed in the paper, the Single-UGV, Multi-Destination navigation problem, is essentially equivalent to the well-known and dicult Traveling Salesman Problem (TSP). Simulation results are presented that illustrate the navigation distance traveled through the network. We also introduce an experimental testbed for the realization of coordinate-free and localization-free UGV navigation. We use the Cricket platform as the sensor and actuator network and a Pioneer 3-DX robot as the UGV. The experiments illustrate the UGV navigation in a coordinate-free WSAN environment where the UGV successfully arrives at the assigned destinations.

  5. Multisensor robot navigation system

    Science.gov (United States)

    Persa, Stelian; Jonker, Pieter P.

    2002-02-01

    Almost all robot navigation systems work indoors. Outdoor robot navigation systems offer the potential for new application areas. The biggest single obstacle to building effective robot navigation systems is the lack of accurate wide-area sensors for trackers that report the locations and orientations of objects in an environment. Active (sensor-emitter) tracking technologies require powered-device installation, limiting their use to prepared areas that are relative free of natural or man-made interference sources. The hybrid tracker combines rate gyros and accelerometers with compass and tilt orientation sensor and DGPS system. Sensor distortions, delays and drift required compensation to achieve good results. The measurements from sensors are fused together to compensate for each other's limitations. Analysis and experimental results demonstrate the system effectiveness. The paper presents a field experiment for a low-cost strapdown-IMU (Inertial Measurement Unit)/DGPS combination, with data processing for the determination of 2-D components of position (trajectory), velocity and heading. In the present approach we have neglected earth rotation and gravity variations, because of the poor gyroscope sensitivities of our low-cost ISA (Inertial Sensor Assembly) and because of the relatively small area of the trajectory. The scope of this experiment was to test the feasibility of an integrated DGPS/IMU system of this type and to develop a field evaluation procedure for such a combination.

  6. Assessment of NASA Airborne Laser Altimetry Data Using Ground-Based GPS Data near Summit Station, Greenland

    Science.gov (United States)

    Brunt, Kelly M.; Hawley, Robert L.; Lutz, Eric R.; Studinger, Michael; Sonntag, John G.; Hofton, Michelle A.; Andrews, Lauren C.; Neumann, Thomas A.

    2017-01-01

    A series of NASA airborne lidars have been used in support of satellite laser altimetry missions. These airbornelaser altimeters have been deployed for satellite instrument development, for spaceborne data validation, and to bridge the data gap between satellite missions. We used data from ground-based Global Positioning System (GPS) surveys of an 11 km long track near Summit Station, Greenland, to assess the surface elevation bias and measurement precision of three airborne laser altimeters including the Airborne Topographic Mapper (ATM), the Land, Vegetation, and Ice Sensor (LVIS), and the Multiple Altimeter Beam Experimental Lidar (MABEL). Ground-based GPS data from the monthly ground-based traverses, which commenced in 2006, allowed for the assessment of nine airborne lidar surveys associated with ATM and LVIS between 2007 and 2016. Surface elevation biases for these altimeters over the flat, ice-sheet interior are less than 0.12 m, while assessments of measurement precision are 0.09 m or better. Ground-based GPS positions determined both with and without differential post-processing techniques provided internally consistent solutions. Results from the analyses of ground-based and airborne data provide validation strategy guidance for the Ice, Cloud, and land Elevation Satellite 2 (ICESat-2) elevation and elevation-change data products.

  7. Network analysis of geomagnetic substorms using the SuperMAG database of ground-based magnetometer stations

    CERN Document Server

    Dods, J; Gjerloev, J W

    2016-01-01

    The overall morphology and dynamics of magnetospheric substorms is well established in terms of the observed qualitative auroral features seen in ground-based magnetometers. This paper focuses on the quantitative characterization of substorm dynamics captured by ground-based magnetometer stations. We present the first analysis of substorms using dynamical networks obtained from the full available set of ground-based magnetometer observations in the Northern Hemisphere. The stations are connected in the network when the correlation between the vector magnetometer time series from pairs of stations within a running time window exceeds a threshold. Dimensionless parameters can then be obtained that characterize the network and by extension, the spatiotemporal dynamics of the substorm under observation. We analyze four isolated substorm test cases as well as a steady magnetic convection (SMC) event and a day in which no substorms occur. These test case substorms are found to give a consistent characteristic netwo...

  8. Determination of the Characteristics of Ground-Based IR Spectral Instrumentation for Environmental Monitoring of the Atmosphere

    Science.gov (United States)

    Makarova, M. V.; Poberovskii, A. V.; Hase, F.; Timofeyev, Yu. M.; Imhasin, Kh. Kh.

    2016-07-01

    This is a study of the spectral characteristics of a ground-based spectral system consisting of an original system for tracking the sun developed at St. Petersburg State University and a Bruker IFS125HR Fourier spectrometer. The importance of accounting for the actual instrument function of the spectral system during processing of ground-based IR spectra of direct solar radiation is illustrated by the example of determining the overall abundance of methane in the atmosphere. Spectral intervals are proposed for taking spectra of direct solar radiation with an HBr cell, which yield information on the parameters of the ground-based system, while simultaneously checking the alignment of the system for each spectrum of the atmosphere.

  9. Validation of CALIPSO space-borne-derived attenuated backscatter coefficient profiles using a ground-based lidar in Athens, Greece

    Directory of Open Access Journals (Sweden)

    R. E. Mamouri

    2009-09-01

    Full Text Available We present initial aerosol validation results of the space-borne lidar CALIOP -onboard the CALIPSO satellite- Level 1 attenuated backscatter coefficient profiles, using coincident observations performed with a ground-based lidar in Athens, Greece (37.9° N, 23.6° E. A multi-wavelength ground-based backscatter/Raman lidar system is operating since 2000 at the National Technical University of Athens (NTUA in the framework of the European Aerosol Research LIdar NETwork (EARLINET, the first lidar network for tropospheric aerosol studies on a continental scale. Since July 2006, a total of 40 coincidental aerosol ground-based lidar measurements were performed over Athens during CALIPSO overpasses. The ground-based measurements were performed each time CALIPSO overpasses the station location within a maximum distance of 100 km. The duration of the ground–based lidar measurements was approximately two hours, centred on the satellite overpass time. From the analysis of the ground-based/satellite correlative lidar measurements, a mean bias of the order of 22% for daytime measurements and of 8% for nighttime measurements with respect to the CALIPSO profiles was found for altitudes between 3 and 10 km. The mean bias becomes much larger for altitudes lower that 3 km (of the order of 60% which is attributed to the increase of aerosol horizontal inhomogeneity within the Planetary Boundary Layer, resulting to the observation of possibly different air masses by the two instruments. In cases of aerosol layers underlying Cirrus clouds, comparison results for aerosol tropospheric profiles become worse. This is attributed to the significant multiple scattering effects in Cirrus clouds experienced by CALIPSO which result in an attenuation which is less than that measured by the ground-based lidar.

  10. Functional proteomic analysis revealed ground-base ion radiations cannot reflect biological effects of space radiations of rice

    Science.gov (United States)

    Wang, Wei; Sun, Yeqing; Zhao, Qian; Han, Lu

    2016-07-01

    Highly ionizing radiation (HZE) in space is considered as main factor causing biological effects. Radiobiological studies during space flights are unrepeatable due to the variable space radiation environment, ground-base ion radiations are usually performed to simulate of the space biological effect. Spaceflights present a low-dose rate (0.1˜~0.3mGy/day) radiation environment inside aerocrafts while ground-base ion radiations present a much higher dose rate (100˜~500mGy/min). Whether ground-base ion radiation can reflect effects of space radiation is worth of evaluation. In this research, we compared the functional proteomic profiles of rice plants between on-ground simulated HZE particle radiation and spaceflight treatments. Three independent ground-base seed ionizing radiation experiments with different cumulative doses (dose range: 2˜~20000mGy) and different liner energy transfer (LET) values (13.3˜~500keV/μμm) and two independent seed spaceflight experiments onboard Chinese 20th satellite and SZ-6 spacecraft were carried out. Alterations in the proteome were analyzed by two-dimensional difference gel electrophoresis (2-D DIGE) with MALDI-TOF/TOF mass spectrometry identifications. 45 and 59 proteins showed significant (pmetabolic process, protein folding and phosphorylation. The results implied that ground-base radiations cannot truly reflect effects of spaceflight radiations, ground-base radiation was a kind of indirect effect to rice causing oxidation and metabolism stresses, but space radiation was a kind of direct effect leading to macromolecule (DNA and protein) damage and signal pathway disorders. This functional proteomic analysis work might provide a new evaluation method for further on-ground simulated HZE radiation experiments.

  11. Proteomic and Epigenetic Analysis of Rice after Seed Spaceflight and Ground-Base Ion Radiations

    Science.gov (United States)

    Wang, Wei; Sun, Yeqing; Peng, Yuming; Zhao, Qian; Wen, Bin; Yang, Jun

    Highly ionizing radiation (HZE) in space is considered as main factor causing biological effects to plant seeds. In previous work, we compared the proteomic profiles of rice plants growing after seed spaceflights to ground controls by two-dimensional difference gel electrophoresis (2-D DIGE) with mass spectrometry and found that the protein expression profiles were changed and differentially expressed proteins participated in most of the biological processes of rice. To further evaluate the dosage effects of space radiation and compare between low- and high-dose ion effects, we carried out three independent ground-base ionizing radiation experiments with different cumulative doses (low-dose range: 2~1000mGy, high-dose range: 2000~20000mGy) to rice seeds and performed proteomic analysis of seedlings. We found that protein expression profiles showed obvious boundaries between low- and high-dose radiation groups. Rates of differentially expressed proteins presented a dose-dependent effect, it reached the highest value at 2000mGy dosage point in all three radiation experiments coincidently; while proteins responded to low-dose radiations preferred to change their expressions at the minimum dosage (2mGy). Proteins participating in rice biological processes also responded differently between low- and high-dose radiations: proteins involved in energy metabolism and photosynthesis tended to be regulated after low-dose radiations while stress responding, protein folding and cell redox homeostasis related proteins preferred to change their expressions after high-dose radiations. By comparing the proteomic profiles between ground-base radiations and spaceflights, it was worth noting that ground-base low-dose ion radiation effects shared similar biological effects as space environment. In addition, we discovered that protein nucleoside diphosphate kinase 1 (NDPK1) showed obvious increased regulation after spaceflights and ion radiations. NDPK1 catalyzes nucleotide metabolism

  12. Sub-Seasonal Variability of Tropical Rainfall Observed by TRMM and Ground-based Polarimetric Radar

    Science.gov (United States)

    Dolan, Brenda; Rutledge, Steven; Lang, Timothy; Cifelli, Robert; Nesbitt, Stephen

    2010-05-01

    Studies of tropical precipitation characteristics from the TRMM-LBA and NAME field campaigns using ground-based polarimetric S-band data have revealed significant differences in microphysical processes occurring in the various meteorological regimes sampled in those projects. In TRMM-LMA (January-February 1999 in Brazil; a TRMM ground validation experiment), variability is driven by prevailing low-level winds. During periods of low-level easterlies, deeper and more intense convection is observed, while during periods of low-level westerlies, weaker convection embedded in widespread stratiform precipitation is common. In the NAME region (North American Monsoon Experiment, summer 2004 along the west coast of Mexico), strong terrain variability drives differences in precipitation, with larger drops and larger ice mass aloft associated with convection occurring over the coastal plain compared to convection over the higher terrain of the Sierra Madre Occidental, or adjacent coastal waters. Comparisons with the TRMM precipitation radar (PR) indicate that such sub-seasonal variability in these two regions are not well characterized by the TRMM PR reflectivity and rainfall statistics. TRMM PR reflectivity profiles in the LBA region are somewhat lower than S-Pol values, particularly in the more intense easterly regime convection. In NAME, mean reflectivities are even more divergent, with TRMM profiles below those of S-Pol. In both regions, the TRMM PR does not capture rain rates above 80 mm hr-1 despite much higher rain rates estimated from the S-Pol polarimetric data, and rain rates are generally lower for a given reflectivity from TRMM PR compared to S-Pol. These differences between TRMM PR and S-Pol may arise from the inability of Z-R relationships to capture the full variability of microphysical conditions or may highlight problems with TRMM retrievals over land. In addition to the TRMM-LBA and NAME regions, analysis of sub-seasonal precipitation variability and

  13. Ground-based aerosol characterization during the South American Biomass Burning Analysis (SAMBBA) field experiment

    Science.gov (United States)

    Brito, J.; Rizzo, L. V.; Morgan, W. T.; Coe, H.; Johnson, B.; Haywood, J.; Longo, K.; Freitas, S.; Andreae, M. O.; Artaxo, P.

