WorldWideScience

Sample records for ground-based continuous measurement

  1. The Impact of Sunlight Conditions on the Consistency of Vegetation Indices in Croplands—Effective Usage of Vegetation Indices from Continuous Ground-Based Spectral Measurements

    Directory of Open Access Journals (Sweden)

    Mitsunori Ishihara

    2015-10-01

    Full Text Available A ground-based network of spectral observations is useful for ecosystem monitoring and validation of satellite data. However, these observations contain inherent uncertainties due to the change of sunlight conditions. This study investigated the impact of changing solar zenith angles and diffuse/direct light conditions on the consistency of vegetation indices (normalized difference vegetation index (NDVI and green-red vegetation index (GRVI derived from ground-based spectral measurements in three different types of cropland (paddy field, upland field, cultivated grassland in Japan. In general, the vegetation indices decreased with decreasing solar zenith angle. This response was affected significantly by the growth stage and diffuse/direct light conditions. The decreasing response of the NDVI to the decreasing solar zenith angle was high during the middle growth stage (0.4 < NDVI < 0.8. On the other hand, a similar response of the GRVI was evident except in the early growth stage (GRVI < 0. The response of vegetation indices to the solar zenith angle was evident under clear sky conditions but almost negligible under cloudy sky conditions. At large solar zenith angles, neither the NDVI nor the GRVI were affected by diffuse/direct light conditions in any growth stage. These experimental results were supported well by the results of simulations based on a physically-based canopy reflectance model (PROSAIL. Systematic selection of the data from continuous diurnal spectral measurements in consideration of the solar light conditions would be effective for accurate and consistent assessment of the canopy structure and functioning.

  2. Design and application of a mobile ground-based observatory for continuous measurements of atmospheric trace-gas and criteria pollutant species

    Directory of Open Access Journals (Sweden)

    S. E. Bush

    2015-01-01

    Full Text Available Ground-based measurements of atmospheric trace gas species and criteria pollutants are essential for understanding emissions dynamics across space and time. Gas composition in the surface 50 m has the greatest direct impacts on human health as well as ecosystem processes, hence data at this level is necessary for addressing carbon cycle and public health related questions. However, such surface data are generally associated with stationary measurement towers, where spatial representation is limited due to the high cost of establishing and maintaining an extensive network of measurement stations. We describe here a compact mobile laboratory equipped to provide high-precision, high-frequency, continuous, on-road synchronous measurements of CO2, CO, CH4, H2O, NOx, O3, aerosol, meteorological, and geospatial position data. The mobile laboratory has been deployed across the western USA. In addition to describing the vehicle and its capacity, we present data that illustrate the use of the laboratory as a powerful tool for investigating the spatial structure of urban trace gas emissions and criteria pollutants at spatial scales ranging from single streets to whole ecosystem and regional scales. We identify fugitive urban CH4 emissions and assess the magnitude of CH4 emissions from known point sources. We illustrate how such a mobile laboratory can be used to better understand emissions dynamics and quantify emissions ratios associated with trace gas emissions from wildfire incidents. Lastly, we discuss additional mobile laboratory applications in health and urban metabolism.

  3. Design and application of a mobile ground-based observatory for continuous measurements of atmospheric trace gas and criteria pollutant species

    Science.gov (United States)

    Bush, S. E.; Hopkins, F. M.; Randerson, J. T.; Lai, C.-T.; Ehleringer, J. R.

    2015-08-01

    Ground-based measurements of atmospheric trace gas species and criteria pollutants are essential for understanding emissions dynamics across space and time. Gas composition in the lower 50 m of the atmosphere has the greatest direct impacts on human health as well as ecosystem processes; hence data at this level are necessary for addressing carbon-cycle- and public-health-related questions. However, such surface data are generally associated with stationary measurement towers, where spatial representation is limited due to the high cost of establishing and maintaining an extensive network of measurement stations. We describe here a compact mobile laboratory equipped to provide high-precision, high-frequency, continuous, on-road synchronous measurements of CO2, CO, CH4, H2O, NOx, O3, aerosol, meteorological, and geospatial position data. The mobile laboratory has been deployed across the western USA. In addition to describing the vehicle and its capacity, we present data that illustrate the use of the laboratory as a powerful tool for investigating the spatial structure of urban trace gas emissions and criteria pollutants at spatial scales ranging from single streets to whole ecosystem and regional scales. We assess the magnitude of known point sources of CH4 and also identify fugitive urban CH4 emissions. We illustrate how such a mobile laboratory can be used to better understand emissions dynamics and quantify emissions ratios associated with trace gas emissions from wildfire incidents. Lastly, we discuss additional mobile laboratory applications in health and urban metabolism.

  4. Design and application of a mobile ground-based observatory for continuous measurements of atmospheric trace-gas and criteria pollutant species

    Science.gov (United States)

    Bush, S. E.; Hopkins, F. M.; Randerson, J. T.; Lai, C.-T.; Ehleringer, J. R.

    2015-01-01

    Ground-based measurements of atmospheric trace gas species and criteria pollutants are essential for understanding emissions dynamics across space and time. Gas composition in the surface 50 m has the greatest direct impacts on human health as well as ecosystem processes, hence data at this level is necessary for addressing carbon cycle and public health related questions. However, such surface data are generally associated with stationary measurement towers, where spatial representation is limited due to the high cost of establishing and maintaining an extensive network of measurement stations. We describe here a compact mobile laboratory equipped to provide high-precision, high-frequency, continuous, on-road synchronous measurements of CO2, CO, CH4, H2O, NOx, O3, aerosol, meteorological, and geospatial position data. The mobile laboratory has been deployed across the western USA. In addition to describing the vehicle and its capacity, we present data that illustrate the use of the laboratory as a powerful tool for investigating the spatial structure of urban trace gas emissions and criteria pollutants at spatial scales ranging from single streets to whole ecosystem and regional scales. We identify fugitive urban CH4 emissions and assess the magnitude of CH4 emissions from known point sources. We illustrate how such a mobile laboratory can be used to better understand emissions dynamics and quantify emissions ratios associated with trace gas emissions from wildfire incidents. Lastly, we discuss additional mobile laboratory applications in health and urban metabolism.

  5. GIFTS EDU Ground-based Measurement Experiment

    Science.gov (United States)

    Zhou, Daniel K.; Smith, W. L., Sr.; Zollinger, L. J.; Huppi, R. J.; Reisse, R. A.; Larar, A. M.; Liu, X.; Tansock, J. J., Jr.; Jensen, S. M.; Revercomb, H. E.; Feltz, W. F.; Bingham, G. E.

    2007-01-01

    Geosynchronous Imaging Fourier Transform Spectrometer (GIFTS) Engineering Demonstration Unit (EDU) is an imaging infrared spectrometer designed for atmospheric soundings. The EDU groundbased measurement experiment was held in Logan, Utah during September 2006 to demonstrate its extensive capabilities for geosynchronous and other applications.

  6. Ground-Based Aerosol Measurements | Science Inventory ...

    Science.gov (United States)

    Atmospheric particulate matter (PM) is a complex chemical mixture of liquid and solid particles suspended in air (Seinfeld and Pandis 2016). Measurements of this complex mixture form the basis of our knowledge regarding particle formation, source-receptor relationships, data to test and verify complex air quality models, and how PM impacts human health, visibility, global warming, and ecological systems (EPA 2009). Historically, PM samples have been collected on filters or other substrates with subsequent chemical analysis in the laboratory and this is still the major approach for routine networks (Chow 2005; Solomon et al. 2014) as well as in research studies. In this approach, air, at a specified flow rate and time period, is typically drawn through an inlet, usually a size selective inlet, and then drawn through filters, 1 INTRODUCTION Atmospheric particulate matter (PM) is a complex chemical mixture of liquid and solid particles suspended in air (Seinfeld and Pandis 2016). Measurements of this complex mixture form the basis of our knowledge regarding particle formation, source-receptor relationships, data to test and verify complex air quality models, and how PM impacts human health, visibility, global warming, and ecological systems (EPA 2009). Historically, PM samples have been collected on filters or other substrates with subsequent chemical analysis in the laboratory and this is still the major approach for routine networks (Chow 2005; Solomo

  7. Ground-Based Lidar for Atmospheric Boundary Layer Ozone Measurements

    Science.gov (United States)

    Kuang, Shi; Newchurch, Michael J.; Burris, John; Liu, Xiong

    2013-01-01

    Ground-based lidars are suitable for long-term ozone monitoring as a complement to satellite and ozonesonde measurements. However, current ground-based lidars are unable to consistently measure ozone below 500 m above ground level (AGL) due to both engineering issues and high retrieval sensitivity to various measurement errors. In this paper, we present our instrument design, retrieval techniques, and preliminary results that focus on the high-temporal profiling of ozone within the atmospheric boundary layer (ABL) achieved by the addition of an inexpensive and compact mini-receiver to the previous system. For the first time, to the best of our knowledge, the lowest, consistently achievable observation height has been extended down to 125 m AGL for a ground-based ozone lidar system. Both the analysis and preliminary measurements demonstrate that this lidar measures ozone with a precision generally better than 10% at a temporal resolution of 10 min and a vertical resolution from 150 m at the bottom of the ABL to 550 m at the top. A measurement example from summertime shows that inhomogeneous ozone aloft was affected by both surface emissions and the evolution of ABL structures.

  8. Ground-based lidar for atmospheric boundary layer ozone measurements.

    Science.gov (United States)

    Kuang, Shi; Newchurch, Michael J; Burris, John; Liu, Xiong

    2013-05-20

    Ground-based lidars are suitable for long-term ozone monitoring as a complement to satellite and ozonesonde measurements. However, current ground-based lidars are unable to consistently measure ozone below 500 m above ground level (AGL) due to both engineering issues and high retrieval sensitivity to various measurement errors. In this paper, we present our instrument design, retrieval techniques, and preliminary results that focus on the high-temporal profiling of ozone within the atmospheric boundary layer (ABL) achieved by the addition of an inexpensive and compact mini-receiver to the previous system. For the first time, to the best of our knowledge, the lowest, consistently achievable observation height has been extended down to 125 m AGL for a ground-based ozone lidar system. Both the analysis and preliminary measurements demonstrate that this lidar measures ozone with a precision generally better than ±10% at a temporal resolution of 10 min and a vertical resolution from 150 m at the bottom of the ABL to 550 m at the top. A measurement example from summertime shows that inhomogeneous ozone aloft was affected by both surface emissions and the evolution of ABL structures.

  9. Ground-based Measurements of Next Generation Spectroradiometric Standard Stars

    Science.gov (United States)

    McGraw, John T.

    2013-01-01

    Accurate, radiometric standards are essential to the future of ground- and space-based astronomy and astrophysics. While astronomers tend to think of “standard stars” as available calibration sources, progress at NIST to accurately calibrate inexpensive, easy to use photodiode detectors as spectroradiometric standards from 200 nm to 1800 nm allows referencing astronomical measurements to these devices. Direction-, time-, and wavelength-dependent transmission of Earth’s atmosphere is the single largest source of error for ground-based radiometric measurement of astronomical objects. Measurements and impacts of atmospheric extinction - scattering and absorption - on imaging radiometric and spectroradiometric measurements are described. The conclusion is that accurate real-time measurement of extinction in the column of atmosphere through which standard star observations are made, over the spectral region being observed and over the field of view of the telescope are required. New techniques to directly and simultaneously measure extinction in the column of atmosphere through which observations are made are required. Our direct extinction measurement solution employs three small facility-class instruments working in parallel: a lidar to measure rapidly time variable transmission at three wavelengths with uncertainty of 0.25% per airmass, a spectrophotometer to measure rapidly wavelength variable extinction with sub-1% precision per nanometer resolution element from 350 to 1050nm, and a wide-field camera to measure angularly variable extinction over the field of view. These instruments and their operation will be described. We assert that application of atmospheric metadata provided by this instrument suite corrects for a significant fraction of systematic errors currently limiting radiometric precision, and provides a major step towards measurements that are provably dominated by random noise.

  10. Ground-Based Lidar Measurements During the CALIPSO and Twilight Zone (CATZ) Campaign

    Science.gov (United States)

    Berkoff, Timothy; Qian, Li; Kleidman, Richard; Stewart, Sebastian; Welton, Ellsworth; Li, Zhu; Holbem, Brent

    2008-01-01

    The CALIPSO and Twilight Zone (CATZ) field campaign was carried out between June 26th and August 29th of 2007 in the multi-state Maryland-Virginia-Pennsylvania region of the U.S. to study aerosol properties and cloud-aerosol interactions during overpasses of the CALIPSO satellite. Field work was conducted on selected days when CALIPSO ground tracks occurred in the region. Ground-based measurements included data from multiple Cimel sunphotometers that were placed at intervals along a segment of the CALIPSO ground-track. These measurements provided sky radiance and AOD measurements to enable joints inversions and comparisons with CALIPSO retrievals. As part of this activity, four ground-based lidars provided backscatter measurements (at 523 nm) in the region. Lidars at University of Maryland Baltimore County (Catonsville, MD) and Goddard Space Flight Center (Greenbelt, MD) provided continuous data during the campaign, while two micro-pulse lidar (MPL) systems were temporarily stationed at various field locations directly on CALIPSO ground-tracks. As a result, thirteen on-track ground-based lidar observations were obtained from eight different locations in the region. In some cases, nighttime CALIPSO coincident measurements were also obtained. In most studies reported to date, ground-based lidar validation efforts for CALIPSO rely on systems that are at fixed locations some distance away from the satellite ground-track. The CATZ ground-based lidar data provide an opportunity to examine vertical structure properties of aerosols and clouds both on and off-track simultaneously during a CALIPSO overpass. A table of available ground-based lidar measurements during this campaign will be presented, along with example backscatter imagery for a number of coincident cases with CALIPSO. Results indicate that even for a ground-based measurements directly on-track, comparisons can still pose a challenge due to the differing spatio-temporal properties of the ground and satellite

  11. Observing Tsunamis in the Ionosphere Using Ground Based GPS Measurements

    Science.gov (United States)

    Galvan, D. A.; Komjathy, A.; Song, Y. Tony; Stephens, P.; Hickey, M. P.; Foster, J.

    2011-01-01

    Ground-based Global Positioning System (GPS) measurements of ionospheric Total Electron Content (TEC) show variations consistent with atmospheric internal gravity waves caused by ocean tsunamis following recent seismic events, including the Tohoku tsunami of March 11, 2011. We observe fluctuations correlated in time, space, and wave properties with this tsunami in TEC estimates processed using JPL's Global Ionospheric Mapping Software. These TEC estimates were band-pass filtered to remove ionospheric TEC variations with periods outside the typical range of internal gravity waves caused by tsunamis. Observable variations in TEC appear correlated with the Tohoku tsunami near the epicenter, at Hawaii, and near the west coast of North America. Disturbance magnitudes are 1-10% of the background TEC value. Observations near the epicenter are compared to estimates of expected tsunami-driven TEC variations produced by Embry Riddle Aeronautical University's Spectral Full Wave Model, an atmosphere-ionosphere coupling model, and found to be in good agreement. The potential exists to apply these detection techniques to real-time GPS TEC data, providing estimates of tsunami speed and amplitude that may be useful for future early warning systems.

  12. Ground-based measurements of UV Index (UVI at Helwan

    Directory of Open Access Journals (Sweden)

    H. Farouk

    2012-12-01

    Full Text Available On October 2010 UV Index (UVI ground-based measurements were carried out by weather station at solar laboratory in NRIAG. The daily variation has maximum values in spring and summer days, while minimum values in autumn and winter days. The low level of UVI between 2.55 and 2.825 was found in December, January and February. The moderate level of UVI between 3.075 and 5.6 was found in March, October and November. The high level of UVI between 6.7 and 7.65 was found in April, May and September. The very high level of UVI between 8 and 8.6 was found in June, July and August. High level of radiation over 6 months per year including 3 months with a very high level UVI. According to the equation {UVI=a[SZA]b} the UVI increases with decreasing SZA by 82% on a daily scale and 88% on a monthly scale. Helwan exposure to a high level of radiation over 6 months per year including 3 months with a very high level UVI, so it is advisable not to direct exposure to the sun from 11 am to 2:00 pm.

  13. Ground based mobile isotopic methane measurements in the Front Range, Colorado

    Science.gov (United States)

    Vaughn, B. H.; Rella, C.; Petron, G.; Sherwood, O.; Mielke-Maday, I.; Schwietzke, S.

    2014-12-01

    Increased development of unconventional oil and gas resources in North America has given rise to attempts to monitor and quantify fugitive emissions of methane from the industry. Emission estimates of methane from oil and gas basins can vary significantly from one study to another as well as from EPA or State estimates. New efforts are aimed at reconciling bottom-up, or inventory-based, emission estimates of methane with top-down estimates based on atmospheric measurements from aircraft, towers, mobile ground-based vehicles, and atmospheric models. Attributing airborne measurements of regional methane fluxes to specific sources is informed by ground-based measurements of methane. Stable isotopic measurements (δ13C) of methane help distinguish between emissions from the O&G industry, Confined Animal Feed Operations (CAFO), and landfills, but analytical challenges typically limit meaningful isotopic measurements to individual point sampling. We are developing a toolbox to use δ13CH4 measurements to assess the partitioning of methane emissions for regions with multiple methane sources. The method was applied to the Denver-Julesberg Basin. Here we present data from continuous isotopic measurements obtained over a wide geographic area by using MegaCore, a 1500 ft. tube that is constantly filled with sample air while driving, then subsequently analyzed at slower rates using cavity ring down spectroscopy (CRDS). Pressure, flow and calibration are tightly controlled allowing precise attribution of methane enhancements to their point of collection. Comparisons with point measurements are needed to confirm regional values and further constrain flux estimates and models. This effort was made in conjunction with several major field campaigns in the Colorado Front Range in July-August 2014, including FRAPPÉ (Front Range Air Pollution and Photochemistry Experiment), DISCOVER-AQ, and the Air Water Gas NSF Sustainability Research Network at the University of Colorado.

  14. Ground-based measurement of surface temperature and thermal emissivity

    Science.gov (United States)

    Owe, M.; Van De Griend, A. A.

    1994-01-01

    Motorized cable systems for transporting infrared thermometers have been used successfully during several international field campaigns. Systems may be configured with as many as four thermal sensors up to 9 m above the surface, and traverse a 30 m transect. Ground and canopy temperatures are important for solving the surface energy balance. The spatial variability of surface temperature is often great, so that averaged point measurements result in highly inaccurate areal estimates. The cable systems are ideal for quantifying both temporal and spatial variabilities. Thermal emissivity is also necessary for deriving the absolute physical temperature, and measurements may be made with a portable measuring box.

  15. Nighttime Aerosol Optical Depth Measurements Using a Ground-based Lunar Photometer

    Science.gov (United States)

    Berkoff, Tim; Omar, Ali; Haggard, Charles; Pippin, Margaret; Tasaddaq, Aasam; Stone, Tom; Rodriguez, Jon; Slutsker, Ilya; Eck, Tom; Holben, Brent; hide

    2015-01-01

    In recent years it was proposed to combine AERONET network photometer capabilities with a high precision lunar model used for satellite calibration to retrieve columnar nighttime AODs. The USGS lunar model can continuously provide pre-atmosphere high precision lunar irradiance determinations for multiple wavelengths at ground sensor locations. When combined with measured irradiances from a ground-based AERONET photometer, atmospheric column transmissions can determined yielding nighttime column aerosol AOD and Angstrom coefficients. Additional demonstrations have utilized this approach to further develop calibration methods and to obtain data in polar regions where extended periods of darkness occur. This new capability enables more complete studies of the diurnal behavior of aerosols, and feedback for models and satellite retrievals for the nighttime behavior of aerosols. It is anticipated that the nighttime capability of these sensors will be useful for comparisons with satellite lidars such as CALIOP and CATS in additional to ground-based lidars in MPLNET at night, when the signal-to-noise ratio is higher than daytime and more precise AOD comparisons can be made.

  16. Ground-based intercomparison of two isoprene measurement techniques

    Directory of Open Access Journals (Sweden)

    E. Leibrock

    2003-01-01

    Full Text Available An informal intercomparison of two isoprene (C5H8 measurement techniques was carried out during Fall of 1998 at a field site located approximately 3 km west of Boulder, Colorado, USA. A new chemical ionization mass spectrometric technique (CIMS was compared to a well-established gas chromatographic technique (GC. The CIMS technique utilized benzene cation chemistry to ionize isoprene. The isoprene levels measured by the CIMS were often larger than those obtained with the GC. The results indicate that the CIMS technique suffered from an anthropogenic interference associated with air masses from the Denver, CO metropolitan area as well as an additional interference occurring in clean conditions. However, the CIMS technique is also demonstrated to be sensitive and fast. Especially after introduction of a tandem mass spectrometric technique, it is therefore a candidate for isoprene measurements in remote environments near isoprene sources.

  17. Dust optical properties retrieved from ground-based polarimetric measurements.

    Science.gov (United States)

    Li, Zhengqiang; Goloub, Philippe; Blarel, Luc; Damiri, Bahaiddin; Podvin, Thierry; Jankowiak, Isabelle

    2007-03-20

    We have systematically processed one year of sunphotometer measurements (recorded at five AERONET/PHOTONS sites in Africa) in order to assess mineral dust optical properties with the use of a new polarimetry-based algorithm. We consider the Cimel CE318 polarized sunphotometer version to obtain single-scattering albedo, scattering phase matrix elements F(11) and F(12) for dust aerosols selected with Angström exponents ranging from -0.05 to 0.25. Retrieved F(11) and F(12) differ significantly from those of spherical particles. The degree of linear polarization -F(12)/F(11) for single scattering of atmospheric total column dust aerosols in the case of unpolarized incident light is systematically retrieved for the first time to our knowledge from sunphotometer measurements and shows consistency with previous laboratory characterizations of nonspherical particles.

  18. Continuous ground-based aerosol Lidar observation during seasonal pollution events at Wuxi, China

    Science.gov (United States)

    Wong, Man Sing; Qin, Kai; Lian, Hong; Campbell, James R.; Lee, Kwon Ho; Sheng, Shijie

    2017-04-01

    Haze pollution has long been a significant research topic and challenge in China, with adverse effects on air quality, agricultural production, as well as human health. In coupling with ground-based Lidar measurements, air quality observation, meteorological data, and backward trajectories model, two typical haze events at Wuxi, China are analyzed respectively, depicting summer and winter scenarios. Results indicate that the winter haze pollution is a compound pollution process mainly affected by calm winds that induce pollution accumulation near the surface. In the summer case, with the exception of influence from PM2.5 concentrations, ozone is the main pollutant and regional transport is also a significant influencing factor. Both events are marked by enhanced PM2.5 concentrations, driven by anthropogenic emissions of pollutants such as vehicle exhaust and factory fumes. Meteorological factors such as wind speed/direction and relative humidity are also contributed. These results indicate how the vertical profile offered by routine regional Lidar monitoring helps aid in understanding local variability and trends, which may be adapted for developing abatement strategies that improve air quality.

  19. Sentinel-1 and ground-based sensors for a continuous monitoring of the Corvara landslide kinematic (South Tirol, Italy)

    Science.gov (United States)

    Schlögel, Romy; Darvishi, Mehdi; Cuozzo, Giovanni; Kofler, Christian; Rutzinger, Martin; Zieher, Thomas; Toschi, Isabella; Remondino, Fabio

    2017-04-01

    Sentinel-1 mission allows us to have Synthetic Aperture Radar (SAR) acquisitions over large areas every 6 days with spatial resolution of 20 m. This new open-source generation of satellites has enhanced the capabilities for continuously studying earth surface changes. Over the past two decades, several studies have demonstrated the potential of Differential Synthetic Aperture Radar Interferometry (DInSAR) for detecting and quantifying land surface deformation. DInSAR limitations and challenges are linked to the SAR properties and the field conditions (especially in Alpine environments) leading to spatial and temporal decorrelation of the SAR signal. High temporal decorrelation can be caused by changes in vegetation (particularly in non-urban areas), atmospheric conditions or high ground surface velocity. In this study, kinematics of the complex and vegetated Corvara landslide, situated in Val Badia (South Tirol, Italy), are monitored by a network of 3 permanent and 13 monthly Differential Global Positioning System (DGPS) stations. The slope displacement rates are found to be highly unsteady and reach several meters a year. This analysis focuses on evaluating the limitations of Sentinel-1 imagery processed with Small Baseline Subset (SBAS) technique in comparison to ground-based measurements for assessing the landslide kinematic linked to meteorological conditions. Selecting some particular acquisitions, coherence thresholds and unwrapping processes gives various results in terms of reliability and accuracy supporting the understanding of the landslide velocity field. The evolution of the coherence and phase signals are studied according to the changing field conditions and the monitored ground-based displacements. DInSAR deformation maps and residual topographic heights are finally compared with difference of high resolution Digital Elevation Models at local scale. This research is conducted within the project LEMONADE (http://lemonade.mountainresearch.at) funded

  20. Validation of Aura OMI by Aircraft and Ground-Based Measurements

    Science.gov (United States)

    McPeters, R. D.; Petropavlovskikh, I.; Kroon, M.

    2006-12-01

    Both aircraft-based and ground-based measurements have been used to validate ozone measurements by the OMI instrument on Aura. Three Aura Validation Experiment (AVE) flights have been conducted, in November 2004 and June 2005 with the NASA WB57, and in January/February 2005 with the NASA DC-8. On these flights, validation of OMI was primarily done using data from the CAFS (CCD Actinic Flux Spectroradiometer) instrument, which is used to measure total column ozone above the aircraft. These measurements are used to differentiate changes in stratospheric ozone from changes in total column ozone. Also, changes in ozone over high clouds measured by OMI were checked in a flight over tropical storm Arlene on a flight on June 11th. Ground-based measurements were made during the SAUNA campaign in Sodankyla, Finland, in March and April 2006. Both total column ozone and the ozone vertical distribution were validated.

  1. Assessment of the quality of OSIRIS mesospheric temperatures using satellite and ground-based measurements

    Directory of Open Access Journals (Sweden)

    P. E. Sheese

    2012-12-01

    Full Text Available The Optical Spectrograph and InfraRed Imaging System (OSIRIS on the Odin satellite is currently in its 12th year of observing the Earth's limb. For the first time, continuous temperature profiles extending from the stratopause to the upper mesosphere have been derived from OSIRIS measurements of Rayleigh-scattered sunlight. Through most of the mesosphere, OSIRIS temperatures are in good agreement with coincident temperature profiles derived from other satellite and ground-based measurements. In the altitude region of 55–80 km, OSIRIS temperatures are typically within 4–5 K of those from the SABER, ACE-FTS, and SOFIE instruments on the TIMED, SciSat-I, and AIM satellites, respectively. The mean differences between individual OSIRIS profiles and those of the other satellite instruments are typically within the combined uncertainties and previously reported biases. OSIRIS temperatures are typically within 2 K of those from the University of Western Ontario's Purple Crow Lidar in the altitude region of 52–79 km, where the mean differences are within combined uncertainties. Near 84 km, OSIRIS temperatures exhibit a cold bias of 10–15 K, which is due to a cold bias in OSIRIS O2 A-band temperatures at 85 km, the upper boundary of the Rayleigh-scatter derived temperatures; and near 48 km OSIRIS temperatures exhibit a cold bias of 5–15 K, which is likely due to multiple-scatter effects that are not taken into account in the retrieval.

  2. Comparison of NO2 vertical profiles from satellite and ground based measurements over Antarctica

    OpenAIRE

    Kulkarni, Pavan; Bortoli, Daniele; Costa, Maria João; Silva, Ana Maria; Ravegnani, Fabrizio; Giovanelli, Giorgio

    2011-01-01

    The Intercomparison of nitrogen dioxide (NO2) vertical profiles, derived from the satellite based HALogen Occultation Experiment (HALOE) measurements and from the ground based UV-VIS spectrometer GASCOD (Gas Analyzer Spectrometer Correlating Optical Differences) observations at the Mario Zucchelli Station (MZS), in Antarctica, are done for the first time. It is shown here that both datasets are in good agreement showing the same features in terms of magnitude, profile structure, a...

  3. Intercomparison of ground-based ozone and NO2 measurements during the MANTRA 2004 campaign

    Directory of Open Access Journals (Sweden)

    K. Strong

    2007-11-01

    Full Text Available The MANTRA (Middle Atmosphere Nitrogen TRend Assessment 2004 campaign took place in Vanscoy, Saskatchewan, Canada (52° N, 107° W from 3 August to 15 September, 2004. In support of the main balloon launch, a suite of five zenith-sky and direct-Sun-viewing UV-visible ground-based spectrometers was deployed, primarily measuring ozone and NO2 total columns. Three Fourier transform spectrometers (FTSs that were part of the balloon payload also performed ground-based measurements of several species, including ozone. Ground-based measurements of ozone and NO2 differential slant column densities from the zenith-viewing UV-visible instruments are presented herein. They are found to partially agree within NDACC (Network for the Detection of Atmospheric Composition Change standards for instruments certified for process studies and satellite validation. Vertical column densities of ozone from the zenith-sky UV-visible instruments, the FTSs, a Brewer spectrophotometer, and ozonesondes are compared, and found to agree within the combined error estimates of the instruments (15%. NO2 vertical column densities from two of the UV-visible instruments are compared, and are also found to agree within combined error (15%.

  4. Unattended instruments for ground-based hyperspectral measurements: development and application for plant photosynthesis monitoring

    Science.gov (United States)

    Cogliati, S.; Rossini, M.; Meroni, M.; Barducci, A.; Julitta, T.; Colombo, R.

    2011-12-01

    The aim of the present work is the development of ground-based hyperspectral systems capable of collecting continuous and long-term hyperspectral measurements of the Earth-surface. The development of such instruments includes the optical design, the development of the data acquisition (Auto3S) and processing software as well as the definition of the calibration procedures. In particular an in-field calibration methodologie based on the comparison between field spectra and data modeled using Radiative Transfer (RT) approach has been proposed to regularly upgrade instrument calibration coefficients. Two different automatic spectrometric systems have been developed: the HyperSpectral Irradiometer (HSI) [Meroni et al., 2011] and the Multiplexer Radiometer Irradiometer (MRI) [Cogliati, 2011]. Both instruments are able to continuously measure: sun incoming irradiance (ETOT) and irradiance (ES, HSI)/radiance (LS, MRI) upwelling from the investigated surface. Both instruments employ two Ocean Optics HR4000 spectrometers sharing the same optical signal that allow to simultaneously collect "fine" (1 nm Full Width at Half Maximum, FWHM) spectra in the 400-1000 nm rangeand "ultra-fine" (0.1 nm FWHM) spectra within the 700-800 nm. The collected optical data allow to estimate biochemical/structural properties of vegetation (e.g. NDVI) as well as its photosynthetic efficiency through the Photochemical Reflectance Index (PRI) and the analysis of sun-induced chlorophyll Fluorescence in the O2-A Fraunhofer line (F@760). The automatic instruments were operated in coordination with eddy covariance flux tower measurements of carbon exchange in the framework of several field campaigns: HSI was employed in a subalpine pasture (2009-ongoing) (www.phenoalp.eu) while MRI was employed in 2009 in the Sen3Exp field survey promoted by the European Space Agency as consolidation study to the future mission Sentinel-3. Results show that the proposed instruments succeeded in collecting continuous

  5. Synergetic ground-based methods for remote measurements of ozone vertical profiles

    Science.gov (United States)

    Timofeyev, Yuriy; Kostsov, Vladimir; Virolainen, Yana

    2013-05-01

    The technique of combining ground-based measurements in infrared and microwave spectral regions in order to achieve higher accuracy of ozone profile retrieval in extensive altitude ranges is described and analyzed. The information content, errors, altitude ranges and vertical resolution of ozone profile retrieval have been studied on the basis of numerical simulation of synergetic experiments. Optimal conditions of measurements are defined and requirements to additional information are formulated. The first results on ozone vertical profile retrieval using groundbased measurements of FTIR-spectrometer and microwave radiometer are given.

  6. Ground-based SMART-COMMIT Measurements for Studying Aerosol and Cloud Properties

    Science.gov (United States)

    Tsay, Si-Chee

    2008-01-01

    From radiometric principles, it is expected that the retrieved properties of extensive aerosols and clouds from reflected/emitted measurements by satellite (and/or aircraft) should be consistent with those retrieved from transmitted/emitted radiance observed at the surface. Although space-borne remote sensing observations cover large spatial domain, they are often plagued by contamination of surface signatures. Thus, ground-based in-situ and remote-sensing measurements, where signals come directly from atmospheric constituents, the sun, and/or the Earth-atmosphere interactions, provide additional information content for comparisons that confirm quantitatively the usefulness of the integrated surface, aircraft, and satellite data sets. The development and deployment of SMARTCOMMIT (Surface-sensing Measurements for Atmospheric Radiative Transfer - Chemical, Optical & Microphysical Measurements of In-situ Troposphere) mobile facilities are aimed for the optimal utilization of collocated ground-based observations as constraints to yield higher fidelity satellite retrievals and to determine any sampling bias due to target conditions. To quantify the energetics of the surface-atmosphere system and the atmospheric processes, SMART-COMMIT instruments fall into three categories: flux radiometer, radiance sensor and in-situ probe. In this paper, we will demonstrate the capability of SMART-COMMIT in recent field campaigns (e.g., CRYSTAL-FACE, UAE 2, BASEASIA, NAMMA) that were designed and executed to study the compelling variability in temporal scale of both anthropogenic and natural aerosols (e.g., biomass-burning smoke, airborne dust) and cirrus clouds. We envision robust approaches in which well-collocated ground-based measurements and space-borne observations will greatly advance our knowledge of extensive aerosols and clouds.

  7. Validation of ACE and OSIRIS ozone and NO2 measurements using ground-based instruments at 80° N

    Directory of Open Access Journals (Sweden)

    A. Pazmino

    2012-05-01

    with the ground-based ozone total columns with mean relative differences of 0.1–7.3%. For NO2, partial columns from 17 km upward were scaled to noon using a photochemical model. Mean relative differences between OSIRIS, ACE-FTS and ground-based NO2 measurements do not exceed 20%. ACE-MAESTRO measures more NO2 than the other instruments, with mean relative differences of 25–52%. Seasonal variation in the differences between NO2 partial columns is observed, suggesting that there are systematic errors in the measurements and/or the photochemical model corrections. For ozone spring-time measurements, additional coincidence criteria based on stratospheric temperature and the location of the polar vortex were found to improve agreement between some of the instruments. For ACE-FTS v2.2 minus Bruker FTIR, the 2007–2009 spring-time mean relative difference improved from −5.0 ± 0.4% to −3.1 ± 0.8% with the dynamical selection criteria. This was the largest improvement, likely because both instruments measure direct sunlight and therefore have well-characterized lines-of-sight compared with scattered sunlight measurements. For NO2, the addition of a ±1° latitude coincidence criterion improved spring-time intercomparison results, likely due to the sharp latitudinal gradient of NO2 during polar sunrise. The differences between satellite and ground-based measurements do not show any obvious trends over the missions, indicating that both the ACE and OSIRIS instruments continue to perform well.

  8. Ground-based microwave measuring of middle atmosphere ozone and temperature profiles during sudden stratospheric warming

    Science.gov (United States)

    Feigin, A. M.; Shvetsov, A. A.; Krasilnikov, A. A.; Kulikov, M. Y.; Karashtin, D. A.; Mukhin, D.; Bolshakov, O. S.; Fedoseev, L. I.; Ryskin, V. G.; Belikovich, M. V.; Kukin, L. M.

    2012-12-01

    We carried out the experimental campaign aimed to study the response of middle atmosphere on a sudden stratospheric warming in winter 2011-2012 above Nizhny Novgorod, Russia (56N, 44E). We employed the ground-based microwave complex for remote sensing of middle atmosphere developed in the Institute of Applied Physics of the Russian Academy of Science. The complex combines two room-temperature radiometers, i.e. microwave ozonometer and the stratospheric thermometer. Ozonometer is a heterodyne spectroradiometer, operating in a range of frequencies that include the rotation transition of ozone molecules with resonance frequency 110.8 GHz. Operating frequency range of the stratospheric thermometer is 52.5-5.4 GHz and includes lower frequency edge of 5 mm molecular oxygen absorption bands and among them two relatively weak lines of O2 emission. Digital fast Fourier transform spectrometers developed by "Acqiris" are employed for signal spectral analysis. The spectrometers have frequency range 0.05-1 GHz and realizes the effective resolution about 61 KHz. For retrieval vertical profiles of ozone and temperature from radiometric data we applied novel method based on Bayesian approach to inverse problem solution, which assumed a construction of probability distribution of the characteristics of retrieved profiles with taking into account measurement noise and available a priori information about possible distributions of ozone and temperature in the middle atmosphere. Here we introduce the results of the campaign in comparison with Aura MLS data. Presented data includes one sudden stratospheric warming event which took place in January 13-14 and was accompanied by temperature increasing up to 310 K at 45 km height. During measurement period, ozone and temperature variations were (almost) anti-correlated, and total ozone abundance achieved a local maxima during the stratosphere cooling phase. In general, results of ground-based measurements are in good agreement with

  9. Improved ground-based FTS measurement for column abundance CO2 retrievals(Conference Presentation)

    Science.gov (United States)

    Goo, Tae-Young

    2016-10-01

    The National Institute of Meteorological Sciences has operated a ground-based Fourier Transform Spectrometer (FTS) at Anmyeondo, Korea since December 2012. Anmyeondo FTS site is a designated operational station of Total Carbon Column Observing Network (TCCON) and belongs to regional Global Atmosphere Watch observatory. A Bruker IFS-125HR model, which has a significantly high spectral resolution by 0.02 cm-1, is employed and instrument specification is almost same as the TCCON configuration. such as a spectrum range of 3,800 16,000 cm-1, a resolution of 1 cm-1, InGaAs and Si-Diode detectors and CaF2 beam splitter. It is found that measured spectra have a good agreement with simulated spectra. In order to improve the spectral accuracy and stability, The Operational Automatic System for Intensity of Sunray (OASIS) has been developed. The OASIS can provide consistent photon energy optimized to detector range by controlling the diameter of solar beam reflected from the mirror of suntracker. As a result, monthly modulation efficiency (ME), which indicates the spectral accuracy of FTS measurement, has been recorded the vicinity of 99.9% since Feb 2015. The ME of 98% is regarded as the error of 0.1% in the ground-based in-situ CO2 measurement. Total column abundances of CO2 and CH4 during 2015 are estimated by using GGG v14 and compared with ground-based in-situ CO2 and CH4 measurements at the height of 86 m above sea level. The seasonality of CO2 is well captured by both FTS and in-situ measurements while there is considerable difference on the amplitude of CO2 seasonal variation due to the insensitivity of column CO2 to the surface carbon cycle dynamics in nature as well as anthropogenic sources. Total column CO2 and CH4 approximately vary from 395 ppm to 405 ppm and from 1.82 ppm to 1.88 ppm, respectively. It should be noted that few measurements obtained in July to August because of a lot of cloud and fog. It is found that enhancement of CH4 from the FTS at Anmyeondo

  10. Estimation of Antarctic ozone loss from Ground-based total column measurements

    Directory of Open Access Journals (Sweden)

    J. Kuttippurath

    2010-03-01

    Full Text Available The passive ozone method is used to estimate ozone loss from ground-based measurements in the Antarctic. A sensitivity study shows that the O3 loss can be estimated within an accuracy of ~4%. The method is then applied to the observations from Amundsen-Scott/South Pole, Arrival Heights, Belgrano, Concordia, Dumont d'Urville, Faraday, Halley, Marambio, Neumayer, Rothera, Syowa and Zhongshan for the diagnosis of ozone loss in the Antarctic. On average, the five-day running mean of the vortex averaged ozone column loss deduced from the ground-based stations shows about 53% in 2009, 59% in 2008, 55% in 2007, 56% in 2006 and 61% in 2005. The observed O3 loss and loss rates are in very good agreement with the satellite observations (Ozone Monitoring Instrument and Sciamachy and are well reproduced by the model (Reprobus and SLIMCAT calculations.

    The historical ground-based total ozone measurements show that the depletion started in the late 1970s, reached a maximum in the early 1990s, stabilising afterwards at this level until present, with the exception of 2002, the year of an early vortex break-up. There is no indication of significant recovery yet.

    At southern mid-latitudes, a total ozone reduction of 40–50% is observed at the newly installed station Rio Gallegos and 25–35% at Kerguelen in October–November of 2008–2009 and 2005–2009 (except 2008 respectively, and of 10–20% at Macquarie Island in July–August of 2006–2009. This illustrates the significance of measurements at the edges of Antarctica.

  11. Comparison of OMI UV observations with ground-based measurements at high northern latitudes

    Directory of Open Access Journals (Sweden)

    G. Bernhard

    2015-03-01

    Full Text Available The Dutch-Finnish Ozone Monitoring Instrument (OMI on board NASA's Aura spacecraft provides estimates of erythemal (sunburning ultraviolet (UV dose rates and erythemal daily doses. These data were compared with ground-based measurements at 13 stations located throughout the Arctic and Scandinavia from 60 to 83° N. The study corroborates results from earlier work, but is based on a longer time series (eight vs. two years and considers additional data products, such as the erythemal dose rate at the time of the satellite overpass. Furthermore, systematic errors in satellite UV data resulting from inaccuracies in the surface albedo climatology used in the OMI UV algorithm are systematically assessed. At times when the surface albedo is correctly known, OMI data typically exceed ground-based measurements by 0–11%. When the OMI albedo climatology exceeds the actual albedo, OMI data may be biased high by as much as 55%. In turn, when the OMI albedo climatology is too low, OMI data can be biased low by up to 59%. Such large negative biases may occur when reflections from snow and ice, which increase downwelling UV irradiance, are misinterpreted as reflections from clouds, which decrease the UV flux at the surface. Results suggest that a better OMI albedo climatology would greatly improve the accuracy of OMI UV data products even if year-to-year differences of the actual albedo cannot be accounted for. A pathway for improving the OMI albedo climatology is discussed. Results also demonstrate that ground-based measurements from the center of Greenland, where high, homogenous surface albedo is observed year round, are ideally suited to detect systematic problems or temporal drifts in estimates of surface UV irradiance from space.

  12. Ground-based measurements of aerosol optical properties and radiative forcing in North China

    Institute of Scientific and Technical Information of China (English)

    Hongbin Chen; Xiangao Xia; Pucai Wang; Wenxing Zhang

    2007-01-01

    In order to gain an insight into the aerosol properties and their climatic effect over the continental source regions of China, it is of significance to carry out long-term ground-based measurements of aerosol optical properties and radiative forcing. A couple of temporary and permanent Aerosol Robotic Network (AERONET) sites and three comprehensive radiative sites were established in China as a result of international cooperation in recent years. Heavy aerosol loading and significant temporal and spatial variation over North China are revealed by the AERONET data.Aerosol-induced reductions in surface radiation budget are examined on the basis of collocated observations by sun photometers and pyranometers.

  13. A six-beam method to measure turbulence statistics using ground-based wind lidars

    DEFF Research Database (Denmark)

    Sathe, Ameya; Mann, Jakob; Vasiljevic, Nikola

    2015-01-01

    A so-called six-beam method is proposed to measure atmospheric turbulence using a ground-based wind lidar. This method requires measurement of the radial velocity variances at five equally spaced azimuth angles on the base of a scanning cone and one measurement at the centre of the scanning circle...... lidar (WindScanner), and the derived turbulence statistics (using both methods) such as the u and v variances are compared with those obtained from a reference cup anemometer and a wind vane at 89m height under different atmospheric stabilities. The measurements show that in comparison to the reference...... cup anemometer, depending on the atmospheric stability and the wind field component, the six-beam method measures between 85 and 101% of the reference turbulence, whereas the VAD method measures between 66 and 87% of the reference turbulence....

  14. A six-beam method to measure turbulence statistics using ground-based wind lidars

    DEFF Research Database (Denmark)

    Sathe, Ameya; Mann, Jakob; Vasiljevic, Nikola

    2014-01-01

    A so-called six-beam method is proposed to measure atmospheric turbulence using a ground-based wind lidar. This method requires measurement of the radial velocity variances at five equally spaced azimuth angles on the base of a scanning cone and one measurement at the center of the scanning circle...... lidar (WindScanner), and the derived turbulence statistics (using both methods) such as the u and v variances are compared with those obtained from a reference cup anemometer and a wind vane at 89m height under different atmospheric stabilities. The measurements show that in comparison to the reference...... cup anemometer, depending on the atmospheric stability and the wind field component, the six-beam method measures between 85–101% of the reference turbulence, whereas the VAD method measures between 66–87% of the reference turbulence....

  15. Airborne and ground based lidar measurements of the atmospheric pressure profile

    Science.gov (United States)

    Korb, C. Laurence; Schwemmer, Geary K.; Dombrowski, Mark; Weng, Chi Y.

    1989-01-01

    The first high accuracy remote measurements of the atmospheric pressure profile have been made. The measurements were made with a differential absorption lidar system that utilizes tunable alexandrite lasers. The absorption in the trough between two lines in the oxygen A-band near 760 nm was used for probing the atmosphere. Measurements of the two-dimensional structure of the pressure field were made in the troposphere from an aircraft looking down. Also, measurements of the one-dimensional structure were made from the ground looking up. Typical pressure accuracies for the aircraft measurements were 1.5-2 mbar with a 30-m vertical resolution and a 100-shot average (20 s), which corresponds to a 2-km horizontal resolution. Typical accuracies for the upward viewing ground based measurements were 2.0 mbar for a 30-m resolution and a 100-shot average.

  16. Overview and Initial Results from the DEEPWAVE Airborne and Ground-Based Measurement Program

    Science.gov (United States)

    Fritts, D. C.

    2015-12-01

    The deep-propagating gravity wave experiment (DEEPWAVE) was performed on and over New Zealand, the Tasman Sea, and the Southern Ocean with core airborne measurements extending from 5 June to 21 July 2014 and supporting ground-based measurements spanning a longer interval. The NSF/NCAR GV employed standard flight-level measurements and new airborne lidar and imaging measurements of gravity waves (GWs) from sources at lower altitudes throughout the stratosphere and into the mesosphere and lower thermosphere (MLT). The new GV lidars included a Rayleigh lidar measuring atmospheric density and temperature from ~20-60 km and a sodium resonance lidar measuring sodium density and temperature at ~75-105 km. An airborne Advanced Mesosphere Temperature Mapper (AMTM) and two IR "wing" cameras imaged the OH airglow temperature and/or intensity fields extending ~900 km across the GV flight track. The DLR Falcon was equipped with its standard flight-level instruments and an aerosol Doppler lidar measuring radial winds below the Falcon. DEEPWAVE also included extensive ground-based measurements in New Zealand, Tasmania, and Southern Ocean Islands. DEEPWAVE performed 26 GV flights and 13 Falcon flights, and ground-based measurements occurred whether or not the aircraft were flying. Collectively, many diverse cases of GW forcing, propagation, refraction, and dissipation spanning altitudes of 0-100 km were observed. Examples include strong mountain wave (MW) forcing and breaking in the lower and middle stratosphere, weak MW forcing yielding MW penetration into the MLT having very large amplitudes and momentum fluxes, MW scales at higher altitudes ranging from ~10-250 km, large-scale trailing waves from orography refracting into the polar vortex and extending to high altitudes, GW generation by deep convection, large-scale GWs arising from jet stream sources, and strong MWs in the MLT arising from strong surface flow over a small island. DEEPWAVE yielded a number of surprises, among

  17. A review of turbulence measurements using ground-based wind lidars

    DEFF Research Database (Denmark)

    Sathe, Ameya; Mann, Jakob

    2013-01-01

    pioneered in the first 15 yr, i.e., from 1972–1997, when standard techniques could not be used to measure turbulence. Obtaining unfiltered turbulence statistics from the large probe volume of the lidars has been and still remains the most challenging aspect. Until now, most of the processing algorithms......A review of turbulence measurements using ground-based wind lidars is carried out. Works performed in the last 30 yr, i.e., from 1972–2012 are analyzed. More than 80% of the work has been carried out in the last 15 yr, i.e., from 1997–2012. New algorithms to process the raw lidar data were...... that have been developed have shown that by combining an isotropic turbulence model with raw lidar measurements, we can obtain unfiltered statistics.We believe that an anisotropic turbulence model will provide a more realistic measure of turbulence statistics. Future development in algorithms will depend...

  18. Exploring the relationship between monitored ground-based and satellite aerosol measurements over the City of Johannesburg

    CSIR Research Space (South Africa)

    Garland, Rebecca M

    2012-09-01

    Full Text Available This project studied the relationship between aerosol optical depth (AOD) from the Multi-angle Imaging SpectroRadiometer (MISR) instrument on the Terra satellite, and ground-based monitored particulate matter (PM) mass concentrations measured...

  19. Impact of particles on the Planck HFI detectors: Ground-based measurements and physical interpretation

    CERN Document Server

    Catalano, A; Atik, Y; Benoit, A; Bréele, E; Bock, J J; Camus, P; Chabot, M; Charra, M; Crill, B P; Coron, N; Coulais, A; Désert, F -X; Fauvet, L; Giraud-Héraud, Y; Guillaudin, O; Holmes, W; Jones, W C; Lamarre, J -M; Macías-Pérez, J; Martinez, M; Miniussi, A; Monfardini, A; Pajot, F; Patanchon, G; Pelissier, A; Piat, M; Puget, J -L; Renault, C; Rosset, C; Santos, D; Sauvé, A; Spencer, L D; Sudiwala, R

    2014-01-01

    The Planck High Frequency Instrument (HFI) surveyed the sky continuously from August 2009 to January 2012. Its noise and sensitivity performance were excellent, but the rate of cosmic ray impacts on the HFI detectors was unexpectedly high. Furthermore, collisions of cosmic rays with the focal plane produced transient signals in the data (glitches) with a wide range of characteristics. A study of cosmic ray impacts on the HFI detector modules has been undertaken to categorize and characterize the glitches, to correct the HFI time-ordered data, and understand the residual effects on Planck maps and data products. This paper presents an evaluation of the physical origins of glitches observed by the HFI detectors. In order to better understand the glitches observed by HFI in flight, several ground-based experiments were conducted with flight-spare HFI bolometer modules. The experiments were conducted between 2010 and 2013 with HFI test bolometers in different configurations using varying particles and impact ener...

  20. Concurrent aerial and ground-based optical turbulence measurements along a long elevated path

    Science.gov (United States)

    Nowlin, Scott R.; Hahn, Ila L.; Hugo, Ronald J.; Bishop, Kenneth P.

    1999-08-01

    We report concurrent ground-based scintillator/airborne constant-current anemometer (CCA) measurements made along a 51.4 km-long slant path between Salinas and North Oscura peaks, NM. Simultaneous path-averaged refractive index structure parameter (Cn2) measurements from the CCA and the scintillometer show good agreement, with deviations apparently due to localized effects of underlying topography and metrology. Statistics from both data sets are presented in the form of histograms and cumulative distribution functions. CCA Cn2 point measurements are compared to underlying surface topography. We discuss possible effects of instruments anomalies, analysis methods, and atmospheric velocity fluctuation levels. We present conclusions and made recommendations for future similar experimental efforts.

  1. Aerosol Single Scattering Albedo retrieved from ground-based measurements in the UV-visible

    Directory of Open Access Journals (Sweden)

    V. Buchard

    2010-07-01

    Full Text Available Estimates of Aerosol Single Scattering Albedo (SSA from ground-based spectral measurements in the UV-visible are conducted at Villeneuve d'Ascq (VdA in France. In order to estimate this parameter, measurements of global and diffuse UV-visible solar irradiances performed under cloud-free conditions since 2003 with a spectroradiometer operated by the Laboratoire d'Optique Atmosphérique (LOA are used. The technique consists in comparing the measured irradiance values to modelled irradiances computed for various SSA. The retrieval is restricted to the 330–450 nm range to avoid ozone influence.

    For validation purpose, the retrieved values of SSA at 440 nm are compared to the ones obtained from sunphotometer measurements of the AERONET/PHOTONS network available on the LOA site. The results are rather satisfying: in 2003 and 2005–2006 the Root Mean Square (RMS of the differences are about 0.05, these values are within the uncertainty domain of retrieval of both products. Distinction between days characterized by different aerosol content, by means of the aerosol optical thickness (AOT retrieved from ground-based measurements at the same wavelength, shows that the comparisons between both products are better when AOT are higher. Indeed in case AOT are greater than 0.2, the RMS is 0.027 in 2003 and 0.035 in 2005–2006. The SSA estimated at 340 and 380 nm from ground-based spectra are also studied, though no validation can be carried out with sunphotometer data (440 nm is the shortest wavelength at which the SSA is provided by the network. The good comparisons observed at 440 nm can let assume that the SSA retrieved from spectroradiometer measurements at the two other wavelengths are also obtained with a good confidence level. Thus these values in the UV range can be used to complete aerosol data provided by AERONET/PHOTONS at VdA. Moreover they can be used for a best knowledge of the aerosol absorption that is necessary to quantify the

  2. Aerosol optical properties over the Svalbard region of Arctic: ground-based measurements and satellite remote sensing

    Science.gov (United States)

    Gogoi, Mukunda M.; Babu, S. Suresh

    2016-05-01

    In view of the increasing anthropogenic presence and influence of aerosols in the northern polar regions, long-term continuous measurements of aerosol optical parameters have been investigated over the Svalbard region of Norwegian Arctic (Ny-Ålesund, 79°N, 12°E, 8 m ASL). This study has shown a consistent enhancement in the aerosol scattering and absorption coefficients during spring. The relative dominance of absorbing aerosols is more near the surface (lower single scattering albedo), compared to that at the higher altitude. This is indicative of the presence of local anthropogenic activities. In addition, long-range transported biomass burning aerosols (inferred from the spectral variation of absorption coefficient) also contribute significantly to the higher aerosol absorption in the Arctic spring. Aerosol optical depth (AOD) estimates from ground based Microtop sun-photometer measurements reveals that the columnar abundance of aerosols reaches the peak during spring season. Comparison of AODs between ground based and satellite remote sensing indicates that deep blue algorithm of Moderate Resolution Imaging Spectroradiometer (MODIS) retrievals over Arctic snow surfaces overestimate the columnar AOD.

  3. Chlorine oxide in the stratospheric ozone layer Ground-based detection and measurement

    Science.gov (United States)

    Parrish, A.; De Zafra, R. L.; Solomon, P. M.; Barrett, J. W.; Carlson, E. R.

    1981-01-01

    Stratospheric chlorine oxide, a significant intermediate product in the catalytic destruction of ozone by atomic chlorine, has been detected and measured by a ground-based 204 GHz, millimeter-wave receiver. Data taken at latitude 42 deg N on 17 days between January 10 and February 18, 1980 yield an average chlorine oxide column density of approximately 1.05 x 10 to the 14th/sq cm or approximately 2/3 that of the average of eight in situ balloon flight measurements (excluding the anomalously high data of July 14, 1977) made over the past four years at 32 deg N. Less chlorine oxide below 35 km and a larger vertical gradient than predicted by theoretical models of the stratospheric ozone layer are found.

  4. Mesospheric minor species determinations from rocket and ground-based i.r. measurements

    Science.gov (United States)

    Ulwick, J. C.; Baker, K. D.; Baker, D. J.; Steed, A. J.; Pendleton, W. R.; Grossmann, K.; Brückelmann, H. G.

    As part of the MAP/WINE campaign the infrared hydroxyl airglow layer was investigated at Kiruna, Sweden, by simultaneous measurements with rocket probes of OH ≠ and O2( a1Δg) infrared emissions and concentrations of odd oxygen species (O and O 3). Coordinated measurements of OH ≠ and O2( a1Δg) zenith radiance and emission spectra and their time histories were made from the ground. The rocket-borne Λ = 1.55 μm radiometer ( ΔΛ ≊ 0.23 μm) provided volume emission rates for OH for both rocket ascent and descent, showing a peak near 87 km with a maximum of nearly 10 6 photons sec -1 cm -3. The atomic oxygen distribution showed a concentration of about 10 11 cm -3 between 88 and 100 km, dropping off sharply below 85 km. The ground-based radiometer at Λ = 1.56 μm, which had a similar filter bandpass to the rocket-borne instrument, yielded an equivalent of 130 kR for the total OH Δv = 2 sequence, which is consistent with the zenith-corrected rocket-based sequence radiance value of ≌ 110 kR. The rotational temperature of the OH night airglow obtained from the rotational structure of the OH M (3,1) band observed by the ground-based interferometer was about 195K at the time of the rocket measurement. Atomic oxygen concentrations were calculated from the OH profile and show agreement with the directly measured values. Atomic hydrogen concentrations of a few times 10 7 cm -3 near 85 km were inferred from the data set.

  5. A six-beam method to measure turbulence statistics using ground-based wind lidars

    Directory of Open Access Journals (Sweden)

    A. Sathe

    2014-10-01

    Full Text Available A so-called six-beam method is proposed to measure atmospheric turbulence using a ground-based wind lidar. This method requires measurement of the radial velocity variances at five equally spaced azimuth angles on the base of a scanning cone and one measurement at the center of the scanning circle, i.e.using a vertical beam at the same height. The scanning configuration is optimized to minimize the sum of the random errors in the measurement of the second-order moments of the components (u,v, w of the wind field. We present this method as an alternative to the so-called velocity azimuth display (VAD method that is routinely used in commercial wind lidars, and which usually results in significant averaging effects of measured turbulence. In the VAD method, the high frequency radial velocity measurements are used instead of their variances. The measurements are performed using a pulsed lidar (WindScanner, and the derived turbulence statistics (using both methods such as the u and v variances are compared with those obtained from a reference cup anemometer and a wind vane at 89 m height under different atmospheric stabilities. The measurements show that in comparison to the reference cup anemometer, depending on the atmospheric stability and the wind field component, the six-beam method measures between 85–101% of the reference turbulence, whereas the VAD method measures between 66–87% of the reference turbulence.

  6. A six-beam method to measure turbulence statistics using ground-based wind lidars

    Science.gov (United States)

    Sathe, A.; Mann, J.; Vasiljevic, N.; Lea, G.

    2015-02-01

    A so-called six-beam method is proposed to measure atmospheric turbulence using a ground-based wind lidar. This method requires measurement of the radial velocity variances at five equally spaced azimuth angles on the base of a scanning cone and one measurement at the centre of the scanning circle, i.e.using a vertical beam at the same height. The scanning configuration is optimized to minimize the sum of the random errors in the measurement of the second-order moments of the components (u,v, w) of the wind field. We present this method as an alternative to the so-called velocity azimuth display (VAD) method that is routinely used in commercial wind lidars, and which usually results in significant averaging effects of measured turbulence. In the VAD method, the high frequency radial velocity measurements are used instead of their variances. The measurements are performed using a pulsed lidar (WindScanner), and the derived turbulence statistics (using both methods) such as the u and v variances are compared with those obtained from a reference cup anemometer and a wind vane at 89 m height under different atmospheric stabilities. The measurements show that in comparison to the reference cup anemometer, depending on the atmospheric stability and the wind field component, the six-beam method measures between 85 and 101% of the reference turbulence, whereas the VAD method measures between 66 and 87% of the reference turbulence.

  7. Mountain wave PSC dynamics and microphysics from ground-based lidar measurements and meteorological modeling

    Directory of Open Access Journals (Sweden)

    J. Reichardt

    2004-01-01

    Full Text Available The day-long observation of a polar stratospheric cloud (PSC by two co-located ground-based lidars at the Swedish research facility Esrange (67.9° N, 21.1° E on 16 January 1997 is analyzed in terms of PSC dynamics and microphysics. Mesoscale modeling is utilized to simulate the meteorological setting of the lidar measurements. Microphysical properties of the PSC particles are retrieved by comparing the measured particle depolarization ratio and the PSC-averaged lidar ratio with theoretical optical data derived for different particle shapes. In the morning, nitric acid trihydrate (NAT particles and then increasingly coexisting liquid ternary aerosol (LTA were detected as outflow from a mountain wave-induced ice PSC upwind Esrange. The NAT PSC is in good agreement with simulations for irregular-shaped particles with length-to-diameter ratios between 0.75 and 1.25, maximum dimensions from 0.7 to 0.9 µm, and a number density from 8 to 12 cm-3 and the coexisting LTA droplets had diameters from 0.7 to 0.9 µm, a refractive index of 1.39 and a number density from 7 to 11 cm-3. The total amount of condensed HNO3 was in the range of 8–12 ppbv. The data provide further observational evidence that NAT forms via deposition nucleation on ice particles as a number of recently published papers suggest. By early afternoon the mountain-wave ice PSC expanded above the lidar site. Its optical data indicate a decrease in minimum particle size from 3 to 1.9 µm with time. Later on, following the weakening of the mountain wave, wave-induced LTA was observed only. Our study demonstrates that ground-based lidar measurements of PSCs can be comprehensively interpreted if combined with mesoscale meteorological data.

  8. On the Interpretation of Gravity Wave Measurements by Ground-Based Lidars

    Directory of Open Access Journals (Sweden)

    Andreas Dörnbrack

    2017-03-01

    Full Text Available This paper asks the simple question: How can we interpret vertical time series of middle atmosphere gravity wave measurements by ground-based temperature lidars? Linear wave theory is used to show that the association of identified phase lines with quasi-monochromatic waves should be considered with great care. The ambient mean wind has a substantial effect on the inclination of the detected phase lines. The lack of knowledge about the wind might lead to a misinterpretation of the vertical propagation direction of the observed gravity waves. In particular, numerical simulations of three archetypal atmospheric mountain wave regimes show a sensitivity of virtual lidar observations on the position relative to the mountain and on the scale of the mountain.

  9. The Holy Grail of Resource Assessment: Low Cost Ground-Based Measurements with Good Accuracy

    Energy Technology Data Exchange (ETDEWEB)

    Marion, Bill; Smith, Benjamin

    2017-06-22

    Using performance data from some of the millions of installed photovoltaic (PV) modules with micro-inverters may afford the opportunity to provide ground-based solar resource data critical for developing PV projects. The method used back-solves for the direct normal irradiance (DNI) and the diffuse horizontal irradiance (DHI) from the micro-inverter ac production data. When the derived values of DNI and DHI were then used to model the performance of other PV systems, the annual mean bias deviations were within +/- 4%, and only 1% greater than when the PV performance was modeled using high quality irradiance measurements. An uncertainty analysis shows the method better suited for modeling PV performance than using satellite-based global horizontal irradiance.

  10. Intermittency of the turbulent processes in the Earth's magnetosphere detected from the ground-based measurements

    Science.gov (United States)

    Stepanova, Marina; Foppiano, Alberto; Ovalle, Elias; Antonova, Elizavieta; Troshichev, Oleg

    2008-11-01

    Turbulent processes in the Earth's magnetosphere are reflected in the dynamical behavior of the geomagnetic indices and other parameters determined from ground based observations. Intermittent properties of one minute Polar Cap (PC) index and auroral radio wave absorption are studied using 1995-2000 data sets. It was found that the probability distribution functions (PDFs) of both PC-index and absorption fluctuations display a strong non-Gaussian shape. This indicates that they are not characterized by a global time self-similarity but rather exhibit intermittency, as previously reported for solar wind velocity and auroral electrojet index values. In the case of the auroral absorption it was also found that intermittency strongly depends on the magnetic local time, being largest in the nighttime sector. This shows that the acceleration of precipitating particles is intermittent, especially near the substorm eye, where the level of turbulence increases. Application of the Local Intermittency Measure (LIM) technique confirms the aforementioned results to a better precision.

  11. An evaluation of IASI-NH3 with ground-based Fourier transform infrared spectroscopy measurements

    Science.gov (United States)

    Dammers, Enrico; Palm, Mathias; Van Damme, Martin; Vigouroux, Corinne; Smale, Dan; Conway, Stephanie; Toon, Geoffrey C.; Jones, Nicholas; Nussbaumer, Eric; Warneke, Thorsten; Petri, Christof; Clarisse, Lieven; Clerbaux, Cathy; Hermans, Christian; Lutsch, Erik; Strong, Kim; Hannigan, James W.; Nakajima, Hideaki; Morino, Isamu; Herrera, Beatriz; Stremme, Wolfgang; Grutter, Michel; Schaap, Martijn; Wichink Kruit, Roy J.; Notholt, Justus; Coheur, Pierre-F.; Erisman, Jan Willem

    2016-08-01

    Global distributions of atmospheric ammonia (NH3) measured with satellite instruments such as the Infrared Atmospheric Sounding Interferometer (IASI) contain valuable information on NH3 concentrations and variability in regions not yet covered by ground-based instruments. Due to their large spatial coverage and (bi-)daily overpasses, the satellite observations have the potential to increase our knowledge of the distribution of NH3 emissions and associated seasonal cycles. However the observations remain poorly validated, with only a handful of available studies often using only surface measurements without any vertical information. In this study, we present the first validation of the IASI-NH3 product using ground-based Fourier transform infrared spectroscopy (FTIR) observations. Using a recently developed consistent retrieval strategy, NH3 concentration profiles have been retrieved using observations from nine Network for the Detection of Atmospheric Composition Change (NDACC) stations around the world between 2008 and 2015. We demonstrate the importance of strict spatio-temporal collocation criteria for the comparison. Large differences in the regression results are observed for changing intervals of spatial criteria, mostly due to terrain characteristics and the short lifetime of NH3 in the atmosphere. The seasonal variations of both datasets are consistent for most sites. Correlations are found to be high at sites in areas with considerable NH3 levels, whereas correlations are lower at sites with low atmospheric NH3 levels close to the detection limit of the IASI instrument. A combination of the observations from all sites (Nobs = 547) give a mean relative difference of -32.4 ± (56.3) %, a correlation r of 0.8 with a slope of 0.73. These results give an improved estimate of the IASI-NH3 product performance compared to the previous upper-bound estimates (-50 to +100 %).

  12. Ground-based & satellite DOAS measurements integration for air quality evaluation/forecast management in the frame of QUITSAT Project.

    Science.gov (United States)

    Kostadinov, Ivan; Petritoli, Andrea; Giovanelli, Giorgio; Masieri, Samuele; Premuda, Margarita; Bortoli, Daniele; Ravegnani, Fabrizio; Palazzi, Elisa

    The observations of the Earth's atmosphere from space provide excellent opportunities for the exploration of the sophisticated physical-chemical processes on both global and regional scales. The major interest during the last three decades was focused mainly on the stratosphere and the ozone depletion. More recently the continuous improvements of satellite sensors have revealed new opportunities for larger applications of space observations, attracting scientific interest to the lower troposphere and air quality issues. The air quality depends strongly on the anthropogenic activity and therefore regional environmental agencies along with policy makers are in need of appropriate means for its continuous monitoring and control to ensure the adoption of the most appropriate actions. The goal of the pilot project QUITSAT, funded by the Italian Space Agency, is to develop algorithms and procedures for the evaluation and prediction of the air quality in Lombardia and Emilia-Romagna regions (Italy) by means of integrating satellite observations with ground-based in-situ and remote sensing measurements. This work presents dedicated Differential Optical Absorption Spectroscopy (DOAS) measurements performed during the summer of 2007 and the winter of 2008. One of the DOAS instruments operate at Mt.Cimone station (2165m a.s.l) and the other two instruments conducted measurements in/near Bologna (90 m. a.s.l). Different observational geometry was adopted (zenith-sky, multi-axis and long-path) aimed to provide tropospheric NO2 columns and O3, SO2 and HCHO concentrations at ground level as an input data for QUITSAT procedures. Details of the instruments, the radiative transfer model used and the algorithms for retrieving and calculation of the target gases concentrations are presented. The obtained experimental results are correlated with the corresponding ones retrieved from SCIAMACHY /ENVISAT observations during the overpasses above the ground-based instruments. The analysis

  13. Continued development of a global precipitation dataset from satellite and ground-based gauges

    Science.gov (United States)

    Dietzsch, Felix; Andersson, Axel; Schröder, Marc; Ziese, Markus; Becker, Andreas

    2017-04-01

    The project framework MiKlip ("Mittelfristige Klimaprognosen") is focused on the development of an operational forecast system for decadal climate predictions. The objective of the "Daily Precipitation Analysis for the validation of Global medium-range Climate predictions Operationalized" (DAPAGLOCO) project, is the development and operationalization of a global precipitation dataset for forecast validation of the MPI-ESM experiments used in MiKlip. The dataset is a combination of rain gauge measurement data over land and satellite-based precipitation retrievals over ocean. Over land, gauge data from the Global Precipitation Climatology Centre (GPCC) at Deutscher Wetterdienst (DWD) are used. Over ocean, retrievals from the Hamburg Ocean Atmosphere Parameters and Fluxes from Satellite Data (HOAPS) dataset are used as data source. The currently available dataset consists of 21 years of data (1988-2008) and is provided in different spatial resolutions of 1° and 2.5° on the global scale, and 0.5° for Europe. Rain rates over ocean are currently derived from satellite microwave imagers by using a neuronal network. For the future it is intended to switch this retrieval method to a 1D-Var method. The current state of the dataset is presented, an introduction to the future retrieval and its features is given and first results from evaluation and application are shown.

  14. CO2 Total Column Variability From Ground-Based FTIR Measurements Over Central Mexico

    Science.gov (United States)

    Baylon, J. L.; Stremme, W.; Plaza, E.; Bezanilla, A.; Grutter, M.; Hase, F.; Blumenstock, T.

    2014-12-01

    There are now several space missions dedicated to measure greenhouse gases in order to improve the understanding of the carbon cycle. Ground based measurement sites are of great value in the validation process, however there are only a few stations in tropical latitudes. We present measurements of solar-absorption infrared spectra recorded on two locations over Central Mexico: the High-Altitude Station Altzomoni (19.12 N, 98.65 W), located in the Izta-Popo National Park outside of Mexico City; and the UNAM's Atmospheric Observatory (19.32 N, 99.17 W) in Mexico City. These measurements were performed using a high resolution Fourier transform infrared spectrometer FTIR (Bruker, HR 120/5) at Altzomoni and a moderate resolution FTIR (Bruker, Vertex 80) within the city. In this work, we present the first results for total vertical columns of CO2 derived from near-infrared spectra recorded at both locations using the retrieval code PROFFIT. We present the seasonal cycle and variability from the measurements, as well as the full diagnostics of the retrieval in order assess its quality and discuss the differences of both instruments and locations (altitudes, urban vs remote). This work aims to contribute to generate high quality datasets for satellite validation.

  15. First ground-based column measurements of CO{sub 2} in the tropics

    Energy Technology Data Exchange (ETDEWEB)

    Warneke, T.; Petersen, K.; Macatangay, R.; Notholt, J. [Institute of Environmental Physics, University of Bremen, Bremen (Germany); Koerner, S.; Jordan, A.; Gerbig, C.; Rothe, M. [Max-Planck-Institute for Biogeochemistry (MPI-BGC), Jena (Germany); Schrems, O. [Alfred Wegener Institute for Polar and Marine Research (AWI), Bremerhaven (Germany)

    2009-07-01

    The first ground-based remote sensing measurements of the column averaged volume mixing ratio of CO{sub 2} (X{sub CO{sub 2}}) for the inner tropics have been obtained at Paramaribo, Suriname (5.8 N, 55.2 W). Due to the migration of the ITCZ over the measurement location the probed air masses belong to the northern or southern hemisphere depending on the time of the year. The X{sub CO{sub 2}} shows an average annual increase in the Southern Hemisphere of 2.2 ppm for the time period 2004 to 2007, which agrees within the error with model simulations. Co-located in-situ measurements are strongly influenced by a local source. From the isotopic composition of the air samples the local source component is suggested to be the terrestrial biosphere. Using d{sup {sub 13C}} from the NOAA/ESRL stations Ascension Is. (ASC) and Ragged Point (RPB) the data has been corrected for the local source component. The corrected mixing ratios for the surface agree with model simulations for the measurement campaigns in the LDS (Southern Hemisphere), but not for the SDS (Northern Hemisphere).

  16. First continuous ground-based observations of long period oscillations in the vertically resolved wind field of the stratosphere and mesosphere

    Science.gov (United States)

    Rüfenacht, Rolf; Hocke, Klemens; Kämpfer, Niklaus

    2016-04-01

    Direct measurements of middle-atmospheric wind oscillations with periods between 5 and 50 days in the altitude range between mid-stratosphere (5 hPa) and upper mesosphere (0.02 hPa) have been made using a novel ground-based Doppler wind radiometer. The oscillations were not inferred from tracer measurements, as the radiometer offers the unique capability of near-continuous horizontal wind profile measurements. Observations from four campaigns at high, middle and low latitudes with an average duration of 10 months have been analyzed. The dominant oscillation has mostly been found to lie in the extra-long period range (20-50 days), while the well-known atmospheric normal modes around 5, 10 and 16 days have also been observed. Comparisons of our results with ECMWF operational analysis data revealed remarkably good agreement below 0.3 hPa but discrepancies above.

  17. Ozone ground-based measurements by the GASCOD near-UV and visible DOAS system

    Science.gov (United States)

    Giovanelli, G.; Bonasoni, P.; Cervino, M.; Evangelisti, F.; Ravegnani, F.

    1994-01-01

    GASCOD, a near-ultraviolet and visible differential optical spectrometer, was developed at CNR's FISBAT Institute in Bologna, Italy, and first tested at Terra Nova Bay station in Antarctica (74.6 deg S, 164.6 deg E) during the summer expeditions 1988-1990 of PNRA (PNRA is the national research program in Antarctica, 'Programma Nazionale di Ricerche in Atartide'). A comparison with coincident O3 total column measurements taken in the same Antarctic area is presented, as is another comparison performed in Italy. Also introduced is an updated model for solar zenith measurements taken from a ground-based, upward-looking GASCOD spectrometer, which was employed for the 1991-92 winter campaign at Aer-Ostersund in Sweden (63.3 deg N, 13.1 deg E) during AESOE (European Arctic Stratospheric Ozone Experiment). The GASCOD can examine the spectra from 300 to 700 nm, in 50 nm steps, by moving the spectrometer's grating. At present, it takes measurements of solar zenith radiation in the 310-342 nm range for O3 and in the 405-463 nm range for NO2.

  18. The high-resolution extraterrestrial solar spectrum (QASUMEFTS determined from ground-based solar irradiance measurements

    Directory of Open Access Journals (Sweden)

    J. Gröbner

    2017-09-01

    Full Text Available A high-resolution extraterrestrial solar spectrum has been determined from ground-based measurements of direct solar spectral irradiance (SSI over the wavelength range from 300 to 500 nm using the Langley-plot technique. The measurements were obtained at the Izaña Atmospheric Research Centre from the Agencia Estatal de Meteorología, Tenerife, Spain, during the period 12 to 24 September 2016. This solar spectrum (QASUMEFTS was combined from medium-resolution (bandpass of 0.86 nm measurements of the QASUME (Quality Assurance of Spectral Ultraviolet Measurements in Europe spectroradiometer in the wavelength range from 300 to 500 nm and high-resolution measurements (0.025 nm from a Fourier transform spectroradiometer (FTS over the wavelength range from 305 to 380 nm. The Kitt Peak solar flux atlas was used to extend this high-resolution solar spectrum to 500 nm. The expanded uncertainties of this solar spectrum are 2 % between 310 and 500 nm and 4 % at 300 nm. The comparison of this solar spectrum with solar spectra measured in space (top of the atmosphere gave very good agreements in some cases, while in some other cases discrepancies of up to 5 % were observed. The QASUMEFTS solar spectrum represents a benchmark dataset with uncertainties lower than anything previously published. The metrological traceability of the measurements to the International System of Units (SI is assured by an unbroken chain of calibrations leading to the primary spectral irradiance standard of the Physikalisch-Technische Bundesanstalt in Germany.

  19. TEMIS UV product validation using NILU-UV ground-based measurements in Thessaloniki, Greece

    Science.gov (United States)

    Zempila, Melina-Maria; van Geffen, Jos H. G. M.; Taylor, Michael; Fountoulakis, Ilias; Koukouli, Maria-Elissavet; van Weele, Michiel; van der A, Ronald J.; Bais, Alkiviadis; Meleti, Charikleia; Balis, Dimitrios

    2017-06-01

    This study aims to cross-validate ground-based and satellite-based models of three photobiological UV effective dose products: the Commission Internationale de l'Éclairage (CIE) erythemal UV, the production of vitamin D in the skin, and DNA damage, using high-temporal-resolution surface-based measurements of solar UV spectral irradiances from a synergy of instruments and models. The satellite-based Tropospheric Emission Monitoring Internet Service (TEMIS; version 1.4) UV daily dose data products were evaluated over the period 2009 to 2014 with ground-based data from a Norsk Institutt for Luftforskning (NILU)-UV multifilter radiometer located at the northern midlatitude super-site of the Laboratory of Atmospheric Physics, Aristotle University of Thessaloniki (LAP/AUTh), in Greece. For the NILU-UV effective dose rates retrieval algorithm, a neural network (NN) was trained to learn the nonlinear functional relation between NILU-UV irradiances and collocated Brewer-based photobiological effective dose products. Then the algorithm was subjected to sensitivity analysis and validation. The correlation of the NN estimates with target outputs was high (r = 0. 988 to 0.990) and with a very low bias (0.000 to 0.011 in absolute units) proving the robustness of the NN algorithm. For further evaluation of the NILU NN-derived products, retrievals of the vitamin D and DNA-damage effective doses from a collocated Yankee Environmental Systems (YES) UVB-1 pyranometer were used. For cloud-free days, differences in the derived UV doses are better than 2 % for all UV dose products, revealing the reference quality of the ground-based UV doses at Thessaloniki from the NILU-UV NN retrievals. The TEMIS UV doses used in this study are derived from ozone measurements by the SCIAMACHY/Envisat and GOME2/MetOp-A satellite instruments, over the European domain in combination with SEVIRI/Meteosat-based diurnal cycle of the cloud cover fraction per 0. 5° × 0. 5° (lat × long) grid cells. TEMIS

  20. OPUS BBM: Its performance and early results of ground-based measurements

    Science.gov (United States)

    Kuze, A.; Shibasaki, K.; Sano, T.; Kawashima, T.; Miyamura, N.; Tange, Y.; Yui, Y.; Suzuki, M.; Ogawa, T.

