WorldWideScience

Sample records for ground-based infrared spectroscopic

  1. Spectroscopic Parameters for Ozone and its Isotopes: Current Status, Prospects for Improvement, and the Identification of 16O16O17O and O-16O-16O-17 and O-16O-17O-16 Lines in Infrared Ground-Based and Stratospheric Solar Absorption Spectra

    Science.gov (United States)

    Rinsland, C. P.; Flaud, J.-M.; Goldman, A.; Perrin, A.; Camy-Peyret, C.; Smith, M. A. H.; Devi, V. Malathy; Benner, D. C.; Barbe, A.; Stephens, T. M.; hide

    1998-01-01

    We describe the updates to the spectroscopic parameters of ozone and its isotopes in the 1996 HITRAN compilation. Recent published studies not included in HITRAN are also summarized. Finally, we report the identification of infrared lines of the v(sub 3) bands of O-16O-16O-17 and O-16O-17O-16 in high-resolution solar spectra recorded by stratospheric balloon-borne and ground-based Fourier transform spectrometers.

  2. Tropospheric and total ozone columns over Paris (France) measured using medium-resolution ground-based solar-absorption Fourier-transform infrared spectroscopy

    OpenAIRE

    C. Viatte; B. Gaubert; Eremenko, M.; Hase, F.; Schneider, M; Blumenstock, T.; Ray, M; P. Chelin; J.-M. Flaud; Orphal, J

    2011-01-01

    Ground-based Fourier-transform infrared (FTIR) solar absorption spectroscopy is a powerful remote sensing technique providing information on the vertical distribution of various atmospheric constituents. This work presents the first evaluation of a mid-resolution ground-based FTIR to measure tropospheric ozone, independently of stratospheric ozone. This is demonstrated using a new atmospheric observatory (named OASIS for "Observations of the Atmosphere by Solar absorption Infrared Spectroscop...

  3. Tropospheric and total ozone columns over Paris (France) measured using medium-resolution ground-based solar-absorption Fourier-transform infrared spectroscopy [Discussion paper

    OpenAIRE

    C. Viatte; B. Gaubert; Eremenko, M.; Hase, F.; Schneider, M; Blumenstock, T.; Ray, M; P. Chelin; J.-M. Flaud; Orphal, J

    2011-01-01

    Ground-based Fourier-transform infrared (FTIR) solar absorption spectroscopy is a powerful remote sensing technique providing information on the vertical distribution of various atmospheric constituents. This work presents the first evaluation of a mid-resolution ground-based FTIR to measure tropospheric ozone, independently of stratospheric ozone. This is demonstrated using a new atmospheric observatory (named OASIS for "Observations of the Atmosphere by Solar absorption Infrared Spectroscop...

  4. Ground-based Infrared Observations of Water Vapor and Hydrogen Peroxide in the Atmosphere of Mars

    Science.gov (United States)

    Encrenaz, T.; Greathouse, T. K.; Bitner, M.; Kruger, A.; Richter, M. J.; Lacy, J. H.; Bézard, B.; Fouchet, T.; Lefevre, F.; Forget, F.; Atreya, S. K.

    2008-11-01

    Ground-based observations of water vapor and hydrogen peroxide have been obtained in the thermal infrared range, using the TEXES instrument at the NASA Infrared Telescope Facility, for different times of the seasonal cycle.

  5. A ground-based near-infrared emission spectrum of the exoplanet HD 189733b.

    Science.gov (United States)

    Swain, Mark R; Deroo, Pieter; Griffith, Caitlin A; Tinetti, Giovanna; Thatte, Azam; Vasisht, Gautam; Chen, Pin; Bouwman, Jeroen; Crossfield, Ian J; Angerhausen, Daniel; Afonso, Cristina; Henning, Thomas

    2010-02-01

    Detection of molecules using infrared spectroscopy probes the conditions and compositions of exoplanet atmospheres. Water (H(2)O), methane (CH(4)), carbon dioxide (CO(2)), and carbon monoxide (CO) have been detected in two hot Jupiters. These previous results relied on space-based telescopes that do not provide spectroscopic capability in the 2.4-5.2 microm spectral region. Here we report ground-based observations of the dayside emission spectrum for HD 189733b between 2.0-2.4 microm and 3.1-4.1 microm, where we find a bright emission feature. Where overlap with space-based instruments exists, our results are in excellent agreement with previous measurements. A feature at approximately 3.25 microm is unexpected and difficult to explain with models that assume local thermodynamic equilibrium (LTE) conditions at the 1 bar to 1 x 10(-6) bar pressures typically sampled by infrared measurements. The most likely explanation for this feature is that it arises from non-LTE emission from CH(4), similar to what is seen in the atmospheres of planets in our own Solar System. These results suggest that non-LTE effects may need to be considered when interpreting measurements of strongly irradiated exoplanets.

  6. A ground-based near-infrared emission spectrum of the exoplanet HD 189733b

    CERN Document Server

    Swain, Mark R; Griffith, Caitlin A; Tinetti, Giovanna; Thatte, Azam; Vasisht, Gautam; Chen, Pin; Bouwman, Jeroen; Crossfield, Ian J; Angerhausen, Daniel; Afonso, Cristina; Henning, Thomas

    2010-01-01

    Detection of molecules using infrared spectroscopy probes the conditions and compositions of exoplanet atmospheres. Water (H2O), methane (CH4), carbon dioxide (CO2), and carbon monoxide (CO) have been detected in two hot Jupiters. These previous results relied on space-based telescopes that do not provide spectroscopic capability in the 2.4 - 5.2 micron spectral region. Here we report ground-based observations of the dayside emission spectrum for HD 189733b between 2.0-2.4 micron and 3.1-4.1 micron, where we find a bright emission feature. Where overlap with space-based instruments exists, our results are in excellent agreement with previous measurements. A feature at ~3.25 micron is unexpected and difficult to explain with models that assume local thermodynamic equilibrium (LTE) conditions at the 1 bar to 1 x 10-6 bar pressures typically sampled by infrared measurements. The most likely explanation for this feature is that it arises from non-LTE emission from CH4, similar to what is seen in the atmospheres o...

  7. Ground-based near-infrared imaging of the HD141569 circumstellar disk

    CERN Document Server

    Boccaletti, A; Marchis, F; Hanh, J

    2003-01-01

    We present the first ground-based near-infrared image of the circumstellar disk around the post-Herbig Ae/Be star HD141569A initially detected with the HST. Observations were carried out in the near-IR (2.2 $\\mu$m) at the Palomar 200-inch telescope using the adaptive optics system PALAO. The main large scale asymmetric features of the disk are detected on our ground-based data. In addition, we measured that the surface brightness of the disk is slightly different than that derived by HST observations (at 1.1 $\\mu$m and 1.6 $\\mu$m). We interpret this possible color-effect in terms of dust properties and derive a minimal

  8. Detection and quantification of localized groundwater inflow in small streams using ground-based infrared thermography

    Science.gov (United States)

    Schuetz, Tobias; Weiler, Markus

    2010-05-01

    Localized groundwater (GW) inflow into small streams can be a major source of runoff during low flow periods in headwater catchments. The localization and determination of the fraction of runoff corresponding to a certain area may give insights into aquifer type, flow processes, the composition of base-flow concerning the spatial distribution of catchment storage and water quality issues. Though GW temperature has a small amplitude during the year compared to surface water, a significant temperature difference between stream water and groundwater can be expected in summer and winter. As the technical development of infrared thermography is progressing (the spatial resolution of infrared camera systems is increasing and the measuring error is decreasing) we tested ground based infrared thermography as a non-invasive and remote applicable method to detect and quantify GW entries in small streams during baseflow periods (INFRATEC). In addition, water temperature and electric conductivity of the groundwater entering the stream and of the stream water up- and downstream of localized GW inflow were measured with temperature and EC sensors. Though the zones of complete mixing were identified, point measurements and surface radiation temperatures were taken from the same areas. Discharge measurements were conducted using the salt dilution method with continuous injection. End-member mixing calculations were done using the measured EC and water temperature data and compared to the results of mixing calculations of observed water surface radiation temperatures. The discharge observations were used to validate the fraction calculations. Calculated GW entries using thermogramms had comparable deviations from the measured runoff fractions to those from direct temperature and EC measurements. This leads to the conclusion that the use of ground-based infrared thermography for the detection and quantification of localized groundwater inflows into small streams is a valuable and

  9. Spectroscopic analysis of stellar mass black-hole mergers in our local universe with ground-based gravitational wave detectors

    Science.gov (United States)

    Bhagwat, Swetha; Brown, Duncan; Ballmer, Stefan

    2017-01-01

    Motivated by the recent discoveries of binary black-hole mergers by the Advanced Laser Interferometer Gravitational-wave Observatory (Advanced LIGO), we investigate the prospects of ground based detectors to perform a spectroscopic analysis of signals emitted during the ringdown of the Kerr black-hole formed by a stellar mass binary black-hole merger. We investigate the detectability and resolvability of the sub-dominant modes l = m = 3, l = m = 4 and l = 2;m = 1. We find that new ground-based facilities such as Einstein Telescope or Cosmic Explorer could measure multiple ringdown modes in over 300 events per year. We also investigate detector tuning for ringdown oriented searches.

  10. Ground-based infrared surveys: imaging the thermal fields at volcanoes and revealing the controlling parameters.

    Science.gov (United States)

    Pantaleo, Michele; Walter, Thomas

    2013-04-01

    Temperature monitoring is a widespread procedure in the frame of volcano hazard monitoring. Indeed temperature changes are expected to reflect changes in volcanic activity. We propose a new approach, within the thermal monitoring, which is meant to shed light on the parameters controlling the fluid pathways and the fumarole sites by using infrared measurements. Ground-based infrared cameras allow one to remotely image the spatial distribution, geometric pattern and amplitude of fumarole fields on volcanoes at metre to centimetre resolution. Infrared mosaics and time series are generated and interpreted, by integrating geological field observations and modeling, to define the setting of the volcanic degassing system at shallow level. We present results for different volcano morphologies and show that lithology, structures and topography control the appearance of fumarole field by the creation of permeability contrasts. We also show that the relative importance of those parameters is site-dependent. Deciphering the setting of the degassing system is essential for hazard assessment studies because it would improve our understanding on how the system responds to endogenous or exogenous modification.

  11. An evaluation of IASI-NH3 with ground-based Fourier transform infrared spectroscopy measurements

    Science.gov (United States)

    Dammers, Enrico; Palm, Mathias; Van Damme, Martin; Vigouroux, Corinne; Smale, Dan; Conway, Stephanie; Toon, Geoffrey C.; Jones, Nicholas; Nussbaumer, Eric; Warneke, Thorsten; Petri, Christof; Clarisse, Lieven; Clerbaux, Cathy; Hermans, Christian; Lutsch, Erik; Strong, Kim; Hannigan, James W.; Nakajima, Hideaki; Morino, Isamu; Herrera, Beatriz; Stremme, Wolfgang; Grutter, Michel; Schaap, Martijn; Wichink Kruit, Roy J.; Notholt, Justus; Coheur, Pierre-F.; Erisman, Jan Willem

    2016-08-01

    Global distributions of atmospheric ammonia (NH3) measured with satellite instruments such as the Infrared Atmospheric Sounding Interferometer (IASI) contain valuable information on NH3 concentrations and variability in regions not yet covered by ground-based instruments. Due to their large spatial coverage and (bi-)daily overpasses, the satellite observations have the potential to increase our knowledge of the distribution of NH3 emissions and associated seasonal cycles. However the observations remain poorly validated, with only a handful of available studies often using only surface measurements without any vertical information. In this study, we present the first validation of the IASI-NH3 product using ground-based Fourier transform infrared spectroscopy (FTIR) observations. Using a recently developed consistent retrieval strategy, NH3 concentration profiles have been retrieved using observations from nine Network for the Detection of Atmospheric Composition Change (NDACC) stations around the world between 2008 and 2015. We demonstrate the importance of strict spatio-temporal collocation criteria for the comparison. Large differences in the regression results are observed for changing intervals of spatial criteria, mostly due to terrain characteristics and the short lifetime of NH3 in the atmosphere. The seasonal variations of both datasets are consistent for most sites. Correlations are found to be high at sites in areas with considerable NH3 levels, whereas correlations are lower at sites with low atmospheric NH3 levels close to the detection limit of the IASI instrument. A combination of the observations from all sites (Nobs = 547) give a mean relative difference of -32.4 ± (56.3) %, a correlation r of 0.8 with a slope of 0.73. These results give an improved estimate of the IASI-NH3 product performance compared to the previous upper-bound estimates (-50 to +100 %).

  12. Nanoantenna-Enhanced Infrared Spectroscopic Chemical Imaging.

    Science.gov (United States)

    Kühner, Lucca; Hentschel, Mario; Zschieschang, Ute; Klauk, Hagen; Vogt, Jochen; Huck, Christian; Giessen, Harald; Neubrech, Frank

    2017-05-26

    Spectroscopic infrared chemical imaging is ideally suited for label-free and spatially resolved characterization of molecular species, but often suffers from low infrared absorption cross sections. Here, we overcome this limitation by utilizing confined electromagnetic near-fields of resonantly excited plasmonic nanoantennas, which enhance the molecular absorption by orders of magnitude. In the experiments, we evaporate microstructured chemical patterns of C60 and pentacene with nanometer thickness on top of homogeneous arrays of tailored nanoantennas. Broadband mid-infrared spectra containing plasmonic and vibrational information were acquired with diffraction-limited resolution using a two-dimensional focal plane array detector. Evaluating the enhanced infrared absorption at the respective frequencies, spatially resolved chemical images were obtained. In these chemical images, the microstructured chemical patterns are only visible if nanoantennas are used. This confirms the superior performance of our approach over conventional spectroscopic infrared imaging. In addition to the improved sensitivity, our technique provides chemical selectivity, which would not be available with plasmonic imaging that is based on refractive index sensing. To extend the accessible spectral bandwidth of nanoantenna-enhanced spectroscopic imaging, we employed nanostructures with dual-band resonances, providing broadband plasmonic enhancement and sensitivity. Our results demonstrate the potential of nanoantenna-enhanced spectroscopic infrared chemical imaging for spatially resolved characterization of organic layers with thicknesses of several nanometers. This is of potential interest for medical applications which are currently hampered by state-of-art infrared techniques, e.g., for distinguishing cancerous from healthy tissues.

  13. Validation of MOPITT carbon monoxide using ground-based Fourier transform infrared spectrometer data from NDACC

    Science.gov (United States)

    Buchholz, Rebecca R.; Deeter, Merritt N.; Worden, Helen M.; Gille, John; Edwards, David P.; Hannigan, James W.; Jones, Nicholas B.; Paton-Walsh, Clare; Griffith, David W. T.; Smale, Dan; Robinson, John; Strong, Kimberly; Conway, Stephanie; Sussmann, Ralf; Hase, Frank; Blumenstock, Thomas; Mahieu, Emmanuel; Langerock, Bavo

    2017-06-01

    The Measurements of Pollution in the Troposphere (MOPITT) satellite instrument provides the longest continuous dataset of carbon monoxide (CO) from space. We perform the first validation of MOPITT version 6 retrievals using total column CO measurements from ground-based remote-sensing Fourier transform infrared spectrometers (FTSs). Validation uses data recorded at 14 stations, that span a wide range of latitudes (80° N to 78° S), in the Network for the Detection of Atmospheric Composition Change (NDACC). MOPITT measurements are spatially co-located with each station, and different vertical sensitivities between instruments are accounted for by using MOPITT averaging kernels (AKs). All three MOPITT retrieval types are analyzed: thermal infrared (TIR-only), joint thermal and near infrared (TIR-NIR), and near infrared (NIR-only). Generally, MOPITT measurements overestimate CO relative to FTS measurements, but the bias is typically less than 10 %. Mean bias is 2.4 % for TIR-only, 5.1 % for TIR-NIR, and 6.5 % for NIR-only. The TIR-NIR and NIR-only products consistently produce a larger bias and lower correlation than the TIR-only. Validation performance of MOPITT for TIR-only and TIR-NIR retrievals over land or water scenes is equivalent. The four MOPITT detector element pixels are validated separately to account for their different uncertainty characteristics. Pixel 1 produces the highest standard deviation and lowest correlation for all three MOPITT products. However, for TIR-only and TIR-NIR, the error-weighted average that includes all four pixels often provides the best correlation, indicating compensating pixel biases and well-captured error characteristics. We find that MOPITT bias does not depend on latitude but rather is influenced by the proximity to rapidly changing atmospheric CO. MOPITT bias drift has been bound geographically to within ±0.5 % yr-1 or lower at almost all locations.

  14. Spectroscopic analysis of stellar mass black-hole mergers in our local universe with ground-based gravitational wave detectors

    CERN Document Server

    Bhagwat, Swetha; Ballmer, Stefan W

    2016-01-01

    Motivated by the recent discoveries of binary black-hole mergers by the Advanced Laser Interferometer Gravitational-wave Observatory (Advanced LIGO), we investigate the prospects of ground-based detectors to perform a spectroscopic analysis of signals emitted during the ringdown of the final Kerr black-hole formed by a stellar mass binary black-hole merger. Although it is unlikely that Advanced LIGO can measure multiple modes of the ringdown, assuming an optimistic rate of 240 Gpc$^{-3}$yr$^{-1}$, upgrades to the existing LIGO detectors could measure multiple ringdown modes in $\\sim$6 detections per year. New ground-based facilities such as Einstein Telescope or Cosmic Explorer could measure multiple ringdown modes in over 300 events per year. We perform Monte-Carlo injections of $10^{6}$ binary black-hole mergers in a search volume defined by a sphere of radius 1500 Mpc centered at the detector, for various proposed ground-based detector models. We assume a uniform random distribution in component masses of ...

  15. Ground-based analysis of volcanic ash plumes using a new multispectral thermal infrared camera approach

    Science.gov (United States)

    Williams, D.; Ramsey, M. S.

    2015-12-01

    Volcanic plumes are complex mixtures of mineral, lithic and glass fragments of varying size, together with multiple gas species. These plumes vary in size dependent on a number of factors, including vent diameter, magma composition and the quantity of volatiles within a melt. However, determining the chemical and mineralogical properties of a volcanic plume immediately after an eruption is a great challenge. Thermal infrared (TIR) satellite remote sensing of these plumes is routinely used to calculate the volcanic ash particle size variations and sulfur dioxide concentration. These analyses are commonly performed using high temporal, low spatial resolution satellites, which can only reveal large scale trends. What is lacking is a high spatial resolution study specifically of the properties of the proximal plumes. Using the emissive properties of volcanic ash, a new method has been developed to determine the plume's particle size and petrology in spaceborne and ground-based TIR data. A multispectral adaptation of a FLIR TIR camera has been developed that simulates the TIR channels found on several current orbital instruments. Using this instrument, data of volcanic plumes from Fuego and Santiaguito volcanoes in Guatemala were recently obtained Preliminary results indicate that the camera is capable of detecting silicate absorption features in the emissivity spectra over the TIR wavelength range, which can be linked to both mineral chemistry and particle size. It is hoped that this technique can be expanded to isolate different volcanic species within a plume, validate the orbital data, and ultimately to use the results to better inform eruption dynamics modelling.

  16. Ozone vertical distribution retrieval from ground-based high resolution infrared solar spectra

    Science.gov (United States)

    Pougatchev, N. S.; Connor, B. J.; Rinsland, C. P.

    1995-01-01

    A practical procedure for the retrieval of ozone vertical profiles from ground-based high resolution Fourier transform infrared solar spectra has been developed. The analysis is based on a multilayer line-by-line forward model and a semi-empirical version of the optimal estimation inversion method of Rodgers. The 1002.6-1003.2 cm(exp -1) spectral interval has been selected for the analysis on the basis of synthetic spectrum calculations. This interval contains numerous ozone lines covering a range of intensities and providing retrieval sensitivity from ground level to about 35 km. Characterization of the method and an error analysis have been performed. For a spectral resolution of 0.05-0.01 cm(exp -1) and a signal-to-noise ratio greater than or equal to 100 the retrieval is stable with a vertical resolution of approximately 5 km attainable near the surface degrading to approximately 10 km in the stratosphere. Synthetic spectra studies show that the a priori profile and weak constraints selected for the retrievals introduce no significant biases for a wide range of ozone profiles.

  17. Ground-based near-infrared observations of water vapour in the Venus troposphere

    CERN Document Server

    Chamberlain, S; Crisp, D; Meadows, V S; 10.1016/j.icarus.2012.11.014

    2012-01-01

    We present a study of water vapour in the Venus troposphere obtained by modelling specific water vapour absorption bands within the 1.18 \\mu m window. We compare the results with the normal technique of obtaining the abundance by matching the peak of the 1.18 \\mu m window. Ground-based infrared imaging spectroscopy of the night side of Venus was obtained with the Anglo-Australian Telescope and IRIS2 instrument with a spectral resolving power of R ~ 2400. The spectra have been fitted with modelled spectra simulated using the radiative transfer model VSTAR. We find a best fit abundance of 31 ppmv (-6 + 9 ppmv), which is in agreement with recent results by B\\'ezard et al. 2011 using VEX/SPICAV (R ~ 1700) and contrary to prior results by B\\'ezard et al. 2009 of 44 ppmv (+/-9 ppmv) using VEX/VIRTIS-M (R ~ 200) data analyses. Comparison studies are made between water vapour abundances determined from the peak of the 1.18 \\mu m window and abundances determined from different water vapour absorption features within t...

  18. Deep slitless infrared spectroscopic surveys with HST/WFC3

    CERN Document Server

    Weiner, Benjamin J

    2012-01-01

    HST is commonly thought of as an optical-IR imaging or UV-spectroscopy observatory. However, the advent of WFC3-IR made it possible to do slitless infrared spectroscopic surveys over an area significant for galaxy evolution studies (~0.15 deg^2). Slitless infrared spectroscopy is uniquely possible from space due to the reduced background. Redshift surveys with WFC3-IR offer probes of the astrophysics of the galaxy population at z=1-3 from line features, and the true redshift and spatial distribution of galaxies, that cannot be done with photometric surveys alone. While HST slitless spectroscopy is low spectral resolution, its high multiplex advantage makes it competitive with future ground based IR spectrographs, its flux calibration is stable, and its high spatial resolution allows measuring the spatial extent of emission lines, which only HST can do currently for large numbers of objects. A deeper slitless IR spectroscopic survey over hundreds of arcmin^2 (eg one or more GOODS fields) is one of the remainin...

  19. Measuring galaxy [OII] emission line doublet with future ground-based wide-field spectroscopic surveys

    CERN Document Server

    Comparat, Johan; Bacon, Roland; Mostek, Nick J; Newman, Jeffrey A; Schlegel, David J; Yèche, Christophe

    2013-01-01

    The next generation of wide-field spectroscopic redshift surveys will map the large-scale galaxy distribution in the redshift range 0.7< z<2 to measure baryonic acoustic oscillations (BAO). The primary optical signature used in this redshift range comes from the [OII] emission line doublet, which provides a unique redshift identification that can minimize confusion with other single emission lines. To derive the required spectrograph resolution for these redshift surveys, we simulate observations of the [OII] (3727,3729) doublet for various instrument resolutions, and line velocities. We foresee two strategies about the choice of the resolution for future spectrographs for BAO surveys. For bright [OII] emitter surveys ([OII] flux ~30.10^{-17} erg /cm2/s like SDSS-IV/eBOSS), a resolution of R~3300 allows the separation of 90 percent of the doublets. The impact of the sky lines on the completeness in redshift is less than 6 percent. For faint [OII] emitter surveys ([OII] flux ~10.10^{-17} erg /cm2/s like ...

  20. The Venus ground-based image Active Archive: a database of amateur observations of Venus in ultraviolet and infrared light

    CERN Document Server

    Barentsen, Geert

    2013-01-01

    The Venus ground-based image Active Archive is an online database designed to collect ground-based images of Venus in such a way that they are optimally useful for science. The Archive was built to support ESA's Venus Amateur Observing Project, which utilises the capabilities of advanced amateur astronomers to collect filtered images of Venus in ultraviolet, visible and near-infrared light. These images complement the observations of the Venus Express spacecraft, which cannot continuously monitor the northern hemisphere of the planet due to its elliptical orbit with apocentre above the south pole. We present the first set of observations available in the Archive and assess the usability of the dataset for scientific purposes.

  1. Fourier Transform Infrared Spectroscopic Studies in Flotation

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Fourier transform infrared (FTIR) spectroscopy has been extensively employed in flotation research.The work done by the author and co-workers has been reported.A comparison has been made among the different FTIR spectroscopic techniques,e.g.,transmission FTIR spectroscopy,diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy,and attenuated total reflectance (ATR) FTIR spectroscopy.FTIR spectroscopy has been used to study the mechanism of interaction between the collector and the surfaces of different minerals,the mechanism of action of the depressant in improving the selectivity of flotation,and the mechanism of adsorption of the polymeric modifying reagent on mineral surfaces.The interaction between particles in mineral suspension has also been studied by FTIR spectroscopy.

  2. Preliminary Analysis of Ground-based Orbit Determination Accuracy for the Wide Field Infrared Survey Telescope (WFIRST)

    Science.gov (United States)

    Sease, Brad

    2017-01-01

    The Wide Field Infrared Survey Telescope is a 2.4-meter telescope planned for launch to the Sun-Earth L2 point in 2026. This paper details a preliminary study of the achievable accuracy for WFIRST from ground-based orbit determination routines. The analysis here is divided into two segments. First, a linear covariance analysis of early mission and routine operations provides an estimate of the tracking schedule required to meet mission requirements. Second, a simulated operations scenario gives insight into the expected behavior of a daily Extended Kalman Filter orbit estimate over the first mission year given a variety of potential momentum unloading schemes.

  3. Quality assessment of ozone total column amounts as monitored by ground-based solar absorption spectrometry in the near infrared (> 3000 cm−1

    Directory of Open Access Journals (Sweden)

    O. E. García

    2014-03-01

    Full Text Available This study examines the possibility of ground-based remote sensing ozone total column amounts (OTC from spectral signatures at 3040 and 4030 cm−1. These spectral regions are routinely measured by the NDACC (Network for the Detection of Atmospheric Composition Change ground-based FTIR (Fourier Transform InfraRed experiments. In addition, they are potentially detectable by the TCCON (Total Carbon Column Observing Network FTIR instruments. The ozone retrieval strategy presented here estimates the OTC from NDACC FTIR high resolution spectra with a theoretical precision of about 2% and 5% in the 3040 cm−1 and 4030 cm−1 regions, respectively. Empirically, these OTC products are validated by inter-comparison to FTIR OTC reference retrievals in the 1000 cm−1 spectral region (standard reference for NDACC ozone products, using a 8 year FTIR time series (2005–2012 taken at the subtropical ozone super-site of the Izaña Observatory (Tenerife, Spain. Associated with the weaker ozone signatures at the higher wavenumber regions, the 3040 cm−1 and 4030 cm−1 retrievals show lower vertical sensitivity than the 1000 cm−1 retrievals. Nevertheless, we observe that the rather consistent variations are detected: the variances of the 3040 cm−1 and the 4030 cm−1 retrievals agree within 90% and 75%, respectively, with the variance of the 1000 cm−1 standard retrieval. Furthermore, all three retrievals show very similar annual cycles. However, we observe a large systematic difference of about 7% between the OTC obtained at 1000 cm−1 and 3040 cm−1, indicating a significant inconsistency between the spectroscopic ozone parameters (HITRAN 2012 of both regions. Between the 1000 cm−1 and the 4030 cm−1 retrieval the systematic difference is only 2–3%. Finally, the long-term stability of the OTC retrievals has also been examined, observing that both near infrared retrievals can monitor the long-term OTC evolution in consistency to the 1000 cm−1

  4. Cloud Base Height and Effective Cloud Emissivity Retrieval with Ground-Based Infrared Interferometer

    Institute of Scientific and Technical Information of China (English)

    PAN Lin-Jun; LU Da-Ren

    2012-01-01

    Based on ground-based Atmospheric Emitted Radiance Interferometer (AERI) observations in Shouxian, Anhui province, China, the authors retrieve the cloud base height (CBH) and effective cloud emissivity by using the minimum root-mean-square difference method. This method was originally developed for satellite remote sensing. The high-temporal-resolution retrieval results can depict the trivial variations of the zenith clouds continu- ously. The retrieval results are evaluated by comparing them with observations by the cloud radar. The compari- son shows that the retrieval bias is smaller for the middle and low cloud, especially for the opaque cloud. When two layers of clouds exist, the retrieval results reflect the weighting radiative contribution of the multi-layer cloud. The retrieval accuracy is affected by uncertainties of the AERI radiances and sounding profiles, in which the role of uncertainty in the temperature profile is dominant.

  5. Infrared Spectroscopic Imaging: The Next Generation

    Science.gov (United States)

    Bhargava, Rohit

    2013-01-01

    Infrared (IR) spectroscopic imaging seemingly matured as a technology in the mid-2000s, with commercially successful instrumentation and reports in numerous applications. Recent developments, however, have transformed our understanding of the recorded data, provided capability for new instrumentation, and greatly enhanced the ability to extract more useful information in less time. These developments are summarized here in three broad areas— data recording, interpretation of recorded data, and information extraction—and their critical review is employed to project emerging trends. Overall, the convergence of selected components from hardware, theory, algorithms, and applications is one trend. Instead of similar, general-purpose instrumentation, another trend is likely to be diverse and application-targeted designs of instrumentation driven by emerging component technologies. The recent renaissance in both fundamental science and instrumentation will likely spur investigations at the confluence of conventional spectroscopic analyses and optical physics for improved data interpretation. While chemometrics has dominated data processing, a trend will likely lie in the development of signal processing algorithms to optimally extract spectral and spatial information prior to conventional chemometric analyses. Finally, the sum of these recent advances is likely to provide unprecedented capability in measurement and scientific insight, which will present new opportunities for the applied spectroscopist. PMID:23031693

  6. Quality assessment of ozone total column amounts as monitored by ground-based solar absorption spectrometry in the near infrared (> 3000 cm-1)

    Science.gov (United States)

    García, O. E.; Schneider, M.; Hase, F.; Blumenstock, T.; Sepúlveda, E.; González, Y.

    2014-09-01

    This study examines the possibility of ground-based remote-sensing ozone total column amounts (OTC) from spectral signatures at 3040 and 4030 cm-1. These spectral regions are routinely measured by the NDACC (Network for the Detection of Atmospheric Composition Change) ground-based FTIR (Fourier transform infraRed) experiments. In addition, they are potentially detectable by the TCCON (Total Carbon Column Observing Network) FTIR instruments. The ozone retrieval strategy presented here estimates the OTC from NDACC FTIR high-resolution spectra with a theoretical precision of about 2 and 5% in the 3040 and 4030 cm-1 regions, respectively. Empirically, these OTC products are validated by inter-comparison to FTIR OTC reference retrievals in the 1000 cm-1 spectral region (standard reference for NDACC ozone products), using an 8-year FTIR time series (2005-2012) taken at the subtropical ozone supersite of the Izaña Atmospheric Observatory (Tenerife, Spain). Associated with the weaker ozone signatures at the higher wave number regions, the 3040 and 4030 cm-1 retrievals show lower vertical sensitivity than the 1000 cm-1 retrievals. Nevertheless, we observe that the rather consistent variations are detected: the variances of the 3040 cm-1 and the 4030 cm-1 retrievals agree within 90 and 75%, respectively, with the variance of the 1000 cm-1 standard retrieval. Furthermore, all three retrievals show very similar annual cycles. However, we observe a large systematic difference of about 7% between the OTC obtained at 1000 and 3040 cm-1, indicating a significant inconsistency between the spectroscopic ozone parameters (HITRAN, 2012) of both regions. Between the 1000 cm and the 4030 cm-1 retrieval the systematic difference is only 2-3%. Finally, the long-term stability of the OTC retrievals has also been examined, observing that both near-infrared retrievals can monitor the long-term OTC evolution, consistent with the 1000 cm-1 reference data. These findings demonstrate that

  7. Retrieval of sulphur dioxide from a ground-based thermal infrared imaging camera

    Directory of Open Access Journals (Sweden)

    A. J. Prata

    2014-02-01

    Full Text Available Recent advances in uncooled detector technology now offer the possibility of using relatively inexpensive thermal (7 to 14 μm imaging devices as tools for studying and quantifying the behaviour of hazardous gases and particulates in atmospheric plumes. An experimental fast-sampling (60 Hz ground-based uncooled thermal imager (Cyclops, operating with four spectral channels at central wavelengths of 8.6, 10, 11, and 12 μm and one broadband channel (7–14 μm, has been tested at several volcanoes and at two industrial sites, where SO2 was a major constituent of the plumes. This paper presents new algorithms, which include atmospheric corrections to the data and better calibrations to show that SO2 slant column density can be reliably detected and quantified. Our results indicate that it is relatively easy to identify and discriminate SO2 in plumes, but more challenging to quantify the column densities. A full description of the retrieval algorithms, illustrative results and a detailed error analysis are provided. The Noise-Equivalent Temperature Difference (NEΔT of the spectral channels, a fundamental measure of the quality of the measurements, lies between 0.4–0.8 K, resulting in slant column density errors of 20%. Frame averaging and improved NEΔT's can reduce this error to less than 10%, making a stand-off, day or night operation of an instrument of this type very practical for both monitoring industrial SO2 emissions and for SO2 column densities and emission measurements at active volcanoes. The imaging camera system may also be used to study thermal radiation from meteorological clouds and from the atmosphere.

  8. A Ground-Based Mid-Infrared Imaging Survey of Embedded Young Stellar Objects in the Rho Ophiuchi Cloud Core

    Science.gov (United States)

    Barsony, M.; Ressler, M. E.; Marsh, K. A.

    2004-12-01

    Results of a comprehensive, new, ground-based mid-infrared imaging survey of the young stellar population of the ρ Ophiuchi cloud are presented. Data were acquired at the Palomar 5-m and at the Keck 10-m telescopes with the MIRLIN and LWS instruments, at 0.5'' and 0.25'' resolutions, respectively. Of 172 survey objects, 85 were detected. A plot of the frequency distribution of the detected objects with SED spectral slope shows that YSOs spend ˜ 3 × 105 yr in the Flat Spectrum phase, clearing out their remnant infall envelopes. Mid-infrared variability is found among a significant fraction of the surveyed objects and is found to occur for all SED classes with optically thick disks. Large amplitude near-infrared variability, also found for all SED classes with optically thick disks, seems to occur with somewhat higher frequency at the earlier evolutionary stages. The highly variable value of K-band veiling that a single source can exhibit in any of the SED classes in which active disk accretion can take place is striking, and is direct observational evidence for highly time-variable accretion activity in disks. Finallly, by comparing mid-infrared vs. near-infrared excesses in a subsample with well-determined effective temperatures and extinction values, disk clearing mechanisms are explored. Financial support for this project through NSF grants AST 00-96087 (CAREER), AST 97-53229 (POWRE), and AST 02-06146 is gratefully acknowledged. MB further thanks the NASA/ASEE Summer Faculty Fellowship program at JPL, that made this work possible.

  9. Ground Based Observation of Isotopic Oxygen in the Martian Atmosphere Using Infrared Heterodyne Spectroscopy

    Science.gov (United States)

    Smith, R. L.; Kostiuk, T.; Livengood, T. A.; Fast, K. E.; Hewagama, T.; Delgado, J. D.; Sonnabend, G.

    2010-01-01

    Infrared heterodyne spectra of isotopic CO2 in the Martian atmosphere were obtained using the Goddard Heterodyne Instrument for Planetary Wind and Composition, HIPWAC, which was interfaced with the 3-meter telescope at the NASA Infrared Telescope Facility- Spectra were colle cted at a resolution of lambda/delta lambda=10(exp 7). Absorption fea tures of the CO2 isotopologues have been identified from which isotop ic ratios of oxygen have been determined. The isotopic ratios O-17/O -16 and O-18/O-16 in the Martian atmosphere can be related to Martian atmospheric evolution and can be compared to isotopic ratios of oxyg en in the Earth's atmosphere. Isotopic carbon and oxygen are importa nt constraints on any theory for the erosion of the Martian primordia l atmosphere and the interaction between the atmosphere and surface o r subsurface chemical reservoirs. This investigation explored the pr esent abundance of the stable isotopes of oxygen in Mars' atmospheric carbon dioxide by measuring rovibrational line absorption in isotop ic species of CO2 using groundbased infrared heterodyne spectroscopy in the vicinity of the 9.6 micron and 10.6 micron CO2 lasing bands. T he target transitions during this observation were O-18 C-12 O-16 as well as O-178 C-12 O-16 and O-16 C-113 O-16 at higher resolving power of lambda/delta lambda=10(exp 7) and with high signal-to-noise ratio (longer integration time) in order to fully characterize the absorpt ion line profiles. The fully-resolved lineshape of both the strong n ormal-isotope and the weak isotopic CO2 lines were measured simultane ously in a single spectrum.

  10. Ground based infrared measurements of the global distribution of ozone in the atmosphere of Mars

    Science.gov (United States)

    Kostiuk, Theodor; Espenak, F.; Mumma, M. J.; Zipoy, D.

    1991-01-01

    The global distribution of ozone in the atmosphere of Mars was determined from Doppler-limited infrared heterodyne spectroscopy measurements at the NASA Infrared Telescope Facility (IRTF) facility during June 3-7, 1988. Mars spectra near two O3 lines arising from the v sub 3 band near 1031.45 cm (-1) were used. The lines were Doppler shifted out of the strong terrestrial ozone absorption spectrum and its effect was removed. Ozone measurements were obtained at eight beam positions over a range of latitudes and local solar zenith angles. The beam size of the planet was 1.4 arcsec. A Martian CO2 line appeared in the spectra and was inverted to retrieve local temperature profiles. Using these temperature profiles, the total ozone column abundance at each position was retrieved by fitting the measured line with synthetic spectra generated by a radiative transfer program. The only previous measurement of ozone at this season was made above the South polar cap by Mariner 7 and revealed an abundance of 10 micron-atm. However, the retrieved O3 column abundances from this investigation are less than 2.2 micron-atm at all positions sampled. These results are consistent with mid-spring abundances predicted by photochemical models of Liu and Donahue, and Shimazaki and Shimizu.

  11. New infrared spectroscopic database for bromine nitrate

    Science.gov (United States)

    Wagner, Georg; Birk, Manfred

    2016-08-01

    Fourier transform infrared measurements of bromine nitrate have been performed in the spectral region 675-1400 cm-1 at 0.014 cm-1 spectral resolution. Absorption cross sections were derived from 38 spectra covering the temperature range from 203 to 296 K and air pressure range from 0 to 190 mbar. For line-by-line analysis, further spectra were recorded at 0.00094 cm-1 spectral resolution at 223 and 293 K. The sample was synthesized from ClONO2 and Br2. Band strengths of the bands ν3 around 803 cm-1 and ν2 around 1286 cm-1 were determined from three pure BrONO2 measurements at different temperatures and pressures. Number densities in the absorption cell were derived from pressure measurements of the purified sample taking into account small amounts of impurities determined spectroscopically. Resulting band strengths are Sν3 = 2.872(52) × 10-17 cm2 molec-1 cm-1 and Sν2 = 3.63(15) × 10-17 cm2 molec-1 cm-1. Absorption cross sections of all measurements were scaled to these band strengths. Further data reduction was achieved with an interpolation scheme based on two-dimensional polynomials in ln(pressure) and temperature. The database is well-suited for remote-sensing application and should reduce the atmospheric bromine nitrate error budget substantially.

  12. Near-infrared thermal emissivity from ground based atmospheric dust measurements at ORM

    CERN Document Server

    Lombardi, G; Ortolani, S; Melnick, J; Ghedina, A; Garcia, A; Molinari, E; Gatica, C

    2011-01-01

    We present an analysis of the atmospheric content of aerosols measured at Observatorio del Roque de los Muchachos (ORM; Canary Islands). Using a laser diode particle counter located at the Telescopio Nazionale Galileo (TNG) we have detected particles of 0.3, 0.5, 1.0, 3.0, 5.0 and 10.0 um size. The seasonal behavior of the dust content in the atmosphere is calculated. The Spring has been found to be dustier than the Summer, but dusty conditions may also occur in Winter. A method to estimate the contribution of the aerosols emissivity to the sky brightness in the near-infrared (NIR) is presented. The contribution of dust emission to the sky background in the NIR has been found to be negligible comparable to the airglow, with a maximum contribution of about 8-10% in the Ks band in the dusty days.

  13. GROUND-BASED NEAR-INFRARED EMISSION SPECTROSCOPY OF HD 189733B

    Energy Technology Data Exchange (ETDEWEB)

    Waldmann, I. P.; Tinetti, G. [Department of Physics and Astronomy, University College London, Gower Street, WC1E 6BT (United Kingdom); Drossart, P. [LESIA, Observatoire de Paris, CNRS, Universit Pierre et Marie Curie, Universit Paris-Diderot. 5 place Jules Janssen, 92195 Meudon (France); Swain, M. R.; Deroo, P. [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109-8099 (United States); Griffith, C. A., E-mail: ingo@star.ucl.ac.uk [Department of Planetary Sciences, University of Arizona, 1629 E. University Blvd, Tucson, AZ 85721 (United States)

    2012-01-01

    We investigate the K- and L-band dayside emission of the hot-Jupiter HD 189733b with three nights of secondary eclipse data obtained with the SpeX instrument on the NASA Infrared Telescope Facility. The observations for each of these three nights use equivalent instrument settings and the data from one of the nights have previously been reported by Swain et al. We describe an improved data analysis method that, in conjunction with the multi-night data set, allows increased spectral resolution (R {approx} 175) leading to high-confidence identification of spectral features. We confirm the previously reported strong emission at {approx}3.3 {mu}m and, by assuming a 5% vibrational temperature excess for methane, we show that non-LTE emission from the methane {nu}{sub 3} branch is a physically plausible source of this emission. We consider two possible energy sources that could power non-LTE emission and additional modeling is needed to obtain a detailed understanding of the physics of the emission mechanism. The validity of the data analysis method and the presence of strong 3.3 {mu}m emission are independently confirmed by simultaneous, long-slit, L-band spectroscopy of HD 189733b and a comparison star.

  14. Observations of Blazar S5 0716+714 With Ground Based Telescopes and the Spitzer Infrared Space Telescope

    Science.gov (United States)

    Adkins, Jeffery; Lacy, M.; Morton, A.; Travagli, T.; Mulaveesala, M.; Santiago, J.; Rapp, S.; Stefaniak, L.

    2006-12-01

    The Gamma-Ray Large Area Space Telescope (GLAST) to be launched in 2007 has a proposed observing list that includes AGNs and Polars bright enough to be observed optically by amateurs and students. This observing list is maintained by the Global Telescope Network (GTN). One of our targets, S5 0716+714, was observed with the Spitzer Space Telescope MIPS and IRAC instruments and also using ground based telescopes. Observations were made in seven infrared bands with Spitzer. Additional observations made from the ground by students, amateur astronomers, and college observatories in R,V, and I were nearly simultaneous with the Spitzer observations. This data were used to construct light curves over the course of the observation and the Spectral Energy Distribution (SED) of the target using all the sources. These data were compared to models of the dust emission from the torus, synchrotron emission from the radio core, and thermal emission from the accretion disk to determine the relative importance of the different emission mechanisms in this object as a function of wavelength. Results were compared to observations of 4C 29.45 made last year. This research was supported by the Spitzer Science Center, the National Optical Astronomy Observatory, and the California Department of Education's Specialized Secondary Program.

  15. Infrared spectroscopy and spectroscopic imaging in forensic science.

    Science.gov (United States)

    Ewing, Andrew V; Kazarian, Sergei G

    2017-01-16

    Infrared spectroscopy and spectroscopic imaging, are robust, label free and inherently non-destructive methods with a high chemical specificity and sensitivity that are frequently employed in forensic science research and practices. This review aims to discuss the applications and recent developments of these methodologies in this field. Furthermore, the use of recently emerged Fourier transform infrared (FT-IR) spectroscopic imaging in transmission, external reflection and Attenuated Total Reflection (ATR) modes are summarised with relevance and potential for forensic science applications. This spectroscopic imaging approach provides the opportunity to obtain the chemical composition of fingermarks and information about possible contaminants deposited at a crime scene. Research that demonstrates the great potential of these techniques for analysis of fingerprint residues, explosive materials and counterfeit drugs will be reviewed. The implications of this research for the examination of different materials are considered, along with an outlook of possible future research avenues for the application of vibrational spectroscopic methods to the analysis of forensic samples.

  16. Thin ice clouds in the Arctic: cloud optical depth and particle size retrieved from ground-based thermal infrared radiometry

    Science.gov (United States)

    Blanchard, Yann; Royer, Alain; O'Neill, Norman T.; Turner, David D.; Eloranta, Edwin W.

    2017-06-01

    Multiband downwelling thermal measurements of zenith sky radiance, along with cloud boundary heights, were used in a retrieval algorithm to estimate cloud optical depth and effective particle diameter of thin ice clouds in the Canadian High Arctic. Ground-based thermal infrared (IR) radiances for 150 semitransparent ice clouds cases were acquired at the Polar Environment Atmospheric Research Laboratory (PEARL) in Eureka, Nunavut, Canada (80° N, 86° W). We analyzed and quantified the sensitivity of downwelling thermal radiance to several cloud parameters including optical depth, effective particle diameter and shape, water vapor content, cloud geometric thickness and cloud base altitude. A lookup table retrieval method was used to successfully extract, through an optimal estimation method, cloud optical depth up to a maximum value of 2.6 and to separate thin ice clouds into two classes: (1) TIC1 clouds characterized by small crystals (effective particle diameter ≤ 30 µm), and (2) TIC2 clouds characterized by large ice crystals (effective particle diameter > 30 µm). The retrieval technique was validated using data from the Arctic High Spectral Resolution Lidar (AHSRL) and Millimeter Wave Cloud Radar (MMCR). Inversions were performed over three polar winters and results showed a significant correlation (R2 = 0.95) for cloud optical depth retrievals and an overall accuracy of 83 % for the classification of TIC1 and TIC2 clouds. A partial validation relative to an algorithm based on high spectral resolution downwelling IR radiance measurements between 8 and 21 µm was also performed. It confirms the robustness of the optical depth retrieval and the fact that the broadband thermal radiometer retrieval was sensitive to small particle (TIC1) sizes.

  17. Ground-based multi-station spectroscopic imaging with ALIS. - Scientific highlights, project status and future prospects

    Science.gov (United States)

    Brändström; Gustavsson, Björn; Pellinen-Wannberg, Asta; Sandahl, Ingrid; Sergienko, Tima; Steen, Ake

    2005-08-01

    The Auroral Large Imaging System (ALIS) was first proposed at the ESA-PAC meeting in Lahnstein 1989. The first spectroscopic imaging station was operational in 1994, and since then up to six stations have been in simultaneous operation. Each station has a scientific-grade CCD-detector and a filter-wheel for narrow-band interference-filters with six positions. The field-of-view is around 70°. Each imager is mounted in a positioning system, enabling imaging of a common volume from several sites. This enables triangulation and tomography. Raw data from ALIS is freely available at ("http://alis.irf.se") and ALIS is open for scientific colaboration. ALIS made the first unambiguous observations of Radio-induced optical emissions at high latitudes, and the detection of water in a Leonid meteor-trail. Both rockets and satellite coordination are considered for future observations with ALIS.

  18. Ground-based detection of the near-infrared emission from the dayside of WASP-5b

    Science.gov (United States)

    Chen, G.; van Boekel, R.; Madhusudhan, N.; Wang, H.; Nikolov, N.; Seemann, U.; Henning, Th.

    2014-04-01

    Context. Observations of secondary eclipses of hot Jupiters allow one to measure the dayside thermal emission from the planets' atmospheres. The combination of ground-based near-infrared observations and space-based observations at longer wavelengths constrains the atmospheric temperature structure and chemical composition. Aims: This work aims at detecting the thermal emission of WASP-5b, a highly irradiated dense hot Jupiter orbiting a G4V star every 1.6 days, in the J, H and K near-infrared photometric bands. The spectral energy distribution is used to constrain the temperature-pressure profile and to study the energy budget of WASP-5b. Methods: We observed two secondary-eclipse events of WASP-5b in the J, H, K bands simultaneously using the GROND instrument on the MPG/ESO 2.2 m telescope. The telescope was in nodding mode for the first observation and in staring mode for the second observation. The occultation light curves were modeled to obtain the flux ratios in each band, which were then compared with atmospheric models. Results: Thermal emission of WASP-5b is detected in the J and K bands in staring mode. The retrieved planet-to-star flux ratios are 0.168-0.052+0.050% in the J band and 0.269 ± 0.062% in the K band, corresponding to brightness temperatures of 2996-261+212 K and 2890-269+246 K, respectively. No thermal emission is detected in the H band, with a 3σ upper limit of 0.166% on the planet-to-star flux ratio, corresponding to a maximum temperature of 2779 K. On the whole, our J, H, K results can be explained by a roughly isothermal temperature profile of ~2700 K in the deep layers of the planetary dayside atmosphere that are probed at these wavelengths. Together with Spitzer observations, which probe higher layers that are found to be at ~1900 K, a temperature inversion is ruled out in the range of pressures probed by the combined data set. While an oxygen-rich model is unable to explain all the data, a carbon-rich model provides a reasonable fit

  19. Raman and mid-infrared spectroscopic imaging: applications and advancements

    NARCIS (Netherlands)

    Gautam, R.; Samuel, A.; Sil, S.; Chaturvedi, D.; Dutta, A.; Ariese, F.; Umapathy, S.

    2015-01-01

    Using Raman and Mid-Infrared (MIR) spectroscopic imaging techniques one can examine the spatial distribution of various molecular constituents in a heterogeneous sample at a microscopic scale. Raman and MIR spectroscopy techniques provide bond-specific vibrational frequencies to characterize

  20. Tropospheric and total ozone columns over Paris (France measured using medium-resolution ground-based solar-absorption Fourier-transform infrared spectroscopy

    Directory of Open Access Journals (Sweden)

    C. Viatte

    2011-10-01

    Full Text Available Ground-based Fourier-transform infrared (FTIR solar absorption spectroscopy is a powerful remote sensing technique providing information on the vertical distribution of various atmospheric constituents. This work presents the first evaluation of a mid-resolution ground-based FTIR to measure tropospheric ozone, independently of stratospheric ozone. This is demonstrated using a new atmospheric observatory (named OASIS for "Observations of the Atmosphere by Solar absorption Infrared Spectroscopy", installed in Créteil (France. The capacity of the technique to separate stratospheric and tropospheric ozone is demonstrated. Daily mean tropospheric ozone columns derived from the Infrared Atmospheric Sounding Interferometer (IASI and from OASIS measurements are compared for summer 2009 and a good agreement of −5.6 (±16.1 % is observed. Also, a qualitative comparison between in-situ surface ozone measurements and OASIS data reveals OASIS's capacity to monitor seasonal tropospheric ozone variations, as well as ozone pollution episodes in summer 2009 around Paris. Two extreme pollution events are identified (on the 1 July and 6 August 2009 for which ozone partial columns from OASIS and predictions from a regional air-quality model (CHIMERE are compared following strict criteria of temporal and spatial coincidence. An average bias of 0.2%, a mean square error deviation of 7.6%, and a correlation coefficient of 0.91 is found between CHIMERE and OASIS, demonstrating the potential of a mid-resolution FTIR instrument in ground-based solar absorption geometry for tropospheric ozone monitoring.

  1. Far-infrared imaging and spectroscopic instrumentation

    NARCIS (Netherlands)

    Swinyard, B. M.; Wild, Wolfgang; Huber, Martin C.E.; Pauluhn, Anuschka; Culhane, J. Len; Timothy, J. Gethyn; Wilhelm, Klaus; Zehnder, Alex

    2013-01-01

    The subject of the design and implementation of infrared space missions is briefly reviewed and the limitations imposed by the needs of requiring cryogenic instruments and telescopes introduced. We give an introduction to direct detection techniques for imaging and spectroscopy and review the curren

  2. Performance study of ground-based infrared Bracewell interferometers - Application to the detection of exozodiacal dust disks with GENIE

    CERN Document Server

    Absil, O; Gondoin, P; Fabry, P; Wilhelm, R; Gitton, P; Puech, F

    2005-01-01

    Nulling interferometry, a powerful technique for high-resolution imaging of the close neighbourhood of bright astrophysical objets, is currently considered for future space missions such as Darwin or the Terrestrial Planet Finder Interferometer (TPF-I), both aiming at Earth-like planet detection and characterization. Ground-based nulling interferometers are being studied for both technology demonstration and scientific preparation of the Darwin/TPF-I missions through a systematic survey of circumstellar dust disks around nearby stars. In this paper, we investigate the influence of atmospheric turbulence on the performance of ground-based nulling instruments, and deduce the major design guidelines for such instruments. End-to-end numerical simulations allow us to estimate the performance of the main subsystems and thereby the actual sensitivity of the nuller to faint exozodiacal disks. Particular attention is also given to the important question of stellar leakage calibration. This study is illustrated in the ...

  3. Fourier Transform Infrared Spectroscopic Analysis of Protein Secondary Structures

    Institute of Scientific and Technical Information of China (English)

    Jilie KONG; Shaoning YU

    2007-01-01

    Infrared spectroscopy is one of the oldest and well established experimental techniques for the analysis of secondary structure of polypeptides and proteins. It is convenient, non-destructive, requires less sample preparation, and can be used under a wide variety of conditions. This review introduces the recent developments in Fourier transform infrared (FTIR) spectroscopy technique and its applications to protein structural studies. The experimental skills, data analysis, and correlations between the FTIR spectroscopic bands and protein secondary structure components are discussed. The applications of FTIR to the secondary structure analysis, conformational changes, structural dynamics and stability studies of proteins are also discussed.

  4. Ground based spectroscopy of hot Jupiters

    Science.gov (United States)

    Waldmann, Ingo

    2010-05-01

    It has been shown in recent years with great success that spectroscopy of exoplanetary atmospheres is feasible using space based observatories such as the HST and Spitzer. However, with the end of the Spitzer cold-phase, space based observations in the near to mid infra-red are limited, which will remain true until the the onset of the JWST. The importance of developing methods of ground based spectroscopic analysis of known hot Jupiters is therefore apparent. In the past, various groups have attempted exoplanetary spectroscopy using ground based facilities and various techniques. Here I will present results using a novel spectral retrieval method for near to mid infra-red emission and transmission spectra of exoplanetary atmospheres taken from the ground and discuss the feasibility of future ground-based spectroscopy in a broader context. My recently commenced PhD project is under the supervision of Giovanna Tinetti (University College London) and in collaboration with J. P. Beaulieu (Institut d'Astrophysique de Paris), Mark Swain and Pieter Deroo (Jet Propulsion Laboratory, Caltech).

  5. Tropospheric and total ozone columns over Paris (France measured using medium-resolution ground-based solar-absorption Fourier-transform infrared spectroscopy

    Directory of Open Access Journals (Sweden)

    C. Viatte

    2011-05-01

    Full Text Available Ground-based Fourier-transform infrared (FTIR solar absorption spectroscopy is a powerful remote sensing technique providing information on the vertical distribution of various atmospheric constituents. This work presents the first evaluation of a mid-resolution ground-based FTIR to measure tropospheric ozone, independently of stratospheric ozone. This is demonstrated using a new atmospheric observatory (named OASIS for "Observations of the Atmosphere by Solar absorption Infrared Spectroscopy", installed in Créteil (France. Indeed, the information content of OASIS ozone retrievals is clearly sufficient to monitor separately tropospheric (from the surface up to 8 km and stratospheric ozone. Daily mean tropospheric ozone columns derived from the Infrared Atmospheric Sounding Interferometer (IASI and from OASIS measurements have been compared for summer 2009 and a good agreement of −5.6 (±16.1 % is observed. Also, a qualitative comparison between in-situ surface ozone measurements and OASIS data clearly shows OASIS's capacity to monitor seasonal tropospheric ozone variations, as well as ozone pollution episodes in summer 2009 around Paris. Two extreme pollution events were identified (on the 1 July and 6 August 2009 for which ozone partial columns from OASIS and predictions from a regional air-quality model (CHIMERE were compared by respecting temporal and spatial coincidence criteria. Quantitatively, an average bias of 0.2 %, a mean square error deviation of 7.6 %, and a correlation coefficient of 0.91 was found between CHIMERE and OASIS. This demonstrates that a mid-resolution FTIR instrument in ground-based solar absorption geometry is a promising technique for monitoring tropospheric ozone.

  6. Spectroscopic infrared ellipsometry to determine the structure of layered samples

    Energy Technology Data Exchange (ETDEWEB)

    Korte, Ernst-Heiner; Hinrichs, Karsten; Roeseler, Arnulf

    2002-10-15

    This contribution outlines investigations in our laboratory in the course of developing spectroscopic infrared ellipsometry into an analytical tool for structure elucidation of a given solid sample with one single experimental technique. The term 'structure' is meant here to comprise the layer or stack geometry of a sample along with the thicknesses, as well as the optical properties of the individual layers. The latter ones--expressed as optical constants--serve as a basis to characterize the layer material, from the identity of the compound to specific molecular interactions and order. There are no general restrictions as to the physical properties of the materials; the individual layers or films should advantageously be thin enough to transmit infrared radiation at least within spectral windows. The sensitivity of infrared ellipsometry to films as thin as a few nanometers or less is illustrated by experimental examples.

  7. A Ground-Based Near Infrared Camera Array System for UAV Auto-Landing in GPS-Denied Environment

    Directory of Open Access Journals (Sweden)

    Tao Yang

    2016-08-01

    Full Text Available This paper proposes a novel infrared camera array guidance system with capability to track and provide real time position and speed of a fixed-wing Unmanned air vehicle (UAV during a landing process. The system mainly include three novel parts: (1 Infrared camera array and near infrared laser lamp based cooperative long range optical imaging module; (2 Large scale outdoor camera array calibration module; and (3 Laser marker detection and 3D tracking module. Extensive automatic landing experiments with fixed-wing flight demonstrate that our infrared camera array system has the unique ability to guide the UAV landing safely and accurately in real time. Moreover, the measurement and control distance of our system is more than 1000 m. The experimental results also demonstrate that our system can be used for UAV automatic accurate landing in Global Position System (GPS-denied environments.

  8. A Ground-Based Near Infrared Camera Array System for UAV Auto-Landing in GPS-Denied Environment.

    Science.gov (United States)

    Yang, Tao; Li, Guangpo; Li, Jing; Zhang, Yanning; Zhang, Xiaoqiang; Zhang, Zhuoyue; Li, Zhi

    2016-08-30

    This paper proposes a novel infrared camera array guidance system with capability to track and provide real time position and speed of a fixed-wing Unmanned air vehicle (UAV) during a landing process. The system mainly include three novel parts: (1) Infrared camera array and near infrared laser lamp based cooperative long range optical imaging module; (2) Large scale outdoor camera array calibration module; and (3) Laser marker detection and 3D tracking module. Extensive automatic landing experiments with fixed-wing flight demonstrate that our infrared camera array system has the unique ability to guide the UAV landing safely and accurately in real time. Moreover, the measurement and control distance of our system is more than 1000 m. The experimental results also demonstrate that our system can be used for UAV automatic accurate landing in Global Position System (GPS)-denied environments.

  9. A Ground-Based Near Infrared Camera Array System for UAV Auto-Landing in GPS-Denied Environment

    Science.gov (United States)

    Yang, Tao; Li, Guangpo; Li, Jing; Zhang, Yanning; Zhang, Xiaoqiang; Zhang, Zhuoyue; Li, Zhi

    2016-01-01

    This paper proposes a novel infrared camera array guidance system with capability to track and provide real time position and speed of a fixed-wing Unmanned air vehicle (UAV) during a landing process. The system mainly include three novel parts: (1) Infrared camera array and near infrared laser lamp based cooperative long range optical imaging module; (2) Large scale outdoor camera array calibration module; and (3) Laser marker detection and 3D tracking module. Extensive automatic landing experiments with fixed-wing flight demonstrate that our infrared camera array system has the unique ability to guide the UAV landing safely and accurately in real time. Moreover, the measurement and control distance of our system is more than 1000 m. The experimental results also demonstrate that our system can be used for UAV automatic accurate landing in Global Position System (GPS)-denied environments. PMID:27589755

  10. Retrieval of volcanic ash particle size, mass and optical depth from a ground-based thermal infrared camera

    Science.gov (United States)

    Prata, A. J.; Bernardo, C.

    2009-09-01

    Volcanoes can emit fine-sized ash particles (1-10 μm radii) into the atmosphere and if they reach the upper troposphere or lower stratosphere, these particles can have deleterious effects on the atmosphere and climate. If they remain within the lowest few kilometers of the atmosphere, the particles can lead to health effects in humans and animals and also affect vegetation. It is therefore of some interest to be able to measure the particle size distribution, mass and other optical properties of fine ash once suspended in the atmosphere. A new imaging camera working in the infrared region between 7-14 μm has been developed to detect and quantify volcanic ash. The camera uses passive infrared radiation measured in up to five spectral channels to discriminate ash from other atmospheric absorbers (e.g. water molecules) and a microphysical ash model is used to invert the measurements into three retrievable quantities: the particle size distribution, the infrared optical depth and the total mass of fine particles. In this study we describe the salient characteristics of the thermal infrared imaging camera and present the first retrievals from field studies at an erupting volcano. An automated ash alarm algorithm has been devised and tested and a quantitative ash retrieval scheme developed to infer particle sizes, infrared optical depths and mass in a developing ash column. The results suggest that the camera is a useful quantitative tool for monitoring volcanic particulates in the size range 1-10 μm and because it can operate during the night, it may be a very useful complement to other instruments (e.g. ultra-violet spectrometers) that only operate during daylight.

  11. Comparison of Cloud Base Height Derived from a Ground-Based Infrared Cloud Measurement and Two Ceilometers

    Directory of Open Access Journals (Sweden)

    Lei Liu

    2015-01-01

    Full Text Available The cloud base height (CBH derived from the whole-sky infrared cloud-measuring system (WSIRCMS and two ceilometers (Vaisala CL31 and CL51 from November 1, 2011, to June 12, 2012, at the Chinese Meteorological Administration (CMA Beijing Observatory Station are analysed. Significant differences can be found by comparing the measurements of different instruments. More exactly, the cloud occurrence retrieved from CL31 is 3.8% higher than that from CL51, while WSIRCMS data shows 3.6% higher than ceilometers. More than 75.5% of the two ceilometers’ differences are within ±200 m and about 89.5% within ±500 m, while only 30.7% of the differences between WSIRCMS and ceilometers are within ±500 m and about 55.2% within ±1000 m. These differences may be caused by the measurement principles and CBH retrieval algorithm. A combination of a laser ceilometer and an infrared cloud instrument is recommended to improve the capability for determining cloud occurrence and retrieving CBHs.

  12. Advancing Nebular Astrophysics through Near-Infrared Spectroscopic Mapping

    Science.gov (United States)

    Waller, William H.; Kutyrev, A.; Silverberg, R.; Woodgate, B.; Allen, L.

    2006-12-01

    Infrared continuum surveys, optical emission-line surveys, and radio CO and HI surveys have revealed the star-forming ISM as a complex "froth" of shells, filaments, blobs, and myriad "working surfaces" whose origin and evolution remain poorly understood. The generic relations between these nebular structures and the embedded star clusters that have been discovered in abundance throughout the Galaxy by the Spitzer Space Telescope have yet to be deciphered. To address these challenges, we consider the options for carrying out wide-field narrow-band imaging surveys of the near-infrared line emission from the Milky Way and other nearby star-forming galaxies. The near-IR part of the EM spectrum is rich with diagnostic nebular emission features. We draw from the experiences gained from the ABU/SPIREX near-IR telescope that operated in Antarctica in the late 1990s, and from the Brackett-Alpha Mapper (BAM) -a Fabry-Perot spectrometer that successfully measured kinematics of the warm-ionized hydrogen gas in the northern Milky Way. Options for deploying a multi-line near-infrared spectroscopic mapper on SOFIA, high-altitude balloons, and the lunar surface will be discussed.

  13. INFRARED AND RAMAN SPECTROSCOPIC FEATURES OF PLANT CUTICLES: A REVIEW

    Directory of Open Access Journals (Sweden)

    José Alejandro Heredia-Guerrero

    2014-06-01

    Full Text Available The cuticle is one of the most important plant barriers. It is an external and continuous lipid membrane that covers the surface of epidermal cells and whose main function is to prevent the massive loss of water. The spectroscopic characterization of the plant cuticle and its components (cutin, cutan, waxes, polysaccharides and phenolics by infrared and Raman spectroscopies has provided significant advances in the knowledge of the functional groups present in the cuticular matrix and on their structural role, interaction and macromolecular arrangement. Additionally, these spectroscopies have been used in the study of cuticle interaction with exogenous molecules, degradation, distribution of components within the cuticle matrix, changes during growth and development and characterization of fossil plants.

  14. Infrared and Raman spectroscopic features of plant cuticles: a review

    Science.gov (United States)

    Heredia-Guerrero, José A.; Benítez, José J.; Domínguez, Eva; Bayer, Ilker S.; Cingolani, Roberto; Athanassiou, Athanassia; Heredia, Antonio

    2014-01-01

    The cuticle is one of the most important plant barriers. It is an external and continuous lipid membrane that covers the surface of epidermal cells and whose main function is to prevent the massive loss of water. The spectroscopic characterization of the plant cuticle and its components (cutin, cutan, waxes, polysaccharides and phenolics) by infrared and Raman spectroscopies has provided significant advances in the knowledge of the functional groups present in the cuticular matrix and on their structural role, interaction and macromolecular arrangement. Additionally, these spectroscopies have been used in the study of cuticle interaction with exogenous molecules, degradation, distribution of components within the cuticle matrix, changes during growth and development and characterization of fossil plants. PMID:25009549

  15. High definition infrared spectroscopic imaging for lymph node histopathology.

    Directory of Open Access Journals (Sweden)

    L Suzanne Leslie

    Full Text Available Chemical imaging is a rapidly emerging field in which molecular information within samples can be used to predict biological function and recognize disease without the use of stains or manual identification. In Fourier transform infrared (FT-IR spectroscopic imaging, molecular absorption contrast provides a large signal relative to noise. Due to the long mid-IR wavelengths and sub-optimal instrument design, however, pixel sizes have historically been much larger than cells. This limits both the accuracy of the technique in identifying small regions, as well as the ability to visualize single cells. Here we obtain data with micron-sized sampling using a tabletop FT-IR instrument, and demonstrate that the high-definition (HD data lead to accurate identification of multiple cells in lymph nodes that was not previously possible. Highly accurate recognition of eight distinct classes - naïve and memory B cells, T cells, erythrocytes, connective tissue, fibrovascular network, smooth muscle, and light and dark zone activated B cells was achieved in healthy, reactive, and malignant lymph node biopsies using a random forest classifier. The results demonstrate that cells currently identifiable only through immunohistochemical stains and cumbersome manual recognition of optical microscopy images can now be distinguished to a similar level through a single IR spectroscopic image from a lymph node biopsy.

  16. Change detection and characterization of volcanic activity using ground based low-light and near infrared cameras to monitor incandescence and thermal signatures

    Science.gov (United States)

    Harrild, Martin; Webley, Peter; Dehn, Jonathan

    2015-04-01

    Knowledge and understanding of precursory events and thermal signatures are vital for monitoring volcanogenic processes, as activity can often range from low level lava effusion to large explosive eruptions, easily capable of ejecting ash up to aircraft cruise altitudes. Using ground based remote sensing techniques to monitor and detect this activity is essential, but often the required equipment and maintenance is expensive. Our investigation explores the use of low-light cameras to image volcanic activity in the visible to near infrared (NIR) portion of the electromagnetic spectrum. These cameras are ideal for monitoring as they are cheap, consume little power, are easily replaced and can provide near real-time data. We focus here on the early detection of volcanic activity, using automated scripts, that capture streaming online webcam imagery and evaluate image pixel brightness values to determine relative changes and flag increases in activity. The script is written in Python, an open source programming language, to reduce the overall cost to potential consumers and increase the application of these tools across the volcanological community. In addition, by performing laboratory tests to determine the spectral response of these cameras, a direct comparison of collocated low-light and thermal infrared cameras has allowed approximate eruption temperatures and effusion rates to be determined from pixel brightness. The results of a field campaign in June, 2013 to Stromboli volcano, Italy, are also presented here. Future field campaigns to Latin America will include collaborations with INSIVUMEH in Guatemala, to apply our techniques to Fuego and Santiaguito volcanoes.

  17. Ground-based Infrared Observations of Water Vapor and Hydrogen Peroxide in the Atmosphere of Mars Near Summer Solstice

    Science.gov (United States)

    Encrenaz, Therese; Greathouse, T. K.; Bitner, M.; Kruger, A.; Lacy, J. H.; Richter, M. J.; Bezard, B.; Fouchet, T.; Lefevre, F.; Forget, F.; Atreya, S. K.

    2008-09-01

    Observations of HDO and H2O2 martian lines have been made with the TEXES instrument (Texas Echelon Cross Echelle Spectrograph) at the NASA Infrared Telescope Facility near summer solstice on two separate occasions, in Feb. 2001 (Ls = 110 deg.) and June 2008 (Ls = 80 deg.). Maps of HDO have been obtained by ratioing the depth of a weak HDO transition to the depth of a nearby CO2 line of comparable intensity. Both maps clearly show the maximum water vapor content in the vicinity of the north pole. The H2O2 molecule was not detected during the Feb. 2001 run (Encrenaz et al. AA 396, 1037-1044, 2002), but was marginally detectable during the June 2008 run. In both cases, the inferred H2O2 abundance is lower than the predictions of the GCM. This conclusion agrees with other observations performed near equinox (Ls = 332 deg., Encrenaz et al. Icarus 195, 547, 2008) while, in contrast, the observations for Ls = 206 deg. (beginning of southern spring) were in good agreement with the models (Encrenaz et al. Icarus 170, 424, 2004). The seasonal behaviour of hydrogen peroxide on Mars is not well understood and requires further investigation.

  18. The WFC3 Infrared Spectroscopic Parallel (WISP) Survey

    CERN Document Server

    Atek, H; McCarthy, P; Teplitz, H; Scarlata, C; Siana, B; Henry, A; Colbert, J; Ross, N R; Bridge, C; Bunker, A J; Dressler, A; Fosbury, R A E; martin, C; Shim, H

    2010-01-01

    We present the WFC3 Infrared Spectroscopic Parallel (WISP) Survey. WISP is obtaining slitless, near-infrared grism spectroscopy of ~ 90 independent, high-latitude fields by observing in the pure parallel mode with Wide Field Camera-3 on the Hubble Space Telescope for a total of ~ 250 orbits. Spectra are obtained with the G102 (lambda=0.8-1.17 microns, R ~ 210) and G141 grisms (lambda=1.11-1.67 microns, R ~ 130), together with direct imaging in the J- and H-bands (F110W and F140W, respectively). In the present paper, we present the first results from 19 WISP fields, covering approximately 63 square arc minutes. For typical exposure times (~ 6400 sec in G102 and ~ 2700 sec in G141), we reach 5-sigma detection limits for emission lines of 5 x 10^(-17) ergs s^(-1) cm^(-2) for compact objects. Typical direct imaging 5sigma-limits are 26.8 and 25.0 magnitudes (AB) in F110W and F140W, respectively. Restricting ourselves to the lines measured with highest confidence, we present a list of 328 emission lines, in 229 ob...

  19. Time-resolved infrared spectroscopic techniques as applied to Channelrhodopsin

    Directory of Open Access Journals (Sweden)

    Eglof eRitter

    2015-07-01

    Full Text Available Among optogenetic tools, channelrhodopsins, the light gated ion channels of the plasma membrane from green algae, play the most important role. Properties like channel selectivity, timing parameters or color can be influenced by the exchange of selected amino acids. Although widely used, in the field of neurosciences for example, there is still little known about their photocycles and the mechanism of ion channel gating and conductance. One of the preferred methods for these studies is infrared spectroscopy since it allows observation of proteins and their function at a molecular level and in near-native environment. The absorption of a photon in channelrhodopsin leads to retinal isomerization within femtoseconds, the conductive states are reached in the microsecond time scale and the return into the fully dark-adapted state may take more than minutes. To be able to cover all these time regimes, a range of different spectroscopical approaches are necessary. This mini-review focuses on time-resolved applications of the infrared technique to study channelrhodopsins and other light triggered proteins. We will discuss the approaches with respect to their suitability to the investigation of channelrhodopsin and related proteins.

  20. Far-infrared Spectroscopic Characterization of Anti-vinyl Alcohol

    Science.gov (United States)

    Bunn, Hayley; Soliday, Rebekah M.; Sumner, Isaiah; Raston, Paul L.

    2017-09-01

    We report a detailed analysis of the high-resolution far-infrared spectrum of anti-vinyl alcohol, which has been previously identified toward Sagittarius B2(N). The ν 15 OH torsional fundamental investigated here is more than 200 cm‑1 removed from the next nearest vibration, making it practically unperturbed and ideal to help refine the ground state rotational constants that were previously determined from 25 microwave lines. We assigned 1335 lines within the ν 15 fundamental centered at 261.5512 cm‑1, with J and K a ranges of 1–59 and 0–16, respectively. The microwave and far-infrared line positions were fit with Watson-type A- and S-reduced Hamiltonians, with the inclusion of quartic and select sextic distortion terms. This resulted in a significant refinement of the ground state constants, in addition to the determination of the {ν }15=1 state constants for the first time. The spectroscopic parameters are in good agreement with the results from anharmonic coupled-cluster calculations, and should be useful in searches for rotationally and/or vibrationally warm anti-vinyl alcohol in interstellar molecular clouds.

  1. Characteristics of puffing activity revealed by ground-based, thermal infrared imaging: the example of Stromboli Volcano (Italy)

    Science.gov (United States)

    Gaudin, Damien; Taddeucci, Jacopo; Scarlato, Piergiorgio; Harris, Andrew; Bombrun, Maxime; Del Bello, Elisabetta; Ricci, Tullio

    2017-03-01

    Puffing, i.e., the frequent (1 s ca.) release of small (0.1-10 m3), over-pressurized pockets of magmatic gases, is a typical feature of open-conduit basaltic volcanoes worldwide. Despite its non-trivial contribution to the degassing budget of these volcanoes and its recognized role in volcano monitoring, detection and metering tools for puffing are still limited. Taking advantage of the recent developments in high-speed thermal infrared imaging, we developed a specific processing algorithm to detect the emission of individual puffs and measure their duration, size, volume, and apparent temperature at the vent. As a test case, we applied our method at Stromboli Volcano (Italy), studying "snapshots" of 1 min collected in the years 2012, 2013, and 2014 at several vents. In all 3 years, puffing occurred simultaneously at three or more vents with variable features. At the scale of the single vent, a direct relationship links puff temperature and radius, suggesting that the apparent temperature is mostly a function of puff thickness, while the real gas temperature is constant for all puffs. Once released in the atmosphere, puffs dissipate in less than 20 m. On a broader scale, puffing activity is highly variable from vent to vent and year to year, with a link between average frequency, temperature, and volume from 136 puffs per minute, 600 K above ambient temperature, 0.1 m3, and the occasional ejection of pyroclasts to 20 puffs per minute, 3 K above ambient, 20 m3, and no pyroclasts. Frequent, small, hot puffs occur at random intervals, while as the frequency decreases and size increases, an increasingly longer minimum interval between puffs, up to 0.5 s, appears. These less frequent and smaller puffs also display a positive correlation between puff volume and the delay from the previous puff. Our results suggest an important role of shallow bubble coalescence in controlling puffing activity. The smaller and more frequent puffing at "hotter" vents is in agreement with

  2. GROUND-BASED INFRARED DETECTIONS OF CO IN THE CENTAUR-COMET 29P/SCHWASSMANN-WACHMANN 1 AT 6.26 AU FROM THE SUN

    Energy Technology Data Exchange (ETDEWEB)

    Paganini, Lucas; Mumma, Michael J.; DiSanti, Michael A.; Villanueva, Geronimo L.; Bonev, Boncho P. [Goddard Center for Astrobiology, NASA GSFC, MS 690, Greenbelt, MD 20771 (United States); Boehnhardt, Hermann; Lippi, Manuela [Max-Planck-Institut fuer Sonnensystemforschung, D-37191 Katlenburg-Lindau (Germany); Kaeufl, Hans U. [European Southern Observatory (ESO), Karl-Schwarzschildst. 2, D-85748 Garching (Germany); Blake, Geoffrey A., E-mail: lucas.paganini@nasa.gov [Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125 (United States)

    2013-04-01

    We observed Comet 29P/Schwassmann-Wachmann 1 (hereafter, 29P) in 2012 February and May with CRIRES/VLT and NIRSPEC/Keck-II, when the comet was at 6.26 AU from the Sun and about 5.50 AU from Earth. With CRIRES, we detected five CO emission lines on several nights in each epoch, confirming the ubiquitous content and release of carbon monoxide from the nucleus. This is the first simultaneous detection of multiple lines from any (neutral) gaseous species in comet 29P at infrared wavelengths. It is also the first extraction of a rotational temperature based on the intensities of simultaneously measured spectral lines in 29P, and the retrieved rotational temperature is the lowest obtained in our infrared survey to date. We present the retrieved production rates ({approx}3 Multiplication-Sign 10{sup 28} molecules s{sup -1}) and remarkably low ({approx}5 K) rotational temperatures for CO, and compare them with results from previous observations at radio wavelengths. Along with CO, we pursued detections of other volatiles, namely H{sub 2}O, C{sub 2}H{sub 6}, C{sub 2}H{sub 2}, CH{sub 4}, HCN, NH{sub 3}, and CH{sub 3}OH. Although they were not detected, we present sensitive upper limits. These results establish a new record for detections by infrared spectroscopy of parent volatiles in comets at large heliocentric distances. Until now considered to be a somewhat impossible task with IR ground-based facilities, these discoveries demonstrate new opportunities for targeting volatile species in distant comets.

  3. Ground-based observations of exoplanet atmospheres

    NARCIS (Netherlands)

    Mooij, Ernst Johan Walter de

    2011-01-01

    This thesis focuses on the properties of exoplanet atmospheres. The results for ground-based near-infrared secondary eclipse observations of three different exoplanets, TrES-3b, HAT-P-1b and WASP-33b, are presented which have been obtained with ground-based telescopes as part of the GROUSE project.

  4. Ground-based observations of exoplanet atmospheres

    NARCIS (Netherlands)

    Mooij, Ernst Johan Walter de

    2011-01-01

    This thesis focuses on the properties of exoplanet atmospheres. The results for ground-based near-infrared secondary eclipse observations of three different exoplanets, TrES-3b, HAT-P-1b and WASP-33b, are presented which have been obtained with ground-based telescopes as part of the GROUSE project.