    2014-11-01

    This paper investigates the physical and chemical characteristics of aerosols at ground level at a site heavily impacted by biomass burning. The site is located near Porto Velho, Rondônia, in the southwestern part of the Brazilian Amazon rainforest, and was selected for the deployment of a large suite of instruments, among them an Aerosol Chemical Speciation Monitor. Our measurements were made during the South American Biomass Burning Analysis (SAMBBA) field experiment, which consisted of a combination of aircraft and ground-based measurements over Brazil, aimed to investigate the impacts of biomass burning emissions on climate, air quality, and numerical weather prediction over South America. The campaign took place during the dry season and the transition to the wet season in September/October 2012. During most of the campaign, the site was impacted by regional biomass burning pollution (average CO mixing ratio of 0.6 ppm), occasionally superimposed by intense (up to 2 ppm of CO), freshly emitted biomass burning plumes. Aerosol number concentrations ranged from ~1000 cm-3 to peaks of up to 35 000 cm-3 (during biomass burning (BB) events, corresponding to an average submicron mass mean concentrations of 13.7 μg m-3 and peak concentrations close to 100 μg m-3. Organic aerosol strongly dominated the submicron non-refractory composition, with an average concentration of 11.4 μg m-3. The inorganic species, NH4, SO4, NO3, and Cl, were observed, on average, at concentrations of 0.44, 0.34, 0.19, and 0.01 μg m-3, respectively. Equivalent black carbon (BCe) ranged from 0.2 to 5.5 μg m-3, with an average concentration of 1.3 μg m-3. During BB peaks, organics accounted for over 90% of total mass (submicron non-refractory plus BCe), among the highest values described in the literature. We examined the ageing of biomass burning organic aerosol (BBOA) using the changes in the H : C and O : C ratios, and found that throughout most of the aerosol processing (O : C ≅ 0

  14. Ground based aerosol characterization during the South American Biomass Burning Analysis (SAMBBA field experiment

    Directory of Open Access Journals (Sweden)

    J. Brito

    2014-05-01

    Full Text Available This paper investigates the physical and chemical characteristics of aerosols at ground level at a site heavily impacted by biomass burning. The site is located near Porto Velho, Rondônia, in the Southwestern part of the Brazilian Amazon forest, and was selected for the deployment of a large suite of instruments, among them an Aerosol Chemical Speciation Monitor. Our measurements were made during the South American Biomass Burning Analysis (SAMBBA field experiment, which consisted of a combination of aircraft and ground based measurements over Brazil, aiming to investigate the impacts of biomass burning emissions on climate, air quality, and numerical weather prediction over South America. The campaign took place during the dry season and the transition to the wet season in September/October 2012. During most of the campaign, the site was impacted by regional biomass burning pollution (average CO mixing ratio of 0.6 ppm, occasionally superimposed by intense (up to 2 ppm of CO, freshly emitted biomass burning plumes. Aerosol number concentrations ranged from ∼1000 cm−3 to peaks of up to 35 000 cm−3 during biomass burning (BB events, corresponding to an average submicron mass mean concentrations of 13.7 μg m−3 and peak concentrations close to 100 μg m−3. Organic aerosol strongly dominated the submicron non-refractory composition, with an average concentration of 11.4 μg m−3. The inorganic species, NH4, SO4, NO3, and Cl, were observed on average at concentrations of 0.44, 0.34, 0.19, and 0.01 μg m−3, respectively. Equivalent Black Carbon (BCe ranged from 0.2 to 5.5 μg m−3, with an average concentration of 1.3 μg m−3. During BB peaks, organics accounted for over 90% of total mass (submicron non-refractory plus BCe, among the highest values described in the literature. We examined the ageing of Biomass Burning Organic Aerosol (BBOA using the changes in the H : C and O : C ratios, and found that throughout most of the aerosol

  15. NASA's Newest Orbital Debris Ground-based Telescope Assets: MCAT and UKIRT

    Science.gov (United States)

    Lederer, S. M.; Frith, J. M.; Pace, L. F.; Cowardin, H. M.; Cowardin, H. M.; Hickson, P.; Glesne, T.; Maeda, R.; Buckalew, B.; Nishimoto, D.; hide

    2014-01-01

    NASA's Orbital Debris Program Office (ODPO) will break ground on Ascension Island in 2014 to build the newest optical (0.30 - 1.06 micrometers) ground-based telescope asset dedicated to the study of orbital debris. The Meter Class Autonomous Telescope (MCAT) is a 1.3m optical telescope designed to track objects in orbits ranging from Low Earth Orbit (LEO) to Geosynchronous Earth Orbit (GEO). Ascension Island is located in the South Atlantic Ocean, offering longitudinal sky coverage not afforded by the Ground-based Electro-Optical Deep Space Surveillance (GEODSS) network. With a fast-tracking dome, a suite of visible wide-band filters, and a time-delay integration (TDI) capable camera, MCAT is capable of multiple observing modes ranging from tracking cataloged debris targets to surveying the overall debris environment. Access to the United Kingdom Infrared Telescope (UKIRT) will extend our spectral coverage into the near- (0.8-5 micrometers) and mid- to far-infrared (8-25 micrometers) regime. UKIRT is a 3.8m telescope located on Mauna Kea on the Big Island of Hawaii. At nearly 14,000-feet and above the atmospheric inversion layer, this is one of the premier astronomical sites in the world and is an ideal setting for an infrared telescope. An unprecedented one-third of this telescope's time has been allocated to collect orbital debris data for NASA's ODPO over a 2-year period. UKIRT has several instruments available to obtain low-resolution spectroscopy in both the near-IR and the mid/far-IR. Infrared spectroscopy is ideal for constraining the material types, albedos and sizes of debris targets, and potentially gaining insight into reddening effects caused by space weathering. In addition, UKIRT will be used to acquire broadband photometric imaging at GEO with the Wide Field Camera (WFCAM) for studying known objects of interest as well as collecting data in survey-mode to discover new targets. Results from the first stage of the debris campaign will be presented. The

  16. TEMIS UV product validation using NILU-UV ground-based measurements in Thessaloniki, Greece

    Science.gov (United States)

    Zempila, Melina-Maria; van Geffen, Jos H. G. M.; Taylor, Michael; Fountoulakis, Ilias; Koukouli, Maria-Elissavet; van Weele, Michiel; van der A, Ronald J.; Bais, Alkiviadis; Meleti, Charikleia; Balis, Dimitrios

    2017-06-01

    This study aims to cross-validate ground-based and satellite-based models of three photobiological UV effective dose products: the Commission Internationale de l'Éclairage (CIE) erythemal UV, the production of vitamin D in the skin, and DNA damage, using high-temporal-resolution surface-based measurements of solar UV spectral irradiances from a synergy of instruments and models. The satellite-based Tropospheric Emission Monitoring Internet Service (TEMIS; version 1.4) UV daily dose data products were evaluated over the period 2009 to 2014 with ground-based data from a Norsk Institutt for Luftforskning (NILU)-UV multifilter radiometer located at the northern midlatitude super-site of the Laboratory of Atmospheric Physics, Aristotle University of Thessaloniki (LAP/AUTh), in Greece. For the NILU-UV effective dose rates retrieval algorithm, a neural network (NN) was trained to learn the nonlinear functional relation between NILU-UV irradiances and collocated Brewer-based photobiological effective dose products. Then the algorithm was subjected to sensitivity analysis and validation. The correlation of the NN estimates with target outputs was high (r = 0. 988 to 0.990) and with a very low bias (0.000 to 0.011 in absolute units) proving the robustness of the NN algorithm. For further evaluation of the NILU NN-derived products, retrievals of the vitamin D and DNA-damage effective doses from a collocated Yankee Environmental Systems (YES) UVB-1 pyranometer were used. For cloud-free days, differences in the derived UV doses are better than 2 % for all UV dose products, revealing the reference quality of the ground-based UV doses at Thessaloniki from the NILU-UV NN retrievals. The TEMIS UV doses used in this study are derived from ozone measurements by the SCIAMACHY/Envisat and GOME2/MetOp-A satellite instruments, over the European domain in combination with SEVIRI/Meteosat-based diurnal cycle of the cloud cover fraction per 0. 5° × 0. 5° (lat × long) grid cells. TEMIS

  17. Multimodal cognitive interface for robot navigation.

    Science.gov (United States)

    Elmogy, Mohammed; Habel, Christopher; Zhang, Jianwei

    2011-02-01

    To build effective interactions between humans and robots, they should have common ground of understanding that creates realistic expectations and forms the basis communications. An emerging approach to doing this is to create cognitive models of human reasoning and behavior selection. We have developed a robot navigation system that uses both spatial language and graphical representation to describe route-based navigation tasks for a mobile robot. Our proposed route instruction language (RIL) is intended as a semi-formal language for instructing the robot to execute a route in an indoor environment. We implemented an instruction interpreter to process the route description and generate its equivalent symbolic and topological map representations. A topological map is generated to describe relationships among features of the environment in a more abstract form without any absolute reference system to treat the ambiguity which can occur when the robot cannot recognize the current landmark. The symbolic and topological map representations are supplied to other system components as an initial path estimation to guide the robot while it plans its navigation task. We conducted some experiments to evaluate the routes which are written by using the RIL instructions.

  18. Research about Process Archive of Computerized Surgery Navigation Based on PACS

    Institute of Scientific and Technical Information of China (English)

    DENG Hong; CHEN Li; CHEN Xiao-jun; WANG Cheng-tao

    2008-01-01

    Since the process of the surgery navigation is an operation-sensitive process, it is important to record and archive the whole process. In this paper, some key technologies are introduced to accomplish process archive of computerized surgery navigation based on the picture archiving and communication system (PACS). Firstly, the images and track data are acquired by the screen captured tool and the navigation software. Secondly, these image and data files are converted to the digital imaging and communications in medicine (DICOM) files supported by PACS and transferred into the database in PACS. The process of surgery navigation is recorded and archived. Finally, the original data of process archive is acquired from PACS, and this data is used to play back and restore the process of surgery navigation.

  19. Experimental radio frequency link for Ka-band communications applications

    Science.gov (United States)

    Fujikawa, Gene; Conray, Martin J.; Saunders, Alan L.; Pope, Dale E.

    1988-01-01

    An experimental radio frequency link has been demonstrated to provide two-way communication between a remote user ground terminal and a ground-based Ka-band transponder. Bit-error-rate performance and radio frequency characteristics of the communication link were investigated.

  20. Validation of five years (2003–2007 of SCIAMACHY CO total column measurements using ground-based spectrometer observations

    Directory of Open Access Journals (Sweden)

    A. M. Poberovskii

    2010-10-01

    Full Text Available This paper presents a validation study of SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY carbon monoxide (CO total column measurements from the Iterative Maximum Likelihood Method (IMLM algorithm using ground-based spectrometer observations from twenty surface stations for the five year time period of 2003–2007. Overall we find a good agreement between SCIAMACHY and ground-based observations for both mean values as well as seasonal variations. For high-latitude Northern Hemisphere stations absolute differences between SCIAMACHY and ground-based measurements are close to or fall within the SCIAMACHY CO 2σ precision of 0.2 × 1018 molecules/cm2 (∼10% indicating that SCIAMACHY can observe CO accurately at high Northern Hemisphere latitudes. For Northern Hemisphere mid-latitude stations the validation is complicated due to the vicinity of emission sources for almost all stations, leading to higher ground-based measurements compared to SCIAMACHY CO within its typical sampling area of 8° × 8°. Comparisons with Northern Hemisphere mountain stations are hampered by elevation effects. After accounting for these effects, the validation provides satisfactory results. At Southern Hemisphere mid- to high latitudes SCIAMACHY is systematically lower than the ground-based measurements for 2003 and 2004, but for 2005 and later years the differences between SCIAMACHY and ground-based measurements fall within the SCIAMACHY precision. The 2003–2004 bias is consistent with previously reported results although its origin remains under investigation. No other systematic spatial or temporal biases could be identified based on the validation presented in this paper. Validation results are robust with regard to the choices of the instrument-noise error filter, sampling area, and time averaging required for the validation of SCIAMACHY CO total column measurements. Finally, our results show that the spatial coverage of the ground-based

  1. MAD-4-MITO, a Multi Array of Detectors for ground-based mm/submm SZ observations

    CERN Document Server

    Lamagna, L; Melchiorri, F; Battistelli, E S; De Grazia, M; Luzzi, G; Orlando, A E; Savini, G

    2002-01-01

    The last few years have seen a large development of mm technology and ultra-sensitive detectors devoted to microwave astronomy and astrophysics. The possibility to deal with large numbers of these detectors assembled into multi--pixel imaging systems has greatly improved the performance of microwave observations, even from ground--based stations, especially combining the power of multi--band detectors with their new imaging capabilities. Hereafter, we will present the development of a multi--pixel solution devoted to Sunyaev--Zel'dovich observations from ground--based telescopes, that is going to be operated from the Millimetre and Infrared Testagrigia Observatory.

