WorldWideScience

Sample records for ground-based benchmark exposure

  1. Effects of Exposure Imprecision on Estimation of the Benchmark Dose

    DEFF Research Database (Denmark)

    Budtz-Jørgensen, Esben; Keiding, Niels; Grandjean, Philippe

    Environmental epidemiology; exposure measurement error; effect of prenatal mercury exposure; exposure standards; benchmark dose......Environmental epidemiology; exposure measurement error; effect of prenatal mercury exposure; exposure standards; benchmark dose...

  2. Issues for Simulation of Galactic Cosmic Ray Exposures for Radiobiological Research at Ground Based Accelerators

    Directory of Open Access Journals (Sweden)

    Myung-Hee Y Kim

    2015-06-01

    Full Text Available For research on the health risks of galactic cosmic rays (GCR ground-based accelerators have been used for radiobiology research with mono-energetic beams of single high charge, Z and energy, E (HZE particles. In this paper we consider the pros and cons of a GCR reference field at a particle accelerator. At the NASA Space Radiation Laboratory (NSRL we have proposed a GCR simulator, which implements a new rapid switching mode and higher energy beam extraction to 1.5 GeV/u, in order to integrate multiple ions into a single simulation within hours or longer for chronic exposures. After considering the GCR environment and energy limitations of NSRL, we performed extensive simulation studies using the stochastic transport code, GERMcode (GCR Event Risk Model to define a GCR reference field using 9 HZE particle beam-energy combinations each with a unique absorber thickness to provide fragmentation and 10 or more energies of proton and 4He beams. The reference field is shown to well represent the charge dependence of GCR dose in several energy bins behind shielding compared to a simulated GCR environment. However a more significant challenge for space radiobiology research is to consider chronic GCR exposure of up to 3 years in relation to simulations with animal models of human risks. We discuss issues in approaches to map important biological time scales in experimental models using ground-based simulation with extended exposure of up to a few weeks using chronic or fractionation exposures. A kinetics model of HZE particle hit probabilities suggests that experimental simulations of several weeks will be needed to avoid high fluence rate artifacts, which places limitations on the experiments to be performed. Ultimately risk estimates are limited by theoretical understanding, and focus on improving understanding of mechanisms and development of experimental models to improve this understanding should remain the highest priority for space radiobiology

  3. Effects of exposure imprecision on estimation of the benchmark dose

    DEFF Research Database (Denmark)

    Budtz-Jørgensen, Esben; Keiding, Niels; Grandjean, Philippe

    2004-01-01

    approach is one of the most widely used methods for development of exposure limits. An important advantage of this approach is that it can be applied to observational data. However, in this type of data, exposure markers are seldom measured without error. It is shown that, if the exposure error is ignored......, then the benchmark approach produces results that are biased toward higher and less protective levels. It is therefore important to take exposure measurement error into account when calculating benchmark doses. Methods that allow this adjustment are described and illustrated in data from an epidemiological study...

  4. Leukocyte activity is altered in a ground based murine model of microgravity and proton radiation exposure.

    Directory of Open Access Journals (Sweden)

    Jenine K Sanzari

    Full Text Available Immune system adaptation during spaceflight is a concern in space medicine. Decreased circulating leukocytes observed during and after space flight infer suppressed immune responses and susceptibility to infection. The microgravity aspect of the space environment has been simulated on Earth to study adverse biological effects in astronauts. In this report, the hindlimb unloading (HU model was employed to investigate the combined effects of solar particle event-like proton radiation and simulated microgravity on immune cell parameters including lymphocyte subtype populations and activity. Lymphocytes are a type of white blood cell critical for adaptive immune responses and T lymphocytes are regulators of cell-mediated immunity, controlling the entire immune response. Mice were suspended prior to and after proton radiation exposure (2 Gy dose and total leukocyte numbers and splenic lymphocyte functionality were evaluated on days 4 or 21 after combined HU and radiation exposure. Total white blood cell (WBC, lymphocyte, neutrophil, and monocyte counts are reduced by approximately 65%, 70%, 55%, and 70%, respectively, compared to the non-treated control group at 4 days after combined exposure. Splenic lymphocyte subpopulations are altered at both time points investigated. At 21 days post-exposure to combined HU and proton radiation, T cell activation and proliferation were assessed in isolated lymphocytes. Cell surface expression of the Early Activation Marker, CD69, is decreased by 30% in the combined treatment group, compared to the non-treated control group and cell proliferation was suppressed by approximately 50%, compared to the non-treated control group. These findings reveal that the combined stressors (HU and proton radiation exposure result in decreased leukocyte numbers and function, which could contribute to immune system dysfunction in crew members. This investigation is one of the first to report on combined proton radiation and

  5. Benchmarking Benchmarks

    NARCIS (Netherlands)

    D.C. Blitz (David)

    2011-01-01

    textabstractBenchmarking benchmarks is a bundle of six studies that are inspired by the prevalence of benchmarking in academic finance research as well as in investment practice. Three studies examine if current benchmark asset pricing models adequately describe the cross-section of stock returns.

  6. Benchmarking Benchmarks

    NARCIS (Netherlands)

    D.C. Blitz (David)

    2011-01-01

    textabstractBenchmarking benchmarks is a bundle of six studies that are inspired by the prevalence of benchmarking in academic finance research as well as in investment practice. Three studies examine if current benchmark asset pricing models adequately describe the cross-section of stock returns. W

  7. Insight into mechanisms of reduced orthostatic performance after exposure to microgravity: comparison of ground-based and space flight data

    Science.gov (United States)

    Convertino, V. A.

    1998-01-01

    Since the beginning of human spaceflight, the value of understanding mechanisms of physiological adaptation to microgravity became apparent to life scientists who were interested in maintining crew health and developing countermeasures agains adverse effects of the mission. However, several characteristics associated the the logistics of spaceflight presented significant limitations to the scientific study of human adaptation to microgravity. Because space missions are so infrequent and involve minimal numbers of crewmembers, meaninful statistical analysis of data are limited. Reproducibility of results from spaceflight experiments is difficult to assess since there are few repeated space missions involving the same crewmembers. Since the emphasis of space missions is placed on operations, experiments are compromised without adequate control over various factors (e.g., time, diet, physical activities, etc.) that can impact measured responses. With the mimimal opportunity to collect spaceflight data, there is a high risk of experiments that simultaneously interfere with other experiments by the increasing demand on the crewmembers to participate in mumerous experiments proposed by multiple investigators. The technology and ability to measure physiological functions necessary to test specific hypotheses can be severely limited by physical space and power constraints of the space enviroment. Finally, technical and logistical aspects of space missions such as launch delays, extended missions, and inflight operational emergencies can significantly compromise the timing and control of experiments. These limitations have stimulated scientists to develop ground-based analogs of microgravity in an effort to investigate the effects of spaceflight on physiological function in a controlled experimental setting. The purpose of this paper is to provide a selected comparison of data collected from ground-based experiments with those obtained from spaceflight in an effort to

  8. RESRAD benchmarking against six radiation exposure pathway models

    Energy Technology Data Exchange (ETDEWEB)

    Faillace, E.R.; Cheng, J.J.; Yu, C.

    1994-10-01

    A series of benchmarking runs were conducted so that results obtained with the RESRAD code could be compared against those obtained with six pathway analysis models used to determine the radiation dose to an individual living on a radiologically contaminated site. The RESRAD computer code was benchmarked against five other computer codes - GENII-S, GENII, DECOM, PRESTO-EPA-CPG, and PATHRAE-EPA - and the uncodified methodology presented in the NUREG/CR-5512 report. Estimated doses for the external gamma pathway; the dust inhalation pathway; and the soil, food, and water ingestion pathways were calculated for each methodology by matching, to the extent possible, input parameters such as occupancy, shielding, and consumption factors.

  9. Exchange Rate Exposure Management: The Benchmarking Process of Industrial Companies

    DEFF Research Database (Denmark)

    Aabo, Tom

    Based on a cross-case study of Danish industrial companies the paper analyzes the benchmarking of the optimal hedging strategy. A stock market approach is pursued but a serious question mark is put on the validity of the obtained information seen from a corporate value-adding point of view....... The conducted interviews show that empirical reasons behind actual hedging strategies vary considerably - some in accordance with mainstream finance theory, some resting on asymmetric information. The diversity of attitudes seems to be partly a result of different competitive environments, partly a result...

  10. Benchmarking of computer codes and approaches for modeling exposure scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Seitz, R.R. [EG and G Idaho, Inc., Idaho Falls, ID (United States); Rittmann, P.D.; Wood, M.I. [Westinghouse Hanford Co., Richland, WA (United States); Cook, J.R. [Westinghouse Savannah River Co., Aiken, SC (United States)

    1994-08-01

    The US Department of Energy Headquarters established a performance assessment task team (PATT) to integrate the activities of DOE sites that are preparing performance assessments for the disposal of newly generated low-level waste. The PATT chartered a subteam with the task of comparing computer codes and exposure scenarios used for dose calculations in performance assessments. This report documents the efforts of the subteam. Computer codes considered in the comparison include GENII, PATHRAE-EPA, MICROSHIELD, and ISOSHLD. Calculations were also conducted using spreadsheets to provide a comparison at the most fundamental level. Calculations and modeling approaches are compared for unit radionuclide concentrations in water and soil for the ingestion, inhalation, and external dose pathways. Over 30 tables comparing inputs and results are provided.

  11. Comparative Benchmark Dose Modeling as a Tool to Make the First Estimate of Safe Human Exposure Levels to Lunar Dust

    Science.gov (United States)

    James, John T.; Lam, Chiu-wing; Scully, Robert R.

    2013-01-01

    Brief exposures of Apollo Astronauts to lunar dust occasionally elicited upper respiratory irritation; however, no limits were ever set for prolonged exposure ot lunar dust. Habitats for exploration, whether mobile of fixed must be designed to limit human exposure to lunar dust to safe levels. We have used a new technique we call Comparative Benchmark Dose Modeling to estimate safe exposure limits for lunar dust collected during the Apollo 14 mission.

  12. Application of Benchmark Dose (BMD) in Estimating Biological Exposure Limit (BEL) to Cadmium

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Objective To estimate the biological exposure limit (BEL) using benchmark dose (BMD) based on two sets of data from occupational epidemiology. Methods Cadmium-exposed workers were selected from a cadmium smelting factory and a zinc product factory. Doctors, nurses or shop assistants living in the same area served as a control group. Urinary cadmium (UCd) was used as an exposure biomarker and urinary β2-microgloburin (B2M), N-acetyl-β-D-glucosaminidase (NAG) and albumin (ALB) as effect biomarkers. All urine parameters were adjusted by urinary creatinine. Software of BMDS (Version 1.3.2, EPA.U.S.A) was used to calculate BMD. Results The cut-off point (abnormal values) was determined based on the upper limit of 95% of effect biomarkers in control group. There was a significant dose response relationship between the effect biomarkers (urinary B2M, NAG, and ALB) and exposure biomarker (UCd). BEL value was 5 μg/g creatinine for UB2M as an effect biomarker, consistent with the recommendation of WHO. BEL could be estimated by using the method of BMD. BEL value was 3 μg/g creatinine for UNAG as an effect biomarker. The more sensitive the used biomarker is, the more occupational population will be protected. Conclusion BMD can be used in estimating the biological exposure limit (BEL). UNAG is a sensitive biomarker for estimating BEL after cadmium exposure.

  13. Occupational exposure to blood-borne pathogens in a tertiary hospital: benchmarking using patient days.

    Science.gov (United States)

    Mazi, Waleed; Senok, Abiola C; Assiri, Abdullah M; Kazem, Najla; Abato, Avigail Tan

    2015-03-01

    Incidence and risk factors for occupational exposure to blood-borne pathogens (OEBBPs) in a tertiary hospital in Saudi Arabia was assessed. Reported sharps injuries from 2009 to 2010 were analyzed and benchmarked using patient days. OEBBPs caused by sharps injuries increased from 41 in 2009 to 65 in 2010, with an incidence rate of 4.09/10 000 patient days in 2009 and 5.9/10 000 patient days in 2010. Most episodes (41%) occurred during recapping of hollow bore needles after obtaining blood specimens. The highest incidence was among nursing staff(n/N = 87/106; 82%), and injuries also occurred in housekeeping staff (3.7%). A correlationbetween morning shift and OEBBPs was observed, and the highest number of episodes occurred in the emergency room (21.5%) and renal dialysis unit (16.9%). There was exposure to HCV (n = 13) and HBV (n = 4) but not to HIV (n = 0), and no seroconversions were documented. Education on adherence to universal precaution measures and use of safety engineered devices as well as the introduction of an OEBBP notification hotline are recommended.

  14. Development of Ground-Based Plant Sentinels

    Science.gov (United States)

    2007-11-02

    plants in response to different strains of Pseudomonas syringae. Planta . 217:767-775. De Moraes CM, Schultz JC, Mescher MC, Tumlinson JH. (2004...09-30-2004 Final Technical _ April 2001 - April 2003 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Developing Plants as Ground-based Sentinels 5b. GRANT...SUPPLEMENTARY NOTES 14. ABSTRACT 9 "Z Plants emit volatile mixes characteristic of exposure to both plant and animal (insect) pathogens (bacteria and fungi). The

  15. Ground based materials science experiments

    Science.gov (United States)

    Meyer, M. B.; Johnston, J. C.; Glasgow, T. K.

    1988-01-01

    The facilities at the Microgravity Materials Science Laboratory (MMSL) at the Lewis Research Center, created to offer immediate and low-cost access to ground-based testing facilities for industrial, academic, and government researchers, are described. The equipment in the MMSL falls into three categories: (1) devices which emulate some aspect of low gravitational forces, (2) specialized capabilities for 1-g development and refinement of microgravity experiments, and (3) functional duplicates of flight hardware. Equipment diagrams are included.

  16. Ground based materials science experiments

    Science.gov (United States)

    Meyer, M. B.; Johnston, J. C.; Glasgow, T. K.

    1988-01-01

    The facilities at the Microgravity Materials Science Laboratory (MMSL) at the Lewis Research Center, created to offer immediate and low-cost access to ground-based testing facilities for industrial, academic, and government researchers, are described. The equipment in the MMSL falls into three categories: (1) devices which emulate some aspect of low gravitational forces, (2) specialized capabilities for 1-g development and refinement of microgravity experiments, and (3) functional duplicates of flight hardware. Equipment diagrams are included.

  17. Ground-based observations of exoplanet atmospheres

    NARCIS (Netherlands)

    Mooij, Ernst Johan Walter de

    2011-01-01

    This thesis focuses on the properties of exoplanet atmospheres. The results for ground-based near-infrared secondary eclipse observations of three different exoplanets, TrES-3b, HAT-P-1b and WASP-33b, are presented which have been obtained with ground-based telescopes as part of the GROUSE project.

  18. Ground-based observations of exoplanet atmospheres

    NARCIS (Netherlands)

    Mooij, Ernst Johan Walter de

    2011-01-01

    This thesis focuses on the properties of exoplanet atmospheres. The results for ground-based near-infrared secondary eclipse observations of three different exoplanets, TrES-3b, HAT-P-1b and WASP-33b, are presented which have been obtained with ground-based telescopes as part of the GROUSE project.

  19. Toxicological Benchmarks for Wildlife

    Energy Technology Data Exchange (ETDEWEB)

    Sample, B.E. Opresko, D.M. Suter, G.W.

    1993-01-01

    -tailed hawk, osprey) (scientific names for both the mammalian and avian species are presented in Appendix B). [In this document, NOAEL refers to both dose (mg contaminant per kg animal body weight per day) and concentration (mg contaminant per kg of food or L of drinking water)]. The 20 wildlife species were chosen because they are widely distributed and provide a representative range of body sizes and diets. The chemicals are some of those that occur at U.S. Department of Energy (DOE) waste sites. The NOAEL-based benchmarks presented in this report represent values believed to be nonhazardous for the listed wildlife species; LOAEL-based benchmarks represent threshold levels at which adverse effects are likely to become evident. These benchmarks consider contaminant exposure through oral ingestion of contaminated media only. Exposure through inhalation and/or direct dermal exposure are not considered in this report.

  20. Library Benchmarking

    Directory of Open Access Journals (Sweden)

    Wiji Suwarno

    2017-02-01

    Full Text Available The term benchmarking has been encountered in the implementation of total quality (TQM or in Indonesian termed holistic quality management because benchmarking is a tool to look for ideas or learn from the library. Benchmarking is a processof measuring and comparing for continuous business process of systematic and continuous measurement, the process of measuring and comparing for continuous business process of an organization to get information that can help these organization improve their performance efforts.

  1. Financial Benchmarking

    OpenAIRE

    2012-01-01

    This bachelor's thesis is focused on financial benchmarking of TULIPA PRAHA s.r.o. The aim of this work is to evaluate financial situation of the company, identify its strengths and weaknesses and to find out how efficient is the performance of this company in comparison with top companies within the same field by using INFA benchmarking diagnostic system of financial indicators. The theoretical part includes the characteristic of financial analysis, which financial benchmarking is based on a...

  2. Fresnel zones for ground-based antennas

    DEFF Research Database (Denmark)

    Andersen, J. Bach

    1964-01-01

    The ordinary Fresnel zone concept is modified to include the influence of finite ground conductivity. This is important for ground-based antennas because the influence on the radiation pattern of irregularities near the antenna is determined by the amplitude and phase of the groundwave. A new...

  3. Calibration of Ground-based Lidar instrument

    DEFF Research Database (Denmark)

    Villanueva, Héctor; Gómez Arranz, Paula

    This report presents the result of the lidar calibration performed for the given Ground-based Lidar at DTU’s test site for large wind turbines at Høvsøre, Denmark. Calibration is here understood as the establishment of a relation between the reference wind speed measurements with measurement unce...

  4. Calibration of Ground -based Lidar instrument

    DEFF Research Database (Denmark)

    Villanueva, Héctor; Yordanova, Ginka

    This report presents the result of the lidar calibration performed for the given Ground-based Lidar at DTU’s test site for large wind turbines at Høvsøre, Denmark. Calibration is here understood as the establishment of a relation between the reference wind speed measurements with measurement unce...

  5. Benchmark selection

    DEFF Research Database (Denmark)

    Hougaard, Jens Leth; Tvede, Mich

    2002-01-01

    Within a production theoretic framework, this paper considers an axiomatic approach to benchmark selection. It is shown that two simple and weak axioms; efficiency and comprehensive monotonicity characterize a natural family of benchmarks which typically becomes unique. Further axioms are added...

  6. Space and Ground-Based Infrastructures

    Science.gov (United States)

    Weems, Jon; Zell, Martin

    This chapter deals first with the main characteristics of the space environment, outside and inside a spacecraft. Then the space and space-related (ground-based) infrastructures are described. The most important infrastructure is the International Space Station, which holds many European facilities (for instance the European Columbus Laboratory). Some of them, such as the Columbus External Payload Facility, are located outside the ISS to benefit from external space conditions. There is only one other example of orbital platforms, the Russian Foton/Bion Recoverable Orbital Capsule. In contrast, non-orbital weightless research platforms, although limited in experimental time, are more numerous: sounding rockets, parabolic flight aircraft, drop towers and high-altitude balloons. In addition to these facilities, there are a number of ground-based facilities and space simulators, for both life sciences (for instance: bed rest, clinostats) and physical sciences (for instance: magnetic compensation of gravity). Hypergravity can also be provided by human and non-human centrifuges.

  7. Illumination compensation in ground based hyperspectral imaging

    Science.gov (United States)

    Wendel, Alexander; Underwood, James

    2017-07-01

    Hyperspectral imaging has emerged as an important tool for analysing vegetation data in agricultural applications. Recently, low altitude and ground based hyperspectral imaging solutions have come to the fore, providing very high resolution data for mapping and studying large areas of crops in detail. However, these platforms introduce a unique set of challenges that need to be overcome to ensure consistent, accurate and timely acquisition of data. One particular problem is dealing with changes in environmental illumination while operating with natural light under cloud cover, which can have considerable effects on spectral shape. In the past this has been commonly achieved by imaging known reference targets at the time of data acquisition, direct measurement of irradiance, or atmospheric modelling. While capturing a reference panel continuously or very frequently allows accurate compensation for illumination changes, this is often not practical with ground based platforms, and impossible in aerial applications. This paper examines the use of an autonomous unmanned ground vehicle (UGV) to gather high resolution hyperspectral imaging data of crops under natural illumination. A process of illumination compensation is performed to extract the inherent reflectance properties of the crops, despite variable illumination. This work adapts a previously developed subspace model approach to reflectance and illumination recovery. Though tested on a ground vehicle in this paper, it is applicable to low altitude unmanned aerial hyperspectral imagery also. The method uses occasional observations of reference panel training data from within the same or other datasets, which enables a practical field protocol that minimises in-field manual labour. This paper tests the new approach, comparing it against traditional methods. Several illumination compensation protocols for high volume ground based data collection are presented based on the results. The findings in this paper are

  8. Ground based spectroscopy of hot Jupiters

    Science.gov (United States)

    Waldmann, Ingo

    2010-05-01

    It has been shown in recent years with great success that spectroscopy of exoplanetary atmospheres is feasible using space based observatories such as the HST and Spitzer. However, with the end of the Spitzer cold-phase, space based observations in the near to mid infra-red are limited, which will remain true until the the onset of the JWST. The importance of developing methods of ground based spectroscopic analysis of known hot Jupiters is therefore apparent. In the past, various groups have attempted exoplanetary spectroscopy using ground based facilities and various techniques. Here I will present results using a novel spectral retrieval method for near to mid infra-red emission and transmission spectra of exoplanetary atmospheres taken from the ground and discuss the feasibility of future ground-based spectroscopy in a broader context. My recently commenced PhD project is under the supervision of Giovanna Tinetti (University College London) and in collaboration with J. P. Beaulieu (Institut d'Astrophysique de Paris), Mark Swain and Pieter Deroo (Jet Propulsion Laboratory, Caltech).

  9. Calibration of Ground-based Lidar instrument

    DEFF Research Database (Denmark)

    Yordanova, Ginka; Gómez Arranz, Paula

    This report presents the result of the lidar calibration performed for the given Ground-based Lidar at DTU’s test site for large wind turbines at Høvsøre, Denmark. Calibration is here understood as the establishment of a relation between the reference wind speed measurements with measurement...... uncertainties provided by measurement standard and corresponding lidar wind speed indications with associated measurement uncertainties. The lidar calibration concerns the 10 minute mean wind speed measurements. The comparison of the lidar measurements of the wind direction with that from wind vanes...

  10. Calibration of Ground-based Lidar instrument

    DEFF Research Database (Denmark)

    Yordanova, Ginka; Gómez Arranz, Paula

    This report presents the result of a test of a ground-based lidar of other type. The test was performed at DTU’s test site for large wind turbines at Høvsøre, Denmark. The result as an establishment of a relation between the reference wind speed measurements with measurement uncertainties provided...... by measurement standard and corresponding lidar wind speed indications with associated measurement uncertainties. The comparison of the lidar measurements of the wind direction with that from the wind vanes is also given....

  11. Calibration of Ground -based Lidar instrument

    DEFF Research Database (Denmark)

    Villanueva, Héctor; Yordanova, Ginka

    This report presents the result of the lidar calibration performed for the given Ground-based Lidar at DTU’s test site for large wind turbines at Høvsøre, Denmark. Calibration is here understood as the establishment of a relation between the reference wind speed measurements with measurement...... uncertainties provided by measurement standard and corresponding lidar wind speed indications with associated measurement uncertainties. The lidar calibration concerns the 10 minute mean wind speed measurements. The comparison of the lidar measurements of the wind direction with that from wind vanes...

  12. Calibration of Ground-based Lidar instrument

    DEFF Research Database (Denmark)

    Yordanova, Ginka; Gómez Arranz, Paula

    This report presents the result of the lidar calibration performed for the given Ground-based Lidar at DTU’s test site for large wind turbines at Høvsøre, Denmark. Calibration is here understood as the establishment of a relation between the reference wind speed measurements with measurement...... uncertainties provided by measurement standard and corresponding lidar wind speed indications with associated measurement uncertainties. The lidar calibration concerns the 10 minute mean wind speed measurements. The comparison of the lidar measurements of the wind direction with that from wind vanes...

  13. Calibration of Ground -based Lidar instrument

    DEFF Research Database (Denmark)

    Villanueva, Héctor; Georgieva Yankova, Ginka

    This report presents the result of the lidar calibration performed for the given Ground-based Lidar at DTU’s test site for large wind turbines at Høvsøre, Denmark. Calibration is here understood as the establishment of a relation between the reference wind speed measurements with measurement...... uncertainties provided by measurement standard and corresponding lidar wind speed indications with associated measurement uncertainties. The lidar calibration concerns the 10 minute mean wind speed measurements. The comparison of the lidar measurements of the wind direction with that from wind vanes...

  14. Interactive benchmarking

    DEFF Research Database (Denmark)

    Lawson, Lartey; Nielsen, Kurt

    2005-01-01

    distance functions. The frontier is given by an explicit quantile, e.g. “the best 90 %”. Using the explanatory model of the inefficiency, the user can adjust the frontiers by submitting state variables that influence the inefficiency. An efficiency study of Danish dairy farms is implemented......We discuss individual learning by interactive benchmarking using stochastic frontier models. The interactions allow the user to tailor the performance evaluation to preferences and explore alternative improvement strategies by selecting and searching the different frontiers using directional...... in the suggested benchmarking tool. The study investigates how different characteristics on dairy farms influences the technical efficiency....

  15. Multiple exposures to indoor contaminants: Derivation of benchmark doses and relative potency factors based on male reprotoxic effects.

    Science.gov (United States)

    Fournier, K; Tebby, C; Zeman, F; Glorennec, P; Zmirou-Navier, D; Bonvallot, N

    2016-02-01

    Semi-Volatile Organic Compounds (SVOCs) are commonly present in dwellings and several are suspected of having effects on male reproductive function mediated by an endocrine disruption mode of action. To improve knowledge of the health impact of these compounds, cumulative toxicity indicators are needed. This work derives Benchmark Doses (BMD) and Relative Potency Factors (RPF) for SVOCs acting on the male reproductive system through the same mode of action. We included SVOCs fulfilling the following conditions: detection frequency (>10%) in French dwellings, availability of data on the mechanism/mode of action for male reproductive toxicity, and availability of comparable dose-response relationships. Of 58 SVOCs selected, 18 induce a decrease in serum testosterone levels. Six have sufficient and comparable data to derive BMDs based on 10 or 50% of the response. The SVOCs inducing the largest decrease in serum testosterone concentration are: for 10%, bisphenol A (BMD10 = 7.72E-07 mg/kg bw/d; RPF10 = 7,033,679); for 50%, benzo[a]pyrene (BMD50 = 0.030 mg/kg bw/d; RPF50 = 1630), and the one inducing the smallest one is benzyl butyl phthalate (RPF10 and RPF50 = 0.095). This approach encompasses contaminants from diverse chemical families acting through similar modes of action, and makes possible a cumulative risk assessment in indoor environments. The main limitation remains the lack of comparable toxicological data.