    2003-04-01

    OPUS(Ozone and Pollution measuring Ultraviolet Spectrometer) is the satellite-borne instrument for future Japanese mission. Its scientific goal is to monitor the tropospheric urban and severely polluted chemical species such as SO2 and NO2 as well as total and tropospheric ozone. Now its BBM has been constructed and under performance check. Several checks are now being made on performances under thermal and vacum environments suffered in orbit. The OPUS BBM showed very stable perfomance as expected. The CMOS type array detector reveals very low noise and high quantum efficiency suitable for space use. In this paper we show the results of performance check of OPUS BBM. We also carried out the ground-based, zenith sky (scatter light) measurement for checking the S/N ratio of OPUS BBM as well as for demonstrating its ability to derive NO2 in the atmosphere. A preliminary analysis result is shown, and also shown is the result of algorithm study for space mission.

  1. Radiometric modeling and calibration of the Geostationary Imaging Fourier Transform Spectrometer (GIFTS) ground based measurement experiment

    Science.gov (United States)

    Tian, Jialin; Smith, William L.; Gazarik, Michael J.

    2008-12-01

    The ultimate remote sensing benefits of the high resolution Infrared radiance spectrometers will be realized with their geostationary satellite implementation in the form of imaging spectrometers. This will enable dynamic features of the atmosphere's thermodynamic fields and pollutant and greenhouse gas constituents to be observed for revolutionary improvements in weather forecasts and more accurate air quality and climate predictions. As an important step toward realizing this application objective, the Geostationary Imaging Fourier Transform Spectrometer (GIFTS) Engineering Demonstration Unit (EDU) was successfully developed under the NASA New Millennium Program, 2000-2006. The GIFTS-EDU instrument employs three focal plane arrays (FPAs), which gather measurements across the long-wave IR (LWIR), short/mid-wave IR (SMWIR), and visible spectral bands. The GIFTS calibration is achieved using internal blackbody calibration references at ambient (260 K) and hot (286 K) temperatures. In this paper, we introduce a refined calibration technique that utilizes Principle Component (PC) analysis to compensate for instrument distortions and artifacts, therefore, enhancing the absolute calibration accuracy. This method is applied to data collected during the GIFTS Ground Based Measurement (GBM) experiment, together with simultaneous observations by the accurately calibrated AERI (Atmospheric Emitted Radiance Interferometer), both simultaneously zenith viewing the sky through the same external scene mirror at ten-minute intervals throughout a cloudless day at Logan Utah on September 13, 2006. The accurately calibrated GIFTS radiances are produced using the first four PC scores in the GIFTS-AERI regression model. Temperature and moisture profiles retrieved from the PC-calibrated GIFTS radiances are verified against radiosonde measurements collected throughout the GIFTS sky measurement period. Using the GIFTS GBM calibration model, we compute the calibrated radiances from data

  2. Mapping the East African Ionosphere Using Ground-based GPS TEC Measurements

    Science.gov (United States)

    Mengist, Chalachew Kindie; Kim, Yong Ha; Yeshita, Baylie Damtie; Workayehu, Abyiot Bires

    2016-03-01

    The East African ionosphere (3°S-18°N, 32°E-50°E) was mapped using Total Electron Content (TEC) measurements from ground-based GPS receivers situated at Asmara, Mekelle, Bahir Dar, Robe, Arbaminch, and Nairobi. Assuming a thin shell ionosphere at 350 km altitude, we project the Ionospheric Pierce Point (IPP) of a slant TEC measurement with an elevation angle of >10° to its corresponding location on the map. We then infer the estimated values at any point of interest from the vertical TEC values at the projected locations by means of interpolation. The total number of projected IPPs is in the range of 24-66 at any one time. Since the distribution of the projected IPPs is irregularly spaced, we have used an inverse distance weighted interpolation method to obtain a spatial grid resolution of 1°×1° latitude and longitude, respectively. The TEC maps were generated for the year 2008, with a 2 hr temporal resolution. We note that TEC varies diurnally, with a peak in the late afternoon (at 1700 LT), due to the equatorial ionospheric anomaly. We have observed higher TEC values at low latitudes in both hemispheres compared to the magnetic equatorial region, capturing the ionospheric distribution of the equatorial anomaly. We have also confirmed the equatorial seasonal variation in the ionosphere, characterized by minimum TEC values during the solstices and maximum values during the equinoxes. We evaluate the reliability of the map, demonstrating a mean error (difference between the measured and interpolated values) range of 0.04-0.2 TECU (Total Electron Content Unit). As more measured TEC values become available in this region, the TEC map will be more reliable, thereby allowing us to study in detail the equatorial ionosphere of the African sector, where ionospheric measurements are currently very few.

  3. Validation of five years (2003–2007 of SCIAMACHY CO total column measurements using ground-based spectrometer observations

    Directory of Open Access Journals (Sweden)

    A. M. Poberovskii

    2010-10-01

    Full Text Available This paper presents a validation study of SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY carbon monoxide (CO total column measurements from the Iterative Maximum Likelihood Method (IMLM algorithm using ground-based spectrometer observations from twenty surface stations for the five year time period of 2003–2007. Overall we find a good agreement between SCIAMACHY and ground-based observations for both mean values as well as seasonal variations. For high-latitude Northern Hemisphere stations absolute differences between SCIAMACHY and ground-based measurements are close to or fall within the SCIAMACHY CO 2σ precision of 0.2 × 1018 molecules/cm2 (∼10% indicating that SCIAMACHY can observe CO accurately at high Northern Hemisphere latitudes. For Northern Hemisphere mid-latitude stations the validation is complicated due to the vicinity of emission sources for almost all stations, leading to higher ground-based measurements compared to SCIAMACHY CO within its typical sampling area of 8° × 8°. Comparisons with Northern Hemisphere mountain stations are hampered by elevation effects. After accounting for these effects, the validation provides satisfactory results. At Southern Hemisphere mid- to high latitudes SCIAMACHY is systematically lower than the ground-based measurements for 2003 and 2004, but for 2005 and later years the differences between SCIAMACHY and ground-based measurements fall within the SCIAMACHY precision. The 2003–2004 bias is consistent with previously reported results although its origin remains under investigation. No other systematic spatial or temporal biases could be identified based on the validation presented in this paper. Validation results are robust with regard to the choices of the instrument-noise error filter, sampling area, and time averaging required for the validation of SCIAMACHY CO total column measurements. Finally, our results show that the spatial coverage of the ground-based

  4. Investigation of tropical cirrus cloud properties using ground based lidar measurements

    Science.gov (United States)

    Dhaman, Reji K.; Satyanarayana, Malladi; Krishnakumar, V.; Mahadevan Pillai, V. P.; Jayeshlal, G. S.; Raghunath, K.; Venkat Ratnam, M.

    2016-05-01

    Cirrus clouds play a significant role in the Earths radiation budget. Therefore, knowledge of geometrical and optical properties of cirrus cloud is essential for the climate modeling. In this paper, the cirrus clouds microphysical and optical properties are made by using a ground based lidar measurements over an inland tropical station Gadanki (13.5°N, 79.2°E), Andhra Pradesh, India. The variation of cirrus microphysical and optical properties with mid cloud temperature is also studied. The cirrus clouds mean height is generally observed in the range of 9-17km with a peak occurrence at 13- 14km. The cirrus mid cloud temperature ranges from -81°C to -46°C. The cirrus geometrical thickness ranges from 0.9- 4.5km. During the cirrus occurrence days sub-visual, thin and dense cirrus were at 37.5%, 50% and 12.5% respectively. The monthly cirrus optical depth ranges from 0.01-0.47, but most (extinction ranges from 2.8E-06 to 8E-05 and depolarization ratio and lidar ratio varies from 0.13 to 0.77 and 2 to 52 sr respectively. A positive correlation exists for both optical depth and extinction with the mid-cloud temperature. The lidar ratio shows a scattered behavior with mid-cloud temperature.

  5. A ground-based measurement of the relativistic beaming effect in a detached double WD binary

    CERN Document Server

    Shporer, Avi; Steinfadt, Justin D R; Bildsten, Lars; Howell, Steve B; Mazeh, Tsevi

    2010-01-01

    We report on the first ground-based measurement of the relativistic beaming effect (aka Doppler boosting). We observed the beaming effect in the detached, non-interacting eclipsing double white dwarf (WD) binary NLTT 11748. Our observations were motivated by the system's high mass ratio and low luminosity ratio, leading to a large beaming-induced variability amplitude at the orbital period of 5.6 hr. We observed the system during 3 nights at the 2.0m Faulkes Telescope North with the SDSS-g' filter, and fitted the data simultaneously for the beaming, ellipsoidal and reflection effects. Our fitted relative beaming amplitude is (3.0 +/- 0.4) x 10^(-3), consistent with the expected amplitude from a blackbody spectrum given the photometric primary radial velocity amplitude and effective temperature. This result is a first step in testing the relation between the photometric beaming amplitude and the spectroscopic radial velocity amplitude in NLTT 11748 and similar systems. We did not identify any variability due t...

  6. Heavy precipitation retrieval from combined satellite observations and ground-based lightning measurements

    Science.gov (United States)

    Mugnai, A.; Dietrich, S.; Casella, D.; di Paola, F.; Formenton, M.; Sanò, P.

    2010-09-01

    We have developed a series of algorithms for the retrieval of precipitation (especially, heavy precipitation) over the Mediterranean area using satellite observations from the available microwave (MW) radiometers onboard low Earth orbit (LEO) satellites and from the visible-infrared (VIS-IR) SEVIRI radiometer onboard the European geosynchronous (GEO) satellite Meteosat Second Generation (MSG), in conjunction with lightning data from ground-based networks - such as ZEUS and LINET. These are: • A new approach for precipitation retrieval from space (which we call the Cloud Dynamics and Radiation Database approach, CDRD) that incorporates lightning and environmental/dynamical information in addition to the upwelling microwave brightness temperatures (TB’s) so as to reduce the retrieval uncertainty and improve the retrieval performance; • A new combined MW-IR technique for producing frequent precipitation retrievals from space (which we call PM-GCD technique), that uses passive-microwave (PM) retrievals in conjunction with lightning information and the Global Convection Detection (GCD) technique to discriminate deep convective clouds within the GEO observations; • A new morphing approach (which we call the Lightning-based Precipitation Evolving Technique, L-PET) that uses the available lightning measurements for propagating the rainfall estimates from satellite-borne MW radiometers to a much higher time resolution than the MW observations. We will present and discuss our combined MW/IR/lightning precipitation algorithms and analyses with special reference to some case studies over the western Mediterranean.

  7. Retrieval of aerosol composition using ground-based remote sensing measurements

    Science.gov (United States)

    Xie, Yisong; Li, Zhengqiang; Zhang, Ying; Li, Donghui; Li, Kaitao

    2016-04-01

    The chemical composition and mixing states of ambient aerosol are the main factors deciding aerosol microphysical and optical properties, and thus have significant impacts on regional or global climate change and air quality. Traditional approaches to detect atmospheric aerosol composition include sampling with laboratory analysis and in-situ measurements. They can accurately acquire aerosol components, however, the sampling or air exhausting could change the status of ambient aerosol or lead to some mass loss. Additionally, aerosol is usually sampled at the surface level so that it is difficult to detect the columnar aerosol properties. Remote sensing technology, however, can overcome these problems because it is able to detect aerosol information of entire atmosphere by optical and microphysical properties without destructing the natural status of ambient aerosol. This paper introduces a method to acquire aerosol composition by the remote sensing measurements of CIMEL CE318 ground-based sun-sky radiometer. A six component aerosol model is used in this study, including one strong absorbing component Black Carbon (BC), two partly absorbing components Brown Carbon (BrC) and Mineral Dust (MD), two scattering components Ammonia Sulfate-like (AS) and Sea Salt (SS), and Aerosol Water uptake (AW). Sensitivity analysis are performed to find the most sensitive parameters to each component and retrieval method for each component is accordingly developed. Different mixing models such as Maxwell-Garnett (MG), Bruggeman (BR) and Volume Average (VA) are also studied. The residual minimization method is used by comparing remote sensing measurements and simulation outputs to find the optimization of aerosol composition (including volume fraction and mass concentration of each component). This method is applied to measurements obtained from Beijing site under different weather conditions, including polluted haze, dust storm and clean days, to investigate the impacts of mixing

  8. NO2 DOAS measurements from ground and space: comparison of ground based measurements and OMI data in Mexico City

    Science.gov (United States)

    Rivera, C.; Stremme, W.; Grutter, M.

    2012-04-01

    The combination of satellite data and ground based measurements can provide valuable information about atmospheric chemistry and air quality. In this work we present a comparison between measured ground based NO2 differential columns at the Universidad Nacional Autónoma de México (UNAM) in Mexico City, using the Differential Optical Absorption Spectroscopy (DOAS) technique and NO2 total columns measured by the Ozone Monitoring Instrument (OMI) onboard the Aura satellite using the same measurement technique. From these data, distribution maps of average NO2 above the Mexico basin were constructed and hot spots inside the city could be identified. In addition, a clear footprint was detected from the Tula industrial area, ~50 km northwest of Mexico City, where a refinery, a power plant and other industries are located. A less defined footprint was identified in the Cuernavaca basin, South of Mexico City, and the nearby cities of Toluca and Puebla do not present strong enhancements in the NO2 total columns. With this study we expect to cross-validate space and ground measurements and provide useful information for future studies.

  9. Retrieval of atmospheric optical parameters from ground-based sun-photometer measurements for Zanjan, Iran

    Science.gov (United States)

    Bayat, A.; Masoumi, A.; Khalesifard, H. R.

    2011-05-01

    We are reporting the results of ground-based spectroradiometric measurements on aerosols and water vapor in the atmosphere of Zanjan for the period of October 2006 to September 2008 using a CIMEL CE318-2 sun-photometer. Zanjan is a city in Northwest Iran, located at 36.70° N, 48.51° E, and at an altitude of 1800 m a.m.s.l. (above mean sea level). The spectral aerosol optical depth, Ångström exponent, and columnar water vapor have been calculated using the data recorded by the sun-photometer through the direct measurements on the sun radiance (sun-mode). The average values of aerosol optical depth at 440 nm, columnar water vapor, and the Ångström exponent, α, during the mentioned period are measured as, 0.28 ± 0.14, 0.57 ± 0.37 cm and 0.73 ± 0.30, respectively. The maximum (minimum) value of the aerosol optical depth was recorded in May 2007 (November 2007), and that of columnar water vapor, in July 2007 (January 2008). Using the least-squares method, the Ångström exponent was calculated in the spectral interval 440-870 nm along with α1 and α2, the coefficients of a second order polynomial fit to the plotted logarithm of aerosol optical depth versus the logarithm of wavelength. The coefficient α2 shows that most of the aerosols in the Zanjan area have dimensions larger than 1 micron. The calculated values for α2 - α1 indicate that 80 % of the aerosols are in the coarse-mode (>1 μm) and 20 % of them are in the fine-mode (<1 μm). Comparison of α2 - α1 for the atmosphere over Zanjan with other regions indicates dust particles are the most dominant aerosols in the region.

  10. TOMS and Ground-based Measurements: Long-term Trends, Spatial Variability, Cloud Effects, and Data Quality.

    Science.gov (United States)

    Eide, H. A.; Dahlback, A.; Stamnes, K.; Høyskar, B.; Olsen, R.; Schmidlin, F.; Tsay, S.

    2003-12-01

    Ground-based measurements and TOMS measurements are mutually beneficial to each other. Ground-based measurements of UV radiation and total column ozone amounts are important for the validation of TOMS measurements. For example, it has been shown that TOMS measurements has a tendency to under-estimate ground UV exposure. Some of these effects can perhaps be ascribed to local cloud effects or choice of ozone profiles in the retrieval algorithm. More ground-based measurements are needed to establish the cause of these discrepancies. Recent technology advances have made ground-based measurements of UV doses and ozone column amounts with inexpensive multi-channel filter instruments not only possible, but also an attractive alternative to other more labor-intensive and weather dependent methods. Filter instruments can operate unattended for long periods of time, and it is possible to obtain accurate ozone column amounts even on cloudy days. We present results from extensive comparisons of the performance of several ground-based instruments (the NILU-UV and GUV filter instruments, as well as the Dobson and Brewer instruments) against the EP-TOMS instrument. The data used in the comparisons are from three different sites where we have had the opportunity to operate more than one type of UV instruments for extended periods of time. The sites include the University of Oslo, Norway, the NASA Goddard Space Flight Center facilities at Wallops Island, VA, and Greenbelt, MD and the University of Alaska, Fairbanks (during the TOMS3F campaign). Our results show that ozone column amounts obtained with current filter-type instruments are just as good as those obtained with the Dobson instrument, and might even out-perform the Dobson instrument on cloudy days. The TOMS measurements are shown to exhibit some more variability, but there is on average very good agreement with the ground- based measurements even for high solar zenith angles (SZA). Further more, our comparison shows that

  11. Confronting remote sensing product with ground base measurements across time and scale

    Science.gov (United States)

    Pourmokhtarian, A.; Dietze, M.

    2015-12-01

    Ecosystem models are essential tools in forecasting ecosystem responses to global climate change. One of the most challenging issues in ecosystem modeling is scaling while preserving landscape characteristics and minimizing loss of information, when moving from point observation to regional scale. There is a keen interest in providing accurate inputs for ecosystem models which represent ecosystem initial state conditions. Remote sensing land cover products, such as Landsat NLCD and MODIS MCD12Q1, provide extensive spatio-temporal coverage but do not capture forest composition and structure. Lidar and hyperspectral have the potential to meet this need but lack sufficient spatial and historical coverage. Forest inventory measurements provide detailed information on the landscape but in a very small footprint. Combining inventory and land cover could improve estimates of ecosystem state and characteristic across time and space. This study focuses on the challenges associated with fusing and scaling the US Forest Service FIA database and NLCD across regional scales to quantify ecosystem characteristics and reduce associated uncertainties. Across Southeast of U.S. 400 stratified random samples of 10x10 km2 landscapes were selected. Data on plant density, species, age, and DBH of trees in FIA plots within each site were extracted. Using allometry equations, the canopy cover of different plant functional types (PFTs) was estimated using a PPA-style canopy model and used to assign each inventory plot to a land cover class. Inventory and land cover were fused in a Bayesian model that adjusts the fractional coverage of inventory plots while accounting for multiple sources of uncertainty. Results were compared to estimates derived from inventory alone, land cover alone, and model spin-up alone. Our findings create a framework of data assimilation to better interpret remote sensing data using ground-based measurements.

  12. Soil moisture on Polish territory - comparison of satellite and ground-based measurements

    Science.gov (United States)

    Rojek, Edyta; Łukowski, Mateusz; Marczewski, Wojciech; Usowicz, Bogusław

    2014-05-01

    Assessment of water resources due to changing climatic conditions in time and space is still very uncertain. The territory of Poland has a limited resource of waters, occasionally resulting in small agricultural droughts. From the other side intense rainfalls, floods or run-offs, causing soil erosion are observed. Therefore, it is important to predict and prevent of this adverse phenomena. Huge spatial variability of soil moisture does not allow for accurate estimation of its distribution using ground-based measurements. SMOS soil moisture data are quite much inherently consistent in time and space, but their validation is still a challenge for further use in the climate and hydrology studies. This is the motivation for the research: to examine soil moisture from SMOS and ground based stations of the SWEX network held over eastern Poland. The presented results are related to changes of the soil moisture on regional scales for Poland in the period 2010-2013. Some results with SMOS L2 data are extended on continental scales for Europe. Time series from ground and satellite SMOS data sources were compared by regression methods. The region of Poland indicates clearly some genetic spatial distributions in weekly averaged values. In continental scales, the country territory contrasts evidently to Lithuania and in Polesie, and indicates seasonal cycling observed in archives and well known traditional records. The central part of Poland is repeatedly susceptible on droughts with soil moisture values ranging from about 0.02 to 0.20 m3 m-3. SMOS data allows on creating systematic drought data for Poland and watching annual changes, and differences to other drought services kept on national scales for agricultural purposes. We bound that drought susceptibility to the content of sand clay components and the land use there. Lack of rainfall in the late 2011 summer, caused a significant deficit of water in soil moisture content (below 0.05 m3 m-3) throughout the entire country

  13. Validation of NH3 satellite observations by ground-based FTIR measurements

    Science.gov (United States)

    Dammers, Enrico; Palm, Mathias; Van Damme, Martin; Shephard, Mark; Cady-Pereira, Karen; Capps, Shannon; Clarisse, Lieven; Coheur, Pierre; Erisman, Jan Willem

    2016-04-01

    Global emissions of reactive nitrogen have been increasing to an unprecedented level due to human activities and are estimated to be a factor four larger than pre-industrial levels. Concentration levels of NOx are declining, but ammonia (NH3) levels are increasing around the globe. While NH3 at its current concentrations poses significant threats to the environment and human health, relatively little is known about the total budget and global distribution. Surface observations are sparse and mainly available for north-western Europe, the United States and China and are limited by the high costs and poor temporal and spatial resolution. Since the lifetime of atmospheric NH3 is short, on the order of hours to a few days, due to efficient deposition and fast conversion to particulate matter, the existing surface measurements are not sufficient to estimate global concentrations. Advanced space-based IR-sounders such as the Tropospheric Emission Spectrometer (TES), the Infrared Atmospheric Sounding Interferometer (IASI), and the Cross-track Infrared Sounder (CrIS) enable global observations of atmospheric NH3 that help overcome some of the limitations of surface observations. However, the satellite NH3 retrievals are complex requiring extensive validation. Presently there have only been a few dedicated satellite NH3 validation campaigns performed with limited spatial, vertical or temporal coverage. Recently a retrieval methodology was developed for ground-based Fourier Transform Infrared Spectroscopy (FTIR) instruments to obtain vertical concentration profiles of NH3. Here we show the applicability of retrieved columns from nine globally distributed stations with a range of NH3 pollution levels to validate satellite NH3 products.

  14. Ground-based and airborne measurements of volcanic gas emissions at White Island in New Zealand

    Science.gov (United States)

    Tirpitz, Jan-Lukas; Poehler, Denis; Bobrowski, Nicole; Christenson, Bruce; Platt, Ulrich

    2017-04-01

    Quantitative understanding of volcanic gas emissions has twofold relevance for nature and society: 1) Variation in gas emission and/or in emitted gas ratios are tracers of the dynamic processes in the volcano interior indicating its activity. 2) Volcanic degassing plays an important role for the Earth's climate, for local sometimes even regional air quality and atmospheric chemistry. In autumn 2015, a campaign to White Island Volcano in New Zealand was organized to perform ground-based as well as airborne in-situ and remote sensing gas measurements of sulfur dioxide (SO2), carbon dioxide (CO2) and bromine monoxide (BrO). For all three gases the ratios and total emission rates were determined in different plume types and ages. An overview over the data will be presented with focus on the two most notable outcomes: 1) The first determination of the BrO/SO2 ratio in the White Island plume and a minimum estimate of the volcano's bromine emission rate; two of many parameters, which are important to assess the impact of volcanic degassing on the atmospheric halogen chemistry. 2) In-situ SO2 data was very successfully recorded with the PITSA, a prototype of a portable and cost-effective optical instrument. It is based on the principle of non-dispersive UV absorption spectroscopy and features different advantages over the customary electrochemical sensors, including a sub second response time, negligible cross sensitivities to other gases, and inherent calibration. The campaign data demonstrates the capabilities and limitations of the PITSA and shows, that it can be well applied as substitute for conventional electrochemical systems.

  15. Analysis of ground-based 222Rn measurements over Spain: Filling the gap in southwestern Europe

    Science.gov (United States)

    Grossi, C.; Àgueda, A.; Vogel, F. R.; Vargas, A.; Zimnoch, M.; Wach, P.; Martín, J. E.; López-Coto, I.; Bolívar, J. P.; Morguí, J. A.; Rodó, X.

    2016-09-01

    Harmonized atmospheric 222Rn observations are required by the scientific community: these data have been lacking in southern Europe. We report on three recently established ground-based atmospheric 222Rn monitoring stations in Spain. We characterize the variability of atmospheric 222Rn concentrations at each of these stations in relation to source strengths, local, and regional atmospheric processes. For the study, measured atmospheric 222Rn concentrations, estimated 222Rn fluxes, and regional footprint analysis have been used. In addition, the atmospheric radon monitor operating at each station has been compared to a 222Rn progeny monitor. Annual means of 222Rn concentrations at Gredos (GIC3), Delta de l'Ebre (DEC3), and Huelva (UHU) stations were 17.3 ± 2.0 Bq m-3, 5.8 ± 0.8 Bq m-3, and 5.1 ± 0.7 Bq m-3, respectively. The GIC3 station showed high 222Rn concentration differences during the day and by seasons. The coastal station DEC3 presented background concentrations typical of the region, except when inland 222Rn-rich air masses are transported into the deltaic area. The highest 222Rn concentrations at UHU station were observed when local recirculation facilitates accumulation of 222Rn from nearby source represented by phosphogypsum piles. Results of the comparison performed between monitors revealed that the performance of the direct radon monitor is not affected by meteorological conditions, whereas the 222Rn progeny monitor seems to underestimate 222Rn concentrations under saturated atmospheric conditions. Initial findings indicate that the monitor responses seem to be in agreement for unsaturated atmospheric conditions but a further long-term comparison study will be needed to confirm this result.

  16. On reconciling ground-based with spaceborne normalized radar cross section measurements

    DEFF Research Database (Denmark)

    Baumgartner, Francois; Munk, Jens; Jezek, K C

    2002-01-01

    This study examines differences in the normalized radar cross section, derived from ground-based versus spaceborne radar data. A simple homogeneous half-space model, indicates that agreement between the two improves as 1) the distance from the scatterer is increased; and/or 2) the extinction...

  17. Comparison of GOME tropospheric NO2 columns with NO2 profiles deduced from ground-based in situ measurements

    Directory of Open Access Journals (Sweden)

    D. Schaub

    2006-01-01

    Full Text Available Nitrogen dioxide (NO2 vertical tropospheric column densities (VTCs retrieved from the Global Ozone Monitoring Experiment (GOME are compared to coincident ground-based tropospheric NO2 columns. The ground-based columns are deduced from in situ measurements at different altitudes in the Alps for 1997 to June 2003, yielding a unique long-term comparison of GOME NO2 VTC data retrieved by a collaboration of KNMI (Royal Netherlands Meteorological Institute and BIRA/IASB (Belgian Institute for Space Aeronomy with independently derived tropospheric NO2 profiles. A first comparison relates the GOME retrieved tropospheric columns to the tropospheric columns obtained by integrating the ground-based NO2 measurements. For a second comparison, the tropospheric profiles constructed from the ground-based measurements are first multiplied with the averaging kernel (AK of the GOME retrieval. The second approach makes the comparison independent from the a priori NO2 profile used in the GOME retrieval. This allows splitting the total difference between the column data sets into two contributions: one that is due to differences between the a priori and the ground-based NO2 profile shapes, and another that can be attributed to uncertainties in both the remaining retrieval parameters (such as, e.g., surface albedo or aerosol concentration and the ground-based in situ NO2 profiles. For anticyclonic clear sky conditions the comparison indicates a good agreement between the columns (n=157, R=0.70/0.74 for the first/second comparison approach, respectively. The mean relative difference (with respect to the ground-based columns is −7% with a standard deviation of 40% and GOME on average slightly underestimating the ground-based columns. Both data sets show a similar seasonal behaviour with a distinct maximum of spring NO2 VTCs. Further analysis indicates small GOME columns being systematically smaller than the ground-based ones. The influence of different shapes in the a

  18. a Compact Dial LIDAR for Ground-Based Ozone Atmospheric Profiling Measurements

    Science.gov (United States)

    De Young, R.; Carrion, W.; Pliutau, D.; Ganoe, R. E.

    2013-12-01

    A compact differential absorption lidar (DIAL) system has been developed at NASA Langley Research Center to provide ozone, aerosol and cloud atmospheric measurements in a mobile trailer for ground-based atmospheric ozone campaigns. This lidar will be integrated into the Air Quality lidar Network (AQLNet) currently made up of four other ozone lidars across the country. The lidar system consists of a UV and green laser transmitter, a telescope and an optical signal receiver box with associated Licel photon counting and analog channels. The laser transmitter consist of a Coherent Evolution 30 TEM00 1-kHz diode pumped Q-switched Nd:YLF inter-cavity doubled laser pumping a Ce:LiCAF tunable UV laser with all the associated power and lidar control support units on a single system rack. A custom-designed Ce:LiCAF tunable UV laser has a wavelength range of 282 to 300-nm that is selectable between two or more wavelengths. The current wavelengths are online 286.4 nm and offline 293.1 nm. The 527-nm visible beam is transmitted into the atmosphere for aerosol measurements. The fourth harmonic 262 nm beam is split by a beamsplitter into two pump beams that pump each face of the Ce:LiCAF crystal. A short laser cavity consisting of a 60% reflective (1m radius of curvature) output mirror, a dispersive prism and a flat HR mirror is used to produce the UV wavelengths. In order to produce different wavelengths, the high-reflectivity rear mirror is mounted on a servo controlled galvanometer motor to allow rapid tuning between the on and offline ozone wavelengths. Typical laser results are 6.8-W at 527-nm, 800-mW at 262-nm and 130-mW at the UV transmitted wavelengths. The lidar receiver system consists of a receiver telescope with a 40-cm diameter parabolic mirror. A fiber optic cable transmits the received signal from the telescope to the receiver box, which houses the detectors. A separate one inch diameter telescope with PMT and filter is used to sample the very near field to allow

  19. A comparison of ground-based hydroxyl airglow temperatures with SABER/TIMED measurements over 23° N, India

    Science.gov (United States)

    Parihar, Navin; Singh, Dupinder; Gurubaran, Subramanian

    2017-03-01

    Ground-based observations of OH (6, 2) Meinel band nightglow were carried out at Ranchi (23.3° N, 85.3° E), India, during January-March 2011, December 2011-May 2012 and December 2012-March 2013 using an all-sky imaging system. Near the mesopause, OH temperatures were derived from the OH (6, 2) Meinel band intensity information. A limited comparison of OH temperatures (TOH) with SABER/TIMED measurements in 30 cases was performed by defining almost coincident criterion of ±1.5° latitude-longitude and ±3 min of the ground-based observations. Using SABER OH 1.6 and 2.0 µm volume emission rate profiles as the weighing function, two sets of OH-equivalent temperature (T1. 6 and T2. 0 respectively) were estimated from its kinetic temperature profile for comparison with OH nightglow measurements. Overall, fair agreement existed between ground-based and SABER measurements in the majority of events within the limits of experimental errors. Overall, the mean value of OH-derived temperatures and SABER OH-equivalent temperatures were 197.3 ± 4.6, 192.0 ± 10.8 and 192.7 ± 10.3 K, and the ground-based temperatures were 4-5 K warmer than SABER values. A difference of 8 K or more is noted between two measurements when the peak of the OH emission layer lies in the vicinity of large temperature inversions. A comparison of OH temperatures derived using different sets of Einstein transition probabilities and SABER measurements was also performed; however, OH temperatures derived using Langhoff et al. (1986) transition probabilities were found to compare well.

  20. Atmospheric greenhouse gases retrieved from SCIAMACHY: comparison to ground-based FTS measurements and model results

    Directory of Open Access Journals (Sweden)

    O. Schneising

    2012-02-01

    Full Text Available SCIAMACHY onboard ENVISAT (launched in 2002 enables the retrieval of global long-term column-averaged dry air mole fractions of the two most important anthropogenic greenhouse gases carbon dioxide and methane (denoted XCO2 and XCH4. In order to assess the quality of the greenhouse gas data obtained with the recently introduced v2 of the scientific retrieval algorithm WFM-DOAS, we present validations with ground-based Fourier Transform Spectrometer (FTS measurements and comparisons with model results at eight Total Carbon Column Observing Network (TCCON sites providing realistic error estimates of the satellite data. Such validation is a prerequisite to assess the suitability of data sets for their use in inverse modelling.

    It is shown that there are generally no significant differences between the carbon dioxide annual increases of SCIAMACHY and the assimilation system CarbonTracker (2.00 ± 0.16 ppm yr−1 compared to 1.94 ± 0.03 ppm yr−1 on global average. The XCO2 seasonal cycle amplitudes derived from SCIAMACHY are typically larger than those from TCCON which are in turn larger than those from CarbonTracker. The absolute values of the northern hemispheric TCCON seasonal cycle amplitudes are closer to SCIAMACHY than to CarbonTracker and the corresponding differences are not significant when compared with SCIAMACHY, whereas they can be significant for a subset of the analysed TCCON sites when compared with CarbonTracker. At Darwin we find discrepancies of the seasonal cycle derived from SCIAMACHY compared to the other data sets which can probably be ascribed to occurrences of undetected thin clouds. Based on the comparison with the reference data, we conclude that the carbon dioxide data set can be characterised by a regional relative precision (mean standard deviation of the differences of about 2.2 ppm and a relative accuracy (standard deviation of the mean differences

  1. Trend analysis of greenhouse gases over Europe measured by a network of ground-based remote FTIR instruments

    Directory of Open Access Journals (Sweden)

    T. Gardiner

    2008-11-01

    Full Text Available This paper describes the statistical analysis of annual trends in long term datasets of greenhouse gas measurements taken over ten or more years. The analysis technique employs a bootstrap resampling method to determine both the long-term and intra-annual variability of the datasets, together with the uncertainties on the trend values. The method has been applied to data from a European network of ground-based solar FTIR instruments to determine the trends in the tropospheric, stratospheric and total columns of ozone, nitrous oxide, carbon monoxide, methane, ethane and HCFC-22. The suitability of the method has been demonstrated through statistical validation of the technique, and comparison with ground-based in-situ measurements and 3-D atmospheric models.

  2. Global Fine Particulate Matter Concentrations and Trends Inferred from Satellite Observations, Modeling, and Ground-Based Measurements

    Science.gov (United States)

    Martin, Randall; van Donkelaar, Aaron; Boys, Brian; Philip, Sajeev; Lee, Colin; Snider, Graydon; Weagle, Crystal

    2014-05-01

    Outdoor fine particulate matter (PM2.5) is a leading environmentally-related cause of premature mortality worldwide. However, ground-level PM2.5 monitors remain sparse in many regions of the world. Satellite remote sensing from MODIS, MISR, and SeaWiFS yields a powerful global data source to address this issue. Global modeling (GEOS-Chem) plays a critical role in relating these observations to ground-level concentrations. The resultant satellite-based estimates of PM2.5 indicate dramatic variation around the world, with implications for global public health. A new ground-based aerosol network (SPARTAN) offers valuable measurements to understand the relationship between satellite observations of aerosol optical depth and ground-level PM2.5 concentrations. This talk will highlight recent advances in combining satellite remote sensing, global modeling, and ground-based measurements to improve understanding of global population exposure to outdoor fine particulate matter.

  3. Towards a Handshake of Ground-Based Measurements and Remote-Sensing of Vegetation Traits at Global Scale?

    Science.gov (United States)

    Kattge, J.; Díaz, S.; Lavorel, S.; Prentice, I. C.; Leadley, P.; Reich, P. B.; Banerjee, A.; Fazayeli, F.; Schrodt, F. I.; Joswig, J.; Mahecha, M. D.; Wirth, C.

    2014-12-01

    Plant traits determine how primary producers respond to environmental factors, affect other trophic levels, influence ecosystem processes and services, and provide a link from species richness to ecosystem functional diversity. Plant traits thus are a key to understand and predict the adaptation of ecosystems to environmental changes. At the same time ground based measurements of plant trait data are dispersed over a wide range of databases, many of these not publicly available. To overcome this deficiency IGBP and DIVERSITAS have initiated the development of a joint database, called TRY, aiming at constructing a standard resource of ground based plant trait observations for the ecological community and for the development of global vegetation models. So far the TRY initiative has united a wide range of the plant trait research community worldwide and gained an unprecedented buy-in of trait data: about 250 trait databases have been contributed and the data repository currently contains about 5.6 million trait entries for 90,000 out of the world's 350,000 plant species. The database includes data for 1100 traits, characterizing the vegetative and regeneration stages of the plant life cycle, including growth, dispersal, establishment and persistence. Based on advanced methods for gap-filling and spatial extrapolation currently being developed in applied statistics and machine learning and in combination with environmental information and species distribution ranges, the unprecedented availability of ground based trait measurements is expected to allow for up-scaling of trait observations from plant to ecosystem level and from point measurements to regional and global scales. These up-scaled data products are expected to provide a link from ground based trait measurements to remote sensing of vegetation function and traits with global coverage.

  4. First middle-atmospheric zonal wind profile measurements with a new ground-based microwave Doppler-spectro-radiometer

    Directory of Open Access Journals (Sweden)

    R. Rüfenacht

    2012-11-01

    Full Text Available We report on the wind radiometer WIRA, a new ground-based microwave Doppler-spectro-radiometer specifically designed for the measurement of middle-atmospheric horizontal wind by observing ozone emission spectra at 142.17504 GHz. Currently, wind speeds in five levels between 30 and 79 km can be retrieved which makes WIRA the first instrument able to continuously measure horizontal wind in this altitude range. For an integration time of one day the measurement error on each level lies at around 25 m s−1. With a planned upgrade this value is expected to be reduced by a factor of 2 in the near future. On the altitude levels where our measurement can be compared to wind data from the European Centre for Medium-Range Weather Forecasts (ECMWF very good agreement in the long-term statistics as well as in short time structures with a duration of a few days has been found.

    WIRA uses a passive double sideband heterodyne receiver together with a digital Fourier transform spectrometer for the data acquisition. A big advantage of the radiometric approach is that such instruments can also operate under adverse weather conditions and thus provide a continuous time series for the given location. The optics enables the instrument to scan a wide range of azimuth angles including the directions east, west, north, and south for zonal and meridional wind measurements. The design of the radiometer is fairly compact and its calibration does not rely on liquid nitrogen which makes it transportable and suitable for campaign use. WIRA is conceived in a way that it can be operated remotely and does hardly require any maintenance.

    In the present paper, a description of the instrument is given, and the techniques used for the wind retrieval based on the determination of the Doppler shift of the measured atmospheric ozone emission spectra are outlined. Their reliability was tested using Monte Carlo simulations. Finally, a time series of 11

  5. Comparison of total ozone and erythemal UV data from OMI with ground-based measurements at Rome station

    Directory of Open Access Journals (Sweden)

    I. Ialongo

    2008-02-01

    Full Text Available Ground-based total ozone and surface UV irradiance measurements have been collected since 1992 using Brewer spectrophotometer and Erythemal Dose Rates (EDRs have been determined by a broad-band radiometer (model YES UVB-1 operational since 2000 at Rome station. The methodology to retrieve the EDR and the Erythemal Daily Dose (EDD from the radiometer observations is described. Ground-based measurements were compared with satellite-derived total ozone and UV data from the Ozone Monitoring Instrument (OMI. OMI, onboard the NASA EOS Aura spacecraft, is a nadir viewing spectrometer that provides total ozone and surface UV retrievals. The results of the validation exercise showed satisfactory agreement between OMI and Brewer total ozone data, for both OMI-TOMS and OMI-DOAS ozone alghorithms (biases of −1.8% and −0.7%, respectively. Regarding UV data, OMI data overestimate ground-based erythemally weighted data retrieved from both Brewer and YES Radiometer (biases about 20%, probably because of the effect of absorbing aerosols in an urban site such as Rome.

  6. Validation of middle atmospheric campaign-based water vapour measured by the ground-based microwave radiometer MIAWARA-C

    Directory of Open Access Journals (Sweden)

    B. Tschanz

    2013-02-01

    Full Text Available Middle atmospheric water vapour can be used as a tracer for dynamical processes. It is mainly measured by satellite instruments and ground-based microwave radiometers. Ground-based instruments capable of measuring middle atmospheric water vapour are sparse but valuable as they complement satellite measurements, are relatively easy to maintain and have a long lifetime. MIAWARA-C is a ground-based microwave radiometer for middle atmospheric water vapour designed for use on measurement campaigns for both atmospheric case studies and instrument intercomparisons. MIAWARA-C's retrieval version 1.1 (v1.1 is set up in a way to provide a consistent data set even if the instrument is operated from different locations on a campaign basis. The sensitive altitude range for v1.1 extends from 4 hPa (37 km to 0.017 hPa (75 km. MIAWARA-C measures two polarisations of the incident radiation in separate receiver channels and can therefore provide two independent measurements of the same air mass. The standard deviation of the difference between the profiles obtained from the two polarisations is in excellent agreement with the estimated random error of v1.1. In this paper, the quality of v1.1 data is assessed during two measurement campaigns: (1 five months of measurements in the Arctic (Sodankylä, 67.37° N/26.63° E and (2 nine months of measurements at mid-latitudes (Zimmerwald, 46.88° N/7.46° E. For both campaigns MIAWARA-C's profiles are compared to measurements from the satellite experiments Aura MLS and MIPAS. In addition, comparisons to ACE-FTS and SOFIE are presented for the Arctic and to the ground-based radiometer MIAWARA for the mid-latitudinal campaign. In general all intercomparisons show high correlation coefficients, above 0.5 at altitudes above 45 km, confirming the ability of MIAWARA-C to monitor temporal variations on the order of days. The biases are generally below 10% and within the estimated systematic uncertainty of MIAWARA-C. No

  7. Ground based measurements of the gas emission from the Holuhraun volcanic fissure eruption on Iceland 2014/2015

    Science.gov (United States)

    Galle, Bo; Arellano, Santiago; Conde, Vladimir; Pfeffer, Melissa; Barsotti, Sara; Stefansdottir, Gerður; Bergsson, Baldur; Bergsson, Bergur; Ingvarsson, Thorgils; Weber, Konradin

    2015-04-01

    The since 31 August 2014 ongoing volcanic eruption at Holuhraun on Iceland is by far the strongest source of sulfur dioxide in Europe over the last 230 years with sustained emission rates exceeding 100 000 ton/day. This gas emission severely affects local population and has become a concern also for air traffic. The eruption has in December continued at constant pace for 3.5 months. Three scenarios are envisaged for the future; (1) the eruption stops, (2) the fissure extends under the Vattnajökul glacier and (3) Bardarbunga volcano erupts. The two later scenarios will cause increased gas emission, severe ash emissions and extended flooding. Under the scope of the EU-project FUTUREVOLC, a project with 3.5 years duration, aiming at making Iceland a supersite for volcanological research as a European contribution to GEO, we are developing a version of the Scanning DOAS instrument that is adapted to high latitudes with low UV radiation and severe meteorological conditions. Since the first day of the eruption several of these novel instruments has been monitoring the SO2 emission from the eruption. Data from our instruments are still after 3.5 months the only sustained ground-based monitoring of this gas emission. A lot of work is however needed to sustain this operation at a very remote site and under severe field conditions. At the same time the very high concentrations in the gas plume, in combination with bad meteorological conditions require the development of novel methods to derive reliable flux estimates. In this presentation we will discuss the instrumental issues and present the latest version of the emission estimates made from our measurements.

  8. Tropospheric BrO column densities in the Arctic derived from satellite: retrieval and comparison to ground-based measurements

    Directory of Open Access Journals (Sweden)

    H. Sihler

    2012-11-01

    Full Text Available During polar spring, halogen radicals like bromine monoxide (BrO play an important role in the chemistry of tropospheric ozone destruction. Satellite measurements of the BrO distribution have become a particularly useful tool to investigate this probably natural phenomenon, but the separation of stratospheric and tropospheric partial columns of BrO is challenging. In this study, an algorithm was developed to retrieve tropospheric vertical column densities of BrO from data of high-resolution spectroscopic satellite instruments such as the second Global Ozone Monitoring Experiment (GOME-2. Unlike recently published approaches, the presented algorithm is capable of separating the fraction of BrO in the activated troposphere from the total BrO column solely based on remotely measured properties. The presented algorithm furthermore allows to estimate a realistic measurement error of the tropospheric BrO column. The sensitivity of each satellite pixel to BrO in the boundary layer is quantified using the measured UV radiance and the column density of the oxygen collision complex O4. A comparison of the sensitivities with CALIPSO LIDAR observations demonstrates that clouds shielding near-surface trace-gas columns can be reliably detected even over ice and snow. Retrieved tropospheric BrO columns are then compared to ground-based BrO measurements from two Arctic field campaigns in the Amundsen Gulf and at Barrow in 2008 and 2009, respectively. Our algorithm was found to be capable of retrieving enhanced near-surface BrO during both campaigns in good agreement with ground-based data. Some differences between ground-based and satellite measurements observed at Barrow can be explained by both elevated and shallow surface layers of BrO. The observations strongly suggest that surface release processes are the dominating source of BrO and that boundary layer meteorology influences the vertical distribution.

  9. Tropospheric BrO column densities in the Arctic from satellite: retrieval and comparison to ground-based measurements

    Directory of Open Access Journals (Sweden)

    H. Sihler

    2012-05-01

    Full Text Available During polar spring, halogen radicals like bromine monoxide (BrO play an important role in the chemistry of tropospheric ozone destruction. Satellite measurements of the BrO-distribution have become a particularly useful tool to investigate this probably natural phenomenon, but the separation of stratospheric and tropospheric partial columns of BrO is challenging. In this study, an algorithm was developed to retrieve tropospheric vertical column densities of BrO from data of high-resolution spectroscopic satellite instruments such as the second Global Ozone Monitoring Experiment (GOME-2. Unlike recently published approaches, the presented algorithm is capable of separating the fraction of BrO in the activated troposphere from the total BrO column solely based on remotely measured properties. The sensitivity of each satellite pixel to BrO in the boundary-layer is quantified using the measured UV-radiance and the column density of the oxygen collision complex O4. A comparison of the sensitivities with CALIPSO LIDAR observations demonstrates that clouds shielding near-surface trace-gas columns can be reliably detected even over ice and snow. Retrieved tropospheric BrO columns are then compared to ground-based BrO measurements from two Arctic field campaigns in the Amundsen Gulf and at Barrow in 2008 and 2009, respectively. Our algorithm was found to be capable of retrieving enhanced near-surface BrO during both campaigns in good agreement to ground-based data. Some differences between ground-based and satellite measurements observed at Barrow can be explained by both, elevated and shallow surface layers of BrO. The observations strongly suggest that surface release processes are the dominating source of BrO and that boundary-layer meteorology influences the vertical distribution.

  10. Comparison of airborne radar altimeter and ground-based Ku-band radar measurements on the ice cap Austfonna, Svalbard

    Directory of Open Access Journals (Sweden)

    O. Brandt

    2008-11-01

    Full Text Available We compare coincident data from the European Space Agency's Airborne SAR/Interferometric Radar Altimeter System (ASIRAS with ground-based Very High Bandwidth (VHB stepped-frequency radar measurements in the Ku-band. The ASIRAS instrument obtained data from ~700 m above the surface, using a 13.5 GHz center frequency and a 1 GHz bandwidth. The ground-based VHB radar measurements were acquired using the same center frequency, but with a variable bandwidth of either 1 or 8 GHz. Four sites were visited with the VHB radar; two sites within the transition region from superimposed ice to firn, and two sites in the long-term firn area (wet-snow zone. The greater bandwidth VHB measurements show that the first peak in the airborne data is a composite of the return from the surface (i.e. air-snow interface and returns of similar or stronger amplitude from reflectors in the upper ~30 cm of the subsurface. The peak position in the airborne data is thus not necessarily a good proxy for the surface since the maximum and width of the first return depend on the degree of interference between surface and subsurface reflectors. The major response from the winter snowpack was found to be caused by units of thin crust/ice layers (0.5–2 mm surrounded by large crystals (>3 mm. In the airborne data, it is possible to track such layers for tens of kilometers. The winter snowpack lacked thicker ice layers. The last year's summer surface, characterized by a low density large crystal layer overlaying a harder denser layer, gives a strong radar response, frequently the strongest. The clear relationship observed between the VHB and ASIRAS waveforms, justifies the use of ground-based radar measurements in the validation of air- or spaceborne radars.

  11. Measurements of total and tropospheric ozone from IASI: comparison with correlative satellite, ground-based and ozonesonde observations

    Directory of Open Access Journals (Sweden)

    A. Boynard

    2009-08-01

    Full Text Available In this paper, we present measurements of total and tropospheric ozone, retrieved from infrared radiance spectra recorded by the Infrared Atmospheric Sounding Interferometer (IASI, which was launched on board the MetOp-A European satellite in October 2006. We compare IASI total ozone columns to Global Ozone Monitoring Experiment-2 (GOME-2 observations and ground-based measurements from the Dobson and Brewer network for one full year of observations (2008. The IASI total ozone columns are shown to be in good agreement with both GOME-2 and ground-based data, with correlation coefficients of about 0.9 and 0.85, respectively. On average, IASI ozone retrievals exhibit a positive bias of about 9 DU (3.3% compared to both GOME-2 and ground-based measurements. In addition to total ozone columns, the good spectral resolution of IASI enables the retrieval of tropospheric ozone concentrations. Comparisons of IASI tropospheric columns to 490 collocated ozone soundings available from several stations around the globe have been performed for the period of June 2007–August 2008. IASI tropospheric ozone columns compare well with sonde observations, with correlation coefficients of 0.95 and 0.77 for the [surface–6 km] and [surface–12 km] partial columns, respectively. IASI retrievals tend to overestimate the tropospheric ozone columns in comparison with ozonesonde measurements. Positive average biases of 0.15 DU (1.2% and 3 DU (11% are found for the [surface–6 km] and for the [surface–12 km] partial columns respectively.

  12. Ground-based lidar measurements from Ny-Ålesund during ASTAR 2007

    Directory of Open Access Journals (Sweden)

    A. Herber

    2009-11-01

    Full Text Available During the Arctic Study of Tropospheric Aerosol, Clouds and Radiation (ASTAR in March and April 2007, measurements obtained at the AWIPEV Arctic Research Base in Ny-Ålesund, Spitsbergen at 78.9° N, 11.9° E (operated by the Alfred Wegener Institute for Polar and Marine Research – AWI and the Institut polaire français Paul-Emile Victor – IPEV, supported the airborne campaign. This included lidar data from the Koldewey Aerosol Raman Lidar (KARL and the Micro Pulse Lidar (MPL, located in the atmospheric observatory as well as photometer data and the daily launched radiosonde. The MPL features nearly continuous measurements; the KARL was switched on whenever weather conditions allowed observations (145 h in 61 days. From 1 March to 30 April, 71 meteorological balloon soundings were performed and compared with the concurrent MPL measurements; photometer measurements are available from 18 March. For the KARL data, a statistical overview of particle detection based on their optical properties backscatter ratio and volume depolarization can be given. The altitudes of the occurrence of the named features (subvisible and visible ice and water as well as mixed-phase clouds, aerosol layers as well as their dependence on different air mass origins are analyzed. Although the spring 2007 was characterized by rather clean conditions, diverse case studies of cloud and aerosol occurrence during March and April 2007 are presented in more detail, including temporal development and main optical properties as depolarization, backscatter and extinction coefficients. Links between air mass origins and optical properties can be presumed but need further evidence.

  13. The "RED Versa NIR" Plane to Retrieve Broken-Cloud Optical Depth from Ground-Based Measurements"

    Science.gov (United States)

    Marshak, A.; Knyazikhin, Y.; Evans, K.; Wiscombe, W.

    2003-01-01

    A new method for retrieving cloud optical depth from ground-based measurements of zenith radiance in the RED and near infrared (MR) spectral regions is introduced. Because zenith radiance does not have a one-to-one relationship with optical depth, it is absolutely impossible to use a monochromatic retrieval. On the other side, algebraic combinations of spectral radiances such as NDCI while largely removing nouniquiness and the radiative effects of cloud inhomogeneity, can result in poor retrievals due to its insensitivity to cloud fraction. Instead, both RED and NIR radiances as points on the 'RED vs. NIR' plane are proposed to be used for retrieval. The proposed retrieval method is applied to Cimel measurements at the Atmospheric Radiation Measurements (ARM) site in Oklahoma. Cimel, a multi-channel sunphotometer, is a part of AERONET - a ground-based network for monitoring aerosol optical properties. The results of retrieval are compared with the ones from Microwave Radiometer (MWR) and Multi-Filter Rotating Shadowband Radiometers (MFRSR) located next to Cimel at the ARM site. In addition, the performance of the retrieval method is assessed using a fractal model of cloud inhomogeneity and broken cloudiness. The preliminary results look very promising both theoretically and from measurements.

  14. Method for validating cloud mask obtained from satellite measurements using ground-based sky camera.

    Science.gov (United States)

    Letu, Husi; Nagao, Takashi M; Nakajima, Takashi Y; Matsumae, Yoshiaki

    2014-11-01

    Error propagation in Earth's atmospheric, oceanic, and land surface parameters of the satellite products caused by misclassification of the cloud mask is a critical issue for improving the accuracy of satellite products. Thus, characterizing the accuracy of the cloud mask is important for investigating the influence of the cloud mask on satellite products. In this study, we proposed a method for validating multiwavelength satellite data derived cloud masks using ground-based sky camera (GSC) data. First, a cloud cover algorithm for GSC data has been developed using sky index and bright index. Then, Moderate Resolution Imaging Spectroradiometer (MODIS) satellite data derived cloud masks by two cloud-screening algorithms (i.e., MOD35 and CLAUDIA) were validated using the GSC cloud mask. The results indicate that MOD35 is likely to classify ambiguous pixels as "cloudy," whereas CLAUDIA is likely to classify them as "clear." Furthermore, the influence of error propagations caused by misclassification of the MOD35 and CLAUDIA cloud masks on MODIS derived reflectance, brightness temperature, and normalized difference vegetation index (NDVI) in clear and cloudy pixels was investigated using sky camera data. It shows that the influence of the error propagation by the MOD35 cloud mask on the MODIS derived monthly mean reflectance, brightness temperature, and NDVI for clear pixels is significantly smaller than for the CLAUDIA cloud mask; the influence of the error propagation by the CLAUDIA cloud mask on MODIS derived monthly mean cloud products for cloudy pixels is significantly smaller than that by the MOD35 cloud mask.

  15. Analysis of global climate variability from homogenously reprocessed ground-based GNSS measurements

    Science.gov (United States)

    Ahmed, Furqan; Hunegnaw, Addisu; Teferle, Felix Norman; Bingley, Richard

    2015-04-01

    The tropospheric delay information obtained through long-term homogenous reprocessing of Global Navigation Satellite System (GNSS) observations can be used for climate change and variability analysis on a global scale. A reprocessed global dataset of GNSS-derived zenith total delay (ZTD) and position estimates, based on the network double differencing (DD) strategy and covering 1994-2012, has been recently produced at the University of Luxembourg using the Bernese GNSS Software 5.2 (BSW5.2) and the reprocessed products from the Centre for Orbit Determination in Europe (CODE). The network of ground-based GNSS stations processed to obtain this dataset consists of over 400 globally distributed stations. The GNSS-derived ZTD has been validated by comparing it to that derived from reanalysis data from the European Centre for Medium-Range Weather Forecasts (ECMWF). After validation and quality control, the ZTD dataset obtained using the DD strategy has been used to investigate the inter-annual, seasonal and diurnal climate variability and trends in the tropospheric delay on various regional to global spatial scales. Precise point positioning (PPP) is a processing strategy for GNSS observations which is based on observations from a single station rather than a network of baselines and is therefore computationally more efficient than the DD strategy. However, the two processing strategies, i.e. DD and PPP, have their own strengths and weaknesses and could affect the solutions differently at different geographical locations. In order to explore the use of PPP strategy for climate monitoring, another experimental dataset covering a shorter period has been produced using the PPP strategy and compared to the DD based ZTD dataset.

  16. Improving the atmospheric wind speed measured accuracy by the ground-based airglow imaging interferometer

    Science.gov (United States)

    Tang, Yuanhe; Yang, Rui; Gao, Haiyang; Zhai, Fengtao; Yu, Yang; Cui, Jin

    2017-02-01

    A prototype ground based airglow imaging interferometer (GBAII) has been constructed to observe the upper atmospheric wind velocity and temperature at an altitude of 90-100 km, but the GBAII's wind speed accuracy was found to be unsatisfactory with a value of 21.0 m/s. Three theoretical aspects have been investigated to improve the accuracy, with the following finding: 1) By replacing the surface coatings of the GBAII's 6 lenses and Michelson interferometer (MI) with a new wind-speed infrared film rather than the original visible light film, the accuracy can be increased by 3.0 m/s. 2) By replacing the original charge-coupled device (CCD) with a quantum efficiency (QE) of 0.38 at the wavelength of approximately 866 nm by an electron multiplying CCD (EMCCD) with QE of 0.95, the accuracy can be increased by 6.7 m/s. By adding all the factors that improve the accuracy of the GBAII, it can be improved by 15.0 m/s, which realizes the original aim of wind speed accuracy of 6.0 m/s. Experimental results have been obtained for two aspects: 1) By replacing the surface film on the GBAII's 6 lenses and MI interface, the wind speed accuracy has been increased by 3.8 m/s. 2) A new GBAII temperature controller has been constructed to control the environmental temperature in 0.2 K steps. The results obtained by the GBAII on Dec. 6, 2013 show an average atmospheric temperature of 206.5 K, zonal wind speed of -26.8 m/s and meridional wind speed of 28.1 m/s. These results are close to those of the TIMED (Thermosphere Ionosphere Mesosphere Energetics and Dynamics) satellite Doppler interferometer (TIDI) data collected at almost the same time.

  17. Tracking of urban aerosols using combined lidar-based remote sensing and ground-based measurements

    Directory of Open Access Journals (Sweden)

    T.-Y. He

    2011-10-01

    Full Text Available A measuring campaign was performed over the neighboring towns of Nova Gorica in Slovenia and Gorizia in Italy on 24 and 25 May 2010, to investigate the concentration and distribution of urban aerosols. Tracking of two-dimensional spatial and temporal aerosol distributions was performed using scanning elastic lidar operating at 1064 nm. In addition, PM10 concentrations of particles, NOx and meteorological data were continuously monitored within the lidar scanning region. Based on the collected data, we investigated the flow dynamics and the aerosol concentrations within the lower troposphere and an evidence for daily aerosol cycles. We observed a number of cases with spatially localized increased lidar returns, which were found to be due to the presence of point sources of particulate matter. Daily aerosol concentration cycles were also clearly visible with a peak in aerosol concentration during the morning rush hours and daily maximum at around 17:00 Central European Time. We also found that the averaged horizontal atmospheric extinction within the scanning region 200 m above the ground is correlated to the PM10 concentration at the ground level with a correlation coefficient of 0.64, which may be due to relatively quiet meteorological conditions and basin-like terrain configuration.

  18. Initial Results from the DEEPWAVE Airborne and Ground-Based Measurement Program in New Zealand in 2014

    Science.gov (United States)

    Fritts, Dave; Smith, Ron; Taylor, Mike; Doyle, Jim; Eckermann, Steve; Dörnbrack, Andreas; Rapp, Markus; Williams, Biff; Bossert, Katrina; Pautet, Dominique

    2015-04-01

    The deep-propagating gravity wave experiment (DEEPWAVE) was performed on and over New Zealand, Tasmania, the Tasman Sea, and the Southern Ocean with core airborne measurements extending from 5 June to 21 July 2014 and supporting ground-based measurements beginning in late May and extending beyond the airborne component. DEEPWAVE employed two aircraft, the NSF/NCAR GV and the German DLR Falcon. The GV carried the standard flight-level instruments, dropsondes, and the Microwave Temperature Profiler (MTP). It also hosted new airborne lidar and imaging instruments built specifically to allow quantification of gravity waves (GWs) from sources at lower altitudes (e.g., orography, convection, jet streams, fronts, and secondary GW generation) throughout the stratosphere and into the mesosphere and lower thermosphere (MLT). The new GV lidars included a Rayleigh lidar measuring atmospheric density and temperature from ~20-60 km and a sodium resonance lidar measuring sodium density and temperature at ~75-100 km. An airborne Advanced Mesosphere Temperature Mapper (AMTM) was also developed for the GV, and together with additional IR "wing" cameras, imaged the OH airglow temperature and/or intensity fields extending ~900 km across the GV flight track. The DLR Falcon was equipped with its standard flight-level instruments and an aerosol Doppler lidar able to measure radial winds below the Falcon where aerosol backscatter was sufficient. Additional ground-based instruments included a 449 MHz boundary layer radar, balloons at multiple sites, two ground-based Rayleigh lidars, a second ground-based AMTM, a Fabry Perot interferometer measuring winds and temperatures at ~87 and 95 km, and a meteor radar measuring winds from ~80-100 km. DEEPWAVE performed 26 GV flights, 13 Falcon flights, and an extensive series of ground-based measurements whether or not the aircraft were flying. Together, these observed many diverse cases of GW forcing, propagation, refraction, and dissipation

  19. Comparison of the TRMM Precipitation Radar rainfall estimation with ground-based disdrometer and radar measurements in South Greece

    Science.gov (United States)

    Ioannidou, Melina P.; Kalogiros, John A.; Stavrakis, Adrian K.

    2016-11-01

    The performance of the Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR) rainfall estimation algorithm is assessed, locally, in Crete island, south Greece, using data from a 2D-video disdrometer and a ground-based, X-band, polarimetric radar. A three-parameter, normalized Gamma drop size distribution is fitted to the disdrometer rain spectra; the latter are classified in stratiform and convective rain types characterized by different relations between distribution parameters. The method of moments estimates more accurately the distribution parameters than the best fit technique, which exhibits better agreement with and is more biased by the observed droplet distribution at large diameter values. Power laws between the radar reflectivity factor (Z) and the rainfall rate (R) are derived from the disdrometer data. A significant diversity of the prefactor and the exponent of the estimated power laws is observed, depending on the scattering model and the regression technique. The Z-R relationships derived from the disdrometer data are compared to those obtained from TRMM-PR data. Generally, the power laws estimated from the two datasets are different. Specifically, the greater prefactor found for the disdrometer data suggests an overestimation of rainfall rate by the TRMM-PR algorithm for light and moderate stratiform rain, which was the main rain type in the disdrometer dataset. Finally, contemporary data from the TRMM-PR and a ground-based, X-band, polarimetric radar are analyzed. Comparison of the corresponding surface rain rates for a rain event with convective characteristics indicates a large variability of R in a single TRMM-PR footprint, which typically comprises several hundreds of radar pixels. Thus, the coarse spatial resolution of TRMM-PR may lead to miss of significant high local peaks of convective rain. Also, it was found that the high temporal variability of convective rain may introduce significant errors in the estimation of bias of

  20. Solar-absorption measurements of ozone from two ground based FTIR sites

    Science.gov (United States)

    Plaza, Eddy; Stremme, Wolfgang; Bezanilla, Alejandro; Grutter, Michel; Blumenstock, Thomas; Hase, Frank; Gisi, Michael

    2013-04-01

    Ozone reduces the amount of ultraviolet light entering earths atmosphere and continuous monitoring of total ozone column especially in higher latitudes has been a major task since the discovery of the stratospheric ozone depletion. As tropospheric ozone is a main greenhouse gas, monitoring of ozone in the lower atmosphere and also in the tropics gains importance. Tropospheric ozone also plays an important role in air quality and high levels of ozone in the boundary layer affects the public health. Ozone is produced through a complicated path of photochemistry processes from volatile organic compounds and nitrogen oxides (NOx)[1]. In large cities, these ozone precursors are mainly emitted from anthropogenic activities and in Mexico City the ozone concentration frequently exceedes the local standard for air quality (e.g. on 80% of the days of the year 2002)[2]. Since May 2012 high resolution Fourier transform infrared solar absorption spectra have been used for determining the total column and profile of ozone at the high altitude remote site Altzomoni (19°.12`N, 98°.65`E) located 60 km southeast of Mexico City at 4000 m a.s.l. These measurements are complemented with solar absorption spectra recorded with a moderate resolution FTIR spectrometer at the UNAM campus in Mexcio City (19°25`N, 99°10`W, 2240 m a.s.l.). The vertical profiles and total columns of ozone are inferred from solar spectra by using the retrieval code PROFFIT. The results are compared with simulations of the Whole Atmosphere Community Climate Model (WACCM) and other correlative data. The ozone column amount in the polluted mixing layer of Mexico City is estimated from the intercomparison of measurements at the urban and remote sites and discussed. [1] Tie, X.; Brasseur, G.; Ying, Z. Impact of Model Resolution on Chemical Ozone Formation in Mexico City: Application of the Wrf-Chem Model. Atmospheric Chemistry and Physics. 2010, 10, 8983-8995. [2] McKinley, G.; Zuk, M.; Hojer, M.; Avalos, M

  1. Investigating mixed phase clouds using a synergy of ground based remote sensing measurements

    Science.gov (United States)

    Gierens, Rosa; Kneifel, Stefan; Löhnert, Ulrich

    2017-04-01

    obtained from a Doppler wind lidar. Furthermore, the Cloudnet scheme (www.cloud-net.org), that combines radar, lidar and microwave radiometer observations with a forecast model to provide a best estimate of cloud properties, is used for identifying mixed phase clouds. The continuous measurements carried out at AWIPEV make it possible to characterize the macro- and micro- physical properties of mixed-phase clouds on a long-term, statistical basis. The Arctic observations are compared to a 5-year observational data set from Jülich Observatory for Cloud Evolution (JOYCE) in Western Germany. The occurrence of different types of clouds (with focus on mixed-phase and super-cooled clouds), the distribution of ice and liquid within the clouds, the turbulent environment as well as the temperatures where the different phases are occurring are investigated.

  2. First comparison between ground-based and satellite-borne measurements of tropospheric nitrogen dioxide in the Po basin

    Science.gov (United States)

    Petritoli, Andrea; Bonasoni, Paolo; Giovanelli, Giorgio; Ravegnani, Fabrizio; Kostadinov, Ivan; Bortoli, Daniele; Weiss, Andrea; Schaub, Daniel; Richter, Andreas; Fortezza, Francesco

    2004-08-01

    In this paper we present in situ and tropospheric column measurements of NO2 in the Po river basin (northern Italy). The aim of the work is to provide a quantitative comparison between ground-based and satellite measurements in order to assess the validity of spaceborne measurements for estimating NO2 emissions and evaluate possible climatic effects. The study is carried out using in situ chemiluminescent instrumentation installed in the Po valley, a UV/Vis spectrometer installed at Mount Cimone (44.2°N, 10.7°E, 2165 m asl), and tropospheric column measurements obtained from the Global Ozone Monitoring Experiment (GOME) spectrometer. Results show that the annual cycle in surface concentrations and also some specific pollution periods observed by the air quality network are well reproduced by the GOME measurements. However, tropospheric columns derived from the surface measurements assuming a well-mixed planetary boundary layer (PBL) are much larger than the GOME columns and also have a different seasonal cycle. This is interpreted as indication of a smaller and less variable mixing height for NO2 in the boundary layer. Under particular meteorological conditions the agreement between UV/Vis tropospheric column observations and GOME measurements in the Mount Cimone area is good (R2 = 0.9) with the mixing properties of the atmosphere being the most important parameter for a valid comparison of the measurements. However, even when the atmospheric mixing properties are optimal for comparison, the ratio between GOME and ground-based tropospheric column data may not be unity. It is demonstrated that the values obtained (less than 1) are related to the fraction of the satellite ground pixel occupied by the NO2 hot spot.

  3. Airborne & Ground-based measurements of atmospheric CO2 using the 1.57-μm laser absorption spectrometer

    Science.gov (United States)

    Sakaizawa, D.; Kawakami, S.; Nakajima, M.; Tanaka, T.; Miyamoto, Y.; Morino, I.; Uchino, O.; Asai, K.

    2009-12-01

    Greenhouse gases observing satellite (GOSAT) started the measurement of global CO2 abundances to reveal its continental inventory using two passive remote sensors. The goal that the sensor needs to be done is to achieve an 1% relative accuracy in order to reduce uncertainties of CO2 budget. Nevertheless, in the future global CO2 monitoring, more accurate measurement of global tropospheric CO2 abundances with the monthly regional scale are required to improve the knowledge of CO2 exchanges among the land, ocean, and atmosphere. In order to fulfill demands, a laser remote sensor, such as DIAL or laser absorption spectrometer (LAS), is a potential candidate of future space-based missions. Nowadays, those technologies are required to demonstrate an accuracy of the few-ppm level through airborne & ground-based measurements. We developed the prototype of the 1.57um LAS for a step of the next missions and perform it at the ground-based and airborne platform to show the properly validated performance in the framework of GOSAT validation. Our CO2 LAS is consisted of all optical fiber circuits & compact receiving /transmitting optics to achieve the portable, flexible and rigid system. The optical sources of on- and off-line are distributed feedback lasers, which are tuned at the strong and weak position of the R12 line in the (30012rate and combined and amplified using an erbium doped fiber amplifier. Scattered signals from the hard target are collected by the 11cm receiving telescope and detected and stored into the laptop computer. After that, we evaluated the atmospheric CO2 density using the meteorological parameters and ratio between the on- and off-line signals. The resultant of the ground-based measurement of 3km optical length indicated that the statistical error of the path averaged atmospheric CO2 density is less than 2.8ppm with 25 minutes averaging. The variation of the path averaged atmospheric CO2 is also quite consistent with that obtained from the in

  4. The interdependence of continental warm cloud properties derived from unexploited solar background signal in ground-based lidar measurements

    Directory of Open Access Journals (Sweden)

    J. C. Chiu

    2014-04-01

    Full Text Available We have extensively analysed the interdependence between cloud optical depth, droplet effective radius, liquid water path (LWP and geometric thickness for stratiform warm clouds using ground-based observations. In particular, this analysis uses cloud optical depths retrieved from untapped solar background signal that is previously unwanted and needs to be removed in most lidar applications. Combining these new optical depth retrievals with radar and microwave observations at the Atmospheric Radiation Measurement (ARM Climate Research Facility in Oklahoma during 2005–2007, we have found that LWP and geometric thickness increase and follow a power-law relationship with cloud optical depth regardless of the presence of drizzle; LWP and geometric thickness in drizzling clouds can be generally 20–40% and at least 10% higher than those in non-drizzling clouds, respectively. In contrast, droplet effective radius shows a negative correlation with optical depth in drizzling clouds, while it increases with optical depth and reaches an asymptote of 10 μm in non-drizzling clouds. This asymptotic behaviour in non-drizzling clouds is found in both droplet effective radius and optical depth, making it possible to use simple thresholds of optical depth, droplet size, or a combination of these two variables for drizzle delineation. This paper demonstrates a new way to enhance ground-based cloud observations and drizzle delineations using existing lidar networks.

  5. Summer-time Mass Balance of Wolverine Glacier, Alaska, Derived from Ground-based Time-lapse Microgravity Measurements

    Science.gov (United States)

    Young, E. V.; Muto, A.; Babcock, E.

    2016-12-01

    Monitoring the mass balance of alpine glaciers is important because alpine glaciers presently account for about half of the cryospheric contribution to the global sea-level rise. Mass balance measurements of alpine glaciers have predominantly relied upon glaciological and hydrological methods. However, these methods can be logistically costly and have potential extrapolation errors. Remote sensing approaches, such as gravimetric methods using data from GRACE satellite missions, have provided monthly mass-balance estimates of aggregates of alpine glaciers but their spatial resolution is far too large for studying a single glacier. On the other hand, ground-based time-lapse microgravity geophysical measurements can potentially circumvent some of the disadvantages of the glaciological and hydrological methods. It may detect the change in a single glacier's mass and its spatial distribution. We conducted ground-based time-lapse microgravity surveys on Wolverine Glacier, Alaska, in May and August of 2016, using a Scintrex CG-5 Autograv gravimeter. We collected data at seventy-nine individual stations on the glacier, roughly five stations per square kilometer. We included repeat-station and base-station measurements made at least twice a day for instrumental drift control. The uncertainty of our gravity measurements is better than 0.03 mGal, which is about 0.7 meters water equivalent of surface mass balance. Our summer-time mass balance of Wolverine Glacier determined from the time-lapse gravity measurements is independent of that derived from the stake-network or stream-gauge measurements, and could provide spatial insight into the mass balance process on Wolverine Glacier and similar glaciers.

  6. Cosmic ray measurements in the knee region: new perspectives for simultaneous air-borne and ground-based observations

    Energy Technology Data Exchange (ETDEWEB)

    Marrocchesi, P.S. [Physics Dept., Univ. of Siena and INFN, 56 via Roma, 53100 Siena (Italy)]. E-mail: marrocchesi@pi.infn.it

    2006-01-15

    Direct measurements of cosmic ray composition and energy spectra in the knee region (10{sup 15} to 10{sup 16} eV) represent a real challenge for balloon and space borne experiments due to their limited exposure. On the other hand, ground-based extensive air shower arrays (EAS) can provide a measurement of the primary particle energy but fail to identify unambiguously its nature. The possibility to couple a large area instrument in flight, dedicated to the charge identification of the primary nucleus, with a ground array is explored. This task is within the reach of today detector technologies but requires a formidable step in the current development of stratospheric airship platforms capable of maintaining a long-duration stationary position above the EAS array.

  7. Validation of TRMM Precipitation Radar Through Comparison of its Multi-Year Measurements to Ground-Based Radar

    Science.gov (United States)

    Liao, Liang; Meneghini, Robert

    2010-01-01

    A procedure to accurately resample spaceborne and ground-based radar data is described, and then applied to the measurements taken from the Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR) and the ground-based Weather Surveillance Radar-1988 Doppler (WSR-88D or WSR) for the validation of the PR measurements and estimates. Through comparisons with the well-calibrated, non-attenuated WSR at Melbourne, Florida for the period 1998-2007, the calibration of the Precipitation Radar (PR) aboard the TRMM satellite is checked using measurements near the storm top. Analysis of the results indicates that the PR, after taking into account differences in radar reflectivity factors between the PR and WSR, has a small positive bias of 0.8 dB relative to the WSR, implying a soundness of the PR calibration in view of the uncertainties involved in the comparisons. Comparisons between the PR and WSR reflectivities are also made near the surface for evaluation of the attenuation-correction procedures used in the PR algorithms. It is found that the PR attenuation is accurately corrected in stratiform rain but is underestimated in convective rain, particularly in heavy rain. Tests of the PR estimates of rainfall rate are conducted through comparisons in the overlap area between the TRMM overpass and WSR scan. Analyses of the data are made both on a conditional basis, in which the instantaneous rain rates are compared only at those pixels where both the PR and WSR detect rain, and an unconditional basis, in which the area-averaged rain rates are estimated independently for the PR and WSR. Results of the conditional rain comparisons show that the PR-derived rain is about 9% greater and 19% less than the WSR estimates for stratiform and convective storms, respectively. Overall, the PR tends to underestimate the conditional mean rain rate by 8% for all rain categories, a finding that conforms to the results of the area-averaged rain (unconditional) comparisons.

  8. Precipitable water vapor and its relationship with the Standardized Precipitation Index: ground-based GPS measurements and reanalysis data

    Science.gov (United States)

    Bordi, Isabella; Zhu, Xiuhua; Fraedrich, Klaus

    2016-01-01

    Monthly means of ground-based GPS measurements of precipitable water vapor (PWV) from six stations in the USA covering the period January 2007-December 2012 are analyzed to investigate their usefulness for monitoring meteorological wet/dry spells. For this purpose, the relationship between PWV and the Standardized Precipitation Index (SPI) on 1-month timescale is investigated. The SPI time series at grid points close to the stations are computed using gridded precipitation records from the NOAA Climate Prediction Center (CPC) unified precipitation dataset (January 1948-April 2012). GPS measurements are first verified against PWV data taken from the latest ECMWF reanalysis ERA-Interim; these PWV reanalysis data, which extend back to 1979, are then used jointly with CPC precipitation to compute precipitation efficiency (PE), defined as the percentage of total water vapor content that falls onto the surface as measurable precipitation in a given time period. The overall results suggest that (i) PWV time series are dominated by the seasonal cycle with maximum values during summer months, (ii) the comparison between GPS and ERA-Interim PWV monthly data shows good agreement with differences less than 4 mm, (iii) at all stations and for almost all months, PWV is only poorly correlated with recorded precipitation and the SPI, while PE correlates highly with the SPI, providing an estimate of the water availability at a given location and useful information on wet/dry spell occurrence, and (iv) long data records would allow, for each month of the year, the identification of PE thresholds associated with different SPI classes that, in turn, have potential for forecasting meteorological wet/dry spells. Thus, it is through PE that ground-based GPS measurements appear of relevance for assessing wet/dry spells, although there is not a direct relationship between PWV and SPI.

  9. The comparison of IR and MW ground-based measurements of total precipitable water

    Science.gov (United States)

    Berezin, I. A.; Virolainen, Ya. A.; Timofeyev, Yu. M.; Poberovskii, A. V.