  2. Precision Time Protocol-Based Trilateration for Planetary Navigation

    Science.gov (United States)

    Murdock, Ron

    2015-01-01

    Progeny Systems Corporation has developed a high-fidelity, field-scalable, non-Global Positioning System (GPS) navigation system that offers precision localization over communications channels. The system is bidirectional, providing position information to both base and mobile units. It is the first-ever wireless use of the Institute of Electrical and Electronics Engineers (IEEE) Precision Time Protocol (PTP) in a bidirectional trilateration navigation system. The innovation provides a precise and reliable navigation capability to support traverse-path planning systems and other mapping applications, and it establishes a core infrastructure for long-term lunar and planetary occupation. Mature technologies are integrated to provide navigation capability and to support data and voice communications on the same network. On Earth, the innovation is particularly well suited for use in unmanned aerial vehicles (UAVs), as it offers a non-GPS precision navigation and location service for use in GPS-denied environments. Its bidirectional capability provides real-time location data to the UAV operator and to the UAV. This approach optimizes assisted GPS techniques and can be used to determine the presence of GPS degradation, spoofing, or jamming.

  3. 33 CFR 155.785 - Communications.

    Science.gov (United States)

    2010-07-01

    ... the transfer of flammable or combustible liquids must be intrinsically safe, as defined in 46 CFR 110.15-100(i), and meet Class I, Division I, Group D requirements as defined in 46 CFR 111.80. ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Communications. 155.785...

  4. MetaSensing's FastGBSAR: ground based radar for deformation monitoring

    Science.gov (United States)

    Rödelsperger, Sabine; Meta, Adriano

    2014-10-01

    The continuous monitoring of ground deformation and structural movement has become an important task in engineering. MetaSensing introduces a novel sensor system, the Fast Ground Based Synthetic Aperture Radar (FastGBSAR), based on innovative technologies that have already been successfully applied to airborne SAR applications. The FastGBSAR allows the remote sensing of deformations of a slope or infrastructure from up to a distance of 4 km. The FastGBSAR can be setup in two different configurations: in Real Aperture Radar (RAR) mode it is capable of accurately measuring displacements along a linear range profile, ideal for monitoring vibrations of structures like bridges and towers (displacement accuracy up to 0.01 mm). Modal parameters can be determined within half an hour. Alternatively, in Synthetic Aperture Radar (SAR) configuration it produces two-dimensional displacement images with an acquisition time of less than 5 seconds, ideal for monitoring areal structures like dams, landslides and open pit mines (displacement accuracy up to 0.1 mm). The MetaSensing FastGBSAR is the first ground based SAR instrument on the market able to produce two-dimensional deformation maps with this high acquisition rate. By that, deformation time series with a high temporal and spatial resolution can be generated, giving detailed information useful to determine the deformation mechanisms involved and eventually to predict an incoming failure. The system is fully portable and can be quickly installed on bedrock or a basement. The data acquisition and processing can be fully automated leading to a low effort in instrument operation and maintenance. Due to the short acquisition time of FastGBSAR, the coherence between two acquisitions is very high and the phase unwrapping is simplified enormously. This yields a high density of resolution cells with good quality and high reliability of the acquired deformations. The deformation maps can directly be used as input into an Early

  5. TESTING GROUND BASED GEOPHYSICAL TECHNIQUES TO REFINE ELECTROMAGNETIC SURVEYS NORTH OF THE 300 AREA HANFORD WASHINGTON

    Energy Technology Data Exchange (ETDEWEB)

    PETERSEN SW

    2010-12-02

    Airborne electromagnetic (AEM) surveys were flown during fiscal year (FY) 2008 within the 600 Area in an attempt to characterize the underlying subsurface and to aid in the closure and remediation design study goals for the 200-PO-1 Groundwater Operable Unit (OU). The rationale for using the AEM surveys was that airborne surveys can cover large areas rapidly at relatively low costs with minimal cultural impact, and observed geo-electrical anomalies could be correlated with important subsurface geologic and hydrogeologic features. Initial interpretation of the AEM surveys indicated a tenuous correlation with the underlying geology, from which several anomalous zones likely associated with channels/erosional features incised into the Ringold units were identified near the River Corridor. Preliminary modeling resulted in a slightly improved correlation but revealed that more information was required to constrain the modeling (SGW-39674, Airborne Electromagnetic Survey Report, 200-PO-1 Groundwater Operable Unit, 600 Area, Hanford Site). Both time-and frequency domain AEM surveys were collected with the densest coverage occurring adjacent to the Columbia River Corridor. Time domain surveys targeted deeper subsurface features (e.g., top-of-basalt) and were acquired using the HeliGEOTEM{reg_sign} system along north-south flight lines with a nominal 400 m (1,312 ft) spacing. The frequency domain RESOLVE system acquired electromagnetic (EM) data along tighter spaced (100 m [328 ft] and 200 m [656 ft]) north-south profiles in the eastern fifth of the 200-PO-1 Groundwater OU (immediately adjacent to the River Corridor). The overall goal of this study is to provide further quantification of the AEM survey results, using ground based geophysical methods, and to link results to the underlying geology and/or hydrogeology. Specific goals of this project are as follows: (1) Test ground based geophysical techniques for the efficacy in delineating underlying geology; (2) Use ground

  6. The thermo-vibrational convection in microgravity condition. Ground-based modelling.

    Science.gov (United States)

    Zyuzgin, A. V.; Putin, G. F.; Harisov, A. F.

    In 1995-2000 at orbital station "Mir" has been carried out the series of experiments with the equipment "Alice" for the studying regimes of heat transfer in the supercritical fluids under influence inertial microaccelerations. The experiments have found out existence of the thermo-vibrational and thermo-inertial convective movements in the real weightlessness[1] and controlling microgravity fields[2]. However regarding structures of thermovibrational convection the results of experiments have inconsistent character. Therefore carrying out the ground-based modeling of the given problem is actually. In this work in laboratory conditions were investigated the thermo-vibrational convective movements from the dot heat source at high-frequency vibrations of the cavity with the fluid and presence quasi-static microacceleration. As the result of ground-based modeling, the regimes of convective flows, similar observed in the space experiment are received. Evolution of the convective structures and the spatial-temporary characteristics of movements are investigated in a wide range of the problem parameters. The control criteria and its critical value are determined. The received results well coordinated to the data of space experiments and allow adding and expanding representation about thermo-vibrational effects in conditions of real weightlessness and remove the contradictions concerning structures thermo-vibrational convective flows, received at the analysis of the given orbital experiments. The research described in this publication was made possible in part by Russian Foundation for Basic Research and Administration of Perm Region, Russia, under grant 04-02-96038, and Award No. PE-009-0 of the U.S. Civilian Research & Development Foundation for the Independent States of the Former Soviet Union (CRDF). A.V. Zyuzgin, A. I. Ivanov, V. I. Polezhaev, G. F. Putin, E. B. Soboleva Convective Motions in Near-Critical Fluids under Real Zero-Gravity Conditions. Cosmic Research

  7. Evaluation of atmospheric dust prediction models using ground-based observations

    Science.gov (United States)

    Terradellas, Enric; María Baldasano, José; Cuevas, Emilio; Basart, Sara; Huneeus, Nicolás; Camino, Carlos; Dundar, Cinhan; Benincasa, Francesco

    2013-04-01

    An important step in numerical prediction of mineral dust is the model evaluation aimed to assess its performance to forecast the atmospheric dust content and to lead to new directions in model development and improvement. The first problem to address the evaluation is the scarcity of ground-based routine observations intended for dust monitoring. An alternative option would be the use of satellite products. They have the advantage of a large spatial coverage and a regular availability. However, they do have numerous drawbacks that make the quantitative retrievals of aerosol-related variables difficult and imprecise. This work presents the use of different ground-based observing systems for the evaluation of dust models in the Regional Center for Northern Africa, Middle East and Europe of the World Meteorological Organization (WMO) Sand and Dust Storm Warning Advisory and Assessment System (SDS-WAS). The dust optical depth at 550 nm forecast by different models is regularly compared with the AERONET measurements of Aerosol Optical Depth (AOD) for 40 selected stations. Photometric measurements are a powerful tool for remote sensing of the atmosphere allowing retrieval of aerosol properties, such as AOD. This variable integrates the contribution of different aerosol types, but may be complemented with spectral information that enables hypotheses about the nature of the particles. Comparison is restricted to cases with low Ångström exponent values in order to ensure that coarse mineral dust is the dominant aerosol type. Additionally to column dust load, it is important to evaluate dust surface concentration and dust vertical profiles. Air quality monitoring stations are the main source of data for the evaluation of surface concentration. However they are concentrated in populated and industrialized areas around the Mediterranean. In the present contribution, results of different models are compared with observations of PM10 from the Turkish air quality network for

  8. 33 CFR 101.310 - Additional communication devices.

    Science.gov (United States)

    2010-07-01

    ... plan under part 104 of this subchapter. See 33 CFR part 164 for additional information on AIS device... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Additional communication devices... communication devices. (a) Alert Systems. Alert systems, such as the ship security alert system required...

  9. Navigating ECA-Zones

    DEFF Research Database (Denmark)

    Hansen, Carsten Ørts; Grønsedt, Peter; Hendriksen, Christian

    is the substantial impact of the current and future oil price on the optimal compliance strategies ship-owners choose when complying with the new air emission requirements for vessels. The oil price determines the attractiveness of investing in asset modification for compliance, given the capital investment required......This report examines the effect that ECA-zone regulation has on the optimal vessel fuel strategies for compliance. The findings of this report are trifold, and this report is coupled with a calculation tool which is released to assist ship-owners in the ECA decision making. The first key insight...... much time their operated vessels navigate the ECA in the future....

  10. Understanding satellite navigation

    CERN Document Server

    Acharya, Rajat

    2014-01-01

    This book explains the basic principles of satellite navigation technology with the bare minimum of mathematics and without complex equations. It helps you to conceptualize the underlying theory from first principles, building up your knowledge gradually using practical demonstrations and worked examples. A full range of MATLAB simulations is used to visualize concepts and solve problems, allowing you to see what happens to signals and systems with different configurations. Implementation and applications are discussed, along with some special topics such as Kalman Filter and Ionosphere. W

  11. China Satellite Navigation Conference

    CERN Document Server

    Liu, Jingnan; Fan, Shiwei; Wang, Feixue

    2016-01-01

    These Proceedings present selected research papers from CSNC2016, held during 18th-20th May in Changsha, China. The theme of CSNC2016 is Smart Sensing, Smart Perception. These papers discuss the technologies and applications of the Global Navigation Satellite System (GNSS), and the latest progress made in the China BeiDou System (BDS) especially. They are divided into 12 topics to match the corresponding sessions in CSNC2016, which broadly covered key topics in GNSS. Readers can learn about the BDS and keep abreast of the latest advances in GNSS techniques and applications.

  12. China Satellite Navigation Conference

    CERN Document Server

    Liu, Jingnan; Yang, Yuanxi; Fan, Shiwei; Yu, Wenxian

    2017-01-01

    These proceedings present selected research papers from CSNC2017, held during 23th-25th May in Shanghai, China. The theme of CSNC2017 is Positioning, Connecting All. These papers discuss the technologies and applications of the Global Navigation Satellite System (GNSS), and the latest progress made in the China BeiDou System (BDS) especially. They are divided into 12 topics to match the corresponding sessions in CSNC2017, which broadly covered key topics in GNSS. Readers can learn about the BDS and keep abreast of the latest advances in GNSS techniques and applications.