  16. Benchmarking of Percutaneous Injuries at the Ministry of Health Hospitals of Saudi Arabia in Comparison with the United States Hospitals Participating in Exposure Prevention Information Network (EPINet™

    Directory of Open Access Journals (Sweden)

    ZA Memish

    2015-01-01

    Full Text Available Background: Exposure to blood-borne pathogens from needle-stick and sharp injuries continues to pose a significant risk to health care workers. These events are of concern because of the risk to transmit blood-borne diseases such as hepatitis B virus, hepatitis C virus, and the human immunodeficiency virus.Objective: To benchmark different risk factors associated with needle-stick incidents among health care workers in the Ministry of Health hospitals in the Kingdom of Saudi Arabia compared to the US hospitals participating in Exposure Prevention Information Network (EPINet ™.Methods: Prospective surveillance of needle-stick and sharp incidents carried out during the year 2012 using EPINet™ ver 1.5 that provides uniform needle stick and sharp injury report form.Results: The annual percutaneous incidents (PIs rate per 100 occupied beds was 3.2 at the studied MOH hospitals. Nurses were the most affected job category by PIs (59.4%. Most PIs happened in patients' wards in the Ministry of Health hospitals (34.6%. Disposable syringes were the most common cause of PIs (47.20%. Most PIs occurred during use of the syringes (36.4%.Conclusion: Among health care workers, nurses and physicians appear especially at risk of exposure to PIs. Important risk factors of injuries include working in patient room, using disposable syringes, devices without safety features. Preventive strategies such as continuous training of health care workers with special emphasis on nurses and physicians, encouragement of reporting of such incidents, observation of sharp handling, their use and implementation of safety devices are warranted.

  17. Ground-based measurements of UV Index (UVI at Helwan

    Directory of Open Access Journals (Sweden)

    H. Farouk

    2012-12-01

    Full Text Available On October 2010 UV Index (UVI ground-based measurements were carried out by weather station at solar laboratory in NRIAG. The daily variation has maximum values in spring and summer days, while minimum values in autumn and winter days. The low level of UVI between 2.55 and 2.825 was found in December, January and February. The moderate level of UVI between 3.075 and 5.6 was found in March, October and November. The high level of UVI between 6.7 and 7.65 was found in April, May and September. The very high level of UVI between 8 and 8.6 was found in June, July and August. High level of radiation over 6 months per year including 3 months with a very high level UVI. According to the equation {UVI=a[SZA]b} the UVI increases with decreasing SZA by 82% on a daily scale and 88% on a monthly scale. Helwan exposure to a high level of radiation over 6 months per year including 3 months with a very high level UVI, so it is advisable not to direct exposure to the sun from 11 am to 2:00 pm.

  18. Ground-based observations of Kepler asteroseismic targets

    DEFF Research Database (Denmark)

    Uyttterhoeven , K.; Karoff, Christoffer

    2010-01-01

    We present the ground-based activities within the different working groups of the Kepler Asteroseismic Science Consortium (KASC). The activities aim at the systematic characterization of the 5000+ KASC targets, and at the collection of ground-based follow-up time-series data of selected promising...

  19. Movable Ground Based Recovery System for Reuseable Space Flight Hardware

    Science.gov (United States)

    Sarver, George L. (Inventor)

    2013-01-01

    A reusable space flight launch system is configured to eliminate complex descent and landing systems from the space flight hardware and move them to maneuverable ground based systems. Precision landing of the reusable space flight hardware is enabled using a simple, light weight aerodynamic device on board the flight hardware such as a parachute, and one or more translating ground based vehicles such as a hovercraft that include active speed, orientation and directional control. The ground based vehicle maneuvers itself into position beneath the descending flight hardware, matching its speed and direction and captures the flight hardware. The ground based vehicle will contain propulsion, command and GN&C functionality as well as space flight hardware landing cushioning and retaining hardware. The ground based vehicle propulsion system enables longitudinal and transverse maneuverability independent of its physical heading.

  20. Tissue Engineering of Cartilage on Ground-Based Facilities

    Science.gov (United States)

    Aleshcheva, Ganna; Bauer, Johann; Hemmersbach, Ruth; Egli, Marcel; Wehland, Markus; Grimm, Daniela

    2016-06-01

    Investigations under simulated microgravity offer the opportunity for a better understanding of the influence of altered gravity on cells and the scaffold-free three-dimensional (3D) tissue formation. To investigate the short-term influence, human chondrocytes were cultivated for 2 h, 4 h, 16 h, and 24 h on a 2D Fast-Rotating Clinostat (FRC) in DMEM/F-12 medium supplemented with 10 % FCS. We detected holes in the vimentin network, perinuclear accumulations of vimentin after 2 h, and changes in the chondrocytes shape visualised by F-actin staining after 4 h of FRC-exposure. Scaffold-free cultivation of chondrocytes for 7 d on the Random Positioning Machine (RPM), the FRC and the Rotating Wall Vessel (RWV) resulted in spheroid formation, a phenomenon already known from spaceflight experiments with chondrocytes (MIR Space Station) and thyroid cancer cells (SimBox/Shenzhou-8 space mission). The experiments enabled by the ESA-CORA-GBF programme gave us an optimal opportunity to study gravity-related cellular processes, validate ground-based facilities for our chosen cell system, and prepare long-term experiments under real microgravity conditions in space

  1. Kvantitativ benchmark - Produktionsvirksomheder

    DEFF Research Database (Denmark)

    Sørensen, Ole H.; Andersen, Vibeke

    Rapport med resultatet af kvantitativ benchmark over produktionsvirksomhederne i VIPS projektet.......Rapport med resultatet af kvantitativ benchmark over produktionsvirksomhederne i VIPS projektet....

  2. Benchmarking in Student Affairs.

    Science.gov (United States)

    Mosier, Robert E.; Schwarzmueller, Gary J.

    2002-01-01

    Discusses the use of benchmarking in student affairs, focusing on issues related to student housing. Provides examples of how benchmarking has influenced administrative practice at many institutions. (EV)

  3. Simulation of the imaging quality of ground-based telescopes affected by atmospheric disturbances

    Science.gov (United States)

    Ren, Yubin; Kou, Songfeng; Gu, Bozhong

    2014-08-01

    Ground-based telescope imaging model is developed in this paper, the relationship between the atmospheric disturbances and the ground-based telescope image quality is studied. Simulation of the wave-front distortions caused by atmospheric turbulences has long been an important method in the study of the propagation of light through the atmosphere. The phase of the starlight wave-front is changed over time, but in an appropriate short exposure time, the atmospheric disturbances can be considered as "frozen". In accordance with Kolmogorov turbulence theory, simulating atmospheric disturbances of image model based on the phase screen distorted by atmospheric turbulences is achieved by the fast Fourier transform (FFT). Geiger mode avalanche photodiode array (APD arrays) model is used for atmospheric wave-front detection, the image is achieved by inversion method of photon counting after the target starlight goes through phase screens and ground-based telescopes. Ground-based telescope imaging model is established in this paper can accurately achieve the relationship between the quality of telescope imaging and monolayer or multilayer atmosphere disturbances, and it is great significance for the wave-front detection and optical correction in a Multi-conjugate Adaptive Optics system (MCAO).

  4. Benchmarking v ICT

    OpenAIRE

    Blecher, Jan

    2009-01-01

    The aim of this paper is to describe benefits of benchmarking IT in wider context and benchmarking scope at all. I specify benchmarking as a process and mention basic rules and guidelines. Further I define IT benchmarking domains and describe possibilities of their use. Best known type of IT benchmark is cost benchmark which represents only a subset of benchmark opportunities. In this paper, is cost benchmark rather an imaginary first step to benchmarking contribution to company. IT benchmark...

  5. DSP Platform Benchmarking : DSP Platform Benchmarking

    OpenAIRE

    Xinyuan, Luo

    2009-01-01

    Benchmarking of DSP kernel algorithms was conducted in the thesis on a DSP processor for teaching in the course TESA26 in the department of Electrical Engineering. It includes benchmarking on cycle count and memory usage. The goal of the thesis is to evaluate the quality of a single MAC DSP instruction set and provide suggestions for further improvement in instruction set architecture accordingly. The scope of the thesis is limited to benchmark the processor only based on assembly coding. The...

  6. Aquatic Life Benchmarks

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Aquatic Life Benchmarks is an EPA-developed set of criteria for freshwater species. These benchmarks are based on toxicity values reviewed by EPA and used in the...

  7. Benchmarking a DSP processor

    OpenAIRE

    Lennartsson, Per; Nordlander, Lars

    2002-01-01

    This Master thesis describes the benchmarking of a DSP processor. Benchmarking means measuring the performance in some way. In this report, we have focused on the number of instruction cycles needed to execute certain algorithms. The algorithms we have used in the benchmark are all very common in signal processing today. The results we have reached in this thesis have been compared to benchmarks for other processors, performed by Berkeley Design Technology, Inc. The algorithms were programm...

  8. The COST Benchmark

    DEFF Research Database (Denmark)

    Jensen, Christian Søndergaard; Tiesyte, Dalia; Tradisauskas, Nerius

    2006-01-01

    , and more are underway. As a result, there is an increasing need for an independent benchmark for spatio-temporal indexes. This paper characterizes the spatio-temporal indexing problem and proposes a benchmark for the performance evaluation and comparison of spatio-temporal indexes. Notably, the benchmark...

  9. GLAST and Ground-Based Gamma-Ray Astronomy

    Science.gov (United States)

    McEnery, Julie

    2008-01-01

    The launch of the Gamma-ray Large Area Space Telescope together with the advent of a new generation of ground-based gamma-ray detectors such as VERITAS, HESS, MAGIC and CANGAROO, will usher in a new era of high-energy gamma-ray astrophysics. GLAST and the ground based gamma-ray observatories will provide highly complementary capabilities for spectral, temporal and spatial studies of high energy gamma-ray sources. Joint observations will cover a huge energy range, from 20 MeV to over 20 TeV. The LAT will survey the entire sky every three hours, allowing it both to perform uniform, long-term monitoring of variable sources and to detect flaring sources promptly. Both functions complement the high-sensitivity pointed observations provided by ground-based detectors. Finally, the large field of view of GLAST will allow a study of gamma-ray emission on large angular scales and identify interesting regions of the sky for deeper studies at higher energies. In this poster, we will discuss the science returns that might result from joint GLAST/ground-based gamma-ray observations and illustrate them with detailed source simulations.

  10. GLAST and Ground-Based Gamma-Ray Astronomy

    Science.gov (United States)

    McEnery, Julie

    2008-01-01

    The launch of the Gamma-ray Large Area Space Telescope together with the advent of a new generation of ground-based gamma-ray detectors such as VERITAS, HESS, MAGIC and CANGAROO, will usher in a new era of high-energy gamma-ray astrophysics. GLAST and the ground based gamma-ray observatories will provide highly complementary capabilities for spectral, temporal and spatial studies of high energy gamma-ray sources. Joint observations will cover a huge energy range, from 20 MeV to over 20 TeV. The LAT will survey the entire sky every three hours, allowing it both to perform uniform, long-term monitoring of variable sources and to detect flaring sources promptly. Both functions complement the high-sensitivity pointed observations provided by ground-based detectors. Finally, the large field of view of GLAST will allow a study of gamma-ray emission on large angular scales and identify interesting regions of the sky for deeper studies at higher energies. In this poster, we will discuss the science returns that might result from joint GLAST/ground-based gamma-ray observations and illustrate them with detailed source simulations.

  11. Developing integrated benchmarks for DOE performance measurement

    Energy Technology Data Exchange (ETDEWEB)

    Barancik, J.I.; Kramer, C.F.; Thode, Jr. H.C.

    1992-09-30

    The objectives of this task were to describe and evaluate selected existing sources of information on occupational safety and health with emphasis on hazard and exposure assessment, abatement, training, reporting, and control identifying for exposure and outcome in preparation for developing DOE performance benchmarks. Existing resources and methodologies were assessed for their potential use as practical performance benchmarks. Strengths and limitations of current data resources were identified. Guidelines were outlined for developing new or improved performance factors, which then could become the basis for selecting performance benchmarks. Data bases for non-DOE comparison populations were identified so that DOE performance could be assessed relative to non-DOE occupational and industrial groups. Systems approaches were described which can be used to link hazards and exposure, event occurrence, and adverse outcome factors, as needed to generate valid, reliable, and predictive performance benchmarks. Data bases were identified which contain information relevant to one or more performance assessment categories . A list of 72 potential performance benchmarks was prepared to illustrate the kinds of information that can be produced through a benchmark development program. Current information resources which may be used to develop potential performance benchmarks are limited. There is need to develop an occupational safety and health information and data system in DOE, which is capable of incorporating demonstrated and documented performance benchmarks prior to, or concurrent with the development of hardware and software. A key to the success of this systems approach is rigorous development and demonstration of performance benchmark equivalents to users of such data before system hardware and software commitments are institutionalized.

  12. Benchmarking semantic web technology

    CERN Document Server

    García-Castro, R

    2009-01-01

    This book addresses the problem of benchmarking Semantic Web Technologies; first, from a methodological point of view, proposing a general methodology to follow in benchmarking activities over Semantic Web Technologies and, second, from a practical point of view, presenting two international benchmarking activities that involved benchmarking the interoperability of Semantic Web technologies using RDF(S) as the interchange language in one activity and OWL in the other.The book presents in detail how the different resources needed for these interoperability benchmarking activities were defined:

  13. Benchmarking in University Toolbox

    Directory of Open Access Journals (Sweden)

    Katarzyna Kuźmicz

    2015-06-01

    Full Text Available In the face of global competition and rising challenges that higher education institutions (HEIs meet, it is imperative to increase innovativeness and efficiency of their management. Benchmarking can be the appropriate tool to search for a point of reference necessary to assess institution’s competitive position and learn from the best in order to improve. The primary purpose of the paper is to present in-depth analysis of benchmarking application in HEIs worldwide. The study involves indicating premises of using benchmarking in HEIs. It also contains detailed examination of types, approaches and scope of benchmarking initiatives. The thorough insight of benchmarking applications enabled developing classification of benchmarking undertakings in HEIs. The paper includes review of the most recent benchmarking projects and relating them to the classification according to the elaborated criteria (geographical range, scope, type of data, subject, support and continuity. The presented examples were chosen in order to exemplify different approaches to benchmarking in higher education setting. The study was performed on the basis of the published reports from benchmarking projects, scientific literature and the experience of the author from the active participation in benchmarking projects. The paper concludes with recommendations for university managers undertaking benchmarking, derived on the basis of the conducted analysis.

  14. A Benchmark Approach of Counterparty Credit Exposure of Bermudan Option under Lévy Process: The Monte Carlo-COS Method

    NARCIS (Netherlands)

    Shen, Y.; Van der Weide, J.A.M.; Anderluh, J.H.M.

    2013-01-01

    An advanced method, which we call Monte Carlo-COS method, is proposed for computing the counterparty credit exposure profile of Bermudan options under Lévy process. The different exposure profiles and exercise intensity under different mea- sures, P and Q, are discussed. Since the COS method [1] del

  15. Statistical Methods for the Evaluation of Health Effects of Prenatal Mercury Exposure

    DEFF Research Database (Denmark)

    Budtz-Jørgensen, Esben; Keiding, Niels; Grandjean, Philippe;

    2002-01-01

    Environmental epidemiology; Structural equation; Exposure measurement error; multiple endpoints; effect of prenatal mercury exposure; Exposure standards; Benchmark dose......Environmental epidemiology; Structural equation; Exposure measurement error; multiple endpoints; effect of prenatal mercury exposure; Exposure standards; Benchmark dose...

  16. Ground-based observations of Kepler asteroseismic targets

    CERN Document Server

    Uytterhoeven, K; Southworth, J; Randall, S; Ostensen, R; Molenda-Zakowicz, J; Marconi, M; Kurtz, D W; Kiss, L; Gutierrez-Soto, J; Frandsen, S; De Cat, P; Bruntt, H; Briquet, M; Zhang, X B; Telting, J H; Steslicki, M; Ripepi, V; Pigulski, A; Paparo, M; Oreiro, R; Choong, Ngeow Chow; Niemczura, E; Nemec, J; Narwid, A; Mathias, P; Martin-Ruiz, S; Lehman, H; Kopacki, G; Karoff, C; Jackiewicz, J; Henden, A A; Handler, G; Grigachene, A; Green, E M; Garrido, R; Machado, L Fox; Debosscher, J; Creevey, O L; Catanzaro, G; Bognar, Z; Biazzo, K; Bernabei, S

    2010-01-01

    We present the ground-based activities within the different working groups of the Kepler Asteroseismic Science Consortium (KASC). The activities aim at the systematic characterization of the 5000+ KASC targets, and at the collection of ground-based follow-up time-series data of selected promising Kepler pulsators. So far, 35 different instruments at 30 telescopes on 22 different observatories in 12 countries are in use, and a total of more than 530 observing nights has been awarded. (Based on observations made with the Isaac Newton Telescope, William Herschel Telescope, Nordic Optical Telescope, Telescopio Nazionale Galileo, Mercator Telescope (La Palma, Spain), and IAC-80 (Tenerife, Spain). Also based on observations taken at the observatories of Sierra Nevada, San Pedro Martir, Vienna, Xinglong, Apache Point, Lulin, Tautenburg, Loiano, Serra la Nave, Asiago, McDonald, Skinakas, Pic du Midi, Mauna Kea, Steward Observatory, Bialkow Observatory of the Wroclaw University, Piszkesteto Mountain Station, Observato...

  17. Ground-based Nuclear Detonation Detection (GNDD) Technology Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    Casey, Leslie A.

    2014-01-13

    This GNDD Technology Roadmap is intended to provide guidance to potential researchers and help management define research priorities to achieve technology advancements for ground-based nuclear explosion monitoring science being pursued by the Ground-based Nuclear Detonation Detection (GNDD) Team within the Office of Nuclear Detonation Detection in the National Nuclear Security Administration (NNSA) of the U.S. Department of Energy (DOE). Four science-based elements were selected to encompass the entire scope of nuclear monitoring research and development (R&D) necessary to facilitate breakthrough scientific results, as well as deliver impactful products. Promising future R&D is delineated including dual use associated with the Comprehensive Nuclear-Test-Ban Treaty (CTBT). Important research themes as well as associated metrics are identified along with a progression of accomplishments, represented by a selected bibliography, that are precursors to major improvements to nuclear explosion monitoring.

  18. Ground-Based Calibration Of A Microwave Landing System

    Science.gov (United States)

    Kiriazes, John J.; Scott, Marshall M., Jr.; Willis, Alfred D.; Erdogan, Temel; Reyes, Rolando

    1996-01-01

    System of microwave instrumentation and data-processing equipment developed to enable ground-based calibration of microwave scanning-beam landing system (MSBLS) at distances of about 500 to 1,000 ft from MSBLS transmitting antenna. Ensures accuracy of MSBLS near touchdown point, without having to resort to expense and complex logistics of aircraft-based testing. Modified versions prove useful in calibrating aircraft instrument landing systems.

  19. Ground-Based Lidar for Atmospheric Boundary Layer Ozone Measurements

    Science.gov (United States)

    Kuang, Shi; Newchurch, Michael J.; Burris, John; Liu, Xiong

    2013-01-01

    Ground-based lidars are suitable for long-term ozone monitoring as a complement to satellite and ozonesonde measurements. However, current ground-based lidars are unable to consistently measure ozone below 500 m above ground level (AGL) due to both engineering issues and high retrieval sensitivity to various measurement errors. In this paper, we present our instrument design, retrieval techniques, and preliminary results that focus on the high-temporal profiling of ozone within the atmospheric boundary layer (ABL) achieved by the addition of an inexpensive and compact mini-receiver to the previous system. For the first time, to the best of our knowledge, the lowest, consistently achievable observation height has been extended down to 125 m AGL for a ground-based ozone lidar system. Both the analysis and preliminary measurements demonstrate that this lidar measures ozone with a precision generally better than 10% at a temporal resolution of 10 min and a vertical resolution from 150 m at the bottom of the ABL to 550 m at the top. A measurement example from summertime shows that inhomogeneous ozone aloft was affected by both surface emissions and the evolution of ABL structures.

  20. Ground-based lidar for atmospheric boundary layer ozone measurements.

    Science.gov (United States)

    Kuang, Shi; Newchurch, Michael J; Burris, John; Liu, Xiong

    2013-05-20

    Ground-based lidars are suitable for long-term ozone monitoring as a complement to satellite and ozonesonde measurements. However, current ground-based lidars are unable to consistently measure ozone below 500 m above ground level (AGL) due to both engineering issues and high retrieval sensitivity to various measurement errors. In this paper, we present our instrument design, retrieval techniques, and preliminary results that focus on the high-temporal profiling of ozone within the atmospheric boundary layer (ABL) achieved by the addition of an inexpensive and compact mini-receiver to the previous system. For the first time, to the best of our knowledge, the lowest, consistently achievable observation height has been extended down to 125 m AGL for a ground-based ozone lidar system. Both the analysis and preliminary measurements demonstrate that this lidar measures ozone with a precision generally better than ±10% at a temporal resolution of 10 min and a vertical resolution from 150 m at the bottom of the ABL to 550 m at the top. A measurement example from summertime shows that inhomogeneous ozone aloft was affected by both surface emissions and the evolution of ABL structures.

  1. The Conic Benchmark Format

    DEFF Research Database (Denmark)

    Friberg, Henrik A.

    This document constitutes the technical reference manual of the Conic Benchmark Format with le extension: .cbf or .CBF. It unies linear, second-order cone (also known as conic quadratic) and semidenite optimization with mixed-integer variables. The format has been designed with benchmark libraries...... in mind, and therefore focuses on compact and easily parsable representations. The problem structure is separated from the problem data, and the format moreover facilitate benchmarking of hotstart capability through sequences of changes....

  2. Internet based benchmarking

    DEFF Research Database (Denmark)

    Bogetoft, Peter; Nielsen, Kurt

    2005-01-01

    We discuss the design of interactive, internet based benchmarking using parametric (statistical) as well as nonparametric (DEA) models. The user receives benchmarks and improvement potentials. The user is also given the possibility to search different efficiency frontiers and hereby to explore...

  3. Thermal Performance Benchmarking (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Moreno, G.

    2014-11-01

    This project will benchmark the thermal characteristics of automotive power electronics and electric motor thermal management systems. Recent vehicle systems will be benchmarked to establish baseline metrics, evaluate advantages and disadvantages of different thermal management systems, and identify areas of improvement to advance the state-of-the-art.

  4. Handleiding benchmark VO

    NARCIS (Netherlands)

    Blank, j.l.t.

    2008-01-01

    OnderzoeksrapportenArchiefTechniek, Bestuur en Management> Over faculteit> Afdelingen> Innovation Systems> IPSE> Onderzoek> Publicaties> Onderzoeksrapporten> Handleiding benchmark VO Handleiding benchmark VO 25 november 2008 door IPSE Studies Door J.L.T. Blank. Handleiding voor het lezen van de i

  5. Benchmark af erhvervsuddannelserne

    DEFF Research Database (Denmark)

    Bogetoft, Peter; Wittrup, Jesper

    I dette arbejdspapir diskuterer vi, hvorledes de danske erhvervsskoler kan benchmarkes, og vi præsenterer resultaterne af en række beregningsmodeller. Det er begrebsmæssigt kompliceret at benchmarke erhvervsskolerne. Skolerne udbyder en lang række forskellige uddannelser. Det gør det vanskeligt...

  6. Benchmarking af kommunernes sagsbehandling

    DEFF Research Database (Denmark)

    Amilon, Anna

    Fra 2007 skal Ankestyrelsen gennemføre benchmarking af kommuernes sagsbehandlingskvalitet. Formålet med benchmarkingen er at udvikle praksisundersøgelsernes design med henblik på en bedre opfølgning og at forbedre kommunernes sagsbehandling. Dette arbejdspapir diskuterer metoder for benchmarking...

  7. Toxicological benchmarks for wildlife: 1994 Revision

    Energy Technology Data Exchange (ETDEWEB)

    Opresko, D.M.; Sample, B.E.; Suter, G.W. II

    1994-09-01

    The process by which ecological risks of environmental contaminants are evaluated is two-tiered. The first tier is a screening assessment where concentrations of contaminants in the environment are compared to toxicological benchmarks which represent concentrations of chemicals in environmental media (water, sediment, soil, food, etc.) that are presumed to be nonhazardous to the surrounding biota. The second tier is a baseline ecological risk assessment where toxicological benchmarks are one of several lines of evidence used to support or refute the presence of ecological effects. The report presents toxicological benchmarks for assessment of effects of 76 chemicals on 8 representative mammalian wildlife species and 31 chemicals on 9 avian wildlife species. The chemicals are some of those that occur at United States Department of Energy waste sites; the wildlife species were chosen because they are widely distributed and provide a representative range of body sizes and diets. Further descriptions of the chosen wildlife species and chemicals are provided in the report. The benchmarks presented in this report represent values believed to be nonhazardous for the listed wildlife species. These benchmarks only consider contaminant exposure through oral ingestion of contaminated media; exposure through inhalation or direct dermal exposure are not considered in this report.

  8. How Activists Use Benchmarks

    DEFF Research Database (Denmark)

    Seabrooke, Leonard; Wigan, Duncan

    2015-01-01

    Non-governmental organisations use benchmarks as a form of symbolic violence to place political pressure on firms, states, and international organisations. The development of benchmarks requires three elements: (1) salience, that the community of concern is aware of the issue and views...... are put to the test. The first is a reformist benchmarking cycle where organisations defer to experts to create a benchmark that conforms with the broader system of politico-economic norms. The second is a revolutionary benchmarking cycle driven by expert-activists that seek to contest strong vested...... interests and challenge established politico-economic norms. Differentiating these cycles provides insights into how activists work through organisations and with expert networks, as well as how campaigns on complex economic issues can be mounted and sustained....

  9. Augmenting WFIRST Microlensing with a Ground-Based Telescope Network

    Science.gov (United States)

    Zhu, Wei; Gould, Andrew

    2016-06-01

    Augmenting the Wide Field Infrared Survey Telescope (WFIRST) microlensing campaigns with intensive observations from a ground-based network of wide-field survey telescopes would have several major advantages. First, it would enable full two-dimensional (2-D) vector microlens parallax measurements for a substantial fraction of low-mass lenses as well as planetary and binary events that show caustic crossing features. For a significant fraction of the free-floating planet (FFP) events and all caustic-crossing planetary/binary events, these 2-D parallax measurements directly lead to complete solutions (mass, distance, transverse velocity) of the lens object (or lens system). For even more events, the complementary ground-based observations will yield 1-D parallax measurements. Together with the 1-D parallaxes from WFIRST alone, they can probe the entire mass range M > M_Earth. For luminous lenses, such 1-D parallax measurements can be promoted to complete solutions (mass, distance, transverse velocity) by high-resolution imaging. This would provide crucial information not only about the hosts of planets and other lenses, but also enable a much more precise Galactic model. Other benefits of such a survey include improved understanding of binaries (particularly with low mass primaries), and sensitivity to distant ice-giant and gas-giant companions of WFIRST lenses that cannot be detected by WFIRST itself due to its restricted observing windows. Existing ground-based microlensing surveys can be employed if WFIRST is pointed at lower-extinction fields than is currently envisaged. This would come at some cost to the event rate. Therefore the benefits of improved characterization of lenses must be weighed against these costs.