  5. Using ground-based solar and lunar infrared spectroscopy to study the diurnal trend of carbon monoxide in the Mexico City boundary layer

    Directory of Open Access Journals (Sweden)

    W. Stremme

    2009-05-01

    Full Text Available Carbon monoxide (CO is a main pollutant in urban agglomerations. Quantifying the total burden of this pollutant in a megacity is challaging because not only its surface concentration but also its vertical dispersion present different behaviours and high variability. The diurnal trend of columnar CO in the boundary layer of Mexico City has been measured during various days with ground-based infrared absorption spectroscopy. Daytime CO total columns are retrieved from solar spectra and for the first time, nocturnal CO total columns using moonlight have been retrieved within a megacity. The measurements were taken at the Universidad Nacional Autónoma de México (UNAM campus located in Mexico City (19.33° N, 99.18° W, 2260 m a.s.l. from October 2007 until February 2008 with a Fourier-transform infrared spectrometer at 0.5 cm−1 resolution. The atmospheric CO background column was measured from the high altitude site Altzomoni (19.12° N, 98.65° W, 4010 m a.s.l. located 60 km southeast of Mexico City. The total CO column within the city presents large variations that are caused mainly by fresh CO emissions at the surface, but also the transport of cleaner or more polluted air masses within the field-of-view of the instrument and other processes contribute to its variability. The mean background value above the boundary mixing layer was found to be around (1.2±0.2×1018 molecules/cm2, while inside the city, the late morning mean on weekdays and Sundays was found to be (3.2±0.3×1018 molecules/cm2 and (2.1±0.4×1018 molecules/cm2, respectively. Continuous CO column retrieval during the day and night (when available, in conjunction with surface CO measurements, allow for a reconstruction of the effective mixing layer height. The limitations from this simplified approach, as well as the potential of using continuous column measurements in order to derive top-down CO

  6. Using ground-based solar and lunar infrared spectroscopy to study the diurnal trend of carbon monoxide in the Mexico City boundary layer

    Directory of Open Access Journals (Sweden)

    W. Stremme

    2009-10-01

    Full Text Available Carbon monoxide (CO is an important pollutant in urban agglomerations. Quantifying the total burden of this pollutant in a megacity is challenging because not only its surface concentration but also its vertical dispersion present different behaviours and high variability. The diurnal trend of columnar CO in the boundary layer of Mexico City has been measured during various days with ground-based infrared absorption spectroscopy. Daytime CO total columns are retrieved from solar spectra and for the first time, nocturnal CO total columns using moonlight have been retrieved within a megacity. The measurements were taken at the Universidad Nacional Autónoma de México (UNAM campus located in Mexico City (19.33° N, 99.18° W, 2260 m a.s.l. from October 2007 until February 2008 with a Fourier-transform infrared spectrometer at 0.5 cm−1 resolution. The atmospheric CO background column was measured from the high altitude site Altzomoni (19.12° N, 98.65° W, 4010 m a.s.l. located 60 km southeast of Mexico City. The total CO column within the city presents large variations. Fresh CO emissions at the surface, the transport of cleaner or more polluted air masses within the field-of-view of the instrument and other processes contribute to this variability. The mean background value above the boundary mixing layer was found to be (8.4±0.5×1017 molecules/cm2, while inside the city, the late morning mean on weekdays and Sundays was found to be (2.73±0.41×1018 molecules/cm2 and (2.04±0.57×1018 molecules/cm2, respectively. Continuous CO column retrieval during the day and night (when available, in conjunction with surface CO measurements, allow for a reconstruction of the effective mixing layer height. The limitations from this simplified approach, as well as the potential of using continuous column measurements in order to derive top-down CO emissions from a large urban area

  7. Near infrared spectroscopic imaging assessment of cartilage composition: Validation with mid infrared imaging spectroscopy.

    Science.gov (United States)

    Palukuru, Uday P; Hanifi, Arash; McGoverin, Cushla M; Devlin, Sean; Lelkes, Peter I; Pleshko, Nancy

    2016-07-05

    Disease or injury to articular cartilage results in loss of extracellular matrix components which can lead to the development of osteoarthritis (OA). To better understand the process of disease development, there is a need for evaluation of changes in cartilage composition without the requirement of extensive sample preparation. Near infrared (NIR) spectroscopy is a chemical investigative technique based on molecular vibrations that is increasingly used as an assessment tool for studying cartilage composition. However, the assignment of specific molecular vibrations to absorbance bands in the NIR spectrum of cartilage, which arise from overtones and combinations of primary absorbances in the mid infrared (MIR) spectral region, has been challenging. In contrast, MIR spectroscopic assessment of cartilage is well-established, with many studies validating the assignment of specific bands present in MIR spectra to specific molecular vibrations. In the current study, NIR imaging spectroscopic data were obtained for compositional analysis of tissues that served as an in vitro model of OA. MIR spectroscopic data obtained from the identical tissue regions were used as the gold-standard for collagen and proteoglycan (PG) content. MIR spectroscopy in transmittance mode typically requires a much shorter pathlength through the sample (≤10 microns thick) compared to NIR spectroscopy (millimeters). Thus, this study first addressed the linearity of small absorbance bands in the MIR region with increasing tissue thickness, suitable for obtaining a signal in both the MIR and NIR regions. It was found that the linearity of specific, small MIR absorbance bands attributable to the collagen and PG components of cartilage (at 1336 and 856 cm(-1), respectively) are maintained through a thickness of 60 μm, which was also suitable for NIR data collection. MIR and NIR spectral data were then collected from 60 μm thick samples of cartilage degraded with chondroitinase ABC as a model

  8. A Coordinated X-ray and Optical Campaign of the Nearest Massive Eclipsing Binary, delta Orionis Aa: III. Analysis of Optical Photometric MOST and Spectroscopic (Ground Based) Variations

    CERN Document Server

    Pablo, Herbert; Moffat, Anthony F J; Corcoran, Michael; Shenar, Tomer; Benvenuto, Omar; Fuller, Jim; Naze, Yael; Hoffman, Jennifer L; Miroshnichenko, Anatoly; Apellaniz, Jesus Maiz; Evans, Nancy; Eversberg, Thomas; Gayley, Ken; Gull, Ted; Hamaguch, Kenji; Hamann, Wolf-Rainer; Henrichs, Huib; Hole, Tabetha; Ignace, Richard; Iping, Rosina; Lauer, Jennifer; Leutenegger, Maurice; Lomax, Jamie; Nichols, Joy; Oskinova, Lida; Owocki, Stan; Pollock, Andy; Russell, Christopher M P; Waldron, Wayne; Buil, Christian; Garrel, Thierry; Graham, Keith; Heathcote, Bernard; Lemoult, Thierry; Li, Dong; Mauclaire, Benjamin; Potter, Mike; Ribeiro, Jose; Matthews, Jaymie; Cameron, Chris; Guenther, David; Kuschnig, Rainer; Rowe, Jason; Rucinski, Slavek; Sasselov, Dimitar; Weiss, Werner

    2015-01-01

    We report on both high-precision photometry from the MOST space telescope and ground-based spectroscopy of the triple system delta Ori A consisting of a binary O9.5II+early-B (Aa1 and Aa2) with P = 5.7d, and a more distant tertiary (O9 IV P > 400 yrs). This data was collected in concert with X-ray spectroscopy from the Chandra X-ray Observatory. Thanks to continuous coverage for 3 weeks, the MOST light curve reveals clear eclipses between Aa1 and Aa2 for the ?first time in non-phased data. From the spectroscopy we have a well constrained radial velocity curve of Aa1. While we are unable to recover radial velocity variations of the secondary star, we are able to constrain several fundamental parameters of this system and determine an approximate mass of the primary using apsidal motion. We also detected second order modulations at 12 separate frequencies with spacings indicative of tidally influenced oscillations. These spacings have never been seen in a massive binary, making this system one of only a handful...

  9. A Climatology of Tropospheric CO over the Central and Southeastern United States and the Southwestern Pacific Ocean Derived from Space, Air, and Ground-based Infrared Interferometer Spectra

    Science.gov (United States)

    McMillian, W. Wallace; Strow, L. Larrabee; Revercomb, H.; Knuteson, R.; Thompson, A.

    2003-01-01

    This final report summarizes all research activities and publications undertaken as part of NASA Atmospheric Chemistry and Modeling Analysis Program (ACMAP) Grant NAG-1-2022, 'A Climatology of Tropospheric CO over the Central and Southeastern United States and the Southwestern Pacific Ocean Derived from Space, Air, and Ground-based Infrared Interferometer Spectra'. Major project accomplishments include: (1) analysis of more than 300,000 AERI spectra from the ARM SGP site yielding a 5-year (1998-2002) timeseries of CO retrievals from the Lamont, OK AERI; (2) development of a prototype CO profile retrieval algorithm for AERI spectra; (3) validation and publication of the first CO retrievals from the Scanning High-resolution Interferometer Sounder (SHIS); and (4) development of a prototype AERI tropospheric O3 retrieval algorithm. Compilation and publication of the 5-year Lamont, OK timeseries is underway including a new collaboration with scientists at the Lawrence Berkeley National Laboratory. Public access to this data will be provided upon article submission. A comprehensive CO analysis of the archive of HIS spectra of remains as the only originally proposed activity with little progress. The greatest challenge faced in this project was motivating the University of Wisconsin Co-Investigators to deliver their archived HIS and AERIOO data along with the requisite temperature and water vapor profiles in a timely manner. Part of the supplied HIS dataset from ASHOE may be analyzed as part of a Master s Thesis under a separate project. Our success with the SAFARI 2000 SHIS CO analysis demonstrates the utility of such aircraft remote sensing data given the proper support from the instrument investigators. In addition to the PI and Co-I s, personnel involved in this CO climatology project include one Post Doctoral Fellow, one Research Scientist, two graduate students, and two undergraduate students. A total of fifteen presentations regarding research related to this

  10. A far-infrared spectroscopic survey of intermediate redshift (ultra) luminous infrared galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Magdis, Georgios E.; Rigopoulou, D. [Department of Physics, University of Oxford, Keble Road, Oxford OX1 3RH (United Kingdom); Hopwood, R.; Clements, D. [Physics Department, Imperial College London, South Kensington Campus, London SW7 2AZ (United Kingdom); Huang, J.-S. [National Astronomical Observatories of China, Chinese Academy of Sciences, Beijing 100012 (China); Farrah, D. [Department of Physics, Virginia Tech, Blacksburg, VA 24061 (United States); Pearson, C. [RAL Space, Science, and Technology Facilities Council, Rutherford Appleton Laboratory, Didcot OX11 0QX (United Kingdom); Alonso-Herrero, Almudena [Instituto de Fisica de Cantabria, CSIC-UC, E-39006 Santander (Spain); Bock, J. J. [California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125 (United States); Cooray, A. [Jet Propulsion Laboratory, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States); Griffin, M. J. [School of Physics and Astronomy, Cardiff University, Queens Buildings, The Parade, Cardiff CF24 3AA (United Kingdom); Oliver, S. [Astronomy Centre, Department of Physics and Astronomy, University of Sussex, Brighton BN1 9QH (United Kingdom); Perez Fournon, I. [Instituto de Astrofsica de Canarias (IAC), 38200, La Laguna, Tenerife (Spain); Riechers, D. [Department of Astronomy, Cornell University, 220 Space Sciences Building, Ithaca, NY 14853 (United States); Swinyard, B. M.; Thatte, N. [Institute for Astronomy, Astrophysics, Space Applications and Remote Sensing, National Observatory of Athens, GR-15236 Athens (Greece); Scott, D. [Department of Physics and Astronomy, University of British Columbia, 6224 Agricultural Road, Vancouver, BC V6T1Z1 (Canada); Valtchanov, I. [Herschel Science Centre, European Space Astronomy Centre, Villanueva de la Canada, E-28691 Madrid (Spain); Vaccari, M., E-mail: ipf@iac.es [Astrophysics Group, Physics Department, University of the Western Cape, Private Bag X17, 7535 Bellville, Cape Town (South Africa)

    2014-11-20

    We present Herschel far-IR photometry and spectroscopy as well as ground-based CO observations of an intermediate redshift (0.21 ≤ z ≤ 0.88) sample of Herschel-selected (ultra)-luminous infrared galaxies (L {sub IR} > 10{sup 11.5} L {sub ☉}). With these measurements, we trace the dust continuum, far-IR atomic line emission, in particular [C II] 157.7 μm, as well as the molecular gas of z ∼ 0.3 luminous and ultraluminous infrared galaxies (LIRGs and ULIRGs) and perform a detailed investigation of the interstellar medium of the population. We find that the majority of Herschel-selected intermediate redshift (U)LIRGs have L {sub C} {sub II}/L {sub FIR} ratios that are a factor of about 10 higher than that of local ULIRGs and comparable to that of local normal and high-z star-forming galaxies. Using our sample to bridge local and high-z [C II] observations, we find that the majority of galaxies at all redshifts and all luminosities follow an L {sub C} {sub II}–L {sub FIR} relation with a slope of unity, from which local ULIRGs and high- z active-galactic-nucleus-dominated sources are clear outliers. We also confirm that the strong anti-correlation between the L {sub C} {sub II}/L {sub FIR} ratio and the far-IR color L {sub 60}/L {sub 100} observed in the local universe holds over a broad range of redshifts and luminosities, in the sense that warmer sources exhibit lower L {sub C} {sub II}/L {sub FIR} at any epoch. Intermediate redshift ULIRGs are also characterized by large molecular gas reservoirs and by lower star formation efficiencies compared to that of local ULIRGs. The high L {sub C} {sub II}/L {sub FIR} ratios, the moderate star formation efficiencies (L {sub IR}/L{sub CO}{sup ′} or L {sub IR}/M{sub H{sub 2}}), and the relatively low dust temperatures of our sample (which are also common characteristics of high-z star-forming galaxies with ULIRG-like luminosities) indicate that the evolution of the physical properties of (U)LIRGs between the

  11. Mid-infrared vibrational spectroscopic characterization of 5,6-dihydroxyindole and eumelanin derived from it

    Science.gov (United States)

    Hyogo, Ryosuke; Nakamura, Atsushi; Okuda, Hidekazu; Wakamatsu, Kazumasa; Ito, Shosuke; Sota, Takayuki

    2011-12-01

    Mid-infrared vibrational spectroscopic study has been made on 5,6-dihydroxyindole (DHI) and DHI-derived eumelanin. It has been revealed for DHI monomer that measured infrared absorption spectrum is well reproduced by that predicted from ab initio calculations. Thus, vibrational modes of DHI monomer causing dominant absorption bands have been successfully assigned. It has been also reconfirmed that DHI-derived eumelanin includes indolequinone and/or quinone methide units in addition to DHI units.

  12. Spectroscopic [C I] mapping of the infrared dark cloud G48.65-0.29

    NARCIS (Netherlands)

    Ossenkopf, Volker; Ormel, C. W.; Simon, R.; Sun, K.; Stutzki, J.

    Aims. We report the first spectroscopic mapping of an atomic carbon line in an infrared dark cloud (IRDC). By observing the spatial distribution of the [Ci] emission in an IRDC, comparing it with the (13)CO emission and the known distribution of internal heating sources, we can quantify the role of

  13. Infrared Spectroscopic Investigation on CH Bond Acidity in Cationic Alkanes

    Science.gov (United States)

    Matsuda, Yoshiyuki; Xie, Min; Fujii, Asuka

    2016-06-01

    We have demonstrated large enhancements of CH bond acidities in alcohol, ether, and amine cations through infrared predissociation spectroscopy based on the vacuum ultraviolet photoionization detection. In this study, we investigate for the cationic alkanes (pentane, hexane, and heptane) with different alkyl chain lengths. The σ electrons are ejected in the ionization of alkanes, while nonbonding electrons are ejected in ionization of alcohols, ethers, and amines. Nevertheless, the acidity enhancements of CH in these cationic alkanes have also been demonstrated by infrared spectroscopy. The correlations of their CH bond acidities with the alkyl chain lengths as well as the mechanisms of their acidity enhancements will be discussed by comparison of infrared spectra and theoretical calculations.

  14. Infrared Spectroscopic Study for the Hydrated Clusters of Pentane Cation

    Science.gov (United States)

    Endo, Tomoya; Matsuda, Yoshiyuki; Fujii, Asuka

    2016-06-01

    We performed infrared predissociation spectroscopy of size-selected pentane-water cluster cations, [pentane-(H2O)n]+, n=1-3, generated through the vacuum-ultraviolet photoionization. In the infrared spectra of the di- and tri-hydrated clusters, there appear broad features which spread to the lower frequency region from 2800 cm-1. These broad features are assigned to vibrations of a proton, which is transferred from CH of the pentane cation to the water molecules. These results indicate that the pentane cation has high proton donor ability. We will discuss these results based on theoretical conputations.

  15. INFRARED SPECTROSCOPIC CHARACTERIZATION OF CONFORMATIONAL DEFECTS OF POLYBENZAMIDE

    Institute of Scientific and Technical Information of China (English)

    YANG Xiaozhen

    1991-01-01

    Theoretical results of normal coordinate analysis of polybenzamide performed with two conformational isomerized models, the cis-trans and the all-trans conformation, have been adopted to examine a number of infrared spectra of films of the polymer treated in a subsequent annealing process and a cooling process. It shows, in this investigation, that two sets of infrared spectral profiles around 1400 cm-1 and 900 cm-1 behave quite attractively. Their spectral behaviours have been correlated to the conformational defect variation in samples, and reasonably predicted by the normal coordinate calculation.

  16. Mid-infrared spectroscopic analysis of saccharides in aqueous solutions with sodium chloride.

    Science.gov (United States)

    Kanou, Mikihito; Kameoka, Takaharu; Suehara, Ken-Ichiro; Hashimoto, Atsushi

    2017-04-01

    The infrared spectral characteristics of three different types of disaccharides (trehalose, maltose, and sucrose) and four different types of monosaccharides (glucose, mannose, galactose, and fructose) in aqueous solutions with sodium chloride (NaCl) were determined. The infrared spectra were obtained using the FT-IR/ATR method and the absorption intensities respected the interaction between the saccharide and water with NaCl were determined. This study also focused on not only the glycosidic linkage position and the constituent monosaccharides, but also the concentration of the saccharides and NaCl and found that they have a significant influence on the infrared spectroscopic characterization of the disaccharides in an aqueous solution with NaCl. The absorption intensities representing the interaction between a saccharide and water with NaCl were spectroscopically determined. Additionally, the applications of MIR spectroscopy to obtain information about saccharide-NaCl interactions in foods and biosystems were suggested.

  17. Volcanic Ash Cloud Observation using Ground-based Ka-band Radar and Near-Infrared Lidar Ceilometer during the Eyjafjallajökull eruption

    Directory of Open Access Journals (Sweden)

    Frank S. Marzano

    2015-03-01

    Full Text Available Active remote sensing techniques can probe volcanic ash plumes, but their sensitivity at a given distance depends upon the sensor transmitted power, wavelength and polarization capability. Building on a previous numerical study at centimeter wavelength, this work aims at i simulating the distal ash particles polarimetric response of millimeter-wave radar and multi-wavelength optical lidar; ii developing and applying a model-based statistical retrieval scheme using a multi-sensor approach. The microphysical electromagnetic forward model of volcanic ash particle distribution, previously set up at microwaves, is extended to include non-spherical particle shapes, vesicular composition, silicate content and orientation phenomena for both millimeter and optical bands. Monte Carlo generation of radar and lidar signatures are driven by random variability of volcanic particle main parameters, using constraints from available data and experimental evidences. The considered case study is related to the ground-based observation of the Eyjafjallajökull (Iceland volcanic ash plume on May 15, 2010, carried out by the Atmospheric Research Station at Mace Head (Ireland with a 35-GHz Ka-band Doppler cloud radar and a 1064-nm ceilometer lidar. The detection and estimation of ash layer presence and composition is carried out using a Bayesian approach, which is trained by the Monte Carlo model-based dataset. Retrieval results are corroborated exploiting auxiliary data such as those from a ground-based microwave radiometer also positioned at Mace Head.

  18. Infrared and Raman Spectroscopic Study of Carbon-Cobalt Composites

    Directory of Open Access Journals (Sweden)

    André Tembre

    2011-01-01

    Full Text Available Analysis of carbon-cobalt thin films using infrared spectroscopy has shown existence of carbon-cobalt stretching mode and great porosity. The Raman spectroscopy and high-resolution transmission electron microscopy have been used in order to investigate the microstructure of the films. These films exhibit complex Raman spectra suggesting the presence of amorphous and crystallized phases. The different fractions of phases and the correlation between the atomic bond structures and the Raman features depend on the cobalt content.

  19. Infrared spectroscopic probing of dimethylamine clusters in an Ar matrix.

    Science.gov (United States)

    Li, Siyang; Kjaergaard, Henrik G; Du, Lin

    2016-02-01

    Amines have many atmospheric sources and their clusters play an important role in aerosol nucleation processes. Clusters of a typical amine, dimethylamine (DMA), of different sizes were measured with matrix isolation IR (infrared) and NIR (near infrared) spectroscopy. The NIR vibrations are more separated and therefore it is easier to distinguish different sizes of clusters in this region. The DMA clusters, up to DMA tetramer, have been optimized using density functional methods, and the geometries, binding energies and thermodynamic properties of DMA clusters were obtained. The computed frequencies and intensities of NH-stretching vibrations in the DMA clusters were used to interpret the experimental spectra. We have identified the fundamental transitions of the bonded NH-stretching vibration and the first overtone transitions of the bonded and free NH-stretching vibration in the DMA clusters. Based on the changes in vibrational intensities during the annealing processes, the growth of clusters was clearly observed. The results of annealing processes indicate that DMA molecules tend to form larger clusters with lower energies under matrix temperatures, which is also supported by the calculated reaction energies of cluster formation. Copyright © 2015. Published by Elsevier B.V.

  20. Spitzer mid-infrared spectroscopic observations of planetary nebulae

    CERN Document Server

    Mata, Héctor; Guerrero, Martin A; Nigoche-Netro, Alberto; Toalá, Jesús A; Fang, Xuan; Rubio, Gabriel M; Kemp, Simon N; Navarro, Silvana G; Corral, Luis J

    2016-01-01

    We present Spitzer Space Telescope archival mid-infrared (mid-IR) spectroscopy of a sample of eleven planetary nebulae (PNe). The observations, acquired with the Spitzer Infrared Spectrograph (IRS), cover the spectral range 5.2-14.5 {\\mu}m that includes the H2 0-0 S(2) to S(7) rotational emission lines. This wavelength coverage has allowed us to derive the Boltzmann distribution and calculate the H2 rotational excitation temperature (Tex). The derived excitation temperatures have consistent values ~900+/-70 K for different sources despite their different structural components. We also report the detection of mid-IR ionic lines of [Ar III], [S IV], and [Ne II] in most objects, and polycyclic aromatic hydrocarbon (PAH) features in a few cases. The decline of the [Ar III]/[Ne II] line ratio with the stellar effective temperature can be explained either by a true neon enrichment or by high density circumstellar regions of PNe that presumably descend from higher mass progenitor stars.

  1. Fourier-transform infrared spectroscopic studies of dithia tetraphenylporphine

    Indian Academy of Sciences (India)

    Sandeep Mishra; Sarvpreet Kaur; S K Tripathi; C G Mahajan; G S S Saini

    2006-07-01

    We present here infrared absorption spectra of dithia tetraphenylporphine and its cation in the 450-1600 and 2900-3400 cm-1 regions. Most of the allowed IR bands are observed in pairs due to overall 2ℎ point group symmetry of the molecule. The observed bands have been assigned to the porphyrin skeleton and phenyl ring modes. Some weak bands, which are forbidden under 2ℎ, also appear in the spectra due to the distortion of the molecule from planarity-caused by the out-of-plane positioned N and S atoms. Increased intensity of some phenyl ring bands compared to free-base tetraphenylporphine is explained on the basis of rotation of phenyl rings towards the mean molecular plane. Contrary to the point group symmetry of cation of dithia tetraphenylporphine, certain bands are observed to be degenerate due to identical bonding arrangements in pyrrole rings of the cation.

  2. Infrared Spectroscopic Investigations of J-aggregates of Protonated Tetraphenylporphine

    Institute of Scientific and Technical Information of China (English)

    ZHOU Mi; LU Guo-hui; GAO Shu-qin; LI Zuo-wei

    2009-01-01

    Protonated tetraphenylporphine(H2TPP) J-aggregates were prepared by aggregation on the liquid-air interface,Using FTIR spectroscopy,the authors observed the infrared absorption spectra of H2TPP and its J-aggregates.The IR spectra of H2TPP J-aggregates show significant changes compared with that of H2TPP monomer.Intensity changes(e.g.,strong enhancement of the in-plane vibronic mode and weakening of the out-of-plane vibronic mode of phenyi and porphyrin skeletal) were interpreted on the basis of stacking effects.Observation of the same type of bands collapse into single band was explained by the increase in the symmetry of H2TPP molecules.And the new bands at 1635 and 3407 cm-1 indicate the aggregates containing a large amount of bound water.

  3. Infrared Spectroscopic Measurement of Titanium Dioxide Nanoparticle Shallow Trap State Energies

    Science.gov (United States)

    2016-06-13

    important part of characterization. I chose transmission electron microscopy (TEM) for these measurements because it offered a relatively simple...cm) produced a 1 nm larger mean particle diameter, the ±3 ~ 4 nm error in the diameter measurements for these batches makes any conclusion that path...unlimited. Infrared Spectroscopic Measurement of Titanium Dioxide Nanoparticle Shallow Trap State Energies The views, opinions and/or findings contained in

  4. Fourier transform infrared spectroscopic study of intact cells of the nitrogen-fixing bacterium Azospirillum brasilense

    Science.gov (United States)

    Kamnev, A. A.; Ristić, M.; Antonyuk, L. P.; Chernyshev, A. V.; Ignatov, V. V.

    1997-06-01

    The data of Fourier transform infrared (FTIR) spectroscopic measurements performed on intact cells of the soil nitrogen-fixing bacterium Azospirillum brasilense grown in a standard medium and under the conditions of an increased metal uptake are compared and discussed. The structural FTIR information obtained is considered together with atomic absorption spectrometry (AAS) data on the content of metal cations in the bacterial cells. Some methodological aspects concerning preparation of bacterial cell samples for FTIR measurements are also discussed.

  5. Infrared spectroscopic study of carrier scattering in gated CVD graphene

    Science.gov (United States)

    Yu, Kwangnam; Kim, Jiho; Kim, Joo Youn; Lee, Wonki; Hwang, Jun Yeon; Hwang, E. H.; Choi, E. J.

    2016-12-01

    We measured Drude absorption of gated CVD graphene using far-infrared transmission spectroscopy and determined the carrier scattering rate (γ ) as a function of the varied carrier density (n ). The n -dependent γ (n ) was obtained for a series of conditions systematically changed as (10 K, vacuum) → (300 K, vacuum) → (300 K, ambient pressure), which reveals that (1) at low-T, charged impurity (=A /√{n } ) and short-range defect (=B √{n } ) are the major scattering sources which constitute the total scattering γ =A /√{n }+B √{n } , (2) among various kinds of phonons populated at room-T , surface polar phonon of the SiO2 substrate is the dominantly scattering source, and (3) in air, the gas molecules adsorbed on graphene play a dual role in carrier scattering as charged impurity center and resonant scattering center. We present the absolute scattering strengths of those individual scattering sources, which provides the complete map of scattering mechanism of CVD graphene. This scattering map allows us to find out practical measures to suppress the individual scatterings, the mobility gains accompanied by them, and finally the ultimate attainable carrier mobility for CVD graphene.

  6. Near infrared spectroscopic evaluation of water in hyaline cartilage.

    Science.gov (United States)

    Padalkar, M V; Spencer, R G; Pleshko, N

    2013-11-01

    In diseased conditions of cartilage such as osteoarthritis, there is typically an increase in water content from the average normal of 60-85% to greater than 90%. As cartilage has very little capability for self-repair, methods of early detection of degeneration are required, and assessment of water could prove to be a useful diagnostic method. Current assessment methods are either destructive, time consuming, or have limited sensitivity. Here, we investigated the hypotheses that non-destructive near infrared spectroscopy (NIRS) of articular cartilage can be used to differentiate between free and bound water, and to quantitatively assess water content. The absorbances centered at 5200 and 6890 cm(-1) were attributed to a combination of free and bound water, and to free water only, respectively. The integrated areas of both absorbance bands were found to correlate linearly with the absolute water content (R = 0.87 and 0.86) and with percent water content (R = 0.97 and 0.96) of the tissue. Partial least square models were also successfully developed and were used to predict water content, and percent free water. These data demonstrate that NIRS can be utilized to quantitatively determine water content in articular cartilage, and may aid in early detection of degenerative tissue changes in a laboratory setting, and with additional validations, possibly in a clinical setting.

  7. Ground-based Pa$\\alpha$ Narrow-band Imaging of Local Luminous Infrared Galaxies I: Star Formation Rates and Surface Densities

    CERN Document Server

    Tateuchi, Ken; Motohara, Kentaro; Takahashi, Hidenori; Kato, Natsuko Mitani; Kitagawa, Yutaro; Todo, Soya; Toshikawa, Koji; Sako, Shigeyuki; Uchimoto, Yuka K; Ohsawa, Ryou; Asano, Kentaro; Ita, Yoshifusa; Kamizuka, Takafumi; Komugi, Shinya; Koshida, Shintaro; Manabe, Sho; Nakamura, Tomohiko; Nakashima, Asami; Okada, Kazushi; Takagi, Toshinobu; Tanabé, Toshihiko; Uchiyama, Mizuho; Aoki, Tsutomu; Doi, Mamoru; Handa, Toshihiro; Kawara, Kimiaki; Kohno, Kotaro; Minezaki, Takeo; Miyata, Takashi; Morokuma, Tomoki; Soyano, Takeo; Tamura, Yoichi; Tanaka, Masuo; Tarusawa, Ken'ichi; Yoshii, Yuzuru

    2014-01-01

    Luminous infrared galaxies (LIRGs) are enshrouded by a large amount of dust, produced by their active star formation, and it is difficult to measure their activity in the optical wavelength. We have carried out Pa$\\alpha$ narrow-band imaging observations of 38 nearby star-forming galaxies including 33 LIRGs listed in $IRAS$ RBGS catalog with the Atacama Near InfraRed camera (ANIR) on the University of Tokyo Atacama Observatory (TAO) 1.0 m telescope (miniTAO). Star formation rates (SFRs) estimated from the Pa$\\alpha$ fluxes, corrected for dust extinction using the Balmer Decrement Method (typically $A_V$ $\\sim$ 4.3 mag), show a good correlation with those from the bolometric infrared luminosity of $IRAS$ data within a scatter of 0.27 dex. This suggests that the correction of dust extinction for Pa$\\alpha$ flux is sufficient in our sample. We measure the physical sizes and the surface density of infrared luminosities ($\\Sigma_{L(\\mathrm{IR})}$) and $SFR$ ($\\Sigma_{SFR}$) of star-forming region for individual ga...

  8. GROUND-BASED Paα NARROW-BAND IMAGING OF LOCAL LUMINOUS INFRARED GALAXIES. I. STAR FORMATION RATES AND SURFACE DENSITIES

    Energy Technology Data Exchange (ETDEWEB)

    Tateuchi, Ken; Konishi, Masahiro; Motohara, Kentaro; Takahashi, Hidenori; Kato, Natsuko Mitani; Kitagawa, Yutaro; Todo, Soya; Toshikawa, Koji; Sako, Shigeyuki; Uchimoto, Yuka K.; Ohsawa, Ryou; Asano, Kentaro; Kamizuka, Takafumi; Nakamura, Tomohiko; Okada, Kazushi [Institute of Astronomy, Graduate School of Science, The University of Tokyo, 2-21-1 Osawa, Mitaka, Tokyo 181-0015 (Japan); Ita, Yoshifusa [Astronomical Institute, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8578 (Japan); Komugi, Shinya [Division of Liberal Arts, Kogakuin University, 2665-1, Hachioji, Tokyo 192-0015 (Japan); Koshida, Shintaro [Subaru Telescope, National Astronomical Observatory of Japan, Hilo, HI 96720 (United States); Manabe, Sho [Department of Earth and Planetary Sciences, Kobe University, Kobe 657-8501 (Japan); Nakashima, Asami, E-mail: tateuchi@ioa.s.u-tokyo.ac.jp [Department of Astronomy, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); and others

    2015-03-15

    Luminous infrared galaxies (LIRGs) are enshrouded by a large amount of dust produced by their active star formation, and it is difficult to measure their activity in optical wavelengths. We have carried out Paα narrow-band imaging observations of 38 nearby star forming galaxies including 33 LIRGs listed in the IRAS Revised Bright Galaxy Sample catalog with the Atacama Near InfraRed camera on the University of Tokyo Atacama Observatory (TAO) 1.0 m telescope (miniTAO). Star formation rates (SFRs) estimated from the Paα fluxes, corrected for dust extinction using the Balmer decrement method (typically A{sub V} ∼ 4.3 mag), show a good correlation with those from the bolometric infrared luminosity of the IRAS data within a scatter of 0.27 dex. This suggests that the correction of dust extinction for the Paα flux is sufficient in our sample. We measure the physical sizes and surface densities of infrared luminosities (Σ{sub L(IR)}) and the SFR (Σ{sub SFR}) of star forming regions for individual galaxies, and we find that most of the galaxies follow a sequence of local ultra-luminous or luminous infrared galaxies (U/LIRGs) on the L(IR)-Σ{sub L(IR)} and SFR-Σ{sub SFR} plane. We confirm that a transition of the sequence from normal galaxies to U/LIRGs is seen at L(IR) = 8 × 10{sup 10} L {sub ☉}. Also, we find that there is a large scatter in physical size, different from normal galaxies or ULIRGs. Considering the fact that most U/LIRGs are merging or interacting galaxies, this scatter may be caused by strong external factors or differences in their merging stages.

  9. Mid - infrared solid state lasers for spectroscopic applications

    Science.gov (United States)

    Terekhov, Yuri

    This work is devoted to study of novel high power middle-infrared (Mid-IR) laser sources enabling development of portable platform for sensing of organic molecules with the use of recently discovered Quartz Enhanced Photo Acoustic Spectroscopy (QEPAS). The ability to detect small concentrations is beneficial to monitor atmosphere pollution as well for biomedical applications such as analysis of human breath to detect earlier stages of cancer or virus activities. A QEPAS technique using a quartz tuning fork (QTF) as a detector enables a strong enhancement of measured signal when pump laser is modulated with a frequency coinciding with a natural frequency of a QTF. It is known that the detectability of acousto-optics based sensors is proportional to the square root of the laser intensity used for detection of analyte. That is the reason why commercially available semiconductor Mid-IR lasers having small output power limit sensitivity of modern QEPAS based sensors. The lack of high power broadly tunable lasers operating with a modulation frequency of quartz forks (~ 32.768 kHz) is the major motivation of this study. Commercially available Mid-IR (2-3.3 microm), single frequency, continuous wave (CW) fiber pumped lasers based on transition metal doped chalcogenides (e.g. Cr:ZnSe) prove to be efficient laser sources for organic molecules detection. However, their direct modulation is limited to several kHz, and cannot be directly used in combination with QEPAS. Hence, one objective of this work is to study and develop fiber laser pumped Ho:YAG (Er:YAG)/Cr:ZnSe tandem laser system/s. Ho (Holmium) and/or Er (Erbium) ions having long radiation lifetime (~ 10 ms) can effectively accumulate population inversion under CW fiber laser excitation. Utilization of acousto-optic (AO) modulators in the cavity of Ho:YAG (Er:YAG) laser will enable effective Q-Switching with repetition rate easily reaching the resonance frequency of a QTF. It is expected that utilization of Ho:YAG (Er

  10. Fourier-transform far-infrared spectroscopic ellipsometry for standoff material identification

    Energy Technology Data Exchange (ETDEWEB)

    Ortolani, Michele, E-mail: michele.ortolani@ifn.cnr.i [Consiglio Nazionale delle Ricerche, Istituto di Fotonica e Nanotecnologie, Via Cineto Romano 42, I-00156 Rome (Italy); Schade, Ulrich [Helmholtz Zentrum Berlin fuer Materialen und Energie, Albert-Einstein-Strasse 15, D-12489 Berlin (Germany)

    2010-11-11

    The ellipsometry is an efficient method to determine the optical properties of matter. It has been largely employed with grating spectrometers in the visible, UV and near-infrared ranges for the characterization of thin films, surfaces and interfaces. In the mid- and far-infrared, where most substance-specific absorption lines are present, spectroscopic ellipsometry with Fourier-transform spectrometers is still not extended as a routine method. In particular, the lack of powerful sources in the far-infrared/terahertz range has prevented standoff application of this method. We will show that it is possible to measure the complex dielectric constant of a solid in the far-infrared and terahertz range by a reflection experiment with polarized light and ellipsometric analysis with a suitable calibration procedure. Extraction of terahertz synchrotron radiation from storage rings provides a suitable source for research-grade experiments. The optical constants determined by ellipsometry compare well with those obtained by Kramers-Kronig procedures, a method which, however, requires broader frequency range and absolute reflectance standard. We will present the case of remote spectroscopic identification of explosive materials, which is relevant for forthcoming security applications.

  11. Retrieval of HCFC-142b (CH3CClF2) from ground-based high-resolution infrared solar spectra: Atmospheric increase since 1989 and comparison with surface and satellite measurements

    Science.gov (United States)

    Mahieu, Emmanuel; Lejeune, Bernard; Bovy, Benoît; Servais, Christian; Toon, Geoffrey C.; Bernath, Peter F.; Boone, Christopher D.; Walker, Kaley A.; Reimann, Stefan; Vollmer, Martin K.; O'Doherty, Simon

    2017-01-01

    We have developed an approach for retrieving HCFC-142b (CH3CClF2) from ground-based high-resolution infrared solar spectra, using its ν7 band Q branch in the 900-906 cm-1 interval. Interferences by HNO3, CO2 and H2O have to be accounted for. Application of this approach to observations recorded within the framework of long-term monitoring activities carried out at the northern mid-latitude, high-altitude Jungfraujoch station in Switzerland (46.5°N, 8.0°E, 3580 m above sea level) has provided a total column times series spanning the 1989 to mid-2015 time period. A fit to the HCFC-142b daily mean total column time series shows a statistically-significant long-term trend of (1.23±0.08×1013 molec cm-2) per year from 2000 to 2010, at the 2-σ confidence level. This corresponds to a significant atmospheric accumulation of (0.94±0.06) ppt (1 ppt=1/1012) per year for the mean tropospheric mixing ratio, at the 2-σ confidence level. Over the subsequent time period (2010-2014), we note a significant slowing down in the HCFC-142b buildup. Our ground-based FTIR (Fourier Transform Infrared) results are compared with relevant data sets derived from surface in situ measurements at the Mace Head and Jungfraujoch sites of the AGAGE (Advanced Global Atmospheric Gases Experiment) network and from occultation measurements by the ACE-FTS (Atmospheric Chemistry Experiment-Fourier Transform Spectrometer) instrument on-board the SCISAT satellite.

  12. Biodegradable starch-based films containing saturated fatty acids: thermal, infrared and raman spectroscopic characterization

    Directory of Open Access Journals (Sweden)

    Marcelo M. Nobrega

    Full Text Available Biodegradable films of thermoplastic starch and poly (butylene adipate co-terephthalate (PBAT containing fatty acids were characterized thermally and with infrared and Raman spectroscopies. The symmetrical character of the benzene ring in PBAT provided a means to illustrate the difference between these spectroscopic techniques, because a band appeared in the Raman spectrum but not in the infrared. The thermal analysis showed three degradation stages related to fatty acids, starch and PBAT. The incorporation of saturated fatty acids with different molecular mass (caproic, lauric and stearic did not change the nature of the chemical bonds among the components in the blends of starch, PBAT and glycerol, according to the thermal analysis, infrared and Raman spectroscopies.

  13. Retrieval of xCO2 from ground-based mid-infrared (NDACC solar absorption spectra and comparison to TCCON

    Directory of Open Access Journals (Sweden)

    M. Buschmann

    2015-10-01

    Full Text Available High resolution solar absorption spectra, taken within the Network for the Detection of Atmospheric Composition Change (NDACC in the mid-infrared spectral region are used to infer partial or total column abundances of many gases. In this paper we present the retrieval of a column averaged mole fraction of carbon dioxide from NDACC-IRWG spectra taken with a Fourier-Transform-Infra-Red (FTIR spectrometer at the site in Ny-Ålesund, Spitsbergen. The retrieved time series is compared to co-located standard TCCON measurements of total column CO2. Comparing the NDACC and TCCON retrievals we find that the sensitivity of the NDACC retrieval is lower in the troposphere (by a factor of two and higher in the stratosphere, compared to TCCON. Thus, the NDACC retrieval is less sensitive to tropospheric changes (e.g. the seasonal cycle in the column average.

  14. The Compositional Evolution of C/2012 S1 (ISON) from Ground-Based High-Resolution Infrared Spectroscopy as Part of a Worldwide Observing Campaign

    Science.gov (United States)

    Russo, N. Dello; Vervack, R. J., Jr.; Kawakita, H.; Cochran, A.; McKay, A. J.; Harris, W. M.; Weaver, H.A.; Lisse, C. M.; DiSanti, M. A.; Kobayashi, H.

    2015-01-01

    Volatile production rates, relative abundances, rotational temperatures, and spatial distributions in the coma were measured in C/2012 S1 (ISON) using long-slit high-dispersion (lambda/delta lambda approximately 2.5 times 10 (sup 4)) infrared spectroscopy as part of a worldwide observing campaign. Spectra were obtained on Universal Time 2013 October 26 and 28 with NIRSPEC (Near Infrared Spectrometer) at the W.M. Keck Observatory, and Universal Time 2013 November 19 and 20 with CSHELL (Cryogenic Echelle Spectrograph) at the NASA IRTF (Infrared Telescope Facility). H2O was detected on all dates, with production rates increasing markedly from (8.7 plus or minus 1.5) times 10 (sup 27) molecules per second on October 26 (Heliocentric Distance = 1.12 Astronomical Units) to (3.7 plus or minus 0.4) times 10 (sup 29) molecules per second on November 20 (Heliocentric Distance = 0.43 Astronomical Units). Short-term variability of H2O production is also seen as observations on November 19 show an increase in H2O production rate of nearly a factor of two over a period of about 6 hours. C2H6, CH3OH and CH4 abundances in ISON (International Scientific Optical Network) are slightly depleted relative to H2O when compared to mean values for comets measured at infrared wavelengths. On the November dates, C2H2, HCN and OCS abundances relative to H2O appear to be within the range of mean values, whereas H2CO and NH3 were significantly enhanced. There is evidence that the abundances with respect to H2O increased for some species but not others between October 28 (Heliocentric Distance = 1.07 Astronomical Units) and November 19 (Heliocentric Distance = 0.46 Astronomical Units). The high mixing ratios of H2CO to CH3OH and C2H2 to C2H6 on November 19, and changes in the mixing ratios of some species with respect to H2O between October 28 to November 19, indicates compositional changes that may be the result of a transition from sampling radiation-processed outer layers in this dynamically

  15. Near InfraRed Imaging Spectrograph (NIRIS) for ground-based mesospheric OH(6-2) and O2(0-1) intensity and temperature measurements

    Indian Academy of Sciences (India)

    Ravindra P Singh; Duggirala Pallamraju

    2017-08-01

    This paper describes the development of a new Near InfraRed Imaging Spectrograph (NIRIS) which is capable of simultaneous measurements of OH(6-2) Meinel and O2(0-1) atmospheric band nightglow emission intensities. In this spectrographic technique, rotational line ratios are obtained to derive temperatures corresponding to the emission altitudes of 87 and 94 km. NIRIS has been commissioned for continuous operation from optical aeronomy observatory, Gurushikhar, Mount Abu (24.6∘N, 72.8∘E) since January 2013. NIRIS uses a diffraction grating of 1200 lines mm−1 and 1024×1024 pixels thermoelectrically cooled CCD camera and has a large field-of-view (FOV) of 80∘ along the slit orientation. The data analysis methodology adopted for the derivation of mesospheric temperatures is also described in detail. The observed NIRIS temperatures show good correspondence with satellite (SABER) derived temperatures and exhibit both tidal and gravity waves (GW) like features. From the time taken for phase propagation in the emission intensities between these two altitudes, vertical phase speed of gravity waves, $c_{z}$, is calculated and along with the coherent GW time period ‘$\\tau$’, the vertical wavelength, $\\lambda _{z}$, is obtained. Using large FOV observations from NIRIS, the meridional wavelengths, $\\lambda _{y}$, are also calculated. We have used one year of data to study the possible cause(s) for the occurrences of mesospheric temperature inversions (MTIs). From the statistics obtained for 234 nights, it appears that in situ chemical heating is mainly responsible for the observed MTIs than the vertical propagation of the waves. Thus, this paper describes a novel near infrared imaging spectrograph, its working principle, data analysis method for deriving OH and O2 emission intensities and the corresponding rotational temperatures at these altitudes, derivation of gravity wave parameters ($\\tau$, $c_{z}$, $\\lambda _{z}$, and $\\lambda _{y}$), and results on the

  16. Near InfraRed Imaging Spectrograph (NIRIS) for ground-based mesospheric OH(6-2) and O2(0-1) intensity and temperature measurements

    Science.gov (United States)

    Singh, Ravindra P.; Pallamraju, Duggirala

    2017-08-01

    This paper describes the development of a new Near InfraRed Imaging Spectrograph (NIRIS) which is capable of simultaneous measurements of OH(6-2) Meinel and O2(0-1) atmospheric band nightglow emission intensities. In this spectrographic technique, rotational line ratios are obtained to derive temperatures corresponding to the emission altitudes of 87 and 94 km. NIRIS has been commissioned for continuous operation from optical aeronomy observatory, Gurushikhar, Mount Abu (24.6°N, 72.8°E) since January 2013. NIRIS uses a diffraction grating of 1200 lines mm^{-1} and 1024× 1024 pixels thermoelectrically cooled CCD camera and has a large field-of-view (FOV) of 80° along the slit orientation. The data analysis methodology adopted for the derivation of mesospheric temperatures is also described in detail. The observed NIRIS temperatures show good correspondence with satellite (SABER) derived temperatures and exhibit both tidal and gravity waves (GW) like features. From the time taken for phase propagation in the emission intensities between these two altitudes, vertical phase speed of gravity waves, cz, is calculated and along with the coherent GW time period `τ ', the vertical wavelength, λ z, is obtained. Using large FOV observations from NIRIS, the meridional wavelengths, λ y, are also calculated. We have used one year of data to study the possible cause(s) for the occurrences of mesospheric temperature inversions (MTIs). From the statistics obtained for 234 nights, it appears that in situ chemical heating is mainly responsible for the observed MTIs than the vertical propagation of the waves. Thus, this paper describes a novel near infrared imaging spectrograph, its working principle, data analysis method for deriving OH and O2 emission intensities and the corresponding rotational temperatures at these altitudes, derivation of gravity wave parameters (τ , cz, λ z, and λ y), and results on the statistical study of MTIs that exist in the earth's mesospheric

  17. [Tri-Level Infrared Spectroscopic Identification of Hot Melting Reflective Road Marking Paint].

    Science.gov (United States)

    Li, Hao; Ma, Fang; Sun, Su-qin

    2015-12-01

    In order to detect the road marking paint from the trace evidence in traffic accident scene, and to differentiate their brands, we use Tri-level infrared spectroscopic identification, which employs the Fourier transform infrared spectroscopy (FTIR), the second derivative infrared spectroscopy(SD-IR), two-dimensional correlation infrared spectroscopy(2D-IR) to identify three different domestic brands of hot melting reflective road marking paints and their raw materials in formula we Selected. The experimental results show that three labels coatings in ATR and FTIR spectrograms are very similar in shape, only have different absorption peak wave numbers, they have wide and strong absorption peaks near 1435 cm⁻¹, and strong absorption peak near 879, 2955, 2919, 2870 cm⁻¹. After enlarging the partial areas of spectrograms and comparing them with each kind of raw material of formula spectrograms, we can distinguish them. In the region 700-970 and 1370-1 660 cm⁻¹ the spectrograms mainly reflect the different relative content of heavy calcium carbonate of three brands of the paints, and that of polyethylene wax (PE wax), ethylene vinyl acetate resin (EVA), dioctyl phthalate (DOP) in the region 2800-2960 cm⁻¹. The SD-IR not only verify the result of the FTIR analysis, but also further expand the microcosmic differences and reflect the different relative content of quartz sand in the 512-799 cm-1 region. Within the scope of the 1351 to 1525 cm⁻¹, 2D-IR have more significant differences in positions and numbers of automatically peaks. Therefore, the Tri-level infrared spectroscopic identification is a fast and effective method to distinguish the hot melting road marking paints with a gradually improvement in apparent resolution.

  18. A Far-Infrared Spectroscopic Survey of Intermediate Redshift (Ultra) Luminous Infrared Galaxies

    CERN Document Server

    Magdis, Georgios E; Hopwood, R; Huang, J -S; Farrah, D; Pearson, C; Alonso-Herrero, A; Bock, J J; Clements, D; Cooray, A; Griffin, M J; Oliver, S; Fournon, Perez; Riechers, D; Swinyard, B M; Scott, D; Thatte, N; Valtchanov, I; Vaccari, M

    2014-01-01

    We present Herschel far-IR photometry and spectroscopy as well as ground based CO observations of an intermediate redshift (0.21 10^11.5L_sun). With these measurements we trace the dust continuum, far-IR atomic line emission, in particular [CII]\\,157.7microns, as well as the molecular gas of z~0.3 (U)LIRGs and perform a detailed investigation of the interstellar medium of the population. We find that the majority of Herschel-selected intermediate redshift (U)LIRGs have L_CII/L_FIR ratios that are a factor of about 10 higher than that of local ULIRGs and comparable to that of local normal and high-$z$ star forming galaxies. Using our sample to bridge local and high-z [CII] observations, we find that the majority of galaxies at all redshifts and all luminosities follow a L_CII-L_FIR relation with a slope of unity, from which local ULIRGs and high-z AGN dominated sources are clear outliers. We also confirm that the strong anti-correlation between the L_CII/L_FIR ratio and the far-IR color L_60/L_100 observed in...

  19. Infrared Spectroscopic Study of a Selection of AGB and Post-AGB Stars

    CERN Document Server

    Raman, V Venkata

    2008-01-01

    We present here near-infrared spectroscopy in the H and K bands of a selection of nearly 80 stars that belong to various AGB types, namely S type, M type and SR type. This sample also includes 16 Post-AGB (PAGB) stars. From these spectra, we seek correlations between the equivalent widths of some important spectral signatures and the infrared colors that are indicative of mass loss. Repeated spectroscopic observations were made on some PAGB stars to look for spectral variations. We also analyse archival SPITZER mid-infrared spectra on a few PAGB stars to identify spectral features due to PAH molecules providing confirmation of the advanced stage of their evolution. Further, we model the SEDs of the stars (compiled from archival data) and compare circumstellar dust parameters and mass loss rates in different types. Our near-infrared spectra show that in the case of M and S type stars, the equivalent widths of the CO(3-0) band are moderately correlated with infrared colors, suggesting a possible relationship wi...

  20. Frequency based detection and monitoring of small scale explosive activity by comparing satellite and ground based infrared observations at Stromboli Volcano, Italy

    Science.gov (United States)

    Worden, Anna; Dehn, Jonathan; Ripepe, Maurizio; Donne, Dario Delle

    2014-08-01

    Thermal activity is a common precursor to explosive volcanic activity. The ability to use these thermal precursors to monitor the volcano and obtain early warning about upcoming activity is beneficial for both human safety and infrastructure security. By using a very reliably active volcano, Stromboli Volcano in Italy, a method has been developed and tested to look at changes in the frequency of small scale explosive activity and how this activity changes prior to larger, ash producing explosive events. Thermal camera footage was used to designate parameters for typical explosions at Stromboli (size of spatter field, cooling rate, frequency of explosions) and this information was applied to characterize explosions in satellite imagery. Satellite data from The National Aeronautics and Space Administration's Moderate Resolution Imaging Spectroradiometer (MODIS) and US/Japan designed Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) for numerous periods in 2002 to 2009 were analyzed for thermal features which were used to calculate an estimate of the level of activity during the given time period. The results at Stromboli showed a high level of small scale explosions which stop completely prior to large paroxysmal eruptive episodes. This activity also corresponds well to seismic and infrasonic records at Stromboli, indicating that this thermal infrared monitoring method may be used in conjunction with other detection methods where available, and also indicates that it may be a useful method for volcano monitoring when other methods (e.g. seismic instrumentation, infrasound arrays, etc.) are not available.

  1. Breast histopathology using random decision forests-based classification of infrared spectroscopic imaging data

    Science.gov (United States)

    Mayerich, David M.; Walsh, Michael; Kadjacsy-Balla, Andre; Mittal, Shachi; Bhargava, Rohit

    2014-03-01

    Current methods for cancer detection rely on clinical stains, often using immunohistochemistry techniques. Pathologists then evaluate the stained tissue in order to determine cancer stage treatment options. These methods are commonly used, however they are non-quantitative and it is difficult to control for staining quality. In this paper, we propose the use of mid-infrared spectroscopic imaging to classify tissue types in tumor biopsy samples. Our goal is to augment the data available to pathologists by providing them with quantitative chemical information to aid diagnostic activities in clinical and research activities related to breast cancer.

  2. Ground-based Mid-infrared Study of the Compton-thick AGN in M51 at 10–100 pc Scale

    Science.gov (United States)

    Ohyama, Youichi; Matsushita, Satoki; Oi, Nagisa; Sun, Ai-Lei

    2017-02-01

    We performed near-diffraction-limited (≃ 0\\buildrel{\\prime\\prime}\\over{.} 4 FWHM) N-band imaging of one of the nearest active galactic nuclei (AGNs) in M51 with the 8.2 m Subaru Telescope to study the nuclear structure and spectral energy distribution (SED) at 8–13 μm. We found that the nucleus is composed of an unresolved core (at ≃ 13 pc resolution, orintrinsic size corrected for the instrumental effect of halo (at a few tens of parsec scale), and each of their SEDs is almost flat. We examined the SED by comparing with the archival Spitzer IRS spectrum processed to mimic our chopping observation of the nucleus and the published radiative transfer model SEDs of the AGN clumpy dusty torus. The halo SED is likely due to circumnuclear star formation showing deficient polycyclic aromatic hydrocarbon emission due to the AGN. The core SED is likely dominated by the AGN because of the following two reasons. First, the clumpy torus model SEDs can reproduce the red mid-infrared continuum with apparently moderate silicate 9.7 μm absorption. Second, the core 12 μm luminosity and the absorption-corrected X-ray luminosity at 2–10 keV in the literature follow the mid-infrared–X-ray luminosity correlation known for the nearby AGNs, including the Compton-thick ones. Based in part on data collected at the Subaru Telescope, which is operated by the National Astronomical Observatory of Japan.

  3. Prediction of optical communication link availability: real-time observation of cloud patterns using a ground-based thermal infrared camera

    Science.gov (United States)

    Bertin, Clément; Cros, Sylvain; Saint-Antonin, Laurent; Schmutz, Nicolas

    2015-10-01

    The growing demand for high-speed broadband communications with low orbital or geostationary satellites is a major challenge. Using an optical link at 1.55 μm is an advantageous solution which potentially can increase the satellite throughput by a factor 10. Nevertheless, cloud cover is an obstacle for this optical frequency. Such communication requires an innovative management system to optimize the optical link availability between a satellite and several Optical Ground Stations (OGS). The Saint-Exupery Technological Research Institute (France) leads the project ALBS (French acronym for BroadBand Satellite Access). This initiative involving small and medium enterprises, industrial groups and research institutions specialized in aeronautics and space industries, is currently developing various solutions to increase the telecommunication satellite bandwidth. This paper presents the development of a preliminary prediction system preventing the cloud blockage of an optical link between a satellite and a given OGS. An infrared thermal camera continuously observes (night and day) the sky vault. Cloud patterns are observed and classified several times a minute. The impact of the detected clouds on the optical beam (obstruction or not) is determined by the retrieval of the cloud optical depth at the wavelength of communication. This retrieval is based on realistic cloud-modelling on libRadtran. Then, using subsequent images, cloud speed and trajectory are estimated. Cloud blockage over an OGS can then be forecast up to 30 minutes ahead. With this information, the preparation of the new link between the satellite and another OGS under a clear sky can be prepared before the link breaks due to cloud blockage.

  4. Ground-based Measurements of Vertical Profiles and Columns of Atmospheric Trace Gases Over Toronto Using a New High-Resolution Fourier Transform Infrared Spectrometer

    Science.gov (United States)

    Wiacek, A.; Yashcov, D.; Strong, K.; Boudreau, L.; Rochette, L.; Roy, C.

    2002-12-01

    . Finally, we are investigating the feasibility of making broadband infrared measurements of aerosols using the TAO DA8 FTS.

  5. Raman, infrared and near-infrared spectroscopic characterization of the herderite-hydroxylherderite mineral series.

    Science.gov (United States)

    Frost, Ray L; Scholz, Ricardo; López, Andrés; Xi, Yunfei; Queiroz, Camila de Siqueira; Belotti, Fernanda M; Cândido Filho, Mauro

    2014-01-24

    Natural single-crystal specimens of the herderite-hydroxylherderite series from Brazil, with general formula CaBePO4(F,OH), were investigated by electron microprobe, Raman, infrared and near-infrared spectroscopies. The minerals occur as secondary products in granitic pegmatites. Herderite and hydroxylherderite minerals show extensive solid solution formation. The Raman spectra of hydroxylherderite are characterized by bands at around 985 and 998 cm(-1), assigned to ν1 symmetric stretching mode of the HOPO3(3-) and PO4(3-) units. Raman bands at around 1085, 1128 and 1138 cm(-1) are attributed to both the HOP and PO antisymmetric stretching vibrations. The set of Raman bands observed at 563, 568, 577, 598, 616 and 633 cm(-1) are assigned to the ν4 out of plane bending modes of the PO4 and H2PO4 units. The OH Raman stretching vibrations of hydroxylherderite were observed ranging from 3626 cm(-1) to 3609 cm(-1). The infrared stretching vibrations of hydroxylherderites were observed between 3606 cm(-1) and 3599 cm(-1). By using a Libowitzky type function, hydrogen bond distances based upon the OH stretching bands were calculated. Characteristic NIR bands at around 6961 and 7054 cm(-1) were assigned to the first overtone of the fundamental, whilst NIR bands at 10,194 and 10,329 cm(-1) are assigned to the second overtone of the fundamental OH stretching vibration. Insight into the structure of the herderite-hydroxylherderite series is assessed by vibrational spectroscopy. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Infrared Spectroscopic Characteristics and Ionic Occupations in Crystalline Tunneling System of Yellow Beryl

    Science.gov (United States)

    Yu, Xiaoyan; Hu, Dingyu; Niu, Xiaowei; Kang, Weirui

    2017-04-01

    Infrared spectroscopic characteristics and ionic occupations in a crystalline tunneling system of yellow beryl crystals from Inner Mongolia, China, were investigated by standard gemological methods, laser ablation inductively coupled plasma mass spectrometry, x-ray diffraction, ultraviolet-visible (UV-Vis) spectrophotometry, and infrared (IR) spectroscopy in this study. The refractive index, specific gravity, and chemical composition of the samples are shown within the range of natural yellow beryls previously reported. The unit cell dimensions of the beryls are 9.208-9.212 Å for a and 9.105-9.206 Å for c with a ratio of c/a = 0.9985-0.9994. The beryl samples are generally alkali-poor beryls with Fe UV-Vis spectra showed an absorption band at 689 nm, and all polarized IR spectra of samples displayed a 7217-cm-1 infrared absorption in the studied samples which was associated with irradiation of the coloration. This treatment of color irradiation can be detected from the beryl channels with 689-nm absorption and 7217-cm-1 infrared absorption.

  7. Infrared Spectroscopic Characteristics and Ionic Occupations in Crystalline Tunneling System of Yellow Beryl

    Science.gov (United States)

    Yu, Xiaoyan; Hu, Dingyu; Niu, Xiaowei; Kang, Weirui

    2017-02-01

    Infrared spectroscopic characteristics and ionic occupations in a crystalline tunneling system of yellow beryl crystals from Inner Mongolia, China, were investigated by standard gemological methods, laser ablation inductively coupled plasma mass spectrometry, x-ray diffraction, ultraviolet-visible (UV-Vis) spectrophotometry, and infrared (IR) spectroscopy in this study. The refractive index, specific gravity, and chemical composition of the samples are shown within the range of natural yellow beryls previously reported. The unit cell dimensions of the beryls are 9.208-9.212 Å for a and 9.105-9.206 Å for c with a ratio of c/a = 0.9985-0.9994. The beryl samples are generally alkali-poor beryls with Fe channel sites. The standard gemological test and mid-IR confirmed that these samples are natural beryl. However, polarized UV-Vis spectra showed an absorption band at 689 nm, and all polarized IR spectra of samples displayed a 7217-cm-1 infrared absorption in the studied samples which was associated with irradiation of the coloration. This treatment of color irradiation can be detected from the beryl channels with 689-nm absorption and 7217-cm-1 infrared absorption.

  8. The Far Infrared Spectroscopic Explorer (FIRSPEX): probing the lifecycle of the ISM in the universe

    Science.gov (United States)

    Rigopoulou, D.; Caldwell, M.; Ellison, B.; Pearson, C.; Caux, E.; Cooray, A.; Gallego, J. D.; Gerin, M.; Goicoechea, J. R.; Goldsmith, P.; Kramer, C.; Lis, D. C.; Molinari, S.; Ossenkopf-Okada, V.; Savini, G.; Tan, B. K.; Tielens, X.; Viti, S.; Wiedner, M.; Yassin, G.

    2016-07-01

    The Far Infrared Spectroscopic Explorer (FIRSPEX) is a novel European-led astronomy mission concept developed to enable large area ultra high spectroscopic resolution surveys in the THz regime. FIRSPEX opens up a relatively unexplored spectral and spatial parameter space that will produce an enormously significant scientific legacy by focusing on the properties of the multi-phase ISM, the assembly of molecular clouds in our Galaxy and the onset of star formation; topics which are fundamental to our understanding of galaxy evolution. The mission uses a heterodyne instrument and a ~1.2 m primary antenna to scan large areas of the sky in a number of discreet spectroscopic channels from L2. The FIRSPEX bands centered at [CI] 809 GHz, [NII]1460 GHz, [CII]1900 GHz and [OI]4700 GHz have been carefully selected to target key atomic and ionic fine structure transitions difficult or impossible to access from the ground but fundamental to the study of the multi-phase ISM in the Universe. The need for state-of-the-art sensitivity dictates the use of superconducting mixers configured either as tunnel junctions or hot electron bolometers. This technology requires cooling to low temperatures, approaching 4K, in order to operate. The receivers will operate in double sideband configuration providing a total of 7 pixels on the sky. FIRSPEX will operate from L2 in both survey and pointed mode enabling velocity resolved spectroscopy of large areas of sky as well as targeted observations.

  9. Characterization of porcine skin as a model for human skin studies using infrared spectroscopic imaging.

    Science.gov (United States)

    Kong, Rong; Bhargava, Rohit

    2011-06-07

    Porcine skin is often considered a substitute for human skin based on morphological and functional data, for example, for transdermal drug diffusion studies. A chemical, structural and temporal characterization of porcine skin in comparison to human skin is not available but will likely improve our understanding of this porcine skin model. Here, we employ Fourier transform infrared (FT-IR) spectroscopic imaging to holistically measure chemical species as well as spatial structure as a function of time to characterize porcine skin as a model for human skin. Porcine skin was found to resemble human skin spectroscopically and differences are elucidated. Cryo-prepared fresh porcine skin samples for spectroscopic imaging were found to be stable over time and small variations are observed. Hence, we extended characterization to the use of this model for dynamic processes. In particular, the capacity and stability of this model in transdermal diffusion is examined. The results indicate that porcine skin is likely to be an attractive tool for studying diffusion dynamics of materials in human skin.

  10. SPECTROSCOPIC INFRARED EXTINCTION MAPPING AS A PROBE OF GRAIN GROWTH IN IRDCs

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Wanggi [Department of Astronomy, University of Florida, Gainesville, FL 32611 (United States); Carey, Sean J. [Infrared Processing Analysis Center, California Institute of Technology, Pasadena, CA 91125 (United States); Tan, Jonathan C. [Departments of Astronomy and Physics, University of Florida, Gainesville, FL 32611 (United States)

    2015-11-20

    We present spectroscopic tests of MIR to FIR extinction laws in IRDC G028.36+00.07, a potential site of massive star and star cluster formation. Lim and Tan developed methods of FIR extinction mapping of this source using Spitzer-MIPS 24 μm and Herschel-PACS 70 μm images, and by comparing to MIR Spitzer-IRAC 3–8 μm extinction maps, found tentative evidence for grain growth in the highest mass surface density regions. Here we present results of spectroscopic infrared extinction mapping using Spitzer-IRS (14–38 μm) data of the same Infrared dark cloud (IRDC). These methods allow us to first measure the SED of the diffuse Galactic interstellar medium that is in the foreground of the IRDC. We then carry out our primary investigation of measuring the MIR to FIR opacity law and searching for potential variations as a function of mass surface density within the IRDC. We find relatively flat, featureless MIR–FIR opacity laws that lack the ∼12 and ∼35 μm features associated with the thick water ice mantle models of Ossenkopf and Henning. Their thin ice mantle models and the coagulating aggregate dust models of Ormel et al. are a generally better match to the observed opacity laws. We also find evidence for generally flatter MIR to FIR extinction laws as mass surface density increases, strengthening the evidence for grain and ice mantle growth in higher density regions.

  11. FRIENDS OF HOT JUPITERS. III. AN INFRARED SPECTROSCOPIC SEARCH FOR LOW-MASS STELLAR COMPANIONS

    Energy Technology Data Exchange (ETDEWEB)

    Piskorz, Danielle; Knutson, Heather A.; Ngo, Henry; Batygin, Konstantin [Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA (United States); Muirhead, Philip S. [Institute for Astrophysical Research, Boston University, Boston, MA (United States); Crepp, Justin R. [Department of Physics, University of Notre Dame, South Bend, IN (United States); Hinkley, Sasha [Department of Physics and Astronomy, University of Exeter, Exeter (United Kingdom); Morton, Timothy D., E-mail: dpiskorz@gps.caltech.edu [Department of Astrophysical Sciences, Princeton University, Princeton, NJ (United States)

    2015-12-01

    Surveys of nearby field stars indicate that stellar binaries are common, yet little is known about the effects that these companions may have on planet formation and evolution. The Friends of Hot Jupiters project uses three complementary techniques to search for stellar companions to known planet-hosting stars: radial velocity monitoring, adaptive optics imaging, and near-infrared spectroscopy. In this paper, we examine high-resolution K band infrared spectra of fifty stars hosting gas giant planets on short-period orbits. We use spectral fitting to search for blended lines due to the presence of cool stellar companions in the spectra of our target stars, where we are sensitive to companions with temperatures between 3500 and 5000 K and projected separations less than 100 AU in most systems. We identify eight systems with candidate low-mass companions, including one companion that was independently detected in our AO imaging survey. For systems with radial velocity accelerations, a spectroscopic non-detection rules out scenarios involving a stellar companion in a high inclination orbit. We use these data to place an upper limit on the stellar binary fraction at small projected separations, and show that the observed population of candidate companions is consistent with that of field stars and also with the population of wide-separation companions detected in our previous AO survey. We find no evidence that spectroscopic stellar companions are preferentially located in systems with short-period gas giant planets on eccentric and/or misaligned orbits.

  12. Skin hydration by spectroscopic imaging using multiple near-infrared bands

    Science.gov (United States)

    Attas, E. Michael; Sowa, Michael G.; Posthumus, Trevor B.; Schattka, Bernhard J.; Mantsch, Henry H.; Zhang, Shuliang L.

    2002-03-01

    Near-infrared spectroscopic methods have been developed to determine the degree of hydration of human skin in vivo. Reflectance spectroscopic imaging was used to investigate the distribution of skin moisture as a function of location. A human study in a clinical setting has generated quantitative data showing the effects of a drying agent and a moisturizer on delineated regions of the forearms of eight volunteers. Two digital imaging systems equipped with liquid-crystal tunable filters were used to collect stacks of monochromatic images at 10-nm intervals over the wavelength bands 650-1050 nm and 960-1700 nm. Images generated from measurements of water absorption-band areas at three different near-IR wavelengths (970, 1200, and 1450 nm) showed obvious differences in the apparent distribution of water in skin. Changes resulting from the skin treatments were much more evident in the 1200-nm and 1450-nm images than in the 970-nm ones. The variable sensitivity of the method at different wavelengths has been interpreted as being the result of different penetration depths of the infrared light used in the reflectance studies. Ex-vivo experiments with pigskin have provided evidence supporting the relationship between wavelength and penetration depth. Combining the hydration results from several near-IR water bands allows additional information on hydration depth to be obtained.

  13. Studies on Nephrite and Jadeite Jades by Fourier Transform Infrared (ftir) and Raman Spectroscopic Techniques

    Science.gov (United States)

    Tan, T. L.; Ng, L. L.; Lim, L. C.

    2013-10-01

    The mineralogical properties of black nephrite jade from Western Australia are studied by Fourier transform infrared (FTIR) spectroscopy using both transmission and specular reflectance techniques in the 4000-400 cm-1 wavenumber region. The infrared absorption peaks in the 3700-3600 cm-1 region which are due to the O-H stretching mode provides a quantitative analysis of the Fe/(Fe+Mg) ratio in the mineral composition of jade samples. The Fe/(Fe+Mg) percentage in black nephrite is found to be higher than that in green nephrite, but comparable to that of actinolite (iron-rich nephrite). This implies that the mineralogy of black nephrite is closer to actinolite than tremolite. The jade is also characterized using Raman spectroscopy in the 1200-200 cm-1 region. Results from FTIR and Raman spectroscopic data of black nephrite jade are compared with those of green nephrite jade from New Zealand and jadeite jade from Myanmar. Black nephrite appears to have a slightly different chemical composition from green nephrite. Spectra from FTIR and Raman spectroscopic techniques were found to be useful in differentiating black nephrite, green nephrite, and green jadeite jades. Furthermore, data on refractive index, specific gravity, and hardness of black nephrite jade are measured and compared with those of green nephrite and of jadeite jade.

  14. GriF: an infrared 3D spectroscopic mode for KIR/PUEO

    Science.gov (United States)

    Clenet, Yann; Arsenault, Robin; Beuzit, Jean-Luc; Chalabaev, Almas; Delage, Claude; Joncas, Gilles; Lacombe, Francois; Lai, Olivier; Le Coarer, Etienne; Le Mignant, David; Pau, Sylvain; Rabou, Patrick; Rouan, Daniel

    2000-07-01

    When combined with Adaptive Optics, integral field spectroscopy, i.e. observation of a sky field simultaneously in a number of spectral passbands, is the most efficient way to perform spectro-imaging at high angular resolution. GriF will provide the CFHT community with such a capability in the near infrared K-band. This extension will be completed by means of two simple optical devices to be installed in the KIR cryostat (the infrared camera of PUEO): a cooled grism in the filter-wheel and a cold aperture on an entrance focal plane wheel. They will be completed by a room-temperature Fabry- Perot (FP) interferometer in front of KIR. The FP selects narrow bandpass images while the grism spatially separates them, giving a 3-D spectroscopic capacity within a compact and light design. At each exposure, several (up to 9) monochromatic images of a rectangular field of about 36 arcseconds X 4 arc-seconds will be simultaneously acquired, allowing a precise subtraction of continuum and background. The cooled grism will guarantee a low background environment, thus a good sensitivity at K. The medium spectral resolution (about 2600) will fit to a number of programs and will represent a considerable improvement on imaging with narrow- band filters. Thus, combining high angular resolution with the spectroscopic diagnosis, GriF will allow the study of a large class of compact objects or structures, especially in the extragalactic domain where its sensitivity should be unique.

  15. Chemometric evaluation of near infrared, fourier transform infrared, and Raman spectroscopic models for the prediction of nimodipine polymorphs.

    Science.gov (United States)

    Siddiqui, Akhtar; Rahman, Ziyaur; Sayeed, Vilayat A; Khan, Mansoor A

    2013-11-01

    The objective of this study was to assess the performance of the chemometric model to predict the proportion of the recrystallized polymorphs of nimodipine from the cosolvent formulations. Ranging from 100% to 0% (w/w) of polymorph I, the two polymorphs mixtures were prepared and characterized spectroscopically using Fourier transformed infrared spectroscopy (FTIR), near-infrared spectroscopy (NIR), and Raman spectroscopy. Instrumental responses were treated to construct multivariate calibration model using principal component regression (PCR) and partial least square regression approaches. Treated data showed better model fitting than without treatment, which demonstrated higher correlation coefficient (R(2) ) and lower root mean square of standard error (RMSE) and standard error (SE). Multiple scattering correction and standard normal variate exhibited higher R(2) and lower RMSE and SE values than second derivative. Goodness of fit for FTIR and NIR (R(2) ∼ 0.99) data was better than Raman (R(2) ∼ 0.95). Furthermore, the models were applied on the recrystallized polymorphs obtained by storing nimodipine-cosolvent formulations at selected stability conditions. The relative composition of the polymorphs differed with storage conditions. NIR-chemical imaging on recrystallized sample of nimodipine at 15°C qualitatively corroborated the model-based prediction of the two polymorphs. Therefore, these studies strongly suggest the importance of the potential utility of the chemometric model in predicting nimodipine polymorphs.

  16. A Coordinated X-Ray and Optical Campaign of the Nearest Massive Eclipsing Binary, δ Orionis Aa. III. Analysis of Optical Photometric (MOST) and Spectroscopic (Ground-based) Variations

    NARCIS (Netherlands)

    Pablo, H.; Richardson, N.D.; Moffat, A.F.J.; Corcoran, M.; Shenar, T.; Benvenuto, O.; Fuller, J.; Nazé, Y.; Hoffman, J.L.; Miroshnichenko, A.; Maíz Apellániz, J.; Evans, N.; Eversberg, T.; Gayley, K.; Gull, T.; Hamaguchi, K.; Hamann, W.-R.; Henrichs, H.; Hole, T.; Ignace, R.; Iping, R.; Lauer, J.; Leutenegger, M.; Lomax, J.; Nichols, J.; Oskinova, L.; Owocki, S.; Pollock, A.; Russell, C.M.P.; Waldron, W.; Buil, C.; Garrel, T.; Graham, K.; Heathcote, B.; Lemoult, T.; Li, D.; Mauclaire, B.; Potter, M.; Ribeiro, J.; Matthews, J.; Cameron, C.; Guenther, D.; Kuschnig, R.; Rowe, J.; Rucinski, S.; Sasselov, D.; Weiss, W.

    2015-01-01

    We report on both high-precision photometry from the Microvariability and Oscillations of Stars (MOST) space telescope and ground-based spectroscopy of the triple system δ Ori A, consisting of a binary O9.5II+early-B (Aa1 and Aa2) with P = 5.7 days, and a more distant tertiary (O9 IV P> 400 years).

  17. Coupled blind signal separation and spectroscopic database fitting of the mid infrared PAH features

    Science.gov (United States)

    Rosenberg, M. J. F.; Berné, O.; Boersma, C.; Allamandola, L. J.; Tielens, A. G. G. M.

    2011-08-01

    Context. The aromatic infrared bands (AIBs) observed in the mid infrared spectrum of galactic and extragalactic sources are attributed to polycyclic aromatic hydrocarbons (PAHs). Recently, two new approaches have been developed to analyze the variations of AIBs in terms of chemical evolution of PAH species: blind signal separation (BSS) and the NASA Ames PAH IR Spectroscopic Database fitting tool. Aims: We aim to study AIBs in a photo-dissociation region (PDR) since in these regions, as the radiation environment changes, the evolution of AIBs are observed. Methods: We observe the NGC 7023-north west (NW) PDR in the mid-infrared (10-19.5 μm) using the InfraRed Spectrometer (IRS), on board Spitzer, in the high-resolution, short wavelength mode. Clear variations are observed in the spectra, most notably the ratio of the 11.0 to 11.2 μm bands, the peak position of the 11.2 and 12.0 μm bands, and the degree of asymmetry of the 11.2 μm band. The observed variations appear to change as a function of position within the PDR. We aim to explain these variations by a change in the abundances of the emitting components of the PDR. A blind signal separation (BSS) method, i.e. a Non-Negative Matrix Factorization algorithm is applied to separate the observed spectrum into components. Using the NASA Ames PAH IR Spectroscopic Database, these extracted signals are fit. The observed signals alone were also fit using the database and these components are compared to the BSS components. Results: Three component signals were extracted from the observation using BSS. We attribute the three signals to ionized PAHs, neutral PAHs, and very small grains (VSGs). The fit of the BSS extracted spectra with the PAH database further confirms the attribution to PAH+ and PAH0 and provides confidence in both methods for producing reliable results. Conclusions: The 11.0 μm feature is attributed to PAH+ while the 11.2 μm band is attributed to PAH0. The VSG signal shows a characteristically

  18. Novel Infrared Coherent Sources and Techniques for Spectroscopic Test of Fundamental Physics Principles

    Science.gov (United States)

    Pastor, P. Cancio; Galli, I.; Giusfredi, G.; Mazzotti, D.; De Natale, P.

    2013-06-01

    Recent achievements in high sensitivity and precision molecular spectroscopy in the mid-IR open new perspectives for experiments looking for possible violations of the basic postulates in quantum mechanics or quantum electro-dynamics in simple molecular systems. A new generation of hybrid infrared sources, including a direct link to optical frequency comb synthesizers (OFCSs) is under development. They provide metrological frequency precision and sensitivities that have achieved record levels of tens of parts-per-quadrillion when appropriate spectroscopic techniques are implemented. Such very recent developments will be reviewed. An example of possible application to the test of fundamental principles is attacking the symmetrization postulate (SP). Actually, the requirement of symmetry of the wave function under exchange of identical particles has a striking demonstration in the spectra of molecules including identical nuclei. The basic idea of the spectroscopic tests is to search with extremely high sensitivity for (weak) molecular lines involving the forbidden states. Since the early test of SP violation in bosonic particles, ^{12}C^{16}O_2 molecule has been considered a playground system. An upper limit of 10^{-11} to such violation was measured more than one decade ago by our group. The recent developed spectroscopic technique^{d,e} measured a minimum detected CO_2 gas pressures, in a 1-Hz bandwidth, of a few tens of femtobar, which could improve the previous test by more than two orders of magnitude. Progress in high sensitivity spectroscopic measurements in view of new violation tests will be reviewed, to investigate molecules with two and also three identical nuclei, like SO_3 and NH_3. I. Galli et al., Opt. Lett. 35, 3616 (2010). I. Ricciardi et al., Opt. Express 20, 9178 (2012). S. Borri, et al., Opt. Lett. 37, 1011 (2012). G. Giusfredi et al., Phys. Rev. Lett. 104, 110801(2010). I. Galli et al., Phys. Rev. Lett. 107, 270802 (2011). D. Mazzotti et al

  19. Fourier transform infrared and near-infrared spectroscopic methods for the detection of toxic Diethylene Glycol (DEG) contaminant in glycerin based cough syrup

    OpenAIRE

    Ahmed, M. Khalique; McLeod, Michael P.; Nézivar, Jean; Giuliani, Allison W.

    2010-01-01

    Recently there have been reports of the contamination of cough syrups with Diethylene Glycol (DEG). The consumption of such cough syrups has devastating effects on the health. In this paper we report evidence that Fourier transform infrared (FT-IR) and near-infrared (NIR) spectroscopic techniques are viable, simple, cost effective, rapid and fool proof methods for the identification and quantification of DEG in glycerin based cough syrups. The FT-IR and NIR spectra of the glycerin based cough...

  20. Fourier Transform Infrared Spectroscopic Studies Of Wheat In The Mid Infrared

    Science.gov (United States)

    Olinger, Jill M.; Griffiths, Peter R.

    1989-12-01

    Official grain standards of the United States state that wheat may be divided into seven classes which are: Durum, Red Durum, Hard Red Spring, Hard Red Winter, Soft Red Winter, White, and Mixed.1 Most end uses of wheat involve converting the grain into flour through one of a variety of grinding methods. The quality of wheat-based products is often very dependent upon the type or class of wheat which was used to make the flour. Pasta products, for example, are made almost exclusively from the flour of durum wheats, which are the hardest of the wheats listed above. The highest quality breads are produced using flour from wheats classed as hard, whereas cakes, cookies and pastries are considered best when flour from wheats classed as soft are used. It is obvious then that the capability of determining the class of a particular wheat, especially with respect to hardness, is of economic importance to growers, processors, and merchants of wheat and wheat products. Hardness has been measured in many different ways 2-5 but, as of yet, no one method has become the method of choice. This paper reports on the use of principal components analysis (PCA) of mid infrared diffuse reflectance (DR) spectra of diluted ground wheats to aid in the classification of those wheats with respect to their hardness. The theory and mathematics involved in a principal component analysis have been described elsewhere.9

  1. Revision of Stellar Intrinsic Colors in the Infrared by the Spectroscopic Surveys

    CERN Document Server

    Jian, Mingjie; Zhao, He; Jiang, Biwei

    2016-01-01

    Intrinsic colors of normal stars are derived in the popularly used infrared bands involving the 2MASS/JHKs, WISE, Spitzer/IRAC and AKARI/S9W filters. Based on three spectroscopic surveys -- LAMOST, RAVE and APOGEE, stars are classified into groups of giants and dwarfs, as well as metal-normal and metal-poor stars. An empirical analytical relation of the intrinsic color is obtained with stellar effective temperature (Teff) for each group of stars after the zero-reddening stars are selected from the blue edge in the $J-\\lambda$ versus (Teff) diagram. It is found that metallicity has little effect on the infrared colors. In the near-infrared bands, our results agree with previous work. In addition, the color indexes H-W2 and Ks-W1 that are taken as constant to calculate interstellar extinction are discussed. The intrinsic color of M-type stars are derived separately due to lack of accurate measurement of their effective temperature.