    2016-05-01

    Water vapor is one of the basic climate gases playing a key role in various processes at different altitudes of the Earth's atmosphere. An intercomparison and validation of different total precipitable water (TPW) measurement methods are important for determining the true accuracy of these methods, the shared use of data from multiple sources, the creation of data archives of different measurements, etc. In this paper, the TPW values obtained from measurements of solar IR spectral radiation (~8-9 μm absorption band) and thermal MW radiation of the atmosphere (1.35 cm absorption line) for 138 days of observation are compared. Measurements have been carried out from March 2013 to June 2014 at Peterhof station of the St. Petersburg State University in (59.88° N, 29.82° E). It is shown that MW measurements usually give higher TPW values than IR measurements. The bias between the two methods varies from 1 to 8% for small and large TPW values, respectively. With increasing TPW values, the bias reduces and for TPW > 1 cm it is ~1%. Standard deviation (SD) between the two methods reaches 7% for TPW 1 cm. These data show the high quality of both remote sensing methods. Moreover, the IR measurements have a higher accuracy than MW measurements for small TPW values.

  10. Ground-based integrated path coherent differential absorption lidar measurement of CO2: hard target return

    Directory of Open Access Journals (Sweden)

    A. Sato

    2012-11-01

    Full Text Available The National Institute of Information and Communications Technology (NICT have made a great deal of effort to develop a coherent 2-μm differential absorption and wind lidar (Co2DiaWiL for measuring CO2 and wind speed. First, coherent Integrated Path Differential Absorption (IPDA lidar experiments were conducted using the Co2DiaWiL and a hard target (surface return located about 7.12 km south of NICT on 11, 27, and 28 December 2010. The detection sensitivity of a 2-μm IPDA lidar was examined in detail using the CO2 concentration measured by the hard target. The precisions of CO2 measurement for the hard target and 900, 4500 and 27 000 shot pairs were 6.5, 2.8, and 1.2%, respectively. The results indicated that a coherent IPDA lidar with a laser operating at a high pulse repetition frequency of a few tens of KHz is necessary for measuring the CO2 concentration of the hard target with a precision of 1–2 ppm. Statistical comparisons indicated that, although a small amount of in situ data and the fact that they were not co-located with the hard target made comparison difficult, the CO2 volume mixing ratio measured with the Co2DiaWiL was about 5 ppm lower than that measured with the in situ sensor. The statistical results indicated that there were no differences between the hard target and atmospheric return measurements. A precision of 1.5% was achieved from the atmospheric return, which is lower than that obtained from the hard-target returns. Although long-range DIfferential Absorption Lidar (DIAL CO2 measurement with the atmospheric return can result in highly precise measurement, the precision of the atmospheric return measurement was widely distributed comparing to that of the hard target return. Our results indicated that it is important to use a Q-switched laser to measure the range-gated differential absorption optical depth with the atmospheric return and that it is better to simultaneously conduct both hard target and atmospheric return

  11. Error analysis for the ground-based microwave ozone measurements during STOIC

    Science.gov (United States)

    Connor, Brian J.; Parrish, Alan; Tsou, Jung-Jung; McCormick, M. Patrick

    1995-01-01

    We present a formal error analysis and characterization of the microwave measurements made during the Stratospheric Ozone Intercomparison Campaign (STOIC). The most important error sources are found to be determination of the tropospheric opacity, the pressure-broadening coefficient of the observed line, and systematic variations in instrument response as a function of frequency ('baseline'). Net precision is 4-6% between 55 and 0.2 mbar, while accuracy is 6-10%. Resolution is 8-10 km below 3 mbar and increases to 17km at 0.2 mbar. We show the 'blind' microwave measurements from STOIC and make limited comparisons to other measurements. We use the averaging kernels of the microwave measurement to eliminate resolution and a priori effects from a comparison to SAGE 2. The STOIC results and comparisons are broadly consistent with the formal analysis.

  12. Tropospheric and total ozone columns over Paris (France) measured using medium-resolution ground-based solar-absorption Fourier-transform infrared spectroscopy

    OpenAIRE

    C. Viatte; B. Gaubert; Eremenko, M.; Hase, F.; Schneider, M; Blumenstock, T.; Ray, M; P. Chelin; J.-M. Flaud; Orphal, J

    2011-01-01

    Ground-based Fourier-transform infrared (FTIR) solar absorption spectroscopy is a powerful remote sensing technique providing information on the vertical distribution of various atmospheric constituents. This work presents the first evaluation of a mid-resolution ground-based FTIR to measure tropospheric ozone, independently of stratospheric ozone. This is demonstrated using a new atmospheric observatory (named OASIS for "Observations of the Atmosphere by Solar absorption Infrared Spectroscop...

  13. Tropospheric and total ozone columns over Paris (France) measured using medium-resolution ground-based solar-absorption Fourier-transform infrared spectroscopy [Discussion paper

    OpenAIRE

    C. Viatte; B. Gaubert; Eremenko, M.; Hase, F.; Schneider, M; Blumenstock, T.; Ray, M; P. Chelin; J.-M. Flaud; Orphal, J

    2011-01-01

    Ground-based Fourier-transform infrared (FTIR) solar absorption spectroscopy is a powerful remote sensing technique providing information on the vertical distribution of various atmospheric constituents. This work presents the first evaluation of a mid-resolution ground-based FTIR to measure tropospheric ozone, independently of stratospheric ozone. This is demonstrated using a new atmospheric observatory (named OASIS for "Observations of the Atmosphere by Solar absorption Infrared Spectroscop...

  14. Cloud and aerosol optics by polarized micro pulse Lidar and ground based measurements of zenith radiance

    Science.gov (United States)

    Delgadillo, Rodrigo

    Clouds impact Earth's climate through cloud transmission and reflection properties. Clouds reflect approximately 15 percent of the incoming solar radiation at the top of the atmosphere. A key cloud radiative variable is cloud optical depth, which gives information about how much light is transmitted through a cloud. Historically, remote measurements of cloud optical depth have been limited to uniform overcast conditions and had low temporal and spatial resolution. We present a novel method to measure cloud optical depth for coastal regions from spectral zenith radiance measurements for optically thin clouds, which removes some of these limitations. Our measurement site is part of South Florida's Cloud-Aerosol-Rain Observatory (CAROb), located on Virginia Key, FL (6 km from Miami). This work is based on Marshak et al.'s method for finding cloud optical depth from vegetative sites that provide a strong spectral contrast between red and near infrared surface albedo. However, given the unique nature of our site, which contains water, vegetation, beach, and urban surface types, we found no such spectral contrast at those wavelength pairs. We measured albedo, with hyperspectral resolution, for different surface types around our measurement site to estimate the effective spectral albedo for the area centered on the site with a 5km radius. From this analysis, we found the best possible albedo contrast (573.9 and 673.1 nm) for our site. We tested the derived cloud optical depth from zenith radiance at these two wavelengths against a concurrently running polarized micro pulse LIDAR (MPL) and found good agreement.

  15. Ground-based integrated path coherent differential absorption lidar measurement of CO2: foothill target return

    Directory of Open Access Journals (Sweden)

    S. Ishii

    2013-05-01

    Full Text Available The National Institute of Information and Communications Technology (NICT has made a great deal of effort to develop a coherent 2 μm differential absorption and wind lidar (Co2DiaWiL for measuring CO2 and wind speed. First, coherent Integrated Path Differential Absorption (IPDA lidar experiments were conducted using the Co2DiaWiL and a foothill target (tree and ground surface located about 7.12 km south of NICT on 11, 27, and 28 December 2010. The detection sensitivity of a 2 μm IPDA lidar was examined in detail using the CO2 concentration measured by the foothill reflection. The precisions of CO2 measurements for the foothill target and 900, 4500 and 27 000 shot pairs were 6.5, 2.8, and 1.2%, respectively. The results indicated that a coherent IPDA lidar with a laser operating at a high pulse repetition frequency of a few tens of KHz is necessary for XCO2 (column-averaged dry air mixing ratio of CO2 measurement with a precision of 1–2 ppm in order to observe temporal and spatial variations in the CO2. Statistical comparisons indicated that, although a small amount of in situ data and the fact that they were not co-located with the foothill target made comparison difficult, the CO2 volume mixing ratio obtained by the Co2DiaWiL measurements for the foothill target and atmospheric returns was about −5 ppm lower than the 5 min running averages of the in situ sensor. Not only actual difference of sensing volume or the natural variability of CO2 but also the fluctuations of temperature could cause this difference. The statistical results indicated that there were no biases between the foothill target and atmospheric return measurements. The 2 μm coherent IPDA lidar can detect the CO2 volume mixing ratio change of 3% in the 5 min signal integration. In order to detect the position of the foothill target, to measure a range with a high SNR (signal-to-noise ratio, and to reduce uncertainty due to the presence of aerosols and clouds, it is

  16. Ground based infrared measurements of the global distribution of ozone in the atmosphere of Mars

    Science.gov (United States)

    Kostiuk, Theodor; Espenak, F.; Mumma, M. J.; Zipoy, D.

    1991-01-01

    The global distribution of ozone in the atmosphere of Mars was determined from Doppler-limited infrared heterodyne spectroscopy measurements at the NASA Infrared Telescope Facility (IRTF) facility during June 3-7, 1988. Mars spectra near two O3 lines arising from the v sub 3 band near 1031.45 cm (-1) were used. The lines were Doppler shifted out of the strong terrestrial ozone absorption spectrum and its effect was removed. Ozone measurements were obtained at eight beam positions over a range of latitudes and local solar zenith angles. The beam size of the planet was 1.4 arcsec. A Martian CO2 line appeared in the spectra and was inverted to retrieve local temperature profiles. Using these temperature profiles, the total ozone column abundance at each position was retrieved by fitting the measured line with synthetic spectra generated by a radiative transfer program. The only previous measurement of ozone at this season was made above the South polar cap by Mariner 7 and revealed an abundance of 10 micron-atm. However, the retrieved O3 column abundances from this investigation are less than 2.2 micron-atm at all positions sampled. These results are consistent with mid-spring abundances predicted by photochemical models of Liu and Donahue, and Shimazaki and Shimizu.

  17. Earth's albedo variations 1998-2014 as measured from ground-based earthshine observations

    CERN Document Server

    Palle, E; Montanes-Rodriguez, P Pilar; Shumko, A; Gonzalez-Merino, B; Lombilla, C Martinez; Jimenez-Ibarra, F; Shumko, S; Sanroma, E; Hulist, A; Miles-Paez, P; Murgas, F; Nowak, G; Koonin, SE

    2016-01-01

    The Earth's albedo is a fundamental climate parameter for understanding the radiation budget of the atmosphere. It has been traditionally measured from space platforms, but also from the ground for sixteen years from Big Bear Solar Observatory by observing the Moon. The photometric ratio of the dark (earthshine) to the bright (moonshine) sides of the Moon is used to determine nightly anomalies in the terrestrial albedo, with the aim is of quantifying sustained monthly, annual and/or decadal changes. We find two modest decadal scale cycles in the albedo, but with no significant net change over the sixteen years of accumulated data. Within the evolution of the two cycles, we find periods of sustained annual increases, followed by comparable sustained decreases in albedo. The evolution of the earthshine albedo is in remarkable agreement with that from the CERES instruments, although each method measures different slices of the Earth's Bond albedo.

  18. Earth's albedo variations 1998-2014 as measured from ground-based earthshine observations

    Science.gov (United States)

    Palle, E.; Goode, P. R.; Montañés-Rodríguez, P.; Shumko, A.; Gonzalez-Merino, B.; Lombilla, C. Martinez; Jimenez-Ibarra, F.; Shumko, S.; Sanroma, E.; Hulist, A.; Miles-Paez, P.; Murgas, F.; Nowak, G.; Koonin, S. E.

    2016-05-01

    The Earth's albedo is a fundamental climate parameter for understanding the radiation budget of the atmosphere. It has been traditionally measured not only from space platforms but also from the ground for 16 years from Big Bear Solar Observatory by observing the Moon. The photometric ratio of the dark (earthshine) to the bright (moonshine) sides of the Moon is used to determine nightly anomalies in the terrestrial albedo, with the aim of quantifying sustained monthly, annual, and/or decadal changes. We find two modest decadal scale cycles in the albedo, but with no significant net change over the 16 years of accumulated data. Within the evolution of the two cycles, we find periods of sustained annual increases, followed by comparable sustained decreases in albedo. The evolution of the earthshine albedo is in remarkable agreement with that from the Clouds and the Earth's Radiant Energy System instruments, although each method measures different slices of the Earth's Bond albedo.

  19. Ground-based aerosol measurements during CHARMEX/ADRIMED campaign at Granada station

    Science.gov (United States)

    Granados-Muñoz, Maria Jose; Bravo-Aranda, Juan Antonio; Navas-Guzman, Francisco; Guerro-Rascado, Juan Luis; Titos, Gloria; Lyamani, Hassan; Valenzuela, Antonio; Cazorla, Alberto; Olmo, Francisco Jose; Mallet, Marc; Alados-Arboledas, Lucas

    2015-04-01

    In the framework of ChArMEx/ADRIMED (Chemistry-Aerosol Mediterranean Experiment, http://charmex.lsce.ipsl.fr/; Aerosol Direct Radiative Impact on the regional climate in the MEDiterranean region) projects, a field experiment based on in situ and remote sensing measurements from surface and airborne platforms was performed. The ADRIMED project aimed to capture the high complexity of the Mediterranean region by using an integrated approach based on intensive experimental field campaign and spaceborne observations, radiative transfer calculations and climate modelling with Regional Climate Models better adapted than global circulation models. For this purpose, measurements were performed at different surface super-sites (including Granada station) over the Occidental Mediterranean region during summer 2013 for creating an updated database of the physical, chemical, optical properties and the vertical distribution of the major "Mediterranean aerosols". Namely, measurements at Granada station were performed on 16 and 17 July 2013, in coincidence with the overpasses of the ATR aircraft over the station. The instrumentation used for the campaign includes both remote sensing instruments (a multiwavelength Raman lidar and a sun photometer) and in-situ measurements (a nephelometer, a Multi-Angle Absorption Photometer (MAAP), an Aerodynamic particle sizer (APS), a high volume sampler of PM10 and an aethalometer). During the measurement period a mineral dust event was detected, with similar dust load on both days. According to in-situ measurements, the event reached the surface level on 16 of June. Vertically resolved lidar measurements indicated presence of mineral dust layers up to 5 km asl both on 16 and 17 June 2013. Temporal evolution analysis indicated that on 17 June the dust layer decoupled from the boundary layer and disappeared around 14:00 UTC. In addition, lidar and sun-photometer data were used to retrieve volume concentration profiles by means of LIRIC (Lidar

  20. Cloud recognition from ground-based solar radiation measurements: preliminary results

    Science.gov (United States)

    Calbo, Josep; Gonzalez, Josep-Abel

    1998-12-01

    Despite cloud recognition techniques that can routinely identify cloud classes form satellite images, observation of clouds from the ground is still needed to acquire a complete description of cloud climatology. Solar radiation in a given site is one of the meteorological magnitudes that are most affected by cloud cover. Presently, the number of stations where both global and diffuse total solar radiation is measured is growing, due basically to energetic applications of solar radiation. Global and diffuse hourly irradiation, along with some measure of the temporal variability of solar radiation, are used in this paper to describe the sky condition, and to classify it into several cloud types. A classical maximum likelihood method is applied for clustering data. One year of solar radiation data and cloud observations at a site in Catalonia, Spain is used to illustrate the ability of solar radiation measurements to describe cloud types. Preliminary results of the above methodology show that three clusters appear using global and diffuse hourly irradiation only. Fog, stratus, and stratocumulus from the first group. A second group includes altocumulus alone or mixed with other clouds, as well as scattered cumulus congestus. In a third group, we find clear skies, cirrus and scattered cumulus. Especially in this third group, variability of solar radiation within an hour helps to separate different situations.

  1. New ground-based lidar enables volcanic CO2 flux measurements.

    Science.gov (United States)

    Aiuppa, Alessandro; Fiorani, Luca; Santoro, Simone; Parracino, Stefano; Nuvoli, Marcello; Chiodini, Giovanni; Minopoli, Carmine; Tamburello, Giancarlo

    2015-09-01

    There have been substantial advances in the ability to monitor the activity of hazardous volcanoes in recent decades. However, obtaining early warning of eruptions remains challenging, because the patterns and consequences of volcanic unrests are both complex and nonlinear. Measuring volcanic gases has long been a key aspect of volcano monitoring since these mobile fluids should reach the surface long before the magma. There has been considerable progress in methods for remote and in-situ gas sensing, but measuring the flux of volcanic CO2-the most reliable gas precursor to an eruption-has remained a challenge. Here we report on the first direct quantitative measurements of the volcanic CO2 flux using a newly designed differential absorption lidar (DIAL), which were performed at the restless Campi Flegrei volcano. We show that DIAL makes it possible to remotely obtain volcanic CO2 flux time series with a high temporal resolution (tens of minutes) and accuracy (volcanic CO2 represents a major step forward in volcano monitoring, and will contribute improved volcanic CO2 flux inventories. Our results also demonstrate the unusually strong degassing behavior of Campi Flegrei fumaroles in the current ongoing state of unrest.

  2. Ground-based infrared measurements of the global distribution of ozone in the atmosphere of Mars

    Science.gov (United States)

    Espenak, Fred; Mumma, Michael J.; Kostiuk, Theodor; Zipoy, David

    1991-01-01

    Doppler-limited IR spectroscopy measurements of the Mars atmosphere's global ozone distribution have been obtained for June 3-7, 1988; surface pressures and temperature profiles are retrieved through inversion of the fully-resolved (C-12)(O-16)2 line. The total O3 column abundance at each position has been retrieved at each of eight positions over a range of Martian latitudes by fitting the lines with synthetic spectra generated by a radiative transfer program: column burdens of O3 are less than 2.2 microns-atm for all latitudes sampled.

  3. High precision ground-based measurements of solar diameter in support of Picard mission

    CERN Document Server

    Sigismondi, Costantino

    2011-01-01

    The measurement of the solar diameter is introduced in the wider framework of solar variability, and, consequently of the influences of the Sun upon the Earth's climate. It is possible to measure the solar diameter with enough accuracy to study climate changes and irradiation variations using ancient eclipses. This would permit to extend the knowledge of the solar luminosity back to three centuries, through the parameter W=dLogL/dLog R. The method of eclipses and Baily beads is discussed, and a significant improvement with respect to the last 40 years, has been obtained by reconstructing the Limb Darkening Function from the Baily's bead light curve, and the search of its inflexion point. The case of the Jan 15, 2010 annular eclipse has been studied in detail, while the atlas of Baily's beads with worldwide contributions by IOTA members, along with the solar diameter during the eclipse of 2006, have been published. The transition between the photographic atlas of the lunar limb (Watts, 1963) and the laser-alti...

  4. Wind measurements in Saturn's atmosphere with UVES/VLT ground-based Doppler velocimetry

    Science.gov (United States)

    Machado, Pedro; Silva, Miguel; Peralta, Javier; Luz, David; Sánchez-Lavega, Agustin; Hueso, Ricardo

    2016-04-01

    We will present preliminary Doppler wind velocity results of Saturn's zonal flow at cloud level. Our aim is help to constrain the characterization of the equatorial jet at cloud level and the latitudinal variation of the zonal winds, to measure its spatial and temporal variability, to contribute to monitor the variability in order to achieve a better understanding of the dynamics of Saturn's zonal winds, whose equatorial jet has a complex vertical structure and temporal variability (Sanchez-Lavega et al., Nature, 423, 623, 3003; Garcia-Melendo et al., Geophys. Res. Lett., 37, L22204. 2010). Finally, the complementarity with Cassini, providing an independent set of observations. The UVES/VLT instrument has been used, which simultaneously achieves high spectral resolving power and high spatial resolution. The field has been derotated in order to have the aperture aligned perpendicularly to Saturn's rotation axis. In this configuration, spatial information in the East-West direction is preserved in a set of spectra in the direction perpendicular to dispersion. The technique of absolute accelerometry (AA, Connes, 1985, ApSS 110, 211) has been applied to the backscattered solar spectrum in order to determine the Doppler shift associated with the zonal circulation. Our measurements have been made in the wavelength range of 480-680 nm. Previously we successfully adapted this Doppler velocimetry technique for measuring winds at Venus cloud tops (Machado et al. 2012). In the present study we will show the adaptation of this method for Saturn's case. Since the AA technique only allows to compare spectra where the line shifts are within the line width, in fast rotating atmospheres (as is the case of Saturn) the spectra must be compared by pairs from adjacent areas of the disk (adjacent pixels in the slit). We will use coordinated observations from the Cassini's Visible and Infrared Mapping Spectrometer (VIMS), in order to compare with the Doppler winds obtained from the UVES

  5. Diurnal variation of atmospheric water vapor at Gale crater: Analysis from ground-based measurements

    Science.gov (United States)

    Martinez, German; McConnochie, Timothy; Renno, Nilton; Meslin, Pierre-Yves; Fischer, Erik; Vicente-Retortillo, Alvaro; Borlina, Caue; Kemppinen, Osku; Genzer, Maria; Harri, Ari-Matti; de la Torre-Juárez, Manuel; Zorzano, Mari-Paz; Martin-Torres, Javier; Bridges, Nathan; Maurice, Sylvestre; Gasnault, Olivier; Gomez-Elvira, Javier; Wiens, Roger

    2016-04-01

    We analyze measurements obtained by Curiosity's Rover Environmental Monitoring Station (REMS) and ChemCam (CCAM) instruments to shed light on the hydrological cycle at Gale crater. In particular, we use nighttime REMS measurements taken when the atmospheric volume mixing ratio (VMR) and its uncertainty are the lowest (between 05:00 and 06:00 LTST) [1], and daytime CCAM passive sky measurements taken when the VMR is expected to be the highest (between 10:00 and 14:00 LTST) [2]. VMR is calculated from simultaneous REMS measurements of pressure (P), temperature (T) and relative humidity (RH) at 1.6 m (VMR is defined as RH×es(T)/P , where es is the saturation water vapor pressure over ice). The REMS relative humidity sensor has recently been recalibrated (June 2015), providing RH values slightly lower than those in the previous calibration (Dec 2014). The full diurnal cycle of VMR cannot be analyzed using only REMS data because the uncertainty in daytime VMR derived from REMS measurements is extremely high. Daytime VMR is inferred by fitting the output of a multiple-scattering discrete-ordinates radiative transfer model to CCAM passive sky observations [3]. CCAM makes these observations predominately in the vicinity of 11:00 - 12:00 LTST, but occasionally in the early morning near 08:00 LTST. We find that throughout the Martian year, the daytime VMR is higher than at night, with a maximum day-to-night ratio of about 6 during winter. Various processes might explain the differences between nighttime REMS and daytime CCAM VMR values. Potential explanations include: (i) surface nighttime frost formation followed by daytime sublimation [1], (ii) surface nighttime adsorption of water vapor by the regolith followed by daytime desorption and (iii) large scale circulations changing vertical H2O profiles at different times of the year. Potential formation of surface frost can only occur in late fall and winter [1], coinciding with the time when the diurnal amplitude of the near

  6. Monitoring particulate matters in urban areas in Malaysia using remote sensing and ground-based measurements

    Science.gov (United States)

    Kanniah, K. D.; Kamarul Zaman, Nurul Amalin Fatihah; Lim, H. Q.; Reba, Mohd Nadzri Md.

    2014-10-01

    Monitoring particulate matter less than 10 μm (PM10) near the ground routinely is critical for Malaysia for emergency management because Malaysia receives considerable amount of pollutants from both local and trans-boundary sources. Nevertheless, aerosol data covering major cities over a large spatial extent and on a continuous manner are limited. Thus, in the present study we aimed to estimate PM10 at 5 km spatial scale using AOD derived from MERIS sensor at 3 metropolitan cities in Malaysia. MERIS level 2 AOD data covering 5 years (2007-2011) were used to develop an empirical model to estimate PM10 at 11 locations covering Klang valley, Penang and Johor Bahru metropolitan cities. This study is different from previous studies conducted in Malaysia because in the current study we estimated PM10 by considering meteorological parameters that affect aerosol properties, including atmospheric stability, surface temperature and relative humidity derived from MODIS data and our product will be at ~5 km spatial scale. Results of this study show that the direct correlation between monthly averaged AOD and PM10 yielded a low and insignificant relationship (R2= 0.04 and RMSE = 7.06μg m-3). However, when AOD, relative humidity, land surface temperature and k index (atmospheric stability) were combined in a multiple linear regression analysis the correlation coefficient increased to 0.34 and the RMSE decreased to 8.91μg m-3. Among the variables k- index showed highest correlation with PM 10 (R2=0.35) compared to other variables. We further improved the relationship among PM10 and the independent variables using Artificial Neural Network. Results show that the correlation coefficient of the calibration dataset increased to 0.65 with low RMSE of 6.72μg m-3. The results may change when we consider more data points covering 10 years (2002- 2011) and enable the construction of a local model to estimate PM10 in urban areas in Malaysia.

  7. PW Characteristics during the 2013 Colorado Flood using Ground-Based GPS Measurements

    Science.gov (United States)

    Huelsing, H. K.; Wang, J.

    2016-12-01

    to provide continuous moisture to the storm, thus enhancing the accumulated precipitation totals.

  8. Volcanic ash from Iceland over Munich: mass concentration retrieved from ground-based remote sensing measurements

    Science.gov (United States)

    Gasteiger, J.; Gro{ß}, S.; Freudenthaler, V.; Wiegner, M.

    2011-03-01

    Volcanic ash plumes, emitted by the Eyjafjallajökull volcano (Iceland) in spring 2010, were observed by the lidar systems MULIS and POLIS in Maisach (near Munich, Germany), and by a CIMEL Sun photometer and a JenOptik ceilometer in Munich. We retrieve mass concentrations of volcanic ash from the lidar measurements; spectral optical properties, i.e.~extinction coefficients, backscatter coefficients, and linear depolarization ratios, are used as input for an inversion. The inversion algorithm searches for model aerosol ensembles with optical properties that agree with the measured values within their uncertainty ranges. The non-sphericity of ash particles is considered by assuming spheroids. Optical particle properties are calculated using the T-matrix method supplemented by the geometric optics approach. The lidar inversion is applied to observations of the pure volcanic ash plume in the morning of 17 April 2010. We find 1.45 g m-2 for the ratio between the mass concentration and the extinction coefficient at λ = 532 nm, assuming an ash density of 2.6 g cm-3. The uncertainty range for this ratio is from 0.87 g m-2 to 2.32 g m-2. At the peak of the ash concentration over Maisach the extinction coefficient at λ = 532 nm was 0.75 km-1 (1-h-average), which corresponds to a maximum mass concentration of 1.1 mg m-3 (0.65 to 1.8 mg m-3). Model calculations show that particle backscatter at our lidar wavelengths (λ ≤ 1064 nm), and thus the lidar retrieval, is hardly sensitive to large particles (r ≳ 3 μm); large particles, however, may contain significant amounts of mass. Therefore, as an independent cross check of the lidar retrieval and to investigate the presence of large particles in more detail, we model ratios of sky radiances in the aureole of the Sun and compare them to measurements of the CIMEL. These ratios are sensitive to particles up to r ≈ 10 μm. This approach confirms the mass concentrations from the lidar retrieval. We conclude that synergistic

  9. Near-infrared thermal emissivity from ground based atmospheric dust measurements at ORM

    CERN Document Server

    Lombardi, G; Ortolani, S; Melnick, J; Ghedina, A; Garcia, A; Molinari, E; Gatica, C

    2011-01-01

    We present an analysis of the atmospheric content of aerosols measured at Observatorio del Roque de los Muchachos (ORM; Canary Islands). Using a laser diode particle counter located at the Telescopio Nazionale Galileo (TNG) we have detected particles of 0.3, 0.5, 1.0, 3.0, 5.0 and 10.0 um size. The seasonal behavior of the dust content in the atmosphere is calculated. The Spring has been found to be dustier than the Summer, but dusty conditions may also occur in Winter. A method to estimate the contribution of the aerosols emissivity to the sky brightness in the near-infrared (NIR) is presented. The contribution of dust emission to the sky background in the NIR has been found to be negligible comparable to the airglow, with a maximum contribution of about 8-10% in the Ks band in the dusty days.

  10. Ground based measurements of particulate emissions from supersonic transports. Concorde olympus engine

    Energy Technology Data Exchange (ETDEWEB)

    Whitefield, Ph.D.; Hagen, D.E. [Missouri Univ., Rolla, MO (United States). Cloud and Aerosol Sciences Lab.; Lilenfeld, H.V. [McDonnell Douglas Corp., St. Louis, MO (United States)

    1997-12-31

    The application of a mobile aerosol monitoring facility, the Mobile Aerosol Sampling System (MASS) is described to characterize engine aerosol emissions from the Rolls Royce Olympus Engine. The multi-configurational MASS has been employed in both ground and airborne field operations. It has been successfully flown on research aircrafts. In ground tests the MASS has participated in numerous jet engine related ground tests, and has been deployed to resolve aerosol generation problems in a high power chemical laser system. In all cases the measurements were made on samples taken from a harsh physical and chemical environment, with both high and low temperature and pressure, and in the presence of highly reactive gases. (R.P.) 9 refs.

  11. Comparison of columnar water vapor over northern China derived from ground-based measurements and MODIS

    Science.gov (United States)

    Liu, Chaoshun; Shi, Runhe; Gao, Wei; Bai, Kaixu

    2011-09-01

    Water vapor represents a small but environmentally significant constituent of the atmosphere. This study retrieved columnar water vapor (CWV) with the 939.3 nm band of a Multi-filter Rotating Shadowband Radiometer (MFRSR) using the modified Langley technique from September 23, 2004 to June 20, 2005 at the XiangHe site.To improve the credibility, the MFRSR results were compared with those obtained from the AERONET (AErosol RObotic NETwork) CIMEL sun-photometer measurements, co-located at the XiangHe site, and the Moderate Resolution Imaging Spectroradiometer (MODIS) Near-Infrared Total Precipitable Water Product (MOD05), respectively. These comparisons show a good agreement in terms of correlation coefficients, slopes, and offsets, revealing that the accuracy of CWV estimation using the MFRSR instrument is reliable and suitable for extended studies in northern China.

  12. MIAWARA-C, a new ground based water vapor radiometer for measurement campaigns

    Directory of Open Access Journals (Sweden)

    C. Straub

    2010-09-01

    Full Text Available In this paper a new 22 GHz water vapor spectro-radiometer which has been specifically designed for profile measurement campaigns of the middle atmosphere is presented. The instrument is of a compact design and has a simple set up procedure. It can be operated as a standalone instrument as it maintains its own weather station and a calibration scheme that does not rely on other instruments or the use of liquid nitrogen. The optical system of MIAWARA-C combines a choked gaussian horn antenna with a parabolic mirror which reduces the size of the instrument in comparison with currently existing radiometers. For the data acquisition a correlation receiver is used together with a digital cross correlating spectrometer. The complete backend section, including the computer, is located in the same housing as the instrument. The receiver section is temperature stabilized to minimize gain fluctuations. Calibration of the instrument is achieved through a balancing scheme with the sky used as the cold load and the tropospheric properties are determined by performing regular tipping curves. Since MIAWARA-C is used in measurement campaigns it is important to be able to determine the elevation pointing in a simple manner as this is a crucial parameter in the calibration process. Here we present two different methods; scanning the sky and the Sun. Finally, we report on the first spectra and retrieved water vapor profiles acquired during the Lapbiat campaign at the Finnish Meteorological Institute Arctic Research Centre in Sodankylä, Finland. The performance of MIAWARA-C is validated here by comparison of the presented profiles against the equivalent profiles from the Microwave Limb Sounder on the EOS/Aura satellite.

  13. Measuring galaxy [OII] emission line doublet with future ground-based wide-field spectroscopic surveys

    CERN Document Server

    Comparat, Johan; Bacon, Roland; Mostek, Nick J; Newman, Jeffrey A; Schlegel, David J; Yèche, Christophe

    2013-01-01

    The next generation of wide-field spectroscopic redshift surveys will map the large-scale galaxy distribution in the redshift range 0.7< z<2 to measure baryonic acoustic oscillations (BAO). The primary optical signature used in this redshift range comes from the [OII] emission line doublet, which provides a unique redshift identification that can minimize confusion with other single emission lines. To derive the required spectrograph resolution for these redshift surveys, we simulate observations of the [OII] (3727,3729) doublet for various instrument resolutions, and line velocities. We foresee two strategies about the choice of the resolution for future spectrographs for BAO surveys. For bright [OII] emitter surveys ([OII] flux ~30.10^{-17} erg /cm2/s like SDSS-IV/eBOSS), a resolution of R~3300 allows the separation of 90 percent of the doublets. The impact of the sky lines on the completeness in redshift is less than 6 percent. For faint [OII] emitter surveys ([OII] flux ~10.10^{-17} erg /cm2/s like ...

  14. Ground-Based Measurement Experiment and First Results with Geosynchronous-Imaging Fourier Transform Spectrometer Engineering Demonstration Unit

    Science.gov (United States)

    Zhou, Daniel K.; Smith, William L.; Bingham, Gail E.; Huppi, Ronald J.; Revercomb, Henry E.; Zollinger, Lori J.; Larar, Allen M.; Liu, Xu; Tansock, Joseph J.; Reisse, Robert A.; Hooker, Ronald

    2007-01-01

    The geosynchronous-imaging Fourier transform spectrometer (GIFTS) engineering demonstration unit (EDU) is an imaging infrared spectrometer designed for atmospheric soundings. It measures the infrared spectrum in two spectral bands (14.6 to 8.8 microns, 6.0 to 4.4 microns) using two 128 x 128 detector arrays with a spectral resolution of 0.57 cm(exp -1) with a scan duration of approximately 11 seconds. From a geosynchronous orbit, the instrument will have the capability of taking successive measurements of such data to scan desired regions of the globe, from which atmospheric status, cloud parameters, wind field profiles, and other derived products can be retrieved. The GIFTS EDU provides a flexible and accurate testbed for the new challenges of the emerging hyperspectral era. The EDU ground-based measurement experiment, held in Logan, Utah during September 2006, demonstrated its extensive capabilities and potential for geosynchronous and other applications (e.g., Earth observing environmental measurements). This paper addresses the experiment objectives and overall performance of the sensor system with a focus on the GIFTS EDU imaging capability and proof of the GIFTS measurement concept.

  15. Investigation the optical and radiative properties of aerosol vertical profile of boundary layer by lidar and ground based measurements

    Science.gov (United States)

    Chen, W.; Chou, C.; Lin, P.; Wang, S.

    2011-12-01

    The planetary boundary layer is the air layer near the ground directly affected by diurnal heat, moisture, aerosol, and cloud transfer to or from the surface. In the daytime solar radiation heats the surface, initiating thermal instability or convection. Whereas, the scattering and absorption of aerosols or clouds might decrease the surface radiation or heat atmosphere which induce feedbacks such as the enhanced stratification and change in relative humidity in the boundary layer. This study is aimed to understand the possible radiative effect of aerosols basing on ground based aerosol measurements and lidar installed in National Taiwan University in Taipei. The optical and radiative properties of aerosols are dominated by aerosol composition, particle size, hygroscopicity property, and shape. In this study, aerosol instruments including integrating nephelometer, open air nephelometer, aethalometer are applied to investigate the relationship between aerosol hygroscopicity properties and aerosol types. The aerosol hygroscopicity properties are further applied to investigate the effect of relative humidity on aerosol vertical profiles measured by a dual-wavelength and depolarization lidar. The possible radiative effect of aerosols are approached by vertical atmospheric extinction profiles measured by lidar. Calculated atmospheric and aerosol heating effects was compared with vertical meteorological parameters measured by radiosonde. The result shows light-absorbing aerosol has the potential to affect the stability of planetary boundary layer.

  16. Ground-based measurements of the vertical E-field in mountainous regions and the "Austausch" effect

    Science.gov (United States)

    Yaniv, Roy; Yair, Yoav; Price, Colin; Mkrtchyan, Hripsime; Lynn, Barry; Reymers, Artur

    2017-06-01

    Past measurements of the atmospheric vertical electric field (Ez or potential gradient) at numerous land stations showed a strong response of the daily electric field to a morning local effect known as ;Austausch; - the transport of electrical charges due to increased turbulence. In mountainous regions, nocturnal charge accumulation, followed by an attachment process to aerosols near the surface in valleys, known as the electrode effect, is lifted as a charged aerosol layer by anabatic (upslope) winds during the morning hours due to solar heating. Ground-based measurements during fair weather days were conducted at three mountain stations in Israel and Armenia. We present results of the mean diurnal variation of Ez and make comparisons with the well-known Carnegie curve and with past measurements of Ez on mountains. We report a good agreement between the mean diurnal curves of Ez at various mountain stations and the time of local sunrise when the Ez is found to increase. We attribute this morning maximum to the Austausch (or exchange) layer effect. We support our findings with conduction and turbulent current measurements showing high values of ions and charged aerosols being transported by winds from morning to noon local time, and by model simulations showing the convergence of winds in the early morning hours toward the mountain peak.

  17. Co-located ground-based remote sensing and in situ measurements at the tropical atmospheric observatory in Suriname

    Science.gov (United States)

    Warneke, T.; Petersen, K.; Gerbig, C.; Macatangay, R.; Koerner, S.; Jordan, A.; Rothe, M.; Notholt, J.; Schrems, O.

    2009-04-01

    The first ground-based remote sensing measurements of the column averaged volume mixing ratio of CO2 (XCO2) for the inner tropics have been obtained at Paramaribo, Suriname (5.8°N, 55.2°W). Due to the migration of the ITCZ over the measurement location the probed air masses belong to the northern or southern hemisphere depending on the time of the year. The XCO2 shows an average annual increase in the Southern Hemisphere of 2.2 ppm for the time period 2004 to 2007, which agrees within the error with model simulations. Co-located in-situ measurements are strongly influenced by a local source. From the isotopic composition of the air samples the local source component is suggested to be the terrestrial biosphere. Using d13C from the NOAA/ESRL stations Ascension Is. (ASC) and Ragged Point (RPB) the data has been corrected for the local source component. The corrected mixing ratios for the surface as well as the XCO2 qualitatively agree with model simulations.

  18. Simultaneous Retrieval of Aerosol and Surface Optical Properties from Combined Airborne- and Ground-Based Direct and Diffuse Radiometric Measurements

    Science.gov (United States)

    Gatebe, C. K.; Dubovik, O.; King, M. D.; Sinyuk, A.

    2010-01-01

    This paper presents a new method for simultaneously retrieving aerosol and surface reflectance properties from combined airborne and ground-based direct and diffuse radiometric measurements. The method is based on the standard Aerosol Robotic Network (AERONET) method for retrieving aerosol size distribution, complex index of refraction, and single scattering albedo, but modified to retrieve aerosol properties in two layers, below and above the aircraft, and parameters on surface optical properties from combined datasets (Cloud Absorption Radiometer (CAR) and AERONET data). A key advantage of this method is the inversion of all available spectral and angular data at the same time, while accounting for the influence of noise in the inversion procedure using statistical optimization. The wide spectral (0.34-2.30 m) and angular range (180 ) of the CAR instrument, combined with observations from an AERONET sunphotometer, provide sufficient measurement constraints for characterizing aerosol and surface properties with minimal assumptions. The robustness of the method was tested on observations made during four different field campaigns: (a) the Southern African Regional Science Initiative 2000 over Mongu, Zambia, (b) the Intercontinental Transport Experiment-Phase B over Mexico City, Mexico (c) Cloud and Land Surface Interaction Campaign over the Atmospheric Radiation Measurement (ARM) Central Facility, Oklahoma, USA, and (d) the Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) over Elson Lagoon in Barrow, Alaska, USA. The four areas are dominated by different surface characteristics and aerosol types, and therefore provide good test cases for the new inversion method.

  19. Simultaneous ground-based thermospheric wind measurements using Doppler asymmetric spatial heterodyne spectroscopy (DASH) and Fabry-Perot Interferometry

    Science.gov (United States)

    Englert, C. R.; Harlander, J. M.; Meriwether, J. W.; Brown, C. M.; Drob, D. P.; Emmert, J. T.; Castelaz, M.; Roesler, F. L.

    2011-12-01

    The concept of Doppler Asymmetric Spatial Heterodyne (DASH) instruments to measure upper atmospheric winds was initially published in 2006. The DASH approach is identical to the concept of Spatial Heterodyne Spectroscopy (SHS) except that one interferometer arm includes an additional fixed optical path offset, similar to the phase stepping Michelson technique which was used for the WINDII (Wind Imaging Interferometer) experiment. The advantages of DASH include having no moving parts, high sensitivity, and the ability to simultaneously observe multiple isolated emission lines, including a known light source for real time calibration. Since it was first proposed, the development of the DASH technique has progressed significantly. Major milestones include a proof of concept in the laboratory, the design, fabrication and test of a monolithic DASH interferometer for the thermospheric red line (O I 630nm), and initial ground based thermospheric wind measurements using this interferometer. To further increase the technical readiness level (TRL) of DASH for a future satellite instrument, we have conducted coordinated measurements with a DASH prototype and Fabry-Perot interferometer (FPI) from the Pisgah Astronomical Research Institute in North Carolina in the summer of 2011. We will present a comparison of the two experimental data sets and examine how they compare with the empirical horizontal wind model HWM-07.

  20. Re-analysis of ground-based microwave ClO measurements from Mauna Kea, 1992 to early 2012

    Directory of Open Access Journals (Sweden)

    B. J. Connor

    2013-09-01

    Full Text Available We present a re-analysis of upper stratospheric ClO measurements from the ground-based millimeter-wave instrument from January 1992 to February 2012. These measurements are made as part of the Network for the Detection of Atmospheric Composition Change (NDACC from Mauna Kea, Hawaii, (19.8° N, 204.5° E. Here, we use daytime and nighttime measurements together to form a day–night spectrum, from which the difference in the day and night profiles is retrieved. These results are then compared to the day–night difference profiles from the Upper Atmosphere Research Satellite (UARS and Aura Microwave Limb Sounder (MLS instruments. We also compare them to our previous analyses of the same data, in which we retrieved the daytime ClO profile. The major focus will be on comparing the year-to-year and long-term changes in ClO derived by the two analysis methods, and comparing these results to the long-term changes reported by others. We conclude that the re-analyzed data set has less short-term variability and exhibits a more constant long-term trend that is more consistent with other observations. Data from 1995 to 2012 indicate a linear decline of mid-stratospheric ClO of 0.64 ± 0.15% yr−1 (2σ.

  1. Re-analysis of ground-based microwave ClO measurements from Mauna Kea, 1992 to early 2012

    Directory of Open Access Journals (Sweden)

    B. J. Connor

    2012-11-01

    Full Text Available We present a re-analysis of upper stratospheric ClO measurements from the ground-based millimeter-wave instrument from January 1992 to February 2012. These measurements are made as part of the Network for the Detection of Atmospheric Composition Change (NDACC from Mauna Kea, Hawaii, (19.8° N, 204.5° E. Here, we use daytime and nighttime measurements together to form a day-night spectrum, from which the difference in the day and night profiles is retrieved. These results are then compared to the day-night difference profiles from the UARS and Aura Microwave Limb Sounder (MLS instruments. We also compare them to our previous analyses of the same data, in which we retrieved the daytime ClO profile. The major focus will be on comparing the year-to-year and long-term changes in ClO derived by the two analysis methods. We conclude that the re-analyzed data set has less short-term variability and exhibits a more constant long-term trend. Data from 1995–2012 indicate a linear decline of mid-stratospheric ClO of 0.64 ± 0.08% yr−1.

  2. Retrieval and validation of O3 measurements from ground-based FTIR spectrometer at equatorial station: Addis Ababa, Ethiopia

    Science.gov (United States)

    Takele Kenea, S.; Mengistu Tsidu, G.; Blumenstock, T.; Hase, F.; von Clarmann, T.; Stiller, G. P.

    2012-09-01

    Since May 2009 high-resolution Fourier transform infrared (FTIR) solar absorption spectra are recorded at Addis Ababa (9.01° N latitude, 38.76° E longitude, 2443 m altitude a.s.l.), Ethiopia. The vertical profiles and total column amounts of ozone (O3) are deduced from the spectra by using the retrieval code PROFFIT (V9.5) and regularly determined instrumental line shape (ILS). A detailed error analysis of the O3 retrieval is performed. Averaging kernels analysis of the target gas shows that the major contribution to the retrieved information always comes from the measurement. We obtained 2.1 degrees of freedom on average for signals in the retrieval of O3 from the observed FTIR spectra. We have compared the FTIR retrieval of ozone Volume Mixing Ratio (VMR) profiles and column amounts with the coincident satellite observations of Microwave Limb Sounding (MLS), Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) and Tropospheric Emission Spectrometer (TES), Ozone Monitoring Instrument (OMI), Atmospheric Infrared Sounding (AIRS) and Global Ozone Monitoring Experiment (GOME-2) instrument. The mean relative differences are generally found below +15% in the altitude range of 27 to 36 km for comparison of VMR profiles made between MLS and MIPAS, whereas comparison with TES has shown below 9.4% relative difference. Furthermore, the mean relative difference is positive above 31 km, suggesting positive bias in the FTIR measurement of O3 VMR with respect to MLS, MIPAS and TES. The overall comparisons of column amounts of satellite measurements with the ground-based FTIR instruments show better agreement exhibiting mean relative differences of ground-based FTIR with respect to MLS and GOME-2 within +0.4% to +4.0% and corresponding standard deviations of 2.2 to 4.3% whereas, in the case of OMI, TES, AIRS, the mean relative differences are from -0.38 to -6.8%. Thus, the retrieved O3 VMR and column amounts from a tropical site, Addis Ababa, is found to exhibit

  3. Ground-based multispectral measurements for airborne data verification in non-operating open pit mine "Kremikovtsi"

    Science.gov (United States)

    Borisova, Denitsa; Nikolov, Hristo; Petkov, Doyno

    2013-10-01

    The impact of mining industry and metal production on the environment is presented all over the world. In our research we set focus on the impact of already non-operating ferrous "Kremikovtsi"open pit mine and related waste dumps and tailings which we consider to be the major factor responsible for pollution of one densely populated region in Bulgaria. The approach adopted is based on correct estimation of the distribution of the iron oxides inside open pit mines and the neighboring regions those considered in this case to be the key issue for the ecological state assessment of soils, vegetation and water. For this study the foremost source of data are those of airborne origin and those combined with ground-based in-situ and laboratory acquired data were used for verification of the environmental variables and thus in process of assessment of the present environmental status influenced by previous mining activities. The percentage of iron content was selected as main indicator for presence of metal pollution since it could be reliably identified by multispectral data used in this study and also because the iron compounds are widely spread in the most of the minerals, rocks and soils. In our research the number of samples from every source (air, field, lab) was taken in the way to be statistically sound and confident. In order to establish relationship between the degree of pollution of the soil and mulspectral data 40 soil samples were collected during a field campaign in the study area together with GPS measurements for two types of laboratory measurements: the first one, chemical and mineralogical analysis and the second one, non-destructive spectroscopy. In this work for environmental variables verification over large areas mulspectral satellite data from Landsat instruments TM/ETM+ and from ALI/OLI (Operational Land Imager) were used. Ground-based (laboratory and in-situ) spectrometric measurements were performed using the designed and constructed in Remote

  4. Comparison of 7 years of satellite-borne and ground-based tropospheric NO2 measurements around Milan, Italy

    Science.gov (United States)

    OrdóñEz, C.; Richter, A.; Steinbacher, M.; Zellweger, C.; Nüß, H.; Burrows, J. P.; PréVôT, A. S. H.

    2006-03-01

    Tropospheric NO2 vertical column densities (VCDs) over the Lombardy region were retrieved from measurements of the Global Ozone Monitoring Experiment (GOME) spectrometer for the period 1996-2002 using a differential optical absorption method. This data set was compared with in situ measurements of NO2 at around 100 ground stations in the Lombardy region, northern Italy. The tropospheric NO2 VCDs are reasonably well correlated with the near-surface measurements under cloud-free conditions. However, the slope of the tropospheric VCDs versus ground measurements is higher in autumn-winter than in spring-summer. This effect is clearly reduced when the peroxyacetyl nitrate and nitric acid (HNO3) interferences of conventional NOx analyzers are taken into account. For a more quantitative comparison, the NO2 ground measurements were scaled to tropospheric VCDs using a seasonal NO2 vertical profile over northern Italy calculated by the Model of Ozone and Related Tracers 2 (MOZART-2). The tropospheric VCDs retrieved from satellite and those determined from ground measurements agree well, with a correlation coefficient R = 0.78 and a slope close to 1 for slightly polluted stations. GOME cannot reproduce the high NO2 amounts over the most polluted stations, mainly because of the large spatial variability in the distribution of pollution within the GOME footprint. The yearly and weekly cycles of the tropospheric NO2 VCDs are similar for both data sets, with significantly lower values in the summer months and on Sundays, respectively. Considering the pollution level and high aerosol concentrations of this region, the agreement is very good. Furthermore, uncertainties in the ground-based measurements, including the extrapolation to NO2 VCDs, might be as important as those of the NO2 satellite retrieval itself.

  5. Optical and geometrical properties of cirrus clouds in Amazonia derived from 1 year of ground-based lidar measurements

    Science.gov (United States)

    Gouveia, Diego A.; Barja, Boris; Barbosa, Henrique M. J.; Seifert, Patric; Baars, Holger; Pauliquevis, Theotonio; Artaxo, Paulo

    2017-03-01

    Cirrus clouds cover a large fraction of tropical latitudes and play an important role in Earth's radiation budget. Their optical properties, altitude, vertical and horizontal coverage control their radiative forcing, and hence detailed cirrus measurements at different geographical locations are of utmost importance. Studies reporting cirrus properties over tropical rain forests like the Amazon, however, are scarce. Studies with satellite profilers do not give information on the diurnal cycle, and the satellite imagers do not report on the cloud vertical structure. At the same time, ground-based lidar studies are restricted to a few case studies. In this paper, we derive the first comprehensive statistics of optical and geometrical properties of upper-tropospheric cirrus clouds in Amazonia. We used 1 year (July 2011 to June 2012) of ground-based lidar atmospheric observations north of Manaus, Brazil. This dataset was processed by an automatic cloud detection and optical properties retrieval algorithm. Upper-tropospheric cirrus clouds were observed more frequently than reported previously for tropical regions. The frequency of occurrence was found to be as high as 88 % during the wet season and not lower than 50 % during the dry season. The diurnal cycle shows a minimum around local noon and maximum during late afternoon, associated with the diurnal cycle of precipitation. The mean values of cirrus cloud top and base heights, cloud thickness, and cloud optical depth were 14.3 ± 1.9 (SD) km, 12.9 ± 2.2 km, 1.4 ± 1.1 km, and 0.25 ± 0.46, respectively. Cirrus clouds were found at temperatures down to -90 °C. Frequently cirrus were observed within the tropical tropopause layer (TTL), which are likely associated to slow mesoscale uplifting or to the remnants of overshooting convection. The vertical distribution was not uniform, and thin and subvisible cirrus occurred more frequently closer to the tropopause. The mean lidar ratio was 23.3 ± 8.0 sr. However, for

  6. Comparing multiple model-derived aerosol optical properties to spatially collocated ground-based and satellite measurements

    Science.gov (United States)

    Ocko, Ilissa B.; Ginoux, Paul A.

    2017-04-01

    Anthropogenic aerosols are a key factor governing Earth's climate and play a central role in human-caused climate change. However, because of aerosols' complex physical, optical, and dynamical properties, aerosols are one of the most uncertain aspects of climate modeling. Fortunately, aerosol measurement networks over the past few decades have led to the establishment of long-term observations for numerous locations worldwide. Further, the availability of datasets from several different measurement techniques (such as ground-based and satellite instruments) can help scientists increasingly improve modeling efforts. This study explores the value of evaluating several model-simulated aerosol properties with data from spatially collocated instruments. We compare aerosol optical depth (AOD; total, scattering, and absorption), single-scattering albedo (SSA), Ångström exponent (α), and extinction vertical profiles in two prominent global climate models (Geophysical Fluid Dynamics Laboratory, GFDL, CM2.1 and CM3) to seasonal observations from collocated instruments (AErosol RObotic NETwork, AERONET, and Cloud-Aerosol Lidar with Orthogonal Polarization, CALIOP) at seven polluted and biomass burning regions worldwide. We find that a multi-parameter evaluation provides key insights on model biases, data from collocated instruments can reveal underlying aerosol-governing physics, column properties wash out important vertical distinctions, and improved models does not mean all aspects are improved. We conclude that it is important to make use of all available data (parameters and instruments) when evaluating aerosol properties derived by models.

  7. Comparison of OMI NO2 observations and their seasonal and weekly cycles with ground-based measurements in Helsinki

    Science.gov (United States)

    Ialongo, Iolanda; Herman, Jay; Krotkov, Nick; Lamsal, Lok; Folkert Boersma, K.; Hovila, Jari; Tamminen, Johanna

    2016-10-01

    We present the comparison of satellite-based OMI (Ozone Monitoring Instrument) NO2 products with ground-based observations in Helsinki. OMI NO2 total columns, available from NASA's standard product (SP) and KNMI DOMINO product, are compared with the measurements performed by the Pandora spectrometer in Helsinki in 2012. The relative difference between Pandora no. 21 and OMI SP total columns is 4 and -6 % for clear-sky and all-sky conditions, respectively. DOMINO NO2 retrievals showed slightly lower total columns with median differences about -5 and -14 % for clear-sky and all-sky conditions, respectively. Large differences often correspond to cloudy fall-winter days with solar zenith angles above 65°. Nevertheless, the differences remain within the retrieval uncertainties. The average difference values are likely the result of different factors partly canceling each other: the overestimation of the stratospheric columns causes a positive bias partly compensated by the limited spatial representativeness of the relatively coarse OMI pixel for sharp NO2 gradients. The comparison between Pandora and the new version (V3) of OMI NO2 retrievals shows a larger negative difference (about -30 %) than the current version (V2.1) because the revised spectral fitting procedure reduces the overestimation of the stratospheric column. The weekly and seasonal cycles from OMI, Pandora and NO2 surface concentrations are also compared. Both satellite- and ground-based data show a similar weekly cycle, with lower NO2 levels during the weekend compared to the weekdays as a result of reduced emissions from traffic and industrial activities. The seasonal cycle also shows a similar behavior, even though the results are affected by the fact that most of the data are available during spring-summer because of cloud cover in other seasons. This is one of few works in which OMI NO2 retrievals are evaluated in a urban site at high latitudes (60° N). Despite the city of Helsinki having

  8. Radiometric Modeling and Calibration of the Geostationary Imaging Fourier Transform Spectrometer (GIFTS)Ground Based Measurement Experiment

    Science.gov (United States)

    Tian, Jialin; Smith, William L.; Gazarik, Michael J.

    2008-01-01

    The ultimate remote sensing benefits of the high resolution Infrared radiance spectrometers will be realized with their geostationary satellite implementation in the form of imaging spectrometers. This will enable dynamic features of the atmosphere s thermodynamic fields and pollutant and greenhouse gas constituents to be observed for revolutionary improvements in weather forecasts and more accurate air quality and climate predictions. As an important step toward realizing this application objective, the Geostationary Imaging Fourier Transform Spectrometer (GIFTS) Engineering Demonstration Unit (EDU) was successfully developed under the NASA New Millennium Program, 2000-2006. The GIFTS-EDU instrument employs three focal plane arrays (FPAs), which gather measurements across the long-wave IR (LWIR), short/mid-wave IR (SMWIR), and visible spectral bands. The GIFTS calibration is achieved using internal blackbody calibration references at ambient (260 K) and hot (286 K) temperatures. In this paper, we introduce a refined calibration technique that utilizes Principle Component (PC) analysis to compensate for instrument distortions and artifacts, therefore, enhancing the absolute calibration accuracy. This method is applied to data collected during the GIFTS Ground Based Measurement (GBM) experiment, together with simultaneous observations by the accurately calibrated AERI (Atmospheric Emitted Radiance Interferometer), both simultaneously zenith viewing the sky through the same external scene mirror at ten-minute intervals throughout a cloudless day at Logan Utah on September 13, 2006. The accurately calibrated GIFTS radiances are produced using the first four PC scores in the GIFTS-AERI regression model. Temperature and moisture profiles retrieved from the PC-calibrated GIFTS radiances are verified against radiosonde measurements collected throughout the GIFTS sky measurement period. Using the GIFTS GBM calibration model, we compute the calibrated radiances from data

  9. Intermittency of the turbulent processes in the Earth's magnetosphere detected from the ground-based measurements

    Energy Technology Data Exchange (ETDEWEB)

    Stepanova, Marina [Physical Department, Universidad de Santiago de Chile (Chile); Foppiano, Alberto; Ovalle, Elias [Departmento de Geofisica, Universidad de Conception (Chile); Antonova, Elizavieta [Skobeltsyn Institute of Nuclear Physics, Moscow State University, Moscow (Russian Federation); Troshichev, Oleg [Department of Geophysics, Arctic and Antarctic Research Institute, St. Petersburg (Russian Federation)], E-mail: mstepano@usach.cl

    2008-11-01

    Turbulent processes in the Earth's magnetosphere are reflected in the dynamical behavior of the geomagnetic indices and other parameters determined from ground based observations. Intermittent properties of one minute Polar Cap (PC) index and auroral radio wave absorption are studied using 1995-2000 data sets. It was found that the probability distribution functions (PDFs) of both PC-index and absorption fluctuations display a strong non-Gaussian shape. This indicates that they are not characterized by a global time self-similarity but rather exhibit intermittency, as previously reported for solar wind velocity and auroral electrojet index values. In the case of the auroral absorption it was also found that intermittency strongly depends on the magnetic local time, being largest in the nighttime sector. This shows that the acceleration of precipitating particles is intermittent, especially near the substorm eye, where the level of turbulence increases. Application of the Local Intermittency Measure (LIM) technique confirms the aforementioned results to a better precision.

  10. Validation of ACE-FTS measurements of CFC-11, CFC-12, and HCFC-22 using ground-based FTIR spectrometers

    Science.gov (United States)

    Kolonjari, F.; Walker, K. A.; Mahieu, E.; Batchelor, R. L.; Bernath, P. F.; Boone, C.; Conway, S. A.; Dan, L.; Griffin, D.; Harrett, A.; Kasai, Y.; Kagawa, A.; Lindenmaier, R.; Strong, K.; Whaley, C.

    2013-12-01

    Satellite datasets can be an effective global monitoring tool for long-lived compounds in the atmosphere. The Atmospheric Chemistry Experiment (ACE) is a mission on-board the Canadian satellite SCISAT-1. The primary instrument on SCISAT-1 is a high-resolution infrared Fourier transform spectrometer (ACE-FTS) which is capable of measuring a range of gases including key chlorofluorocarbon (CFC) and hydrochlorofluorocarbon (HCFC) species. These families of species are of interest because of their significant contribution to anthropogenic ozone depletion and to global warming. To assess the quality of data derived from satellite measurements, validation using other data sources is essential. Ground-based Fourier transform infrared (FTIR) spectrometers are particularly useful for this purpose. In this study, five FTIR spectrometers located at four sites around the world are used to validate the CFC-11 (CCl3F), CFC-12 (CCl2F2), and HCFC-22 (CHClF2) retrieved profiles from ACE-FTS measurements. These species are related because HCFC-22 was the primary replacement for CFC-11 and CFC-12 in refrigerant and propellant applications. The FTIR spectrometers used in this study record solar absorption spectra at Eureka (Canada), Jungfraujoch (Switzerland), Poker Flat (USA), and Toronto (Canada). The retrieval of CFC-11, CFC-12, and HCFC-22 are not standard products for many of these instruments, and as such, a harmonization of retrieval parameters between the sites has been conducted. The retrievals of these species from the FTIR spectra are sensitive from the surface to approximately 20 km, while the ACE-FTS profiles extend from approximately 6 to 30 km. For each site, partial column comparisons between coincident measurements of the three species and a validation of the observed trends will be discussed.

  11. Characterization of downwelling radiance measured from a ground-based microwave radiometer using numerical weather prediction model data

    Science.gov (United States)

    Ahn, M.-H.; Won, H. Y.; Han, D.; Kim, Y.-H.; Ha, J.-C.

    2016-01-01

    The ground-based microwave sounding radiometers installed at nine weather stations of Korea Meteorological Administration alongside with the wind profilers have been operating for more than 4 years. Here we apply a process to assess the characteristics of the observation data by comparing the measured brightness temperature (Tb) with reference data. For the current study, the reference data are prepared by the radiative transfer simulation with the temperature and humidity profiles from the numerical weather prediction model instead of the conventional radiosonde data. Based on the 3 years of data, from 2010 to 2012, we were able to characterize the effects of the absolute calibration on the quality of the measured Tb. We also showed that when clouds are present the comparison with the model has a high variability due to presence of cloud liquid water therefore making cloudy data not suitable for assessment of the radiometer's performance. Finally we showed that differences between modeled and measured brightness temperatures are unlikely due to a shift in the selection of the center frequency but more likely due to spectroscopy issues in the wings of the 60 GHz absorption band. With a proper consideration of data affected by these two effects, it is shown that there is an excellent agreement between the measured and simulated Tb. The regression coefficients are better than 0.97 along with the bias value of better than 1.0 K except for the 52.28 GHz channel which shows a rather large bias and variability of -2.6 and 1.8 K, respectively.

  12. Elevated aerosol layers modify the O2–O2 absorption measured by ground-based MAX-DOAS

    Energy Technology Data Exchange (ETDEWEB)

    Ortega, Ivan; Berg, Larry K.; Ferrare, Richard A.; Hair, Johnathan W.; Hostetler, Chris A.; Volkamer, Rainer

    2016-06-01

    The oxygen collisional complex (O2-O2, or O4) is a greenhouse gas, and a calibration trace gas used to infer aerosol and cloud properties by Differential Optical Absorption Spectroscopy (DOAS). Recent reports suggest the need for an O4 correction factor (CFO4) when comparing simulated and measured O4 differential slant column densities (dSCD) by passive DOAS. We investigate the sensitivity of O4 dSCD simulations at ultraviolet (360 nm) and visible (477 nm) wavelengths towards separately measured aerosol extinction profiles. Measurements were conducted by the University of Colorado 2D-MAX-DOAS instrument and NASA’s multispectral High Spectral Resolution Lidar (HSRL-2) during the Two Column Aerosol Project (TCAP) at Cape Cod, MA in July 2012. During two case study days with (1) high aerosol load (17 July, AOD ~ 0.35 at 477 nm), and (2) near molecular scattering conditions (22 July, AOD < 0.10 at 477 nm) the measured and calculated O4 dSCDs agreed within 6.4±0.4% (360 nm) and 4.7±0.6% (477 nm) if the HSRL-2 profiles were used as input to the calculations. However, if in the calculations the aerosol is confined to the surface layer (while keeping AOD constant) we find 0.53ground-based MAX-DOAS. Opportunities to identify and better characterize these layers are also discussed.

  13. Spatial extent of new particle formation events over the Mediterranean Basin from multiple ground-based and airborne measurements

    Science.gov (United States)

    Berland, Kevin; Rose, Clémence; Pey, Jorge; Culot, Anais; Freney, Evelyn; Kalivitis, Nikolaos; Kouvarakis, Giorgios; Cerro, José Carlos; Mallet, Marc; Sartelet, Karine; Beckmann, Matthias; Bourriane, Thierry; Roberts, Greg; Marchand, Nicolas; Mihalopoulos, Nikolaos; Sellegri, Karine

    2017-08-01

    Over the last two decades, new particle formation (NPF), i.e., the formation of new particle clusters from gas-phase compounds followed by their growth to the 10-50 nm size range, has been extensively observed in the atmosphere at a given location, but their spatial extent has rarely been assessed. In this work, we use aerosol size distribution measurements performed simultaneously at Ersa (Corsica) and Finokalia (Crete) over a 1-year period to analyze the occurrence of NPF events in the Mediterranean area. The geographical location of these two sites, as well as the extended sampling period, allows us to assess the spatial and temporal variability in atmospheric nucleation at a regional scale. Finokalia and Ersa show similar seasonalities in the monthly average nucleation frequencies, growth rates, and nucleation rates, although the two stations are located more than 1000 km away from each other. Within this extended period, aerosol size distribution measurements were performed during an intensive campaign (3 July to 12 August 2013) from a ground-based station on the island of Mallorca, as well as onboard the ATR-42 research aircraft. This unique combination of stationary and mobile measurements provides us with detailed insights into the horizontal and vertical development of the NPF process on a daily scale. During the intensive campaign, nucleation events occurred simultaneously both at Ersa and Mallorca over delimited time slots of several days, but different features were observed at Finokalia. The results show that the spatial extent of the NPF events over the Mediterranean Sea might be as large as several hundreds of kilometers, mainly determined by synoptic conditions. Airborne measurements gave additional information regarding the origin of the clusters detected above the sea. The selected cases depicted contrasting situations, with clusters formed in the marine boundary layer or initially nucleated above the continent or in the free troposphere (FT) and

  14. Elevated aerosol layers modify the O2–O2 absorption measured by ground-based MAX-DOAS

    Energy Technology Data Exchange (ETDEWEB)

    Ortega, Ivan; Berg, Larry K.; Ferrare, Richard A.; Hair, Johnathan W.; Hostetler, Chris A.; Volkamer, Rainer

    2016-06-01

    The oxygen collisional complex (O2-O2, or O4) is a greenhouse gas, and a calibration trace gas used to infer aerosol and cloud properties by Differential Optical Absorption Spectroscopy (DOAS). Recent reports suggest the need for an O4 correction factor (CFO4) when comparing simulated and measured O4 differential slant column densities (dSCD) by passive DOAS. We investigate the sensitivity of O4 dSCD simulations at ultraviolet (360 nm) and visible (477 nm) wavelengths towards separately measured aerosol extinction profiles. Measurements were conducted by the University of Colorado 2D-MAX-DOAS instrument and NASA’s multispectral High Spectral Resolution Lidar (HSRL-2) during the Two Column Aerosol Project (TCAP) at Cape Cod, MA in July 2012. During two case study days with (1) high aerosol load (17 July, AOD ~ 0.35 at 477 nm), and (2) near molecular scattering conditions (22 July, AOD < 0.10 at 477 nm) the measured and calculated O4 dSCDs agreed within 6.4±0.4% (360 nm) and 4.7±0.6% (477 nm) if the HSRL-2 profiles were used as input to the calculations. However, if in the calculations the aerosol is confined to the surface layer (while keeping AOD constant) we find 0.53ground-based MAX-DOAS. Opportunities to identify and better characterize these layers are also discussed.

  15. Comparing data obtained from ground-based measurements of the total contents of O3, HNO3,HCl, and NO2 and from their numerical simulation

    Science.gov (United States)

    Virolainen, Ya. A.; Timofeyev, Yu. M.; Polyakov, A. V.; Ionov, D. V.; Kirner, O.; Poberovskii, A. V.; Imhasin, H. Kh.

    2016-01-01

    Chemistry climate models of the gas composition of the atmosphere make it possible to simulate both space and time variations in atmospheric trace-gas components (TGCs) and predict their changes. Both verification and improvement of such models on the basis of a comparison with experimental data are of great importance. Data obtained from the 2009-2012 ground-based spectrometric measurements of the total contents (TCs) of a number of TGCs (ozone, HNO3, HCl, and NO2) in the atmosphere over the St. Petersburg region (Petergof station, St. Petersburg State University) have been compared to analogous EMAC model data. Both daily and monthly means of their TCs for this period have been analyzed in detail. The seasonal dependences of the TCs of the gases under study are shown to be adequately reproduced by the EMAC model. At the same time, a number of disagreements (including systematic ones) have been revealed between model and measurement data. Thus, for example, the EMAC model underestimates the TCs of NO2, HCl, and HNO3, when compared to measurement data, on average, by 14, 22, and 35%, respectively. However, the TC of ozone is overestimated by the EMAC model (on average, by 12%) when compared to measurement data. In order to reveal the reasons for such disagreements between simulated and measured data on the TCs of TGCs, it is necessary to continue studies on comparisons of the contents of TGCs in different atmospheric layers.

  16. Simultaneous retrieval of aerosol and surface optical properties from combined airborne- and ground-based direct and diffuse radiometric measurements

    Directory of Open Access Journals (Sweden)

    C. K. Gatebe

    2009-12-01

    Full Text Available This paper presents a new method for simultaneously retrieving aerosol and surface reflectance properties from combined airborne and ground-based direct and diffuse radiometric measurements. The method is based on the standard Aerosol Robotic Network (AERONET method for retrieving aerosol size distribution, complex index of refraction, and single scattering albedo, but modified to retrieve aerosol properties in two layers, below and above the aircraft, and parameters on surface optical properties from combined datasets (Cloud Absorption Radiometer, CAR, and AERONET data. A key advantage of this method is the inversion of all available spectral and angular data at the same time, while accounting for the influence of noise in the inversion procedure using statistical optimization. The wide spectral (0.34–2.30 μm and angular range (180° of the CAR instrument, combined with observations from an AERONET sunphotometer, provide sufficient measurement constraints for characterizing aerosol and surface properties with minimal assumptions. The robustness of the method was tested on observations made during four different field campaigns: (a the Southern African Regional Science Initiative 2000 over Mongu, Zambia, (b the Intercontinental Transport Experiment-Phase B over Mexico City, Mexico (c Cloud and Land Surface Interaction Campaign over the Atmospheric Radiation Measurement (ARM Central Facility, Oklahoma, USA, and (d the Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS over Elson Lagoon in Barrow, Alaska, USA. The four areas are dominated by different surface characteristics and aerosol types, and therefore provide good test cases for the new inversion method.

  17. A new ground-based differential absorption sunphotometer for measuring atmospheric columnar CO2 and preliminary applications

    Science.gov (United States)

    Xie, Yisong; Li, Zhengqiang; Zhang, Xingying; Xu, Hua; Li, Donghui; Li, Kaitao

    2015-10-01

    Carbon dioxide is commonly considered as the most important greenhouse gas. Ground-based remote sensing technology of acquiring CO2 columnar concentration is needed to provide validation for spaceborne CO2 products. A new groundbased sunphotometer prototype for remotely measuring atmospheric CO2 is introduced in this paper, which is designed to be robust, portable, automatic and suitable for field observation. A simple quantity, Differential Absorption Index (DAI) related to CO2 optical depth, is proposed to derive the columnar CO2 information based on the differential absorption principle around 1.57 micron. Another sun/sky radiometer CE318, is used to provide correction parameters of aerosol extinction and water vapor absorption. A cloud screening method based on the measurement stability is developed. A systematic error assessment of the prototype and DAI is also performed. We collect two-year DAI observation from 2010 to 2012 in Beijing, analyze the DAI seasonal variation and find that the daily average DAI decreases in growing season and reaches to a minimum on August, while increases after that until January of the next year, when DAI reaches its highest peak, showing generally the seasonal cycle of CO2. We also investigate the seasonal differences of DAI variation and attribute the tendencies of high in the morning and evening while low in the noon to photosynthesis efficiency variation of vegetation and anthropogenic emissions. Preliminary comparison between DAI and model simulated XCO2 (Carbon Tracker 2011) is conducted, showing that DAI roughly reveals some temporal characteristics of CO2 when using the average of multiple measurements.

  18. Simultaneous retrieval of aerosol and surface optical properties from combined airborne- and ground-based direct and diffuse radiometric measurements

    Directory of Open Access Journals (Sweden)

    C. K. Gatebe

    2010-03-01

    Full Text Available This paper presents a new method for simultaneously retrieving aerosol and surface reflectance properties from combined airborne and ground-based direct and diffuse radiometric measurements. The method is based on the standard Aerosol Robotic Network (AERONET method for retrieving aerosol size distribution, complex index of refraction, and single scattering albedo, but modified to retrieve aerosol properties in two layers, below and above the aircraft, and parameters on surface optical properties from combined datasets (Cloud Absorption Radiometer (CAR and AERONET data. A key advantage of this method is the inversion of all available spectral and angular data at the same time, while accounting for the influence of noise in the inversion procedure using statistical optimization. The wide spectral (0.34–2.30 μm and angular range (180° of the CAR instrument, combined with observations from an AERONET sunphotometer, provide sufficient measurement constraints for characterizing aerosol and surface properties with minimal assumptions. The robustness of the method was tested on observations made during four different field campaigns: (a the Southern African Regional Science Initiative 2000 over Mongu, Zambia, (b the Intercontinental Transport Experiment-Phase B over Mexico City, Mexico (c Cloud and Land Surface Interaction Campaign over the Atmospheric Radiation Measurement (ARM Central Facility, Oklahoma, USA, and (d the Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS over Elson Lagoon in Barrow, Alaska, USA. The four areas are dominated by different surface characteristics and aerosol types, and therefore provide good test cases for the new inversion method.

  19. Mapping the bathymetry of a turbid, sand-bed river using ground-based reflectance measurements and hyperspectral image data

    Science.gov (United States)

    Legleiter, C. J.; Kinzel, P. J.; Nelson, J. M.

    2010-12-01

    The Platte River in central Nebraska encompasses relatively stable, single-thread to island-braided reaches as well as wider, fully braided segments with highly mobile bar forms. Across this range of morphologies, suspended sediment and organic material contribute to turbid water conditions. In addition, the Platte is the focus of management activities intended to mitigate encroachment of vegetation and improve habitat for various migratory bird species, primarily by increasing the areal extent of shallow to slightly emergent mid-channel sand bars. The diversity of channel types and optical properties make this a challenging environment in which to implement a remote sensing approach, but the Platte also provides an opportunity for these methods to support management objectives. To evaluate the potential utility of remote sensing techniques along the Platte, we acquired hyperspectral image data, collected field spectra, and surveyed bed topography for three reaches. Ground-based measurements of reflectance Rλ were made above the water surface for flow depths d from 5 - 67 cm and a range of substrate types. An optimal band ratio analysis (OBRA) of these data, whereby regressions of log-transformed band ratios against measured depths were performed for all possible band combinations, yielded a strong, linear relationship (R2 = 0.95) between ln ({R593}/{R{647}) and d. Similar band ratio analyses were performed using reflectance spectra extracted from the hyperspectral image data for locations at which bed elevations were surveyed and compared to measured water surface elevations to calculate flow depths. Image-based OBRA produced variable results for the three sites. For a narrower, deeper reach lacking mobile mid-channel bars, a ln ({R490}/{R{638}) vs. d relation had an R2 of 0.83; applying this expression to the image generated a bathymetric map that agreed closely with our survey data. The other two sites featured fully braided morphologies, shallower depths, and

  20. Three methods to retrieve slant total electron content measurements from ground-based GPS receivers and performance assessment

    Science.gov (United States)

    Zhang, Baocheng

    2016-07-01

    The high sampling rate along with the global coverage of ground-based receivers makes Global Positioning System (GPS) data particularly ideal for sensing the Earth's ionosphere. Retrieval of slant total electron content measurements (TECMs) constitutes a key first step toward extracting various ionospheric parameters from GPS data. Within the ionospheric community, the interpretation of TECM is widely recognized as the slant total electron content along the satellite receiver line of sight, biased by satellite and receiver differential code biases (DCBs). The Carrier-to-Code Leveling (CCL) has long been used as a geometry-free method for retrieving TECM, mainly because of its simplicity and effectiveness. In fact, however, the CCL has proven inaccurate as it may give rise to TECM very susceptible to so-called leveling errors. With the goal of attaining more accurate TECM retrieval, we report in this contribution two other methods than the CCL, namely, the Precise Point Positioning (PPP) and the Array-aided PPP (A-PPP). The PPP further exploits the International GPS Service (IGS) orbit and clock products and turns out to be a geometry-based method. The A-PPP is designed to retrieve TECM from an array of colocated receivers, taking advantage of the broadcast orbit and clock products. Moreover, A-PPP also takes into account the fact that the ionospheric effects measured from one satellite to all colocated receivers ought to be the same, thus leading to the estimability of interreceiver DCB. We perform a comparative study of the formal precision and the empirical accuracy of the TECM that are retrieved, respectively, by three methods from the same set of GPS data. Results of such a study can be used to assess the actual performance of the three methods. In addition, we check the temporal stability in A-PPP-derived interreceiver DCB estimates over time periods ranging from 1 to 3 days.

  1. Comparison Between IASI/Metop-A and OMI/Aura Ozone Column Amounts with EUBREWNET Ground-Based Measurements

    Science.gov (United States)

    Lopez-Baeza, Ernesto

    2016-07-01

    This work addresses the comparison of {bf IASI (Infrared Atmospheric Sounding Interferometer)} on board Metop-A and {bf OMI (Ozone Monitoring Instrument)} on board Aura to several ground-based Brewer spectrophotometers belonging to the {bf European Brewer Network (EUBREWNET)} for the period September 2010 to December 2015. The focus of this study is to examine how well the satellite retrieval products capture the total ozone column amounts (TOC) at different latitudes and evaluate the different levels of Brewer spectrophotometer data. On this comparison Level 1, 1.5 and 2 Brewer data will be used to evaluate satellite data, where: 1) Level 1 Brewer data are the TOC calculated with the standard Brewer algorithm from the direct sun measurements; 2) Level 1.5 Brewer data are Level 1.0 observations filtered and corrected from instrumental issues: and 3) Level 2.0 Brewer data are 1.5 observations, but validated with a posteriori calibration. The IASI retrievals examined are operational IASI Level 2 products, version 5 from September 2010 to October 2014, and version 6 from October 2014 to December 2015, from {it EUMETSAT Data Centre}, while OMI retrievals are OMI-DOAS TOC products extracted from the {it NASA Goddard Earth Sciences Data and Information Services Center (GES DISC)}. The differences and their implications for the retrieved products will be discussed and, in order to evaluate the quality and sensitivity of each product, special attention will be put on analyzing the instrumental errors from these different measurement techniques. Furthermore, those parameters that could affect the comparison of the different datasets such as the different viewing geometry, the satellite data vertical sensitivity, cloudiness conditions, spectral region used for retrievals, and so on, will be analyzed in detail.