  10. Verification and validation benchmarks.

    Energy Technology Data Exchange (ETDEWEB)

    Oberkampf, William Louis; Trucano, Timothy Guy

    2007-02-01

    Verification and validation (V&V) are the primary means to assess the accuracy and reliability of computational simulations. V&V methods and procedures have fundamentally improved the credibility of simulations in several high-consequence fields, such as nuclear reactor safety, underground nuclear waste storage, and nuclear weapon safety. Although the terminology is not uniform across engineering disciplines, code verification deals with assessing the reliability of the software coding, and solution verification deals with assessing the numerical accuracy of the solution to a computational model. Validation addresses the physics modeling accuracy of a computational simulation by comparing the computational results with experimental data. Code verification benchmarks and validation benchmarks have been constructed for a number of years in every field of computational simulation. However, no comprehensive guidelines have been proposed for the construction and use of V&V benchmarks. For example, the field of nuclear reactor safety has not focused on code verification benchmarks, but it has placed great emphasis on developing validation benchmarks. Many of these validation benchmarks are closely related to the operations of actual reactors at near-safety-critical conditions, as opposed to being more fundamental-physics benchmarks. This paper presents recommendations for the effective design and use of code verification benchmarks based on manufactured solutions, classical analytical solutions, and highly accurate numerical solutions. In addition, this paper presents recommendations for the design and use of validation benchmarks, highlighting the careful design of building-block experiments, the estimation of experimental measurement uncertainty for both inputs and outputs to the code, validation metrics, and the role of model calibration in validation. It is argued that the understanding of predictive capability of a computational model is built on the level of

  11. RISKIND verification and benchmark comparisons

    Energy Technology Data Exchange (ETDEWEB)

    Biwer, B.M.; Arnish, J.J.; Chen, S.Y.; Kamboj, S.

    1997-08-01

    This report presents verification calculations and benchmark comparisons for RISKIND, a computer code designed to estimate potential radiological consequences and health risks to individuals and the population from exposures associated with the transportation of spent nuclear fuel and other radioactive materials. Spreadsheet calculations were performed to verify the proper operation of the major options and calculational steps in RISKIND. The program is unique in that it combines a variety of well-established models into a comprehensive treatment for assessing risks from the transportation of radioactive materials. Benchmark comparisons with other validated codes that incorporate similar models were also performed. For instance, the external gamma and neutron dose rate curves for a shipping package estimated by RISKIND were compared with those estimated by using the RADTRAN 4 code and NUREG-0170 methodology. Atmospheric dispersion of released material and dose estimates from the GENII and CAP88-PC codes. Verification results have shown the program to be performing its intended function correctly. The benchmark results indicate that the predictions made by RISKIND are within acceptable limits when compared with predictions from similar existing models.

  12. The STACEE-32 Ground Based Gamma-ray Detector

    CERN Document Server

    Hanna, D S; Boone, L M; Chantell, M C; Conner, Z; Covault, C E; Dragovan, M; Fortin, P; Gregorich, D T; Hinton, J A; Mukherjee, R; Ong, R A; Oser, S; Ragan, K; Scalzo, R A; Schütte, D R; Theoret, C G; Tümer, T O; Williams, D A; Zweerink, J A

    2002-01-01

    We describe the design and performance of the Solar Tower Atmospheric Cherenkov Effect Experiment detector in its initial configuration (STACEE-32). STACEE is a new ground-based gamma ray detector using the atmospheric Cherenkov technique. In STACEE, the heliostats of a solar energy research array are used to collect and focus the Cherenkov photons produced in gamma-ray induced air showers. The large Cherenkov photon collection area of STACEE results in a gamma-ray energy threshold below that of previous detectors.

  13. The STACEE Ground-Based Gamma-Ray Detector

    CERN Document Server

    Gingrich, D M; Bramel, D; Carson, J; Covault, C E; Fortin, P; Hanna, D S; Hinton, J A; Jarvis, A; Kildea, J; Lindner, T; Müller, C; Mukherjee, R; Ong, R A; Ragan, K; Scalzo, R A; Theoret, C G; Williams, D A; Zweerink, J A

    2005-01-01

    We describe the design and performance of the Solar Tower Atmospheric Cherenkov Effect Experiment (STACEE) in its complete configuration. STACEE uses the heliostats of a solar energy research facility to collect and focus the Cherenkov photons produced in gamma-ray induced air showers. The light is concentrated onto an array of photomultiplier tubes located near the top of a tower. The large Cherenkov photon collection area of STACEE results in a gamma-ray energy threshold below that of previous ground-based detectors. STACEE is being used to observe pulsars, supernova remnants, active galactic nuclei, and gamma-ray bursts.

  14. Research on target accuracy for ground-based lidar

    Science.gov (United States)

    Zhu, Ling; Shi, Ruoming

    2009-05-01

    In ground based Lidar system, the targets are used in the process of registration, georeferencing for point cloud, and also can be used as check points. Generally, the accuracy of capturing the flat target center is influenced by scanning range and scanning angle. In this research, the experiments are designed to extract accuracy index of the target center with 0-90°scan angles and 100-195 meter scan ranges using a Leica HDS3000 laser scanner. The data of the experiments are listed in detail and the related results are analyzed.

  15. Ground-Based Global Positioning System (GPS) Meteorology Integrated Precipitable Water Vapor (IPW)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Ground-Based Global Positioning System (GPS) Meteorology Integrated Precipitable Water Vapor (IPW) data set measures atmospheric water vapor using ground-based...

  16. Statistical Studies of Ground-Based Optical Lightning Signatures

    Science.gov (United States)

    Hunt, C. R.; Nemzek, R. J.; Suszcynsky, D. M.

    2005-12-01

    Most extensive optical studies of lightning have been conducted from orbit, and the statistics of events collected from earth are relatively poorly documented. The time signatures of optical power measured in the presence of clouds are inevitably affected by scattering,which can distort the signatures by extending and delaying the amplitude profile in time. We have deployed two all-sky photodiode detectors, one in New Mexico and one in Oklahoma, which are gathering data alongside electric field change monitors as part of the LANL EDOTX Great Plains Array. Preliminary results show that the photodiode is sensitive to approximately 50% or more of RF events detected at ranges of up to 30 km, and still has some sensitivity at ranges in excess of 60 km (distances determined by the EDOTX field-change array). The shapes of events within this range were assessed, with focus on rise time, width, peak power, and their correlation to corresponding electric field signatures, and these are being compared with published on-orbit and ground-based data. Initial findings suggest a mean characteristic width (ratio of total detected optical energy to peak power) of 291 +/- 12 microseconds and a mean delay between the RF signal peak and optical peak of 121 +/- 17 microseconds. These values fall between prior ground-based measurements of direct return stroke emissions, and scattering-dominated on-orbit measurements. This work will promote better understanding of the correspondence between radio and optical measurements of lightning.

  17. Benchmarking expert system tools

    Science.gov (United States)

    Riley, Gary

    1988-01-01

    As part of its evaluation of new technologies, the Artificial Intelligence Section of the Mission Planning and Analysis Div. at NASA-Johnson has made timing tests of several expert system building tools. Among the production systems tested were Automated Reasoning Tool, several versions of OPS5, and CLIPS (C Language Integrated Production System), an expert system builder developed by the AI section. Also included in the test were a Zetalisp version of the benchmark along with four versions of the benchmark written in Knowledge Engineering Environment, an object oriented, frame based expert system tool. The benchmarks used for testing are studied.

  18. TOMS and Ground-based Measurements: Long-term Trends, Spatial Variability, Cloud Effects, and Data Quality.

    Science.gov (United States)

    Eide, H. A.; Dahlback, A.; Stamnes, K.; Høyskar, B.; Olsen, R.; Schmidlin, F.; Tsay, S.

    2003-12-01

    Ground-based measurements and TOMS measurements are mutually beneficial to each other. Ground-based measurements of UV radiation and total column ozone amounts are important for the validation of TOMS measurements. For example, it has been shown that TOMS measurements has a tendency to under-estimate ground UV exposure. Some of these effects can perhaps be ascribed to local cloud effects or choice of ozone profiles in the retrieval algorithm. More ground-based measurements are needed to establish the cause of these discrepancies. Recent technology advances have made ground-based measurements of UV doses and ozone column amounts with inexpensive multi-channel filter instruments not only possible, but also an attractive alternative to other more labor-intensive and weather dependent methods. Filter instruments can operate unattended for long periods of time, and it is possible to obtain accurate ozone column amounts even on cloudy days. We present results from extensive comparisons of the performance of several ground-based instruments (the NILU-UV and GUV filter instruments, as well as the Dobson and Brewer instruments) against the EP-TOMS instrument. The data used in the comparisons are from three different sites where we have had the opportunity to operate more than one type of UV instruments for extended periods of time. The sites include the University of Oslo, Norway, the NASA Goddard Space Flight Center facilities at Wallops Island, VA, and Greenbelt, MD and the University of Alaska, Fairbanks (during the TOMS3F campaign). Our results show that ozone column amounts obtained with current filter-type instruments are just as good as those obtained with the Dobson instrument, and might even out-perform the Dobson instrument on cloudy days. The TOMS measurements are shown to exhibit some more variability, but there is on average very good agreement with the ground- based measurements even for high solar zenith angles (SZA). Further more, our comparison shows that

  19. Financial Integrity Benchmarks

    Data.gov (United States)

    City of Jackson, Mississippi — This data compiles standard financial integrity benchmarks that allow the City to measure its financial standing. It measure the City's debt ratio and bond ratings....

  20. GeodeticBenchmark_GEOMON

    Data.gov (United States)

    Vermont Center for Geographic Information — The GeodeticBenchmark_GEOMON data layer consists of geodetic control monuments (points) that have a known position or spatial reference. The locations of these...

  1. Diagnostic Algorithm Benchmarking

    Science.gov (United States)

    Poll, Scott

    2011-01-01

    A poster for the NASA Aviation Safety Program Annual Technical Meeting. It describes empirical benchmarking on diagnostic algorithms using data from the ADAPT Electrical Power System testbed and a diagnostic software framework.

  2. On Big Data Benchmarking

    OpenAIRE

    Han, Rui; Lu, Xiaoyi

    2014-01-01

    Big data systems address the challenges of capturing, storing, managing, analyzing, and visualizing big data. Within this context, developing benchmarks to evaluate and compare big data systems has become an active topic for both research and industry communities. To date, most of the state-of-the-art big data benchmarks are designed for specific types of systems. Based on our experience, however, we argue that considering the complexity, diversity, and rapid evolution of big data systems, fo...

  3. Benchmarking in Foodservice Operations.

    Science.gov (United States)

    2007-11-02

    51. Lingle JH, Schiemann WA. From balanced scorecard to strategic gauges: Is measurement worth it? Mgt Rev. 1996; 85(3):56-61. 52. Struebing L...studies lasted from nine to twelve months, and could extend beyond that time for numerous reasons (49). Benchmarking was not industrial tourism , a...not simply data comparison, a fad, a means for reducing resources, a quick-fix program, or industrial tourism . Benchmarking was a complete process

  4. Global Fine Particulate Matter Concentrations and Trends Inferred from Satellite Observations, Modeling, and Ground-Based Measurements

    Science.gov (United States)

    Martin, Randall; van Donkelaar, Aaron; Boys, Brian; Philip, Sajeev; Lee, Colin; Snider, Graydon; Weagle, Crystal

    2014-05-01

    Outdoor fine particulate matter (PM2.5) is a leading environmentally-related cause of premature mortality worldwide. However, ground-level PM2.5 monitors remain sparse in many regions of the world. Satellite remote sensing from MODIS, MISR, and SeaWiFS yields a powerful global data source to address this issue. Global modeling (GEOS-Chem) plays a critical role in relating these observations to ground-level concentrations. The resultant satellite-based estimates of PM2.5 indicate dramatic variation around the world, with implications for global public health. A new ground-based aerosol network (SPARTAN) offers valuable measurements to understand the relationship between satellite observations of aerosol optical depth and ground-level PM2.5 concentrations. This talk will highlight recent advances in combining satellite remote sensing, global modeling, and ground-based measurements to improve understanding of global population exposure to outdoor fine particulate matter.

  5. The STACEE Ground-Based Gamma-ray Observatory

    Science.gov (United States)

    Ragan, Ken

    2002-04-01

    The Solar Tower Atmospheric Cherenkov Effect Experiment (STACEE) is a ground-based instrument designed to study astrophysical sources of gamma rays in the energy range from 50 to 500 GeV using an array of heliostat mirrors at the National Solar Thermal Test Facility in New Mexico. The mirrors collect Cherenkov light generated by gamma-ray air showers and concentrate it onto cameras composed of photomultiplier tubes. The STACEE instrument is now complete, and uses a total of 64 heliostats. Prototype instruments, using smaller numbers of heliostats, have previously detected gamma emission from both the Crab Nebula and the Active Galactic Nucleus Mrk421. The complete instrument has a lower threshold -- approximately 50 GeV -- than those prototypes due to superior triggering and electronics, including flash ADCs for every channel.We will discuss the performance of the complete instrument in its first full season of operation, and present preliminary results of selected observations.

  6. Atmospheric contamination for CMB ground-based observations

    CERN Document Server

    Errard, J; Akiba, Y; Arnold, K; Atlas, M; Baccigalupi, C; Barron, D; Boettger, D; Borrill, J; Chapman, S; Chinone, Y; Cukierman, A; Delabrouille, J; Dobbs, M; Ducout, A; Elleflot, T; Fabbian, G; Feng, C; Feeney, S; Gilbert, A; Goeckner-Wald, N; Halverson, N W; Hasegawa, M; Hattori, K; Hazumi, M; Hill, C; Holzapfel, W L; Hori, Y; Inoue, Y; Jaehnig, G C; Jaffe, A H; Jeong, O; Katayama, N; Kaufman, J; Keating, B; Kermish, Z; Keskitalo, R; Kisner, T; Jeune, M Le; Lee, A T; Leitch, E M; Leon, D; Linder, E; Matsuda, F; Matsumura, T; Miller, N J; Myers, M J; Navaroli, M; Nishino, H; Okamura, T; Paar, H; Peloton, J; Poletti, D; Puglisi, G; Rebeiz, G; Reichardt, C L; Richards, P L; Ross, C; Rotermund, K M; Schenck, D E; Sherwin, B D; Siritanasak, P; Smecher, G; Stebor, N; Steinbach, B; Stompor, R; Suzuki, A; Tajima, O; Takakura, S; Tikhomirov, A; Tomaru, T; Whitehorn, N; Wilson, B; Yadav, A; Zahn, O

    2015-01-01

    Atmosphere is one of the most important noise sources for ground-based Cosmic Microwave Background (CMB) experiments. By increasing optical loading on the detectors, it amplifies their effective noise, while its fluctuations introduce spatial and temporal correlations between detected signals. We present a physically motivated 3d-model of the atmosphere total intensity emission in the millimeter and sub-millimeter wavelengths. We derive an analytical estimate for the correlation between detectors time-ordered data as a function of the instrument and survey design, as well as several atmospheric parameters such as wind, relative humidity, temperature and turbulence characteristics. Using numerical computation, we examine the effect of each physical parameter on the correlations in the time series of a given experiment. We then use a parametric-likelihood approach to validate the modeling and estimate atmosphere parameters from the POLARBEAR-I project first season data set. We compare our results to previous st...

  7. Observational Selection Effects with Ground-based Gravitational Wave Detectors

    CERN Document Server

    Chen, Hsin-Yu; Vitale, Salvatore; Holz, Daniel E; Katsavounidis, Erik

    2016-01-01

    Ground-based interferometers are not perfectly all-sky instruments, and it is important to account for their behavior when considering the distribution of detected events. In particular, the LIGO detectors are most sensitive to sources above North America and the Indian Ocean and, as the Earth rotates, the sensitive regions are swept across the sky. However, because the detectors do not acquire data uniformly over time, there is a net bias on detectable sources' right ascensions. Both LIGO detectors preferentially collect data during their local night; it is more than twice as likely to be local midnight than noon when both detectors are operating. We discuss these selection effects and how they impact LIGO's observations and electromagnetic follow-up. Beyond galactic foregrounds associated with seasonal variations, we find that equatorial observatories can access over $80\\%$ of the localization probability, while mid-latitudes will access closer to $70\\%$. Facilities located near the two LIGO sites can obser...

  8. Progress in the ULTRA 1-m ground-based telescope

    Science.gov (United States)

    Romeo, Robert C.; Martin, Robert N.; Twarog, Bruce; Anthony-Twarog, Barbara; Taghavi, Ray; Hale, Rick; Etzel, Paul; Fesen, Rob; Shawl, Steve

    2006-06-01

    We present the technical status of the Ultra Lightweight Telescope for Research in Astronomy (ULTRA) program. The program is a 3-year Major Research Instrumentation (MRI) program funded by NSF. The MRI is a collaborative effort involving Composite Mirror Applications, Inc. (CMA), University of Kansas, San Diego State University and Dartmouth College. Objectives are to demonstrate the feasibility of carbon fiber reinforced plastic (CFRP) composite mirror technology for ground-based optical telescopes. CMA is spearheading the development of surface replication techniques to produce the optics, fabricating the 1m glass mandrel, and constructing the optical tube assembly (OTA). Presented will be an overview and status of the 1-m mandrel fabrication, optics development, telescope design and CFRP telescope fabrication by CMA for the ULTRA Telescope.

  9. Ground-based optical observation system for LEO objects

    Science.gov (United States)

    Yanagisawa, T.; Kurosaki, H.; Oda, H.; Tagawa, M.

    2015-08-01

    We propose a ground-based optical observation system for monitoring LEO objects, which uses numerous optical sensors to cover a vast region of the sky. Its potential in terms of detection and orbital determination were examined. About 30 cm LEO objects at 1000 km altitude are detectable using an 18 cm telescope, a CCD camera and the analysis software developed. Simulations and a test observation showed that two longitudinally separate observation sites with arrays of optical sensors can identify the same objects from numerous data sets and determine their orbits precisely. The proposed system may complement or replace the current radar observation system for monitoring LEO objects, like space-situation awareness, in the near future.

  10. Identification of rainy periods from ground based microwave radiometry

    Directory of Open Access Journals (Sweden)

    Ada Vittoria Bosisio

    2012-03-01

    Full Text Available In this paper the authors present the results of a study aiming at detecting rainy data in measurements collected by a dual band ground-based radiometer. The proposed criterion is based on the ratio of the brightness temperatures observed in the 20-30 GHz band without need of any ancillary information. A major result obtained from the probability density of the ratio computed over one month of data is the identification of threshold values between clear sky, cloudy sky and rainy sky, respectively. A linear fit performed by using radiometric data and concurrent rain gauge measurements shows a correlation coefficient equal to 0.56 between the temperature ratio and the observed precipitation.

  11. Optical vortex coronagraphs on ground-based telescopes

    CERN Document Server

    Jenkins, Charles

    2007-01-01

    The optical vortex coronagraph is potentially a remarkably effective device, at least for an ideal unobstructed telescope. Most ground-based telescopes however suffer from central obscuration and also have to operate through the aberrations of the turbulent atmosphere. This note analyzes the performance of the optical vortex in these circumstances and compares to some other designs, showing that it performs similarly in this situation. There is a large class of coronagraphs of this general type, and choosing between them in particular applications depends on details of performance at small off-axis distances and uniformity of response in the focal plane. Issues of manufacturability to the necessary tolerances are also likely to be important.

  12. Observational Selection Effects with Ground-based Gravitational Wave Detectors

    Science.gov (United States)

    Chen, Hsin-Yu; Essick, Reed; Vitale, Salvatore; Holz, Daniel; Katsavounidis, Erik

    2017-01-01

    Ground-based interferometers are not perfectly all-sky instruments, and it is important to account for their behavior when considering the distribution of detected events. In particular, the LIGO detectors are most sensitive to sources above North America and the Indian Ocean and, as the Earth rotates, the sensitive regions are swept across the sky. However, because the detectors do not acquire data uniformly over time, there is a net bias on detectable sources' right ascensions. Both LIGO detectors preferentially collect data during their local night; it is more than twice as likely to be local midnight than noon when both detectors are operating. We discuss these selection effects and how they impact LIGO's observations and electromagnetic follow-up. These effects can inform electromagnetic follow-up activities and optimization, including the possibility of directing observations even before gravitational-wave events occur.

  13. Unique cell culture systems for ground based research

    Science.gov (United States)

    Lewis, Marian L.

    1990-01-01

    The horizontally rotating fluid-filled, membrane oxygenated bioreactors developed at NASA Johnson for spacecraft applications provide a powerful tool for ground-based research. Three-dimensional aggregates formed by cells cultured on microcarrier beads are useful for study of cell-cell interactions and tissue development. By comparing electron micrographs of plant seedlings germinated during Shuttle flight 61-C and in an earth-based rotating bioreactor it is shown that some effects of microgravity are mimicked. Bioreactors used in the UAH Bioreactor Laboratory will make it possible to determine some of the effects of altered gravity at the cellular level. Bioreactors can be valuable for performing critical, preliminary-to-spaceflight experiments as well as medical investigations such as in vitro tumor cell growth and chemotherapeutic drug response; the enrichment of stem cells from bone marrow; and the effect of altered gravity on bone and muscle cell growth and function and immune response depression.

  14. Spatial-angular modeling of ground-based biaxial lidar

    Science.gov (United States)

    Agishev, Ravil R.

    1997-10-01

    Results of spatial-angular LIDAR modeling based on an efficiency criterion introduced are represented. Their analysis shows that a low spatial-angular efficiency of traditional VIS and NIR systems is a main cause of a low S/BR ratio at the photodetector input. It determines the considerable measurements errors and the following low accuracy of atmospheric optical parameters retrieval. As we have shown, the most effective protection against intensive sky background radiation for ground-based biaxial LIDAR's consist in forming of their angular field according to spatial-angular efficiency criterion G. Some effective approaches to high G-parameter value achievement to achieve the receiving system optimization are discussed.

  15. Mixed-field GCR Simulations for Radiobiological Research Using Ground Based Accelerators

    Science.gov (United States)

    Kim, Myung-Hee Y.; Rusek, Adam; Cucinotta, Francis A.

    2014-01-01

    Space radiation is comprised of a large number of particle types and energies, which have differential ionization power from high energy protons to high charge and energy (HZE) particles and secondary neutrons produced by galactic cosmic rays (GCR). Ground based accelerators such as the NASA Space Radiation Laboratory (NSRL) at Brookhaven National Laboratory (BNL) are used to simulate space radiation for radiobiology research and dosimetry, electronics parts, and shielding testing using mono-energetic beams for single ion species. As a tool to support research on new risk assessment models, we have developed a stochastic model of heavy ion beams and space radiation effects, the GCR Event-based Risk Model computer code (GERMcode). For radiobiological research on mixed-field space radiation, a new GCR simulator at NSRL is proposed. The NSRL-GCR simulator, which implements the rapid switching mode and the higher energy beam extraction to 1.5 GeV/u, can integrate multiple ions into a single simulation to create GCR Z-spectrum in major energy bins. After considering the GCR environment and energy limitations of NSRL, a GCR reference field is proposed after extensive simulation studies using the GERMcode. The GCR reference field is shown to reproduce the Z and LET spectra of GCR behind shielding within 20% accuracy compared to simulated full GCR environments behind shielding. A major challenge for space radiobiology research is to consider chronic GCR exposure of up to 3-years in relation to simulations with cell and animal models of human risks. We discuss possible approaches to map important biological time scales in experimental models using ground-based simulation with extended exposure of up to a few weeks and fractionation approaches at a GCR simulator.

  16. Benchmarking File System Benchmarking: It *IS* Rocket Science

    OpenAIRE

    Seltzer, Margo I.; Tarasov, Vasily; Bhanage, Saumitra; Zadok, Erez

    2011-01-01

    The quality of file system benchmarking has not improved in over a decade of intense research spanning hundreds of publications. Researchers repeatedly use a wide range of poorly designed benchmarks, and in most cases, develop their own ad-hoc benchmarks. Our community lacks a definition of what we want to benchmark in a file system. We propose several dimensions of file system benchmarking and review the wide range of tools and techniques in widespread use. We experimentally show that even t...

  17. The KMAT: Benchmarking Knowledge Management.

    Science.gov (United States)

    de Jager, Martha

    Provides an overview of knowledge management and benchmarking, including the benefits and methods of benchmarking (e.g., competitive, cooperative, collaborative, and internal benchmarking). Arthur Andersen's KMAT (Knowledge Management Assessment Tool) is described. The KMAT is a collaborative benchmarking tool, designed to help organizations make…

  18. Benchmarking in Mobarakeh Steel Company

    OpenAIRE

    Sasan Ghasemi; Mohammad Nazemi; Mehran Nejati

    2008-01-01

    Benchmarking is considered as one of the most effective ways of improving performance in companies. Although benchmarking in business organizations is a relatively new concept and practice, it has rapidly gained acceptance worldwide. This paper introduces the benchmarking project conducted in Esfahan's Mobarakeh Steel Company, as the first systematic benchmarking project conducted in Iran. It aims to share the process deployed for the benchmarking project in this company and illustrate how th...

  19. Benchmarking in Mobarakeh Steel Company

    Directory of Open Access Journals (Sweden)

    Sasan Ghasemi

    2008-05-01

    Full Text Available Benchmarking is considered as one of the most effective ways of improving performance incompanies. Although benchmarking in business organizations is a relatively new concept and practice, ithas rapidly gained acceptance worldwide. This paper introduces the benchmarking project conducted in Esfahan’s Mobarakeh Steel Company, as the first systematic benchmarking project conducted in Iran. It aimsto share the process deployed for the benchmarking project in this company and illustrate how the projectsystematic implementation led to succes.

  20. PNNL Information Technology Benchmarking

    Energy Technology Data Exchange (ETDEWEB)

    DD Hostetler

    1999-09-08

    Benchmarking is a methodology for searching out industry best practices that lead to superior performance. It is exchanging information, not just with any organization, but with organizations known to be the best within PNNL, in industry, or in dissimilar industries with equivalent functions. It is used as a continuous improvement tool for business and technical processes, products, and services. Information technology--comprising all computer and electronic communication products and services--underpins the development and/or delivery of many PNNL products and services. This document describes the Pacific Northwest National Laboratory's (PNNL's) approach to information technology (IT) benchmarking. The purpose is to engage other organizations in the collaborative process of benchmarking in order to improve the value of IT services provided to customers. TM document's intended audience consists of other US Department of Energy (DOE) national laboratories and their IT staff. Although the individual participants must define the scope of collaborative benchmarking, an outline of IT service areas for possible benchmarking is described.