  2. Fourier transform infrared spectroscopic estimation of crystallinity in SiO2 based rocks

    Indian Academy of Sciences (India)

    Bhaskar J Saikia; G Parthasarathy; N C Sarmah

    2008-10-01

    We present here optical properties and crystallinity index of quartz (SiO2) in natural rocks samples from the Mikir and Khasi hills, Assam, India. Infrared spectroscopy has been used to study the structure of quartz in rock samples and estimate the mining quality of quartz mineral, which is substantiated by calculating the crystallinity index. Systematic investigations of structure have been carried out in between 10 m (1000 cm–1) and 20 m (500 cm–1) bands of silicates. Investigation is based on the assignment of infrared bands to certain structural groups of SiO4 tetrahedra. The crystallinity of samples has been ascertained by comparing the ratio of intensity of the characteristic peak at 778 and 695 cm–1 with the corresponding ratio for a standard sample. The crystallinity parameter is calculated by using a standard procedure which can be used to estimate the distribution of quartz in various rocks for mining purpose. The infrared spectroscopic investigation is found to be an ideal tool for structure elucidation and for estimating quartz crystallinity of the natural samples.

  3. Infrared spectroscopic analysis of skin tumor of mice treated with several medicinal plants

    Science.gov (United States)

    Ali, Huma; Dixit, Savita

    2013-01-01

    Objective To evaluate the differences between cancerous tissue, drug treated tissue and its corresponding normal tissue by infrared spectroscopic analysis. Methods Methanolic extracts of Azadirachta indica, Ocimum sanctum, Aloe barbandesis, Tinospora cordifolia and Triticum aestivum were assessed for the isolation and purification of active compound. After that, combine crude and combine isolated samples were prepared. Skin tumor was induced by topical application of 7, 12-dimethyl benz (a) anthracene and promoted by croton oil in Swiss albino mice. To assess the chemopreventive potential of different drugs, it was administered at a concentration of 400 mg/kg body weight daily up to 16 weeks. Fourier transform infrared spectroscopy analysis was used to differentiate the drug treated tissues with the normal and cancerous tissue. In the present study, spectra of different tissues were recorded in the range of 400-4 000 cm−1. Results The results of the present study have shown that the remarkable difference exists between the IR spectra of normal, drugs treated and cancerous tissue in terms of frequencies and intensities of prominent bands of cellular biomolecules. Conclusions Fourier transform infrared spectroscopy analysis suggests the chemopreventive effect of above treated drugs and the best result was observed in combine crude sample and in combine isolated sample or synergistic effect of individual crude and isolated extract in 7, 12-dimethyl benz (a) anthracene croton oil induced skin carcinogenesis in Swiss albino mice.

  4. Predicting Future Space Near-IR Grism Surveys using the WFC3 Infrared Spectroscopic Parallels Survey

    CERN Document Server

    Colbert, James W; Atek, Hakim; Bunker, Andrew; Rafelski, Marc; Ross, Nathaniel; Scarlata, Claudia; Bedregal, Alejandro; Dominguez, Alberto; Dressler, Alan; Henry, Alaina; Malkan, Matt; Martin, Crystal L; Masters, Dan; McCarthy, Patrick; Siana, Brian

    2013-01-01

    We present near-infrared emission line counts and luminosity functions from the HST WFC3 Infrared Spectroscopic Parallels (WISP) program for 29 fields observed using both the G102 and G141 grism. Altogether we identify 1048 emission line galaxies with observed equivalent widths greater than 40 Angstroms, 467 of which have multiple detected emission lines. The WISP survey is sensitive to fainter flux levels (3-5x10^{-17} ergs/s/cm^2) than the future space near-infrared grism missions aimed at baryonic acoustic oscillation cosmology (1-4x10^{-16} ergs/s/cm^2), allowing us to probe the fainter emission line galaxies that the shallower future surveys may miss. Cumulative number counts of 0.7

  5. An Overview of Ultraviolet Through Infrared Reflectance Spectroscopic Observations of Mercury During the First MESSENGER Flyby

    Science.gov (United States)

    Izenberg, N. R.; McClintock, W. E.; Holsclaw, G. M.; Robinson, M. S.; Blewett, D. T.; Domingue, D. L.; Head, J. W.; Jensen, E. A.; Kochte, M. C.; Lankton, M. R.; Murchie, S. L.; Sprague, A. L.; Vilas, F.; Solomon, S. C.

    2008-05-01

    During the first MESSENGER flyby of Mercury on January 14, 2008, the Mercury Atmospheric and Surface Composition Spectrometer (MASCS) measured reflectance spectra from Mercury's surface over the wavelength range 220-1450 nm. These are the first high-spatial-resolution (Mozart crater and in Tir Planitia. Ground-based observations of Mercury reveal a surface with a red, nearly featureless spectrum in the visible and near-infrared (wavelengths greater than ~ 500 nm) that has been interpreted as evidence for a largely iron-poor feldspathic composition. Initial analyses of VIRS spectra also show strongly red-sloped, near featureless spectra, appearing to support contentions of low iron abundance in surface materials. However, interpretation of Mercury's spectral reflectance is complicated by our lack of knowledge about the effects on its surface materials of space weathering, which both suppresses the strength of spectral absorption features and reddens the spectrum. Brightness variations and absorption bands in ultraviolet reflectance may help determine both the nature and extent of processes that modify observed reflectance at longer wavelengths. MASCS surface observation data demonstrate spectral variations across the Mercury surface that can be related to previous telescopic observations, compared and contrasted with lunar observations, and linked to possible influences of space weathering.

  6. High-definition Fourier transform infrared spectroscopic imaging of prostate tissue

    Science.gov (United States)

    Wrobel, Tomasz P.; Kwak, Jin Tae; Kadjacsy-Balla, Andre; Bhargava, Rohit

    2016-03-01

    Histopathology forms the gold standard for cancer diagnosis and therapy, and generally relies on manual examination of microscopic structural morphology within tissue. Fourier-Transform Infrared (FT-IR) imaging is an emerging vibrational spectroscopic imaging technique, especially in a High-Definition (HD) format, that provides the spatial specificity of microscopy at magnifications used in diagnostic surgical pathology. While it has been shown for standard imaging that IR absorption by tissue creates a strong signal where the spectrum at each pixel is a quantitative "fingerprint" of the molecular composition of the sample, here we show that this fingerprint also enables direct digital pathology without the need for stains or dyes for HD imaging. An assessment of the potential of HD imaging to improve diagnostic pathology accuracy is presented.

  7. Infrared Spectroscopic Study of Vibrational Modes in Methylammonium Lead Halide Perovskites.

    Science.gov (United States)

    Glaser, Tobias; Müller, Christian; Sendner, Michael; Krekeler, Christian; Semonin, Octavi E; Hull, Trevor D; Yaffe, Omer; Owen, Jonathan S; Kowalsky, Wolfgang; Pucci, Annemarie; Lovrinčić, Robert

    2015-08-06

    The organic cation and its interplay with the inorganic lattice underlie the exceptional optoelectronic properties of organo-metallic halide perovskites. Herein we report high-quality infrared spectroscopic measurements of methylammonium lead halide perovskite (CH3NH3Pb(I/Br/Cl)3) films and single crystals at room temperature, from which the dielectric function in the investigated spectral range is derived. Comparison with electronic structure calculations in vacuum of the free methylammonium cation allows for a detailed peak assignment. We analyze the shifts of the vibrational peak positions between the different halides and infer the extent of interaction between organic moiety and the surrounding inorganic cage. The positions of the NH3(+) stretching vibrations point to significant hydrogen bonding between the methylammonium and the halides for all three perovskites.

  8. Pectin functionalised by fatty acids: Diffuse reflectance infrared Fourier transform (DRIFT) spectroscopic characterisation

    Science.gov (United States)

    Kamnev, Alexander A.; Calce, Enrica; Tarantilis, Petros A.; Tugarova, Anna V.; De Luca, Stefania

    2015-01-01

    Chemically modified pectin derivatives obtained by partial esterification of its hydroxyl moieties with fatty acids (FA; oleic, linoleic and palmitic acids), as well as the initial apple peel pectin were comparatively characterised using diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy. Characteristic changes observed in DRIFT spectra in going from pectin to its FA esters are related to the corresponding chemical modifications. Comparing the DRIFT spectra with some reported data on FTIR spectra of the same materials measured in KBr or NaCl matrices has revealed noticeable shifts of several polar functional groups both in pectin and in its FA-esterified products induced by the halide salts. The results obtained have implications for careful structural analyses of biopolymers with hydrophilic functional groups by means of different FTIR spectroscopic methodologies.

  9. Recent Developments in Solid-Phase Extraction for Near and Attenuated Total Reflection Infrared Spectroscopic Analysis

    Directory of Open Access Journals (Sweden)

    Christian W. Huck

    2016-05-01

    Full Text Available A review with more than 100 references on the principles and recent developments in the solid-phase extraction (SPE prior and for in situ near and attenuated total reflection (ATR infrared spectroscopic analysis is presented. New materials, chromatographic modalities, experimental setups and configurations are described. Their advantages for fast sample preparation for distinct classes of compounds containing different functional groups in order to enhance selectivity and sensitivity are discussed and compared. This is the first review highlighting both the fundamentals of SPE, near and ATR spectroscopy with a view to real sample applicability and routine analysis. Most of real sample analyses examples are found in environmental research, followed by food- and bioanalysis. In this contribution a comprehensive overview of the most potent SPE-NIR and SPE-ATR approaches is summarized and provided.

  10. Probing the carrier concentration profiles in phosphorus-implanted germanium using infrared spectroscopic ellipsometry

    Science.gov (United States)

    D'Costa, Vijay Richard; Yeo, Yee-Chia

    2015-02-01

    Spectroscopic ellipsometry with photon energy in the 0.045-0.65 eV range was used to investigate germanium samples implanted with 30 keV phosphorus ions and annealed at 700 °C. The infrared response of implanted layers is dominated by free carrier absorption which is modeled using a Drude oscillator. The carrier concentration profiles were modeled using an error function, and compared with those obtained by electrochemical capacitance-voltage profiling and secondary ion mass spectrometry. In the flat region of the carrier concentration profile, average carrier concentration and mobility of 1.40 × 1019 cm-3 and 336 cm2V-1s-1, respectively, were obtained. A phosphorus diffusivity of ˜1.2 × 10-13 cm2/s was obtained. The mobility versus carrier concentration relationships obtained for the implanted samples are close to the empirical relationship for bulk Ge.

  11. Infrared spectroscopic measurement of skin hydration and sebum levels and comparison to corneometer and sebumeter

    Science.gov (United States)

    Ezerskaia, Anna; Pereira, S. F.; Urbach, H. P.; Varghese, Babu

    2016-05-01

    Skin health characterized by a system of water and lipids in Stratum Corneum provide protection from harmful external elements and prevent trans-epidermal water loss. Skin hydration (moisture) and sebum (skin surface lipids) are considered to be important factors in skin health; a right balance between these components is an indication of skin health and plays a central role in protecting and preserving skin integrity. In this manuscript we present an infrared spectroscopic method for simultaneous and quantitative measurement of skin hydration and sebum levels utilizing differential detection with three wavelengths 1720, 1750, and 1770 nm, corresponding to the lipid vibrational bands that lie "in between" the prominent water absorption bands. The skin sebum and hydration values on the forehead under natural conditions and its variations to external stimuli were measured using our experimental set-up. The experimental results obtained with the optical set-up show good correlation with the results obtained with the commercially available instruments Corneometer and Sebumeter.

  12. Mercury And The Moon: Mid-infrared Spectroscopic Measurements Of The Surface

    Science.gov (United States)

    Donaldson Hanna, Kerri L.; Sprague, A. L.; Kozlowski, R. W.; Boccafolo, K.; Helbert, J.; Maturilli, A.; Warell, J.

    2006-09-01

    Spectroscopic observations (7.5 - 13 μm) of Mercury and the Moon obtained with MIRSI (Mid-Infrared Spectrometer and Imager) at the NASA Infrared Telescope Facility (IRTF) are presented. The spectra were acquired at mercurian W. longitudes 172 - 282° covering north polar to south polar latitudes. Also acquired were lunar surface measurements of the Apollo 16 landing site and Grimaldi basin and highlands. Mercury measurements covered Caloris Basin, Basin S, and other regions on the side not imaged by Mariner 10. Lunar locations were chosen for their known surface compositions determined from near-infrared spectral telescopic observations and Apollo return samples. Spectra for both bodies were reduced with the same calibration star to minimize reduction differences. Spectral differences between the mercurian locations indicate a heterogeneous composition and differences between Mercury and lunar spectra indicate compositional differences between the two bodies. All collected spectra from Mercury and the Moon show distinct and recognizable features including the Christiansen emissivity maximum and one or more transmission minima. Other features have yet to be identified. True emission spectra of rock and mineral powders with varying grain sizes will be presented for comparison with the data. Acknowledgements: The authors of this paper were Visiting Astronomers at the Infrared Telescope Facility, which is operated by the University of Hawaii under Cooperative Agreement no. NCC 5-538 with the National Aeronautics and Space Administration, Science Mission Directorate, Planetary Astronomy Program. We are especially grateful to Alan Tokunaga and Eric Tollestrup for useful engineering time on the telescope and Don Hunten for helpful discussions. This work was supported by NSF grant AST-0406796.

  13. Infrared and Raman spectroscopic studies on alkali borate glasses: evidence of mixed alkali effect.

    Science.gov (United States)

    Padmaja, G; Kistaiah, P

    2009-03-19

    A lithium-potassium-borate glass system containing manganese and iron cations has been thoroughly investigated in order to obtain information about the mixed alkali effect and the structural role of both the manganese and iron in such glass hosts. Mixed alkali borate glasses of the (30 - x)Li(2)O - xK(2)O - 10CdO/ZnO - 59B(2)O(3) (x = 0, 10, 15, 20, and 30) doped with 1MnO(2)/1Fe(2)O(3) system were prepared by a melt quench technique. The amorphous phase of the prepared glass samples was confirmed from their X-ray diffraction. The spectroscopic properties of glass samples were studied using infrared (IR) and Raman spectroscopic techniques. The density of all the prepared glasses was measured using Archimedes principle. Molar volumes were estimated from the density data. IR spectra of these glasses revealed a dramatic variation of three- and four-coordinated boron structures as a function of mixed alkali concentration. The vibrations due to Li-O, K-O, and MnO(4)/FeO(4) arrangements are consistent in all the compositions and show a nonlinear variation in the intensity with alkali content. Raman spectra of different alkali combinations with CdO and ZnO present drastic changes in the intensity of various Raman bands. The observation of disappearance and reappearance of IR and Raman bands as a function of various alkali concentrations is an important result pertaining to the mixed alkali effect in borate glasses. Acting as complementary spectroscopic techniques, both types of measurements, IR and Raman, revealed that the network structure of the studied glasses is mainly based on BO(3) and BO(4) units placed in different structural groups, the BO(3) units being dominant. The measured IR and Raman spectra of different glasses are used to clarify the optical properties of the present glasses correlating them with their structure and composition.

  14. DISCOVERY OF THREE DISTANT, COLD BROWN DWARFS IN THE WFC3 INFRARED SPECTROSCOPIC PARALLELS SURVEY

    Energy Technology Data Exchange (ETDEWEB)

    Masters, D.; Siana, B. [Department of Physics and Astronomy, University of California, Riverside, CA 92521 (United States); McCarthy, P.; Hathi, N. P.; Dressler, A. [Observatories of the Carnegie Institution of Washington, Pasadena, CA 91101 (United States); Burgasser, A. J. [Center for Astrophysics and Space Science, University of California, San Diego, La Jolla, CA 92093 (United States); Malkan, M.; Ross, N. R. [Department of Physics and Astronomy, UCLA, Los Angeles, CA 90095 (United States); Scarlata, C. [Astronomy Department, University of Minnesota, Minneapolis, MN 55455 (United States); Henry, A. [Department of Physics, University of California, Santa Barbara, CA 93106 (United States); Colbert, J.; Atek, H. [Spitzer Science Center, Caltech, Pasadena, CA 91125 (United States); Rafelski, M.; Teplitz, H. [Infrared Processing and Analysis Center, Caltech, Pasadena, CA 91125 (United States); Bunker, A. [Department of Physics, University of Oxford, Oxford (United Kingdom)

    2012-06-10

    We present the discovery of three late-type ({>=}T4.5) brown dwarfs, including a probable Y dwarf, in the WFC3 Infrared Spectroscopic Parallels (WISP) survey. We use the G141 grism spectra to determine the spectral types of the dwarfs and derive distance estimates based on a comparison with nearby T dwarfs with known parallaxes. These are the most distant spectroscopically confirmed T/Y dwarfs, with the farthest at an estimated distance of {approx}400 pc. We compare the number of cold dwarfs found in the WISP survey with simulations of the brown dwarf mass function. The number found is generally consistent with an initial stellar mass function dN/dM{proportional_to}M{sup -{alpha}} with {alpha} = 0.0-0.5, although the identification of a Y dwarf is somewhat surprising and may be indicative of either a flatter absolute magnitude/spectral-type relation than previously reported or an upturn in the number of very-late-type brown dwarfs in the observed volume.

  15. Discovery of Three Distant, Cold Brown Dwarfs in the WFC3 Infrared Spectroscopic Parallels Survey

    CERN Document Server

    Masters, Daniel; Burgasser, Adam J; Hathi, Nimish P; Malkan, Matthew; Ross, Nathaniel R; Siana, Brian; Scarlata, Claudia; Henry, Alaina; Colbert, James; Atek, Hakim; Rafelski, Marc; Teplitz, Harry; Bunker, Andrew; Dressler, Alan

    2012-01-01

    We present the discovery of three late type (>T4) brown dwarfs, including a probable Y dwarf, in the WFC3 Infrared Spectroscopic Parallels (WISP) Survey. We use the G141 grism spectra to determine the spectral types of the dwarfs and derive distance estimates based on a comparison with nearby T dwarfs with known parallaxes. These are the most distant spectroscopically confirmed T/Y dwarfs, with the farthest at an estimated distance of ~400 pc. We compare the number of cold dwarfs found in the WISP survey with simulations of the brown dwarf mass function. The number found is generally consistent with an initial stellar mass function dN/dM \\propto M^{-\\alpha} with \\alpha = 0.0--0.5, although the identification of a Y dwarf is somewhat surprising and may be indicative of either a flatter absolute magnitude/spectral type relation than previously reported or an upturn in the number of very late type brown dwarfs in the observed volume.

  16. A Near-Infrared Spectroscopic Study of Young Field Ultracool Dwarfs

    CERN Document Server

    Allers, K N

    2013-01-01

    We present a near-infrared (0.9-2.4 microns) spectroscopic study of 73 field ultracool dwarfs having spectroscopic and/or kinematic evidence of youth (~10-300 Myr). Our sample is composed of 48 low-resolution (R~100) spectra and 41 moderate-resolution spectra (R>~750-2000). First, we establish a method for spectral typing M5-L7 dwarfs at near-IR wavelengths that is independent of gravity. We find that both visual and index-based classification in the near-IR provide consistent spectral types with optical spectral types, though with a small systematic offset in the case of visual classification at J and K band. Second, we examine features in the spectra of ~10 Myr ultracool dwarfs to define a set of gravity-sensitive indices based on FeH, VO, K, Na and H-band continuum shape. We then create an index-based method for classifying the gravities of M6-L5 dwarfs that provides consistent results with gravity classifications from optical spectroscopy. Our index-based classification can distinguish between young and d...

  17. M-dwarf metallicities - A high-resolution spectroscopic study in the near infrared

    CERN Document Server

    Önehag, Anna; Gustafsson, Bengt; Piskunov, Nikolai; Plez, Bertrand; Reiners, Ansgar

    2011-01-01

    The relativley large spread in the derived metallicities ([Fe/H]) of M dwarfs shows that various approaches have not yet converged to consistency. The presence of strong molecular features, and incomplete line lists for the corresponding molecules have made metallicity determinations of M dwarfs difficult. Furthermore, the faint M dwarfs require long exposure times for a signal-to-noise ratio sufficient for a detailed spectroscopic abundance analysis. We present a high-resolution (R~50,000) spectroscopic study of a sample of eight single M dwarfs and three wide-binary systems observed in the infrared J-band. The absence of large molecular contributions allow for a precise continuum placement. We derive metallicities based on the best fit synthetic spectra to the observed spectra. To verify the accuracy of the applied atmospheric models and test our synthetic spectrum approach, three binary systems with a K-dwarf primary and an M-dwarf companion were observed and analysed along with the single M dwarfs. We obt...

  18. Spectroscopic infrared extinction mapping as a probe of grain growth in IRDCs

    CERN Document Server

    Lim, Wanggi; Tan, Jonathan C

    2015-01-01

    We present spectroscopic tests of MIR to FIR extinction laws in IRDC G028.36+00.07, a potential site of massive star and star cluster formation. Lim & Tan (2014) developed methods of FIR extinction mapping of this source using ${\\it Spitzer}$-MIPS ${\\rm 24\\mu m}$ and ${\\it Herschel}$-PACS ${\\rm 70\\mu m}$ images, and by comparing to MIR ${\\it Spitzer}$-IRAC $3$--${\\rm 8\\mu m}$ extinction maps, found tentative evidence for grain growth in the highest mass surface density regions. Here we present results of spectroscopic infrared extinction (SIREX) mapping using ${\\it Spitzer}$-IRS (14 to ${\\rm 38\\mu m}$) data of the same IRDC. These methods allow us to first measure the SED of the diffuse Galactic ISM that is in the foreground of the IRDC. We then carry out our primary investigation of measuring the MIR to FIR opacity law and searching for potential variations as a function of mass surface density within the IRDC. We find relatively flat, featureless MIR-FIR opacity laws that lack the $\\sim{\\rm 12\\mu m}$ an...

  19. Spectroscopic infrared extinction mapping as a probe of grain growth in IRDCs

    Science.gov (United States)

    Lim, Wanggi; Carey, Sean J.

    2014-07-01

    We present photometric and spectroscopic tests of MIR to FIR extinction laws toward IRDC G028.36+00.07, a potential site of massive star formation. Lim & Tan (2014, hereafter LT14) developed methods of FIR extinction mapping of this source using Spitzer-MIPS 24 micron and Herschel-PACS 70 micron images, and extending the MIR 8 micron mapping methods of (Butler & Tan 2012, hereafter BT12), finding evidence for grain growth in the highest mass surface density regions. Here we present initial results of spectroscopic infrared extinction (SIREX) mapping using Spitzer-IRS (14 to 38 micron) data of the same IRDC. These methods allow us to measure the SED of the diffuse Galactic ISM, which we compare to theoretical models of Draine & Li (2007), as well as to search for opacity law variations with mass surface density within the IRDC. By comparison with theoretical dust models, e.g., Ossenkopf & Henning (1994) and Ormel et al. (2011), we are able to search for compositional signatures of the grain ices, such as water and methanol. We find evidence for generally flatter MIR to FIR extinction laws as mass surface density increases, strengthening the evidence for grain and ice mantle growth in higher density regions.

  20. AKARI Near- to Mid-Infrared Imaging and Spectroscopic Observations of the Small Magellanic Cloud. I. Bright Point Source List

    CERN Document Server

    Ita, Y; Tanabe, T; Matsunaga, N; Matsuura, M; Yamamura, I; Nakada, Y; Izumiura, H; Ueta, T; Mito, H; Fukushi, H; Kato, D

    2010-01-01

    We carried out a near- to mid-infrared imaging and spectroscopic observations of the patchy areas in the Small Magellanic Cloud using the Infrared Camera on board AKARI. Two 100 arcmin2 areas were imaged in 3.2, 4.1, 7, 11, 15, and 24 um and also spectroscopically observed in the wavelength range continuously from 2.5 to 13.4 um. The spectral resolving power (lambda/Delta lambda) is about 20, 50, and 50 at 3.5, 6.6 and 10.6 um, respectively. Other than the two 100 arcmin2 areas, some patchy areas were imaged and/or spectroscopically observed as well. In this paper, we overview the observations and present a list of near- to mid-infrared photometric results, which lists ~ 12,000 near-infrared and ~ 1,800 mid-infrared bright point sources detected in the observed areas. The 10 sigma limits are 16.50, 16.12, 13.28, 11.26, 9.62, and 8.76 in Vega magnitudes at 3.2, 4.1, 7, 11, 15, and 24 um bands, respectively.

  1. Infrared spectroscopic study of a phosphoryl-containing enzyme: cytosolic aspartate aminotransferase

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez-Ruiz, J.M.; Martinez-Carrion, M.

    1986-05-01

    A Fourier Transform Infrared spectroscopic study of cytosolic aspartate aminotransferase has been carried out in order to determine the ionization state of the phosphate group of the bound pyridoxal phosphate. The band arising from the symmetric stretching of the dianionic phosphate monoester has been identified in holoenzyme spectra in solution. Its integrated intensity does not change with pH in the range 5.3-8.6, the value being close to the integrated intensity of the same band in free pyridoxal phosphate in solution at pH 8-9. On the other hand, for free cofactor, the integrated intensity changes with pH according to the pK expected for a 5'-phosphate group in solution. It appears, therefore, that the 5'-phosphate group of the bound cofactor remains mostly dianionic in the pH range 5.3-8.6, and a small /sup 31/P-NMR chemiCal shift/pH titration dependent curve observed in holoenzyme solutions seems due to the phosphate group in the protein, likely the Lys 258-pyridoxal phosphate Schiff's base. These results also show Fourier Transform Infrared Spectroscopy as a valuable technique in the study of phosphoryl-containing proteins.

  2. Fourier–transform infrared spectroscopic characterization of naturally occurring glassy fulgurites

    Indian Academy of Sciences (India)

    B J Saikia; G Parthasarathy; N C Sarmah; G D Baruah

    2008-04-01

    We report here for the first time the spectroscopic characterization of natural fulgurites of Garuamukh. On April 22, 2005 at 04 : 00 local time, large amounts of black-brown colour of colloidal solution came out from below the earth’s surface at Garuamukh near Nagaon town (latitude 26°20′39″N, longitude 92°41′39″E, Assam, India) with fire and smoke. This colloidal solution got transformed into fulgurites, glassy material, within a few hours. We present here the characterization of the fulgurites by Fourier transform infrared (FTIR) absorption, X-ray diffraction and X-ray fluorescence methods. The amorphous nature of the substance has been confirmed by Fourier transform infrared spectra of the fulgurites, which exhibit prominent absorption band in the region 400–1200 cm-1, the basic component of amorphous silica. The present study might have significant implications in understanding the thermodynamic properties of naturally occurring glasses, which are formed by shock metamorphism.

  3. Friends of Hot Jupiters III: An Infrared Spectroscopic Search for Low-Mass Stellar Companions

    CERN Document Server

    Piskorz, Danielle; Ngo, Henry; Muirhead, Philip S; Batygin, Konstantin; Crepp, Justin R; Hinkley, Sasha; Morton, Timothy D

    2015-01-01

    Surveys of nearby field stars indicate that stellar binaries are common, yet little is known about the effects that these companions may have on planet formation and evolution. The Friends of Hot Jupiters project uses three complementary techniques to search for stellar companions to known planet-hosting stars: radial velocity monitoring, adaptive optics imaging, and near-infrared spectroscopy. In this paper, we examine high-resolution K band infrared spectra of fifty stars hosting gas giant planets on short-period orbits. We use spectral fitting to search for blended lines due to the presence of cool stellar companions in the spectra of our target stars, where we are sensitive to companions with temperatures between 3500-5000 K and projected separations less than 100 AU in most systems. We identify eight systems with candidate low-mass companions, including one companion that was independently detected in our AO imaging survey. For systems with radial velocity accelerations, a spectroscopic non-detection rul...

  4. Near infrared spectroscopic calibration models for real time monitoring of powder density.

    Science.gov (United States)

    Román-Ospino, Andrés D; Singh, Ravendra; Ierapetritou, Marianthi; Ramachandran, Rohit; Méndez, Rafael; Ortega-Zuñiga, Carlos; Muzzio, Fernando J; Romañach, Rodolfo J

    2016-10-15

    Near infrared spectroscopic (NIRS) calibration models for real time prediction of powder density (tap, bulk and consolidated) were developed for a pharmaceutical formulation. Powder density is a critical property in the manufacturing of solid oral dosages, related to critical quality attributes such as tablet mass, hardness and dissolution. The establishment of calibration techniques for powder density is highly desired towards the development of control strategies. Three techniques were evaluated to obtain the required variation in powder density for calibration sets: 1) different tap density levels (for a single component), 2) generating different strain levels in powders blends (and as consequence powder density), through a modified shear Couette Cell, and 3) applying normal forces during a compressibility test with a powder rheometer to a pharmaceutical blend. For each variation in powder density, near infrared spectra were acquired to develop partial least squares (PLS) calibration models. Test samples were predicted with a relative standard error of prediction of 0.38%, 7.65% and 0.93% for tap density (single component), shear and rheometer respectively. Spectra obtained in real time in a continuous manufacturing (CM) plant were compared to the spectra from the three approaches used to vary powder density. The calibration based on the application of different strain levels showed the greatest similarity with the blends produced in the CM plant.

  5. A Near-Infrared Spectroscopic Survey of 886 Nearby M Dwarfs

    Science.gov (United States)

    Terrien, Ryan C.; Mahadevan, Suvrath; Deshpande, Rohit; Bender, Chad F.

    2015-09-01

    We present a catalog of near-infrared (NIR) spectra and associated measurements for 886 nearby M dwarfs. The spectra were obtained with the NASA-Infrared Telescope Facility SpeX Spectrograph during a two-year observing campaign; they have high signal-to-noise ratios (S/N > 100-150), span 0.8-2.4 μm, and have R˜ 2000. Our catalog of measured values contains useful Teff and composition-sensitive features, empirical stellar parameter measurements, and kinematic, photometric, and astrometric properties compiled from the literature. We focus on measurements of M dwarf abundances ([Fe/H] and [M/H]), capitalizing on the precision of recently published empirical NIR spectroscopic calibrations. We explore systematic differences between different abundance calibrations, and from other similar M dwarf catalogs. We confirm that the M dwarf abundances we measure show the expected inverse dependence with kinematic-, activity-, and color-based age indicators. Finally, we provide updated [Fe/H] and [M/H] for 16 M dwarf planet hosts. This catalog represents the largest published compilation of NIR spectra and associated parameters for M dwarfs. It provides a rich and uniform resource for nearby M dwarfs, and will be especially valuable for measuring Habitable Zone locations and comparative abundances of the M dwarf planet hosts that will be uncovered by upcoming exoplanet surveys.

  6. Mid-infrared Spectroscopic Observations of the Dust-forming Classical Nova V2676 Oph

    Science.gov (United States)

    Kawakita, Hideyo; Ootsubo, Takafumi; Arai, Akira; Shinnaka, Yoshiharu; Nagashima, Masayoshi

    2017-02-01

    The dust-forming nova V2676 Oph is unique in that it was the first nova to provide evidence of C2 and CN molecules during its near-maximum phase and evidence of CO molecules during its early decline phase. Observations of this nova have revealed the slow evolution of its lightcurves and have also shown low isotopic ratios of carbon (12C/13C) and nitrogen (14N/15N) in its envelope. These behaviors indicate that the white dwarf (WD) star hosting V2676 Oph is a CO-rich WD rather than an ONe-rich WD (typically larger in mass than the former). We performed mid-infrared spectroscopic and photometric observations of V2676 Oph in 2013 and 2014 (respectively 452 and 782 days after its discovery). No significant [Ne ii] emission at 12.8 μm was detected at either epoch. These provided evidence for a CO-rich WD star hosting V2676 Oph. Both carbon-rich and oxygen-rich grains were detected in addition to an unidentified infrared feature at 11.4 μm originating from polycyclic aromatic hydrocarbon molecules or hydrogenated amorphous carbon grains in the envelope of V2676 Oph. Based on data collected at the Subaru Telescope, which is operated by the National Astronomical Observatory of Japan.

  7. Fourier transform infrared spectroscopic imaging of cardiac tissue to detect collagen deposition after myocardial infarction

    Science.gov (United States)

    Cheheltani, Rabee; Rosano, Jenna M.; Wang, Bin; Sabri, Abdel Karim; Pleshko, Nancy; Kiani, Mohammad F.

    2012-05-01

    Myocardial infarction often leads to an increase in deposition of fibrillar collagen. Detection and characterization of this cardiac fibrosis is of great interest to investigators and clinicians. Motivated by the significant limitations of conventional staining techniques to visualize collagen deposition in cardiac tissue sections, we have developed a Fourier transform infrared imaging spectroscopy (FT-IRIS) methodology for collagen assessment. The infrared absorbance band centered at 1338 cm-1, which arises from collagen amino acid side chain vibrations, was used to map collagen deposition across heart tissue sections of a rat model of myocardial infarction, and was compared to conventional staining techniques. Comparison of the size of the collagen scar in heart tissue sections as measured with this methodology and that of trichrome staining showed a strong correlation (R=0.93). A Pearson correlation model between local intensity values in FT-IRIS and immuno-histochemical staining of collagen type I also showed a strong correlation (R=0.86). We demonstrate that FT-IRIS methodology can be utilized to visualize cardiac collagen deposition. In addition, given that vibrational spectroscopic data on proteins reflect molecular features, it also has the potential to provide additional information about the molecular structure of cardiac extracellular matrix proteins and their alterations.

  8. Predicting future space near-IR grism surveys using the WFC3 infrared spectroscopic parallels survey

    Energy Technology Data Exchange (ETDEWEB)

    Colbert, James W.; Atek, Hakim [Spitzer Science Center, California Institute of Technology, Pasadena, CA 91125 (United States); Teplitz, Harry; Rafelski, Marc [Infrared Processing and Analysis Center, Caltech, Pasadena, CA 91125 (United States); Bunker, Andrew [Department of Physics, University of Oxford, Denys Wilkinson Building, Keble Road, Oxford OX1 3RH (United Kingdom); Ross, Nathaniel; Malkan, Matt [Department of Physics and Astronomy, University of California, Los Angeles, CA (United States); Scarlata, Claudia; Bedregal, Alejandro G. [Minnesota Institute for Astrophysics, University of Minnesota, Minneapolis, MN 55455 (United States); Dominguez, Alberto; Masters, Dan; Siana, Brian [Department of Physics and Astronomy, University of California Riverside, Riverside, CA 92521 (United States); Dressler, Alan; McCarthy, Patrick [Observatories of the Carnegie Institution for Science, Pasadena, CA 91101 (United States); Henry, Alaina [Astrophysics Science Division, Goddard Space Flight Center, Code 665, Greenbelt, MD 20771 (United States); Martin, Crystal L. [Department of Physics, University of California, Santa Barbara, CA 93106 (United States)

    2013-12-10

    We present near-infrared emission line counts and luminosity functions from the Hubble Space Telescope Wide Field Camera 3 Infrared Spectroscopic Parallels (WISP) program for 29 fields (0.037 deg{sup 2}) observed using both the G102 and G141 grism. Altogether we identify 1048 emission line galaxies with observed equivalent widths greater than 40 Å, 467 of which have multiple detected emission lines. We use simulations to correct for significant (>20%) incompleteness introduced in part by the non-dithered, non-rotated nature of the grism parallels. The WISP survey is sensitive to fainter flux levels ((3-5) × 10{sup –17} erg s{sup –1} cm{sup –2}) than the future space near-infrared grism missions aimed at baryonic acoustic oscillation cosmology ((1-4) × 10{sup –16} erg s{sup –1} cm{sup –2}), allowing us to probe the fainter emission line galaxies that the shallower future surveys may miss. Cumulative number counts of 0.7 < z < 1.5 galaxies reach 10,000 deg{sup –2} above an Hα flux of 2 × 10{sup –16} erg s{sup –1} cm{sup –2}. Hα-emitting galaxies with comparable [O III] flux are roughly five times less common than galaxies with just Hα emission at those flux levels. Galaxies with low Hα/[O III] ratios are very rare at the brighter fluxes that future near-infrared grism surveys will probe; our survey finds no galaxies with Hα/[O III] < 0.95 that have Hα flux greater than 3 × 10{sup –16} erg s{sup –1} cm{sup –2}. Our Hα luminosity function contains a comparable number density of faint line emitters to that found by the Near IR Camera and Multi-Object Spectrometer near-infrared grism surveys, but significantly fewer (factors of 3-4 less) high-luminosity emitters. We also find that our high-redshift (z = 0.9-1.5) counts are in agreement with the high-redshift (z = 1.47) narrowband Hα survey of HiZELS (Sobral et al.), while our lower redshift luminosity function (z = 0.3-0.9) falls slightly below their z = 0.84 result. The evolution

  9. Analysis of SNR for ground-based infrared detection of space object%空间目标红外地基探测的信噪比分析

    Institute of Scientific and Technical Information of China (English)

    杨帆; 宣益民; 韩玉阁

    2012-01-01

    A simulation model for sky background radiation, atmosphere transmission, and ground-based sensor was proposed. Based on the proposed model and the existing model for studying the infrared radiometric feature of a LEO satellite, a proposal for investigating the infrared detection of space object was put forward. The proposal was used to calculate the signal-to-noise ratio(SNR) of the sensor received from a modeling satellite, thereby the detection effect of satellite at different transit time was analyzed. The method to choose the best observation band in different case was advanced by comparing the character of SNR on various IR bands. It can be concluded from the results that the SNR on the near infrared band is very high when the ground sensor is in the earth's shadow and the object is sunlit. No signal is detected in the sensor when the object is in the earth's shadow. In the far infrared band, the object can be always detected either it is sunlit or in the earth's shadow. However, the SNR gets smaller when the surface temperature of the satellite is lower or the range of detection is larger. In addition, due to the sun-oriented character of the battery panels, the signal detected by the sensor varies with the solar elevation angle.%建立了天空背景辐射、大气传输和地基探测系统的仿真模型,并基于已有的低轨道卫星红外辐射特性的模型,整合了一套研究空间目标红外探测的方案.利用该方案计算了探测器对卫星探测的信噪比,分析了卫星在不同过境时间的红外地基探测的效果.通过比较不同红外波段的探测信噪特性,探究了在不同情况下如何选择最佳的观测波段.研究结果显示,当目标处于日照区而观测点在阴影区时,近红外波段的探测信噪比很高,当目标进入阴影区后该波段无探测信号.不论卫星是在日照区还是阴影区,远红外波段始终可进行探测,但是当卫星表面温度较低或者距离较

  10. Ultra-Trace Chemical Sensing with Long-Wave Infrared Cavity-Enhanced Spectroscopic Sensors

    Energy Technology Data Exchange (ETDEWEB)

    Taubman, Matthew S.; Myers, Tanya L.; Cannon, Bret D.; Williams, Richard M.; Schultz, John F.

    2003-02-20

    The infrared sensors task of Pacific Northwest National Laboratory's (PNNL's) Remote Spectroscopy Project (Task B of Project PL211) is focused on the science and technology of remote and in-situ spectroscopic chemical sensors for detecting proliferation and coun-tering terrorism. Missions to be addressed by remote chemical sensor development in-clude detecting proliferation of nuclear or chemical weapons, and providing warning of terrorist use of chemical weapons. Missions to be addressed by in-situ chemical sensor development include countering terrorism by screening luggage, personnel, and shipping containers for explosives, firearms, narcotics, chemical weapons, or chemical weapons residues, and mapping contaminated areas. The science and technology is also relevant to chemical weapons defense, air operations support, monitoring emissions from chemi-cal weapons destruction or industrial activities, law enforcement, medical diagnostics, and other applications. Sensors for most of these missions will require extreme chemical sensitivity and selectiv-ity because the signature chemicals of importance are expected to be present in low con-centrations or have low vapor pressures, and the ambient air is likely to contain pollutants or other chemicals with interfering spectra. Cavity-enhanced chemical sensors (CES) that draw air samples into optical cavities for laser-based interrogation of their chemical content promise real-time, in-situ chemical detection with extreme sensitivity to specified target molecules and superb immunity to spectral interference and other sources of noise. PNNL is developing CES based on quantum cascade (QC) lasers that operate in the mid-wave infrared (MWIR - 3 to 5 microns) and long-wave infrared (LWIR - 8 to 14 mi-crons), and CES based on telecommunications lasers operating in the short-wave infrared (SWIR - 1 to 2 microns). All three spectral regions are promising because smaller mo-lecular absorption cross sections in the SWIR

  11. Infrared Spectroscopic Studies of Matrix-Isolated Molecules with Potential Astrophysical Significance

    Science.gov (United States)

    Wehlburg, Christine Marie

    1997-08-01

    Many of the molecules purported to exist in interstellar space can only be generated in high temperature processes or are ions that are difficult to produce at high enough concentrations for spectroscopic analysis. The molecules investigated in this study, specifically, were polycyclic aromatic hydrocarbon (PAH) ions, carbon chain water complexes and carbon chain anions. PAHs are the proposed carriers of the unidentified interstellar (UIR) emission. The infrared investigation of pentacene and tetracene ions was pursued to provide data concerning the possibility that PAH cations were the source of the UIR emission. In this study, infrared features corresponding to both cation and anions for both molecules were observed for the first time. The most intense features for the neutral molecules were the CH out-of-plane wagging modes while the most intense cationic and anionic features were in the CC stretch and CH bending regions. The relative intensities from theoretical calculations were in reasonable agreement with experimental values with the exception of an overestimation for the intensities of the CH stretch in both neutral pentacene and tetracene. Carbon chain water complexes are very weakly bound species that are observed when graphite is vaporized at low power. The infrared features increase in intensity and new ones appear after annealing a matrix containing carbon chain molecules and H2O. The current study involved assignment of infrared features at 1959.4 and 2014.4 cm-1 to C6ċ H2O and C9ċ H2O, respectively. Assignments were based on the fact that both bands increased relative to the C9 and C6 bands when the concentration of H2O increased. The band assignments were further justified by a 12,13C study for C6/cdotH2O and the agreement of the theoretical shift, relative to the asymmetric stretch band of C9, for C9ċ H2O. In addition a new feature at 1550.4 cm-1 was tentatively assigned to C4ċ H2O. Finally, an isotopic study of a feature at 1721.8 cm-1

  12. Combining sequence-based prediction methods and circular dichroism and infrared spectroscopic data to improve protein secondary structure determinations

    Directory of Open Access Journals (Sweden)

    Lees Jonathan G

    2008-01-01

    Full Text Available Abstract Background A number of sequence-based methods exist for protein secondary structure prediction. Protein secondary structures can also be determined experimentally from circular dichroism, and infrared spectroscopic data using empirical analysis methods. It has been proposed that comparable accuracy can be obtained from sequence-based predictions as from these biophysical measurements. Here we have examined the secondary structure determination accuracies of sequence prediction methods with the empirically determined values from the spectroscopic data on datasets of proteins for which both crystal structures and spectroscopic data are available. Results In this study we show that the sequence prediction methods have accuracies nearly comparable to those of spectroscopic methods. However, we also demonstrate that combining the spectroscopic and sequences techniques produces significant overall improvements in secondary structure determinations. In addition, combining the extra information content available from synchrotron radiation circular dichroism data with sequence methods also shows improvements. Conclusion Combining sequence prediction with experimentally determined spectroscopic methods for protein secondary structure content significantly enhances the accuracy of the overall results obtained.

  13. New background correction method for liquid chromatography with diode array detection, infrared spectroscopic detection and Raman spectroscopic detection

    NARCIS (Netherlands)

    Boelens, H.; Dijkstra, R.J.; Eilers, P.H.C.; Fitzpatrick, F.; Westerhuis, J.A.

    2004-01-01

    A new method to eliminate the background spectrum (EBS) during analyte elution in column liquid chromatography (LC) coupled to spectroscopic techniques is proposed. This method takes into account the shape and also intensity differences of the background eluent spectrum. This allows the EBS method t

  14. First Ground-Based Infrared Solar Absorption Measurements of Free Tropospheric Methanol (CH3OH): Multidecade Infrared Time Series from Kitt Peak (31.9 deg N 111.6 deg W): Trend, Seasonal Cycle, and Comparison with Previous Measurements

    Science.gov (United States)

    Rinsland, Curtis P.; Mahieu, Emmanuel; Chiou, Linda; Herbin, Herve

    2009-01-01

    Atmospheric CH3OH (methanol) free tropospheric (2.09-14-km altitude) time series spanning 22 years has been analyzed on the basis of high-spectral resolution infrared solar absorption spectra of the strong vs band recorded from the U.S. National Solar Observatory on Kitt Peak (latitude 31.9degN, 111.6degW, 2.09-km altitude) with a 1-m Fourier transform spectrometer (FTS). The measurements span October 1981 to December 2003 and are the first long time series of CH3OH measurements obtained from the ground. The results were analyzed with SFIT2 version 3.93 and show a factor of three variations with season, a maximum at the beginning of July, a winter minimum, and no statistically significant long-term trend over the measurement time span.

  15. On the importance of image formation optics in the design of infrared spectroscopic imaging systems.

    Science.gov (United States)

    Mayerich, David; van Dijk, Thomas; Walsh, Michael J; Schulmerich, Matthew V; Carney, P Scott; Bhargava, Rohit

    2014-08-21

    Infrared spectroscopic imaging provides micron-scale spatial resolution with molecular contrast. While recent work demonstrates that sample morphology affects the recorded spectrum, considerably less attention has been focused on the effects of the optics, including the condenser and objective. This analysis is extremely important, since it will be possible to understand effects on recorded data and provides insight for reducing optical effects through rigorous microscope design. Here, we present a theoretical description and experimental results that demonstrate the effects of commonly-employed cassegranian optics on recorded spectra. We first combine an explicit model of image formation and a method for quantifying and visualizing the deviations in recorded spectra as a function of microscope optics. We then verify these simulations with measurements obtained from spatially heterogeneous samples. The deviation of the computed spectrum from the ideal case is quantified via a map which we call a deviation map. The deviation map is obtained as a function of optical elements by systematic simulations. Examination of deviation maps demonstrates that the optimal optical configuration for minimal deviation is contrary to prevailing practice in which throughput is maximized for an instrument without a sample. This report should be helpful for understanding recorded spectra as a function of the optics, the analytical limits of recorded data determined by the optical design, and potential routes for optimization of imaging systems.

  16. Early detection of ozone-induced hydroperoxides in epithelial cells by a novel infrared spectroscopic method.

    Science.gov (United States)

    Hemmingsen, A; Allen, J T; Zhang, S; Mortensen, J; Spiteri, M A

    1999-11-01

    In the lower atmosphere ozone is a toxic and an unwanted oxidising pollutant causing injury to the airway epithelial cells by lipid peroxidation to yield products such as phospholipid hydroperoxides (PLHP). Measurements of PLHP, which are primary oxidation products, may reflect an early susceptibility of the target cell to oxidative stress. Biphasic cultures of bronchial epithelial cells (BEAS-2B) were exposed to ozone at environmentally relevant concentrations (0.1-1.0 ppm) for 4 and 12 h. Detection of PLHP was made using a novel technique based on fourier transform infrared spectroscopy (FTIR) in combination with high performance thin-layer chromatography (HPTLC). Six phospholipids were identified on the HPTLC plate; lysophosphatidylcholine (LPC), sphingomyelin (SM), phosphatidylcholine (PC), lysophosphatidylethanolamine (LPE), phosphatidylinositol (PI), and phosphatidylethanolamine (PE). From the FTIR spectra, O-O stretching of hydroperoxides was identified in the range 890-820cm(-1). Multivariate data analysis revealed a positive correlation (r = 0.99 for 4 h exposure and r = 0.98 for 12h exposure) between ozone exposure levels and the region of the FTIR-spectrum comprising the main wavelengths for hydroperoxides. These data support this alternative, versatile and novel spectroscopic approach for the early detection of ozone-mediated damage in human airway epithelial cells.

  17. Infrared spectroscopic and laser characterization of Tm in disordered double tungstates

    Energy Technology Data Exchange (ETDEWEB)

    Cano-Torres, J.M.; Han, X.; Garcia-Cortes, A.; Serrano, M.D. [Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Cientificas, c/ Sor Juana Ines de la Cruz 3, E-28049 Madrid (Spain); Zaldo, C. [Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Cientificas, c/ Sor Juana Ines de la Cruz 3, E-28049 Madrid (Spain)], E-mail: cezaldo@icmm.csic.es; Valle, F.J. [Instituto de Ceramica y Vidrio, Consejo Superior de Investigaciones Cientificas, c/Kelsen 5, E-28049 Madrid (Spain); Mateos, X.; Rivier, S.; Griebner, U.; Petrov, V. [Max-Born-Institute for Nonlinear Optics and Ultrafast Spectroscopy, 2A Max-Born-Street, D-12489 Berlin (Germany)

    2008-01-15

    The relative energy and characteristics of the Tm{sup 3+} levels in tetragonal double tungstate (DT) and double molybdate (DMo) crystals are investigated by low temperature optical spectroscopy with special emphasis on NaLa(WO{sub 4}){sub 2}. In this host the transition bandwidths are intermediate between those found in ordered monoclinic DT and in other disordered tetragonal DT and DMo crystals. This allows for better band resolution of the S{sub 4} site symmetry features in the disordered scheelite-like structure. The potential of such Tm-doped crystals for building infrared tunable lasers is discussed on the basis of the calculated cross sections and their comparison with the experimental photoluminescence. Information on the crystal growth and Tm{sup 3+} spectroscopic details are provided. Tm:NaLa(WO{sub 4}){sub 2} laser operation with the available sample is more efficient for {sigma}-polarized configuration. Up to 200 mW of output power was obtained at {lambda} = 1888 nm and laser tunability extends from 1789 to 1950 nm.

  18. Fourier transform infrared spectroscopic imaging and multivariate regression for prediction of proteoglycan content of articular cartilage.

    Directory of Open Access Journals (Sweden)

    Lassi Rieppo

    Full Text Available Fourier Transform Infrared (FT-IR spectroscopic imaging has been earlier applied for the spatial estimation of the collagen and the proteoglycan (PG contents of articular cartilage (AC. However, earlier studies have been limited to the use of univariate analysis techniques. Current analysis methods lack the needed specificity for collagen and PGs. The aim of the present study was to evaluate the suitability of partial least squares regression (PLSR and principal component regression (PCR methods for the analysis of the PG content of AC. Multivariate regression models were compared with earlier used univariate methods and tested with a sample material consisting of healthy and enzymatically degraded steer AC. Chondroitinase ABC enzyme was used to increase the variation in PG content levels as compared to intact AC. Digital densitometric measurements of Safranin O-stained sections provided the reference for PG content. The results showed that multivariate regression models predict PG content of AC significantly better than earlier used absorbance spectrum (i.e. the area of carbohydrate region with or without amide I normalization or second derivative spectrum univariate parameters. Increased molecular specificity favours the use of multivariate regression models, but they require more knowledge of chemometric analysis and extended laboratory resources for gathering reference data for establishing the models. When true molecular specificity is required, the multivariate models should be used.

  19. Near infrared photometric and optical spectroscopic study of 22 low mass star clusters embedded in nebulae

    Science.gov (United States)

    Soares, J. B.; Bica, E.; Ahumada, A. V.; Clariá, J. J.

    2008-02-01

    Aims:Among the star clusters in the Galaxy, those embedded in nebulae represent the youngest group, which has only recently been explored. The analysis of a sample of 22 candidate embedded stellar systems in reflection nebulae and/or HII environments is presented. Methods: We employed optical spectroscopic observations of stars in the directions of the clusters carried out at CASLEO (Argentina) together with near infrared photometry from the 2MASS catalogue. Our analysis is based on source surface density, colour-colour diagrams and on theoretical pre-main sequence isochrones. We take into account the field star contamination by carrying out a statistical subtraction. Results: The studied objects have the characteristics of low mass systems. We derive their fundamental parameters. Most of the cluster ages are younger than 2 Myr. The studied embedded stellar systems in reflection nebulae and/or HII region complexes do not have stars of spectral types earlier than B. The total stellar masses locked in the clusters are in the range 20-220 M⊙. They are found to be gravitationally unstable and are expected to dissolve in a timescale of a few Myr. Based on observations made at Complejo Astronómico El Leoncito, which is operated under agreement between the Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina and the National Universities of La Plata, Córdoba and San Juan, Argentina.

  20. SEM, EDX, infrared and Raman spectroscopic characterization of the silicate mineral yuksporite.

    Science.gov (United States)

    Frost, Ray L; López, Andrés; Scholz, Ricardo; Theiss, Frederick L; Romano, Antônio Wilson

    2015-02-25

    The mineral yuksporite (K,Ba)NaCa2(Si,Ti)4O11(F,OH)⋅H2O has been studied using the combination of SEM with EDX and vibrational spectroscopic techniques of Raman and infrared spectroscopy. Scanning electron microscopy shows a single pure phase with cleavage fragment up to 1.0 mm. Chemical analysis gave Si, Al, K, Na and Ti as the as major elements with small amounts of Mn, Ca, Fe and REE. Raman bands are observed at 808, 871, 930, 954, 980 and 1087 cm(-1) and are typical bands for a natural zeolite. Intense Raman bands are observed at 514, 643 and 668 cm(-1). A very sharp band is observed at 3668 cm(-1) and is attributed to the OH stretching vibration of OH units associated with Si and Ti. Raman bands resolved at 3298, 3460, 3562 and 3628 cm(-1) are assigned to water stretching vibrations. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Galaxies M32 and NGC 5102 Confirm a Near-infrared Spectroscopic Chronometer

    CERN Document Server

    Miner, Jesse; Cecil, Gerald

    2010-01-01

    We present near infrared (NIR) IRTF/SpeX spectra of the intermediate-age galaxy M32 and the post-starburst galaxy NGC 5102. We show that features from thermally-pulsing asymptotic giant branch (TP-AGB) and main sequence turn-off (MSTO) stars yield similar ages to those derived from optical spectra. The TP-AGB can dominate the NIR flux of a coeval stellar population between ~0.1 and ~2 Gyr, and the strong features of (especially C-rich) TP-AGB stars are useful chronometers in integrated light studies. Likewise, the Paschen series in MSTO stars is stongly dependent on age and is an indicator of a young stellar component in integrated spectra. We define four NIR spectroscopic indices to measure the strength of absorption features from both C-rich TP-AGB stars and hydrogen features in main sequence stars, in a preliminary effort to construct a robust chronometer that probes the contributions from stars in different evolutionary phases. By comparing the values of the indices measured in M32 and NGC 5102 to those i...

  2. A Monitoring Campaign for Luhman 16AB. I. Detection of Resolved Near-Infrared Spectroscopic Variability

    CERN Document Server

    Burgasser, Adam J; Faherty, Jacqueline K; Radigan, Jacqueline; J., Amaury H M; Plavchan, Peter; Street, Rachel; Jehin, E; Delrez, L; Opitom, C

    2014-01-01

    [abbreviated] We report resolved near-infrared spectroscopic monitoring of the nearby L dwarf/T dwarf binary WISE J104915.57-531906.1AB (Luhman 16AB), as part of a broader campaign to characterize the spectral energy distribution and temporal variability of this system. A continuous 45-minute sequence of low-resolution IRTF/SpeX data spanning 0.8-2.4 micron were obtained, concurrent with combined-light optical photometry with ESO/TRAPPIST. Our spectral observations confirm the flux reversal of this binary, and we detect a wavelength-dependent decline in the relative spectral fluxes of the two components coincident with a decline in the combined-light optical brightness of the system over the course of the observation. These data are successfully modeled as a combination of brightness and color variability in the T0.5 Luhman 16B, consistent cloud variations; and no significant variability in L7.5 Luhman 16A. We estimate a peak-to-peak amplitude of 13.5% at 1.25 micron over the full lightcurve. Using a two-spot...

  3. Real-time near-infrared spectroscopic inspection system for adulterated sesame oil

    Science.gov (United States)

    Kang, Sukwon; Lee, Kang-jin; Son, Jaeryong; Kim, Moon S.

    2010-04-01

    Sesame seed oil is popular and expensive in Korea and has been often mixed with other less expensive vegetable oils. The objective of this research is to develop an economical and rapid adulteration determination system for sesame seed oil mixed with other vegetable oils. A recently developed inspection system consists of a light source, a measuring unit, a spectrophotometer, fiber optics, and a data acquisition module. A near-infrared transmittance spectroscopic method was used to develop the prediction model using Partial Least Square (PLS). Sesame seed oil mixed with a range of concentrations of corn, or perilla, or soybean oil was measured in 8 mm diameter glass tubes. For the model development, a correlation coefficient value of 0.98 was observed for corn, perilla, and soybean oil mixtures with standard errors of correlation of 6.32%, 6.16%, and 5.67%, respectively. From the prediction model, the correlation coefficients of corn oil, perilla oil, and soybean oil were 0.98, 0.97 and 0.98, respectively. The Standard Error of Prediction (SEP) for corn oil, perilla oil, and soybean oil were 6.52%, 6.89% and 5.88%, respectively. The results indicated that this system can potentially be used as a rapid non-destructive adulteration analysis tool for sesame seed oil mixed with other vegetable oils.

  4. Comments to the Article by Thuillier et al. "The Infrared Solar Spectrum Measured by the SOLSPEC Spectrometer Onboard the International Space Station" on the Interpretation of Ground-based Measurements at the Izaña Site

    Science.gov (United States)

    Bolsée, D.; Pereira, N.; Cuevas, E.; García, R.; Redondas, A.

    2016-10-01

    Thuillier et al. ( Solar Phys. 290, 1581, 2015) article compares ATLAS-3 reference composite solar spectral irradiance (SSI) with more recent spatial measurements, as well as ground-based ones, including IRSPERAD. With respect to the IRSPERAD spectrum of Bolsée et al. ( Solar Phys. 289, 2433, 2014), Thuillier et al. (2015) presents an analysis based on a set of meteorological parameters retrieved at the moment of the respective ground-based campaign. This comment is intended to give a new insight to the said analysis which is based upon revised values of the meteorological parameters incorrectly used in Thuillier et al. (2015).

  5. The usefulness of subtraction ictal SPECT and ictal near-infrared spectroscopic topography in patients with West syndrome.

    Science.gov (United States)

    Haginoya, Kazuhiro; Uematsu, Mitsugu; Munakata, Mitsutoshi; Kakisaka, Yosuke; Kikuchi, Atsuo; Nakayama, Tojo; Hino-Fukuyo, Naomi; Tsuburaya, Rie; Kitamura, Taro; Sato-Shirai, Ikuko; Abe, Yu; Matsumoto, Yoko; Wakusawa, Keisuke; Kobayashi, Tomoko; Ishitobi, Mamiko; Togashi, Noriko; Iwasaki, Masaki; Nakasato, Nobukazu; Iinuma, Kazuie

    2013-11-01

    The recent findings on subtraction ictal SPECT and ictal near-infrared spectroscopic topography in patients with West syndrome were summarized and its availability for presurgical evaluation was discussed. The subtraction ictal SPECT study in patients with West syndrome demonstrated the cortical epileptic region and subcortical involvement, which may consist of epilepsy networks related to the spasms. Moreover, subtraction ictal SPECT may have predictive power for short-term seizure outcome. Patients with a symmetric hyperperfusion pattern are predicted to have a better seizure outcome, whereas patients with asymmetric hyperperfusion pattern may develop poor seizure control. Importantly, asymmetric MRI findings had no predictive power for seizure outcome. Multichannel near-infrared spectroscopic topography applied to the patients with West syndrome detected an increase in regional cerebral blood volume in multiple areas which were activated either simultaneously or sequentially during spasms. Topographic changes in cerebral blood volume were closely correlated with spasm phenotype, suggesting that the cortex is involved in the generation of spasms. In conclusion, subtraction ictal SPECT may be considered as a useful tool for presurgical evaluation of patients with West syndrome and investigation of the pathophysiology of spasms. The ictal near-infrared spectroscopic topography should be more investigated to see if this is useful tool for presurgical evaluation.

  6. Ground based materials science experiments

    Science.gov (United States)

    Meyer, M. B.; Johnston, J. C.; Glasgow, T. K.

    1988-01-01

    The facilities at the Microgravity Materials Science Laboratory (MMSL) at the Lewis Research Center, created to offer immediate and low-cost access to ground-based testing facilities for industrial, academic, and government researchers, are described. The equipment in the MMSL falls into three categories: (1) devices which emulate some aspect of low gravitational forces, (2) specialized capabilities for 1-g development and refinement of microgravity experiments, and (3) functional duplicates of flight hardware. Equipment diagrams are included.

  7. Ground based materials science experiments

    Science.gov (United States)

    Meyer, M. B.; Johnston, J. C.; Glasgow, T. K.

    1988-01-01

    The facilities at the Microgravity Materials Science Laboratory (MMSL) at the Lewis Research Center, created to offer immediate and low-cost access to ground-based testing facilities for industrial, academic, and government researchers, are described. The equipment in the MMSL falls into three categories: (1) devices which emulate some aspect of low gravitational forces, (2) specialized capabilities for 1-g development and refinement of microgravity experiments, and (3) functional duplicates of flight hardware. Equipment diagrams are included.

  8. Fourier transform infrared spectroscopic imaging identifies early biochemical markers of tissue damage

    Science.gov (United States)

    Varma, Vishal K.; Ohlander, Samuel; Nguyen, Peter; Vendryes, Christopher; Parthiban, Sujeeth; Hamilton, Blake; Wallis, M. Chad; Kajdacsy-Balla, Andre; Hannaford, Blake; Lendvay, Thomas; Hotaling, James M.; Walsh, Michael J.

    2014-03-01

    Fourier Transform Infrared (FT-IR) spectroscopic imaging can allow for the rapid imaging of tissue biochemistry in a label-free and non-perturbing fashion. With the rapid adoption of new minimally invasive surgery (MIS) technologies over the last 20 years, adequate skill to safely and effectively use these technologies may not be achieved and risk of undue physical pressure being placed on tissues is a concern. Previous work has demonstrated that a number of histological stains can detect tissue damage, however, this process requires the initiation and progression of a signaling cascade that results in the epitope of interest being expressed. We proposed to identify the early biochemical markers associated with physical tissue damage from applied forces, thus not requiring transcriptional and translational protein synthesis as traditional immunohistochemistry does. To demonstrate that FT-IR can measure biochemical changes in tissues that have undergone physical force, we took ex-vivo lamb's liver that had been freshly excised and applied varying levels of physical pressure (0kPa to 30kPa). Tissues were then formalin-fixed, paraffin-embedded, and sectioned on to glass for H and E staining to identify damage and on to an IR slide for FT-IR imaging. Regions of interest containing hepatocytes were identified and average FT-IR spectra were extracted from the damaged and undamaged livers. FT-IR spectra showed clear biochemical changes associated with tissue damage. In addition, chemical changes could be observed proceeding histological changes observed when using conventional staining approaches.

  9. Novel infrared spectroscopic techniques for the study of adsorbed proteins on photoactive thin films

    Science.gov (United States)

    Angle, Taylor Allan

    Through the development of attenuated total reflection (ATR) Fourier transform infrared (FTIR) spectroscopic techniques, as well as biocompatible nanoporous gold film confining layers and photoactive nanocrystal cadmium telluride (CdTe) thin films, a system capable of in situ study of adsorbed protein films on photoactive layers was created. Due to the oxygen intolerance of the enzyme of interest for this work (a [FeFe]-hydrogenase from Clostridium acetobutylicum), techniques were developed in a manner conducive to anaerobic environments. Solid-state ligand exchange processes were shown to have no detrimental effect on the continued ability of nanocrystal CdTe layers to reduce species via the transfer of photogenerated electrons. Nanoporous gold films were shown to effectively confine poorly bound surface species including nanocrystal CdTe layers and adsorbed protein films. An ATR "stack'' structure, consisting of a silicon wafer coupled to a zinc selenide ATR crystal by a high index optical coupling fluid, was designed and implemented, leading to a tunable optical structure for use with existing ATR setups. This ATR stack was shown to maintain resolution and signal intensity of traditional ATR configurations for both aqueous and solid-state samples. Through the use of coupled silicon wafers, we significantly increased both sample throughput and the number of available chemical processes by replacing the expensive ATR crystals as the default sample substrate. Shown herein to function as initially intended, these novel methods provide the groundwork for more complex experiments, such as an in situ monitoring of the photooxidation of surface-bound hydrogenases.

  10. Near-infrared spectroscopic studies of self-forming lipids and nanovesicles

    Science.gov (United States)

    Bista, Rajan K.; Bruch, Reinhard F.

    2009-02-01

    Lipids and liposomes have remained an active research topic for several decades due to their significance as membrane model. Several vibrational spectroscopic techniques have been developed and employed to study the properties of lipids and liposomes. In this study, near-infrared (NIR) spectroscopy has been used to analyze a suite of synthesized PEGylated lipids trademarked as QuSomesTM. The three amphiphiles used in this study, differ in their apolar hydrophobic chain length and contain various units of polar polyethylene glycol (PEG) head groups. In contrast to conventional phospholipids, this new kind of lipids forms liposomes spontaneously upon hydration, without the supply of external activation energy. Whilst the NIR spectra of QuSomesTM show a common pattern, differences in the spectra are observed which enable the lipids to be distinguished. NIR absorption spectra of these new artificial lipids have been recorded in the spectral range of 4800-9000 cm-1 (~2100-1100 nm) by using a new miniaturized spectrometer based on micro-optical-electro-mechanical systems (MOEMS) technology. In particular, we have established specific band structures as "molecular fingerprints" corresponding to overtones and combinations vibrational modes involving mainly C-H and O-H functional groups for sample analysis of QuSomesTM. Moreover, we have demonstrated that the nanovesicles formed by such lipids in polar solvents show high stability and obey Beer's law at low concentration. The results reported in this study may find applications in various field including the development of lipids based drug delivery systems.

  11. Synchrotron radiation-based far-infrared spectroscopic ellipsometer with full Mueller-matrix capability.

    Science.gov (United States)

    Stanislavchuk, T N; Kang, T D; Rogers, P D; Standard, E C; Basistyy, R; Kotelyanskii, A M; Nita, G; Zhou, T; Carr, G L; Kotelyanskii, M; Sirenko, A A

    2013-02-01

    We developed far-IR spectroscopic ellipsometer at the U4IR beamline of the National Synchrotron Light Source in Brookhaven National Laboratory. This ellipsometer is able to measure both, rotating analyzer and full-Mueller matrix spectra using rotating retarders, and wire-grid linear polarizers. We utilize exceptional brightness of synchrotron radiation in the broad spectral range between about 20 and 4000 cm(-1). Fourier-transform infrared (FT-IR) spectrometer is used for multi-wavelength data acquisition. The sample stage has temperature variation between 4.2 and 450 K, wide range of θ-2θ angular rotation, χ tilt angle adjustment, and X-Y-Z translation. A LabVIEW-based software controls the motors, sample temperature, and FT-IR spectrometer and also allows to run fully automated experiments with pre-programmed measurement schedules. Data analysis is based on Berreman's 4 × 4 propagation matrix formalism to calculate the Mueller matrix parameters of anisotropic samples with magnetic permeability μ ≠ 1. A nonlinear regression of the rotating analyzer ellipsometry and∕or Mueller matrix (MM) spectra, which are usually acquired at variable angles of incidence and sample crystallographic orientations, allows extraction of dielectric constant and magnetic permeability tensors for bulk and thin-film samples. Applications of this ellipsometer setup for multiferroic and ferrimagnetic materials with μ ≠ 1 are illustrated with experimental results and simulations for TbMnO3 and Dy3Fe5O12 single crystals. We demonstrate how magnetic and electric dipoles, such as magnons and phonons, can be distinguished from a single MM measurement without adducing any modeling arguments. The parameters of magnetoelectric components of electromagnon excitations are determined using MM spectra of TbMnO3.

  12. Impact of difference in absorption line parameters in spectroscopic databases on CO2 and CH4 atmospheric content retrievals

    Science.gov (United States)

    Chesnokova, T. Yu.; Chentsov, A. V.; Rokotyan, N. V.; Zakharov, V. I.

    2016-09-01

    The impact of uncertainties in CH4 and CO2 absorption line parameters in modern spectroscopic databases on the atmospheric transmission simulation in the near-infrared region is investigated. The atmospheric contents of CH4 and CO2 are retrieved from the absorption solar spectra measured by a ground-based Fourier transform spectrometer. Different spectroscopic databases are used in the forward radiative transfer model and a comparison of the retrieved results is made.

  13. Adulteration screening of botanical materials by a sensitive and model-free approach using infrared spectroscopic imaging and two-dimensional correlation infrared spectroscopy

    Science.gov (United States)

    Chen, Jian-bo; Zhou, Qun; Sun, Su-qin

    2016-11-01

    Infrared (IR) spectroscopy is often used as a simple, fast, and green method for the adulteration screening of botanical materials for foods and herbs. However, the overlapping of absorption signals of various substances significantly decrease the sensitivity and specificity of IR spectroscopy in the detection of adulterated samples. In this research, a model-free approach is proposed for the sensitive and non-targeted screening of botanical materials adulterated by adding other plant materials. First, the spectra of the entities in the test sample are collected by near-infrared spectroscopic imaging and clustered by unsupervised pattern recognition methods. The sample may be adulterated if there are two or more clusters of the entities. Next, the entities of different clusters are characterized by mid-infrared spectroscopy to interpret the chemical compositions to determine the clustering is caused whether by adulteration or other reasons. Second derivative spectroscopy and two-dimensional correlation spectroscopy are often needed to resolve the overlapped bands mathematically or experimentally to find the characteristic signals to identify the authentic and adulterant entities. The feasibility of this approach was proved by the simulated adulterated sample of saffron. In conclusion, botanical materials adulterated by adding other plant materials can be detected by a simple, fast, sensitive, and green screening approach using IR spectroscopic imaging, two-dimensional correlation spectroscopy, and necessary chemometrics techniques.

  14. Noninvasive, near infrared spectroscopic-measured muscle pH and PO2 indicate tissue perfusion for cardiac surgical patients undergoing cardiopulmonary bypass

    Science.gov (United States)

    Soller, Babs R.; Idwasi, Patrick O.; Balaguer, Jorge; Levin, Steven; Simsir, Sinan A.; Vander Salm, Thomas J.; Collette, Helen; Heard, Stephen O.

    2003-01-01

    OBJECTIVE: To determine whether near infrared spectroscopic measurement of tissue pH and Po2 has sufficient accuracy to assess variation in tissue perfusion resulting from changes in blood pressure and metabolic demand during cardiopulmonary bypass. DESIGN: Prospective clinical study. SETTING: Academic medical center. SUBJECTS: Eighteen elective cardiac surgical patients. INTERVENTION: Cardiac surgery under cardiopulmonary bypass. MEASUREMENTS AND MAIN RESULTS: A near infrared spectroscopic fiber optic probe was placed over the hypothenar eminence. Reference Po2 and pH sensors were inserted in the abductor digiti minimi (V). Data were collected every 30 secs during surgery and for 6 hrs following cardiopulmonary bypass. Calibration equations developed from one third of the data were used with the remaining data to investigate sensitivity of the near infrared spectroscopic measurement to physiologic changes resulting from cardiopulmonary bypass. Near infrared spectroscopic and reference pH and Po2 measurements were compared for each subject using standard error of prediction. Near infrared spectroscopic pH and Po2 at baseline were compared with values during cardiopulmonary bypass just before rewarming commenced (hypotensive, hypothermic), after rewarming (hypotensive, normothermic) just before discontinuation of cardiopulmonary bypass, and at 6 hrs following cardiopulmonary bypass (normotensive, normothermic) using mixed-model analysis of variance. Near infrared spectroscopic pH and Po2 were well correlated with the invasive measurement of pH (R2 =.84) and Po2 (R 2 =.66) with an average standard error of prediction of 0.022 +/- 0.008 pH units and 6 +/- 3 mm Hg, respectively. The average difference between the invasive and near infrared spectroscopic measurement was near zero for both the pH and Po2 measurements. Near infrared spectroscopic Po2 significantly decreased 50% on initiation of cardiopulmonary bypass and remained depressed throughout the bypass and

  15. Noninvasive, near infrared spectroscopic-measured muscle pH and PO2 indicate tissue perfusion for cardiac surgical patients undergoing cardiopulmonary bypass

    Science.gov (United States)

    Soller, Babs R.; Idwasi, Patrick O.; Balaguer, Jorge; Levin, Steven; Simsir, Sinan A.; Vander Salm, Thomas J.; Collette, Helen; Heard, Stephen O.

    2003-01-01

    OBJECTIVE: To determine whether near infrared spectroscopic measurement of tissue pH and Po2 has sufficient accuracy to assess variation in tissue perfusion resulting from changes in blood pressure and metabolic demand during cardiopulmonary bypass. DESIGN: Prospective clinical study. SETTING: Academic medical center. SUBJECTS: Eighteen elective cardiac surgical patients. INTERVENTION: Cardiac surgery under cardiopulmonary bypass. MEASUREMENTS AND MAIN RESULTS: A near infrared spectroscopic fiber optic probe was placed over the hypothenar eminence. Reference Po2 and pH sensors were inserted in the abductor digiti minimi (V). Data were collected every 30 secs during surgery and for 6 hrs following cardiopulmonary bypass. Calibration equations developed from one third of the data were used with the remaining data to investigate sensitivity of the near infrared spectroscopic measurement to physiologic changes resulting from cardiopulmonary bypass. Near infrared spectroscopic and reference pH and Po2 measurements were compared for each subject using standard error of prediction. Near infrared spectroscopic pH and Po2 at baseline were compared with values during cardiopulmonary bypass just before rewarming commenced (hypotensive, hypothermic), after rewarming (hypotensive, normothermic) just before discontinuation of cardiopulmonary bypass, and at 6 hrs following cardiopulmonary bypass (normotensive, normothermic) using mixed-model analysis of variance. Near infrared spectroscopic pH and Po2 were well correlated with the invasive measurement of pH (R2 =.84) and Po2 (R 2 =.66) with an average standard error of prediction of 0.022 +/- 0.008 pH units and 6 +/- 3 mm Hg, respectively. The average difference between the invasive and near infrared spectroscopic measurement was near zero for both the pH and Po2 measurements. Near infrared spectroscopic Po2 significantly decreased 50% on initiation of cardiopulmonary bypass and remained depressed throughout the bypass and

  16. Towards a wearable near infrared spectroscopic probe for monitoring concentrations of multiple chromophores in biological tissue in vivo

    Science.gov (United States)

    Chitnis, Danial; Airantzis, Dimitrios; Highton, David; Williams, Rhys; Phan, Phong; Giagka, Vasiliki; Powell, Samuel; Cooper, Robert J.; Tachtsidis, Ilias; Smith, Martin; Elwell, Clare E.; Hebden, Jeremy C.; Everdell, Nicholas

    2016-06-01

    The first wearable multi-wavelength technology for functional near-infrared spectroscopy has been developed, based on a custom-built 8-wavelength light emitting diode (LED) source. A lightweight fibreless probe is designed to monitor changes in the concentrations of multiple absorbers (chromophores) in biological tissue, the most dominant of which at near-infrared wavelengths are oxyhemoglobin and deoxyhemoglobin. The use of multiple wavelengths enables signals due to the less dominant chromophores to be more easily distinguished from those due to hemoglobin and thus provides more complete and accurate information about tissue oxygenation, hemodynamics, and metabolism. The spectroscopic probe employs four photodiode detectors coupled to a four-channel charge-to-digital converter which includes a charge integration amplifier and an analogue-to-digital converter (ADC). Use of two parallel charge integrators per detector enables one to accumulate charge while the other is being read out by the ADC, thus facilitating continuous operation without dead time. The detector system has a dynamic range of about 80 dB. The customized source consists of eight LED dies attached to a 2 mm × 2 mm substrate and encapsulated in UV-cured epoxy resin. Switching between dies is performed every 20 ms, synchronized to the detector integration period to within 100 ns. The spectroscopic probe has been designed to be fully compatible with simultaneous electroencephalography measurements. Results are presented from measurements on a phantom and a functional brain activation study on an adult volunteer, and the performance of the spectroscopic probe is shown to be very similar to that of a benchtop broadband spectroscopy system. The multi-wavelength capabilities and portability of this spectroscopic probe will create significant opportunities for in vivo studies in a range of clinical and life science applications.

  17. Infrared Spectroscopic Evidence of Surface Speciation of Amino Acids on Titanium Dioxide

    Science.gov (United States)

    Jonsson, C. M.; Jonsson, C. L.; Parikh, S. J.; Sverjensky, D. A.; Cleaves, H. J.; Hazen, R. M.

    2008-12-01

    Interactions that occur at the interface between molecules and mineral surfaces in the presence of water are integral to many chemical and physical processes, including the behavior of pollutants in the environment, metal implants in the human body, and perhaps the origin of life. During the emergence of life, mineral surfaces may have played a role in the selection of amino acids, leading to the formation of proteins that are essential building blocks of life. To investigate this hypothesis, we are studying two amino acids, glutamic (Glu) and aspartic (Asp) acid, and their adsorption to the rutile form of titanium dioxide as a function of pH and surface coverage in electrolyte solutions. The objective is to get a fundamental understanding of the speciation and coordination chemistry of these amino acids at the rutile surface. We used attenuated total reflectance (ATR) Fourier transform infrared (FTIR) spectroscopy to investigate the adsorption of Glu on rutile, and a previously published ATR-FTIR study [1] of Asp and Glu adsorption on an amorphous titanium dioxide film was used as a guide to peak assignment and interpretation of our FTIR spectra. Binding of Glu to both surfaces occurs primarily through one or both of the carboxyl groups, implying that at least two types of surface complexes are formed in a proportion presumably dependent on surface coverage and pH. The interpretation of our results suggests that Glu binds to rutile in a mixed chelating-monodentate fashion involving both carboxyl groups (Glu lying down at the surface), and in a chelating fashion involving only the gamma carboxyl group (Glu standing up at the surface). FTIR results also show that the intensity of the amine peak increases with sorption, which is possibly a consequence of the amine group being brought closer to the surface but not binding directly to it. Glu adsorption on rutile is favored at low pH, based on results from batch adsorption experiments. We have commenced a systematic

  18. A monitoring campaign for Luhman 16AB. I. Detection of resolved near-infrared spectroscopic variability

    Energy Technology Data Exchange (ETDEWEB)

    Burgasser, Adam J. [Center for Astrophysics and Space Science, University of California San Diego, La Jolla, CA 92093 (United States); Gillon, Michaël; Jehin, E.; Delrez, L.; Opitom, C. [Institute of Astrophysics and Géophysique, Université of Liège, allée du 6 Août 17, B-4000 Liège (Belgium); Faherty, Jacqueline K. [Department of Terrestrial Magnetism, Carnegie Institution of Washington, 5241 Broad Branch Road NW, Washington, DC 20015 (United States); Radigan, Jacqueline [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Triaud, Amaury H. M. J. [Massachusetts Institute of Technology, Kavli Institute for Astrophysics and Space Research, 77 Massachusetts Avenue, Cambridge, MA 02139 (United States); Plavchan, Peter [NASA Exoplanet Science Institute, California Institute of Technology, M/C 100-22, 770 South Wilson Avenue, Pasadena, CA 91125 (United States); Street, Rachel, E-mail: aburgasser@ucsd.edu [LCOGT, 6740 Cortona Drive, Suite 102, Goleta, CA 93117 (United States)

    2014-04-10

    We report resolved near-infrared spectroscopic monitoring of the nearby L dwarf/T dwarf binary WISE J104915.57–531906.1AB (Luhman 16AB), as part of a broader campaign to characterize the spectral energy distribution and temporal variability of this system. A continuous 45 minute sequence of low-resolution IRTF/SpeX data spanning 0.8-2.4 μm were obtained, concurrent with combined-light optical photometry with ESO/TRAPPIST. Our spectral observations confirm the flux reversal of this binary, and we detect a wavelength-dependent decline in the relative spectral fluxes of the two components coincident with a decline in the combined-light optical brightness of the system over the course of the observation. These data are successfully modeled as a combination of achromatic (brightness) and chromatic (color) variability in the T0.5 Luhman 16B, consistent with variations in overall cloud opacity; and no significant variability was found in L7.5 Luhman 16A, consistent with recent resolved photometric monitoring. We estimate a peak-to-peak amplitude of 13.5% at 1.25 μm over the full light curve. Using a simple two-spot brightness temperature model for Luhman 16B, we infer an average cold covering fraction of ≈30%-55%, varying by 15%-30% over a rotation period assuming a ≈200-400 K difference between hot and cold regions. We interpret these variations as changes in the covering fraction of a high cloud deck and corresponding 'holes' which expose deeper, hotter cloud layers, although other physical interpretations are possible. A Rhines scale interpretation for the size of the variable features explains an apparent correlation between period and amplitude for Luhman 16B and the variable T dwarfs SIMP 0136+0933 and 2MASS J2139+0220, and predicts relatively fast winds (1-3 km s{sup –1}) for Luhman 16B consistent with light curve evolution on an advective time scale (1-3 rotation periods). The strong variability observed in this flux reversal brown dwarf pair

  19. A Monitoring Campaign for Luhman 16AB. I. Detection of Resolved Near-infrared Spectroscopic Variability

    Science.gov (United States)

    Burgasser, Adam J.; Gillon, Michaël; Faherty, Jacqueline K.; Radigan, Jacqueline; Triaud, Amaury H. M. J.; Plavchan, Peter; Street, Rachel; Jehin, E.; Delrez, L.; Opitom, C.