  2. All satellites total ozone evaluation in the tropics by comparison with SAOZ-NDACC ground-based measurements

    Science.gov (United States)

    Pommereau, Jean-Pierre; Lerot, Christophe; Van Roozendael, Michel; Goutail, Florence; Pazmino, Andrea; Frihi, Aymen; Bekki, Slimane; Clerbaux, Cathy

    2016-07-01

    All satellites total ozone measurements available from SBUV, OMI-T, OMI-D, OMI-CCI, GOME-CCI, GOME2-CCI, SCIAMACHY-CCI, NPP and IASI, since 2001 until 2015 are compared to those provided by the UV-Vis SAOZ/NDACC spectrometer at the two tropical stations of Reunion Island in the Indian Ocean and Bauru in Southern Brazil. The differences between satellites and SAOZ except IASI do show systematic seasonal variations of 0-3% (0-9 DU) amplitude and sharp negative peaks in Jan-Mar in Reunion Is in the austral summer. Whereas the summer negative peaks seen particularly on IASI, OMI-T, NPP and OMI-CCI at Reunion are shown to correlate with hurricanes and those seen in Brazil with high altitude overshooting convective clouds both not properly removed, ozone minima outside these events are shown to correlate with high altitude volcanic plumes impacting all satellites as well as ground-based total ozone measurements The seasonality of the Sat-SAOZ difference of varying amplitude from 0 to 3% with the satellite is attributed to the satellite retrieval. Surprisingly and though there has been no change in either SAOZ instruments or data analysis processes, the amplitude of the seasonal cycle of the Sat-SAOZ difference reduces in 2012 and drops to less than ± 0.5% (1.5 DU) after 2013 in Reunion Island and less than ±1% in Bauru, reduction for which there is no clear explanation yet. Shown in the presentation will be the demonstration of the impact of hurricanes, high altitude convective clouds and volcanic plumes on satellites total ozone retrievals, followed by a discussion of possible causes of seasonality of Sat-SAOZ amplitude drop after 2012.

  3. Question No. 5: What Role Can Satellites Take, as a Complement to Ground Based Measurement Systems, to Provide Sustained Observations to Monitor GHG Emissions?

    Science.gov (United States)

    Chahine, Moustafa; Olsen, Edward

    2011-01-01

    What role can satellites take, as a complement to ground based measurement systems, to provide sustained observations to monitor GHG emissions (e.g., CO2, CH4, O3, N2O, CFC s, NH3, and NF3) that contribute to global warming?

  4. Ground-Based Lidar Measurements of Forest Canopy Structure as Predictors of Net Primary Production Across Successional Time

    Science.gov (United States)

    Scheuermann, C. M.; Gough, C. M.; Nave, L. E.

    2015-12-01

    Forest canopy structure is a key predictor of gas exchange processes that control carbon (C) uptake, including the allocation of photosynthetically fixed C to new plant biomass growth, or net primary production (NPP). Prior work suggests forest canopy structural complexity (CSC), the arrangement of leaves within a volume of canopy, changes as forests develop and is a strong predictor of NPP. However, the expressions of CSC that best predict NPP over decadal to century timescales is unknown. Our objectives were to use multiple remote sensing observations to characterize forest canopy structure in increasing dimensional complexity over a forest age gradient, and to identify which expressions of physical structure best served as proxies of NPP. The study at the University of Michigan Biological Station in Pellston, MI, USA uses two parallel forest chronosequences with different harvesting and fire disturbance histories and includes three old-growth ecosystems varying in canopy composition. We have derived several expressions of 2-D and 3-D forest canopy structure from hemispherical images, a ground-based portable canopy lidar (PCL), and a 3-D terrestrial lidar scanner (TLS), and are relating these structural metrics with NPP and light and nitrogen allocation within the canopy. Preliminary analysis shows that old-growth stands converged on a common mean CSC, but with substantially higher within-stand variation in complexity as deciduous tree species increased in forest canopy dominance. Forest stands that were more intensely disturbed were slower to recover leaf area index (LAI) as they regrew, but 2-D measures of CSC increased similarly as forests aged, regardless of disturbance history. Ongoing work will relate long-term trends in forest CSC with NPP and resource allocation to determine which forest structure remote sensing products are most useful for modeling and scaling C cycling processes through different stages of forest development.

  5. Retrieval of aerosol optical and physical properties from ground-based measurements for Zanjan, a city in Northwest Iran

    Science.gov (United States)

    Masoumi, A.; Khalesifard, H. R.; Bayat, A.; Moradhaseli, R.

    2013-02-01

    A ground-based sun and sky scanning radiometer, CIMEL CE 318-2 sunphotometer, has been used to study the atmosphere of Zanjan, a city in Northwest Iran (36.70°N, 48.51°E, and 1800 m above the mean sea level) in the periods of October 2006-October 2008, and January-September 2010. Direct sun and solar principal plane sky radiance measurements by the sunphotometer have been used to retrieve the optical and physical properties of atmospheric aerosols, such as aerosol optical depth (AOD), Ångström exponent (α), single scattering albedo (SSA), refractive index, and volume size distributions. About 50 dusty days (daily averaged AOD (870) > 0.35, α < 0.5) have been recorded during the mentioned periods. Considering the different values obtained for SSA, real part of refractive index, and volume size distributions, it has been found that just dust and anthropogenic aerosols are making the atmospheric aerosols in this region. In these recordings it has been observed that AODs (Ångström exponents) were increasing (decreasing) during spring and early summer. This was accompanied by increase of SSA, real part of refractive index, and coarse mode part of volume size distributions of aerosols. This behavior could be due to transport of dust, mostly from Tigris-Euphrates basin or sometimes with lower probability from the region between Caspian and Aral seas and rarely from sources inside the Iran plateau like the Qom dry lake, especially in dry seasons. In this work NCEP/NCAR reanalysis, HYSPLIT model back trajectories, and MODIS Deep Blue AODs have been used to track the air masses and dust plumes during the recorded dust events.

  6. A Ground-based Measurement of the Relativistic Beaming Effect in a Detached Double White Dwarf Binary

    Science.gov (United States)

    Shporer, Avi; Kaplan, David L.; Steinfadt, Justin D. R.; Bildsten, Lars; Howell, Steve B.; Mazeh, Tsevi

    2010-12-01

    We report on the first ground-based measurement of the relativistic beaming effect (aka Doppler boosting). We observed the beaming effect in the detached, non-interacting eclipsing double white dwarf (WD) binary NLTT 11748. Our observations were motivated by the system's high mass-ratio and low-luminosity ratio, leading to a large beaming-induced variability amplitude at the orbital period of 5.6 hr. We observed the system during three nights at the 2.0 m Faulkes Telescope North with the SDSS-g' filter and fitted the data simultaneously for the beaming, ellipsoidal, and reflection effects. Our fitted relative beaming amplitude is (3.0 ± 0.4) × 10-3, consistent with the expected amplitude from a blackbody spectrum given the photometric primary radial velocity (RV) amplitude and effective temperature. This result is a first step in testing the relation between the photometric beaming amplitude and the spectroscopic RV amplitude in NLTT 11748 and similar systems. We did not identify any variability due to the ellipsoidal or reflection effects, consistent with their expected undetectable amplitude for this system. Low-mass, helium-core WDs are expected to reside in binary systems, where in some of those systems the binary companion is a faint C/O WD and the two stars are detached and non-interacting, as in the case of NLTT 11748. The beaming effect can be used to search for the faint binary companion in those systems using wide-band photometry.

  7. A compact ground-based laser heterodyne radiometer for global column measurements of CO2 and CH4

    Science.gov (United States)

    Steel, Emily; Clarke, Gregory; Ramanathan, Anand; Mao, Jianping; Ott, Lesley; Duncan, Bryan; Melroy, Hilary; McLinden, Matthew; Holben, Brent; Houston Miller, J.

    2015-04-01

    Implementing effective global strategies to understand climate change is hindered by a lack of understanding of both anthropogenic emissions and land and ocean carbon reservoirs. Though in situ surface measurements and satellites provide valuable information for estimating carbon fluxes, areas not well covered by current observing systems (e.g. high latitude regions, tropical forests and wetlands) remain poorly understood. Deficiencies in understanding the processes governing carbon flux introduce considerable uncertainty to predictions of climate change over the coming century. Our vision is to enhance worldwide carbon monitoring by developing a low-cost ground network of miniaturized laser heterodyne radiometer (Mini-LHR) instruments that measure CO2 and CH4 in the atmospheric column. Ground-based remote sensing has the potential to fill gaps in the satellite data record while providing a complementary long-term observational record. This uninterrupted data record, would both bridge gaps in data sets and offer validation for key flight missions such as OCO-2, OCO-3 and ASCENDS. Mini-LHR instruments will be deployed as an accompaniment to AERONET. In addition to the complementary aerosol optical depth measurement, tandem operation with AERONET provides a clear pathway for the Mini-LHR to be expanded into a global monitoring network. AERONET has more than 500 instruments worldwide offering coverage in key arctic regions (not covered by OCO-2) where accelerated warming due to the release of CO2 and CH4 from thawing tundra and permafrost is a concern. Mini-LHR instruments at AERONET locations could also greatly improve data coverage in regions with large flux uncertainties such as North America and Western Europe, and under-sampled areas such as South America and Asia. Currently, the only ground global network that routinely measures multiple greenhouse gases in the atmospheric column is TCCON with 18 operational sites worldwide and two in the US. Cost and size of

  8. Ground-based measurements of tropospheric and stratospheric bromine monoxide above Nairobi (1° S, 36° E

    Directory of Open Access Journals (Sweden)

    M. van Roozendael

    2007-05-01

    Full Text Available Ground based observations of stratospheric and tropospheric bromine monoxide, BrO, from a multi axial differential optical absorption spectrometer, MAXDOAS, located at the UNEP/UNON site in Nairobi (1° S, 36° E are presented for the year 2003. Differences in BrO slant column densities at 90° and 80° solar zenith angle retrieved from the zenith-sky measurements are used to study stratospheric BrO. They show only small variations with season, as expected for the small seasonality in stratospheric Bry and NO2 in this region. A pronounced diurnal variation can be observed, the average value for the morning being 1.3×1014 molecules/cm2 and for the evening 1.5×1014 molecules/cm2. The measurements are compared with simulations from a one-dimensional photochemical stacked box model which is coupled with a radiative transfer model to allow direct comparisons between the observations and the model calculations. In general the model reproduces the measurements very well. The differences in the absolute values are 15% for the evening and 20% for the morning which is within the limits of the combined uncertainties. Both seasonality and diurnal variation are well reproduced by the model. A sensitivity study shows that inclusion of the reaction BrONO2 + O(3P significantly improves the agreement between model calculations and measurements, indicating an important role of this reaction in the stratosphere near to the equator. Tropospheric BrO columns and profile information is derived from the combined results obtained in the different viewing directions for the average over several clear days. The resulting tropospheric BrO columns are in the range of 4–7.5×1012 molecules/cm2 which is significant but lower than in previous studies at mid and high latitudes. The vertical distribution of the tropospheric BrO peaks at about 3 km indicating the absence of local sources at this high altitude site.

  9. Inferring hydroxyl layer peak heights from ground-based measurements of OH(6-2 band integrated emission rate at Longyearbyen (78° N, 16° E

    Directory of Open Access Journals (Sweden)

    F. Sigernes

    2009-11-01

    Full Text Available Measurements of hydroxyl nightglow emissions over Longyearbyen (78° N, 16° E recorded simultaneously by the SABER instrument onboard the TIMED satellite and a ground-based Ebert-Fastie spectrometer have been used to derive an empirical formula for the height of the OH layer as a function of the integrated emission rate (IER. Altitude profiles of the OH volume emission rate (VER derived from SABER observations over a period of more than six years provided a relation between the height of the OH layer peak and the integrated emission rate following the procedure described by Liu and Shepherd (2006. An extended period of overlap of SABER and ground-based spectrometer measurements of OH(6-2 IER during the 2003–2004 winter season allowed us to express ground-based IER values in terms of their satellite equivalents. The combination of these two formulae provided a method for inferring an altitude of the OH emission layer over Longyearbyen from ground-based measurements alone. Such a method is required when SABER is in a southward looking yaw cycle. In the SABER data for the period 2002–2008, the peak altitude of the OH layer ranged from a minimum near 76 km to a maximum near 90 km. The uncertainty in the inferred altitude of the peak emission, which includes a contribution for atmospheric extinction, was estimated to be ±2.7 km and is comparable with the ±2.6 km value quoted for the nominal altitude (87 km of the OH layer. Longer periods of overlap of satellite and ground-based measurements together with simultaneous on-site measurements of atmospheric extinction could reduce the uncertainty to approximately 2 km.

  10. NDACC UV-visible total ozone measurements: improved retrieval and comparison with correlative satellite and ground-based observations

    Directory of Open Access Journals (Sweden)

    F. Hendrick

    2010-08-01

    tropospheric ozone column being ignored by zonal climatologies. For those measurements sensitive to stratospheric temperature like TOMS, OMI-TOMS, Dobson and Brewer, the application of a temperature correction results in the almost complete removal of the seasonal difference with SAOZ, improving significantly the consistency between all ground-based and satellite total ozone observations.

  11. Calibration and evaluation of CCD spectroradiometers for ground-based and airborne measurements of spectral actinic flux densities

    Science.gov (United States)

    Bohn, Birger; Lohse, Insa

    2017-09-01

    The properties and performance of charge-coupled device (CCD) array spectroradiometers for the measurement of atmospheric spectral actinic flux densities (280-650 nm) and photolysis frequencies were investigated. These instruments are widely used in atmospheric research and are suitable for aircraft applications because of high time resolutions and high sensitivities in the UV range. The laboratory characterization included instrument-specific properties like the wavelength accuracy, dark signal, dark noise and signal-to-noise ratio (SNR). Spectral sensitivities were derived from measurements with spectral irradiance standards. The calibration procedure is described in detail, and a straightforward method to minimize the influence of stray light on spectral sensitivities is introduced. From instrument dark noise, minimum detection limits ≈ 1 × 1010 cm-2 s-1 nm-1 were derived for spectral actinic flux densities at wavelengths around 300 nm (1 s integration time). As a prerequisite for the determination of stray light under field conditions, atmospheric cutoff wavelengths were defined using radiative transfer calculations as a function of the solar zenith angle (SZA) and total ozone column (TOC). The recommended analysis of field data relies on these cutoff wavelengths and is also described in detail taking data from a research flight on HALO (High Altitude and Long Range Research Aircraft) as an example. An evaluation of field data was performed by ground-based comparisons with a double-monochromator-based, highly sensitive reference spectroradiometer. Spectral actinic flux densities were compared as well as photolysis frequencies j(NO2) and j(O1D), representing UV-A and UV-B ranges, respectively. The spectra expectedly revealed increased daytime levels of stray-light-induced signals and noise below atmospheric cutoff wavelengths. The influence of instrument noise and stray-light-induced noise was found to be insignificant for j(NO2) and rather limited for j(O1D

  12. OMI/Aura UV product validation using NILU-UV ground-based measurements in Thessaloniki, Greece

    Science.gov (United States)

    Zempila, Melina-Maria; Koukouli, Maria-Elissavet; Bais, Alkiviadis; Fountoulakis, Ilias; Arola, Antti; Kouremeti, Natalia; Balis, Dimitris

    2016-09-01

    The main aim of this work is to evaluate the NASA EOS AURA Ozone Monitoring Instrument (OMI) UV irradiance estimates through ground-based measurements performed by a NILU-UV multichannel radiometer (NILU-UV) operating in Thessaloniki, Greece, for the time period between January 2005 and December 2014. NILU-UV multi-filter radiometers can provide measurements at 5 UV wavelength bands with full width at half maximum (FWHM) of 10 nm approximately and a time analysis of 1 min. An additional channel measuring the Photosynthetically Active Radiation (PAR) is also incorporated to the instrument and is used for the stringent characterization of the cloud free instances. The OMI instrument estimates solar UV irradiances at four wavelengths close to those of the NILU-UV in Thessaloniki. Clear and all-sky overpass-time, as well as solar local-noon time, UV estimates are provided by the NASA Aura Data Validation Center. Spectra measured from a collocated MKIII Brewer spectrophotometer with serial number 086 (Brewer #086) were utilized for the whole period (2005-2014) in order to estimate the NILU-UV irradiances at the OMI wavelength irradiances and therefore provide a direct comparison and validation to the NILU UV measurements provided by OMI. For the nominal comparisons, using un-flagged OMI data within a 50 km radius from Thessaloniki, the linear determination coefficient, R2, ranges between 0.91 and 0.97 for the 305 nm and between 0.75 and 0.92 for 380 nm depending on the choice of overpass or local-noon time data and the cloudiness flags. The best agreement is found for the clear-sky overpass-time comparisons as well as the both PAR- and satellite algorithm-deduced clear-sky overpass and local-noon comparisons for all wavelengths. The OMI irradiances were found to overestimate the NILU-UV observations in Thessaloniki between ∼4.5% and 13.5% for the 305 nm and between ∼1.5% and ∼10.0% for the 310 nm wavelength depending on the choice of time [overpass vs local noon

  13. Retrieval and satellite intercomparison of O3 measurements from ground-based FTIR Spectrometer at Equatorial Station: Addis Ababa, Ethiopia

    Directory of Open Access Journals (Sweden)

    T. von Clarmann

    2013-02-01

    Full Text Available Since May 2009, high-resolution Fourier Transform Infrared (FTIR solar absorption spectra have been recorded at Addis Ababa (9.01° N latitude, 38.76° E longitude, 2443 m altitude above sea level, Ethiopia. The vertical profiles and total column amounts of ozone (O3 are deduced from the spectra by using the retrieval code PROFFIT (V9.5 and regularly determined instrumental line shape (ILS. A detailed error analysis of the O3 retrieval is performed. Averaging kernels of the target gas shows that the major contribution to the retrieved information comes from the measurement. The degrees of freedom for signals is found to be 2.1 on average for the retrieval of O3 from the observed FTIR spectra. The ozone Volume Mixing Ratio (VMR profiles and column amounts retrieved from FTIR spectra are compared with the coincident satellite observations of Microwave Limb Sounding (MLS, Michelson Interferometer for Passive Atmospheric Sounding (MIPAS, Tropospheric Emission Spectrometer (TES, Ozone Monitoring Instrument (OMI, Atmospheric Infrared Sounding (AIRS and Global Ozone Monitoring Experiment (GOME-2 instruments. The mean relative differences in ozone profiles of FTIR from MLS and MIPAS are generally lower than 15% within the altitude range of 27 to 36 km, whereas difference from TES is lower than 1%. Comparisons of measurements of column amounts from the satellite and the ground-based FTIR show very good agreement as exhibited by relative differences within +0.2% to +2.8% for FTIR versus MLS and GOME-2; and −0.9 to −9.0% for FTIR versus OMI, TES and AIRS. The corresponding standard deviations are within 2.0 to 2.8% for FTIR versus MLS and GOME-2 comparisons whereas that of FTIR versus OMI, TES and AIRS are within 3.5 to 7.3%. Thus, the retrieved O3 VMR and column amounts from a tropical site, Addis Ababa, is found to exhibit very good agreement with all coincident satellite observations over an approximate 3-yr period.

  14. Retrieval and satellite intercomparison of O3 measurements from ground-based FTIR Spectrometer at Equatorial Station: Addis Ababa, Ethiopia

    Science.gov (United States)

    Takele Kenea, S.; Mengistu Tsidu, G.; Blumenstock, T.; Hase, F.; von Clarmann, T.; Stiller, G. P.

    2013-02-01

    Since May 2009, high-resolution Fourier Transform Infrared (FTIR) solar absorption spectra have been recorded at Addis Ababa (9.01° N latitude, 38.76° E longitude, 2443 m altitude above sea level), Ethiopia. The vertical profiles and total column amounts of ozone (O3) are deduced from the spectra by using the retrieval code PROFFIT (V9.5) and regularly determined instrumental line shape (ILS). A detailed error analysis of the O3 retrieval is performed. Averaging kernels of the target gas shows that the major contribution to the retrieved information comes from the measurement. The degrees of freedom for signals is found to be 2.1 on average for the retrieval of O3 from the observed FTIR spectra. The ozone Volume Mixing Ratio (VMR) profiles and column amounts retrieved from FTIR spectra are compared with the coincident satellite observations of Microwave Limb Sounding (MLS), Michelson Interferometer for Passive Atmospheric Sounding (MIPAS), Tropospheric Emission Spectrometer (TES), Ozone Monitoring Instrument (OMI), Atmospheric Infrared Sounding (AIRS) and Global Ozone Monitoring Experiment (GOME-2) instruments. The mean relative differences in ozone profiles of FTIR from MLS and MIPAS are generally lower than 15% within the altitude range of 27 to 36 km, whereas difference from TES is lower than 1%. Comparisons of measurements of column amounts from the satellite and the ground-based FTIR show very good agreement as exhibited by relative differences within +0.2% to +2.8% for FTIR versus MLS and GOME-2; and -0.9 to -9.0% for FTIR versus OMI, TES and AIRS. The corresponding standard deviations are within 2.0 to 2.8% for FTIR versus MLS and GOME-2 comparisons whereas that of FTIR versus OMI, TES and AIRS are within 3.5 to 7.3%. Thus, the retrieved O3 VMR and column amounts from a tropical site, Addis Ababa, is found to exhibit very good agreement with all coincident satellite observations over an approximate 3-yr period.

  15. Aerosol physical and chemical properties retrieved from ground-based remote sensing measurements during heavy haze days in Beijing winter

    Science.gov (United States)

    Li, Z.; Gu, X.; Wang, L.; Li, D.; Xie, Y.; Li, K.; Dubovik, O.; Schuster, G.; Goloub, P.; Zhang, Y.; Li, L.; Ma, Y.; Xu, H.

    2013-10-01

    With the increase in economic development over the past thirty years, many large cities in eastern and southwestern China are experiencing increased haze events and atmospheric pollution, causing significant impacts on the regional environment and even climate. However, knowledge on the aerosol physical and chemical properties in heavy haze conditions is still insufficient. In this study, two winter heavy haze events in Beijing that occurred in 2011 and 2012 were selected and investigated by using the ground-based remote sensing measurements. We used a CIMEL CE318 sun-sky radiometer to retrieve haze aerosol optical, physical and chemical properties, including aerosol optical depth (AOD), size distribution, complex refractive indices and aerosol fractions identified as black carbon (BC), brown carbon (BrC), mineral dust (DU), ammonium sulfate-like (AS) components and aerosol water content (AW). The retrieval results from a total of five haze days showed that the aerosol loading and properties during the two winter haze events were comparable. Therefore, average heavy haze property parameters were drawn to present a research case for future studies. The average AOD is about 3.0 at 440 nm, and the Ångström exponent is 1.3 from 440 to 870 nm. The fine-mode AOD is 2.8 corresponding to a fine-mode fraction of 0.93. The coarse particles occupied a considerable volume fraction of the bimodal size distribution in winter haze events, with the mean particle radius of 0.21 and 2.9 μm for the fine and coarse modes respectively. The real part of the refractive indices exhibited a relatively flat spectral behavior with an average value of 1.48 from 440 to 1020 nm. The imaginary part showed spectral variation, with the value at 440 nm (about 0.013) higher than the other three wavelengths (about 0.008 at 675 nm). The aerosol composition retrieval results showed that volume fractions of BC, BrC, DU, AS and AW are 1, 2, 49, 15 and 33%, respectively, on average for the investigated

  16. Integration of Remote Sensing Products with Ground-Based Measurements to Understand the Dynamics of Nepal's Forests and Plantation Sites

    Science.gov (United States)

    Gilani, H.; Jain, A. K.

    2016-12-01

    This study assembles information from three sources - remote sensing, terrestrial photography and ground-based inventory data, to understand the dynamics of Nepal's tropical and sub-tropical forests and plantation sites for the period 1990-2015. Our study focuses on following three specific district areas, which have conserved forests through social and agroforestry management practices: 1. Dolakha district: This site has been selected to study the impact of community-based forest management on land cover change using repeat photography and satellite imagery, in combination with interviews with community members. The study time period is during the period 1990-2010. We determined that satellite data with ground photographs can provide transparency for long term monitoring. The initial results also suggests that community-based forest management program in the mid-hills of Nepal was successful. 2. Chitwan district: Here we use high resolution remote sensing data and optimized community field inventories to evaluate potential application and operational feasibility of community level REDD+ measuring, reporting and verification (MRV) systems. The study uses temporal dynamics of land cover transitions, tree canopy size classes and biomass over a Kayar khola watershed REDD+ study area with community forest to evaluate satellite Image segmentation for land cover, linear regression model for above ground biomass (AGB), and estimation and monitoring field data for tree crowns and AGB. We study three specific years 2002, 2009, 2012. Using integration of WorldView-2 and airborne LiDAR data for tree species level. 3. Nuwakot district: This district was selected to study the impact of establishment of tree plantation on total barren/fallow. Over the last 40 year, this area has went through a drastic changes, from barren land to forest area with tree species consisting of Dalbergia sissoo, Leucaena leucocephala, Michelia champaca, etc. In 1994, this district area was registered

  17. A strategic outlook for coordination of ground-based measurement networks of atmospheric state variables and atmospheric composition

    Science.gov (United States)

    Bodeker, G. E.; Thorne, P.; Braathen, G.; De Maziere, M.; Thompson, A. M.; Kurylo, M. J., III

    2016-12-01

    There are a number of ground-based global observing networks that collectively aim to make key measurements of atmospheric state variables and atmospheric chemical composition. These networks include, but are not limited to:NDACC: Network for the Detection of Atmospheric Composition Change GUAN: GCOS Upper Air Network GRUAN: GCOS Reference Upper Air Network EARLINET: the European Aerosol Research Lidar Network GAW: Global Atmosphere Watch SHADOZ: Southern Hemisphere ADditional OZonesondes TCCON: Total Carbon Column Observing Network BSRN: Baseline Surface Radiation Network While each network brings unique capabilities to the global observing system, there are many instances where the activities and capabilities of the networks overlap. These commonalities across multiple networks can confound funding agencies when allocating scarce financial resources. Overlaps between networks may also result in some duplication of effort and a resultant sub-optimal use of funding resource for the global observing system. While some degree of overlap is useful for quality assurance, it is essential to identify the degree to which one network can take on a specific responsibility on behalf of all other networks to avoid unnecessary duplication, to identify where expertise in any one network may serve other networks, and to develop a long-term strategy for the evolution of these networks that clarifies to funding agencies where new investment is required. This presentation will briefly summarise the key characteristics of each network listed above, adopt a matrix approach to identify commonalities and, in particular, where there may be a danger of duplication of effort, and where gaps between the networks may be compromising the services that these networks are expected to collectively deliver to the global atmospheric and climate science research communities. The presentation will also examine where sharing of data and tools between networks may result in a more efficient delivery

  18. Aerosol backscatter measurements at 10. 6 micrometers with airborne and ground-based CO sub 2 Doppler lidars over the Colorado high plains. 2. Backscatter structure

    Energy Technology Data Exchange (ETDEWEB)

    Bowdle, D.A. (Univ. of Alabama, Huntsville (USA)); Rothermel, J. (NASA Marshall Space Flight Center, Huntsville, AL (USA)); Vaughan, J.M. (Royal Signals and Radar Establishment, Worcestershire (England)); Post, M.J. (National Oceanic and Atmospheric Administration, Boulder, CO (USA))

    1991-03-20

    Measurements of tropospheric aerosol volume backscatter coefficients at 10.6-{mu}m wavelength were obtained with airborne continuous wave and ground-based pulsed CO{sub 2} Doppler lidars over the Colorado High Plains during a 20-day period in summer 1982. A persistent 'background' layer was found between 6- and 10-km altitude, with a generally uniform backscatter mixing ratio of {approximately}10{sup {minus}10} m{sup 2} kg{sup {minus}1} sr{sup {minus}1}. The upper boundary of this background layer varied with the tropopause height; the lower boundary varied with the strength and diurnal cycle of convective mixing in the planetary boundary layer (PBL). For quiescent meteorological conditions the transition from the PBL to the background layer was usually very sharp, with backscatter decreases sometimes as large as 3 decades in {approximately}70 m. Sharp gradients were also found at the boundaries of shallow (tens of meters) subvisible cirrus clouds. For less stable conditions, associated with vertical aerosol transport by deep comuliform clouds, backscatter tended to decrease exponentially with altitude.

  19. Aerosol backscatter measurements at 10. 6 micrometers with airborne and ground-based CO sub 2 Doppler lidars over the Colorado high plains. 1. Lidar intercomparison

    Energy Technology Data Exchange (ETDEWEB)

    Bowdle, D.A. (Univ. of Alabama, Huntsville (USA)); Rothermel, J. (NASA Marshall Space Flight Center, Huntsville, AL (USA)); Vaughan, J.M.; Brown, D.W. (Royal Signals and Radar Establishment, Worcestershire (England)); Post, M.J. (National Oceanic and Atmospheric Administration, Boulder, CO (USA))

    1991-03-20

    An airborne continuous wave (CW) focused CO{sub 2} Doppler lidar and a ground-based pulsed CO{sub 2} Doppler lidar were used to obtain seven pairs of comparative measurements of tropospheric aerosol backscatter profiles at 10.6 {mu}m wavelength, near Denver, Colorado, during a 20-day period in July 1982. In regions of uniform backscatter the two lidars show good agreement, with differences usually less than {approximately}50% near 8-km altitude and less than a factor of 2 or 3 elsewhere but with the pulsed lidar often lower than the CW lidar. Near sharp backscatter gradients the two lidars show poorer agreement, with the pulsed lidar usually higher than the CW lidar. Most discrepancies arise from a combination of atmospheric factors and instrument factors, particularly small-scale areal and temporal backscatter heterogeneity above the planetary boundary layer, unusual large-scale vertical backscatter structure in the upper troposphere and lower stratosphere, and differences in the spatial resolution, detection threshold, and noise estimation for the two lidars.

  20. Simultaneous ground-based and airborne measurements of biogenic VOC oxidation products using iodide-adduct HR-ToF-CIMS in the Southeast U.S

    Science.gov (United States)

    Lee, B.; Mohr, C.; Lopez-Hilfiker, F.; Warneke, C.; Graus, M.; Gilman, J.; Lerner, B. M.; Pollack, I. B.; Ryerson, T. B.; Roberts, J. M.; Edwards, P. M.; Brown, S. S.; Holloway, J.; Aikin, K.; Dube, W. P.; Liao, J.; Welti, A.; Middlebrook, A. M.; Nowak, J. B.; Neuman, J. A.; Brioude, J. F.; McKeen, S. A.; Hanisco, T. F.; Kaiser, J.; Keutsch, F. N.; Wolfe, G. M.; Hallquist, M.; Trainer, M.; De Gouw, J. A.; Thornton, J. A.

    2013-12-01

    We present measurements by two high-resolution time-of-flight chemical-ionization mass spectrometers (HR-ToF-CIMS) during the Southeast Atmosphere Study in June and July of 2013. Both HR-ToF-CIMS used iodide as the reagent ion, which provides minimum fragmentation during ionization. Isoprene and monoterpene oxidation byproducts such as hydroxy hydroperoxides, carboxylic acids and organic nitrates, were ubiquitous in the mass spectra. In addition, we observed select inorganic gases such as N2O5 and ClNO2. The flight instrument was deployed aboard the NOAA WP-3D during SENEX, which explored the lower atmosphere over the Southeast U.S., logging a total of 125 flight hours. These measurements provide insight into the spatial and temporal variation of these types of compounds and the influence of natural gas fields, power plants, biomass burning, urban and biogenic emissions on their abundance under both day and nighttime conditions. The ground-based instrument was located near Brent, Alabama as part of the SOAS campaign and utilized the Filter Inlet for Gas and AEROsol (FIGAERO) - developed at the University of Washington - which allows measurement of both the gas and particle phases. Continuous observations spanning more than 4 weeks show the diurnal variability and the influence of meteorology and anthropogenic emissions on the gas-particle partitioning. Flights during SENEX over the ground site provide a unique opportunity to investigate the vertical distribution of a whole suite of these chemical species measured by these two cross-calibrated nearly identical instruments.

  1. Empirical model for mean temperature for Indian zone and estimation of precipitable water vapor from ground based GPS measurements

    Directory of Open Access Journals (Sweden)

    C. Suresh Raju

    2007-10-01

    Full Text Available Estimation of precipitable water (PW in the atmosphere from ground-based Global Positioning System (GPS essentially involves modeling the zenith hydrostatic delay (ZHD in terms of surface Pressure (Ps and subtracting it from the corresponding values of zenith tropospheric delay (ZTD to estimate the zenith wet (non-hydrostatic delay (ZWD. This further involves establishing an appropriate model connecting PW and ZWD, which in its simplest case assumed to be similar to that of ZHD. But when the temperature variations are large, for the accurate estimate of PW the variation of the proportionality constant connecting PW and ZWD is to be accounted. For this a water vapor weighted mean temperature (Tm has been defined by many investigations, which has to be modeled on a regional basis. For estimating PW over the Indian region from GPS data, a region specific model for Tm in terms of surface temperature (Ts is developed using the radiosonde measurements from eight India Meteorological Department (IMD stations spread over the sub-continent within a latitude range of 8.5°–32.6° N. Following a similar procedure Tm-based models are also evolved for each of these stations and the features of these site-specific models are compared with those of the region-specific model. Applicability of the region-specific and site-specific Tm-based models in retrieving PW from GPS data recorded at the IGS sites Bangalore and Hyderabad, is tested by comparing the retrieved values of PW with those estimated from the altitude profile of water vapor measured using radiosonde. The values of ZWD estimated at 00:00 UTC and 12:00 UTC are used to test the validity of the models by estimating the PW using the models and comparing it with those obtained from radiosonde data. The region specific Tm-based model is found to be in par with if not better than a

  2. Tropospheric and total ozone columns over Paris (France measured using medium-resolution ground-based solar-absorption Fourier-transform infrared spectroscopy

    Directory of Open Access Journals (Sweden)

    C. Viatte

    2011-10-01

    Full Text Available Ground-based Fourier-transform infrared (FTIR solar absorption spectroscopy is a powerful remote sensing technique providing information on the vertical distribution of various atmospheric constituents. This work presents the first evaluation of a mid-resolution ground-based FTIR to measure tropospheric ozone, independently of stratospheric ozone. This is demonstrated using a new atmospheric observatory (named OASIS for "Observations of the Atmosphere by Solar absorption Infrared Spectroscopy", installed in Créteil (France. The capacity of the technique to separate stratospheric and tropospheric ozone is demonstrated. Daily mean tropospheric ozone columns derived from the Infrared Atmospheric Sounding Interferometer (IASI and from OASIS measurements are compared for summer 2009 and a good agreement of −5.6 (±16.1 % is observed. Also, a qualitative comparison between in-situ surface ozone measurements and OASIS data reveals OASIS's capacity to monitor seasonal tropospheric ozone variations, as well as ozone pollution episodes in summer 2009 around Paris. Two extreme pollution events are identified (on the 1 July and 6 August 2009 for which ozone partial columns from OASIS and predictions from a regional air-quality model (CHIMERE are compared following strict criteria of temporal and spatial coincidence. An average bias of 0.2%, a mean square error deviation of 7.6%, and a correlation coefficient of 0.91 is found between CHIMERE and OASIS, demonstrating the potential of a mid-resolution FTIR instrument in ground-based solar absorption geometry for tropospheric ozone monitoring.

  3. Validation of GOME-2/Metop total column water vapour with ground-based and in situ measurements

    Science.gov (United States)

    Kalakoski, Niilo; Kujanpää, Jukka; Sofieva, Viktoria; Tamminen, Johanna; Grossi, Margherita; Valks, Pieter

    2016-04-01

    The total column water vapour product from the Global Ozone Monitoring Experiment-2 on board Metop-A and Metop-B satellites (GOME-2/Metop-A and GOME-2/Metop-B) produced by the Satellite Application Facility on Ozone and Atmospheric Chemistry Monitoring (O3M SAF) is compared with co-located radiosonde observations and global positioning system (GPS) retrievals. The validation is performed using recently reprocessed data by the GOME Data Processor (GDP) version 4.7. The time periods for the validation are January 2007-July 2013 (GOME-2A) and December 2012-July 2013 (GOME-2B). The radiosonde data are from the Integrated Global Radiosonde Archive (IGRA) maintained by the National Climatic Data Center (NCDC). The ground-based GPS observations from the COSMIC/SuomiNet network are used as the second independent data source. We find a good general agreement between the GOME-2 and the radiosonde/GPS data. The median relative difference of GOME-2 to the radiosonde observations is -2.7 % for GOME-2A and -0.3 % for GOME-2B. Against the GPS, the median relative differences are 4.9 % and 3.2 % for GOME-2A and B, respectively. For water vapour total columns below 10 kg m-2, large wet biases are observed, especially against the GPS retrievals. Conversely, at values above 50 kg m-2, GOME-2 generally underestimates both ground-based observations.

  4. Ground-based instrumentation for measurements of atmospheric conduction current and electric field at the South Pole

    Science.gov (United States)

    Byrne, G. J.; Benbrook, J. R.; Bering, E. A.; Few, A. A.; Morris, G. A.; Trabucco, W. J.; Paschal, E. W.

    1993-01-01

    Attention is given to instruments constructed to measure the atmospheric conduction current and the atmospheric electric field - two fundamental parameters of the global-electric circuit. The instruments were deployed at the Amundsen-Scott South Pole Station in January 1991 and are designed to operate continuously for up to one year without operator intervention. The atmospheric current flows into one hemisphere, through the electronics where it is measured, and out the other hemisphere. The electric field is measured by a field mill of the rotating dipole type. Sample data from the first days of operation at the South Pole indicate variations in the global circuit over time scales from minutes to hours to days.

  5. Studies on aerosol properties during ICARB–2006 campaign period at Hyderabad, India using ground-based measurements and satellite data

    Indian Academy of Sciences (India)

    K V S Badarinath; Shailesh Kumar Kharol

    2008-07-01

    Continuous and campaign-based aerosol field measurements are essential in understanding fundamental atmospheric aerosol processes and for evaluating their effect on global climate, environment and human life. Synchronous measurements of Aerosol Optical Depth (AOD), Black Carbon (BC) aerosol mass concentration and aerosol particle size distribution were carried out during the campaign period at tropical urban regions of Hyderabad, India. Daily satellite datasets of DMSP-OLS were processed for night-time forest fires over the Indian region in order to understand the additional sources (forest fires) of aerosol. The higher values in black carbon aerosol mass concentration and aerosol optical depth correlated well with forest fires occurring over the region. Ozone Monitoring Instrument (OMI) aerosol index (AI) variations showed absorbing aerosols over the region and correlated with ground measurements.

  6. Ozone columns obtained by ground-based remote sensing in Kiev for Aura Ozone Measuring Instrument validation

    Science.gov (United States)

    Shavrina, A. V.; Pavlenko, Y. V.; Veles, A.; Syniavskyi, I.; Kroon, M.

    2007-12-01

    Ground-based observations with a Fourier transform spectrometer in the infrared region (FTIR) were performed in Kiev (Ukraine) during the time frames August-October 2005 and June-October 2006 within the Ozone Monitoring Instrument (OMI) validation project 2907 entitled "OMI validation by ground based remote sensing: ozone columns and profiles" in the frame of the international European Space Agency/Netherlands Agency for Aerospace Programmes/Royal Dutch Meteorological Institute OMI Announcement of Opportunity effort. Ozone column data for 2005 were obtained by modeling the ozone spectral band at 9.6 μm with the radiative transfer code MODTRAN3.5. Our total ozone column values were found to be lower than OMI Differential Optical Absorption Spectroscopy (DOAS) total ozone column data by 8-10 Dobson units (DU, 1 DU = 0.001 atm cm) on average, while our observations have a relatively small standard error of about 2 DU. Improved modeling of the ozone spectral band, now based on HITRAN-2004 spectral data as calculated by us, moves our results toward better agreement with the OMI DOAS total ozone column data. The observations made during 2006 with a modernized FTIR spectrometer and higher signal-to-noise ratio were simulated by the MODTRAN4 model computations. For ozone column estimates the Aqua Atmospheric Infrared Sounder satellite water vapor and temperature profiles were combined with the Aura Microwave Limb Sounder stratospheric ozone profiles and Tropospheric Emission Monitoring Internet Service-Koninklijk Nederlands Meteorologisch Instituut climatological profiles to create a priori input files for spectral modeling. The MODTRAN4 estimates of ozone columns from the 2006 observations compare rather well with the OMI total ozone column data: standard errors are of 1.11 DU and 0.68 DU, standard deviation are of 8.77 DU and 5.37 DU for OMI DOAS and OMI Total Ozone Mapping Spectrometer, respectively.

  7. Cloud Properties under Different Synoptic Circulations: Comparison of Radiosonde and Ground-Based Active Remote Sensing Measurements

    Directory of Open Access Journals (Sweden)

    Jinqiang Zhang

    2016-11-01

    Full Text Available In this study, long-term (10 years radiosonde-based cloud data are compared with the ground-based active remote sensing product under six prevailing large-scale synoptic patterns, i.e., cyclonic center (CC, weak pressure pattern (WP, the southeast bottom of cyclonic center (CB, cold front (CF, anticyclone edge (AE and anticyclone center (AC over the Southern Great Plains (SGP site. The synoptic patterns are generated by applying the self-organizing map weather classification method to the daily National Centers for Environmental Protection mean sea level pressure records from the North American Regional Reanalysis. It reveals that the large-scale synoptic circulations can strongly influence the regional cloud formation, and thereby have impact on the consistency of cloud retrievals from the radiosonde and ground-based cloud product. The total cloud cover at the SGP site is characterized by the least in AC and the most in CF. The minimum and maximum differences between the two cloud methods are 10.3% for CC and 13.3% for WP. Compared to the synoptic patterns characterized by scattered cloudy and clear skies (AE and AC, the agreement of collocated cloud boundaries between the two cloud approaches tends to be better under the synoptic patterns dominated by overcast and cloudy skies (CC, WP and CB. The rainy and windy weather conditions in CF synoptic pattern influence the consistency of the two cloud retrieval methods associated with the limited capabilities inherent to the instruments. The cloud thickness distribution from the two cloud datasets compares favorably with each other in all synoptic patterns, with relative discrepancy of ≤0.3 km.

  8. Critical Evaluation of 0-30 km Profile Information in Ground-Based Zenith-Sky and Satellite-Measured Backscattered UV Radiation

    Science.gov (United States)

    Bhartia, Pawan; Petropavlovskikh, Irina; Deluishi, John; Einaudi, Franco (Technical Monitor)

    2000-01-01

    We now have several decades of experience in deriving vertical ozone profiles from the measurements of diffuse ultraviolet radiation by both ground and satellite-based instruments using Umkehr and BUV techniques. Continuing technological advances are pushing the state-of-the-art of these measurements to high spectral resolution and broader wavelength coverage. These modern instruments include the ground-based Brewer and satellite-based Global Ozone Monitoring Experiment (GOME) instruments, as well as advanced instruments being developed by ESA(SCIAMACHY), Netherlands(OMI) and Japan(ODUS). However, one of the issues that remains unresolved is the 0-30 km ozone profile information retrievable from these measurements. Though it is commonly believed that both the Umkehr and the satellite-based BUV techniques have very limited profile information below 30 km, there are those who argue that the data from these instruments should continue to be reported in this altitude range for they compare well with ozonesondes and hence there is useful scientific information. Others claim that the limitations of the Umkehr and BUV techniques are largely due to their low spectral resolution, and that the profile information below 30 km can be greatly improved by going to high spectral resolution instruments, such as Brewer and GOME. The purpose of this paper is to provide a critical evaluation of the 0-30 km ozone profile information in the various UV remote sensing techniques. We use a database of individual ozone profiles created using ozonesondes and SAGE and 4D ozone fields generated by data assimilation techniques to simulate radiances measured by the various techniques. We then apply a common inversion approach to all the methods to systematically examine how much profile information is available simply from the knowledge of total ozone, how much additional profile information is added by the traditional Dobson Umkehr and satellite buv techniques, and how much better one can do

  9. Illumination compensation in ground based hyperspectral imaging

    Science.gov (United States)

    Wendel, Alexander; Underwood, James

    2017-07-01

    Hyperspectral imaging has emerged as an important tool for analysing vegetation data in agricultural applications. Recently, low altitude and ground based hyperspectral imaging solutions have come to the fore, providing very high resolution data for mapping and studying large areas of crops in detail. However, these platforms introduce a unique set of challenges that need to be overcome to ensure consistent, accurate and timely acquisition of data. One particular problem is dealing with changes in environmental illumination while operating with natural light under cloud cover, which can have considerable effects on spectral shape. In the past this has been commonly achieved by imaging known reference targets at the time of data acquisition, direct measurement of irradiance, or atmospheric modelling. While capturing a reference panel continuously or very frequently allows accurate compensation for illumination changes, this is often not practical with ground based platforms, and impossible in aerial applications. This paper examines the use of an autonomous unmanned ground vehicle (UGV) to gather high resolution hyperspectral imaging data of crops under natural illumination. A process of illumination compensation is performed to extract the inherent reflectance properties of the crops, despite variable illumination. This work adapts a previously developed subspace model approach to reflectance and illumination recovery. Though tested on a ground vehicle in this paper, it is applicable to low altitude unmanned aerial hyperspectral imagery also. The method uses occasional observations of reference panel training data from within the same or other datasets, which enables a practical field protocol that minimises in-field manual labour. This paper tests the new approach, comparing it against traditional methods. Several illumination compensation protocols for high volume ground based data collection are presented based on the results. The findings in this paper are

  10. A method for the retrieval of atomic oxygen density and temperature profiles from ground-based measurements of the O(+)(2D-2P) 7320 A twilight airglow

    Science.gov (United States)

    Fennelly, J. A.; Torr, D. G.; Richards, P. G.; Torr, M. R.; Sharp, W. E.

    1991-01-01

    This paper describes a technique for extracting thermospheric profiles of the atomic-oxygen density and temperature, using ground-based measurements of the O(+)(2D-2P) doublet at 7320 and 7330 A in the twilight airglow. In this method, a local photochemical model is used to calculate the 7320-A intensity; the method also utilizes an iterative inversion procedure based on the Levenberg-Marquardt method described by Press et al. (1986). The results demonstrate that, if the measurements are only limited by errors due to Poisson noise, the altitude profiles of neutral temperature and atomic oxygen concentration can be determined accurately using currently available spectrometers.

  11. Water erosion as a cause for agricultural soil loss: modeling of dynamic processes using high-resolution ground based LiDAR measurements

    Science.gov (United States)

    Oz, Imri; Filin, Sagi; Assouline, Shmuel; Shtain, Zachi; Furman, Alexander

    2016-04-01

    Soil erosion by rainfall and water flow is a frequent natural geomorphic process shaping the earth's surface at various scales. Conventional agrotechnical methods enhance soil erosion at the field scale and are at the origin of the reduction of the upper soil layer depth. This reduction is expressed in two aspects: decrease of soil depth, mainly due to erosion, and the diminution of soil quality, mainly due to the loss of fine material, nutrients and organic matter. Rain events, not even the most extremes, cause detachment and transport of fertile soil rich in organic matter and nutrients away from the fields, filling and plugging drainage channels, blocking infrastructure and contaminating water sources. Empirical, semi-empirical and mechanistic models are available to estimate soil erosion by water flow and sediment transport (e.g. WEPP, KINEROSS, EUROSEM). Calibration of these models requires data measured at high spatial and temporal resolutions. Development of high-resolution measurement tools (for both spatial and temporal aspects) should improve the calibration of functions related to particles detachment and transport from the soil surface. In addition, despite the great impact of different tillage systems on the soil erosion process, the vast majority of the models ignore this fundamental factor. The objective of this study is to apply high-resolution ground-based LiDAR measurements to different tillage schemes and scales to improve the ability of models to accurately describe the process of soil erosion induced by rainfall and overland flow. Ground-based laser scans provide high resolution accurate and subtle geomorphic changes, as well as larger-scale deformations. As such, it allows frequent monitoring, so that even the effect of a single storm can be measured, thus improving the calibration of the erosion models. Preliminary results for scans made in the field show the potential and limitations of ground-based LiDAR, and at this point qualitatively can

  12. Comparing the Cloud Vertical Structure Derived from Several Methods Based on Radiosonde Profiles and Ground-based Remote Sensing Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Costa-Suros, M.; Calbo, J.; Gonzalez, J. A.; Long, Charles N.

    2014-08-27

    The cloud vertical distribution and especially the cloud base height, which is linked to cloud type, is an important characteristic in order to describe the impact of clouds in a changing climate. In this work several methods to estimate the cloud vertical structure (CVS) based on atmospheric sounding profiles are compared, considering number and position of cloud layers, with a ground based system which is taken as a reference: the Active Remote Sensing of Clouds (ARSCL). All methods establish some conditions on the relative humidity, and differ on the use of other variables, the thresholds applied, or the vertical resolution of the profile. In this study these methods are applied to 125 radiosonde profiles acquired at the ARM Southern Great Plains site during all seasons of year 2009 and endorsed by GOES images, to confirm that the cloudiness conditions are homogeneous enough across their trajectory. The overall agreement for the methods ranges between 44-88%; four methods produce total agreements around 85%. Further tests and improvements are applied on one of these methods. In addition, we attempt to make this method suitable for low resolution vertical profiles, which could be useful in atmospheric modeling. The total agreement, even when using low resolution profiles, can be improved up to 91% if the thresholds for a moist layer to become a cloud layer are modified to minimize false negatives with the current data set, thus improving overall agreement.

  13. Global consistency check of AIRS and IASI total CO2 column concentrations using WDCGG ground-based measurements

    Science.gov (United States)

    Diao, Anyuan; Shu, Jiong; Song, Ci; Gao, Wei

    2017-03-01

    This article describes a global consistency check of CO2 satellite retrieval products from the Atmospheric Infrared Sounder (AIRS) and Infrared Atmospheric Sounding Interferometer (IASI) using statistical analysis and data from the World Data Centre for Greenhouse Gases (WDCGG). We use the correlation coefficient (r), relative difference (RD), root mean square errors (RMSE), and mean bias error (MBE) as evaluation indicators for this study. Statistical results show that a linear positive correlation between AIRS/IASI and WDCGG data occurs for most regions around the world. Temporal and spatial variations of these statistical quantities reflect obvious differences between satellite-derived and ground-based data based on geographic position, especially for stations near areas of intense human activities in the Northern Hemisphere. It is noteworthy that there appears to be a very weak correlation between AIRS/IASI data and ten groundbased observation stations in Europe, Asia, and North America. These results indicate that retrieval products from the two satellite-based instruments studied should be used with great caution.

  14. Ground-based, integrated path differential absorption LIDAR measurement of CO2, CH4, and H2O near 1.6  μm.

    Science.gov (United States)

    Wagner, Gerd A; Plusquellic, David F

    2016-08-10

    A ground-based, integrated path, differential absorption light detection and ranging (IPDA LIDAR) system is described and characterized for a series of nighttime studies of CO2, CH4, and H2O. The transmitter is based on an actively stabilized, continuous-wave, single-frequency external-cavity diode laser (ECDL) operating from 1.60 to 1.65 μm. The fixed frequency output of the ECDL is microwave sideband tuned using an electro-optical phase modulator driven by an arbitrary waveform generator and filtered using a confocal cavity to generate a sequence of 123 frequencies separated by 300 MHz. The scan sequence of single sideband frequencies of 600 ns duration covers a 37 GHz region at a spectral scan rate of 10 kHz (100 μs per scan). Simultaneously, an eye-safe backscatter LIDAR system at 1.064 μm is used to monitor the atmospheric boundary layer. IPDA LIDAR measurements of the CO2 and CH4 dry air mixing ratios are presented in comparison with those from a commercial cavity ring-down (CRD) instrument. Differences between the IPDA LIDAR and CRD concentrations in several cases appear to be well correlated with the atmospheric aerosol structure from the backscatter LIDAR measurements. IPDA LIDAR dry air mixing ratios of CO2 and CH4 are determined with fit uncertainties of 2.8 μmol/mol (ppm) for CO2 and 22 nmol/mol (ppb) for CH4 over 30 s measurement periods. For longer averaging times (up to 1200 s), improvements in these detection limits by up to 3-fold are estimated from Allan variance analyses. Two sources of systematic error are identified and methods to remove them are discussed, including speckle interference from wavelength decorrelation and the seed power dependence of amplified spontaneous emission. Accuracies in the dry air retrievals of CO2 and CH4 in a 30 s measurement period are estimated at 4 μmol/mol (1% of ambient levels) and 50 nmol/mol (3%), respectively.

  15. Tropospheric and total ozone columns over Paris (France measured using medium-resolution ground-based solar-absorption Fourier-transform infrared spectroscopy

    Directory of Open Access Journals (Sweden)

    C. Viatte

    2011-05-01

    Full Text Available Ground-based Fourier-transform infrared (FTIR solar absorption spectroscopy is a powerful remote sensing technique providing information on the vertical distribution of various atmospheric constituents. This work presents the first evaluation of a mid-resolution ground-based FTIR to measure tropospheric ozone, independently of stratospheric ozone. This is demonstrated using a new atmospheric observatory (named OASIS for "Observations of the Atmosphere by Solar absorption Infrared Spectroscopy", installed in Créteil (France. Indeed, the information content of OASIS ozone retrievals is clearly sufficient to monitor separately tropospheric (from the surface up to 8 km and stratospheric ozone. Daily mean tropospheric ozone columns derived from the Infrared Atmospheric Sounding Interferometer (IASI and from OASIS measurements have been compared for summer 2009 and a good agreement of −5.6 (±16.1 % is observed. Also, a qualitative comparison between in-situ surface ozone measurements and OASIS data clearly shows OASIS's capacity to monitor seasonal tropospheric ozone variations, as well as ozone pollution episodes in summer 2009 around Paris. Two extreme pollution events were identified (on the 1 July and 6 August 2009 for which ozone partial columns from OASIS and predictions from a regional air-quality model (CHIMERE were compared by respecting temporal and spatial coincidence criteria. Quantitatively, an average bias of 0.2 %, a mean square error deviation of 7.6 %, and a correlation coefficient of 0.91 was found between CHIMERE and OASIS. This demonstrates that a mid-resolution FTIR instrument in ground-based solar absorption geometry is a promising technique for monitoring tropospheric ozone.

  16. Monitoring middle-atmospheric dynamics using independent ground-based wind and temperature measurements at Reunion Island

    Science.gov (United States)

    Le Pichon, Alexis; Hauchecorne, Alain; Keckhut, Philippe; Khaykin, Sergey; Camas, Jean Pierre; Payen, Guillaume; Kämpfer, Niklaus; Rüfenacht, Rolf; Ceranna, Lars

    2016-04-01

    There are very few multi-instrumented sites in the tropics and particularly in the Southern Hemisphere. In these regions, developing atmospheric sounding methods in the middle and high-atmosphere provides valuable means to improve the physical representation of deep convection in atmospheric models (breaking of gravity waves, coupling between layers) and to better characterize large-scale atmospheric perturbations (cyclones, storms, tropical convection). The Maïdo observatory at Reunion Island (21°S, 55°E) offers trans-national access to host experiments or measurement campaigns for high resolution measurements of dynamic atmospheric processes in a wide range of altitude such as Rayleigh lidar, Doppler lidar, Modem radiosonde, or microwave Doppler spectro-radiometer (WIRA, operated by Institute of Applied Physics, University of Bern). Collocated to the existing instruments, a small aperture infrasound array (CEA) has been operating continuously since 2014. In the 0.1-1 Hz band, the coherent energy is dominated by microbarom signals resulting from the non-linear interaction of large swells systems which circulate along the Antarctic Circumpolar Current (ACC). The seasonal transition in the bearings along with the stratospheric general circulation between summer and winter is clearly noted. Interestingly, the semiannual oscillation (SAO) of the zonal stratospheric wind is well captured by infrasound measurements. It manifests by opposite ducts between 30 and 60 km that persist for several weeks during the equinox period. For the ARISE project (http://arise-project.eu/), this multi-technology site opens new perspectives to study the climatology of SAO as well as poorly resolved atmospheric disturbances of the tropical middle atmosphere where data coverage is sparse.

  17. Quantum teleportation with continuous measurements

    Science.gov (United States)

    Greplova, Eliska; Mølmer, Klaus; Andersen, Christian Kraglund

    2016-10-01

    We propose a scheme for quantum teleportation between two qubits, coupled sequentially to a cavity field. An implementation of the scheme is analyzed with superconducting qubits and a transmission line resonator, where measurements are restricted to continuous probing of the field leaking from the resonator rather than instantaneous projective Bell state measurement. We show that the past quantum state formalism S. Gammelmark, B. Julsgaard, and K. Mølmer, Phys. Rev. Lett. 111, 160401 (2013), 10.1103/PhysRevLett.111.160401 can be successfully applied to estimate what would have been the most likely Bell measurement outcome conditioned on our continuous signal record. This information determines which local operation on the target qubit yields the optimal teleportation fidelity. Our results emphasize the significance of applying a detailed analysis of quantum measurements in feedforward protocols in nonideal leaky quantum systems.

  18. Measuring Effective Leaf Area Index, Foliage Profile, and Stand Height in New England Forest Stands Using a Full-Waveform Ground-Based Lidar

    Science.gov (United States)

    Zhao, Feng; Yang, Xiaoyuan; Schull, Mithcell A.; Roman-Colon, Miguel O.; Yao, Tian; Wang, Zhuosen; Zhang, Qingling; Jupp, David L. B.; Lovell, Jenny L.; Culvenor, Darius; Newnham, Glenn J.; Richardson, Andrew D.; Ni-Meister, Wenge; Schaaf, Crystal L.; Woodcock, Curtis E.; Strahler, Alan H.

    2011-01-01

    Effective leaf area index (LAI) retrievals from a scanning, ground-based, near-infrared (1064 nm) lidar that digitizes the full return waveform, the Echidna Validation Instrument (EVI), are in good agreement with those obtained from both hemispherical photography and the Li-Cor LAI-2000 Plant Canopy Analyzer. We conducted trials at 28 plots within six stands of hardwoods and conifers of varying height and stocking densities at Harvard Forest, Massachusetts, Bartlett Experimental Forest, New Hampshire, and Howland Experimental Forest, Maine, in July 2007. Effective LAI values retrieved by four methods, which ranged from 3.42 to 5.25 depending on the site and method, were not significantly different ( b0.1 among four methods). The LAI values also matched published values well. Foliage profiles (leaf area with height) retrieved from the lidar scans, although not independently validated, were consistent with stand structure as observed and as measured by conventional methods. Canopy mean top height, as determined from the foliage profiles, deviated from mean RH100 values obtained from the Lidar Vegetation Imaging Sensor (LVIS) airborne large-footprint lidar system at 27 plots by .0.91 m with RMSE=2.04 m, documenting the ability of the EVI to retrieve stand height. The Echidna Validation Instrument is the first realization of the Echidna lidar concept, devised by Australia's Commonwealth Scientific and Industrial Research Organization (CSIRO), for measuring forest structure using full-waveform, ground-based, scanning lidar.

  19. Measuring Effective Leaf Area Index, Foliage Profile, and Stand Height in New England Forest Stands Using a Full-Waveform Ground-Based Lidar

    Science.gov (United States)

    Zhao, Feng; Yang, Xiaoyuan; Schull, Mithcell A.; Roman-Colon, Miguel O.; Yao, Tian; Wang, Zhuosen; Zhang, Qingling; Jupp, David L. B.; Lovell, Jenny L.; Culvenor, Darius; hide

    2011-01-01

    Effective leaf area index (LAI) retrievals from a scanning, ground-based, near-infrared (1064 nm) lidar that digitizes the full return waveform, the Echidna Validation Instrument (EVI), are in good agreement with those obtained from both hemispherical photography and the Li-Cor LAI-2000 Plant Canopy Analyzer. We conducted trials at 28 plots within six stands of hardwoods and conifers of varying height and stocking densities at Harvard Forest, Massachusetts, Bartlett Experimental Forest, New Hampshire, and Howland Experimental Forest, Maine, in July 2007. Effective LAI values retrieved by four methods, which ranged from 3.42 to 5.25 depending on the site and method, were not significantly different ( b0.1 among four methods). The LAI values also matched published values well. Foliage profiles (leaf area with height) retrieved from the lidar scans, although not independently validated, were consistent with stand structure as observed and as measured by conventional methods. Canopy mean top height, as determined from the foliage profiles, deviated from mean RH100 values obtained from the Lidar Vegetation Imaging Sensor (LVIS) airborne large-footprint lidar system at 27 plots by .0.91 m with RMSE=2.04 m, documenting the ability of the EVI to retrieve stand height. The Echidna Validation Instrument is the first realization of the Echidna lidar concept, devised by Australia's Commonwealth Scientific and Industrial Research Organization (CSIRO), for measuring forest structure using full-waveform, ground-based, scanning lidar.

  20. Validation of middle-atmospheric campaign-based water vapour measured by the ground-based microwave radiometer MIAWARA-C

    Directory of Open Access Journals (Sweden)

    B. Tschanz

    2013-07-01

    Full Text Available Middle atmospheric water vapour can be used as a tracer for dynamical processes. It is mainly measured by satellite instruments and ground-based microwave radiometers. Ground-based instruments capable of measuring middle-atmospheric water vapour are sparse but valuable as they complement satellite measurements, are relatively easy to maintain and have a long lifetime. MIAWARA-C is a ground-based microwave radiometer for middle-atmospheric water vapour designed for use on measurement campaigns for both atmospheric case studies and instrument intercomparisons. MIAWARA-C's retrieval version 1.1 (v1.1 is set up in a such way as to provide a consistent data set even if the instrument is operated from different locations on a campaign basis. The sensitive altitude range for v1.1 extends from 4 hPa (37 km to 0.017 hPa (75 km. For v1.1 the estimated systematic error is approximately 10% for all altitudes. At lower altitudes it is dominated by uncertainties in the calibration, with altitude the influence of spectroscopic and temperature uncertainties increases. The estimated random error increases with altitude from 5 to 25%. MIAWARA-C measures two polarisations of the incident radiation in separate receiver channels, and can therefore provide two measurements of the same air mass with independent instrumental noise. The standard deviation of the difference between the profiles obtained from the two polarisations is in excellent agreement with the estimated random measurement error of v1.1. In this paper, the quality of v1.1 data is assessed for measurements obtained at two different locations: (1 a total of 25 months of measurements in the Arctic (Sodankylä, 67.37° N, 26.63° E and (2 nine months of measurements at mid-latitudes (Zimmerwald, 46.88° N, 7.46° E. For both locations MIAWARA-C's profiles are compared to measurements from the satellite experiments Aura MLS and MIPAS. In addition, comparisons to ACE-FTS and SOFIE are presented for the

  1. Comments to the Article by Thuillier et al. "The Infrared Solar Spectrum Measured by the SOLSPEC Spectrometer Onboard the International Space Station" on the Interpretation of Ground-based Measurements at the Izaña Site

    Science.gov (United States)

    Bolsée, D.; Pereira, N.; Cuevas, E.; García, R.; Redondas, A.

    2016-10-01

    Thuillier et al. ( Solar Phys. 290, 1581, 2015) article compares ATLAS-3 reference composite solar spectral irradiance (SSI) with more recent spatial measurements, as well as ground-based ones, including IRSPERAD. With respect to the IRSPERAD spectrum of Bolsée et al. ( Solar Phys. 289, 2433, 2014), Thuillier et al. (2015) presents an analysis based on a set of meteorological parameters retrieved at the moment of the respective ground-based campaign. This comment is intended to give a new insight to the said analysis which is based upon revised values of the meteorological parameters incorrectly used in Thuillier et al. (2015).

  2. Quality assessment of ground-based microwave measurements of chlorine monoxide, ozone, and nitrogen dioxide from the NDSC radiometer at the plateau de bure

    Energy Technology Data Exchange (ETDEWEB)

    Ricaud, P.; Noe, J. de la [Observatoire Aquitain des Sciences de l' Univers (OASU), Lab. d' Astrodynamique, d' Astrophysique et d' Aeronomie de Bordeaux, Floirac (France); Baron, P. [Noveltis, Toulouse (France)

    2004-07-01

    A ground-based microwave radiometer dedicated to chlorine monoxide (ClO) measurements around 278 GHz has been in operation from December 1993-June 1996 at the Plateau de Bure, France (45 N, 5.9 E, 2500 m altitude). It belongs to the international network for the detection of stratospheric change. A detailed study of both measurements and retrieval schemes has been undertaken. Although dedicated to the measurements of ClO, simultaneous profiles of O{sub 3}, ClO and NO{sub 2}, together with information about the instrumental baseline, have been retrieved using the optimal estimation method. The vertical profiles have been compared with other ground-based microwave data, satellite-borne data and model results. Data quality shows: 1) the weak sensitivity of the instrument that obliges to make time averages over several hours; 2) the site location where measurements of good opacities are possible for only a few days per year; 3) the baseline undulation affecting all the spectra, an issue common to all the microwave instruments; 4) the slow drift of some components affecting frequencies by 3-4 MHz within a couple of months. Nevertheless, when temporally averaging data over a few days, ClO temporal variations (diurnal and over several weeks in winter 1995) from 35-50 km are consistent with model results and satellite data, particularly at the peak altitude around 40 km, although temporal coincidences are infrequent in winter 1995. In addition to ClO, it is possible to obtain O{sub 3} information from 30-60 km whilst the instrument is not optimized at all for this molecule. Retrievals of O{sub 3} are reasonable when compared with model and another ground-based data set, although the lowermost layers are affected by the contamination of baseline remnants. Monthly-averaged diurnal variations of NO{sub 2} are detected at 40 km and appear in agreement with photochemical model results and satellite zonally-averaged data, although the amplitude is weaker than the other data sets

  3. Comparisons of ground-based tropospheric NO2 MAX-DOAS measurements to satellite observations with the aid of an air quality model over the Thessaloniki area, Greece

    Science.gov (United States)

    Drosoglou, Theano; Bais, Alkiviadis F.; Zyrichidou, Irene; Kouremeti, Natalia; Poupkou, Anastasia; Liora, Natalia; Giannaros, Christos; Elissavet Koukouli, Maria; Balis, Dimitris; Melas, Dimitrios

    2017-05-01

    One of the main issues arising from the comparison of ground-based and satellite measurements is the difference in spatial representativeness, which for locations with inhomogeneous spatial distribution of pollutants may lead to significant differences between the two data sets. In order to investigate the spatial variability of tropospheric NO2 within a sub-satellite pixel, a campaign which lasted for about 6 months was held in the greater area of Thessaloniki, Greece. Three multi-axial differential optical absorption spectroscopy (MAX-DOAS) systems performed measurements of tropospheric NO2 columns at different sites representative of urban, suburban and rural conditions. The direct comparison of these ground-based measurements with corresponding products from the Ozone Monitoring Instrument onboard NASA's Aura satellite (OMI/Aura) showed good agreement over the rural and suburban areas, while the comparison with the Global Ozone Monitoring Experiment-2 (GOME-2) onboard EUMETSAT's Meteorological Operational satellites' (MetOp-A and MetOp-B) observations is good only over the rural area. GOME-2A and GOME-2B sensors show an average underestimation of tropospheric NO2 over the urban area of about 10.51 ± 8.32 × 1015 and 10.21 ± 8.87 × 1015 molecules cm-2, respectively. The mean difference between ground-based and OMI observations is significantly lower (6.60 ± 5.71 × 1015 molecules cm-2). The differences found in the comparisons of MAX-DOAS data with the different satellite sensors can be attributed to the higher spatial resolution of OMI, as well as the different overpass times and NO2 retrieval algorithms of the satellites. OMI data were adjusted using factors calculated by an air quality modeling tool, consisting of the Weather Research and Forecasting (WRF) mesoscale meteorological model and the Comprehensive Air Quality Model with Extensions (CAMx) multiscale photochemical transport model. This approach resulted in significant improvement of the

  4. Quality assessment of ground-based microwave measurements of chlorine monoxide, ozone, and nitrogen dioxide from the NDSC radiometer at the Plateau de Bure

    Directory of Open Access Journals (Sweden)

    P. Ricaud

    2004-06-01

    Full Text Available A ground-based microwave radiometer dedicated to chlorine monoxide (ClO measurements around 278GHz has been in operation from December 1993-June 1996 at the Plateau de Bure, France (45° N, 5.9° E, 2500m altitude. It belongs to the international Network for the Detection of Stratospheric Change. A detailed study of both measurements and retrieval schemes has been undertaken. Although dedicated to the measurements of ClO, simultaneous profiles of O3, ClO and NO2, together with information about the instrumental baseline, have been retrieved using the optimal estimation method. The vertical profiles have been compared with other ground-based microwave data, satellite-borne data and model results. Data quality shows: 1 the weak sensitivity of the instrument that obliges to make time averages over several hours; 2 the site location where measurements of good opacities are possible for only a few days per year; 3 the baseline undulation affecting all the spectra, an issue common to all the microwave instruments; 4 the slow drift of some components affecting frequencies by 3-4MHz within a couple of months. Nevertheless, when temporally averaging data over a few days, ClO temporal variations (diurnal and over several weeks in winter 1995 from 35-50km are consistent with model results and satellite data, particularly at the peak altitude around 40km, although temporal coincidences are infrequent in winter 1995. In addition to ClO, it is possible to obtain O3 information from 30-60km whilst the instrument is not optimized at all for this molecule. Retrievals of O3 are reasonable when compared with model and another ground-based data set, although the lowermost layers are affected by the contamination of baseline remnants. Monthly-averaged diurnal variations of NO2 are detected at 40km and appear in agreement with photochemical model results and satellite zonally-averaged data, although the amplitude

  5. Evaluating the quality of ground-based microwave radiometer measurements and retrievals using detrended fluctuation and spectral analysis methods

    CERN Document Server

    Ivanova, K; Shirer, H N; Ackerman, T P; Liljegren, J C; Ausloos, M

    2001-01-01

    Time series both of microwave radiometer brightness temperature measurements at 23.8 and 31.4 GHz and of retrievals of water vapor and liquid water path from these brightness temperatures are evaluated using the detrended fluctuation analysis method. As quantified by the parameter $\\alpha$, this method (i) enables identification of the time scales over which noise dominates the time series and (ii) characterizes the temporal range of correlations in the time series. The more common spectral analysis method is also used to assess the data and its results are compared with those from detrended fluctuation analysis method. The assumption that measurements should have certain scaling properties allows the quality of the measurements to be characterized. The additional assumption that the scaling properties of the measurements of an atmospheric quantity are preserved in a useful retrieval provides a means for evaluating the retrieval itself. Applying these two assumptions to microwave radiometer measurements and r...

  6. Ground-Based Remote or In Situ Measurement of Vertical Profiles of Wind in the Lower Troposphere

    Energy Technology Data Exchange (ETDEWEB)

    Clifton, Andrew; Newman, Jennifer

    2017-02-24

    Knowledge of winds in the lower troposphere is essential for a range of applications, including weather forecasting, transportation, natural hazards, and wind energy. This presentation focuses on the measurement of vertical profiles of wind in the lower troposphere for wind energy applications. This presentation introduces the information that wind energy site development and operations require, how it used, and the benefits and problems of current measurements from in-situ measurements and remote sensing. The development of commercial Doppler wind lidar systems over the last 10 years are shown, along with the lessons learned from this experience. Finally, potential developments in wind profiling aimed at reducing uncertainty and increasing data availability are introduced.

  7. Ground-based FTIR measurements of CO from the Jungfraujoch: characterisation and comparison with in situ surface and MOPITT data

    Directory of Open Access Journals (Sweden)

    B. Barret

    2003-01-01

    Full Text Available CO vertical profiles have been retrieved from solar absorption FTIR spectra recorded at the NDSC station of the Jungfraujoch (46.5º N, 8º E and 3580 m a.s.l. for the period from January 1997 to May 2001. The characterisation of these profiles has been established by an information content analysis and an estimation of the error budgets. A partial validation of the profiles has been performed through comparisons with correlative measurements. The average volume mixing ratios (vmr in the 3 km layer above the station have been compared with coincident surface measurements. The agreement between monthly means from both measurement techniques is very good, with a correlation coefficient of 0.87, and no significant bias observed. The FTIR total columns have also been compared to CO partial columns above 3580 m a.s.l. derived from the MOPITT (Measurement Of Pollution In The Troposphere instrument for the period March 2000 to May 2001. Relative to the FTIR columns, the MOPITT partial columns exhibit a positive bias of 8±8% for daytime and of 4±7% for nighttime measurements.

  8. Comparison of ground-based and Viking Orbiter measurements of Martian water vapor - Variability of the seasonal cycle

    Science.gov (United States)

    Jakosky, B. M.; Barker, E. S.

    1984-03-01

    Earth-based observations of Mars atmospheric water vapor are presented for the 1975-1976, 1977-1978, and 1983 apparitions. Comparisons are made with near-simultaneous spacecraft measurements made from the Viking Orbiter Mars Atmospheric Water Detection experiment during 1976-1978 and with previous earth-based measurements. Differences occur between the behavior in the different years, and may be related to the Mars climate. Measurements during the southern summer in 1969 indicate a factor of three times as much water as is present at this same season in other years. This difference may have resulted from the sublimation of water from the south polar residual cap upon removal of most or all of the CO2 ice present; sublimation of all of the CO2 ice during some years could be a result of a greater thermal load being placed on the cap due to the presence of differing amounts of atmospheric dust.

  9. MAX-DOAS measurements in southern China: retrieval of aerosol extinctions and validation using ground-based in-situ data

    Directory of Open Access Journals (Sweden)

    X. Li

    2010-03-01

    Full Text Available We performed MAX-DOAS measurements during the PRiDe-PRD2006 campaign in the Pearl River Delta region 50 km north of Guangzhou, China, for 4 weeks in June 2006. We used an instrument sampling at 7 different elevation angles between 3° and 90°. During 9 cloud-free days, differential slant column densities (DSCDs of O4 (O2 dimer absorptions between 351 nm and 389 nm were evaluated for 6 elevation angles. Here, we show that radiative transfer modeling of the DSCDS can be used to retrieve the aerosol extinction and the height of the boundary layer. A comparison of the aerosol extinction with simultaneously recorded, ground based nephelometer data shows excellent agreement.

  10. EVALUATION OF OPPORTUNITIES OF SOLAR ENERGETICS ON THE BASIS OF ACCURATE GROUND-BASED MEASUREMENTS OF SOLAR RADIATION

    Directory of Open Access Journals (Sweden)

    Aculinin A.

    2008-04-01

    Full Text Available Expected quantity of a solar energy received by solar panel is estimated on the basis of accurate measurements of solar radiation in Kishinev. Optimal orientation of solar panels and apparent volume of the electric power generated by solar panels are determined.

  11. L-band active/passive time series measurements over a growing season usign the COMRAD ground-based SMAP

    Science.gov (United States)

    Scheduled to launch in October 2014, NASA’s Soil Moisture Active Passive (SMAP) mission will provide high-resolution global mapping of soil moisture and freeze/thaw state every 2-3 days. These new measurements of the hydrological condition of the Earth’s surface will build on data from European Spa...

  12. Coordinated airborne, spaceborne, and ground-based measurements of massive thick aerosol layers during the dry season in southern Africa

    NARCIS (Netherlands)

    Schmid, B.; Redemann, J.; Russell, P.B.; Hobbs, P.V.; Hlavka, D.L.; McGill, M.J.; Holben, B.N.; Welton, E.J.; Campbell, J.R.; Torres, O.; Kahn, R.A.; Diner, D.J.; Helmlinger, M.C.; Chu, D.A.; Robles-Gonzalez, C.; Leeuw, G.de

    2003-01-01

    During the dry season airborne campaign of the Southern African Regional Science Initiative (SAFARI 2000), coordinated observations were made of massive thick aerosol layers. These layers were often dominated by aerosols from biomass burning. We report on airborne Sun photometer measurements of aero

  13. Coordinated airborne, spaceborne, and ground-based measurements of massive thick aerosol layers during the dry season in southern Africa

    NARCIS (Netherlands)

    Schmid, B.; Redemann, J.; Russell, P.B.; Hobbs, P.V.; Hlavka, D.L.; McGill, M.J.; Holben, B.N.; Welton, E.J.; Campbell, J.R.; Torres, O.; Kahn, R.A.; Diner, D.J.; Helmlinger, M.C.; Chu, D.A.; Robles-Gonzalez, C.; Leeuw, G.de

    2003-01-01

    During the dry season airborne campaign of the Southern African Regional Science Initiative (SAFARI 2000), coordinated observations were made of massive thick aerosol layers. These layers were often dominated by aerosols from biomass burning. We report on airborne Sun photometer measurements of

  14. Investigating the Dominant Source for the Generation of Gravity Waves during Indian Summer Monsoon Using Ground-based Measurements

    Institute of Scientific and Technical Information of China (English)

    Debashis NATH; CHEN Wen

    2013-01-01

    Over the tropics,convection,wind shear (i.e.,vertical and horizontal shear of wind and/or geostrophic adjustment comprising spontaneous imbalance in jet streams) and topography are the major sources for the generation of gravity waves.During the summer monsoon season (June-August) over the Indian subcontinent,convection and wind shear coexist.To determine the dominant source of gravity waves during monsoon season,an experiment was conducted using mesosphere-stratosphere-troposphere (MST) radar situated at Gadanki (13.5°N,79.2°E),a tropical observatory in the southern part of the Indian subcontinent.MST radar was operated continuously for 72 h to capture high-frequency gravity waves.During this time,a radiosonde was released every 6 h in addition to the regular launch (once daily to study low-frequency gravity waves) throughout the season.These two data sets were utilized effectively to characterize the jet stream and the associated gravity waves.Data available from collocated instruments along with satellite-based brightness temperature (TBB) data were utilized to characterize the convection in and around Gadanki,Despite the presence of two major sources of gravity wave generation (i.e.,convection and wind shear) during the monsoon season,wind shear (both vertical shear and geostrophic adjustment) contributed the most to the generation of gravity waves on various scales.