  13. Comparison of GOME tropospheric NO2 columns with NO2 profiles deduced from ground-based in situ measurements

    Directory of Open Access Journals (Sweden)

    D. Schaub

    2006-01-01

    Full Text Available Nitrogen dioxide (NO2 vertical tropospheric column densities (VTCs retrieved from the Global Ozone Monitoring Experiment (GOME are compared to coincident ground-based tropospheric NO2 columns. The ground-based columns are deduced from in situ measurements at different altitudes in the Alps for 1997 to June 2003, yielding a unique long-term comparison of GOME NO2 VTC data retrieved by a collaboration of KNMI (Royal Netherlands Meteorological Institute and BIRA/IASB (Belgian Institute for Space Aeronomy with independently derived tropospheric NO2 profiles. A first comparison relates the GOME retrieved tropospheric columns to the tropospheric columns obtained by integrating the ground-based NO2 measurements. For a second comparison, the tropospheric profiles constructed from the ground-based measurements are first multiplied with the averaging kernel (AK of the GOME retrieval. The second approach makes the comparison independent from the a priori NO2 profile used in the GOME retrieval. This allows splitting the total difference between the column data sets into two contributions: one that is due to differences between the a priori and the ground-based NO2 profile shapes, and another that can be attributed to uncertainties in both the remaining retrieval parameters (such as, e.g., surface albedo or aerosol concentration and the ground-based in situ NO2 profiles. For anticyclonic clear sky conditions the comparison indicates a good agreement between the columns (n=157, R=0.70/0.74 for the first/second comparison approach, respectively. The mean relative difference (with respect to the ground-based columns is −7% with a standard deviation of 40% and GOME on average slightly underestimating the ground-based columns. Both data sets show a similar seasonal behaviour with a distinct maximum of spring NO2 VTCs. Further analysis indicates small GOME columns being systematically smaller than the ground-based ones. The influence of different shapes in the a

  14. Goals, Objectives, and Requirements (GOR) of the Ground-based Nuclear Detonation Detection (GNDD) Team for the Office of Defense Nuclear Nonproliferation Research and Development (DNN R&D)

    Energy Technology Data Exchange (ETDEWEB)

    Casey, Leslie A.

    2014-01-13

    The goal, objectives, and requirements (GOR) presented in this document define a framework for describing research directed specifically by the Ground-based Nuclear Detonation Detection (GNDD) Team of the National Nuclear Security Administration (NNSA). The intent of this document is to provide a communication tool for the GNDD Team with NNSA management and with its stakeholder community. It describes the GNDD expectation that much of the improvement in the proficiency of nuclear explosion monitoring will come from better understanding of the science behind the generation, propagation, recording, and interpretation of seismic, infrasound, hydroacoustic, and radionuclide signals and development of "game-changer" advances in science and technology.

  15. Goals, Objectives, and Requirements (GOR) of the Ground-based Nuclear Detonation Detection (GNDD) Team for the Office of Defense Nuclear Nonproliferation Research and Development (DNN R&D)

    Energy Technology Data Exchange (ETDEWEB)

    Casey, Leslie A.

    2014-01-13

    The goal, objectives, and requirements (GOR) presented in this document define a framework for describing research directed specifically by the Ground-based Nuclear Detonation Detection (GNDD) Team of the National Nuclear Security Administration (NNSA). The intent of this document is to provide a communication tool for the GNDD Team with NNSA management and with its stakeholder community. It describes the GNDD expectation that much of the improvement in the proficiency of nuclear explosion monitoring will come from better understanding of the science behind the generation, propagation, recording, and interpretation of seismic, infrasound, hydroacoustic, and radionuclide signals and development of "game-changer" advances in science and technology.

  16. First ground-based column measurements of CO{sub 2} in the tropics

    Energy Technology Data Exchange (ETDEWEB)

    Warneke, T.; Petersen, K.; Macatangay, R.; Notholt, J. [Institute of Environmental Physics, University of Bremen, Bremen (Germany); Koerner, S.; Jordan, A.; Gerbig, C.; Rothe, M. [Max-Planck-Institute for Biogeochemistry (MPI-BGC), Jena (Germany); Schrems, O. [Alfred Wegener Institute for Polar and Marine Research (AWI), Bremerhaven (Germany)

    2009-07-01

    The first ground-based remote sensing measurements of the column averaged volume mixing ratio of CO{sub 2} (X{sub CO{sub 2}}) for the inner tropics have been obtained at Paramaribo, Suriname (5.8 N, 55.2 W). Due to the migration of the ITCZ over the measurement location the probed air masses belong to the northern or southern hemisphere depending on the time of the year. The X{sub CO{sub 2}} shows an average annual increase in the Southern Hemisphere of 2.2 ppm for the time period 2004 to 2007, which agrees within the error with model simulations. Co-located in-situ measurements are strongly influenced by a local source. From the isotopic composition of the air samples the local source component is suggested to be the terrestrial biosphere. Using d{sup {sub 13C}} from the NOAA/ESRL stations Ascension Is. (ASC) and Ragged Point (RPB) the data has been corrected for the local source component. The corrected mixing ratios for the surface agree with model simulations for the measurement campaigns in the LDS (Southern Hemisphere), but not for the SDS (Northern Hemisphere).

  17. Overview of the DACCIWA ground-based field campaign in southern West Africa

    Science.gov (United States)

    Lohou, Fabienne; Kalthoff, Norbert; Brooks, Barbara; Jegede, Gbenga; Adler, Bianca; Ajao, Adewale; Ayoola, Muritala; Babić, Karmen; Bessardon, Geoffrey; Delon, Claire; Dione, Cheikh; Handwerker, Jan; Jambert, Corinne; Kohler, Martin; Lothon, Marie; Pedruzo-Bagazgoitia, Xabier; Smith, Victoria; Sunmonu, Lukman; Wieser, Andreas; Derrien, Solène

    2017-04-01

    During June and July 2016, a ground-based field campaign took place in southern West Africa within the framework of the Dynamics-aerosol-chemistry-cloud interactions in West Africa (DACCIWA) project. In the investigated region, extended low-level stratus clouds form very frequently during night-time and persist long into the following day influencing the diurnal cycle of the atmospheric boundary layer and, hence, the regional climate. The motivation for the measurements was to identify the meteorological controls on the whole process chain from the formation of nocturnal stratus clouds, via the daytime transition to convective clouds and the formation of deep precipitating clouds. During the measurement period, extensive remote sensing and in-situ measurements were performed at three supersites in Kumasi (Ghana), Savè (Benin) and Ile-Ife (Nigeria). The gathered observations included the energy-balance components at the Earth's surface, the mean and turbulent conditions in the nocturnal and daytime ABL as well as the de- and entrainment processes between the ABL and the free troposphere. The meteorological measurements were supplemented by aerosol and air-chemistry observations. We will give an overview of the conducted measurements including instrument availability and strategy during intensive observation periods.

  18. Soil moisture retrieval using ground based bistatic scatterometer data at X-band

    Science.gov (United States)

    Gupta, Dileep Kumar; Prasad, Rajendra; Kumar, Pradeep; Vishwakarma, Ajeet Kumar

    2017-02-01

    Several hydrological phenomenon and applications need high quality soil moisture information of the top Earth surface. The advent of technologies like bistatic scatterometer can retrieve soil moisture information with high accuracy and hence used in present study. The radar data is acquired by specially designed ground based bistatic scatterometer system in the specular direction of 20-70° incidence angles at steps of 5° for HH and VV polarizations. This study provides first time comprehensive evaluation of different machine learning algorithms for the retrieval of soil moisture using the X-band bistatic scatterometer measurements. The comparison of different artificial neural network (ANN) models such as back propagation artificial neural network (BPANN), radial basis function artificial neural network (RBFANN), generalized regression artificial neural network (GRANN) along with linear regression model (LRM) are used to estimate the soil moisture. The performance indices such as %Bias, Root Mean Squared Error (RMSE) and Nash-Sutcliffe Efficiency (NSE) are used to evaluate the performances of the machine learning techniques. Among different models employed in this study, the BPANN is found to have marginally higher performance in case of HH polarization while RBFANN is found suitable with VV polarization followed by GRANN and LRM. The results obtained are of considerable scientific and practical value to the wider scientific community for the number of practical applications and research studies in which radar datasets are used.

  19. HMF sectors since 1926: Comparison of two ground-based data sets

    Science.gov (United States)

    Hiltula, T.; Mursula, K.

    In this paper, we compare two recent long-term data sets of daily HMF sector polarities since 1926 based on ground-based geomagnetic measurements: the combined data set by Echer and Svalgaard [Echer, E., Svalgaard, L. Asymmetry in the Rosenberg-Coleman effect around solar minimum revealed by wavelet analysis of the interplanetary magnetic field polarity data (1927-2002). Geophys. Res. Lett. 31, 12808, 2004] (ES data set) and a three-station data set derived by Vennerstroem et al. [Vennerstroem, S., Zieger, B., Friis-Christensen, E. An improved method of inferring interplanetary sector structure, 1905-present. J. Geophys. Res. 106 (15), 16011-16020, 2001] (VZF data set). The Rosenberg-Coleman rule is consistently valid in the ES data during the last 80 years, but fails in the VZF data set in the early cycles. There is a clear bias (T sector dominance) in the VZF data that is not observed in satellite measurements collected in the OMNI-2 data set, or in the ES data. Also, there is a difference on the success rates between the two sectors in the VZF data. Therefore, we conclude that the ES data set is more reliable, especially in cycles 16-18, in reproducing the HMF sector structure. Both data sets reproduce the southward shift of the heliospheric current sheet during the OMNI-2 interval. However, only the more reliable ES data set depicts this systematically also during the early cycles 16-18.

  20. A decade of dark matter searches with ground-based Cherenkov telescopes

    Energy Technology Data Exchange (ETDEWEB)

    Doro, Michele, E-mail: michele.doro@pd.infn.it [University and INFN Padova, via Marzolo 8, 35131 Padova (Italy); Department of Physics and CERES, Campus Universitat Autonoma Barcelona, 08135 Bellaterra (Spain)

    2014-04-01

    In the general scenario of Weakly Interacting Massive Particles (WIMP), dark matter (DM) can be observed via astrophysical gamma-rays because photons are produced in various DM annihilation or decay processes, either as broad-band or line emission, or because of the secondary processes of charged particles in the final stages of the annihilations or the decays. The energy range of the former processes is accessible by current ground-based Imaging Atmospheric Cherenkov telescopes (IACTs, like H.E.S.S., MAGIC and VERITAS). The strengths of this technique are (a) the expected DM gamma-ray spectra show peculiar features like bumps, spikes and cutoff that make them clearly distinguishable from the smoother astrophysical spectra and (b) the expected DM spectrum is universal and therefore by observing two or more DM targets with the same spectrum, a clear identification (besides detection) of DM would be enabled. The role of IACTs may gain more importance in the future as the results from the LHC may hint to a DM particle with mass at the TeV or above, where the IACTs sensitivity is unsurpassed by other experiments. In this contribution, a review of the search for DM with the current generation of IACT will be presented.

  1. Ground-based analysis of volcanic ash plumes using a new multispectral thermal infrared camera approach

    Science.gov (United States)

    Williams, D.; Ramsey, M. S.

    2015-12-01

    Volcanic plumes are complex mixtures of mineral, lithic and glass fragments of varying size, together with multiple gas species. These plumes vary in size dependent on a number of factors, including vent diameter, magma composition and the quantity of volatiles within a melt. However, determining the chemical and mineralogical properties of a volcanic plume immediately after an eruption is a great challenge. Thermal infrared (TIR) satellite remote sensing of these plumes is routinely used to calculate the volcanic ash particle size variations and sulfur dioxide concentration. These analyses are commonly performed using high temporal, low spatial resolution satellites, which can only reveal large scale trends. What is lacking is a high spatial resolution study specifically of the properties of the proximal plumes. Using the emissive properties of volcanic ash, a new method has been developed to determine the plume's particle size and petrology in spaceborne and ground-based TIR data. A multispectral adaptation of a FLIR TIR camera has been developed that simulates the TIR channels found on several current orbital instruments. Using this instrument, data of volcanic plumes from Fuego and Santiaguito volcanoes in Guatemala were recently obtained Preliminary results indicate that the camera is capable of detecting silicate absorption features in the emissivity spectra over the TIR wavelength range, which can be linked to both mineral chemistry and particle size. It is hoped that this technique can be expanded to isolate different volcanic species within a plume, validate the orbital data, and ultimately to use the results to better inform eruption dynamics modelling.