  1. Probing Pluto's Atmosphere Using Ground-Based Stellar Occultations

    Science.gov (United States)

    Sicardy, Bruno; Rio de Janeiro Occultation Team, Granada Team, International Occultation and Timing Association, Royal Astronomical Society New Zealand Occultation Section, Lucky Star associated Teams

    2016-10-01

    Over the last three decades, some twenty stellar occultations by Pluto have been monitored from Earth. They occur when the dwarf planet blocks the light from a star for a few minutes as it moves on the sky. Such events led to the hint of a Pluto's atmosphere in 1985, that was fully confirmed during another occultation in 1988, but it was only in 2002 that a new occultation could be recorded. From then on, the dwarf planet started to move in front of the galactic center, which amplified by a large factor the number of events observable per year.Pluto occultations are essentially refractive events during which the stellar rays are bent by the tenuous atmosphere, causing a gradual dimming of the star. This provides the density, pressure and temperature profiles of the atmosphere from a few kilometers above the surface up to about 250 km altitude, corresponding respectively to pressure levels of about 10 and 0.1 μbar. Moreover, the extremely fine spatial resolution (a few km) obtained through this technique allows the detection of atmospheric gravity waves, and permits in principle the detection of hazes, if present.Several aspects make Pluto stellar occultations quite special: first, they are the only way to probe Pluto's atmosphere in detail, as the dwarf planet is far too small on the sky and the atmosphere is far too tenuous to be directly imaged from Earth. Second, they are an excellent example of participative science, as many amateurs have been able to record those events worldwide with valuable scientific returns, in collaboration with professional astronomers. Third, they reveal Pluto's climatic changes on decade-scales and constrain the various seasonal models currently explored.Finally, those observations are fully complementary to space exploration, in particular with the New Horizons (NH) mission. I will show how ground-based occultations helped to better calibrate some NH profiles, and conversely, how NH results provide some key boundary conditions

  2. Independet Component Analyses of Ground-based Exoplanetary Transits

    Science.gov (United States)

    Silva Martins-Filho, Walter; Griffith, Caitlin Ann; Pearson, Kyle; Waldmann, Ingo; Biddle, Lauren; Zellem, Robert Thomas; Alvarez-Candal, Alvaro

    2016-10-01

    Most observations of exoplanetary atmospheres are conducted when a "Hot Jupiter" exoplanet transits in front of its host star. These Jovian-sized planets have small orbital periods, on the order of days, and therefore a short transit time, making them more ameanable to observations. Measurements of Hot Jupiter transits must achieve a 10-4 level of accuracy in the flux to determine the spectral modulations of the exoplanetary atmosphere. In order to accomplish this level of precision, we need to extract systematic errors, and, for ground-based measurements, the effects of Earth's atmosphere, from the signal due to the exoplanet, which is several orders of magnitudes smaller. Currently, the effects of the terrestrial atmosphere and the some of the time-dependent systematic errors are treated by dividing the host star by a reference star at each wavelength and time step of the transit. More recently, Independent Component Analyses (ICA) have been used to remove systematic effects from the raw data of space-based observations (Waldmann 2014,2012; Morello et al.,2015,2016). ICA is a statistical method born from the ideas of the blind-source separation studies, which can be used to de-trend several independent source signals of a data set (Hyvarinen and Oja, 2000). One strength of this method is that it requires no additional prior knowledge of the system. Here, we present a study of the application of ICA to ground-based transit observations of extrasolar planets, which are affected by Earth's atmosphere. We analyze photometric data of two extrasolar planets, WASP-1b and GJ3470b, recorded by the 61" Kuiper Telescope at Stewart Observatory using the Harris B and U filters. The presentation will compare the light curve depths and their dispersions as derived from the ICA analysis to those derived by analyses that ratio of the host star to nearby reference stars.References: Waldmann, I.P. 2012 ApJ, 747, 12, Waldamann, I. P. 2014 ApJ, 780, 23; Morello G. 2015 ApJ, 806

  3. Benchmarking Pthreads performance

    Energy Technology Data Exchange (ETDEWEB)

    May, J M; de Supinski, B R

    1999-04-27

    The importance of the performance of threads libraries is growing as clusters of shared memory machines become more popular POSIX threads, or Pthreads, is an industry threads library standard. We have implemented the first Pthreads benchmark suite. In addition to measuring basic thread functions, such as thread creation, we apply the L.ogP model to standard Pthreads communication mechanisms. We present the results of our tests for several hardware platforms. These results demonstrate that the performance of existing Pthreads implementations varies widely; parts of nearly all of these implementations could be further optimized. Since hardware differences do not fully explain these performance variations, optimizations could improve the implementations. 2. Incorporating Threads Benchmarks into SKaMPI is an MPI benchmark suite that provides a general framework for performance analysis [7]. SKaMPI does not exhaustively test the MPI standard. Instead, it

  4. Deviating From the Benchmarks

    DEFF Research Database (Denmark)

    Rocha, Vera; Van Praag, Mirjam; Carneiro, Anabela

    survival? The analysis is based on a matched employer-employee dataset and covers about 17,500 startups in manufacturing and services. We adopt a new procedure to estimate individual benchmarks for the quantity and quality of initial human resources, acknowledging correlations between hiring decisions...... the benchmark can be substantial, are persistent over time, and hinder the survival of firms. The implications may, however, vary according to the sector and the ownership structure at entry. Given the stickiness of initial choices, wrong human capital decisions at entry turn out to be a close to irreversible...

  5. Benchmarking for Best Practice

    CERN Document Server

    Zairi, Mohamed

    1998-01-01

    Benchmarking for Best Practice uses up-to-the-minute case-studies of individual companies and industry-wide quality schemes to show how and why implementation has succeeded. For any practitioner wanting to establish best practice in a wide variety of business areas, this book makes essential reading. .It is also an ideal textbook on the applications of TQM since it describes concepts, covers definitions and illustrates the applications with first-hand examples. Professor Mohamed Zairi is an international expert and leading figure in the field of benchmarking. His pioneering work in this area l

  6. Observing Tsunamis in the Ionosphere Using Ground Based GPS Measurements

    Science.gov (United States)

    Galvan, D. A.; Komjathy, A.; Song, Y. Tony; Stephens, P.; Hickey, M. P.; Foster, J.

    2011-01-01

    Ground-based Global Positioning System (GPS) measurements of ionospheric Total Electron Content (TEC) show variations consistent with atmospheric internal gravity waves caused by ocean tsunamis following recent seismic events, including the Tohoku tsunami of March 11, 2011. We observe fluctuations correlated in time, space, and wave properties with this tsunami in TEC estimates processed using JPL's Global Ionospheric Mapping Software. These TEC estimates were band-pass filtered to remove ionospheric TEC variations with periods outside the typical range of internal gravity waves caused by tsunamis. Observable variations in TEC appear correlated with the Tohoku tsunami near the epicenter, at Hawaii, and near the west coast of North America. Disturbance magnitudes are 1-10% of the background TEC value. Observations near the epicenter are compared to estimates of expected tsunami-driven TEC variations produced by Embry Riddle Aeronautical University's Spectral Full Wave Model, an atmosphere-ionosphere coupling model, and found to be in good agreement. The potential exists to apply these detection techniques to real-time GPS TEC data, providing estimates of tsunami speed and amplitude that may be useful for future early warning systems.

  7. Theoretical validation of ground-based microwave ozone observations

    Directory of Open Access Journals (Sweden)

    P. Ricaud

    Full Text Available Ground-based microwave measurements of the diurnal and seasonal variations of ozoneat 42±4.5 and 55±8 km are validated by comparing with results from a zero-dimensional photochemical model and a two-dimensional (2D chemical/radiative/dynamical model, respectively. O3 diurnal amplitudes measured in Bordeaux are shown to be in agreement with theory to within 5%. For the seasonal analysis of O3 variation, at 42±4.5 km, the 2D model underestimates the yearly averaged ozone concentration compared with the measurements. A double maximum oscillation (~3.5% is measured in Bordeaux with an extended maximum in September and a maximum in February, whilst the 2D model predicts only a single large maximum (17% in August and a pronounced minimum in January. Evidence suggests that dynamical transport causes the winter O3 maximum by propagation of planetary waves, phenomena which are not explicitly reproduced by the 2D model. At 55±8 km, the modeled yearly averaged O3 concentration is in very good agreement with the measured yearly average. A strong annual oscillation is both measured and modeled with differences in the amplitude shown to be exclusively linked to temperature fields.

  8. Models of ionospheric VLF absorption of powerful ground based transmitters

    Science.gov (United States)

    Cohen, M. B.; Lehtinen, N. G.; Inan, U. S.

    2012-12-01

    Ground based Very Low Frequency (VLF, 3-30 kHz) radio transmitters play a role in precipitation of energetic Van Allen electrons. Initial analyses of the contribution of VLF transmitters to radiation belt losses were based on early models of trans-ionospheric propagation known as the Helliwell absorption curves, but some recent studies have found that the model overestimates (by 20-100 dB) the VLF energy reaching the magnetosphere. It was subsequently suggested that conversion of wave energy into electrostatic modes may be responsible for the error. We utilize a newly available extensive record of VLF transmitter energy reaching the magnetosphere, taken from the DEMETER satellite, and perform a direct comparison with a sophisticated full wave model of trans-ionospheric propagation. Although the model does not include the effect of ionospheric irregularities, it correctly predicts the average total power injected into the magnetosphere within several dB. The results, particularly at nighttime, appear to be robust against the variability of the ionospheric electron density. We conclude that the global effect of irregularity scattering on whistler mode conversion to quasi-electrostatic may be no larger than 6 dB.

  9. Atmospheric Refraction Path Integrals in Ground-Based Interferometry

    CERN Document Server

    Mathar, R J

    2004-01-01

    The basic effect of the earth's atmospheric refraction on telescope operation is the reduction of the true zenith angle to the apparent zenith angle, associated with prismatic aberrations due to the dispersion in air. If one attempts coherent superposition of star images in ground-based interferometry, one is in addition interested in the optical path length associated with the refracted rays. In a model of a flat earth, the optical path difference between these is not concerned as the translational symmetry of the setup means no net effect remains. Here, I evaluate these interferometric integrals in the more realistic arrangement of two telescopes located on the surface of a common earth sphere and point to a star through an atmosphere which also possesses spherical symmetry. Some focus is put on working out series expansions in terms of the small ratio of the baseline over the earth radius, which allows to bypass some numerics which otherwise is challenged by strong cancellation effects in building the opti...

  10. Experiments on a Ground-Based Tomographic Synthetic Aperture Radar

    Directory of Open Access Journals (Sweden)

    Hoonyol Lee

    2016-08-01

    Full Text Available This paper presents the development and experiment of three-dimensional image formation by using a ground-based tomographic synthetic aperture radar (GB-TomoSAR system. GB-TomoSAR formulates two-dimensional synthetic aperture by the motion of antennae, both in azimuth and vertical directions. After range compression, three-dimensional image focusing is performed by applying Deramp-FFT (Fast Fourier Transform algorithms, both in azimuth and vertical directions. Geometric and radiometric calibrations were applied to make an image cube, which is then projected into range-azimuth and range-vertical cross-sections for visualization. An experiment with a C-band GB-TomoSAR system with a scan length of 2.49 m and 1.86 m in azimuth and vertical-direction, respectively, shows distinctive three-dimensional radar backscattering of stable buildings and roads with resolutions similar to the theoretical values. Unstable objects such as trees and moving cars generate severe noise due to decorrelation during the eight-hour image-acquisition time.

  11. A comparative study of satellite and ground-based phenology.

    Science.gov (United States)

    Studer, S; Stöckli, R; Appenzeller, C; Vidale, P L

    2007-05-01

    Long time series of ground-based plant phenology, as well as more than two decades of satellite-derived phenological metrics, are currently available to assess the impacts of climate variability and trends on terrestrial vegetation. Traditional plant phenology provides very accurate information on individual plant species, but with limited spatial coverage. Satellite phenology allows monitoring of terrestrial vegetation on a global scale and provides an integrative view at the landscape level. Linking the strengths of both methodologies has high potential value for climate impact studies. We compared a multispecies index from ground-observed spring phases with two types (maximum slope and threshold approach) of satellite-derived start-of-season (SOS) metrics. We focus on Switzerland from 1982 to 2001 and show that temporal and spatial variability of the multispecies index correspond well with the satellite-derived metrics. All phenological metrics correlate with temperature anomalies as expected. The slope approach proved to deviate strongly from the temporal development of the ground observations as well as from the threshold-defined SOS satellite measure. The slope spring indicator is considered to indicate a different stage in vegetation development and is therefore less suited as a SOS parameter for comparative studies in relation to ground-observed phenology. Satellite-derived metrics are, however, very susceptible to snow cover, and it is suggested that this snow cover should be better accounted for by the use of newer satellite sensors.

  12. Satellite Type Estination from Ground-based Photometric Observation

    Science.gov (United States)

    Endo, T.; Ono, H.; Suzuki, J.; Ando, T.; Takanezawa, T.

    2016-09-01

    The optical photometric observation is potentially a powerful tool for understanding of the Geostationary Earth Orbit (GEO) objects. At first, we measured in laboratory the surface reflectance of common satellite materials, for example, Multi-layer Insulation (MLI), mono-crystalline silicon cells, and Carbon Fiber Reinforced Plastic (CFRP). Next, we calculated visual magnitude of a satellite by simplified shape and albedo. In this calculation model, solar panels have dimensions of 2 by 8 meters, and the bus area is 2 meters squared with measured optical properties described above. Under these conditions, it clarified the brightness can change the range between 3 and 4 magnitudes in one night, but color index changes only from 1 to 2 magnitudes. Finally, we observed the color photometric data of several GEO satellites visible from Japan multiple times in August and September 2014. We obtained that light curves of GEO satellites recorded in the B and V bands (using Johnson filters) by a ground-base optical telescope. As a result, color index changed approximately from 0.5 to 1 magnitude in one night, and the order of magnitude was not changed in all cases. In this paper, we briefly discuss about satellite type estimation using the relation between brightness and color index obtained from the photometric observation.

  13. The high-resolution extraterrestrial solar spectrum (QASUMEFTS determined from ground-based solar irradiance measurements

    Directory of Open Access Journals (Sweden)

    J. Gröbner

    2017-09-01

    Full Text Available A high-resolution extraterrestrial solar spectrum has been determined from ground-based measurements of direct solar spectral irradiance (SSI over the wavelength range from 300 to 500 nm using the Langley-plot technique. The measurements were obtained at the Izaña Atmospheric Research Centre from the Agencia Estatal de Meteorología, Tenerife, Spain, during the period 12 to 24 September 2016. This solar spectrum (QASUMEFTS was combined from medium-resolution (bandpass of 0.86 nm measurements of the QASUME (Quality Assurance of Spectral Ultraviolet Measurements in Europe spectroradiometer in the wavelength range from 300 to 500 nm and high-resolution measurements (0.025 nm from a Fourier transform spectroradiometer (FTS over the wavelength range from 305 to 380 nm. The Kitt Peak solar flux atlas was used to extend this high-resolution solar spectrum to 500 nm. The expanded uncertainties of this solar spectrum are 2 % between 310 and 500 nm and 4 % at 300 nm. The comparison of this solar spectrum with solar spectra measured in space (top of the atmosphere gave very good agreements in some cases, while in some other cases discrepancies of up to 5 % were observed. The QASUMEFTS solar spectrum represents a benchmark dataset with uncertainties lower than anything previously published. The metrological traceability of the measurements to the International System of Units (SI is assured by an unbroken chain of calibrations leading to the primary spectral irradiance standard of the Physikalisch-Technische Bundesanstalt in Germany.

  14. HPCS HPCchallenge Benchmark Suite

    Science.gov (United States)

    2007-11-02

    measured HPCchallenge Benchmark performance on various HPC architectures — from Cray X1s to Beowulf clusters — in the presentation and paper...from Cray X1s to Beowulf clusters — using the updated results at http://icl.cs.utk.edu/hpcc/hpcc_results.cgi Even a small percentage of random

  15. Benchmarking Danish Industries

    DEFF Research Database (Denmark)

    Gammelgaard, Britta; Bentzen, Eric; Aagaard Andreassen, Mette

    2003-01-01

    compatible survey. The International Manufacturing Strategy Survey (IMSS) doesbring up the question of supply chain management, but unfortunately, we did not have access to thedatabase. Data from the members of the SCOR-model, in the form of benchmarked performance data,may exist, but are nonetheless...

  16. Benchmarks: WICHE Region 2012

    Science.gov (United States)

    Western Interstate Commission for Higher Education, 2013

    2013-01-01

    Benchmarks: WICHE Region 2012 presents information on the West's progress in improving access to, success in, and financing of higher education. The information is updated annually to monitor change over time and encourage its use as a tool for informed discussion in policy and education communities. To establish a general context for the…

  17. Surveys and Benchmarks

    Science.gov (United States)

    Bers, Trudy

    2012-01-01

    Surveys and benchmarks continue to grow in importance for community colleges in response to several factors. One is the press for accountability, that is, for colleges to report the outcomes of their programs and services to demonstrate their quality and prudent use of resources, primarily to external constituents and governing boards at the state…

  18. Benchmarking and Performance Management

    Directory of Open Access Journals (Sweden)

    Adrian TANTAU

    2010-12-01

    Full Text Available The relevance of the chosen topic is explained by the meaning of the firm efficiency concept - the firm efficiency means the revealed performance (how well the firm performs in the actual market environment given the basic characteristics of the firms and their markets that are expected to drive their profitability (firm size, market power etc.. This complex and relative performance could be due to such things as product innovation, management quality, work organization, some other factors can be a cause even if they are not directly observed by the researcher. The critical need for the management individuals/group to continuously improve their firm/company’s efficiency and effectiveness, the need for the managers to know which are the success factors and the competitiveness determinants determine consequently, what performance measures are most critical in determining their firm’s overall success. Benchmarking, when done properly, can accurately identify both successful companies and the underlying reasons for their success. Innovation and benchmarking firm level performance are critical interdependent activities. Firm level variables, used to infer performance, are often interdependent due to operational reasons. Hence, the managers need to take the dependencies among these variables into account when forecasting and benchmarking performance. This paper studies firm level performance using financial ratio and other type of profitability measures. It uses econometric models to describe and then propose a method to forecast and benchmark performance.

  19. Observational Selection Effects with Ground-based Gravitational Wave Detectors

    Science.gov (United States)

    Chen, Hsin-Yu; Essick, Reed; Vitale, Salvatore; Holz, Daniel E.; Katsavounidis, Erik

    2017-01-01

    Ground-based interferometers are not perfect all-sky instruments, and it is important to account for their behavior when considering the distribution of detected events. In particular, the LIGO detectors are most sensitive to sources above North America and the Indian Ocean, and as the Earth rotates, the sensitive regions are swept across the sky. However, because the detectors do not acquire data uniformly over time, there is a net bias on detectable sources’ right ascensions. Both LIGO detectors preferentially collect data during their local night; it is more than twice as likely to be local midnight than noon when both detectors are operating. We discuss these selection effects and how they impact LIGO’s observations and electromagnetic (EM) follow-up. Beyond galactic foregrounds associated with seasonal variations, we find that equatorial observatories can access over 80% of the localization probability, while mid-latitudes will access closer to 70%. Facilities located near the two LIGO sites can observe sources closer to their zenith than their analogs in the south, but the average observation will still be no closer than 44° from zenith. We also find that observatories in Africa or the South Atlantic will wait systematically longer before they can begin observing compared to the rest of the world though, there is a preference for longitudes near the LIGOs. These effects, along with knowledge of the LIGO antenna pattern, can inform EM follow-up activities and optimization, including the possibility of directing observations even before gravitational-wave events occur.

  20. Ground-based Measurements of Next Generation Spectroradiometric Standard Stars

    Science.gov (United States)

    McGraw, John T.

    2013-01-01

    Accurate, radiometric standards are essential to the future of ground- and space-based astronomy and astrophysics. While astronomers tend to think of “standard stars” as available calibration sources, progress at NIST to accurately calibrate inexpensive, easy to use photodiode detectors as spectroradiometric standards from 200 nm to 1800 nm allows referencing astronomical measurements to these devices. Direction-, time-, and wavelength-dependent transmission of Earth’s atmosphere is the single largest source of error for ground-based radiometric measurement of astronomical objects. Measurements and impacts of atmospheric extinction - scattering and absorption - on imaging radiometric and spectroradiometric measurements are described. The conclusion is that accurate real-time measurement of extinction in the column of atmosphere through which standard star observations are made, over the spectral region being observed and over the field of view of the telescope are required. New techniques to directly and simultaneously measure extinction in the column of atmosphere through which observations are made are required. Our direct extinction measurement solution employs three small facility-class instruments working in parallel: a lidar to measure rapidly time variable transmission at three wavelengths with uncertainty of 0.25% per airmass, a spectrophotometer to measure rapidly wavelength variable extinction with sub-1% precision per nanometer resolution element from 350 to 1050nm, and a wide-field camera to measure angularly variable extinction over the field of view. These instruments and their operation will be described. We assert that application of atmospheric metadata provided by this instrument suite corrects for a significant fraction of systematic errors currently limiting radiometric precision, and provides a major step towards measurements that are provably dominated by random noise.

  1. Ozone profiles above Kiruna from two ground-based radiometers

    Science.gov (United States)

    Ryan, Niall J.; Walker, Kaley A.; Raffalski, Uwe; Kivi, Rigel; Gross, Jochen; Manney, Gloria L.

    2016-09-01

    This paper presents new atmospheric ozone concentration profiles retrieved from measurements made with two ground-based millimetre-wave radiometers in Kiruna, Sweden. The instruments are the Kiruna Microwave Radiometer (KIMRA) and the Millimeter wave Radiometer 2 (MIRA 2). The ozone concentration profiles are retrieved using an optimal estimation inversion technique, and they cover an altitude range of ˜ 16-54 km, with an altitude resolution of, at best, 8 km. The KIMRA and MIRA 2 measurements are compared to each other, to measurements from balloon-borne ozonesonde measurements at Sodankylä, Finland, and to measurements made by the Microwave Limb Sounder (MLS) aboard the Aura satellite. KIMRA has a correlation of 0.82, but shows a low bias, with respect to the ozonesonde data, and MIRA 2 shows a smaller magnitude low bias and a 0.98 correlation coefficient. Both radiometers are in general agreement with each other and with MLS data, showing high correlation coefficients, but there are differences between measurements that are not explained by random errors. An oscillatory bias with a peak of approximately ±1 ppmv is identified in the KIMRA ozone profiles over an altitude range of ˜ 18-35 km, and is believed to be due to baseline wave features that are present in the spectra. A time series analysis of KIMRA ozone for winters 2008-2013 shows the existence of a local wintertime minimum in the ozone profile above Kiruna. The measurements have been ongoing at Kiruna since 2002 and late 2012 for KIMRA and MIRA 2, respectively.

  2. Project management for complex ground-based instruments: MEGARA plan

    Science.gov (United States)

    García-Vargas, María. Luisa; Pérez-Calpena, Ana; Gil de Paz, Armando; Gallego, Jesús; Carrasco, Esperanza; Cedazo, Raquel; Iglesias, Jorge

    2014-08-01

    The project management of complex instruments for ground-based large telescopes is a challenge itself. A good management is a clue for project success in terms of performance, schedule and budget. Being on time has become a strict requirement for two reasons: to assure the arrival at the telescope due to the pressure on demanding new instrumentation for this first world-class telescopes and to not fall in over-costs. The budget and cash-flow is not always the expected one and has to be properly handled from different administrative departments at the funding centers worldwide distributed. The complexity of the organizations, the technological and scientific return to the Consortium partners and the participation in the project of all kind of professional centers working in astronomical instrumentation: universities, research centers, small and large private companies, workshops and providers, etc. make the project management strategy, and the tools and procedures tuned to the project needs, crucial for success. MEGARA (Multi-Espectrógrafo en GTC de Alta Resolución para Astronomía) is a facility instrument of the 10.4m GTC (La Palma, Spain) working at optical wavelengths that provides both Integral-Field Unit (IFU) and Multi-Object Spectrograph (MOS) capabilities at resolutions in the range R=6,000-20,000. The project is an initiative led by Universidad Complutense de Madrid (Spain) in collaboration with INAOE (Mexico), IAA-CSIC (Spain) and Universidad Politécnica de Madrid (Spain). MEGARA is being developed under contract with GRANTECAN.

  3. Standard Guide for Benchmark Testing of Light Water Reactor Calculations

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 This guide covers general approaches for benchmarking neutron transport calculations in light water reactor systems. A companion guide (Guide E2005) covers use of benchmark fields for testing neutron transport calculations and cross sections in well controlled environments. This guide covers experimental benchmarking of neutron fluence calculations (or calculations of other exposure parameters such as dpa) in more complex geometries relevant to reactor surveillance. Particular sections of the guide discuss: the use of well-characterized benchmark neutron fields to provide an indication of the accuracy of the calculational methods and nuclear data when applied to typical cases; and the use of plant specific measurements to indicate bias in individual plant calculations. Use of these two benchmark techniques will serve to limit plant-specific calculational uncertainty, and, when combined with analytical uncertainty estimates for the calculations, will provide uncertainty estimates for reactor fluences with ...

  4. Benchmarking i den offentlige sektor

    DEFF Research Database (Denmark)

    Bukh, Per Nikolaj; Dietrichson, Lars; Sandalgaard, Niels

    2008-01-01

    I artiklen vil vi kort diskutere behovet for benchmarking i fraværet af traditionelle markedsmekanismer. Herefter vil vi nærmere redegøre for, hvad benchmarking er med udgangspunkt i fire forskellige anvendelser af benchmarking. Regulering af forsyningsvirksomheder vil blive behandlet, hvorefter...

  5. Benchmarking an operational procedure for rapid flood mapping and risk assessment in Europe

    Science.gov (United States)

    Dottori, Francesco; Salamon, Peter; Kalas, Milan; Bianchi, Alessandra; Feyen, Luc

    2016-04-01

    The development of real-time methods for rapid flood mapping and risk assessment is crucial to improve emergency response and mitigate flood impacts. This work describes the benchmarking of an operational procedure for rapid flood risk assessment based on the flood predictions issued by the European Flood Awareness System (EFAS). The daily forecasts produced for the major European river networks are translated into event-based flood hazard maps using a large map catalogue derived from high-resolution hydrodynamic simulations, based on the hydro-meteorological dataset of EFAS. Flood hazard maps are then combined with exposure and vulnerability information, and the impacts of the forecasted flood events are evaluated in near real-time in terms of flood prone areas, potential economic damage, affected population, infrastructures and cities. An extensive testing of the operational procedure is carried out using the catastrophic floods of May 2014 in Bosnia-Herzegovina, Croatia and Serbia. The reliability of the flood mapping methodology is tested against satellite-derived flood footprints, while ground-based estimations of economic damage and affected population is compared against modelled estimates. We evaluated the skill of flood hazard and risk estimations derived from EFAS flood forecasts with different lead times and combinations. The assessment includes a comparison of several alternative approaches to produce and present the information content, in order to meet the requests of EFAS users. The tests provided good results and showed the potential of the developed real-time operational procedure in helping emergency response and management.