    2014-04-01

    We report resolved near-infrared spectroscopic monitoring of the nearby L dwarf/T dwarf binary WISE J104915.57-531906.1AB (Luhman 16AB), as part of a broader campaign to characterize the spectral energy distribution and temporal variability of this system. A continuous 45 minute sequence of low-resolution IRTF/SpeX data spanning 0.8-2.4 μm were obtained, concurrent with combined-light optical photometry with ESO/TRAPPIST. Our spectral observations confirm the flux reversal of this binary, and we detect a wavelength-dependent decline in the relative spectral fluxes of the two components coincident with a decline in the combined-light optical brightness of the system over the course of the observation. These data are successfully modeled as a combination of achromatic (brightness) and chromatic (color) variability in the T0.5 Luhman 16B, consistent with variations in overall cloud opacity; and no significant variability was found in L7.5 Luhman 16A, consistent with recent resolved photometric monitoring. We estimate a peak-to-peak amplitude of 13.5% at 1.25 μm over the full light curve. Using a simple two-spot brightness temperature model for Luhman 16B, we infer an average cold covering fraction of ≈30%-55%, varying by 15%-30% over a rotation period assuming a ≈200-400 K difference between hot and cold regions. We interpret these variations as changes in the covering fraction of a high cloud deck and corresponding "holes" which expose deeper, hotter cloud layers, although other physical interpretations are possible. A Rhines scale interpretation for the size of the variable features explains an apparent correlation between period and amplitude for Luhman 16B and the variable T dwarfs SIMP 0136+0933 and 2MASS J2139+0220, and predicts relatively fast winds (1-3 km s-1) for Luhman 16B consistent with light curve evolution on an advective time scale (1-3 rotation periods). The strong variability observed in this flux reversal brown dwarf pair supports the model of

  20. One- and two-dimensional infrared spectroscopic studies of solution-phase homogeneous catalysis and spin-forbidden reactions

    Energy Technology Data Exchange (ETDEWEB)

    Sawyer, Karma Rae [Univ. of California, Berkeley, CA (United States)

    2008-12-01

    Understanding chemical reactions requires the knowledge of the elementary steps of breaking and making bonds, and often a variety of experimental techniques are needed to achieve this goal. The initial steps occur on the femto- through picosecond time-scales, requiring the use of ultrafast spectroscopic methods, while the rate-limiting steps often occur more slowly, requiring alternative techniques. Ultrafast one and two-dimensional infrared and step-scan FTIR spectroscopies are used to investigate the photochemical reactions of four organometallic complexes. The analysis leads to a detailed understanding of mechanisms that are general in nature and may be applicable to a variety of reactions.

  1. Spectroscopic properties in Er3+-doped germanotellurite glasses and glass ceramics for mid-infrared laser materials

    Science.gov (United States)

    Kang, Shiliang; Xiao, Xiudi; Pan, Qiwen; Chen, Dongdan; Qiu, Jianrong; Dong, Guoping

    2017-03-01

    Transparent Er3+-doped germanotellurite glass ceramics (GCs) with variable Te/Ge ratio were prepared by controllable heat-treated process. X-ray diffraction (XRD) and transmission electron microscope (TEM) confirmed the formation of nanocrystals in glass matrix. Raman spectra were used to investigate the evolution of glass structure and photon energy. Fourier transform infrared (FTIR) spectra were introduced to characterize the change of hydroxyl group (OH‑) content. Enhanced 2.7 μm emission was achieved from Er3+-doped GCs upon excitation with a 980 nm laser diode (LD), and the influence of GeO2 concentration and heat-treated temperature on the spectroscopic properties were also discussed in detail. It is found that the present Er3+-doped GC possesses large stimulated emission cross section at around 2.7 μm (0.85 × 10‑20 cm2). The advantageous spectroscopic characteristics suggest that the obtained GC may be a promising material for mid-infrared fiber lasers.

  2. Spectroscopic properties in Er3+-doped germanotellurite glasses and glass ceramics for mid-infrared laser materials

    Science.gov (United States)

    Kang, Shiliang; Xiao, Xiudi; Pan, Qiwen; Chen, Dongdan; Qiu, Jianrong; Dong, Guoping

    2017-01-01

    Transparent Er3+-doped germanotellurite glass ceramics (GCs) with variable Te/Ge ratio were prepared by controllable heat-treated process. X-ray diffraction (XRD) and transmission electron microscope (TEM) confirmed the formation of nanocrystals in glass matrix. Raman spectra were used to investigate the evolution of glass structure and photon energy. Fourier transform infrared (FTIR) spectra were introduced to characterize the change of hydroxyl group (OH−) content. Enhanced 2.7 μm emission was achieved from Er3+-doped GCs upon excitation with a 980 nm laser diode (LD), and the influence of GeO2 concentration and heat-treated temperature on the spectroscopic properties were also discussed in detail. It is found that the present Er3+-doped GC possesses large stimulated emission cross section at around 2.7 μm (0.85 × 10−20 cm2). The advantageous spectroscopic characteristics suggest that the obtained GC may be a promising material for mid-infrared fiber lasers. PMID:28266570

  3. Spectroscopic detection and characterisation of planetary atmospheres

    Directory of Open Access Journals (Sweden)

    Collier Cameron A.

    2011-07-01

    Full Text Available Space based broadband infrared observations of close orbiting extrasolar giant planets at transit and secondary eclipse have proved a successful means of determining atmospheric spectral energy distributions and molecular composition. Here, a ground-based spectroscopic technique to detect and characterise planetary atmospheres is presented. Since the planet need not be transiting, this method enables a greater sample of systems to be studied. By modelling the planetary signature as a function of phase, high resolution spectroscopy has the potential to recover the signature of molecules in planetary atmospheres.

  4. A Multiwavelength Study of Cygnus X-1: The First Mid-infrared Spectroscopic Detection of Compact Jets

    Science.gov (United States)

    Rahoui, Farid; Lee, Julia C.; Heinz, Sebastian; Hines, Dean C.; Pottschmidt, Katja; Wilms, Jörn; Grinberg, Victoria

    2011-07-01

    We report on a Spitzer/InfraRed Spectrograph (mid-infrared), RXTE/PCA+HEXTE (X-ray), and Ryle (radio) simultaneous multiwavelength study of the microquasar Cygnus X-1, which aimed at an investigation of the origin of its mid-infrared emission. Compact jets were present in two out of three observations, and we show that they strongly contribute to the mid-infrared continuum. During the first observation, we detect the spectral break—where the transition from the optically thick to the optically thin regime takes place—at about 2.9 × 1013 Hz. We then show that the jet's optically thin synchrotron emission accounts for Cygnus X-1's emission beyond 400 keV, although it cannot alone explain its 3-200 keV continuum. A compact jet was also present during the second observation, but we do not detect the break, since it has likely shifted to higher frequencies. In contrast, the compact jet was absent during the last observation, and we show that the 5-30 μm mid-infrared continuum of Cygnus X-1 stems from the blue supergiant companion star HD 226868. Indeed, the emission can then be understood as the combination of the photospheric Rayleigh-Jeans tail and the bremsstrahlung from the expanding stellar wind. Moreover, the stellar wind is found to be clumpy, with a filling factor f ∞ ≈ 0.09-0.10. Its bremsstrahlung emission is likely anti-correlated to the soft X-ray emission, suggesting an anti-correlation between the mass-loss and mass-accretion rates. Nevertheless, we do not detect any mid-infrared spectroscopic evidence of interaction between the jets and Cygnus X-1's environment and/or the companion star's stellar wind.

  5. Fourier Transform Infrared Spectroscopic Study of Sodium Phosphate Solids and Solutions

    Institute of Scientific and Technical Information of China (English)

    龚文琪

    2001-01-01

    Solids and solutions of sodium phosphates with various chain lengths have been studied by using the techniques of diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy and attenuated total reflection-Fourier transform infrared (ATR-FTIR) spectroscopy, respectively. A systematic study of the infrared spectra of the solid sodium phosphates has been conducted on the basis of the information available in the literatures to establish the assignments of the infrared vibrations of the different groups in the phosphate molecules. The infrared spectra of the solutions of sodium phosphates have been analyzed according to the infrared study on the relevant solids, in conjunction with the study of the phosphate species distribution in solution on the basis of the acid-base reaction equilibria. The results obtained have revealed the correlations between the infrared absorption spectra and the structure of the different P-O groups in different kinds of phosphates and are useful in the analysis of phosphate solids and solutions widely used in the various operations of mineral processing.

  6. High-definition Fourier Transform Infrared (FT-IR) spectroscopic imaging of human tissue sections towards improving pathology.

    Science.gov (United States)

    Sreedhar, Hari; Varma, Vishal K; Nguyen, Peter L; Davidson, Bennett; Akkina, Sanjeev; Guzman, Grace; Setty, Suman; Kajdacsy-Balla, Andre; Walsh, Michael J

    2015-01-21

    High-definition Fourier Transform Infrared (FT-IR) spectroscopic imaging is an emerging approach to obtain detailed images that have associated biochemical information. FT-IR imaging of tissue is based on the principle that different regions of the mid-infrared are absorbed by different chemical bonds (e.g., C=O, C-H, N-H) within cells or tissue that can then be related to the presence and composition of biomolecules (e.g., lipids, DNA, glycogen, protein, collagen). In an FT-IR image, every pixel within the image comprises an entire Infrared (IR) spectrum that can give information on the biochemical status of the cells that can then be exploited for cell-type or disease-type classification. In this paper, we show: how to obtain IR images from human tissues using an FT-IR system, how to modify existing instrumentation to allow for high-definition imaging capabilities, and how to visualize FT-IR images. We then present some applications of FT-IR for pathology using the liver and kidney as examples. FT-IR imaging holds exciting applications in providing a novel route to obtain biochemical information from cells and tissue in an entirely label-free non-perturbing route towards giving new insight into biomolecular changes as part of disease processes. Additionally, this biochemical information can potentially allow for objective and automated analysis of certain aspects of disease diagnosis.

  7. A Precise Determination of the Mid-Infrared Interstellar Extinction Law Based on the APOGEE Spectroscopic Survey

    CERN Document Server

    Xue, Mengyao; Gao, Jian; Liu, Jiaming; Wang, Shu; Li, Aigen

    2016-01-01

    A precise measure of the mid-infrared interstellar extinction law is crucial to the investigation of the properties of interstellar dust, especially of the grains in the large size end. Based on the stellar parameters derived from the SDSS-III/APOGEE spectroscopic survey, we select a large sample of G- and K-type giants as the tracers of the Galactic mid-infrared extinction. We calculate the intrinsic stellar color excesses from the stellar effective temperatures and use them to determine the mid-infrared extinction for a given line of sight. For the entire sky of the Milky Way surveyed by APOGEE, we derive the extinction (relative to the K$_{\\rm S}$ band at wavelength $\\lambda=2.16\\mu$m) for the four \\emph{WISE} bands at 3.4, 4.6, 12 and 22$\\mu$m, the four \\emph{Spitzer}/IRAC bands at 3.6, 4.5, 5.8 and 8$\\mu$m, the \\emph{Spitzer}/MIPS24 band at 23.7$\\mu$m and for the first time, the \\emph{AKARI}/S9W band at 8.23$\\mu$m. Our results agree with previous works in that the extinction curve is flat in the ~3--8$\\m...

  8. Asteroseismology of solar-type stars with Kepler: III. Ground-based data

    DEFF Research Database (Denmark)

    Karoff, Christoffer; Molenda-Żakowicz , J.

    2010-01-01

    We report on the ground-based follow-up program of spectroscopic and photometric observations of solar-like asteroseismic targets for the Kepler space mission. These stars constitute a large group of more than a thousand objects which are the subject of an intensive study by the Kepler Asteroseis......We report on the ground-based follow-up program of spectroscopic and photometric observations of solar-like asteroseismic targets for the Kepler space mission. These stars constitute a large group of more than a thousand objects which are the subject of an intensive study by the Kepler...

  9. Biosensors for EVA: Improved Instrumentation for Ground-based Studies

    Science.gov (United States)

    Soller, B.; Ellerby, G.; Zou, F.; Scott, P.; Jin, C.; Lee, S. M. C.; Coates, J.

    2010-01-01

    During lunar excursions in the EVA suit, real-time measurement of metabolic rate is required to manage consumables and guide activities to ensure safe return to the base. Metabolic rate, or oxygen consumption (VO2), is normally measured from pulmonary parameters but cannot be determined with standard techniques in the oxygen-rich environment of a spacesuit. Our group has developed novel near infrared spectroscopic (NIRS) methods to calculate muscle oxygen saturation (SmO 2), hematocrit, and pH, and we recently demonstrated that we can use our NIRS sensor to measure VO 2 on the leg during cycling. Our NSBRI project has 4 objectives: (1) increase the accuracy of the metabolic rate calculation through improved prediction of stroke volume; (2) investigate the relative contributions of calf and thigh oxygen consumption to metabolic rate calculation for walking and running; (3) demonstrate that the NIRS-based noninvasive metabolic rate methodology is sensitive enough to detect decrement in VO 2 in a space analog; and (4) improve instrumentation to allow testing within a spacesuit. Over the past year we have made progress on all four objectives, but the most significant progress was made in improving the instrumentation. The NIRS system currently in use at JSC is based on fiber optics technology. Optical fiber bundles are used to deliver light from a light source in the monitor to the patient, and light reflected back from the patient s muscle to the monitor for spectroscopic analysis. The fiber optic cables are large and fragile, and there is no way to get them in and out of the test spacesuit used for ground-based studies. With complimentary funding from the US Army, we undertook a complete redesign of the sensor and control electronics to build a novel system small enough to be used within the spacesuit and portable enough to be used by a combat medic. In the new system the filament lamp used in the fiber optic system was replaced with a novel broadband near infrared

  10. Biosensors for EVA: Improved Instrumentation for Ground-based Studies

    Science.gov (United States)

    Soller, B.; Ellerby, G.; Zou, F.; Scott, P.; Jin, C.; Lee, S. M. C.; Coates, J.

    2010-01-01

    During lunar excursions in the EVA suit, real-time measurement of metabolic rate is required to manage consumables and guide activities to ensure safe return to the base. Metabolic rate, or oxygen consumption (VO2), is normally measured from pulmonary parameters but cannot be determined with standard techniques in the oxygen-rich environment of a spacesuit. Our group has developed novel near infrared spectroscopic (NIRS) methods to calculate muscle oxygen saturation (SmO 2), hematocrit, and pH, and we recently demonstrated that we can use our NIRS sensor to measure VO 2 on the leg during cycling. Our NSBRI project has 4 objectives: (1) increase the accuracy of the metabolic rate calculation through improved prediction of stroke volume; (2) investigate the relative contributions of calf and thigh oxygen consumption to metabolic rate calculation for walking and running; (3) demonstrate that the NIRS-based noninvasive metabolic rate methodology is sensitive enough to detect decrement in VO 2 in a space analog; and (4) improve instrumentation to allow testing within a spacesuit. Over the past year we have made progress on all four objectives, but the most significant progress was made in improving the instrumentation. The NIRS system currently in use at JSC is based on fiber optics technology. Optical fiber bundles are used to deliver light from a light source in the monitor to the patient, and light reflected back from the patient s muscle to the monitor for spectroscopic analysis. The fiber optic cables are large and fragile, and there is no way to get them in and out of the test spacesuit used for ground-based studies. With complimentary funding from the US Army, we undertook a complete redesign of the sensor and control electronics to build a novel system small enough to be used within the spacesuit and portable enough to be used by a combat medic. In the new system the filament lamp used in the fiber optic system was replaced with a novel broadband near infrared

  11. Non-invasive cerebral blood volume measurement during seizures using multi-channel near infrared spectroscopic topography

    Science.gov (United States)

    Watanabe, Eiju; Maki, Atsushi; Kawaguchi, Fumio; Yamashita, Yuichi; Koizumi, Hideaki; Mayanagi, Yoshiaki

    2000-07-01

    Near infrared spectroscopic topography (NIRS) is widely recognized as a noninvasive method to measure the regional cerebral blood volume (rCBV) dynamics coupled with neuronal activities. We analyzed the rCBV change in the early phase of epileptic seizures in 12 consecutive patients with medically intractable epilepsy. Seizure was induced by bemegride injection. We used eight-channel NIRS in nine cases and 24 channel in three cases. In all of the cases, rCBV increased rapidly after the seizure onset on the focus side. The increased rCBV was observed for about 30 - 60 s. The NIRS method can be applied to monitor the rCBV change continuously during seizures. Therefore, this method may be combined with ictal SPECT as one of the most reliable noninvasive methods of focus diagnosis.

  12. Ab initio molecular orbital and infrared spectroscopic study of the conformation of secondary amides: derivatives of formanilide, acetanilide and benzylamides

    Science.gov (United States)

    Ilieva, S.; Hadjieva, B.; Galabov, B.

    1999-09-01

    Ab initio molecular orbital calculations at HF/4-31G level and infrared spectroscopic data for the frequencies are applied to analyse the grouping in a series model aromatic secondary amides: formanilide; acetanilide; o-methylacetanilide; 2,6-dimethylformanilide, 2,6-dimethylacetanilide; N-benzylacetamide and N-benzylformamide. The theoretical and experimental data obtained show that the conformational state of the molecules studied is determined by the fine balance of several intramolecular factors: resonance effect between the amide group and the aromatic ring, steric interaction between various substituents around the -NH-CO- grouping in the aromatic ring, conjugation between the carbonyl bond and the nitrogen lone pair as well as direct field influences inside the amide group.

  13. Micro-Attenuated Total Reflection Fourier Transform Infrared (Micro ATR FT-IR) Spectroscopic Imaging with Variable Angles of Incidence.

    Science.gov (United States)

    Wrobel, Tomasz P; Vichi, Alessandra; Baranska, Malgorzata; Kazarian, Sergei G

    2015-10-01

    The control of the angle of incidence in attenuated total reflection (ATR) Fourier transform infrared (FT-IR) spectroscopy allows for the probing of the sample at different depths of penetration of the evanescent wave. This approach has been recently coupled with macro-imaging capability using a diamond ATR accessory. In this paper, the design of optical apertures for the micro-germanium (Ge) ATR objective is presented for an FT-IR spectroscopic imaging microscope, allowing measurements with different angles of incidence. This approach provides the possibility of three-dimensional (3D) profiling in micro-ATR FT-IR imaging mode. The proof of principle results for measurements of polymer laminate samples at different angles of incidence confirm that controlling the depth of penetration is possible using a Ge ATR objective with added apertures.

  14. The water vapour continuum in near-infrared windows - Current understanding and prospects for its inclusion in spectroscopic databases

    Science.gov (United States)

    Shine, Keith P.; Campargue, Alain; Mondelain, Didier; McPheat, Robert A.; Ptashnik, Igor V.; Weidmann, Damien

    2016-09-01

    Spectroscopic catalogues, such as GEISA and HITRAN, do not yet include information on the water vapour continuum that pervades visible, infrared and microwave spectral regions. This is partly because, in some spectral regions, there are rather few laboratory measurements in conditions close to those in the Earth's atmosphere; hence understanding of the characteristics of the continuum absorption is still emerging. This is particularly so in the near-infrared and visible, where there has been renewed interest and activity in recent years. In this paper we present a critical review focusing on recent laboratory measurements in two near-infrared window regions (centred on 4700 and 6300 cm-1) and include reference to the window centred on 2600 cm-1 where more measurements have been reported. The rather few available measurements, have used Fourier transform spectroscopy (FTS), cavity ring down spectroscopy, optical-feedback - cavity enhanced laser spectroscopy and, in very narrow regions, calorimetric interferometry. These systems have different advantages and disadvantages. Fourier Transform Spectroscopy can measure the continuum across both these and neighbouring windows; by contrast, the cavity laser techniques are limited to fewer wavenumbers, but have a much higher inherent sensitivity. The available results present a diverse view of the characteristics of continuum absorption, with differences in continuum strength exceeding a factor of 10 in the cores of these windows. In individual windows, the temperature dependence of the water vapour self-continuum differs significantly in the few sets of measurements that allow an analysis. The available data also indicate that the temperature dependence differs significantly between different near-infrared windows. These pioneering measurements provide an impetus for further measurements. Improvements and/or extensions in existing techniques would aid progress to a full characterisation of the continuum - as an example, we

  15. Preliminary evaluation of hydrocarbon removal power of Caulerpa racemosa in seawater by means of infrared and visible spectroscopic measurements.

    Science.gov (United States)

    Pietroletti, Marco; Capobianchi, Alfredo; Ragosta, Emanuela; Mecozzi, Mauro

    2010-10-15

    In this paper we tested the power of Caulerpa racemosa for removal hydrocarbons from seawater. C. racemosa was implanted in two aquariums filled with natural seawater having a hydrocarbon content lower than 0.05mg/L which is the detection limit of the FTIR spectrophotometric method used for the determination. One aquarium was submitted to sequential additions of hydrocarbons (n-esadecane 10, 20 and 40mg/L, n-docosane 15mg/L) and diesel fuels (20mg/L) while the second one remained uncontaminated and used as control. After any addition, hydrocarbon content in seawater was determined at regular time intervals (one or two days) and when comparable hydrocarbon contents (i.e. lower than 0.05mg/L) were again observed, the real removal power of hydrocarbons was verified by several spectroscopic measurements performed on algae from both aquariums. Total hydrocarbon contents in algae determined by infrared (FTIR) spectroscopy, always resulted higher in the polluted aquarium for all the concentrations of added pollutants. Further FTIR studies performed on algae showed the presence of marked quantitative and structural molecular modifications involving carbohydrates, proteins, lipids, nucleic acids and chlorophyll pigments in C. racemosa from the aquarium test. In addition, visible (VIS) spectroscopic examination of C. racemosa showed a reduction of chlorophyll pigments in the polluted aquarium with respect to the control one. At last, FTIR spectra all the algal samples submitted to hydrocarbon pollution were re-examined by means of two-dimensional correlation analysis, a statistical tool helpful for studying the dynamic evolution of any molecular and biological system submitted to an external perturbation producing compositional and structural changes. This approach showed differences among the molecular modifications caused by any type of hydrocarbon used, modifications related reasonably to the molecular dimensions and concentration of the added pollutants. All these

  16. Infrared LED Enhanced Spectroscopic CdZnTe Detector Working under High Fluxes of X-rays

    Directory of Open Access Journals (Sweden)

    Jakub Pekárek

    2016-09-01

    Full Text Available This paper describes an application of infrared light-induced de-polarization applied on a polarized CdZnTe detector working under high radiation fluxes. We newly demonstrate the influence of a high flux of X-rays and simultaneous 1200-nm LED illumination on the spectroscopic properties of a CdZnTe detector. CdZnTe detectors operating under high radiation fluxes usually suffer from the polarization effect, which occurs due to a screening of the internal electric field by a positive space charge caused by photogenerated holes trapped at a deep level. Polarization results in the degradation of detector charge collection efficiency. We studied the spectroscopic behavior of CdZnTe under various X-ray fluxes ranging between 5 × 10 5 and 8 × 10 6 photons per mm 2 per second. It was observed that polarization occurs at an X-ray flux higher than 3 × 10 6 mm − 2 ·s − 1 . Using simultaneous illumination of the detector by a de-polarizing LED at 1200 nm, it was possible to recover X-ray spectra originally deformed by the polarization effect.

  17. Infrared LED Enhanced Spectroscopic CdZnTe Detector Working under High Fluxes of X-rays.

    Science.gov (United States)

    Pekárek, Jakub; Dědič, Václav; Franc, Jan; Belas, Eduard; Rejhon, Martin; Moravec, Pavel; Touš, Jan; Voltr, Josef

    2016-09-27

    This paper describes an application of infrared light-induced de-polarization applied on a polarized CdZnTe detector working under high radiation fluxes. We newly demonstrate the influence of a high flux of X-rays and simultaneous 1200-nm LED illumination on the spectroscopic properties of a CdZnTe detector. CdZnTe detectors operating under high radiation fluxes usually suffer from the polarization effect, which occurs due to a screening of the internal electric field by a positive space charge caused by photogenerated holes trapped at a deep level. Polarization results in the degradation of detector charge collection efficiency. We studied the spectroscopic behavior of CdZnTe under various X-ray fluxes ranging between 5 × 10 5 and 8 × 10 6 photons per mm 2 per second. It was observed that polarization occurs at an X-ray flux higher than 3 × 10 6 mm - 2 ·s - 1 . Using simultaneous illumination of the detector by a de-polarizing LED at 1200 nm, it was possible to recover X-ray spectra originally deformed by the polarization effect.

  18. Investigating the origin and spectroscopic variability of the near-infrared HI lines in the Herbig star VV Ser

    CERN Document Server

    López, Rebeca García; Garatti, Alessio Caratti o; Kreplin, Alexander; Weigelt, Gerd; Tambovtseva, Larisa V; Grinin, Vladimir P; Ray, Thomas P

    2015-01-01

    The origin of the near-infrared (NIR) HI emission lines in young stellar objects are not yet understood. To probe it, we present multi-epoch LBT-LUCIFER spectroscopic observations of the Pa{\\delta}, Pa{\\beta}, and Br{\\gamma} lines observed in the Herbig star VVSer, along with VLTI-AMBER Br{\\gamma} spectro-interferometric observations at medium resolution. Our spectroscopic observations show line profile variability in all the HI lines. The strongest variability is observed in the redshifted part of the line profiles. The Br{\\gamma} spectro-interferometric observations indicate that the Br{\\gamma} line emitting region is smaller than the continuum emitting region. To interpret our results, we employed radiative transfer models with three different flow configurations: magnetospheric accretion, a magneto-centrifugally driven disc wind, and a schematic bipolar outflow. Our models suggest that the HI line emission in VVSer is dominated by the contribution of an extended wind, perhaps a bipolar outflow. Although t...

  19. A four class model for digital breast histopathology using high-definition Fourier transform infrared (FT-IR) spectroscopic imaging

    Science.gov (United States)

    Mittal, Shachi; Wrobel, Tomasz P.; Leslie, L. S.; Kadjacsy-Balla, Andre; Bhargava, Rohit

    2016-03-01

    High-definition (HD) Fourier transform infrared (FT-IR) spectroscopic imaging is an emerging technique that not only enables chemistry-based visualization of tissue constituents, and label free extraction of biochemical information but its higher spatial detail makes it a potentially useful platform to conduct digital pathology. This methodology, along with fast and efficient data analysis, can enable both quantitative and automated pathology. Here we demonstrate a combination of HD FT-IR spectroscopic imaging of breast tissue microarrays (TMAs) with data analysis algorithms to perform histologic analysis. The samples comprise four tissue states, namely hyperplasia, dysplasia, cancerous and normal. We identify various cell types which would act as biomarkers for breast cancer detection and differentiate between them using statistical pattern recognition tools i.e. Random Forest (RF) and Bayesian algorithms. Feature optimization is integrally carried out for the RF algorithm, reducing computation time as well as redundant spectral features. We achieved an order of magnitude reduction in the number of features with comparable prediction accuracy to that of the original feature set. Together, the demonstration of histology and selection of features paves the way for future applications in more complex models and rapid data acquisition.

  20. [Infrared spectroscopic studies of the effect of hydrotalcite on the capability of agricultural film].

    Science.gov (United States)

    Wang, Liang-yu; Cui, Hai-long; Jiao, Hong-wen

    2007-02-01

    Different kinds of hydrotalcite and their effects on the optic capability, transmittance, infrared anti-transmittance and heat preservation of agriculture film were studied by IR spectroscopy. It was found that the haze degree of the film decreased about 1.5% because the diameter of the hydrotalcite made in Dalian was bigger than those made in Japan. Compared to the french chalk, the hydrotalcite had much better capability of infrared anti-transmittance. But from the spectra of hydrotalcite, whichever made in Dalian or in Japan, there was no infrared absorption in the region of 1100-1200 cm(-1). Compared with the wavelength of 9-11 microm, the absorbance band at 1360 cm(-1) had a little shift. Hence, the capability of heat preservation of hydrotalcite-added agriculture film would be studied in the future work.

  1. Far-infrared spectroscopic study of CeO{sub 2} nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Popović, Z. V., E-mail: zoran.popovic@ipb.ac.rs; Grujić-Brojčin, M.; Paunović, N. [University of Belgrade, Center for Solid State Physics and New Materials, Institute of Physics (Serbia); Radonjić, M. M. [University of Belgrade, Scientific Computing Laboratory, Institute of Physics Belgrade (Serbia); Araújo, V. D.; Bernardi, M. I. B. [Universidade de São Paulo-USP, Instituto de Fisica (Brazil); Lima, M. M. de; Cantarero, A. [Universidad de Valencia, Instituto de Ciencia de Los Materiales (Spain)

    2015-01-15

    We present the far-infrared reflectivity spectra of 5 nm-sized pure and copper-doped Ce{sub 1−x}Cu{sub x}O{sub 2−y} (x = 0; 0.01 and 0.10) nanocrystals measured at room temperature in the 50–650 cm{sup −1} spectral range. Reflectivity spectra were analyzed using the factorized form of the dielectric function, which includes the phonon and the free carriers contribution. Four oscillators with TO energies of approximately 135, 280, 370, and 490 cm{sup −1} were included in the fitting procedure. These oscillators represent local maxima of the CeO{sub 2} phonon density of states, which is also calculated using the density functional theory. The lowest energy oscillator represents TA(L)/TA(X) phonon states, which become infrared-active E{sub u} modes at the L and X points of the Brillouin zone (BZ). The second oscillator originates from TO(Γ) phonon states. The oscillator at ∼400 cm{sup −1} originates from Raman mode phonon states, which at the L point of BZ also becomes infrared-active E{sub u} mode. The last oscillator describes phonons with dominantly LO(Γ) infrared mode character. The appearance of phonon density of states related oscillators, instead of single F{sub 2u}infrared-active mode in the far-infrared reflectivity spectra, is a consequence of the nanosized dimension of the CeO{sub 2} particles. The best fit spectra are obtained using the generalized Bruggeman model for inhomogeneous media, which takes into account the nanocrystal volume fraction and the pore shape.

  2. A time-resolved infrared vibrational spectroscopic study of the photo-dynamics of crystalline materials.

    Science.gov (United States)

    Towrie, Mike; Parker, Anthony W; Ronayne, Kate L; Bowes, Katharine F; Cole, Jacqueline M; Raithby, Paul R; Warren, John E

    2009-01-01

    Time-resolved infrared vibrational spectroscopy is a structurally sensitive probe of the excited-state properties of matter. The technique has found many applications in the study of molecules in dilute solution phase but has rarely been applied to crystalline samples. We report on the use of a sensitive pump-probe time-resolved infrared spectrometer and sample handling techniques for studies of the ultrafast excited-state dynamics of crystalline materials. The charge transfer excited states of crystalline metal carbonyls and the proton transfer of dihydroxyquinones are presented and compared with the solution phase.

  3. Infrared and Raman spectroscopic studies of glasses with NASICON-type chemistry

    Indian Academy of Sciences (India)

    K J Rao; K C Sobha; Sundeep Kumar

    2001-10-01

    Structures of NASICON glasses of the general formula AB2(PO4)3, where A = Li, Na or K and B = Fe, Ga, Ti, V or Nb, have been investigated using vibrational (IR and Raman) spectroscopies. Phosphate species appear to establish an equilibrium via a disproportionation reaction involving a dynamical bond-switching mechanism where both charge and bonds are conserved. B ions in the system acquire different coordinations to oxygens. Alkali ions cause absorptions due to cage vibrations. All the observed spectroscopic features are consistent with speciation involving disproportionation reactions.

  4. An infrared spectroscopic study of the adsorption of carbon monoxide on silica-supported copper oxide

    NARCIS (Netherlands)

    Jong, K.P. de; Geus, John W.; Joziasse, J.

    1980-01-01

    Adsorption of carbon monoxide at room temperature (0.1–50 Torr) on silica-supported copper oxide was studied by infrared spectroscopy. Catalysts were prepared by deposition-precipitation or impregnation. After calcination two types of adsorbed CO were identified showing absorption bands at 2136 ± 3

  5. Infrared spectroscopic study of phonons coupled to charge excitations in FeSi

    NARCIS (Netherlands)

    Damascelli, A.; Schulte, K. Van der; Marel, D. van der; Menovsky, A. A.

    1997-01-01

    From an investigation of the optical conductivity of FeSi single crystals using Fourier-transform infrared spectroscopy in the frequency range from 30 to 20 000 cm-l we conclude that the transverse effective charge of the Fe and Si ions is approximately 4e. Of the five optical phonons that are allow

  6. GTC Osiris spectroscopic identification of a faint L subdwarf in the UKIRT Infrared Deep Sky Survey

    CERN Document Server

    Lodieu, N; Martin, E L; Solano, E; Aberaturi, M

    2009-01-01

    We present the discovery of an L subdwarf in 234 square degrees common to the UK Infrared Telescope (UKIRT) Infrared Deep Sky Survey Large Area Survey Data Release 2 and the Sloan Digital Sky Survey Data Release 3. This is the fifth L subdwarf announced to date, the first one identified in the UKIRT Infrared Deep Sky Survey, and the faintest known. The blue optical and near-infrared colors of ULAS J135058.86+081506.8 and its overall spectra energy distribution are similar to the known mid-L subdwarfs. Low-resolution optical (700-1000 nm) spectroscopy with the Optical System for Imaging and low Resolution Integrated Spectroscopy spectrograph on the 10.4 m Gran Telescopio de Canarias reveals that ULAS J135058.86+081506.8 exhibits a strong KI pressure-broadened line at 770 nm and a red slope longward of 800 nm, features characteristics of L-type dwarfs. From direct comparison with the four known L subdwarfs, we estimate its spectral type to be sdL4-sdL6 and derive a distance in the interval 94-170 pc. We provide...

  7. The NASA Ames Polycyclic Aromatic Hydrocarbon Infrared Spectroscopic Database : The Computed Spectra

    NARCIS (Netherlands)

    Bauschlicher, C. W.; Boersma, C.; Ricca, A.; Mattioda, A. L.; Cami, J.; Peeters, E.; de Armas, F. Sanchez; Saborido, G. Puerta; Hudgins, D. M.; Allamandola, L. J.

    2010-01-01

    The astronomical emission features, formerly known as the unidentified infrared bands, are now commonly ascribed to polycyclic aromatic hydrocarbons (PAHs). The laboratory experiments and computational modeling done at the NASA Ames Research Center to create a collection of PAH IR spectra relevant t

  8. The NASA Ames Polycyclic Aromatic Hydrocarbon Infrared Spectroscopic Database: The Computed Spectra

    NARCIS (Netherlands)

    Bauschlicher, C. W.; Boersma, C.; Ricca, A.; Mattioda, A. L.; Cami, J.; Peeters, E.; Sánchez de Armas, F.; Puerta Saborido, G.; Hudgins, D. M.; Allamandola, L. J.

    2010-01-01

    The astronomical emission features, formerly known as the unidentified infrared bands, are now commonly ascribed to polycyclic aromatic hydrocarbons (PAHs). The laboratory experiments and computational modeling done at the NASA Ames Research Center to create a collection of PAH IR spectra relevant t

  9. Do Infants Recognize the Arcimboldo Images as Faces? Behavioral and Near-Infrared Spectroscopic Study

    Science.gov (United States)

    Kobayashi, Megumi; Otsuka, Yumiko; Nakato, Emi; Kanazawa, So; Yamaguchi, Masami K.; Kakigi, Ryusuke

    2012-01-01

    Arcimboldo images induce the perception of faces when shown upright despite the fact that only nonfacial objects such as vegetables and fruits are painted. In the current study, we examined whether infants recognize a face in the Arcimboldo images by using the preferential looking technique and near-infrared spectroscopy (NIRS). In the first…

  10. The NASA Ames Polycyclic Aromatic Hydrocarbon Infrared Spectroscopic Database : The Computed Spectra

    NARCIS (Netherlands)

    Bauschlicher, C. W.; Boersma, C.; Ricca, A.; Mattioda, A. L.; Cami, J.; Peeters, E.; de Armas, F. Sanchez; Saborido, G. Puerta; Hudgins, D. M.; Allamandola, L. J.

    The astronomical emission features, formerly known as the unidentified infrared bands, are now commonly ascribed to polycyclic aromatic hydrocarbons (PAHs). The laboratory experiments and computational modeling done at the NASA Ames Research Center to create a collection of PAH IR spectra relevant

  11. The NASA Ames Polycyclic Aromatic Hydrocarbon Infrared Spectroscopic Database: The Computed Spectra

    NARCIS (Netherlands)

    Bauschlicher, C. W.; Boersma, C.; Ricca, A.; Mattioda, A. L.; Cami, J.; Peeters, E.; Sánchez de Armas, F.; Puerta Saborido, G.; Hudgins, D. M.; Allamandola, L. J.

    2010-01-01

    The astronomical emission features, formerly known as the unidentified infrared bands, are now commonly ascribed to polycyclic aromatic hydrocarbons (PAHs). The laboratory experiments and computational modeling done at the NASA Ames Research Center to create a collection of PAH IR spectra relevant t

  12. Infrared and UV-visible spectroscopic studies of gamma-irradiated Sb2O3-B2O3 glasses

    Science.gov (United States)

    Marzouk, Samir Y.; Elbatal, Fatma H.

    2014-04-01

    Glasses from the binary Sb2O3-B2O3 system were prepared in the compositional range 90-30 Sb2O3 mol%. UV-visible spectroscopic measurements were carried out in the range 190-1100 nm before and after successive gamma rays irradiation (1, 3, 4 Mrad). Infrared absorption of the samples was measured by the KBr technique in the range 4000-400 cm-1 and the same measurements were repeated after gamma irradiation with 4 kGy. Experimental results indicate that antimony borate glasses reveal quite shielding behavior towards gamma rays irradiation as observed with heavy metal cations bearing glasses such as Bi3+ and Pb2+. Infrared absorption spectra reveal characteristic absorption bands specific for the glass-forming borate units and Sb-O units. Glasses containing high antimony oxide content can thus be recommended as promising radiation-shielding material because they show resistant to gamma irradiation due to the presence of high percent of heavy metal oxide (Sb2O3).

  13. In situ permeation study of drug through the stratum corneum using attenuated total reflection Fourier transform infrared spectroscopic imaging

    Science.gov (United States)

    Andanson, Jean-Michel; Hadgraft, Jonathan; Kazarian, Sergei G.

    2009-05-01

    Infrared (IR) spectroscopy is one of the most chemically specific analytical methods that gives information about composition, structure, and interactions in a material. IR spectroscopy has been successfully applied to study the permeation of xenobiotics through the skin. Combining IR spectroscopy with an IR array detector led to the development of Fourier transform infrared (FTIR) spectroscopic imaging, which generates chemical information from different areas of a sample at the microscopic level. This is particularly important for heterogeneous samples, such as skin. Attenuated total reflection (ATR)-FTIR imaging has been applied to measure, in situ, the diffusion of benzyl nicotinate (BN) through the outer layer of human skin [stratum corneum (SC)]. In vitro experiments have demonstrated the heterogeneous distribution of SC surface lipids before the penetration of a saturated solution of BN. Image analysis demonstrated a strong correlation between the distribution of lipids and drugs, while ethanol appeared to be homogenously distributed in the SC. These results show the ability of ATR-FTIR imaging to measure simultaneously the affinities of drug and solvent to the lipid-rich and lipid-poor skin domains, respectively, during permeation. This information may be useful in better understanding drug-diffusion pathways through the SC.

  14. Evaluating the health of compromised tissues using a near-infrared spectroscopic imaging system in clinical settings: lessons learned

    Science.gov (United States)

    Leonardi, Lorenzo; Sowa, Michael G.; Hewko, Mark D.; Schattka, Bernhard J.; Payette, Jeri R.; Hastings, Michelle; Posthumus, Trevor B.; Mantsch, Henry H.

    2003-07-01

    The present and accepted standard for determining the status of tissue relies on visual inspection of the tissue. Based on the surface appearance of the tissue, medical personnel will make an assessment of the tissue and proceed to a course of action or treatment. Visual inspection of tissue is central to many areas of clinical medicine, and remains a cornerstone of dermatology, reconstructive plastic surgery, and in the management of chronic wounds, and burn injuries. Near infrared spectroscopic imaging holds the promise of being able to monitor the dynamics of tissue physiology in real-time and detect pathology in living tissue. The continuous measurement of metabolic, physiological, or structural changes in tissue is of primary concern in many clinical and biomedical domains. A near infrared hyperspectral imaging system was constructed for the assessment of burn injuries and skin flaps or skin grafts. This device merged basic science with engineering and integrated manufacturing to develop a device suitable to detect ischemic tissue. This device has the potential of providing measures of tissue physiology, oxygen delivery and tissue hydration during patient screening, in the operating room or during therapy and post-operative/treatment monitoring. Results from a pre-clinical burn injury study will be presented.

  15. Investigation of applicability of a mid-infrared spectroscopic method using an attenuated total reflection accessory and a new near-infrared transmission method for determination of faecal fat

    NARCIS (Netherlands)

    Volmer, M; Kingma, AW; Borsboom, PCF; Wolthers, BG; Kema, IP

    2001-01-01

    In many laboratories, the titrimetric method of Van de Kamer is used for the analysis of faecal fat content of patients suspected of steatorrhoea. We investigated the applicability of a mid-infrared (MIR) spectroscopic method, using an attenuated total reflection (ATR) accessory, and a new near-infr

  16. Investigation of applicability of a mid-infrared spectroscopic method using an attenuated total reflection accessory and a new near-infrared transmission method for determination of faecal fat

    NARCIS (Netherlands)

    Volmer, M; Kingma, AW; Borsboom, PCF; Wolthers, BG; Kema, IP

    In many laboratories, the titrimetric method of Van de Kamer is used for the analysis of faecal fat content of patients suspected of steatorrhoea. We investigated the applicability of a mid-infrared (MIR) spectroscopic method, using an attenuated total reflection (ATR) accessory, and a new

  17. Integration of iron in natural and synthetic Al-pyrophyllites: an infrared spectroscopic study

    CERN Document Server

    Lantenois, Sébastien; Muller, Fabrice; Champallier, Rémi

    2007-01-01

    Numerous studies focus on the relationships between chemical composition and OHband positions in the infrared (IR) spectra of micaceous minerals. These studies are based on the coexistence, in dioctahedral micas or smectites, of several cationic pairs around the hydroxyl group which each produce a characteristic band in the IR spectrum. The aim of this work is to obtain the wavenumber values of the IR OH vibration bands of the (Al-Fe3+)-OH and (Fe3+-Fe3+)-OH local cationic environments of 'pyrophyllite type' in order to prove, disprove or modify a model of dioctahedral phyllosilicate OH-stretching band decomposition. Natural samples are characterized by powder X-ray diffraction (XRD), Fourier transform infrared (FTIR) and Raman spectroscopies and electron microprobe; the hydrothermal synthesis products are also analysed by powder XRD and FTIR after inductively coupled plasma measurements to obtain the chemical compositions of nascent gel phases. Natural samples contain some impurities which were eliminated af...

  18. Infrared spectroscopic study on lattice dynamics in CaFeO3

    Science.gov (United States)

    Zhang, C. X.; Xia, H. L.; Liu, H.; Dai, Y. M.; Xu, B.; Yang, R.; Qiu, Z. Y.; Sui, Q. T.; Long, Y. W.; Meng, S.; Qiu, X. G.

    2017-02-01

    The change of the lattice dynamics upon the charge disproportionation (CD) transition has been investigated for the CaFeO3 crystal by measuring its infrared optical spectra. Across the CD transition, CaFeO3 undergoes a metal-insulator transition, and it is found that below TC D≈ 290 K the low-frequency optical conductivity gradually decreases to a rather low value and is dominated by a series of infrared-active phonons. Intriguingly, accompanied by the CD transition, two prominent phonon modes at ˜243 and ˜559 cm-1associated with the vibrations of Fe-O bonds show obvious redshift and asymmetric line shapes characterized by a Fano profile, suggesting a strong electron-phonon coupling. This coupling behavior reveals an intimate relationship between charge and lattice in the CD transition of CaFeO3.

  19. Infrared absorption spectroscopic study of Nd3+ substituted Zn–Mg ferrites

    Indian Academy of Sciences (India)

    B P Ladgaonkar; C B Kolekar; A S Vaingankar

    2002-08-01

    Compositions of polycrystalline ZnMg1-Fe2–NdO4 ( = 0.00, 0.20, 0.40, 0.60, 0.80 and 1.00; = 0.00, 0.05 and 0.10) ferrites were prepared by standard ceramic method and characterized by X-ray diffraction, scanning electron microscopy and infrared absorption spectroscopy. Far infrared absorption spectra show two significant absorption bands, first at about 600 cm–1 and second at about 425 cm–1 , which were respectively attributed to tetrahedral (A) and octahedral (B) sites of the spinel. The positions of bands are found to be composition dependent. The force constants, $K_T$ and $K_O$, were calculated and plotted against zinc concentration. Compositional dependence of force constants is explained on the basis of cation–oxygen bond distances of respective sites and cation distribution.

  20. Infrared-faint radio sources are at high redshifts. Spectroscopic redshift determination of infrared-faint radio sources using the Very Large Telescope

    Science.gov (United States)

    Herzog, A.; Middelberg, E.; Norris, R. P.; Sharp, R.; Spitler, L. R.; Parker, Q. A.

    2014-07-01

    Context. Infrared-faint radio sources (IFRS) are characterised by relatively high radio flux densities and associated faint or even absent infrared and optical counterparts. The resulting extremely high radio-to-infrared flux density ratios up to several thousands were previously known only for high-redshift radio galaxies (HzRGs), suggesting a link between the two classes of object. However, the optical and infrared faintness of IFRS makes their study difficult. Prior to this work, no redshift was known for any IFRS in the Australia Telescope Large Area Survey (ATLAS) fields which would help to put IFRS in the context of other classes of object, especially of HzRGs. Aims: This work aims at measuring the first redshifts of IFRS in the ATLAS fields. Furthermore, we test the hypothesis that IFRS are similar to HzRGs, that they are higher-redshift or dust-obscured versions of these massive galaxies. Methods: A sample of IFRS was spectroscopically observed using the Focal Reducer and Low Dispersion Spectrograph 2 (FORS2) at the Very Large Telescope (VLT). The data were calibrated based on the Image Reduction and Analysis Facility (IRAF) and redshifts extracted from the final spectra, where possible. This information was then used to calculate rest-frame luminosities, and to perform the first spectral energy distribution modelling of IFRS based on redshifts. Results: We found redshifts of 1.84, 2.13, and 2.76, for three IFRS, confirming the suggested high-redshift character of this class of object. These redshifts and the resulting luminosities show IFRS to be similar to HzRGs, supporting our hypothesis. We found further evidence that fainter IFRS are at even higher redshifts. Conclusions: Considering the similarities between IFRS and HzRGs substantiated in this work, the detection of IFRS, which have a significantly higher sky density than HzRGs, increases the number of active galactic nuclei in the early universe and adds to the problems of explaining the formation of

  1. Matrix Infrared Spectroscopic and Computational Investigations of Novel Small Uranium Containing Molecules - Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Andrews, Lester

    2014-10-17

    Direct reactions of f-element uranium, thorium and lanthanide metal atoms were investigated with small molecules. These metal atoms were generated by laser ablation and mixed with the reagent molecules then condensed with noble gases at 4K. The products were analyzed by absorption of infrared light to measure vibrational frequencies which were confirmed by quantum chemical calculations. We have learned more about the reactivity of uranium atoms with common molecules, which will aid in the develolpment of further applications of uranium.

  2. INFRARED and PHOTOELECTRON SPECTROSCOPIC STUDY OF S02 OXIDATION ON SOOT PARTICLES

    Energy Technology Data Exchange (ETDEWEB)

    Chang, S.G.; Novakov, T.

    1975-12-01

    Results obtained by means of x-ray photoelectron spectroscopy and internal reflection infrared spectroscopy demonstrate the feasibility of heterogeneous oxidation of sulfur dioxide on soot particles in air. Sulfuric acid formed in this process can be neutralized on basic surface sites of soot particles, resulting in the formation of carbonium and/or oxonium sulfate. Hydrolysis of these salts into cyclic hemiacetals and sulfuric acid is expected.

  3. INFRARED and PHOTOELECTRON SPECTROSCOPIC STUDY OF S02 OXIDATION ON SOOT PARTICLES

    Energy Technology Data Exchange (ETDEWEB)

    Chang, S.G.; Novakov, T.

    1975-12-01

    Results obtained by means of x-ray photoelectron spectroscopy and internal reflection infrared spectroscopy demonstrate the feasibility of heterogeneous oxidation of sulfur dioxide on soot particles in air. Sulfuric acid formed in this process can be neutralized on basic surface sites of soot particles, resulting in the formation of carbonium and/or oxonium sulfate. Hydrolysis of these salts into cyclic hemiacetals and sulfuric acid is expected.

  4. Fiber Based Mid Infrared Supercontinuum Source for Spectroscopic Analysis in Food Production

    DEFF Research Database (Denmark)

    Ramsay, Jacob; Dupont, Sune Vestergaard Lund; Keiding, Søren Rud

    Optimization of sustainable food production is a worldwide challenge that is undergoing continuous development as new technologies emerge. Applying solutions for food analysis with novel bright and broad mid-infrared (MIR) light sources has the potential to meet the increasing demands for food...... quality and production optimization. By combining a new MIR supercontinuum source with spectroscopy and chemometrics, we seek to enable faster and more precise analysis of grains, soils and dairy products....

  5. Far-infrared emission spectra of selected gas-phase PAHs: Spectroscopic fingerprints

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, K.; Guo, B.; Colarusso, P.; Bernath, P.F. [Univ. of Waterloo, Ontario (Canada)

    1996-10-25

    The emission spectra of the gaseous polycyclic aromatic hydrocarbons (PAHs) naphthalene, chrysene, and pyrene were recorded in the far-infrared (far-IR) region. The vibrational bands that lie in the far IR are unique for each PAH molecule and allow discrimination among the three PAH molecules. The far-IR PAH spectra, therefore, may prove useful in the assignment of unidentified spectral features from astronomical objects. 23 refs., 1 fig., 1 tab.

  6. Matrix isolation infrared spectroscopic study of 4-Pyridinecarboxaldehyde and of its UV-induced photochemistry

    Science.gov (United States)

    Cluyts, Liesel; Sharma, Archna; Kuş, Nihal; Schoone, Kristien; Fausto, Rui

    2017-01-01

    The structure, infrared spectrum, barrier to internal rotation, and photochemistry of 4-pyridinecarboxaldehyde (4PCA) were studied by low-temperature (10 K) matrix isolation infrared spectroscopy and quantum chemical calculations undertaken at both Moller-Plesset to second order (MP2) and density functional theory (DFT/B3LYP) levels of approximation. The molecule has a planar structure (Cs point group), with MP2/6-311 ++G(d,p) predicted internal rotation barrier of 26.6 kJ mol- 1, which is slightly smaller than that of benzaldehyde ( 30 kJ mol- 1), thus indicating a less important electron charge delocalization from the aromatic ring to the aldehyde moiety in 4PCA than in benzaldehyde. A complete assignment of the infrared spectrum of 4PCA isolated in an argon matrix has been done for the whole 4000-400 cm- 1 spectral range, improving over previously reported data. Both the geometric parameters and vibrational frequencies of the aldehyde group reveal the relevance in this molecule of the electronic charge back-donation effect from the oxygen trans lone electron pair to the aldehyde Csbnd H anti-bonding orbital. Upon in situ UV irradiation of the matrix-isolated compound, prompt decarbonylation was observed, leading to formation of pyridine.

  7. Automated high-pressure titration system with in situ infrared spectroscopic detection

    Science.gov (United States)

    Thompson, Christopher J.; Martin, Paul F.; Chen, Jeffrey; Benezeth, Pascale; Schaef, Herbert T.; Rosso, Kevin M.; Felmy, Andrew R.; Loring, John S.

    2014-04-01

    A fully automated titration system with infrared detection was developed for investigating interfacial chemistry at high pressures. The apparatus consists of a high-pressure fluid generation and delivery system coupled to a high-pressure cell with infrared optics. A manifold of electronically actuated valves is used to direct pressurized fluids into the cell. Precise reagent additions to the pressurized cell are made with calibrated tubing loops that are filled with reagent and placed in-line with the cell and a syringe pump. The cell's infrared optics facilitate both transmission and attenuated total reflection (ATR) measurements to monitor bulk-fluid composition and solid-surface phenomena such as adsorption, desorption, complexation, dissolution, and precipitation. Switching between the two measurement modes is accomplished with moveable mirrors that direct the light path of a Fourier transform infrared spectrometer into the cell along transmission or ATR light paths. The versatility of the high-pressure IR titration system was demonstrated with three case studies. First, we titrated water into supercritical CO2 (scCO2) to generate an infrared calibration curve and determine the solubility of water in CO2 at 50 °C and 90 bar. Next, we characterized the partitioning of water between a montmorillonite clay and scCO2 at 50 °C and 90 bar. Transmission-mode spectra were used to quantify changes in the clay's sorbed water concentration as a function of scCO2 hydration, and ATR measurements provided insights into competitive residency of water and CO2 on the clay surface and in the interlayer. Finally, we demonstrated how time-dependent studies can be conducted with the system by monitoring the carbonation reaction of forsterite (Mg2SiO4) in water-bearing scCO2 at 50 °C and 90 bar. Immediately after water dissolved in the scCO2, a thin film of adsorbed water formed on the mineral surface, and the film thickness increased with time as the forsterite began to dissolve

  8. Automated High-Pressure Titration System with In Situ Infrared Spectroscopic Detection

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, Christopher J.; Martin, Paul F.; Chen, Jeffrey; Benezeth, Pascale; Schaef, Herbert T.; Rosso, Kevin M.; Felmy, Andrew R.; Loring, John S.

    2014-04-17

    A fully automated titration system with infrared detection was developed for investigating interfacial chemistry at high pressures. The apparatus consists of a high-pressure fluid generation and delivery system coupled to a high-pressure cell with infrared optics. A manifold of electronically actuated valves is used to direct pressurized fluids into the cell. Precise reagent additions to the pressurized cell are made with calibrated tubing loops that are filled with reagent and placed in-line with the cell and a syringe pump. The cell’s infrared optics facilitate both transmission and attenuated total reflection (ATR) measurements to monitor bulk-fluid composition and solid-surface phenomena such as adsorption, desorption, complexation, dissolution, and precipitation. Switching between the two measurement modes is accomplished with moveable mirrors that direct radiation from a Fourier transform infrared spectrometer into the cell along transmission or ATR light paths. The versatility of the high-pressure IR titration system is demonstrated with three case studies. First, we titrated water into supercritical CO2 (scCO2) to generate an infrared calibration curve and determine the solubility of water in CO2 at 50 °C and 90 bar. Next, we characterized the partitioning of water between a montmorillonite clay and scCO2 at 50 °C and 90 bar. Transmission-mode spectra were used to quantify changes in the clay’s sorbed water concentration as a function of scCO2 hydration, and ATR measurements provided insights into competitive residency of water and CO2 on the clay surface and in the interlayer. Finally, we demonstrated how time-dependent studies can be conducted with the system by monitoring the carbonation reaction of forsterite (Mg2SiO4) in water-bearing scCO2 at 50 °C and 90 bar. Immediately after water dissolved in the scCO2, a thin film of adsorbed water formed on the mineral surface, and the film thickness increased with time as the forsterite began to dissolve

  9. Attenuated total reflection-Fourier transform infrared spectroscopic imaging of pharmaceuticals in microfluidic devices.

    Science.gov (United States)

    Ewing, Andrew V; Clarke, Graham S; Kazarian, Sergei G

    2016-03-01

    The poor aqueous solubility of many active pharmaceutical ingredients presents challenges for effective drug delivery. In this study, the combination of attenuated total reflection (ATR)-FTIR spectroscopic imaging with specifically designed polydimethylsiloxane microfluidic devices to study drug release from pharmaceutical formulations has been developed. First, the high-throughput analysis of the dissolution of micro-formulations studied under flowing conditions has been introduced using a model formulation of ibuprofen and polyethylene glycol. The behaviour and release of the drug was monitored in situ under different pH conditions. In contrast to the neutral solution, where both the drug and excipient dissolved at a similar rate, structural change from the molecularly dispersed to a crystalline form of ibuprofen was characterised in the obtained spectroscopic images and the corresponding ATR-FTIR spectra for the experiments carried out in the acidic medium. Further investigations into the behaviour of the drug after its release from formulations (i.e., dissolved drug) were also undertaken. Different solutions of sodium ibuprofen dissolved in a neutral medium were studied upon contact with acidic conditions. The phase transition from a dissolved species of sodium ibuprofen to the formation of solid crystalline ibuprofen was revealed in the microfluidic channels. This innovative approach could offer a promising platform for high-throughput analysis of a range of micro-formulations, which are of current interest due to the advent of 3D printed pharmaceutical and microparticulate delivery systems. Furthermore, the ability to study dissolved drug in solution under flowing conditions can be useful for the studies of the diffusion of drugs into tissues or live cells.

  10. Asteroseismology of solar-type stars with Kepler: III. Ground-based data

    DEFF Research Database (Denmark)

    Karoff, Christoffer; Molenda-Żakowicz , J.

    2010-01-01

    We report on the ground-based follow-up program of spectroscopic and photometric observations of solar-like asteroseismic targets for the Kepler space mission. These stars constitute a large group of more than a thousand objects which are the subject of an intensive study by the Kepler Asteroseis...

  11. Infrared spectroscopic investigations of environmental deNOx and hydrotreating catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Topsoee, Nan-Yu

    1998-02-01

    The present work describes the application of infrared spectroscopy to the investigation of two very important of environmental catalyst systems, i.e. vanadia/titania catalysts for the selective catalytic reduction (SCR) of NOx by ammonia and molybdena/alumina catalyst systems for sulfur removal and other hydrotreating reactions. It is seen that the infrared studies have provided new insight into the surface structures present in the catalyst systems. Furthermore, and more importantly the results have made it possible to establish direct relationships between the fundamental molecular properties and the industrial performance. For these studies the application of a variety of different steady-state and transient FTIR techniques/approaches is shown to be very important. Infrared spectroscopy is one of the few techniques which can provide in situ surface information about real catalysts. Vanadia/titania deNOx catalysts are discussed. The reactivity of various surface species is discussed further based on transient temperature programmed surface reaction (TPSR) studies employing a combined in situ FTIR on-line mass spectrometric approach. The studies are performed by exposing different catalysts with chemisorbed NH{sub 3} to various reaction gases. Part II deals with the studies of hydrotreating catalysts. The catalysts (typically Co-Mo/Al{sub 2}O{sub 3} and Ni-Mo/Al{sub 2}O{sub 3}) are normally prepared in the oxidic (calcined) state but requires sulfiding in order to become activated. The infrared investigation of calcined alumina supported catalysts is discussed. The alumina support has a number of very specific hydroxyl groups. Mo is seen to interact with these groups resulting in the formation of monolayer-type structures bonded to the support via Mo-O-Al bridges. The monolayer structures are seen to be restricted to the original hydroxyl part of the alumina surface. It is seen that there is a preference for Mo to interact with the most basic Al-OH groups and

  12. Infrared Absorption Spectroscopic Study on Reaction between Self-Assembled Monolayers and Atmospheric-Pressure Plasma

    Directory of Open Access Journals (Sweden)

    Masanori Shinohara

    2015-01-01

    Full Text Available Plasma is becoming increasingly adopted in bioapplications such as plasma medicine and agriculture. This study investigates the interaction between plasma and molecules in living tissues, focusing on plasma-protein interactions. To this end, the reaction of air-pressure air plasma with NH2-terminated self-assembled monolayer is investigated by infrared spectroscopy in multiple internal reflection geometry. The atmospheric-pressure plasma decomposed the NH2 components, the characteristic units of proteins. The decomposition is attributed to water clusters generated in the plasma, indicating that protein decomposition by plasma requires humid air.

  13. Magnesium bicarbonate and carbonate interactions in aqueous solutions: An infrared spectroscopic and quantum chemical study

    Science.gov (United States)

    Stefánsson, Andri; Lemke, Kono H.; Bénézeth, Pascale; Schott, Jacques

    2017-02-01

    The interaction of magnesium with bicarbonate and carbonate ions in aqueous solutions was studied using infrared spectroscopy and quantum chemical calculations. Using the infrared vibrational bands for HCO3- and CO32- at 1200-1450 cm-1 (δC-OH, vS and v3) together with their molar absorptivity (ε), the concentrations of the HCO3- and CO32- ions and the corresponding Mg ion pairs have been determined. In the absence of Mg2+, measured spectra were accurately reproduced assuming that only HCO3- and CO32- were present in solution. Upon addition of Mg2+ at fixed pH, infrared spectra were observed to shift indicating presence of the MgHCO3+ and MgCO3 (aq) ion pairs. From measurements, the second ionization constant of carbonic acid and the MgHCO3+ and MgCO3 (aq) ion pair formation constants have been obtained, these being logK2 = -10.34 ± 0.04, logKMgHCO3+ = 1.12 ± 0.11 and logKMgCO3 = 2.98 ± 0.06, respectively. To support our experimental infrared measurements and to gain further insight into the molecular nature of the ion pair formation, density functional theory (DFT) calculations with VPT2 anharmonic correction were conducted. The most stable geometries predicted for the MgHCO3+ and MgCO3 (aq) ion pairs were a bi-dentate [MgHCO3]+(H2O)n and a monodentate [MgHCO3]+(OH)(H2O)n complexes, respectively. The predicted frequencies for HCO3-, CO32- and MgHCO3+ were found to shift toward those experimentally measured with an increasing H2O solvation number where possible band shifts were predicted for MgCO3 (aq) relative to CO32-, this being dependent on the exact structure and hydration of the bulk MgCO3 (aq) ion pair. Experimentally, the ion pair formations were found to have insignificant effects on the δC-OH, vS and v3 vibrational frequencies. The speciation of dissolved inorganic carbon may be significantly influenced by ion pair formation, particularly in alkaline solutions where they may be the predominant species.

  14. Single-mode interband cascade laser sources for mid-infrared spectroscopic applications

    Science.gov (United States)

    Scheuermann, J.; von Edlinger, M.; Weih, R.; Becker, S.; Nähle, L.; Fischer, M.; Koeth, J.; Kamp, M.; Höfling, S.

    2016-05-01

    Compared to the near infrared, many technologically and industrially relevant gas species have more than an order of magnitude higher absorption features in the mid-infrared (MIR) wavelength range. These species include for example important hydrocarbons (methane, acetylene), nitrogen oxides and sulfur oxides. Tunable laser absorption spectroscopy (TLAS) has proven to be a versatile tool for gas sensing applications with significant advantages compared to other techniques. These advantages include real time measurement, standoff detection and ruggedness of the sensor. We present interband cascade lasers (ICLs), which have evolved into important laser sources for the MIR spectral range from 3 to 7 μm. ICLs achieve high efficiency by cascading optically active zones whilst using interband transitions, so they combine common diode laser as well as quantum cascade laser based technologies. Our application grade singlemode distributed feedback devices operate continuous wave at room temperature and are offering several features especially useful for high performance TLAS applications like: side mode suppression ratio of > 30 dB, continuous tuning ranges up to 30 nm, low threshold power densities and low overall power consumption. The devices are typically integrated in a thermoelectrically cooled TO-style package, hermetically sealed using a cap with anti-reflection coated window. This low power consumption as well as the compact size and ruggedness of the fabricated laser sources makes them perfectly suited for battery powered portable solutions for in field spectroscopy applications.

  15. Photometric and Spectroscopic Study of the Supergiant with an Infrared Excess V1027 Cygni

    CERN Document Server

    Arkhipova, V P; Ikonnikova, N P; Esipov, V F; Komissarova, G V; Shenavrin, V I; Burlak, M A

    2016-01-01

    We present the results of our $UBV$ and $JHKLM$-photometry for the semiregular pulsating variable V1027~Cyg, a supergiant with an infrared excess, over the period from 1991 to 2015. Our search for a periodicity in the $UBV$ brightness variations has led to several periods from $P=212^{d}$ to $P=320^{d}$ in different time intervals. We have found the period $P=237^{d}$ based on our infrared photometry. The variability amplitude, the light-curve shape, and the magnitude of V1027~Cyg at maximum light change noticeably from cycle to cycle. An ambiguous correlation of the $B-V$ and $U-B$ colors with the brightness has been revealed. The spectral energy distribution for V1027~Cyg from our photometry in the range 0.36 ($U$)-5.0 ($M$) $\\mu$m corresponds to spectral types from G8I to K3I at different phases of the pulsation cycle. Low-resolution spectra of V1027 Cyg in the range $\\lambda$4400--9200 \\AA\\ were taken during 16 nights over the period 1995--2015. At the 1995 and 2011 photometric minima the star's spectrum ...

  16. Automated high-pressure titration system with in situ infrared spectroscopic detection

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, Christopher J., E-mail: chris.thompson@pnnl.gov; Martin, Paul F.; Chen, Jeffrey; Schaef, Herbert T.; Rosso, Kevin M.; Felmy, Andrew R.; Loring, John S. [Pacific Northwest National Laboratory, Richland, Washington 99352 (United States); Benezeth, Pascale [Géosciences Environnement Toulouse (GET), CNRS-Université de Toulouse, 31400 Toulouse (France)

    2014-04-15

    A fully automated titration system with infrared detection was developed for investigating interfacial chemistry at high pressures. The apparatus consists of a high-pressure fluid generation and delivery system coupled to a high-pressure cell with infrared optics. A manifold of electronically actuated valves is used to direct pressurized fluids into the cell. Precise reagent additions to the pressurized cell are made with calibrated tubing loops that are filled with reagent and placed in-line with the cell and a syringe pump. The cell's infrared optics facilitate both transmission and attenuated total reflection (ATR) measurements to monitor bulk-fluid composition and solid-surface phenomena such as adsorption, desorption, complexation, dissolution, and precipitation. Switching between the two measurement modes is accomplished with moveable mirrors that direct the light path of a Fourier transform infrared spectrometer into the cell along transmission or ATR light paths. The versatility of the high-pressure IR titration system was demonstrated with three case studies. First, we titrated water into supercritical CO{sub 2} (scCO{sub 2}) to generate an infrared calibration curve and determine the solubility of water in CO{sub 2} at 50 °C and 90 bar. Next, we characterized the partitioning of water between a montmorillonite clay and scCO{sub 2} at 50 °C and 90 bar. Transmission-mode spectra were used to quantify changes in the clay's sorbed water concentration as a function of scCO{sub 2} hydration, and ATR measurements provided insights into competitive residency of water and CO{sub 2} on the clay surface and in the interlayer. Finally, we demonstrated how time-dependent studies can be conducted with the system by monitoring the carbonation reaction of forsterite (Mg{sub 2}SiO{sub 4}) in water-bearing scCO{sub 2} at 50 °C and 90 bar. Immediately after water dissolved in the scCO{sub 2}, a thin film of adsorbed water formed on the mineral surface

  17. A Fourier transform infrared spectroscopic study of dodecyltrimethylammonium chloride/sodium dodecyl sulfate surfactant mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Scheuing, D.R.; Weers, J.G. (Clorox Technical Center, Pleasanton, CA (USA))

    1990-03-01

    The utility of FT-IR in characterizing the composition-dependent changes in packing of DTAC and SDS in mixed micelles is demonstrated. As the mixed micelle composition becomes equimolar, the micelle aggregation number is known to increase, indicating a spherical to nonspherical micelle shape change. The frequency of the composite CH{sub 2} stretching bands decreases as the composition becomes equimolar, suggesting a decrease in the gauche/trans conformer ratio in the tails of the surfactants, which is a result of the increased crowding of the methylene chains accompanying the shape change. The use of SDS-d{sub 25} allows confirmation of this trend through the inspection of the shifts in the CH{sub 2} stretching bands (DTAC tails) and the CD{sub 2} stretching bands (SDS-d{sub 25} tails). Electrostatic interactions between the headgroups of DTAC and SDS can also be monitored spectroscopically. The shifts in the asymmetric and symmetric S-O stretching bands with micelle composition indicate an increase in SDS headgroup ordering in SDS-rich mixed micelles and a dominance of interactions with DTA{sup +} ions in DTAC-rich micelles.

  18. Infrared spectroscopic study of thermotropic phase behavior of newly developed synthetic biopolymers.

    Science.gov (United States)

    Bista, Rajan K; Bruch, Reinhard F; Covington, Aaron M

    2011-10-15

    The thermotropic phase behavior of a suite of newly developed self-forming synthetic biopolymers has been investigated by variable-temperature Fourier transform infrared (FT-IR) absorption spectroscopy. The temperature-induced infrared spectra of these artificial biopolymers (lipids) composed of 1,2-dimyristoyl-rac-glycerol-3-dodecaethylene glycol (GDM-12), 1,2-dioleoyl-rac-glycerol-3-dodecaethylene glycol (GDO-12) and 1,2-distearoyl-rac-glycerol-3-triicosaethylene glycol (GDS-23) in the spectral range of 4000-500 cm(-1) have been acquired by using a thin layered FT-IR spectrometer in conjunction with a custom built temperature-controlled demountable liquid cell having a pathlength of ∼15 μm. The lipids under consideration have long hydrophobic acyl chains and contain various units of hydrophilic polyethylene glycol (PEG) headgroups. In contrast to conventional phospholipids, this new kind of lipids forms liposomes or nanovesicles spontaneously upon hydration, without requiring external activation energy. We have found that the thermal stability of the PEGylated lipids differs greatly depending upon the acyl chain-lengths as well as the nature of the associated bonds and the number of PEG headgroup units. In particular, GDM-12 (saturated 14 hydrocarbon chains with 12 units of PEG headgroup) exhibits one sharp order-disorder phase transition over a temperature range increasing from 3°C to 5°C. Similarly, GDS-23 (saturated 18 hydrocarbon chains with 23 units of PEG headgroup) displays comparatively broad order-disorder phase transition profiles between temperature 17°C and 22°C. In contrast, GDO-12 (monounsaturated 18 hydrocarbon chains with 12 units of PEG headgroup) does not reveal any order-disorder transition phenomena demonstrating a highly disordered behavior for the entire temperature range. To confirm these observations, differential scanning calorimetry (DSC) was applied to the samples and revealed good agreement with the infrared spectroscopy results

  19. Pressure Induced Polymorphic Phase Transition of Natural Metamorphic Kalsilite; Electrical Resistivity and Infrared Spectroscopic Investigations

    Directory of Open Access Journals (Sweden)

    G. Parthasarathy

    2015-10-01

    Full Text Available We report here pressure dependence of the electrical resistivity of natural kalsilite (K0.998Na0.002Al0.998Fe0.002SiO4 from a granulite facies terrain in southern India. The electrical resistivity of kalsilite was measured with four probe technique up to 7.5 GPa at room temperature. The electrical resistivity decreases continuously with the increase of pressure up to 3.7 GPa, where there is a discontinuous drop in the electrical resistivity by 14%–16% indicating a first order transition. Further increase of pressure does not induce any phase transition up to 7.5 GPa at room temperature. Fourier transform infrared (FTIR spectroscopy of the kalsilite sample at various pressures indicates that the observed transition is reversible in nature.

  20. Outlier detection in near-infrared spectroscopic analysis by using Monte Carlo cross-validation

    Institute of Scientific and Technical Information of China (English)

    LIU ZhiChao; CAI WenSheng; SHAO XueGuang

    2008-01-01

    An outlier detection method is proposed for near-infrared spectral analysis. The underlying philosophy of the method is that, in random test (Monte Carlo) cross-validation, the probability of outliers pre-senting in good models with smaller prediction residual error sum of squares (PRESS) or in bad mod-els with larger PRESS should be obviously different from normal samples. The method builds a large number of PLS models by using random test cross-validation at first, then the models are sorted by the PRESS, and at last the outliers are recognized according to the accumulative probability of each sam-ple in the sorted models. For validation of the proposed method, four data sets, including three pub-lished data sets and a large data set of tobacco lamina, were investigated. The proposed method was proved to be highly efficient and veracious compared with the conventional leave-one-out (LOO) cross validation method.

  1. Rheological and Infrared Spectroscopic Investigations of Normal and Chronic Kidney Disease Urine

    Directory of Open Access Journals (Sweden)

    Syed Ismail Ahmad

    2016-06-01

    Full Text Available The objective of the study is to examine the physical properties of urine of healthy donors and Chronic Kidney Disease (CKD patients for possible early detection of proteinuria. Specific gravity, viscosity, surface tension, refractive index, electrical conductivity and IR spectroscopy of urine were studied. First morning urine and random urine samples were collected from healthy male donors and were considered as controls to compare with CKD patients. Urine from healthy donors treated with albumin also used in the study. The decrease in surface tension of CKD urines was observed due to high albumin excretion and increased blood urea nitrogen. Fourier Transform Infrared (FTIR spectra in the mid IR region were recorded for normal and albumin treated urine. It observed that peaks at 1641 cm-1 and 1450 cm-1 in IR spectra are the most specific peaks for urea and albumin, respectively. This method of detecting proteinuria is quick and cheaper, and is an alternate to eGFR.

  2. Infrared Spectroscopic Study of the Acidic CH Bonds in Hydrated Clusters of Cationic Pentane.

    Science.gov (United States)

    Endo, Tomoya; Matsuda, Yoshiyuki; Fujii, Asuka

    2017-09-18

    Infrared spectroscopy of the hydrated clusters of cationic pentane, which are generated through the vacuum ultraviolet photoionization in the gas phase, is carried out to probe the acidic properties of their CH bonds. The monohydrated pentane cation forms the proton-shared structure, in which the proton of CH in cationic pentane is shared between the pentyl radical and water molecule. In the di- and trihydrated clusters, the proton of CH is completely transferred to the water moiety so that the clusters are composed of the pentyl radical and protonated water cluster. These results indicate that two water molecules are enough to cause the proton transfer from CH of cationic pentane, and thus its acidity is highly enhanced with the ionization.

  3. Infrared spectroscopic studies on reaction induced conformational changes in the NADH ubiquinone oxidoreductase (complex I).

    Science.gov (United States)

    Hellwig, Petra; Kriegel, Sébastien; Friedrich, Thorsten

    2016-07-01

    Redox-dependent conformational changes are currently discussed to be a crucial part of the reaction mechanism of the respiratory complex I. Specialized difference Fourier transform infrared techniques allow the detection of side-chain movements and minute secondary structure changes. For complex I, (1)H/(2)H exchange kinetics of the amide modes revealed a better accessibility of the backbone in the presence of NADH and quinone. Interestingly, the presence of phospholipids, that is crucial for the catalytic activity of the isolated enzyme complex, changes the overall conformation. When comparing complex I samples from different species, very similar electrochemically induced FTIR difference spectra and very similar rearrangements are reported. Finally, the information obtained with variants and from Zn(2+) inhibited samples for the conformational reorganization of complex I upon electron transfer are discussed in this review. This article is part of a Special Issue entitled Respiratory complex I, edited by Volker Zickermann and Ulrich Brandt.

  4. New quasars behind the Magellanic Clouds. Spectroscopic confirmation of near-infrared selected candidates

    CERN Document Server

    Ivanov, Valentin D; Bekki, Kenji; de Grijs, Richard; Emerson, Jim; Gibson, Brad K; Kamath, Devika; van Loon, Jacco Th; Piatti, Andres E; For, Bi-Qing

    2015-01-01

    Quasi--stellar objects (quasars) located behind nearby galaxies provide an excellent absolute reference system for astrometric studies, but they are difficult to identify because of fore- and background contamination. Deep wide--field, high angular resolution surveys spanning the entire area of nearby galaxies are needed to obtain a complete census of such quasars. We embarked on a program to expand the quasar reference system behind the Large and the Small Magellanic Clouds, the Magellanic Bridge, and the Magellanic Stream, connecting the Clouds with the Milky Way. Hundreds of quasar candidates were selected based on their near--infrared colors and variability properties from the ongoing public ESO VISTA Magellanic Clouds survey. A subset of 49 objects was followed up with optical spectroscopy. We confirmed the quasar nature of 37 objects (34 new identifications), four are low redshift objects, three are probably stars, and the remaining three lack prominent spectral features for a secure classification; bon...

  5. Accounting for tissue heterogeneity in infrared spectroscopic imaging for accurate diagnosis of thyroid carcinoma subtypes.

    Science.gov (United States)

    Martinez-Marin, David; Sreedhar, Hari; Varma, Vishal K; Eloy, Catarina; Sobrinho-Simões, Manuel; Kajdacsy-Balla, André; Walsh, Michael J

    2017-07-01

    Fourier transform infrared (FT-IR) microscopy was used to image tissue samples from twenty patients diagnosed with thyroid carcinoma. The spectral data were then used to differentiate between follicular thyroid carcinoma and follicular variant of papillary thyroid carcinoma using principle component analysis coupled with linear discriminant analysis and a Naïve Bayesian classifier operating on a set of computed spectral metrics. Classification of patients' disease type was accomplished by using average spectra from a wide region containing follicular cells, colloid, and fibrosis; however, classification of disease state at the pixel level was only possible when the extracted spectra were limited to follicular epithelial cells in the samples, excluding the relatively uninformative areas of fibrosis. The results demonstrate the potential of FT-IR microscopy as a tool to assist in the difficult diagnosis of these subtypes of thyroid cancer, and also highlights the importance of selectively and separately analyzing spectral information from different features of a tissue of interest.

  6. Outlier detection in near-infrared spectroscopic analysis by using Monte Carlo cross-validation

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    An outlier detection method is proposed for near-infrared spectral analysis. The underlying philosophy of the method is that,in random test(Monte Carlo) cross-validation,the probability of outliers presenting in good models with smaller prediction residual error sum of squares(PRESS) or in bad models with larger PRESS should be obviously different from normal samples. The method builds a large number of PLS models by using random test cross-validation at first,then the models are sorted by the PRESS,and at last the outliers are recognized according to the accumulative probability of each sample in the sorted models. For validation of the proposed method,four data sets,including three published data sets and a large data set of tobacco lamina,were investigated. The proposed method was proved to be highly efficient and veracious compared with the conventional leave-one-out(LOO) cross validation method.

  7. Near-infrared Spectroscopic Observations of Comet C/2013 R1 (Lovejoy) by WINERED: CN Red-system Band Emission

    Science.gov (United States)

    Shinnaka, Yoshiharu; Kawakita, Hideyo; Kondo, Sohei; Ikeda, Yuji; Kobayashi, Naoto; Hamano, Satoshi; Sameshima, Hiroaki; Fukue, Kei; Matsunaga, Noriyuki; Yasui, Chikako; Izumi, Natsuko; Mizumoto, Misaki; Otsubo, Shogo; Takenaka, Keiichi; Watase, Ayaka; Kawanishi, Takafumi; Nakanishi, Kenshi; Nakaoka, Tetsuya

    2017-08-01

    Although high-resolution spectra of the CN red-system band are considered useful in cometary sciences, e.g., in the study of isotopic ratios of carbon and nitrogen in cometary volatiles, there have been few reports to date due to the lack of high-resolution (R ≡ λ/Δλ > 20,000) spectrographs in the near-infrared region around ˜1 μm. Here, we present the high-resolution emission spectrum of the CN red-system band in comet C/2013 R1 (Lovejoy), acquired by the near-infrared high-resolution spectrograph WINERED mounted on the 1.3 m Araki telescope at the Koyama Astronomical Observatory, Kyoto, Japan. We applied our fluorescence excitation models for CN, based on modern spectroscopic studies, to the observed spectrum of comet C/2013 R1 (Lovejoy) to search for CN isotopologues (13C14N and 12C15N). We used a CN fluorescence excitation model involving both a “pure” fluorescence excitation model for the outer coma and a “fully collisional” fluorescence excitation model for the inner coma region. Our emission model could reproduce the observed 12C14N red-system band of comet C/2013 R1 (Lovejoy). The derived mixing ratio between the two excitation models was 0.94(+0.02/-0.03):0.06(+0.03/-0.02), corresponding to the radius of the collision-dominant region of ˜800-1600 km from the nucleus. No isotopologues were detected. The observed spectrum is consistent, within error, with previous estimates in comets of 12C/13C (˜90) and 14N/15N (˜150).