  15. Ground based NO2 and O3 measurements by visible spectrometer at Syowa Base (69 deg S), Antarctica

    Science.gov (United States)

    Kondo, Y.; Matthews, W. A.; Johnston, Paul V.; Hayashi, M.; Koike, M.; Iwasaka, Y.; Shimizu, A.; Budiyono, A.; Yamanouchi, T.; Aoki, S.

    1994-01-01

    The column amounts of NO2 and ozone have been measured using visible spectroscopy at Syowa Base (69 deg S) since March 1990. Ozone was also measured at the same location with a Dobson spectrometer as well as ozonesondes being flown regularly. The characteristic features of the seasonal and diurnal variations of NO2 are presented. The column ozone values from the visible spectrometers are compared with the Dobson data. The very low values of NO2 in midwinter and early spring are consistent with the conditions predicted to be needed for heterogeneous ozone destruction in early spring. In late spring and summer of 1991, NO2 amounts were considerably smaller than in 1990, presumably due to the effect of Mt. Pinatubo eruption.

  16. Tropospheric BrO column densities in the Arctic derived from satellite: retrieval and comparison to ground-based measurements

    OpenAIRE

    H Sihler; Platt, U.; Beirle, S.; Marbach, T.; S. Kühl; S. Dörner; Verschaeve, J.; Frieß, U.; Pöhler, D.; Vogel, L.; Sander, R.; T. Wagner

    2012-01-01

    During polar spring, halogen radicals like bromine monoxide (BrO) play an important role in the chemistry of tropospheric ozone destruction. Satellite measurements of the BrO distribution have become a particularly useful tool to investigate this probably natural phenomenon, but the separation of stratospheric and tropospheric partial columns of BrO is challenging. In this study, an algorithm was developed to retrieve tropospheric vertical...

  17. Comparison of Cloud Base Height Derived from a Ground-Based Infrared Cloud Measurement and Two Ceilometers

    Directory of Open Access Journals (Sweden)

    Lei Liu

    2015-01-01

    Full Text Available The cloud base height (CBH derived from the whole-sky infrared cloud-measuring system (WSIRCMS and two ceilometers (Vaisala CL31 and CL51 from November 1, 2011, to June 12, 2012, at the Chinese Meteorological Administration (CMA Beijing Observatory Station are analysed. Significant differences can be found by comparing the measurements of different instruments. More exactly, the cloud occurrence retrieved from CL31 is 3.8% higher than that from CL51, while WSIRCMS data shows 3.6% higher than ceilometers. More than 75.5% of the two ceilometers’ differences are within ±200 m and about 89.5% within ±500 m, while only 30.7% of the differences between WSIRCMS and ceilometers are within ±500 m and about 55.2% within ±1000 m. These differences may be caused by the measurement principles and CBH retrieval algorithm. A combination of a laser ceilometer and an infrared cloud instrument is recommended to improve the capability for determining cloud occurrence and retrieving CBHs.

  18. observation and analysis of the structure of winter precipitation-generating clouds using ground-based sensor measurements

    Science.gov (United States)

    Menéndez José Luis, Marcos; Gómez José Luis, Sánchez; Campano Laura, López; Ortega Eduardo, García; Suances Andrés, Merino; González Sergio, Fernández; Salvador Estíbaliz, Gascón; González Lucía, Hermida

    2015-04-01

    In this study, we used a 28-day database corresponding to December, January and February of 2011/2012 and 2012/2013 campaigns to analyze cloud structure that produced precipitation in the Sierra Norte near Madrid, Spain. We used remote sensing measurements, both active type like the K-band Micro Rain Radar (MRR) and passive type like the Radiometrics MP-3000A multichannel microwave radiometer. Using reflectivity data from the MRR, we determined the important microphysical parameters of Ice Water Content (IWC) and its integrated value over the atmospheric column, or Ice Water Path (IWP). Among the measurements taken by the MP-3000A were Liquid Water Path (LWP) and Integrated Water Vapor (IWV). By representing these data together, sharp declines in LWP and IWV were evident, coincident with IWP increases. This result indicates the ability of a K-band radar to measure the amount of ice in the atmospheric column, simultaneously revealing the Wegener-Bergeron-Findeisen mechanism. We also used a Present Weather Sensor (VPF-730; Biral Ltd., Bristol, UK) to determine the type and amount of precipitation at the surface. With these data, we used regression equations to establish the relationship between visibility and precipitation intensity. In addition, through theoretical precipitation visibility-intensity relationships, we estimated the type of crystal, degree of accretion (riming), and moisture content of fallen snow crystals.

  19. Background CO2 levels and error analysis from ground-based solar absorption IR measurements in central Mexico

    Science.gov (United States)

    Baylon, Jorge L.; Stremme, Wolfgang; Grutter, Michel; Hase, Frank; Blumenstock, Thomas

    2017-07-01

    In this investigation we analyze two common optical configurations to retrieve CO2 total column amounts from solar absorption infrared spectra. The noise errors using either a KBr or a CaF2 beam splitter, a main component of a Fourier transform infrared spectrometer (FTIR), are quantified in order to assess the relative precisions of the measurements. The configuration using a CaF2 beam splitter, as deployed by the instruments which contribute to the Total Carbon Column Observing Network (TCCON), shows a slightly better precision. However, we show that the precisions in XCO2 ( = 0.2095 ṡ size: .7em; color: #68;">Total Column CO2size: .7em; color: #68;">Total Column O2) retrieved from > 96 % of the spectra measured with a KBr beam splitter fall well below 0.2 %. A bias in XCO2 (KBr - CaF2) of +0.56 ± 0.25 ppm was found when using an independent data set as reference. This value, which corresponds to +0.14 ± 0.064 %, is slightly larger than the mean precisions obtained. A 3-year XCO2 time series from FTIR measurements at the high-altitude site of Altzomoni in central Mexico presents clear annual and diurnal cycles, and a trend of +2.2 ppm yr-1 could be determined.

  20. Estimation of leaf area index using ground-based remote sensed NDVI measurements: validation and comparison with two indirect techniques

    Energy Technology Data Exchange (ETDEWEB)

    Pontailler, J.-Y. [Univ. Paris-Sud XI, Dept. d' Ecophysiologie Vegetale, Orsay Cedex (France); Hymus, G.J.; Drake, B.G. [Smithsonian Environmental Research Center, Kennedy Space Center, Florida (United States)

    2003-06-01

    This study took place in an evergreen scrub oak ecosystem in Florida. Vegetation reflectance was measured in situ with a laboratory-made sensor in the red (640-665 nm) and near-infrared (750-950 nm) bands to calculate the normalized difference vegetation index (NDVI) and derive the leaf area index (LAI). LAI estimates from this technique were compared with two other nondestructive techniques, intercepted photosynthetically active radiation (PAR) and hemispherical photographs, in four contrasting 4 m{sup 2} plots in February 2000 and two 4m{sup 2} plots in June 2000. We used Beer's law to derive LAI from PAR interception and gap fraction distribution to derive LAI from photographs. The plots were harvested manually after the measurements to determine a 'true' LAI value and to calculate a light extinction coefficient (k). The technique based on Beer's law was affected by a large variation of the extinction coefficient, owing to the larger impact of branches in winter when LAI was low. Hemispherical photographs provided satisfactory estimates, slightly overestimated in winter because of the impact of branches or underestimated in summer because of foliage clumping. NDVI provided the best fit, showing only saturation in the densest plot (LAI = 3.5). We conclude that in situ measurement of NDVI is an accurate and simple technique to nondestructively assess LAI in experimental plots or in crops if saturation remains acceptable. (author)

  1. Annual variation of strato-mesospheric carbon monoxide measured by ground-based Fourier transform infrared spectrometry

    Directory of Open Access Journals (Sweden)

    V. Velazco

    2007-01-01

    Full Text Available We present long-term time-series of strato-mesospheric CO vertical columns measured from stations located in Antarctica, mid-latitudes and the Arctic, covering the period from 1997–2005. The instrument and the measurement technique allows the separation of tropospheric and strato-mesospheric contributions to the CO column, therefore providing information on the chemistry and dynamics both at low and high altitudes. Data from polar stations show a similar annual variability of strato-mesospheric CO with a strong maximum in late winter and spring. A small enhancement in late summer for some stations, which we call the "summer bulge", can be seen occasionally. Generally, the mid-latitude stations show no significant annual variability of strato-mesospheric CO columns. Measurements were compared with a two-dimensional chemistry-transport model of the middle atmosphere. The annual and latitudinal variations of CO are reproduced well by a model run including thermospheric CO. Comparison with two model scenarios show that the polar winter maximum is due solely to downward transport of thermospheric CO, while CHOx chemistry in the stratosphere could probably contribute to the summer maximum.

  2. Ground based measurements on reflectance towards validating atmospheric correction algorithms on IRS-P6 AWiFS data

    Science.gov (United States)

    Rani Sharma, Anu; Kharol, Shailesh Kumar; Kvs, Badarinath; Roy, P. S.

    In Earth observation, the atmosphere has a non-negligible influence on the visible and infrared radiation which is strong enough to modify the reflected electromagnetic signal and at-target reflectance. Scattering of solar irradiance by atmospheric molecules and aerosol generates path radiance, which increases the apparent surface reflectance over dark surfaces while absorption by aerosols and other molecules in the atmosphere causes loss of brightness to the scene, as recorded by the satellite sensor. In order to derive precise surface reflectance from satellite image data, it is indispensable to apply the atmospheric correction which serves to remove the effects of molecular and aerosol scattering. In the present study, we have implemented a fast atmospheric correction algorithm to IRS-P6 AWiFS satellite data which can effectively retrieve surface reflectance under different atmospheric and surface conditions. The algorithm is based on MODIS climatology products and simplified use of Second Simulation of Satellite Signal in Solar Spectrum (6S) radiative transfer code, which is used to generate look-up-tables (LUTs). The algorithm requires information on aerosol optical depth for correcting the satellite dataset. The proposed method is simple and easy to implement for estimating surface reflectance from the at sensor recorded signal, on a per pixel basis. The atmospheric correction algorithm has been tested for different IRS-P6 AWiFS False color composites (FCC) covering the ICRISAT Farm, Patancheru, Hyderabad, India under varying atmospheric conditions. Ground measurements of surface reflectance representing different land use/land cover, i.e., Red soil, Chick Pea crop, Groundnut crop and Pigeon Pea crop were conducted to validate the algorithm and found a very good match between surface reflectance and atmospherically corrected reflectance for all spectral bands. Further, we aggregated all datasets together and compared the retrieved AWiFS reflectance with

  3. Information operator approach applied to the retrieval of the vertical distribution of atmospheric constituents from ground-based high-resolution FTIR measurements

    Directory of Open Access Journals (Sweden)

    C. Senten

    2012-01-01

    Full Text Available The analysis of high spectral resolution Fourier Transform infrared (FTIR solar absorption spectra is an important issue in remote sensing. If this is done carefully, one can obtain information, not only about the total column abundances, but also about the vertical distribution of various constituents in the atmosphere. This work introduces the application of the information operator approach for extracting vertical profile information from ground-based FTIR measurements. The algorithm is implemented and tested within the well-known retrieval code SFIT2, adapting the optimal estimation method such as to take into account only the significant contributions to the solution. In particular, we demonstrate the feasibility of the method in an application to ground-based FTIR spectra taken in the framework of the Network for the Detection of Atmospheric Composition Change (NDACC at Ile de La Réunion (21° S, 55° E. A thorough comparison is made between the original optimal estimation method, Tikhonov regularization and this alternative retrieval algorithm, regarding information content, retrieval robustness and corresponding full error budget evaluation for the target species ozone (O3, nitrous oxide (N2O, methane (CH4, and carbon monoxide (CO. It is shown that the information operator approach performs well and in most cases yields both a better accuracy and stability than the optimal estimation method. Additionally, the information operator approach has the advantage of being less sensitive to the choice of a priori information than the optimal estimation method and Tikhonov regularization. On the other hand, in general the Tikhonov regularization results seem to be slightly better than the optimal estimation method and information operator approach results when it comes to error budgets and column stability.

  4. The contribution of NOAA/CMDL ground-based measurements to understanding long-term stratospheric changes

    Science.gov (United States)

    Montzka, S. A.; Butler, J. H.; Dutton, G.; Thompson, T. M.; Hall, B.; Mondeel, D. J.; Elkins, J. W.

    2005-05-01

    The El-Nino/Southern-Oscillation (ENSO) dominates interannual climate variability and plays, therefore, a key role in seasonal-to-interannual prediction. Much is known by now about the main physical mechanisms that give rise to and modulate ENSO, but the values of several parameters that enter these mechanisms are an important unknown. We apply Extended Kalman Filtering (EKF) for both model state and parameter estimation in an intermediate, nonlinear, coupled ocean--atmosphere model of ENSO. The coupled model consists of an upper-ocean, reduced-gravity model of the Tropical Pacific and a steady-state atmospheric response to the sea surface temperature (SST). The model errors are assumed to be mainly in the atmospheric wind stress, and assimilated data are equatorial Pacific SSTs. Model behavior is very sensitive to two key parameters: (i) μ, the ocean-atmosphere coupling coefficient between SST and wind stress anomalies; and (ii) δs, the surface-layer coefficient. Previous work has shown that δs determines the period of the model's self-sustained oscillation, while μ measures the degree of nonlinearity. Depending on the values of these parameters, the spatio-temporal pattern of model solutions is either that of a delayed oscillator or of a westward propagating mode. Estimation of these parameters is tested first on synthetic data and allows us to recover the delayed-oscillator mode starting from model parameter values that correspond to the westward-propagating case. Assimilation of SST data from the NCEP-NCAR Reanalysis-2 shows that the parameters can vary on fairly short time scales and switch between values that approximate the two distinct modes of ENSO behavior. Rapid adjustments of these parameters occur, in particular, during strong ENSO events. Ways to apply EKF parameter estimation efficiently to state-of-the-art coupled ocean--atmosphere GCMs will be discussed.

  5. Dust impact on surface solar irradiance assessed with model simulations, satellite observations and ground-based measurements

    Science.gov (United States)

    Kosmopoulos, Panagiotis G.; Kazadzis, Stelios; Taylor, Michael; Athanasopoulou, Eleni; Speyer, Orestis; Raptis, Panagiotis I.; Marinou, Eleni; Proestakis, Emmanouil; Solomos, Stavros; Gerasopoulos, Evangelos; Amiridis, Vassilis; Bais, Alkiviadis; Kontoes, Charalabos

    2017-07-01

    This study assesses the impact of dust on surface solar radiation focussing on an extreme dust event. For this purpose, we exploited the synergy of AERONET measurements and passive and active satellite remote sensing (MODIS and CALIPSO) observations, in conjunction with radiative transfer model (RTM) and chemical transport model (CTM) simulations and the 1-day forecasts from the Copernicus Atmosphere Monitoring Service (CAMS). The area of interest is the eastern Mediterranean where anomalously high aerosol loads were recorded between 30 January and 3 February 2015. The intensity of the event was extremely high, with aerosol optical depth (AOD) reaching 3.5, and optical/microphysical properties suggesting aged dust. RTM and CTM simulations were able to quantify the extent of dust impact on surface irradiances and reveal substantial reduction in solar energy exploitation capacity of PV and CSP installations under this high aerosol load. We found that such an extreme dust event can result in Global Horizontal Irradiance (GHI) attenuation by as much as 40-50 % and a much stronger Direct Normal Irradiance (DNI) decrease (80-90 %), while spectrally this attenuation is distributed to 37 % in the UV region, 33 % in the visible and around 30 % in the infrared. CAMS forecasts provided a reliable available energy assessment (accuracy within 10 % of that obtained from MODIS). Spatially, the dust plume resulted in a zonally averaged reduction of GHI and DNI of the order of 150 W m-2 in southern Greece, and a mean increase of 20 W m-2 in the northern Greece as a result of lower AOD values combined with local atmospheric processes. This analysis of a real-world scenario contributes to the understanding and quantification of the impact range of high aerosol loads on solar energy and the potential for forecasting power generation failures at sunshine-privileged locations where solar power plants exist, are under construction or are being planned.

  6. Measuring Gap Fraction, Element Clumping Index and LAI in Sierra Forest Stands Using a Full-Waveform Ground-Based Lidar

    Science.gov (United States)

    Zhao, Feng; Strahler, Alan H.; Crystal L. Schaaf; Yao, Tian; Yang, Xiaoyuan; Wang, Zhuosen; Schull, Mitchell A.; Roman, Miguel O.; Woodcock, Curtis E.; Olofsson, Pontus; Ni-Meister, Wenge; Jupp, David L. B.; Lovell, Jenny L.; Culvenor, Darius S.; Newnham, Glenn J.

    2012-01-01

    The Echidna Validation Instrument (EVI), a ground-based, near-infrared (1064 nm) scanning lidar, provides gap fraction measurements, element clumping index measurements, effective leaf area index (LAIe) and leaf area index (LAI) measurements that are statistically similar to those from hemispherical photos. In this research, a new method integrating the range dimension is presented for retrieving element clumping index using a unique series of images of gap probability (Pgap) with range from EVI. From these images, we identified connected gap components and found the approximate physical, rather than angular, size of connected gap component. We conducted trials at 30 plots within six conifer stands of varying height and stocking densities in the Sierra National Forest, CA, in August 2008. The element clumping index measurements retrieved from EVI Pgap image series for the hinge angle region are highly consistent (R2=0.866) with those of hemispherical photos. Furthermore, the information contained in connected gap component size profiles does account for the difference between our method and gap-size distribution theory based method, suggesting a new perspective to measure element clumping index with EVI Pgap image series and also a potential advantage of three dimensional Lidar data for element clumping index retrieval. Therefore further exploration is required for better characterization of clumped condition from EVI Pgap image series.

  7. Climatology of Ultra Violet (UV) irradiance as measured through the Belgian ground-based monitoring network during the time period of 1995-2014

    Science.gov (United States)

    Pandey, Praveen; Gillotay, Didier; Depiesse, Cedric

    2016-04-01

    In this study we describe the network of ground-based ultraviolet (UV) radiation monitoring stations in Belgium. The evolution of the entire network, together with the details of measuring instruments is given. The observed cumulative irradiances -UVB, UVA and total solar irradiance (TSI)- over the course of measurement for three stations -a northern (Ostende), central (Uccle) and a southern (Redu)- are shown. The longest series of measurement shown in this study is at Uccle, Brussels, from 1995 till 2014. Thus, the variation of the UV index (UVI), together with the variation of irradiances during summer and winter months at Uccle are shown as a part of this climatological study. The trend of UVB irradiance over the above mentioned three stations is shown. This UVB trend is studied in conjunction with the long-term satellite-based total column ozone value over Belgium, which shows two distinct trends marked by a change point. The total column ozone trend following the change point is positive. It is also seen that the UVB trend is positive for the urban/sub-urban sites: Uccle and Redu. Whereas the UVB trend at Ostende, which is a coastal site, is not positive. A possible explanation of this relation between total column ozone and UVB trend could be associated with aerosols, which is shown in this paper by means of a radiative transfer model based study -as a part of a preliminary investigation. It is seen that the UVI is influenced by the type of aerosols.

  8. An Investigation of Widespread Ozone Damage to the Soybean Crop in the Upper Midwest Determined From Ground-Based and Satellite Measurements

    Science.gov (United States)

    Fishman, Jack; Creilson, John K.; Parker, Peter A.; Ainsworth, Elizabeth A.; Vining, G. Geoffrey; Szarka, John; Booker, Fitzgerald L.; Xu, Xiaojing

    2010-01-01

    Elevated concentrations of ground-level ozone (O3) are frequently measured over farmland regions in many parts of the world. While numerous experimental studies show that O3 can significantly decrease crop productivity, independent verifications of yield losses at current ambient O3 concentrations in rural locations are sparse. In this study, soybean crop yield data during a 5-year period over the Midwest of the United States were combined with ground and satellite O3 measurements to provide evidence that yield losses on the order of 10% could be estimated through the use of a multiple linear regression model. Yield loss trends based on both conventional ground-based instrumentation and satellite-derived tropospheric O3 measurements were statistically significant and were consistent with results obtained from open-top chamber experiments and an open-air experimental facility (SoyFACE, Soybean Free Air Concentration Enrichment) in central Illinois. Our analysis suggests that such losses are a relatively new phenomenon due to the increase in background tropospheric O3 levels over recent decades. Extrapolation of these findings supports previous studies that estimate the global economic loss to the farming community of more than $10 billion annually.

  9. A long-term study of aerosol-cloud interactions and their radiative effect at the Southern Great Plains using ground-based measurements

    Science.gov (United States)

    Sena, Elisa T.; McComiskey, Allison; Feingold, Graham

    2016-09-01

    Empirical estimates of the microphysical response of cloud droplet size distribution to aerosol perturbations are commonly used to constrain aerosol-cloud interactions in climate models. Instead of empirical microphysical estimates, here macroscopic variables are analyzed to address the influence of aerosol particles and meteorological descriptors on instantaneous cloud albedo and the radiative effect of shallow liquid water clouds. Long-term ground-based measurements from the Atmospheric Radiation Measurement (ARM) program over the Southern Great Plains are used. A broad statistical analysis was performed on 14 years of coincident measurements of low clouds, aerosol, and meteorological properties. Two cases representing conflicting results regarding the relationship between the aerosol and the cloud radiative effect were selected and studied in greater detail. Microphysical estimates are shown to be very uncertain and to depend strongly on the methodology, retrieval technique and averaging scale. For this continental site, the results indicate that the influence of the aerosol on the shallow cloud radiative effect and albedo is weak and that macroscopic cloud properties and dynamics play a much larger role in determining the instantaneous cloud radiative effect compared to microphysical effects. On a daily basis, aerosol shows no correlation with cloud radiative properties (correlation = -0.01 ± 0.03), whereas the liquid water path shows a clear signal (correlation = 0.56 ± 0.02).

  10. CO measurements from the ACE-FTS satellite instrument: data analysis and validation using ground-based, airborne and spaceborne observations

    Directory of Open Access Journals (Sweden)

    C. Clerbaux

    2007-10-01

    Full Text Available The Atmospheric Chemistry Experiment (ACE mission was launched in August 2003 to sound the atmosphere by solar occultation. Carbon monoxide (CO, a good tracer of pollution plumes and atmospheric dynamics, is one of the key species provided by the primary instrument, the ACE-Fourier Transform Spectrometer (ACE-FTS. This instrument performs measurements in both the CO 1-0 and 2-0 ro-vibrational bands, from which vertically resolved CO concentration profiles are retrieved, from the mid-troposphere to the thermosphere. This paper presents an updated description of the ACE-FTS version 2.2 CO data product, along with a comprehensive validation of these profiles using available observations (February 2004 to December 2006. We have compared the CO partial columns with ground-based measurements using Fourier transform infrared spectroscopy and millimeter wave radiometry, and the volume mixing ratio profiles with airborne (both high-altitude balloon flight and airplane observations. CO satellite observations provided by nadir-looking instruments (MOPITT and TES as well as limb-viewing remote sensors (MIPAS, SMR and MLS were also compared with the ACE-FTS CO products. We show that the ACE-FTS measurements provide CO profiles with small retrieval errors (better than 5% from the upper troposphere to 40 km, and better than 10% above. These observations agree well with the correlative measurements, considering the rather loose coincidence criteria in some cases. Based on the validation exercise we assess the following uncertainties to the ACE-FTS measurement data: better than 15% in the upper troposphere (8–12 km, than 30% in the lower stratosphere (12–30 km, and than 25% from 30 to 100 km.

  11. CO measurements from the ACE-FTS satellite instrument: data analysis and validation using ground-based, airborne and spaceborne observations

    Directory of Open Access Journals (Sweden)

    C. Clerbaux

    2008-05-01

    Full Text Available The Atmospheric Chemistry Experiment (ACE mission was launched in August 2003 to sound the atmosphere by solar occultation. Carbon monoxide (CO, a good tracer of pollution plumes and atmospheric dynamics, is one of the key species provided by the primary instrument, the ACE-Fourier Transform Spectrometer (ACE-FTS. This instrument performs measurements in both the CO 1-0 and 2-0 ro-vibrational bands, from which vertically resolved CO concentration profiles are retrieved, from the mid-troposphere to the thermosphere. This paper presents an updated description of the ACE-FTS version 2.2 CO data product, along with a comprehensive validation of these profiles using available observations (February 2004 to December 2006. We have compared the CO partial columns with ground-based measurements using Fourier transform infrared spectroscopy and millimeter wave radiometry, and the volume mixing ratio profiles with airborne (both high-altitude balloon flight and airplane observations. CO satellite observations provided by nadir-looking instruments (MOPITT and TES as well as limb-viewing remote sensors (MIPAS, SMR and MLS were also compared with the ACE-FTS CO products. We show that the ACE-FTS measurements provide CO profiles with small retrieval errors (better than 5% from the upper troposphere to 40 km, and better than 10% above. These observations agree well with the correlative measurements, considering the rather loose coincidence criteria in some cases. Based on the validation exercise we assess the following uncertainties to the ACE-FTS measurement data: better than 15% in the upper troposphere (8–12 km, than 30% in the lower stratosphere (12–30 km, and than 25% from 30 to 100 km.

  12. Establishing a long-term, global stratospheric HNO3 data record combining UARS MLS with Aura MLS data by means of ground-based measurements

    Science.gov (United States)

    Fiorucci, I.; Muscari, G.; Froidevaux, L.; Santee, M. L.; de Zafra, R. L.

    2009-12-01

    Nitric Acid (HNO3) is a major player in processes controlling stratospheric ozone depletion. It is a primary reservoir for reactive nitrogen in the stratosphere and has a key role in both the activation and the deactivation of chlorine and bromine species. Since 1993 HNO3 observations have been carried out by means of a Ground-Based Millimeter-wave Spectrometer (GBMS) from a variety of sites in both hemispheres, at polar and mid-latitudes. The GBMS observes a cluster of weak emission lines centered at 269 GHz, with a pass band of 600 MHz and a resolution of 1 MHz. The retrieval of vertical profiles from the pressure-blended multiple line spectra is carried out with an Optimal Estimation Method. The GBMS provides HNO3 profiles from ~15 up to 50 km, with a vertical resolution of 6-8 km and a total uncertainty of ~15%. GBMS HNO3 measurements have been used within GOZCARDS (Global Ozone Chemistry and Related Trace gas Data Records for the Stratosphere), a multi-year MEaSUREs project, aimed at developing a long-term, commonly-formatted Earth system data record (ESDR) of stratospheric constituents relevant to the issues of ozone decline and expected recovery. This data record is based mainly on satellite-derived measurements. Nevertheless, ground-based observations can be critically used for assessing offsets between satellite data sets, as well as to fill gaps in temporal coverage when possible. Since the GBMS has been operated for more than 15 years (with minor instrumental upgrading), the GBMS HNO3 data record is well-suited for the GOZCARDS objectives; it offers a unique opportunity for the cross-calibration of HNO3 measurements from the NASA/JPL Microwave Limb Sounder (MLS) experiments (aboard the Upper Atmosphere Research Satellite (UARS) from 1991 to 1999, and on the Earth Observing System (EOS) Aura mission from 2004 to date). In this study we compare Aura MLS observations and GBMS HNO3 measurements obtained from the Italian Alpine station of Plateau Rosa, during

  13. Summertime tropospheric ozone enhancement associated with a cold front passage due to stratosphere-to-troposphere transport and biomass burning: Simultaneous ground-based lidar and airborne measurements

    Science.gov (United States)

    Kuang, Shi; Newchurch, Michael J.; Johnson, Matthew S.; Wang, Lihua; Burris, John; Pierce, Robert B.; Eloranta, Edwin W.; Pollack, Ilana B.; Graus, Martin; de Gouw, Joost; Warneke, Carsten; Ryerson, Thomas B.; Markovic, Milos Z.; Holloway, John S.; Pour-Biazar, Arastoo; Huang, Guanyu; Liu, Xiong; Feng, Nan

    2017-01-01

    Stratosphere-to-troposphere transport (STT) and biomass burning (BB) are two important natural sources for tropospheric ozone that can result in elevated ozone and air-quality episode events. High-resolution observations of multiple related species are critical for complex ozone source attribution. In this article, we present an analysis of coinciding ground-based and airborne observations, including ozone lidar, ozonesonde, high spectral resolution lidar (HSRL), and multiple airborne in situ measurements, made on 28 and 29 June 2013 during the Southeast Nexus field campaign. The ozone lidar and HSRL reveal detailed ozone and aerosol structures as well as the temporal evolution associated with a cold front passage. The observations also captured two enhanced (+30 ppbv) ozone layers in the free troposphere (FT), which were determined from this study to be caused by a mixture of BB and stratospheric sources. The mechanism for this STT is tropopause folding associated with a cutoff upper level low-pressure system according to the analysis of its potential vorticity structure. The depth of the tropopause fold appears to be shallow for this case compared to events observed in other seasons; however, the impact on lower tropospheric ozone was clearly observed. This event suggests that strong STT may occur in the southeast United States during the summer and can potentially impact lower troposphere during these times. Statistical analysis of the airborne observations of trace gases suggests a coincident influence of BB transport in the FT impacting the vertical structure of ozone during this case study.

  14. Automated ground-based remote sensing measurements of greenhouse gases at the Białystok site in comparison with collocated in situ measurements and model data

    Directory of Open Access Journals (Sweden)

    J. Messerschmidt

    2012-08-01

    Full Text Available The in situ boundary layer measurement site in Białystok (Poland has been upgraded with a fully automated observatory for total greenhouse gas column measurements. The automated Fourier Transform Spectrometer (FTS complements the on-site in situ facilities and FTS solar absorption measurements have been recorded nearly continuously in clear and partially cloudy conditions since March 2009. Here, the FTS measurements are compared with the collocated tall tower data. Additionally, simulations of the Jena CO2 inversion model are evaluated with the Białystok measurement facilities. The simulated seasonal CO2 cycle is slightly overestimated by a mean difference of 1.2 ppm ± 0.9 ppm (1σ in comparison with the FTS measurements. CO2 concentrations at the surface, measured at the tall tower (5 m, 90 m, 300 m, are slightly underestimated by −1.5 ppm, −1.6 ppm, and −0.7 ppm respectively during the day and by −9.1 ppm, −5.9 ppm, and −1.3 ppm during the night. The comparison of the simulated CO2 profiles with low aircraft profiles shows a slight overestimation of the lower troposphere (by up to 1 ppm and an underestimation in near-surface heights until 800 m (by up to 2.5 ppm. In an appendix the automated FTS observatory, including the hardware components and the automation software, is described in its basics.

  15. Methane cross-validation between three Fourier transform spectrometers: SCISAT ACE-FTS, GOSAT TANSO-FTS, and ground-based FTS measurements in the Canadian high Arctic

    Science.gov (United States)

    Holl, Gerrit; Walker, Kaley A.; Conway, Stephanie; Saitoh, Naoko; Boone, Chris D.; Strong, Kimberly; Drummond, James R.

    2016-05-01

    We present cross-validation of remote sensing measurements of methane profiles in the Canadian high Arctic. Accurate and precise measurements of methane are essential to understand quantitatively its role in the climate system and in global change. Here, we show a cross-validation between three data sets: two from spaceborne instruments and one from a ground-based instrument. All are Fourier transform spectrometers (FTSs). We consider the Canadian SCISAT Atmospheric Chemistry Experiment (ACE)-FTS, a solar occultation infrared spectrometer operating since 2004, and the thermal infrared band of the Japanese Greenhouse Gases Observing Satellite (GOSAT) Thermal And Near infrared Sensor for carbon Observation (TANSO)-FTS, a nadir/off-nadir scanning FTS instrument operating at solar and terrestrial infrared wavelengths, since 2009. The ground-based instrument is a Bruker 125HR Fourier transform infrared (FTIR) spectrometer, measuring mid-infrared solar absorption spectra at the Polar Environment Atmospheric Research Laboratory (PEARL) Ridge Laboratory at Eureka, Nunavut (80° N, 86° W) since 2006. For each pair of instruments, measurements are collocated within 500 km and 24 h. An additional collocation criterion based on potential vorticity values was found not to significantly affect differences between measurements. Profiles are regridded to a common vertical grid for each comparison set. To account for differing vertical resolutions, ACE-FTS measurements are smoothed to the resolution of either PEARL-FTS or TANSO-FTS, and PEARL-FTS measurements are smoothed to the TANSO-FTS resolution. Differences for each pair are examined in terms of profile and partial columns. During the period considered, the number of collocations for each pair is large enough to obtain a good sample size (from several hundred to tens of thousands depending on pair and configuration). Considering full profiles, the degrees of freedom for signal (DOFS) are between 0.2 and 0.7 for TANSO-FTS and

  16. Time series analysis of ground-based microwave measurements at K- and V-bands to detect temporal changes in water vapor and temperature profiles

    Science.gov (United States)

    Panda, Sibananda; Sahoo, Swaroop; Pandithurai, Govindan

    2017-01-01

    Ground-based microwave measurements performed at water vapor and oxygen absorption line frequencies are widely used for remote sensing of tropospheric water vapor density and temperature profiles, respectively. Recent work has shown that Bayesian optimal estimation can be used for improving accuracy of radiometer retrieved water vapor and temperature profiles. This paper focuses on using Bayesian optimal estimation along with time series of independent frequency measurements at K- and V-bands. The measurements are used along with statistically significant but short background data sets to retrieve and sense temporal variations and gradients in water vapor and temperature profiles. To study this capability, the Indian Institute of Tropical Meteorology (IITM) deployed a microwave radiometer at Mahabubnagar, Telangana, during August 2011 as part of the Integrated Ground Campaign during the Cloud Aerosol Interaction and Precipitation Enhancement Experiment (CAIPEEX-IGOC). In this study, temperature profiles for the first time have been estimated using short but statistically significant background information so as to improve the accuracy of the retrieved profiles as well as to be able to detect gradients. Estimated water vapor and temperature profiles are compared with those taken from the reanalysis data updated by the Earth System Research Laboratory, National Oceanic and Atmospheric Administration (NOAA), to determine the range of possible errors. Similarly, root mean square errors are evaluated for a month for water vapor and temperature profiles to estimate the accuracy of the retrievals. It is found that water vapor and temperature profiles can be estimated with an acceptable accuracy by using a background information data set compiled over a period of 1 month.

  17. Characterization and error analysis of an operational retrieval algorithm for estimating column ozone and aerosol properties from ground-based ultra-violet irradiance measurements

    Science.gov (United States)

    Taylor, Thomas E.; L'Ecuyer, Tristan; Slusser, James; Stephens, Graeme; Krotkov, Nick; Davis, John; Goering, Christian

    2005-08-01

    Extensive sensitivity and error characteristics of a recently developed optimal estimation retrieval algorithm which simultaneously determines aerosol optical depth (AOD), aerosol single scatter albedo (SSA) and total ozone column (TOC) from ultra-violet irradiances are described. The algorithm inverts measured diffuse and direct irradiances at 7 channels in the UV spectral range obtained from the United States Department of Agriculture's (USDA) UV-B Monitoring and Research Program's (UVMRP) network of 33 ground-based UV-MFRSR instruments to produce aerosol optical properties and TOC at all seven wavelengths. Sensitivity studies of the Tropospheric Ultra-violet/Visible (TUV) radiative transfer model performed for various operating modes (Delta-Eddington versus n-stream Discrete Ordinate) over domains of AOD, SSA, TOC, asymmetry parameter and surface albedo show that the solutions are well constrained. Realistic input error budgets and diagnostic and error outputs from the retrieval are analyzed to demonstrate the atmospheric conditions under which the retrieval provides useful and significant results. After optimizing the algorithm for the USDA site in Panther Junction, Texas the retrieval algorithm was run on a cloud screened set of irradiance measurements for the month of May 2003. Comparisons to independently derived AOD's are favorable with root mean square (RMS) differences of about 3% to 7% at 300nm and less than 1% at 368nm, on May 12 and 22, 2003. This retrieval method will be used to build an aerosol climatology and provide ground-truthing of satellite measurements by running it operationally on the USDA UV network database.

  18. Calibration of Ground-based Lidar instrument

    DEFF Research Database (Denmark)

    Villanueva, Héctor; Gómez Arranz, Paula

    This report presents the result of the lidar calibration performed for the given Ground-based Lidar at DTU’s test site for large wind turbines at Høvsøre, Denmark. Calibration is here understood as the establishment of a relation between the reference wind speed measurements with measurement unce...

  19. Calibration of Ground -based Lidar instrument

    DEFF Research Database (Denmark)

    Villanueva, Héctor; Yordanova, Ginka

    This report presents the result of the lidar calibration performed for the given Ground-based Lidar at DTU’s test site for large wind turbines at Høvsøre, Denmark. Calibration is here understood as the establishment of a relation between the reference wind speed measurements with measurement unce...

  20. Long Term Three-dimensional Model Parameterization and Evaluation By The Use of Combined Continuous Ozone Lidar Profiles, Vertical Wind Profiles and Ground Based Monitors Obtained During The Escompte Campaign

    Science.gov (United States)

    Frejafon, E.; Robin, D.; Kalthoff, N.; Pesch, M.

    ESCOMPTE 2001 is a field experiment that took place in the southeast of France, in order to understand chemical transformation and transport and then to improve numer- ical models devoted to pollution study and forecasting. To achieve this goal, a stand alone ozone LIDAR was installed from June 11th to July 13th in Cadarache, 30 km northeast of the cities of Marseilles and Aix-en-Provence, downwind from the ozone precursors emissions zones in case of sea-breeze development conditions. This full automatic LIDAR provided vertical profiles of ozone concentration and also the mix- ing height dynamics, between 100 m and 2 500 m, with a spatial resolution of less than 100 m and a temporal resolution of 3 minutes. Data obtained with the LIDAR were connected to ground based ozone monitor installed on the same location by the air quality network, in order to evaluate the data quality and to obtain ozone verti- cal profiles from the ground level up to the free troposphere, which is an optimized support for tree-dimensional photochemical models parameterization and evaluation. The ozone diurnal cycles and the daily atmospheric stratification recorded during this month show the fast dynamics during pollution episodes, resulting from combined photochemical and transport effects in case of sea-breeze. They also specify the re- maining ozone vertical structure during non polluted episodes. Such long-term infor- mation is then a consistent support for model parameterization and evaluation, as it can specify the ozone concentration and the PBL dynamics from the beginning to the last end of a pollution episode. This one month vertical ozone profiles, which were compiled in a movie, will be presented and discussed more precisely. The obtained results, combined with continuous vertical wind profiles obtained with a SODAR and a ground based meteorological station installed on the same location, give access to the continuous ozone flux vertical profiles and the PBL dynamics.

  1. NDACC/SAOZ UV-visible total ozone measurements: improved retrieval and comparison with correlative ground-based and satellite observations

    Directory of Open Access Journals (Sweden)

    F. Hendrick

    2011-06-01

    Full Text Available Accurate long-term monitoring of total ozone is one of the most important requirements for identifying possible natural or anthropogenic changes in the composition of the stratosphere. For this purpose, the NDACC (Network for the Detection of Atmospheric Composition Change UV-visible Working Group has made recommendations for improving and homogenizing the retrieval of total ozone columns from twilight zenith-sky visible spectrometers. These instruments, deployed all over the world in about 35 stations, allow measuring total ozone twice daily with limited sensitivity to stratospheric temperature and cloud cover. The NDACC recommendations address both the DOAS spectral parameters and the calculation of air mass factors (AMF needed for the conversion of O3 slant column densities into vertical column amounts. The most important improvement is the use of O3 AMF look-up tables calculated using the TOMS V8 (TV8 O3 profile climatology, that allows accounting for the dependence of the O3 AMF on the seasonal and latitudinal variations of the O3 vertical distribution. To investigate their impact on the retrieved ozone columns, the recommendations have been applied to measurements from the NDACC/SAOZ (Système d'Analyse par Observation Zénithale network. The revised SAOZ ozone data from eight stations deployed at all latitudes have been compared to TOMS, GOME-GDP4, SCIAMACHY-TOSOMI, SCIAMACHY-OL3, OMI-TOMS, and OMI-DOAS satellite overpass observations, as well as to those of collocated Dobson and Brewer instruments at Observatoire de Haute Provence (44° N, 5.5° E and Sodankyla (67° N, 27° E, respectively. A significantly better agreement is obtained between SAOZ and correlative reference ground-based measurements after applying the new O3 AMFs. However, systematic seasonal differences between SAOZ and satellite instruments remain. These are shown to mainly originate from (i a possible

  2. Particulate matter pollution in the coal-producing regions of the Appalachian Mountains: Integrated ground-based measurements and satellite analysis.

    Science.gov (United States)

    Aneja, Viney P; Pillai, Priya R; Isherwood, Aaron; Morgan, Peter; Aneja, Saurabh P

    2017-04-01

    This study integrates the relationship between measured surface concentrations of particulate matter 10 μm or less in diameter (PM10), satellite-derived aerosol optical depth (AOD), and meteorology in Roda, Virginia, during 2008. A multiple regression model was developed to predict the concentrations of particles 2.5 μm or less in diameter (PM2.5) at an additional location in the Appalachia region, Bristol, TN. The model was developed by combining AOD retrievals from Moderate Resolution Imaging Spectro-radiometer (MODIS) sensor on board the EOS Terra and Aqua Satellites with the surface meteorological observations. The multiple regression model predicted PM2.5 (r(2) = 0.62), and the two-variable (AOD-PM2.5) model predicted PM2.5 (r(2) = 0.4). The developed model was validated using particulate matter recordings and meteorology observations from another location in the Appalachia region, Hazard, Kentucky. The model was extrapolated to the Roda, VA, sampling site to predict PM2.5 mass concentrations. We used 10 km x 10 km resolution MODIS 550 nm AOD to predict ground level PM2.5. For the relevant period in 2008, in Roda, VA, the predicted PM2.5 mass concentration is 9.11 ± 5.16 μg m(-3) (mean ± 1SD). This is the first study that couples ground-based Particulate Matter measurements with satellite retrievals to predict surface air pollution at Roda, Virginia. Roda is representative of the Appalachian communities that are commonly located in narrow valleys, or "hollows," where homes are placed directly along the roads in a region of active mountaintop mining operations. Our study suggests that proximity to heavy coal truck traffic subjects these communities to chronic exposure to coal dust and leads us to conclude that there is an urgent need for new regulations to address the primary sources of this particulate matter.

  3. Physical and optical properties of 2010 Eyjafjallajökull volcanic eruption aerosol: ground-based, Lidar and airborne measurements in France

    Directory of Open Access Journals (Sweden)

    M. Hervo

    2012-02-01

    Full Text Available During the Eyjafjallajökull eruption (14 April to 24 May 2010, the volcanic aerosol cloud was observed across Europe by several airborne in situ and ground-based remote-sensing instruments. On 18 and 19 May, layers of depolarizing particles (i.e. non-spherical particles were detected in the free troposphere above the Puy de Dôme station, (PdD, France with a Rayleigh-Mie LIDAR emitting at a wavelength of 355 nm, with parallel and crossed polarization channels. These layers in the free troposphere (FT were also well captured by simulations with the Lagrangian particle dispersion model FLEXPART, which furthermore showed that the ash was eventually entrained into the planetary boundary layer (PBL. Indeed, the ash cloud was then detected and characterized with a comprehensive set of in situ instruments at the Puy de Dôme station (PdD. In agreement with the FLEXPART simulation, up to 65 μg m−3 of particle mass and 2.2 ppb of SO2 were measured at PdD, corresponding to concentrations higher than the 95 percentile of 2 yr of measurements at PdD. Moreover, the number concentration of particles increased to 24 000 cm−3, mainly in the submicronic mode, but a supermicronic mode was also detected with a modal diameter of 2 μm. The resulting optical properties of the ash aerosol were characterized by a low scattering Ångström exponent (0.98, showing the presence of supermicronic particles. For the first time to our knowledge, the combination of in situ optical and physical characterization of the volcanic ash allowed the calculation of the mass-to-extinction ratio (η with no assumptions on the aerosol density. The mass-to-extinction ratio was found to be significantly different from the background boundary layer aerosol (max: 1.57 g m−2 as opposed to 0.33 ± 0.03 g m−2. Using this ratio, ash mass concentration in the volcanic plume derived from LIDAR measurements was found to be 655 ± 23

  4. Physical and optical properties of 2010 Eyjafjallajökull volcanic eruption aerosol: ground-based, Lidar and airborne measurements in France

    Science.gov (United States)

    Hervo, M.; Quennehen, B.; Kristiansen, N. I.; Boulon, J.; Stohl, A.; Fréville, P.; Pichon, J.-M.; Picard, D.; Labazuy, P.; Gouhier, M.; Roger, J.-C.; Colomb, A.; Schwarzenboeck, A.; Sellegri, K.

    2012-02-01

    During the Eyjafjallajökull eruption (14 April to 24 May 2010), the volcanic aerosol cloud was observed across Europe by several airborne in situ and ground-based remote-sensing instruments. On 18 and 19 May, layers of depolarizing particles (i.e. non-spherical particles) were detected in the free troposphere above the Puy de Dôme station, (PdD, France) with a Rayleigh-Mie LIDAR emitting at a wavelength of 355 nm, with parallel and crossed polarization channels. These layers in the free troposphere (FT) were also well captured by simulations with the Lagrangian particle dispersion model FLEXPART, which furthermore showed that the ash was eventually entrained into the planetary boundary layer (PBL). Indeed, the ash cloud was then detected and characterized with a comprehensive set of in situ instruments at the Puy de Dôme station (PdD). In agreement with the FLEXPART simulation, up to 65 μg m-3 of particle mass and 2.2 ppb of SO2 were measured at PdD, corresponding to concentrations higher than the 95 percentile of 2 yr of measurements at PdD. Moreover, the number concentration of particles increased to 24 000 cm-3, mainly in the submicronic mode, but a supermicronic mode was also detected with a modal diameter of 2 μm. The resulting optical properties of the ash aerosol were characterized by a low scattering Ångström exponent (0.98), showing the presence of supermicronic particles. For the first time to our knowledge, the combination of in situ optical and physical characterization of the volcanic ash allowed the calculation of the mass-to-extinction ratio (η) with no assumptions on the aerosol density. The mass-to-extinction ratio was found to be significantly different from the background boundary layer aerosol (max: 1.57 g m-2 as opposed to 0.33 ± 0.03 g m-2). Using this ratio, ash mass concentration in the volcanic plume derived from LIDAR measurements was found to be 655 ± 23 μg m-3 when the plume was located in the FT (3000 m above the sea level

  5. Vertical mass impact and features of Saharan dust intrusions derived from ground-based remote sensing in synergy with airborne in-situ measurements

    Science.gov (United States)

    Córdoba-Jabonero, Carmen; Andrey-Andrés, Javier; Gómez, Laura; Adame, José Antonio; Sorribas, Mar; Navarro-Comas, Mónica; Puentedura, Olga; Cuevas, Emilio; Gil-Ojeda, Manuel

    2016-10-01

    A study of the vertical mass impact of Saharan dust intrusions is presented in this work. Simultaneous ground-based remote-sensing and airborne in-situ measurements performed during the AMISOC-TNF campaign over the Tenerife area (Canary Islands) in summertime from 01 July to 11 August 2013 were used for that purpose. A particular dusty (DD) case, associated to a progressively arriving dust intrusion lasting for two days on 31 July (weak incidence) and 01 August (strong incidence), is especially investigated. AERONET AOD and AEx values were ranging, respectively, from 0.2 to 1.4 and 0.35 to 0.05 along these two days. Vertical particle size distributions within fine and coarse modes (0.16-2.8 μm range) were obtained from aircraft aerosol spectrometer measurements. Extinction profiles and Lidar Ratio (LR) values were derived from MPLNET/Micro Pulse Lidar observations. MAXDOAS measurements were also used to retrieve the height-resolved aerosol extinction for evaluation purposes in comparison to Lidar-derived profiles. The synergy between Lidar observations and airborne measurements is established in terms of the Mass Extinction Efficiency (MEE) to calculate the vertical mass concentration of Saharan dust particles. Both the optical and microphysical profilings show dust particles mostly confined in a layer of 4.3 km thickness from 1.7 to 6 km height. LR ranged between 50 and 55 sr, typical values for Saharan dust particles. In addition, this 2-day dust event mostly affected the Free Troposphere (FT), being less intense in the Boundary Layer (BL). In particular, rather high Total Mass Concentrations (TMC) were found on the stronger DD day (01 August 2013): 124, 70 and 21 μg m-3 were estimated, respectively, at FT and BL altitudes and on the near-surface level. This dust impact was enhanced due to the increase of large particles affecting the FT, but also the BL, likely due to their gravitational settling. However, the use of an assumed averaged MEE value can be

  6. HCOOH distributions from IASI for 2008-2014: comparison with ground-based FTIR measurements and a global chemistry-transport model

    Science.gov (United States)

    Pommier, Matthieu; Clerbaux, Cathy; Coheur, Pierre-François; Mahieu, Emmanuel; Müller, Jean-François; Paton-Walsh, Clare; Stavrakou, Trissevgeni; Vigouroux, Corinne

    2016-07-01

    Formic acid (HCOOH) is one of the most abundant volatile organic compounds in the atmosphere. It is a major contributor to rain acidity in remote areas. There are, however, large uncertainties on the sources and sinks of HCOOH and therefore HCOOH is misrepresented by global chemistry-transport models. This work presents global distributions from 2008 to 2014 as derived from the measurements of the Infrared Atmospheric Sounding Interferometer (IASI), based on conversion factors between brightness temperature differences and representative retrieved total columns over seven regions: Northern Africa, southern Africa, Amazonia, Atlantic, Australia, Pacific, and Russia. The dependence of the measured HCOOH signal on the thermal contrast is taken into account in the conversion method. This conversion presents errors lower than 20 % for total columns ranging between 0.5 and 1 × 1016 molec cm-2 but reaches higher values, up to 78 %, for columns that are lower than 0.3 × 1016 molec cm-2. Signatures from biomass burning events are highlighted, such as in the Southern Hemisphere and in Russia, as well as biogenic emission sources, e.g., over the eastern USA. A comparison between 2008 and 2014 with ground-based Fourier transform infrared spectroscopy (FTIR) measurements obtained at four locations (Maido and Saint-Denis at La Réunion, Jungfraujoch, and Wollongong) is shown. Although IASI columns are found to correlate well with FTIR data, a large bias (> 100 %) is found over the two sites at La Réunion. A better agreement is found at Wollongong with a negligible bias. The comparison also highlights the difficulty of retrieving total columns from IASI measurements over mountainous regions such as Jungfraujoch. A comparison of the retrieved columns with the global chemistry-transport model IMAGESv2 is also presented, showing good representation of the seasonal and interannual cycles over America, Australia, Asia, and Siberia. A global model underestimation of the distribution

  7. CFC-11, CFC-12 and HCFC-22 ground-based remote sensing FTIR measurements at Réunion Island and comparisons with MIPAS/ENVISAT data

    Science.gov (United States)

    Zhou, Minqiang; Vigouroux, Corinne; Langerock, Bavo; Wang, Pucai; Dutton, Geoff; Hermans, Christian; Kumps, Nicolas; Metzger, Jean-Marc; Toon, Geoff; De Mazière, Martine

    2016-11-01

    Profiles of CFC-11 (CCl3F), CFC-12 (CCl2F2) and HCFC-22 (CHF2Cl) have been obtained from Fourier transform infrared (FTIR) solar absorption measurements above the Saint-Denis (St Denis) and Maïdo sites at Réunion Island (21° S, 55° E) with low vertical resolution. FTIR profile retrievals are performed by the well-established SFIT4 program and the detail retrieval strategies along with the systematic/random uncertainties of CFC-11, CFC-12 and HCFC-22 are discussed in this study. The FTIR data of all three species are sensitive to the whole troposphere and the lowermost stratosphere, with the peak sensitivity between 5 and 10 km. The ground-based FTIR data have been compared with the collocated Michelson Interferometer for Passive Atmospheric Sounding (MIPAS/ENVISAT) data and found to be in good agreement: the observed mean relative biases and standard deviations of the differences between the smoothed MIPAS and FTIR partial columns (6-30 km) are (-4.3 and 4.4 %), (-2.9 and 4.6 %) and (-0.7 and 4.8 %) for CFC-11, CFC-12 and HCFC-22, respectively, which are within the combined error budgets from both measurements. The season cycles of CFC-11, CFC-12 and HCFC-22 from FTIR measurements and MIPAS data show a similar variation: concentration is highest in February-April and lowest in August-October. The trends derived from the combined St Denis and Maïdo FTIR time series are -0.86 ± 0.12 and 2.84 ± 0.06 % year-1 for CFC-11 and HCFC-22, respectively, for the period 2004 to 2016, and -0.76 ± 0.05 % year-1 for CFC-12 for 2009 to 2016. These measurements are consistent with the trends observed by the National Oceanic and Atmospheric Administration (NOAA) Global Monitoring Division's (GMD) Halocarbons & other Atmospheric Trace Species Group (HATS) measurements at Samoa (14.2° S, 170.5° W) for CFC-11 (-0.87 ± 0.04 % year-1), but slightly weaker for HCFC-22 (3.46 ± 0.05 %) year-1 and stronger for CFC-12 (-0.60 ± 0.02 % year-1).

  8. Technical Note: New ground-based FTIR measurements at Ile de La Réunion: observations, error analysis, and comparisons with independent data

    Directory of Open Access Journals (Sweden)

    C. Senten

    2008-07-01

    Full Text Available Ground-based high spectral resolution Fourier-transform infrared (FTIR solar absorption spectroscopy is a powerful remote sensing technique to obtain information on the total column abundances and on the vertical distribution of various constituents in the atmosphere. This work presents results from two FTIR measurement campaigns in 2002 and 2004, held at Ile de La Réunion (21° S, 55° E. These campaigns represent the first FTIR observations carried out at a southern (subtropical site. They serve the initiation of regular, long-term FTIR monitoring at this site in the near future. To demonstrate the capabilities of the FTIR measurements at this location for tropospheric and stratospheric monitoring, a detailed report is given on the retrieval strategy, information content and corresponding full error budget evaluation for ozone (O3, methane (CH4, nitrous oxide (N2O, carbon monoxide (CO, ethane (C2H6, hydrogen chloride (HCl, hydrogen fluoride (HF and nitric acid (HNO3 total and partial column retrievals. Moreover, we have made a thorough comparison of the capabilities at sea level altitude (St.-Denis and at 2200 m a.s.l. (Maïdo. It is proved that the performances of the technique are such that the atmospheric variability can be observed, at both locations and in distinct altitude layers. Comparisons with literature and with correlative data from ozone sonde and satellite (i.e., ACE-FTS, HALOE and MOPITT measurements are given to confirm the results. Despite the short time series available at present, we have been able to detect the seasonal variation of CO in the biomass burning season, as well as the impact of particular biomass burning events in Africa and Madagascar on the atmospheric composition above Ile de La Réunion. We also show that differential measurements between St.-Denis and Maïdo provide useful information about the concentrations in the boundary layer.

  9. Measurements of ozone columns in different atmospheric layers over St. Petersburg (Russia) using ground-based FTIR spectrometer in comparison with IASI satellite data

    Science.gov (United States)

    Virolainen, Yana; Eremenko, Maxim; Timofeyev, Yury; Dufour, Gaelle; Poberovsky, Anatoly; Polyakov, Alexander; Imhasin, Hamud

    2014-05-01

    Ozone plays a key role in the photochemical equilibrium of the atmosphere. In the stratosphere, it absorbs harmful ultraviolet solar radiation, in the troposphere it is one of the main air pollutant, greenhouse gases and it is involved in the troposphere's oxidative capacity. In this study, we analyze the ozone variability in different atmospheric layers over St. Petersburg (Russia) measured with the ground-based FTIR spectrometer Bruker 125 HR at the Peterhof station (59.82 N, 29.88 E), and compare it to the satellite Infrared Atmospheric Sounding Interferometer (IASI) ozone retrievals. The FTIR spectrometer has a maximum optical path difference of 180 cm, yielding an apodized spectral resolution of 0.008 cm-1, and has been recording IR spectra since 2009. The high spectral resolution of the registered spectra allows the retrieval of the ozone content in four atmospheric layers. We applied the PROFFIT inversion code to the ozone vertical profiles retrievals in 9.6-µm O3 absorption band and calculated the daily means of ozone partial columns for about 300 days between 2009 and 2013. The IASI instrument onboard the satellite MetOp-A measures the thermal infrared radiation emitted by the Earth's surface and the atmosphere with an apodized spectral resolution of 0.5 cm-1. We used the LISA (Laboratoire Inter-universitaire des Systemes Atmospheriques) retrieval algorithm for deriving the ozone profiles between 0 and 60 km for the region of 2 degrees around the Peterhof station in coincidence with FTIR-observation dates, and averaged profiles daily over all the pixels in the considered region. In this study, we compare and discuss the both types of ozone retrievals: total and partial columns in four atmospheric layers (0-12 km, 12-18 km, 18-25 km, and 25-60 km) for 285 coincident days in 2009-2013. This study was partly supported by Saint-Petersburg State University (project No. 11.0.44.2010) and Russian Foundation for Basic Research (grants No. 12-05-00596, 12

  10. Trends, interannual and seasonal variations of tropospheric CO, C2H6 and HCN columns measured from ground-based FTIR at Lauder and Arrival Heights

    Directory of Open Access Journals (Sweden)

    N. B. Jones

    2012-02-01

    Full Text Available We analyse the carbon monoxide (CO, ethane (C2H6 and hydrogen cyanide (HCN partial columns (from the ground to 12 km derived from measurements by ground-based solar Fourier Transform Spectroscopy at Lauder, New Zealand (45° S, 170° E and at Arrival Heights, Antarctica (78° S, 167° E from 1997 to 2009. Significant negative trends are calculated for all species at both locations: CO (−0.90 ± 0.31% yr−1 and C2H6 (−3.10 ± 1.07% yr−1 at Arrival Heights and CO (−0.87 ± 0.30% yr−1, C2H6 (−2.70 ± 0.94% yr−1 and HCN (−0.93 ± 0.32% yr−1 at Lauder. The uncertainties reflect the 95% confidence limits. The dominant seasonal trends of CO and C2H6 at Lauder, and to a lesser degree at Arrival Heights, occur in austral spring when the correlations between CO and C2H6 and between CO and HCN maximize. Tropospheric columns of all three species are characterised by minima in March–June and maxima from August to November; this season is the southern-hemisphere tropical and sub-tropical biomass burning period. A tropospheric chemistry-climate model is used to simulate CO and C2H6 columns for the period of 1997–2009 using interannually varying biomass burning emissions; the model simulated tropospheric columns of CO and C2H6 compare well with the measured partial columns of both species. However, the model does not re-produce the significant negative trends of observed CO and C2H6 partial columns at both locations. Weak negative trends are calculated from model data. The model sensitivity calculations indicate that long-range transport of biomass burning emissions from Southern Africa and South America dominate the seasonal cycles of CO and C2H6 at both Lauder and Arrival Heights. Interannual variability of these compounds at both locations is largely triggered by variations in biomass burning emissions associated with large-scale El Nino Southern Oscillation and prolonged biomass burning events, e.g. the Australian bush fires.

  11. New-Measurement Techniques to Diagnose Charged Dust and Plasma Layers in the Near-Earth Space Environment Using Ground-Based Ionospheric Heating Facilities

    OpenAIRE

    Mahmoudian, Alireza

    2013-01-01

    Recently, experimental observations have shown that radar echoes from the irregularitysource region associated with mesospheric dusty space plasmas may be modulated by radio wave heating with ground-based ionospheric heating facilities. These experiments show great promise as a diagnostic for the associated dusty plasma in the Near-Earth Space Environment which is believed to have links to global change. This provides an alternative to more complicated and costly space-based observational app...

  12. Multi-year comparison of stratospheric BrO vertical profiles retrieved from SCIAMACHY limb and ground-based UV-visible measurements

    Directory of Open Access Journals (Sweden)

    M. Van Roozendael

    2009-06-01

    Full Text Available Vertical profiles of stratospheric bromine monoxide (BrO retrieved daily from ENVISAT/SCIAMACHY (ENVIronmental SATellite/SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY limb scatter data and from ground-based UV-visible observations performed at Harestua (60° N, 11° E, Observatoire de Haute-Provence (44° N, 5.5° E, and Lauder (45° S, 170° E are compared in the 15–27 km altitude range for the 2002–2006, 2005–2006, and 2002–2005 periods, respectively. At the three stations, the SCIAMACHY and ground-based UV-visible mean profiles agree reasonably well, with relative difference smaller than 23%. When comparing the BrO partial columns, the agreement obtained is good, with mean relative differences smaller than 11% and corresponding standard deviations in the 13–19% range. These comparison results are obtained, however, using different BrO cross sections in SCIAMACHY limb and ground-based UV-visible retrievals. The seasonal variation of the BrO columns at the three stations is consistently captured by both retrievals as well as large BrO column events occurring during the winter and early spring at Harestua which are associated with bromine activation.

  13. ECHAM5-wiso water vapour isotopologues simulation and its comparison with WS-CRDS measurements and retrievals from GOSAT and ground-based FTIR spectra in the atmosphere of Western Siberia

    Directory of Open Access Journals (Sweden)

    K. Gribanov

    2013-01-01

    Full Text Available Water stable isotopes provide integrated tracers of the atmospheric water cycle, affected by changes in air mass origin, non-convective and convective processes and continental recycling. Novel remote sensing and in situ measuring techniques have recently offered opportunities for monitoring atmospheric water vapour isotopic composition. Recently developed infrared laser spectrometers allow for continuous in situ measurements of surface water vapour δDv and δ18Ov. So far, very few intercomparison of measurements conducted using different techniques have been achieved at a given location, due to difficulties intrinsic to the comparison of integrated with local measurements. Nudged simulations conducted with high resolution isotopically enabled GCMs provide a consistent framework for comparison with the different types of observations. Here, we compare simulations conducted with the ECHAM5-wiso model with three types of water vapour isotopic data obtained during summer 2012 at the forest site of Kourovka, Western Siberia: daily mean GOSAT δDv soundings, hourly ground-based FTIR total atmospheric columnar δDv amounts, and in situ hourly Picarro δDv measurements. There is an excellent correlation between observed and predicted δDv at surface while the comparison between water column values derived from the model compares well with FTIR and GOSAT estimates.

    This research was supported by the grant of Russian government under the contract 11.G34.31.0064.

  14. Automated ground-based remote sensing measurements of greenhouse gases at the Bialystok site in comparison with collocated in situ measurements and model data

    NARCIS (Netherlands)

    Messerschmidt, J.; Chen, H.; Deutscher, N. M.; Gerbig, C.; Grupe, P.; Katrynski, K.; Koch, F. -T.; Lavric, J. V.; Notholt, J.; Roedenbeck, C.; Ruhe, W.; Warneke, T.; Weinzierl, C.

    2012-01-01

    The in situ boundary layer measurement site in Bialystok (Poland) has been upgraded with a fully automated observatory for total greenhouse gas column measurements. The automated Fourier Transform Spectrometer (FTS) complements the on-site in situ facilities and FTS solar absorption measurements hav

  15. Automated ground-based remote sensing measurements of greenhouse gases at the Bialystok site in comparison with collocated in situ measurements and model data

    NARCIS (Netherlands)

    Messerschmidt, J.; Chen, H.; Deutscher, N. M.; Gerbig, C.; Grupe, P.; Katrynski, K.; Koch, F. -T.; Lavric, J. V.; Notholt, J.; Roedenbeck, C.; Ruhe, W.; Warneke, T.; Weinzierl, C.

    2012-01-01

    The in situ boundary layer measurement site in Bialystok (Poland) has been upgraded with a fully automated observatory for total greenhouse gas column measurements. The automated Fourier Transform Spectrometer (FTS) complements the on-site in situ facilities and FTS solar absorption measurements hav

  16. Ground-based remote sensing scheme for monitoring aerosol–cloud interactions (discussion)

    NARCIS (Netherlands)

    Sarna, K.; Russchenberg, H.W.J.

    2015-01-01

    A method for continuous observation of aerosol–cloud interactions with ground-based remote sensing instruments is presented. The main goal of this method is to enable the monitoring of cloud microphysical changes due to the changing aerosol concentration. We use high resolution measurements from lid

  17. Measuring business continuity programmes in large organisations.

    Science.gov (United States)

    Green, Christopher

    2014-01-01

    In the field of business continuity management, organisations commit sums of money (often very large sums) to develop and maintain their continuity capability. Despite this, there is almost no measurement of whether this expense offers value for money, or whether it is targeted in the right areas. This paper will explain some methods of measuring components of a business continuity programme. The important outputs from this measurement activity are to demonstrate that an organisation's continuity capability is improving over time, and to identify areas of weakness that should be targeted during future work.

  18. Application of Technical Measures and Software in Constructing Photorealistic 3D Models of Historical Building Using Ground-Based and Aerial (UAV) Digital Images

    Science.gov (United States)

    Zarnowski, Aleksander; Banaszek, Anna; Banaszek, Sebastian

    2015-12-01

    Preparing digital documentation of historical buildings is a form of protecting cultural heritage. Recently there have been several intensive studies using non-metric digital images to construct realistic 3D models of historical buildings. Increasingly often, non-metric digital images are obtained with unmanned aerial vehicles (UAV). Technologies and methods of UAV flights are quite different from traditional photogrammetric approaches. The lack of technical guidelines for using drones inhibits the process of implementing new methods of data acquisition. This paper presents the results of experiments in the use of digital images in the construction of photo-realistic 3D model of a historical building (Raphaelsohns' Sawmill in Olsztyn). The aim of the study at the first stage was to determine the meteorological and technical conditions for the acquisition of aerial and ground-based photographs. At the next stage, the technology of 3D modelling was developed using only ground-based or only aerial non-metric digital images. At the last stage of the study, an experiment was conducted to assess the possibility of 3D modelling with the comprehensive use of aerial (UAV) and ground-based digital photographs in terms of their labour intensity and precision of development. Data integration and automatic photo-realistic 3D construction of the models was done with Pix4Dmapper and Agisoft PhotoScan software Analyses have shown that when certain parameters established in an experiment are kept, the process of developing the stock-taking documentation for a historical building moves from the standards of analogue to digital technology with considerably reduced cost.

  19. Calibration of Ground-based Lidar instrument

    DEFF Research Database (Denmark)

    Yordanova, Ginka; Gómez Arranz, Paula

    This report presents the result of the lidar calibration performed for the given Ground-based Lidar at DTU’s test site for large wind turbines at Høvsøre, Denmark. Calibration is here understood as the establishment of a relation between the reference wind speed measurements with measurement...... uncertainties provided by measurement standard and corresponding lidar wind speed indications with associated measurement uncertainties. The lidar calibration concerns the 10 minute mean wind speed measurements. The comparison of the lidar measurements of the wind direction with that from wind vanes...

  20. Calibration of Ground -based Lidar instrument

    DEFF Research Database (Denmark)

    Villanueva, Héctor; Yordanova, Ginka

    This report presents the result of the lidar calibration performed for the given Ground-based Lidar at DTU’s test site for large wind turbines at Høvsøre, Denmark. Calibration is here understood as the establishment of a relation between the reference wind speed measurements with measurement...... uncertainties provided by measurement standard and corresponding lidar wind speed indications with associated measurement uncertainties. The lidar calibration concerns the 10 minute mean wind speed measurements. The comparison of the lidar measurements of the wind direction with that from wind vanes...

  1. Calibration of Ground-based Lidar instrument

    DEFF Research Database (Denmark)

    Yordanova, Ginka; Gómez Arranz, Paula

    This report presents the result of the lidar calibration performed for the given Ground-based Lidar at DTU’s test site for large wind turbines at Høvsøre, Denmark. Calibration is here understood as the establishment of a relation between the reference wind speed measurements with measurement...... uncertainties provided by measurement standard and corresponding lidar wind speed indications with associated measurement uncertainties. The lidar calibration concerns the 10 minute mean wind speed measurements. The comparison of the lidar measurements of the wind direction with that from wind vanes...

  2. Calibration of Ground -based Lidar instrument

    DEFF Research Database (Denmark)

    Villanueva, Héctor; Georgieva Yankova, Ginka

    This report presents the result of the lidar calibration performed for the given Ground-based Lidar at DTU’s test site for large wind turbines at Høvsøre, Denmark. Calibration is here understood as the establishment of a relation between the reference wind speed measurements with measurement...... uncertainties provided by measurement standard and corresponding lidar wind speed indications with associated measurement uncertainties. The lidar calibration concerns the 10 minute mean wind speed measurements. The comparison of the lidar measurements of the wind direction with that from wind vanes...

  3. Multi-year comparison of stratospheric BrO vertical profiles retrieved from SCIAMACHY limb and ground-based UV-visible measurements

    Directory of Open Access Journals (Sweden)

    F. Hendrick

    2008-12-01

    Full Text Available Vertical profiles of stratospheric bromine monoxide (BrO daily retrieved from ENVISAT/SCIAMACHY (ENVIronmental SATellite/SCanning Imaging Absorption spectrometer for Atmospheric CHartographY limb scatter data and from ground-based UV-visible observations performed at Harestua (60° N, 11° E, Observatoire de Haute-Provence (44° N, 5.5° E, and Lauder (45° S, 170° E are compared in the 15–27 km altitude range for the period from 2002 until 2006. At the three stations, the SCIAMACHY and ground-based UV-visible profiles agree reasonably well, with relative difference smaller than 23% on average. When comparing the BrO partial columns, the agreement obtained is good, with mean relative differences smaller than 11% and corresponding standard deviations in the 13–19% range. The seasonal variation of the BrO columns at the three stations is consistently captured by both retrievals as well as large BrO column events occurring during the winter and early spring at Harestua which are associated with chlorine activation.

  4. Calibration of Ground-based Lidar instrument

    DEFF Research Database (Denmark)

    Yordanova, Ginka; Gómez Arranz, Paula

    This report presents the result of a test of a ground-based lidar of other type. The test was performed at DTU’s test site for large wind turbines at Høvsøre, Denmark. The result as an establishment of a relation between the reference wind speed measurements with measurement uncertainties provided...... by measurement standard and corresponding lidar wind speed indications with associated measurement uncertainties. The comparison of the lidar measurements of the wind direction with that from the wind vanes is also given....

  5. Long-term ground-based microwave radiometric measurements of atmospheric brightness temperature in SKYNET Hefei (31.90N, 117.17E) site

    Science.gov (United States)

    Wang, Zhenzhu; Liu, Dong; Xie, Chenbo; Wang, Bangxin; Zhong, Zhiqing; Wang, Yingjian; Chen, Bin

    2017-02-01

    A dual-frequency, ground-based microwave radiometer (WVR-1100) is used to investigate the behavior of the atmosphere in terms of zenith brightness temperature (TB) at 23.8 and 31.4 GHz respectively. Some experimental findings in SKYNET Hefei site from September 2002 to August 2012 are presented. The cumulative distributions of TB at both frequencies for all sky conditions show four different regions, while only two regions can be identified for clear, lightly cloudy and cloudy condition. Annual cycle of TB at 23.8 GHz is apparently remarkable, indicating the large annual cycle of atmospheric water vapor. Regular seasonal variations of TB are observed with the strongest value in summer and the weakest in winter.

  6. Ground based materials science experiments

    Science.gov (United States)

    Meyer, M. B.; Johnston, J. C.; Glasgow, T. K.

    1988-01-01

    The facilities at the Microgravity Materials Science Laboratory (MMSL) at the Lewis Research Center, created to offer immediate and low-cost access to ground-based testing facilities for industrial, academic, and government researchers, are described. The equipment in the MMSL falls into three categories: (1) devices which emulate some aspect of low gravitational forces, (2) specialized capabilities for 1-g development and refinement of microgravity experiments, and (3) functional duplicates of flight hardware. Equipment diagrams are included.

  7. Ground based materials science experiments

    Science.gov (United States)

    Meyer, M. B.; Johnston, J. C.; Glasgow, T. K.

    1988-01-01

    The facilities at the Microgravity Materials Science Laboratory (MMSL) at the Lewis Research Center, created to offer immediate and low-cost access to ground-based testing facilities for industrial, academic, and government researchers, are described. The equipment in the MMSL falls into three categories: (1) devices which emulate some aspect of low gravitational forces, (2) specialized capabilities for 1-g development and refinement of microgravity experiments, and (3) functional duplicates of flight hardware. Equipment diagrams are included.

  8. Study of aerosol microphysical properties profiles retrieved from ground-based remote sensing and aircraft in-situ measurements during a Saharan dust event

    Science.gov (United States)

    Granados-Muñoz, M. J.; Bravo-Aranda, J. A.; Baumgardner, D.; Guerrero-Rascado, J. L.; Pérez-Ramírez, D.; Navas-Guzmán, F.; Veselovskii, I.; Lyamani, H.; Valenzuela, A.; Olmo, F. J.; Titos, G.; Andrey, J.; Chaikovsky, A.; Dubovik, O.; Gil-Ojeda, M.; Alados-Arboledas, L.

    2015-09-01

    In this work we present an analysis of mineral dust optical and microphysical properties obtained from different retrieval techniques applied to active and passive remote sensing measurements, including a comparison with simultaneous in-situ aircraft measurements. Data were collected in a field campaign performed during a mineral dust outbreak a Granada, Spain, experimental site (37.16° N, 3.61° W, 680 m a.s.l.) on the 27 June 2011. Column-integrated properties are provided by sun- and star-photometry which allows a continuous evaluation of the mineral dust optical properties during both day and night-time. Both the Linear Estimation and AERONET (Aerosol Robotic Network) inversion algorithms are applied for the retrieval of the column-integrated microphysical particle properties. In addition, vertically-resolved microphysical properties are obtained from a multi-wavelength Raman lidar system included in EARLINET (European Aerosol Research Lidar Network), by using both LIRIC (Lidar Radiometer Inversion Code) algorithm during daytime and an algorithm applied to the Raman measurements based on the regularization technique during night-time. LIRIC retrievals reveal several dust layers between 3 and 5 km a.s.l. with volume concentrations of the coarse spheroid mode up to 60 μm3 cm-3. The combined use of the regularization and LIRIC methods reveals the night-to-day evolution of the vertical structure of the mineral dust microphysical properties and offers complementary information to that from column-integrated variables retrieved from passive remote sensing. Additionally, lidar depolarization profiles and LIRIC retrieved volume concentration are compared with aircraft in-situ measurements. This study presents for the first time a comparison of both volume concentration and dust particle polarization ratios measured with in-situ and remote sensing techniques. Results for the depolarization measurements in the dust layer indicate reasonable agreement within the

  9. Comparison of optical-feedback cavity-enhanced absorption spectroscopy and gas chromatography for ground-based and airborne measurements of atmospheric CO concentration

    Science.gov (United States)

    Ventrillard, Irène; Xueref-Remy, Irène; Schmidt, Martina; Yver Kwok, Camille; Faïn, Xavier; Romanini, Daniele

    2017-05-01

    We present the first comparison of carbon monoxide (CO) measurements performed with a portable laser spectrometer that exploits the optical-feedback cavity-enhanced absorption spectroscopy (OF-CEAS) technique, against a high-performance automated gas chromatograph (GC) with a mercuric oxide reduction gas detector (RGD). First, measurements of atmospheric CO mole fraction were continuously collected in a Paris (France) suburb over 1 week. Both instruments showed an excellent agreement within typically 2 ppb (part per billion in volume), fulfilling the World Meteorological Organization (WMO) recommendation for CO inter-laboratory comparison. The compact size and robustness of the OF-CEAS instrument allowed its operation aboard a small aircraft employed for routine tropospheric air analysis over the French Orléans forest area. Direct OF-CEAS real-time CO measurements in tropospheric air were then compared with later analysis of flask samples by the gas chromatograph. Again, a very good agreement was observed. This work establishes that the OF-CEAS laser spectrometer can run unattended at a very high level of sensitivity ( < 1 ppb) and stability without any periodic calibration.