  6. Radiography benchmark 2014

    Energy Technology Data Exchange (ETDEWEB)

    Jaenisch, G.-R., E-mail: Gerd-Ruediger.Jaenisch@bam.de; Deresch, A., E-mail: Gerd-Ruediger.Jaenisch@bam.de; Bellon, C., E-mail: Gerd-Ruediger.Jaenisch@bam.de [Federal Institute for Materials Research and Testing, Unter den Eichen 87, 12205 Berlin (Germany); Schumm, A.; Lucet-Sanchez, F.; Guerin, P. [EDF R and D, 1 avenue du Général de Gaulle, 92141 Clamart (France)

    2015-03-31

    The purpose of the 2014 WFNDEC RT benchmark study was to compare predictions of various models of radiographic techniques, in particular those that predict the contribution of scattered radiation. All calculations were carried out for homogenous materials and a mono-energetic X-ray point source in the energy range between 100 keV and 10 MeV. The calculations were to include the best physics approach available considering electron binding effects. Secondary effects like X-ray fluorescence and bremsstrahlung production were to be taken into account if possible. The problem to be considered had two parts. Part I examined the spectrum and the spatial distribution of radiation behind a single iron plate. Part II considered two equally sized plates, made of iron and aluminum respectively, only evaluating the spatial distribution. Here we present the results of above benchmark study, comparing them to MCNP as the assumed reference model. The possible origins of the observed deviations are discussed.

  7. Ground Based Investigation of Electrostatic Accelerometer in HUST

    Science.gov (United States)

    Bai, Y.; Zhou, Z.

    2013-12-01

    High-precision electrostatic accelerometers with six degrees of freedom (DOF) acceleration measurement were successfully used in CHAMP, GRACE and GOCE missions which to measure the Earth's gravity field. In our group, space inertial sensor based on the capacitance transducer and electrostatic control technique has been investigated for test of equivalence principle (TEPO), searching non-Newtonian force in micrometer range, and satellite Earth's field recovery. The significant techniques of capacitive position sensor with the noise level at 2×10-7pF/Hz1/2 and the μV/Hz1/2 level electrostatic actuator are carried out and all the six servo loop controls by using a discrete PID algorithm are realized in a FPGA device. For testing on ground, in order to compensate one g earth's gravity, the fiber torsion pendulum facility is adopt to measure the parameters of the electrostatic controlled inertial sensor such as the resolution, and the electrostatic stiffness, the cross couple between different DOFs. A short distance and a simple double capsule equipment the valid duration about 0.5 second is set up in our lab for the free fall tests of the engineering model which can directly verify the function of six DOF control. Meanwhile, high voltage suspension method is also realized and preliminary results show that the horizontal axis of acceleration noise is about 10-8m/s2/Hz1/2 level which limited mainly by the seismic noise. Reference: [1] Fen Gao, Ze-Bing Zhou, Jun Luo, Feasibility for Testing the Equivalence Principle with Optical Readout in Space, Chin. Phys. Lett. 28(8) (2011) 080401. [2] Z. Zhu, Z. B. Zhou, L. Cai, Y. Z. Bai, J. Luo, Electrostatic gravity gradiometer design for the advanced GOCE mission, Adv. Sp. Res. 51 (2013) 2269-2276. [3] Z B Zhou, L Liu, H B Tu, Y Z Bai, J Luo, Seismic noise limit for ground-based performance measurements of an inertial sensor using a torsion balance, Class. Quantum Grav. 27 (2010) 175012. [4] H B Tu, Y Z Bai, Z B Zhou, L Liu, L

  8. Ground-Based Observing Campaign of Briz-M Debris

    Science.gov (United States)

    Lederer, S. M.; Buckalew, B.; Frith, J.; Cowardin, H. M.; Hickson, P.; Matney, M.; Anz-Meador, P.

    2017-01-01

    In 2015, NASA's Orbital Debris Program Office (ODPO) completed the installation of the Meter Class Autonomous Telescope (MCAT) on Ascension Island. MCAT is a 1.3m optical telescope designed with a fast tracking capability for observing orbital debris at all orbital regimes (Low-Erath orbits to Geosyncronous (GEO) orbits) from a low latitude site. This new asset is dedicated year-round for debris observations, and its location fills a geographical gap in the Ground-based Electro Optical Space Surveillance (GEODSS) network. A commercial off the shelf (COTS) research grade 0.4m telescope (named the Benbrook telescope) will also be installed on Ascension at the end of 2016. This smaller version is controlled by the same master software, designed by Euclid Research, and can be tasked to work independently or in concert with MCAT. Like MCAT, it has a the same suite of filters, a similar field of view, and a fast-tracking Astelco mount, and is also capable of tracking debris at all orbital regimes. These assets are well suited for targeted campagins or surveys of debris. Since 2013, NASA's ODPO has also had extensive access to the 3.8m infrared UKIRT telescope, located on Mauna Kea. At nearly 14,000-ft, this site affords excellent conditions for collecting both photometery and spectroscopy at near-IR (0.9 - 2.5 micrometers SWIR) and thermal-IR (8 - 25 micrometers; LWIR) regimes, ideal for investigating material properties as well as thermal characteristics and sizes of debris. For the purposes of understanding orbital debris, taking data in both survey mode as well as targeting individual objects for more in-depth characterizations are desired. With the recent break-ups of Briz-M rocket bodies, we have collected a suite of data in the optical, near-infrared, and mid-infrared of in-tact objects as well as those classified as debris. A break-up at GEO of a Briz-M rocket occurred in January, 2016, well timed for the first remote observing survey-campaign with MCAT. Access to

  9. Benchmarking of LSTM Networks

    OpenAIRE

    Breuel, Thomas M.

    2015-01-01

    LSTM (Long Short-Term Memory) recurrent neural networks have been highly successful in a number of application areas. This technical report describes the use of the MNIST and UW3 databases for benchmarking LSTM networks and explores the effect of different architectural and hyperparameter choices on performance. Significant findings include: (1) LSTM performance depends smoothly on learning rates, (2) batching and momentum has no significant effect on performance, (3) softmax training outperf...

  10. Effect of subchronic 2,3,7,8-tetrachlorodibenzo-p-dioxin exposure on immune system and target gene responses in mice: calculation of benchmark doses for CYP1A1 and CYP1A2 related enzyme activities

    Energy Technology Data Exchange (ETDEWEB)

    Vogel, C. [Medical Institute of Environmental Hygiene at the Heinrich Heine University of Duesseldorf, Division of Toxicology, Auf`m Hennekamp 50, D-40225 Duesseldorf (Germany); Donat, S. [Medical Institute of Environmental Hygiene at the Heinrich Heine University of Duesseldorf, Division of Toxicology, Auf`m Hennekamp 50, D-40225 Duesseldorf (Germany); Doehr, O. [Medical Institute of Environmental Hygiene at the Heinrich Heine University of Duesseldorf, Division of Toxicology, Auf`m Hennekamp 50, D-40225 Duesseldorf (Germany); Kremer, J. [Medical Institute of Environmental Hygiene at the Heinrich Heine University of Duesseldorf, Division of Immunology Auf`m Hennekamp 50, D-40225 Duesseldorf (Germany); Esser, C. [Medical Institute of Environmental Hygiene at the Heinrich Heine University of Duesseldorf, Division of Immunology Auf`m Hennekamp 50, D-40225 Duesseldorf (Germany); Roller, M. [Medical Institute of Environmental Hygiene at the Heinrich Heine University of Duesseldorf, Division of Experimental Hygiene Auf`m Hennekamp 50, D-40225 Duesseldorf (Germany); Abel, J. [Medical Institute of Environmental Hygiene at the Heinrich Heine University of Duesseldorf, Division of Toxicology, Auf`m Hennekamp 50, D-40225 Duesseldorf (Germany)

    1997-04-01

    The dose-effect relationships were analysed for several noncarcinogenic endpoints, such as immunological and biochemical responses at subchronic, low dose exposure of female C57BL/6 mice to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). The animals were treated i.p. with TCDD according to the initial- and maintenance-dose principle for a period of 135 days. The initial doses were 1, 10 and 100 ng TCDD/kg, the weekly maintenance doses were 0.2, 2 and 20 ng TCDD/kg, respectively. At days 23, 79 and 135 of TCDD treatment 10 animals of each dose group were killed. As immunological parameters the number of thymocytes and the pattern of thymocyte subpopulations were determined. In liver, lung and thymus, mRNA expression of TGF-{alpha}, TGF-{beta}{sub 1}, TGF-{beta}{sub 2}, TGF-{beta}{sub 3}, TNF-{alpha}, IL-1{beta} and different CYP1 isoforms (CYP1A1, CYP1A2, CYP1B1) was analysed. In the livers, activities of 7-ethoxyresorufin-O-deethylase (EROD) and 7-methoxyresorufin-O-demethylase (MROD) were measured. TCDD content in the liver was determined. The main results are summarized as follows: (1) The TCDD doses were not sufficient to elicit dose-dependent changes of pattern of thymocyte subpopulation. (2) TCDD failed to change the mRNA expression of TGF-{alpha}, TGF-{beta} and TNF-{alpha}, but led to an increase of IL-1{beta} mRNA expression in liver, lung and thymus. The results show that the TCDD induced IL-1{beta} mRNA increase is at least as sensitive a marker as the induction of CYP1A isoforms. (3) The expression of CYP1B1 mRNA remained unchanged at the doses tested, while CYP1A1 and CYP1A2 mRNA expression was dose-dependently enhanced. EROD and MROD activities in the liver paralleled the increases of CYP1A1 and CYP1A2 mRNA expression. (4) Regression analysis of the data showed that most of the parameters tested fit a linear model. (5) From the data, a benchmark dose for EROD/MROD activities in the livers of female C57BL/6 mice of about 0.03 ng TCDD/kg per day was

  11. Ground-based monitoring of solar radiation in Moldova

    Science.gov (United States)

    Aculinin, Alexandr; Smicov, Vladimir

    2010-05-01

    Integrated measurements of solar radiation in Kishinev, Moldova have been started by Atmospheric Research Group (ARG) at the Institute of Applied Physics from 2003. Direct, diffuse and total components of solar and atmospheric long-wave radiation are measured by using of the radiometric complex at the ground-based solar radiation monitoring station. Measurements are fulfilled at the stationary and moving platforms equipped with the set of 9 broadband solar radiation sensors overlapping wavelength range from UV-B to IR. Detailed description of the station can be found at the site http://arg.phys.asm.md. Ground station is placed in an urban environment of Kishinev city (47.00N; 28.56E). Summary of observation data acquired at the station in the course of short-term period from 2004 to 2009 are presented below. Solar radiation measurements were fulfilled by using CM11(280-3000 nm) and CH1 sensors (Kipp&Zonen). In the course of a year maximum and minimum of monthly sums of total radiation was ~706.4 MJm-2 in June and ~82.1MJm-2 in December, respectively. Monthly sums of direct solar radiation (on horizontal plane) show the maximum and minimum values of the order ~456.9 MJm-2 in July and ~25.5MJm-2 in December, respectively. In an average, within a year should be marked the predominance of direct radiation over the scattered radiation, 51% and 49%, respectively. In the course of a year, the percentage contribution of the direct radiation into the total radiation is ~55-65% from May to September. In the remaining months, the percentage contribution decreases and takes the minimum value of ~ 28% in December. In an average, annual sum of total solar radiation is ~4679.9 MJm-2. For the period from April to September accounts for ~76% of the annual amount of total radiation. Annual sum of sunshine duration accounts for ~2149 hours, which is of ~ 48% from the possible sunshine duration. In an average, within a year maximum and minimum of sunshine duration is ~ 304 hours in

  12. Biosensors for EVA: Improved Instrumentation for Ground-based Studies

    Science.gov (United States)

    Soller, B.; Ellerby, G.; Zou, F.; Scott, P.; Jin, C.; Lee, S. M. C.; Coates, J.

    2010-01-01

    During lunar excursions in the EVA suit, real-time measurement of metabolic rate is required to manage consumables and guide activities to ensure safe return to the base. Metabolic rate, or oxygen consumption (VO2), is normally measured from pulmonary parameters but cannot be determined with standard techniques in the oxygen-rich environment of a spacesuit. Our group has developed novel near infrared spectroscopic (NIRS) methods to calculate muscle oxygen saturation (SmO 2), hematocrit, and pH, and we recently demonstrated that we can use our NIRS sensor to measure VO 2 on the leg during cycling. Our NSBRI project has 4 objectives: (1) increase the accuracy of the metabolic rate calculation through improved prediction of stroke volume; (2) investigate the relative contributions of calf and thigh oxygen consumption to metabolic rate calculation for walking and running; (3) demonstrate that the NIRS-based noninvasive metabolic rate methodology is sensitive enough to detect decrement in VO 2 in a space analog; and (4) improve instrumentation to allow testing within a spacesuit. Over the past year we have made progress on all four objectives, but the most significant progress was made in improving the instrumentation. The NIRS system currently in use at JSC is based on fiber optics technology. Optical fiber bundles are used to deliver light from a light source in the monitor to the patient, and light reflected back from the patient s muscle to the monitor for spectroscopic analysis. The fiber optic cables are large and fragile, and there is no way to get them in and out of the test spacesuit used for ground-based studies. With complimentary funding from the US Army, we undertook a complete redesign of the sensor and control electronics to build a novel system small enough to be used within the spacesuit and portable enough to be used by a combat medic. In the new system the filament lamp used in the fiber optic system was replaced with a novel broadband near infrared

  13. Biosensors for EVA: Improved Instrumentation for Ground-based Studies

    Science.gov (United States)

    Soller, B.; Ellerby, G.; Zou, F.; Scott, P.; Jin, C.; Lee, S. M. C.; Coates, J.

    2010-01-01

    During lunar excursions in the EVA suit, real-time measurement of metabolic rate is required to manage consumables and guide activities to ensure safe return to the base. Metabolic rate, or oxygen consumption (VO2), is normally measured from pulmonary parameters but cannot be determined with standard techniques in the oxygen-rich environment of a spacesuit. Our group has developed novel near infrared spectroscopic (NIRS) methods to calculate muscle oxygen saturation (SmO 2), hematocrit, and pH, and we recently demonstrated that we can use our NIRS sensor to measure VO 2 on the leg during cycling. Our NSBRI project has 4 objectives: (1) increase the accuracy of the metabolic rate calculation through improved prediction of stroke volume; (2) investigate the relative contributions of calf and thigh oxygen consumption to metabolic rate calculation for walking and running; (3) demonstrate that the NIRS-based noninvasive metabolic rate methodology is sensitive enough to detect decrement in VO 2 in a space analog; and (4) improve instrumentation to allow testing within a spacesuit. Over the past year we have made progress on all four objectives, but the most significant progress was made in improving the instrumentation. The NIRS system currently in use at JSC is based on fiber optics technology. Optical fiber bundles are used to deliver light from a light source in the monitor to the patient, and light reflected back from the patient s muscle to the monitor for spectroscopic analysis. The fiber optic cables are large and fragile, and there is no way to get them in and out of the test spacesuit used for ground-based studies. With complimentary funding from the US Army, we undertook a complete redesign of the sensor and control electronics to build a novel system small enough to be used within the spacesuit and portable enough to be used by a combat medic. In the new system the filament lamp used in the fiber optic system was replaced with a novel broadband near infrared

  14. Ground-based Space Weather Monitoring with LOFAR

    Science.gov (United States)

    Wise, Michael; van Haarlem, Michiel; Lawrence, Gareth; Reid, Simon; Bos, Andre; Rawlings, Steve; Salvini, Stef; Mitchell, Cathryn; Soleimani, Manuch; Amado, Sergio; Teresa, Vital

    As one of the first of a new generation of radio instruments, the International LOFAR Telescope (ILT) will provide a number of unique and novel capabilities for the astronomical community. These include remote configuration and operation, dynamic real-time processing and system response, and the ability to provide multiple simultaneous streams of data to a community whose scientific interests run the gamut from lighting in the atmospheres of distant planets to the origins of the universe itself. The LOFAR (LOw Frequency ARray) system is optimized for a frequency range from 30-240 MHz and consists of multiple antenna fields spread across Europe. In the Netherlands, a total 36 LOFAR stations are nearing completion with an initial 8 international stations currently being deployed in Germany, France, Sweden, and the UK. Digital beam-forming techniques make the LOFAR system agile and allow for rapid repointing of the telescope as well as the potential for multiple simultaneous observations. With its dense core array and long interferometric baselines, LOFAR has the potential to achieve unparalleled sensitivity and spatial resolution in the low frequency radio regime. LOFAR will also be one of the first radio observatories to feature automated processing pipelines to deliver fully calibrated science products to its user community. As we discuss in this presentation, the same capabilities that make LOFAR a powerful tool for radio astronomy also provide an excellent platform upon which to build a ground-based monitoring system for space weather events. For example, the ability to monitor Solar activity in near real-time is one of the key scientific capabilities being developed for LOFAR. With only a fraction of its total observing capacity, LOFAR will be able to provide continuous monitoring of the Solar spectrum over the entire 10-240 MHz band down to microsecond timescales. Autonomous routines will scan these incoming spectral data for evidence of Solar flares and be

  15. Atmospheric aerosol characterization with a ground-based SPEX spectropolarimetric instrument

    Directory of Open Access Journals (Sweden)

    G. van Harten

    2014-06-01

    Full Text Available Characterization of atmospheric aerosols is important for understanding their impact on health and climate. A wealth of aerosol parameters can be retrieved from multi-angle, multi-wavelength radiance and polarization measurements of the clear sky. We developed a ground-based SPEX instrument (groundSPEX for accurate spectropolarimetry, based on the passive, robust, athermal and snapshot spectral polarization modulation technique, and hence ideal for field deployment. It samples the scattering phase function in the principal plane in an automated fashion, using a motorized pan/tilt unit and automatic exposure time detection. Extensive radiometric and polarimetric calibrations were performed, yielding values for both random noise and systematic uncertainties. The absolute polarimetric accuracy at low degrees of polarization is established to be ~ 5 × 10−3. About 70 measurement sequences have been performed throughout four clear-sky days at Cabauw, the Netherlands. Several aerosol parameters were retrieved: aerosol optical thickness, effective radius, and complex refractive index for fine and coarse mode. The results are in good agreement with the co-located AERONET products, with a correlation coefficient of ρ = 0.932 for the total aerosol optical thickness at 550 nm.

  16. Benchmarking: applications to transfusion medicine.

    Science.gov (United States)

    Apelseth, Torunn Oveland; Molnar, Laura; Arnold, Emmy; Heddle, Nancy M

    2012-10-01

    Benchmarking is as a structured continuous collaborative process in which comparisons for selected indicators are used to identify factors that, when implemented, will improve transfusion practices. This study aimed to identify transfusion medicine studies reporting on benchmarking, summarize the benchmarking approaches used, and identify important considerations to move the concept of benchmarking forward in the field of transfusion medicine. A systematic review of published literature was performed to identify transfusion medicine-related studies that compared at least 2 separate institutions or regions with the intention of benchmarking focusing on 4 areas: blood utilization, safety, operational aspects, and blood donation. Forty-five studies were included: blood utilization (n = 35), safety (n = 5), operational aspects of transfusion medicine (n = 5), and blood donation (n = 0). Based on predefined criteria, 7 publications were classified as benchmarking, 2 as trending, and 36 as single-event studies. Three models of benchmarking are described: (1) a regional benchmarking program that collects and links relevant data from existing electronic sources, (2) a sentinel site model where data from a limited number of sites are collected, and (3) an institutional-initiated model where a site identifies indicators of interest and approaches other institutions. Benchmarking approaches are needed in the field of transfusion medicine. Major challenges include defining best practices and developing cost-effective methods of data collection. For those interested in initiating a benchmarking program, the sentinel site model may be most effective and sustainable as a starting point, although the regional model would be the ideal goal.

  17. Benchmarking and Regulation

    DEFF Research Database (Denmark)

    Agrell, Per J.; Bogetoft, Peter

    nchmarking methods, and in particular Data Envelopment Analysis (DEA), have become well-established and informative tools for economic regulation. DEA is now routinely used by European regulators to set reasonable revenue caps for energy transmission and distribution system operators....... The application of benchmarking in regulation, however, requires specific steps in terms of data validation, model specification and outlier detection that are not systematically documented in open publications, leading to discussions about regulatory stability and economic feasibility of these techniques....... In this paper, we review the modern foundations for frontier-based regulation and we discuss its actual use in several jurisdictions....

  18. 2001 benchmarking guide.

    Science.gov (United States)

    Hoppszallern, S

    2001-01-01

    Our fifth annual guide to benchmarking under managed care presents data that is a study in market dynamics and adaptation. New this year are financial indicators on HMOs exiting the market and those remaining. Hospital financial ratios and details on department performance are included. The physician group practice numbers show why physicians are scrutinizing capitated payments. Overall, hospitals in markets with high managed care penetration are more successful in managing labor costs and show productivity gains in imaging services, physical therapy and materials management.

  19. Benchmarking Query Execution Robustness

    Science.gov (United States)

    Wiener, Janet L.; Kuno, Harumi; Graefe, Goetz

    Benchmarks that focus on running queries on a well-tuned database system ignore a long-standing problem: adverse runtime conditions can cause database system performance to vary widely and unexpectedly. When the query execution engine does not exhibit resilience to these adverse conditions, addressing the resultant performance problems can contribute significantly to the total cost of ownership for a database system in over-provisioning, lost efficiency, and increased human administrative costs. For example, focused human effort may be needed to manually invoke workload management actions or fine-tune the optimization of specific queries.

  20. Suitability of ground-based SfM-MVS for monitoring glacial and periglacial processes

    Science.gov (United States)

    Piermattei, Livia; Carturan, Luca; de Blasi, Fabrizio; Tarolli, Paolo; Dalla Fontana, Giancarlo; Vettore, Antonio; Pfeifer, Norbert

    2016-05-01

    Photo-based surface reconstruction is rapidly emerging as an alternative survey technique to lidar (light detection and ranging) in many fields of geoscience fostered by the recent development of computer vision algorithms such as structure from motion (SfM) and dense image matching such as multi-view stereo (MVS). The objectives of this work are to test the suitability of the ground-based SfM-MVS approach for calculating the geodetic mass balance of a 2.1 km2 glacier and for detecting the surface displacement of a neighbouring active rock glacier located in the eastern Italian Alps. The photos were acquired in 2013 and 2014 using a digital consumer-grade camera during single-day field surveys. Airborne laser scanning (ALS, otherwise known as airborne lidar) data were used as benchmarks to estimate the accuracy of the photogrammetric digital elevation models (DEMs) and the reliability of the method. The SfM-MVS approach enabled the reconstruction of high-quality DEMs, which provided estimates of glacial and periglacial processes similar to those achievable using ALS. In stable bedrock areas outside the glacier, the mean and the standard deviation of the elevation difference between the SfM-MVS DEM and the ALS DEM was -0.42 ± 1.72 and 0.03 ± 0.74 m in 2013 and 2014, respectively. The overall pattern of elevation loss and gain on the glacier were similar with both methods, ranging between -5.53 and + 3.48 m. In the rock glacier area, the elevation difference between the SfM-MVS DEM and the ALS DEM was 0.02 ± 0.17 m. The SfM-MVS was able to reproduce the patterns and the magnitudes of displacement of the rock glacier observed by the ALS, ranging between 0.00 and 0.48 m per year. The use of natural targets as ground control points, the occurrence of shadowed and low-contrast areas, and in particular the suboptimal camera network geometry imposed by the morphology of the study area were the main factors affecting the accuracy of photogrammetric DEMs negatively

  1. An assessment of the performance of global rainfall estimates without ground-based observations

    Directory of Open Access Journals (Sweden)

    C. Massari

    2017-09-01

    Full Text Available Satellite-based rainfall estimates over land have great potential for a wide range of applications, but their validation is challenging due to the scarcity of ground-based observations of rainfall in many areas of the planet. Recent studies have suggested the use of triple collocation (TC to characterize uncertainties associated with rainfall estimates by using three collocated rainfall products. However, TC requires the simultaneous availability of three products with mutually uncorrelated errors, a requirement which is difficult to satisfy with current global precipitation data sets. In this study, a recently developed method for rainfall estimation from soil moisture observations, SM2RAIN, is demonstrated to facilitate the accurate application of TC within triplets containing two state-of-the-art satellite rainfall estimates and a reanalysis product. The validity of different TC assumptions are indirectly tested via a high-quality ground rainfall product over the contiguous United States (CONUS, showing that SM2RAIN can provide a truly independent source of rainfall accumulation information which uniquely satisfies the assumptions underlying TC. On this basis, TC is applied with SM2RAIN on a global scale in an optimal configuration to calculate, for the first time, reliable global correlations (vs. an unknown truth of the aforementioned products without using a ground benchmark data set. The analysis is carried out during the period 2007–2012 using daily rainfall accumulation products obtained at 1° × 1° spatial resolution. Results convey the relatively high performance of the satellite rainfall estimates in eastern North and South America, southern Africa, southern and eastern Asia, eastern Australia, and southern Europe, as well as complementary performances between the reanalysis product and SM2RAIN, with the first performing reasonably well in the Northern Hemisphere and the second providing very good performance in the Southern

  2. Benchmarking concentrating photovoltaic systems

    Science.gov (United States)

    Duerr, Fabian; Muthirayan, Buvaneshwari; Meuret, Youri; Thienpont, Hugo

    2010-08-01

    Integral to photovoltaics is the need to provide improved economic viability. To achieve this goal, photovoltaic technology has to be able to harness more light at less cost. A large variety of concentrating photovoltaic concepts has provided cause for pursuit. To obtain a detailed profitability analysis, a flexible evaluation is crucial for benchmarking the cost-performance of this variety of concentrating photovoltaic concepts. To save time and capital, a way to estimate the cost-performance of a complete solar energy system is to use computer aided modeling. In this work a benchmark tool is introduced based on a modular programming concept. The overall implementation is done in MATLAB whereas Advanced Systems Analysis Program (ASAP) is used for ray tracing calculations. This allows for a flexible and extendable structuring of all important modules, namely an advanced source modeling including time and local dependence, and an advanced optical system analysis of various optical designs to obtain an evaluation of the figure of merit. An important figure of merit: the energy yield for a given photovoltaic system at a geographical position over a specific period, can be calculated.