  2. Characterization of aerosol pollution events in France using ground-based and POLDER-2 satellite data

    Directory of Open Access Journals (Sweden)

    M. Kacenelenbogen

    2006-01-01

    Full Text Available We analyze the relationship between daily fine particle mass concentration (PM2.5 and columnar aerosol optical thickness derived from the Polarization and Directionality of Earth's Reflectances (POLDER satellite sensor. The study is focused over France during the POLDER-2 lifetime between April and October 2003. We have first compared the POLDER derived aerosol optical thickness (AOT with integrated volume size distribution derived from ground-based Sun Photometer observations. The good correlation (R=0.72 with sub-micron volume fraction indicates that POLDER derived AOT is sensitive to the fine aerosol mass concentration. Considering 1974 match-up data points over 28 fine particle monitoring sites, the POLDER-2 derived AOT is fairly well correlated with collocated PM2.5 measurements, with a correlation coefficient of 0.55. The correlation coefficient reaches a maximum of 0.80 for particular sites. We have analyzed the probability to find an appropriate air quality category (AQC as defined by U.S. Environmental Protection Agency (EPA from POLDER-2 AOT measurements. The probability can be up to 88.8% (±3.7% for the "Good" AQC and 89.1% (±3.6% for the "Moderate" AQC.

  3. Investigation of tropical cirrus cloud properties using ground based lidar measurements

    Science.gov (United States)

    Dhaman, Reji K.; Satyanarayana, Malladi; Krishnakumar, V.; Mahadevan Pillai, V. P.; Jayeshlal, G. S.; Raghunath, K.; Venkat Ratnam, M.

    2016-05-01

    Cirrus clouds play a significant role in the Earths radiation budget. Therefore, knowledge of geometrical and optical properties of cirrus cloud is essential for the climate modeling. In this paper, the cirrus clouds microphysical and optical properties are made by using a ground based lidar measurements over an inland tropical station Gadanki (13.5°N, 79.2°E), Andhra Pradesh, India. The variation of cirrus microphysical and optical properties with mid cloud temperature is also studied. The cirrus clouds mean height is generally observed in the range of 9-17km with a peak occurrence at 13- 14km. The cirrus mid cloud temperature ranges from -81°C to -46°C. The cirrus geometrical thickness ranges from 0.9- 4.5km. During the cirrus occurrence days sub-visual, thin and dense cirrus were at 37.5%, 50% and 12.5% respectively. The monthly cirrus optical depth ranges from 0.01-0.47, but most (extinction ranges from 2.8E-06 to 8E-05 and depolarization ratio and lidar ratio varies from 0.13 to 0.77 and 2 to 52 sr respectively. A positive correlation exists for both optical depth and extinction with the mid-cloud temperature. The lidar ratio shows a scattered behavior with mid-cloud temperature.

  4. Real-time threat evaluation in a ground based air defence environment

    Directory of Open Access Journals (Sweden)

    JN Roux

    2008-06-01

    Full Text Available In a military environment a ground based air defence operator is required to evaluate the tactical situation in real-time and protect Defended Assets (DAs on the ground against aerial threats by assigning available Weapon Systems (WSs to engage enemy aircraft. Since this aerial environment requires rapid operational planning and decision making in stress situations, the associated responsibilities are typically divided between a number of operators and computerized systems that aid these operators during the decision making processes. One such a Decision Support System (DSS, a threat evaluation and weapon assignment system, assigns threat values to aircraft (with respect to DAs in real-time and uses these values to propose possible engagements of observed enemy aircraft by anti-aircraft WSs. In this paper a design of the threat evaluation part of such a DSS is put forward. The design follows the structured approach suggested in [Roux JN & van Vuuren JH, 2007, Threat evaluation and weapon assignment decision support: A review of the state of the art, ORiON, 23(2, pp. 151-187], phasing in a suite of increasingly complex qualitative and quantitative model components as more (reliable data become available.

  5. Ground-Based Robotic Sensing of an Agricultural Sub-Canopy Environment

    Science.gov (United States)

    Burns, A.; Peschel, J.

    2015-12-01

    Airborne remote sensing is a useful method for measuring agricultural crop parameters over large areas; however, the approach becomes limited to above-canopy characterization as a crop matures due to reduced visual access of the sub-canopy environment. During the growth cycle of an agricultural crop, such as soybeans, the micrometeorology of the sub-canopy environment can significantly impact pod development and reduced yields may result. Larger-scale environmental conditions aside, the physical structure and configuration of the sub-canopy matrix will logically influence local climate conditions for a single plant; understanding the state and development of the sub-canopy could inform crop models and improve best practices but there are currently no low-cost methods to quantify the sub-canopy environment at a high spatial and temporal resolution over an entire growth cycle. This work describes the modification of a small tactical and semi-autonomous, ground-based robotic platform with sensors capable of mapping the physical structure of an agricultural row crop sub-canopy; a soybean crop is used as a case study. Point cloud data representing the sub-canopy structure are stored in LAS format and can be used for modeling and visualization in standard GIS software packages.

  6. On Advanced Estimation Techniques for Exoplanet Detection and Characterization using Ground-Based Coronagraphs

    Science.gov (United States)

    Lawson, Peter R.; Frazin, Richard; Barrett, Harrison; Caucci, Luca; Devaney, Nicholas; Furenlid, Lars; Gladysz, Szymon; Guyon, Olivier; Krist, John; Maire, Jerome; Marois, Christian; Mawet, Dimitri; Mouillet, David; Mugnier, Laurent; Perrin, Marshall; Poyneer, Lisa; Pueyo, Laurent; Savransky, Dmitry; Soummer, Remi

    2012-01-01

    The direct imaging of planets around nearby stars is exceedingly difficult. Only about 14 exoplanets have been imaged to date that have masses less than 13 times that of Jupiter. The next generation of planet-finding coronagraphs, including VLT-SPHERE, the Gemini Planet Imager, Palomar P1640, and Subaru HiCIAO have predicted contrast performance of roughly a thousand times less than would be needed to detect Earth-like planets. In this paper we review the state of the art in exoplanet imaging, most notably the method of Locally Optimized Combination of Images (LOCI), and we investigate the potential of improving the detectability of faint exoplanets through the use of advanced statistical methods based on the concepts of the ideal observer and the Hotelling observer. We provide a formal comparison of techniques through a blind data challenge and evaluate performance using the Receiver Operating Characteristic (ROC) and Localization ROC (LROC) curves. We place particular emphasis on the understanding and modeling of realistic sources of measurement noise in ground-based AO-corrected coronagraphs. The work reported in this paper is the result of interactions between the co-authors during a week-long workshop on exoplanet imaging that was held in Squaw Valley, California, in March of 2012.

  7. A ground-based near-infrared emission spectrum of the exoplanet HD 189733b.

    Science.gov (United States)

    Swain, Mark R; Deroo, Pieter; Griffith, Caitlin A; Tinetti, Giovanna; Thatte, Azam; Vasisht, Gautam; Chen, Pin; Bouwman, Jeroen; Crossfield, Ian J; Angerhausen, Daniel; Afonso, Cristina; Henning, Thomas

    2010-02-01

    Detection of molecules using infrared spectroscopy probes the conditions and compositions of exoplanet atmospheres. Water (H(2)O), methane (CH(4)), carbon dioxide (CO(2)), and carbon monoxide (CO) have been detected in two hot Jupiters. These previous results relied on space-based telescopes that do not provide spectroscopic capability in the 2.4-5.2 microm spectral region. Here we report ground-based observations of the dayside emission spectrum for HD 189733b between 2.0-2.4 microm and 3.1-4.1 microm, where we find a bright emission feature. Where overlap with space-based instruments exists, our results are in excellent agreement with previous measurements. A feature at approximately 3.25 microm is unexpected and difficult to explain with models that assume local thermodynamic equilibrium (LTE) conditions at the 1 bar to 1 x 10(-6) bar pressures typically sampled by infrared measurements. The most likely explanation for this feature is that it arises from non-LTE emission from CH(4), similar to what is seen in the atmospheres of planets in our own Solar System. These results suggest that non-LTE effects may need to be considered when interpreting measurements of strongly irradiated exoplanets.

  8. Ozone vertical distribution retrieval from ground-based high resolution infrared solar spectra

    Science.gov (United States)

    Pougatchev, N. S.; Connor, B. J.; Rinsland, C. P.

    1995-01-01

    A practical procedure for the retrieval of ozone vertical profiles from ground-based high resolution Fourier transform infrared solar spectra has been developed. The analysis is based on a multilayer line-by-line forward model and a semi-empirical version of the optimal estimation inversion method of Rodgers. The 1002.6-1003.2 cm(exp -1) spectral interval has been selected for the analysis on the basis of synthetic spectrum calculations. This interval contains numerous ozone lines covering a range of intensities and providing retrieval sensitivity from ground level to about 35 km. Characterization of the method and an error analysis have been performed. For a spectral resolution of 0.05-0.01 cm(exp -1) and a signal-to-noise ratio greater than or equal to 100 the retrieval is stable with a vertical resolution of approximately 5 km attainable near the surface degrading to approximately 10 km in the stratosphere. Synthetic spectra studies show that the a priori profile and weak constraints selected for the retrievals introduce no significant biases for a wide range of ozone profiles.

  9. Continuous ground-based aerosol Lidar observation during seasonal pollution events at Wuxi, China

    Science.gov (United States)

    Wong, Man Sing; Qin, Kai; Lian, Hong; Campbell, James R.; Lee, Kwon Ho; Sheng, Shijie

    2017-04-01

    Haze pollution has long been a significant research topic and challenge in China, with adverse effects on air quality, agricultural production, as well as human health. In coupling with ground-based Lidar measurements, air quality observation, meteorological data, and backward trajectories model, two typical haze events at Wuxi, China are analyzed respectively, depicting summer and winter scenarios. Results indicate that the winter haze pollution is a compound pollution process mainly affected by calm winds that induce pollution accumulation near the surface. In the summer case, with the exception of influence from PM2.5 concentrations, ozone is the main pollutant and regional transport is also a significant influencing factor. Both events are marked by enhanced PM2.5 concentrations, driven by anthropogenic emissions of pollutants such as vehicle exhaust and factory fumes. Meteorological factors such as wind speed/direction and relative humidity are also contributed. These results indicate how the vertical profile offered by routine regional Lidar monitoring helps aid in understanding local variability and trends, which may be adapted for developing abatement strategies that improve air quality.

  10. Solar tower atmospheric Cherenkov effect experiment (STACEE) for ground based gamma ray astronomy

    Science.gov (United States)

    Bhattacharya, D.; Chantell, M. C.; Coppi, P.; Covault, C. E.; Dragovan, M.; Gregorich, D. T.; Hanna, D. S.; Mukherjee, R.; Ong, R. A.; Oser, S.; Ragan, K.; Tümer, O. T.; Williams, D. A.

    1997-05-01

    The STACEE experiment is being developed to study very high energy astrophysical gamma rays between 50 and 500 GeV. During the last few years this previously unexplored region has received much attention due to the detection of sources up to about 10 GeV by the EGRET instrument on board the CGRO. However, the paucity of detected sources at ~1 TeV indicates that fundamental processes working within these sources and/or in the intergalactic space are responsible for the cutoff in the photon spectra of the EGRET sources. The cutoff or the spectral change of these sources can be observed with ground-based Cherenkov detectors with a very low threshold. The use of large arrays of mirrors at solar power facilities is a promising way of lowering the threshold. Using this concept a series of tests were conducted at the National Solar Thermal Test Facility (NSTTF) at Sandia National Laboratories (Albuquerque, NM) with a full size prototype of the STACEE telescope system. The tests show that STACEE will be capable of meaningful exploration of the gamma-ray sky between 50 and 500 GeV with good sensitivity.

  11. Ground-Based Phase of Spaceflight Experiment "Biosignal" Using Autonomic Microflurimeter "Fluor-K"

    Science.gov (United States)

    Grigorieva, O. V.; Gal'chuk, S. V.; Rudimov, E. G.; Buravkova, L. B.

    2013-02-01

    The majority of flight experiments with the use of cell cultures and equipment like KUBIK and CRIOGEM carried out on board of the satellites (Bion, Foton) and ISS only allows the after-flight biosamples to be analyzed. As far as with few exceptions, the real-time cellular parameters registration for a long period is hard to be implemented. We developed the "Fluor-K" equipment - precision, small-sized, autonomous, two-channel, programmed fluorimeter. This device is designed for registration of differential fluorescent signal from organic and non-organic objects of microscale in small volumes (cellular organelles suspensions, animal and human cells, unicellular algae, bacteria, various fluorescent colloid solutions). Beside that, "Fluor-K" allows simultaneous detection of temperature. The ground-based tests of the device proved successful. The developed software can support experimental schedules while real-time data registration with the built-in storage device allows changes in selected parameters to be analyzed using wide range of fluorescent probes.