  8. Infrared spectroscopic and electron paramagnetic resonance studies on Dy substituted magnesium ferrite

    Energy Technology Data Exchange (ETDEWEB)

    Bamzai, K.K., E-mail: kkbamz@yahoo.com [Crystal Growth and Materials Research Laboratory, Department of Physics and Electronics, University of Jammu, Jammu (India); Kour, Gurbinder; Kaur, Balwinder [Crystal Growth and Materials Research Laboratory, Department of Physics and Electronics, University of Jammu, Jammu (India); Arora, Manju; Pant, R.P. [National Physical Laboratory, Dr. K.S. Krishnan Marg, New Delhi (India)

    2013-11-15

    Dysprosium substituted magnesium ferrite with composition MgDy{sub x}Fe{sub 2−x}O{sub 4} with 0.00≤x≤0.07 synthesized by the solid state reaction technique was subjected to Fourier transform infrared spectroscopy and electron paramagnetic resonance studies. Infrared spectrum analysis were carried out to confirm the spinel phase formation and to ascertain the cation distribution in the ferrite phase. The absorption spectra show two significant absorption bands between 400 and 1000 cm{sup −1} which are attributed to tetrahedral (A) and octahedral (B) sites of the spinel phase. The positions of bands were found to be composition dependent. Splitting of bands as well as appearance of shoulders shows the presence of Fe{sup 2+} ions in the system. The force constants for tetrahedral and octahedral sites were calculated and found to vary with Dy{sup 3+} ions content. Electron paramagnetic resonance spectra of these samples exhibit broad, asymmetric resonance signal due to Fe{sup 3+}/Dy{sup 3+} ions present in the host lattice. The spectra become broader with Dy{sup 3+} ions substitution in pure Mg-ferrite and this broadening is attributed to surface spin disorder (spin frustration) possibly coming from mainly antiferromagnetic interactions between the neighbouring spins in the magnetic grains. The weak superexchange interactions results in the broadening of the resonance line width and large g-value as compared to the free electron value. - Highlights: • Absorption bands between 400 and 1000 cm{sup −1} reveal the formation of spinel phase. • The force constant on tetrahedral and octahedral site is used to explain the bond length. • Electron paramagnetic resonance spectra exhibit broad, asymmetric resonance peaks. • Spin frustration in spinel ferrites is explained by the broadening of line width.

  9. Automated high-throughput assessment of prostate biopsy tissue using infrared spectroscopic chemical imaging

    Science.gov (United States)

    Bassan, Paul; Sachdeva, Ashwin; Shanks, Jonathan H.; Brown, Mick D.; Clarke, Noel W.; Gardner, Peter

    2014-03-01

    Fourier transform infrared (FT-IR) chemical imaging has been demonstrated as a promising technique to complement histopathological assessment of biomedical tissue samples. Current histopathology practice involves preparing thin tissue sections and staining them using hematoxylin and eosin (H&E) after which a histopathologist manually assess the tissue architecture under a visible microscope. Studies have shown that there is disagreement between operators viewing the same tissue suggesting that a complementary technique for verification could improve the robustness of the evaluation, and improve patient care. FT-IR chemical imaging allows the spatial distribution of chemistry to be rapidly imaged at a high (diffraction-limited) spatial resolution where each pixel represents an area of 5.5 × 5.5 μm2 and contains a full infrared spectrum providing a chemical fingerprint which studies have shown contains the diagnostic potential to discriminate between different cell-types, and even the benign or malignant state of prostatic epithelial cells. We report a label-free (i.e. no chemical de-waxing, or staining) method of imaging large pieces of prostate tissue (typically 1 cm × 2 cm) in tens of minutes (at a rate of 0.704 × 0.704 mm2 every 14.5 s) yielding images containing millions of spectra. Due to refractive index matching between sample and surrounding paraffin, minimal signal processing is required to recover spectra with their natural profile as opposed to harsh baseline correction methods, paving the way for future quantitative analysis of biochemical signatures. The quality of the spectral information is demonstrated by building and testing an automated cell-type classifier based upon spectral features.

  10. SF{sub 6} ground-based infrared solar absorption measurements: long-term trend, pollution events, and a search for SF{sub 5}CF{sub 3} absorption

    Energy Technology Data Exchange (ETDEWEB)

    Rinsland, C.P. E-mail: c.p.rinsland@larc.nasa.gov; Goldman, A.; Stephen, T.M.; Chiou, L.S.; Mahieu, E.; Zander, R

    2003-04-15

    Infrared solar spectra recorded with the Fourier transform spectrometer in the McMath solar telescope complex on Kitt Peak (31.9 deg. N latitude, 111.6 deg. W, 2.09 km altitude), southwest of Tucson, Arizona, have been analyzed to retrieve average SF{sub 6} tropospheric mixing ratios over a two-decade time span. The analysis is based primarily on spectral fits to absorption by the intense, unresolved {nu}{sub 3} band Q branch at 947.9 cm{sup -1}. A best fit to measurements recorded with SF{sub 6} near typical background concentrations yields a SF{sub 6} increase in the average tropospheric mixing ratio from 1.13 pptv (10{sup -12} per unit volume) in March 1982 to 3.77 pptv in March 2002. The long-term increase by a factor of 3.34 over the time span is consistent with the rapid growth of surface mixing ratios measured in situ at Northern Hemisphere remote stations, though the infrared measurements show a large scatter. Average tropospheric mixing ratio enhancements above background by 2-3 orders of magnitude have been identified in spectra recorded on 5 days between November 1988 and April 1997. These spectra were individually analyzed in an attempt to detect the strongest 8-12 {mu}m band of SF{sub 5}CF{sub 3}, a molecule recently identified with an atmospheric growth that has closely paralleled the rise in SF{sub 6} during the past three decades. Absorption by the strongest SF{sub 5}CF{sub 3} band was predicted to be above the noise level in the Kitt Peak spectrum with the highest average mean tropospheric SF{sub 6} mixing ratio, assuming the reported atmospheric SF{sub 5}CF{sub 3}/SF{sub 6} ratio and a room temperature absorption cross sections reported for the SF{sub 5}CF{sub 3} 903-cm{sup -1} band. An upper limit of 8x10{sup 15} molecules cm{sup -2} for the SF{sub 5}CF{sub 3} total column was estimated for this case. We hypothesize that the highly elevated SF{sub 6} levels above Kitt Peak resulted from a local release experiment rather than production via

  11. Characterization of waste rock associated with acid drainage at the Penn Mine, California, by ground-based visible to short-wave infrared reflectance spectroscopy assisted by digital mapping

    Science.gov (United States)

    Montero, S.I.C.; Brimhall, G.H.; Alpers, C.N.; Swayze, G.A.

    2005-01-01

    Prior to remediation at the abandoned Cu-Zn Penn Mine in the Foothills massive sulfide belt of the Sierra Nevada, CA, acid mine drainage (AMD) was created, in part, by the subaerial oxidation of sulfides exposed on several waste piles. To support remediation efforts, a mineralogical study of the waste piles was undertaken by acquiring reflectance spectra (measured in the visible to short-wave infrared range of light (0.35-2.5 ??m) using a portable, digitally integrated pen tablet PC mapping system with differential global positioning system and laser rangefinder support. Analysis of the spectral data made use of a continuum removal and band-shape comparison method, and of reference spectral libraries of end-member minerals and mineral mixtures. Identification of secondary Fe-bearing minerals focused on band matching in the region between 0.43 and 1.3 ??m. Identification of sheet and other silicates was based on band-shape analysis in the region between 1.9 and 2.4 ??m. Analysis of reflectance spectra of characterized rock samples from the mine helped in gauging the spectral response to particle size and mixtures. The resulting mineral maps delineated a pattern of accumulation of secondary Fe minerals, wherein centers of copiapite and jarosite that formed at low pH (mine drainage into the environment, as well as the effectiveness of the mapping method to detect subtle changes in surface mineralogy and to produce maps useful to agencies responsible for remediating the site. ?? 2004 Elsevier B.V. All rights reserved.

  12. Fourier transform infra-red spectroscopic signatures for lung cells' epithelial mesenchymal transition: A preliminary report

    Science.gov (United States)

    Sarkar, Atasi; Sengupta, Sanghamitra; Mukherjee, Anirban; Chatterjee, Jyotirmoy

    2017-02-01

    Infra red (IR) spectral characterization can provide label-free cellular metabolic signatures of normal and diseased circumstances in a rapid and non-invasive manner. Present study endeavoured to enlist Fourier transform infra red (FTIR) spectroscopic signatures for lung normal and cancer cells during chemically induced epithelial mesenchymal transition (EMT) for which global metabolic dimension is not well reported yet. Occurrence of EMT was validated with morphological and immunocytochemical confirmation. Pre-processed spectral data was analyzed using ANOVA and principal component analysis-linear discriminant analysis (PCA-LDA). Significant differences observed in peak area corresponding to biochemical fingerprint (900-1800 cm- 1) and high wave-number (2800-3800 cm- 1) regions contributed to adequate PCA-LDA segregation of cells undergoing EMT. The findings were validated by re-analysis of data using another in-house built binary classifier namely vector valued regularized kernel approximation (VVRKFA), in order to understand EMT progression. To improve the classification accuracy, forward feature selection (FFS) tool was employed in extracting potent spectral signatures by eliminating undesirable noise. Gradual increase in classification accuracy with EMT progression of both cell types indicated prominence of the biochemical alterations. Rapid changes in cellular metabolome noted in cancer cells within first 24 h of EMT induction along with higher classification accuracy for cancer cell groups in comparison to normal cells might be attributed to inherent differences between them. Spectral features were suggestive of EMT triggered changes in nucleic acid, protein, lipid and bound water contents which can emerge as the useful markers to capture EMT related cellular characteristics.

  13. Investigating the biochemical progression of liver disease through fibrosis, cirrhosis, dysplasia, and hepatocellular carcinoma using Fourier transform infrared spectroscopic imaging

    Science.gov (United States)

    Sreedhar, Hari; Pant, Mamta; Ronquillo, Nemencio R.; Davidson, Bennett; Nguyen, Peter; Chennuri, Rohini; Choi, Jacqueline; Herrera, Joaquin A.; Hinojosa, Ana C.; Jin, Ming; Kajdacsy-Balla, Andre; Guzman, Grace; Walsh, Michael J.

    2014-03-01

    Hepatocellular carcinoma (HCC) is the most common form of primary hepatic carcinoma. HCC ranks the fourth most prevalent malignant tumor and the third leading cause of cancer related death in the world. Hepatocellular carcinoma develops in the context of chronic liver disease and its evolution is characterized by progression through intermediate stages to advanced disease and possibly even death. The primary sequence of hepatocarcinogenesis includes the development of cirrhosis, followed by dysplasia, and hepatocellular carcinoma.1 We addressed the utility of Fourier Transform Infrared (FT-IR) spectroscopic imaging, both as a diagnostic tool of the different stages of the disease and to gain insight into the biochemical process associated with disease progression. Tissue microarrays were obtained from the University of Illinois at Chicago tissue bank consisting of liver explants from 12 transplant patients. Tissue core biopsies were obtained from each explant targeting regions of normal, liver cell dysplasia including large cell change and small cell change, and hepatocellular carcinoma. We obtained FT-IR images of these tissues using a modified FT-IR system with high definition capabilities. Firstly, a supervised spectral classifier was built to discriminate between normal and cancerous hepatocytes. Secondly, an expanded classifier was built to discriminate small cell and large cell changes in liver disease. With the emerging advances in FT-IR instrumentation and computation there is a strong drive to develop this technology as a powerful adjunct to current histopathology approaches to improve disease diagnosis and prognosis.

  14. Development of a practical spatial-spectral analysis protocol for breast histopathology using Fourier transform infrared spectroscopic imaging.

    Science.gov (United States)

    Pounder, F Nell; Reddy, Rohith K; Bhargava, Rohit

    2016-06-23

    Breast cancer screening provides sensitive tumor identification, but low specificity implies that a vast majority of biopsies are not ultimately diagnosed as cancer. Automated techniques to evaluate biopsies can prevent errors, reduce pathologist workload and provide objective analysis. Fourier transform infrared (FT-IR) spectroscopic imaging provides both molecular signatures and spatial information that may be applicable for pathology. Here, we utilize both the spectral and spatial information to develop a combined classifier that provides rapid tissue assessment. First, we evaluated the potential of IR imaging to provide a diagnosis using spectral data alone. While highly accurate histologic [epithelium, stroma] recognition could be achieved, the same was not possible for disease [cancer, no-cancer] due to the diversity of spectral signals. Hence, we employed spatial data, developing and evaluating increasingly complex models, to detect cancers. Sub-mm tumors could be very confidently predicted as indicated by the quantitative measurement of accuracy via receiver operating characteristic (ROC) curve analyses. The developed protocol was validated with a small set and statistical performance used to develop a model that predicts study design for a large scale, definitive validation. The results of evaluation on different instruments, at higher noise levels, under a coarser spectral resolution and two sampling modes [transmission and transflection], indicate that the protocol is highly accurate under a variety of conditions. The study paves the way to validating IR imaging for rapid breast tumor detection, its statistical validation and potential directions for optimization of the speed and sampling for clinical deployment.

  15. Conformers of β-aminoisobutyric acid probed by jet-cooled microwave and matrix isolation infrared spectroscopic techniques

    Science.gov (United States)

    Kuş, N.; Sharma, A.; Peña, I.; Bermúdez, M. C.; Cabezas, C.; Alonso, J. L.; Fausto, R.

    2013-04-01

    β-aminoisobutyric acid (BAIBA) has been studied in isolation conditions: in the gas phase and trapped into a cryogenic N2 matrix. A solid sample of the compound was vaporized by laser ablation and investigated through their rotational spectra in a supersonic expansion using two different spectroscopic techniques: broadband chirped pulse Fourier transform microwave spectroscopy and conventional molecular beam Fourier transform microwave spectroscopy. Four conformers with structures of two types could be successfully identified by comparison of the experimental rotational and 14N nuclear quadruple coupling constants with those predicted theoretically: type A, bearing an OH⋯N intramolecular hydrogen bond and its carboxylic group in the trans geometry (H-O-C=O dihedral ˜180°), and type B, having an NH⋯O bond and the cis arrangement of the carboxylic group. These two types of conformers could also be trapped from the gas phase into a cryogenic N2 matrix and probed by Fourier transform infrared (IR) spectroscopy. In situ irradiation of BAIBA isolated in N2 matrix of type B conformers using near-IR radiation tuned at the frequency of the O-H stretching 1st overtone (˜6930 cm-1) of these forms allowed to selectively convert them into type A conformers and into a new type of conformers of higher energy (type D) bearing an NH⋯O=C bond and a O-H "free" trans carboxylic group.

  16. A comparison of reflectance and transmittance near-infrared spectroscopic techniques in determining drug content in intact tablets.

    Science.gov (United States)

    Thosar, S S; Forbess, R A; Ebube, N K; Chen, Y; Rubinovitz, R L; Kemper, M S; Reier, G E; Wheatley, T A; Shukla, A J

    2001-01-01

    Drug contents of intact tablets were determined using non-destructive near infrared (NIR) reflectance and transmittance spectroscopic techniques. Tablets were compressed from blends of Avicel PH-101 and 0.5% w/w magnesium stearate with varying concentrations of anhydrous theophylline (0, 1, 2, 5, 10, 20 and 40% w/w). Ten tablets from each drug content batch were randomly selected for spectral analysis. Both reflectance and transmittance NIR spectra were obtained from these intact tablets. Actual drug contents of the tablets were then ascertained using a UV-spectrophotometer at 268 nm. Multiple linear regression (MLR) models at 1116 nm and partial least squares (PLS) calibration models were generated from the second derivative spectral data of the tablets in order to predict drug contents of intact tablets. Both the reflectance and the transmittance techniques were able to predict the drug contents in intact tablets over a wide range. However, a comparison of the results of the study indicated that the lowest percent errors of prediction were provided by the PLS calibration models generated from spectral data obtained using the transmittance technique.

  17. Spectroscopic properties and near-infrared broadband luminescence of Bi-doped SrB4O7 glasses and crystalline materials.

    Science.gov (United States)

    Su, Liangbi; Zhou, Peng; Yu, Jun; Li, Hongjun; Zheng, Lihe; Wu, Feng; Yang, Yan; Yang, Qiuhong; Xu, Jun

    2009-08-03

    Spectroscopic properties of Bi-doped SrB(4)O(7) glasses, sintered compounds, polycrystalline materials, and single crystals were investigated. Broadband near-infrared luminescence was realized in Bi-doped SrB(4)O(7) glasses with basicity and polycrystalline materials with non-bridging oxygens. In Bi:SrB(4)O(7) single crystals, only visible luminescence of Bi(3+) and Bi(2+) was observed, but no near-infrared. The rigid three-dimensional network of SrB(4)O(7) crystal is proved to be unfavorable for accommodation of Bi(+) ions.

  18. Use of Near-Infrared Spectroscopic Analysis of Second Trimester Amniotic Fluid to Assess Preterm Births

    Directory of Open Access Journals (Sweden)

    Kristin M. Power

    2011-01-01

    Full Text Available This pilot study investigated the possibility that metabolomic differences exist in second trimester of women delivering at term (≥37 weeks, n=216 and preterm (≤35 weeks, n=11. For this retrospective study, biobanked AF samples underwent near-infrared (NIR spectral analysis using wavelengths from 700 to 1050 nm. Spectral data was compressed then optimized by multilinear regression to create a calibration model. The resultant model was able to classify term and preterm births based on differing AF metabolomic profiles with a sensitivity and specificity of 100%. When groups were classified using a prematurity index (PI, there was a statistical difference (P<0.001 between the predicted preterm group (PI 0.77±0.08 and the term group (PI 1.00±0.02. In conclusion, the 2nd trimester AF samples showed distinct differences in metabolomic profiles between patients delivering preterm as compared to those at term in functional groups related to proteins, carbohydrates, fats, polyols, and water.

  19. CALIBRATIONS BASED ON NEAR INFRARED SPECTROSCOPIC DATA TO ESTIMATE WOOD-CEMENT PANEL PROPERTIES

    Directory of Open Access Journals (Sweden)

    Paulo Ricardo Gherardi Hein

    2009-11-01

    Full Text Available Some scientific contributions have used near infrared (NIR spectroscopy as a rapid and reliable tool for characterizing engineered wood products. However, to our knowledge, there are no published papers that used this technique in order to evaluate wood-cement panels. The main objective of this paper was to evaluate the ability of NIR spectroscopy to estimate physical and mechanical properties in wood-cement panels. The wood-cement panels were produced using Eucalyptus grandis x E. urophylla, Pinus taeda, and Toona ciliata woods with Portland cement under different manufacturing conditions. Wood-cement panels were characterized by traditional methods, and Partial Least Squares regressions were used to build calibrations. Our cross-validated models for MOR, IB, and TS24h of the panels yielded good coefficients of determination (0.80, 0.82, and 0.91, respectively. Based on the significant absorption bands and regression coefficients of the PLS models, our results indicate that cellulose and aromatic groups in lignin are components that play an important role in the calibrations.

  20. Infrared spectroscopic study of CaFe0.7Co0.3O3

    Science.gov (United States)

    Zhang, C. X.; Xia, H. L.; Dai, Y. M.; Qiu, Z. Y.; Sui, Q. T.; Long, Y. W.; Qiu, X. G.

    2017-08-01

    Temperature-dependent infrared spectroscopy has been investigated for CaFe0.7Co0.3O3 which undergoes a ferromagnetic transition at TC≈177 K . It is observed that the spectral weight is transferred from ˜4800 -14 000 cm-1 to ˜0 -4800 cm-1 as the temperature is lowered around TC. Such a large-range spectral weight transfer is attributed to the Hund's interaction. The phonons in CaFe0.7Co0.3O3 show minor asymmetric line shapes, implying relatively weak electron-phonon coupling compared with the parent compound CaFeO3. The optical conductivity also reveals a broad peak structure in the range of ˜700 -1500 cm-1. Fit by the model of single-polaron absorption, the broad peak is interpreted by the excitation of polarons. From the fitting parameters of the polaron peak, we estimate the electron-phonon coupling constant α ˜ 0.4 -0.5 , implying that CaFe0.7Co0.3O3 falls into the weak-coupling regime.

  1. Infrared Spectroscopic, X-ray and Nanoscale Characterization of Strontium Titanate Thin Films

    Energy Technology Data Exchange (ETDEWEB)

    Webb, J. D.; Moutinho, H. R.; Kazmerski, L. L.; Mueller, C. H.; Rivkin, T. V.; Treece, R. E.; Dalberth, M.; Rogers, C. T.

    1997-01-01

    Attenuated total reflectance (ATR) measurements were performed using Fourier transform infrared (FTIR) spectroscopy in the ATR mode with a thallium iodobromide (KRS-5) crystal to measure the frequencies of the v{sub 3} and v{sub 4} phonon absorption bands in thin strontium titanate films deposited on single-crystal yttrium-barium copper oxide (YBCO), lanthanum aluminate, magnesium oxide, and strontium titanate substrates. The KRS-5 crystal enabled FTIR-ATR measurements to be made at frequencies above 400 cm-1. Atomic force microscopy (AFM) and X-ray diffraction (XRD) measurements were also made to further characterize the films. The measurements were repeated on single-crystal specimens of strontium titanate and the substrates for comparison. Softening in the frequency of the v{sub 4} transverse optical phonon in the lattice-mismatched films below the established value of 544 cm-1 is indicative of the highly textured, polycrystalline ceramic nature of the films and is consistent with the XRD and AFM results.

  2. Infrared spectroscopic, x-ray, and nanoscale characterization of strontium titanate thin films

    Energy Technology Data Exchange (ETDEWEB)

    Webb, J D; Moutinho, H R; Kazmerski, L L [National Renewable Energy Lab., Golden, CO (United States); Mueller, C H; Rivkin, T V; Treece, R E [Superconducting Core Technologies, Inc., Golden, CO (United States); Dalberth, M; Rogers, C T [Colorado Univ., Boulder, CO (United States). Dept. of Physics

    1996-06-01

    Attenuated total reflectance (ATR) measurements were performed using Fourier transform infrared (FTIR) spectroscopy in the ATR mode with a thallium iodobromide (KRS-5) crystal to measure the frequencies of the v{sub 3} and v{sub 4} phonon absorption bands in thin Sr titanate films deposited on single-crystal Y-Ba Cu oxide (YBCO), La aluminate, Mg oxide, and Sr titanate substrates. The KRS-5 crystal enabled FTIR-ATR measurements at frequencies above 400 cm{sup -1}. Atomic force microscopy (AFM) and x-ray diffraction (XRD) measurements were also made to further characterize the films. The measurements were repeated on single-crystal specimens of Sr titanate and the substrates for comparison. Softening in the frequency of the v{sub 4} transverse optical phonon in the lattice-mismatched films below the established value of 544 cm{sup -1} is indicative of the highly textured, polycrystalline ceramic nature of the films and is consistent with the XRD and AFM results.

  3. Infrared spectroscopic, x-ray, and nanoscale characterization of strontium titanate thin films

    Energy Technology Data Exchange (ETDEWEB)

    Webb, J.D.; Moutinho, H.R.; Kazmerski, L.L. [National Renewable Energy Lab., Golden, CO (United States); Mueller, C.H.; Rivkin, T.V.; Treece, R.E. [Superconducting Core Technologies, Inc., Golden, CO (United States); Dalberth, M.; Rogers, C.T. [Colorado Univ., Boulder, CO (United States). Dept. of Physics

    1996-04-01

    Attenuated total reflectance (ATR) measurements were performed using Fourier transform infrared (FTIR) spectroscopy in the ATR mode with a thallium iodobromide (KRS-5) crystal to measure the frequencies of the {nu}{sub 3} and {nu}{sub 4} phonon absorption bands in thin strontium titanate films deposited on single-crystal yttrium-barium copper oxide (YBCO), lanthanum aluminate, magnesium oxide, and strontium titanate substrates. The KRS-5 crystal enabled FTIR-ATR measurements to be made at frequencies above 400 cm{sup {minus}1}. Atomic force microscopy (AFM) and X-ray diffraction (XRD) measurements were also made to further characterize the films. The measurements were repeated on single-crystal specimens of strontium titanate and the substrates for comparison. Softening in the frequency of the {nu}{sub 4} transverse optical phonon in the lattice- mismatched films below the established value of 544 cm{sup {minus}1} is indicative of the highly textured, polycrystalline ceramic nature of the films and is consistent with the XRD and AFM results.

  4. An infrared photometric and spectroscopic study of post-AGB stars

    Science.gov (United States)

    Raman, V. Venkata; Anandarao, B. G.; Janardhan, P.; Pandey, R.

    2017-09-01

    We present here Spitzer mid-infrared (IR) spectra and modelling of the spectral energy distribution (SED) of a selection of post-asymptotic giant branch (PAGB) stars. The mid-IR spectra of the majority of these sources showed spectral features such as polycyclic aromatic hydrocarbons (PAHs) and silicates in emission. Our results from SED modelling showed interesting trends of dependence between the photospheric and circumstellar parameters. A trend of dependence is also noticed between the ratios of equivalent widths (EWs) of various vibrational modes of PAHs and the photospheric temperature T* and model-derived stellar parameters for the sample stars. The PAGB mass-loss rates derived from the SED models are found to be higher than those for AGB stars. In a few objects, low- and high-excitation fine-structure emission lines were identified, indicating their advanced stage of evolution. Further, IR vibration modes of fullerene (C60) were detected for the first time in the PAGB star IRAS 21546+4721.

  5. Instrument for near infrared emission spectroscopic probing of human fingertips in vivo

    Science.gov (United States)

    Chaiken, J.; Deng, Bin; Bussjager, Rebecca J.; Shaheen, George; Rice, David; Stehlik, Dave; Fayos, John

    2010-03-01

    We present instrumentation for probing of volar side fingertip capillary beds with free space coupled near infrared light while collecting Raman, Rayleigh, and Mie scattered light as well as fluorescence. Fingertip skin capillary beds are highly vascularized relative to other tissues and present a desirable target for noninvasive probing of blood. But human hands and fingers in particular are also highly idiosyncratic body parts requiring specific apparatus to allow careful and methodical spectoscopic probing. The apparatus includes means for precise and reproducible placement of the tissues relative to the optical aperture. Appropriate means are provided for applying and maintaining pressure to keep surface tissues immobile during experiments while obtaining the desired blood content and flow. Soft matter, e.g., skin, extrudes into the aperture in response to any applied pressure, e.g., to keep the tissue in registration with the optical system, so the position, contact area, pressure, and force are continuously measured and recorded to produce feedback for an actuator applying force and to discern the compliance of the test subject. The compliance strongly affects the reliability of the measurement and human factors must be adequately managed in the case of in vivo probing. The apparatus produces reproducible observations and measurements that allow consistent probing of the tissues of a wide range of skin types.

  6. Mid-infrared spectroscopic investigation of the perfect vitrification of poly(ethylene glycol) aqueous solutions.

    Science.gov (United States)

    Gemmei-Ide, Makoto; Miyashita, Takashi; Kagaya, Shigehiro; Kitano, Hiromi

    2015-10-01

    Crystallization/recrystallization behaviors of poly(ethylene glycol) (PEG) aqueous solutions with water contents (WC's) of ∼36-51 wt % were investigated by temperature-variable mid-infrared spectroscopy. At a WC of 43.2 wt %, crystallization and recrystallization of water and PEG were not observed. At this specific WC value (WCPV), perfect vitrification occurred. Below and above the WCPV value, crystallization/recrystallization behaviors changed drastically. The crystallization temperature below WCPV (237 K) was ∼10 K greater than that above WCPV (226 K). Recrystallization above and below WCPV occurred in one (213 K) and two (198 and 210 K) steps, respectively. These findings resulted from the difference in the (re)crystallization behaviors of water molecules associated with PEG chains with helical and random-coil conformations. These two types of water molecules might have limiting concentrations for their (re)crystallization, indicating that perfect vitrification might have occurred when the concentrations of the two types of water molecules were less than the limiting concentrations of their (re)crystallization.

  7. Microstructural and Photoacoustic Infrared Spectroscopic Studies of Human Cortical Bone with Osteogenesis Imperfecta

    Science.gov (United States)

    Gu, Chunju; Katti, Dinesh R.; Katti, Kalpana S.

    2016-04-01

    The molecular basis of bone disease osteogenesis imperfecta (OI) and the mineralization of hydroxyapatite in OI bone have been of significant research interest. To further investigate the mechanism of OI disease and bone mineralization, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy, and x-ray diffraction (XRD) are used in the present study to describe the structural and compositional differences between OI and healthy bone. OI bone exhibits more porous, fibrous features, abnormal collagen fibrils, and abnormal mineral deposits. Likewise, photoacoustic-FTIR experiments indicate an aberrant collagen structure and an altered mineral structure in OI. In contrast, there is neither significant difference in the non-collagenous proteins (NCPs) composition observed nor apparent change in the crystal structure between OI and healthy bone minerals as shown in XRD and energy-dispersive x-ray spectroscopy (EDS) results. This observation indicates that the biomineralization process is more controlled by the bone cells and non-collagenous phosphorylated proteins. The present study also confirms that there is an orientational influence on the stoichiometry of the mineral in OI bone. Also, a larger volume of the hydrated layer in the transverse plane than the longitudinal plane of the mineral crystal structure is proposed. The appearance of a new C-S band in the FTIR spectra in OI bone suggests the substitution of glycine by cysteine in collagen molecules or/and an increased amount of cysteine-rich osteonectin that relates to mineral nucleation and mineral crystal formation.

  8. A validated near-infrared spectroscopic method for methanol detection in biodiesel

    Science.gov (United States)

    Paul, Andrea; Bräuer, Bastian; Nieuwenkamp, Gerard; Ent, Hugo; Bremser, Wolfram

    2016-06-01

    Biodiesel quality control is a relevant issue as biodiesel properties influence diesel engine performance and integrity. Within the European metrology research program (EMRP) ENG09 project ‘Metrology for Biofuels’, an on-line/at-site suitable near-infrared spectroscopy (NIRS) method has been developed in parallel with an improved EN14110 headspace gas chromatography (GC) analysis method for methanol in biodiesel. Both methods have been optimized for a methanol content of 0.2 mass% as this represents the maximum limit of methanol content in FAME according to EN 14214:2009. The NIRS method is based on a mobile NIR spectrometer equipped with a fiber-optic coupled probe. Due to the high volatility of methanol, a tailored air-tight adaptor was constructed to prevent methanol evaporation during measurement. The methanol content of biodiesel was determined from evaluation of NIRS spectra by partial least squares regression (PLS). Both GC analysis and NIRS exhibited a significant dependence on biodiesel feedstock. The NIRS method is applicable to a content range of 0.1% (m/m) to 0.4% (m/m) of methanol with uncertainties at around 6% relative for the different feedstocks. A direct comparison of headspace GC and NIRS for samples of FAMEs yielded that the results of both methods are fully compatible within their stated uncertainties.

  9. Infrared Spectroscope for Electron Bunch-length Measurement: Heat Sensor Parameters Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Domgmo-Momo, Gilles; /Towson U. /SLAC

    2012-09-05

    The Linac Coherent Light Source (LCLS) is used for many experiments. Taking advantage of the free electron laser (FEL) process, scientists of various fields perform experiments of all kind. Some for example study protein folding; other experiments are more interested in the way electrons interact with the molecules before they are destroyed. These experiments among many others have very little information about the electrons x-ray produced by the FEL, except that the FEL is using bunches less than 10 femtoseconds long. To be able to interpret the data collected from those experiments, more accurate information is needed about the electron's bunch-length. Existing bunch length measurement techniques are not suitable for the measurement of such small time scales. Hence the need to design a device that will provide more precise information about the electron bunch length. This paper investigates the use of a pyreoelectric heat sensor that has a sensitivity of about 1.34 micro amps per watt for the single cell detector. Such sensitivity, added to the fact that the detector is an array sensor, makes the detector studied the primary candidate to be integrated to an infrared spectrometer designed to better measure the LCLS electron bunch length.

  10. Infrared Spectroscopic Observations of the Secondary Stars of Short Period Sub-Gap Cataclysmic Variables

    CERN Document Server

    Hamilton, Ryan T; Tappert, Claus; Howell, Steve B

    2010-01-01

    We present K-band spectroscopy of short period, "sub-gap" cataclysmic variable (CV) systems obtained using ISAAC on the VLT. We show the infrared spectra (IR) for nine systems below the 2-3 hour period gap: V2051 Oph, V436 Cen, EX Hya, VW Hyi, Z Cha, WX Hyi, V893 Sco, RZ Leo, and TY PsA. We are able to clearly detect the secondary star in all but WX Hyi, V893 Sco, and TY PsA. We present the first direct detection of the secondary stars of V2051 Oph, V436 Cen, and determine new spectral classifications for EX Hya, VW Hyi, Z Cha, and RZ Leo. We find that the CO band strengths of all but Z Cha appear normal for their spectral types, in contrast to their longer period cousins above the period gap. This brings the total number of CVs and pre-CVs with moderate resolution (R >~ 1500) IR spectroscopy to sixty-one systems: nineteen pre-CVs, thirty-one non-magnetic systems, and eleven magnetic or partially magnetic systems. We discuss the trends seen in the IR abundance patterns thus far, and highlight a potential link...

  11. A Near-Infrared Spectroscopic Survey at the SDSS 2.5-meter Telescope?

    CERN Document Server

    Skrutskie, Michael F

    2015-01-01

    We are posting this 10-year-old white paper to support an upcoming survey description paper for the SDSS-III Apache Point Galactic Evolution Experiment (APOGEE) led by PI Dr. Steven Majewski. The white paper presented here was a contribution to a 2005 "futures" planning process for the Astrophysical Research Consortium led by Dr. Donald York that examined both prospects for extending the work of SDSS and SDSS-II as well as enhancing the capabilities of the Apache Point 3.5-meter telescope and the overall scientific reach of the Consortium. This particular white paper describes the potential for using the Sloan 2.5-meter telescope and its fiber optic infrastructure to conduct a galactic plane chemical abundance survey in the low-extinction 1.6um H-band. The survey would target >1000 red giant stars per night selected from the Two Micron All Sky Survey using a >200 fiber near-infrared spectrograph operating at spectral resolution of R~24,000 with a magnitude limit of H~12 - very close to the final APOGEE implem...

  12. FT-infrared spectroscopic studies of lymphoma, lymphoid, and myeloid leukemia cell lines

    Science.gov (United States)

    Babrah, Jaspreet; McCarthy, Keith P.; Lush, Richard; Rye, Adam D.; Bessant, Conrad; Stone, Nicholas

    2007-07-01

    This paper presents a novel method to characterise spectral differences that distinguish leukaemia and lymphoma cell lines. This is based on objective spectral measurements of major cellular biochemical constituents and multivariate spectral processing. Fourier transform infrared (FT-IR) maps of the lymphoma, lymphoid and myeloid leukaemia cell samples were obtained using a Perkin-Elmer Spotlight 300 FT-IR imaging spectrometer. Multivariate statistical techniques incorporating principal component analysis (PCA) and linear discriminant analysis (LDA) were used to construct a mathematical model. This model was validated for reproducibility. Multivariate statistical analysis of FTIR spectra collected for each cell sample permit a combination of unsupervised and supervised methods of distinguishing cell line types. This resulted in the clustering of cell line populations, indicating distinct bio-molecular differences. Major spectral differences were observed in the 4000 to 800 cm -1 spectral region. Bands in the averaged spectra for the cell line were assigned to the major biochemical constituents including; proteins, fatty acids, carbohydrates and nucleic acids. The combination of FT-IR spectroscopy and multivariate statistical analysis provides an important insight into the fundamental spectral differences between the cell lines, which differ according to the cellular biochemical composition. These spectral differences can serve as potential biomarkers for the differentiation of leukaemia and lymphoma cells. Consequently these differences could be used as the basis for developing a spectral method for the detection and identification of haematological malignancies.

  13. In situ infrared spectroscopic study of cubic boron nitride thin film delamination

    Institute of Scientific and Technical Information of China (English)

    Yang Hang-Sheng; Zhang Jian-Ying; Nie An-Min; Zhang Xiao-Bin

    2008-01-01

    This paper investigates the procedure of cubic boron nitride(cBN)thin film delamination by Fourier-transform infrared(IR)spectroscopy.It finds that the apparent IR absorption peak area near 1380 cm-1 and 1073 cm-1 attributed to the B-N stretching vibration of sp2-bonded BN and the transverse optical phonon of cBN,respectively,increased up to 195% and 175% of the original peak area after film delamination induced compressive stress relaxation.The increase of IR absorption of sp2-bonded BN is found to be non-linear and hysteretic to film delamination,which suggests that the relaxation of the turbostratic BN(tBN)layer from the compressed condition is also hysteretic to film delamination.Moreover,cross-sectional transmission electron microscopic observations revealed that cBN film delamination is possible from near the aBN(amorphons BN)/tBN interface at least for films prepared by plasma-enhanced chemical vapour deposition.

  14. Infrared spectroscopic studies of cells and tissues: triple helix proteins as a potential biomarker for tumors.

    Science.gov (United States)

    Stelling, Allison L; Toher, Deirdre; Uckermann, Ortrud; Tavkin, Jelena; Leipnitz, Elke; Schweizer, Julia; Cramm, Holger; Steiner, Gerald; Geiger, Kathrin D; Kirsch, Matthias

    2013-01-01

    In this work, the infrared (IR) spectra of living neural cells in suspension, native brain tissue, and native brain tumor tissue were investigated. Methods were developed to overcome the strong IR signal of liquid water so that the signal from the cellular biochemicals could be seen. Measurements could be performed during surgeries, within minutes after resection. Comparison between normal tissue, different cell lineages in suspension, and tumors allowed preliminary assignments of IR bands to be made. The most dramatic difference between tissues and cells was found to be in weaker IR absorbances usually assigned to the triple helix of collagens. Triple helix domains are common in larger structural proteins, and are typically found in the extracellular matrix (ECM) of tissues. An algorithm to correct offsets and calculate the band heights and positions of these bands was developed, so the variance between identical measurements could be assessed. The initial results indicate the triple helix signal is surprisingly consistent between different individuals, and is altered in tumor tissues. Taken together, these preliminary investigations indicate this triple helix signal may be a reliable biomarker for a tumor-like microenvironment. Thus, this signal has potential to aid in the intra-operational delineation of brain tumor borders.

  15. Infrared spectroscopic studies of cells and tissues: triple helix proteins as a potential biomarker for tumors.

    Directory of Open Access Journals (Sweden)

    Allison L Stelling

    Full Text Available In this work, the infrared (IR spectra of living neural cells in suspension, native brain tissue, and native brain tumor tissue were investigated. Methods were developed to overcome the strong IR signal of liquid water so that the signal from the cellular biochemicals could be seen. Measurements could be performed during surgeries, within minutes after resection. Comparison between normal tissue, different cell lineages in suspension, and tumors allowed preliminary assignments of IR bands to be made. The most dramatic difference between tissues and cells was found to be in weaker IR absorbances usually assigned to the triple helix of collagens. Triple helix domains are common in larger structural proteins, and are typically found in the extracellular matrix (ECM of tissues. An algorithm to correct offsets and calculate the band heights and positions of these bands was developed, so the variance between identical measurements could be assessed. The initial results indicate the triple helix signal is surprisingly consistent between different individuals, and is altered in tumor tissues. Taken together, these preliminary investigations indicate this triple helix signal may be a reliable biomarker for a tumor-like microenvironment. Thus, this signal has potential to aid in the intra-operational delineation of brain tumor borders.

  16. In Situ Infrared Spectroscopic Study of Forsterite Carbonation in Wet Supercritical CO2

    Energy Technology Data Exchange (ETDEWEB)

    Loring, John S.; Thompson, Christopher J.; Wang, Zheming; Joly, Alan G.; Sklarew, Deborah S.; Schaef, Herbert T.; Ilton, Eugene S.; Rosso, Kevin M.; Felmy, Andrew R.

    2011-07-19

    Carbonation reactions are central to the prospect of CO2 trapping by mineralization in geologic reservoirs. In contrast to the relevant aqueous-mediated reactions, little is known about the propensity for carbonation in the long-term partner fluid: water-containing supercritical carbon dioxide (‘wet’ scCO2). We employed in situ mid-infrared spectroscopy to follow the reaction of a model silicate mineral (forsterite, Mg2SiO4) for 24 hr with wet scCO2 at 50°C and 180 atm, using water concentrations corresponding to 0%, 55%, 95%, and 136% saturation. Results show a dramatic dependence of reactivity on water concentration and the presence of liquid water on the forsterite particles. Exposure to neat scCO2 showed no detectable carbonation reaction. At 55% and 95% water saturation, a liquid-like thin water film was detected on the forsterite particles; less than 1% of the forsterite transformed, mostly within the first 3 hours of exposure to the fluid. At 136% saturation, where an (excess) liquid water film approximately several nanometers thick was intentionally condensed on the forsterite, the carbonation reaction proceeded continuously for 24 hr with 10% to 15% transformation. Our collective results suggest constitutive links between water concentration, water film formation, reaction rate and extent, and reaction products in wet scCO2.

  17. Unipolar GaAs AlGaAs mid infrared lasers for spectroscopic applications

    CERN Document Server

    Hvozdara, L

    2000-01-01

    100 mW per facet. The laser emission wavelengths range from 9.5 mu m to 13.2 mu m. The highest maximum operation temperature of T=230 K and the lowest threshold current density of 2.1 kA/cm sup 2 have been achieved among 14 samples presented in this work. A decrease of the threshold current by up to 40 % , and a slight increase of the highest operation temperature have been achieved by fabrication an air-semiconductor photonic bandgap mirror at the ends of a resonator. A FIB Cut coupled cavity quantum cascade laser has been designed and fabricated. An application of GaAs/AlGaAs quantum cascade lasers in the gas spectroscopy is demonstrated. The presented work was aimed to design and to study the electrical and optical properties of GaAs AlGaAs semiconductor heterostructures in order to develop novel coherent radiation sources for the mid infrared band. The main interest is focused on the experimental studies of quantum cascade emitters and lasers. The quantum cascade emitters and lasers are based on the intra...

  18. Unipolar GaAs AlGaAs mid infrared laser for spectroscopic applications

    CERN Document Server

    Hvozdara, L

    2000-01-01

    100 mW per facet. The laser emission wavelengths range from 9.5 mu m to 13.2 mu m. The highest maximum operation temperature of T=230 K and the lowest threshold current density of 2.1 kA/cm sup 2 have been achieved among 14 samples presented in this work. A decrease of the threshold current by up to 40 % , and a slight increase of the highest operation temperature have been achieved by fabrication an air-semiconductor photonic bandgap mirror at the ends of a resonator. A FIB Cut coupled cavity quantum cascade laser has been designed and fabricated. An application of GaAs/AlGaAs quantum cascade lasers in the gas spectroscopy is demonstrated. The presented work was aimed to design and to study the electrical and optical properties of GaAs AlGaAs semiconductor heterostructures in order to develop novel coherent radiation sources for the mid infrared band. The main interest is focused on the experimental studies of quantum cascade emitters and lasers. The quantum cascade emitters and lasers are based on the intra...

  19. Fresnel zones for ground-based antennas

    DEFF Research Database (Denmark)

    Andersen, J. Bach

    1964-01-01

    The ordinary Fresnel zone concept is modified to include the influence of finite ground conductivity. This is important for ground-based antennas because the influence on the radiation pattern of irregularities near the antenna is determined by the amplitude and phase of the groundwave. A new...

  20. Calibration of Ground-based Lidar instrument

    DEFF Research Database (Denmark)

    Villanueva, Héctor; Gómez Arranz, Paula

    This report presents the result of the lidar calibration performed for the given Ground-based Lidar at DTU’s test site for large wind turbines at Høvsøre, Denmark. Calibration is here understood as the establishment of a relation between the reference wind speed measurements with measurement unce...

  1. Calibration of Ground -based Lidar instrument

    DEFF Research Database (Denmark)

    Villanueva, Héctor; Yordanova, Ginka

    This report presents the result of the lidar calibration performed for the given Ground-based Lidar at DTU’s test site for large wind turbines at Høvsøre, Denmark. Calibration is here understood as the establishment of a relation between the reference wind speed measurements with measurement unce...

  2. Ground-based Fourier transform infrared spectroscopy in central Mexico

    Science.gov (United States)

    Plaza, Eddy; Stremme, Wolfgang; Bezanilla, Alejandro; Baylon, Jorge; Grutter, Michel; Blumenstock, Thomas; Hase, Frank

    2014-05-01

    Altzomoni is a high altitude station in central Mexico (19.12 N, 98.65 W, 4000 m a.s.l.) for continuous measurements of various atmospheric parameters. It is located within the Izta-Popo National Park and is operated remotely from the UNAM campus. Since May 2012, high resolution solar absorption spectra have been recorded from this site using a FTIR from Bruker (HR120/5) equipped with MCT, InSb and InGaAs detectors and various optical filters. In this contribution we present a detailed description of the measurement site and the instrumental set-up including a record of the instrumental line-shapes (modulation efficiency and phase error) obtained from cell measurements and analyzed with the LINEFIT code. A preliminary analysis of almost two years of spectra recorded at the Altzomoni site resulting in profile retrievals of four NDACC gases O3, CO, HF and HCl is presented. The retrieval code PROFFIT is used and the Averaging Kernels and an error analysis are used to describe the quality of the measurements. The annual cycles in the time series of O3 and CO are presented and discussed, as well as some examples of anomalies due to volcanic gas emissions of HF and HCl are shown. The presented work is part of an effort to certify this station as part of the NDACC international network.

  3. Augmenting WFIRST Microlensing with a Ground-Based Telescope Network

    Science.gov (United States)

    Zhu, Wei; Gould, Andrew

    2016-06-01

    Augmenting the Wide Field Infrared Survey Telescope (WFIRST) microlensing campaigns with intensive observations from a ground-based network of wide-field survey telescopes would have several major advantages. First, it would enable full two-dimensional (2-D) vector microlens parallax measurements for a substantial fraction of low-mass lenses as well as planetary and binary events that show caustic crossing features. For a significant fraction of the free-floating planet (FFP) events and all caustic-crossing planetary/binary events, these 2-D parallax measurements directly lead to complete solutions (mass, distance, transverse velocity) of the lens object (or lens system). For even more events, the complementary ground-based observations will yield 1-D parallax measurements. Together with the 1-D parallaxes from WFIRST alone, they can probe the entire mass range M > M_Earth. For luminous lenses, such 1-D parallax measurements can be promoted to complete solutions (mass, distance, transverse velocity) by high-resolution imaging. This would provide crucial information not only about the hosts of planets and other lenses, but also enable a much more precise Galactic model. Other benefits of such a survey include improved understanding of binaries (particularly with low mass primaries), and sensitivity to distant ice-giant and gas-giant companions of WFIRST lenses that cannot be detected by WFIRST itself due to its restricted observing windows. Existing ground-based microlensing surveys can be employed if WFIRST is pointed at lower-extinction fields than is currently envisaged. This would come at some cost to the event rate. Therefore the benefits of improved characterization of lenses must be weighed against these costs.

  4. Comparing Dawn, Hubble Space Telescope, and Ground-Based Interpretations of (4) Vesta

    CERN Document Server

    Reddy, Vishnu; Corre, Lucille Le; Scully, Jennifer E C; Gaskell, Robert; Russell, Christopher T; Park, Ryan S; Nathues, Andreas; Raymond, Carol; Gaffey, Michael J; Sierks, Holger; Becker, Kris J; McFadden, Lucy A

    2013-01-01

    Observations of asteroid 4 Vesta by NASA's Dawn spacecraft are interesting because its surface has the largest range of albedo, color and composition of any other asteroid visited by spacecraft to date. These hemispherical and rotational variations in surface brightness and composition have been attributed to impact processes since Vesta's formation. Prior to Dawn's arrival at Vesta, its surface properties were the focus of intense telescopic investigations for nearly a hundred years. Ground-based photometric and spectroscopic observations first revealed these variations followed later by those using Hubble Space Telescope. Here we compare interpretations of Vesta's rotation period, pole, albedo, topographic, color, and compositional properties from ground-based telescopes and HST with those from Dawn. Rotational spectral variations observed from ground-based studies are also consistent with those observed by Dawn. While the interpretation of some of these features was tenuous from past data, the interpretati...

  5. Built-in hyperspectral camera for smartphone in visible, near-infrared and middle-infrared lights region (second report): sensitivity improvement of Fourier-spectroscopic imaging to detect diffuse reflection lights from internal human tissues for healthcare sensors

    Science.gov (United States)

    Kawashima, Natsumi; Hosono, Satsuki; Ishimaru, Ichiro

    2016-05-01

    We proposed the snapshot-type Fourier spectroscopic imaging for smartphone that was mentioned in 1st. report in this conference. For spectroscopic components analysis, such as non-invasive blood glucose sensors, the diffuse reflection lights from internal human skins are very weak for conventional hyperspectral cameras, such as AOTF (Acousto-Optic Tunable Filter) type. Furthermore, it is well known that the spectral absorption of mid-infrared lights or Raman spectroscopy especially in long wavelength region is effective to distinguish specific biomedical components quantitatively, such as glucose concentration. But the main issue was that photon energies of middle infrared lights and light intensities of Raman scattering are extremely weak. For improving sensitivity of our spectroscopic imager, the wide-field-stop & beam-expansion method was proposed. Our line spectroscopic imager introduced a single slit for field stop on the conjugate objective plane. Obviously to increase detected light intensities, the wider slit width of the field stop makes light intensities higher, regardless of deterioration of spatial resolutions. Because our method is based on wavefront-division interferometry, it becomes problems that the wider width of single slit makes the diffraction angle narrower. This means that the narrower diameter of collimated objective beams deteriorates visibilities of interferograms. By installing the relative inclined phaseshifter onto optical Fourier transform plane of infinity corrected optical systems, the collimated half flux of objective beams derived from single-bright points on objective surface penetrate through the wedge prism and the cuboid glass respectively. These two beams interfere each other and form the infererogram as spatial fringe patterns. Thus, we installed concave-cylindrical lens between the wider slit and objective lens as a beam expander. We successfully obtained the spectroscopic characters of hemoglobin from reflected lights from

  6. Space and Ground-Based Infrastructures

    Science.gov (United States)

    Weems, Jon; Zell, Martin

    This chapter deals first with the main characteristics of the space environment, outside and inside a spacecraft. Then the space and space-related (ground-based) infrastructures are described. The most important infrastructure is the International Space Station, which holds many European facilities (for instance the European Columbus Laboratory). Some of them, such as the Columbus External Payload Facility, are located outside the ISS to benefit from external space conditions. There is only one other example of orbital platforms, the Russian Foton/Bion Recoverable Orbital Capsule. In contrast, non-orbital weightless research platforms, although limited in experimental time, are more numerous: sounding rockets, parabolic flight aircraft, drop towers and high-altitude balloons. In addition to these facilities, there are a number of ground-based facilities and space simulators, for both life sciences (for instance: bed rest, clinostats) and physical sciences (for instance: magnetic compensation of gravity). Hypergravity can also be provided by human and non-human centrifuges.

  7. Development of Ground-Based Plant Sentinels

    Science.gov (United States)

    2007-11-02

    plants in response to different strains of Pseudomonas syringae. Planta . 217:767-775. De Moraes CM, Schultz JC, Mescher MC, Tumlinson JH. (2004...09-30-2004 Final Technical _ April 2001 - April 2003 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Developing Plants as Ground-based Sentinels 5b. GRANT...SUPPLEMENTARY NOTES 14. ABSTRACT 9 "Z Plants emit volatile mixes characteristic of exposure to both plant and animal (insect) pathogens (bacteria and fungi). The

  8. Illumination compensation in ground based hyperspectral imaging

    Science.gov (United States)

    Wendel, Alexander; Underwood, James

    2017-07-01

    Hyperspectral imaging has emerged as an important tool for analysing vegetation data in agricultural applications. Recently, low altitude and ground based hyperspectral imaging solutions have come to the fore, providing very high resolution data for mapping and studying large areas of crops in detail. However, these platforms introduce a unique set of challenges that need to be overcome to ensure consistent, accurate and timely acquisition of data. One particular problem is dealing with changes in environmental illumination while operating with natural light under cloud cover, which can have considerable effects on spectral shape. In the past this has been commonly achieved by imaging known reference targets at the time of data acquisition, direct measurement of irradiance, or atmospheric modelling. While capturing a reference panel continuously or very frequently allows accurate compensation for illumination changes, this is often not practical with ground based platforms, and impossible in aerial applications. This paper examines the use of an autonomous unmanned ground vehicle (UGV) to gather high resolution hyperspectral imaging data of crops under natural illumination. A process of illumination compensation is performed to extract the inherent reflectance properties of the crops, despite variable illumination. This work adapts a previously developed subspace model approach to reflectance and illumination recovery. Though tested on a ground vehicle in this paper, it is applicable to low altitude unmanned aerial hyperspectral imagery also. The method uses occasional observations of reference panel training data from within the same or other datasets, which enables a practical field protocol that minimises in-field manual labour. This paper tests the new approach, comparing it against traditional methods. Several illumination compensation protocols for high volume ground based data collection are presented based on the results. The findings in this paper are

  9. Correcting the effect of refraction and dispersion of light in FT-IR spectroscopic imaging in transmission through thick infrared windows.

    Science.gov (United States)

    Chan, K L Andrew; Kazarian, Sergei G

    2013-01-15

    Transmission mode is one of the most common sampling methods for FT-IR spectroscopic imaging because the spectra obtained generally have a reasonable signal-to-noise ratio. However, dispersion and refraction of infrared light occurs when samples are sandwiched between infrared windows or placed underneath a layer of liquid. Dispersion and refraction cause infrared light to focus with different focal lengths depending on the wavelength (wavenumber) of the light. As a result, images obtained are in focus only at a particular wavenumber while they are defocused at other wavenumber values. In this work, a solution to correct this spread of focus by means of adding a lens on top of the infrared transparent window, such that a pseudo hemisphere is formed, has been investigated. Through this lens (or pseudo hemisphere), refraction of light is removed and the light across the spectral range has the same focal depth. Furthermore, the lens acts as a solid immersion objective and an increase of both magnification and spatial resolution (by 1.4 times) is demonstrated. The spatial resolution was investigated using an USAF resolution target, showing that the Rayleigh criterion can be achieved, as well as a sample with a sharp polymer interface to indicate the spatial resolution that can be expected in real samples. The reported approach was used to obtain chemical images of cross sections of cancer tissue and hair samples sandwiched between infrared windows showing the versatility and applicability of the method. In addition to the improved spatial resolution, the results reported herein also demonstrate that the lens can reduce the effect of scattering near the edges of tissue samples. The advantages of the presented approach, obtaining FT-IR spectroscopic images in transmission mode with the same focus across all wavenumber values and simultaneous improvement in spatial resolution, will have wide implications ranging from studies of live cells to sorption of drugs into tissues.

  10. A Markov random field based approach to the identification of meat and bone meal in feed by near-infrared spectroscopic imaging.

    Science.gov (United States)

    Jiang, Xunpeng; Yang, Zengling; Han, Lujia

    2014-07-01

    Contaminated meat and bone meal (MBM) in animal feedstuff has been the source of bovine spongiform encephalopathy (BSE) disease in cattle, leading to a ban in its use, so methods for its detection are essential. In this study, five pure feed and five pure MBM samples were used to prepare two sets of sample arrangements: set A for investigating the discrimination of individual feed/MBM particles and set B for larger numbers of overlapping particles. The two sets were used to test a Markov random field (MRF)-based approach. A Fourier transform infrared (FT-IR) imaging system was used for data acquisition. The spatial resolution of the near-infrared (NIR) spectroscopic image was 25 μm × 25 μm. Each spectrum was the average of 16 scans across the wavenumber range 7,000-4,000 cm(-1), at intervals of 8 cm(-1). This study introduces an innovative approach to analyzing NIR spectroscopic images: an MRF-based approach has been developed using the iterated conditional mode (ICM) algorithm, integrating initial labeling-derived results from support vector machine discriminant analysis (SVMDA) and observation data derived from the results of principal component analysis (PCA). The results showed that MBM covered by feed could be successfully recognized with an overall accuracy of 86.59% and a Kappa coefficient of 0.68. Compared with conventional methods, the MRF-based approach is capable of extracting spectral information combined with spatial information from NIR spectroscopic images. This new approach enhances the identification of MBM using NIR spectroscopic imaging.

  11. The Gaia Era: synergy between space missions and ground based surveys

    CERN Document Server

    Vallenari, A

    2008-01-01

    The Gaia mission is expected to provide highly accurate astrometric, photometric, and spectroscopic measurements for about $10^9$ objects. Automated classification of detected sources is a key part of the data processing. Here a few aspects of the Gaia classification process are presented. Information from other surveys at longer wavelengths, and from follow-up ground based observations will be complementary to Gaia data especially at faint magnitudes, and will offer a great opportunity to understand our Galaxy.

  12. First ground-based FTIR-observations of methane in the tropics

    Directory of Open Access Journals (Sweden)

    A. K. Petersen

    2010-02-01

    Full Text Available Total column concentrations and volume mixing ratio profiles of methane have been retrieved from ground-based solar absorption FTIR spectra in the near-infrared recorded in Paramaribo (Suriname. The methane FTIR observations are compared with TM5 model simulations and satellite observations from SCIAMACHY, and represent the first validation of SCIAMACHY retrievals in the tropics using ground-based remote sensing techniques. Apart from local biomass burning features, our methane FTIR observations agree well with the SCIAMACHY retrievals and TM5 model simulations.

  13. Calibration of Ground-based Lidar instrument

    DEFF Research Database (Denmark)

    Yordanova, Ginka; Gómez Arranz, Paula

    This report presents the result of the lidar calibration performed for the given Ground-based Lidar at DTU’s test site for large wind turbines at Høvsøre, Denmark. Calibration is here understood as the establishment of a relation between the reference wind speed measurements with measurement...... uncertainties provided by measurement standard and corresponding lidar wind speed indications with associated measurement uncertainties. The lidar calibration concerns the 10 minute mean wind speed measurements. The comparison of the lidar measurements of the wind direction with that from wind vanes...

  14. Calibration of Ground-based Lidar instrument

    DEFF Research Database (Denmark)

    Yordanova, Ginka; Gómez Arranz, Paula

    This report presents the result of a test of a ground-based lidar of other type. The test was performed at DTU’s test site for large wind turbines at Høvsøre, Denmark. The result as an establishment of a relation between the reference wind speed measurements with measurement uncertainties provided...... by measurement standard and corresponding lidar wind speed indications with associated measurement uncertainties. The comparison of the lidar measurements of the wind direction with that from the wind vanes is also given....

  15. Calibration of Ground -based Lidar instrument

    DEFF Research Database (Denmark)

    Villanueva, Héctor; Yordanova, Ginka

    This report presents the result of the lidar calibration performed for the given Ground-based Lidar at DTU’s test site for large wind turbines at Høvsøre, Denmark. Calibration is here understood as the establishment of a relation between the reference wind speed measurements with measurement...... uncertainties provided by measurement standard and corresponding lidar wind speed indications with associated measurement uncertainties. The lidar calibration concerns the 10 minute mean wind speed measurements. The comparison of the lidar measurements of the wind direction with that from wind vanes...

  16. Calibration of Ground-based Lidar instrument

    DEFF Research Database (Denmark)

    Yordanova, Ginka; Gómez Arranz, Paula

    This report presents the result of the lidar calibration performed for the given Ground-based Lidar at DTU’s test site for large wind turbines at Høvsøre, Denmark. Calibration is here understood as the establishment of a relation between the reference wind speed measurements with measurement...... uncertainties provided by measurement standard and corresponding lidar wind speed indications with associated measurement uncertainties. The lidar calibration concerns the 10 minute mean wind speed measurements. The comparison of the lidar measurements of the wind direction with that from wind vanes...

  17. Calibration of Ground -based Lidar instrument

    DEFF Research Database (Denmark)

    Villanueva, Héctor; Georgieva Yankova, Ginka

    This report presents the result of the lidar calibration performed for the given Ground-based Lidar at DTU’s test site for large wind turbines at Høvsøre, Denmark. Calibration is here understood as the establishment of a relation between the reference wind speed measurements with measurement...... uncertainties provided by measurement standard and corresponding lidar wind speed indications with associated measurement uncertainties. The lidar calibration concerns the 10 minute mean wind speed measurements. The comparison of the lidar measurements of the wind direction with that from wind vanes...

  18. Simulated JWST/NIRISS Spectroscopy of Anticipated TESS Planets and Selected Super-Earths Discovered from K2 and Ground-Based Surveys

    Science.gov (United States)

    Louie, Dana; Albert, Loic; Deming, Drake

    2017-01-01

    The 2018 launch of James Webb Space Telescope (JWST), coupled with the 2017 launch of the Transiting Exoplanet Survey Satellite (TESS), heralds a new era in Exoplanet Science, with TESS projected to detect over one thousand transiting sub-Neptune-sized planets (Ricker et al, 2014), and JWST offering unprecedented spectroscopic capabilities. Sullivan et al (2015) used Monte Carlo simulations to predict the properties of the planets that TESS is likely to detect, and published a catalog of 962 simulated TESS planets. Prior to TESS launch, the re-scoped Kepler K2 mission and ground-based surveys such as MEarth continue to seek nearby Earth-like exoplanets orbiting M-dwarf host stars. The exoplanet community will undoubtedly employ JWST for atmospheric characterization follow-up studies of promising exoplanets, but the targeted planets for these studies must be chosen wisely to maximize JWST science return. The goal of this project is to estimate the capabilities of JWST’s Near InfraRed Imager and Slitless Spectrograph (NIRISS)—operating with the GR700XD grism in Single Object Slitless Spectrography (SOSS) mode—during observations of exoplanets transiting their host stars. We compare results obtained for the simulated TESS planets, confirmed K2-discovered super-Earths, and exoplanets discovered using ground-based surveys. By determining the target planet characteristics that result in the most favorable JWST observing conditions, we can optimize the choice of target planets in future JWST follow-on atmospheric characterization studies.

  19. Accurate spectroscopic characterization of oxirane: A valuable route to its identification in Titan's atmosphere and the assignment of unidentified infrared bands

    Energy Technology Data Exchange (ETDEWEB)

    Puzzarini, Cristina [Dipartimento di Chimica " Giacomo Ciamician," Università di Bologna, Via Selmi 2, I-40126 Bologna (Italy); Biczysko, Malgorzata; Bloino, Julien; Barone, Vincenzo, E-mail: cristina.puzzarini@unibo.it [Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126 Pisa (Italy)

    2014-04-20

    In an effort to provide an accurate spectroscopic characterization of oxirane, state-of-the-art computational methods and approaches have been employed to determine highly accurate fundamental vibrational frequencies and rotational parameters. Available experimental data were used to assess the reliability of our computations, and an accuracy on average of 10 cm{sup –1} for fundamental transitions as well as overtones and combination bands has been pointed out. Moving to rotational spectroscopy, relative discrepancies of 0.1%, 2%-3%, and 3%-4% were observed for rotational, quartic, and sextic centrifugal-distortion constants, respectively. We are therefore confident that the highly accurate spectroscopic data provided herein can be useful for identification of oxirane in Titan's atmosphere and the assignment of unidentified infrared bands. Since oxirane was already observed in the interstellar medium and some astronomical objects are characterized by very high D/H ratios, we also considered the accurate determination of the spectroscopic parameters for the mono-deuterated species, oxirane-d1. For the latter, an empirical scaling procedure allowed us to improve our computed data and to provide predictions for rotational transitions with a relative accuracy of about 0.02% (i.e., an uncertainty of about 40 MHz for a transition lying at 200 GHz).

  20. PRIMitive Asteroids Spectroscopic Survey - PRIMASS: First Results

    Science.gov (United States)

    de Leon, Julia; Pinilla-Alonso, Noemi; Campins, Humberto; Lorenzi, Vania; Licandro, Javier; Morate, David; Tanga, Paolo; Cellino, Alberto; Delbo, Marco

    2015-11-01

    NASA OSIRIS-REx and JAXA Hayabusa 2 sample-return missions have targeted two near-Earth asteroids: (101955) Bennu and (162173) 1999 JU3, respectively. These are primitive asteroids that are believed to originate in the inner belt, where five distinct sources have been identified: four primitive collisional families (Polana, Erigone, Sulamitis, and Clarissa), and a population of low-albedo and low-inclination background asteroids. Identifying and characterizing the populations from which these two NEAs might originate will enchance the science return of the two missions.With this main objective in mind, we initiated in 2010 a spectroscopic survey in the visible and the near-infrared to characterize the primitive collisional families in the inner belt and the low-albedo background population. This is the PRIMitive Asteroids Spectroscopic Survey - PRIMASS. So far we have obtained more than 200 spectra using telescopes located at different observatories. PRIMASS uses a variety of ground based facilities. Most of the spectra have been obtained using the 10.4m Gran Telescopio Canarias (GTC), and the 3.6m Telescopio Nazionale Galileo (TNG), both located at the El Roque de los Muchachos Observatory (La Palma, Spain), and the 3.0m NASA Infrared Telescope Facility on Mauna Kea (Hawai, USA).We present the first results from our on-going survey (de Leon et al. 2015; Pinilla-Alonso et al. 2015; Morate et al. 2015), focused on the Polana and the Erigone primitive families, with visible and near-infrared spectra of more than 200 objects, most of them with no previous spectroscopic data. Our survey is already the largest database of primitive asteroids spectra, and we keep obtaining data on the Sulamitis and the Clarissa families, as well as on the background low-albedo population.

  1. Investigation of applicability of a mid-infrared spectroscopic method using an attenuated total reflection accessory and a new near-infrared transmission method for determination of faecal fat.

    Science.gov (United States)

    Volmer, M; Kingma, A W; Borsboom, P C; Wolthers, B G; Kema, I P

    2001-05-01

    In many laboratories, the titrimetric method of Van de Kamer is used for the analysis of faecal fat content of patients suspected of steatorrhoea. We investigated the applicability of a mid-infrared (MIR) spectroscopic method, using an attenuated total reflection (ATR) accessory, and a new near-infrared (NIR) spectroscopic method. For the NIR method, sealed plastic bags containing the stool samples were used as transmission cells. Standardization was obtained using a previously described MIR method, with a NaCl flow-cell, as reference method. Partial least-squares regression was used for the calibration of each method. Full cross-validation of the calibration set was used for the internal validation of each method. Fifteen per cent of the stool samples could not be estimated with the ATR method within reasonable accuracy limits compared with the reference. The standard error of prediction of the NIR method was 1.1 g/dL. We conclude that the new NIR method is a promising technique for routine use. However, further experiments need to be done with triplicate measurements of each sample and the use of an external validation set.

  2. In situ mid-infrared spectroscopic titration of forsterite with water in supercritical CO2: Dependence of mineral carbonation on quantitative water speciation

    Science.gov (United States)

    Loring, J. S.; Thompson, C. J.; Wang, Z.; Schaef, H. T.; Martin, P.; Qafoku, O.; Felmy, A. R.; Rosso, K. M.

    2011-12-01

    Geologic sequestration of carbon dioxide holds promise for helping mitigate CO2 emissions generated from the burning of fossil fuels. Supercritical CO2 (scCO2) plumes containing variable water concentrations (wet scCO2) will displace aqueous solution and dominate the pore space adjacent to caprocks. It is important to understand possible mineral reactions with wet scCO2 to better predict long-term caprock integrity. We introduce novel in situ instrumentation that enables quantitative titrations of reactant minerals with water in scCO2 at temperatures and pressures relevant to target geologic reservoirs. The system includes both transmission and attenuated total reflection mid-infrared optics. Transmission infrared spectroscopy is used to measure concentrations of water dissolved in the scCO2, adsorbed on mineral surfaces, and incorporated into precipitated carbonates. Single-reflection attenuated total reflection infrared spectroscopy is used to monitor water adsorption, mineral dissolution, and carbonate precipitation reactions. Results are presented for the infrared spectroscopic titration of forsterite (Mg2SiO4), a model divalent metal silicate, with water in scCO2 at 100 bar and at both 50 and 75°C. The spectral data demonstrate that the quantitative speciation of water as either dissolved or adsorbed is important for understanding the types, growth rates, and amounts of carbonate precipitates formed. Relationships between dissolved/adsorbed water, water concentrations, and the role of liquid-like adsorbed water are discussed. Our results unify previous in situ studies from our laboratory based on infrared spectroscopy, nuclear magnetic resonance spectroscopy and X-ray diffraction.

  3. Retrieval of ethane from ground-based FTIR solar spectra using improved spectroscopy: Recent burden increase above Jungfraujoch

    Science.gov (United States)

    Franco, B.; Bader, W.; Toon, G. C.; Bray, C.; Perrin, A.; Fischer, E. V.; Sudo, K.; Boone, C. D.; Bovy, B.; Lejeune, B.; Servais, C.; Mahieu, E.

    2015-07-01

    An improved spectroscopy is used to implement and optimize the retrieval strategy of ethane (C2H6) from ground-based Fourier Transform Infrared (FTIR) solar spectra recorded at the high-altitude station of Jungfraujoch (Swiss Alps, 46.5°N, 8.0°E, 3580 m a.s.l.). The improved spectroscopic parameters include C2H6 pseudo-lines in the 2720-3100 cm-1 range and updated line parameters for methyl chloride and ozone. These improved spectroscopic parameters allow for substantial reduction of the fitting residuals as well as enhanced information content. They also contribute to limiting oscillations responsible for ungeophysical negative mixing ratio profiles. This strategy has been successfully applied to the Jungfraujoch solar spectra available from 1994 onwards. The resulting time series is compared with C2H6 total columns simulated by the state-of-the-art chemical transport model GEOS-Chem. Despite very consistent seasonal cycles between both data sets, a negative systematic bias relative to the FTIR observations suggests that C2H6 emissions are underestimated in the current inventories implemented in GEOS-Chem. Finally, C2H6 trends are derived from the FTIR time series, revealing a statistically-significant sharp increase of the C2H6 burden in the remote atmosphere above Jungfraujoch since 2009. Evaluating cause of this change in the C2H6 burden, which may be related to the recent massive growth of shale gas exploitation in North America, is of primary importance for atmospheric composition and air quality in the Northern Hemisphere.

  4. Built-in hyperspectral camera for smartphone in visible, near-infrared and middle-infrared lights region (third report): spectroscopic imaging for broad-area and real-time componential analysis system against local unexpected terrorism and disasters

    Science.gov (United States)

    Hosono, Satsuki; Kawashima, Natsumi; Wollherr, Dirk; Ishimaru, Ichiro

    2016-05-01

    The distributed networks for information collection of chemical components with high-mobility objects, such as drones or smartphones, will work effectively for investigations, clarifications and predictions against unexpected local terrorisms and disasters like localized torrential downpours. We proposed and reported the proposed spectroscopic line-imager for smartphones in this conference. In this paper, we will mention the wide-area spectroscopic-image construction by estimating 6 DOF (Degrees Of Freedom: parallel movements=x,y,z and rotational movements=θx, θy, θz) from line data to observe and analyze surrounding chemical-environments. Recently, smartphone movies, what were photographed by peoples happened to be there, had worked effectively to analyze what kinds of phenomenon had happened around there. But when a gas tank suddenly blew up, we did not recognize from visible-light RGB-color cameras what kinds of chemical gas components were polluting surrounding atmospheres. Conventionally Fourier spectroscopy had been well known as chemical components analysis in laboratory usages. But volatile gases should be analyzed promptly at accident sites. And because the humidity absorption in near and middle infrared lights has very high sensitivity, we will be able to detect humidity in the sky from wide field spectroscopic image. And also recently, 6-DOF sensors are easily utilized for estimation of position and attitude for UAV (Unmanned Air Vehicle) or smartphone. But for observing long-distance views, accuracies of angle measurements were not sufficient to merge line data because of leverage theory. Thus, by searching corresponding pixels between line spectroscopic images, we are trying to estimate 6-DOF in high accuracy.

  5. Mid-infrared and near-infrared spectroscopic study of selected magnesium carbonate minerals containing ferric iron-Implications for the geosequestration of greenhouse gases.

    Science.gov (United States)

    Frost, Ray L; Reddy, B Jagannadha; Bahfenne, Silmarilly; Graham, Jessica

    2009-04-01

    The proposal to remove greenhouse gases by pumping liquefied CO(2) several kilometres below the ground implies that many carbonate containing minerals will be formed. Among these minerals brugnatellite and coalingite are probable. Two ferric ion bearing minerals brugnatellite and coalingite with a hydrotalcite-like structure have been characterised by a combination of infrared and near-infrared (NIR) spectroscopy. The infrared spectra of the OH stretching region are characterised by OH and water stretching vibrations. Both the first and second fundamental overtones of these bands are observed in the NIR spectra in the 7030-7235 cm(-1) and 10,490-10,570 cm(-1) regions. Intense (CO(3))(2-) symmetric and antisymmetric stretching vibrations support the concept that the carbonate ion is distorted. The position of the water bending vibration indicates the water is strongly hydrogen bonded in the mineral structure. Split NIR bands at around 8675 and 11,100 cm(-1) indicate that some replacement of magnesium ions by ferrous ions in the mineral structure has occurred. Near-infrared spectroscopy is ideal for the assessment of the formation of carbonate minerals.

  6. Investigating the long-term evolution of subtropical ozone profiles applying ground-based FTIR spectrometry

    OpenAIRE

    García, O.E.; Schneider, M; A. Redondas; Y. González; Hase, F.; Blumenstock, T.; Sepúlveda, E.

    2012-01-01

    This study investigates the long-term evolution of subtropical ozone profile time series (1999–2010) obtained from ground-based FTIR (Fourier Transform InfraRed) spectrometry at the Izaña Observatory ozone super-site. Different ozone retrieval strategies are examined, analysing the influence of an additional temperature retrieval and different constraints. The theoretical assessment reveals that the FTIR system is able to resolve four independent ozone layers with a precision of better than 6...

  7. Non-destructive Analysis of the Nuclei of Transgenic Living Cells Using Laser Tweezers and Near-infrared Raman Spectroscopic Technique

    Institute of Scientific and Technical Information of China (English)

    Wei Tang; Ronald J. Newton; Chang-An Xie; Yong-Qing Li; Nicki Whitley

    2005-01-01

    Transgenic cell lines of loblolly pine (Pinus taeda L.) were analyzed by a compact laser-tweezers-Raman-spectroscopy (LTRS) system in this investigation. A low power diode laser at 785 nm was used for both laser optical trapping of single transgenic cells and excitation for near-infrared Raman spectroscopy of the nuclei of synchronized cells, which were treated as single organic particles, at the S-phase of the cell cycle. Transgenic living cells with gfp and uidA genes were used as biological samples to test this LTRS technique. As expected, different Raman spectra were observed from the tested biological samples. This technique provides a high sensitivity and enables real-time spectroscopic measurements of transgenic cell lines. It could be a valuable tool for the study of the fundamental cell and molecular biological process by trapping single nucleus and by providing a wealth of molecular information about the nuclei of cells.

  8. Are matrix isolated species really “isolated”? Infrared spectroscopic and theoretical studies of noble gas-transition metal oxide complexes

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    In this review, we summarize our recent results on matrix isolation infrared spectroscopic studies and theoretical investigations of noble gas-transition metal oxide complexes. The results show that some transition metal oxide species trapped in solid noble gas matrices are chemically coordinated by one or multiple noble gas atoms forming noble gas complexes and, hence, cannot be regarded as isolated species. Noble gas coordination alters the vibrational frequencies as well as the geometric and electronic structures of transition metal oxide species trapped in solid noble gas matrixes. The interactions between noble gas atoms and transition metal oxides involve ion-induced dipole interactions as well as chemical bonding interactions. Periodic trends in the bonding in these noble gas-transition metal complexes are discussed.

  9. Fourier transform infrared spectroscopic monitoring of sol-gel process in synthesis of PbS-TiO{sub 2} hybrid nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Khanmohammadi, Mohammadreza, E-mail: mrkhanmohammadi@gmail.co [Chemistry Department, Faculty of Science, IKIU, Qazvin (Iran, Islamic Republic of); Fard, Hassan Ghafoori [Electrical Engineering Department, Amir-Kabir University of Technology, Tehran (Iran, Islamic Republic of); Garmarudi, Amir Bagheri; Khoddami, Nafiseh [Chemistry Department, Faculty of Science, IKIU, Qazvin (Iran, Islamic Republic of)

    2010-09-30

    A typical hybrid nanostructure was prepared consisting of lead sulfide (PbS) nano-crystals, embedded in titanium oxide (TiO{sub 2}) using sol-gel method. The synthesis procedure was monitored by Fourier transform infrared spectroscopy. Spectroscopic investigations indicated that PbS nano-crystals are embedded in the TiO{sub 2} matrix with no strong Ti-O-Pb-S bonding. The size of PbS hybrid nanostructures decreased with diminishing lead and sulfur mole concentrations. The smallest size of NCs has been obtained in 10% of mole concentration (30-45 nm particle size for the hybrid nanostructure). The morphology and microstructure of the nano hybrid was investigated by scanning electron microscope and X-ray diffraction.

  10. Built-in hyperspectral camera for smartphone in visible, near-infrared and middle-infrared lights region (first report): trial products of beans-size Fourier-spectroscopic line-imager and feasibility experimental results of middle-infrared spectroscopic imaging

    Science.gov (United States)

    Ishimaru, Ichiro; Kawashima, Natsumi; Hosono, Satsuki

    2016-05-01

    We had already proposed and reported the little-finger size hyperspectral-camera that was able to be applied to visible and infrared lights. The proposed method has been expected to be mounted on smartphones for healthcare sensors, and unmanned air vehicles such as drones for antiterrorism measures or environmental measurements. In this report, we will mention the trial product of the thumb size apparatus whose lens diameter was 5[mm]. The proposed Fourier spectroscopic imager is a kind of wavefront-division and common-path phase-shift interferometers. We installed the relative inclined phase-shifter onto optical Fourier transform plane of infinity corrected optical systems. The infinity corrected optical systems was configured with an objective lens and a cylindrical imaging lens. The relative inclined phase-shifter, what was made from a thin glass less than 0.3[mm] thick, had the wedge-prism and cuboid-glass region, because half surface of a thin glass was polished at an oblique angle of around 1[deg.]. The collimated half flux of objective beams derived from single-bright points on objective surface penetrate through the wedge prism and the cuboid glass respectively. These two beams are interfered each other and form the infererogram as spatial fringe patterns. In this case, the horizontal axis on 2-dimensional light receiving device is assigned to the amount of phase-shift. And also the vertical axis is assigned to the imaging coordinates on a line view field. Thus, by installing thin phase-shifter onto optical Fourier transform plane, the line spectroscopic imager, what obtains 1 dimensional spectral character distributions, were able to be realized.

  11. GIFTS EDU Ground-based Measurement Experiment

    Science.gov (United States)

    Zhou, Daniel K.; Smith, W. L., Sr.; Zollinger, L. J.; Huppi, R. J.; Reisse, R. A.; Larar, A. M.; Liu, X.; Tansock, J. J., Jr.; Jensen, S. M.; Revercomb, H. E.; Feltz, W. F.; Bingham, G. E.

    2007-01-01

    Geosynchronous Imaging Fourier Transform Spectrometer (GIFTS) Engineering Demonstration Unit (EDU) is an imaging infrared spectrometer designed for atmospheric soundings. The EDU groundbased measurement experiment was held in Logan, Utah during September 2006 to demonstrate its extensive capabilities for geosynchronous and other applications.

  12. Assessment of natural radioactivity and function of minerals in soils of Yelagiri hills, Tamilnadu, India by Gamma Ray spectroscopic and Fourier Transform Infrared (FTIR) techniques with statistical approach.