  10. Validation of ACE-FTS v2.2 measurements of HCl, HF, CCl3F and CCl2F2 using space-, balloon- and ground-based instrument observations

    Directory of Open Access Journals (Sweden)

    C. Servais

    2008-10-01

    Full Text Available Hydrogen chloride (HCl and hydrogen fluoride (HF are respectively the main chlorine and fluorine reservoirs in the Earth's stratosphere. Their buildup resulted from the intensive use of man-made halogenated source gases, in particular CFC-11 (CCl3F and CFC-12 (CCl2F2, during the second half of the 20th century. It is important to continue monitoring the evolution of these source gases and reservoirs, in support of the Montreal Protocol and also indirectly of the Kyoto Protocol. The Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS is a space-based instrument that has been performing regular solar occultation measurements of over 30 atmospheric gases since early 2004. In this validation paper, the HCl, HF, CFC-11 and CFC-12 version 2.2 profile data products retrieved from ACE-FTS measurements are evaluated. Volume mixing ratio profiles have been compared to observations made from space by MLS and HALOE, and from stratospheric balloons by SPIRALE, FIRS-2 and Mark-IV. Partial columns derived from the ACE-FTS data were also compared to column measurements from ground-based Fourier transform instruments operated at 12 sites. ACE-FTS data recorded from March 2004 to August 2007 have been used for the comparisons. These data are representative of a variety of atmospheric and chemical situations, with sounded air masses extending from the winter vortex to summer sub-tropical conditions. Typically, the ACE-FTS products are available in the 10–50 km altitude range for HCl and HF, and in the 7–20 and 7–25 km ranges for CFC-11 and -12, respectively. For both reservoirs, comparison results indicate an agreement generally better than 5–10% above 20 km altitude, when accounting for the known offset affecting HALOE measurements of HCl and HF. Larger positive differences are however found for comparisons with single profiles from FIRS-2 and SPIRALE. For CFCs, the few coincident measurements available suggest that the differences

  11. Validation of ACE-FTS v2.2 measurements of HCl, HF, CCl3F and CCl2F2 using space-, balloon- and ground-based instrument observations

    Directory of Open Access Journals (Sweden)

    C. Tétard

    2008-02-01

    Full Text Available Hydrogen chloride (HCl and hydrogen fluoride (HF are respectively the main chlorine and fluorine reservoirs in the Earth's stratosphere. Their buildup resulted from the intensive use of man-made halogenated source gases, in particular CFC-11 (CCl3F and CFC-12 (CCl2F2, during the second half of the 20th century. It is important to continue monitoring the evolution of these source gases and reservoirs, in support of the Montreal Protocol and also indirectly of the Kyoto Protocol. The Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS is a space-based instrument that has been performing regular solar occultation measurements of over 30 atmospheric gases since early 2004. In this validation paper, the HCl, HF, CFC-11 and CFC-12 version 2.2 profile data products retrieved from ACE-FTS measurements are evaluated. Volume mixing ratio profiles have been compared to observations made from space by MLS and HALOE, and from stratospheric balloons by SPIRALE, FIRS-2 and Mark-IV. Partial columns derived from the ACE-FTS data were also compared to column measurements from ground-based Fourier transform instruments operated at 12 sites. ACE-FTS data recorded from March 2004 to August 2007 have been used for the comparisons. These data are representative of a variety of atmospheric and chemical situations, with sounded air masses extending from the winter vortex to summer sub-tropical conditions. Typically, the ACE-FTS products are available in the 10–50 km altitude range for HCl and HF, and in the 7–20 and 7–25 km ranges for CFC-11 and CFC-12, respectively. For both reservoirs, comparison results indicate an agreement generally better than 5–10%, when accounting for the known offset affecting HALOE measurements of HCl and HF. Larger positive differences are however found for comparisons with single profiles from FIRS-2 and SPIRALE. For CFCs, the few coincident measurements available suggest that the differences probably remain

  12. Design of a white-light interferometric measuring system for co-phasing the primary mirror segments of the next generation of ground-based telescope

    Science.gov (United States)

    Song, Helun; Xian, Hao; Jiang, Wenhan; Rao, Changhui; Wang, Shengqian

    2007-12-01

    With the increase of telescope size, the manufacture of monolithic primaries becomes increasingly difficult. Instead, the use of segmented mirrors, where many individual mirrors (the segments) work together to provide good image quality and an aperture equivalent to that of a large monolithic mirror, is considered a more appropriate strategy. But, with the introduction of large telescope mirror comprised of many individual segments, the problem of insuring a smooth continuous mirror surface (co-phased mirrors) becomes critical. One of the main problems arising in the co-phasing of the segmented mirrors telescope is the problem of measurements of the vertical displacements between the individual segments (piston errors). Because of such mirrors to exhibit diffraction-limited performance, a phasing process is required in order to guarantee that the segments have to be positioned with an accuracy of a fraction of a wavelength of the incoming light.The measurements become especially complicated when the piston error is in order of wavelength fractions. To meet the performance capabilities, a novel method for phasing the segmented mirrors optical system is described. The phasing method is based on a high-aperture Michelson interferometer. The use of an interferometric technique allows the measurement of segment misalignment during daytime with high accuracy, which is a major design guideline. The innovation introduced in the optical design of the interferometer is the simultaneous use of both monochromatic and white-light sources that allows the system to measure the piston error with an uncertainty of 6nm in 50µm range. The description about the expected monochromatic and white-light illumination interferograms and the feasibility of the phasing method are presented here.

  13. [Numerical modeling analysis of secondary organic aerosol (SOA) combined with the ground-based measurements in the Pearl River Delta region].

    Science.gov (United States)

    Guo, Xiao-Shuang; Situ, Shu-Ping; Wang, Xue-Mei; Ding, Xiang; Wang, Xin-Ming; Yan, Cai-Qing; Li, Xiao-Ying; Zheng, Mei

    2014-05-01

    Two simulations were conducted with different secondary organic aerosol (SOA) methods-VBS (volatile basis set) approach and SORGAM (secondary organic aerosol model) , which have been coupled in the WRF/Chem (weather research and forecasting model with chemistry) model. Ground-based observation data from 18th to 25th November 2008 were used to examine the model performance of SOA in the Pearl River Delta(PRD)region. The results showed that VBS approach could better reproduce the temporal variation and magnitude of SOA compared with SORGAM, and the mean absolute deviation and correlation coefficient between the observed and the simulated data using VBS approach were -4.88 microg m-3 and 0.91, respectively, while they were -5.32 microg.m-3 and 0. 18 with SORGAM. This is mainly because the VBS approach considers SOA precursors with a wider volatility range and the process of chemical aging in SOA formation. Spatiotemporal distribution of SOA in the PRD from the VBS simulation was also analyzed. The results indicated that the SOA has a significant diurnal variation, and the maximal SOA concentration occurred at noon and in the early afternoon. Because of the transport and the considerable spatial distribution of O3 , the SOA concentrations were different in different PRD cities, and the highest concentration of SOA was observed in the downwind area, including Zhongshan, Zhuhai and Jiangmen.

  14. Analysis of Dual- and Full-Circular Polarimetric SAR Modes for Rice Phenology Monitoring: An Experimental Investigation through Ground-Based Measurements

    Directory of Open Access Journals (Sweden)

    Yuta Izumi

    2017-04-01

    Full Text Available Circularly polarized synthetic aperture radar (CP-SAR is known to be insensitive to polarization mismatch losses caused by the Faraday rotation effect and antenna misalignment. Additionally, the dual-circular polarimetric (DCP mode has proven to have more polarimetric information than that of the corresponding mode of linear polarization, i.e., the dual-linear polarimetric (DLP mode. Owing to these benefits, this paper investigates the feasibility of CP-SAR for rice monitoring. A ground-based CP-radar system was exploited, and C-band anechoic chamber data of a self-cultivated Japanese rice paddy were acquired from germination to ripening stages. Temporal variations of polarimetric observables derived from full-circular polarimetric (FCP and DCP as well as synthetically generated DLP data are analyzed and assessed with regard to their effectiveness in phenology retrieval. Among different observations, the H / α ¯ plane and triangle plots obtained by three scattering components (surface, double-bounce, and volume scattering for both the FCP and DCP modes are confirmed to have reasonable capability in discriminating the relevant intervals of rice growth.

  15. Influence of synoptic meteorological conditions on urban air quality -A study over Hyderabad, India using satellite data and ground based measurements

    Science.gov (United States)

    Rani Sharma, Anu; Kharol, Shailesh Kumar; Kvs, Badarinath

    Urban areas were considered to be a major source of atmospheric pollution due to popula-tion growth, migration, increasing industrialization and energy use particularly in developing countries. The air quality in urban areas is governed by temporal distribution of emissions from various activities in the city, the topography, and the weather, including atmospheric circulation patterns in the region. The extensive coastal belt of India is very vulnerable to low pressure systems in the Bay of Bengal (BoB) or the Arabian Sea. Most importantly, the formation of a low pressure system in the ocean is one of the most prominent weather systems characterized by high atmospheric pressure gradients and wind. In the present study, variation in aerosol properties and ground reaching solar irradiance were analyzed over a tropical urban environment of Hyderabad associated with a low pressure system during December, 3-10, 2008 over Bay of Bengal (BoB). The low pressure system formed over southeast BoB on Decem-ber 4, 2008, moved westwards and lay centered at 23:30 Indian Standard Time. The study area of Hyderabad is located between 17° 10' and 17° 50' N latitude and 78° 10' and 78° 50' E longitude, in the southeastern part of the Indian region, 300 km from the BoB. Synchronous measurements of aerosol optical depth were carried out using handheld MICROTOPS -II in the premises of the National Remote Sensing Centre (NRSC) campus located at Balanagar, Hyderabad. Along with the daytime measurements of AOD500, continuous measurements of the vertical profile of aerosols and planetary boundary layer were carried out using a portable micropulse lidar (MPL) system at 532 nm. An ultraviolet (UV)-B radiometer from Solar Light Company was used to measure UVery in the range 280-320 nm. Continuous measurements of the Particulate-matter (PM) size distributions were performed with GRIMM aerosol spectrom-eter model 1-108. Ground-reaching solar radiation in 310 to 2800 nm broadband was carried

  16. Study of aerosol microphysical properties profiles retrieved from ground-based remote sensing and aircraft in-situ measurements during a Saharan dust event

    Directory of Open Access Journals (Sweden)

    M. J. Granados-Muñoz

    2015-09-01

    Full Text Available In this work we present an analysis of mineral dust optical and microphysical properties obtained from different retrieval techniques applied to active and passive remote sensing measurements, including a comparison with simultaneous in-situ aircraft measurements. Data were collected in a field campaign performed during a mineral dust outbreak a Granada, Spain, experimental site (37.16° N, 3.61° W, 680 m a.s.l. on the 27 June 2011. Column-integrated properties are provided by sun- and star-photometry which allows a continuous evaluation of the mineral dust optical properties during both day and night-time. Both the Linear Estimation and AERONET (Aerosol Robotic Network inversion algorithms are applied for the retrieval of the column-integrated microphysical particle properties. In addition, vertically-resolved microphysical properties are obtained from a multi-wavelength Raman lidar system included in EARLINET (European Aerosol Research Lidar Network, by using both LIRIC (Lidar Radiometer Inversion Code algorithm during daytime and an algorithm applied to the Raman measurements based on the regularization technique during night-time. LIRIC retrievals reveal several dust layers between 3 and 5 km a.s.l. with volume concentrations of the coarse spheroid mode up to 60 μm3 cm−3. The combined use of the regularization and LIRIC methods reveals the night-to-day evolution of the vertical structure of the mineral dust microphysical properties and offers complementary information to that from column-integrated variables retrieved from passive remote sensing. Additionally, lidar depolarization profiles and LIRIC retrieved volume concentration are compared with aircraft in-situ measurements. This study presents for the first time a comparison of both volume concentration and dust particle polarization ratios measured with in-situ and remote sensing techniques. Results for the depolarization measurements in the dust layer indicate reasonable agreement

  17. Ground-Based Global Positioning System (GPS) Meteorology Integrated Precipitable Water Vapor (IPW)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Ground-Based Global Positioning System (GPS) Meteorology Integrated Precipitable Water Vapor (IPW) data set measures atmospheric water vapor using ground-based...

  18. A comparative study of aerosol microphysical properties retrieved from ground-based remote sensing and aircraft in situ measurements during a Saharan dust event

    Science.gov (United States)

    José Granados-Muñoz, María; Bravo-Aranda, Juan Antonio; Baumgardner, Darrel; Guerrero-Rascado, Juan Luis; Pérez-Ramírez, Daniel; Navas-Guzmán, Francisco; Veselovskii, Igor; Lyamani, Hassan; Valenzuela, Antonio; José Olmo, Francisco; Titos, Gloria; Andrey, Javier; Chaikovsky, Anatoli; Dubovik, Oleg; Gil-Ojeda, Manuel; Alados-Arboledas, Lucas

    2016-03-01

    In this work we present an analysis of aerosol microphysical properties during a mineral dust event taking advantage of the combination of different state-of-the-art retrieval techniques applied to active and passive remote sensing measurements and the evaluation of some of those techniques using independent data acquired from in situ aircraft measurements. Data were collected in a field campaign performed during a mineral dust outbreak at the Granada, Spain, experimental site (37.16° N, 3.61° W, 680 m a.s.l.) on 27 June 2011. Column-integrated properties are provided by sun- and star-photometry, which allows for a continuous evaluation of the mineral dust optical properties during both day and nighttime. Both the linear estimation and AERONET (Aerosol Robotic Network) inversion algorithms are applied for the retrieval of the column-integrated microphysical particle properties. In addition, vertically resolved microphysical properties are obtained from a multi-wavelength Raman lidar system included in EARLINET (European Aerosol Research Lidar Network), by using both LIRIC (Lidar Radiometer Inversion Code) algorithm during daytime and an algorithm applied to the Raman measurements based on the regularization technique during nighttime. LIRIC retrievals reveal the presence of dust layers between 3 and 5 km a.s.l. with volume concentrations of the coarse spheroid mode up to 60 µm3 cm-3. The combined use of the regularization and LIRIC methods reveals the night-to-day evolution of the vertical structure of the mineral dust microphysical properties and offers complementary information to that from column-integrated variables retrieved from passive remote sensing. Additionally, lidar depolarization profiles and LIRIC retrieved volume concentration are compared with aircraft in situ measurements. This study presents for the first time a comparison of the total volume concentration retrieved with LIRIC with independent in situ measurements, obtaining agreement within

  19. Continuous greenhouse gas measurements from ice cores

    DEFF Research Database (Denmark)

    Stowasser, Christopher

    several applications of the new continuous data sets: (1) Past atmospheric mixing ratios of methane were measured along ca. 800 m of the deep ice core from the North Greenland Eemian Ice Core Drilling project (NEEM) covering almost the complete last glaciation and deglaciation. The record reveals new sub-millennial...

  20. Exploring microphysical, radiative, dynamic and thermodynamic processes driving fog and low stratus clouds using ground-based Lidar and Radar measurements

    Science.gov (United States)

    Haeffelin, Martial

    2016-04-01

    Radiation fog formation is largely influenced by the chemical composition, size and number concentration of cloud condensation nuclei and by heating/cooling and drying/moistening processes in a shallow mixing layer near the surface. Once a fog water layer is formed, its development and dissipation become predominantly controlled by radiative cooling/heating, turbulent mixing, sedimentation and deposition. Key processes occur in the atmospheric surface layer, directly in contact with the soil and vegetation, and throughout the atmospheric column. Recent publications provide detailed descriptions of these processes for idealized cases using very high-resolution models and proper representation of microphysical processes. Studying these processes in real fog situations require atmospheric profiling capabilities to monitor the temporal evolution of key parameters at several heights (surface, inside the fog, fog top, free troposphere). This could be done with in-situ sensors flown on tethered balloons or drones, during dedicated intensive field campaigns. In addition Backscatter Lidars, Doppler Lidars, Microwave Radiometers and Cloud Doppler Radars can provide more continuous, yet precise monitoring of key parameters throughout the fog life cycle. The presentation will describe how Backscatter Lidars can be used to study the height and kinetics of aerosol activation into fog droplets. Next we will show the potential of Cloud Doppler Radar measurements to characterize the temporal evolution of droplet size, liquid water content, sedimentation and deposition. Contributions from Doppler Lidars and Microwave Radiometers will be discussed. This presentation will conclude on the potential to use Lidar and Radar remote sensing measurements to support operational fog nowcasting.

  1. Analysis of global and regional CO burdens measured from space between 2000 and 2009 and validated by ground-based solar tracking spectrometers

    Directory of Open Access Journals (Sweden)

    L. Yurganov

    2010-04-01

    Full Text Available Interannual variations in AIRS and MOPITT retrieved CO burdens are validated, corrected, and compared with CO emissions from wild fires from the Global Fire Emission Dataset (GFED2 inventory. Validation of daily mean CO total column (TC retrievals from MOPITT version 3 and AIRS version 5 is performed through comparisons with archived TC data from the Network for Detection of Atmospheric Composition Change (NDACC ground-based Fourier Transform Spectrometers (FTS between March 2000 and December 2007. MOPITT V3 retrievals exhibit an increasing temporal bias with a rate of 1.4–1.8% per year; thus far, AIRS retrievals appear to be more stable. For the lowest CO values in the Southern Hemisphere (SH, AIRS TC retrievals overestimate FTS TC by 20%. MOPITT's bias and standard deviation do not depend on CO TC absolute values. Empirical corrections are derived for AIRS and MOPITT retrievals based on the observed annually averaged bias versus the FTS TC. Recently published MOPITT V4 is found to be in a good agreement with MOPITT V3 corrected by us (with exception of 2000–2001 period. With these corrections, CO burdens from AIRS V5 and MOPITT V3 (as well as MOPITT V4 come into good agreement in the mid-latitudes of the Northern Hemisphere (NH and in the tropical belt. In the SH, agreement between AIRS and MOPITT CO burdens is better for the larger CO TC in austral winter and worse in austral summer when CO TC are smaller. Before July 2008, all variations in retrieved CO burden can be explained by changes in fire emissions. After July 2008, global and tropical CO burdens decreased until October before recovering by the beginning of 2009. The NH CO burden also decreased but reached a minimum in January 2009 before starting to recover. The decrease in tropical CO burdens is explained by lower than usual fire emissions in South America and Indonesia. This decrease in tropical emissions also accounts for most of the change in the global CO burden. However, no

  2. Near InfraRed Imaging Spectrograph (NIRIS) for ground-based mesospheric OH(6-2) and O2(0-1) intensity and temperature measurements

    Indian Academy of Sciences (India)

    Ravindra P Singh; Duggirala Pallamraju

    2017-08-01

    This paper describes the development of a new Near InfraRed Imaging Spectrograph (NIRIS) which is capable of simultaneous measurements of OH(6-2) Meinel and O2(0-1) atmospheric band nightglow emission intensities. In this spectrographic technique, rotational line ratios are obtained to derive temperatures corresponding to the emission altitudes of 87 and 94 km. NIRIS has been commissioned for continuous operation from optical aeronomy observatory, Gurushikhar, Mount Abu (24.6∘N, 72.8∘E) since January 2013. NIRIS uses a diffraction grating of 1200 lines mm−1 and 1024×1024 pixels thermoelectrically cooled CCD camera and has a large field-of-view (FOV) of 80∘ along the slit orientation. The data analysis methodology adopted for the derivation of mesospheric temperatures is also described in detail. The observed NIRIS temperatures show good correspondence with satellite (SABER) derived temperatures and exhibit both tidal and gravity waves (GW) like features. From the time taken for phase propagation in the emission intensities between these two altitudes, vertical phase speed of gravity waves, $c_{z}$, is calculated and along with the coherent GW time period ‘$\\tau$’, the vertical wavelength, $\\lambda _{z}$, is obtained. Using large FOV observations from NIRIS, the meridional wavelengths, $\\lambda _{y}$, are also calculated. We have used one year of data to study the possible cause(s) for the occurrences of mesospheric temperature inversions (MTIs). From the statistics obtained for 234 nights, it appears that in situ chemical heating is mainly responsible for the observed MTIs than the vertical propagation of the waves. Thus, this paper describes a novel near infrared imaging spectrograph, its working principle, data analysis method for deriving OH and O2 emission intensities and the corresponding rotational temperatures at these altitudes, derivation of gravity wave parameters ($\\tau$, $c_{z}$, $\\lambda _{z}$, and $\\lambda _{y}$), and results on the

  3. Near InfraRed Imaging Spectrograph (NIRIS) for ground-based mesospheric OH(6-2) and O2(0-1) intensity and temperature measurements

    Science.gov (United States)

    Singh, Ravindra P.; Pallamraju, Duggirala

    2017-08-01

    This paper describes the development of a new Near InfraRed Imaging Spectrograph (NIRIS) which is capable of simultaneous measurements of OH(6-2) Meinel and O2(0-1) atmospheric band nightglow emission intensities. In this spectrographic technique, rotational line ratios are obtained to derive temperatures corresponding to the emission altitudes of 87 and 94 km. NIRIS has been commissioned for continuous operation from optical aeronomy observatory, Gurushikhar, Mount Abu (24.6°N, 72.8°E) since January 2013. NIRIS uses a diffraction grating of 1200 lines mm^{-1} and 1024× 1024 pixels thermoelectrically cooled CCD camera and has a large field-of-view (FOV) of 80° along the slit orientation. The data analysis methodology adopted for the derivation of mesospheric temperatures is also described in detail. The observed NIRIS temperatures show good correspondence with satellite (SABER) derived temperatures and exhibit both tidal and gravity waves (GW) like features. From the time taken for phase propagation in the emission intensities between these two altitudes, vertical phase speed of gravity waves, cz, is calculated and along with the coherent GW time period `τ ', the vertical wavelength, λ z, is obtained. Using large FOV observations from NIRIS, the meridional wavelengths, λ y, are also calculated. We have used one year of data to study the possible cause(s) for the occurrences of mesospheric temperature inversions (MTIs). From the statistics obtained for 234 nights, it appears that in situ chemical heating is mainly responsible for the observed MTIs than the vertical propagation of the waves. Thus, this paper describes a novel near infrared imaging spectrograph, its working principle, data analysis method for deriving OH and O2 emission intensities and the corresponding rotational temperatures at these altitudes, derivation of gravity wave parameters (τ , cz, λ z, and λ y), and results on the statistical study of MTIs that exist in the earth's mesospheric

  4. Continuous greenhouse gas measurements from ice cores

    DEFF Research Database (Denmark)

    Stowasser, Christopher

    -consuming and labor-intensive. This PhD thesis presents the development of a new method for measurements of greenhouse gas mixing ratios from ice cores based on a melting device of a continuous flow analysis (CFA) system. The coupling to a CFA melting device enables time-efficient measurements of high resolution......Ice cores offer the unique possibility to study the history of past atmospheric greenhouse gases over the last 800,000 years, since past atmospheric air is trapped in bubbles in the ice. Since the 1950s, paleo-scientists have developed a variety of techniques to extract the trapped air from...... individual ice core samples, and to measure the mixing ratio of greenhouse gases such as carbon dioxide, methane and nitrous oxide in the extracted air. The discrete measurements have become highly accurate and reproducible, but require relatively large amounts of ice per measured species and are both time...

  5. Landslide kinematics and their potential controls from hourly to decadal timescales: Insights from integrating ground-based InSAR measurements with structural maps and long-term monitoring data

    Science.gov (United States)

    Schulz, William H.; Coe, Jeffrey A.; Ricci, Pier P.; Smoczyk, Gregory M.; Shurtleff, Brett L.; Panosky, Joanna

    2017-05-01

    Knowledge of kinematics is rudimentary for understanding landslide controls and is increasingly valuable with greater spatiotemporal coverage. However, characterizing landslide-wide kinematics is rare, especially at broadly ranging timescales. We used highly detailed kinematic data obtained using photogrammetry and field mapping during the 1980s and 1990s and our 4.3-day ground-based InSAR survey during 2010 to study kinematics of the large, persistently moving Slumgullion landslide. The landslide was segregated into 11 kinematic elements using the 1980s-1990s data and the InSAR survey revealed most of these elements within a few hours. Averages of InSAR-derived displacement point measures within each element agreed well with higher quality in situ observations; averaging was deemed necessary because adverse look angles for the radar coupled with tree cover on the landslide introduced error in the InSAR results. We found that the landslide moved during 2010 at about half its 1985-1990 speed, but slowing was most pronounced at the landslide head. Gradually decreased precipitation and increased temperature between the periods likely resulted in lower groundwater levels and consequent slowing of the landslide. We used GPS survey results and limit-equilibrium modeling to analyze changing stability of the landslide head from observed thinning and found that its stability increased between the two periods, which would result in its slowing, and the consequent slowing of the entire landslide. Additionally, InSAR results suggested movement of kinematic element boundaries in the head region and our field mapping verified that they moved and changed character, likely because of the long-term increasing head stability. On an hourly basis, InSAR results were near error bounds but suggested landslide acceleration in response to seemingly negligible rainfall. Pore-pressure diffusion modeling suggested that rainfall infiltration affected frictional strength only to shallow depths

  6. Landslide kinematics and their potential controls from hourly to decadal timescales: Insights from integrating ground-based InSAR measurements with structural maps and long-term monitoring data

    Science.gov (United States)

    Schulz, William; Coe, Jeffrey A.; Ricci, P.P; Smoczyk, Gregory M.; Shurtleff, Brett L; Panosky, J

    2017-01-01

    Knowledge of kinematics is rudimentary for understanding landslide controls and is increasingly valuable with greater spatiotemporal coverage. However, characterizing landslide-wide kinematics is rare, especially at broadly ranging timescales. We used highly detailed kinematic data obtained using photogrammetry and field mapping during the 1980s and 1990s and our 4.3-day ground-based InSAR survey during 2010 to study kinematics of the large, persistently moving Slumgullion landslide. The landslide was segregated into 11 kinematic elements using the 1980s–1990s data and the InSAR survey revealed most of these elements within a few hours. Averages of InSAR-derived displacement point measures within each element agreed well with higher quality in situ observations; averaging was deemed necessary because adverse look angles for the radar coupled with tree cover on the landslide introduced error in the InSAR results. We found that the landslide moved during 2010 at about half its 1985–1990 speed, but slowing was most pronounced at the landslide head. Gradually decreased precipitation and increased temperature between the periods likely resulted in lower groundwater levels and consequent slowing of the landslide. We used GPS survey results and limit-equilibrium modeling to analyze changing stability of the landslide head from observed thinning and found that its stability increased between the two periods, which would result in its slowing, and the consequent slowing of the entire landslide. Additionally, InSAR results suggested movement of kinematic element boundaries in the head region and our field mapping verified that they moved and changed character, likely because of the long-term increasing head stability. On an hourly basis, InSAR results were near error bounds but suggested landslide acceleration in response to seemingly negligible rainfall. Pore-pressure diffusion modeling suggested that rainfall infiltration affected frictional strength only to shallow

  7. Witnessing Continuous Variable Entanglement with Discrete Measurements

    CERN Document Server

    Schneeloch, James; Howland, Gregory A; Broadbent, Curtis J; Howell, John C

    2012-01-01

    In this Letter, we derive an entropic Einstein-Podolsky-Rosen (EPR) steering inequality for continuous variable (CV) systems using only experimentally measured discrete probability distributions and details of the measurement apparatus. We use this inequality to witness entanglement between the positions and momenta of photon pairs generated in spontaneous parametric downconversion (SPDC). We examine the asymmetry between parties in this inequality, and show that this asymmetry can be used to reduce the technical requirements of experimental setups intended to witness entanglement. Furthermore, we develop a more stringent steering inequality that is symmetric between parties, and use it to witness symmetric EPR steering.

  8. Continuous optical measurement of cold atomic spins

    Science.gov (United States)

    Smith, Gregory A.

    Quantum measurement is one of the most important features of quantum theory. Although mathematical predictions have been verified in great detail, practical implementation has lagged behind. Only recently have people begun to take advantage of quantum measurement properties to produce new technologies. This research helps fill that technological gap by experimental examination of a continuous, optical measurement for an ensemble of cold atomic spins. The essential physics reduces to the interaction between an atomic ensemble and a weak optical field, which has many well known results. While this work demonstrates many novel applications of the interaction, it also shows that the whole can be more than the sum of the individual parts. Starting with basic characterization of the measurement system using laser-cooled caesium atoms, the mean value of a spin component is obtained in real time. In essence, the angular momentum of the atomic spins creates a Faraday-like rotation in the polarization of a laser probe beam. With slight modifications, additional spin components are also observed, and are shown to be in good agreement with predictions. In measuring spin dynamics, it is important to account for effects of the probe on the spin states as well. Capitalizing on this as a resource, the probe-induced ac-Stark shift is used to transform a quasi-classical spin-coherent state into a highly quantum Schrodinger cat type of superposition between two spin states. Finally, this work combines all the previous results to demonstrate how a continuous measurement of the spin with a carefully crafted evolution created in part by the probe, allows for nearly real-time determination of the complete spin density matrix. In a single 1.5 millisecond run, a spin density matrix is determined with fidelities ranging from about 85% to 90% across a wide spectrum of test states.

  9. Ground-based measurements of O3, NO2, OClO, and BrO during the 1987 Antarctic ozone depletion event

    Science.gov (United States)

    Sanders, R. W.; Solomon, S.; Carroll, M. A.; Schmeltekopf, A. L.

    1988-01-01

    Near-ultraviolet absorption spectroscopy in the wavelength range from 330 to 370 nm was used to measure O3, NO2, OClO, and BrO at McMurdo Station (78S) during 1987. Visible absorption measurements of O3, NO2, and OClO were also obtained using the wavelength range from about 403 to 453 nm. These data are described and compared to observations obtained in 1986. It is shown that comparisons of observations in the two wavelength ranges provide a sensitive measure of the altitude where the bulk of atmospheric absorption takes place.

  10. Anthropogenic methane ebullition and continuous flux measurement

    Science.gov (United States)

    Alshboul, Zeyad

    2017-04-01

    Keywords: Methane, Wastewater, Effluent, Anaerobic treatment. Municipal wastewater treatment plants (WWTPs) have shown to emit significant amount of methane during treatment processes. While most of studies cover only in-plant diffusive methane flux, magnitude and sources of methane ebullition have not well assessed. Moreover, the reported results of methane emissions from WWTPs are based on low spatial and temporal resolution. Using a continuous measurement approach of methane flux rate for effluent system and secondary clarifier treatment process at one WWTP in Southwest Germany, our results show that high percentage of methane is emitted by ebullition during the anaerobic treatment (clarification pond) with high spatial and temporal variability. Our measurements revealed that no ebullition is occur at the effluent system. The observed high contribution of methane ebullition to the total in-plant methane emission, emphasizes the need for considering in-plant methane emission by ebullition as well as the spatial and temporal variability of these emissions.

  11. Ground-based FTIR measurements of CO from the Jungfraujoch: characterisation and comparison with in situ surface andMOPITT data

    Directory of Open Access Journals (Sweden)

    E. Mahieu

    2003-09-01

    Full Text Available CO vertical profiles have been retrieved from solar absorption FTIR spectra recorded at the NDSC station of the Jungfraujoch (46.5° N, 8° E and 3580 m a.s.l. for the period from January 1997 to May 2001. The characterisation of these profiles has been established by an information content analysis and an estimation of the error budgets. A partial validation of the profiles has been performed through comparisons with correlative measurements. The average volume mixing ratios (vmr in the 3 km layer above the station have been compared with coincident surface measurements. The agreement between monthly means from both measurement techniques is very good, with a correlation coefficient of 0.87, and no significant bias observed. The FTIR total columns have also been compared to CO partial columns above 3580 m a.s.l. derived from the MOPITT (Measurement Of Pollution In The Troposphere instrument for the period March 2000 to May 2001. Relative to the FTIR columns, the MOPITT partial columns exhibit a positive bias of 8±8% for daytime and of 4±7% for nighttime measurements.

  12. MODIS GPP/NPP for complex land use area: a case study of comparison between MODIS GPP/NPP and ground-based measurements over Korea

    Science.gov (United States)

    Shim, C.

    2013-12-01

    The Moderate Resolution Imaging Radiometer (MODIS) Gross Primary Productivity (GPP)/Net Primary Productivity (NPP) has been widely used for the study on global terrestrial ecosystem and carbon cycle. The current MODIS product with ~ 1 km spatial resolution, however, has limitation on the information on local scale environment (Pinus densiflora) agreed well with -0.2% of bias (1.6 gCm-2yr-1). The fairly comparable values of the MODIS here however, cannot assure the quality of the MOD17 over the complex vegetation area of Korea since the ground measurements except the eddy covariance tower flux measurements are highly inconsistent. Therefore, the comprehensive experiments to represents GPP/NPP over diverse vegetation types for a comparable scale of MODIS with a consistent measurement technique are necessary in order to evaluate the MODIS vegetation productivity data over Korea, which contains a large portion of highly heterogeneous vegetation area.

  13. Pathway to the Galactic Distribution of Planets: Combined Spitzer and Ground-Based Microlens Parallax Measurements of 21 Single-Lens Events

    CERN Document Server

    Novati, S Calchi; Udalski, A; Menzies, J W; Bond, I A; Shvartzvald, Y; Street, R A; Hundertmark, M; Beichman, C A; Yee, J C; Carey, S; Poleski, R; Skowron, J; Kozlowski, S; Mroz, P; Pietrukowicz, P; Pietrzynski, G; Szymanski, M K; Soszynski, I; Ulaczyk, K; Wyrzykowski, L; Albrow, M; Beaulieu, J P; Caldwell, J A R; Cassan, A; Coutures, C; Danielski, C; Prester, D Dominis; Donatowicz, J; Lonvcaric, K; McDougall, A; Morales, J C; Ranc, C; Zhu, W; Abe, F; Barry, R K; Bennett, D P; Bhattacharya, A; Fukunaga, D; Inayama, K; Koshimoto, N; Namba, S; Sumi, T; Suzuki, D; Tristram, P J; Wakiyama, Y; Yonehara, A; Maoz, D; Kaspi, S; Friedmann, M; Bachelet, E; Jaimes, R Figuera; Bramich, D M; Tsapras, Y; Horne, K; Snodgrass, C; Wambsganss, J; Steele, I A; Kains, N; Bozza, V; Dominik, M; Jorgensen, U G; Alsubai, K A; Ciceri, S; D'Ago, G; Haugbolle, T; Hessman, F V; Hinse, T C; Juncher, D; Korhonen, H; Mancini, L; Popovas, A; Rabus, M; Rahvar, S; Scarpetta, G; Schmidt, R W; Skottfelt, J; Southworth, J; Starkey, D; Surdej, J; Wertz, O; Zarucki, M; Gaudi, B S; Pogge, R W; DePoy, D L

    2014-01-01

    We present microlens parallax measurements for 21 (apparently) isolated lenses observed toward the Galactic bulge that were imaged simultaneously from Earth and Spitzer, which was ~1 AU West of Earth in projection. We combine these measurements with a kinematic model of the Galaxy to derive distance estimates for each lens, with error bars that are small compared to the Sun's Galactocentric distance. The ensemble therefore yields a well-defined cumulative distribution of lens distances. In principle it is possible to compare this distribution against a set of planets detected in the same experiment in order to measure the Galactic distribution of planets. Since these Spitzer observations yielded only one planet, this is not yet possible in practice. However, it will become possible as larger samples are accumulated.

  14. Pathway to the Galactic Distribution of Planets: Combined Spitzer and Ground-Based Microlens Parallax Measurements of 21 Single-Lens Events

    Science.gov (United States)

    Novati, S. Calchi; Gould, A.; Udalski, A.; Menzies, J. W.; Bond, I. A.; Shvartzvald, Y.; Street, R. A.; Hundertmark, M.; Beichman, C. A.; Barry, R. K.

    2015-01-01

    We present microlens parallax measurements for 21 (apparently) isolated lenses observed toward the Galactic bulge that were imaged simultaneously from Earth and Spitzer, which was approximately 1 Astronomical Unit west of Earth in projection. We combine these measurements with a kinematic model of the Galaxy to derive distance estimates for each lens, with error bars that are small compared to the Sun's galactocentric distance. The ensemble therefore yields a well-defined cumulative distribution of lens distances. In principle, it is possible to compare this distribution against a set of planets detected in the same experiment in order to measure the Galactic distribution of planets. Since these Spitzer observations yielded only one planet, this is not yet possible in practice. However, it will become possible as larger samples are accumulated.

  15. Trends of HCl, ClONO 2 and HF column abundances from ground-based FTIR measurements in Kiruna (Sweden in comparison with KASIMA model calculations

    Directory of Open Access Journals (Sweden)

    U. Raffalski

    2011-01-01

    Full Text Available Trends of hydrogen chloride (HCl, chlorine nitrate (ClONO2 and hydrogen fluoride (HF column abundances above Kiruna (Northern Sweden, 67.84° N, 20.41° E derived from nearly 14 years (1996–2009 of measurement and model data are presented. The measurements have been performed with a Bruker 120 HR (later Bruker 125 HR Fourier transform infrared (FTIR spectrometer and the model used was KASIMA (KArlsruhe SImulation model of the Middle Atmosphere. To calculate the long-term trends, a linear function combined with an annual cycle was fitted to the data using a least squares method. The precision of the resulting trends was estimated with the so-called bootstrap resampling method. The relative trends were calculated on the basis of the linear fit result on 1 January 2000, 12:00 UTC. For hydrogen fluoride, both model and measurements show a positive trend that seems to decrease in the last few years. This suggests a stabilisation of the HF total column abundance. For the summer data (August to November, the FTIR trend of (+1.25 ± 0.28%/yr agrees within errors with the KASIMA one of (+1.55 ± 0.11%/yr. The trends determined for HCl and ClONO2 are significantly negative over the time period considered here. This corresponds to the expectations because the emission of their precursors (chlorofluorocarbons and hydrochlorofluorocarbons has been restricted in the Montreal Protocol in 1987 and its amendments and adjustments. The relative trend for ClONO2 from the FTIR measurements amounts to (−3.28 ± 0.56%/yr and the one for HCl to (−0.81± 0.23%/yr. KASIMA simulates a weaker decrease: For ClONO2, the result is (−0.90 ± 0.10%/yr and for HCl (−0.17± 0.06%/yr. Part of the difference between measurement and model data can be explained by sampling and the stronger annual cycle indicated by the measurements. There is a factor of about four between the trends of HCl and ClONO2 above Kiruna for both measurement and model data. The absolute values of

  16. Validation and understanding of Moderate Resolution Imaging Spectroradiometer aerosol products (C5) using ground-based measurements from the handheld Sun photometer network in China

    Science.gov (United States)

    Zhanqing Li; Feng Niu; Kwon-Ho Lee; Jinyuan Xin; Wei Min Hao; Bryce L. Nordgren; Yuesi Wang; Pucai Wang

    2007-01-01

    The Moderate Resolution Imaging Spectroradiometer (MODIS) currently provides the most extensive aerosol retrievals on a global basis, but validation is limited to a small number of ground stations. This study presents a comprehensive evaluation of Collection 4 and 5 MODIS aerosol products using ground measurements from the Chinese Sun Hazemeter Network (CSHNET). The...

  17. Ground-based water vapor Raman lidar measurements up to the upper troposphere and lower stratosphere – Part 2: Data analysis and calibration for long-term monitoring

    Directory of Open Access Journals (Sweden)

    T. Leblanc

    2011-08-01

    Full Text Available The well-recognized, key role of water vapor in the upper troposphere and lower stratosphere (UT/LS and the scarcity of high-quality, long-term measurements triggered the development by JPL of a powerful Raman lidar to try to meet these needs. This development started in 2005 and was endorsed by the Network for the Detection of Atmospheric Composition Change (NDACC and the validation program for the EOS-Aura satellite. In this paper we review all the stages of the instrument data acquisition, data analysis, profile retrieval and calibration procedures, as well as selected results from the recent validation campaign MOHAVE-2009 (Measurements of Humidity in the Atmosphere and Validation Experiments. The stages in the instrumental development and the conclusions from three validation campaigns (including MOHAVE-2009 are presented in details in a companion paper (McDermid et al., 2011. In its current configuration, the lidar demonstrated capability to measure water vapor profiles from ~1 km above the ground to the lower stratosphere with an estimated accuracy of 5 %. Since 2005, nearly 1000 profiles have been routinely measured with a precision of 10 % or better near 13 km. Since 2009, the profiles have typically reached 14 km for 1 h integration times and 1.5 km vertical resolution, and can reach 21 km for 6-h integration times using degraded vertical resolutions.

  18. Characterizing the seasonal cycle and vertical structure of ozone in Paris, France using four years of ground based LIDAR measurements in the lowermost troposphere

    Science.gov (United States)

    Klein, Amélie; Ancellet, Gérard; Ravetta, François; Thomas, Jennie L.; Pazmino, Andrea

    2017-10-01

    Systematic ozone LIDAR measurements were completed during a 4 year period (2011-2014) in Paris, France to study the seasonal variability of the vertical structure of ozone in the urban boundary layer. In addition, we use in-situ measurements from the surface air quality network that is located in Paris (AIRPARIF). Specifically, we use ozone and NO2 measurements made at two urban stations: Paris13 (60 m ASL) and the Eiffel Tower (310 m ASL) to validate and interpret the LIDAR profiles. Remote sensed tropospheric NO2 integrated columns from the SAOZ instrument located in Paris are also used to interpret ozone measurements. Comparison between ozone LIDAR measurements averaged from 250 m to 500 m and the Eiffel Tower in-situ measurements shows that the accuracy of the LIDAR (originally ±14 μg·m-3) is significantly improved (±7 μg·m-3) when a small telescope with a wide angular aperture is used. Results for the seasonal cycle of the ozone vertical gradient are found to be similar using two methods: (1) measured differences between AIRPARIF stations with measurements at 60 m ASL and 310 m ASL and (2) using LIDAR profiles from 300 m to the top of the Planetary Boundary Layer (PBL). Ozone concentrations measured by the LIDAR increase with altitude within the PBL, with a steeper gradient in winter (60 μg·m-3·km-1) and a less strong gradient in summer (20 μg·m-3·km-1). Results show that in winter, there is a sharp positive gradient of ozone at the surface, which is explained by ozone titration by NO combined with increased atmospheric stability in winter. In the afternoon during summer, photochemistry and vertical mixing are large enough to compensate for ozone titration near the surface, where NOx is emitted, and there is no gradient in ozone observed. In contrast, in the summer during the morning, ozone has a sharper positive vertical gradient similar to the winter values. Comparison of the vertically averaged ozone concentrations up to (0-3 km) and urban layer

  19. Retrieval of HCFC-142b (CH3CClF2) from ground-based high-resolution infrared solar spectra: Atmospheric increase since 1989 and comparison with surface and satellite measurements

    Science.gov (United States)

    Mahieu, Emmanuel; Lejeune, Bernard; Bovy, Benoît; Servais, Christian; Toon, Geoffrey C.; Bernath, Peter F.; Boone, Christopher D.; Walker, Kaley A.; Reimann, Stefan; Vollmer, Martin K.; O'Doherty, Simon

    2017-01-01

    We have developed an approach for retrieving HCFC-142b (CH3CClF2) from ground-based high-resolution infrared solar spectra, using its ν7 band Q branch in the 900-906 cm-1 interval. Interferences by HNO3, CO2 and H2O have to be accounted for. Application of this approach to observations recorded within the framework of long-term monitoring activities carried out at the northern mid-latitude, high-altitude Jungfraujoch station in Switzerland (46.5°N, 8.0°E, 3580 m above sea level) has provided a total column times series spanning the 1989 to mid-2015 time period. A fit to the HCFC-142b daily mean total column time series shows a statistically-significant long-term trend of (1.23±0.08×1013 molec cm-2) per year from 2000 to 2010, at the 2-σ confidence level. This corresponds to a significant atmospheric accumulation of (0.94±0.06) ppt (1 ppt=1/1012) per year for the mean tropospheric mixing ratio, at the 2-σ confidence level. Over the subsequent time period (2010-2014), we note a significant slowing down in the HCFC-142b buildup. Our ground-based FTIR (Fourier Transform Infrared) results are compared with relevant data sets derived from surface in situ measurements at the Mace Head and Jungfraujoch sites of the AGAGE (Advanced Global Atmospheric Gases Experiment) network and from occultation measurements by the ACE-FTS (Atmospheric Chemistry Experiment-Fourier Transform Spectrometer) instrument on-board the SCISAT satellite.

  20. Ground-based water vapor Raman lidar measurements up to the upper troposphere and lower stratosphere – Part 1: Instrument development, optimization, and validation

    Directory of Open Access Journals (Sweden)

    I. S. McDermid

    2011-08-01

    Full Text Available Recognizing the importance of water vapor in the upper troposphere and lower stratosphere (UT/LS and the scarcity of high-quality, long-term measurements, JPL began the development of a powerful Raman lidar in 2005 to try to meet these needs. This development was endorsed by the Network for the Detection of Atmospheric Composition Change (NDACC and the validation program for the EOS-Aura satellite. In this paper we review the stages in the instrumental development of the lidar and the conclusions from three validation campaigns: MOHAVE, MOHAVE-II, and MOHAVE 2009 (Measurements of Humidity in the Atmosphere and Validation Experiments. The data analysis, profile retrieval and calibration procedures, as well as additional results from MOHAVE-2009 are presented in detail in a companion paper (Leblanc et al., 2011a. Ultimately the lidar has demonstrated capability to measure water vapor profiles from ~1 km above the ground to the lower stratosphere, reaching 14 km for 1-h integrated profiles and 21 km for 6-h integrated profiles, with a precision of 10 % or better near 13 km and below, and an estimated accuracy of 5 %.

  1. Simulated Radiative Transfer DOAS - A new method for improving volcanic SO2 emissions retrievals from ground-based UV-spectroscopic measurements of scattered solar radiation

    Science.gov (United States)

    Kern, C.; Deutschmann, T.; Vogel, L.; Bobrowski, N.; Hoermann, C.; Werner, C. A.; Sutton, A. J.; Elias, T.

    2011-12-01

    Passive Differential Optical Absorption Spectroscopy (DOAS) has become a standard tool for measuring SO2 at volcanoes. More recently, ultra-violet (UV) cameras have also been applied to obtain 2D images of SO2-bearing plumes. Both techniques can be used to derive SO2 emission rates by measuring SO2 column densities, integrating these along the plume cross-section, and multiplying by the wind speed. Recent measurements and model studies have revealed that the dominating source of uncertainty in these techniques often originates from an inaccurate assessment of radiative transfer through the volcanic plume. The typical assumption that all detected radiation is scattered behind the volcanic plume and takes a straight path from there to the instrument is often incorrect. We recently showed that the straight path assumption can lead to column density errors of 50% or more in cases where plumes with high SO2 and aerosol concentrations are measured from several kilometers distance, or where the background atmosphere contains a large amount of scattering aerosols. Both under- and overestimation are possible depending on the atmospheric conditions and geometry during spectral acquisition. Simulated Radiative Transfer (SRT) DOAS is a new evaluation scheme that combines radiative transfer modeling with spectral analysis of passive DOAS measurements in the UV region to derive more accurate SO2 column densities than conventional DOAS retrievals, which in turn leads to considerably more accurate emission rates. A three-dimensional backward Monte Carlo radiative transfer model is used to simulate realistic light paths in and around the volcanic plume containing variable amounts of SO2 and aerosols. An inversion algorithm is then applied to derive the true SO2 column density. For fast processing of large datasets, a linearized algorithm based on lookup tables was developed and tested on a number of example datasets. In some cases, the information content of the spectral data is

  2. Ground-based Measurements of Vertical Profiles and Columns of Atmospheric Trace Gases Over Toronto Using a New High-Resolution Fourier Transform Infrared Spectrometer

    Science.gov (United States)

    Wiacek, A.; Yashcov, D.; Strong, K.; Boudreau, L.; Rochette, L.; Roy, C.

    2002-12-01

    The University of Toronto Atmospheric Observatory (TAO) has recently been established at Toronto, Canada. TAO includes several instruments, with a DA8 Fourier Transform Spectrometer (DA8 FTS, manufactured by ABB Bomem Inc., Québec, Canada) serving as the primary instrument at the facility. The geographic position of TAO (43.66°N, 79.40°W) makes it well suited for long-term measurements of mid-latitude stratospheric ozone and related species, while its urban setting enables measurements of tropospheric pollution. The DA8 FTS is based on a Michelson interferometer with a maximum optical path difference of 250 cm, providing a maximum unapodized resolution of 0.0026 cm-1. It is currently equipped with KBr and CaF2 beamsplitters, and InSb and HgCdTe detectors, for coverage of the spectral range from 700 to 4100 cm-1. A new heliostat (manufactured by Aim Controls Inc., California, USA) provides active solar tracking, collecting the incoming solar radiation and directing it into the FTS. The TAO DA8 FTS incorporates a new optical design recently developed by ABB Bomem Inc., which results in a fixed optical axis through the beamsplitter (and a fixed focal point on the detector) as well as a more stable modulation efficiency. The new instrument optics will be discussed. Next, the performance of the instrument will be examined in the context of standard NDSC (Network for the Detection of Stratospheric Change) trace gas column and vertical profile retrieval techniques, which use least squares fitting algorithms (SFIT, SFIT2). TAO has been operational (weather permitting) since October 2001. We have been retrieving columns and vertical profiles of HCl, HF, CH4, OCS, C2H6, CO, N2O and NO2 since May 2002. A detailed error analysis of retrieved columns and vertical profiles has been undertaken for the above species. Future plans for the TAO FTS include comparing our measurements with satellite measurements made by MOPITT, OSIRIS, and the upcoming ACE and MAESTRO instruments

  3. Emission factors of SO2, NOx and particles from ships in Neva Bay from ground-based and helicopter-borne measurements and AIS-based modeling

    Directory of Open Access Journals (Sweden)

    J. Beecken

    2014-10-01

    Full Text Available Emission factors of SO2, NOx and size distributed particle numbers were measured for approximately 300 different ships in the Gulf of Finland and Neva Bay area during two campaigns in August/September 2011 and June/July 2012. The measurements were carried out from a harbor vessel and from an MI-8 helicopter downwind of passing ships. Other measurements were carried out from shore sites near the island of Kronstadt and along the river Neva in the city area of Saint Petersburg. Most ships were running at reduced speed (10 knots, i.e. not at their optimal load. Vessels for domestic and international shipping were monitored. It was seen that the distribution of the SO2 emission factors is bi-modal with averages of 4.6 gSO2 kgfuel−1 and 18.2 gSO2 kgfuel−1 for the lower and the higher mode, respectively. The emission factors show compliance with the 1% fuel sulfur content SECA limit for 90% of the vessels in 2011 and 97% in 2012. The distribution of the NOx emission factor is mono-modal with an average of 58 gNOx kgfuel−1. The corresponding emission related to the generated power yields an average of 12.1 gNOx kWh−1. The distribution of the emission factors for particulate number shows that nearly 90% of all particles in the 5.6 nm to 10 μm size range were below 70 nm in diameter. The distribution of the corresponding emission factors for the mass indicates two separated main modes, one for particles between 30 and 300 nm the other above 2 μm. The average particle emission factors were found to be in the range from 0.7 to 2.7 × 1016 particles kgfuel−1 and 0.2 to 3.4 gPM kgfuel−1, respectively. The NOx and particulate emissions are comparable with other studies. The measured emission factors were compared, for individual ships, to modeled ones using the Ship Traffic Emission Assessment Model (STEAM of the Finnish Meteorological Institute. A reasonably good agreement for gaseous sulfur and nitrogen emissions can be seen for ships in

  4. Optical and microphysical properties of aerosol vertical distribution over Vipava valley retrieved by ground-based elastic lidar and in-situ measurements

    Science.gov (United States)

    Wang, Longlong; Gregorič, Asta; Stanič, Samo; Mole, Maruška; Bergant, Klemen; Močnik, Griša; Drinovec, Luka; Vaupotič, Janja; Miler, Miloš; Gosar, Mateja

    2017-04-01

    Atmospheric aerosols influence Earth's radiation budget, visibility and air quality, as well as the cloud formation processes and precipitation. The structure of the vertical aerosol distribution, in particular that of black carbon, significantly influences the aerosol direct radiative effect, followed by feedbacks on cloud and planetary boundary layer dynamics. The knowledge on aerosol vertical distribution and properties therefore provides an important insight into many atmospheric processes. In order to retrieve the vertical distribution of aerosol properties in the Vipava valley (Slovenia) and the influence of planetary boundary layer height on the local air quality, in-situ and LIDAR measurements were performed. In-situ methods consisted of aerosol size distribution and number concentration and black carbon concentration measurements which were performed during a one-month extensive measurement campaign in spring 2016. Aerosol size distribution (10 nm to 30 µm) was measured at the valley floor using scanning mobility particle sizer (SMPS, Grimm Aerosol Technique, Germany) and optical particle counter (OPC, Grimm Aerosol Technique, Germany). Black carbon concentrations were measured by Aethalometer AE33 (Aerosol d.o.o., Slovenia) at the valley floor (125 m a.s.l.) and at the top of the adjacent mountain ridge (951 m a.s.l.), the later representing regional background conditions. The in-situ measurements were combined with LIDAR remote sensing, where the vertical profiles of aerosol backscattering coefficients were retrieved using the Klett method. In addition, aerosol samples were analyzed by SEM-EDX to obtain aerosol morphology and chemical composition. Two different cases with expected dominant presence of specific aerosol types were investigated in more detail. They show significantly different aerosol properties and distributions within the valley, which has an important implication for the direct radiative effect. In the first case, during a Saharan dust

  5. Evaluating CALIOP Nighttime Level 2 Aerosol Profile Retrievals Using a Global Transport Model Equipped with Two-Dimensional Variational Data Assimilation and Ground-Based Lidar Measurements

    Science.gov (United States)

    Campbell, J. R.; Tackett, J. L.; Reid, J. S.; Zhang, J.; Westphal, D. L.; Vaughan, M.; Winker, D. M.; Welton, E. J.; Prospero, J. M.; Shimizu, A.; Sugimoto, N.

    2011-12-01

    Launched in 2006, the Cloud Aerosol Lidar with Orthogonal Polarization instrument (CALIOP) flown aboard the NASA/CNES Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellite has collected the first high-resolution global, inter-seasonal and multi-year measurements of aerosol structure. Profiles for aerosol particle extinction coefficient and column-integrated optical depth (AOD) are unique and highly synergistic satellite measurements, given the limitations of passive aerosol remote sensors from resolving information vertically. However, accurate value-added (Level 2.0) CALIOP aerosol products require comprehensive validation of retrieval techniques and calibration stability. Daytime Level 2.0 CALIOP AOD retrievals have been evaluated versus co-located NASA Moderate Resolution Imaging Spectroradiometer (MODIS-AQUA) data. To date, no corresponding investigation of nighttime retrieval performance has been conducted from a lack of requisite global nighttime validation datasets. In this paper, Version 3.01 CALIOP 5-km retrievals of nighttime 0.532 μm AOD from 2007 are evaluated versus corresponding 0.550 μm AOD analyses derived with the global 1° x 1° U. S. Navy Aerosol Analysis and Prediction System (NAAPS). Mean regional profiles of CALIOP nighttime 0.532 μm extinction coefficient are assessed versus NASA Micropulse Lidar Network and NIES Skynet Lidar Network measurements. NAAPS features a two-dimensional variational assimilation procedure for quality-assured MODIS and NASA Multi-angle Imaging Spectroradiometer (MISR) AOD products. Whereas NAAPS nighttime AOD datasets represent a nominal 12-hr forecast field, from lack of MODIS/MISR retrievals for assimilation in the dark sector of the model, evaluation of NAAPS 00-hr analysis and 24-hr forecast skill versus MODIS and NASA Aerosol Robotic Network (AERONET) indicates adequate stability for conducting this study. Corresponding daytime comparisons of CALIOP retrievals with NAAPS

  6. The science and technology case for a global network of compact, low cost ground-based laser heterodyne radiometers for column measurements of CO2 and CH4

    Science.gov (United States)

    Mao, J.; Clarke, G.; Wilson, E. L.; Palmer, P. I.; Feng, L.; Ramanathan, A. K.; Ott, L. E.; Duncan, B. N.; Melroy, H.; McLinden, M.; DiGregorio, A.

    2015-12-01

    The importance of atmospheric carbon dioxide (CO2) and methane (CH4) in determining Earth's climate is well established. Recent technological developments in space-borne instrumentation have enabled us to observe changes in these gases to a precision necessary to infer for the responsible geographical fluxes. The Total Carbon Column Observing Network (TCCON), comprising a network of upward-looking Fourier transform spectrometers, was established to provide an accurate ground truth and minimize regional systematic bias. NASA Goddard Space Flight Center (GSFC) has developed a compact, low-cost laser heterodyne radiometer (LHR) for global column measurements CO2 and CH4. This Mini-LHR is a passive instrument that uses sunlight as the primary light source to measure absorption of CO2 and CH4in the shortwave infrared near 1.6 microns. It uses compact telecommunications lasers to offer a low cost (RObotic NETwork (AERONET) which has more than 500 sites worldwide. In addition, the NASA Micro-Pulse Lidar Network (MPLNET) provides both column and vertically resolved aerosol and cloud data in active remote sensing at nearly 50 sites worldwide. Tandem operation with AERONET/MPLNET provides a clear pathway for the Mini-LHR to be expanded into a global monitoring network for carbon cycle science and satellite data validation, offering coverage in cloudy regions (e.g., Amazon basin) and key regions such as the Arctic where accelerated warming due to the release of CO2 and CH4from thawing tundra and permafrost is a concern. These vulnerable geographic regions are not well covered by current space-based CO2 and CH4 measurements. We will present an overview of our instrument development and the implementation of a network based on current and future resources. We will also present preliminary Observing System Simulation Experiments to demonstrate the effectiveness of a network Mini-LHR instruments in quantify regional CO2 fluxes, including an analysis of measurement sensitivity

  7. Atmospheric turbulence measurements over desert site using ground-based instruments, kite/tethered-blimp platform, and aircraft relevant to optical communications and imaging systems: preliminary results

    Science.gov (United States)

    Majumdar, Arun K.; Eaton, Frank D.; Jensen, Michael L.; Kyrazis, Demos T.; Schumm, Bryce; Dierking, Matthew P.; Shoemake, Marjorie A.; Dexheimer, Dari; Ricklin, Jennifer C.

    2006-08-01

    New results of the (temperature) refractive index structure parameter (C T2), C n2 are presented from fast response sensor observations near the ground and also using a kite/tethered blimp platform and an aircraft, at the Edward Air Force Base in Mojave Desert, California. Additional optical measurements include near-ground scintillation observations over horizontal paths. Atmospheric turbidity were also calculated from direct beam solar radiation measurements using pyrheliometer. Comparisons were made of the observed profiles of refractive index structure parameters (C n2) with theoretical modeled profiles, and two derived quantities such as transverse coherence length (r 0) and isoplanatic angle (θ 0) for a slant path are discussed. All of these parameters are the major indicators of turbulence and are important to design an aircraft or space-craft-based free-space laser communication and high resolution optical synthetic-aperture imaging systems. Non-isotropic turbulence observations from some of the data will be pointed out. Probability density functions (PDF) of the distribution of C n2 will be described using histograms. Fundamental limits imposed by atmospheric effects in high data rate communication and optical synthetic-aperture imaging systems will be discussed.

  8. On the factors governing water vapor turbulence mixing in the convective boundary layer over land: Concept and data analysis technique using ground-based lidar measurements

    Energy Technology Data Exchange (ETDEWEB)

    Pal, Sandip, E-mail: sup252@PSU.EDU

    2016-06-01

    The convective boundary layer (CBL) turbulence is the key process for exchanging heat, momentum, moisture and trace gases between the earth's surface and the lower part of the troposphere. The turbulence parameterization of the CBL is a challenging but important component in numerical models. In particular, correct estimation of CBL turbulence features, parameterization, and the determination of the contribution of eddy diffusivity are important for simulating convection initiation, and the dispersion of health hazardous air pollutants and Greenhouse gases. In general, measurements of higher-order moments of water vapor mixing ratio (q) variability yield unique estimates of turbulence in the CBL. Using the high-resolution lidar-derived profiles of q variance, third-order moment, and skewness and analyzing concurrent profiles of vertical velocity, potential temperature, horizontal wind and time series of near-surface measurements of surface flux and meteorological parameters, a conceptual framework based on bottom up approach is proposed here for the first time for a robust characterization of the turbulent structure of CBL over land so that our understanding on the processes governing CBL q turbulence could be improved. Finally, principal component analyses will be applied on the lidar-derived long-term data sets of q turbulence statistics to identify the meteorological factors and the dominant physical mechanisms governing the CBL turbulence features. - Highlights: • Lidar based study for CBL turbulence features • Water vapor and aerosol turbulence profiles • Processes governing boundary layer turbulence profiles using lidars.

  9. On the factors governing water vapor turbulence mixing in the convective boundary layer over land: Concept and data analysis technique using ground-based lidar measurements.

    Science.gov (United States)

    Pal, Sandip

    2016-06-01

    The convective boundary layer (CBL) turbulence is the key process for exchanging heat, momentum, moisture and trace gases between the earth's surface and the lower part of the troposphere. The turbulence parameterization of the CBL is a challenging but important component in numerical models. In particular, correct estimation of CBL turbulence features, parameterization, and the determination of the contribution of eddy diffusivity are important for simulating convection initiation, and the dispersion of health hazardous air pollutants and Greenhouse gases. In general, measurements of higher-order moments of water vapor mixing ratio (q) variability yield unique estimates of turbulence in the CBL. Using the high-resolution lidar-derived profiles of q variance, third-order moment, and skewness and analyzing concurrent profiles of vertical velocity, potential temperature, horizontal wind and time series of near-surface measurements of surface flux and meteorological parameters, a conceptual framework based on bottom up approach is proposed here for the first time for a robust characterization of the turbulent structure of CBL over land so that our understanding on the processes governing CBL q turbulence could be improved. Finally, principal component analyses will be applied on the lidar-derived long-term data sets of q turbulence statistics to identify the meteorological factors and the dominant physical mechanisms governing the CBL turbulence features.

  10. Can we use ground-based measurements of HCFCs and HFCs to derive their emissions, lifetimes, and the global OH abundance?

    Science.gov (United States)

    Liang, Q.; Chipperfield, M.; Daniel, J. S.; Burkholder, J. B.; Rigby, M. L.; Velders, G. J. M.

    2015-12-01

    The hydroxyl radical (OH) is the major oxidant in the atmosphere. Reaction with OH is the primary removal process for many non-CO2greenhouse gases (GHGs), ozone-depleting substances (ODSs) and their replacements, e.g. hydrochlorofluorocarbons (HCFCs) and hydrofluorocarbons (HFCs). Traditionally, the global OH abundance is inferred using the observed atmospheric rate of change for methyl chloroform (MCF). Due to the Montreal Protocol regulation, the atmospheric abundance of MCF has been decreasing rapidly to near-zero values. It is becoming critical to find an alternative reference compound to continue to provide quantitative information for the global OH abundance. Our model analysis using the NASA 3-D GEOS-5 Chemistry Climate Model suggests that the inter-hemispheric gradients (IHG) of the HCFCs and HFCs show a strong linear correlation with their global emissions. Therefore it is possible to use (i) the observed IHGs of HCFCs and HFCs to estimate their global emissions, and (ii) use the derived emissions and the observed long-term trend to calculate their lifetimes and to infer the global OH abundance. Preliminary analysis using a simple global two-box model (one box for each hemisphere) and information from the global 3-D model suggests that the quantitative relationship between IHG and global emissions varies slightly among individual compounds depending on their lifetime, their emissions history and emission fractions from the two hemispheres. While each compound shows different sensitivity to the above quantities, the combined suite of the HCFCs and HFCs provides a means to derive global OH abundance and the corresponding atmospheric lifetimes of long-lived gases with respect to OH (tOH). The fact that the OH partial lifetimes of these compounds are highly correlated, with the ratio of tOH equal to the reverse ratio of their OH thermal reaction rates at 272K, provides an additional constraint that can greatly reduce the uncertainty in the OH abundance and t

  11. Comparison of Mixed Layer Heights from Airborne High Spectral Resolution Lidar, Ground-based Measurements, and the WRP-Chem Model during CalNex and CARES

    Energy Technology Data Exchange (ETDEWEB)

    Scarino, Amy Jo; Obland, Michael; Fast, Jerome D.; Burton, S. P.; Ferrare, R. A.; Hostetler, Chris A.; Berg, Larry K.; Lefer, Barry; Haman, C.; Hair, John; Rogers, Ray; Butler, Carolyn; Cook, A. L.; Harper, David

    2014-06-05

    The California Research at the Nexus of Air Quality and Climate Change (CalNex) and Carbonaceous Aerosol and Radiative Effects Study (CARES) field campaigns during May and June 2010 provided a data set appropriate for studying characteristics of the planetary boundary layer (PBL). The NASA Langley Research Center (LaRC) airborne High Spectral Resolution Lidar (HSRL) was deployed to California onboard the NASA LaRC B-200 aircraft to aid incharacterizing aerosol properties during these two field campaigns. Measurements of aerosol extinction (532 nm), backscatter (532 and 1064 nm), and depolarization (532 and 1064 nm) profiles during 31 flights, many in coordination with other research aircraft and ground sites, constitute a diverse data set for use in characterizing the spatial and temporal distribution of aerosols, as well as the depth and variability of the daytime mixed layer (ML), which is a subset within the PBL. This work illustrates the temporal and spatial variability of the ML in the vicinity of Los Angeles and Sacramento, CA. ML heights derived from HSRL measurements are compared to PBL heights derived from radiosonde profiles, ML heights measured from ceilometers, and simulated PBL heights from the Weather Research and Forecasting Chemistry (WRF-Chem) community model. Comparisons between the HSRL ML heights and the radiosonde profiles in Sacramento result in a correlation coefficient value (R) of 0.93 (root7 mean-square (RMS) difference of 157 m and bias difference (HSRL radiosonde) of 5 m). HSRL ML heights compare well with those from the ceilometer in the LA Basin with an R of 0.89 (RMS difference of 108 m and bias difference (HSRL Ceilometer) of -9.7 m) for distances of up to 30 km between the B-200 flight track and the ceilometer site. Simulated PBL heights from WRF-Chem were compared with those obtained from all flights for each campaign, producing an R of 0.58 (RMS difference of 604 m and a bias difference (WRF-Chem HSRL) of -157 m) for CalNex and 0

  12. Impacts of elevated-aerosol-layer and aerosol type on the correlation of AOD and particulate matter with ground-based and satellite measurements in Nanjing, southeast China.

    Science.gov (United States)

    Han, Yong; Wu, Yonghua; Wang, Tijian; Zhuang, Bingliang; Li, Shu; Zhao, Kun

    2015-11-01

    Assessment of the correlation between aerosol optical depth (AOD) and particulate matter (PM) is critical to satellite remote sensing of air quality, e.g. ground PM10 and ground PM2.5. This study evaluates the impacts of aloft-aerosol-plume and aerosol-type on the correlation of AOD-PM by using synergistic measurement of a polarization-sensitive Raman-Mie lidar, CIMEL sunphotometer (SP) and TEOM PM samplers, as well as the satellite MODIS and CALIPSO, during April to July 2011 in Nanjing city (32.05(○)N/118.77(○)E), southeast China. Aloft-aerosol-layer and aerosol types (e.g. dust and non-dust or urban aerosol) are identified with the range-resolved polarization lidar and SP measurements. The results indicate that the correlations for AOD-PM10 and AOD-PM2.5 can be much improved when screening out the aloft-aerosol-layer. The linear regression slopes show significant differences for the dust and non-dust dominant aerosols in the planetary boundary layer (PBL). In addition, we evaluate the recent released MODIS-AOD product (Collection 6) from the "dark-target" (DT) and "deep-blue" (DB) algorithms and their correlation with the PM in Nanjing urban area. The results verify that the MODIS-DT AODs show a good correlation (R = 0.89) with the SP-AOD but with a systematic overestimate. In contrast, the MODIS-DB AOD shows a moderate correlation (R = 0.66) with the SP-AOD but with a smaller regression intercept (0.07). Furthermore, the moderately high correlations between the MODIS-AOD and PM10 (PM2.5) are indicated, which suggests the feasibility of PM estimate using the MODIS-AOD in Nanjing city.

  13. Vertical profiles and ground-based measurements of Black Carbon, Particulate matter and Optical properties over New Delhi during the foggy winters of 2015-16

    Science.gov (United States)

    Tiwari, S.; Bisht, D. S.; Srivastava, A. K.; Hopke, P. K.; Chakrabarty, R. K.

    2016-12-01

    Ground level and vertical observations of particulate matter were made as part of a pilot experiment using an air-quality monitory tethered balloon flown in the lower troposphere (1000 m) during the foggy winters of New Delhi, India. Measurements of black carbon (BC), the dominant absorber of visible light, particulate matter (PM), and the particulate optical properties along with meteorological parameters were conducted during the winter of 2015-16 in Delhi. During the study period, the mean concentrations of PM2.5, BC370nm, and BC880nm were observed to be 144.0 ± 39.7, 25.3 ± 8.5, and 19.4 ± 6.9 μg/m3, respectively. The mean value of PM2.5 is 12 times higher than the daily US-EPA air quality standard. The contribution of BC370nm in PM2.5 is 18 %. During the foggy period, the ground level concentrations of fine (PM2.5) and soot (BC370nm) particles increased substantially (59% and 26%, respectively) in comparison to clear days. Also, the aerosol light extinction coefficient (σext) was much higher (mean: 610 Mm-1) indicating that atmosphere was not transparent resulting in lower visibility. High concentrations of PM2.5 (89 µg/m3) and BC880nm (25.7 µg/m3) were observed up to 200 m (fog persists in this layer) in January. The BC880nm and PM2.5 concentrations near 1 km were significantly higher ( 1.9 and 12 µg/m3), respectively. Direct radiative forcing (DRF) due to BC was estimated at the top of the atmosphere (TOA), surface (SFC), and atmospheric (ATM) and its resultant forcing were - 46.2 Wm-2 at SFC indicates the cooling effect. However, a positive value ( 20.8 Wm-2) of BC DRF at TOA indicates the warming effect over the study region. The resultant ATM DRF due to BC was positive (67.0 Wm-2) indicating a net warming effect in the atmosphere. The contribution of fossil fuel climate forcing due to BC was 79% and 21% was due to burning of biomass/biofuels. The higher mean atmospheric heating rate (2.05 K day-1) by BC in the winter season would probably

  14. Ground-based observations of exoplanet atmospheres

    NARCIS (Netherlands)

    Mooij, Ernst Johan Walter de

    2011-01-01

    This thesis focuses on the properties of exoplanet atmospheres. The results for ground-based near-infrared secondary eclipse observations of three different exoplanets, TrES-3b, HAT-P-1b and WASP-33b, are presented which have been obtained with ground-based telescopes as part of the GROUSE project.

  15. Ground-based observations of exoplanet atmospheres

    NARCIS (Netherlands)

    Mooij, Ernst Johan Walter de

    2011-01-01

    This thesis focuses on the properties of exoplanet atmospheres. The results for ground-based near-infrared secondary eclipse observations of three different exoplanets, TrES-3b, HAT-P-1b and WASP-33b, are presented which have been obtained with ground-based telescopes as part of the GROUSE project.

  16. An Examination of the Chemistry of Peroxycarboxylic Nitric Anhydrides and Related Volatile Organic Compounds During Texas Air Quality Study 2000 Using Ground-Based Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, James M.; Jobson, B Tom T.; Kuster, W. C.; Goldan, P. D.; Murphy, Paul; Williams, Eric; Frost, G. J.; Riemer, D.; Apel, Eric; Stroud, C.; Wiedinmyer, Christine; Fehsenfeld, Fred C.

    2003-08-19

    Measurements of peroxycarboxylic nitric anhydrides (PANs) along with related volatile organic compounds (VOCs) were made at the La Porte super site during the TexAQS 2000 Houston study. The PAN mixing ratios ranged up to 6.5 ppbv and were broadly correlated with O3, characteristic of a highly polluted urban environment. The anthropogenic PAN homologue concentrations were generally consistent with those found in other urban environments; peroxypropionic nitric anhydride (PPN) averaged 15%, and peroxyisobutyric nitric anhydride (PiBN) averaged 3% of PAN,. Some periods were noted where local petrochemical sources resulted in anomalous PANs chemistry. This effect was especially noticeable in the case of peroxyacrylic nitric anhydride (APAN) where local sources of 1,3-butadiene and acrolein resulted in APAN as high as 30% of PAN. Peroxymethacrylic nitric anhydride (MPAN) was a fairly minor constituent of the PANs except for two periods on 4 and 5 September when air masses from high biogenic hydrocarbons (BHC) areas were observed. BHC chemistry was not a factor in the highest ozone pollution episodes in Houston but may have an impact on daily average ozone levels in some circumstances.

  17. Diversity on subtropical and polar cirrus clouds properties as derived from both ground-based lidars and CALIPSO/CALIOP measurements

    Science.gov (United States)

    Córdoba-Jabonero, Carmen; Lopes, Fabio J. S.; Landulfo, Eduardo; Cuevas, Emilio; Ochoa, Héctor; Gil-Ojeda, Manuel

    2017-01-01

    Cirrus (Ci) cloud properties can change significantly from place to place over the globe as a result of weather processes, reflecting their likely different radiative and climate implications. In this work Cirrus clouds (Ci) features observed in late autumn/early winter season at both subtropical and polar latitudes are examined and compared to CALIPSO/CALIOP observations. Lidar measurements were carried out in three stations: São Paulo (MSP, Brazil) and Tenerife (SCO, Canary Islands, Spain), as subtropical sites, and the polar Belgrano II base (BEL, Argentina) in the Antarctic continent. The backscattering ratio (BSR) profiles and the top and base heights of the Ci layers together to their Cirrus Cloud Optical Depth (CCOD) and Lidar Ratio (LR) for Ci clouds were derived. In addition, temperatures at the top and base boundaries of the Ci clouds were also obtained from local radiosoundings to verify pure ice Ci clouds occurrence using a given temperature top threshold ( 70 km far), inferring the irregular extension and inhomogeneity of the Ci clouds over each study area. These considerations can be useful for assimilation of the Ci features into climate models and evaluation of future space-borne lidar observations of Ci clouds, especially for the future ESA/Copernicus-Sentinel and ESA/EarthCARE missions.

  18. Column Aerosol Optical Properties and Aerosol Radiative Forcing During a Serious Haze-Fog Month over North China Plain in 2013 Based on Ground-Based Sunphotometer Measurements

    Science.gov (United States)

    Che, H.; Xia, X.; Zhu, J.; Li, Z.; Dubovik, O.; Holben, Brent N.; Goloub, P.; Chen, H.; Estelles, V.; Cuevas-Agullo, E.

    2014-01-01

    In January 2013, North China Plain experienced several serious haze events. Cimel sunphotometer measurements at seven sites over rural, suburban and urban regions of North China Plain from 1 to 30 January 2013 were used to further our understanding of spatial-temporal variation of aerosol optical parameters and aerosol radiative forcing (ARF). It was found that Aerosol Optical Depth at 500 nm (AOD500nm) during non-pollution periods at all stations was lower than 0.30 and increased significantly to greater than 1.00 as pollution events developed. The Angstrom exponent (Alpha) was larger than 0.80 for all stations most of the time. AOD500nm averages increased from north to south during both polluted and non-polluted periods on the three urban sites in Beijing. The fine mode AOD during pollution periods is about a factor of 2.5 times larger than that during the non-pollution period at urban sites but a factor of 5.0 at suburban and rural sites. The fine mode fraction of AOD675nm was higher than 80% for all sites during January 2013. The absorption AOD675nm at rural sites was only about 0.01 during pollution periods, while 0.03-0.07 and 0.01-0.03 during pollution and non-pollution periods at other sites, respectively. Single scattering albedo varied between 0.87 and 0.95 during January 2013 over North China Plain. The size distribution showed an obvious tri-peak pattern during the most serious period. The fine mode effective radius in the pollution period was about 0.01-0.08 microns larger than during nonpollution periods, while the coarse mode radius in pollution periods was about 0.06-0.38 microns less than that during nonpollution periods. The total, fine and coarse mode particle volumes varied by about 0.06-0.34 cu microns, 0.03-0.23 cu microns, and 0.03-0.10 cu microns, respectively, throughout January 2013. During the most intense period (1-16 January), ARF at the surface exceeded -50W/sq m, -180W/sq m, and -200W/sq m at rural, suburban, and urban sites

  19. Combined Microwave and Sferics Measurements as a Continuous Proxy for Latent Heating in Mesoscale Model Predictions

    Science.gov (United States)

    Chang, D. -E.; Morales, C. A.; Weinman, J. A.; Olson, W. S.

    1999-01-01

    Planar rainfall distributions were retrieved from data provided by the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) and Special Sensor Microwave Imager (SSM/I) radiometers. Lightning generates Very Low Frequency (VLF) radio noise pulses called sferics. Those pulses propagate over large distances so that they can be continuously monitored with a network of ground based radio receivers. An empirical relationship between the sferics rate and the convective rainfall permitted maps of convective latent heating profiles to be derived continuously from the sferics distributions. Those inferred latent heating rates were assimilated into the Penn State/NCAR Mesoscale Model (MM5) that depicted an intense winter cyclone that passed over Florida on 2 February 1998. When compared to a 14 hour MM5 rainfall forecast using conventional data, the use of lightning data improved the forecast.

  20. Ground-based solar absorption measurements of CH{sub 4}, CO, C{sub 2}H{sub 6}, C2H2 and HCN in the tropics

    Energy Technology Data Exchange (ETDEWEB)

    Petersen, Anna K.; Warneke, Thorsten; Velasco, Voltaire; Notholt, Justus [Institute of Environmental Physics (IUP), University of Bremen (Germany); Schrems, Otto [Alfred Wegener Institute for Polar and Marine Research (AWI), Bremerhaven (Germany)

    2007-07-01

    The composition of the tropical atmosphere and its change is of significant importance for global climate. Currently large uncertainties in the budgets of many trace gases in the tropics exist, mainly due to a lack of measurements in the tropics. We have performed solar absorption Fourier Transform InfraRed measurements at Paramaribo, Suriname (5.83 N, 55.17 W) during four consecutive dry seasons, starting in autumn 2004. Currently these are the only remote sensing measurements performed in the inner-tropics over a longer time period. In the case of methane these measurements represent the only tropical ground-based remote sensing data of sufficient precision to validate satellite retrievals of CH4. Here we present first results on methane (CH{sub 4}) and trace gases related to biomass burning. Methane retrievals are compared with model simulations, satellite retrievals from SCIAMACHY and in situ data. In addition we investigate the pollution from biomass burning using CO, C{sub 2}H{sub 6}, C{sub 2}H{sub 2} and HCN. Backwardtrajectories and global fire maps were used to identify the origin of the polluted air masses. Correlations between the different gases are analysed and compared to literature data.