  12. Ground-based near-infrared observations of water vapour in the Venus troposphere

    CERN Document Server

    Chamberlain, S; Crisp, D; Meadows, V S; 10.1016/j.icarus.2012.11.014

    2012-01-01

    We present a study of water vapour in the Venus troposphere obtained by modelling specific water vapour absorption bands within the 1.18 \\mu m window. We compare the results with the normal technique of obtaining the abundance by matching the peak of the 1.18 \\mu m window. Ground-based infrared imaging spectroscopy of the night side of Venus was obtained with the Anglo-Australian Telescope and IRIS2 instrument with a spectral resolving power of R ~ 2400. The spectra have been fitted with modelled spectra simulated using the radiative transfer model VSTAR. We find a best fit abundance of 31 ppmv (-6 + 9 ppmv), which is in agreement with recent results by B\\'ezard et al. 2011 using VEX/SPICAV (R ~ 1700) and contrary to prior results by B\\'ezard et al. 2009 of 44 ppmv (+/-9 ppmv) using VEX/VIRTIS-M (R ~ 200) data analyses. Comparison studies are made between water vapour abundances determined from the peak of the 1.18 \\mu m window and abundances determined from different water vapour absorption features within t...

  13. A ground-based transmission spectrum of the super-Earth exoplanet GJ 1214b.

    Science.gov (United States)

    Bean, Jacob L; Kempton, Eliza Miller-Ricci; Homeier, Derek

    2010-12-02

    In contrast to planets with masses similar to that of Jupiter and higher, the bulk compositions of planets in the so-called super-Earth regime (masses 2-10 times that of the Earth) cannot be uniquely determined from a measurement of mass and radius alone. For these planets, there is a degeneracy between the mass and composition of both the interior and a possible atmosphere in theoretical models. The recently discovered transiting super-Earth exoplanet GJ 1214b is one example of this problem. Three distinct models for the planet that are consistent with its mass and radius have been suggested. Breaking the degeneracy between these models requires obtaining constraints on the planet's atmospheric composition. Here we report a ground-based measurement of the transmission spectrum of GJ 1214b between wavelengths of 780 and 1,000 nm. The lack of features in this spectrum rules out (at 4.9σ confidence) cloud-free atmospheres composed primarily of hydrogen. If the planet's atmosphere is hydrogen-dominated, then it must contain clouds or hazes that are optically thick at the observed wavelengths at pressures less than 200 mbar. Alternatively, the featureless transmission spectrum is also consistent with the presence of a dense, water vapour atmosphere.

  14. New efforts using helicopter-borne and ground based electromagnetics for mineral exploration

    Science.gov (United States)

    Meyer, U.; Siemon, B.; Noell, U.; Gutzmer, J.; Spitzer, K.; Becken, M.

    2014-12-01

    Throughout the last decades mineral resources, especially rare earth elements, gained a steadily growing importance in industry and therefore as well in exploration. New targets for mineral investigations came into focus and known sources have been and will be revisited. Since most of the mining for mineral resources in the past took place in the upper hundred metres below surface new techniques made deeper mining economically feasible. Consequently, mining engineers need the best possible knowledge about the full spatial extent of prospective geological structures, including their maximum depths. Especially in Germany and Europe, politics changed in terms not to rely only on the global mineral trade market but on national resources, if available. BGR and partners therefore started research programs on different levels to evaluate and develop new technologies on environmental friendly, non-invasive spatial exploration using airborne and partly ground-based electromagnetic methods. Mining waste heaps have been explored for valuable residual minerals (research project ROBEHA), a promising tin bearing ore body is being explored by airborne electromagnetics (research project E3) and a new airborne technology is aimed at to be able to reach investigation depths of about 1 km (research project DESMEX). First results of the projects ROBEHA and E3 will be presented and the project layout of DESMEX will be discussed.

  15. Ozone ground-based measurements by the GASCOD near-UV and visible DOAS system

    Science.gov (United States)

    Giovanelli, G.; Bonasoni, P.; Cervino, M.; Evangelisti, F.; Ravegnani, F.

    1994-01-01

    GASCOD, a near-ultraviolet and visible differential optical spectrometer, was developed at CNR's FISBAT Institute in Bologna, Italy, and first tested at Terra Nova Bay station in Antarctica (74.6 deg S, 164.6 deg E) during the summer expeditions 1988-1990 of PNRA (PNRA is the national research program in Antarctica, 'Programma Nazionale di Ricerche in Atartide'). A comparison with coincident O3 total column measurements taken in the same Antarctic area is presented, as is another comparison performed in Italy. Also introduced is an updated model for solar zenith measurements taken from a ground-based, upward-looking GASCOD spectrometer, which was employed for the 1991-92 winter campaign at Aer-Ostersund in Sweden (63.3 deg N, 13.1 deg E) during AESOE (European Arctic Stratospheric Ozone Experiment). The GASCOD can examine the spectra from 300 to 700 nm, in 50 nm steps, by moving the spectrometer's grating. At present, it takes measurements of solar zenith radiation in the 310-342 nm range for O3 and in the 405-463 nm range for NO2.

  16. PSC and volcanic aerosol routine observations in Antarctica by UV-visible ground-based spectrometry

    Science.gov (United States)

    Sarkissian, A.; Pommereau, J. P.; Goutail, F.

    1994-01-01

    Polar statospheric clouds (PSC) and stratospheric aerosol can be observed by ground-based UV-visible spectrometry by looking at the variation of the color of the sky during twilight. A radiative transfer model shows that reddenings are caused by high altitude (22-28 km) thin layers of scatterers, while low altitude (12-20 km) thick ones result in blueings. The color index method applied on 4 years of observations at Dumont d'Urville (67 deg S), from 1988 to 1991, shows that probably because the station is located at the edge of the vortex, dense PSC are uncommon. More unexpected is the existence of a systematic seasonal variation of the color of the twilight sky - bluer at spring - which reveals the formation of a dense scattering layer at or just above the tropopause at the end of the winter. Large scattering layers are reported above the station in 1991, first in August around 12-14 km, later in September at 22-24 km. They are attributed to volcanic aerosol from Mt Hudson and Mt Pinatubo respectively, which erupted in 1991. Inspection of the data shows that the lowest entered rapidly into the polar vortex but not the highest which remained outside, demonstrating that the vortex was isolated at 22-26 km.

  17. Complementing the ground-based CMB Stage-4 experiment on large scales with the PIXIE satellite

    CERN Document Server

    Calabrese, Erminia; Dunkley, Jo

    2016-01-01

    We present forecasts for cosmological parameters from future Cosmic Microwave Background (CMB) data measured by the Stage-4 (S4) generation of ground-based experiments in combination with large-scale anisotropy data from the PIXIE satellite. We demonstrate the complementarity of the two experiments and focus on science targets that benefit from their combination. We show that a cosmic-variance-limited measurement of the optical depth to reionization provided by PIXIE, with error $\\sigma(\\tau)=0.002$, is vital for enabling a 5$\\sigma$ detection of the sum of the neutrino masses when combined with a CMB-S4 lensing measurement, and with lower-redshift constraints on the growth of structure and the distance-redshift relation. Parameters characterizing the epoch of reionization will also be tightly constrained; PIXIE's $\\tau$ constraint converts into $\\sigma(\\rm{z_{re}})=0.2$ for the mean time of reionization, and a kinematic Sunyaev-Zel'dovich measurement from S4 gives $\\sigma(\\Delta \\rm{z_{re}})=0.03$ for the du...

  18. Ground-Based Tests of Spacecraft Polymeric Materials under OXY-GEN Plasma-Beam

    Science.gov (United States)

    Chernik, Vladimir; Novikov, Lev; Gaidar, Anna

    2016-07-01

    Spacecraft LEO mission is accompanied by destruction of polymeric material surface under influence of atomic oxygen flow. Sources of molecular, plasma and ion beams are used for the accelerated ground-based tests of spacecraft materials. In the work application of oxygen plasma accelerator of a duoplasmatron type is described. Plasma particles have been accelerated up to average speed of 13-16 km/s. Influence of such beam on materials leads to more intensive destruction of polymers than in LEO. This fact allows to execute tests in the accelerated time scale by a method of an effective fluence. Special measures were given to decrease a concentration of both gaseous and electrode material impurities in the oxygen beam. In the work the results of simulative tests of spacecraft materials and experiments on LEO are considered. Comparison of plasma beam simulation with LEO data has shown conformity for structures of a number of polymeric materials. The relative erosion yields (normalized with respect to polyimide) of the tested materials are shown practically equal to those in LEO. The obtained results give grounds for using the plasma-generation mode with ion energies of 20-30 eV to accelerated testing of spacecraft materials for long -term LEO missions.

  19. Comparative study on earthquake and ground based transmitter induced radiation belt electron precipitation at middle latitudes

    Directory of Open Access Journals (Sweden)

    N. F. Sidiropoulos

    2011-07-01

    Full Text Available We examined (peak-to-background flux ratio p/b > 20 energetic electron bursts in the presence of VLF activity, as observed from the DEMETER satellite at low altitudes (~700 km. Our statistical analysis of measurements during two 6-month periods suggests that: (a the powerful transmitter NWC causes the strongest effects on the inner radiation belts in comparison with other ground-based VLF transmitters, (b the NWC transmitter was responsible for only ~1.5 % of total electron bursts examined during the 6-month period (1 July 2008 to 31 December 2008, (c VLF transmitter-related electron bursts are accompanied by the presence of a narrow band emission centered at the radiating frequency emission, whereas the earthquake-related electron bursts are accompanied by the presence of broadband emissions from a few kHz to >20 KHz, (d daytime events are less preferable than nighttime events, but this asymmetry was found to be less evident when the powerful transmitter NWC was turned off and (d seismic activity most probably dominated the electromagnetic interactions producing the electron precipitation at middle latitudes. The results of this study support the proposal that the detection of radiation belt electron precipitation, besides other kinds of studies, is a useful tool for earthquake prediction research.

  20. Ground-based grasslands data to support remote sensing and ecosystem modeling of terrestrial primary production

    Energy Technology Data Exchange (ETDEWEB)

    Olson, R.J.; Turner, R.S. [Oak Ridge National Lab., TN (United States); Scurlock, J.M.O. [King`s College London, (England); Jennings, S.V. [Tennessee Univ., Knoxville, TN (United States)

    1995-12-31

    Estimating terrestrial net primary production (NPP) using remote- sensing tools and ecosystem models requires adequate ground-based measurements for calibration, parameterization, and validation. These data needs were strongly endorsed at a recent meeting of ecosystem modelers organized by the International Geosphere-Biosphere Programme`s (IGBP`s) Data and Information System (DIS) and its Global Analysis, Interpretation, and Modelling (GAIM) Task Force. To meet these needs, a multinational, multiagency project is being coordinated by the IGBP DIS to compile existing NPP data from field sites and to regionalize NPP point estimates to various-sized grid cells. Progress at Oak Ridge National Laboratory (ORNL) on compiling NPP data for grasslands as part of the IGBP DIS data initiative is described. Site data and associated documentation from diverse field studies are being acquired for selected grasslands and are being reviewed for completeness, consistency, and adequacy of documentation, including a description of sampling methods. Data are being compiled in a database with spatial, temporal, and thematic characteristics relevant to remote sensing and global modeling. NPP data are available from the ORNL Distributed Active Archive Center (DAAC) for biogeochemical dynamics. The ORNL DAAC is part of the Earth Observing System Data and Information System, of the US National Aeronautics and Space Administration.

  1. The Effect of Pulsar Timing Noise and Glitches on Timing Analysis for Ground Based Telescopes Observation

    Science.gov (United States)

    Oña-Wilhelmi, E.; de Jager, O. C.; Contreras, J. L.; de los Reyes, R.; Fonseca, V.; López, M.; Lucarelli, F.; MAGIC Collaboration

    2003-07-01

    Pulsed emission from a number of gamma-ray pulsars is expected to be detectable with next generation ground-based gamma-ray telescopes such as MAGIC and possibly H.E.S.S. within a few hours of observations. The sensitivity is however not sufficient to enable a detection within a few seconds as reached by radio surveys. In some cases we may be fortunate to do a period search given a few hours' data, but if the signal is marginal, the correct period parameters must be known to allow a folding of the gamma-ray arrival times. The residual phases are then sub jected to a test for uniformity from which the significance of a signal can be assessed. If contemporary radio parameters are not available, we have to extrap olate archival radio parameters to the observation time in question. Such an extrap olation must then be accurate enough to avoid significant pulse smearing. The pulsar ephemerides from the archival data of HartRAO and Princeton (b etween 1989 and 1998) provide an excellent opportunity to study the accuracy of extrap olations of such ephemerides to the present moment, if an appropriate time shift is intro duced. The aim of this study is to investigate the smear in the gamma-ray pulse profile during a single night of observations.