    Science.gov (United States)

    Chandrasekaran, A; Ravisankar, R; Rajalakshmi, A; Eswaran, P; Vijayagopal, P; Venkatraman, B

    2015-02-01

    Gamma Ray and Fourier Transform Infrared (FTIR) spectroscopic techniques were used to evaluate the natural radioactivity due to natural radionuclides and mineralogical characterization in soils of Yelagiri hills, Tamilnadu, India. Various radiological parameters were calculated to assess the radiation hazards associated with the soil. The distribution pattern of activity due to natural radionuclides is explained by Kriging method of mapping. Using FTIR spectroscopic technique the minerals such as quartz, microcline feldspar, orthoclase feldspar, kaolinite, montmorillonite, illite, and organic carbon were identified and characterized. The extinction coefficient values were calculated to know the relative distribution of major minerals such as quartz, microcline feldspar, orthoclase feldspar and kaolinite. The calculated values indicate that the amount of quartz is higher than orthoclase feldspar, microcline feldspar and much higher than kaolinite. Crystallinity index was calculated to know the crystalline nature of quartz. The result indicates that the presence of disordered crystalline quartz in soils. The relation between minerals and radioactivity was assessed by multivariate statistical analysis (Pearson's correlation and cluster analysis). The statistical analysis confirms that the clay mineral kaolinite and non-clay mineral quartz is the major factor than other major minerals to induce the important radioactivity variables and concentrations of uranium and thorium.

  13. Fourier transform infrared spectroscopic characterisation of heavy metal-induced metabolic changes in the plant-associated soil bacterium Azospirillum brasilense Sp7

    Science.gov (United States)

    Kamnev, A. A.; Antonyuk, L. P.; Tugarova, A. V.; Tarantilis, P. A.; Polissiou, M. G.; Gardiner, P. H. E.

    2002-06-01

    Structural and compositional features of whole cells of the plant-growth-promoting rhizobacterium Azospirillum brasilense Sp7 under standard and heavy metal-stressed conditions are analysed using Fourier transform infrared (FTIR) spectroscopy and compared with the FT-Raman spectroscopic data obtained previously [J. Mol. Struct. 563-564 (2001) 199]. The structural spectroscopic information is considered together with inductively coupled plasma-mass spectrometric (ICP-MS) analytical data on the content of the heavy metal cations (Co 2+, Cu 2+ and Zn 2+) in the bacterial cells. As a bacterial response to heavy metal stress, all the three metals, being taken up by bacterial cells from the culture medium (0.2 mM) in significant amounts (ca. 0.12, 0.48 and 4.2 mg per gram of dry biomass for Co, Cu and Zn, respectively), are shown to induce essential metabolic changes in the bacterium revealed in the spectra, including the accumulation of polyester compounds in bacterial cells and their enhanced hydration affecting certain IR vibrational modes of functional groups involved.

  14. A mid-infrared spectroscopic atlas of local active galactic nuclei on sub-arcsecond resolution using GTC/CanariCam

    CERN Document Server

    Alonso-Herrero, A; Roche, P F; Almeida, C Ramos; Gonzalez-Martin, O; Packham, C; Levenson, N A; Mason, R E; Hernan-Caballero, A; Pereira-Santaella, M; Alvarez, C; Aretxaga, I; Lopez-Rodriguez, E; Colina, L; Diaz-Santos, T; Imanishi, M; Espinosa, J M Rodriguez; Perlman, E

    2015-01-01

    We present an atlas of mid-infrared (mid-IR) ~7.5-13micron spectra of 45 local active galactic nuclei (AGN) obtained with CanariCam on the 10.4m Gran Telescopio CANARIAS (GTC) as part of an ESO/GTC large program. The sample includes Seyferts and other low luminosity AGN (LLAGN) at a median distance of 35Mpc and luminous AGN, namely PG quasars, (U)LIRGs, and radio galaxies (RG) at a median distance of 254Mpc. To date, this is the largest mid-IR spectroscopic catalog of local AGN at sub-arcsecond resolution (median 0.3arcsec). The goal of this work is to give an overview of the spectroscopic properties of the sample. The nuclear 12micron luminosities of the AGN span more than four orders of magnitude, nu*Lnu(12micron)~ 3e41-1e46erg/s. In a simple mid-IR spectral index vs. strength of the 9.7micron silicate feature diagram most LLAGN, Seyfert nuclei, PG quasars, and RGs lie in the region occupied by clumpy torus model tracks. However, the mid-IR spectra of some might include contributions from other mechanisms. ...

  15. A matrix-isolation-infrared spectroscopic study of the reactions of nitric oxide with oxygen and ozone

    Science.gov (United States)

    Bhatia, S. C.; Hall, J. H., Jr.

    1980-01-01

    An investigation of the oxidation of NO to NO2 by trapping the products of the gas-phase reactions with excess oxygen and ozone identified the transient species by their infrared spectra. The primary products of the NO + NO2 reactions were NO2, N2O3(A), N2O3(B), N2O4, and peroxy nitrate (OONO). The primary products of the NO + O3 reactions were NO2 and peroxy NO3 with the higher nitric oxides in low concentrations compared with the NO + O2 reactions. Isotopic oxygen and ozone were used to identify the infrared absorption frequency of the peroxy nitrate.

  16. Diffuse reflectance infrared fourier transform spectroscopic (DRIFTS) investigation of E.coli, Staphylococcus aureus and Candida albicans

    Digital Repository Service at National Institute of Oceanography (India)

    DeSouza, L.; PrabhaDevi; Kamat, T.; Naik, C.G.

    & Labischinski H, Microbiological characterization by FT-IR spectroscopy. Nature, 351 (1991b) 81-82. 10 Van der Mei H C, Naumann D & Busscher H J, Grouping of oral streptococcal species using Fourier transform infrared spectroscopy in comparison... with classical microbiological identification. Arch Oral BioI, 38 (1993) 1013-1019. 11 Curk M C, Peladan F & Hubert J C, Fourier-transform infrared spectroscopy for identifying Lactobacillus sp. FEMS Microbiol Lett, 123 (1994) 241-248. 12 Holt C, Hirst D...

  17. Ground-Based Observing Campaign of Briz-M Debris

    Science.gov (United States)

    Lederer, S. M.; Buckalew, B.; Frith, J.; Cowardin, H. M.; Hickson, P.; Matney, M.; Anz-Meador, P.

    2017-01-01

    In 2015, NASA's Orbital Debris Program Office (ODPO) completed the installation of the Meter Class Autonomous Telescope (MCAT) on Ascension Island. MCAT is a 1.3m optical telescope designed with a fast tracking capability for observing orbital debris at all orbital regimes (Low-Erath orbits to Geosyncronous (GEO) orbits) from a low latitude site. This new asset is dedicated year-round for debris observations, and its location fills a geographical gap in the Ground-based Electro Optical Space Surveillance (GEODSS) network. A commercial off the shelf (COTS) research grade 0.4m telescope (named the Benbrook telescope) will also be installed on Ascension at the end of 2016. This smaller version is controlled by the same master software, designed by Euclid Research, and can be tasked to work independently or in concert with MCAT. Like MCAT, it has a the same suite of filters, a similar field of view, and a fast-tracking Astelco mount, and is also capable of tracking debris at all orbital regimes. These assets are well suited for targeted campagins or surveys of debris. Since 2013, NASA's ODPO has also had extensive access to the 3.8m infrared UKIRT telescope, located on Mauna Kea. At nearly 14,000-ft, this site affords excellent conditions for collecting both photometery and spectroscopy at near-IR (0.9 - 2.5 micrometers SWIR) and thermal-IR (8 - 25 micrometers; LWIR) regimes, ideal for investigating material properties as well as thermal characteristics and sizes of debris. For the purposes of understanding orbital debris, taking data in both survey mode as well as targeting individual objects for more in-depth characterizations are desired. With the recent break-ups of Briz-M rocket bodies, we have collected a suite of data in the optical, near-infrared, and mid-infrared of in-tact objects as well as those classified as debris. A break-up at GEO of a Briz-M rocket occurred in January, 2016, well timed for the first remote observing survey-campaign with MCAT. Access to

  18. Heat stability of proteins in desiccation tolerant cattail pollen (Typha latifolia): A Fourier transform infrared spectroscopic study.

    NARCIS (Netherlands)

    Wolkers, W.F.; Hoekstra, F.A.

    1997-01-01

    Secondary structure and aggregation behavior of proteins, as determined in situ in Typha latifolia pollen, were studied by means of Fourier transform infrared microspectroscopy. The amide-I band, arising from the peptide backbone, was recorded over a temperature range from -50 to 120°C at different

  19. A multiwavelength study of Cygnus X-1: the first mid-infrared spectroscopic detection of compact jets

    CERN Document Server

    Rahoui, Farid; Heinz, Sebastian; Hynes, Dean C; Pottschmidt, Katja; Wilms, Jörn; Grinberg, Victoria

    2011-01-01

    We report on a Spitzer/IRS (mid-infrared), RXTE/PCA+HEXTE (X-ray), and Ryle (radio) simultaneous multiwavelength study of the microquasar Cygnus X-1, which aimed at an investigation of the origin of its mid-infrared emission. Compact jets were present in two out of three observations, and we show that they strongly contribute to the mid-infrared continuum. During the first observation, we detect the spectral break - where the transition from the optically thick to the optically thin regime takes place - at about 2.9e13 Hz. We then show that the jet's optically thin synchrotron emission accounts for the Cygnus X-1's emission beyond 400 keV, although it cannot alone explain its 3-200 keV continuum. A compact jet was also present during the second observation, but we do not detect the break, since it has likely shifted to higher frequencies. In contrast, the compact jet was absent during the last observation, and we show that the 5-30 micron mid-infrared continuum of Cygnus X-1 stems from the blue supergiant com...

  20. An Alternate Method for Fourier Transform Infrared (FTIR) Spectroscopic Determination of Soil Nitrate Using Derivative Analysis and Sample Treatments

    NARCIS (Netherlands)

    Choe, E.; Meer, van der F.; Rossiter, D.; Salm, van der C.; Kim, K.W.

    2010-01-01

    This study aimed at examining effective sample treatments and spectral processing for an alternate method of soil nitrate determination using the attenuated total reflectance (ATR) of Fourier transform infrared (FTIR) spectroscopy. Prior to FTIR measurements, soil samples were prepared as paste to e

  1. Determination of the Vibrational Constants of Some Diatomic Molecules: A Combined Infrared Spectroscopic and Quantum Chemical Third Year Chemistry Project.

    Science.gov (United States)

    Ford, T. A.

    1979-01-01

    In one option for this project, the rotation-vibration infrared spectra of a number of gaseous diatomic molecules were recorded, from which the fundamental vibrational wavenumber, the force constant, the rotation-vibration interaction constant, the equilibrium rotational constant, and the equilibrium internuclear distance were determined.…

  2. Exploring the early dust-obscured phase of galaxy formation with blind mid-/far-IR spectroscopic surveys

    CERN Document Server

    Bonato, M; Cai, Z -Y; De Zotti, G; Bressan, A; Lapi, A; Gruppioni, C; Spinoglio, L; Danese, L

    2013-01-01

    While continuum imaging data at far-infrared to sub-millimeter wavelengths have provided tight constraints on the population properties of dusty star forming galaxies up to high redshifts, future space missions like the Space Infra-Red Telescope for Cosmology and Astrophysics (SPICA) and ground based facilities like the Cerro Chajnantor Atacama Telescope (CCAT) will allow detailed investigations of their physical properties via their mid-/far-infrared line emission. We present updated predictions for the number counts and the redshift distributions of star forming galaxies spectroscopically detectable by these future missions. These predictions exploit a recent upgrade of evolutionary models, that include the effect of strong gravitational lensing, in the light of the most recent Herschel and South Pole Telescope data. Moreover the relations between line and continuum infrared luminosity are re-assessed, considering also differences among source populations, with the support of extensive simulations that take...

  3. Asteroseismology of Solar-type stars with Kepler III. Ground-based Data

    CERN Document Server

    Molenda-Zakowicz, Joanna; Sousa, Sergio; Frasca, Antonio; Biazzo, Katia; Huber, Daniel; Ireland, Mike; Bedding, Tim; Stello, Dennis; Uytterhoeven, Katrien; Dreizler, Stefan; De Cat, Peter; Briquet, Maryline; Catanzaro, Giovanni; Karoff, Chistoffer; Frandsen, Soeren; Spezzi, Loredana; Catala, Claude

    2010-01-01

    We report on the ground-based follow-up program of spectroscopic and photometric observations of solar-like asteroseismic targets for the Kepler space mission. These stars constitute a large group of more than thousand objects which are the subject of an intensive study of the Kepler Asteroseismic Science Consortium Working Group 1 (KASC WG-1). The main goal of this coordinated research is the determination of the fundamental stellar atmospheric parameters, which are used for the computing of their asteroseismic models, as well as for the verification of the Kepler Input Catalogue (KIC).

  4. Infrared

    Science.gov (United States)

    Vollmer, M.

    2013-11-01

    'Infrared' is a very wide field in physics and the natural sciences which has evolved enormously in recent decades. It all started in 1800 with Friedrich Wilhelm Herschel's discovery of infrared (IR) radiation within the spectrum of the Sun. Thereafter a few important milestones towards widespread use of IR were the quantitative description of the laws of blackbody radiation by Max Planck in 1900; the application of quantum mechanics to understand the rotational-vibrational spectra of molecules starting in the first half of the 20th century; and the revolution in source and detector technologies due to micro-technological breakthroughs towards the end of the 20th century. This has led to much high-quality and sophisticated equipment in terms of detectors, sources and instruments in the IR spectral range, with a multitude of different applications in science and technology. This special issue tries to focus on a few aspects of the astonishing variety of different disciplines, techniques and applications concerning the general topic of infrared radiation. Part of the content is based upon an interdisciplinary international conference on the topic held in 2012 in Bad Honnef, Germany. It is hoped that the information provided here may be useful for teaching the general topic of electromagnetic radiation in the IR spectral range in advanced university courses for postgraduate students. In the most general terms, the infrared spectral range is defined to extend from wavelengths of 780 nm (upper range of the VIS spectral range) up to wavelengths of 1 mm (lower end of the microwave range). Various definitions of near, middle and far infrared or thermal infrared, and lately terahertz frequencies, are used, which all fall in this range. These special definitions often depend on the scientific field of research. Unfortunately, many of these fields seem to have developed independently from neighbouring disciplines, although they deal with very similar topics in respect of the

  5. Evaluation of spectroscopic properties of Er3+/Yb3+/Pr3+: SrGdGa3O7 crystal for use in mid-infrared lasers

    Science.gov (United States)

    Xia, Houping; Feng, Jianghe; Wang, Yan; Li, Jianfu; Jia, Zhitai; Tu, Chaoyang

    2015-01-01

    Er3+/Yb3+/Pr3+: SrGdGa3O7 crystal was firstly grown by Czochralski method. Detailed spectroscopic analyses of Er3+/Yb3+/Pr3+: SrGdGa3O7 were carried out. Besides better absorption characteristic, the spectra of Er3+/Yb3+/Pr3+: SrGdGa3O7 show weaker up-conversion and near-infrared emissions as well as superior mid-infrared emission in comparison to Er3+: SrGdGa3O7 and Er3+/Yb3+: SrGdGa3O7 crystals. Furthermore, the self-termination effect for Er3+ 2.7 μm laser is suppressed successfully because the fluorescence lifetime of the 4I13/2 lower level of Er3+ decreases markedly while that of the upper 4I11/2 level changes slightly in Er3+/Yb3+/Pr3+: SrGdGa3O7 crystal. The sensitization effect of Yb3+ and deactivation effect of Pr3+ ions as well as the energy transfer mechanism in Er3+/Yb3+/Pr3+: SrGdGa3O7 crystal were also studied in this work. The introduction of Yb3+ and Pr3+ is favorable for achieving an enhanced 2.7 μm emission in Er3+/Yb3+/Pr3+: SrGdGa3O7 crystal which can act as a promising candidate for mid-infrared lasers. PMID:26369289

  6. Evaluation of spectroscopic properties of Er(3+)/Yb(3+)/Pr(3+): SrGdGa3O7 crystal for use in mid-infrared lasers.

    Science.gov (United States)

    Xia, Houping; Feng, Jianghe; Wang, Yan; Li, Jianfu; Jia, Zhitai; Tu, Chaoyang

    2015-09-15

    Er(3+)/Yb(3+)/Pr(3+): SrGdGa3O7 crystal was firstly grown by Czochralski method. Detailed spectroscopic analyses of Er(3+)/Yb(3+)/Pr(3+): SrGdGa3O7 were carried out. Besides better absorption characteristic, the spectra of Er(3+)/Yb(3+)/Pr(3+): SrGdGa3O7 show weaker up-conversion and near-infrared emissions as well as superior mid-infrared emission in comparison to Er(3+): SrGdGa3O7 and Er(3+)/Yb(3+): SrGdGa3O7 crystals. Furthermore, the self-termination effect for Er(3+) 2.7 μm laser is suppressed successfully because the fluorescence lifetime of the (4)I(13/2) lower level of Er(3+) decreases markedly while that of the upper (4)I(11/2) level changes slightly in Er(3+)/Yb(3+)/Pr(3+): SrGdGa3O7 crystal. The sensitization effect of Yb(3+) and deactivation effect of Pr(3+) ions as well as the energy transfer mechanism in Er(3+)/Yb(3+)/Pr(3+): SrGdGa3O7 crystal were also studied in this work. The introduction of Yb(3+) and Pr(3+) is favorable for achieving an enhanced 2.7 μm emission in Er(3+)/Yb(3+)/Pr(3+): SrGdGa3O7 crystal which can act as a promising candidate for mid-infrared lasers.

  7. Infrared Spectroscopic Investigation of the Acidic CH Bonds in Cationic n-Alkanes: Pentane, Hexane, and Heptane.

    Science.gov (United States)

    Xie, Min; Matsuda, Yoshiyuki; Fujii, Asuka

    2016-08-18

    Radical cations of n-alkanes (pentane, hexane, and heptane) in the gas phase are investigated by infrared predissociation spectroscopy with the argon or nitrogen tagging. All-trans and gauche-involving conformers are identified for these cations by comparisons of observed infrared spectra and vibrational simulations. Intense CH stretch bands are observed in the frequency region lower than the normal alkyl CH stretch frequency. These low frequencies and high intensities of the CH stretch bands are caused by the CH bond weakening and the enhanced positive charge of the hydrogen atoms through the delocalization of the σ electron in the CH bonds. These effects of the delocalization of the σ electron result in the enhanced acidity of the CH bonds. The conformation as well as alkyl chain length dependence of the acidity of the CH bonds is demonstrated by the CH stretch frequency shift trend.

  8. Effect of cholesterol on structural and dynamic properties of tripalmitoyl glyceride. A high-pressure infrared spectroscopic study.

    OpenAIRE

    Wong, P T; Chagwedera, T E; Mantsch, H H

    1989-01-01

    The infrared spectra of tripalmitoyl glyceride confirm the tuning fork configuration previously attributed to trilauroyl glyceride (Small, D. M. 1986. Handbook of Lipid Research. Vol. 4). The acyl chains in solid tripalmitoyl glycerol, either within each molecule or between neighboring molecules, are oriented parallel to each other with the sn-3 acyl chains extended toward the opposite direction of the sn-1 and sn-2 chains. The presence of cholesterol increases the orientational disorder of t...

  9. On-line preferential solvation studies of polymers by coupled chromatographic-Fourier transform infrared spectroscopic flow-cell technique.

    Science.gov (United States)

    Malanin, M; Eichhorn, K-J; Lederer, A; Treppe, P; Adam, G; Fischer, D; Voigt, D

    2009-12-18

    Qualitative and quantitative comparison between liquid chromatography (LC) and LC coupled with Fourier transform infrared spectroscopy (LC-FTIR) to evaluate preferential solvation phenomenon of polymers in a mixed solvent has been performed. These studies show that LC-FTIR technique leads to detailed structural information without the requirement for determination of additional parameters for quantitative analysis except calibration. Appropriate experimental conditions for preferential solvation study have been established by variation of polymer concentration, molar mass and eluent content.

  10. Ground-based observations of Kepler asteroseismic targets

    DEFF Research Database (Denmark)

    Uyttterhoeven , K.; Karoff, Christoffer

    2010-01-01

    We present the ground-based activities within the different working groups of the Kepler Asteroseismic Science Consortium (KASC). The activities aim at the systematic characterization of the 5000+ KASC targets, and at the collection of ground-based follow-up time-series data of selected promising...

  11. Movable Ground Based Recovery System for Reuseable Space Flight Hardware

    Science.gov (United States)

    Sarver, George L. (Inventor)

    2013-01-01

    A reusable space flight launch system is configured to eliminate complex descent and landing systems from the space flight hardware and move them to maneuverable ground based systems. Precision landing of the reusable space flight hardware is enabled using a simple, light weight aerodynamic device on board the flight hardware such as a parachute, and one or more translating ground based vehicles such as a hovercraft that include active speed, orientation and directional control. The ground based vehicle maneuvers itself into position beneath the descending flight hardware, matching its speed and direction and captures the flight hardware. The ground based vehicle will contain propulsion, command and GN&C functionality as well as space flight hardware landing cushioning and retaining hardware. The ground based vehicle propulsion system enables longitudinal and transverse maneuverability independent of its physical heading.

  12. Temperature programmed desorption and infrared spectroscopic studies of thin water films on MgO(1 0 0)

    Science.gov (United States)

    Hawkins, S.; Kumi, G.; Malyk, S.; Reisler, H.; Wittig, C.

    2005-03-01

    Thin water (D 2O) films on MgO(1 0 0) surfaces have been studied. Water was deposited at 115 K and monolayer and multilayer films were prepared by annealing above 150 K, where the transition from amorphous solid to cubic ice is known to take place, and then re-cooling. Temperature programmed desorption traces and transmission Fourier transform infrared spectra were recorded. For the monolayer, results are consistent with an essentially flat, hydrogen-bonded water network without a significant amount of dangling OD. Ice growing on the monolayer appears to be a blend of amorphous and crystalline solid at 115 K, becoming more crystalline when annealed.

  13. A FOURIER TRANSFORM INFRARED SPECTROSCOPIC STUDY OF THE REACTION BETWEEN POLY (VINYL PYRIDINE)S AND EPOXY COMPOUNDS

    Institute of Scientific and Technical Information of China (English)

    XUE Gi; JIANG Shankeng

    1987-01-01

    Chemical reactions between poly (vinyl pyridine)s and 1,4-butanediol diglycidyl ether and other epoxy compounds were studied by Fouriertransform infrared spectroscopy and other techniques. The epoxy group was found to react with the pyridine side group of poly (4-vinyl pyridine), forming crosslinked networks which contain cyclic amide structures. The reaction was also observed in the interfacial region of poly(vinyl pyridine) and γ-glycidoxy propyl trimethoxysilane hydrolyzate (γ-GPS) coatings on PET fiber substrates.Poly(2-vinyl pyridine) does not show the same reaction.

  14. Probing the reactivity of photoinitiators for free radical polymerization: time-resolved infrared spectroscopic study of benzoyl radicals.

    Science.gov (United States)

    Colley, Christopher S; Grills, David C; Besley, Nicholas A; Jockusch, Steffen; Matousek, Pavel; Parker, Anthony W; Towrie, Michael; Turro, Nicholas J; Gill, Peter M W; George, Michael W

    2002-12-18

    A series of substituted benzoyl radicals has been generated by laser flash photolysis of alpha-hydroxy ketones, alpha-amino ketones, and acyl and bis(acyl)phosphine oxides, all of which are used commercially as photoinitiators in free radical polymerizations. The benzoyl radicals have been studied by fast time-resolved infrared spectroscopy. The absolute rate constants for their reaction with n-butylacrylate, thiophenol, bromotrichloromethane and oxygen were measured in acetonitrile solution. The rate constants of benzoyl radical addition to n-butylacrylate range from 1.3 x 10(5) to 5.5 x 10(5) M(-1) s(-1) and are about 2 orders of magnitude lower than for the n-butylacrylate addition to the counterradicals that are produced by alpha-cleavage of the investigated ketones. Density functional theoretical calculations have been performed in order to rationalize the observed reactivities of the initiating radicals. Calculations of the phosphorus-centered radicals generated by photolysis of an acyl and bis(acyl)phosphine oxide suggest that P atom Mulliken spin populations are an indicator of the relative reactivities of the phosphorus-centered radicals. The alpha-cleavage of (2,4,6-trimethylbenzoyl)phosphine oxide was studied by picosecond pump-probe and nanosecond step-scan time-resolved infrared spectroscopy. The results support a mechanism in which the alpha-cleavage occurs from the triplet excited state that has a lifetime less than or equal to the singlet excited state.

  15. Time-resolved and spatially-resolved infrared spectroscopic observation of seeded nucleation controlling geopolymer gel formation.

    Science.gov (United States)

    Hajimohammadi, Ailar; Provis, John L; van Deventer, Jannie S J

    2011-05-15

    The effect of seeded nucleation on the formation and structural evolution of one-part ("just add water") geopolymer gels is investigated. Gel-forming systems are seeded with each of three different oxide nanoparticles, and seeding is shown to have an important role in controlling the silica release rate from the solid geothermal silica precursor, and in the development of physical properties of the gels. Nucleation accelerates the chemical changes taking place during geopolymer formation. The nature of the seeds affects the structure of the growing gel by affecting the extent of phase separation, identified by the presence of a distinct silica-rich gel in addition to the main, more alumina-rich gel phase. Synchrotron radiation-based infrared microscopy (SR-FTIR) shows the effect of nucleation on the heterogeneous nanostructure and microstructure of geopolymer gels, and is combined with data obtained by time-resolved FTIR analysis to provide a more holistic view of the reaction processes at a level of detail that has not previously been available. While spatially averaged (ATR-FTIR) infrared results show similar spectra for seeded and unseeded samples which have been cured for more than 3 weeks, SR-FTIR results show marked differences in gel structure as a result of seeding.

  16. Hydrogen bonding interactions in ethanol and acetonitrile binary system: A near and mid-infrared spectroscopic study

    Science.gov (United States)

    Zhou, Yu; Zheng, Yan-Zhen; Sun, Hai-Yuan; Deng, Geng; Yu, Zhi-Wu

    2014-07-01

    The hydrogen bond interactions in C2H5OHsbnd CH3CN binary system have been studied in detail by near-infrared spectroscopy (NIR), attenuated total reflection (ATR) mid-infrared spectroscopy (mid-IR), and density functional theory (DFT) calculations. The collected spectra were analyzed with excess spectroscopy and two-dimensional correlation spectroscopy (2D-COS) including moving-window 2D-COS. The main conclusions are: (1) A number of species, namely multimer, trimmer, and dimer of C2H5OH, and C2H5OH⋯CD3CN hydrogen bonding complex, have been identified in the binary system C2H5OHsbnd CH3CN experimentally. The linear relationship between the observed and calculated wavenumbers of the concerned species assisted us in doing the assignments. (2) Adding acetonitrile, the hydrogen bonds in C2H5OH are weakened and C2H5OH multimers dissociate. Meanwhile, C2H5OH dimers and C2H5OH⋯CD3CN hydrogen bonding complex form, and the former also transform to the latter. The dissociation of C2H5OH multimers slows down gradually during the dilution process and at the mole fraction 0.7 of acetonitrile, all the C2H5OH multimers have dissociated.

  17. Raman and infrared spectroscopic characterization of beryllonite, a sodium and beryllium phosphate mineral - implications for mineral collectors.

    Science.gov (United States)

    Frost, Ray L; Xi, Yunfei; Scholz, Ricardo; Belotti, Fernanda M; Alberto Dias Menezes Filho, Luiz

    2012-11-01

    The mineral beryllonite has been characterized by the combination of Raman spectroscopy and infrared spectroscopy. SEM-EDX was used for the chemical analysis of the mineral. The intense sharp Raman band at 1011 cm(-1), was assigned to the phosphate symmetric stretching mode. Raman bands at 1046, 1053, 1068 and the low intensity bands at 1147, 1160 and 1175 cm(-1) are attributed to the phosphate antisymmetric stretching vibrations. The number of bands in the antisymmetric stretching region supports the concept of symmetry reduction of the phosphate anion in the beryllonite structure. This concept is supported by the number of bands found in the out-of-plane bending region. Multiple bands are also found in the in-plane bending region with Raman bands at 399, 418, 431 and 466 cm(-1). Strong Raman bands at 304 and 354 cm(-1) are attributed to metal oxygen vibrations. Vibrational spectroscopy served to determine the molecular structure of the mineral. The pegmatitic phosphate minerals such as beryllonite are more readily studied by Raman spectroscopy than infrared spectroscopy. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. VERY STRONG EMISSION-LINE GALAXIES IN THE WFC3 INFRARED SPECTROSCOPIC PARALLEL SURVEY AND IMPLICATIONS FOR HIGH-REDSHIFT GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Atek, H.; Colbert, J.; Shim, H. [Spitzer Science Center, Caltech, Pasadena, CA 91125 (United States); Siana, B.; Bridge, C. [Department of Astronomy, Caltech, Pasadena, CA 91125 (United States); Scarlata, C. [Department of Astronomy, University of Minnesota-Twin Cities, Minneapolis, MN 55455 (United States); Malkan, M.; Ross, N. R. [Department of Physics and Astronomy, University of California, Los Angeles, CA (United States); McCarthy, P.; Dressler, A.; Hathi, N. P. [Observatories of the Carnegie Institution for Science, Pasadena, CA 91101 (United States); Teplitz, H. [Infrared Processing and Analysis Center, Caltech, Pasadena, CA 91125 (United States); Henry, A.; Martin, C. [Department of Physics, University of California, Santa Barbara, CA 93106 (United States); Bunker, A. J. [Department of Physics, University of Oxford, Denys Wilkinson Building, Keble Road, Oxford OX1 3RH (United Kingdom); Fosbury, R. A. E. [Space Telescope-European Coordinating Facility, Garching bei Muenchen (Germany)

    2011-12-20

    The WFC3 Infrared Spectroscopic Parallel Survey uses the Hubble Space Telescope (HST) infrared grism capabilities to obtain slitless spectra of thousands of galaxies over a wide redshift range including the peak of star formation history of the universe. We select a population of very strong emission-line galaxies with rest-frame equivalent widths (EWs) higher than 200 A. A total of 176 objects are found over the redshift range 0.35 < z < 2.3 in the 180 arcmin{sup 2} area that we have analyzed so far. This population consists of young and low-mass starbursts with high specific star formation rates (sSFR). After spectroscopic follow-up of one of these galaxies with Keck/Low Resolution Imaging Spectrometer, we report the detection at z = 0.7 of an extremely metal-poor galaxy with 12 + log(O/H) =7.47 {+-} 0.11. After estimating the active galactic nucleus fraction in the sample, we show that the high-EW galaxies have higher sSFR than normal star-forming galaxies at any redshift. We find that the nebular emission lines can substantially affect the total broadband flux density with a median brightening of 0.3 mag, with some examples of line contamination producing brightening of up to 1 mag. We show that the presence of strong emission lines in low-z galaxies can mimic the color-selection criteria used in the z {approx} 8 dropout surveys. In order to effectively remove low-redshift interlopers, deep optical imaging is needed, at least 1 mag deeper than the bands in which the objects are detected. Without deep optical data, most of the interlopers cannot be ruled out in the wide shallow HST imaging surveys. Finally, we empirically demonstrate that strong nebular lines can lead to an overestimation of the mass and the age of galaxies derived from fitting of their spectral energy distribution (SED). Without removing emission lines, the age and the stellar mass estimates are overestimated by a factor of 2 on average and up to a factor of 10 for the high-EW galaxies

  19. Nulling interferometry: performance comparison between space and ground-based sites for exozodiacal disc detection

    CERN Document Server

    Defrère, D; Foresto, V Coudé du; Danchi, W C; Hartog, R den

    2008-01-01

    Characterising the circumstellar dust around nearby main sequence stars is a necessary step in understanding the planetary formation process and is crucial for future life-finding space missions such as ESA's Darwin or NASA's Terrestrial Planet Finder (TPF). Besides paving the technological way to Darwin/TPF, the space-based infrared interferometers Pegase and FKSI (Fourier-Kelvin Stellar Interferometer) will be valuable scientific precursors in that respect. In this paper, we investigate the performance of Pegase and FKSI for exozodiacal disc detection and compare the results with ground-based nulling interferometers. Besides their main scientific goal (characterising hot giant extrasolar planets), Pegase and FKSI are very efficient in assessing within a few minutes the level of circumstellar dust in the habitable zone around nearby main sequence stars. They are capable of detecting exozodiacal discs respectively 5 and 1 time as dense as the solar zodiacal cloud and they outperform any ground-based instrumen...

  20. Computational Chemistry Meets Experiments for Explaining the Behavior of Bibenzyl: A Thermochemical and Spectroscopic (Infrared, Raman, and NMR) Investigation.

    Science.gov (United States)

    Latouche, Camille; Barone, Vincenzo

    2014-12-09

    The structure, conformational behavior, and spectroscopic parameters of bibenzyl have been investigated by a computational protocol including proper treatment of anharmonic and hindered rotor contributions. Conventional hybrid functionals overstabilize the anti conformer while low-order post-Hartree-Fock (MP2) approaches strongly favor the gauche conformer. However, inclusion of semiempirical dispersion effects in density functionals or coupled cluster post-Hartree-Fock models agree in forecasting the simultaneous presence of both conformers in the gas phase with a slightly larger stability (0.7 kcal·mol(-1)) of the gauche conformer. Addition of thermal and entropic effects finally leads to very close Gibbs free energies for both conformers and, thus, to a slight preference for the gauche form due to statistical factors (2 vs 1). The situation remains essentially the same in solution. On these grounds, perturbative vibrational computations including both electrical and mechanical anharmonicities lead to IR and Raman spectra in remarkable agreement with experiment. Full assignment of the IR spectra explains the presence of peaks from gauche or anti conformers. Comparison between computed and experimental Raman spectra confirms that both conformers are present in liquid phase, whereas the anti conformer seems to be preponderant in the solid state. Also computed NMR parameters are in good agreement with experiment.

  1. Infrared spectroscopic studies of the heterogeneous reaction of ozone with dry maleic and fumaric acid aerosol particles.

    Science.gov (United States)

    Nájera, Juan J; Percival, Carl J; Horn, Andrew B

    2009-10-28

    Dicarboxylic acids, either directly emitted or formed in chemical processes, are found to be a significant component of tropospheric aerosols. To assess any potential chemical transformation of short unsaturated dicarboxylic acids in tropospheric heterogeneous chemistry, maleic and fumaric acid were selected as surrogates in this study. A novel aerosol flow tube apparatus is employed to perform kinetic studies of the oxidation of these organic compounds by gas-phase ozone. The system consists of a particle generation system, a vertically oriented glass flow tube and an infrared observation White cell with a Fourier transform infrared (FTIR) spectrometer for the detection system. A flow of single component organic aerosols with mean diameters ranging between 0.7 and 1.1 microm is introduced in a flow tube, in which the particles are subsequently exposed to a known concentration of ozone for a controlled period of time. A band assignment of infrared vibrational frequencies for dry maleic and fumaric acid aerosol spectra is presented. These studies are complemented with off-line analysis on the reaction products. The reaction exhibited pseudo-first-order kinetics on gas product formation, and the pseudo-first-order rate coefficients displayed a Langmuir-Hinshelwood dependence on gas-phase ozone concentration for both materials. By assuming a Langmuir-Hinshelwood behaviour, the following parameters were obtained: for the reaction of maleic acid aerosols, K(O3) = (3.3 + 0.5) x 10(-16) cm3 molecule(-1) and k(I)(max) = (0.038 + 0.004) s(-1); for the reaction of fumaric acid aerosols, K(O3) = (1.6 + 0.5) x 10(-16) cm3 molecule(-1) and k(I)(max) = (0.048 + 0.007) s(-1), where K(O3) is a parameter that describes the partitioning of ozone to the particle surface and k is the maximum pseudo-first-order coefficient at high ozone concentrations. Apparent reactive uptake coefficients were estimated from the pseudo-first-order rate coefficient and a trend of decreasing uptake

  2. Infrared Spectroscopic Study on Structural Change and Interfacial Interaction in Rubber Composites Filled with Silica-Kaolin Hybrid Fillers

    Science.gov (United States)

    Chen, Y.; Guan, J.; Hu, H.; Gao, H.; Zhang, L.

    2016-07-01

    A series of natural rubber/styrene butadiene rubber/polybutadiene rubber composites was prepared with nanometer silica and micron kaolin by a dry modification process, mechanical compounding, and mold vulcanization. Fourier transform infrared spectroscopy and a scanning electron microscope were used to investigate the structural changes and interfacial interactions in composites. The results showed that the "seesaw" structure was formed particularly with the incorporation of silica particles in the preparation process, which would be beneficial to the dispersibility of fillers in the rubber matrix. The kaolinite platelets were generally arranged in directional alignment. Kaolinite with smaller particle size and low-defect structure was more stable in preparation, but kaolinite with larger particle size and high defect structure tended to change the crystal structure. The composite prepared in this research exhibited excellent mechanical and thermal properties.

  3. Near infrared Raman spectroscopic study of reactive gliosis and the glial scar in injured rat spinal cords

    Science.gov (United States)

    Saxena, Tarun; Deng, Bin; Lewis-Clark, Eric; Hoellger, Kyle; Stelzner, Dennis; Hasenwinkel, Julie; Chaiken, Joseph

    2010-02-01

    Comparative Raman spectra of ex vivo, saline-perfused, injured and healthy rat spinal cord as well as experiments using enzymatic digestion suggest that proteoglycan over expression may be observable in injured tissue. Comparison with authentic materials in vitro suggest the occurrence of side reactions between products of cord digestion with chondroitinase (cABC) that produce lactones and similar species with distinct Raman features that are often not overlapped with Raman features from other chemical species. Since the glial scar is thought to be a biochemical and physical barrier to nerve regeneration, this observation suggests the possibility of using near infrared Raman spectroscopy to study disease progression and explore potential treatments ex vivo and if potential treatments can be designed, perhaps to monitor potential remedial treatments within the spinal cord in vivo.

  4. Effect of cholesterol on structural and dynamic properties of tripalmitoyl glyceride. A high-pressure infrared spectroscopic study.

    Science.gov (United States)

    Wong, P T; Chagwedera, T E; Mantsch, H H

    1989-11-01

    The infrared spectra of tripalmitoyl glyceride confirm the tuning fork configuration previously attributed to trilauroyl glyceride (Small, D. M. 1986. Handbook of Lipid Research. Vol. 4). The acyl chains in solid tripalmitoyl glycerol, either within each molecule or between neighboring molecules, are oriented parallel to each other with the sn-3 acyl chains extended toward the opposite direction of the sn-1 and sn-2 chains. The presence of cholesterol increases the orientational disorder of the tripalmitoyl glyceride molecules in terms of increased reorientational fluctuations and twisting/torsion motions of the acyl chains. In the solid mixture, cholesterol is embedded in the tripalmitoyl glyceride lattice which results in a reorientation of the acyl chains within each molecule from a parallel packing to a nonparallel packing. No evidence was found for hydrogen bond formation between the OH group of cholesterol and any of the three C = O groups of tripalmitoyl glyceride.

  5. Circular dichroism and infrared spectroscopic characterization of secondary structure components of protein Z during mashing and boiling processes.

    Science.gov (United States)

    Han, Yupeng; Wang, Jinjing; Li, Yongxian; Hang, Yu; Yin, Xiangsheng; Li, Qi

    2015-12-01

    In beer brewing, protein Z is hypothesized to stabilize beer foam. However, few investigations have revealed the relationship between conformational alterations to protein Z during the brewing process and beer foam. In this report, protein Z from sweet wort was isolated during mashing and boiling processes. Circular dichroism (CD) and Fourier transform infrared spectroscopy (FTIR) were used to monitor the structural characteristics of protein Z. The results showed that the α-helix and β-sheet content decreased, whereas the content of β-turn and random coil increased. The complex environment rich in polysaccharides may facilitate conformational alterations and modifications to protein Z. Additionally, the formation of extended structural features to protein Z provides access to reactive amino acid side chains that can undergo modifications and the exposure of hydrophobic core regions of the protein. Analyzing structural transformations should provide a deeper understanding of the mechanism of protein Z on maintaining beer foam. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Measuring changes in chemistry, composition, and molecular structure within hair fibers by infrared and Raman spectroscopic imaging

    Science.gov (United States)

    Zhang, Guojin; Senak, Laurence; Moore, David J.

    2011-05-01

    Spatially resolved infrared (IR) and Raman images are acquired from human hair cross sections or intact hair fibers. The full informational content of these spectra are spatially correlated to hair chemistry, anatomy, and structural organization through univariate and multivariate data analysis. Specific IR and Raman images from untreated human hair describing the spatial dependence of lipid and protein distribution, protein secondary structure, lipid chain conformational order, and distribution of disulfide cross-links in hair protein are presented in this study. Factor analysis of the image plane acquired with IR microscopy in hair sections, permits delineation of specific micro-regions within the hair. These data indicate that both IR and Raman imaging of molecular structural changes in a specific region of hair will prove to be valuable tools in the understanding of hair structure, physiology, and the effect of various stresses upon its integrity.

  7. Infrared spectroscopic investigation of CO adsorption on SBA-15- and KIT-6-supported nickel phosphide hydrotreating catalysts.

    Science.gov (United States)

    Korányi, Tamás I; Pfeifer, Eva; Mihály, Judith; Föttinger, Karin

    2008-06-12

    The infrared (IR) spectra of CO adsorbed on 10, 20, and 30 wt % nickel phosphide-containing reduced SBA-15 and KIT-6 mesoporous silica-supported catalysts have been studied at 300-473 K. On the catalysts containing a stoichiometric amount of phosphorus with 20 wt % loading, the most intense IR absorption band was observed at 2097-2099 cm(-1), which was assigned to CO terminally bonded to coordinatively unsaturated Ni(delta+) (0 hydrotreating catalytic activity. The modified Ni-P charge distribution, the mode of CO adsorption on surface nickel phosphide sites, as well as the acidity can be directly connected to the catalytic activity of these mesoporous silica-supported catalysts.

  8. Matrix isolation infrared spectroscopic and theoretical study of the copper (I) and silver (I) nitrous oxide complexes

    Science.gov (United States)

    Wang, Guanjun; Jin, Xi; Chen, Mohua; Zhou, Mingfei

    2006-03-01

    Copper and silver chloride-nitrous oxide complexes: ClCuNNO and ClAgNNO have been produced and trapped in solid argon by co-deposition of laser-evaporated metal chlorides with nitrous oxide in excess argon. On the basis of isotopic substituted experiments as well as theoretical calculations, infrared absorptions at 2305.8 and 1318.4 cm -1, and 2291.2 and 1325.4 cm -1 are assigned to the N-N and N-O stretching modes of the linear ClCuNNO and ClAgNNO complexes, respectively. The binding energies for the complexes with respect to MCl (M = Cu, Ag) and N 2O were computationally estimated to be 27.9 and 13.1 kcal/mol.

  9. Ultrafast infrared spectroscopic study of the photo-induced phase transition in (EDO-TTF)2PF6

    Science.gov (United States)

    Onda, Ken; Ishikawa, Tadahiko; Chollet, Matthieu; Shao, Xiangfeng; Yamochi, Hideki; Saito, Gunzi; Koshihara, Shin-ya

    2005-01-01

    We have measured ultrafast reflectivity changes of (EDO-TTF)2PF6 in the infrared region (0.51 eV - 1.03 eV) after excitation with a 1.58 eV photon in order to reveal the mechanism of ultrafast photo-induced insulator-to-metal phase transition. We found that the temporal profiles of reflectivity change have two components: a faster component within 3 ps associated with a 1-ps or 0.5-ps period oscillation and a slower component lasting over hundreds of a picosecond. In addition, we found that the sign of a reflectivity change is often different from that expected from the thermally induced phase transition. These results indicate that the PIPT takes place via a complicated process due to strong electron and phonon coupling.

  10. Measuring changes in chemistry, composition, and molecular structure within hair fibers by infrared and Raman spectroscopic imaging.

    Science.gov (United States)

    Zhang, Guojin; Senak, Laurence; Moore, David J

    2011-05-01

    Spatially resolved infrared (IR) and Raman images are acquired from human hair cross sections or intact hair fibers. The full informational content of these spectra are spatially correlated to hair chemistry, anatomy, and structural organization through univariate and multivariate data analysis. Specific IR and Raman images from untreated human hair describing the spatial dependence of lipid and protein distribution, protein secondary structure, lipid chain conformational order, and distribution of disulfide cross-links in hair protein are presented in this study. Factor analysis of the image plane acquired with IR microscopy in hair sections, permits delineation of specific micro-regions within the hair. These data indicate that both IR and Raman imaging of molecular structural changes in a specific region of hair will prove to be valuable tools in the understanding of hair structure, physiology, and the effect of various stresses upon its integrity.

  11. a Combined Gigahertz and Terahertz Synchrotron-Based Fourier Transform Infrared Spectroscopic Investigation of Ortho-D

    Science.gov (United States)

    Albert, Sieghard; Chen, Ziqiu; Fábri, Csaba; Prentner, Robert; Quack, Martin; Zindel, Daniel

    2017-06-01

    Tunneling switching is a fundamental phenomenon of interest in molecular quantum dynamics including also chiral molecules and parity violation. Deuterated phenols have been identified as prototypical achrial candidates. We report the high resolution spectroscopic investigation of the ortho-D-phenol in the GHz and THz ranges following our recent discovery of tunneling switching in its isotopomer meta-D-phenol. Here we report new results on ortho-D-phenol.The pure rotational spectra were recorded in the range of 72-117 GHz and assigned to the syn- and anti- structures in the ground and the first excited torsional states. Specific torsional states were assigned based on a comparison of experimental rotational constants with the quasiadiabatic channel reaction path Hamiltonian (RPH) calculations. The torsional fundamental at 308 cm^{-1} and the first hot band at 275 cm^{-1} were subsequently assigned. The analyses of pure rotational and rovibrational spectra shall be discussed in detail in relation to possible tunneling switching. M. Quack , Fundamental Symmetries and Symmetry Violations from High-resolution Spectroscopy, Handbook of High Resolution Spectroscopy, M. Quack and F. Merkt eds.,John Wiley & Sons Ltd, Chichester, New York, 2001, vol. 1, ch. 18, pp. 659-722. R. Prentner, M. Quack, J. Stohner and M. Willeke, J. Phys. Chem. A 119, 12805-12822 (2015). S. Albert, Z. Chen, C. Fábri, R. Prentner M. Quack and D. Zindel, paper at this meeting. S. Albert, Ph. Lerch, R. Prentner and M. Quack, Angew. Chem. Int. Ed. 52, 346-349 (2013). S. Albert, Z. Chen, C. Fábri,P. Lerch, R. Prentner and M. Quack, Mol.Phys. 114, 2751-2768 (2016) and 71st International Symposium on Molecular Spectroscopy, Urbana-Champaign, USA, June 20-24, Talk FE04 (2016).

  12. Responses of Azospirillum brasilense to nitrogen deficiency and to wheat lectin: a diffuse reflectance infrared fourier transform (DRIFT) spectroscopic study.

    Science.gov (United States)

    Kamnev, Alexander A; Sadovnikova, Julia N; Tarantilis, Petros A; Polissiou, Moschos G; Antonyuk, Lyudmila P

    2008-11-01

    For the rhizobacterium Azospirillum brasilense, the optimal nutritional range of C:N ratios corresponds to the presence of malate (ca. 3 to 5 g l(-1) of its sodium salt) and ammonium (ca. 0.5 to 3 g l(-1) of NH4Cl) as preferred carbon and nitrogen sources, respectively. This microaerophilic aerotactic bacterium is known to have a narrow optimal oxygen concentration range of ca. 3 to 5 microM, which is 1.2% to 2% of oxygen solubility in air-saturated water under normal conditions. In this work, the effects of stress conditions (bound-nitrogen deficiency related to a high C:N ratio in the medium; excess of oxygen) on aerobically grown A. brasilense Sp245, a native wheat-associated endophyte, were investigated in the absence and presence of wheat germ agglutinin (WGA, plant stress protein and a molecular host-plant signal for the bacterium) using FTIR spectroscopy of whole cells in the diffuse reflectance mode (DRIFT). The nutritional stress resulted in the appearance of prominent spectroscopic signs of poly-3-hydroxybutyrate (PHB) accumulation in the bacterial cells; in addition, splitting of the amide I band related to bacterial cellular proteins indicated some stress-induced alterations in their secondary structure components. Similar structural changes were observed in the presence of nanomolar WGA both in stressed A. brasilense cells and under normal nutritional conditions. Comparative analysis of the data obtained and the relevant literature data indicated that the stress conditions applied (which resulted in the accumulation of PHB involved in stress tolerance) and/or the presence of nanomolar concentrations of WGA induced synthesis of bacterial cell-surface (glyco)proteins rich in beta-structures, that could be represented by hemagglutinin and/or porin.

  13. MAD-4-MITO, a Multi Array of Detectors for ground-based mm/submm SZ observations

    CERN Document Server

    Lamagna, L; Melchiorri, F; Battistelli, E S; De Grazia, M; Luzzi, G; Orlando, A E; Savini, G

    2002-01-01

    The last few years have seen a large development of mm technology and ultra-sensitive detectors devoted to microwave astronomy and astrophysics. The possibility to deal with large numbers of these detectors assembled into multi--pixel imaging systems has greatly improved the performance of microwave observations, even from ground--based stations, especially combining the power of multi--band detectors with their new imaging capabilities. Hereafter, we will present the development of a multi--pixel solution devoted to Sunyaev--Zel'dovich observations from ground--based telescopes, that is going to be operated from the Millimetre and Infrared Testagrigia Observatory.

  14. A Tale of Three Galaxies: Deciphering the Infrared Emission of the Spectroscopically Anomalous Galaxies IRAS F10398+1455, IRAS F21013-0739 and SDSS J0808+3948

    CERN Document Server

    Xie, Yanxia; Hao, Lei; Nikutta, Robert

    2015-01-01

    The \\textit{Spitzer}/Infrared Spectrograph spectra of three spectroscopically anomalous galaxies (IRAS~F10398+1455, IRAS~F21013-0739 and SDSS~J0808+3948) are modeled in terms of a mixture of warm and cold silicate dust, and warm and cold carbon dust. Their unique infrared (IR) emission spectra are characterized by a steep $\\simali$5--8$\\mum$ emission continuum, strong emission bands from polycyclic aromatic hydrocarbon (PAH) molecules, and prominent silicate emission. The steep $\\simali$5--8$\\mum$ emission continuum and strong PAH emission features suggest the dominance of starbursts, while the silicate emission is indicative of significant heating from active galactic nuclei (AGNs). With warm and cold silicate dust of various compositions ("astronomical silicate," amorphous olivine, or amorphous pyroxene) combined with warm and cold carbon dust (amorphous carbon, or graphite), we are able to closely reproduce the observed IR emission of these %spectroscopically anomalous galaxies. We find that the dust tempe...

  15. Free-charge carrier parameters of n-type, p-type and compensated InN:Mg determined by Infrared Spectroscopic Ellipsometry

    CERN Document Server

    Schöche, S; Darakchieva, V; Wang, X; Yoshikawa, A; Wang, K; Araki, T; Nanishi, Y; Schubert, M

    2013-01-01

    Infrared spectroscopic ellipsometry is applied to investigate the free-charge carrier properties of Mg-doped InN films. Two representative sets of In-polar InN grown by molecular beam epitaxy with Mg concentrations ranging from $1.2\\times10^{17}$ cm$^{-3}$ to $8\\times10^{20}$ cm$^{-3}$ are compared. P-type conductivity is indicated for the Mg concentration range of $1\\times10^{18}$ cm$^{-3}$ to $9\\times10^{19}$ cm$^{-3}$ from a systematic investigation of the longitudinal optical phonon plasmon broadening and the mobility parameter in dependence of the Mg concentration. A parameterized model that accounts for the phonon-plasmon coupling is applied to determine the free-charge carrier concentration and mobility parameters in the doped bulk InN layer as well as the GaN template and undoped InN buffer layer for each sample. The free-charge carrier properties in the second sample set are consistent with the results determined in a comprehensive analysis of the first sample set reported earlier [Sch\\"oche et al., ...

  16. Process analytical technology: chemometric analysis of Raman and near infra-red spectroscopic data for predicting physical properties of extended release matrix tablets.

    Science.gov (United States)

    Shah, Rakhi B; Tawakkul, Mobin A; Khan, Mansoor A

    2007-05-01

    The purpose of this work was to develop a correlation between pharmaceutical properties such as hardness, porosity, and content with prediction models employed using Raman and near infra-red (NIR) spectroscopic methods. Metoprolol tartrate tablets were prepared by direct compression and wet granulation methods. NIR spectroscopy and chemical imaging, and Raman spectra were collected, and hardness, porosity, and dissolution were measured. The NIR PLS model showed a validated correlation coefficient of >0.90 for the predicted versus measured porosity, hardness, and amount of drug with raw and second derivative NIR spectra. Raman spectra correlated porosity of the tablets using raw data for directly compressed tablets and wet granulated tablets (r(2) > 0.90). A very close root-mean square error of calibration (RMSEC) and root-mean square error of prediction (RMSEP) values were found in all the cases indicating validity of the calibration models. Raman spectroscopy was used for the first time to predict physical quality attribute such as porosity successfully. Chemical imaging utilizing NIR detector also demonstrated to show physical changes due to compression differences. In conclusion, sensor technologies can be potentially used to predict physical parameters of the matrix tablets.

  17. Micro- and macro-attenuated total reflection Fourier transform infrared spectroscopic imaging. Plenary Lecture at the 5th International Conference on Advanced Vibrational Spectroscopy, 2009, Melbourne, Australia.

    Science.gov (United States)

    Kazarian, Sergei G; Chan, K L Andrew

    2010-05-01

    Fourier transform infrared (FT-IR) spectroscopic imaging has become a very powerful method in chemical analysis. In this review paper we describe a variety of opportunities for obtaining FT-IR images using the attenuated total reflection (ATR) approach and provide an overview of fundamental aspects, accessories, and applications in both micro- and macro-ATR imaging modes. The advantages and versatility of both ATR imaging modes are discussed and the spatial resolution of micro-ATR imaging is demonstrated. Micro-ATR imaging has opened up many new areas of study that were previously precluded by inadequate spatial resolution (polymer blends, pharmaceutical tablets, cross-sections of blood vessels or hair, surface of skin, single live cells, cancerous tissues). Recent applications of ATR imaging in polymer research, biomedical and forensic sciences, objects of cultural heritage, and other complex materials are outlined. The latest advances include obtaining spatially resolved chemical images from different depths within a sample, and surface-enhanced images for macro-ATR imaging have also been presented. Macro-ATR imaging is a valuable approach for high-throughput analysis of materials under controlled environments. Opportunities exist for chemical imaging of dynamic aqueous systems, such as dissolution, diffusion, microfluidics, or imaging of dynamic processes in live cells.

  18. INFRARED SPECTROSCOPIC SURVEY OF THE QUIESCENT MEDIUM OF NEARBY CLOUDS. I. ICE FORMATION AND GRAIN GROWTH IN LUPUS

    Energy Technology Data Exchange (ETDEWEB)

    Boogert, A. C. A. [IPAC, NASA Herschel Science Center, Mail Code 100-22, California Institute of Technology, Pasadena, CA 91125 (United States); Chiar, J. E. [SETI Institute, Carl Sagan Center, 189 Bernardo Avenue, Mountain View, CA 94043 (United States); Knez, C.; Mundy, L. G. [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States); Öberg, K. I. [Departments of Chemistry and Astronomy, University of Virginia, Charlottesville, VA 22904 (United States); Pendleton, Y. J. [Solar System Exploration Research Virtual Institute, NASA Ames Research Center, Moffett Field, CA 94035 (United States); Tielens, A. G. G. M.; Van Dishoeck, E. F., E-mail: aboogert@ipac.caltech.edu [Leiden Observatory, Leiden University, P.O. Box 9513, 2300 RA Leiden (Netherlands)

    2013-11-01

    Infrared photometry and spectroscopy (1-25 μm) of background stars reddened by the Lupus molecular cloud complex are used to determine the properties of grains and the composition of ices before they are incorporated into circumstellar envelopes and disks. H{sub 2}O ices form at extinctions of A{sub K} = 0.25 ± 0.07 mag (A{sub V} = 2.1 ± 0.6). Such a low ice formation threshold is consistent with the absence of nearby hot stars. Overall, the Lupus clouds are in an early chemical phase. The abundance of H{sub 2}O ice (2.3 ± 0.1 × 10{sup –5} relative to N{sub H}) is typical for quiescent regions, but lower by a factor of three to four compared to dense envelopes of young stellar objects. The low solid CH{sub 3}OH abundance (<3%-8% relative to H{sub 2}O) indicates a low gas phase H/CO ratio, which is consistent with the observed incomplete CO freeze out. Furthermore it is found that the grains in Lupus experienced growth by coagulation. The mid-infrared (>5 μm) continuum extinction relative to A{sub K} increases as a function of A{sub K}. Most Lupus lines of sight are well fitted with empirically derived extinction curves corresponding to R{sub V} ∼ 3.5 (A{sub K} = 0.71) and R{sub V} ∼ 5.0 (A{sub K} = 1.47). For lines of sight with A{sub K} > 1.0 mag, the τ{sub 9.7}/A{sub K} ratio is a factor of two lower compared to the diffuse medium. Below 1.0 mag, values scatter between the dense and diffuse medium ratios. The absence of a gradual transition between diffuse and dense medium-type dust indicates that local conditions matter in the process that sets the τ{sub 9.7}/A{sub K} ratio. This process is likely related to grain growth by coagulation, as traced by the A{sub 7.4}/A{sub K} continuum extinction ratio, but not to ice mantle formation. Conversely, grains acquire ice mantles before the process of coagulation starts.

  19. A surface-enhanced infrared absorption spectroscopic study of pH dependent water adsorption on Au

    Science.gov (United States)

    Dunwell, Marco; Yan, Yushan; Xu, Bingjun

    2016-08-01

    The potential dependent behavior of near-surface water on Au film electrodes in acidic and alkaline solutions is studied using a combination of attenuated total reflectance surface enhanced infrared spectroscopy and chronoamperometry. In acid, sharp νOH peaks appear at 3583 cm- 1 at high potentials attributed to non-H-bonded water coadsorbed in the hydration sphere of perchlorate near the electrode surface. Adsorbed hydronium bending mode at near 1680 cm- 1 is observed at low potentials in low pH solutions (1.4, 4.0, 6.8). At high pH (10.0, 12.3), a potential-dependent OH stretching band assigned to adsorbed hydroxide emerges from 3400-3506 cm- 1. The observation of adsorbed hydroxide, even on a weakly oxophilic metal such as Au, provides the framework for further studies of hydroxide adsorption on other electrodes to determine the role of adsorbed hydroxide on important reactions such as the hydrogen oxidation reaction.

  20. Infrared Spectroscopic Survey of the Quiescent Medium of Nearby Clouds: I. Ice Formation and Grain Growth in Lupus

    CERN Document Server

    Boogert, A C A; Knez, C; Öberg, K I; Mundy, L G; Pendleton, Y J; Tielens, A G G M; van Dishoeck, E F

    2013-01-01

    Infrared photometry and spectroscopy (1-25 um) of background stars reddened by the Lupus molecular cloud complex are used to determine the properties of the grains and the composition of the ices before they are incorporated into circumstellar envelopes and disks. H2O ices form at extinctions of Ak=0.25+/-0.07 mag (Av=2.1+/-0.6). Such a low ice formation threshold is consistent with the absence of nearby hot stars. Overall, the Lupus clouds are in an early chemical phase. The abundance of H2O ice (2.3+/-0.1*10^-5 relative to Nh) is typical for quiescent regions, but lower by a factor of 3-4 compared to dense envelopes of YSOs. The low solid CH3OH abundance (5 um) continuum extinction relative to Ak increases as a function of Ak. Most Lupus lines of sight are well fitted with empirically derived extinction curves corresponding to Rv~ 3.5 (Ak=0.71) and Rv~5.0 (Ak=1.47). For lines of sight with Ak>1.0 mag, the tau9.7/Ak ratio is a factor of 2 lower compared to the diffuse medium. Below 1.0 mag, values scatter be...

  1. A spectroscopic study of M rate at C{sub 82} metallofullerenes: Raman, far-infrared, and neutron scattering results

    Energy Technology Data Exchange (ETDEWEB)

    Lebedkin, S.; Renker, B.; Rietschel, H. [Forschungszentrum Karlsruhe (Germany). INFP; Heid, R. [Max-Planck-Institut fuer Physik komplexer Systeme, D-01187 Dresden (Germany); Schober, H. [Institut Laue-Langevin, F-38042 Grenoble (France)

    1998-03-01

    Polycrystalline samples of M rate at C{sub 82} metallofullerenes have been studied at room temperature by Raman (for M=La, Y, Ce, Gd), far-infrared (FIR) (for M=La, Y, Ce), and inelastic neutron scattering (INS) (for M=La, Y) spectroscopy. Raman and FIR spectra suggest that these metallofullerenes have a common dominant, if not a single, structure of the C{sub 82} cage and a similar bonding of the encapsulated metal ion, i.e. the bonding is primarily electrostatic and the metal atoms are in the same oxidation state (+3). The metal ion vibrations are located around 160 and 50 cm{sup -1}. INS reveals no gap between internal vibrational and external vibrational and rotational modes in the range {proportional_to}50-200 cm{sup -1} as is typically observed for other fullerides and also predicted by our model calculations. Presumably this is due to strong intermolecular interactions between M rate at C{sub 82} units in the bulk sample. The studied metallofullerenes are air sensitive, and degradation in air could be followed by changes in the Raman spectra. (orig.) With 6 figs., 2 tabs., 47 refs.

  2. Fat and Moisture Content in Chinese Fried Bread Sticks: Assessment and Rapid Near-Infrared Spectroscopic Method Development

    Directory of Open Access Journals (Sweden)

    Zhuqing Xiao

    2013-01-01

    Full Text Available Fried bread sticks (FBS are one of the most widely consumed deep fried food products in China. Understanding the fat and moisture content in FBS will help consumers make healthy food choices as well as assist food processors to provide FBS with desirable quality. Rapid Fourier transform near-infrared methods (FT-NIR were developed for determining fat and moisture content in FBS collected from 123 different vendors in Shanghai, China. FBS samples with minimum sample preparation (either finely or coarsely ground were used for NIR analyses. Spectra of FBS were treated with different mathematic pretreatments before being used to build models between the spectral information and fat (7.71%–30.89% or moisture (17.39%–32.65% content in FBS. Finely ground samples may lead to slightly more robust PLS models, but the particle sizes of ground FBS samples did not seriously affect the predictability of the models with appropriate mathematical treatments. The fat and moisture content in FBS predicted by FT-NIR methods had very good correlation with their values determined via traditional methods (fat, R2=0.965; moisture, R2=0.983, which clearly indicated that FT-NIR methods could be used as an effective tool for rapid determination of fat and moisture content in FBS.

  3. In Situ Infrared Spectroscopic Study of Brucite Carbonation in Dry to Water-Saturated Supercritical Carbon Dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Loring, John S.; Thompson, Christopher J.; Zhang, Changyong; Wang, Zheming; Schaef, Herbert T.; Rosso, Kevin M.

    2012-04-25

    In geologic carbon sequestration, while part of the injected carbon dioxide will dissolve into host brine, some will remain as neat to water saturated super critical CO2 (scCO2) near the well bore and at the caprock, especially in the short-term life cycle of the sequestration site. Little is known about the reactivity of minerals with scCO2 containing variable concentrations of water. In this study, we used high-pressure infrared spectroscopy to examine the carbonation of brucite (Mg(OH)2) in situ over a 24 hr reaction period with scCO2 containing water concentrations between 0% and 100% saturation, at temperatures of 35, 50, and 70 °C, and at a pressure of 100 bar. Little or no detectable carbonation was observed when brucite was reacted with neat scCO2. Higher water concentrations and higher temperatures led to greater brucite carbonation rates and larger extents of conversion to magnesium carbonate products. The only observed carbonation product at 35 °C was nesquehonite (MgCO3 • 3H2O). Mixtures of nesquehonite and magnesite (MgCO3) were detected at 50 °C, but magnesite was more prevalent with increasing water concentration. Both an amorphous hydrated magnesium carbonate solid and magnesite were detected at 70 °C, but magnesite predominated with increasing water concentration. The identity of the magnesium carbonate products appears strongly linked to magnesium water exchange kinetics through temperature and water availability effects.

  4. In situ infrared spectroscopic study of brucite carbonation in dry to water-saturated supercritical carbon dioxide.

    Science.gov (United States)

    Loring, John S; Thompson, Christopher J; Zhang, Changyong; Wang, Zheming; Schaef, Herbert T; Rosso, Kevin M

    2012-05-17

    In geologic carbon sequestration, whereas part of the injected carbon dioxide will dissolve into host brine, some will remain as neat to water saturated supercritical CO(2) (scCO(2)) near the well bore and at the caprock, especially in the short term life cycle of the sequestration site. Little is known about the reactivity of minerals with scCO(2) containing variable concentrations of water. In this study, we used high-pressure infrared spectroscopy to examine the carbonation of brucite (Mg(OH)(2)) in situ over a 24 h reaction period with scCO(2) containing water concentrations between 0% and 100% saturation, at temperatures of 35, 50, and 70 °C, and at a pressure of 100 bar. Little or no detectable carbonation was observed when brucite was reacted with neat scCO(2). Higher water concentrations and higher temperatures led to greater brucite carbonation rates and larger extents of conversion to magnesium carbonate products. The only observed carbonation product at 35 °C was nesquehonite (MgCO(3)·3H(2)O). Mixtures of nesquehonite and magnesite (MgCO(3)) were detected at 50 °C, but magnesite was more prevalent with increasing water concentration. Both an amorphous hydrated magnesium carbonate solid and magnesite were detected at 70 °C, but magnesite predominated with increasing water concentration. The identity of the magnesium carbonate products appears strongly linked to magnesium water exchange kinetics through temperature and water availability effects.

  5. Infrared reflection absorption spectroscopic study on the adsorption structures of acrylonitrile on Ag(111) and Ag(110) surfaces

    Science.gov (United States)

    Osaka, Naoki; Akita, Masato; Hiramoto, Shuji; Itoh, Koichi

    1999-06-01

    Infrared reflection-absorption spectra in CN stretching, CH 2 out-of-plane wagging and CH 2 twisting vibration regions were measured for acrylonitrile (CH 2CHCN) exposed to Ag(111) and Ag(110) in increasing amounts at 77 K. The adsorbate on Ag(111) takes on a series of discrete adsorption states; i.e., an isolated state, associated states, and ordered and amorphous multilayer states. The adsorbate on Ag(110) at lower exposures is in a state with the CN group weakly coordinated to a silver atom (or silver atoms). The adsorbate on Ag(110) takes the associated state and the amorphous multilayer at larger exposures. On raising the temperature to 96 K, the amorphous states on both Ag(111) and Ag(110) are converted to the ordered multilayer. The desorption temperature of the ordered multilayer is below 99 K for Ag(110), while the temperature is above 107 K for Ag(111); the result indicates the effect of the surface morphology on the stability of the ordered state.

  6. Near-infrared spectroscopic observation of the ageing process in archaeological wood using a deuterium exchange method.

    Science.gov (United States)

    Tsuchikawa, Satoru; Yonenobu, Hitoshi; Siesler, H W

    2005-03-01

    The ageing degradation of the fine wood structure of dry-exposed archaeological wood was investigated by Fourier transform near-infrared spectroscopy with the aid of a deuterium exchange method. The archaeological wood sample was taken from an old wooden temple in Japan (late 7th century), which has been designated as a UNESCO world heritage site. Comparing the analytical results with those of a modern wood sample of the same species, the ageing process of archaeological wood was clarified as a change in the state of order on a macromolecular structural level. It can be concluded from NIR spectra that the amorphous region, and partially semi-crystalline region, in cellulose, hemicellulose, and lignin decreased by the ageing degradation, whereas the crystalline region in cellulose was not affected by the ageing. The accessibility of the diffusant to effect H/D-exchange was monitored by an OH-related absorption band obtained from FT-NIR transmission spectroscopy and characteristically varied with the ageing process of the wood samples, the absorption bands characteristic of a specific state of order and the diffusion agent. Finally, we proposed a morphological model to describe the variation of the fine structure of the microfibrils in the cell wall with ageing degradation. The state of microfibrils changed loosely by ageing, so that elementary fibrils were arranged loosely under 5 A, whereas several elementary fibrils in the modern wood were arranged in very close proximity under 3 A to each other.

  7. Near-infrared spectroscopic monitoring of the diffusion process of deuterium-labeled molecules in wood. Part II: hardwood.

    Science.gov (United States)

    Tsuchikawa, Satoru; Siesler, H W

    2003-06-01

    Fourier transform near-infrared (FT-NIR) transmission spectroscopy was applied to monitor the diffusion process of deuterium-labeled molecules in hardwood (Beech). The results are compared with previous data obtained on softwood (Sitka spruce) in order to consistently understand the state of order in cellulose of wood. The saturation accessibility and diffusion rate varied characteristically with the OH groups in different states of order in the wood substance, the diffusants, and the wood species, respectively. The variation of saturation accessibility should be associated with the fundamental difference of the fine structure such as the microfibrils in the wood substance. The effect of the anatomical cellular structure on the accessibility was reflected in the variation of the diffusion rate with the wood species. The size effect of the diffusants also played an important role for the diffusion process in wood. Since the volumetric percentage of wood fibers and wood rays is relatively similar, the dichroic effects due to the anisotropy of the cellulose chains were apparently diminished. Finally, we proposed a new interpretation of the fine structure of the microfibrils in the cell wall by comparing a series of results from hardwood and softwood. Each elementary fibril in the hardwood has a more homogeneous arrangement in the microfibrils compared to that in the softwood.

  8. Indium phosphide all air-gap Fabry-Pérot filters for near-infrared spectroscopic applications

    Science.gov (United States)

    Ullah, A.; Butt, M. A.; Fomchenkov, S. A.; Khonina, S. N.

    2016-08-01

    Food quality can be characterized by noninvasive techniques such as spectroscopy in the Near Infrared wavelength range. For example, 930 -1450 nm wavelength range can be used to detect diseases and differentiate between meat samples. Miniaturization of such NIR spectrometers is useful for quick and mobile characterization of food samples. Spectrometers can be miniaturized, without compromising the spectral resolution, using Fabry-Pérot (FP) filters consisting of two highly reflecting mirrors with a central cavity in between. The most commonly used mirrors in the design of FP filters are Distributed Bragg Reflections (DBRs) consisting of alternating high and low refractive index material pairs, due to their high reflectivity compared to metal mirrors. However, DBRs have high reflectivity for a selected range of wavelengths known as the stopband of the DBR. This range is usually much smaller than the sensitivity range of the spectrometer detector. Therefore, a bandpass filter is usually required to restrict wavelengths outside the stopband of the FP DBRs. Such bandpass filters are difficult to design and implement. Alternatively, high index contrast materials must be can be used to broaden the stopband width of the FP DBRs. In this work, Indium phosphide all air-gap filters are proposed in conjunction with InGaAs based detectors. The designed filter has a wide stopband covering the entire InGaAs detector sensitivity range. The filter can be tuned in the 950-1450 nm with single mode operation. The designed filter can hence be used for noninvasive meat quality control.

  9. Intercomparison of stratospheric nitrogen dioxide columns retrieved from ground-based DOAS and FTIR and satellite DOAS instruments over the subtropical Izana station

    OpenAIRE

    Robles-Gonzalez, Cristina; Navarro-Comas, Mónica; Puentedura, Olga; Schneider, Matthias; Hase, Frank; Garcia, Omaira; Blumenstock, Thomas; Gil-Ojeda, Manuel

    2016-01-01

    A 13-year analysis (2000–2012) of the NO2 vertical column densities derived from ground-based (GB) instruments and satellites has been carried out over the Izaña NDACC (Network for the Detection of the Atmospheric Composition Change) subtropical site. Ground-based DOAS (differential optical absorption spectroscopy) and FTIR (Fourier transform infrared spectroscopy) instruments are intercompared to test mutual consistency and then used for validation of stratospheric NO2 fro...

  10. Gamma-irradiation and UV-C light-induced lipid peroxidation: a Fourier transform-infrared absorption spectroscopic study.

    Science.gov (United States)

    Kinder, R; Ziegler, C; Wessels, J M

    1997-05-01

    Fourier transform-infrared spectroscopy of dry, multibilayer films has been used to study gamma-radiation and UV-C light induced lipid peroxidation in 1,2-dilinoleoyl-sn-glycero-3-phosphocholine liposomes. The observed spectral changes were compared with the results obtained from measurement of hydroperoxides, conjugated dienes and to the formation of thiobarbituric acid reactive substances, such as malondialdehyde (MDA) or MDA-like substances. Upon irradiation a decrease in intensity of the asymmetric C - H stretching vibration (va(CH2)) of the isolated cis C = C - H groups (3010 cm-1) was observed. Directly correlated with the decrease of the va(CH2) absorption was a shift of the asymmetric phosphate ester stretching vibration (va(P = O)) towards smaller wavenumbers (1260-->1244 cm-1), indicating that the lipid peroxidation induced molecular alterations in the fatty acid chains influence the packing of the phospholipids in dry multibilayer films. In addition, the formation of a new absorption band at 1693 cm-1 could be detected, the intensity of which was comparable with the formation of thiobarbituric acid reactive substances and, therefore, attributed to the (C = O) stretching of alpha, beta unsaturated aldehydes. Dose-dependent studies using ionizing radiation showed that the decrease of va(CH2) was directly correlated with an increase in absorption of the conjugated dienes at 234 nm and with the formation of hydroperoxides suggesting that the absorption at 3010 cm-1 is solely due to isolated cis C = C - H groups and hence subject to the early stages of the radical chain reaction. UV-C light induced lipid peroxidation revealed a non-linear decrease of I3010, which was directly correlated with the formation of hydroperoxides. The observed early saturation of the conjugated dienes was attributed to an early photodecomposition of the conjugated double bonds.

  11. Two-dimensional infrared spectroscopic study on the thermally induced structural changes of glutaraldehyde-crosslinked collagen.

    Science.gov (United States)

    Tian, Zhenhua; Wu, Kun; Liu, Wentao; Shen, Lirui; Li, Guoying

    2015-04-05

    The thermal stability of collagen solution (5 mg/mL) crosslinked by glutaraldehyde (GTA) [GTA/collagen (w/w)=0.5] was measured by differential scanning calorimetry and Fourier transform infrared spectroscopy (FTIR), and the thermally induced structural changes were analyzed using two-dimensional (2D) correlation spectra. The denaturation temperature (Td) and enthalpy change (ΔH) of crosslinked collagen were respectively about 27°C and 88 J/g higher than those of native collagen, illuminating the thermal stability increased. With the increase of temperature, the red-shift of absorption bands and the decreased AIII/A1455 value obtained from FTIR spectra indicated that hydrogen bonds were weakened and the unwinding of triple helix occurred for both native and crosslinked collagens; whereas the less changes in red-shifting and AIII/A1455 values for crosslinked collagen also confirmed the increase in thermal stability. Additionally, the 2D correlation analysis provided information about the thermally induced structural changes. In the 2D synchronous spectra, the intensities of auto-peaks at 1655 and 1555 cm(-1), respectively assigned to amide I band (CO stretching vibration) and amide II band (combination of NH bending and CN stretching vibrations) in helical conformation were weaker for crosslinked collagen than those for native collagen, indicating that the helical structure of crosslinked collagen was less sensitive to temperature. Moreover, the sequence of the band intensity variations showed that the band at 1555 cm(-1) moved backwards owing to the addition of GTA, demonstrating that the response of helical structure of crosslinked collagen to the increased temperature lagged. It was speculated that the stabilization of collagen by GTA was due to the reinforcement of triple helical structure.

  12. Fourier-transform infrared spectroscopic studies on avidin secondary structure and complexation with biotin and biotin-lipid assemblies.

    Science.gov (United States)

    Swamy, M J; Heimburg, T; Marsh, D

    1996-08-01

    Fourier-transform infrared studies have been carried out to investigate the secondary structure and thermal stability of hen egg white avidin and its complexes with biotin and with a biotinylated lipid derivative, N-biotinyl dimyristoyl phosphatidylethanolamine (DMBPE) in aqueous dispersion. Analysis of the amide I stretching band of avidin yielded a secondary structural content composed of approximately 66% beta-sheet and extended structures, with the remainder being attributed to disordered structure and beta-turns. Binding of biotin or specific association with the biotinylated lipid DMBPE did not result in any appreciable changes in the secondary structure content of the protein, but a change in hydrogen bond stability of the beta-sheet or extended chain regions was indicated. The latter effect was enhanced by surface interactions in the case of the biotin-lipid assemblies, as was demonstrated by electrostatic binding to a nonspecific negatively charged lipid. Difference spectra of the bound biotin implicated a direct involvement of the ureido moiety in the ligand interaction that was consistent with hydrogen bonding to amino acid residues in the avidin protein. It was found that complexation with avidin leads to a decrease in bond length of the biotin ureido carbonyl group that is consistent with a reduction of sp3 character of the C-O bond when it is hydrogen bonded to the protein. Studies of the temperature dependence of the spectra revealed that for avidin alone the secondary structure was unaltered up to approximately 75 degrees C, above which the protein undergoes a highly cooperative transition to an unfolded state with concomitant loss of ordered secondary structure. The complexes of avidin with both biotin and membrane-bound DMBPE lipid assemblies display a large increase in thermal stability compared with the native protein.

  13. Spectroscopic (far or terahertz, mid-infrared and Raman) investigation, thermal analysis and biological activity of piplartine

    Science.gov (United States)

    Srivastava, Anubha; Karthick, T.; Joshi, B. D.; Mishra, Rashmi; Tandon, Poonam; Ayala, A. P.; Ellena, Javier

    2017-09-01

    Research in the field of medicinal plants including Piper species like long pepper (Piper longum L.- Piperaceae) is increasing all over the world due to its use in traditional and Ayurvedic medicine. Piplartine (piperlongumine, 5,6-dihydro-1-[(2E)-1-oxo-3-(3,4,5-trimethoxyphenyl)-2-propenyl]-2(1H)-pyridinone), a biologically active alkaloid/amide was isolated from the phytochemical investigations of Piper species, as long pepper. This alkaloid has cytotoxic, anti-fungal, anti-diabetic, anti-platelet aggregation, anti-tumoral, anxiolytic, anti-depressant, anti-leishmanial, and genotoxic activities, but, its anticancer property is the most promising and has been widely explored. The main purpose of the work is to present a solid state characterization of PPTN using thermal analysis and vibrational spectroscopy. Quantum mechanical calculations based on the density functional theory was also applied to investigate the molecular conformation and vibrational spectrum, which was compared with experimental results obtained by Raman scattering, far (terahertz) and mid-infrared adsorption spectroscopy. NBO analysis has been performed which predict that most intensive interactions in PPTN are the hyperconjugative interactions between n(1) N6 and π*(O1sbnd C7) having delocalization energy of 50.53 kcal/mol, Topological parameters have been analyzed using 'AIM' analysis which governs the three bond critical points (BCPs), one di-hydrogen, and four ring critical points (RCPs). MEP surface has been plotted which forecast that the most negative region is associated with the electronegative oxygen atoms (sites for nucleophilic activity). Theoretically, to confirm that the title compound has anti-cancer, anti-diabetic and anti-platelet aggregation activities, it was analyzed by molecular docking interactions with the corresponding target receptors. The obtained values of H-bonding parameters and binding affinity prove that its anti-cancer activity is the more prominent than the

  14. Infrared and Fluorescence Spectroscopic Investigations of the Acyl Surface Modification of Hydrogel Beads for the Deposition of a Phospholipid Coating.

    Science.gov (United States)

    Grossutti, Michael; Seenath, Ryan; Lipkowski, Jacek

    2015-10-27

    The scaffolded vesicle has been employed as an alternative means of developing natural model membranes and envisioned as a potential nutraceutical transporter. Furthering the research of the scaffolded vesicle system, a nucleophilic substitution reaction was implemented to form an ester linkage between palmitate and terminal hydroxyl groups of dextran in order to hydrophobically modify the hydrogel scaffold. An average tilt angle of 38° of the hydrophobic palmitate modifying layer on the surface of the hydrogel was determined from dichroic ratios obtained from infrared spectra collected in the attenuated total reflection (ATR) configuration. ATR-IR studies of the DMPC-coated acylated hydrogel demonstrated that the hydrocarbon chains of the DMPC coating was similar to those of the DMPC bilayers and that the underlying palmitate layer had a negligible effect on the average tilt angle (26°) of the DMPC coating. The permeability of this acylated hydrogel was investigated with fluorescence spectroscopy and the terbium/dipicolinic acid assay. The hydrophobic modification on the surface of the hydrogel bead allowed for an efficient deposition of a DMPC layer that served as an impermeable barrier to terbium efflux. About 72% of DMPC-coated acylated hydrogel beads showed ideal barrier properties. The remaining 28% were leaking, but the half-life of terbium efflux of the DMPC-coated acylated hydrogel was increasing, and the total amount of leaked terbium was decreasing with the incubation time. The half-life time and the retention were considered a marked improvement relative to past scaffolded vesicle preparations. The process of acylating hydrogel beads for efficient DMPC deposition has been identified as another viable method for controlling the permeability of the scaffolded vesicle.