  3. Entropy-based benchmarking methods

    OpenAIRE

    2012-01-01

    We argue that benchmarking sign-volatile series should be based on the principle of movement and sign preservation, which states that a bench-marked series should reproduce the movement and signs in the original series. We show that the widely used variants of Denton (1971) method and the growth preservation method of Causey and Trager (1981) may violate this principle, while its requirements are explicitly taken into account in the pro-posed entropy-based benchmarking methods. Our illustrati...

  4. HPC Benchmark Suite NMx Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Intelligent Automation Inc., (IAI) and University of Central Florida (UCF) propose to develop a comprehensive numerical test suite for benchmarking current and...

  5. Ground-based Infrared Observations of Water Vapor and Hydrogen Peroxide in the Atmosphere of Mars

    Science.gov (United States)

    Encrenaz, T.; Greathouse, T. K.; Bitner, M.; Kruger, A.; Richter, M. J.; Lacy, J. H.; Bézard, B.; Fouchet, T.; Lefevre, F.; Forget, F.; Atreya, S. K.

    2008-11-01

    Ground-based observations of water vapor and hydrogen peroxide have been obtained in the thermal infrared range, using the TEXES instrument at the NASA Infrared Telescope Facility, for different times of the seasonal cycle.

  6. Informing hydrological models with ground-based time-lapse relative gravimetry: potential and limitations

    DEFF Research Database (Denmark)

    Bauer-Gottwein, Peter; Christiansen, Lars; Rosbjerg, Dan

    2011-01-01

    Coupled hydrogeophysical inversion emerges as an attractive option to improve the calibration and predictive capability of hydrological models. Recently, ground-based time-lapse relative gravity (TLRG) measurements have attracted increasing interest because there is a direct relationship between ...

  7. Changes in ground-based solar ultraviolet radiation during fire episodes: a case study

    CSIR Research Space (South Africa)

    Wright, CY

    2013-09-01

    Full Text Available about the relationship between fires and solar UVR without local high-quality column or ground-based ambient air pollution (particulate matter in particular) data; however, the threat to public health from fires was acknowledged....

  8. System Identification and Automatic Mass Balancing of Ground-Based Three-Axis Spacecraft Simulator

    Science.gov (United States)

    2006-08-01

    System Identification and Automatic Mass Balancing of Ground-Based Three-Axis Spacecraft Simulator Jae-Jun Kim∗ and Brij N. Agrawal † Department of...TITLE AND SUBTITLE System Identification and Automatic Mass Balancing of Ground-Based Three-Axis Spacecraft Simulator 5a. CONTRACT NUMBER 5b...and Dynamics, Vol. 20, No. 4, July-August 1997, pp. 625-632. 6Schwartz, J. L. and Hall, C. D., “ System Identification of a Spherical Air-Bearing

  9. Ground-based hyperspectral analysis of the urban nightscape

    Science.gov (United States)

    Alamús, Ramon; Bará, Salvador; Corbera, Jordi; Escofet, Jaume; Palà, Vicenç; Pipia, Luca; Tardà, Anna

    2017-02-01

    Airborne hyperspectral cameras provide the basic information to estimate the energy wasted skywards by outdoor lighting systems, as well as to locate and identify their sources. However, a complete characterization of the urban light pollution levels also requires evaluating these effects from the city dwellers standpoint, e.g. the energy waste associated to the excessive illuminance on walls and pavements, light trespass, or the luminance distributions causing potential glare, to mention but a few. On the other hand, the spectral irradiance at the entrance of the human eye is the primary input to evaluate the possible health effects associated with the exposure to artificial light at night, according to the more recent models available in the literature. In this work we demonstrate the possibility of using a hyperspectral imager (routinely used in airborne campaigns) to measure the ground-level spectral radiance of the urban nightscape and to retrieve several magnitudes of interest for light pollution studies. We also present the preliminary results from a field campaign carried out in the downtown of Barcelona.

  10. Benchmarking foreign electronics technologies

    Energy Technology Data Exchange (ETDEWEB)

    Bostian, C.W.; Hodges, D.A.; Leachman, R.C.; Sheridan, T.B.; Tsang, W.T.; White, R.M.

    1994-12-01

    This report has been drafted in response to a request from the Japanese Technology Evaluation Center`s (JTEC) Panel on Benchmarking Select Technologies. Since April 1991, the Competitive Semiconductor Manufacturing (CSM) Program at the University of California at Berkeley has been engaged in a detailed study of quality, productivity, and competitiveness in semiconductor manufacturing worldwide. The program is a joint activity of the College of Engineering, the Haas School of Business, and the Berkeley Roundtable on the International Economy, under sponsorship of the Alfred P. Sloan Foundation, and with the cooperation of semiconductor producers from Asia, Europe and the United States. Professors David A. Hodges and Robert C. Leachman are the project`s Co-Directors. The present report for JTEC is primarily based on data and analysis drawn from that continuing program. The CSM program is being conducted by faculty, graduate students and research staff from UC Berkeley`s Schools of Engineering and Business, and Department of Economics. Many of the participating firms are represented on the program`s Industry Advisory Board. The Board played an important role in defining the research agenda. A pilot study was conducted in 1991 with the cooperation of three semiconductor plants. The research plan and survey documents were thereby refined. The main phase of the CSM benchmarking study began in mid-1992 and will continue at least through 1997. reports are presented on the manufacture of integrated circuits; data storage; wireless technology; human-machine interfaces; and optoelectronics. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  11. Benchmarking monthly homogenization algorithms

    Directory of Open Access Journals (Sweden)

    V. K. C. Venema

    2011-08-01

    Full Text Available The COST (European Cooperation in Science and Technology Action ES0601: Advances in homogenization methods of climate series: an integrated approach (HOME has executed a blind intercomparison and validation study for monthly homogenization algorithms. Time series of monthly temperature and precipitation were evaluated because of their importance for climate studies and because they represent two important types of statistics (additive and multiplicative. The algorithms were validated against a realistic benchmark dataset. The benchmark contains real inhomogeneous data as well as simulated data with inserted inhomogeneities. Random break-type inhomogeneities were added to the simulated datasets modeled as a Poisson process with normally distributed breakpoint sizes. To approximate real world conditions, breaks were introduced that occur simultaneously in multiple station series within a simulated network of station data. The simulated time series also contained outliers, missing data periods and local station trends. Further, a stochastic nonlinear global (network-wide trend was added.

    Participants provided 25 separate homogenized contributions as part of the blind study as well as 22 additional solutions submitted after the details of the imposed inhomogeneities were revealed. These homogenized datasets were assessed by a number of performance metrics including (i the centered root mean square error relative to the true homogeneous value at various averaging scales, (ii the error in linear trend estimates and (iii traditional contingency skill scores. The metrics were computed both using the individual station series as well as the network average regional series. The performance of the contributions depends significantly on the error metric considered. Contingency scores by themselves are not very informative. Although relative homogenization algorithms typically improve the homogeneity of temperature data, only the best ones improve

  12. Benchmark dose profiles for joint-action continuous data in quantitative risk assessment.

    Science.gov (United States)

    Deutsch, Roland C; Piegorsch, Walter W

    2013-09-01

    Benchmark analysis is a widely used tool in biomedical and environmental risk assessment. Therein, estimation of minimum exposure levels, called benchmark doses (BMDs), that induce a prespecified benchmark response (BMR) is well understood for the case of an adverse response to a single stimulus. For cases where two agents are studied in tandem, however, the benchmark approach is far less developed. This paper demonstrates how the benchmark modeling paradigm can be expanded from the single-agent setting to joint-action, two-agent studies. Focus is on continuous response outcomes. Extending the single-exposure setting, representations of risk are based on a joint-action dose-response model involving both agents. Based on such a model, the concept of a benchmark profile-a two-dimensional analog of the single-dose BMD at which both agents achieve the specified BMR-is defined for use in quantitative risk characterization and assessment.

  13. Benchmark job – Watch out!

    CERN Multimedia

    Staff Association

    2017-01-01

    On 12 December 2016, in Echo No. 259, we already discussed at length the MERIT and benchmark jobs. Still, we find that a couple of issues warrant further discussion. Benchmark job – administrative decision on 1 July 2017 On 12 January 2017, the HR Department informed all staff members of a change to the effective date of the administrative decision regarding benchmark jobs. The benchmark job title of each staff member will be confirmed on 1 July 2017, instead of 1 May 2017 as originally announced in HR’s letter on 18 August 2016. Postponing the administrative decision by two months will leave a little more time to address the issues related to incorrect placement in a benchmark job. Benchmark job – discuss with your supervisor, at the latest during the MERIT interview In order to rectify an incorrect placement in a benchmark job, it is essential that the supervisor and the supervisee go over the assigned benchmark job together. In most cases, this placement has been done autom...

  14. Benchmark for Strategic Performance Improvement.

    Science.gov (United States)

    Gohlke, Annette

    1997-01-01

    Explains benchmarking, a total quality management tool used to measure and compare the work processes in a library with those in other libraries to increase library performance. Topics include the main groups of upper management, clients, and staff; critical success factors for each group; and benefits of benchmarking. (Author/LRW)

  15. Internal Benchmarking for Institutional Effectiveness

    Science.gov (United States)

    Ronco, Sharron L.

    2012-01-01

    Internal benchmarking is an established practice in business and industry for identifying best in-house practices and disseminating the knowledge about those practices to other groups in the organization. Internal benchmarking can be done with structures, processes, outcomes, or even individuals. In colleges or universities with multicampuses or a…

  16. Entropy-based benchmarking methods

    NARCIS (Netherlands)

    Temurshoev, Umed

    2012-01-01

    We argue that benchmarking sign-volatile series should be based on the principle of movement and sign preservation, which states that a bench-marked series should reproduce the movement and signs in the original series. We show that the widely used variants of Denton (1971) method and the growth pre

  17. Advancing Translational Space Research Through Biospecimen Sharing: Amplifying the Impact of Ground-Based Studies

    Science.gov (United States)

    Ronca, A.; Lewis, L.; Staten, B.; Moyer, E.; Vizir, V.; Gompf, H.; Hoban-Higgins, T.; Fuller, C. A.

    2017-01-01

    Biospecimen Sharing Programs (BSPs) have been organized by NASA Ames Research Center since the 1960s with the goal of maximizing utilization and scientific return from rare, complex and costly spaceflight experiments. BSPs involve acquiring otherwise unused biological specimens from primary space research experiments for distribution to secondary experiments. Here we describe a collaboration leveraging Ames expertise in biospecimen sharing to magnify the scientific impact of research informing astronaut health funded by the NASA Human Research Program (HRP) Human Health Countermeasures (HHC) Element. The concept expands biospecimen sharing to one-off ground-based studies utilizing analogue space platforms (e.g., Hind limb Unloading (HLU), Artificial Gravity) for rodent experiments, thereby significantly broadening the range of research opportunities with translational relevance for protecting human health in space and on Earth. In this presentation, we will report on biospecimens currently being acquired from HHC Award Head-Down Tilt as a Model for Intracranial and Intraocular Pressures, and Retinal Changes during Spaceflight, and their availability. The BSP add-on to the project described herein has already yielded for HHC-funded investigators more than 4,700 additional tissues that would otherwise have been discarded as waste, with additional tissues available for analysis. Young (3-mo old) male and female rats and Older (9-mo old) male rats are being exposed to HLU for either 7, 14, 28, or 90 days. Additional groups are exposed to 90 days of unloading followed by either 7, 14, 28 days or 90 days of recovery (normal loading). Comparisons are made with non-suspended controls. Unused tissues are: Skin, Lungs, Thymus, Adrenals, Kidneys, Spleen, Hindlimb Muscles (Soleus, Extensor Digitorum Longus, Tibialis Anterior, Plantaris Gastrocnemius), Fat Pads, Reproductive Organs, and Intestines. Tissues are harvested, weighed, preserved then archived (with metadata) using a

  18. High-precision ground-based photometry of exoplanets

    Directory of Open Access Journals (Sweden)

    de Mooij Ernst J.W.

    2013-04-01

    Full Text Available High-precision photometry of transiting exoplanet systems has contributed significantly to our understanding of the properties of their atmospheres. The best targets are the bright exoplanet systems, for which the high number of photons allow very high signal-to-noise ratios. Most of the current instruments are not optimised for these high-precision measurements, either they have a large read-out overhead to reduce the readnoise and/or their field-of-view is limited, preventing simultaneous observations of both the target and a reference star. Recently we have proposed a new wide-field imager for the Observatoir de Mont-Megantic optimised for these bright systems (PI: Jayawardhana. The instruments has a dual beam design and a field-of-view of 17' by 17'. The cameras have a read-out time of 2 seconds, significantly reducing read-out overheads. Over the past years we have obtained significant experience with how to reach the high precision required for the characterisation of exoplanet atmospheres. Based on our experience we provide the following advice: Get the best calibrations possible. In the case of bad weather, characterise the instrument (e.g. non-linearity, dome flats, bias level, this is vital for better understanding of the science data. Observe the target for as long as possible, the out-of-transit baseline is as important as the transit/eclipse itself. A short baseline can lead to improperly corrected systematic and mis-estimation of the red-noise. Keep everything (e.g. position on detector, exposure time as stable as possible. Take care that the defocus is not too strong. For a large defocus, the contribution of the total flux from the sky-background in the aperture could well exceed that of the target, resulting in very strict requirements on the precision at which the background is measured.

  19. Applications of Integral Benchmark Data

    Energy Technology Data Exchange (ETDEWEB)

    Giuseppe Palmiotti; Teruhiko Kugo; Fitz Trumble; Albert C. (Skip) Kahler; Dale Lancaster

    2014-10-09

    The International Reactor Physics Experiment Evaluation Project (IRPhEP) and the International Criticality Safety Benchmark Evaluation Project (ICSBEP) provide evaluated integral benchmark data that may be used for validation of reactor physics / nuclear criticality safety analytical methods and data, nuclear data testing, advanced modeling and simulation, and safety analysis licensing activities. The handbooks produced by these programs are used in over 30 countries. Five example applications are presented in this paper: (1) Use of IRPhEP Data in Uncertainty Analyses and Cross Section Adjustment, (2) Uncertainty Evaluation Methods for Reactor Core Design at JAEA Using Reactor Physics Experimental Data, (3) Application of Benchmarking Data to a Broad Range of Criticality Safety Problems, (4) Cross Section Data Testing with ICSBEP Benchmarks, and (5) Use of the International Handbook of Evaluated Reactor Physics Benchmark Experiments to Support the Power Industry.

  20. Benchmarking & European Sustainable Transport Policies

    DEFF Research Database (Denmark)

    Gudmundsson, H.

    2003-01-01

    , Benchmarking is one of the management tools that have recently been introduced in the transport sector. It is rapidly being applied to a wide range of transport operations, services and policies. This paper is a contribution to the discussion of the role of benchmarking in the future efforts...... to support Sustainable European Transport Policies. The key message is that transport benchmarking has not yet been developed to cope with the challenges of this task. Rather than backing down completely, the paper suggests some critical conditions for applying and adopting benchmarking for this purpose. One...... way forward is to ensure a higher level of environmental integration in transport policy benchmarking. To this effect the paper will discuss the possible role of the socalled Transport and Environment Reporting Mechanism developed by the European Environment Agency. The paper provides an independent...

  1. Benchmarking and Sustainable Transport Policy

    DEFF Research Database (Denmark)

    Gudmundsson, Henrik; Wyatt, Andrew; Gordon, Lucy

    2004-01-01

    is generally not advised. Several other ways in which benchmarking and policy can support one another are identified in the analysis. This leads to a range of recommended initiatives to exploit the benefits of benchmarking in transport while avoiding some of the lurking pitfalls and dead ends......Order to learn from the best. In 2000 the European Commission initiated research to explore benchmarking as a tool to promote policies for ‘sustainable transport’. This paper reports findings and recommendations on how to address this challenge. The findings suggest that benchmarking is a valuable...... tool that may indeed help to move forward the transport policy agenda. However, there are major conditions and limitations. First of all it is not always so straightforward to delimit, measure and compare transport services in order to establish a clear benchmark. Secondly ‘sustainable transport...

  2. 氟砷致骨代谢损伤生物暴露限值基准剂量法分析%Determination of damage in bone metabolism caused by co-exposure to fluoride and arsenic using benchmark dose method in Chinese population

    Institute of Scientific and Technical Information of China (English)

    曾奇兵; 刘云; 洪峰; 杨鋆; 喻仙

    2012-01-01

    目的 应用基准剂量法探讨燃煤氟砷污染致暴露人群骨代谢损伤的生物暴露限值,为预防氟砷暴露对人体健康的损害提供骨损害方面的参考依据.方法 应用BMDS Version 2.1.2软件计算氟砷暴露人群尿氟、尿砷的基准剂量(BMD)及其可信限下限(BMDL).结果 氟、砷混合暴露引起骨代谢损伤的尿氟BMD及BMDL分别为1.96mg/gCr、1.32 mg/gCr;尿砷BMD及BMDL分别为120.11 μg/gCr、94.83 μg/gCr.结论 建议氟、砷混合暴露引起暴露人群骨代谢损伤尿氟和尿砷的生物暴露限值分别为1.32 mg/gCr和94.83 μg/gCr.%Objective To explore the biological exposure limitation for bone metabolism injury with benchmark dose method for the determination of potential risk associated with chronic co-exposure to fluoride and arsenic in Chinese population. Methods The benchmark dose( BMD) and the lower confidence limitation for the benchmark dose(BMDL) of urinary fluorine and arsenic in the exposure population were calculated using BMDS Version 2. 1. 2. Results The BMD and BMDL of urinary fluorine were 1. % mg/g creatinine and 1. 32 mg/g creatinine. BMD and BMDL of urinary arsenic were 120.11 μg/g and 94. 83 μg/g creatinine. Conclusion The estimated biological exposure limitation of urinary fluoride and arsenic were 1. 32 mg/g creatinine and 94. 83 μg/g creatinine in chronic co-exposure to fluoride and arsenic, respectively.

  3. Cosmic ray measurements in the knee region: new perspectives for simultaneous air-borne and ground-based observations

    Energy Technology Data Exchange (ETDEWEB)

    Marrocchesi, P.S. [Physics Dept., Univ. of Siena and INFN, 56 via Roma, 53100 Siena (Italy)]. E-mail: marrocchesi@pi.infn.it

    2006-01-15

    Direct measurements of cosmic ray composition and energy spectra in the knee region (10{sup 15} to 10{sup 16} eV) represent a real challenge for balloon and space borne experiments due to their limited exposure. On the other hand, ground-based extensive air shower arrays (EAS) can provide a measurement of the primary particle energy but fail to identify unambiguously its nature. The possibility to couple a large area instrument in flight, dedicated to the charge identification of the primary nucleus, with a ground array is explored. This task is within the reach of today detector technologies but requires a formidable step in the current development of stratospheric airship platforms capable of maintaining a long-duration stationary position above the EAS array.

  4. Benchmarking of energy time series

    Energy Technology Data Exchange (ETDEWEB)

    Williamson, M.A.

    1990-04-01

    Benchmarking consists of the adjustment of time series data from one source in order to achieve agreement with similar data from a second source. The data from the latter source are referred to as the benchmark(s), and often differ in that they are observed at a lower frequency, represent a higher level of temporal aggregation, and/or are considered to be of greater accuracy. This report provides an extensive survey of benchmarking procedures which have appeared in the statistical literature, and reviews specific benchmarking procedures currently used by the Energy Information Administration (EIA). The literature survey includes a technical summary of the major benchmarking methods and their statistical properties. Factors influencing the choice and application of particular techniques are described and the impact of benchmark accuracy is discussed. EIA applications and procedures are reviewed and evaluated for residential natural gas deliveries series and coal production series. It is found that the current method of adjusting the natural gas series is consistent with the behavior of the series and the methods used in obtaining the initial data. As a result, no change is recommended. For the coal production series, a staged approach based on a first differencing technique is recommended over the current procedure. A comparison of the adjustments produced by the two methods is made for the 1987 Indiana coal production series. 32 refs., 5 figs., 1 tab.

  5. Benchmarking in academic pharmacy departments.

    Science.gov (United States)

    Bosso, John A; Chisholm-Burns, Marie; Nappi, Jean; Gubbins, Paul O; Ross, Leigh Ann

    2010-10-11

    Benchmarking in academic pharmacy, and recommendations for the potential uses of benchmarking in academic pharmacy departments are discussed in this paper. Benchmarking is the process by which practices, procedures, and performance metrics are compared to an established standard or best practice. Many businesses and industries use benchmarking to compare processes and outcomes, and ultimately plan for improvement. Institutions of higher learning have embraced benchmarking practices to facilitate measuring the quality of their educational and research programs. Benchmarking is used internally as well to justify the allocation of institutional resources or to mediate among competing demands for additional program staff or space. Surveying all chairs of academic pharmacy departments to explore benchmarking issues such as department size and composition, as well as faculty teaching, scholarly, and service productivity, could provide valuable information. To date, attempts to gather this data have had limited success. We believe this information is potentially important, urge that efforts to gather it should be continued, and offer suggestions to achieve full participation.

  6. Benchmarking biofuels; Biobrandstoffen benchmarken

    Energy Technology Data Exchange (ETDEWEB)

    Croezen, H.; Kampman, B.; Bergsma, G.

    2012-03-15

    A sustainability benchmark for transport biofuels has been developed and used to evaluate the various biofuels currently on the market. For comparison, electric vehicles, hydrogen vehicles and petrol/diesel vehicles were also included. A range of studies as well as growing insight are making it ever clearer that biomass-based transport fuels may have just as big a carbon footprint as fossil fuels like petrol or diesel, or even bigger. At the request of Greenpeace Netherlands, CE Delft has brought together current understanding on the sustainability of fossil fuels, biofuels and electric vehicles, with particular focus on the performance of the respective energy carriers on three sustainability criteria, with the first weighing the heaviest: (1) Greenhouse gas emissions; (2) Land use; and (3) Nutrient consumption [Dutch] Greenpeace Nederland heeft CE Delft gevraagd een duurzaamheidsmeetlat voor biobrandstoffen voor transport te ontwerpen en hierop de verschillende biobrandstoffen te scoren. Voor een vergelijk zijn ook elektrisch rijden, rijden op waterstof en rijden op benzine of diesel opgenomen. Door onderzoek en voortschrijdend inzicht blijkt steeds vaker dat transportbrandstoffen op basis van biomassa soms net zoveel of zelfs meer broeikasgassen veroorzaken dan fossiele brandstoffen als benzine en diesel. CE Delft heeft voor Greenpeace Nederland op een rijtje gezet wat de huidige inzichten zijn over de duurzaamheid van fossiele brandstoffen, biobrandstoffen en elektrisch rijden. Daarbij is gekeken naar de effecten van de brandstoffen op drie duurzaamheidscriteria, waarbij broeikasgasemissies het zwaarst wegen: (1) Broeikasgasemissies; (2) Landgebruik; en (3) Nutriëntengebruik.

  7. Correlational effect size benchmarks.

    Science.gov (United States)

    Bosco, Frank A; Aguinis, Herman; Singh, Kulraj; Field, James G; Pierce, Charles A

    2015-03-01

    Effect size information is essential for the scientific enterprise and plays an increasingly central role in the scientific process. We extracted 147,328 correlations and developed a hierarchical taxonomy of variables reported in Journal of Applied Psychology and Personnel Psychology from 1980 to 2010 to produce empirical effect size benchmarks at the omnibus level, for 20 common research domains, and for an even finer grained level of generality. Results indicate that the usual interpretation and classification of effect sizes as small, medium, and large bear almost no resemblance to findings in the field, because distributions of effect sizes exhibit tertile partitions at values approximately one-half to one-third those intuited by Cohen (1988). Our results offer information that can be used for research planning and design purposes, such as producing better informed non-nil hypotheses and estimating statistical power and planning sample size accordingly. We also offer information useful for understanding the relative importance of the effect sizes found in a particular study in relationship to others and which research domains have advanced more or less, given that larger effect sizes indicate a better understanding of a phenomenon. Also, our study offers information about research domains for which the investigation of moderating effects may be more fruitful and provide information that is likely to facilitate the implementation of Bayesian analysis. Finally, our study offers information that practitioners can use to evaluate the relative effectiveness of various types of interventions. PsycINFO Database Record (c) 2015 APA, all rights reserved.

  8. Benchmarking in water project analysis

    Science.gov (United States)

    Griffin, Ronald C.

    2008-11-01

    The with/without principle of cost-benefit analysis is examined for the possible bias that it brings to water resource planning. Theory and examples for this question are established. Because benchmarking against the demonstrably low without-project hurdle can detract from economic welfare and can fail to promote efficient policy, improvement opportunities are investigated. In lieu of the traditional, without-project benchmark, a second-best-based "difference-making benchmark" is proposed. The project authorizations and modified review processes instituted by the U.S. Water Resources Development Act of 2007 may provide for renewed interest in these findings.

  9. Supporting a Diverse Community of Undergraduate Researchers in Satellite and Ground-Based Remote Sensing

    Science.gov (United States)

    Blake, R.; Liou-Mark, J.

    2012-12-01

    The U.S. remains in grave danger of losing its global competitive edge in STEM. To find solutions to this problem, the Obama Administration proposed two new national initiatives: the Educate to Innovate Initiative and the $100 million government/private industry initiative to train 100,000 STEM teachers and graduate 1 million additional STEM students over the next decade. To assist in ameliorating the national STEM plight, the New York City College of Technology has designed its NSF Research Experience for Undergraduate (REU) program in satellite and ground-based remote sensing to target underrepresented minority students. Since the inception of the program in 2008, a total of 45 undergraduate students of which 38 (84%) are considered underrepresented minorities in STEM have finished or are continuing with their research or are pursuing their STEM endeavors. The program is comprised of the three primary components. The first component, Structured Learning Environments: Preparation and Mentorship, provides the REU Scholars with the skill sets necessary for proficiency in satellite and ground-based remote sensing research. The students are offered mini-courses in Geographic Information Systems, MATLAB, and Remote Sensing. They also participate in workshops on the Ethics of Research. Each REU student is a member of a team that consists of faculty mentors, post doctorate/graduate students, and high school students. The second component, Student Support and Safety Nets, provides undergraduates a learning environment that supports them in becoming successful researchers. Special networking and Brown Bag sessions, and an annual picnic with research scientists are organized so that REU Scholars are provided with opportunities to expand their professional community. Graduate school support is provided by offering free Graduate Record Examination preparation courses and workshops on the graduate school application process. Additionally, students are supported by college

  10. Water Level Superseded Benchmark Sheets

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Images of National Coast & Geodetic Survey (now NOAA's National Geodetic Survey/NGS) tidal benchmarks which have been superseded by new markers or locations....

  11. Benchmark simulation models, quo vadis?

    DEFF Research Database (Denmark)

    Jeppsson, U.; Alex, J; Batstone, D. J.