  2. Ground-based studies of tropisms in hardware developed for the European Modular Cultivation System (EMCS)

    Science.gov (United States)

    Correll, Melanie J.; Edelmann, Richard E.; Hangarter, Roger P.; Mullen, Jack L.; Kiss, John Z.

    Phototropism and gravitropism play key roles in the oriented growth of roots in flowering plants. In blue or white light, roots exhibit negative phototropism, but red light induces positive phototropism in Arabidopsis roots. The blue-light response is controlled by the phototropins while the red-light response is mediated by the phytochrome family of photoreceptors. In order to better characterize root phototropism, we plan to perform experiments in microgravity so that this tropism can be more effectively studied without the interactions with the gravity response. Our experiments are to be performed on the European Modular Cultivation System (EMCS), which provides an incubator, lighting system, and high resolution video that are on a centrifuge palette. These experiments will be performed at μg, 1g (control) and fractional g-levels. In order to ensure success of this mission on the International Space Station, we have been conducting ground-based studies on growth, phototropism, and gravitropism in experimental unique equipment (EUE) that was designed for our experiments with Arabidopsis seedlings. Currently, the EMCS and our EUE are scheduled for launch on space shuttle mission STS-121. This project should provide insight into how the blue- and red-light signaling systems interact with each other and with the gravisensing system.

  3. Long-term ionospheric anomaly monitoring for ground based augmentation systems

    Science.gov (United States)

    Jung, Sungwook; Lee, Jiyun

    2012-08-01

    Extreme ionospheric anomalies can pose a potential integrity threat to ground-based augmentation of the Global Positioning System (GPS), and thus the development of ionospheric anomaly threat models for each region of operation is essential for system design and operation. This paper presents a methodology for automated long-term ionospheric anomaly monitoring, which will be used to build an ionospheric anomaly threat model, evaluate its validity over the life cycle of the system, continuously monitor ionospheric anomalies, and update the threat model if necessary. This procedure automatically processes GPS data collected from external networks and estimates ionospheric gradients at regular intervals. If ionospheric gradients large enough to be potentially hazardous to users are identified, manual data examination is triggered. This paper also develops a simplified truth processing method to create precise ionospheric delay estimates in near real-time, which is the key to automating the ionospheric monitoring procedure. The performance of the method is examined using data from the 20 November 2003 and 9 November 2004 ionospheric storms. These results demonstrate the effectiveness of simplified truth processing within long-term ionosphere monitoring. From the case studies, the automated procedure successfully identified extreme ionospheric anomalies, including the two worst ionospheric gradients observed and validated previously based on manual analysis. The automation of data processing enables us to analyze ionospheric data continuously going forward and to more accurately categorize ionospheric behavior under both nominal and anomalous conditions.

  4. A ground-based optical transmission spectrum of WASP-6b

    Energy Technology Data Exchange (ETDEWEB)

    Jordán, Andrés; Espinoza, Néstor; Rabus, Markus [Instituto de Astrofísica, Facultad de Física, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, 7820436 Macul, Santiago (Chile); Eyheramendy, Susana [Departmento de Estadística, Facultad de Matemáticas, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, 7820436 Macul, Santiago (Chile); Sing, David K. [School of Physics, University of Exeter, Stocker Road, Exeter EX4 4QL (United Kingdom); Désert, Jean-Michel [CASA, Department of Astrophysical and Planetary Sciences, University of Colorado, Boulder, CO 80309 (United States); Bakos, Gáspár Á. [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States); Fortney, Jonathan J. [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); López-Morales, Mercedes; Szentgyorgyi, Andrew [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Maxted, Pierre F. L. [Astrophysics Group, Keele University, Staffordshire ST5 5BG (United Kingdom); Triaud, Amaury H. M. J. [Department of Physics, and Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States)

    2013-12-01

    We present a ground-based optical transmission spectrum of the inflated sub-Jupiter-mass planet WASP-6b. The spectrum was measured in 20 spectral channels from 480 nm to 860 nm using a series of 91 spectra over a complete transit event. The observations were carried out using multi-object differential spectrophotometry with the Inamori-Magellan Areal Camera and Spectrograph on the Baade Telescope at Las Campanas Observatory. We model systematic effects on the observed light curves using principal component analysis on the comparison stars and allow for the presence of short and long memory correlation structure in our Monte Carlo Markov Chain analysis of the transit light curves for WASP-6. The measured transmission spectrum presents a general trend of decreasing apparent planetary size with wavelength and lacks evidence for broad spectral features of Na and K predicted by clear atmosphere models. The spectrum is consistent with that expected for scattering that is more efficient in the blue, as could be caused by hazes or condensates in the atmosphere of WASP-6b. WASP-6b therefore appears to be yet another massive exoplanet with evidence for a mostly featureless transmission spectrum, underscoring the importance that hazes and condensates can have in determining the transmission spectra of exoplanets.

  5. FINDING EXTRATERRESTRIAL LIFE USING GROUND-BASED HIGH-DISPERSION SPECTROSCOPY

    Energy Technology Data Exchange (ETDEWEB)

    Snellen, I. A. G.; Le Poole, R.; Brogi, M.; Birkby, J. [Leiden Observatory, Leiden University, Postbus 9513, 2300-RA Leiden (Netherlands); De Kok, R. J. [SRON, Sorbonnelaan 2, 3584-CA Utrecht (Netherlands)

    2013-02-20

    Exoplanet observations promise one day to unveil the presence of extraterrestrial life. Atmospheric compounds in strong chemical disequilibrium would point to large-scale biological activity just as oxygen and methane do in the Earth's atmosphere. The cancellation of both the Terrestrial Planet Finder and Darwin missions means that it is unlikely that a dedicated space telescope to search for biomarker gases in exoplanet atmospheres will be launched within the next 25 years. Here we show that ground-based telescopes provide a strong alternative for finding biomarkers in exoplanet atmospheres through transit observations. Recent results on hot Jupiters show the enormous potential of high-dispersion spectroscopy to separate the extraterrestrial and telluric signals, making use of the Doppler shift of the planet. The transmission signal of oxygen from an Earth-twin orbiting a small red dwarf star is only a factor of three smaller than that of carbon monoxide recently detected in the hot Jupiter {tau} Booetis b, albeit such a star will be orders of magnitude fainter. We show that if Earth-like planets are common, the planned extremely large telescopes can detect oxygen within a few dozen transits. Ultimately, large arrays of dedicated flux-collector telescopes equipped with high-dispersion spectrographs can provide the large collecting area needed to perform a statistical study of life-bearing planets in the solar neighborhood.

  6. Haze event monitoring and investigation in Penang Island, Malaysia using a ground-based backscatter Lidar

    Science.gov (United States)

    Hee, W. S.; Tan, F.; Lim, H. S.; Matjafri, M. Z.

    2014-06-01

    During 24th July 2013 to 1st August 2013, a haze event struck Penang Island, causing the visibility to decrease and increase in Air Pollution Index (API). A ground-based backscatter Lidar, operate at 355 nm which was setup at the roof top of the School of Physics, Universiti Sains Malaysia. It was used to monitor and investigate the haze event. For this work, we studied the daytime variation of the aerosol intensity, distribution, planetary boundary layer (PBL) height and the aerosol optical depth (AOD) values during these days. We found that the aerosol are very intense during the first two days of the haze event and slowly decline as time passed. Finally the haze event died off on 1st August 2013. As for daily aerosol distribution, aerosols are generally more intense during the afternoon. Its intensity is slightly lower in the morning and evening. Similar trends were observed for AOD values as they increase from morning to afternoon and slowly decrease in the evening. Most aerosols are found contained below the PBL which generally found at around 1000 - 2000 m in height.

  7. Simulated forecasts for primordial B-mode searches in ground-based experiments

    CERN Document Server

    Alonso, David; Naess, Sigurd; Thorne, Ben

    2016-01-01

    Detecting the imprint of inflationary gravitational waves on the $B$-mode polarization of the Cosmic Microwave Background (CMB) is one of the main science cases for current and next-generation CMB experiments. In this work we explore some of the challenges that ground-based facilities will have to face in order to carry out this measurement in the presence of Galactic foregrounds and correlated atmospheric noise. We present forecasts for Stage-3 (S3) and planned Stage-4 (S4) experiments based on the analysis of simulated sky maps using a map-based Bayesian foreground cleaning method. Our results thus consistently propagate the uncertainties on foreground parameters such as spatially-varying spectral indices, as well as the bias on the measured tensor-to-scalar ratio $r$ caused by an incorrect modelling of the foregrounds. We find that S3 and S4-like experiments should be able to put constraints on $r$ of the order $\\sigma(r)=(0.5-1.0)\\times10^{-2}$ and $\\sigma(r)=(0.5-1.0)\\times10^{-3}$ respectively, assuming...

  8. GROUND-BASED TRANSIT OBSERVATIONS OF THE SUPER-EARTH 55 Cnc e

    Energy Technology Data Exchange (ETDEWEB)

    De Mooij, E. J. W. [Astronomy and Astrophysics, University of Toronto, Toronto (Canada); López-Morales, M. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA (United States); Karjalainen, R.; Hrudkova, M. [Isaac Newton Group of Telescopes, La Palma (Spain); Jayawardhana, Ray, E-mail: demooij@astro.utoronto.ca [Physics and Astronomy, York University, Toronto (Canada)

    2014-12-20

    We report the first ground-based detections of the shallow transit of the super-Earth exoplanet 55 Cnc e using a 2 m class telescope. Using differential spectrophotometry, we observed one transit in 2013 and another in 2014, with average spectral resolutions of ∼700 and ∼250, spanning the Johnson BVR photometric bands. We find a white light planet-to-star radius ratio of 0.0190{sub −0.0027}{sup +0.0023} from the 2013 observations and 0.0200{sub −0.0018}{sup +0.0017} from the 2014 observations. The two data sets combined result in a radius ratio of 0.0198{sub −0.0014}{sup +0.0013}. These values are all in agreement with previous space-based results. Scintillation noise in the data prevents us from placing strong constraints on the presence of an extended hydrogen-rich atmosphere. Nevertheless, our detections of 55 Cnc e in transit demonstrate that moderate-sized telescopes on the ground will be capable of routine follow-up observations of super-Earth candidates discovered by the Transiting Exoplanet Survey Satellite around bright stars. We expect it also will be possible to place constraints on the atmospheric characteristics of those planets by devising observational strategies to minimize scintillation noise.

  9. Precipitable Water Vapor Estimates in the Australian Region from Ground-Based GPS Observations

    Directory of Open Access Journals (Sweden)

    Suelynn Choy

    2015-01-01

    Full Text Available We present a comparison of atmospheric precipitable water vapor (PWV derived from ground-based global positioning system (GPS receiver with traditional radiosonde measurement and very long baseline interferometry (VLBI technique for a five-year period (2008–2012 using Australian GPS stations. These stations were selectively chosen to provide a representative regional distribution of sites while ensuring conventional meteorological observations were available. Good agreement of PWV estimates was found between GPS and VLBI comparison with a mean difference of less than 1 mm and standard deviation of 3.5 mm and a mean difference and standard deviation of 0.1 mm and 4.0 mm, respectively, between GPS and radiosonde measurements. Systematic errors have also been discovered during the course of this study, which highlights the benefit of using GPS as a supplementary atmospheric PWV sensor and calibration system. The selected eight GPS sites sample different climates across Australia covering an area of approximately 30° NS/EW. It has also shown that the magnitude and variation of PWV estimates depend on the amount of moisture in the atmosphere, which is a function of season, topography, and other regional climate conditions.

  10. Operational optical turbulence forecast for the Service Mode of top-class ground based telescopes

    CERN Document Server

    Masciadri, E; Turchi, A; Fini, L

    2016-01-01

    In this contribution we present the most relevant results obtained in the context of a feasibility study (MOSE) undertaken for ESO. The principal aim of the project was to quantify the performances of a mesoscale model (Astro-Meso-NH code) in forecasting all the main atmospherical parameters relevant for the ground-based astronomical observations and the optical turbulence (CN2 and associated integrated astroclimatic parameters) above Cerro Paranal (site of the VLT) and Cerro Armazones (site of the E-ELT). A detailed analysis on the score of success of the predictive capacities of the system have been carried out for all the astroclimatic as well as for the atmospherical parameters. Considering the excellent results that we obtained, this study proved the opportunity to implement on these two sites an automatic system to be run nightly in an operational configuration to support the scheduling of scientific programs as well as of astronomical facilities (particularly those supported by AO systems) of the VLT a...