  1. Simulation study for measurement of horizontal wind profiles in the polar stratosphere and mesosphere using ground-based observations of ozone and carbon monoxide lines in the 230-250 GHz region

    Science.gov (United States)

    Newnham, David A.; Ford, George P.; Moffat-Griffin, Tracy; Pumphrey, Hugh C.

    2016-07-01

    Meteorological and atmospheric models are being extended up to 80 km altitude but there are very few observing techniques that can measure stratospheric-mesospheric winds at altitudes between 20 and 80 km to verify model datasets. Here we demonstrate the feasibility of horizontal wind profile measurements using ground-based passive millimetre-wave spectroradiometric observations of ozone lines centred at 231.28, 249.79, and 249.96 GHz. Vertical profiles of horizontal winds are retrieved from forward and inverse modelling simulations of the line-of-sight Doppler-shifted atmospheric emission lines above Halley station (75°37' S, 26°14' W), Antarctica. For a radiometer with a system temperature of 1400 K and 30 kHz spectral resolution observing the ozone 231.28 GHz line we estimate that 12 h zonal and meridional wind profiles could be determined over the altitude range 25-74 km in winter, and 28-66 km in summer. Height-dependent measurement uncertainties are in the range 3-8 m s-1 and vertical resolution ˜ 8-16 km. Under optimum observing conditions at Halley a temporal resolution of 1.5 h for measuring either zonal or meridional winds is possible, reducing to 0.5 h for a radiometer with a 700 K system temperature. Combining observations of the 231.28 GHz ozone line and the 230.54 GHz carbon monoxide line gives additional altitude coverage at 85 ± 12 km. The effects of clear-sky seasonal mean winter/summer conditions, zenith angle of the received atmospheric emission, and spectrometer frequency resolution on the altitude coverage, measurement uncertainty, and height and time resolution of the retrieved wind profiles have been determined.

  2. Solar diameter, eclipses and transits: the importance of ground-based observations

    CERN Document Server

    Sigismondi, Costantino

    2012-01-01

    According to satellite measurements the difference between polar and equatorial radius does not exceed 10 milliarcsec. These measurements are differential, and the absolute value of the solar diameter is not precisely known to a level of accuracy needed for finding variations during years or decades. Moreover the lifetime of a satellite is limited, and its calibration is not stable. This shows the need to continue ground-based observations of the Sun exploiting in particular the methods less affected by atmospheric turbulence, as the planetary transits and the total and annular eclipses. The state of art, the advantages and the limits of these two methods are here considered.

  3. Analysis of climatically relevant processes in the troposphere using ground-based remote measuring methods (windprofiler/RASS). Final report; Analyse klimatisch relevanter Prozesse in der Troposphaere mit Hilfe bodengebundener Fernerkundungsmethoden (Windprofiler/RASS). Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Steinhagen, H.; Christoph, A.; Engelbart, D.; Goersdorf, U.; Hirsch, L.; Lippmann, J.; Neisser, J.; Wergen, W.

    1995-09-01

    In the framework of the present research project the Meterological Observatory of Lindenberg (MOL) was equipped with the scientific and technical means necessary for the future operational application at the German weather service of ground-based remote sounding technologies such as `windprofiler radar`, radio-acoustic sounding system (RASS). Several case studies were used to demonstrate the multifarious possibilities of analysing mesoscale tropospheric structures by means of windprofiler radar and RASS. Besides this, further information such as mixing layer thickness and heat flux were derived from windprofiler and RASS measurements and the applied algorithms were tried on case examples. (orig./AKF) [Deutsch] Im Rahmen dieses Forschungsvorhabens sind am Meteorologischen Observatorium Lindenberg (MOL) wissenschaftliche und technische Voraussetzungen fuer eine zukuenftige operationelle Anwendung aktiver bodengebundener Fernsondierungstechnologien, wie `Windprofiler-Radar` und `Radio-Akustisches-Sondierungs-System (RASS)` im Deutschen Wetterdienst geschaffen worden. An Hand mehrerer Fallstudien wurden die vielfaeltigen Moeglichkeiten zur Analyse mesoskaliger troposphaerischer Strukturen mit Windprofiler-Radar und RASS demonstriert. Darueber hinaus wurden aus Windprofiler-/RASS-Messungen weiterfuehrende Informationen, wie Mischungsschichthoehe und Waermefluss abgeleitet und die entsprechenden Algorithmen am Fallbeispielen erprobt. (orig./AKF)

  4. Intercomparison of XH2O Data from the GOSAT TANSO-FTS (TIR and SWIR and Ground-Based FTS Measurements: Impact of the Spatial Variability of XH2O on the Intercomparison

    Directory of Open Access Journals (Sweden)

    Hirofumi Ohyama

    2017-01-01

    Full Text Available Spatial and temporal variability of atmospheric water vapor (H2O is extremely high, and therefore it is difficult to accurately evaluate the measurement precision of H2O data by a simple comparison between the data derived from two different instruments. We determined the measurement precisions of column-averaged dry-air mole fractions of H2O (XH2O retrieved independently from spectral radiances in the thermal infrared (TIR and the short-wavelength infrared (SWIR regions measured using a Thermal And Near-infrared Sensor for carbon Observation-Fourier Transform Spectrometer (TANSO-FTS onboard the Greenhouse gases Observing SATellite (GOSAT, by an intercomparison between the two TANSO-FTS XH2O data products and the ground-based FTS XH2O data. Furthermore, the spatial variability of XH2O was also estimated in the intercomparison process. Mutually coincident XH2O data above land for the period ranging from April 2009 to May 2014 were intercompared with different spatial coincidence criteria. We found that the precisions of the TANSO-FTS TIR and TANSO-FTS SWIR XH2O were 7.3%–7.7% and 3.5%–4.5%, respectively, and that the spatial variability of XH2O was 6.7% within a radius of 50 km and 18.5% within a radius of 200 km. These results demonstrate that, in order to accurately evaluate the measurement precision of XH2O, it is necessary to set more rigorous spatial coincidence criteria or to take into account the spatial variability of XH2O as derived in the present study.

  5. Calibration with near-continuous spectral measurements

    DEFF Research Database (Denmark)

    Nielsen, Henrik Aalborg; Rasmussen, Michael; Madsen, Henrik

    2001-01-01

    In chemometrics traditional calibration in case of spectral measurements express a quantity of interest (e.g. a concentration) as a linear combination of the spectral measurements at a number of wavelengths. Often the spectral measurements are performed at a large number of wavelengths and in thi...... by an example in which the octane number of gasoline is related to near infrared spectral measurements. The performance is found to be much better that for the traditional calibration methods....

  6. Fine-resolution repeat topographic surveying of dryland landscapes using UAS-based structure-from-motion photogrammetry: Assessing accuracy and precision against traditional ground-based erosion measurements

    Science.gov (United States)

    Gillian, Jeffrey K.; Karl, Jason W.; Elaksher, Ahmed; Duniway, Michael C.

    2017-01-01

    Structure-from-motion (SfM) photogrammetry from unmanned aerial system (UAS) imagery is an emerging tool for repeat topographic surveying of dryland erosion. These methods are particularly appealing due to the ability to cover large landscapes compared to field methods and at reduced costs and finer spatial resolution compared to airborne laser scanning. Accuracy and precision of high-resolution digital terrain models (DTMs) derived from UAS imagery have been explored in many studies, typically by comparing image coordinates to surveyed check points or LiDAR datasets. In addition to traditional check points, this study compared 5 cm resolution DTMs derived from fixed-wing UAS imagery with a traditional ground-based method of measuring soil surface change called erosion bridges. We assessed accuracy by comparing the elevation values between DTMs and erosion bridges along thirty topographic transects each 6.1 m long. Comparisons occurred at two points in time (June 2014, February 2015) which enabled us to assess vertical accuracy with 3314 data points and vertical precision (i.e., repeatability) with 1657 data points. We found strong vertical agreement (accuracy) between the methods (RMSE 2.9 and 3.2 cm in June 2014 and February 2015, respectively) and high vertical precision for the DTMs (RMSE 2.8 cm). Our results from comparing SfM-generated DTMs to check points, and strong agreement with erosion bridge measurements suggests repeat UAS imagery and SfM processing could replace erosion bridges for a more synoptic landscape assessment of shifting soil surfaces for some studies. However, while collecting the UAS imagery and generating the SfM DTMs for this study was faster than collecting erosion bridge measurements, technical challenges related to the need for ground control networks and image processing requirements must be addressed before this technique could be applied effectively to large landscapes.

  7. Ground-Based Network and Supersite Observations to Complement and Enrich EOS Research

    Science.gov (United States)

    Tsay, Si-Chee; Holben, Brent N.; Welton, Ellsworth J.

    2011-01-01

    Since 1997 NASA has been successfully launching a series of satellites - the Earth Observing System (EOS) - to intensively study, and gain a better understanding of, the Earth as an integrated system. Space-borne remote sensing observations, however, are often plagued by contamination of surface signatures. Thus, ground-based in-situ and remote-sensing measurements, where signals come directly from atmospheric constituents, the sun, and/or the Earth-atmosphere interactions, provide additional information content for comparisons that confirm quantitatively the usefulness of the integrated surface, aircraft, and satellite datasets. Through numerous participations, particularly but not limited to the EOS remote-sensing/retrieval and validation projects over the years, NASA/GSFC has developed and continuously refined ground-based networks and mobile observatories that proved to be vital in providing high temporal measurements, which complement and enrich the satellite observations. These are: the AERO NET (AErosol RObotic NETwork) a federation of ground-based globally distributed network of spectral sun-sky photometers; the MPLNET (Micro-Pulse Lidar NETwork, a similarly organized network of micro-pulse lidar systems measuring aerosol and cloud vertical structure continuously; and the SMART-COMMIT (Surface-sensing Measurements for Atmospheric Radiative Transfer - Chemical, Optical & Microphysical Measurements of In-situ Troposphere, mobile observatories, a suite of spectral radiometers and in-situ probes acquiring supersite measurements. Most MPLNET sites are collocated with those of AERONET, and both networks always support the deployment of SMART-COMMIT worldwide. These data products follow the data structure of EOS conventions: Level-0, instrument archived raw data; Level-1 (or 1.5), real-time data with no (or limited) quality assurance; Level-2, not real high temporal and spectral resolutions. In this talk, we will present NASA/GSFC groundbased facilities, serving

  8. Comparison of ground-based LAI measuring methods on winter wheat%冬小麦叶面积指数地面测量方法的比较

    Institute of Scientific and Technical Information of China (English)

    刘镕源; 王纪华; 杨贵军; 黄文江; 李伟国; 常红; 李小文

    2011-01-01

    该研究以冬小麦为对象,对叶面积指数测量的几种方法(比叶重法、照相法及 SUNSCAN测量法)从测量难易程度、误差来源、适宜条件等方面做了比较分析与评价.研究表明比叶重法及照相法在整个生育期间均可使用,而基于SUNSCAN的仪器测量法在冬小麦封垄前的测量还需进一步研究.对SUNSCAN一天内不同时间测昔的结果进行了比较,得出最适宜测量时间为13:00-15:00.照相法的测量精度最高,比叶重法次之,SUNSCAN测量需要根据作物生长特点做参数修正.针对SUNSCAN测量LAI提出了一种对叶倾角分布参数进行修正的方法,对3种冬小麦株型品种3个不同生育期进行了参数修正.该研究有助于地面测量叶面积指数的方法选择,同时对提高SUNSCAN测量精度具有参考意义.%This paper compared three ground-based LAI measuring methods (lamina mass per unit area method (LMA), a photographic method and SUNSCAN measurement) from three aspects: maneuverability, error sources and suitable condition and presented a preliminary analysis result. It was found that the LMA method and photographic method can be used during the whole growth stage of winter wheat, while SUNSCAN method should be further studied at the early growth stage before sealing ridges. SUNSCAN measurement was taken once per hour in a day, and the result showed the best time for measurement is from 13 to 15 o'clock. The photographic method revealed higher accuracy than LMA method. It is suggested that the measurement of SUNSCAN needs to process a revision of the anger distribution parameter according to the characteristic of winter wheat in different growth stage. This paper presented a method to revise the angle distribution parameter of SUNSCAN, and applied this method to three varieties of winter wheat on three typical growth stages.

  9. Application of spectral analysis techniques to the intercomparison of aerosol data - Part 4: Combined maximum covariance analysis to bridge the gap between multi-sensor satellite retrievals and ground-based measurements

    Science.gov (United States)

    Li, J.; Carlson, B. E.; Lacis, A. A.

    2014-04-01

    The development of remote sensing techniques has greatly advanced our knowledge of atmospheric aerosols. Various satellite sensors and the associated retrieval algorithms all add to the information of global aerosol variability, while well-designed surface networks provide time series of highly accurate measurements at specific locations. In studying the variability of aerosol properties, aerosol climate effects, and constraining aerosol fields in climate models, it is essential to make the best use of all of the available information. In the previous three parts of this series, we demonstrated the usefulness of several spectral decomposition techniques in the analysis and comparison of temporal and spatial variability of aerosol optical depth using satellite and ground-based measurements. Specifically, Principal Component Analysis (PCA) successfully captures and isolates seasonal and interannual variability from different aerosol source regions, Maximum Covariance Analysis (MCA) provides a means to verify the variability in one satellite dataset against Aerosol Robotic Network (AERONET) data, and Combined Principal Component Analysis (CPCA) realized parallel comparison among multi-satellite, multi-sensor datasets. As the final part of the study, this paper introduces a novel technique that integrates both multi-sensor datasets and ground observations, and thus effectively bridges the gap between these two types of measurements. The Combined Maximum Covariance Analysis (CMCA) decomposes the cross covariance matrix between the combined multi-sensor satellite data field and AERONET station data. We show that this new method not only confirms the seasonal and interannual variability of aerosol optical depth, aerosol source regions and events represented by different satellite datasets, but also identifies the strengths and weaknesses of each dataset in capturing the variability associated with sources, events or aerosol types. Furthermore, by examining the spread of

  10. Fresnel zones for ground-based antennas

    DEFF Research Database (Denmark)

    Andersen, J. Bach

    1964-01-01

    The ordinary Fresnel zone concept is modified to include the influence of finite ground conductivity. This is important for ground-based antennas because the influence on the radiation pattern of irregularities near the antenna is determined by the amplitude and phase of the groundwave. A new...

  11. Space and Ground-Based Infrastructures

    Science.gov (United States)

    Weems, Jon; Zell, Martin

    This chapter deals first with the main characteristics of the space environment, outside and inside a spacecraft. Then the space and space-related (ground-based) infrastructures are described. The most important infrastructure is the International Space Station, which holds many European facilities (for instance the European Columbus Laboratory). Some of them, such as the Columbus External Payload Facility, are located outside the ISS to benefit from external space conditions. There is only one other example of orbital platforms, the Russian Foton/Bion Recoverable Orbital Capsule. In contrast, non-orbital weightless research platforms, although limited in experimental time, are more numerous: sounding rockets, parabolic flight aircraft, drop towers and high-altitude balloons. In addition to these facilities, there are a number of ground-based facilities and space simulators, for both life sciences (for instance: bed rest, clinostats) and physical sciences (for instance: magnetic compensation of gravity). Hypergravity can also be provided by human and non-human centrifuges.

  12. Development of Ground-Based Plant Sentinels

    Science.gov (United States)

    2007-11-02

    plants in response to different strains of Pseudomonas syringae. Planta . 217:767-775. De Moraes CM, Schultz JC, Mescher MC, Tumlinson JH. (2004...09-30-2004 Final Technical _ April 2001 - April 2003 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Developing Plants as Ground-based Sentinels 5b. GRANT...SUPPLEMENTARY NOTES 14. ABSTRACT 9 "Z Plants emit volatile mixes characteristic of exposure to both plant and animal (insect) pathogens (bacteria and fungi). The

  13. Coupled Ito equations of continuous quantum state measurement, and estimation

    CERN Document Server

    Diósi, L; Konrad, T; Scherer, A; Audretsch, Juergen; Diosi, Lajos; Konrad, Thomas; Scherer, Artur

    2006-01-01

    We discuss a non-linear stochastic master equation that governs the time-evolution of the estimated quantum state. Its differential evolution corresponds to the infinitesimal updates that depend on the time-continuous measurement of the true quantum state. The new stochastic master equation couples to the two standard stochastic differential equations of time-continuous quantum measurement. For the first time, we can prove that the calculated estimate almost always converges to the true state, also at low-efficiency measurements. We show that our single-state theory can be adapted to weak continuous ensemble measurements as well.

  14. Ground based spectroscopy of hot Jupiters

    Science.gov (United States)

    Waldmann, Ingo

    2010-05-01

    It has been shown in recent years with great success that spectroscopy of exoplanetary atmospheres is feasible using space based observatories such as the HST and Spitzer. However, with the end of the Spitzer cold-phase, space based observations in the near to mid infra-red are limited, which will remain true until the the onset of the JWST. The importance of developing methods of ground based spectroscopic analysis of known hot Jupiters is therefore apparent. In the past, various groups have attempted exoplanetary spectroscopy using ground based facilities and various techniques. Here I will present results using a novel spectral retrieval method for near to mid infra-red emission and transmission spectra of exoplanetary atmospheres taken from the ground and discuss the feasibility of future ground-based spectroscopy in a broader context. My recently commenced PhD project is under the supervision of Giovanna Tinetti (University College London) and in collaboration with J. P. Beaulieu (Institut d'Astrophysique de Paris), Mark Swain and Pieter Deroo (Jet Propulsion Laboratory, Caltech).

  15. A new method to detect long term trends of methane (CH4 and nitrous oxide (N2O total columns measured within the NDACC ground-based high resolution solar FTIR network

    Directory of Open Access Journals (Sweden)

    M. Schneider

    2011-07-01

    Full Text Available Total columns measured with the ground-based solar FTIR technique are highly variable in time due to atmospheric chemistry and dynamics in the atmosphere above the measurement station. In this paper, a multiple regression model with anomalies of air pressure, total columns of hydrogen fluoride (HF and carbon monoxide (CO and tropopause height are used to reduce the variability in the methane (CH4 and nitrous oxide (N2O total columns to estimate reliable linear trends with as small uncertainties as possible. The method is developed at the Harestua station (60° N, 11° E, 600 m a.s.l. and used on three other European FTIR stations, i.e. Jungfraujoch (47° N, 8° E, 3600 m a.s.l., Zugspitze (47° N, 11° E, 3000 m a.s.l., and Kiruna (68° N, 20° E, 400 m a.s.l.. Linear CH4 trends between 0.13 ± 0.01-0.25 ± 0.02 % yr−1 were estimated for all stations in the 1996-2009 period. A piecewise model with three separate linear trends, connected at change points, was used to estimate the short term fluctuations in the CH4 total columns. This model shows a growth in 1996–1999 followed by a period of steady state until 2007. From 2007 until 2009 the atmospheric CH4 amount increases between 0.57 ± 0.22–1.15 ± 0.17 % yr−1. Linear N2O trends between 0.19 ± 0.01–0.40 ± 0.02 % yr−1 were estimated for all stations in the 1996-2007 period, here with the strongest trend at Harestua and Kiruna and the lowest at the Alp stations. From the N2O total columns crude tropospheric and stratospheric partial columns were derived, indicating that the observed difference in the N2O trends between the FTIR sites is of stratospheric origin. This agrees well with the N2O measurements by the SMR instrument onboard the Odin satellite showing the highest trends at Harestua, 0.98 ± 0.28 % yr−1, and considerably smaller trends at lower latitudes, 0.27 ± 0.25 % yr−1. The multiple regression model was compared with two other trend methods, the ordinary linear

  16. Measuring continuity of care: psychometric properties of the Nijmegen Continuity Questionnaire

    Science.gov (United States)

    Uijen, Annemarie A; Schers, Henk J; Schellevis, François G; Mokkink, Henk GA; van Weel, Chris; van den Bosch, Wil JHM

    2012-01-01

    Background Recently, the Nijmegen Continuity Questionnaire (NCQ) was developed. It aims to measure continuity of care from the patient perspective across primary and secondary care settings. Initial pilot testing proved promising. Aim To further examine the validity, discriminative ability, and reliability of the NCQ. Design A prospective psychometric instrument validation study in primary and secondary care in the Netherlands. Method The NCQ was administered to patients with a chronic disease recruited from general practice (n = 145) and hospital outpatient departments (n = 123) (response rate 76%). A principal component analysis was performed to confirm three subscales that had been found previously. Construct validity was tested by correlating the NCQ score to scores of other scales measuring quality of care, continuity, trust, and satisfaction. Discriminative ability was tested by investigating differences in continuity subscores of different subgroups. Test–retest reliability was analysed in 172 patients. Results Principal factor analysis confirmed the previously found three continuity subscales — personal continuity, care provider knows me; personal continuity, care provider shows commitment; and team/cross-boundary continuity. Construct validity was demonstrated through expected correlations with other variables and discriminative ability through expected differences in continuity subscores of different subgroups. Test–retest reliability was high (the intraclass correlation coefficient varied between 0.71 and 0.82). Conclusion This study provides evidence for the validity, discriminative ability, and reliability of the NCQ. The NCQ can be of value to identify problems in continuity of care. PMID:22782001

  17. Comparison of Thermal Structure Results from Venus Express and Ground Based Observations since Vira

    Science.gov (United States)

    Limaye, Sanjay

    2016-07-01

    An international team was formed in 2013 through the International Space Studies Institute (Bern, Switzerland) to compare recent results of the Venus atmospheric thermal structure from spacecraft and ground based observations made since the Venus International Reference Atmosphere (VIRA) was developed (Kliore et al., 1985, Keating et al., 1985). Five experiments on European Space Agency's Venus Express orbiter mission have yielded results on the atmospheric structure during is operational life (April 2006 - November 2014). Three of these were from occultation methods: at near infrared wavelengths from solar occultations, (SOIR, 70 - 170 km), at ultraviolet wavelengths from stellar occultations (SPICAV, 90-140 km), and occultation of the VEx-Earth radio signal (VeRa, 40-90 km). In-situ drag measurements from three different techniques (accelerometry, torque, and radio tracking, 130 - 200 km) were also obtained using the spacecraft itself while passive infrared remote sensing was used by the VIRTIS experiment (70 - 120 km). The only new data in the -40-70 km altitude range are from radio occultation, as no new profiles of the deep atmosphere have been obtained since the VeGa 2 lander measurements in 1985 (not included in VIRA). Some selected ground based results available to the team were also considered by team in the inter comparisons. The temperature structure in the lower thermosphere from disk resolved ground based observations (except for one ground based investigation), is generally consistent with the Venus Express results. These experiments sampled at different periods, at different locations and at different local times and have different vertical and horizontal resolution and coverage. The data were therefore binned in latitude and local time bins and compared, ignoring temporal variations over the life time of the Venus Express mission and assumed north-south symmetry. Alternating warm and cooler layers are present in the 120-160 altitude range in results

  18. Quantum Zeno effects with "pulsed" and "continuous" measurements

    OpenAIRE

    Facchi, P.; Pascazio, S.

    2001-01-01

    The dynamics of a quantum system undergoing measurements is investigated. Depending on the features of the interaction Hamiltonian, the decay can be slowed (quantum Zeno effect) or accelerated (inverse quantum Zeno effect), by changing the time interval between successive (pulsed) measurements or, alternatively, by varying the "strength" of the (continuous) measurement.

  19. Informing hydrological models with ground-based time-lapse relative gravimetry: potential and limitations

    DEFF Research Database (Denmark)

    Bauer-Gottwein, Peter; Christiansen, Lars; Rosbjerg, Dan

    2011-01-01

    Coupled hydrogeophysical inversion emerges as an attractive option to improve the calibration and predictive capability of hydrological models. Recently, ground-based time-lapse relative gravity (TLRG) measurements have attracted increasing interest because there is a direct relationship between ...

  20. Helicopter downwash measured by continuous-wave Doppler lidars with agile beam steering

    DEFF Research Database (Denmark)

    Sjöholm, Mikael; Angelou, Nikolas; Hansen, Per

    2012-01-01

    A ground-based remote sensing short-range WindScanner with agile beam steering based on a modified ZephIR continuous-wave wind lidar (LIght Detection And Ranging) and a double prism arrangement has recently been developed at the Department of Wind Energy at the DTU Risø campus. The WindScanner me......A ground-based remote sensing short-range WindScanner with agile beam steering based on a modified ZephIR continuous-wave wind lidar (LIght Detection And Ranging) and a double prism arrangement has recently been developed at the Department of Wind Energy at the DTU Risø campus. The Wind...

  1. Stability of continuous-time quantum filters with measurement imperfections

    Science.gov (United States)

    Amini, H.; Pellegrini, C.; Rouchon, P.

    2014-07-01

    The fidelity between the state of a continuously observed quantum system and the state of its associated quantum filter, is shown to be always a submartingale. The observed system is assumed to be governed by a continuous-time Stochastic Master Equation (SME), driven simultaneously by Wiener and Poisson processes and that takes into account incompleteness and errors in measurements. This stability result is the continuous-time counterpart of a similar stability result already established for discrete-time quantum systems and where the measurement imperfections are modelled by a left stochastic matrix.

  2. Augmenting WFIRST Microlensing with a Ground-Based Telescope Network

    Science.gov (United States)

    Zhu, Wei; Gould, Andrew

    2016-06-01

    Augmenting the Wide Field Infrared Survey Telescope (WFIRST) microlensing campaigns with intensive observations from a ground-based network of wide-field survey telescopes would have several major advantages. First, it would enable full two-dimensional (2-D) vector microlens parallax measurements for a substantial fraction of low-mass lenses as well as planetary and binary events that show caustic crossing features. For a significant fraction of the free-floating planet (FFP) events and all caustic-crossing planetary/binary events, these 2-D parallax measurements directly lead to complete solutions (mass, distance, transverse velocity) of the lens object (or lens system). For even more events, the complementary ground-based observations will yield 1-D parallax measurements. Together with the 1-D parallaxes from WFIRST alone, they can probe the entire mass range M > M_Earth. For luminous lenses, such 1-D parallax measurements can be promoted to complete solutions (mass, distance, transverse velocity) by high-resolution imaging. This would provide crucial information not only about the hosts of planets and other lenses, but also enable a much more precise Galactic model. Other benefits of such a survey include improved understanding of binaries (particularly with low mass primaries), and sensitivity to distant ice-giant and gas-giant companions of WFIRST lenses that cannot be detected by WFIRST itself due to its restricted observing windows. Existing ground-based microlensing surveys can be employed if WFIRST is pointed at lower-extinction fields than is currently envisaged. This would come at some cost to the event rate. Therefore the benefits of improved characterization of lenses must be weighed against these costs.

  3. H\\"older continuity for Trudinger's equation in measure spaces

    CERN Document Server

    Kuusi, Tuomo; Siljander, Juhana; Urbano, José Miguel

    2011-01-01

    We complete the study of the regularity for Trudinger's equation by proving that weak solutions are H\\"older continuous also in the singular case. The setting is that of a measure space with a doubling non-trivial Borel measure supporting a Poincar\\'e inequality. The proof uses the Harnack inequality and intrinsic scaling.

  4. Applications of hybrid measurements with discrete and continuous variables

    DEFF Research Database (Denmark)

    Laghaout, Amine

    The main topic of this thesis revolves around quantum measurement. We illustrate how two different views of quantum objects, the discrete-and continuous-variable views, can be combined to more effectively distinguish between orthogonal states. Such combined measurements are referred to as hybrid...

  5. On Association Measures for Continuous Variables and Correction for Chance

    NARCIS (Netherlands)

    Warrens, Matthijs J.

    2015-01-01

    This paper studies correction for chance for association measures for continuous variables. The set of linear transformations of Pearson's product-moment correlation is used as the domain of the correction for chance function. Examples of measures in this set are Tucker's congruence coefficient, Job

  6. First Ground-Based Infrared Solar Absorption Measurements of Free Tropospheric Methanol (CH3OH): Multidecade Infrared Time Series from Kitt Peak (31.9 deg N 111.6 deg W): Trend, Seasonal Cycle, and Comparison with Previous Measurements

    Science.gov (United States)

    Rinsland, Curtis P.; Mahieu, Emmanuel; Chiou, Linda; Herbin, Herve

    2009-01-01

    Atmospheric CH3OH (methanol) free tropospheric (2.09-14-km altitude) time series spanning 22 years has been analyzed on the basis of high-spectral resolution infrared solar absorption spectra of the strong vs band recorded from the U.S. National Solar Observatory on Kitt Peak (latitude 31.9degN, 111.6degW, 2.09-km altitude) with a 1-m Fourier transform spectrometer (FTS). The measurements span October 1981 to December 2003 and are the first long time series of CH3OH measurements obtained from the ground. The results were analyzed with SFIT2 version 3.93 and show a factor of three variations with season, a maximum at the beginning of July, a winter minimum, and no statistically significant long-term trend over the measurement time span.

  7. Statistical Studies of Ground-Based Optical Lightning Signatures

    Science.gov (United States)

    Hunt, C. R.; Nemzek, R. J.; Suszcynsky, D. M.

    2005-12-01

    Most extensive optical studies of lightning have been conducted from orbit, and the statistics of events collected from earth are relatively poorly documented. The time signatures of optical power measured in the presence of clouds are inevitably affected by scattering,which can distort the signatures by extending and delaying the amplitude profile in time. We have deployed two all-sky photodiode detectors, one in New Mexico and one in Oklahoma, which are gathering data alongside electric field change monitors as part of the LANL EDOTX Great Plains Array. Preliminary results show that the photodiode is sensitive to approximately 50% or more of RF events detected at ranges of up to 30 km, and still has some sensitivity at ranges in excess of 60 km (distances determined by the EDOTX field-change array). The shapes of events within this range were assessed, with focus on rise time, width, peak power, and their correlation to corresponding electric field signatures, and these are being compared with published on-orbit and ground-based data. Initial findings suggest a mean characteristic width (ratio of total detected optical energy to peak power) of 291 +/- 12 microseconds and a mean delay between the RF signal peak and optical peak of 121 +/- 17 microseconds. These values fall between prior ground-based measurements of direct return stroke emissions, and scattering-dominated on-orbit measurements. This work will promote better understanding of the correspondence between radio and optical measurements of lightning.

  8. Continuous measurements of methane mixing ratios from ice cores

    Directory of Open Access Journals (Sweden)

    C. Stowasser

    2012-05-01

    Full Text Available This work presents a new, field-deployable technique for continuous, high-resolution measurements of methane mixing ratios from ice cores. The technique is based on a continuous flow analysis system, where ice core samples cut along the long axis of an ice core are melted continuously. The past atmospheric air contained in the ice is separated from the melt water stream via a system for continuous gas extraction. The extracted gas is dehumidified and then analyzed by a Wavelength Scanned-Cavity Ring Down Spectrometer for methane mixing ratios. We assess the performance of the new measurement technique in terms of precision (±0.8 ppbv, 1σ, accuracy (±8 ppbv, temporal (ca. 100 s, and spatial resolution (ca. 5 cm. Using a firn air transport model, we compare the resolution of the measurement technique to the resolution of the atmospheric methane signal as preserved in ice cores in Greenland. We conclude that our measurement technique can resolve all climatically relevant variations as preserved in the ice down to an ice depth of at least 1980 m (66 000 yr before present in the North Greenland Eemian Ice Drilling ice core. Furthermore, we describe the modifications, which are necessary to make a commercially available spectrometer suitable for continuous methane mixing ratio measurements from ice cores.

  9. Continuous measurements of methane mixing ratios from ice cores

    Directory of Open Access Journals (Sweden)

    C. Stowasser

    2012-01-01

    Full Text Available This work presents a new, field-deployable technique for continuous, high-resolution measurements of methane mixing ratios from ice cores. The technique is based on a continuous flow analysis system, where ice core samples cut along the long axis of an ice core are melted continuously. The past atmospheric air contained in the ice is separated from the melt water stream via a system for continuous gas extraction. The extracted gas is dehumidified and then analyzed by a Wavelength Scanned-Cavity Ring Down Spectrometer for methane mixing ratios. We assess the performance of the new measurement technique in terms of precision (±0.8 ppbv, 1 σ, accuracy (±8 ppbv, temporal (ca. 100 s and spatial resolution (ca. 6 cm. Using a firn air transport model, we compare the resolution of the measurement technique to the resolution of the atmospheric methane signal as preserved in ice cores in Greenland. We conclude that our measurement technique can resolve all climatically relevant variations as preserved in the ice down to an ice depth of at least 1980 m (66 000 yr before present in the North Greenland Eemian Ice Drilling ice core. Furthermore, we describe the modifications which are necessary to make a commercially available spectrometer suitable for continuous methane mixing ratio measurements from ice cores.

  10. LOAC: a small aerosol optical counter/sizer for ground-based and balloon measurements of the size distribution and nature of atmospheric particles - Part 1: Principle of measurements and instrument evaluation

    Science.gov (United States)

    Renard, J.-B.; Dulac, F.; Berthet, G.; Lurton, T.; Vignelles, D.; Jégou, F.; Tonnelier, T.; Thaury, C.; Jeannot, M.; Couté, B.; Akiki, R.; Verdier, N.; Mallet, M.; Gensdarmes, F.; Charpentier, P.; Duverger, V.; Dupont, J.-C.; Mesmin, S.; Elias, T.; Crenn, V.; Sciare, J.; Giacomoni, J.; Gobbi, M.; Hamonou, E.; Olafsson, H.; Dagsson-Waldhauserova, P.; Camy-Peyret, C.; Mazel, C.; Décamps, T.; Piringer, M.; Surcin, J.; Daugeron, D.

    2015-09-01

    The study of aerosols in the troposphere and in the stratosphere is of major importance both for climate and air quality studies. Among the numerous instruments available, aerosol particles counters provide the size distribution in diameter range from few hundreds of nm to few tens of μm. Most of them are very sensitive to the nature of aerosols, and this can result in significant biases in the retrieved size distribution. We describe here a new versatile optical particle/sizer counter (OPC) named LOAC (Light Optical Aerosol Counter), which is light and compact enough to perform measurements not only at the surface but under all kinds of balloons in the troposphere and in the stratosphere. LOAC is an original OPC performing observations at two scattering angles. The first one is around 12°, and is almost insensitive to the nature of the particles; the second one is around 60° and is strongly sensitive to the refractive index of the particles. By combining measurement at the two angles, it is possible to retrieve accurately the size distribution and to estimate the nature of the dominant particles (droplets, carbonaceous, salts and mineral particles) in several size classes. This topology is based on calibration charts obtained in the laboratory. Several campaigns of cross-comparison of LOAC with other particle counting instruments and remote sensing photometers have been conducted to validate both the size distribution derived by LOAC and the retrieved particle number density. The topology of the aerosols has been validated in well-defined conditions including urban pollution, desert dust episodes, fog, and cloud. Comparison with reference aerosol mass monitoring instruments also shows that the LOAC measurements can be successfully converted to mass concentrations. All these tests indicate that no bias is present in the LOAC measurements and in the corresponding data processing.

  11. LOAC: a small aerosol optical counter/sizer for ground-based and balloon measurements of the size distribution and nature of atmospheric particles – Part 1: Principle of measurements and instrument evaluation

    Directory of Open Access Journals (Sweden)

    J.-B. Renard

    2015-01-01

    Full Text Available The study of aerosols in the troposphere and in the stratosphere is of major importance both for climate and air quality studies. Among the numerous instruments available, aerosol particles counters provide the size distribution in diameter range from few hundreds of nm to few tens of μm. Most of them are very sensitive to the nature of aerosols, and this can result in significant biases in the retrieved size distribution. We describe here a new versatile optical particle/sizer counter (OPC named LOAC (Light Optical Aerosols Counter, which is light and compact enough to perform measurements not only at the surface but under all kinds of balloons in the troposphere and in the stratosphere. LOAC is an original OPC performing observations at two scattering angles. The first one is around 12°, and is almost insensitive to the nature of the particles; the second one is around 60° and is strongly sensitive to the refractive index of the particles. By combining measurement at the two angles, it is possible to retrieve accurately the size distribution and to estimate the nature of the dominant particles (droplets, carbonaceous, salts and mineral particles in several size classes. This speciation is based on calibration charts obtained in the laboratory. Several campaigns of cross-comparison of LOAC with other particle counting instruments and remote sensing photometers have been conducted to validate both the size distribution derived by LOAC and the retrieved particle number density. The speciation of the aerosols has been validated in well-defined conditions including urban pollution, desert dust episodes, fog, and cloud. Comparison with reference aerosol mass monitoring instruments also shows that the LOAC measurements can be successfully converted to mass concentrations. All these tests indicate that no bias is present in the LOAC measurements and in the corresponding data processing.

  12. Detection and quantification of localized groundwater inflow in small streams using ground-based infrared thermography

    Science.gov (United States)

    Schuetz, Tobias; Weiler, Markus

    2010-05-01

    Localized groundwater (GW) inflow into small streams can be a major source of runoff during low flow periods in headwater catchments. The localization and determination of the fraction of runoff corresponding to a certain area may give insights into aquifer type, flow processes, the composition of base-flow concerning the spatial distribution of catchment storage and water quality issues. Though GW temperature has a small amplitude during the year compared to surface water, a significant temperature difference between stream water and groundwater can be expected in summer and winter. As the technical development of infrared thermography is progressing (the spatial resolution of infrared camera systems is increasing and the measuring error is decreasing) we tested ground based infrared thermography as a non-invasive and remote applicable method to detect and quantify GW entries in small streams during baseflow periods (INFRATEC). In addition, water temperature and electric conductivity of the groundwater entering the stream and of the stream water up- and downstream of localized GW inflow were measured with temperature and EC sensors. Though the zones of complete mixing were identified, point measurements and surface radiation temperatures were taken from the same areas. Discharge measurements were conducted using the salt dilution method with continuous injection. End-member mixing calculations were done using the measured EC and water temperature data and compared to the results of mixing calculations of observed water surface radiation temperatures. The discharge observations were used to validate the fraction calculations. Calculated GW entries using thermogramms had comparable deviations from the measured runoff fractions to those from direct temperature and EC measurements. This leads to the conclusion that the use of ground-based infrared thermography for the detection and quantification of localized groundwater inflows into small streams is a valuable and

  13. Characterizing the Vertical Distribution of Aerosols using Ground-based Multiwavelength Lidar Data

    Science.gov (United States)

    Ferrare, R. A.; Thorsen, T. J.; Clayton, M.; Mueller, D.; Chemyakin, E.; Burton, S. P.; Goldsmith, J.; Holz, R.; Kuehn, R.; Eloranta, E. W.; Marais, W.; Newsom, R. K.; Liu, X.; Sawamura, P.; Holben, B. N.; Hostetler, C. A.

    2016-12-01

    Observations of aerosol optical and microphysical properties are critical for developing and evaluating aerosol transport model parameterizations and assessing global aerosol-radiation impacts on climate. During the Combined HSRL And Raman lidar Measurement Study (CHARMS), we investigated the synergistic use of ground-based Raman lidar and High Spectral Resolution Lidar (HSRL) measurements to retrieve aerosol properties aloft. Continuous (24/7) operation of these co-located lidars during the ten-week CHARMS mission (mid-July through September 2015) allowed the acquisition of a unique, multiwavelength ground-based lidar dataset for studying aerosol properties above the Southern Great Plains (SGP) site. The ARM Raman lidar measured profiles of aerosol backscatter, extinction and depolarization at 355 nm as well as profiles of water vapor mixing ratio and temperature. The University of Wisconsin HSRL simultaneously measured profiles of aerosol backscatter, extinction and depolarization at 532 nm and aerosol backscatter at 1064 nm. Recent advances in both lidar retrieval theory and algorithm development demonstrate that vertically-resolved retrievals using such multiwavelength lidar measurements of aerosol backscatter and extinction can help constrain both the aerosol optical (e.g. complex refractive index, scattering, etc.) and microphysical properties (e.g. effective radius, concentrations) as well as provide qualitative aerosol classification. Based on this work, the NASA Langley Research Center (LaRC) HSRL group developed automated algorithms for classifying and retrieving aerosol optical and microphysical properties, demonstrated these retrievals using data from the unique NASA/LaRC airborne multiwavelength HSRL-2 system, and validated the results using coincident airborne in situ data. We apply these algorithms to the CHARMS multiwavelength (Raman+HSRL) lidar dataset to retrieve aerosol properties above the SGP site. We present some profiles of aerosol effective

  14. The generalization complexity measure for continuous input data.

    Science.gov (United States)

    Gómez, Iván; Cannas, Sergio A; Osenda, Omar; Jerez, José M; Franco, Leonardo

    2014-01-01

    We introduce in this work an extension for the generalization complexity measure to continuous input data. The measure, originally defined in Boolean space, quantifies the complexity of data in relationship to the prediction accuracy that can be expected when using a supervised classifier like a neural network, SVM, and so forth. We first extend the original measure for its use with continuous functions to later on, using an approach based on the use of the set of Walsh functions, consider the case of having a finite number of data points (inputs/outputs pairs), that is, usually the practical case. Using a set of trigonometric functions a model that gives a relationship between the size of the hidden layer of a neural network and the complexity is constructed. Finally, we demonstrate the application of the introduced complexity measure, by using the generated model, to the problem of estimating an adequate neural network architecture for real-world data sets.

  15. Determination of continuous variable entanglement by purity measurements

    CERN Document Server

    Adesso, G; Illuminati, F; Adesso, Gerardo; Serafini, Alessio; Illuminati, Fabrizio

    2004-01-01

    We classify the entanglement of two-mode Gaussian states according to their degree of total and partial mixedness. We derive exact bounds that determine maximally and minimally entangled states for fixed global and marginal purities. This characterization allows for an experimentally reliable estimate of continuous variable entanglement based on purity measurements.

  16. Determination of continuous variable entanglement by purity measurements.

    Science.gov (United States)

    Adesso, Gerardo; Serafini, Alessio; Illuminati, Fabrizio

    2004-02-27

    We classify the entanglement of two-mode Gaussian states according to their degree of total and partial mixedness. We derive exact bounds that determine maximally and minimally entangled states for fixed global and marginal purities. This characterization allows for an experimentally reliable estimate of continuous variable entanglement based on measurements of purity.

  17. Continuous measurement of aortic dimensions in Turner syndrome

    DEFF Research Database (Denmark)

    Subramaniam, Dhananjay Radhakrishnan; Stoddard, William A; Mortensen, Kristian H

    2017-01-01

    method was then compared with corresponding manual measurements at 7 discrete locations for each visit and for changes between visits. RESULTS: Manual measures at the seven positions and the corresponding continuous measurements of maximum diameter for all visits considered, correlated highly (R-value...... methodology is presented that enables rapid and precise three-dimensional measurement of thoracic aortic geometry, which can serve as an improved tool to define disease severity and monitor disease progression. TRIAL REGISTRATION: ClinicalTrials.gov Identifier - NCT01678274 . Registered - 08.30.2012.......BACKGROUND: Severity of thoracic aortic disease in Turner syndrome (TS) patients is currently described through measures of aorta size and geometry at discrete locations. The objective of this study is to develop an improved measurement tool that quantifies changes in size and geometry over time...

  18. Measurement properties of questionnaires measuring continuity of care: a systematic review.

    Directory of Open Access Journals (Sweden)

    Annemarie A Uijen

    Full Text Available BACKGROUND: Continuity of care is widely acknowledged as a core value in family medicine. In this systematic review, we aimed to identify the instruments measuring continuity of care and to assess the quality of their measurement properties. METHODS: We did a systematic review using the PubMed, Embase and PsycINFO databases, with an extensive search strategy including 'continuity of care', 'coordination of care', 'integration of care', 'patient centered care', 'case management' and its linguistic variations. We searched from 1995 to October 2011 and included articles describing the development and/or evaluation of the measurement properties of instruments measuring one or more dimensions of continuity of care (1 care from the same provider who knows and follows the patient (personal continuity, (2 communication and cooperation between care providers in one care setting (team continuity, and (3 communication and cooperation between care providers in different care settings (cross-boundary continuity. We assessed the methodological quality of the measurement properties of each instrument using the COSMIN checklist. RESULTS: We included 24 articles describing the development and/or evaluation of 21 instruments. Ten instruments measured all three dimensions of continuity of care. Instruments were developed for different groups of patients or providers. For most instruments, three or four of the six measurement properties were assessed (mostly internal consistency, content validity, structural validity and construct validity. Six instruments scored positive on the quality of at least three of six measurement properties. CONCLUSIONS: Most included instruments have problems with either the number or quality of its assessed measurement properties or the ability to measure all three dimensions of continuity of care. Based on the results of this review, we recommend the use of one of the four most promising instruments, depending on the target population

  19. Measurement Properties of Questionnaires Measuring Continuity of Care: A Systematic Review

    Science.gov (United States)

    Uijen, Annemarie A.; Heinst, Claire W.; Schellevis, Francois G.; van den Bosch, Wil J.H.M.; van de Laar, Floris A.; Terwee, Caroline B.; Schers, Henk J.

    2012-01-01

    Background Continuity of care is widely acknowledged as a core value in family medicine. In this systematic review, we aimed to identify the instruments measuring continuity of care and to assess the quality of their measurement properties. Methods We did a systematic review using the PubMed, Embase and PsycINFO databases, with an extensive search strategy including ‘continuity of care’, ‘coordination of care’, ‘integration of care’, ‘patient centered care’, ‘case management’ and its linguistic variations. We searched from 1995 to October 2011 and included articles describing the development and/or evaluation of the measurement properties of instruments measuring one or more dimensions of continuity of care (1) care from the same provider who knows and follows the patient (personal continuity), (2) communication and cooperation between care providers in one care setting (team continuity), and (3) communication and cooperation between care providers in different care settings (cross-boundary continuity). We assessed the methodological quality of the measurement properties of each instrument using the COSMIN checklist. Results We included 24 articles describing the development and/or evaluation of 21 instruments. Ten instruments measured all three dimensions of continuity of care. Instruments were developed for different groups of patients or providers. For most instruments, three or four of the six measurement properties were assessed (mostly internal consistency, content validity, structural validity and construct validity). Six instruments scored positive on the quality of at least three of six measurement properties. Conclusions Most included instruments have problems with either the number or quality of its assessed measurement properties or the ability to measure all three dimensions of continuity of care. Based on the results of this review, we recommend the use of one of the four most promising instruments, depending on the target

  20. Bohmian mechanics, open quantum systems and continuous measurements

    CERN Document Server

    Nassar, Antonio B

    2017-01-01

    This book shows how Bohmian mechanics overcomes the need for a measurement postulate involving wave function collapse. The measuring process plays a very important role in quantum mechanics. It has been widely analyzed within the Copenhagen approach through the Born and von Neumann postulates, with later extension due to Lüders. In contrast, much less effort has been invested in the measurement theory within the Bohmian mechanics framework. The continuous measurement (sharp and fuzzy, or strong and weak) problem is considered here in this framework. The authors begin by generalizing the so-called Mensky approach, which is based on restricted path integral through quantum corridors. The measuring system is then considered to be an open quantum system following a stochastic Schrödinger equation. Quantum stochastic trajectories (in the Bohmian sense) and their role in basic quantum processes are discussed in detail. The decoherence process is thereby described in terms of classical trajectories issuing from th...

  1. Identification of rainy periods from ground based microwave radiometry

    Directory of Open Access Journals (Sweden)

    Ada Vittoria Bosisio

    2012-03-01

    Full Text Available In this paper the authors present the results of a study aiming at detecting rainy data in measurements collected by a dual band ground-based radiometer. The proposed criterion is based on the ratio of the brightness temperatures observed in the 20-30 GHz band without need of any ancillary information. A major result obtained from the probability density of the ratio computed over one month of data is the identification of threshold values between clear sky, cloudy sky and rainy sky, respectively. A linear fit performed by using radiometric data and concurrent rain gauge measurements shows a correlation coefficient equal to 0.56 between the temperature ratio and the observed precipitation.

  2. Network operability of ground-based microwave radiometers: Calibration and standardization efforts

    Science.gov (United States)

    Pospichal, Bernhard; Löhnert, Ulrich; Küchler, Nils; Czekala, Harald

    2017-04-01

    Ground-based microwave radiometers (MWR) are already widely used by national weather services and research institutions all around the world. Most of the instruments operate continuously and are beginning to be implemented into data assimilation for atmospheric models. Especially their potential for continuously observing boundary-layer temperature profiles as well as integrated water vapor and cloud liquid water path makes them valuable for improving short-term weather forecasts. However until now, most MWR have been operated as stand-alone instruments. In order to benefit from a network of these instruments, standardization of calibration, operation and data format is necessary. In the frame of TOPROF (COST Action ES1303) several efforts have been undertaken, such as uncertainty and bias assessment, or calibration intercomparison campaigns. The goal was to establish protocols for providing quality controlled (QC) MWR data and their uncertainties. To this end, standardized calibration procedures for MWR have been developed and recommendations for radiometer users compiled. Based on the results of the TOPROF campaigns, a new, high-accuracy liquid-nitrogen calibration load has been introduced for MWR manufactured by Radiometer Physics GmbH (RPG). The new load improves the accuracy of the measurements considerably and will lead to even more reliable atmospheric observations. Next to the recommendations for set-up, calibration and operation of ground-based MWR within a future network, we will present homogenized methods to determine the accuracy of a running calibration as well as means for automatic data quality control. This sets the stage for the planned microwave calibration center at JOYCE (Jülich Observatory for Cloud Evolution), which will be shortly introduced.

  3. New Tests of Macroscopic Local Realism using Continuous Variable Measurements

    CERN Document Server

    Reid, M D

    2001-01-01

    We show that quantum mechanics predicts an Einstein-Podolsky-Rosen paradox (EPR), and also a contradiction with local hidden variable theories, for photon number measurements which have limited resolving power, to the point of imposing an uncertainty in the photon number result which is macroscopic in absolute terms. We show how this can be interpreted as a failure of a new, very strong premise, called macroscopic local realism. We link this premise to the Schrodinger-cat paradox. Our proposed experiments ensure all fields incident on each measurement apparatus are macroscopic. We show that an alternative measurement scheme corresponds to balanced homodyne detection of quadrature phase amplitudes. The implication is that where either EPR correlations or failure of local realism is predicted for continuous variable (quadrature phase amplitude) measurements, one can perform a modified experiment which would lead to conclusions about the much stronger premise of macroscopic local realism.

  4. Ground-based remote sensing scheme for monitoring aerosol-cloud interactions

    NARCIS (Netherlands)

    Sarna, K.; Russchenberg, H.W.J.

    2016-01-01

    A new method for continuous observation of aerosol–cloud interactions with ground-based remote sensing instruments is presented. The main goal of this method is to enable the monitoring of the change of the cloud droplet size due to the change in the aerosol concentration. We use high-resolution mea

  5. General quantum constraints on detector noise in continuous linear measurements

    Science.gov (United States)

    Miao, Haixing

    2017-01-01

    In quantum sensing and metrology, an important class of measurement is the continuous linear measurement, in which the detector is coupled to the system of interest linearly and continuously in time. One key aspect involved is the quantum noise of the detector, arising from quantum fluctuations in the detector input and output. It determines how fast we acquire information about the system and also influences the system evolution in terms of measurement backaction. We therefore often categorize it as the so-called imprecision noise and quantum backaction noise. There is a general Heisenberg-like uncertainty relation that constrains the magnitude of and the correlation between these two types of quantum noise. The main result of this paper is to show that, when the detector becomes ideal, i.e., at the quantum limit with minimum uncertainty, not only does the uncertainty relation takes the equal sign as expected, but also there are two new equalities. This general result is illustrated by using the typical cavity QED setup with the system being either a qubit or a mechanical oscillator. Particularly, the dispersive readout of a qubit state, and the measurement of mechanical motional sideband asymmetry are considered.

  6. Ground-based follow-up in relation to Kepler Asteroseismic Investigation

    CERN Document Server

    Uytterhoeven, K; Bruntt, H; De Cat, P; Frandsen, S; Gutierrez-Soto, J; Kiss, L; Kurtz, D W; Marconi, M; Molenda-Zakowicz, J; Ostensen, R; Randall, S; Southworth, J; Szabo, R

    2010-01-01

    The Kepler space mission, successfully launched in March 2009, is providing continuous, high-precision photometry of thousands of stars simultaneously. The uninterrupted time-series of stars of all known pulsation types are a precious source for asteroseismic studies. The Kepler data do not provide information on the physical parameters, such as effective temperature, surface gravity, metallicity, and vsini, which are crucial for successful asteroseismic modelling. Additional ground-based time-series data are needed to characterize mode parameters in several types of pulsating stars. Therefore, ground-based multi-colour photometry and mid/high-resolution spectroscopy are needed to complement the space data. We present ground-based activities within KASC on selected asteroseismic Kepler targets of several pulsation types. (Based on observations made with the Isaac Newton Telescope, William Herschel Telescope, Nordic Optical Telescope, Telescopio Nazionale Galileo, Mercator Telescope (La Palma, Spain), and IAC-...

  7. Ka-band bistatic ground-based SAR using noise signals

    Science.gov (United States)

    Lukin, K.; Mogyla, A.; Vyplavin, P.; Palamarchuk, V.; Zemlyaniy, O.; Tarasenko, V.; Zaets, N.; Skretsanov, V.; Shubniy, A.; Glamazdin, V.; Natarov, M.; Nechayev, O.

    2008-01-01

    Currently, one of the actual problems is remote monitoring of technical state of large objects. Different methods can be used for that purpose. The most promising of them relies on application of ground based synthetic aperture radars (SAR) and differential interferometry. We have designed and tested Ground Based Noise Waveform SAR based on noise radar technology [1] and synthetic aperture antennas [2]. It enabled to build an instrument for precise all-weather monitoring of large objects in real-time. We describe main performance of ground-based interferometric SAR which uses continuous Ka-band noise waveform as a probe signal. Besides, results of laboratory trials and evaluation of its main performance are presented as well.

  8. Spatial-angular modeling of ground-based biaxial lidar

    Science.gov (United States)

    Agishev, Ravil R.

    1997-10-01

    Results of spatial-angular LIDAR modeling based on an efficiency criterion introduced are represented. Their analysis shows that a low spatial-angular efficiency of traditional VIS and NIR systems is a main cause of a low S/BR ratio at the photodetector input. It determines the considerable measurements errors and the following low accuracy of atmospheric optical parameters retrieval. As we have shown, the most effective protection against intensive sky background radiation for ground-based biaxial LIDAR's consist in forming of their angular field according to spatial-angular efficiency criterion G. Some effective approaches to high G-parameter value achievement to achieve the receiving system optimization are discussed.

  9. Continuous fetal tissue pH measurement in labor.

    Science.gov (United States)

    Young, B K; Noumoff, J; Klein, S A; Katz, M

    1978-11-01

    Fifty-one women in labor had continuous monitoring of fetal scalp tissue pH, fetal heart rate by ECG, and uterine contractions. A miniature pH electrode secured by a double spiral fetal ECG electrode was used for measurement of fetal pH every 15 seconds. The results were correlated with fetal scalp blood pH values obtained simultaneously. Fetal scalp sampling is intermittent, requires repeated scalp incisions, is subject to errors due to air mixing and coagulation of the blood sample, and is uncomfortable for the parturient. Placement of the tissue pH electrode allows continuous data recording with the minimum discomfort to the patient and the least number of fetal scalp incisions. Clinical use of the tissue pH electrode might be a practical alternative to fetal scalp samples, if the data obtained accurately reflect fetal status.

  10. Center—Distance Continuous Probability Models and the Distance Measure

    Institute of Scientific and Technical Information of China (English)

    郑方; 吴文虎; 等

    1998-01-01

    In this paper,a new statistic model named Center-Distance Continuous Probability Model(CDCPM)for speech recognition is described,which is based on Center-Distance Normal(CDN)distribution.In a CDCPM,the probability transition matrix is omitted,and the observation probability density function(PDF)in each state is in the form of embedded multiple-model(EMM)based on the Nearest Neighbour rule.The experimental results on two giant real-world Chinese speech databases and a real-world continuous-manner 2000 phrase system show that this model is a powerful one.Also,a distance measure for CDPMs is proposed which is based on the Bayesian minimum classification error(MCE) discrimination.

  11. Ground-based Space Weather Monitoring with LOFAR

    Science.gov (United States)

    Wise, Michael; van Haarlem, Michiel; Lawrence, Gareth; Reid, Simon; Bos, Andre; Rawlings, Steve; Salvini, Stef; Mitchell, Cathryn; Soleimani, Manuch; Amado, Sergio; Teresa, Vital

    As one of the first of a new generation of radio instruments, the International LOFAR Telescope (ILT) will provide a number of unique and novel capabilities for the astronomical community. These include remote configuration and operation, dynamic real-time processing and system response, and the ability to provide multiple simultaneous streams of data to a community whose scientific interests run the gamut from lighting in the atmospheres of distant planets to the origins of the universe itself. The LOFAR (LOw Frequency ARray) system is optimized for a frequency range from 30-240 MHz and consists of multiple antenna fields spread across Europe. In the Netherlands, a total 36 LOFAR stations are nearing completion with an initial 8 international stations currently being deployed in Germany, France, Sweden, and the UK. Digital beam-forming techniques make the LOFAR system agile and allow for rapid repointing of the telescope as well as the potential for multiple simultaneous observations. With its dense core array and long interferometric baselines, LOFAR has the potential to achieve unparalleled sensitivity and spatial resolution in the low frequency radio regime. LOFAR will also be one of the first radio observatories to feature automated processing pipelines to deliver fully calibrated science products to its user community. As we discuss in this presentation, the same capabilities that make LOFAR a powerful tool for radio astronomy also provide an excellent platform upon which to build a ground-based monitoring system for space weather events. For example, the ability to monitor Solar activity in near real-time is one of the key scientific capabilities being developed for LOFAR. With only a fraction of its total observing capacity, LOFAR will be able to provide continuous monitoring of the Solar spectrum over the entire 10-240 MHz band down to microsecond timescales. Autonomous routines will scan these incoming spectral data for evidence of Solar flares and be

  12. Geodetic Characterization of Santorini Caldera From Continuous GPS Measurements

    Science.gov (United States)

    Farmer, G. T.; Newman, A. V.; Psimoulis, P.; Stiros, S.

    2007-12-01

    Santorini Caldera, in the southern Aegean, is part of a well developed, and very active volcanic system fueled by subduction along the Hellenic arc. The caldera is partially submerged, with only pieces of caldera wall, flanks, and central post-caldera lavas exposed above the sea level comprising a grouping of five small islands. The system had its most recent caldera-forming event around 1650 B.C. in a massive series of Plinean eruptions that expelled some 60 km3 of volcanic material, burying the previous island surface. The system remains active with ongoing smaller pyroclastic and phreatic eruptions, forming the central islets atop of the submerged caldera floor. In late-spring 2006, with UNAVCO field support and support form the Santorini Volcano Observatory, a network of two continuous GPS monuments spanning the caldera was established, and completion of a third monument is planned for this coming year. Additionally, 18 existing and new geodetic markers were first established with GPS across the 5-island group in 2006. These locations cover the caldera rim and flanks, and the central volcanic flows. Preliminary data from the two continuous GPS sites suggest that deformation across the caldera is currently minimal, and below the detection threshold for the 1.5 year continuous network. Through continuing analysis of the continuous network, along with additional campaign measurements, we hope to establish the temporal character and spatial extent of potential deformation in the volcanic complex, and determine if there exists any significant transient deformation associated with ongoing magma movement or edifice cooling. Monitoring such a rate over time may be useful for early hazard awareness and mitigation during regional volcanic crises.

  13. Ground-based observations of Kepler asteroseismic targets

    DEFF Research Database (Denmark)

    Uyttterhoeven , K.; Karoff, Christoffer

    2010-01-01

    We present the ground-based activities within the different working groups of the Kepler Asteroseismic Science Consortium (KASC). The activities aim at the systematic characterization of the 5000+ KASC targets, and at the collection of ground-based follow-up time-series data of selected promising...

  14. RTTOV-gb - adapting the fast radiative transfer model RTTOV for the assimilation of ground-based microwave radiometer observations

    Science.gov (United States)

    De Angelis, Francesco; Cimini, Domenico; Hocking, James; Martinet, Pauline; Kneifel, Stefan

    2016-08-01

    Ground-based microwave radiometers (MWRs) offer a new capability to provide continuous observations of the atmospheric thermodynamic state in the planetary boundary layer. Thus, they are potential candidates to supplement radiosonde network and satellite data to improve numerical weather prediction (NWP) models through a variational assimilation of their data. However in order to assimilate MWR observations, a fast radiative transfer model is required and such a model is not currently available. This is necessary for going from the model state vector space to the observation space at every observation point. The fast radiative transfer model RTTOV is well accepted in the NWP community, though it was developed to simulate satellite observations only. In this work, the RTTOV code has been modified to allow for simulations of ground-based upward-looking microwave sensors. In addition, the tangent linear, adjoint, and K-modules of RTTOV have been adapted to provide Jacobians (i.e., the sensitivity of observations to the atmospheric thermodynamical state) for ground-based geometry. These modules are necessary for the fast minimization of the cost function in a variational assimilation scheme. The proposed ground-based version of RTTOV, called RTTOV-gb, has been validated against accurate and less time-efficient line-by-line radiative transfer models. In the frequency range commonly used for temperature and humidity profiling (22-60 GHz), root-mean-square brightness temperature differences are smaller than typical MWR uncertainties (˜ 0.5 K) at all channels used in this analysis. Brightness temperatures (TBs) computed with RTTOV-gb from radiosonde profiles have been compared with nearly simultaneous and co-located ground-based MWR observations. Differences between simulated and measured TBs are below 0.5 K for all channels except for the water vapor band, where most of the uncertainty comes from instrumental errors. The Jacobians calculated with the K-module of RTTOV

  15. Maximal Violation of Bell Inequalities using Continuous Variables Measurements

    CERN Document Server

    Wenger, J; Grosshans, F; Tualle-Brouri, R; Grangier, P; Hafezi, Mohammad; Grosshans, Fr\\'ed\\'eric; Tualle-Brouri, Rosa; Grangier, Philippe

    2003-01-01

    We propose a whole family of physical states that yield a violation of the Bell CHSH inequality arbitrarily close to its maximum value, when using quadrature phase homodyne detection. This result is based on a new binning process called root binning, that is used to transform the continuous variables measurements into binary results needed for the tests of quantum mechanics versus local realistic theories. A physical process in order to produce such states is also suggested. The use of high-efficiency spacelike separated homodyne detections with these states and this binning process would result in a conclusive loophole-free test of quantum mechanics.

  16. Methane metering devices and systems for continuous measurements

    Energy Technology Data Exchange (ETDEWEB)

    Gralewski, K.; Krupa, M.

    1982-01-01

    Brief characteristics are presented for the advantages and shortcomings of the existing methane devices and systems developed in the Polish People's Republic, FRG, Great Britain, United States, CSSR and USSR. Among the main requirements made for the modern methane metering devices designed for continuous measurements of methane concentration in the coal mines, requirements such as rapid reaction to the spasmodic change in methane concentration, resistance to contamination of the catalyst, low consumed power etc. are named. Trends are outlined for improvement in the coal industry of the Polish People's Republic.

  17. Continuous Dissolved Oxygen Measurements and Modelling Metabolism in Peatland Streams

    OpenAIRE

    2016-01-01

    Stream water dissolved oxygen was monitored in a 3.2km2 moorland headwater catchment in the Scottish Highlands. The stream consists of three 1st order headwaters and a 2nd order main stem. The stream network is fringed by peat soils with no riparian trees, though dwarf shrubs provide shading in the lower catchment. Dissolved oxygen (DO) is regulated by the balance between atmospheric re-aeration and the metabolic processes of photosynthesis and respiration. DO was continuously measured for >1...

  18. Novel System for Continuous Measurements of Dissolved Gases in Liquids

    Science.gov (United States)

    Baer, D. S.; Liem, J.; Owano, T. G.; Gupta, M.

    2014-12-01

    Measurements of dissolved gases in lakes, rivers and oceans may be used to quantify underwater greenhouse gas generation, air-surface exchange, and pollution migration. Studies involving quantification of dissolved gases typically require obtaining water samples (from streams, lakes, or ocean water) and transporting them to a laboratory, where they are degased. The gases obtained are then generally measured using gas chromatography and isotope ratio mass spectrometry for concentrations and isotope ratios, respectively. This conventional, off-line, discrete-sample methodology is time consuming and labor intensive, and thus severely inhibits detailed spatial and temporal mapping of dissolved gases. In this work, we describe the commercial development of a new portable membrane-based gas extraction system (18.75" x 18.88" x 10.69", 16 kg, 85 watts) that interfaces directly to our cavity enhanced laser absorption based (or Off-Axis ICOS) gas analyzers to continuously and quickly measure concentrations and isotope ratios of dissolved gases. By accurately controlling the water flow rate through the membrane contactor, gas pressure on the outside and water pressure on the inside of the membrane, the system can generate precise and highly reproducible results. Furthermore, the gas-phase mole fractions (parts per million, ppm) may be converted into dissolved gas concentrations (nM), by accurately measuring the gas flow rates in and out of the extraction system. We will present detailed laboratory test data that quantifies the performance (linearity, precision, and dynamic range) of the system for measurements of the concentrations and isotope ratios of dissolved greenhouse gases (methane, carbon dioxide, and nitrous oxide) continuously and in real time.

  19. Movable Ground Based Recovery System for Reuseable Space Flight Hardware

    Science.gov (United States)

    Sarver, George L. (Inventor)

    2013-01-01

    A reusable space flight launch system is configured to eliminate complex descent and landing systems from the space flight hardware and move them to maneuverable ground based systems. Precision landing of the reusable space flight hardware is enabled using a simple, light weight aerodynamic device on board the flight hardware such as a parachute, and one or more translating ground based vehicles such as a hovercraft that include active speed, orientation and directional control. The ground based vehicle maneuvers itself into position beneath the descending flight hardware, matching its speed and direction and captures the flight hardware. The ground based vehicle will contain propulsion, command and GN&C functionality as well as space flight hardware landing cushioning and retaining hardware. The ground based vehicle propulsion system enables longitudinal and transverse maneuverability independent of its physical heading.

  20. Automated and continuous redox potential measurements in soil.

    Science.gov (United States)

    Vorenhout, Michel; van der Geest, Harm G; van Marum, Daan; Wattel, Kees; Eijsackers, Herman J P

    2004-01-01

    Redox potential (Eh) describes the electrical state of a matrix. In soils, Eh is an important parameter controlling the persistence of many organic and inorganic compounds. A popular, but also criticized, manual measuring method makes use of a small tip of Pt placed on a copper wire that is placed in the soil; a reference electrode is placed in the same soil at a fixed distance. Fluctuations in redox potential values measured in the soil can be very large and depth-dependent. This will be overlooked when making single-point measurements. We developed the datalogger Hypnos 2.0 for continuous redox potential and temperature measurements at various depths in the soil and without disturbance of the site. Hypnos is field-deployable, relatively cheap, and runs on batteries. The datalogger can use a "sleep mode" between sampling events. In sleep mode, there is no constant voltage on the Pt wire or the reference electrode, but there is only a short pulse during sampling. We did not measure an effect of this short pulse on the measured redox potential. In sandy soils in mesocosms and in a salt marsh soil we measured changes in the Eh as large as from -400 to +100 mV within 4 d, and daily cycles of 200 mV. Both absolute redox potential values and their diurnal variations were depth-dependent. Because single redox measurements are insufficient in describing redox conditions in some soil systems, Hypnos can be a powerful tool when studying the effects of fluctuating redox conditions on metal availability and pollutant degradation.

  1. CONTINUOUS, AUTOMATED AND SIMULTANEOUS MEASUREMENT OF OXYGEN UPTAKE AND CARBON DIOXIDE EVOLUTION IN BIOLOGICAL SYSTEMS

    Science.gov (United States)

    Commercial respirometers are capable of continuously and automatically measuring oxygen uptake in bioreactors. A method for continuously and automatically measuring carbon dioxide evolution can be retrofitted to commercial respirometers. Continuous and automatic measurements of...

  2. The Generalization Complexity Measure for Continuous Input Data

    Directory of Open Access Journals (Sweden)

    Iván Gómez

    2014-01-01

    defined in Boolean space, quantifies the complexity of data in relationship to the prediction accuracy that can be expected when using a supervised classifier like a neural network, SVM, and so forth. We first extend the original measure for its use with continuous functions to later on, using an approach based on the use of the set of Walsh functions, consider the case of having a finite number of data points (inputs/outputs pairs, that is, usually the practical case. Using a set of trigonometric functions a model that gives a relationship between the size of the hidden layer of a neural network and the complexity is constructed. Finally, we demonstrate the application of the introduced complexity measure, by using the generated model, to the problem of estimating an adequate neural network architecture for real-world data sets.

  3. Theoretical validation of ground-based microwave ozone observations

    Directory of Open Access Journals (Sweden)

    P. Ricaud

    Full Text Available Ground-based microwave measurements of the diurnal and seasonal variations of ozoneat 42±4.5 and 55±8 km are validated by comparing with results from a zero-dimensional photochemical model and a two-dimensional (2D chemical/radiative/dynamical model, respectively. O3 diurnal amplitudes measured in Bordeaux are shown to be in agreement with theory to within 5%. For the seasonal analysis of O3 variation, at 42±4.5 km, the 2D model underestimates the yearly averaged ozone concentration compared with the measurements. A double maximum oscillation (~3.5% is measured in Bordeaux with an extended maximum in September and a maximum in February, whilst the 2D model predicts only a single large maximum (17% in August and a pronounced minimum in January. Evidence suggests that dynamical transport causes the winter O3 maximum by propagation of planetary waves, phenomena which are not explicitly reproduced by the 2D model. At 55±8 km, the modeled yearly averaged O3 concentration is in very good agreement with the measured yearly average. A strong annual oscillation is both measured and modeled with differences in the amplitude shown to be exclusively linked to temperature fields.

  4. Probability distributions of continuous measurement results for conditioned quantum evolution

    Science.gov (United States)

    Franquet, A.; Nazarov, Yuli V.

    2017-02-01

    We address the statistics of continuous weak linear measurement on a few-state quantum system that is subject to a conditioned quantum evolution. For a conditioned evolution, both the initial and final states of the system are fixed: the latter is achieved by the postselection in the end of the evolution. The statistics may drastically differ from the nonconditioned case, and the interference between initial and final states can be observed in the probability distributions of measurement outcomes as well as in the average values exceeding the conventional range of nonconditioned averages. We develop a proper formalism to compute the distributions of measurement outcomes, and evaluate and discuss the distributions in experimentally relevant setups. We demonstrate the manifestations of the interference between initial and final states in various regimes. We consider analytically simple examples of nontrivial probability distributions. We reveal peaks (or dips) at half-quantized values of the measurement outputs. We discuss in detail the case of zero overlap between initial and final states demonstrating anomalously big average outputs and sudden jump in time-integrated output. We present and discuss the numerical evaluation of the probability distribution aiming at extending the analytical results and describing a realistic experimental situation of a qubit in the regime of resonant fluorescence.

  5. Ground-based remote sensing scheme for monitoring aerosol–cloud interactions

    Directory of Open Access Journals (Sweden)

    K. Sarna

    2015-11-01

    Full Text Available A method for continuous observation of aerosol–cloud interactions with ground-based remote sensing instruments is presented. The main goal of this method is to enable the monitoring of cloud microphysical changes due to the changing aerosol concentration. We use high resolution measurements from lidar, radar and radiometer which allow to collect and compare data continuously. This method is based on a standardised data format from Cloudnet and can be implemented at any observatory where the Cloudnet data set is available. Two example study cases were chosen from the Atmospheric Radiation Measurement (ARM Program deployment at Graciosa Island, Azores, Portugal in 2009 to present the method. We show the Pearson Product–Moment Correlation Coefficient, r, and the Coefficient of Determination, r2 for data divided into bins of LWP, each of 10 g m−2. We explain why the commonly used way of quantity aerosol cloud interactions by use of an ACI index (ACIr,τ = dln re,τ/dlnα is not the best way of quantifying aerosol–cloud interactions.

  6. Space-borne detection of volcanic carbon dioxide anomalies: The importance of ground-based validation networks

    Science.gov (United States)

    Schwandner, F. M.; Carn, S. A.; Corradini, S.; Merucci, L.; Salerno, G.; La Spina, A.

    2012-04-01

    We have investigated the feasibility of space-borne detection of volcanic carbon dioxide (CO2) anomalies, and their integration with ground-based observations. Three goals provide motivation to their integration: (a) development of new volcano monitoring techniques, with better spatial and temporal coverage, because pre-eruptive volcanic CO2 emissions are potentially the earliest available indicators of volcanic unrest; (b) improvement the currently very poor global CO2 source strength inventory for volcanoes, and (c) use of volcanic CO2 emissions for high altitude strong point source emission and dispersion studies. (1) Feasibility of space-borne detection of volcanic CO2 anomalies. Volcanoes are highly variable but continuous CO2 emitters, distributed globally, and emissions often occur at high altitudes. To detect strong point sources of CO2 from space, several hurdles have to be overcome: orographic clouds, unknown dispersion behavior, a high CO2 background in the troposphere, and sparse data coverage from existing satellite sensors. These obstacles can be overcome by a small field of view, enhanced spectral resolving power, and by employing repeat target mode observation strategies. The Japanese GOSAT instrument has been operational since January 2009, producing CO2 total column measurements with a repeat cycle of 3 days and a field of view of 10km. GOSAT thus has the potential to provide spatially integrated data for entire volcanic edifices, especially in target mode. Since summer 2010 we have conducted repeated target mode observations of over 20 persistently active global volcanoes including Etna (Italy), Erta Ale (Ethiopia), and Ambrym (Vanuatu), using L2 GOSAT FTS SWIR data. One of our best-studied test cases is Mt. Etna on Sicily (Italy), which reawakened in 2011 after a period of quiescence and produced a sequence of eruptive activities including lava fountaining events, coinciding with target-mode GOSAT observations conducted there since 2010. For the

  7. EVALUATION OF CONTINUOUS THERMODILUTION METHOD FOR CARDIAC OUTPUT MEASUREMENT

    Directory of Open Access Journals (Sweden)

    Roman Parežnik

    2001-12-01

    Full Text Available Background. Continuous monitoring of haemodynamic variables is often necessary for detection of rapid changes in critically ill patients. In our patients recently introduced continuous thermodilution technique (CTD for cardiac output measurement was compared to bolus thermodilution technique (BTD which is a »golden standard« method for cardiac output (CO measurement in intensive care medicine.Methods. Ten critically ill patients were included in a retrospective observational study. Using CTD method cardiac output was measured continuously. BTD measurements using the same equipment were performed intermittently. The data obtained by BTD were compared to those obtained by CTD just before the BTD (CTD-before and 2–3 minutes after the BTD (CTD-after. The CO values were divided into three groups: all CO values, CO > 4.5 L/min, CO < 4.5 L/min. The bias (mean difference between values obtained by two methods, standard deviation, 95% confidence limits and relative error were calculated and the linear regression analysis was performed. t-test for pared data was used to compare the biases for CTD-before and CTD-after for an individual group. The p value of less than 0.05 was considered statistically significant.Results. A total of 60 data triplets were obtained. CTD-before ranged from 1.9 L/min to 12.6 L/min, CTD-after from 2.0 to 13.2 L/min and BTD from 1.9 to 12.0 L/min. For all CO values the bias for CTD-before was 0.13 ± 0.52 L/min (95% confidence limits 1.17–0.91 L/min, relative error was 3.52 ± 15.20%, linear regression equation was CTD-before = 0.96 × BTD + 0.01 and Pearson’s correlation coefficient was 0.95. The values for CTD-after were 0.08 ± 0.46 L/min (1.0–0.84 L/min, 2.22 ± 9.05%, CTD-after = 0.98 × BTD + 0.01 and 0.98 respectively. For all CO values there was no statistically significant difference between biases for CTD-before and CTD-after (p = 0,51. There was no statistically significant difference between biases for CTD

  8. Electrochemical sensor for continuous transcutaneous PCO2 measurement.

    Science.gov (United States)

    Beran, A V; Huxtable, R F; Sperling, D R

    1976-09-01

    A sensor suitable for continuous transcutaneous PCO2 measurements is described. The sensor consists of an antimony-antimony oxide electrode in combination with a silver-silver chloride reference electrode, bathed in an electrolyte and covered by a Teflon membrane. A servo-controlled heater unit was used to maintain the sensor's temperature and to produce local hyperemia. The resulting oxidation-reduction potential under constant temperature is a linear function of the logarithm PCO2. Response time (95%) to step changes in PCO2 from 27 to 70 mmHg was 2.7 +/- 0.3 min. Following a 12-h "aging" time, the electrode exhibited a minimal drift of 5.2 +/- 2.2 mV for 16 h, representing an average PCO2 drift of 0.5 mmHg/h. This sensor was applied on three rabbits and on five human volunteers, and found satisfactory under normal physiological conditions.