  15. Synergetic ground-based methods for remote measurements of ozone vertical profiles

    Science.gov (United States)

    Timofeyev, Yuriy; Kostsov, Vladimir; Virolainen, Yana

    2013-05-01

    The technique of combining ground-based measurements in infrared and microwave spectral regions in order to achieve higher accuracy of ozone profile retrieval in extensive altitude ranges is described and analyzed. The information content, errors, altitude ranges and vertical resolution of ozone profile retrieval have been studied on the basis of numerical simulation of synergetic experiments. Optimal conditions of measurements are defined and requirements to additional information are formulated. The first results on ozone vertical profile retrieval using groundbased measurements of FTIR-spectrometer and microwave radiometer are given.

  16. The First Hundred Brown Dwarfs Discovered by the Wide-Field Infrared Survey Explorer (WISE)

    Science.gov (United States)

    Kirkpatrick, J. Davy; Cushing, Michael C.; Gelino, Christopher R.; Griffith, Roger L.; Skrutskie, Michael F.; Marsh, Kenneth A.; Wright, Edward L.; Mainzer, Amanda K.; Eisenhardt, Peter R.; McLean, Ian S.; Bauer, James M.; Benford, Dominic J.; Lake, Sean E.; Petty, Sara M.; Tsai, Chao-Wei; Beichman, Charles; Stapelfeldt, Karl R.; Stern, Daniel; Vacca, William D.

    2011-01-01

    We present ground-based spectroscopic verification of six Y dwarfs also Cushing et al.), eighty-nine T dwarfs, eight L dwarfs, and one M dwarf identified by the Wide-field Infrared Survey Explorer (WISE). Eighty of these are cold brown dwarfs with spectral types > or =T6, six of which have been announced earlier in Mainzer et al. and I3urgasser et al. We present color-color and colortype diagrams showing the locus of M, L, T, and Y dwarfs in WISE color space. "

  17. Spectroscopic and Computational Study of Acetic Acid and Its Cyclic Dimer in the Near-Infrared Region.

    Science.gov (United States)

    Beć, Krzysztof B; Futami, Yoshisuke; Wójcik, Marek J; Nakajima, Takahito; Ozaki, Yukihiro

    2016-08-11

    Anharmonic vibrational analysis of near-infrared (NIR) spectra of acetic acid was carried out by anharmonic quantum chemical calculation in a wide concentration range of its CCl4 solution. By predicting vibrational spectra of acetic acid for the first time over a wide NIR region, it was possible to elucidate the influence of the formation of acetic acid cyclic dimer on its NIR spectrum. Quantum chemical simulations were based on coupled cluster and density functional theory quantum methods. Additionally, Møller-Plesset perturbation theory was employed for the additional calculation of hydrogen bonding stabilization energies. An anharmonic vibrational analysis was performed with the use of generalized second-order vibrational perturbation theory (GVPT2). A hybrid approach was assumed, in which monomeric species was treated by CCSD(T)/aug-cc-pVDZ (harmonic approximation) and B3LYP/SNSD (anharmonic approximation) methods. For the cyclic dimer, B3LYP and B2PLYP single and double hybrid functionals, paired with an SNSD basis set, were employed. DFT calculations were augmented with additional empirical dispersion correction. It was found that quantum chemically calculated vibrational modes in the NIR region are in a good agreement with experimental data. The results of anharmonic vibrational analysis were supported by a harmonic shift analysis, for elucidating the very strong anharmonic coupling observed between stretching modes of hydrogen bonded bridge in the cyclic dimer. However, the calculated wavenumbers for combination modes of double hydrogen bonded bridge in the cyclic dimer, which are very sensitive to the formation of hydrogen bonding, were found to be underestimated by quantum chemical methods. Therefore, by band fitting, the wavenumbers and shape parameters for these bands were found, and the modeled spectra were adjusted accordingly. A high accuracy of simulated spectra was achieved, and a detailed analysis of the experimental NIR spectra of acetic acid

  18. HERSCHEL/PACS SPECTROSCOPIC SURVEY OF PROTOSTARS IN ORION: THE ORIGIN OF FAR-INFRARED CO EMISSION

    Energy Technology Data Exchange (ETDEWEB)

    Manoj, P.; Watson, D. M.; Yu, Vincent [Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627 (United States); Neufeld, D. A. [Department of Physics and Astronomy, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218 (United States); Megeath, S. T.; Fischer, W. J.; Poteet, C. A. [Department of Physics and Astronomy, University of Toledo, 2801 West Bancroft Street, OH 43606 (United States); Vavrek, R. [European Space Agency, ESAC/SRE-OAH, P.O. Box 78, E-28691 Villanueva de la Canada, Madrid (Spain); Visser, R.; Bergin, E. A. [Department of Astronomy, University of Michigan, 500 Church Street, Ann Arbor, MI 48109 (United States); Tobin, J. J. [National Radio Astronomy Observatory, Charlottesville, VA 22903 (United States); Stutz, A. M. [Max-Planck-Institut fuer Astronomie, Koenigstuhl 17, D-69117 Heidelberg (Germany); Ali, B. [NHSC/IPAC/Caltech, 770 South Wilson Avenue, Pasadena, CA 91125 (United States); Wilson, T. L. [US Naval Research Laboratory, Code 7210, Washington, DC 20375 (United States); Di Francesco, J. [National Research Council of Canada, Herzberg Institute of Astrophysics, Department of Physics and Astronomy, University of Victoria, Victoria, BC V9E 2E7 (Canada); Osorio, M. [Instituto de Astrofisica de Andalucia, CSIC, Camino Bajo de Huetor 50, E-18008 Granada (Spain); Maret, S., E-mail: manoj@pas.rochester.edu [Laboratoire d' Astrophysique de Grenoble, Observatoire de Grenoble, Universite Joseph Fourier, CNRS, UMR 571, F-38041 Grenoble (France)

    2013-02-15

    We present far-infrared (57-196 {mu}m) spectra of 21 protostars in the Orion molecular clouds. These were obtained with the Photodetector Array Camera and Spectrometer (PACS) on board the Herschel Space observatory as part of the Herschel Orion Protostar Survey program. We analyzed the emission lines from rotational transitions of CO, involving rotational quantum numbers in the range J {sub up} = 14-46, using PACS spectra extracted within a projected distance of {approx}<2000 AU centered on the protostar. The total luminosity of the CO lines observed with PACS (L {sub CO}) is found to increase with increasing protostellar luminosity (L {sub bol}). However, no significant correlation is found between L {sub CO} and evolutionary indicators or envelope properties of the protostars such as bolometric temperature, T {sub bol}, or envelope density. The CO rotational (excitation) temperature implied by the line ratios increases with increasing rotational quantum number J, and at least 3-4 rotational temperature components are required to fit the observed rotational diagram in the PACS wavelength range. The rotational temperature components are remarkably invariant between protostars and show no dependence on L {sub bol}, T {sub bol}, or envelope density, implying that if the emitting gas is in local thermodynamic equilibrium, the CO emission must arise in multiple temperature components that remain independent of L {sub bol} over two orders of magnitudes. The observed CO emission can also be modeled as arising from a single-temperature gas component or from a medium with a power-law temperature distribution; both of these require sub-thermally excited molecular gas at low densities (n(H{sub 2}) {approx}< 10{sup 6} cm{sup -3}) and high temperatures (T {approx}> 2000 K). Our results suggest that the contribution from photodissociation regions, produced along the envelope cavity walls from UV-heating, is unlikely to be the dominant component of the CO emission observed with

  19. Two-dimensional correlation infrared spectroscopic study on the crystallization and gelation of poly(vinylidene fluoride) in cyclohexanone.

    Science.gov (United States)

    Peng, Yun; Sun, Bingjie; Wu, Peiyi

    2008-03-01

    Poly(vinylidene fluoride) (PVDF) converts easily into a thermo-reversible gel through crystallization by standing at room temperature in cyclohexanone. In this study, the Fourier transform infrared (FT-IR) spectra were measured continuously at room temperature during the conversion of the solution into a gel. The IR difference spectra derived from these spectra by absorbance subtraction clearly indicate the presence of PVDF alpha-crystallites in the gel due to the presence of absorption bands corresponding to the TG+TG- conformation of the alpha-phase. In the time interval from 25 to 45 min after the beginning of the experiment, the IR bands of PVDF increased dramatically, indicating the conversion of polymer chains from random statistical coils to the ordered TG+TG- conformation (alpha-form). In the time interval from 45 to 90 min, the IR bands of PVDF increased slowly, reflecting no further crystallization. Using two-dimensional (2D) IR analysis, it could be shown that the nu(C=O) absorption band of cyclohexanone changed during the gelation process. During the conformational ordering process (25-45 min), the nu(C=O) absorption band of the cyclohexanone dimer (1707 cm(-1)) decreased while the corresponding band of the monomer at 1718 cm(-1) increased. Furthermore, a new band at 1695 cm(-1) increased, which could be assigned to C=O groups of the solvent interacting with the CF2 groups in the polymer chain. The bands of the crystalline PVDF share positive cross-peaks with the bands of cyclohexanone, which indicates that the chain of PVDF changed prior to the cyclohexanone molecules during the conformational ordering process. However, these positive cross-peaks disappeared during the crystallization process, which means that the chain of PVDF changed synchronously with the solvent molecules. As for the bands of PVDF chains, the band at 762 cm(-1) varied prior to the bands at 873 cm(-1) and 796 cm(-1) during the conformational ordering process. The 762 cm(-1

  20. Near-infrared spectroscopic investigation of water in supercritical CO2 and the effect of CaCl2

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zheming; Felmy, Andrew R.; Thompson, Christopher J.; Loring, John S.; Joly, Alan G.; Rosso, Kevin M.; Schaef, Herbert T.; Dixon, David A.

    2013-01-01

    Near-infrared (NIR) spectroscopy was applied to investigate the dissolution and chemical interaction of water dissolved into supercritical carbon dioxide (scCO2) and the influence of CaCl2 in the co-existing aqueous phase at fo empe e : 40 50 75 nd 100 C at 90 atm. Consistent with the trend of the vapor pressure of water, the solubility of pure water in scCO2 inc e ed f om 40 °C (0.32 mole%) o 100 °C (1.61 mole%). The presence of CaCl2 negatively affects the solubility of water in scCO2: at a given temperature and pressure the solubility of water decreased as the concentration of CaCl2 in the aqueous phase increased, following the trend of the activity of water. A 40 °C, the water concentration in scCO2 in contact with saturated CaCl2 aqueous solution was only 0.16 mole%, a drop of more than 50% as compared to pure water while that a 100 °C was 1.12 mole%, a drop of over 30% as compared to pure water, under otherwise the same conditions. Analysis of the spectral profiles suggested that water dissolved into scCO2 exists in the monomeric form under the evaluated temperature and pressure conditions, for both neat water and CaCl2 solutions. However, its rotational degrees of freedom decrease at lower temperatures due to higher fluid densities, leading to formation of weak H2O:CO2 Lewis acid-base complexes. Similarly, the nearly invariant spectral profiles of dissolved water in the presence and absence of saturated CaCl2 under the same experimental conditions was taken as evidence that CaCl2 dissolution in scCO2 was limited as the dissolved Ca2+/CaCl2 would likely be highly hydrated and would alter the overall spectra of waters in the scCO2 phase.

  1. Flow Characteristics of Tidewater Glaciers in Greenland and Alaska using Ground-Based LiDAR

    Science.gov (United States)

    Finnegan, D. C.; Stearns, L. A.; Hamilton, G. S.; O'Neel, S.

    2010-12-01

    LiDAR scanning systems have been employed to characterize and quantify multi-temporal glacier and ice sheet changes for nearly three decades. Until recently, LiDAR scanning systems were limited to airborne and space-based platforms which come at a significant cost to deploy and are limited in spatial and temporal sampling capabilities necessary to compare with in-situ field measurements. Portable ground-based LiDAR scanning systems are now being used as a glaciological tool. We discuss research efforts to employ ground-based near-infrared LiDAR systems at two differing tidewater glacier systems in the spring of 2009; Helheim Glacier in southeast Greenland and Columbia Glacier in southeast Alaska. Preliminary results allow us to characterize short term displacement rates and detailed observations of calving processes. These results highlight the operational limitations and capabilities of commercially available LiDAR systems, and allow us to identify optimal operating characteristics for monitoring small to large-scale tidewater glaciers in near real-time. Furthermore, by identifying the operational limitations of these sensors it allows for optimal design characteristics of new sensors necessary to meet ground-based calibration and validation requirements of ongoing scientific missions.

  2. Infrared spectroscopy of exoplanets: observational constraints.

    Science.gov (United States)

    Encrenaz, Thérèse

    2014-04-28

    The exploration of transiting extrasolar planets is an exploding research area in astronomy. With more than 400 transiting exoplanets identified so far, these discoveries have made possible the development of a new research field, the spectroscopic characterization of exoplanets' atmospheres, using both primary and secondary transits. However, these observations have been so far limited to a small number of targets. In this paper, we first review the advantages and limitations of both primary and secondary transit methods. Then, we analyse what kind of infrared spectra can be expected for different types of planets and discuss how to optimize the spectral range and the resolving power of the observations. Finally, we propose a list of favourable targets for present and future ground-based observations.

  3. The GEISA Spectroscopic Database System in its latest Edition

    Science.gov (United States)

    Jacquinet-Husson, N.; Crépeau, L.; Capelle, V.; Scott, N. A.; Armante, R.; Chédin, A.

    2009-04-01

    GEISA (Gestion et Etude des Informations Spectroscopiques Atmosphériques: Management and Study of Spectroscopic Information)[1] is a computer-accessible spectroscopic database system, designed to facilitate accurate forward planetary radiative transfer calculations using a line-by-line and layer-by-layer approach. It was initiated in 1976. Currently, GEISA is involved in activities related to the assessment of the capabilities of IASI (Infrared Atmospheric Sounding Interferometer on board the METOP European satellite -http://earth-sciences.cnes.fr/IASI/)) through the GEISA/IASI database[2] derived from GEISA. Since the Metop (http://www.eumetsat.int) launch (October 19th 2006), GEISA/IASI is the reference spectroscopic database for the validation of the level-1 IASI data, using the 4A radiative transfer model[3] (4A/LMD http://ara.lmd.polytechnique.fr; 4A/OP co-developed by LMD and Noveltis with the support of CNES). Also, GEISA is involved in planetary research, i.e.: modelling of Titan's atmosphere, in the comparison with observations performed by Voyager: http://voyager.jpl.nasa.gov/, or by ground-based telescopes, and by the instruments on board the Cassini-Huygens mission: http://www.esa.int/SPECIALS/Cassini-Huygens/index.html. The updated 2008 edition of GEISA (GEISA-08), a system comprising three independent sub-databases devoted, respectively, to line transition parameters, infrared and ultraviolet/visible absorption cross-sections, microphysical and optical properties of atmospheric aerosols, will be described. Spectroscopic parameters quality requirement will be discussed in the context of comparisons between observed or simulated Earth's and other planetary atmosphere spectra. GEISA is implemented on the CNES/CNRS Ether Products and Services Centre WEB site (http://ether.ipsl.jussieu.fr), where all archived spectroscopic data can be handled through general and user friendly associated management software facilities. More than 350 researchers are

  4. Ground-Based VIS/NIR Reflectance Spectra of 25143 Itokawa: What Hayabusa will See and How Ground-Based Data can Augment Analyses

    Science.gov (United States)

    Vilas, Faith; Abell, P. A.; Jarvis, K. S.

    2004-01-01

    Planning for the arrival of the Hayabusa spacecraft at asteroid 25143 Itokawa includes consideration of the expected spectral information to be obtained using the AMICA and NIRS instruments. The rotationally-resolved spatial coverage the asteroid we have obtained with ground-based telescopic spectrophotometry in the visible and near-infrared can be utilized here to address expected spacecraft data. We use spectrophotometry to simulate the types of data that Hayabusa will receive with the NIRS and AMICA instruments, and will demonstrate them here. The NIRS will cover a wavelength range from 0.85 m, and have a dispersion per element of 250 Angstroms. Thus, we are limited in coverage of the 1.0 micrometer and 2.0 micrometer mafic silicate absorption features. The ground-based reflectance spectra of Itokawa show a large component of olivine in its surface material, and the 2.0 micrometer feature is shallow. Determining the olivine to pyroxene abundance ratio is critically dependent on the attributes of the 1.0- and 2.0 micrometer features. With a cut-off near 2,1 micrometer the longer edge of the 2.0- feature will not be obtained by NIRS. Reflectance spectra obtained using ground-based telescopes can be used to determine the regional composition around space-based spectral observations, and possibly augment the longer wavelength spectral attributes. Similarly, the shorter wavelength end of the 1.0 micrometer absorption feature will be partially lost to the NIRS. The AMICA filters mimic the ECAS filters, and have wavelength coverage overlapping with the NIRS spectral range. We demonstrate how merging photometry from AMICA will extend the spectral coverage of the NIRS. Lessons learned from earlier spacecraft to asteroids should be considered.

  5. Near-Infrared Spectroscopic Measurement of the Effect of Leg Dominance on Muscle Oxygen Saturation During Cycling

    Science.gov (United States)

    Ellerby, Gwenn E. C.; Lee, Stuart M. C.; Paunescu, Lelia Adelina; Pereira, Chelsea; Smith, Charles P.; Soller, Babs R.

    2011-01-01

    The effect of leg dominance on the symmetry of the biomechanics during cycling remains uncertain -- asymmetries have been observed in kinematics and kinetics, while symmetries were found in muscle activation. No studies have yet investigated the symmetry of muscle metabolism during cycling. Near-infrared spectroscopy (NIRS) provides a non-invasive method to investigate the metabolic responses of specific muscles during cycling. PURPOSE: To determine whether there was an effect of leg dominance on thigh muscle oxygen saturation (SmO2) during incrementally loaded submaximal cycling using NIRS. METHODS: Eight right leg dominant, untrained subjects (5 men, 3 women; 31+/-2 yrs; 168.6+/-1.0 cm; 67.2+/-1.8 kg, mean +/- SE) volunteered to participate. Spectra were collected bilaterally from the vastus lateralis (VL) during supine rest and cycling. SmO2 was calculated using previously published methods. Subjects pedaled at 65 rpm while resistance to pedaling was increased in 0.5 kp increments from 0.5 kp every 3 min until the subject reached 80% of age-predicted maximal heart rate. SmO2 was averaged over 3 min for each completed stage. A two-way ANOVA was performed to test for leg differences. A priori contrasts were used to compare work levels to rest. RESULTS: VL SmO2 was not different between the dominant and non-dominant legs at rest and during exercise (p=0.57). How SmO2 changed with workload was also not different between legs (p=0.32). SmO2 at 0.5 kp (60.3+/-4.0, p=0.12) and 1.0 kp (59.5+/-4.0, p=0.10) was not different from rest (69.1+/-4.0). SmO2 at 1.5 kp (55.4 4.0, p=0.02), 2.0 kp (55.7+/-5.0, p=0.04), and 2.5 kp (43.4+/-7.9, p=0.01) was significantly lower than rest. CONCLUSION: VL SmO2 during cycling is not different between dominant and non-dominant legs and decreases with moderate workload in untrained cyclists. Assuming blood flow is directed equally to both legs, similar levels of oxygen extraction (as indicated by SmO2) suggests the metabolic load of

  6. The microstructure of the stratum corneum lipid barrier: mid-infrared spectroscopic studies of hydrated ceramide:palmitic acid:cholesterol model systems.

    Science.gov (United States)

    Garidel, Patrick; Fölting, Bettina; Schaller, Ingrid; Kerth, Andreas

    2010-08-01

    The current mid-infrared spectroscopic study is a systematic investigation of hydrated stratum corneum lipid barrier model systems composed of an equimolar mixture of a ceramide, free palmitic acid and cholesterol. Four different ceramide molecules (CER NS, CER NP, CER NP-18:1, CER AS) were investigated with regard to their microstructure arrangement in a stratum corneum lipid barrier model system. Ceramide molecules were chosen from the sphingosine and phytosphingosine groups. The main differences in the used ceramide molecules result from their polar head group architecture as well as hydrocarbon chain properties. The mixing properties with cholesterol and palmitic acid are considered. This is feasible by using perdeuterated palmitic acid and proteated ceramides. Both molecules can be monitored separately, within the same experiment, using mid-infrared spectroscopy; no external label is necessary. At physiological relevant temperatures, between 30 and 35 degrees C, orthorhombic as well as hexagonal chain packing of the ceramide molecules is observed. The formation of these chain packings are extremely dependent on lipid hydration, with a decrease in ceramide hydration favouring the formation of orthorhombic hydrocarbon chain packing, as well as temperature. The presented data suggest in specific cases phase segregation in ceramide and palmitic acid rich phases. However, other ceramides like CER NP-18:1 show a rather high miscibility with palmitic acid and cholesterol. For all investigated ternary systems, more or less mixing of palmitic acid with cholesterol is observed. The investigated stratum corneum mixtures exhibit a rich polymorphism from crystalline domains with heterogeneous lipid composition to a "fluid" homogeneous phase. Thus, a single gel phase is not evident for the presented stratum corneum model systems. The study shows, that under skin physiological conditions (pH 5.5, hydrated, 30-35 degrees C) ternary systems composed of an equimolar ratio of

  7. BAT AGN Spectroscopic Survey - IV: Near-Infrared Coronal Lines, Hidden Broad Lines, and Correlation with Hard X-ray Emission

    Science.gov (United States)

    Lamperti, Isabella; Koss, Michael; Trakhtenbrot, Benny; Schawinski, Kevin; Ricci, Claudio; Oh, Kyuseok; Landt, Hermine; Riffel, Rogério; Rodríguez-Ardila, Alberto; Gehrels, Neil; Harrison, Fiona; Masetti, Nicola; Mushotzky, Richard; Treister, Ezequiel; Ueda, Yoshihiro; Veilleux, Sylvain

    2017-01-01

    We provide a comprehensive census of the near-Infrared (NIR, 0.8-2.4 μm) spectroscopic properties of 102 nearby (z X-ray band (14-195 keV) from the Swift-Burst Alert Telescope (BAT) survey. With the launch of the James Webb Space Telescope this regime is of increasing importance for dusty and obscured AGN surveys. We measure black hole masses in 68% (69/102) of the sample using broad emission lines (34/102) and/or the velocity dispersion of the Ca II triplet or the CO band-heads (46/102). We find that emission line diagnostics in the NIR are ineffective at identifying bright, nearby AGN galaxies because ([Fe II] 1.257μm/Paβ and H2 2.12μm/Brγ) identify only 25% (25/102) as AGN with significant overlap with star forming galaxies and only 20% of Seyfert 2 have detected coronal lines (6/30). We measure the coronal line emission in Seyfert 2 to be weaker than in Seyfert 1 of the same bolometric luminosity suggesting obscuration by the nuclear torus. We find that the correlation between the hard X-ray and the [Fe II] coronal line luminosity is significantly better than with the [O III] λ5007 luminosity. Finally, we find 3/29 galaxies (10%) that are optically classified as Seyfert 2 show broad emission lines in the NIR. These AGN have the lowest levels of obscuration among the Seyfert 2s in our sample (log NH < 22.43 cm-2), and all show signs of galaxy-scale interactions or mergers suggesting that the optical broad emission lines are obscured by host galaxy dust.

  8. Visible and near-infrared luminescent Eu{sup 3+} or Er{sup 3+} doped laponite-derived xerogels and thick films: Structural and spectroscopic properties

    Energy Technology Data Exchange (ETDEWEB)

    Tronto, Jairo [Universidade Federal de Vicosa, Campus de Rio Paranaiba, Rodovia BR 354-km 310, Rio Paranaiba, CEP 38810-000, MG (Brazil); Ribeiro, Sidney Jose Lima [Departamento de Quimica Geral e Inorganica, Instituto de Quimica de Araraquara - Universidade Estadual Paulista, R. Francisco Degni, s/n, CEP 14.800-090, Araraquara, SP (Brazil); Valim, Joao Barros [Departamento de Quimica, Faculdade de Filosofia, Ciencias e Letras de Ribeirao Preto, Universidade de Sao Paulo, Av. dos Bandeirantes 3900, CEP 14.040-901, Ribeirao Preto, SP (Brazil); Goncalves, Rogeria Rocha [Departamento de Quimica, Faculdade de Filosofia, Ciencias e Letras de Ribeirao Preto, Universidade de Sao Paulo, Av. dos Bandeirantes 3900, CEP 14.040-901, Ribeirao Preto, SP (Brazil)], E-mail: rrgoncalves@ffclrp.usp.br

    2009-01-15

    Laponite-derived materials represent promising materials for optical applications. In this work, Eu{sup 3+}- or Er{sup 3+}-doped laponite xerogels and films were prepared from colloidal dispersion. Homogeneous, crack-free and transparent single layers were deposited on soda-lime substrates with a thickness of 10 {mu}m. Structural and spectroscopic properties were analyzed by thermal analyses, X-ray diffractometry, transmission electron microscopy, infrared spectroscopy, and luminescence spectroscopy. The addition of a rare earth ion to the laponite does not promote any changes in thermal stability or phase transition. Laponite clay was identified after annealing up to 500 deg. C, with a decrease in basal spacing when the annealing temperature is changed from 100 deg. C to 500 deg. C. Enstatite polymorphs and amorphous silicate phases were observed after heat treatment at 700 deg. C and 900 deg. C. Stationary and time-dependent luminescence spectra in the visible region for Eu{sup 3+}, and {sup 5}D{sub 0} lifetime are discussed in terms of thermal treatment and structural evolution. In the layered host, the Eu{sup 3+} ions are distributed in many different local environments. However, Eu{sup 3+} ions were found to occupy at least two symmetry sites, and the ions are preferentially incorporated into the crystalline enstatite for the materials annealed at 700 deg. C and 900 deg. C. A {sup 5}D{sub 0} lifetime of 1.3 ms and 3.1 ms was obtained for Eu{sup 3+} ions in an amorphous silicate and crystalline MgSiO{sub 3} local environment, respectively. Strong Er{sup 3+} emission at the 1550 nm region was observed for the materials annealed at 900 deg. C, with a bandwidth of 44 nm.

  9. Application of Fourier transform infrared spectroscopic imaging to the study of effects of age and dietary l-arginine on aortic lesion composition in cholesterol-fed rabbits

    Science.gov (United States)

    Palombo, Francesca; Cremers, Stephanie G.; Weinberg, Peter D.; Kazarian, Sergei G.

    2009-01-01

    Diet-induced atherosclerotic lesions in the descending thoracic segment of rabbit aorta were analysed ex vivo by micro-attenuated total reflection (ATR)–Fourier transform infrared (FTIR) spectroscopic imaging. The distribution and chemical character of lipid deposits within the arterial wall near intercostal branch ostia were assessed in histological sections from immature and mature rabbits fed cholesterol with or without l-arginine supplements. Previous studies have shown that both these properties change with age in cholesterol-fed rabbits, putatively owing to changes in the synthesis of nitric oxide (NO) from l-arginine. Immature animals developed lesions at the downstream margin of the branch ostium, whereas lipid deposition was observed at the lateral margins in mature animals. Dietary l-arginine supplements had beneficial effects in mature rabbit aorta, with overall disappearance of the plaques; on the other hand, they caused only a slight decrease of the lipid load in lesions at the downstream margin of the ostium in immature rabbits. ATR–FTIR imaging enabled differences in the lipid to protein density ratio of atherosclerotic lesions caused by age and diet to be visualized. Lipid deposits in immature rabbits showed higher relative absorbance values of their characteristic spectral bands compared with those in immature l-arginine-fed rabbits and mature rabbits. The multivariate methods of principal component analysis (PCA) and factor analysis (FA) were employed, and relevant chemical and structural information were obtained. Two distinct protein constituents of the intima–media layer at different locations of the wall were identified using the method of FA. This approach provides a valuable means of investigating the structure and chemistry of complex heterogeneous systems. It has potential for in vivo diagnosis of pathology. PMID:18986964

  10. Differentiation of Salmonella enterica serovars and strains in cultures and food using infrared spectroscopic and microspectroscopic techniques combined with soft independent modeling of class analogy pattern recognition analysis.

    Science.gov (United States)

    Männig, Annegret; Baldauf, Nathan A; Rodriguez-Romo, Luis A; Yousef, Ahmed E; Rodríguez-Saona, Luis E

    2008-11-01

    Detection of pathogenic microorganisms in food is often a tedious and time-consuming exercise. Developing rapid and cost-effective techniques for identifying pathogens to subspecies is critical for tracking causes of foodborne disease outbreaks. The objective of this study was to develop a method for rapid identification and differentiation of Salmonella serovars and strains within these serovars through isolation on hydrophobic grid membrane filters (HGMFs), examination by infrared (IR) spectroscopy and microspectroscopy, and data analysis by multivariate statistical techniques. Salmonella serovars (Anatum, Enteritidis, Heidelberg, Kentucky, Muenchen, and Typhimurium), most of which were represented by multiple strains, were grown in tryptic soy broth (24 h at 42 degrees C), diluted to 10(2) to 10(3) CFU/ml, and filtered using HGMFs. The membranes were incubated on Miller-Mallinson agar (24 h at 42 degrees C), and typical Salmonella colonies were sonicated in 50% acetonitrile and centrifuged. Resulting pellets were vacuum dried on a ZnSe crystal and analyzed using IR spectroscopy. Alternatively, the membranes containing Salmonella growth were removed from the agar, vacuum dried, and colonies were analyzed directly by IR microspectroscopy. Soft independent modeling of class analogy (SIMCA) models were developed from spectra. The method was validated by analyzing Salmonella-inoculated tomato juice, eggs, milk, and chicken. Salmonella serovars exhibited distinctive and reproducible spectra in the fingerprint region (1,200 to 900 cm(-1)) of the IR spectrum. SIMCA permitted distinguishing Salmonella strains from each other through differences in bacterial lipopolysaccharides and other membrane components. The model correctly predicted Salmonella in foods at serovar (100%) and strain (90%) levels. Isolation of Salmonella on HGMF and selective agar followed by IR spectroscopic analysis resulted in rapid and efficient isolation, identification, and differentiation of

  11. Autonomous landing of a helicopter UAV with a ground-based multisensory fusion system

    Science.gov (United States)

    Zhou, Dianle; Zhong, Zhiwei; Zhang, Daibing; Shen, Lincheng; Yan, Chengping

    2015-02-01

    In this study, this paper focus on the vision-based autonomous helicopter unmanned aerial vehicle (UAV) landing problems. This paper proposed a multisensory fusion to autonomous landing of an UAV. The systems include an infrared camera, an Ultra-wideband radar that measure distance between UAV and Ground-Based system, an PAN-Tilt Unit (PTU). In order to identify all weather UAV targets, we use infrared cameras. To reduce the complexity of the stereovision or one-cameral calculating the target of three-dimensional coordinates, using the ultra-wideband radar distance module provides visual depth information, real-time Image-PTU tracking UAV and calculate the UAV threedimensional coordinates. Compared to the DGPS, the test results show that the paper is effectiveness and robustness.

  12. The Design and Capabilities of the EXIST Optical and Infra-Red Telescope (IRT)

    Science.gov (United States)

    Kutyrev, A S.; Moseley, S. H.; Golisano, C.; Gong, Q.; Allen, B. T.; Gehrels, N.; Grindlay, J. E.; Hong, J. S.; Woodgate, B. E.

    2010-01-01

    The Infra-Red Telescope is a critical element of the EXIST (Energetic X-Ray Imaging Survey Telescope) observatory. The primary goal of the IRT is to obtain photometric and spectroscopic measurements of high redshift (> or =6) gamma ray reaching to the epoque of reionization. The photometric and spectral capabilities of the IRT will allow to use GRB afterglow as probes of the composition and ionization state of the intergalactic medium of the young universe. A prompt follow up (within three minutes) of the transient discovered by the EXIST makes IRT a unique tool for detection and study of these events in the infrared and optical wavelength, which is particularly valuable at wavelengths unavailable to the ground based observatories. We present the results of the mission study development on the IRT as part of the EXIST observatory. Keywords: infrared spectroscopy, space telescope, gamma ray bursts, early universe

  13. Mid-Infrared Mapping of Jupiter's Temperatures, Aerosol Opacity and Chemical Distributions with IRTF/TEXES

    CERN Document Server

    Fletcher, L N; Orton, G S; Sinclair, J A; Giles, R S; Irwin, P G J; Encrenaz, T

    2016-01-01

    Global maps of Jupiter's atmospheric temperatures, gaseous composition and aerosol opacity are derived from a programme of 5-20 $\\mu$m mid-infrared spectroscopic observations using the Texas Echelon Cross Echelle Spectrograph (TEXES) on NASA's Infrared Telescope Facility (IRTF). Image cubes from December 2014 in eight spectral channels, with spectral resolutions of $R\\sim2000-12000$ and spatial resolutions of $2-4^\\circ$ latitude, are inverted to generate 3D maps of tropospheric and stratospheric temperatures, 2D maps of upper tropospheric aerosols, phosphine and ammonia, and 2D maps of stratospheric ethane and acetylene. The results are compared to a re-analysis of Cassini Composite Infrared Spectrometer (CIRS) observations acquired during Cassini's closest approach to Jupiter in December 2000, demonstrating that this new archive of ground-based mapping spectroscopy can match and surpass the quality of previous investigations, and will permit future studies of Jupiter's evolving atmosphere. We identify mid-i...

  14. Comparison of Thermal Structure Results from Venus Express and Ground Based Observations since Vira

    Science.gov (United States)

    Limaye, Sanjay

    2016-07-01

    An international team was formed in 2013 through the International Space Studies Institute (Bern, Switzerland) to compare recent results of the Venus atmospheric thermal structure from spacecraft and ground based observations made since the Venus International Reference Atmosphere (VIRA) was developed (Kliore et al., 1985, Keating et al., 1985). Five experiments on European Space Agency's Venus Express orbiter mission have yielded results on the atmospheric structure during is operational life (April 2006 - November 2014). Three of these were from occultation methods: at near infrared wavelengths from solar occultations, (SOIR, 70 - 170 km), at ultraviolet wavelengths from stellar occultations (SPICAV, 90-140 km), and occultation of the VEx-Earth radio signal (VeRa, 40-90 km). In-situ drag measurements from three different techniques (accelerometry, torque, and radio tracking, 130 - 200 km) were also obtained using the spacecraft itself while passive infrared remote sensing was used by the VIRTIS experiment (70 - 120 km). The only new data in the -40-70 km altitude range are from radio occultation, as no new profiles of the deep atmosphere have been obtained since the VeGa 2 lander measurements in 1985 (not included in VIRA). Some selected ground based results available to the team were also considered by team in the inter comparisons. The temperature structure in the lower thermosphere from disk resolved ground based observations (except for one ground based investigation), is generally consistent with the Venus Express results. These experiments sampled at different periods, at different locations and at different local times and have different vertical and horizontal resolution and coverage. The data were therefore binned in latitude and local time bins and compared, ignoring temporal variations over the life time of the Venus Express mission and assumed north-south symmetry. Alternating warm and cooler layers are present in the 120-160 altitude range in results

  15. GLAST and Ground-Based Gamma-Ray Astronomy

    Science.gov (United States)

    McEnery, Julie

    2008-01-01

    The launch of the Gamma-ray Large Area Space Telescope together with the advent of a new generation of ground-based gamma-ray detectors such as VERITAS, HESS, MAGIC and CANGAROO, will usher in a new era of high-energy gamma-ray astrophysics. GLAST and the ground based gamma-ray observatories will provide highly complementary capabilities for spectral, temporal and spatial studies of high energy gamma-ray sources. Joint observations will cover a huge energy range, from 20 MeV to over 20 TeV. The LAT will survey the entire sky every three hours, allowing it both to perform uniform, long-term monitoring of variable sources and to detect flaring sources promptly. Both functions complement the high-sensitivity pointed observations provided by ground-based detectors. Finally, the large field of view of GLAST will allow a study of gamma-ray emission on large angular scales and identify interesting regions of the sky for deeper studies at higher energies. In this poster, we will discuss the science returns that might result from joint GLAST/ground-based gamma-ray observations and illustrate them with detailed source simulations.

  16. GLAST and Ground-Based Gamma-Ray Astronomy

    Science.gov (United States)

    McEnery, Julie

    2008-01-01

    The launch of the Gamma-ray Large Area Space Telescope together with the advent of a new generation of ground-based gamma-ray detectors such as VERITAS, HESS, MAGIC and CANGAROO, will usher in a new era of high-energy gamma-ray astrophysics. GLAST and the ground based gamma-ray observatories will provide highly complementary capabilities for spectral, temporal and spatial studies of high energy gamma-ray sources. Joint observations will cover a huge energy range, from 20 MeV to over 20 TeV. The LAT will survey the entire sky every three hours, allowing it both to perform uniform, long-term monitoring of variable sources and to detect flaring sources promptly. Both functions complement the high-sensitivity pointed observations provided by ground-based detectors. Finally, the large field of view of GLAST will allow a study of gamma-ray emission on large angular scales and identify interesting regions of the sky for deeper studies at higher energies. In this poster, we will discuss the science returns that might result from joint GLAST/ground-based gamma-ray observations and illustrate them with detailed source simulations.

  17. Mapping spectroscopic uncertainties into prospective methane retrieval errors from Sentinel-5 and its precursor

    Directory of Open Access Journals (Sweden)

    R. Checa-Garcia

    2015-09-01

    Full Text Available Sentinel-5 (S5 and its precursor (S5P are future European satellite missions aiming at global monitoring of methane (CH4 column-average dry air mole fractions (XCH4. The spectrometers to be deployed onboard the satellites record spectra of sunlight backscattered from the Earth's surface and atmosphere. In particular, they exploit CH4 absorption in the shortwave infrared spectral range around 1.65 μm (S5 only and 2.35 μm (both S5 and S5P wavelength. Given an accuracy goal of better than 2 % for XCH4 to be delivered on regional scales, assessment and reduction of potential sources of systematic error such as spectroscopic uncertainties is crucial. Here, we investigate how spectroscopic errors propagate into retrieval errors on the global scale. To this end, absorption spectra of a ground-based Fourier transform spectrometer (FTS operating at very high spectral resolution serve as estimate for the quality of the spectroscopic parameters. Feeding the FTS fitting residuals as a perturbation into a global ensemble of simulated S5- and S5P-like spectra at relatively low spectral resolution, XCH4 retrieval errors exceed 0.6 % in large parts of the world and show systematic correlations on regional scales, calling for improved spectroscopic parameters.

  18. Mapping spectroscopic uncertainties into prospective methane retrieval errors from Sentinel-5 and its precursor

    Directory of Open Access Journals (Sweden)

    R. Checa-Garcia

    2015-01-01

    Full Text Available Sentinel-5 (S5 and its precursor (S5P are future European satellite missions aiming at global monitoring of methane (CH4 column average dry air mole fractions (XCH4. The spectrometers to be deployed on-board the satellites record spectra of sunlight backscattered from the Earth's surface and atmosphere. In particular, they exploit CH4 absorption in the shortwave infrared spectral range around 1.65 μm (S5 only and 2.35 μm (both, S5 and S5P wavelength. Given an accuracy goal of better than 2% for XCH4 to be delivered on regional scales, assessment and reduction of potential sources of systematic error such as spectroscopic uncertainties is crucial. Here, we investigate how spectroscopic errors propagate into retrieval errors on the global scale. To this end, absorption spectra of a ground-based Fourier Transform Spectrometer (FTS operating at very high spectral resolution serve as estimate for the quality of the spectroscopic parameters. Feeding the FTS fitting residuals as a perturbation into a global ensemble of simulated S5 and S5P-like spectra at relatively low spectral resolution, XCH4 retrieval errors exceed 1% in large parts of the world and show systematic correlations on regional scales, calling for improved spectroscopic parameters.

  19. Dynamical interstellar medium with Gaia and ground-based massive spectroscopic stellar surveys

    CERN Document Server

    Zwitter, Tomaž

    2015-01-01

    The ongoing Gaia mission of ESA will provide accurate spatial and kinematical information for a large fraction of stars in the Galaxy. Interstellar extinction and line absorption studies toward a large number of stars at different distances and directions can give a 3-dimensional distribution map of interstellar absorbers, and thus reach a similar spatial perfection. Under certain morphologies (e.g. geometrically thin absorption curtains) one can infer a complete velocity vector from its radial velocity component and so obtain a dynamical information comparable to stars. But observations of a large number of stars at different distances are needed to determine the location of the absorption pockets. Therefore, techniques to measure interstellar absorptions towards (abundant) cool stars are needed. A complex mix of colliding absorption clouds is found in the Galactic plane. Thus, one would wish to start with deep observations to detect the weak, but simpler interstellar absorptions at high Galactic latitudes. ...

  20. The gamma Dor CoRoT target HD49434. I-Results from the ground-based campaign

    OpenAIRE

    Uytterhoeven, K.; Mathias, P.; Poretti, E.; RAINER, M.; Martin-Ruiz, S.; Rodriguez, E.; Amado, P. J.; LeContel, D.; Jankov, S.; Niemczura, E.; Pollard, K.; Brunsden, E.; M. Paparo; Costa, V; Valtier, J.-C.

    2008-01-01

    Context: We present the results of an extensive ground-based photometric and spectroscopic campaign on the gamma Dor CoRoT target HD49434. This campaign was preparatory to the CoRoT satellite observations, which took place from October 2007 to March 2008. Results: The frequency analysis clearly shows the presence of four frequencies in the 0.2-1.7 c/d interval, as well as six frequencies in the 5-12 c/d domain. The low frequencies are typical for gamma Dor variables while the high frequencies...

  1. Ground-based observations of Kepler asteroseismic targets

    CERN Document Server

    Uytterhoeven, K; Southworth, J; Randall, S; Ostensen, R; Molenda-Zakowicz, J; Marconi, M; Kurtz, D W; Kiss, L; Gutierrez-Soto, J; Frandsen, S; De Cat, P; Bruntt, H; Briquet, M; Zhang, X B; Telting, J H; Steslicki, M; Ripepi, V; Pigulski, A; Paparo, M; Oreiro, R; Choong, Ngeow Chow; Niemczura, E; Nemec, J; Narwid, A; Mathias, P; Martin-Ruiz, S; Lehman, H; Kopacki, G; Karoff, C; Jackiewicz, J; Henden, A A; Handler, G; Grigachene, A; Green, E M; Garrido, R; Machado, L Fox; Debosscher, J; Creevey, O L; Catanzaro, G; Bognar, Z; Biazzo, K; Bernabei, S

    2010-01-01

    We present the ground-based activities within the different working groups of the Kepler Asteroseismic Science Consortium (KASC). The activities aim at the systematic characterization of the 5000+ KASC targets, and at the collection of ground-based follow-up time-series data of selected promising Kepler pulsators. So far, 35 different instruments at 30 telescopes on 22 different observatories in 12 countries are in use, and a total of more than 530 observing nights has been awarded. (Based on observations made with the Isaac Newton Telescope, William Herschel Telescope, Nordic Optical Telescope, Telescopio Nazionale Galileo, Mercator Telescope (La Palma, Spain), and IAC-80 (Tenerife, Spain). Also based on observations taken at the observatories of Sierra Nevada, San Pedro Martir, Vienna, Xinglong, Apache Point, Lulin, Tautenburg, Loiano, Serra la Nave, Asiago, McDonald, Skinakas, Pic du Midi, Mauna Kea, Steward Observatory, Bialkow Observatory of the Wroclaw University, Piszkesteto Mountain Station, Observato...

  2. Ground-based Nuclear Detonation Detection (GNDD) Technology Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    Casey, Leslie A.

    2014-01-13

    This GNDD Technology Roadmap is intended to provide guidance to potential researchers and help management define research priorities to achieve technology advancements for ground-based nuclear explosion monitoring science being pursued by the Ground-based Nuclear Detonation Detection (GNDD) Team within the Office of Nuclear Detonation Detection in the National Nuclear Security Administration (NNSA) of the U.S. Department of Energy (DOE). Four science-based elements were selected to encompass the entire scope of nuclear monitoring research and development (R&D) necessary to facilitate breakthrough scientific results, as well as deliver impactful products. Promising future R&D is delineated including dual use associated with the Comprehensive Nuclear-Test-Ban Treaty (CTBT). Important research themes as well as associated metrics are identified along with a progression of accomplishments, represented by a selected bibliography, that are precursors to major improvements to nuclear explosion monitoring.

  3. First retrievals of methane isotopologues from FTIR ground-based observations

    Science.gov (United States)

    Bader, Whitney; Strong, Kimberly; Walker, Kaley; Buzan, Eric

    2017-04-01

    Atmospheric methane concentrations have reached a new high at 1845 ± 2 ppb, accounting for an increase of 256 % since pre-industrial times (WMO, 2016). In the last ten years, methane has been on the rise again at rates of ˜0.3%/year (e.g., Bader et al., 2016), after a period of stabilization of about 5 years. This recent increase is not fully understood due to remaining uncertainties in the methane budget, influenced by numerous anthropogenic and natural emission sources. In order to examine the cause(s) of this increase, we focus on the two main methane isotopologues, i.e. CH3D and 13CH4. Both CH3D and 13CH4 are emitted in the atmosphere with different ratio depending on the emission processes involved. As heavier isotopologues will react more slowly than 12CH4, each isotopologue will be depleted from the atmosphere at a specific rate depending on the removal process. Methane isotopologues are therefore good tracers of the methane budget. In this contribution, the first development and optimization of the retrieval strategy of CH3D as well as the preliminary tests for 13CH4 will be presented and discussed , using FTIR (Fourier Transform infrared) solar spectra collected at the Eureka (80.05 ˚ N, -86.42 ˚ E, 610 m a.s.l.) and Toronto (43.66˚ N, -79.4˚ E, 174 m a.s.l.) ground-based sites. Mixing ratio vertical profiles from a Whole Atmosphere Community Climate Model (WACCM v.4, Marsh et al., 2013) simulation developed by Buzan et al. (2016) are used as a priori inputs. A discussion on the type of regularization constraints used for the retrievals will be presented as well as an evaluation of available spectroscopy (primarily the different editions of the HITRAN database, see Rothman et al., 2013 and references therein). The uncertainties affecting the retrieved columns as well as information content evaluation will be discussed in order to assess the best strategy to be employed based on its altitude sensitivity range and complete error budget. Acknowledgments

  4. Ground-Based Calibration Of A Microwave Landing System

    Science.gov (United States)

    Kiriazes, John J.; Scott, Marshall M., Jr.; Willis, Alfred D.; Erdogan, Temel; Reyes, Rolando

    1996-01-01

    System of microwave instrumentation and data-processing equipment developed to enable ground-based calibration of microwave scanning-beam landing system (MSBLS) at distances of about 500 to 1,000 ft from MSBLS transmitting antenna. Ensures accuracy of MSBLS near touchdown point, without having to resort to expense and complex logistics of aircraft-based testing. Modified versions prove useful in calibrating aircraft instrument landing systems.

  5. Comparison of ground-based FTIR and Brewer O3 total column with data from two different IASI algorithms and from OMI and GOME-2 satellite instruments

    OpenAIRE

    Blumenstock, T.; J.-M. Flaud; P. Chelin; Eremenko, M.; A. Redondas; Hase, F.; Schneider, M; C. Viatte; Orphal, J

    2011-01-01

    An intercomparison of ozone total column measurements derived from various platforms is presented in this work. Satellite data from Infrared Atmospheric Sounding Interferometer (IASI), Ozone Monitoring Instrument (OMI) and Global Ozone Monitoring Experiment (GOME-2) are compared with data from two ground-based spectrometers (Fourier Transform Infrared spectrometer FTIR and Brewer), located at the Network for Detection of Atmospheric Composition Change (NDACC) super-site of Izaña (Tenerife), m...

  6. Infrared Thermometer (IRT) Handbook

    Energy Technology Data Exchange (ETDEWEB)

    VR Morris

    2006-10-30

    The Infrared Thermometer (IRT) is a ground-based radiation pyrometer that provides measurements of the equivalent blackbody brightness temperature of the scene in its field of view. The downwelling version has a narrow field of view for measuring sky temperature and for detecting clouds. The upwelling version has a wide field of view for measuring the narrowband radiating temperature of the ground surface.

  7. Ground-Based Lidar for Atmospheric Boundary Layer Ozone Measurements

    Science.gov (United States)

    Kuang, Shi; Newchurch, Michael J.; Burris, John; Liu, Xiong

    2013-01-01

    Ground-based lidars are suitable for long-term ozone monitoring as a complement to satellite and ozonesonde measurements. However, current ground-based lidars are unable to consistently measure ozone below 500 m above ground level (AGL) due to both engineering issues and high retrieval sensitivity to various measurement errors. In this paper, we present our instrument design, retrieval techniques, and preliminary results that focus on the high-temporal profiling of ozone within the atmospheric boundary layer (ABL) achieved by the addition of an inexpensive and compact mini-receiver to the previous system. For the first time, to the best of our knowledge, the lowest, consistently achievable observation height has been extended down to 125 m AGL for a ground-based ozone lidar system. Both the analysis and preliminary measurements demonstrate that this lidar measures ozone with a precision generally better than 10% at a temporal resolution of 10 min and a vertical resolution from 150 m at the bottom of the ABL to 550 m at the top. A measurement example from summertime shows that inhomogeneous ozone aloft was affected by both surface emissions and the evolution of ABL structures.

  8. Ground-based lidar for atmospheric boundary layer ozone measurements.

    Science.gov (United States)

    Kuang, Shi; Newchurch, Michael J; Burris, John; Liu, Xiong

    2013-05-20

    Ground-based lidars are suitable for long-term ozone monitoring as a complement to satellite and ozonesonde measurements. However, current ground-based lidars are unable to consistently measure ozone below 500 m above ground level (AGL) due to both engineering issues and high retrieval sensitivity to various measurement errors. In this paper, we present our instrument design, retrieval techniques, and preliminary results that focus on the high-temporal profiling of ozone within the atmospheric boundary layer (ABL) achieved by the addition of an inexpensive and compact mini-receiver to the previous system. For the first time, to the best of our knowledge, the lowest, consistently achievable observation height has been extended down to 125 m AGL for a ground-based ozone lidar system. Both the analysis and preliminary measurements demonstrate that this lidar measures ozone with a precision generally better than ±10% at a temporal resolution of 10 min and a vertical resolution from 150 m at the bottom of the ABL to 550 m at the top. A measurement example from summertime shows that inhomogeneous ozone aloft was affected by both surface emissions and the evolution of ABL structures.

  9. H2O and δD profiles remotely-sensed from ground in different spectral infrared regions

    Directory of Open Access Journals (Sweden)

    F. Hase

    2010-07-01

    Full Text Available We present ground-based FTIR (Fourier transform infrared water vapour analyses performed for three different spectral regions: in the mid-infrared at 790–1330 cm−1 and 2650–3180 cm−1 as well as in the near infrared at 4560–4710 cm−1. All three analyses allow the retrieval of lower, middle, and upper tropospheric water vapour amounts with a vertical resolution of about 2, 4, and 6 km, respectively. The mid-infrared analyses allow in addition the retrieval of lower and middle/upper tropospheric δD values with a vertical resolution of 3 and 7 km, respectively. The H2O profiles retrieved in all three spectral regions show a very good agreement with coincident Vaisala RS92 radiosonde measurements performed on seven different days during the Measurements of Humidity in the Atmosphere and Validation Experiment (MOHAVE 2009 campaign. We analyse 325 ground-based FTIR spectra measured on 11 different days. For optimised line parameters we find that the 325 H2O profiles retrieved in each of the three spectral regions and the 325 δD profiles retrieved in the two mid-infrared regions agree very well. Spectroscopic parameters are the major error source for the ground-based remote sensing of δD profiles. Our inter-comparison of the two different mid-infrared spectral regions allows thus an empirical estimation of the precision of the remotely-sensed δD data of 10 and 20‰, for the lower and middle/upper troposphere, respectively.

  10. AOLI: Near-diffraction limited imaging in the visible on large ground-based telescopes

    CERN Document Server

    Mackay, Craig; King, David; Labadie, Lucas; Antolin, Marta Puga; Garrido, Antonio; Colodro-Conde, Carlos; Lopez, Roberto; Muthusubramanian, Balaji; Oscoz, Alejandro; Rodriguez-Ramos, Jose; Rodriquez-Ramos, Luis; Fernandez-Valdivia, Jose; Velasco, Sergio

    2016-01-01

    The combination of Lucky Imaging with a low order adaptive optics system was demonstrated very successfully on the Palomar 5m telescope nearly 10 years ago. It is still the only system to give such high-resolution images in the visible or near infrared on ground-based telescope of faint astronomical targets. The development of AOLI for deployment initially on the WHT 4.2 m telescope in La Palma, Canary Islands, will be described in this paper. In particular, we will look at the design and status of our low order curvature wavefront sensor which has been somewhat simplified to make it more efficient, ensuring coverage over much of the sky with natural guide stars as reference object. AOLI uses optically butted electron multiplying CCDs to give an imaging array of 2000 x 2000 pixels.

  11. CO2 Total Column Variability From Ground-Based FTIR Measurements Over Central Mexico

    Science.gov (United States)

    Baylon, J. L.; Stremme, W.; Plaza, E.; Bezanilla, A.; Grutter, M.; Hase, F.; Blumenstock, T.

    2014-12-01

    There are now several space missions dedicated to measure greenhouse gases in order to improve the understanding of the carbon cycle. Ground based measurement sites are of great value in the validation process, however there are only a few stations in tropical latitudes. We present measurements of solar-absorption infrared spectra recorded on two locations over Central Mexico: the High-Altitude Station Altzomoni (19.12 N, 98.65 W), located in the Izta-Popo National Park outside of Mexico City; and the UNAM's Atmospheric Observatory (19.32 N, 99.17 W) in Mexico City. These measurements were performed using a high resolution Fourier transform infrared spectrometer FTIR (Bruker, HR 120/5) at Altzomoni and a moderate resolution FTIR (Bruker, Vertex 80) within the city. In this work, we present the first results for total vertical columns of CO2 derived from near-infrared spectra recorded at both locations using the retrieval code PROFFIT. We present the seasonal cycle and variability from the measurements, as well as the full diagnostics of the retrieval in order assess its quality and discuss the differences of both instruments and locations (altitudes, urban vs remote). This work aims to contribute to generate high quality datasets for satellite validation.

  12. Ground-based imaging remote sensing of ice clouds: uncertainties caused by sensor, method and atmosphere

    Science.gov (United States)

    Zinner, Tobias; Hausmann, Petra; Ewald, Florian; Bugliaro, Luca; Emde, Claudia; Mayer, Bernhard

    2016-09-01

    In this study a method is introduced for the retrieval of optical thickness and effective particle size of ice clouds over a wide range of optical thickness from ground-based transmitted radiance measurements. Low optical thickness of cirrus clouds and their complex microphysics present a challenge for cloud remote sensing. In transmittance, the relationship between optical depth and radiance is ambiguous. To resolve this ambiguity the retrieval utilizes the spectral slope of radiance between 485 and 560 nm in addition to the commonly employed combination of a visible and a short-wave infrared wavelength.An extensive test of retrieval sensitivity was conducted using synthetic test spectra in which all parameters introducing uncertainty into the retrieval were varied systematically: ice crystal habit and aerosol properties, instrument noise, calibration uncertainty and the interpolation in the lookup table required by the retrieval process. The most important source of errors identified are uncertainties due to habit assumption: Averaged over all test spectra, systematic biases in the effective radius retrieval of several micrometre can arise. The statistical uncertainties of any individual retrieval can easily exceed 10 µm. Optical thickness biases are mostly below 1, while statistical uncertainties are in the range of 1 to 2.5.For demonstration and comparison to satellite data the retrieval is applied to observations by the Munich hyperspectral imager specMACS (spectrometer of the Munich Aerosol and Cloud Scanner) at the Schneefernerhaus observatory (2650 m a.s.l.) during the ACRIDICON-Zugspitze campaign in September and October 2012. Results are compared to MODIS and SEVIRI satellite-based cirrus retrievals (ACRIDICON - Aerosol, Cloud, Precipitation, and Radiation Interactions and Dynamics of Convective Cloud Systems; MODIS - Moderate Resolution Imaging Spectroradiometer; SEVIRI - Spinning Enhanced Visible and Infrared Imager). Considering the identified

  13. Ground-based Light Curves Two Pluto Days Before the New Horizons Passage

    Science.gov (United States)

    Bosh, A. S.; Pasachoff, J. M.; Babcock, B. A.; Durst, R. F.; Seeger, C. H.; Levine, S. E.; Abe, F.; Suzuki, D.; Nagakane, M.; Sickafoose, A. A.; Person, M. J.; Zuluaga, C.; Kosiarek, M. R.

    2015-12-01

    We observed the occultation of a 12th magnitude star, one of the two brightest occultation stars ever in our dozen years of continual monitoring of Pluto's atmosphere through such studies, on 29 June 2015 UTC. At Canterbury University's Mt. John University Observatory on the south island of New Zealand, in clear sky, we used our POETS frame-transfer CCD at 10 Hz with GPS timing on the 1-m McLellan telescope as well as an infrared camera on an 0.6-m telescope and three-color photometry at a slower cadence on a second 0.6-m telescope. The light curves show a central flash, indicating that we were close to the center of the occultation path, and allowing us to explore Pluto's atmosphere lower than usual. The light curves show that Pluto's atmosphere remained robust. Observations from 0.5- and 0.4-m telescopes at the Auckland Observatory gave the first half of the occultation before clouds came in. We coordinated our observations with aircraft observations with NASA's Stratospheric Observatory for Infrared Astronomy (SOFIA) and its High Speed Imaging Photometer for Occultations (HIPO). Our ground-based and airborne stellar-occultation effort came only just over two weeks of Earth days and two Pluto days (based on Pluto's rotational period) before the flyby of NASA's New Horizons spacecraft, meaning that the mission's exquisite snapshot of Pluto's atmosphere can be placed in the context of our series of ground-based occultation observations carried out on a regular basis since 2002 following a first Pluto occultation observed in 1988 from aloft. Our observations were supported by NASA Planetary Astronomy grants NNX12AJ29G to Williams College, NNX15AJ82G to Lowell Observatory, and NNX10AB27G to MIT, and by the National Research Foundation of South Africa. We thank Alan Gilmore, Pam Kilmartin, Robert Lucas, Paul Tristam, and Carolle Varughese for assistance at Mt. John.

  14. Mesospheric minor species determinations from rocket and ground-based i.r. measurements

    Science.gov (United States)

    Ulwick, J. C.; Baker, K. D.; Baker, D. J.; Steed, A. J.; Pendleton, W. R.; Grossmann, K.; Brückelmann, H. G.

    As part of the MAP/WINE campaign the infrared hydroxyl airglow layer was investigated at Kiruna, Sweden, by simultaneous measurements with rocket probes of OH ≠ and O2( a1Δg) infrared emissions and concentrations of odd oxygen species (O and O 3). Coordinated measurements of OH ≠ and O2( a1Δg) zenith radiance and emission spectra and their time histories were made from the ground. The rocket-borne Λ = 1.55 μm radiometer ( ΔΛ ≊ 0.23 μm) provided volume emission rates for OH for both rocket ascent and descent, showing a peak near 87 km with a maximum of nearly 10 6 photons sec -1 cm -3. The atomic oxygen distribution showed a concentration of about 10 11 cm -3 between 88 and 100 km, dropping off sharply below 85 km. The ground-based radiometer at Λ = 1.56 μm, which had a similar filter bandpass to the rocket-borne instrument, yielded an equivalent of 130 kR for the total OH Δv = 2 sequence, which is consistent with the zenith-corrected rocket-based sequence radiance value of ≌ 110 kR. The rotational temperature of the OH night airglow obtained from the rotational structure of the OH M (3,1) band observed by the ground-based interferometer was about 195K at the time of the rocket measurement. Atomic oxygen concentrations were calculated from the OH profile and show agreement with the directly measured values. Atomic hydrogen concentrations of a few times 10 7 cm -3 near 85 km were inferred from the data set.

  15. The STACEE-32 Ground Based Gamma-ray Detector

    CERN Document Server

    Hanna, D S; Boone, L M; Chantell, M C; Conner, Z; Covault, C E; Dragovan, M; Fortin, P; Gregorich, D T; Hinton, J A; Mukherjee, R; Ong, R A; Oser, S; Ragan, K; Scalzo, R A; Schütte, D R; Theoret, C G; Tümer, T O; Williams, D A; Zweerink, J A

    2002-01-01

    We describe the design and performance of the Solar Tower Atmospheric Cherenkov Effect Experiment detector in its initial configuration (STACEE-32). STACEE is a new ground-based gamma ray detector using the atmospheric Cherenkov technique. In STACEE, the heliostats of a solar energy research array are used to collect and focus the Cherenkov photons produced in gamma-ray induced air showers. The large Cherenkov photon collection area of STACEE results in a gamma-ray energy threshold below that of previous detectors.

  16. The STACEE Ground-Based Gamma-Ray Detector

    CERN Document Server

    Gingrich, D M; Bramel, D; Carson, J; Covault, C E; Fortin, P; Hanna, D S; Hinton, J A; Jarvis, A; Kildea, J; Lindner, T; Müller, C; Mukherjee, R; Ong, R A; Ragan, K; Scalzo, R A; Theoret, C G; Williams, D A; Zweerink, J A

    2005-01-01

    We describe the design and performance of the Solar Tower Atmospheric Cherenkov Effect Experiment (STACEE) in its complete configuration. STACEE uses the heliostats of a solar energy research facility to collect and focus the Cherenkov photons produced in gamma-ray induced air showers. The light is concentrated onto an array of photomultiplier tubes located near the top of a tower. The large Cherenkov photon collection area of STACEE results in a gamma-ray energy threshold below that of previous ground-based detectors. STACEE is being used to observe pulsars, supernova remnants, active galactic nuclei, and gamma-ray bursts.

  17. Research on target accuracy for ground-based lidar

    Science.gov (United States)

    Zhu, Ling; Shi, Ruoming

    2009-05-01

    In ground based Lidar system, the targets are used in the process of registration, georeferencing for point cloud, and also can be used as check points. Generally, the accuracy of capturing the flat target center is influenced by scanning range and scanning angle. In this research, the experiments are designed to extract accuracy index of the target center with 0-90°scan angles and 100-195 meter scan ranges using a Leica HDS3000 laser scanner. The data of the experiments are listed in detail and the related results are analyzed.

  18. Constraints on the Bulk Composition of Uranus from Herschel PACS and ISO LWS Photometry, SOFIA FORCAST Photometry and Spectroscopy, and Ground-Based Photometry of its Thermal Emission

    Science.gov (United States)

    Orton, Glenn; Mueller, Thomas; Burgdorf, Martin; Fletcher, Leigh; de Pater, Imke; Atreya, Sushil; Adams, Joseph; Herter, Terry; Keller, Luke; Sidher, Sunil; Sinclair, James; Fujiyoshi, Takuya

    2016-04-01

    We present thermal infrared observations of the disk of Uranus at 17-200 μm to deduce its global thermal structure and bulk composition. We combine 17-200 μm filtered photometric measurements by the Herschel PACS and ISO LWS instruments and 19-35 μm filtered photometry and spectroscopy by the SOFIA FORCAST instrument, supplemented by 17-25 μm ground-based photometric filtered imaging of Uranus. Previous analysis of infrared spectroscopic measurements of the disk of Uranus made by the Spitzer IRS instrument yielded a model for the disk-averaged temperature profile and stratospheric composition (Orton et al. 2014a Icarus 243,494; 2014b Icarus 243, 471) that were consistent with submillimeter spectroscopy by the Herschel SPIRE instrument (Swinyard et al. 2014, MNRAS 440, 3658). Our motivation to observe the 17-35 μm spectrum was to place more stringent constraints on the global para-H2 / ortho-H2 ratio in the upper troposphere and lower stratosphere than the ISO SWS results of Fouchet et al. (2003, Icarus 161, 127), who examined H2 quadrupole lines. We will discuss the consistency of these observations with a higher para-H2 fraction than implied by local thermal equilibrium, which would resolve a discrepancy between the Spitzer-based model and observations of HD lines by the Herschel PACS experiment (Feuchtgruber et al. 2013 Astron. & Astrophys. 551, A126). Constraints on the global para-H2 fraction allow for more precise analysis of the far-infrared spectrum, which is sensitive to the He:H2 ratio, a quantity that was not constrained by the Spitzer IRS spectra. The derived model, which assumed the ratio derived by the Voyager-2 IRIS/radio-science occultation experiment (Conrath et al. 1987 J. Geophys. Res. 92, 15003), is inconsistent with 70-200 μm PACS photometry (Mueller et al. 2016 Astron. & Astrophys. submittted) and ISO LWS photometric measurements. However, the model can be made consistent with the observations if the fraction of He relative to H2 were

  19. Non-destructive analysis of the nuclei of transgenic living cells using laser tweezers and near-infrared raman spectroscopic technique

    National Research Council Canada - National Science Library

    Tang, Wei; Newton, Ronald J; Xie, Chang An; Li, Yong Qing; Whitley, Nicki

    2005-01-01

    ...) system in this investigation. A low power diode laser at 785 nm was used for both laser optical trapping of single transgenic cells and excitation for near-infrared Raman spectroscopy of the nuclei of synchronized cells, which...

  20. Ground-Based Global Positioning System (GPS) Meteorology Integrated Precipitable Water Vapor (IPW)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Ground-Based Global Positioning System (GPS) Meteorology Integrated Precipitable Water Vapor (IPW) data set measures atmospheric water vapor using ground-based...

  1. Statistical Studies of Ground-Based Optical Lightning Signatures

    Science.gov (United States)

    Hunt, C. R.; Nemzek, R. J.; Suszcynsky, D. M.

    2005-12-01

    Most extensive optical studies of lightning have been conducted from orbit, and the statistics of events collected from earth are relatively poorly documented. The time signatures of optical power measured in the presence of clouds are inevitably affected by scattering,which can distort the signatures by extending and delaying the amplitude profile in time. We have deployed two all-sky photodiode detectors, one in New Mexico and one in Oklahoma, which are gathering data alongside electric field change monitors as part of the LANL EDOTX Great Plains Array. Preliminary results show that the photodiode is sensitive to approximately 50% or more of RF events detected at ranges of up to 30 km, and still has some sensitivity at ranges in excess of 60 km (distances determined by the EDOTX field-change array). The shapes of events within this range were assessed, with focus on rise time, width, peak power, and their correlation to corresponding electric field signatures, and these are being compared with published on-orbit and ground-based data. Initial findings suggest a mean characteristic width (ratio of total detected optical energy to peak power) of 291 +/- 12 microseconds and a mean delay between the RF signal peak and optical peak of 121 +/- 17 microseconds. These values fall between prior ground-based measurements of direct return stroke emissions, and scattering-dominated on-orbit measurements. This work will promote better understanding of the correspondence between radio and optical measurements of lightning.

  2. Infrared Solar Physics

    Directory of Open Access Journals (Sweden)

    Matthew J. Penn

    2014-05-01

    Full Text Available The infrared solar spectrum contains a wealth of physical data about our Sun, and is explored using modern detectors and technology with new ground-based solar telescopes. The scientific motivation behind exploring these wavelengths is presented, along with a brief look at the rich history of observations here. Several avenues of solar physics research exploiting and benefiting from observations at infrared wavelengths from roughly 1000 nm to 12 400 nm are discussed, and the instrument and detector technology driving this research is briefly summarized. Finally, goals for future work at infrared wavelengths are presented in conjunction with ground and space-based observations.

  3. Investigating the long-term evolution of subtropical ozone profiles applying ground-based FTIR spectrometry [Discussion paper

    OpenAIRE

    García, O.E.; Schneider, M; A. Redondas; Y. González; Hase, F.; Blumenstock, T.; Sepúlveda, E.

    2012-01-01

    We investigate the long-term evolution of subtropical ozone profile time series (1999–2010) obtained from different ground-based FTIR (Fourier Transform InfraRed) retrieval setups. We examine the influence of an additional temperature retrieval and different constraints. The study is performed at the Izaña Observatory ozone super-site (Tenerife Island, Spain). The FTIR system is able to resolve four independent ozone layers with a theoretical precision of better than 7.5% in the troposphere, ...

  4. NASA's Newest Orbital Debris Ground-based Telescope Assets: MCAT and UKIRT

    Science.gov (United States)

    Lederer, S. M.; Frith, J. M.; Pace, L. F.; Cowardin, H. M.; Cowardin, H. M.; Hickson, P.; Glesne, T.; Maeda, R.; Buckalew, B.; Nishimoto, D.; hide

    2014-01-01

    NASA's Orbital Debris Program Office (ODPO) will break ground on Ascension Island in 2014 to build the newest optical (0.30 - 1.06 micrometers) ground-based telescope asset dedicated to the study of orbital debris. The Meter Class Autonomous Telescope (MCAT) is a 1.3m optical telescope designed to track objects in orbits ranging from Low Earth Orbit (LEO) to Geosynchronous Earth Orbit (GEO). Ascension Island is located in the South Atlantic Ocean, offering longitudinal sky coverage not afforded by the Ground-based Electro-Optical Deep Space Surveillance (GEODSS) network. With a fast-tracking dome, a suite of visible wide-band filters, and a time-delay integration (TDI) capable camera, MCAT is capable of multiple observing modes ranging from tracking cataloged debris targets to surveying the overall debris environment. Access to the United Kingdom Infrared Telescope (UKIRT) will extend our spectral coverage into the near- (0.8-5 micrometers) and mid- to far-infrared (8-25 micrometers) regime. UKIRT is a 3.8m telescope located on Mauna Kea on the Big Island of Hawaii. At nearly 14,000-feet and above the atmospheric inversion layer, this is one of the premier astronomical sites in the world and is an ideal setting for an infrared telescope. An unprecedented one-third of this telescope's time has been allocated to collect orbital debris data for NASA's ODPO over a 2-year period. UKIRT has several instruments available to obtain low-resolution spectroscopy in both the near-IR and the mid/far-IR. Infrared spectroscopy is ideal for constraining the material types, albedos and sizes of debris targets, and potentially gaining insight into reddening effects caused by space weathering. In addition, UKIRT will be used to acquire broadband photometric imaging at GEO with the Wide Field Camera (WFCAM) for studying known objects of interest as well as collecting data in survey-mode to discover new targets. Results from the first stage of the debris campaign will be presented. The

  5. Transition metal chemistry under high carbon monoxide pressure: an infrared spectroscopic study of catalysis in the Fischer--Tropsch reaction. [7 refs

    Energy Technology Data Exchange (ETDEWEB)

    King, R.B.; King, A.D. Jr.; Iqbal, M.Z.; Frazier, C.C.

    1977-01-01

    This project involves the design and construction of equipment to investigate the infrared spectra of metal carbonyl derivatives in the 1600 to 2200 cm./sup -1/ nu(CO) region at pressures up to 500 atmospheres and temperatures up to 250/sup 0/ followed by the use of this equipment to study the infrared spectra of a variety of transition metal derivatives at elevated pressures of carbon monoxide. The ultimate objective of this work is the discovery of new chemistry leading to the development of new systems which are catalytically active for the conversion of mixtures of carbon monoxide and hydrogen to hydrocarbons in connection with the conversion of coal to hydrocarbon fuels. During the initial period covered by this first progress report a high pressure infrared cell has been designed, constructed, and used for the preliminary investigations of reactions of about 15 transition metal derivatives under elevated pressure of carbon monoxide and hydrogen.

  6. The STACEE Ground-Based Gamma-ray Observatory

    Science.gov (United States)

    Ragan, Ken

    2002-04-01

    The Solar Tower Atmospheric Cherenkov Effect Experiment (STACEE) is a ground-based instrument designed to study astrophysical sources of gamma rays in the energy range from 50 to 500 GeV using an array of heliostat mirrors at the National Solar Thermal Test Facility in New Mexico. The mirrors collect Cherenkov light generated by gamma-ray air showers and concentrate it onto cameras composed of photomultiplier tubes. The STACEE instrument is now complete, and uses a total of 64 heliostats. Prototype instruments, using smaller numbers of heliostats, have previously detected gamma emission from both the Crab Nebula and the Active Galactic Nucleus Mrk421. The complete instrument has a lower threshold -- approximately 50 GeV -- than those prototypes due to superior triggering and electronics, including flash ADCs for every channel.We will discuss the performance of the complete instrument in its first full season of operation, and present preliminary results of selected observations.

  7. Atmospheric contamination for CMB ground-based observations

    CERN Document Server

    Errard, J; Akiba, Y; Arnold, K; Atlas, M; Baccigalupi, C; Barron, D; Boettger, D; Borrill, J; Chapman, S; Chinone, Y; Cukierman, A; Delabrouille, J; Dobbs, M; Ducout, A; Elleflot, T; Fabbian, G; Feng, C; Feeney, S; Gilbert, A; Goeckner-Wald, N; Halverson, N W; Hasegawa, M; Hattori, K; Hazumi, M; Hill, C; Holzapfel, W L; Hori, Y; Inoue, Y; Jaehnig, G C; Jaffe, A H; Jeong, O; Katayama, N; Kaufman, J; Keating, B; Kermish, Z; Keskitalo, R; Kisner, T; Jeune, M Le; Lee, A T; Leitch, E M; Leon, D; Linder, E; Matsuda, F; Matsumura, T; Miller, N J; Myers, M J; Navaroli, M; Nishino, H; Okamura, T; Paar, H; Peloton, J; Poletti, D; Puglisi, G; Rebeiz, G; Reichardt, C L; Richards, P L; Ross, C; Rotermund, K M; Schenck, D E; Sherwin, B D; Siritanasak, P; Smecher, G; Stebor, N; Steinbach, B; Stompor, R; Suzuki, A; Tajima, O; Takakura, S; Tikhomirov, A; Tomaru, T; Whitehorn, N; Wilson, B; Yadav, A; Zahn, O

    2015-01-01

    Atmosphere is one of the most important noise sources for ground-based Cosmic Microwave Background (CMB) experiments. By increasing optical loading on the detectors, it amplifies their effective noise, while its fluctuations introduce spatial and temporal correlations between detected signals. We present a physically motivated 3d-model of the atmosphere total intensity emission in the millimeter and sub-millimeter wavelengths. We derive an analytical estimate for the correlation between detectors time-ordered data as a function of the instrument and survey design, as well as several atmospheric parameters such as wind, relative humidity, temperature and turbulence characteristics. Using numerical computation, we examine the effect of each physical parameter on the correlations in the time series of a given experiment. We then use a parametric-likelihood approach to validate the modeling and estimate atmosphere parameters from the POLARBEAR-I project first season data set. We compare our results to previous st...

  8. Observational Selection Effects with Ground-based Gravitational Wave Detectors

    CERN Document Server

    Chen, Hsin-Yu; Vitale, Salvatore; Holz, Daniel E; Katsavounidis, Erik

    2016-01-01

    Ground-based interferometers are not perfectly all-sky instruments, and it is important to account for their behavior when considering the distribution of detected events. In particular, the LIGO detectors are most sensitive to sources above North America and the Indian Ocean and, as the Earth rotates, the sensitive regions are swept across the sky. However, because the detectors do not acquire data uniformly over time, there is a net bias on detectable sources' right ascensions. Both LIGO detectors preferentially collect data during their local night; it is more than twice as likely to be local midnight than noon when both detectors are operating. We discuss these selection effects and how they impact LIGO's observations and electromagnetic follow-up. Beyond galactic foregrounds associated with seasonal variations, we find that equatorial observatories can access over $80\\%$ of the localization probability, while mid-latitudes will access closer to $70\\%$. Facilities located near the two LIGO sites can obser...

  9. Progress in the ULTRA 1-m ground-based telescope

    Science.gov (United States)

    Romeo, Robert C.; Martin, Robert N.; Twarog, Bruce; Anthony-Twarog, Barbara; Taghavi, Ray; Hale, Rick; Etzel, Paul; Fesen, Rob; Shawl, Steve

    2006-06-01

    We present the technical status of the Ultra Lightweight Telescope for Research in Astronomy (ULTRA) program. The program is a 3-year Major Research Instrumentation (MRI) program funded by NSF. The MRI is a collaborative effort involving Composite Mirror Applications, Inc. (CMA), University of Kansas, San Diego State University and Dartmouth College. Objectives are to demonstrate the feasibility of carbon fiber reinforced plastic (CFRP) composite mirror technology for ground-based optical telescopes. CMA is spearheading the development of surface replication techniques to produce the optics, fabricating the 1m glass mandrel, and constructing the optical tube assembly (OTA). Presented will be an overview and status of the 1-m mandrel fabrication, optics development, telescope design and CFRP telescope fabrication by CMA for the ULTRA Telescope.

  10. Ground-based optical observation system for LEO objects

    Science.gov (United States)

    Yanagisawa, T.; Kurosaki, H.; Oda, H.; Tagawa, M.

    2015-08-01

    We propose a ground-based optical observation system for monitoring LEO objects, which uses numerous optical sensors to cover a vast region of the sky. Its potential in terms of detection and orbital determination were examined. About 30 cm LEO objects at 1000 km altitude are detectable using an 18 cm telescope, a CCD camera and the analysis software developed. Simulations and a test observation showed that two longitudinally separate observation sites with arrays of optical sensors can identify the same objects from numerous data sets and determine their orbits precisely. The proposed system may complement or replace the current radar observation system for monitoring LEO objects, like space-situation awareness, in the near future.

  11. Identification of rainy periods from ground based microwave radiometry

    Directory of Open Access Journals (Sweden)

    Ada Vittoria Bosisio

    2012-03-01

    Full Text Available In this paper the authors present the results of a study aiming at detecting rainy data in measurements collected by a dual band ground-based radiometer. The proposed criterion is based on the ratio of the brightness temperatures observed in the 20-30 GHz band without need of any ancillary information. A major result obtained from the probability density of the ratio computed over one month of data is the identification of threshold values between clear sky, cloudy sky and rainy sky, respectively. A linear fit performed by using radiometric data and concurrent rain gauge measurements shows a correlation coefficient equal to 0.56 between the temperature ratio and the observed precipitation.

  12. Optical vortex coronagraphs on ground-based telescopes

    CERN Document Server

    Jenkins, Charles

    2007-01-01

    The optical vortex coronagraph is potentially a remarkably effective device, at least for an ideal unobstructed telescope. Most ground-based telescopes however suffer from central obscuration and also have to operate through the aberrations of the turbulent atmosphere. This note analyzes the performance of the optical vortex in these circumstances and compares to some other designs, showing that it performs similarly in this situation. There is a large class of coronagraphs of this general type, and choosing between them in particular applications depends on details of performance at small off-axis distances and uniformity of response in the focal plane. Issues of manufacturability to the necessary tolerances are also likely to be important.

  13. Observational Selection Effects with Ground-based Gravitational Wave Detectors

    Science.gov (United States)

    Chen, Hsin-Yu; Essick, Reed; Vitale, Salvatore; Holz, Daniel; Katsavounidis, Erik

    2017-01-01

    Ground-based interferometers are not perfectly all-sky instruments, and it is important to account for their behavior when considering the distribution of detected events. In particular, the LIGO detectors are most sensitive to sources above North America and the Indian Ocean and, as the Earth rotates, the sensitive regions are swept across the sky. However, because the detectors do not acquire data uniformly over time, there is a net bias on detectable sources' right ascensions. Both LIGO detectors preferentially collect data during their local night; it is more than twice as likely to be local midnight than noon when both detectors are operating. We discuss these selection effects and how they impact LIGO's observations and electromagnetic follow-up. These effects can inform electromagnetic follow-up activities and optimization, including the possibility of directing observations even before gravitational-wave events occur.

  14. Unique cell culture systems for ground based research

    Science.gov (United States)

    Lewis, Marian L.