  11. Paper Productivity of Ground-based Large Optical Telescopes from 2000 to 2009

    CERN Document Server

    KIM, Sang Chul

    2011-01-01

    We present an analysis of the scientific ("refereed") paper productivity of the current largest (diameter >8 m) ground-based optical(-infrared) telescopes during the ten year period from 2000 to 2009. The telescopes for which we have gathered and analysed the scientific publication data are the two 10 m Keck telescopes, the four 8.2 m Very Large Telescopes (VLT), the two 8.1 m Gemini telescopes, the 8.2 m Subaru telescope, and the 9.2 m Hobby-Eberly Telescope (HET). We have analysed the rate of papers published in various astronomical journals produced by using these telescopes. While the total numbers of papers from these observatories are largest for the VLT followed by Keck, Gemini, Subaru, and HET, the number of papers produced by each component of the telescopes are largest for Keck followed by VLT, Subaru, Gemini, and HET. In 2009, each telescope of the Keck, VLT, Gemini, Subaru, and HET observatories produced 135, 109, 93, 107, and 5 refereed papers, respectively. We have shown that each telescope of t...

  12. Seven years of middle-atmospheric CO in the Arctic by ground based radiometry

    Science.gov (United States)

    Ryan, Niall; Palm, Mathias; Raffalski, Uwe; Larsson, Richard; Notholt, Justus

    2016-04-01

    During polar winter, carbon monoxide (CO) is a well-suited tracer for middle atmospheric dynamics and for studying the polar vortex boundary: In polar night the chemical reactions involving atmospheric carbon monoxide are negligible due to the lack of sunlight and, as a result, the gas exhibits strong vertical and horizontal gradients in the stratosphere and mesosphere. Due to the upcoming likely gap in satellite profiling instruments, and in order to maintain a long-term global record of atmospheric trace gas concentrations, current and future satellite missions must be inter-calibrated using measurements from ground-based instruments around the globe. The Kiruna Microwave Radiometer (KIMRA), installed at the Swedish Institute of Space Physics, Kiruna, Sweden (67.8 N, 20.4 E), has been measuring microwave spectra of emissions from atmospheric CO since 2007. This contribution presents the CO concentration record which has been retrieved from KIMRA measurements using different temperature datasets: measurements from the Defense Meteorological Satellite Program - F18 and model output from the European Centre for Medium-Range Weather Forecasts. The concentration profiles, retrieved between 40 and 80 km altitude, are compared to data from the Microwave Limb Sounder on the Aura satellite and are used to examine the concentration gradient across the polar vortex edge.

  13. Ground-based Optical Observations of Geophysical Phenomena: Aurora Borealis and Meteors

    Science.gov (United States)

    Samara, Marilia

    2010-10-01

    Advances in low-light level imaging technology have enabled significant improvements in the ground based study of geophysical phenomena. In this talk we focus on two such phenomena that occur in the Earth's ionosphere: aurorae and meteors. Imaging the aurora which is created by the interplay of the Earth's magnetosphere, ionosphere and atmosphere, provides a tool for remote sensing physical processes that are otherwise very difficult to study. By quantifying the intensities, scale sizes and lifetimes of auroral structures, we can gain significant insight into the physics behind the generation of the aurora and the interaction of the magnetosphere with the solar wind. Additionally, the combination of imaging with radars provides complimentary data and therefore more information than either method on its own. Meteor observations are a perfect example of this because the radar can accurately determine only the line-of-sight component of velocity, while imaging provides the direction of motion, the perpendicular velocity and brightness (a proxy for mass), therefore enabling a much more accurate determination of the full velocity vector and mass.

  14. Evaluation of Satellite and Ground Based Precipitation Products for Flood Forecasting

    Science.gov (United States)

    Chintalapudi, S.; Sharif, H.; Yeggina, S.

    2012-04-01

    The development in satellite-derived rainfall estimates encouraged the hydrological modeling in sparse gauged basins or ungauged basins. Especially, physically-based distributed hydrological models can benefit from the good spatial and temporal coverage of satellite precipitation products. In this study, three satellite derived precipitation datasets (TRMM, CMORPH, and PERSIANN), NEXRAD, and rain gauge precipitation datasets were used to drive the hydrological model. The physically-based, distributed hydrological model Gridded Surface Subsurface Hydrological Analysis (GSSHA) was used in this study. Focus will be on the results from the Guadalupe River Basin above Canyon Lake and below Comfort, Texas. The Guadalupe River Basin above Canyon Lake and below Comfort Texas drains an area of 1232 km2. Different storm events will be used in these simulations. August 2007 event was used as calibration and June 2007 event was used as validation. Results are discussed interms of accuracy of satellite precipitation estimates with the ground based precipitation estimates, predicting peak discharges, runoff volumes, time lag, and spatial distribution. The initial results showed that, model was able to predict the peak discharges and runoff volumes when using NEXRAD MPE data, and TRMM 3B42 precipitation product. The results also showed that there was time lag in hydrographs driven by both PERSIANN and CMORPH data sets.

  15. A ground-based measurement of the relativistic beaming effect in a detached double WD binary

    CERN Document Server

    Shporer, Avi; Steinfadt, Justin D R; Bildsten, Lars; Howell, Steve B; Mazeh, Tsevi

    2010-01-01

    We report on the first ground-based measurement of the relativistic beaming effect (aka Doppler boosting). We observed the beaming effect in the detached, non-interacting eclipsing double white dwarf (WD) binary NLTT 11748. Our observations were motivated by the system's high mass ratio and low luminosity ratio, leading to a large beaming-induced variability amplitude at the orbital period of 5.6 hr. We observed the system during 3 nights at the 2.0m Faulkes Telescope North with the SDSS-g' filter, and fitted the data simultaneously for the beaming, ellipsoidal and reflection effects. Our fitted relative beaming amplitude is (3.0 +/- 0.4) x 10^(-3), consistent with the expected amplitude from a blackbody spectrum given the photometric primary radial velocity amplitude and effective temperature. This result is a first step in testing the relation between the photometric beaming amplitude and the spectroscopic radial velocity amplitude in NLTT 11748 and similar systems. We did not identify any variability due t...

  16. CO2 Total Column Variability From Ground-Based FTIR Measurements Over Central Mexico

    Science.gov (United States)

    Baylon, J. L.; Stremme, W.; Plaza, E.; Bezanilla, A.; Grutter, M.; Hase, F.; Blumenstock, T.

    2014-12-01

    There are now several space missions dedicated to measure greenhouse gases in order to improve the understanding of the carbon cycle. Ground based measurement sites are of great value in the validation process, however there are only a few stations in tropical latitudes. We present measurements of solar-absorption infrared spectra recorded on two locations over Central Mexico: the High-Altitude Station Altzomoni (19.12 N, 98.65 W), located in the Izta-Popo National Park outside of Mexico City; and the UNAM's Atmospheric Observatory (19.32 N, 99.17 W) in Mexico City. These measurements were performed using a high resolution Fourier transform infrared spectrometer FTIR (Bruker, HR 120/5) at Altzomoni and a moderate resolution FTIR (Bruker, Vertex 80) within the city. In this work, we present the first results for total vertical columns of CO2 derived from near-infrared spectra recorded at both locations using the retrieval code PROFFIT. We present the seasonal cycle and variability from the measurements, as well as the full diagnostics of the retrieval in order assess its quality and discuss the differences of both instruments and locations (altitudes, urban vs remote). This work aims to contribute to generate high quality datasets for satellite validation.

  17. The Diabolo photometer and the future of ground-based millimetric bolometer devices

    CERN Document Server

    Désert, F X; Camus, P; Giard, M; Pointecouteau, E; Aghanim, N; Bernard, J P; Coron, N; Lamarre, J M; Marty, P; Delabrouille, J; Soglasnova, V; Camus, Ph.; Marty, Ph.

    2001-01-01

    The millimetric atmospheric windows at 1 and 2 mm are interesting targets for cosmological studies. Two broad areas appear leading this field: 1) the search for high redshift star-forming galaxies and 2) the measurement of Sunyaev-Zel'dovich (SZ) effect in clusters of galaxies at all redshifts. The Diabolo photometer is a dual-channel photometer working at 1.2 and 2.1 mm and dedicated to high angular resolution measurements of the Sunyaev--Zel'dovich effect towards distant clusters. It uses 2 by 3 bolometers cooled down to 0.1 K with a compact open dilution cryostat. The high resolution is provided by the IRAM 30 m telescope. The result of several Winter campaigns are reported here, including the first millimetric map of the SZ effect that was obtained by Pointecouteau et al. (2001) on RXJ1347-1145, the non-detection of a millimetric counterpart to the radio decrement towards PC1643+4631 and 2 mm number count upper limits. We discuss limitations in ground-based single-dish millimetre observations, namely sky ...

  18. A Ground-Based Search for Thermal Emission from the Exoplanet TrES-1

    CERN Document Server

    Knutson, Heather A; Deming, Drake; Richardson, L Jeremy

    2007-01-01

    Eclipsing planetary systems give us an important window on extrasolar planet atmospheres. By measuring the depth of the secondary eclipse, when the planet moves behind the star, we can estimate the strength of the thermal emission from the day side of the planet. Attaining a ground-based detection of one of these eclipses has proven to be a significant challenge, as time-dependent variations in instrument throughput and atmospheric seeing and absorption overwhelm the small signal of the eclipse at infrared wavelengths. We gathered a series of simultaneous L grism spectra of the transiting planet system TrES-1 and a nearby comparison star of comparable brightness, allowing us to correct for these effects in principle. Combining the data from two eclipses, we demonstrate a detection sensitivity of 0.15% in the eclipse depth relative to the stellar flux. This approaches the sensitivity required to detect the planetary emission, which theoretical models predict should lie between 0.05-0.1% of the stellar flux in ...

  19. Assessment of the quality of OSIRIS mesospheric temperatures using satellite and ground-based measurements

    Directory of Open Access Journals (Sweden)

    P. E. Sheese

    2012-12-01

    Full Text Available The Optical Spectrograph and InfraRed Imaging System (OSIRIS on the Odin satellite is currently in its 12th year of observing the Earth's limb. For the first time, continuous temperature profiles extending from the stratopause to the upper mesosphere have been derived from OSIRIS measurements of Rayleigh-scattered sunlight. Through most of the mesosphere, OSIRIS temperatures are in good agreement with coincident temperature profiles derived from other satellite and ground-based measurements. In the altitude region of 55–80 km, OSIRIS temperatures are typically within 4–5 K of those from the SABER, ACE-FTS, and SOFIE instruments on the TIMED, SciSat-I, and AIM satellites, respectively. The mean differences between individual OSIRIS profiles and those of the other satellite instruments are typically within the combined uncertainties and previously reported biases. OSIRIS temperatures are typically within 2 K of those from the University of Western Ontario's Purple Crow Lidar in the altitude region of 52–79 km, where the mean differences are within combined uncertainties. Near 84 km, OSIRIS temperatures exhibit a cold bias of 10–15 K, which is due to a cold bias in OSIRIS O2 A-band temperatures at 85 km, the upper boundary of the Rayleigh-scatter derived temperatures; and near 48 km OSIRIS temperatures exhibit a cold bias of 5–15 K, which is likely due to multiple-scatter effects that are not taken into account in the retrieval.

  20. On the atmospheric limitations of ground-based submillimetre astronomy using array receivers

    CERN Document Server

    Archibald, E N; Holland, W S; Coulson, I M; Jessop, N E; Stevens, J A; Robson, E I; Tilanus, R P J; Duncan, W D; Lightfoot, J F

    2002-01-01

    The calibration of ground-based submillimetre observations has always been a difficult process. We discuss how to overcome the limitations imposed by the submillimetre atmosphere. Novel ways to improve line-of-sight opacity estimates are presented, resulting in tight relations between opacities at different wavelengths. The submillimetre camera SCUBA, mounted on the JCMT, is the first large-scale submillimetre array, and as such is ideal for combatting the effects of the atmosphere. For example, we find that the off-source pixels are crucial for removing sky-noise. Benefitting from several years of SCUBA operation, a database of deep SCUBA observations has been constructed to better understand the nature of sky-noise and the effects of the atmosphere on instrument sensitivity. This has revealed several results. Firstly, there is evidence for positive correlations between sky-noise and seeing and sky-noise and sky opacity. Furthermore, 850-micron and 450-micron sky-noise are clearly correlated, suggesting that...