  9. BigBOSS: The Ground-Based Stage IV BAO Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Schlegel, David; Bebek, Chris; Heetderks, Henry; Ho, Shirley; Lampton, Michael; Levi, Michael; Mostek, Nick; Padmanabhan, Nikhil; Perlmutter, Saul; Roe, Natalie; Sholl, Michael; Smoot, George; White, Martin; Dey, Arjun; Abraham, Tony; Jannuzi, Buell; Joyce, Dick; Liang, Ming; Merrill, Mike; Olsen, Knut; Salim, Samir

    2009-04-01

    The BigBOSS experiment is a proposed DOE-NSF Stage IV ground-based dark energy experiment to study baryon acoustic oscillations (BAO) and the growth of structure with an all-sky galaxy redshift survey. The project is designed to unlock the mystery of dark energy using existing ground-based facilities operated by NOAO. A new 4000-fiber R=5000 spectrograph covering a 3-degree diameter field will measure BAO and redshift space distortions in the distribution of galaxies and hydrogen gas spanning redshifts from 0.2< z< 3.5. The Dark Energy Task Force figure of merit (DETF FoM) for this experiment is expected to be equal to that of a JDEM mission for BAO with the lower risk and cost typical of a ground-based experiment.

  10. Estimation of solar irradiance using ground-based whole sky imagers

    CERN Document Server

    Dev, Soumyabrata; Lee, Yee Hui; Winkler, Stefan

    2016-01-01

    Ground-based whole sky imagers (WSIs) can provide localized images of the sky of high temporal and spatial resolution, which permits fine-grained cloud observation. In this paper, we show how images taken by WSIs can be used to estimate solar radiation. Sky cameras are useful here because they provide additional information about cloud movement and coverage, which are otherwise not available from weather station data. Our setup includes ground-based weather stations at the same location as the imagers. We use their measurements to validate our methods.

  11. Continuous measurements of N2O emissions from arable fields

    Science.gov (United States)

    Wallman, Magdalena; Lammirato, Carlo; Rütting, Tobias; Delin, Sofia; Weslien, Per; Klemedtsson, Leif

    2017-04-01

    Agriculture represents 59 % of the anthropogenic nitrous oxide (N2O) emissions, according to the IPCC (Ciais et al. 2013). N2O emissions are typically irregular and vary widely in time and space, which makes it difficult to get a good representation of the emissions (Henault et al. 2012), particularly if measurements have low frequency and/or cover only a short time period. Manual measurements are, for practical reasons, often short-term and low-frequent, or restricted to periods where emissions are expected to be high, e.g. after fertilizing. However, the nature of N2O emissions, being largely unpredictable, calls for continuous or near-continuous measurements over long time periods. So far, rather few long-term, high resolution measurements of N2O emissions from arable fields are reported; among them are Flessa et al. (2002) and Senapati et al. (2016). In this study, we have a two-year data set (2015-2017) with hourly measurements from ten automatic chambers, covering unfertilized controls as well as different nitrogen fertilizer treatments. Grain was produced on the field, and effects of tillage, harvest and other cropping measures were covered. What we can see from the experiment is that (a) the unfertilized control plots seem to follow the same emission pattern as the fertilized plots, at a level similar to the standard mineral fertilized plots (120 kg N ha-1 yr-1) and (b) freeze/thaw emissions are comparable in size to emissions after fertilizing. These two findings imply that the importance of fertilizing to the overall N2O emissions from arable soils may be smaller than previously expected. References: Ciais, P., C. Sabine, G. Bala, L. Bopp, V. Brovkin, J. Canadell et al. 2013: Carbon and Other Biogeochemical Cycles. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung et

  12. Continuous measurements of aerosol particles in Arctic Russia and Finland

    Science.gov (United States)

    Asmi, Eija; Kondratyev, Vladimir; Brus, David; Lihavainen, Heikki; Laurila, Tuomas; Aurela, Mika; Hatakka, Juha; Viisanen, Yrjö; Reshetnikov, Alexander; Ivakhov, Victor; Uttal, Taneil; Makshtas, Alexander

    2013-04-01

    The Arctic and northern boreal regions of Eurasia are experiencing rapid environmental changes due to pressures by human activities. The largest anthropogenic climate forcings are due to aerosol particles and greenhouse gases (GHGs). The Arctic environment is highly sensitive to changes in aerosol concentrations or composition, largely due to the high surface reflectance for the most part of the year. Concentrations of aerosols in winter and spring Arctic are affected by 'Arctic Haze', a phenomenon suggested to arise from the transport of pollutants from lower latitudes and further strengthened by the strong stratification of the Arctic wintertime atmosphere. Sources and transport patterns of aerosols into the Arctic are, however, not fully understood. In order to monitor the changes within the Arctic region, as well as to understand the sources and feedback mechanisms, direct measurements of aerosols within the Arctic are needed. So far, direct year-round observations have been inadequate especially within the Russian side of the Arctic. This is the reason why a new climate observatory was founded in Tiksi, Russia. Tiksi meteorological observatory in northern Siberia (71o 36' N; 128o 53' E) on the shore of the Laptev Sea has been operating since 1930s. Recently, it was upgraded and joint in the network of the IASOA, in the framework of the International Polar Year Activity project. The project is run in collaboration between National Oceanic and Atmospheric Administration (NOAA) with the support of the National Science Foundation (NSF), Roshydromet (AARI and MGO units), government of the Republic of Sakha (Yakutia) and the Finnish Meteorological Institute (FMI). The research activities of FMI in Tiksi include e.g. continuous long-term measurements of aerosol physical properties, which have been successfully continued since summer 2010. These, together with the FMI measurements in Pallas station in northern Finland since 1999, provide important information on the

  13. Ground-based LIDAR: a novel approach to quantify fine-scale fuelbed characteristics

    Science.gov (United States)

    E.L. Loudermilk; J.K. Hiers; J.J. O’Brien; R.J. Mitchell; A. Singhania; J.C. Fernandez; W.P. Cropper; K.C. Slatton

    2009-01-01

    Ground-based LIDAR (also known as laser ranging) is a novel technique that may precisely quantify fuelbed characteristics important in determining fire behavior. We measured fuel properties within a south-eastern US longleaf pine woodland at the individual plant and fuelbed scale. Data were collected using a mobile terrestrial LIDAR unit at sub-cm scale for individual...

  14. Use of neural networks in ground-based aerosol retrievals from multi-angle spectropolarimetric observations

    NARCIS (Netherlands)

    Di Noia, A.; Hasekamp, O.P.; Harten, G. van; Rietjens, J.H.H.; Smit, J.M.; Snik, F.; Henzing, J.S.; Boer, J. de; Keller, C.U.; Volten, H.

    2015-01-01

    In this paper, the use of a neural network algorithm for the retrieval of the aerosol properties from ground-based spectropolarimetric measurements is discussed. The neural network is able to retrieve the aerosol properties with an accuracy that is almost comparable to that of an iterative retrieval

  15. Ozone profiles obtained by DIAL technique at Maïdo Observatory in La Reunion Island: comparisons with ECC ozone-sondes, ground-based FTIR spectrometer and microwave radiometer measurements

    Directory of Open Access Journals (Sweden)

    Portafaix T.

    2016-01-01

    Full Text Available A DIAL lidar system performing stratospheric ozone profile measurements from 15 to 45 km is installed at Reunion Island (southwest of Indian Ocean. The purpose of this communication is to present this DIAL system mounted now at the new Maïdo Observatory since February 2013, and the ozone profile retrieval. The first stratospheric ozone profiles obtained during 2013 and 2014 will be presented and discussed. Inter-comparison and differences observed with other high vertical resolution ozone profiles performed by ECC ozonesonde will be shown. Finally, comparisons with low vertical resolution ozone profiles retrieved from microwave and FTIR remote sensing measurements performed at Maïdo will be carried out, making appropriate use of the associated averaging kernels

  16. Ozone profiles obtained by DIAL technique at Maïdo Observatory in La Reunion Island: comparisons with ECC ozone-sondes, ground-based FTIR spectrometer and microwave radiometer measurements

    Science.gov (United States)

    Portafaix, T.; Godin-Beekmann, S.; Payen, G.; de Mazière, M.; Langerock, B.; Fernandez, S.; Posny, F.; Cammas, J. P.; Metzger, J. M.; Bencherif, H.; Vigouroux, C.; Marquestaut, N.

    2016-06-01

    A DIAL lidar system performing stratospheric ozone profile measurements from 15 to 45 km is installed at Reunion Island (southwest of Indian Ocean). The purpose of this communication is to present this DIAL system mounted now at the new Maïdo Observatory since February 2013, and the ozone profile retrieval. The first stratospheric ozone profiles obtained during 2013 and 2014 will be presented and discussed. Inter-comparison and differences observed with other high vertical resolution ozone profiles performed by ECC ozonesonde will be shown. Finally, comparisons with low vertical resolution ozone profiles retrieved from microwave and FTIR remote sensing measurements performed at Maïdo will be carried out, making appropriate use of the associated averaging kernels

  17. Ozone profiles obtained by DIAL technique at Maïdo Observatory in La Réunion Island: comparisons with ECC ozone-sondes, ground-based FTIR spectrometer and microwave radiometer measurements

    OpenAIRE

    Portafaix T.; Godin-Beekmann S.; Payen G.; de Mazière M.; Langerock B.; Fernandez S; Posny F.; Cammas J.P.; Metzger J. M.; Bencherif H.; Vigouroux C.; Marquestaut N.

    2016-01-01

    International audience; A DIAL lidar system performing stratospheric ozone profile measurements from 15 to 45 km is installed at Reunion Island (southwest of Indian Ocean). The purpose of this communication is to present this DIAL system mounted now at the new Maïdo Observatory since February 2013, and the ozone profile retrieval. The first stratospheric ozone profiles obtained during 2013 and 2014 will be presented and discussed. Inter-comparison and differences observed with other high vert...

  18. Evidence of rock slope breathing using ground-based InSAR

    Science.gov (United States)

    Rouyet, Line; Kristensen, Lene; Derron, Marc-Henri; Michoud, Clément; Blikra, Lars Harald; Jaboyedoff, Michel; Lauknes, Tom Rune

    2017-07-01

    Ground-Based Interferometric Synthetic Aperture Radar (GB-InSAR) campaigns were performed in summer 2011 and 2012 in the Romsdalen valley (Møre & Romsdal county, western Norway) in order to assess displacements on Mannen/Børa rock slope. Located 1 km northwest, a second GB-InSAR system continuously monitors the large Mannen rockslide. The availability of two GB-InSAR positions creates a wide coverage of the rock slope, including a slight dataset overlap valuable for validation. A phenomenon of rock slope breathing is detected in a remote and hard-to-access area in mid-slope. Millimetric upward displacements are recorded in August 2011. Analysis of 2012 GB-InSAR campaign, combined with the large dataset from the continuous station, shows that the slope is affected by inflation/deflation phenomenon between 5 and 10 mm along the line-of-sight. The pattern is not homogenous in time and inversions of movement have a seasonal recurrence. These seasonal changes are confirmed by satellite InSAR observations and can possibly be caused by hydrogeological variations. In addition, combination of GB-InSAR results, in situ measurements and satellite InSAR analyses contributes to a better overview of movement distribution over the whole area.

  19. LOAC: a small aerosol optical counter/sizer for ground-based and balloon measurements of the size distribution and nature of atmospheric particles – Part 2: First results from balloon and unmanned aerial vehicle flights

    Directory of Open Access Journals (Sweden)

    J.-B. Renard

    2015-09-01

    Full Text Available In the companion paper (Renard et al., 2015, we have described and evaluated a new versatile optical particle counter/sizer named LOAC (Light Optical Aerosol Counter based on scattering measurements at angles of 12 and 60° that allows some topology identification of particles (droplets, carbonaceous, salts, and mineral dust in addition to size segregated counting in a large diameter range from 0.2 up to possibly more than 100 μm depending on sampling conditions. Its capabilities overpass those of preceding optical particle counters (OPCs allowing the characterization of all kind of aerosols from submicronic-sized absorbing carbonaceous particles in polluted air to very coarse particles (> 10–20 μm in diameter in desert dust plumes or fog and clouds. LOAC's light and compact design allows measurements under all kinds of balloons, on-board unmanned aerial vehicles (UAV and at ground level. We illustrate here the first LOAC airborne results obtained from an unmanned aerial vehicle (UAV and a variety of scientific balloons. The UAV was deployed in a peri-urban environment near Bordeaux in France. Balloon operations include (i tethered balloons deployed in urban environments in Vienna (Austria and Paris (France, (ii pressurized balloons drifting in the lower troposphere over the western Mediterranean (during the Chemistry-Aerosol Mediterranean Experiment – ChArMEx campaigns, (iii meteorological sounding balloons launched in the western Mediterranean region (ChArMEx and from Aire-sur-l'Adour in south-western France (VOLTAIRE-LOAC campaign. More focus is put on measurements performed in the Mediterranean during (ChArMEx and especially during African dust transport events to illustrate the original capability of balloon-borne LOAC to monitor in situ coarse mineral dust particles. In particular, LOAC has detected unexpected large particles in desert sand plumes.

  20. LOAC: a small aerosol optical counter/sizer for ground-based and balloon measurements of the size distribution and nature of atmospheric particles - Part 2: First results from balloon and unmanned aerial vehicle flights

    Science.gov (United States)

    Renard, Jean-Baptiste; Dulac, François; Berthet, Gwenaël; Lurton, Thibaut; Vignelles, Damien; Jégou, Fabrice; Tonnelier, Thierry; Jeannot, Matthieu; Couté, Benoit; Akiki, Rony; Verdier, Nicolas; Mallet, Marc; Gensdarmes, François; Charpentier, Patrick; Mesmin, Samuel; Duverger, Vincent; Dupont, Jean-Charles; Elias, Thierry; Crenn, Vincent; Sciare, Jean; Zieger, Paul; Salter, Matthew; Roberts, Tjarda; Giacomoni, Jérôme; Gobbi, Matthieu; Hamonou, Eric; Olafsson, Haraldur; Dagsson-Waldhauserova, Pavla; Camy-Peyret, Claude; Mazel, Christophe; Décamps, Thierry; Piringer, Martin; Surcin, Jérémy; Daugeron, Daniel

    2016-08-01

    In the companion (Part I) paper, we have described and evaluated a new versatile optical particle counter/sizer named LOAC (Light Optical Aerosol Counter), based on scattering measurements at angles of 12 and 60°. That allows for some typology identification of particles (droplets, carbonaceous, salts, and mineral dust) in addition to size-segregated counting in a large diameter range from 0.2 µm up to possibly more than 100 µm depending on sampling conditions (Renard et al., 2016). Its capabilities overpass those of preceding optical particle counters (OPCs) allowing the characterization of all kind of aerosols from submicronic-sized absorbing carbonaceous particles in polluted air to very coarse particles (> 10-20 µm in diameter) in desert dust plumes or fog and clouds. LOAC's light and compact design allows measurements under all kinds of balloons, on-board unmanned aerial vehicles (UAVs) and at ground level. We illustrate here the first LOAC airborne results obtained from a UAV and a variety of scientific balloons. The UAV was deployed in a peri-urban environment near Bordeaux in France. Balloon operations include (i) tethered balloons deployed in urban environments in Vienna (Austria) and Paris (France), (ii) pressurized balloons drifting in the lower troposphere over the western Mediterranean (during the Chemistry-Aerosol Mediterranean Experiment - ChArMEx campaigns), (iii) meteorological sounding balloons launched in the western Mediterranean region (ChArMEx) and from Aire-sur-l'Adour in south-western France (VOLTAIRE-LOAC campaign). More focus is put on measurements performed in the Mediterranean during (ChArMEx) and especially during African dust transport events to illustrate the original capability of balloon-borne LOAC to monitor in situ coarse mineral dust particles. In particular, LOAC has detected unexpected large particles in desert sand plumes.

  1. Capacitance variation measurement method with a continuously variable measuring range for a micro-capacitance sensor

    Science.gov (United States)

    Lü, Xiaozhou; Xie, Kai; Xue, Dongfeng; Zhang, Feng; Qi, Liang; Tao, Yebo; Li, Teng; Bao, Weimin; Wang, Songlin; Li, Xiaoping; Chen, Renjie

    2017-10-01

    Micro-capacitance sensors are widely applied in industrial applications for the measurement of mechanical variations. The measurement accuracy of micro-capacitance sensors is highly dependent on the capacitance measurement circuit. To overcome the inability of commonly used methods to directly measure capacitance variation and deal with the conflict between the measurement range and accuracy, this paper presents a capacitance variation measurement method which is able to measure the output capacitance variation (relative value) of the micro-capacitance sensor with a continuously variable measuring range. We present the principles and analyze the non-ideal factors affecting this method. To implement the method, we developed a capacitance variation measurement circuit and carried out experiments to test the circuit. The result shows that the circuit is able to measure a capacitance variation range of 0–700 pF linearly with a maximum relative accuracy of 0.05% and a capacitance range of 0–2 nF (with a baseline capacitance of 1 nF) with a constant resolution of 0.03%. The circuit is proposed as a new method to measure capacitance and is expected to have applications in micro-capacitance sensors for measuring capacitance variation with a continuously variable measuring range.

  2. Ozone profiles above Kiruna from two ground-based radiometers

    Science.gov (United States)

    Ryan, Niall J.; Walker, Kaley A.; Raffalski, Uwe; Kivi, Rigel; Gross, Jochen; Manney, Gloria L.

    2016-09-01

    This paper presents new atmospheric ozone concentration profiles retrieved from measurements made with two ground-based millimetre-wave radiometers in Kiruna, Sweden. The instruments are the Kiruna Microwave Radiometer (KIMRA) and the Millimeter wave Radiometer 2 (MIRA 2). The ozone concentration profiles are retrieved using an optimal estimation inversion technique, and they cover an altitude range of ˜ 16-54 km, with an altitude resolution of, at best, 8 km. The KIMRA and MIRA 2 measurements are compared to each other, to measurements from balloon-borne ozonesonde measurements at Sodankylä, Finland, and to measurements made by the Microwave Limb Sounder (MLS) aboard the Aura satellite. KIMRA has a correlation of 0.82, but shows a low bias, with respect to the ozonesonde data, and MIRA 2 shows a smaller magnitude low bias and a 0.98 correlation coefficient. Both radiometers are in general agreement with each other and with MLS data, showing high correlation coefficients, but there are differences between measurements that are not explained by random errors. An oscillatory bias with a peak of approximately ±1 ppmv is identified in the KIMRA ozone profiles over an altitude range of ˜ 18-35 km, and is believed to be due to baseline wave features that are present in the spectra. A time series analysis of KIMRA ozone for winters 2008-2013 shows the existence of a local wintertime minimum in the ozone profile above Kiruna. The measurements have been ongoing at Kiruna since 2002 and late 2012 for KIMRA and MIRA 2, respectively.

  3. Independet Component Analyses of Ground-based Exoplanetary Transits

    Science.gov (United States)

    Silva Martins-Filho, Walter; Griffith, Caitlin Ann; Pearson, Kyle; Waldmann, Ingo; Biddle, Lauren; Zellem, Robert Thomas; Alvarez-Candal, Alvaro

    2016-10-01

    Most observations of exoplanetary atmospheres are conducted when a "Hot Jupiter" exoplanet transits in front of its host star. These Jovian-sized planets have small orbital periods, on the order of days, and therefore a short transit time, making them more ameanable to observations. Measurements of Hot Jupiter transits must achieve a 10-4 level of accuracy in the flux to determine the spectral modulations of the exoplanetary atmosphere. In order to accomplish this level of precision, we need to extract systematic errors, and, for ground-based measurements, the effects of Earth's atmosphere, from the signal due to the exoplanet, which is several orders of magnitudes smaller. Currently, the effects of the terrestrial atmosphere and the some of the time-dependent systematic errors are treated by dividing the host star by a reference star at each wavelength and time step of the transit. More recently, Independent Component Analyses (ICA) have been used to remove systematic effects from the raw data of space-based observations (Waldmann 2014,2012; Morello et al.,2015,2016). ICA is a statistical method born from the ideas of the blind-source separation studies, which can be used to de-trend several independent source signals of a data set (Hyvarinen and Oja, 2000). One strength of this method is that it requires no additional prior knowledge of the system. Here, we present a study of the application of ICA to ground-based transit observations of extrasolar planets, which are affected by Earth's atmosphere. We analyze photometric data of two extrasolar planets, WASP-1b and GJ3470b, recorded by the 61" Kuiper Telescope at Stewart Observatory using the Harris B and U filters. The presentation will compare the light curve depths and their dispersions as derived from the ICA analysis to those derived by analyses that ratio of the host star to nearby reference stars.References: Waldmann, I.P. 2012 ApJ, 747, 12, Waldamann, I. P. 2014 ApJ, 780, 23; Morello G. 2015 ApJ, 806

  4. Satellite Type Estination from Ground-based Photometric Observation

    Science.gov (United States)

    Endo, T.; Ono, H.; Suzuki, J.; Ando, T.; Takanezawa, T.

    2016-09-01

    The optical photometric observation is potentially a powerful tool for understanding of the Geostationary Earth Orbit (GEO) objects. At first, we measured in laboratory the surface reflectance of common satellite materials, for example, Multi-layer Insulation (MLI), mono-crystalline silicon cells, and Carbon Fiber Reinforced Plastic (CFRP). Next, we calculated visual magnitude of a satellite by simplified shape and albedo. In this calculation model, solar panels have dimensions of 2 by 8 meters, and the bus area is 2 meters squared with measured optical properties described above. Under these conditions, it clarified the brightness can change the range between 3 and 4 magnitudes in one night, but color index changes only from 1 to 2 magnitudes. Finally, we observed the color photometric data of several GEO satellites visible from Japan multiple times in August and September 2014. We obtained that light curves of GEO satellites recorded in the B and V bands (using Johnson filters) by a ground-base optical telescope. As a result, color index changed approximately from 0.5 to 1 magnitude in one night, and the order of magnitude was not changed in all cases. In this paper, we briefly discuss about satellite type estimation using the relation between brightness and color index obtained from the photometric observation.

  5. Evaluation Models for Continuing Education Program Efficacy: How Does Athletic Training Continuing Education Measure up?

    Science.gov (United States)

    Doherty-Restrepo, Jennifer L.; Hughes, Brian J.; Del Rossi, Gianluca; Pitney, William A.

    2009-01-01

    Objective: Although continuing education is required for athletic trainers (AT) to maintain their Board of Certification credential, little is known regarding its efficacy for advancing knowledge and improving patient care. Continuing professional education (CPE) is designed to provide professionals with important practical learning opportunities.…

  6. Radiative and temperature effects of aerosol simulated by the COSMO-Ru model for different atmospheric conditions and their testing against ground-based measurements and accurate RT simulations

    Science.gov (United States)

    Chubarova, Nataly; Poliukhov, Alexei; Shatunova, Marina; Rivin, Gdali; Becker, Ralf; Muskatel, Harel; Blahak, Ulrich; Kinne, Stefan; Tarasova, Tatiana

    2017-04-01

    We use the operational Russian COSMO-Ru weather forecast model (Ritter and and Geleyn, 1991) with different aerosol input data for the evaluation of radiative and temperature effects of aerosol in different atmospheric conditions. Various aerosol datasets were utilized including Tegen climatology (Tegen et al., 1997), updated Macv2 climatology (Kinne et al., 2013), Tanre climatology (Tanre et al., 1984) as well as the MACC data (Morcrette et al., 2009). For clear sky conditions we compare the radiative effects from the COSMO-Ru model over Moscow (55.7N, 37.5E) and Lindenberg/Falkenberg sites (52.2N, 14.1E) with the results obtained using long-term aerosol measurements. Additional tests of the COSMO RT code were performed against (FC05)-SW model (Tarasova T.A. and Fomin B.A., 2007). The overestimation of about 5-8% of COSMO RT code was obtained. The study of aerosol effect on temperature at 2 meters has revealed the sensitivity of about 0.7-1.1 degree C per 100 W/m2 change in shortwave net radiation due to aerosol variations. We also discuss the radiative impact of urban aerosol properties according to the long-term AERONET measurements in Moscow and Moscow suburb as well as long-term aerosol trends over Moscow from the measurements and Macv2 dataset. References: Kinne, S., O'Donnel D., Stier P., et al., J. Adv. Model. Earth Syst., 5, 704-740, 2013. Morcrette J.-J.,O. Boucher, L. Jones, eet al, J.GEOPHYS. RES.,VOL. 114, D06206, doi:10.1029/2008JD011235, 2009. Ritter, B. and Geleyn, J., Monthly Weather Review, 120, 303-325, 1992. Tanre, D., Geleyn, J., and Slingo, J., A. Deepak Publ., Hampton, Virginia, 133-177, 1984. Tarasova, T., and Fomin, B., Journal of Atmospheric and Oceanic Technology, 24, 1157-1162, 2007. Tegen, I., Hollrig, P., Chin, M., et al., Journal of Geophysical Research- Atmospheres, 102, 23895-23915, 1997.

  7. RTTOV-gb - Adapting the fast radiative transfer model RTTOV for the assimilation of ground-based microwave radiometer observations

    Science.gov (United States)

    De Angelis, Francesco; Cimini, Domenico; Hocking, James; Martinet, Pauline; Kneifel, Stefan

    2016-04-01

    The Planetary Boundary Layer (PBL) is the single most important under-sampled part of the atmosphere. According to the WMO Statement Of Guidance For Global Numerical Weather Prediction (NWP), temperature and humidity profiles (in cloudy areas) are among the four critical atmospheric variables not adequately measured in the PBL. Ground-based microwave radiometers (MWR) provide temperature and humidity profiles in both clear- and cloudy-sky conditions with high temporal resolution and low-to-moderate vertical resolution, with information mostly residing in the PBL. Ground-based MWR offer to bridge this observational gap by providing continuous temperature and humidity information in the PBL. The MWR data assimilation into NWP models may be particularly important in nowcasting and severe weather initiation. The assimilation of thermodynamic profiles retrieved from MWR data has been recently experimented, but a way to possibly increase the impact is to directly assimilate measured radiances instead of retrieved profiles. The assimilation of observed radiances in a variational scheme requires the following tools: (i) a fast radiative transfer (RT) model to compute the simulated radiances at MWR channels from the NWP model fields (ii) the partial derivatives (Jacobians) of the fast radiative transfer model with respect to control variables to optimize the distances of the atmospheric state from both the first guess and the observations. Such a RT model is available from the EUMETSAT NWPSAF (Numerical Weather Prediction Satellite Application Facility) and well accepted in the NWP community: RTTOV. This model was developed for nadir-viewing passive visible, infrared, and microwave satellite radiometers, spectrometers and interferometers. It has been modified to handle ground-based microwave radiometer observations. This version of RTTOV, called RTTOV-gb, provides the tools needed to exploit ground-based upward looking MWR brightness temperatures into NWP variational data

  8. Continuous in situ measurements of stable isotopes in liquid water

    Science.gov (United States)

    Herbstritt, Barbara; Gralher, Benjamin; Weiler, Markus

    2012-03-01

    We developed a method to measure in situ the isotopic composition of liquid water with minimal supervision and, most important, with a temporal resolution of less than a minute. For this purpose a microporous hydrophobic membrane contactor (Membrana) was combined with an isotope laser spectrometer (Picarro). The contactor, originally designed for degassing liquids, was used with N2 as a carrier gas in order to transform a small fraction of liquid water to water vapor. The generated water vapor was then analyzed continuously by the Picarro analyzer. To prove the membrane's applicability, we determined the specific isotope fractionation factor for the phase change through the contactor's membrane across an extended temperature range (8°C-21°C) and with different waters of known isotopic compositions. This fractionation factor is needed to subsequently derive the liquid water isotope ratio from the measured water vapor isotope ratios. The system was tested with a soil column experiment, where the isotope values derived with the new method corresponded well (R2 = 0.998 for δ18O and R2 = 0.997 for δ2H) with those of liquid water samples taken simultaneously and analyzed with a conventional method (cavity ring-down spectroscopy). The new method supersedes taking liquid samples and employs only relatively cheap and readily available components. This makes it a relatively inexpensive, fast, user-friendly, and easily reproducible method. It can be applied in both the field and laboratory wherever a water vapor isotope analyzer can be run and whenever real-time isotope data of liquid water are required at high temporal resolution.

  9. SF{sub 6} ground-based infrared solar absorption measurements: long-term trend, pollution events, and a search for SF{sub 5}CF{sub 3} absorption

    Energy Technology Data Exchange (ETDEWEB)

    Rinsland, C.P. E-mail: c.p.rinsland@larc.nasa.gov; Goldman, A.; Stephen, T.M.; Chiou, L.S.; Mahieu, E.; Zander, R

    2003-04-15

    Infrared solar spectra recorded with the Fourier transform spectrometer in the McMath solar telescope complex on Kitt Peak (31.9 deg. N latitude, 111.6 deg. W, 2.09 km altitude), southwest of Tucson, Arizona, have been analyzed to retrieve average SF{sub 6} tropospheric mixing ratios over a two-decade time span. The analysis is based primarily on spectral fits to absorption by the intense, unresolved {nu}{sub 3} band Q branch at 947.9 cm{sup -1}. A best fit to measurements recorded with SF{sub 6} near typical background concentrations yields a SF{sub 6} increase in the average tropospheric mixing ratio from 1.13 pptv (10{sup -12} per unit volume) in March 1982 to 3.77 pptv in March 2002. The long-term increase by a factor of 3.34 over the time span is consistent with the rapid growth of surface mixing ratios measured in situ at Northern Hemisphere remote stations, though the infrared measurements show a large scatter. Average tropospheric mixing ratio enhancements above background by 2-3 orders of magnitude have been identified in spectra recorded on 5 days between November 1988 and April 1997. These spectra were individually analyzed in an attempt to detect the strongest 8-12 {mu}m band of SF{sub 5}CF{sub 3}, a molecule recently identified with an atmospheric growth that has closely paralleled the rise in SF{sub 6} during the past three decades. Absorption by the strongest SF{sub 5}CF{sub 3} band was predicted to be above the noise level in the Kitt Peak spectrum with the highest average mean tropospheric SF{sub 6} mixing ratio, assuming the reported atmospheric SF{sub 5}CF{sub 3}/SF{sub 6} ratio and a room temperature absorption cross sections reported for the SF{sub 5}CF{sub 3} 903-cm{sup -1} band. An upper limit of 8x10{sup 15} molecules cm{sup -2} for the SF{sub 5}CF{sub 3} total column was estimated for this case. We hypothesize that the highly elevated SF{sub 6} levels above Kitt Peak resulted from a local release experiment rather than production via

  10. Continuous psychophysics: Target-tracking to measure visual sensitivity.

    Science.gov (United States)

    Bonnen, Kathryn; Burge, Johannes; Yates, Jacob; Pillow, Jonathan; Cormack, Lawrence K

    2015-03-20

    We introduce a novel framework for estimating visual sensitivity using a continuous target-tracking task in concert with a dynamic internal model of human visual performance. Observers used a mouse cursor to track the center of a two-dimensional Gaussian luminance blob as it moved in a random walk in a field of dynamic additive Gaussian luminance noise. To estimate visual sensitivity, we fit a Kalman filter model to the human tracking data under the assumption that humans behave as Bayesian ideal observers. Such observers optimally combine prior information with noisy observations to produce an estimate of target position at each time step. We found that estimates of human sensory noise obtained from the Kalman filter fit were highly correlated with traditional psychophysical measures of human sensitivity (R2 > 97%). Because each frame of the tracking task is effectively a "minitrial," this technique reduces the amount of time required to assess sensitivity compared with traditional psychophysics. Furthermore, because the task is fast, easy, and fun, it could be used to assess children, certain clinical patients, and other populations that may get impatient with traditional psychophysics. Importantly, the modeling framework provides estimates of decision variable variance that are directly comparable with those obtained from traditional psychophysics. Further, we show that easily computed summary statistics of the tracking data can also accurately predict relative sensitivity (i.e., traditional sensitivity to within a scale factor).

  11. Continuous measurements of methane from a tower network over Siberia

    Energy Technology Data Exchange (ETDEWEB)

    Sasakawa, M.; Machida, T.; Saeki, T.; Koyama, Y.; Maksyutov, S. (Center for Global Environmental Research, National Inst. for Environmental Studies, Tsukuba, Ibaraki (Japan)); Shimoyama, K. (Inst. of Low Temperature Science, Hokkaido Univ., Hokkaido (Japan)); Tsuda, N. (Global Environmental Forum, Tokyo (Japan)); Suto, H. (Japan Aerospace Exploration Agency (Japan)); Arshinov, M.; Davydov, D.; Fofonov, A.; Krasnov, O. (Inst. of Atmospheric Optics, Russian Academy of Sciences, Siberian Branch (Russian Federation))

    2010-11-15

    We have been conducting continuous measurements of Methane (CH{sub 4}) concentration from an expanding network of towers (JR-STATION: Japan-Russia Siberian Tall Tower Inland Observation Network) located in taiga, steppe and wetland biomes of Siberia since 2004. High daytime means (>2000 ppb) observed simultaneously at several towers during winter, together with in situ weather data and NCEP/NCAR reanalysis data, indicate that high pressure systems caused CH{sub 4} accumulation at subcontinental scale due to the widespread formation of an inversion layer. Daytime means sometimes exceeded 2000 ppb, particularly in the summer of 2007 when temperature and precipitation rates were anomalously high over West Siberia, which implies that CH{sub 4} emission from wetlands were exceptionally high in 2007. Many hot spots detected by MODIS in the summer of 2007 illustrate that the contribution of biomass burning also cannot be neglected. Daytime mean CH{sub 4} concentrations from the Siberian tower sites were generally higher than CH{sub 4} values reported at NOAA coastal sites in the same latitudinal zone, and the difference in concentrations between two sets of sites was reproduced with a coupled Eulerian-Lagrangian transport model. Simulations of emissions from different CH{sub 4} sources suggested that the major contributor to variation switched from wetlands during summer to fossil fuel during winter.

  12. Current trends in ground based solar magnetometry

    Science.gov (United States)

    Gosain, Sanjay

    2016-07-01

    Continuous observations of the sun, over more than a century, have led to several important discoveries in solar astronomy. These include the discovery of the solar magnetism and its cyclic modulation, active region formation and decay and their role in energetic phenomena such as fares and coronal mass ejections (CMEs), fine structure and dynamics of the sunspots and small-scale organization of the magnetic flux in the form of flux tubes and so forth. In this article we give a brief overview of advancements in solar observational techniques in recent decades and the results obtained from the such observations. These include techniques to achieve high angular resolution, high spectral and polarimetric sensitivity and innovative new detectors. A wide range of spatial, temporal and spectral domains exploited by solar astronomers to understand the solar phenomena are discussed. Many new upcoming telescopes and instruments that are designed to address different aspects of solar physics problems are briefly described. Finally, we discuss the advantages of observing from the ground and how they can complement space-based observations.

  13. 基于地基宽带辐射观测资料的云检测算法改进%Modification of Cloud-Screening Method Using Ground-Based Broadband Shortwave Irradiance Measurements

    Institute of Scientific and Technical Information of China (English)

    汤金平; 王普才; 夏祥鳌

    2011-01-01

    利用地表太阳总辐射和散射辐射对Long and Ackerman (2000)的云检测算法进行了改进,提高了云判别的准确率.首先采用比值概率密度峰值法,初步选出晴天时刻.然后根据晴天时刻的地表太阳总辐射和太阳天顶角余弦值,拟合得到该日晴天总辐射近似表达式.在此基础上,计算各时刻实际观测值与用该拟合式估计的总辐射的比值,并再次利用比值概率密度峰值法,判断该时刻的天空状况.最后利用全天空成像仪观测资料和站点天气记录结果检验算法,结果表明,在天顶角小于75°条件下,本算法判断准确率平均达90.9%.改进的云检测算法减少了因水汽柱总量、气溶胶浓度和系统测量偏差的日变化及天顶角变化造成的误差.应用该检测算法,得到了香河和太湖两地云日发生频率并分析了云地表辐射强迫季节变化特征.两地云出现频率和云地表短波辐射强迫均夏季最大,春秋次之,冬季最小,太湖站云出现频率的季节变化幅度不及香河.香河云地表短波辐射强迫年平均为-39.5 W·m-2,春夏秋冬季节平均分别为-25.9 W·m-2、-70.9 W·m-2、-51.1 W·m-2、-10.8 W·m-2.太湖云地表短波辐射强迫年平均为-66.2 W·m-2,春夏秋冬季节平均分别为-84.6 W·m-2、-89.1 W·m-2、-50.2 W·m-2、-44.1 W·m-2.%A modified automatic cloud-screening method is developed using 1-min measurement of surface down-welling shortwave global and diffuse irradiance. Clear skies are detected firstly by peak frequency density of ratio (PFDR) method. Then the detected clear-sky irradiance measurements are used to fit the expected clear-sky irradiance as the function of the cosine of the solar zenith angle by the least squares fitting method. Afterwards, the PFDR method is applied to the ratio of observed total shortwave irradiance to the predicted values for the cloud-free sky condition with the fitting expression. The clear sky detection method

  14. A comparative study of satellite and ground-based phenology.

    Science.gov (United States)

    Studer, S; Stöckli, R; Appenzeller, C; Vidale, P L

    2007-05-01

    Long time series of ground-based plant phenology, as well as more than two decades of satellite-derived phenological metrics, are currently available to assess the impacts of climate variability and trends on terrestrial vegetation. Traditional plant phenology provides very accurate information on individual plant species, but with limited spatial coverage. Satellite phenology allows monitoring of terrestrial vegetation on a global scale and provides an integrative view at the landscape level. Linking the strengths of both methodologies has high potential value for climate impact studies. We compared a multispecies index from ground-observed spring phases with two types (maximum slope and threshold approach) of satellite-derived start-of-season (SOS) metrics. We focus on Switzerland from 1982 to 2001 and show that temporal and spatial variability of the multispecies index correspond well with the satellite-derived metrics. All phenological metrics correlate with temperature anomalies as expected. The slope approach proved to deviate strongly from the temporal development of the ground observations as well as from the threshold-defined SOS satellite measure. The slope spring indicator is considered to indicate a different stage in vegetation development and is therefore less suited as a SOS parameter for comparative studies in relation to ground-observed phenology. Satellite-derived metrics are, however, very susceptible to snow cover, and it is suggested that this snow cover should be better accounted for by the use of newer satellite sensors.

  15. The use of products from ground-based GNSS observations in meteorological nowcasting

    Science.gov (United States)

    Terradellas, E.; Callado, A.; Pascual, R.; Téllez, B.

    2009-09-01

    Heavy rainfall is often focalized in areas of moisture convergence. A close relationship between precipitation and fast variations of vertically-integrated water vapour (IWV) has been found in numerous cases. Furthermore, a latency of several tens of minutes of the precipitation relative to a rapid increase of the water vapour contents appears to be a common truth. Therefore, continuous monitoring of atmospheric humidity and its spatial distribution is crucial to the operational forecaster for a proper nowcasting of heavy rainfall events. Radiosonde releases yield measurements of atmospheric humidity, but they are very sparse and present a limited time resolution of 6 to 12 hours. The microwave signals continuously broadcasted by the Global Navigation Satellite System (GNSS) satellites are influenced by the water vapour as they travel through the atmosphere to ground-based receivers. The total zenith delay (ZTD) of these signals, a by-product of the geodetic processing, is already operationally assimilated into numerical weather prediction (NWP) models and has positive impact on the prediction of precipitation events, as it has been reported after the analysis of parallel runs. Estimates of IWV retrieved from ground-based GNSS observations may also constitute a source of information on the horizontal distribution and the time evolution of atmospheric humidity that can be presented to the forecaster. Several advantages can be attributed to the ground-based GNSS as a meteorological observing system. First, receiving networks can be built and maintained at a relatively low cost, which it can, additionally, be shared among different users. Second, the quality of the processed observations is insensitive to the weather conditions and, third, the temporal resolution of its products is very high. On the other hand, the current latency of the data disposal, ranging between one and two hours, is acceptable for the NWP community, but appears to be excessive for nowcasting

  16. Ground Based GPS Phase Measurements for Atmospheric Sounding

    Science.gov (United States)

    2016-06-14

    based GPS observations for the correction of radar observations. 6 REFERENCES Alber, C., R. Ware, C. Rocken, and J. Braun, A new method for sensing ...rocken@ucar.edu Award #: N00014-97-1-0258 LONG-TERM GOAL The goal is to develop GPS remote sensing techniques to determine atmospheric signal delay and...agrees best with the observations in a least squares sense is selected. The corresponding refractivity profile is then selected. • We tested this

  17. Continuous measurement of heart rate variability following carbon ...

    African Journals Online (AJOL)

    2010-07-16

    Jul 16, 2010 ... Studies using HRV analysis during positive-pressure ... Keywords: heart rate variability; positive pressure pneumoperitoneum; continuous monitoring. Abstract .... entropy predicts arterial blood pressure fluctuation during the.

  18. Validation of stratospheric temperature profiles from a ground-based microwave radiometer with other techniques

    Science.gov (United States)

    Navas, Francisco; Kämpfer, Niklaus; Haefele, Alexander; Keckhut, Philippe; Hauchecorne, Alain

    2016-04-01

    Vertical profiles of atmospheric temperature trends has become recognized as an important indicator of climate change, because different climate forcing mechanisms exhibit distinct vertical warming and cooling patterns. For example, the cooling of the stratosphere is an indicator for climate change as it provides evidence of natural and anthropogenic climate forcing just like surface warming. Despite its importance, our understanding of the observed stratospheric temperature trend and our ability to test simulations of the stratospheric response to emissions of greenhouse gases and ozone depleting substances remains limited. One of the main reason is because stratospheric long-term datasets are sparse and obtained trends differ from one another. Different techniques allow to measure stratospheric temperature profiles as radiosonde, lidar or satellite. The main advantage of microwave radiometers against these other instruments is a high temporal resolution with a reasonable good spatial resolution. Moreover, the measurement at a fixed location allows to observe local atmospheric dynamics over a long time period, which is crucial for climate research. This study presents an evaluation of the stratospheric temperature profiles from a newly ground-based microwave temperature radiometer (TEMPERA) which has been built and designed at the University of Bern. The measurements from TEMPERA are compared with the ones from other different techniques such as in-situ (radiosondes), active remote sensing (lidar) and passive remote sensing on board of Aura satellite (MLS) measurements. In addition a statistical analysis of the stratospheric temperature obtained from TEMPERA measurements during four years of data has been performed. This analysis evidenced the capability of TEMPERA radiometer to monitor the temperature in the stratosphere for a long-term. The detection of some singular sudden stratospheric warming (SSW) during the analyzed period shows the necessity of these

  19. PhotoSpec - Ground-based Remote Sensing of Solar-Induced Chlorophyll Fluorescence: First Results

    Science.gov (United States)

    Grossmann, K.; Magney, T. S.; Frankenberg, C.; Seibt, U.; Pivovaroff, A. L.; Hurlock, S. C.; Stutz, J.

    2016-12-01

    Solar-Induced Chlorophyll Fluorescence (SIF) emitted from vegetation can be used as a proxy for photosynthetic activity and is observable on a global scale from space. However, many issues on a leaf-to-canopy scale remain poorly understood, such as influences on the SIF signal from environmental conditions, water stress, or radiation. We have developed a novel ground-based spectrometer system for measuring SIF from natural ecosystems. The instrumental set-up, requirements, and measurement technique are based on decades of experience using Differential Optical Absorption Spectroscopy (DOAS), an established method to measure atmospheric trace gases. The instrument consists of three thermally stabilized commercial spectrometers that are linked to a 2D scanning telescope unit via optical fiber bundles, and also includes a commercial photosynthetic active radiation (PAR) sensor. The spectrometers cover a SIF retrieval wavelength range at high spectral resolution (670 - 780 nm, 0.1 nm FWHM), and also provide moderate resolution spectra (400 - 800 nm, 1.5 nm FWHM) to retrieve vegetation indices and the photochemical reflectance index (PRI). We report on results of the first continuous field measurements of this novel system at Stunt Ranch Santa Monica Mountains UC Reserve, where the PhotoSpec instrument was monitoring SIF of four native Californian shrubland species with different adaptations to seasonal summer drought. We report on the correlation with CO2 fluxes over both the growing season and the hot summer period in 2016. We also show detailed measurements of the diurnal cycle of the SIF signal of single broad leaves, as well as dark-light transitions, under controlled experimental conditions. In addition to demonstrating the instrumental set-up, retrieval algorithm, and instrument performance, our results illustrate that SIF measurements at the leaf to ecosystem scale are needed to understand and interpret the SIF signals retrieved at larger scales.

  20. Precision simulation of ground-based lensing data using observations from space

    CERN Document Server

    Mandelbaum, Rachel; Leauthaud, Alexie; Massey, Richard J; Rhodes, Jason

    2011-01-01

    Current and upcoming wide-field, ground-based, broad-band imaging surveys promise to address a wide range of outstanding problems in galaxy formation and cosmology. Several such uses of ground-based data, especially weak gravitational lensing, require highly precise measurements of galaxy image statistics with careful correction for the effects of the point-spread function (PSF). In this paper, we introduce the SHERA (SHEar Reconvolution Analysis) software to simulate ground-based imaging data with realistic galaxy morphologies and observing conditions, starting from space-based data (from COSMOS, the Cosmological Evolution Survey) and accounting for the effects of the space-based PSF. This code simulates ground-based data, optionally with a weak lensing shear applied, in a model-independent way using a general Fourier space formalism. The utility of this pipeline is that it allows for a precise, realistic assessment of systematic errors due to the method of data processing, for example in extracting weak len...

  1. Validation of MOPITT carbon monoxide using ground-based Fourier transform infrared spectrometer data from NDACC

    Science.gov (United States)

    Buchholz, Rebecca R.; Deeter, Merritt N.; Worden, Helen M.; Gille, John; Edwards, David P.; Hannigan, James W.; Jones, Nicholas B.; Paton-Walsh, Clare; Griffith, David W. T.; Smale, Dan; Robinson, John; Strong, Kimberly; Conway, Stephanie; Sussmann, Ralf; Hase, Frank; Blumenstock, Thomas; Mahieu, Emmanuel; Langerock, Bavo

    2017-06-01

    The Measurements of Pollution in the Troposphere (MOPITT) satellite instrument provides the longest continuous dataset of carbon monoxide (CO) from space. We perform the first validation of MOPITT version 6 retrievals using total column CO measurements from ground-based remote-sensing Fourier transform infrared spectrometers (FTSs). Validation uses data recorded at 14 stations, that span a wide range of latitudes (80° N to 78° S), in the Network for the Detection of Atmospheric Composition Change (NDACC). MOPITT measurements are spatially co-located with each station, and different vertical sensitivities between instruments are accounted for by using MOPITT averaging kernels (AKs). All three MOPITT retrieval types are analyzed: thermal infrared (TIR-only), joint thermal and near infrared (TIR-NIR), and near infrared (NIR-only). Generally, MOPITT measurements overestimate CO relative to FTS measurements, but the bias is typically less than 10 %. Mean bias is 2.4 % for TIR-only, 5.1 % for TIR-NIR, and 6.5 % for NIR-only. The TIR-NIR and NIR-only products consistently produce a larger bias and lower correlation than the TIR-only. Validation performance of MOPITT for TIR-only and TIR-NIR retrievals over land or water scenes is equivalent. The four MOPITT detector element pixels are validated separately to account for their different uncertainty characteristics. Pixel 1 produces the highest standard deviation and lowest correlation for all three MOPITT products. However, for TIR-only and TIR-NIR, the error-weighted average that includes all four pixels often provides the best correlation, indicating compensating pixel biases and well-captured error characteristics. We find that MOPITT bias does not depend on latitude but rather is influenced by the proximity to rapidly changing atmospheric CO. MOPITT bias drift has been bound geographically to within ±0.5 % yr-1 or lower at almost all locations.

  2. REMOTE SENSING OF WATER VAPOR CONTENT USING GROUND-BASED GPS DATA

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Spatial and temporal resolution of water vapor content is useful in improving the accuracy of short-term weather prediction.Dense and continuously tracking regional GPS arrays will play an important role in remote sensing atmospheric water vapor content.In this study,a piecewise linear solution method was proposed to estimate the precipitable water vapor (PWV) content from ground-based GPS observations in Hong Kong.To evaluate the solution accuracy of the water vapor content sensed by GPS,the upper air sounding data (radiosonde) that are collected locally was used to calculate the precipitable water vapor during the same period.One-month results of PWV from both ground-based GPS sensing technique and radiosonde method are in agreement within 1~2 mm.This encouraging result will motivate the GPS meteorology application based on the establishment of a dense GPS array in Hong Kong.

  3. Estimation of continuous object distributions from limited Fourier magnitude measurements

    Science.gov (United States)

    Byrne, Charles L.; Fiddy, Michael A.

    1987-01-01

    From finite complex spectral data one can construct a continuous object with a given support that is consistent with the data. Given Fourier magnitude data only, one can choose the phases arbitrarily in the above construction. The energy in the extrapolated spectrum is phase-dependent and provides a cost function to be used in phase retrieval. The minimization process is performed iteratively, using an algorithm that can be viewed as a combination of Gerchberg-Papoulis and Fienup error reduction.

  4. MetaSensing's FastGBSAR: ground based radar for deformation monitoring

    Science.gov (United States)

    Rödelsperger, Sabine; Meta, Adriano

    2014-10-01

    The continuous monitoring of ground deformation and structural movement has become an important task in engineering. MetaSensing introduces a novel sensor system, the Fast Ground Based Synthetic Aperture Radar (FastGBSAR), based on innovative technologies that have already been successfully applied to airborne SAR applications. The FastGBSAR allows the remote sensing of deformations of a slope or infrastructure from up to a distance of 4 km. The FastGBSAR can be setup in two different configurations: in Real Aperture Radar (RAR) mode it is capable of accurately measuring displacements along a linear range profile, ideal for monitoring vibrations of structures like bridges and towers (displacement accuracy up to 0.01 mm). Modal parameters can be determined within half an hour. Alternatively, in Synthetic Aperture Radar (SAR) configuration it produces two-dimensional displacement images with an acquisition time of less than 5 seconds, ideal for monitoring areal structures like dams, landslides and open pit mines (displacement accuracy up to 0.1 mm). The MetaSensing FastGBSAR is the first ground based SAR instrument on the market able to produce two-dimensional deformation maps with this high acquisition rate. By that, deformation time series with a high temporal and spatial resolution can be generated, giving detailed information useful to determine the deformation mechanisms involved and eventually to predict an incoming failure. The system is fully portable and can be quickly installed on bedrock or a basement. The data acquisition and processing can be fully automated leading to a low effort in instrument operation and maintenance. Due to the short acquisition time of FastGBSAR, the coherence between two acquisitions is very high and the phase unwrapping is simplified enormously. This yields a high density of resolution cells with good quality and high reliability of the acquired deformations. The deformation maps can directly be used as input into an Early

  5. Ground Based Investigation of Electrostatic Accelerometer in HUST

    Science.gov (United States)

    Bai, Y.; Zhou, Z.

    2013-12-01

    High-precision electrostatic accelerometers with six degrees of freedom (DOF) acceleration measurement were successfully used in CHAMP, GRACE and GOCE missions which to measure the Earth's gravity field. In our group, space inertial sensor based on the capacitance transducer and electrostatic control technique has been investigated for test of equivalence principle (TEPO), searching non-Newtonian force in micrometer range, and satellite Earth's field recovery. The significant techniques of capacitive position sensor with the noise level at 2×10-7pF/Hz1/2 and the μV/Hz1/2 level electrostatic actuator are carried out and all the six servo loop controls by using a discrete PID algorithm are realized in a FPGA device. For testing on ground, in order to compensate one g earth's gravity, the fiber torsion pendulum facility is adopt to measure the parameters of the electrostatic controlled inertial sensor such as the resolution, and the electrostatic stiffness, the cross couple between different DOFs. A short distance and a simple double capsule equipment the valid duration about 0.5 second is set up in our lab for the free fall tests of the engineering model which can directly verify the function of six DOF control. Meanwhile, high voltage suspension method is also realized and preliminary results show that the horizontal axis of acceleration noise is about 10-8m/s2/Hz1/2 level which limited mainly by the seismic noise. Reference: [1] Fen Gao, Ze-Bing Zhou, Jun Luo, Feasibility for Testing the Equivalence Principle with Optical Readout in Space, Chin. Phys. Lett. 28(8) (2011) 080401. [2] Z. Zhu, Z. B. Zhou, L. Cai, Y. Z. Bai, J. Luo, Electrostatic gravity gradiometer design for the advanced GOCE mission, Adv. Sp. Res. 51 (2013) 2269-2276. [3] Z B Zhou, L Liu, H B Tu, Y Z Bai, J Luo, Seismic noise limit for ground-based performance measurements of an inertial sensor using a torsion balance, Class. Quantum Grav. 27 (2010) 175012. [4] H B Tu, Y Z Bai, Z B Zhou, L Liu, L

  6. GLAST and Ground-Based Gamma-Ray Astronomy

    Science.gov (United States)

    McEnery, Julie

    2008-01-01

    The launch of the Gamma-ray Large Area Space Telescope together with the advent of a new generation of ground-based gamma-ray detectors such as VERITAS, HESS, MAGIC and CANGAROO, will usher in a new era of high-energy gamma-ray astrophysics. GLAST and the ground based gamma-ray observatories will provide highly complementary capabilities for spectral, temporal and spatial studies of high energy gamma-ray sources. Joint observations will cover a huge energy range, from 20 MeV to over 20 TeV. The LAT will survey the entire sky every three hours, allowing it both to perform uniform, long-term monitoring of variable sources and to detect flaring sources promptly. Both functions complement the high-sensitivity pointed observations provided by ground-based detectors. Finally, the large field of view of GLAST will allow a study of gamma-ray emission on large angular scales and identify interesting regions of the sky for deeper studies at higher energies. In this poster, we will discuss the science returns that might result from joint GLAST/ground-based gamma-ray observations and illustrate them with detailed source simulations.

  7. GLAST and Ground-Based Gamma-Ray Astronomy

    Science.gov (United States)

    McEnery, Julie

    2008-01-01

    The launch of the Gamma-ray Large Area Space Telescope together with the advent of a new generation of ground-based gamma-ray detectors such as VERITAS, HESS, MAGIC and CANGAROO, will usher in a new era of high-energy gamma-ray astrophysics. GLAST and the ground based gamma-ray observatories will provide highly complementary capabilities for spectral, temporal and spatial studies of high energy gamma-ray sources. Joint observations will cover a huge energy range, from 20 MeV to over 20 TeV. The LAT will survey the entire sky every three hours, allowing it both to perform uniform, long-term monitoring of variable sources and to detect flaring sources promptly. Both functions complement the high-sensitivity pointed observations provided by ground-based detectors. Finally, the large field of view of GLAST will allow a study of gamma-ray emission on large angular scales and identify interesting regions of the sky for deeper studies at higher energies. In this poster, we will discuss the science returns that might result from joint GLAST/ground-based gamma-ray observations and illustrate them with detailed source simulations.

  8. Measuring and modelling occupancy time in NHS continuing healthcare

    Directory of Open Access Journals (Sweden)

    Millard Peter H

    2011-06-01

    Full Text Available Abstract Background Due to increasing demand and financial constraints, NHS continuing healthcare systems seek to find better ways of forecasting demand and budgeting for care. This paper investigates two areas of concern, namely, how long existing patients stay in service and the number of patients that are likely to be still in care after a period of time. Methods An anonymised dataset containing information for all funded admissions to placement and home care in the NHS continuing healthcare system was provided by 26 (out of 31 London primary care trusts. The data related to 11289 patients staying in placement and home care between 1 April 2005 and 31 May 2008 were first analysed. Using a methodology based on length of stay (LoS modelling, we captured the distribution of LoS of patients to estimate the probability of a patient staying in care over a period of time. Using the estimated probabilities we forecasted the number of patients that are likely to be still in care after a period of time (e.g. monthly. Results We noticed that within the NHS continuing healthcare system there are three main categories of patients. Some patients are discharged after a short stay (few days, some others staying for few months and the third category of patients staying for a long period of time (years. Some variations in proportions of discharge and transition between types of care as well as between care groups (e.g. palliative, functional mental health were observed. A close agreement of the observed and the expected numbers of patients suggests a good prediction model. Conclusions The model was tested for care groups within the NHS continuing healthcare system in London to support Primary Care Trusts in budget planning and improve their responsiveness to meet the increasing demand under limited availability of resources. Its applicability can be extended to other types of care, such as hospital care and re-ablement. Further work will be geared towards

  9. Continuous cardiac output measurement - Aspects of Doppler frequency analysis

    Science.gov (United States)

    Mackay, R. S.; Hechtman, H. B.

    1975-01-01

    From the suprasternal notch blood flow velocity in the aorta can be measured non-invasively by a Doppler probe. Integration over systole after frequency analysis gives a measure of stroke volume if a separate diameter observation is incorporated. Frequency analysis by a zero crossing counter or by a set of parallel phaselock loops was less effective than a set of bandpass filters. Observations on dogs, baboons and humans before and after exercise or surgery suggest the indications to be useful. Application to judging heart failure by the effect of introducing a volume load is indicated. Changes in output also are measured in freely moving subjects.

  10. The Gaia Era: synergy between space missions and ground based surveys

    CERN Document Server

    Vallenari, A

    2008-01-01

    The Gaia mission is expected to provide highly accurate astrometric, photometric, and spectroscopic measurements for about $10^9$ objects. Automated classification of detected sources is a key part of the data processing. Here a few aspects of the Gaia classification process are presented. Information from other surveys at longer wavelengths, and from follow-up ground based observations will be complementary to Gaia data especially at faint magnitudes, and will offer a great opportunity to understand our Galaxy.

  11. The Measurement of Multidimensional Gender Inequality: Continuing the Debate

    Science.gov (United States)

    Permanyer, Inaki

    2010-01-01

    The measurement of multidimensional gender inequality is an increasingly important topic that has very relevant policy applications and implications but which has not received much attention from the academic literature. In this paper I make a comprehensive and critical review of the indices proposed in recent years in order to systematise the…

  12. Measurement system analysis for binary inspection: Continuous versus dichotomous measurands

    NARCIS (Netherlands)

    de Mast, J.; Erdmann, T.P.; van Wieringen, W.N.

    2011-01-01

    We review methods for assessing the reliability of binary measurements, such as accept/reject inspection in industry. Our framework introduces two factors that are highly relevant in deciding which method to use: (1) whether a reference value (gold standard) can be obtained and (2) whether the

  13. Validation of CALIPSO space-borne-derived attenuated backscatter coefficient profiles using a ground-based lidar in Athens, Greece

    Directory of Open Access Journals (Sweden)

    R. E. Mamouri

    2009-09-01

    Full Text Available We present initial aerosol validation results of the space-borne lidar CALIOP -onboard the CALIPSO satellite- Level 1 attenuated backscatter coefficient profiles, using coincident observations performed with a ground-based lidar in Athens, Greece (37.9° N, 23.6° E. A multi-wavelength ground-based backscatter/Raman lidar system is operating since 2000 at the National Technical University of Athens (NTUA in the framework of the European Aerosol Research LIdar NETwork (EARLINET, the first lidar network for tropospheric aerosol studies on a continental scale. Since July 2006, a total of 40 coincidental aerosol ground-based lidar measurements were performed over Athens during CALIPSO overpasses. The ground-based measurements were performed each time CALIPSO overpasses the station location within a maximum distance of 100 km. The duration of the ground–based lidar measurements was approximately two hours, centred on the satellite overpass time. From the analysis of the ground-based/satellite correlative lidar measurements, a mean bias of the order of 22% for daytime measurements and of 8% for nighttime measurements with respect to the CALIPSO profiles was found for altitudes between 3 and 10 km. The mean bias becomes much larger for altitudes lower that 3 km (of the order of 60% which is attributed to the increase of aerosol horizontal inhomogeneity within the Planetary Boundary Layer, resulting to the observation of possibly different air masses by the two instruments. In cases of aerosol layers underlying Cirrus clouds, comparison results for aerosol tropospheric profiles become worse. This is attributed to the significant multiple scattering effects in Cirrus clouds experienced by CALIPSO which result in an attenuation which is less than that measured by the ground-based lidar.

  14. Continuous time of flight measurements in a Lissajous configuration

    Science.gov (United States)

    Dobos, G.; Hárs, G.

    2017-01-01

    Short pulses used by traditional time-of-flight mass spectrometers limit their duty cycle, pose space-charge issues, and require high speed detectors and electronics. The motivation behind the invention of continuous time of flight mass spectrometers was to mitigate these problems, by increasing the number of ions reaching the detector and eliminating the need for fast data acquisition systems. The most crucial components of these spectrometers are their modulators: they determine both the maximal modulation frequency and the modulation depth. Through these parameters they limit the achievable mass resolution and signal-to-noise ratio. In this paper, a new kind of setup is presented which modulates the beam by deflecting it in two perpendicular directions and collects ions on a position sensitive detector. Such an Lissajous time of flight spectrometer achieves modulation without the use of slits or apertures, making it possible for all ions to reach the detector, thereby increasing the transmission and signal-to-noise ratio. In this paper, we provide the mathematical description of the system, discuss its properties, and present a practical demonstration of the principle.

  15. Ground-based near-infrared imaging of the HD141569 circumstellar disk

    CERN Document Server

    Boccaletti, A; Marchis, F; Hanh, J

    2003-01-01

    We present the first ground-based near-infrared image of the circumstellar disk around the post-Herbig Ae/Be star HD141569A initially detected with the HST. Observations were carried out in the near-IR (2.2 $\\mu$m) at the Palomar 200-inch telescope using the adaptive optics system PALAO. The main large scale asymmetric features of the disk are detected on our ground-based data. In addition, we measured that the surface brightness of the disk is slightly different than that derived by HST observations (at 1.1 $\\mu$m and 1.6 $\\mu$m). We interpret this possible color-effect in terms of dust properties and derive a minimal

  16. Statistical methods for assessing agreement between continuous measurements

    DEFF Research Database (Denmark)

    Sokolowski, Ineta; Hansen, Rikke Pilegaard; Vedsted, Peter

    ), concordance coefficient, Bland-Altman limits of agreement and percentage of agreement to assess the agreement between patient reported delay and doctor reported delay in diagnosis of cancer in general practice. Key messages: The correct statistical approach is not obvious. Many studies give the product......-moment correlation coefficient (r) between the results of the two measurements methods as an indicator of agreement, which is wrong. There have been proposed several alternative methods, which we will describe together with preconditions for use of the methods....

  17. Quantification of aerosol chemical composition using continuous single particle measurements

    Science.gov (United States)

    Jeong, C.-H.; McGuire, M. L.; Godri, K. J.; Slowik, J. G.; Rehbein, P. J. G.; Evans, G. J.

    2011-07-01

    Mass concentrations of sulphate, nitrate, ammonium, organic carbon (OC), elemental carbon (EC) were determined from real time single particle data in the size range 0.1-3.0 μm measured by an Aerosol Time-of-Flight Mass Spectrometer (ATOFMS) at urban and rural sites in Canada. To quantify chemical species within individual particles measured by an ATOFMS, ion peak intensity of m/z -97 for sulphate, -62 for nitrate, +18 for ammonium, +43 for OC, and +36 for EC were scaled using the number and size distribution data by an Aerodynamic Particle Sizer (APS) and a Fast Mobility Particle Sizer (FMPS). Hourly quantified chemical species from ATOFMS single-particle analysis were compared with collocated fine particulate matter (aerodynamic diameter PM2.5) chemical composition measurements by an Aerosol Mass Spectrometer (AMS) at a rural site, a Gas-Particle Ion Chromatograph (GPIC) at an urban site, and a Sunset Lab field OCEC analyzer at both sites. The highest correlation was found for nitrate, with correlation coefficients (Pearson r) of 0.89 (ATOFMS vs. GPIC) and 0.85 (ATOFMS vs. AMS). ATOFMS mass calibration factors, determined for the urban site, were used to calculate mass concentrations of the major PM2.5 chemical components at the rural site near the US border in southern Ontario. Mass reconstruction using the ATOFMS mass calibration factors agreed very well with the PM2.5 mass concentrations measured by a Tapered Element Oscillating Microbalance (TEOM, r = 0.86) at the urban site and a light scattering monitor (DustTrak, r = 0.87) at the rural site. In the urban area nitrate was the largest contributor to PM2.5 mass in the winter, while organics and sulphate contributed ~64 % of the summer PM2.5 in the rural area, suggesting a strong influence of regional/trans-boundary pollution. The mass concentrations of five major species in ten size-resolved particle-types and aerosol acidity of each particle-type were determined for the rural site. On a mass basis sulphate

  18. Ground-based observations of Kepler asteroseismic targets

    CERN Document Server

    Uytterhoeven, K; Southworth, J; Randall, S; Ostensen, R; Molenda-Zakowicz, J; Marconi, M; Kurtz, D W; Kiss, L; Gutierrez-Soto, J; Frandsen, S; De Cat, P; Bruntt, H; Briquet, M; Zhang, X B; Telting, J H; Steslicki, M; Ripepi, V; Pigulski, A; Paparo, M; Oreiro, R; Choong, Ngeow Chow; Niemczura, E; Nemec, J; Narwid, A; Mathias, P; Martin-Ruiz, S; Lehman, H; Kopacki, G; Karoff, C; Jackiewicz, J; Henden, A A; Handler, G; Grigachene, A; Green, E M; Garrido, R; Machado, L Fox; Debosscher, J; Creevey, O L; Catanzaro, G; Bognar, Z; Biazzo, K; Bernabei, S

    2010-01-01

    We present the ground-based activities within the different working groups of the Kepler Asteroseismic Science Consortium (KASC). The activities aim at the systematic characterization of the 5000+ KASC targets, and at the collection of ground-based follow-up time-series data of selected promising Kepler pulsators. So far, 35 different instruments at 30 telescopes on 22 different observatories in 12 countries are in use, and a total of more than 530 observing nights has been awarded. (Based on observations made with the Isaac Newton Telescope, William Herschel Telescope, Nordic Optical Telescope, Telescopio Nazionale Galileo, Mercator Telescope (La Palma, Spain), and IAC-80 (Tenerife, Spain). Also based on observations taken at the observatories of Sierra Nevada, San Pedro Martir, Vienna, Xinglong, Apache Point, Lulin, Tautenburg, Loiano, Serra la Nave, Asiago, McDonald, Skinakas, Pic du Midi, Mauna Kea, Steward Observatory, Bialkow Observatory of the Wroclaw University, Piszkesteto Mountain Station, Observato...

  19. Ground-based Nuclear Detonation Detection (GNDD) Technology Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    Casey, Leslie A.

    2014-01-13

    This GNDD Technology Roadmap is intended to provide guidance to potential researchers and help management define research priorities to achieve technology advancements for ground-based nuclear explosion monitoring science being pursued by the Ground-based Nuclear Detonation Detection (GNDD) Team within the Office of Nuclear Detonation Detection in the National Nuclear Security Administration (NNSA) of the U.S. Department of Energy (DOE). Four science-based elements were selected to encompass the entire scope of nuclear monitoring research and development (R&D) necessary to facilitate breakthrough scientific results, as well as deliver impactful products. Promising future R&D is delineated including dual use associated with the Comprehensive Nuclear-Test-Ban Treaty (CTBT). Important research themes as well as associated metrics are identified along with a progression of accomplishments, represented by a selected bibliography, that are precursors to major improvements to nuclear explosion monitoring.

  20. Development of a continuous aerosol mass concentration measurement device.

    Science.gov (United States)

    Bémer, D; Thomas, D; Contal, P; Subra, I

    2003-08-01

    A dynamic aerosol mass concentration measurement device has been developed for personal sampling. Its principle consists in sampling the aerosol on a filter and monitoring the change of pressure drop over time (Delta P). Ensuring that the linearity of the Delta P = f(mass of particles per unit area of filter) relationship has been well established, the change of concentration can be deduced. The response of the system was validated in the laboratory with a 3.5 microm alumina aerosol (mass median diameter) generated inside a 1-m(3) ventilated enclosure. As the theory predicted that the mass sensitivity of the system would vary inversely with the square of the particle diameter, only sufficiently fine aerosols were able to be measured. The system was tested in the field in a mechanical workshop in the vicinity of an arc-welding station. The aerosol produced by welding is indeed particularly well-adapted due to the sub-micronic size of the particles. The device developed, despite this limitation, has numerous advantages over other techniques: robustness, compactness, reliability of calibration, and ease of use.

  1. Ground-Based Calibration Of A Microwave Landing System

    Science.gov (United States)

    Kiriazes, John J.; Scott, Marshall M., Jr.; Willis, Alfred D.; Erdogan, Temel; Reyes, Rolando

    1996-01-01

    System of microwave instrumentation and data-processing equipment developed to enable ground-based calibration of microwave scanning-beam landing system (MSBLS) at distances of about 500 to 1,000 ft from MSBLS transmitting antenna. Ensures accuracy of MSBLS near touchdown point, without having to resort to expense and complex logistics of aircraft-based testing. Modified versions prove useful in calibrating aircraft instrument landing systems.

  2. Asymmetric pedestrian dynamics on a staircase landing from continuous measurements

    CERN Document Server

    Corbetta, Alessandro; Muntean, Adrian; Toschi, Federico

    2015-01-01

    We investigate via extensive experimental data the dynamics of pedestrians walking in a corridor-shaped landing in a building at Eindhoven University of Technology. With year-long automatic measurements employing a Microsoft KinectTM 3D-range sensor and ad hoc tracking techniques, we acquired few hundreds of thousands pedestrian trajectories in real-life conditions. Here we discuss the asymmetric features of the dynamics in the two walking directions with respect to the flights of stairs (i.e. ascending or descending). We provide a detailed analysis of position and speed fields for the cases of pedestrians walking alone undisturbed and for couple of pedestrians in counter-flow. Then, we show average walking velocities exploring all the observed combinations in terms of numbers of pedestrians and walking directions.

  3. Assessment of NASA Airborne Laser Altimetry Data Using Ground-Based GPS Data near Summit Station, Greenland

    Science.gov (United States)

    Brunt, Kelly M.; Hawley, Robert L.; Lutz, Eric R.; Studinger, Michael; Sonntag, John G.; Hofton, Michelle A.; Andrews, Lauren C.; Neumann, Thomas A.

    2017-01-01

    A series of NASA airborne lidars have been used in support of satellite laser altimetry missions. These airbornelaser altimeters have been deployed for satellite instrument development, for spaceborne data validation, and to bridge the data gap between satellite missions. We used data from ground-based Global Positioning System (GPS) surveys of an 11 km long track near Summit Station, Greenland, to assess the surface elevation bias and measurement precision of three airborne laser altimeters including the Airborne Topographic Mapper (ATM), the Land, Vegetation, and Ice Sensor (LVIS), and the Multiple Altimeter Beam Experimental Lidar (MABEL). Ground-based GPS data from the monthly ground-based traverses, which commenced in 2006, allowed for the assessment of nine airborne lidar surveys associated with ATM and LVIS between 2007 and 2016. Surface elevation biases for these altimeters over the flat, ice-sheet interior are less than 0.12 m, while assessments of measurement precision are 0.09 m or better. Ground-based GPS positions determined both with and without differential post-processing techniques provided internally consistent solutions. Results from the analyses of ground-based and airborne data provide validation strategy guidance for the Ice, Cloud, and land Elevation Satellite 2 (ICESat-2) elevation and elevation-change data products.

  4. Ground-based monitoring of solar radiation in Moldova

    Science.gov (United States)

    Aculinin, Alexandr; Smicov, Vladimir

    2010-05-01

    Integrated measurements of solar radiation in Kishinev, Moldova have been started by Atmospheric Research Group (ARG) at the Institute of Applied Physics from 2003. Direct, diffuse and total components of solar and atmospheric long-wave radiation are measured by using of the radiometric complex at the ground-based solar radiation monitoring station. Measurements are fulfilled at the stationary and moving platforms equipped with the set of 9 broadband solar radiation sensors overlapping wavelength range from UV-B to IR. Detailed description of the station can be found at the site http://arg.phys.asm.md. Ground station is placed in an urban environment of Kishinev city (47.00N; 28.56E). Summary of observation data acquired at the station in the course of short-term period from 2004 to 2009 are presented below. Solar radiation measurements were fulfilled by using CM11(280-3000 nm) and CH1 sensors (Kipp&Zonen). In the course of a year maximum and minimum of monthly sums of total radiation was ~706.4 MJm-2 in June and ~82.1MJm-2 in December, respectively. Monthly sums of direct solar radiation (on horizontal plane) show the maximum and minimum values of the order ~456.9 MJm-2 in July and ~25.5MJm-2 in December, respectively. In an average, within a year should be marked the predominance of direct radiation over the scattered radiation, 51% and 49%, respectively. In the course of a year, the percentage contribution of the direct radiation into the total radiation is ~55-65% from May to September. In the remaining months, the percentage contribution decreases and takes the minimum value of ~ 28% in December. In an average, annual sum of total solar radiation is ~4679.9 MJm-2. For the period from April to September accounts for ~76% of the annual amount of total radiation. Annual sum of sunshine duration accounts for ~2149 hours, which is of ~ 48% from the possible sunshine duration. In an average, within a year maximum and minimum of sunshine duration is ~ 304 hours in

  5. Flow Characteristics of Tidewater Glaciers in Greenland and Alaska using Ground-Based LiDAR

    Science.gov (United States)

    Finnegan, D. C.; Stearns, L. A.; Hamilton, G. S.; O'Neel, S.

    2010-12-01

    LiDAR scanning systems have been employed to characterize and quantify multi-temporal glacier and ice sheet changes for nearly three decades. Until recently, LiDAR scanning systems were limited to airborne and space-based platforms which come at a significant cost to deploy and are limited in spatial and temporal sampling capabilities necessary to compare with in-situ field measurements. Portable ground-based LiDAR scanning systems are now being used as a glaciological tool. We discuss research efforts to employ ground-based near-infrared LiDAR systems at two differing tidewater glacier systems in the spring of 2009; Helheim Glacier in southeast Greenland and Columbia Glacier in southeast Alaska. Preliminary results allow us to characterize short term displacement rates and detailed observations of calving processes. These results highlight the operational limitations and capabilities of commercially available LiDAR systems, and allow us to identify optimal operating characteristics for monitoring small to large-scale tidewater glaciers in near real-time. Furthermore, by identifying the operational limitations of these sensors it allows for optimal design characteristics of new sensors necessary to meet ground-based calibration and validation requirements of ongoing scientific missions.

  6. A Ground-Based Array to Observe Geospace Electrodynamics During Adverse Space Weather Conditions

    Science.gov (United States)

    Sojka, J. J.; Eccles, J. V.; Rice, D.

    2004-05-01

    Geomagnetic Storms occur with surprising frequency and create adverse space weather conditions. During these periods, our knowledge and ability to specify or forecast in adequate detail for user needs is negligible. Neither experimental observations nor theoretical developments have made a significant new impact on the problem for over two decades. Although we can now map Total Electron Content (TEC) in the ionosphere over a continent with sufficient resolution to see coherent long-lived structures, these do not provide constraints on the geospace electrodynamics that is at the heart of our lack of understanding. We present arguments for the need of a continental deployment of ground-based sensors to stepwise advance our understanding of the geospace electrodynamics when it is most adverse from a space weather perspective and also most frustrating from an understanding of Magnetosphere-Ionosphere coupling. That a continental-scale deployment is more productive at addressing the problem than a realizable global distribution is shown. Each measurement is discussed from the point-of-view of either providing new knowledge or becoming a key for future real-time specification and forecasting for user applications. An example of a storm database from one mid-latitude station for the 31 March 2002 is used as a conceptual point in a ground-based array. The presentation focuses on scientific questions that have eluded a quantitative solution for over three decades and view a ground-based array as an "IGY" type of catalyst for answering these questions.

  7. Biosensors for EVA: Improved Instrumentation for Ground-based Studies

    Science.gov (United States)

    Soller, B.; Ellerby, G.; Zou, F.; Scott, P.; Jin, C.; Lee, S. M. C.; Coates, J.

    2010-01-01

    During lunar excursions in the EVA suit, real-time measurement of metabolic rate is required to manage consumables and guide activities to ensure safe return to the base. Metabolic rate, or oxygen consumption (VO2), is normally measured from pulmonary parameters but cannot be determined with standard techniques in the oxygen-rich environment of a spacesuit. Our group has developed novel near infrared spectroscopic (NIRS) methods to calculate muscle oxygen saturation (SmO 2), hematocrit, and pH, and we recently demonstrated that we can use our NIRS sensor to measure VO 2 on the leg during cycling. Our NSBRI project has 4 objectives: (1) increase the accuracy of the metabolic rate calculation through improved prediction of stroke volume; (2) investigate the relative contributions of calf and thigh oxygen consumption to metabolic rate calculation for walking and running; (3) demonstrate that the NIRS-based noninvasive metabolic rate methodology is sensitive enough to detect decrement in VO 2 in a space analog; and (4) improve instrumentation to allow testing within a spacesuit. Over the past year we have made progress on all four objectives, but the most significant progress was made in improving the instrumentation. The NIRS system currently in use at JSC is based on fiber optics technology. Optical fiber bundles are used to deliver light from a light source in the monitor to the patient, and light reflected back from the patient s muscle to the monitor for spectroscopic analysis. The fiber optic cables are large and fragile, and there is no way to get them in and out of the test spacesuit used for ground-based studies. With complimentary funding from the US Army, we undertook a complete redesign of the sensor and control electronics to build a novel system small enough to be used within the spacesuit and portable enough to be used by a combat medic. In the new system the filament lamp used in the fiber optic system was replaced with a novel broadband near infrared

  8. Biosensors for EVA: Improved Instrumentation for Ground-based Studies

    Science.gov (United States)

    Soller, B.; Ellerb