    2013-01-01

    As the work of the IWA Task Group on Benchmarking of Control Strategies for wastewater treatment plants (WWTPs) is coming to an end, it is essential to disseminate the knowledge gained. For this reason, all authors of the IWA Scientific and Technical Report on benchmarking have come together to p...... already being done within the context of the benchmarking simulation models (BSMs) or applicable work in the wider literature. Of key importance is increasing capability, usability and transparency of the BSM package while avoiding unnecessary complexity. © IWA Publishing 2013....... and spatial extension, process modifications within the WWTP, the realism of models, control strategy extensions and the potential for new evaluation tools within the existing benchmark system. We find that there are major opportunities for application within all of these areas, either from existing work...

  12. Benchmarking and Sustainable Transport Policy

    DEFF Research Database (Denmark)

    Gudmundsson, Henrik; Wyatt, Andrew; Gordon, Lucy

    2004-01-01

    Order to learn from the best. In 2000 the European Commission initiated research to explore benchmarking as a tool to promote policies for ‘sustainable transport’. This paper reports findings and recommendations on how to address this challenge. The findings suggest that benchmarking is a valuable...... tool that may indeed help to move forward the transport policy agenda. However, there are major conditions and limitations. First of all it is not always so straightforward to delimit, measure and compare transport services in order to establish a clear benchmark. Secondly ‘sustainable transport......’ evokes a broad range of concerns that are hard to address fully at the level of specific practices. Thirdly policies are not directly comparable across space and context. For these reasons attempting to benchmark ‘sustainable transport policies’ against one another would be a highly complex task, which...

  13. Performance Targets and External Benchmarking

    DEFF Research Database (Denmark)

    Friis, Ivar; Hansen, Allan; Vámosi, Tamás S.

    Research on relative performance measures, transfer pricing, beyond budgeting initiatives, target costing, piece rates systems and value based management has for decades underlined the importance of external benchmarking in performance management. Research conceptualises external benchmarking...... the conditions upon which the market mechanism is performing within organizations. This paper aims to contribute to research by providing more insight to the conditions for the use of external benchmarking as an element in performance management in organizations. Our study explores a particular type of external...... towards the conditions for the use of the external benchmarks we provide more insights to some of the issues and challenges that are related to using this mechanism for performance management and advance competitiveness in organizations....

  14. Ground-based follow-up in relation to Kepler Asteroseismic Investigation

    CERN Document Server

    Uytterhoeven, K; Bruntt, H; De Cat, P; Frandsen, S; Gutierrez-Soto, J; Kiss, L; Kurtz, D W; Marconi, M; Molenda-Zakowicz, J; Ostensen, R; Randall, S; Southworth, J; Szabo, R

    2010-01-01

    The Kepler space mission, successfully launched in March 2009, is providing continuous, high-precision photometry of thousands of stars simultaneously. The uninterrupted time-series of stars of all known pulsation types are a precious source for asteroseismic studies. The Kepler data do not provide information on the physical parameters, such as effective temperature, surface gravity, metallicity, and vsini, which are crucial for successful asteroseismic modelling. Additional ground-based time-series data are needed to characterize mode parameters in several types of pulsating stars. Therefore, ground-based multi-colour photometry and mid/high-resolution spectroscopy are needed to complement the space data. We present ground-based activities within KASC on selected asteroseismic Kepler targets of several pulsation types. (Based on observations made with the Isaac Newton Telescope, William Herschel Telescope, Nordic Optical Telescope, Telescopio Nazionale Galileo, Mercator Telescope (La Palma, Spain), and IAC-...

  15. BigBOSS: The Ground-Based Stage IV BAO Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Schlegel, David; Bebek, Chris; Heetderks, Henry; Ho, Shirley; Lampton, Michael; Levi, Michael; Mostek, Nick; Padmanabhan, Nikhil; Perlmutter, Saul; Roe, Natalie; Sholl, Michael; Smoot, George; White, Martin; Dey, Arjun; Abraham, Tony; Jannuzi, Buell; Joyce, Dick; Liang, Ming; Merrill, Mike; Olsen, Knut; Salim, Samir

    2009-04-01

    The BigBOSS experiment is a proposed DOE-NSF Stage IV ground-based dark energy experiment to study baryon acoustic oscillations (BAO) and the growth of structure with an all-sky galaxy redshift survey. The project is designed to unlock the mystery of dark energy using existing ground-based facilities operated by NOAO. A new 4000-fiber R=5000 spectrograph covering a 3-degree diameter field will measure BAO and redshift space distortions in the distribution of galaxies and hydrogen gas spanning redshifts from 0.2< z< 3.5. The Dark Energy Task Force figure of merit (DETF FoM) for this experiment is expected to be equal to that of a JDEM mission for BAO with the lower risk and cost typical of a ground-based experiment.

  16. Comparing Dawn, Hubble Space Telescope, and Ground-Based Interpretations of (4) Vesta

    CERN Document Server

    Reddy, Vishnu; Corre, Lucille Le; Scully, Jennifer E C; Gaskell, Robert; Russell, Christopher T; Park, Ryan S; Nathues, Andreas; Raymond, Carol; Gaffey, Michael J; Sierks, Holger; Becker, Kris J; McFadden, Lucy A

    2013-01-01

    Observations of asteroid 4 Vesta by NASA's Dawn spacecraft are interesting because its surface has the largest range of albedo, color and composition of any other asteroid visited by spacecraft to date. These hemispherical and rotational variations in surface brightness and composition have been attributed to impact processes since Vesta's formation. Prior to Dawn's arrival at Vesta, its surface properties were the focus of intense telescopic investigations for nearly a hundred years. Ground-based photometric and spectroscopic observations first revealed these variations followed later by those using Hubble Space Telescope. Here we compare interpretations of Vesta's rotation period, pole, albedo, topographic, color, and compositional properties from ground-based telescopes and HST with those from Dawn. Rotational spectral variations observed from ground-based studies are also consistent with those observed by Dawn. While the interpretation of some of these features was tenuous from past data, the interpretati...

  17. Ka-band bistatic ground-based SAR using noise signals

    Science.gov (United States)

    Lukin, K.; Mogyla, A.; Vyplavin, P.; Palamarchuk, V.; Zemlyaniy, O.; Tarasenko, V.; Zaets, N.; Skretsanov, V.; Shubniy, A.; Glamazdin, V.; Natarov, M.; Nechayev, O.

    2008-01-01

    Currently, one of the actual problems is remote monitoring of technical state of large objects. Different methods can be used for that purpose. The most promising of them relies on application of ground based synthetic aperture radars (SAR) and differential interferometry. We have designed and tested Ground Based Noise Waveform SAR based on noise radar technology [1] and synthetic aperture antennas [2]. It enabled to build an instrument for precise all-weather monitoring of large objects in real-time. We describe main performance of ground-based interferometric SAR which uses continuous Ka-band noise waveform as a probe signal. Besides, results of laboratory trials and evaluation of its main performance are presented as well.

  18. Performance Targets and External Benchmarking

    DEFF Research Database (Denmark)

    Friis, Ivar; Hansen, Allan; Vámosi, Tamás S.

    as a market mechanism that can be brought inside the firm to provide incentives for continuous improvement and the development of competitive advances. However, whereas extant research primarily has focused on the importance and effects of using external benchmarks, less attention has been directed towards...... towards the conditions for the use of the external benchmarks we provide more insights to some of the issues and challenges that are related to using this mechanism for performance management and advance competitiveness in organizations....

  19. Research on computer systems benchmarking

    Science.gov (United States)

    Smith, Alan Jay (Principal Investigator)

    1996-01-01

    This grant addresses the topic of research on computer systems benchmarking and is more generally concerned with performance issues in computer systems. This report reviews work in those areas during the period of NASA support under this grant. The bulk of the work performed concerned benchmarking and analysis of CPUs, compilers, caches, and benchmark programs. The first part of this work concerned the issue of benchmark performance prediction. A new approach to benchmarking and machine characterization was reported, using a machine characterizer that measures the performance of a given system in terms of a Fortran abstract machine. Another report focused on analyzing compiler performance. The performance impact of optimization in the context of our methodology for CPU performance characterization was based on the abstract machine model. Benchmark programs are analyzed in another paper. A machine-independent model of program execution was developed to characterize both machine performance and program execution. By merging these machine and program characterizations, execution time can be estimated for arbitrary machine/program combinations. The work was continued into the domain of parallel and vector machines, including the issue of caches in vector processors and multiprocessors. All of the afore-mentioned accomplishments are more specifically summarized in this report, as well as those smaller in magnitude supported by this grant.

  20. First ground-based FTIR-observations of methane in the tropics

    Directory of Open Access Journals (Sweden)

    A. K. Petersen

    2010-02-01

    Full Text Available Total column concentrations and volume mixing ratio profiles of methane have been retrieved from ground-based solar absorption FTIR spectra in the near-infrared recorded in Paramaribo (Suriname. The methane FTIR observations are compared with TM5 model simulations and satellite observations from SCIAMACHY, and represent the first validation of SCIAMACHY retrievals in the tropics using ground-based remote sensing techniques. Apart from local biomass burning features, our methane FTIR observations agree well with the SCIAMACHY retrievals and TM5 model simulations.

  1. Extended lateral heating of the nighttime ionosphere by ground-based VLF transmitters

    OpenAIRE

    İnan, Umran Savaş; Graf, K. L.; Spasojevic, M.; Marshall, R. A.; Lehtinen, N. G.; Foust, F. R.

    2013-01-01

    JOURNAL OF GEOPHYSICAL RESEARCH: SPACE PHYSICS, VOL. 118, 7783–7797, doi:10.1002/2013JA019337, 2013 Extended lateral heating of the nighttime ionosphere by ground-based VLF transmitters K. L. Graf,1 M. Spasojevic,1 R. A. Marshall,2 N. G. Lehtinen,1 F. R. Foust,1 and U. S. Inan1,3 Received 16 August 2013; revised 9 October 2013; accepted 11 November 2013; published 3 December 2013. [1] The effects of ground-based very low frequency (VLF) transmitters on the lower ionospher...

  2. Status of advanced ground-based laser interferometers for gravitational-wave detection

    CERN Document Server

    Dooley, Katherine L; Dwyer, Sheila; Puppo, Paola

    2014-01-01

    Ground-based laser interferometers for gravitational-wave (GW) detection were first constructed starting 20 years ago and as of 2010 collection of several years' worth of science data at initial design sensitivities was completed. Upgrades to the initial detectors together with construction of brand new detectors are ongoing and feature advanced technologies to improve the sensitivity to GWs. This conference proceeding provides an overview of the common design features of ground-based laser interferometric GW detectors and establishes the context for the status updates of each of the four gravitational-wave detectors around the world: Advanced LIGO, Advanced Virgo, GEO600 and KAGRA.

  3. Asteroseismology of solar-type stars with Kepler: III. Ground-based data

    DEFF Research Database (Denmark)

    Karoff, Christoffer; Molenda-Żakowicz , J.

    2010-01-01

    We report on the ground-based follow-up program of spectroscopic and photometric observations of solar-like asteroseismic targets for the Kepler space mission. These stars constitute a large group of more than a thousand objects which are the subject of an intensive study by the Kepler Asteroseis......We report on the ground-based follow-up program of spectroscopic and photometric observations of solar-like asteroseismic targets for the Kepler space mission. These stars constitute a large group of more than a thousand objects which are the subject of an intensive study by the Kepler...

  4. Estimation of solar irradiance using ground-based whole sky imagers

    CERN Document Server

    Dev, Soumyabrata; Lee, Yee Hui; Winkler, Stefan

    2016-01-01

    Ground-based whole sky imagers (WSIs) can provide localized images of the sky of high temporal and spatial resolution, which permits fine-grained cloud observation. In this paper, we show how images taken by WSIs can be used to estimate solar radiation. Sky cameras are useful here because they provide additional information about cloud movement and coverage, which are otherwise not available from weather station data. Our setup includes ground-based weather stations at the same location as the imagers. We use their measurements to validate our methods.

  5. Insights into Io’s volcanoes by combining ground-based and spacecraft data

    Science.gov (United States)

    Rathbun, Julie A.; Spencer, John R.; Howell, Robert; Lopes, Rosaly

    2015-11-01

    combined to yield greater information into the nature of Io’s volcanism and we will discuss how ground-based observations during future missions can be optimized for the greatest scientific output.

  6. Monitoring surface geothermal features using time series of aerial and ground-based photographs

    Science.gov (United States)

    Bromley, C.; van Manen, S. M.; Graham, D.

    2010-12-01

    Geothermal systems are of high conservation and scientific value and monitoring of these is an important management tool to assess natural variations and changes resulting from development and utilization. This study examines time series of aerial and ground-based photographs of geothermal areas within the Taupo Volcanic Zone, New Zealand. A time series of aerial photographs from 1946-2007 of the Broadlands Road Scenic Reserve (Taupo, New Zealand) highlights large changes to this small area as the result of the start of geothermal fluid production for the nearby Wairakei power plant in 1958 and other causes. Prior to the opening of the plant the area was not geothermally active, but expansion of steam zones due to pressure drawdown has resulted in significant thermal changes in the subsurface. These subsurface thermal changes are evident in the aerial photographs as the appearance of hydrothermal eruption craters and areas of thermal bare ground, which are too hot for vegetation to grown on. In addition, in the late 1960’s thermotolerant vegetation started to establish itself in the adjacent area. Changes in the surface area covered by each of these, reflect changes in the geothermal system as well as changes in management (e.g. exclusion of livestock), and a time series of these changes has been produced using ArcMap™. Monthly photographs of surface geothermal expressions in the Rotorua area show changes in colour and size of chloride springs with time. Colour and size changes are difficult to quantify due to varying exposure settings, weather conditions, and vantage points. However, these qualitative descriptions can be combined with quantitative time series such as temperature measurements, to provide better insight into surface changes that have occurred at this geothermal field. This study highlights the value of both qualitative and quantitative data that can be obtained from time series of photographs, including photographs that were obtained before the

  7. Development and application of freshwater sediment-toxicity benchmarks for currently used pesticides.

    Science.gov (United States)

    Nowell, Lisa H; Norman, Julia E; Ingersoll, Christopher G; Moran, Patrick W

    2016-04-15

    Sediment-toxicity benchmarks are needed to interpret the biological significance of currently used pesticides detected in whole sediments. Two types of freshwater sediment benchmarks for pesticides were developed using spiked-sediment bioassay (SSB) data from the literature. These benchmarks can be used to interpret sediment-toxicity data or to assess the potential toxicity of pesticides in whole sediment. The Likely Effect Benchmark (LEB) defines a pesticide concentration in whole sediment above which there is a high probability of adverse effects on benthic invertebrates, and the Threshold Effect Benchmark (TEB) defines a concentration below which adverse effects are unlikely. For compounds without available SSBs, benchmarks were estimated using equilibrium partitioning (EqP). When a sediment sample contains a pesticide mixture, benchmark quotients can be summed for all detected pesticides to produce an indicator of potential toxicity for that mixture. Benchmarks were developed for 48 pesticide compounds using SSB data and 81 compounds using the EqP approach. In an example application, data for pesticides measured in sediment from 197 streams across the United States were evaluated using these benchmarks, and compared to measured toxicity from whole-sediment toxicity tests conducted with the amphipod Hyalella azteca (28-d exposures) and the midge Chironomus dilutus (10-d exposures). Amphipod survival, weight, and biomass were significantly and inversely related to summed benchmark quotients, whereas midge survival, weight, and biomass showed no relationship to benchmarks. Samples with LEB exceedances were rare (n=3), but all were toxic to amphipods (i.e., significantly different from control). Significant toxicity to amphipods was observed for 72% of samples exceeding one or more TEBs, compared to 18% of samples below all TEBs. Factors affecting toxicity below TEBs may include the presence of contaminants other than pesticides, physical/chemical characteristics

  8. Development and application of freshwater sediment-toxicity benchmarks for currently used pesticides

    Science.gov (United States)

    Nowell, Lisa H.; Norman, Julia E.; Ingersoll, Christopher G.; Moran, Patrick W.

    2016-01-01

    Sediment-toxicity benchmarks are needed to interpret the biological significance of currently used pesticides detected in whole sediments. Two types of freshwater sediment benchmarks for pesticides were developed using spiked-sediment bioassay (SSB) data from the literature. These benchmarks can be used to interpret sediment-toxicity data or to assess the potential toxicity of pesticides in whole sediment. The Likely Effect Benchmark (LEB) defines a pesticide concentration in whole sediment above which there is a high probability of adverse effects on benthic invertebrates, and the Threshold Effect Benchmark (TEB) defines a concentration below which adverse effects are unlikely. For compounds without available SSBs, benchmarks were estimated using equilibrium partitioning (EqP). When a sediment sample contains a pesticide mixture, benchmark quotients can be summed for all detected pesticides to produce an indicator of potential toxicity for that mixture. Benchmarks were developed for 48 pesticide compounds using SSB data and 81 compounds using the EqP approach. In an example application, data for pesticides measured in sediment from 197 streams across the United States were evaluated using these benchmarks, and compared to measured toxicity from whole-sediment toxicity tests conducted with the amphipod Hyalella azteca (28-d exposures) and the midge Chironomus dilutus (10-d exposures). Amphipod survival, weight, and biomass were significantly and inversely related to summed benchmark quotients, whereas midge survival, weight, and biomass showed no relationship to benchmarks. Samples with LEB exceedances were rare (n = 3), but all were toxic to amphipods (i.e., significantly different from control). Significant toxicity to amphipods was observed for 72% of samples exceeding one or more TEBs, compared to 18% of samples below all TEBs. Factors affecting toxicity below TEBs may include the presence of contaminants other than pesticides, physical

  9. Ground-Based VIS/NIR Reflectance Spectra of 25143 Itokawa: What Hayabusa will See and How Ground-Based Data can Augment Analyses

    Science.gov (United States)

    Vilas, Faith; Abell, P. A.; Jarvis, K. S.

    2004-01-01

    Planning for the arrival of the Hayabusa spacecraft at asteroid 25143 Itokawa includes consideration of the expected spectral information to be obtained using the AMICA and NIRS instruments. The rotationally-resolved spatial coverage the asteroid we have obtained with ground-based telescopic spectrophotometry in the visible and near-infrared can be utilized here to address expected spacecraft data. We use spectrophotometry to simulate the types of data that Hayabusa will receive with the NIRS and AMICA instruments, and will demonstrate them here. The NIRS will cover a wavelength range from 0.85 m, and have a dispersion per element of 250 Angstroms. Thus, we are limited in coverage of the 1.0 micrometer and 2.0 micrometer mafic silicate absorption features. The ground-based reflectance spectra of Itokawa show a large component of olivine in its surface material, and the 2.0 micrometer feature is shallow. Determining the olivine to pyroxene abundance ratio is critically dependent on the attributes of the 1.0- and 2.0 micrometer features. With a cut-off near 2,1 micrometer the longer edge of the 2.0- feature will not be obtained by NIRS. Reflectance spectra obtained using ground-based telescopes can be used to determine the regional composition around space-based spectral observations, and possibly augment the longer wavelength spectral attributes. Similarly, the shorter wavelength end of the 1.0 micrometer absorption feature will be partially lost to the NIRS. The AMICA filters mimic the ECAS filters, and have wavelength coverage overlapping with the NIRS spectral range. We demonstrate how merging photometry from AMICA will extend the spectral coverage of the NIRS. Lessons learned from earlier spacecraft to asteroids should be considered.

  10. On reconciling ground-based with spaceborne normalized radar cross section measurements

    DEFF Research Database (Denmark)

    Baumgartner, Francois; Munk, Jens; Jezek, K C

    2002-01-01

    This study examines differences in the normalized radar cross section, derived from ground-based versus spaceborne radar data. A simple homogeneous half-space model, indicates that agreement between the two improves as 1) the distance from the scatterer is increased; and/or 2) the extinction...

  11. Precision simulation of ground-based lensing data using observations from space

    CERN Document Server

    Mandelbaum, Rachel; Leauthaud, Alexie; Massey, Richard J; Rhodes, Jason

    2011-01-01

    Current and upcoming wide-field, ground-based, broad-band imaging surveys promise to address a wide range of outstanding problems in galaxy formation and cosmology. Several such uses of ground-based data, especially weak gravitational lensing, require highly precise measurements of galaxy image statistics with careful correction for the effects of the point-spread function (PSF). In this paper, we introduce the SHERA (SHEar Reconvolution Analysis) software to simulate ground-based imaging data with realistic galaxy morphologies and observing conditions, starting from space-based data (from COSMOS, the Cosmological Evolution Survey) and accounting for the effects of the space-based PSF. This code simulates ground-based data, optionally with a weak lensing shear applied, in a model-independent way using a general Fourier space formalism. The utility of this pipeline is that it allows for a precise, realistic assessment of systematic errors due to the method of data processing, for example in extracting weak len...

  12. Analysis of the substorm trigger phase using multiple ground-based instrumentation

    Energy Technology Data Exchange (ETDEWEB)

    Kauristie, K.; Pulkkinen, T.I.; Pellinen, R.J. [Finnish Meteorological Institute, Helsinki (Finland)] [and others

    1995-08-01

    The authors discuss in detail the observation of an event of auroral activity fading during the trigger, or growth phase of a magnetic storm. This event was observed by all-sky cameras, EISCAT radar and magnetometers, riometers, and pulsation magnetometers, from ground based stations in Finland and Scandanavia. Based on their detailed analysis, they present a possible cause for the observed fading.

  13. Ground-based LIDAR: a novel approach to quantify fine-scale fuelbed characteristics

    Science.gov (United States)

    E.L. Loudermilk; J.K. Hiers; J.J. O’Brien; R.J. Mitchell; A. Singhania; J.C. Fernandez; W.P. Cropper; K.C. Slatton

    2009-01-01

    Ground-based LIDAR (also known as laser ranging) is a novel technique that may precisely quantify fuelbed characteristics important in determining fire behavior. We measured fuel properties within a south-eastern US longleaf pine woodland at the individual plant and fuelbed scale. Data were collected using a mobile terrestrial LIDAR unit at sub-cm scale for individual...

  14. Use of neural networks in ground-based aerosol retrievals from multi-angle spectropolarimetric observations

    NARCIS (Netherlands)

    Di Noia, A.; Hasekamp, O.P.; Harten, G. van; Rietjens, J.H.H.; Smit, J.M.; Snik, F.; Henzing, J.S.; Boer, J. de; Keller, C.U.; Volten, H.

    2015-01-01

    In this paper, the use of a neural network algorithm for the retrieval of the aerosol properties from ground-based spectropolarimetric measurements is discussed. The neural network is able to retrieve the aerosol properties with an accuracy that is almost comparable to that of an iterative retrieval

  15. Retrieval of liquid water cloud properties from ground-based remote sensing observations

    NARCIS (Netherlands)

    Knist, C.L.

    2014-01-01

    Accurate ground-based remotely sensed microphysical and optical properties of liquid water clouds are essential references to validate satellite-observed cloud properties and to improve cloud parameterizations in weather and climate models. This requires the evaluation of algorithms for retrieval of

  16. Ground-based remote sensing scheme for monitoring aerosol–cloud interactions (discussion)

    NARCIS (Netherlands)

    Sarna, K.; Russchenberg, H.W.J.

    2015-01-01

    A method for continuous observation of aerosol–cloud interactions with ground-based remote sensing instruments is presented. The main goal of this method is to enable the monitoring of cloud microphysical changes due to the changing aerosol concentration. We use high resolution measurements from lid

  17. Ground-based remote sensing scheme for monitoring aerosol-cloud interactions

    NARCIS (Netherlands)

    Sarna, K.; Russchenberg, H.W.J.

    2016-01-01

    A new method for continuous observation of aerosol–cloud interactions with ground-based remote sensing instruments is presented. The main goal of this method is to enable the monitoring of the change of the cloud droplet size due to the change in the aerosol concentration. We use high-resolution mea

  18. Low Power Ground-Based Laser Illumination for Electric Propulsion Applications

    Science.gov (United States)

    Lapointe, Michael R.; Oleson, Steven R.

    1994-01-01

    A preliminary evaluation of low power, ground-based laser powered electric propulsion systems is presented. A review of available and near-term laser, photovoltaic, and adaptive optic systems indicates that approximately 5-kW of ground-based laser power can be delivered at an equivalent one-sun intensity to an orbit of approximately 2000 km. Laser illumination at the proper wavelength can double photovoltaic array conversion efficiencies compared to efficiencies obtained with solar illumination at the same intensity, allowing a reduction in array mass. The reduced array mass allows extra propellant to be carried with no penalty in total spacecraft mass. The extra propellant mass can extend the satellite life in orbit, allowing additional revenue to be generated. A trade study using realistic cost estimates and conservative ground station viewing capability was performed to estimate the number of communication satellites which must be illuminated to make a proliferated system of laser ground stations economically attractive. The required number of satellites is typically below that of proposed communication satellite constellations, indicating that low power ground-based laser beaming may be commercially viable. However, near-term advances in low specific mass solar arrays and high energy density batteries for LEO applications would render the ground-based laser system impracticable.

  19. Asteroseismology of solar-type stars with Kepler: III. Ground-based data

    DEFF Research Database (Denmark)

    Karoff, Christoffer; Molenda-Żakowicz , J.

    2010-01-01

    We report on the ground-based follow-up program of spectroscopic and photometric observations of solar-like asteroseismic targets for the Kepler space mission. These stars constitute a large group of more than a thousand objects which are the subject of an intensive study by the Kepler Asteroseis...