    1990-01-01

    The horizontally rotating fluid-filled, membrane oxygenated bioreactors developed at NASA Johnson for spacecraft applications provide a powerful tool for ground-based research. Three-dimensional aggregates formed by cells cultured on microcarrier beads are useful for study of cell-cell interactions and tissue development. By comparing electron micrographs of plant seedlings germinated during Shuttle flight 61-C and in an earth-based rotating bioreactor it is shown that some effects of microgravity are mimicked. Bioreactors used in the UAH Bioreactor Laboratory will make it possible to determine some of the effects of altered gravity at the cellular level. Bioreactors can be valuable for performing critical, preliminary-to-spaceflight experiments as well as medical investigations such as in vitro tumor cell growth and chemotherapeutic drug response; the enrichment of stem cells from bone marrow; and the effect of altered gravity on bone and muscle cell growth and function and immune response depression.

  15. Spatial-angular modeling of ground-based biaxial lidar

    Science.gov (United States)

    Agishev, Ravil R.

    1997-10-01

    Results of spatial-angular LIDAR modeling based on an efficiency criterion introduced are represented. Their analysis shows that a low spatial-angular efficiency of traditional VIS and NIR systems is a main cause of a low S/BR ratio at the photodetector input. It determines the considerable measurements errors and the following low accuracy of atmospheric optical parameters retrieval. As we have shown, the most effective protection against intensive sky background radiation for ground-based biaxial LIDAR's consist in forming of their angular field according to spatial-angular efficiency criterion G. Some effective approaches to high G-parameter value achievement to achieve the receiving system optimization are discussed.

  16. A ground-based measurement of the relativistic beaming effect in a detached double WD binary

    CERN Document Server

    Shporer, Avi; Steinfadt, Justin D R; Bildsten, Lars; Howell, Steve B; Mazeh, Tsevi

    2010-01-01

    We report on the first ground-based measurement of the relativistic beaming effect (aka Doppler boosting). We observed the beaming effect in the detached, non-interacting eclipsing double white dwarf (WD) binary NLTT 11748. Our observations were motivated by the system's high mass ratio and low luminosity ratio, leading to a large beaming-induced variability amplitude at the orbital period of 5.6 hr. We observed the system during 3 nights at the 2.0m Faulkes Telescope North with the SDSS-g' filter, and fitted the data simultaneously for the beaming, ellipsoidal and reflection effects. Our fitted relative beaming amplitude is (3.0 +/- 0.4) x 10^(-3), consistent with the expected amplitude from a blackbody spectrum given the photometric primary radial velocity amplitude and effective temperature. This result is a first step in testing the relation between the photometric beaming amplitude and the spectroscopic radial velocity amplitude in NLTT 11748 and similar systems. We did not identify any variability due t...

  17. Validation of NH3 satellite observations by ground-based FTIR measurements

    Science.gov (United States)

    Dammers, Enrico; Palm, Mathias; Van Damme, Martin; Shephard, Mark; Cady-Pereira, Karen; Capps, Shannon; Clarisse, Lieven; Coheur, Pierre; Erisman, Jan Willem

    2016-04-01

    Global emissions of reactive nitrogen have been increasing to an unprecedented level due to human activities and are estimated to be a factor four larger than pre-industrial levels. Concentration levels of NOx are declining, but ammonia (NH3) levels are increasing around the globe. While NH3 at its current concentrations poses significant threats to the environment and human health, relatively little is known about the total budget and global distribution. Surface observations are sparse and mainly available for north-western Europe, the United States and China and are limited by the high costs and poor temporal and spatial resolution. Since the lifetime of atmospheric NH3 is short, on the order of hours to a few days, due to efficient deposition and fast conversion to particulate matter, the existing surface measurements are not sufficient to estimate global concentrations. Advanced space-based IR-sounders such as the Tropospheric Emission Spectrometer (TES), the Infrared Atmospheric Sounding Interferometer (IASI), and the Cross-track Infrared Sounder (CrIS) enable global observations of atmospheric NH3 that help overcome some of the limitations of surface observations. However, the satellite NH3 retrievals are complex requiring extensive validation. Presently there have only been a few dedicated satellite NH3 validation campaigns performed with limited spatial, vertical or temporal coverage. Recently a retrieval methodology was developed for ground-based Fourier Transform Infrared Spectroscopy (FTIR) instruments to obtain vertical concentration profiles of NH3. Here we show the applicability of retrieved columns from nine globally distributed stations with a range of NH3 pollution levels to validate satellite NH3 products.

  18. Building global models for fat and total protein content in raw milk based on historical spectroscopic data in the visible and short-wave near infrared range.

    Science.gov (United States)

    Melenteva, Anastasiia; Galyanin, Vladislav; Savenkova, Elena; Bogomolov, Andrey

    2016-07-15

    A large set of fresh cow milk samples collected from many suppliers over a large geographical area in Russia during a year has been analyzed by optical spectroscopy in the range 400-1100 nm in accordance with previously developed scatter-based technique. The global (i.e. resistant to seasonal, genetic, regional and other variations of the milk composition) models for fat and total protein content, which were built using partial least-squares (PLS) regression, exhibit satisfactory prediction performances enabling their practical application in the dairy. The root mean-square errors of prediction (RMSEP) were 0.09 and 0.10 for fat and total protein content, respectively. The issues of raw milk analysis and multivariate modelling based on the historical spectroscopic data have been considered and approaches to the creation of global models and their transfer between the instruments have been proposed. Availability of global models should significantly facilitate the dissemination of optical spectroscopic methods for the laboratory and in-line quantitative milk analysis.

  19. SOAR optical and near-infrared spectroscopic survey of newly discovered massive stars in the periphery of Galactic Massive star clusters I - NGC3603

    CERN Document Server

    Roman-Lopes, Alexandre; Sanmartim, David

    2016-01-01

    In this work, we present a spectroscopic study of very massive stars found outside the center of the massive stellar cluster NGC3603. From the analysis of SOAR spectroscopic data and related optical-NIR photometry, we confirm the existence of several very massive stars in the periphery of NGC 3603. The first group of objects (MTT58, WR42e and RFS7) is compound by three new Galactic exemplars of the OIf*/WN type, all of them with probable initial masses well above 100 Msun and estimated ages of about 1 Myr. Based on Goodman blue-optical spectrum of MTT68, we can confirm the previous finding in the NIR of the only other Galactic exemplar (besides HD93129A) of the O2If* type known to date. Based on its position relative to a set of theoretical isochrons in a Hertzprung-Russel diagram, we concluded that the new O2If* star could be one of the most massive (150 Msun) and luminous (Mv=-7.3) O-star in the Galaxy. Also, another remarkable result is the discovery of a new O2V star (MTT31) that is the first exemplar of ...

  20. The dust environment of comet 67P/Churyumov-Gerasimenko: results from Monte Carlo dust tail modelling applied to a large ground-based observation data set

    Science.gov (United States)

    Moreno, Fernando; Muñoz, Olga; Gutiérrez, Pedro J.; Lara, Luisa M.; Snodgrass, Colin; Lin, Zhong Y.; Della Corte, Vincenzo; Rotundi, Alessandra; Yagi, Masafumi

    2017-07-01

    We present an extensive data set of ground-based observations and models of the dust environment of comet 67P/Churyumov-Gerasimenko covering a large portion of the orbital arc from about 4.5 au pre-perihelion through 3.0 au post-perihelion, acquired during the current orbit. In addition, we have also applied the model to a dust trail image acquired during this orbit, as well as to dust trail observations obtained during previous orbits, in both the visible and the infrared. The results of the Monte Carlo modelling of the dust tail and trail data are generally consistent with the in situ results reported so far by the Rosetta instruments Optical, Spectroscopic, and Infrared Remote Imaging System (OSIRIS) and Grain Impact Analyser and Dust Accumulator (GIADA). We found the comet nucleus already active at 4.5 au pre-perihelion, with a dust production rate increasing up to ˜3000 kg s-1 some 20 d after perihelion passage. The dust size distribution at sizes smaller than r = 1 mm is linked to the nucleus seasons, being described by a power law of index -3.0 during the comet nucleus southern hemisphere winter but becoming considerably steeper, with values between -3.6 and -4.3, during the nucleus southern hemisphere summer, which includes perihelion passage (from about 1.7 au inbound to 2.4 au outbound). This agrees with the increase of the steepness of the dust size distribution found from GIADA measurements at perihelion showing a power index of -3.7. The size distribution at sizes larger than 1 mm for the current orbit is set to a power law of index -3.6, which is near the average value of insitu measurements by OSIRIS on large particles. However, in order to fit the trail data acquired during past orbits previous to the 2009 perihelion passage, a steeper power-law index of -4.1 has been set at those dates, in agreement with previous trail modelling. The particle sizes are set at a minimum of r = 10 μm, and a maximum size, which increases with decreasing heliocentric

  1. Measurements of total and tropospheric ozone from IASI: comparison with correlative satellite, ground-based and ozonesonde observations

    Directory of Open Access Journals (Sweden)

    A. Boynard

    2009-08-01

    Full Text Available In this paper, we present measurements of total and tropospheric ozone, retrieved from infrared radiance spectra recorded by the Infrared Atmospheric Sounding Interferometer (IASI, which was launched on board the MetOp-A European satellite in October 2006. We compare IASI total ozone columns to Global Ozone Monitoring Experiment-2 (GOME-2 observations and ground-based measurements from the Dobson and Brewer network for one full year of observations (2008. The IASI total ozone columns are shown to be in good agreement with both GOME-2 and ground-based data, with correlation coefficients of about 0.9 and 0.85, respectively. On average, IASI ozone retrievals exhibit a positive bias of about 9 DU (3.3% compared to both GOME-2 and ground-based measurements. In addition to total ozone columns, the good spectral resolution of IASI enables the retrieval of tropospheric ozone concentrations. Comparisons of IASI tropospheric columns to 490 collocated ozone soundings available from several stations around the globe have been performed for the period of June 2007–August 2008. IASI tropospheric ozone columns compare well with sonde observations, with correlation coefficients of 0.95 and 0.77 for the [surface–6 km] and [surface–12 km] partial columns, respectively. IASI retrievals tend to overestimate the tropospheric ozone columns in comparison with ozonesonde measurements. Positive average biases of 0.15 DU (1.2% and 3 DU (11% are found for the [surface–6 km] and for the [surface–12 km] partial columns respectively.

  2. An attenuated total reflection Fourier transform infrared (ATR FT-IR) spectroscopic study of gas adsorption on colloidal stearate-capped ZnO catalyst substrate.

    Science.gov (United States)

    Silverwood, Ian P; Keyworth, Colin W; Brown, Neil J; Shaffer, Milo S P; Williams, Charlotte K; Hellgardt, Klaus; Kelsall, Geoff H; Kazarian, Sergei G

    2014-01-01

    Attenuated total reflection Fourier transform infrared (ATR FT-IR) spectroscopy has been applied in situ to study gas adsorption on a colloidal stearate-capped zinc oxide (ZnO) surface. Infrared spectra of a colloidal stearate-capped ZnO catalyst substrate were assigned at room temperature using zinc stearate as a reference compound. Heating was shown to create a monodentate species that allowed conformational change to occur, leading to altered binding geometry of the stearate ligands upon cooling. CO2 and H2 adsorption measurements demonstrated that the ligand shell was permeable and did not cover the entire surface, allowing adsorption and reaction with at least some portion of the ZnO surface. It has been demonstrated that stearate ligands did not prevent the usual chemisorption processes involved in catalytic reactions on a model ZnO catalyst system, yet the ligand-support system is dynamic under representative reaction conditions.

  3. In Situ Fourier Transform Infrared Spectroscopic Study of Bisulfate and Sulfate Adsorption on Gold, With and Without the Underpotential Deposition of Copper

    Science.gov (United States)

    1993-04-01

    fleta Entered) In situ surface infrared (IR) spectroelectrochemistry is used to investigate the adsorption of sulfate (SO42 ") and bisulfate ( HS04 ) ions...IR) spectroelectrochemistry is used to investigate the adsorption of sulfate (SO42-) and bisulfate ( HS04 -) ions on polycrystalline gold surfaces in...asymmetric stretch) peak (Figure 7) suggest that for predominantly acidic solutions, HS04 - is lost from the surface as the potential is increased. On

  4. Probing Pluto's Atmosphere Using Ground-Based Stellar Occultations

    Science.gov (United States)

    Sicardy, Bruno; Rio de Janeiro Occultation Team, Granada Team, International Occultation and Timing Association, Royal Astronomical Society New Zealand Occultation Section, Lucky Star associated Teams

    2016-10-01

    Over the last three decades, some twenty stellar occultations by Pluto have been monitored from Earth. They occur when the dwarf planet blocks the light from a star for a few minutes as it moves on the sky. Such events led to the hint of a Pluto's atmosphere in 1985, that was fully confirmed during another occultation in 1988, but it was only in 2002 that a new occultation could be recorded. From then on, the dwarf planet started to move in front of the galactic center, which amplified by a large factor the number of events observable per year.Pluto occultations are essentially refractive events during which the stellar rays are bent by the tenuous atmosphere, causing a gradual dimming of the star. This provides the density, pressure and temperature profiles of the atmosphere from a few kilometers above the surface up to about 250 km altitude, corresponding respectively to pressure levels of about 10 and 0.1 μbar. Moreover, the extremely fine spatial resolution (a few km) obtained through this technique allows the detection of atmospheric gravity waves, and permits in principle the detection of hazes, if present.Several aspects make Pluto stellar occultations quite special: first, they are the only way to probe Pluto's atmosphere in detail, as the dwarf planet is far too small on the sky and the atmosphere is far too tenuous to be directly imaged from Earth. Second, they are an excellent example of participative science, as many amateurs have been able to record those events worldwide with valuable scientific returns, in collaboration with professional astronomers. Third, they reveal Pluto's climatic changes on decade-scales and constrain the various seasonal models currently explored.Finally, those observations are fully complementary to space exploration, in particular with the New Horizons (NH) mission. I will show how ground-based occultations helped to better calibrate some NH profiles, and conversely, how NH results provide some key boundary conditions

  5. Independet Component Analyses of Ground-based Exoplanetary Transits

    Science.gov (United States)

    Silva Martins-Filho, Walter; Griffith, Caitlin Ann; Pearson, Kyle; Waldmann, Ingo; Biddle, Lauren; Zellem, Robert Thomas; Alvarez-Candal, Alvaro

    2016-10-01

    Most observations of exoplanetary atmospheres are conducted when a "Hot Jupiter" exoplanet transits in front of its host star. These Jovian-sized planets have small orbital periods, on the order of days, and therefore a short transit time, making them more ameanable to observations. Measurements of Hot Jupiter transits must achieve a 10-4 level of accuracy in the flux to determine the spectral modulations of the exoplanetary atmosphere. In order to accomplish this level of precision, we need to extract systematic errors, and, for ground-based measurements, the effects of Earth's atmosphere, from the signal due to the exoplanet, which is several orders of magnitudes smaller. Currently, the effects of the terrestrial atmosphere and the some of the time-dependent systematic errors are treated by dividing the host star by a reference star at each wavelength and time step of the transit. More recently, Independent Component Analyses (ICA) have been used to remove systematic effects from the raw data of space-based observations (Waldmann 2014,2012; Morello et al.,2015,2016). ICA is a statistical method born from the ideas of the blind-source separation studies, which can be used to de-trend several independent source signals of a data set (Hyvarinen and Oja, 2000). One strength of this method is that it requires no additional prior knowledge of the system. Here, we present a study of the application of ICA to ground-based transit observations of extrasolar planets, which are affected by Earth's atmosphere. We analyze photometric data of two extrasolar planets, WASP-1b and GJ3470b, recorded by the 61" Kuiper Telescope at Stewart Observatory using the Harris B and U filters. The presentation will compare the light curve depths and their dispersions as derived from the ICA analysis to those derived by analyses that ratio of the host star to nearby reference stars.References: Waldmann, I.P. 2012 ApJ, 747, 12, Waldamann, I. P. 2014 ApJ, 780, 23; Morello G. 2015 ApJ, 806

  6. Quantitative characterization of chitosan in the skin by Fourier-transform infrared spectroscopic imaging and ninhydrin assay: application in transdermal sciences.

    Science.gov (United States)

    Nawaz, A; Wong, T W

    2016-07-01

    The chitosan has been used as the primary excipient in transdermal particulate dosage form design. Its distribution pattern across the epidermis and dermis is not easily accessible through chemical assay and limited to radiolabelled molecules via quantitative autoradiography. This study explored Fourier-transform infrared spectroscopy imaging technique with built-in microscope as the means to examine chitosan molecular distribution over epidermis and dermis with the aid of histology operation. Fourier-transform infrared spectroscopy skin imaging was conducted using chitosan of varying molecular weights, deacetylation degrees, particle sizes and zeta potentials, obtained via microwave ligation of polymer chains at solution state. Both skin permeation and retention characteristics of chitosan increased with the use of smaller chitosan molecules with reduced acetyl content and size, and increased positive charge density. The ratio of epidermal to dermal chitosan content decreased with the use of these chitosan molecules as their accumulation in dermis (3.90% to 18.22%) was raised to a greater extent than epidermis (0.62% to 1.92%). A larger dermal chitosan accumulation nonetheless did not promote the transdermal polymer passage more than the epidermal chitosan. A small increase in epidermal chitosan content apparently could fluidize the stratum corneum and was more essential to dictate molecular permeation into dermis and systemic circulation. The histology technique aided Fourier-transform infrared spectroscopy imaging approach introduces a new dimension to the mechanistic aspect of chitosan in transdermal delivery.

  7. Tropospheric BrO column densities in the Arctic derived from satellite: retrieval and comparison to ground-based measurements

    Directory of Open Access Journals (Sweden)

    H. Sihler

    2012-11-01

    Full Text Available During polar spring, halogen radicals like bromine monoxide (BrO play an important role in the chemistry of tropospheric ozone destruction. Satellite measurements of the BrO distribution have become a particularly useful tool to investigate this probably natural phenomenon, but the separation of stratospheric and tropospheric partial columns of BrO is challenging. In this study, an algorithm was developed to retrieve tropospheric vertical column densities of BrO from data of high-resolution spectroscopic satellite instruments such as the second Global Ozone Monitoring Experiment (GOME-2. Unlike recently published approaches, the presented algorithm is capable of separating the fraction of BrO in the activated troposphere from the total BrO column solely based on remotely measured properties. The presented algorithm furthermore allows to estimate a realistic measurement error of the tropospheric BrO column. The sensitivity of each satellite pixel to BrO in the boundary layer is quantified using the measured UV radiance and the column density of the oxygen collision complex O4. A comparison of the sensitivities with CALIPSO LIDAR observations demonstrates that clouds shielding near-surface trace-gas columns can be reliably detected even over ice and snow. Retrieved tropospheric BrO columns are then compared to ground-based BrO measurements from two Arctic field campaigns in the Amundsen Gulf and at Barrow in 2008 and 2009, respectively. Our algorithm was found to be capable of retrieving enhanced near-surface BrO during both campaigns in good agreement with ground-based data. Some differences between ground-based and satellite measurements observed at Barrow can be explained by both elevated and shallow surface layers of BrO. The observations strongly suggest that surface release processes are the dominating source of BrO and that boundary layer meteorology influences the vertical distribution.

  8. Tropospheric BrO column densities in the Arctic from satellite: retrieval and comparison to ground-based measurements

    Directory of Open Access Journals (Sweden)

    H. Sihler

    2012-05-01

    Full Text Available During polar spring, halogen radicals like bromine monoxide (BrO play an important role in the chemistry of tropospheric ozone destruction. Satellite measurements of the BrO-distribution have become a particularly useful tool to investigate this probably natural phenomenon, but the separation of stratospheric and tropospheric partial columns of BrO is challenging. In this study, an algorithm was developed to retrieve tropospheric vertical column densities of BrO from data of high-resolution spectroscopic satellite instruments such as the second Global Ozone Monitoring Experiment (GOME-2. Unlike recently published approaches, the presented algorithm is capable of separating the fraction of BrO in the activated troposphere from the total BrO column solely based on remotely measured properties. The sensitivity of each satellite pixel to BrO in the boundary-layer is quantified using the measured UV-radiance and the column density of the oxygen collision complex O4. A comparison of the sensitivities with CALIPSO LIDAR observations demonstrates that clouds shielding near-surface trace-gas columns can be reliably detected even over ice and snow. Retrieved tropospheric BrO columns are then compared to ground-based BrO measurements from two Arctic field campaigns in the Amundsen Gulf and at Barrow in 2008 and 2009, respectively. Our algorithm was found to be capable of retrieving enhanced near-surface BrO during both campaigns in good agreement to ground-based data. Some differences between ground-based and satellite measurements observed at Barrow can be explained by both, elevated and shallow surface layers of BrO. The observations strongly suggest that surface release processes are the dominating source of BrO and that boundary-layer meteorology influences the vertical distribution.

  9. Ground-based infrared measurements of the global distribution of ozone in the atmosphere of Mars

    Science.gov (United States)

    Espenak, Fred; Mumma, Michael J.; Kostiuk, Theodor; Zipoy, David

    1991-01-01

    Doppler-limited IR spectroscopy measurements of the Mars atmosphere's global ozone distribution have been obtained for June 3-7, 1988; surface pressures and temperature profiles are retrieved through inversion of the fully-resolved (C-12)(O-16)2 line. The total O3 column abundance at each position has been retrieved at each of eight positions over a range of Martian latitudes by fitting the lines with synthetic spectra generated by a radiative transfer program: column burdens of O3 are less than 2.2 microns-atm for all latitudes sampled.

  10. Observing Tsunamis in the Ionosphere Using Ground Based GPS Measurements

    Science.gov (United States)

    Galvan, D. A.; Komjathy, A.; Song, Y. Tony; Stephens, P.; Hickey, M. P.; Foster, J.

    2011-01-01

    Ground-based Global Positioning System (GPS) measurements of ionospheric Total Electron Content (TEC) show variations consistent with atmospheric internal gravity waves caused by ocean tsunamis following recent seismic events, including the Tohoku tsunami of March 11, 2011. We observe fluctuations correlated in time, space, and wave properties with this tsunami in TEC estimates processed using JPL's Global Ionospheric Mapping Software. These TEC estimates were band-pass filtered to remove ionospheric TEC variations with periods outside the typical range of internal gravity waves caused by tsunamis. Observable variations in TEC appear correlated with the Tohoku tsunami near the epicenter, at Hawaii, and near the west coast of North America. Disturbance magnitudes are 1-10% of the background TEC value. Observations near the epicenter are compared to estimates of expected tsunami-driven TEC variations produced by Embry Riddle Aeronautical University's Spectral Full Wave Model, an atmosphere-ionosphere coupling model, and found to be in good agreement. The potential exists to apply these detection techniques to real-time GPS TEC data, providing estimates of tsunami speed and amplitude that may be useful for future early warning systems.

  11. Tissue Engineering of Cartilage on Ground-Based Facilities

    Science.gov (United States)

    Aleshcheva, Ganna; Bauer, Johann; Hemmersbach, Ruth; Egli, Marcel; Wehland, Markus; Grimm, Daniela

    2016-06-01

    Investigations under simulated microgravity offer the opportunity for a better understanding of the influence of altered gravity on cells and the scaffold-free three-dimensional (3D) tissue formation. To investigate the short-term influence, human chondrocytes were cultivated for 2 h, 4 h, 16 h, and 24 h on a 2D Fast-Rotating Clinostat (FRC) in DMEM/F-12 medium supplemented with 10 % FCS. We detected holes in the vimentin network, perinuclear accumulations of vimentin after 2 h, and changes in the chondrocytes shape visualised by F-actin staining after 4 h of FRC-exposure. Scaffold-free cultivation of chondrocytes for 7 d on the Random Positioning Machine (RPM), the FRC and the Rotating Wall Vessel (RWV) resulted in spheroid formation, a phenomenon already known from spaceflight experiments with chondrocytes (MIR Space Station) and thyroid cancer cells (SimBox/Shenzhou-8 space mission). The experiments enabled by the ESA-CORA-GBF programme gave us an optimal opportunity to study gravity-related cellular processes, validate ground-based facilities for our chosen cell system, and prepare long-term experiments under real microgravity conditions in space

  12. Theoretical validation of ground-based microwave ozone observations

    Directory of Open Access Journals (Sweden)

    P. Ricaud

    Full Text Available Ground-based microwave measurements of the diurnal and seasonal variations of ozoneat 42±4.5 and 55±8 km are validated by comparing with results from a zero-dimensional photochemical model and a two-dimensional (2D chemical/radiative/dynamical model, respectively. O3 diurnal amplitudes measured in Bordeaux are shown to be in agreement with theory to within 5%. For the seasonal analysis of O3 variation, at 42±4.5 km, the 2D model underestimates the yearly averaged ozone concentration compared with the measurements. A double maximum oscillation (~3.5% is measured in Bordeaux with an extended maximum in September and a maximum in February, whilst the 2D model predicts only a single large maximum (17% in August and a pronounced minimum in January. Evidence suggests that dynamical transport causes the winter O3 maximum by propagation of planetary waves, phenomena which are not explicitly reproduced by the 2D model. At 55±8 km, the modeled yearly averaged O3 concentration is in very good agreement with the measured yearly average. A strong annual oscillation is both measured and modeled with differences in the amplitude shown to be exclusively linked to temperature fields.

  13. Models of ionospheric VLF absorption of powerful ground based transmitters

    Science.gov (United States)

    Cohen, M. B.; Lehtinen, N. G.; Inan, U. S.

    2012-12-01

    Ground based Very Low Frequency (VLF, 3-30 kHz) radio transmitters play a role in precipitation of energetic Van Allen electrons. Initial analyses of the contribution of VLF transmitters to radiation belt losses were based on early models of trans-ionospheric propagation known as the Helliwell absorption curves, but some recent studies have found that the model overestimates (by 20-100 dB) the VLF energy reaching the magnetosphere. It was subsequently suggested that conversion of wave energy into electrostatic modes may be responsible for the error. We utilize a newly available extensive record of VLF transmitter energy reaching the magnetosphere, taken from the DEMETER satellite, and perform a direct comparison with a sophisticated full wave model of trans-ionospheric propagation. Although the model does not include the effect of ionospheric irregularities, it correctly predicts the average total power injected into the magnetosphere within several dB. The results, particularly at nighttime, appear to be robust against the variability of the ionospheric electron density. We conclude that the global effect of irregularity scattering on whistler mode conversion to quasi-electrostatic may be no larger than 6 dB.

  14. Atmospheric Refraction Path Integrals in Ground-Based Interferometry

    CERN Document Server

    Mathar, R J

    2004-01-01

    The basic effect of the earth's atmospheric refraction on telescope operation is the reduction of the true zenith angle to the apparent zenith angle, associated with prismatic aberrations due to the dispersion in air. If one attempts coherent superposition of star images in ground-based interferometry, one is in addition interested in the optical path length associated with the refracted rays. In a model of a flat earth, the optical path difference between these is not concerned as the translational symmetry of the setup means no net effect remains. Here, I evaluate these interferometric integrals in the more realistic arrangement of two telescopes located on the surface of a common earth sphere and point to a star through an atmosphere which also possesses spherical symmetry. Some focus is put on working out series expansions in terms of the small ratio of the baseline over the earth radius, which allows to bypass some numerics which otherwise is challenged by strong cancellation effects in building the opti...

  15. Experiments on a Ground-Based Tomographic Synthetic Aperture Radar

    Directory of Open Access Journals (Sweden)

    Hoonyol Lee

    2016-08-01

    Full Text Available This paper presents the development and experiment of three-dimensional image formation by using a ground-based tomographic synthetic aperture radar (GB-TomoSAR system. GB-TomoSAR formulates two-dimensional synthetic aperture by the motion of antennae, both in azimuth and vertical directions. After range compression, three-dimensional image focusing is performed by applying Deramp-FFT (Fast Fourier Transform algorithms, both in azimuth and vertical directions. Geometric and radiometric calibrations were applied to make an image cube, which is then projected into range-azimuth and range-vertical cross-sections for visualization. An experiment with a C-band GB-TomoSAR system with a scan length of 2.49 m and 1.86 m in azimuth and vertical-direction, respectively, shows distinctive three-dimensional radar backscattering of stable buildings and roads with resolutions similar to the theoretical values. Unstable objects such as trees and moving cars generate severe noise due to decorrelation during the eight-hour image-acquisition time.

  16. A comparative study of satellite and ground-based phenology.

    Science.gov (United States)

    Studer, S; Stöckli, R; Appenzeller, C; Vidale, P L

    2007-05-01

    Long time series of ground-based plant phenology, as well as more than two decades of satellite-derived phenological metrics, are currently available to assess the impacts of climate variability and trends on terrestrial vegetation. Traditional plant phenology provides very accurate information on individual plant species, but with limited spatial coverage. Satellite phenology allows monitoring of terrestrial vegetation on a global scale and provides an integrative view at the landscape level. Linking the strengths of both methodologies has high potential value for climate impact studies. We compared a multispecies index from ground-observed spring phases with two types (maximum slope and threshold approach) of satellite-derived start-of-season (SOS) metrics. We focus on Switzerland from 1982 to 2001 and show that temporal and spatial variability of the multispecies index correspond well with the satellite-derived metrics. All phenological metrics correlate with temperature anomalies as expected. The slope approach proved to deviate strongly from the temporal development of the ground observations as well as from the threshold-defined SOS satellite measure. The slope spring indicator is considered to indicate a different stage in vegetation development and is therefore less suited as a SOS parameter for comparative studies in relation to ground-observed phenology. Satellite-derived metrics are, however, very susceptible to snow cover, and it is suggested that this snow cover should be better accounted for by the use of newer satellite sensors.

  17. Satellite Type Estination from Ground-based Photometric Observation

    Science.gov (United States)

    Endo, T.; Ono, H.; Suzuki, J.; Ando, T.; Takanezawa, T.

    2016-09-01

    The optical photometric observation is potentially a powerful tool for understanding of the Geostationary Earth Orbit (GEO) objects. At first, we measured in laboratory the surface reflectance of common satellite materials, for example, Multi-layer Insulation (MLI), mono-crystalline silicon cells, and Carbon Fiber Reinforced Plastic (CFRP). Next, we calculated visual magnitude of a satellite by simplified shape and albedo. In this calculation model, solar panels have dimensions of 2 by 8 meters, and the bus area is 2 meters squared with measured optical properties described above. Under these conditions, it clarified the brightness can change the range between 3 and 4 magnitudes in one night, but color index changes only from 1 to 2 magnitudes. Finally, we observed the color photometric data of several GEO satellites visible from Japan multiple times in August and September 2014. We obtained that light curves of GEO satellites recorded in the B and V bands (using Johnson filters) by a ground-base optical telescope. As a result, color index changed approximately from 0.5 to 1 magnitude in one night, and the order of magnitude was not changed in all cases. In this paper, we briefly discuss about satellite type estimation using the relation between brightness and color index obtained from the photometric observation.

  18. Ground-based measurements of UV Index (UVI at Helwan

    Directory of Open Access Journals (Sweden)

    H. Farouk

    2012-12-01

    Full Text Available On October 2010 UV Index (UVI ground-based measurements were carried out by weather station at solar laboratory in NRIAG. The daily variation has maximum values in spring and summer days, while minimum values in autumn and winter days. The low level of UVI between 2.55 and 2.825 was found in December, January and February. The moderate level of UVI between 3.075 and 5.6 was found in March, October and November. The high level of UVI between 6.7 and 7.65 was found in April, May and September. The very high level of UVI between 8 and 8.6 was found in June, July and August. High level of radiation over 6 months per year including 3 months with a very high level UVI. According to the equation {UVI=a[SZA]b} the UVI increases with decreasing SZA by 82% on a daily scale and 88% on a monthly scale. Helwan exposure to a high level of radiation over 6 months per year including 3 months with a very high level UVI, so it is advisable not to direct exposure to the sun from 11 am to 2:00 pm.

  19. The New Mexico Tech Extrasolar Spectroscopic Survey Instrument (NESSI)

    Science.gov (United States)

    Creech-Eakman, Michelle J.; Jurgenson, C.; Vasisht, G.; Swain, M.; Boston, P.; Santoro, F.

    2010-01-01

    We present the design and scientific objectives behind NESSI, a near-infrared spectroscopic purpose-built for studying exoplanet atmospheres. This instrument is being designed and assembled by a team of scientists and engineers at New Mexico Tech (NMT), the Magdalena Ridge Observatory (MRO) and NASA's Jet Propulsion Lab (JPL), and is scheduled for deployment in late 2010 at the MRO 2.4m telescope. NESSI's unique design is driven by recent space and ground-based NIR spectroscopy of exoplanet atmospheres by members of our team. Optimization of the instrument to achieve 0.01% relative accuracies in spectra of exoplanetary molecular constituents requires careful attention to certain design features and a new technical approach. We present an overview of NESSI's design, including the four major subassemblies: 1) a field derotator, 2) a reimaging module, 3) an optical guiding module, and 4) a multi-object spectrograph subassembly. We also present an overview of our science program specifically designed to build the community of exoplanet researchers and students in NM. The financial support of our team and NESSI itself have been made possible by a NM NASA EPSCoR grant, matching funds from the NMT administration, and internal support for the NESSI hardware from Dr. Van Romero, NMT's Research Vice-President.

  20. DUST EXTINCTION FROM BALMER DECREMENTS OF STAR-FORMING GALAXIES AT 0.75 {<=} z {<=} 1.5 WITH HUBBLE SPACE TELESCOPE/WIDE-FIELD-CAMERA 3 SPECTROSCOPY FROM THE WFC3 INFRARED SPECTROSCOPIC PARALLEL SURVEY

    Energy Technology Data Exchange (ETDEWEB)

    Dominguez, A.; Siana, B.; Masters, D. [Department of Physics and Astronomy, University of California Riverside, Riverside, CA 92521 (United States); Henry, A. L.; Martin, C. L. [Department of Physics, University of California, Santa Barbara, CA 93106 (United States); Scarlata, C.; Bedregal, A. G. [Minnesota Institute for Astrophysics, University of Minnesota, Minneapolis, MN 55455 (United States); Malkan, M.; Ross, N. R. [Department of Physics and Astronomy, University of California Los Angeles, Los Angeles, CA 90095 (United States); Atek, H.; Colbert, J. W. [Spitzer Science Center, Caltech, Pasadena, CA 91125 (United States); Teplitz, H. I.; Rafelski, M. [Infrared Processing and Analysis Center, Caltech, Pasadena, CA 91125 (United States); McCarthy, P.; Hathi, N. P.; Dressler, A. [Observatories of the Carnegie Institution for Science, Pasadena, CA 91101 (United States); Bunker, A., E-mail: albertod@ucr.edu [Department of Physics, Oxford University, Denys Wilkinson Building, Keble Road, Oxford, OX1 3RH (United Kingdom)

    2013-02-15

    Spectroscopic observations of H{alpha} and H{beta} emission lines of 128 star-forming galaxies in the redshift range 0.75 {<=} z {<=} 1.5 are presented. These data were taken with slitless spectroscopy using the G102 and G141 grisms of the Wide-Field-Camera 3 (WFC3) on board the Hubble Space Telescope as part of the WFC3 Infrared Spectroscopic Parallel survey. Interstellar dust extinction is measured from stacked spectra that cover the Balmer decrement (H{alpha}/H{beta}). We present dust extinction as a function of H{alpha} luminosity (down to 3 Multiplication-Sign 10{sup 41} erg s{sup -1}), galaxy stellar mass (reaching 4 Multiplication-Sign 10{sup 8} M {sub Sun }), and rest-frame H{alpha} equivalent width. The faintest galaxies are two times fainter in H{alpha} luminosity than galaxies previously studied at z {approx} 1.5. An evolution is observed where galaxies of the same H{alpha} luminosity have lower extinction at higher redshifts, whereas no evolution is found within our error bars with stellar mass. The lower H{alpha} luminosity galaxies in our sample are found to be consistent with no dust extinction. We find an anti-correlation of the [O III] {lambda}5007/H{alpha} flux ratio as a function of luminosity where galaxies with L {sub H{alpha}} < 5 Multiplication-Sign 10{sup 41} erg s{sup -1} are brighter in [O III] {lambda}5007 than H{alpha}. This trend is evident even after extinction correction, suggesting that the increased [O III] {lambda}5007/H{alpha} ratio in low-luminosity galaxies is likely due to lower metallicity and/or higher ionization parameters.

  1. SOAR Optical and Near-infrared Spectroscopic Survey of Newly Discovered Massive Stars in the Periphery of Galactic Massive Star Clusters I-NGC 3603

    Science.gov (United States)

    Roman-Lopes, A.; Franco, G. A. P.; Sanmartim, D.

    2016-06-01

    In this work, we present the results of a spectroscopic study of very massive stars (VMSs) found outside the center of the massive stellar cluster NGC 3603. From the analysis of the associated Southern Astrophysical Research (SOAR) Telescope spectroscopic data and related optical-near-IR (NIR) photometry, we confirm the existence of several VMSs in the periphery of NGC 3603. The first group of objects (MTT58, WR42e, and RF7) is composed of three new Galactic exemplars of the OIf*/WN type, all of them with probable initial masses well above 100 {M}⊙ and estimated ages of about 1 Myr. Based on our Goodman blue-optical spectrum of another source in our sample (MTT68), we can confirm the previous finding in the NIR of the only other Galactic exemplar (besides HD 93129A) of the O2If* type known to date. Based on its position relative to a set of theoretical isochrones in a Hertzprung-Russel (H-R) diagram, we concluded that the new O2If* star could be one of the most massive (150 {M}⊙ ) and luminous (M V = -7.3) O-stars in the Galaxy. Also, another remarkable result is the discovery of a new O2v star (MTT31), which is the first exemplar of that class so far identified in the Milk Way. From its position in the H-R diagram it is found that this new star probably had an initial mass of 80 {M}⊙ , as well as an absolute magnitude of M V = -6.0, corresponding to a luminosity similar to other known O2v stars in the Large Magellanic Cloud. Finally, we also communicate the discovery of a new Galactic O3.5If* star (RFS8) that is quite an intriguing case. Indeed, it is located far to the south of the NGC 3603 center, in apparent isolation at a large radial projected linear distance of ˜62 pc. Its derived luminosity is similar to that of the other O3.5If* (Sh18) found in NGC 3603's innermost region, and the fact that a such high mass star is observed so isolated in the field led us to speculate that perhaps it could have been expelled from the innermost parts of the complex

  2. Nanosecond-time-resolved infrared spectroscopic study of fast relaxation kinetics of protein folding by means of laser-induced temperature-jump

    Institute of Scientific and Technical Information of China (English)

    Zhang Qing-Li; Wang Li; Weng Yu-Xiang; Qiu Xiang-Gang; Wang Wei-Chi; Yan Ji-Xiang

    2005-01-01

    Elucidating the initial kinetics of folding pathways is critical to the understanding of the protein folding mechanism. Transient infrared spectroscopy has proved a powerful tool to probe the folding kinetics. Herein we report the construction of a nanosecond laser-induced temperature-jump (T-jump) technique coupled to a nanosecond timeresolved transient mid-infrared (mid-IR) spectrometer system capable of investigating the protein folding kinetics with a temporal resolution of 50 ns after deconvolution of the instrumental response function. The mid-IR source is a liquid N2 cooled CO laser covering a spectral range of 5.0μm (2000 cm-1) ~ 6.5μm (1540 cm-1). The heating pulse was generated by a high pressure H2 Raman shifter at wavelength of 1.9μm. The maximum temperature-jump could reach as high as 26±1℃. The fast folding/unfolding dynamics of cytochrome C was investigated by the constructed system,providing an example.

  3. Mid-infrared diffuse reflectance spectroscopic examination of charred pine wood, bark, cellulose, and lignin: Implications for the quantitative determination of charcoal in soils

    Science.gov (United States)

    Reeves, J. B.; McCarty, G.W.; Rutherford, D.W.; Wershaw, R. L.

    2008-01-01

    Fires in terrestrial ecosystems produce large amounts of charcoal that persist in the environment and represent a substantial pool of sequestered carbon in soil. The objective of this research was to investigate the effect of charring on mid-infrared spectra of materials likely to be present in forest fires in order to determine the feasibility of determining charred organic matter in soils. Four materials (cellulose, lignin, pine bark, and pine wood) and char from these materials, created by charring for various durations (1 to 168 h) and at various temperatures (200 to 450 ??C), were studied. Mid-infrared spectra and measures of acidity (total acids, carboxylic acids, lactones, and phenols as determined by titration) were determined for 56 different samples (not all samples were charred at all temperatures/durations). Results showed spectral changes that varied with the material, temperature, and duration of charring. Despite the wide range of spectral changes seen with the differing materials and length/temperature of charring, partial least squares calibrations for total acids, carboxylic acids, lactones, and phenols were successfully created (coefficient of determination and root mean squared deviation of 0.970 and 0.380; 0.933 and 0.227; 0.976 and 0.120; and 0.982 and 0.101 meq/g, respectively), indicating that there is a sufficient commonality in the changes to develop calibrations without the need for unique calibrations for each specific material or condition of char formation. ?? 2008 Society for Applied Spectroscopy.

  4. Infrared and Raman spectroscopic characterization of the phosphate mineral fairfieldite--Ca2(Mn2+,Fe2+)2(PO4)2·2(H2O).

    Science.gov (United States)

    Frost, Ray L; Xi, Yunfei; Scholz, Ricardo; Belotti, Fernanda Maria; Lopez, Andres

    2013-04-01

    Raman spectroscopy complimented with infrared spectroscopy has been used to determine the molecular structure of the phosphate mineral fairfieldite. The Raman phosphate (PO4)(3-) stretching region shows strong differences between the fairfieldite phosphate minerals which is attributed to the cation substitution for calcium in the structure. In the infrared spectra complexity exists with multiple (PO4)2- antisymmetric stretching vibrations observed, indicating a reduction of the tetrahedral symmetry. This loss of degeneracy is also reflected in the bending modes. Strong Raman bands around 600 cm(-1) are assigned to ν4 phosphate bending modes. Multiple bands in the 400-450 cm(-1) region assigned to ν2 phosphate bending modes provide further evidence of symmetry reduction of the phosphate anion. Three broadbands for fairfieldite are found at 3040, 3139 and 3271 cm(-1) and are assigned to OH stretching bands. By using a Libowitzky empirical equation hydrogen bond distances of 2.658 and 2.730Å are estimated. Vibrational spectroscopy enables aspects of the molecular structure of the fairfieldite to be ascertained. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Infrared and Raman spectroscopic studies of tris-[3-(trimethoxysilyl)propyl] isocyanurate, its sol-gel process, and coating on aluminum and copper.

    Science.gov (United States)

    Li, Ying-Sing; Church, Jeffrey S; Woodhead, Andrea L; Vecchio, Nicolas E; Yang, Johnny

    2014-11-11

    Tris-[3-(trimethoxysilyl)propyl] isocyanurate (TTPI) has been used as a precursor to prepare a sol using ethanol as the solvent under acidic conditions. The sol-gel was applied for the surface treatment of aluminum and copper. Infrared and Raman spectra have been recorded for pure TTPI and the TTPI sol, xerogel and TTPI sol-gel coated metals. From the vibrational spectra, TTPI is likely to have the C1 point group. Vibrational assignments are suggested based on group frequencies, the expected reactions in the sol-gel process and the vibrational studies of some related molecules. From the experimental infrared spectra of xerogels annealed at different temperatures and from the thermal-gravimetric analysis, it is found that the TTPI xerogel decomposes at around 450°C with silica being the major decomposition product. A cyclic voltammetric study of the metal electrodes coated with different concentrations of TTPI ranging from 5% to 42% (v/v) has shown that the films with high concentrations of sol would provide better corrosion protection for aluminum and copper.

  6. Near-infrared spectroscopic assessment of oxygen delivery to free flaps on monkeys following vascular occlusions and inhalation of pure oxygen

    Science.gov (United States)

    Tian, Fenghua; Ding, Haishu; Cai, Zhigang; Wang, Guangzhi; Zhao, Fuyun

    2002-04-01

    In recent studies, near-infrared spectroscopy (NIRS) has been considered as a potentially ideal noninvasive technique for the postoperative monitoring of plastic surgery. In this study, free flaps were raised on rhesus monkeys' forearms and oxygen delivery to these flaps was monitored following vascular occlusions and inhalation of pure oxygen. Optical fibers were adopted in the probe of the oximeter so that the detection could be performed in reflectance mode. The distance between emitter and detector can be adjusted easily to achieve the best efficacy. Different and repeatable patterns of changes were measured following vascular occlusions (arterial occlusion, venous occlusion and total occlusion) on flaps. It is clear that the near-infrared spectroscopy is capable of postoperatively monitoring vascular problems in flaps. NIRS showed high sensitivity to detect the dynamic changes in flaps induced by inhalation of pure oxygen in this study. The experimental results indicated that it was potential to assess tissue viability utilizing the dynamic changes induced by a noninvasive stimulation. It may be a new assessing method that is rapid, little influenced by other factors and brings less discomfort to patients.

  7. Antioxidant activities and infrared spectroscopic properties of extract from litchi seeds%荔枝核提取物抗氧化活性及红外光谱特性

    Institute of Scientific and Technical Information of China (English)

    江敏; 胡小军; 陈晓林; 李土珍

    2011-01-01

    以荔枝核为原料,以95%的乙醇为提取剂,在超声波的作用下得到荔枝核乙醇提取物。利用提取物对DPPH自由基和羟自由基的清除能力评价其抗氧化活性;同时测定了提取物的总还原能力和总的抗氧化性。最后通过红外光谱对提取物进行了定性分析。实验结果表明:荔枝核提取物具有很强的抗氧化活性,其抗氧化能力大5-BHT,小于维生素C;荔枝核提取物清除DPPH·和·OH的IC50分别为0.032、0.160mg/mL。每克荔枝核提取物总抗氧化能力相当于210mgVc的总抗氧化能力:从红外光谱的结果可知,荔枝核提取物主要为黄酮类物质。%The dried samples of litchi seeds were cut into small pieces and soaked in 95% (v/v) ethanolic aqueous solution under the ultrasonic for some time. The extract was decanted,filtered under vacuum, concentrated in a rotary evaporator,and then lyophilized. The resulting extracts were employed for the current study. DPPH radical and hydroxyl radical scavenging assays were carried out to evaluate the antioxidant potential of the extract. Total reducing power and antioxidant capacity of the extract were determined at the same time. Qualitative analysis of the extract was studied by infrared spectroscopic. The experiment results showed that the extract could play an important role in the antioxidant activity. The order of antioxidant was Vc〉 extract〉BHT. The IC50 values of extract against DPPH radical and hydroxyl radical were 0.032mg/mL and 0.160mg/mL, respectively. Total antioxidant capacity of per gram extract was equal to 210mg Vc. Main component of the extract was flavonoid from infrared spectroscopic.

  8. Paper Productivity of Ground-based Large Optical Telescopes from 2000 to 2009

    CERN Document Server

    KIM, Sang Chul

    2011-01-01

    We present an analysis of the scientific ("refereed") paper productivity of the current largest (diameter >8 m) ground-based optical(-infrared) telescopes during the ten year period from 2000 to 2009. The telescopes for which we have gathered and analysed the scientific publication data are the two 10 m Keck telescopes, the four 8.2 m Very Large Telescopes (VLT), the two 8.1 m Gemini telescopes, the 8.2 m Subaru telescope, and the 9.2 m Hobby-Eberly Telescope (HET). We have analysed the rate of papers published in various astronomical journals produced by using these telescopes. While the total numbers of papers from these observatories are largest for the VLT followed by Keck, Gemini, Subaru, and HET, the number of papers produced by each component of the telescopes are largest for Keck followed by VLT, Subaru, Gemini, and HET. In 2009, each telescope of the Keck, VLT, Gemini, Subaru, and HET observatories produced 135, 109, 93, 107, and 5 refereed papers, respectively. We have shown that each telescope of t...

  9. A Ground-Based Search for Thermal Emission from the Exoplanet TrES-1

    CERN Document Server

    Knutson, Heather A; Deming, Drake; Richardson, L Jeremy

    2007-01-01

    Eclipsing planetary systems give us an important window on extrasolar planet atmospheres. By measuring the depth of the secondary eclipse, when the planet moves behind the star, we can estimate the strength of the thermal emission from the day side of the planet. Attaining a ground-based detection of one of these eclipses has proven to be a significant challenge, as time-dependent variations in instrument throughput and atmospheric seeing and absorption overwhelm the small signal of the eclipse at infrared wavelengths. We gathered a series of simultaneous L grism spectra of the transiting planet system TrES-1 and a nearby comparison star of comparable brightness, allowing us to correct for these effects in principle. Combining the data from two eclipses, we demonstrate a detection sensitivity of 0.15% in the eclipse depth relative to the stellar flux. This approaches the sensitivity required to detect the planetary emission, which theoretical models predict should lie between 0.05-0.1% of the stellar flux in ...

  10. Assessment of the quality of OSIRIS mesospheric temperatures using satellite and ground-based measurements

    Directory of Open Access Journals (Sweden)

    P. E. Sheese

    2012-12-01

    Full Text Available The Optical Spectrograph and InfraRed Imaging System (OSIRIS on the Odin satellite is currently in its 12th year of observing the Earth's limb. For the first time, continuous temperature profiles extending from the stratopause to the upper mesosphere have been derived from OSIRIS measurements of Rayleigh-scattered sunlight. Through most of the mesosphere, OSIRIS temperatures are in good agreement with coincident temperature profiles derived from other satellite and ground-based measurements. In the altitude region of 55–80 km, OSIRIS temperatures are typically within 4–5 K of those from the SABER, ACE-FTS, and SOFIE instruments on the TIMED, SciSat-I, and AIM satellites, respectively. The mean differences between individual OSIRIS profiles and those of the other satellite instruments are typically within the combined uncertainties and previously reported biases. OSIRIS temperatures are typically within 2 K of those from the University of Western Ontario's Purple Crow Lidar in the altitude region of 52–79 km, where the mean differences are within combined uncertainties. Near 84 km, OSIRIS temperatures exhibit a cold bias of 10–15 K, which is due to a cold bias in OSIRIS O2 A-band temperatures at 85 km, the upper boundary of the Rayleigh-scatter derived temperatures; and near 48 km OSIRIS temperatures exhibit a cold bias of 5–15 K, which is likely due to multiple-scatter effects that are not taken into account in the retrieval.

  11. Heavy precipitation retrieval from combined satellite observations and ground-based lightning measurements

    Science.gov (United States)

    Mugnai, A.; Dietrich, S.; Casella, D.; di Paola, F.; Formenton, M.; Sanò, P.

    2010-09-01

    We have developed a series of algorithms for the retrieval of precipitation (especially, heavy precipitation) over the Mediterranean area using satellite observations from the available microwave (MW) radiometers onboard low Earth orbit (LEO) satellites and from the visible-infrared (VIS-IR) SEVIRI radiometer onboard the European geosynchronous (GEO) satellite Meteosat Second Generation (MSG), in conjunction with lightning data from ground-based networks - such as ZEUS and LINET. These are: • A new approach for precipitation retrieval from space (which we call the Cloud Dynamics and Radiation Database approach, CDRD) that incorporates lightning and environmental/dynamical information in addition to the upwelling microwave brightness temperatures (TB’s) so as to reduce the retrieval uncertainty and improve the retrieval performance; • A new combined MW-IR technique for producing frequent precipitation retrievals from space (which we call PM-GCD technique), that uses passive-microwave (PM) retrievals in conjunction with lightning information and the Global Convection Detection (GCD) technique to discriminate deep convective clouds within the GEO observations; • A new morphing approach (which we call the Lightning-based Precipitation Evolving Technique, L-PET) that uses the available lightning measurements for propagating the rainfall estimates from satellite-borne MW radiometers to a much higher time resolution than the MW observations. We will present and discuss our combined MW/IR/lightning precipitation algorithms and analyses with special reference to some case studies over the western Mediterranean.

  12. Observational Selection Effects with Ground-based Gravitational Wave Detectors

    Science.gov (United States)

    Chen, Hsin-Yu; Essick, Reed; Vitale, Salvatore; Holz, Daniel E.; Katsavounidis, Erik

    2017-01-01

    Ground-based interferometers are not perfect all-sky instruments, and it is important to account for their behavior when considering the distribution of detected events. In particular, the LIGO detectors are most sensitive to sources above North America and the Indian Ocean, and as the Earth rotates, the sensitive regions are swept across the sky. However, because the detectors do not acquire data uniformly over time, there is a net bias on detectable sources’ right ascensions. Both LIGO detectors preferentially collect data during their local night; it is more than twice as likely to be local midnight than noon when both detectors are operating. We discuss these selection effects and how they impact LIGO’s observations and electromagnetic (EM) follow-up. Beyond galactic foregrounds associated with seasonal variations, we find that equatorial observatories can access over 80% of the localization probability, while mid-latitudes will access closer to 70%. Facilities located near the two LIGO sites can observe sources closer to their zenith than their analogs in the south, but the average observation will still be no closer than 44° from zenith. We also find that observatories in Africa or the South Atlantic will wait systematically longer before they can begin observing compared to the rest of the world though, there is a preference for longitudes near the LIGOs. These effects, along with knowledge of the LIGO antenna pattern, can inform EM follow-up activities and optimization, including the possibility of directing observations even before gravitational-wave events occur.

  13. Ground-based Measurements of Next Generation Spectroradiometric Standard Stars

    Science.gov (United States)

    McGraw, John T.

    2013-01-01

    Accurate, radiometric standards are essential to the future of ground- and space-based astronomy and astrophysics. While astronomers tend to think of “standard stars” as available calibration sources, progress at NIST to accurately calibrate inexpensive, easy to use photodiode detectors as spectroradiometric standards from 200 nm to 1800 nm allows referencing astronomical measurements to these devices. Direction-, time-, and wavelength-dependent transmission of Earth’s atmosphere is the single largest source of error for ground-based radiometric measurement of astronomical objects. Measurements and impacts of atmospheric extinction - scattering and absorption - on imaging radiometric and spectroradiometric measurements are described. The conclusion is that accurate real-time measurement of extinction in the column of atmosphere through which standard star observations are made, over the spectral region being observed and over the field of view of the telescope are required. New techniques to directly and simultaneously measure extinction in the column of atmosphere through which observations are made are required. Our direct extinction measurement solution employs three small facility-class instruments working in parallel: a lidar to measure rapidly time variable transmission at three wavelengths with uncertainty of 0.25% per airmass, a spectrophotometer to measure rapidly wavelength variable extinction with sub-1% precision per nanometer resolution element from 350 to 1050nm, and a wide-field camera to measure angularly variable extinction over the field of view. These instruments and their operation will be described. We assert that application of atmospheric metadata provided by this instrument suite corrects for a significant fraction of systematic errors currently limiting radiometric precision, and provides a major step towards measurements that are provably dominated by random noise.

  14. Ozone profiles above Kiruna from two ground-based radiometers

    Science.gov (United States)

    Ryan, Niall J.; Walker, Kaley A.; Raffalski, Uwe; Kivi, Rigel; Gross, Jochen; Manney, Gloria L.

    2016-09-01

    This paper presents new atmospheric ozone concentration profiles retrieved from measurements made with two ground-based millimetre-wave radiometers in Kiruna, Sweden. The instruments are the Kiruna Microwave Radiometer (KIMRA) and the Millimeter wave Radiometer 2 (MIRA 2). The ozone concentration profiles are retrieved using an optimal estimation inversion technique, and they cover an altitude range of ˜ 16-54 km, with an altitude resolution of, at best, 8 km. The KIMRA and MIRA 2 measurements are compared to each other, to measurements from balloon-borne ozonesonde measurements at Sodankylä, Finland, and to measurements made by the Microwave Limb Sounder (MLS) aboard the Aura satellite. KIMRA has a correlation of 0.82, but shows a low bias, with respect to the ozonesonde data, and MIRA 2 shows a smaller magnitude low bias and a 0.98 correlation coefficient. Both radiometers are in general agreement with each other and with MLS data, showing high correlation coefficients, but there are differences between measurements that are not explained by random errors. An oscillatory bias with a peak of approximately ±1 ppmv is identified in the KIMRA ozone profiles over an altitude range of ˜ 18-35 km, and is believed to be due to baseline wave features that are present in the spectra. A time series analysis of KIMRA ozone for winters 2008-2013 shows the existence of a local wintertime minimum in the ozone profile above Kiruna. The measurements have been ongoing at Kiruna since 2002 and late 2012 for KIMRA and MIRA 2, respectively.

  15. Project management for complex ground-based instruments: MEGARA plan

    Science.gov (United States)

    García-Vargas, María. Luisa; Pérez-Calpena, Ana; Gil de Paz, Armando; Gallego, Jesús; Carrasco, Esperanza; Cedazo, Raquel; Iglesias, Jorge

    2014-08-01

    The project management of complex instruments for ground-based large telescopes is a challenge itself. A good management is a clue for project success in terms of performance, schedule and budget. Being on time has become a strict requirement for two reasons: to assure the arrival at the telescope due to the pressure on demanding new instrumentation for this first world-class telescopes and to not fall in over-costs. The budget and cash-flow is not always the expected one and has to be properly handled from different administrative departments at the funding centers worldwide distributed. The complexity of the organizations, the technological and scientific return to the Consortium partners and the participation in the project of all kind of professional centers working in astronomical instrumentation: universities, research centers, small and large private companies, workshops and providers, etc. make the project management strategy, and the tools and procedures tuned to the project needs, crucial for success. MEGARA (Multi-Espectrógrafo en GTC de Alta Resolución para Astronomía) is a facility instrument of the 10.4m GTC (La Palma, Spain) working at optical wavelengths that provides both Integral-Field Unit (IFU) and Multi-Object Spectrograph (MOS) capabilities at resolutions in the range R=6,000-20,000. The project is an initiative led by Universidad Complutense de Madrid (Spain) in collaboration with INAOE (Mexico), IAA-CSIC (Spain) and Universidad Politécnica de Madrid (Spain). MEGARA is being developed under contract with GRANTECAN.

  16. Ground-based remote sensing of tropospheric water vapour isotopologues within the project MUSICA

    Science.gov (United States)

    Schneider, M.; Barthlott, S.; Hase, F.; González, Y.; Yoshimura, K.; García, O. E.; Sepúlveda, E.; Gomez-Pelaez, A.; Gisi, M.; Kohlhepp, R.; Dohe, S.; Blumenstock, T.; Wiegele, A.; Christner, E.; Strong, K.; Weaver, D.; Palm, M.; Deutscher, N. M.; Warneke, T.; Notholt, J.; Lejeune, B.; Demoulin, P.; Jones, N.; Griffith, D. W. T.; Smale, D.; Robinson, J.

    2012-12-01

    Within the project MUSICA (MUlti-platform remote Sensing of Isotopologues for investigating the Cycle of Atmospheric water), long-term tropospheric water vapour isotopologue data records are provided for ten globally distributed ground-based mid-infrared remote sensing stations of the NDACC (Network for the Detection of Atmospheric Composition Change). We present a new method allowing for an extensive and straightforward characterisation of the complex nature of such isotopologue remote sensing datasets. We demonstrate that the MUSICA humidity profiles are representative for most of the troposphere with a vertical resolution ranging from about 2 km (in the lower troposphere) to 8 km (in the upper troposphere) and with an estimated precision of better than 10%. We find that the sensitivity with respect to the isotopologue composition is limited to the lower and middle troposphere, whereby we estimate a precision of about 30‰ for the ratio between the two isotopologues HD16O and H216O. The measurement noise, the applied atmospheric temperature profiles, the uncertainty in the spectral baseline, and the cross-dependence on humidity are the leading error sources. We introduce an a posteriori correction method of the cross-dependence on humidity, and we recommend applying it to isotopologue ratio remote sensing datasets in general. In addition, we present mid-infrared CO2 retrievals and use them for demonstrating the MUSICA network-wide data consistency. In order to indicate the potential of long-term isotopologue remote sensing data if provided with a well-documented quality, we present a climatology and compare it to simulations of an isotope incorporated AGCM (Atmospheric General Circulation Model). We identify differences in the multi-year mean and seasonal cycles that significantly exceed the estimated errors, thereby indicating deficits in the modeled atmospheric water cycle.

  17. Ground-based remote sensing of tropospheric water vapour isotopologues within the project MUSICA

    Directory of Open Access Journals (Sweden)

    M. Schneider

    2012-12-01

    Full Text Available Within the project MUSICA (MUlti-platform remote Sensing of Isotopologues for investigating the Cycle of Atmospheric water, long-term tropospheric water vapour isotopologue data records are provided for ten globally distributed ground-based mid-infrared remote sensing stations of the NDACC (Network for the Detection of Atmospheric Composition Change. We present a new method allowing for an extensive and straightforward characterisation of the complex nature of such isotopologue remote sensing datasets. We demonstrate that the MUSICA humidity profiles are representative for most of the troposphere with a vertical resolution ranging from about 2 km (in the lower troposphere to 8 km (in the upper troposphere and with an estimated precision of better than 10%. We find that the sensitivity with respect to the isotopologue composition is limited to the lower and middle troposphere, whereby we estimate a precision of about 30‰ for the ratio between the two isotopologues HD16O and H216O. The measurement noise, the applied atmospheric temperature profiles, the uncertainty in the spectral baseline, and the cross-dependence on humidity are the leading error sources. We introduce an a posteriori correction method of the cross-dependence on humidity, and we recommend applying it to isotopologue ratio remote sensing datasets in general. In addition, we present mid-infrared CO2 retrievals and use them for demonstrating the MUSICA network-wide data consistency. In order to indicate the potential of long-term isotopologue remote sensing data if provided with a well-documented quality, we present a climatology and compare it to simulations of an isotope incorporated AGCM (Atmospheric General Circulation Model. We identify differences in the multi-year mean and seasonal cycles that significantly exceed the estimated errors, thereby indicating deficits in the modeled atmospheric water cycle.

  18. Ground-based remote sensing of tropospheric water vapour isotopologues within the project MUSICA

    Directory of Open Access Journals (Sweden)

    M. Schneider

    2012-08-01

    Full Text Available Within the project MUSICA (MUlti-platform remote Sensing of Isotopologues for investigating the Cycle of Atmospheric water, long-term tropospheric water vapour isotopologues data records are provided for ten globally distributed ground-based mid-infrared remote sensing stations of the NDACC (Network for the Detection of Atmospheric Composition Change. We present a new method allowing for an extensive and straightforward characterisation of the complex nature of such isotopologue remote sensing datasets. We demonstrate that the MUSICA humidity profiles are representative for most of the troposphere with a vertical resolution ranging from about 2 km (in the lower troposphere to 8 km (in the upper troposphere and with an estimated precision of better than 10%. We find that the sensitivity with respect to the isotopologue composition is limited to the lower and middle troposphere, whereby we estimate a precision of about 30‰ for the ratio between the two isotopologues HD16O and H216O. The measurement noise, the applied atmospheric temperature profiles, the uncertainty in the spectral baseline, and interferences from humidity are the leading error sources. We introduce an a posteriori correction method of the humidity interference error and we recommend applying it for isotopologue ratio remote sensing datasets in general. In addition, we present mid-infrared CO2 retrievals and use them for demonstrating the MUSICA network-wide data consistency.

    In order to indicate the potential of long-term isotopologue remote sensing data if provided with a well-documented quality, we present a climatology and compare it to simulations of an isotope incorporated AGCM (Atmospheric General Circulation Model. We identify differences in the multi-year mean and seasonal cycles that significantly exceed the estimated errors, thereby indicating deficits in the modeled atmospheric water cycle.

  19. Raman and infrared spectroscopic characterization of the phosphate mineral paravauxite Fe2+Al2(PO4)2(OH)2.8H2O.

    Science.gov (United States)

    Frost, Ray L; Scholz, Ricardo; Lópes, Andrés; Xi, Yunfei; Gobac, Zeljka Žigovečki; Horta, Laura Frota Campos

    2013-12-01

    We have undertaken a vibrational spectroscopic study of paravauxite the Siglo XX mine, Bustillo Province, northern of Potosí department, Bolivia. This mine is important source for rare and unusual secondary phosphate minerals and is the type locality for a number of rare phosphates such as vauxite, sigloite, metavauxite and for jeanbandyite. The chemical formula of the studied sample was determined as Fe(2+)(0.9)5, Al(0.07)Σ1.02 (Al)2.09 (PO4)1:97 (OH)1.98 · 7.90(H2O). The Raman spectrum is dominated by an intense Raman band at 1020 cm(-1) assigned to the PO4(3-) ν1 symmetric stretching mode. Low intensity Raman bands found at 1058, 1115 and 1148 cm(-1) are assigned to the PO4(3-) ν3 antisymmetric stretching vibrations. Raman bands of paravauxite at 537, 570, 609 and 643 cm(-1) are assigned to the ν4 PO4(3-) bending modes whilst the Raman bands at 393 and 420 cm(-1) are due to the ν2 PO4(3-) bending modes. The Raman spectral profile of paravauxite in the hydroxyl stretching region is broad with component bands resolved at 3086, 3215, 3315, 3421, 3505 and 3648 cm(-1). Vibrational spectroscopy enables the assessment of the molecular structure of paravauxite to be undertaken. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Spectroscopic studies of ion implanted PPV films

    Energy Technology Data Exchange (ETDEWEB)

    Moreau, C. (Cavendish Lab., Univ. of Cambridge (United Kingdom)); Friend, R.H. (Cavendish Lab., Univ. of Cambridge (United Kingdom)); Sarnecki, G.J. (Cavendish Lab., Univ. of Cambridge (United Kingdom)); Lucas, B. (LEPOFI, Faculte des Sciences, 87 - Limoges (France)); Moliton, A. (LEPOFI, Faculte des Sciences, 87 - Limoges (France)); Ratier, B. (LEPOFI, Faculte des Sciences, 87 - Limoges (France)); Belorgeot, C. (Lab. de Physique Moleculaire, Faculte des Sciences, 87 - Limoges (France))

    1993-03-15

    The main results of the spectroscopic analyses (infrared and ultraviolet - visible - near infrared) carried out on PPV films before and after ion implantation with halogen and alkali ions are presented in this paper. The influence of both ions nature and implantation parameters on optical properties of this polymer have been pointed out and the appearance of a weak band due to doping has been observed by infrared spectroscopy. (orig.)

  1. Infrared spectroscopic methods for the study of aerosol particles using White cell optics: Development and characterization of a new aerosol flow tube

    Science.gov (United States)

    Nájera, Juan J.; Fochesatto, Javier G.; Last, Deborah J.; Percival, Carl J.; Horn, Andrew B.

    2008-12-01

    A description of a new aerosol flow tube apparatus for measurements in situ under atmospherically relevant conditions is presented here. The system consists of a laboratory-made nebulizer generation system and a flow tube with a White cell-based Fourier transform IR for the detection system. An assessment of the White cell coupled to the flow tube was carried out by an extensive set of experiments to ensure the alignment of the infrared beam and optimize the performance of this system. The detection limit for CO was established as (1.0±0.3) ppm and 16 passes was chosen as the optimum number of passes to be used in flow tube experiments. Infrared spectroscopy was used to characterize dry aerosol particles in the flow tube. Pure particles composed of ammonium sulfate or sodium chloride ranging between 0.8 and 2.1 μm for size diameter and (0.8-4.9)×106 particles/cm3 for density number were generated by nebulization of aqueous solutions. Direct measurements of the aerosol particle size agree with size spectra retrieved from inversion of the extinction measurements using Mie calculations, where the difference residual value is in the order of 0.2%. The infrared detection limit for ammonium sulfate aerosol particles was determined as dp=0.9 μm and N =5×103 particles/cm3 with σ =1.1 by Mie calculation. Alternatively, Mie calculations were performed to determine the flexibility in varying the optical length when aerosol particles are sent by the injector. The very good agreement between the values retrieved for aerosol particles injected through the flow tube or through the injector clearly validates the estimation of the effective optical path length for the injector. To determine the flexibility in varying the reaction zone length, analysis of the extinction spectra as function of the position of the injector was carried out by monitoring the integrated area of different absorption modes of the ammonium sulfate. We conclude that the aerosol loss in the flow tube

  2. Near Infrared Spectroscopy

    Science.gov (United States)

    2009-01-01

    directly, but to evaluate the performance of each of these systems in their recommended (UMMS) and mar- keted (HT) configurations. Although we did not...son Technology (HT) oximeter is mar- keted specifically for use on the thenar muscle. We therefore used the thenar site for the HT sensor because...critical fourth fac- tor which differentiates near-infrared spectroscopic tissue monitors—the de- sign of the spectroscopic system . There are multiple

  3. Simulation of submillimetre atmospheric spectra for characterising potential ground-based remote sensing observations

    Science.gov (United States)

    Turner, Emma C.; Withington, Stafford; Newnham, David A.; Wadhams, Peter; Jones, Anna E.; Clancy, Robin

    2016-11-01

    The submillimetre is an understudied region of the Earth's atmospheric electromagnetic spectrum. Prior technological gaps and relatively high opacity due to the prevalence of rotational water vapour lines at these wavelengths have slowed progress from a ground-based remote sensing perspective; however, emerging superconducting detector technologies in the fields of astronomy offer the potential to address key atmospheric science challenges with new instrumental methods. A site study, with a focus on the polar regions, is performed to assess theoretical feasibility by simulating the downwelling (zenith angle = 0°) clear-sky submillimetre spectrum from 30 mm (10 GHz) to 150 µm (2000 GHz) at six locations under annual mean, summer, winter, daytime, night-time and low-humidity conditions. Vertical profiles of temperature, pressure and 28 atmospheric gases are constructed by combining radiosonde, meteorological reanalysis and atmospheric chemistry model data. The sensitivity of the simulated spectra to the choice of water vapour continuum model and spectroscopic line database is explored. For the atmospheric trace species hypobromous acid (HOBr), hydrogen bromide (HBr), perhydroxyl radical (HO2) and nitrous oxide (N2O) the emission lines producing the largest change in brightness temperature are identified. Signal strengths, centre frequencies, bandwidths, estimated minimum integration times and maximum receiver noise temperatures are determined for all cases. HOBr, HBr and HO2 produce brightness temperature peaks in the mK to µK range, whereas the N2O peaks are in the K range. The optimal submillimetre remote sensing lines for the four species are shown to vary significantly between location and scenario, strengthening the case for future hyperspectral instruments that measure over a broad wavelength range. The techniques presented here provide a framework that can be applied to additional species of interest and taken forward to simulate retrievals and guide the

  4. Hydrogen bonding and liquid crystallinity of low molar mass and polymeric mesogens containing benzoic acids: a variable temperature Fourier transform infrared spectroscopic study

    Science.gov (United States)

    Martínez-Felipe, A.; Cook, A. G.; Wallage, M. J.; Imrie, C. T.

    2014-12-01

    The phase behaviour and mesomorphism of poly(4-(6-propenoyloxyhexyloxy)benzoic acid) (PPOHBA) and 4-pentyloxybenzoic acid (POBA) is studied using variable-temperature Fourier transform infrared (FTIR) spectroscopy and X-ray diffraction. PPHOBA exhibits a smectic C phase and POBA, a nematic phase. The temperature dependence of the Fermi resonance bands associated with the hydroxyl groups and of the carbonyl stretching region in the FTIR spectra indicates that there is a dynamic equilibrium between monomers and open and closed dimers formed by hydrogen bonding between benzoic acid moieties. The nematic phase observed for POBA is linked to the anisotropic cyclic dimer, while an abrupt increase in the concentration of monomer drives isotropisation. In PPOHBA, hydrogen-bonded supramesogens promote smectic behaviour, while hydrogen-bonded crosslinks stabilise the lamellae. The increased viscosity arising from this dynamic crosslinking is offset by the flexibility of the acrylate backbone and alkyl spacers.

  5. Loading of halloysite nanotubes with BSA, α-Lac and β-Lg: a Fourier transform infrared spectroscopic and thermogravimetric study

    Science.gov (United States)

    Duce, Celia; Della Porta, Valentina; Bramanti, Emilia; Campanella, Beatrice; Spepi, Alessio; Tiné, Maria Rosaria

    2017-02-01

    Halloysite nanotubes (HNTs) are considered as ideal materials for biotechnological and medical applications. An important feature of halloysite is that it has a different surface chemistry on the inner and outer sides of the tubes. This property means that negatively-charged molecules can be selectively loaded inside the halloysite nanoscale its lumen. Loaded HNTs can be used for the controlled or sustained release of proteins, drugs, bioactive molecules and other agents. We studied the interaction between HNTs and bovine serum albumin, α lactalbumin and β -lactoglobulin loaded into HTNs using Fourier transform infrared spectroscopy and thermogravimetry. These techniques enabled us to study the protein conformation and thermal stability, respectively, and to estimate the amount of protein loaded into the HNTs. TEM images confirmed the loading of proteins into HTNs.

  6. Photocatalytic reaction kinetics model based on electrical double layer theory Ⅱ. Infrared spectroscopic characterization of methyl orange adsorption on TiO2 surface

    Institute of Scientific and Technical Information of China (English)

    李新军; 李芳柏; 古国榜; 王良焱; 郑少健; 张琦

    2002-01-01

    In the process of heterogeneous photo-catalytic degradation, the reaction rate depends strongly on the property of organic binding on the surface. It is important to identify the adsorption of organic compounds on TiO2 surface to understand the mechanism of degradation and proper kinetics expression. The infrared spectroscopy was used to analyze the methyl orange adsorption on TiO2 surface in aqueous solutions in different pH ranges. The variation of the surface complexation of methyl orange formed on the TiO2 surface in different acid and basic media was discussed. And the adsorption amounts were also qualitatively analyzed. Methyl orange has strong, weak and little adsorption on the TiO2 surface in acid, basic and near neutral solution, respectively.

  7. Fourier transform infrared spectroscopic study of the kinetics of a first-order phase transition in tridecanoic acid CH3(CH2)11COOH

    Science.gov (United States)

    Marikhin, V. A.; Myasnikova, L. P.; Radovanova, E. I.; Volchek, B. Z.; Medvedeva, D. A.

    2017-02-01

    The structural changes in crystalline lamella cores of tridecanoic acid CH3(CH2)11COOH during heating in the range from the temperature T 1 = 13.5°C to T 2 > T m = 41.6°C have been investigated using Fourier transform infrared spectroscopy. The behavior of the bands of rocking (in the region of 720 cm-1) and bending (in the region of 1470 cm-1) vibrations of CH2 groups in tridecanoic acid methylene segments has been analyzed. It has been shown that, in the first-order phase transition region ( T s-s 36°C) within a narrow temperature range (Δ T 1 ≤ 1 K), there is a gradual transformation of the initial triclinic subcell into the hexagonal subcell. The mechanism of this transition has been considered in terms of the theory of diffuse first-order phase transitions.

  8. Infrared and Raman spectroscopic methods for characterization of Taxus baccata L.--Improved taxane isolation by accelerated quality control and process surveillance.

    Science.gov (United States)

    Gudi, Gennadi; Krähmer, Andrea; Koudous, Iraj; Strube, Jochen; Schulz, Hartwig

    2015-10-01

    Different yew species contain poisonous taxane alkaloids which serve as resources for semi-synthesis of anticancer drugs. The highly variable amounts of taxanes demand new methods for fast characterization of the raw plant material and the isolation of the target structures during phyto extraction. For that purpose, applicability of different vibrational spectroscopy methods in goods receipt of raw plant material and in process control was investigated and demonstrated in online tracking isolation and purification of the target taxane 10-deacetylbaccatin III (10-DAB) during solvent extraction. Applying near (NIRS) and mid infrared spectroscopy (IRS) the amount of botanical impurities in mixed samples of two different yew species (R(2)=0.993), the leave-to-wood ratio for Taxus baccata material (R(2)=0.94) and moisture in dried yew needles (R(2)=0.997) can be quantified. By partial least square analysis (PCA) needles of different Coniferales species were successfully discriminated by Attenuated Total Reflectance-Fourier-Transform Infrared Spectroscopy (ATR-FT-IR). The analytical potential of ATR-FT-IR and Fourier Transform-Raman Spectroscopy (FT-RS) in process control of extraction and purification of taxanes is demonstrated for determination of the water content in methanolic yew extracts (R(2)=0.999) and for quantification of 10-DAB (R(2)=0.98) on a highly sophisticated level. The decrease of 10-DAB in the plant tissue during extraction was successfully visualized by FT-IR imaging of thin cross sections providing new perspectives for process control and design. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Performance testing of a mid-infrared spectroscopic system for clinical chemistry applications utilising an ultra-broadband tunable EC-QCL radiation source

    Science.gov (United States)

    Grafen, M.; Nalpantidis, K.; Ihrig, D.; Heise, H. M.; Ostendorf, A.

    2016-03-01

    Mid-infrared (MIR) spectroscopy is a valuable analytical method for patient monitoring within point-of-care diagnostics. For implementation, quantum cascade lasers (QCL) appear to be most suited regarding miniaturization, complexity and eventually also costs. External cavity (EC) - QCLs offer broad tuning ranges and recently, ultra-broadly tunable systems covering spectral ranges around the mid-infrared fingerprint region became commercially available. Using such a system, transmission spectra from the wavenumber interval of 780 to 1920 cm-1, using a thermoelectrically cooled MCT-detector, were recorded while switching the aqueous glucose concentrations between 0, 50 and 100 mg/dL. In order to optimize the system performance, a multi-parameter study was carried out, varying laser pulse width, duty cycle, sweep speed and the optical sample pathlength for scoring the absorbance noise. Exploratory factor analysis with pattern recognition tools (PCA, LDA) was used for the raw data, providing more than 10 significantly contributing factors. With the glucose signal causing 20 % of the total variance, further factors include short-term drift possibly related to thermal effects, long-term drift due to varying atmospheric water vapour in the lab, as well as wavenumber shifts and drifts of the single tuners. For performance testing, the noise equivalent concentration was estimated based on cross-validated Partial-Least Squares (PLS) predictions and the a-posteriori obtained scores of the factor analysis. Based on the optimized parameters, a noise equivalent glucose concentration of 1.5 mg/dL was achieved.

  10. Seismic investigation of the {\\gamma} Dor star KIC 6462033: The first results of Kepler and ground-based follow up observations

    CERN Document Server

    Ulusoy, C; Damasso, M; Carbognani, A; Cenadelli, D; Stateva, I; Iliev, I Kh; Dimitrov, D

    2013-01-01

    We present the first preliminary results on the analysis of ground-based time series of the {\\gamma} Dor star KIC 6462033 (TYC 3144-646-1, V = 10.83, P = 0.69686 d) as well as Kepler photometry in order to study pulsational behaviour in this star.{\\gamma} Dor variables, which exhibit g-mode pulsations, are promising asteroseismic targets to understand their rich complexity of pulsational characteristics in detail. In order to achieve this goal, intensive and numerous multicolour and high resolution spectroscopic observations are also required, to complete space-based data aimed at the determination of their physical parameters.

  11. Validation of ACE and OSIRIS ozone and NO2 measurements using ground-based instruments at 80° N

    Directory of Open Access Journals (Sweden)

    A. Pazmino

    2012-05-01

    Full Text Available The Optical Spectrograph and Infra-Red Imager System (OSIRIS and the Atmospheric Chemistry Experiment (ACE have been taking measurements from space since 2001 and 2003, respectively. This paper presents intercomparisons between ozone and NO2 measured by the ACE and OSIRIS satellite instruments and by ground-based instruments at the Polar Environment Atmospheric Research Laboratory (PEARL, which is located at Eureka, Canada (80° N, 86° W and is operated by the Canadian Network for the Detection of Atmospheric Change (CANDAC. The ground-based instruments included in this study are four zenith-sky differential optical absorption spectroscopy (DOAS instruments, one Bruker Fourier transform infrared spectrometer (FTIR and four Brewer spectrophotometers. Ozone total columns measured by the DOAS instruments were retrieved using new Network for the Detection of Atmospheric Composition Change (NDACC guidelines and agree to within 3.2%. The DOAS ozone columns agree with the Brewer spectrophotometers with mean relative differences that are smaller than 1.5%. This suggests that for these instruments the new NDACC data guidelines were successful in producing a homogenous and accurate ozone dataset at 80° N. Satellite 14–52 km ozone and 17–40 km NO2 partial columns within 500 km of PEARL were calculated for ACE-FTS Version 2.2 (v2.2 plus updates, ACE-FTS v3.0, ACE-MAESTRO (Measurements of Aerosol Extinction in the Stratosphere and Troposphere Retrieved by Occultation v1.2 and OSIRIS SaskMART v5.0x ozone and Optimal Estimation v3.0 NO2 data products. The new ACE-FTS v3.0 and the validated ACE-FTS v2.2 partial columns are nearly identical, with mean relative differences of 0.0 ± 0.2% and −0.2 ± 0.1% for v2.2 minus v3.0 ozone and NO2, respectively. Ozone columns were constructed from 14–52 km satellite and 0–14 km ozonesonde partial columns and compared with the ground-based total column measurements. The satellite-plus-sonde measurements agree