  20. Development and application of freshwater sediment-toxicity benchmarks for currently used pesticides

    Energy Technology Data Exchange (ETDEWEB)

    Nowell, Lisa H., E-mail: lhnowell@usgs.gov [U.S. Geological Survey, California Water Science Center, Placer Hall, 6000 J Street, Sacramento, CA 95819 (United States); Norman, Julia E., E-mail: jnorman@usgs.gov [U.S. Geological Survey, Oregon Water Science Center, 2130 SW 5" t" h Avenue, Portland, OR 97201 (United States); Ingersoll, Christopher G., E-mail: cingersoll@usgs.gov [U.S. Geological Survey, Columbia Environmental Research Center, 4200 New Haven Road, Columbia, MO 65021 (United States); Moran, Patrick W., E-mail: pwmoran@usgs.gov [U.S. Geological Survey, Washington Water Science Center, 934 Broadway, Suite 300, Tacoma, WA 98402 (United States)

    2016-04-15

    Sediment-toxicity benchmarks are needed to interpret the biological significance of currently used pesticides detected in whole sediments. Two types of freshwater sediment benchmarks for pesticides were developed using spiked-sediment bioassay (SSB) data from the literature. These benchmarks can be used to interpret sediment-toxicity data or to assess the potential toxicity of pesticides in whole sediment. The Likely Effect Benchmark (LEB) defines a pesticide concentration in whole sediment above which there is a high probability of adverse effects on benthic invertebrates, and the Threshold Effect Benchmark (TEB) defines a concentration below which adverse effects are unlikely. For compounds without available SSBs, benchmarks were estimated using equilibrium partitioning (EqP). When a sediment sample contains a pesticide mixture, benchmark quotients can be summed for all detected pesticides to produce an indicator of potential toxicity for that mixture. Benchmarks were developed for 48 pesticide compounds using SSB data and 81 compounds using the EqP approach. In an example application, data for pesticides measured in sediment from 197 streams across the United States were evaluated using these benchmarks, and compared to measured toxicity from whole-sediment toxicity tests conducted with the amphipod Hyalella azteca (28-d exposures) and the midge Chironomus dilutus (10-d exposures). Amphipod survival, weight, and biomass were significantly and inversely related to summed benchmark quotients, whereas midge survival, weight, and biomass showed no relationship to benchmarks. Samples with LEB exceedances were rare (n = 3), but all were toxic to amphipods (i.e., significantly different from control). Significant toxicity to amphipods was observed for 72% of samples exceeding one or more TEBs, compared to 18% of samples below all TEBs. Factors affecting toxicity below TEBs may include the presence of contaminants other than pesticides, physical/chemical characteristics

  1. Practical Applications of Cosmic Ray Science: Spacecraft, Aircraft, Ground-Based Computation and Control Systems, and Human Health and Safety

    Science.gov (United States)

    Atwell, William; Koontz, Steve; Normand, Eugene

    2012-01-01

    Three twentieth century technological developments, 1) high altitude commercial and military aircraft; 2) manned and unmanned spacecraft; and 3) increasingly complex and sensitive solid state micro-electronics systems, have driven an ongoing evolution of basic cosmic ray science into a set of practical engineering tools needed to design, test, and verify the safety and reliability of modern complex technological systems. The effects of primary cosmic ray particles and secondary particle showers produced by nuclear reactions with the atmosphere, can determine the design and verification processes (as well as the total dollar cost) for manned and unmanned spacecraft avionics systems. Similar considerations apply to commercial and military aircraft operating at high latitudes and altitudes near the atmospheric Pfotzer maximum. Even ground based computational and controls systems can be negatively affected by secondary particle showers at the Earth s surface, especially if the net target area of the sensitive electronic system components is large. Finally, accumulation of both primary cosmic ray and secondary cosmic ray induced particle shower radiation dose is an important health and safety consideration for commercial or military air crews operating at high altitude/latitude and is also one of the most important factors presently limiting manned space flight operations beyond low-Earth orbit (LEO). In this paper we review the discovery of cosmic ray effects on the performance and reliability of microelectronic systems as well as human health and the development of the engineering and health science tools used to evaluate and mitigate cosmic ray effects in ground-based atmospheric flight, and space flight environments. Ground test methods applied to microelectronic components and systems are used in combinations with radiation transport and reaction codes to predict the performance of microelectronic systems in their operating environments. Similar radiation transport

  2. A Fast Method for Embattling Optimization of Ground-Based Radar Surveillance Network

    Science.gov (United States)

    Jiang, H.; Cheng, H.; Zhang, Y.; Liu, J.

    A growing number of space activities have created an orbital debris environment that poses increasing impact risks to existing space systems and human space flight. For the safety of in-orbit spacecraft, a lot of observation facilities are needed to catalog space objects, especially in low earth orbit. Surveillance of Low earth orbit objects are mainly rely on ground-based radar, due to the ability limitation of exist radar facilities, a large number of ground-based radar need to build in the next few years in order to meet the current space surveillance demands. How to optimize the embattling of ground-based radar surveillance network is a problem to need to be solved. The traditional method for embattling optimization of ground-based radar surveillance network is mainly through to the detection simulation of all possible stations with cataloged data, and makes a comprehensive comparative analysis of various simulation results with the combinational method, and then selects an optimal result as station layout scheme. This method is time consuming for single simulation and high computational complexity for the combinational analysis, when the number of stations increases, the complexity of optimization problem will be increased exponentially, and cannot be solved with traditional method. There is no better way to solve this problem till now. In this paper, target detection procedure was simplified. Firstly, the space coverage of ground-based radar was simplified, a space coverage projection model of radar facilities in different orbit altitudes was built; then a simplified objects cross the radar coverage model was established according to the characteristics of space objects orbit motion; after two steps simplification, the computational complexity of the target detection was greatly simplified, and simulation results shown the correctness of the simplified results. In addition, the detection areas of ground-based radar network can be easily computed with the

  3. Ground-Based Lidar Measurements During the CALIPSO and Twilight Zone (CATZ) Campaign

    Science.gov (United States)

    Berkoff, Timothy; Qian, Li; Kleidman, Richard; Stewart, Sebastian; Welton, Ellsworth; Li, Zhu; Holbem, Brent

    2008-01-01

    The CALIPSO and Twilight Zone (CATZ) field campaign was carried out between June 26th and August 29th of 2007 in the multi-state Maryland-Virginia-Pennsylvania region of the U.S. to study aerosol properties and cloud-aerosol interactions during overpasses of the CALIPSO satellite. Field work was conducted on selected days when CALIPSO ground tracks occurred in the region. Ground-based measurements included data from multiple Cimel sunphotometers that were placed at intervals along a segment of the CALIPSO ground-track. These measurements provided sky radiance and AOD measurements to enable joints inversions and comparisons with CALIPSO retrievals. As part of this activity, four ground-based lidars provided backscatter measurements (at 523 nm) in the region. Lidars at University of Maryland Baltimore County (Catonsville, MD) and Goddard Space Flight Center (Greenbelt, MD) provided continuous data during the campaign, while two micro-pulse lidar (MPL) systems were temporarily stationed at various field locations directly on CALIPSO ground-tracks. As a result, thirteen on-track ground-based lidar observations were obtained from eight different locations in the region. In some cases, nighttime CALIPSO coincident measurements were also obtained. In most studies reported to date, ground-based lidar validation efforts for CALIPSO rely on systems that are at fixed locations some distance away from the satellite ground-track. The CATZ ground-based lidar data provide an opportunity to examine vertical structure properties of aerosols and clouds both on and off-track simultaneously during a CALIPSO overpass. A table of available ground-based lidar measurements during this campaign will be presented, along with example backscatter imagery for a number of coincident cases with CALIPSO. Results indicate that even for a ground-based measurements directly on-track, comparisons can still pose a challenge due to the differing spatio-temporal properties of the ground and satellite

  4. Benchmarking of human resources management

    Directory of Open Access Journals (Sweden)

    David M. Akinnusi

    2008-12-01

    Full Text Available This paper reviews the role of human resource management (HRM which, today, plays a strategic partnership role in management. The focus of the paper is on HRM in the public sector, where much hope rests on HRM as a means of transforming the public service and achieving much needed service delivery. However, a critical evaluation of HRM practices in the public sector reveals that these services leave much to be desired. The paper suggests the adoption of benchmarking as a process to revamp HRM in the public sector so that it is able to deliver on its promises. It describes the nature and process of benchmarking and highlights the inherent difficulties in applying benchmarking in HRM. It concludes with some suggestions for a plan of action. The process of identifying “best” practices in HRM requires the best collaborative efforts of HRM practitioners and academicians. If used creatively, benchmarking has the potential to bring about radical and positive changes in HRM in the public sector. The adoption of the benchmarking process is, in itself, a litmus test of the extent to which HRM in the public sector has grown professionally.

  5. Benchmark simulation models, quo vadis?

    Science.gov (United States)

    Jeppsson, U; Alex, J; Batstone, D J; Benedetti, L; Comas, J; Copp, J B; Corominas, L; Flores-Alsina, X; Gernaey, K V; Nopens, I; Pons, M-N; Rodríguez-Roda, I; Rosen, C; Steyer, J-P; Vanrolleghem, P A; Volcke, E I P; Vrecko, D

    2013-01-01

    As the work of the IWA Task Group on Benchmarking of Control Strategies for wastewater treatment plants (WWTPs) is coming to an end, it is essential to disseminate the knowledge gained. For this reason, all authors of the IWA Scientific and Technical Report on benchmarking have come together to provide their insights, highlighting areas where knowledge may still be deficient and where new opportunities are emerging, and to propose potential avenues for future development and application of the general benchmarking framework and its associated tools. The paper focuses on the topics of temporal and spatial extension, process modifications within the WWTP, the realism of models, control strategy extensions and the potential for new evaluation tools within the existing benchmark system. We find that there are major opportunities for application within all of these areas, either from existing work already being done within the context of the benchmarking simulation models (BSMs) or applicable work in the wider literature. Of key importance is increasing capability, usability and transparency of the BSM package while avoiding unnecessary complexity.

  6. Loss of signal transduction and inhibition of lymphocyte locomotion in a ground-based model of microgravity

    Science.gov (United States)

    Sundaresan, Alamelu; Risin, Diana; Pellis, Neal R.; McIntire, L. V. (Principal Investigator)

    2002-01-01

    Inflammatory adherence to, and locomotion through the interstitium is an important component of the immune response. Conditions such as microgravity and modeled microgravity (MMG) severely inhibit lymphocyte locomotion in vitro through gelled type I collagen. We used the NASA rotating wall vessel bioreactor or slow-turning lateral vessel as a prototype for MMG in ground-based experiments. Previous experiments from our laboratory revealed that when lymphocytes (human peripheral blood mononuclear cells [PBMCs]) were first activated with phytohemaglutinin followed by exposure to MMG, locomotory capacity was not affected. In the present study, MMG inhibits lymphocyte locomotion in a manner similar to that observed in microgravity. Phorbol myristate acetate (PMA) treatment of PBMCs restored lost locomotory capacity by a maximum of 87%. Augmentation of cellular calcium flux with ionomycin had no restorative effect. Treatment of lymphocytes with mitomycin C prior to exposure to MMG, followed by PMA, restored locomotion to the same extent as when nonmitomycin C-treated lymphocytes were exposed to MMG (80-87%), suggesting that deoxyribonucleic acid replication is not essential for the restoration of locomotion. Thus, direct activation of protein kinase C (PKC) with PMA was effective in restoring locomotion in MMG comparable to the normal levels seen in Ig cultures. Therefore, in MMG, lymphocyte calcium signaling pathways were functional, with defects occurring at either the level of PKC or upstream of PKC.

  7. Loss of signal transduction and inhibition of lymphocyte locomotion in a ground-based model of microgravity

    Science.gov (United States)

    Sundaresan, Alamelu; Risin, Diana; Pellis, Neal R.; McIntire, L. V. (Principal Investigator)

    2002-01-01

    Inflammatory adherence to, and locomotion through the interstitium is an important component of the immune response. Conditions such as microgravity and modeled microgravity (MMG) severely inhibit lymphocyte locomotion in vitro through gelled type I collagen. We used the NASA rotating wall vessel bioreactor or slow-turning lateral vessel as a prototype for MMG in ground-based experiments. Previous experiments from our laboratory revealed that when lymphocytes (human peripheral blood mononuclear cells [PBMCs]) were first activated with phytohemaglutinin followed by exposure to MMG, locomotory capacity was not affected. In the present study, MMG inhibits lymphocyte locomotion in a manner similar to that observed in microgravity. Phorbol myristate acetate (PMA) treatment of PBMCs restored lost locomotory capacity by a maximum of 87%. Augmentation of cellular calcium flux with ionomycin had no restorative effect. Treatment of lymphocytes with mitomycin C prior to exposure to MMG, followed by PMA, restored locomotion to the same extent as when nonmitomycin C-treated lymphocytes were exposed to MMG (80-87%), suggesting that deoxyribonucleic acid replication is not essential for the restoration of locomotion. Thus, direct activation of protein kinase C (PKC) with PMA was effective in restoring locomotion in MMG comparable to the normal levels seen in Ig cultures. Therefore, in MMG, lymphocyte calcium signaling pathways were functional, with defects occurring at either the level of PKC or upstream of PKC.

  8. Randomized benchmarking of multiqubit gates.

    Science.gov (United States)

    Gaebler, J P; Meier, A M; Tan, T R; Bowler, R; Lin, Y; Hanneke, D; Jost, J D; Home, J P; Knill, E; Leibfried, D; Wineland, D J

    2012-06-29

    We describe an extension of single-qubit gate randomized benchmarking that measures the error of multiqubit gates in a quantum information processor. This platform-independent protocol evaluates the performance of Clifford unitaries, which form a basis of fault-tolerant quantum computing. We implemented the benchmarking protocol with trapped ions and found an error per random two-qubit Clifford unitary of 0.162±0.008, thus setting the first benchmark for such unitaries. By implementing a second set of sequences with an extra two-qubit phase gate inserted after each step, we extracted an error per phase gate of 0.069±0.017. We conducted these experiments with transported, sympathetically cooled ions in a multizone Paul trap-a system that can in principle be scaled to larger numbers of ions.

  9. Radiation Detection Computational Benchmark Scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Shaver, Mark W.; Casella, Andrew M.; Wittman, Richard S.; McDonald, Ben S.

    2013-09-24

    Modeling forms an important component of radiation detection development, allowing for testing of new detector designs, evaluation of existing equipment against a wide variety of potential threat sources, and assessing operation performance of radiation detection systems. This can, however, result in large and complex scenarios which are time consuming to model. A variety of approaches to radiation transport modeling exist with complementary strengths and weaknesses for different problems. This variety of approaches, and the development of promising new tools (such as ORNL’s ADVANTG) which combine benefits of multiple approaches, illustrates the need for a means of evaluating or comparing different techniques for radiation detection problems. This report presents a set of 9 benchmark problems for comparing different types of radiation transport calculations, identifying appropriate tools for classes of problems, and testing and guiding the development of new methods. The benchmarks were drawn primarily from existing or previous calculations with a preference for scenarios which include experimental data, or otherwise have results with a high level of confidence, are non-sensitive, and represent problem sets of interest to NA-22. From a technical perspective, the benchmarks were chosen to span a range of difficulty and to include gamma transport, neutron transport, or both and represent different important physical processes and a range of sensitivity to angular or energy fidelity. Following benchmark identification, existing information about geometry, measurements, and previous calculations were assembled. Monte Carlo results (MCNP decks) were reviewed or created and re-run in order to attain accurate computational times and to verify agreement with experimental data, when present. Benchmark information was then conveyed to ORNL in order to guide testing and development of hybrid calculations. The results of those ADVANTG calculations were then sent to PNNL for

  10. Perceptual hashing algorithms benchmark suite

    Institute of Scientific and Technical Information of China (English)

    Zhang Hui; Schmucker Martin; Niu Xiamu

    2007-01-01

    Numerous perceptual hashing algorithms have been developed for identification and verification of multimedia objects in recent years. Many application schemes have been adopted for various commercial objects. Developers and users are looking for a benchmark tool to compare and evaluate their current algorithms or technologies. In this paper, a novel benchmark platform is presented. PHABS provides an open framework and lets its users define their own test strategy, perform tests, collect and analyze test data. With PHABS, various performance parameters of algorithms can be tested, and different algorithms or algorithms with different parameters can be evaluated and compared easily.

  11. Closed-loop neuromorphic benchmarks

    CSIR Research Space (South Africa)

    Stewart

    2015-11-01

    Full Text Available Benchmarks   Terrence C. Stewart 1* , Travis DeWolf 1 , Ashley Kleinhans 2 , Chris Eliasmith 1   1 University of Waterloo, Canada, 2 Council for Scientific and Industrial Research, South Africa   Submitted to Journal:   Frontiers in Neuroscience   Specialty... the study was exempt from ethical approval procedures.) Did the study presented in the manuscript involve human or animal subjects: No I v i w 1Closed-loop Neuromorphic Benchmarks Terrence C. Stewart 1,∗, Travis DeWolf 1, Ashley Kleinhans 2 and Chris...

  12. The contextual benchmark method: benchmarking e-government services

    NARCIS (Netherlands)

    Jansen, Jurjen; Vries, de Sjoerd; Schaik, van Paul

    2010-01-01

    This paper offers a new method for benchmarking e-Government services. Government organizations no longer doubt the need to deliver their services on line. Instead, the question that is more relevant is how well the electronic services offered by a particular organization perform in comparison with

  13. Benchmarking Internet of Things devices

    CSIR Research Space (South Africa)

    Kruger, CP

    2014-07-01

    Full Text Available International Conference on Industrial Informatics (INDIN), 27-30 July 2014 Benchmarking Internet of Things devices C.P. Kruger y and G.P. Hancke yz *Advanced Sensor Networks Research Group, Counsil for Scientific and Industrial Research, South...

  14. Benchmarked Library Websites Comparative Study

    KAUST Repository

    Ramli, Rindra M.

    2015-01-01

    This presentation provides an analysis of services provided by the benchmarked library websites. The exploratory study includes comparison of these websites against a list of criterion and presents a list of services that are most commonly deployed by the selected websites. In addition to that, the investigators proposed a list of services that could be provided via the KAUST library website.

  15. Engine Benchmarking - Final CRADA Report

    Energy Technology Data Exchange (ETDEWEB)

    Wallner, Thomas [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-01-01

    Detailed benchmarking of the powertrains of three light-duty vehicles was performed. Results were presented and provided to CRADA partners. The vehicles included a MY2011 Audi A4, a MY2012 Mini Cooper and a MY2014 Nissan Versa.

  16. Benchmarking Universiteitsvastgoed: Managementinformatie bij vastgoedbeslissingen

    NARCIS (Netherlands)

    Den Heijer, A.C.; De Vries, J.C.

    2004-01-01

    Voor u ligt het eindrapport van het onderzoek "Benchmarking universiteitsvastgoed". Dit rapport is de samenvoeging van twee deel producten: het theorierapport (verschenen in december 2003) en het praktijkrapport (verschenen in januari 2004). Onderwerpen in het theoriedeel zijn de analyse van andere

  17. Benchmark Lisp And Ada Programs

    Science.gov (United States)

    Davis, Gloria; Galant, David; Lim, Raymond; Stutz, John; Gibson, J.; Raghavan, B.; Cheesema, P.; Taylor, W.

    1992-01-01

    Suite of nonparallel benchmark programs, ELAPSE, designed for three tests: comparing efficiency of computer processing via Lisp vs. Ada; comparing efficiencies of several computers processing via Lisp; or comparing several computers processing via Ada. Tests efficiency which computer executes routines in each language. Available for computer equipped with validated Ada compiler and/or Common Lisp system.

  18. Entry Dispersion Analysis for the Hayabusa Spacecraft using Ground Based Optical Observation

    CERN Document Server

    Yamaguchi, T; Yagi, M; Tholen, D J

    2011-01-01

    Hayabusa asteroid explorer successfully released the sample capsule to Australia on June 13, 2010. Since the Earth reentry phase of sample return was critical, many backup plans for predicting the landing location were prepared. This paper investigates the reentry dispersion using ground based optical observation as a backup observation for radiometric observation. Several scenarios are calculated and compared for the reentry phase of the Hayabusa to evaluate the navigation accuracy of the ground-based observation. The optical observation doesn't require any active reaction from a spacecraft, thus these results show that optical observations could be a steady backup strategy even if a spacecraft had some trouble. We also evaluate the landing dispersion of the Hayabusa only with the optical observation.

  19. Ground-based walking training improves quality of life and exercise capacity in COPD.

    Science.gov (United States)

    Wootton, Sally L; Ng, L W Cindy; McKeough, Zoe J; Jenkins, Sue; Hill, Kylie; Eastwood, Peter R; Hillman, David R; Cecins, Nola; Spencer, Lissa M; Jenkins, Christine; Alison, Jennifer A

    2014-10-01

    This study was designed to determine the effect of ground-based walking training on health-related quality of life and exercise capacity in people with chronic obstructive pulmonary disease (COPD). People with COPD were randomised to either a walking group that received supervised, ground-based walking training two to three times a week for 8-10 weeks, or a control group that received usual medical care and did not participate in exercise training. 130 out of 143 participants (mean±sd age 69±8 years, forced expiratory volume in 1 s 43±15% predicted) completed the study. Compared to the control group, the walking group demonstrated greater improvements in the St George's Respiratory Questionnaire total score (mean difference -6 points (95% CI -10- -2), pimproves quality of life and endurance exercise capacity in people with COPD.

  20. Nulling interferometry: performance comparison between space and ground-based sites for exozodiacal disc detection

    CERN Document Server

    Defrère, D; Foresto, V Coudé du; Danchi, W C; Hartog, R den

    2008-01-01

    Characterising the circumstellar dust around nearby main sequence stars is a necessary step in understanding the planetary formation process and is crucial for future life-finding space missions such as ESA's Darwin or NASA's Terrestrial Planet Finder (TPF). Besides paving the technological way to Darwin/TPF, the space-based infrared interferometers Pegase and FKSI (Fourier-Kelvin Stellar Interferometer) will be valuable scientific precursors in that respect. In this paper, we investigate the performance of Pegase and FKSI for exozodiacal disc detection and compare the results with ground-based nulling interferometers. Besides their main scientific goal (characterising hot giant extrasolar planets), Pegase and FKSI are very efficient in assessing within a few minutes the level of circumstellar dust in the habitable zone around nearby main sequence stars. They are capable of detecting exozodiacal discs respectively 5 and 1 time as dense as the solar zodiacal cloud and they outperform any ground-based instrumen...

  1. Techniques to extend the reach of ground based gravitational wave detectors

    Science.gov (United States)

    Dwyer, Sheila

    2016-03-01

    While the current generation of advanced ground based detectors will open the gravitational wave universe to observation, ground based interferometry has the potential to extend the reach of these observatories to high redshifts. Several techniques have the potential to improve the advanced detectors beyond design sensitivity, including the use of squeezed light, upgraded suspensions, and possibly new optical coatings, new test mass materials, and cryogenic suspensions. To improve the sensitivity by more than a factor of 10 compared to advanced detectors new, longer facilities will be needed. Future observatories capable of hosting interferometers 10s of kilometers long have the potential to extend the reach of gravitational wave astronomy to cosmological distances, enabling detection of binary inspirals from throughout the history of star formation.

  2. Ground-based near-infrared imaging of the HD141569 circumstellar disk

    CERN Document Server

    Boccaletti, A; Marchis, F; Hanh, J

    2003-01-01

    We present the first ground-based near-infrared image of the circumstellar disk around the post-Herbig Ae/Be star HD141569A initially detected with the HST. Observations were carried out in the near-IR (2.2 $\\mu$m) at the Palomar 200-inch telescope using the adaptive optics system PALAO. The main large scale asymmetric features of the disk are detected on our ground-based data. In addition, we measured that the surface brightness of the disk is slightly different than that derived by HST observations (at 1.1 $\\mu$m and 1.6 $\\mu$m). We interpret this possible color-effect in terms of dust properties and derive a minimal

  3. Validation of Aura OMI by Aircraft and Ground-Based Measurements

    Science.gov (United States)

    McPeters, R. D.; Petropavlovskikh, I.; Kroon, M.

    2006-12-01

    Both aircraft-based and ground-based measurements have been used to validate ozone measurements by the OMI instrument on Aura. Three Aura Validation Experiment (AVE) flights have been conducted, in November 2004 and June 2005 with the NASA WB57, and in January/February 2005 with the NASA DC-8. On these flights, validation of OMI was primarily done using data from the CAFS (CCD Actinic Flux Spectroradiometer) instrument, which is used to measure total column ozone above the aircraft. These measurements are used to differentiate changes in stratospheric ozone from changes in total column ozone. Also, changes in ozone over high clouds measured by OMI were checked in a flight over tropical storm Arlene on a flight on June 11th. Ground-based measurements were made during the SAUNA campaign in Sodankyla, Finland, in March and April 2006. Both total column ozone and the ozone vertical distribution were validated.

  4. REMOTE SENSING OF WATER VAPOR CONTENT USING GROUND-BASED GPS DATA

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Spatial and temporal resolution of water vapor content is useful in improving the accuracy of short-term weather prediction.Dense and continuously tracking regional GPS arrays will play an important role in remote sensing atmospheric water vapor content.In this study,a piecewise linear solution method was proposed to estimate the precipitable water vapor (PWV) content from ground-based GPS observations in Hong Kong.To evaluate the solution accuracy of the water vapor content sensed by GPS,the upper air sounding data (radiosonde) that are collected locally was used to calculate the precipitable water vapor during the same period.One-month results of PWV from both ground-based GPS sensing technique and radiosonde method are in agreement within 1~2 mm.This encouraging result will motivate the GPS meteorology application based on the establishment of a dense GPS array in Hong Kong.

  5. DEM extraction and its accuracy analysis with ground-based SAR interferometry

    Science.gov (United States)

    Dong, J.; Yue, J. P.; Li, L. H.

    2014-03-01

    Two altimetry models extracting DEM (Digital Elevation Model) with the GBSAR (Ground-Based Synthetic Aperture Radar) technology are studied and their accuracies are analyzed in detail. The approximate and improved altimetry models of GBSAR were derived from the spaceborne radar altimetry based on the principles of the GBSAR technology. The error caused by the parallel ray approximation in the approximate model was analyzed quantitatively, and the results show that the errors cannot be ignored for the ground-based radar system. For the improved altimetry model, the elevation error expression can be acquired by simulating and analyzing the error propagation coefficients of baseline length, wavelength, differential phase and range distance in the mathematical model. By analyzing the elevation error with the baseline and range distance, the results show that the improved altimetry model is suitable for high-precision DEM and the accuracy can be improved by adjusting baseline and shortening slant distance.

  6. Investigating the long-term evolution of subtropical ozone profiles applying ground-based FTIR spectrometry

    OpenAIRE

    García, O.E.; Schneider, M; A. Redondas; Y. González; Hase, F.; Blumenstock, T.; Sepúlveda, E.

    2012-01-01

    This study investigates the long-term evolution of subtropical ozone profile time series (1999–2010) obtained from ground-based FTIR (Fourier Transform InfraRed) spectrometry at the Izaña Observatory ozone super-site. Different ozone retrieval strategies are examined, analysing the influence of an additional temperature retrieval and different constraints. The theoretical assessment reveals that the FTIR system is able to resolve four independent ozone layers with a precision of better than 6...

  7. Space Fence Ground-Based Radar System Increment 1 (Space Fence Inc 1)

    Science.gov (United States)

    2015-12-01

    Selected Acquisition Report (SAR) RCS: DD-A&T(Q&A)823-438 Space Fence Ground-Based Radar System Increment 1 (Space Fence Inc 1) As of FY 2017...11 Track to Budget 17 Cost and Funding 18 Low Rate Initial Production 23 Foreign Military Sales 24 Nuclear Costs 24 Unit Cost...Document CLIN - Contract Line Item Number CPD - Capability Production Document CY - Calendar Year DAB - Defense Acquisition Board DAE - Defense Acquisition

  8. Particle production during inflation and gravitational waves detectable by ground-based interferometers

    OpenAIRE

    Cook, Jessica L.; Sorbo, Lorenzo

    2011-01-01

    Inflation typically predicts a quasi scale-invariant spectrum of gravitational waves. In models of slow-roll inflation, the amplitude of such a background is too small to allow direct detection without a dedicated space-based experiment such as the proposed BBO or DECIGO. In this paper we note that particle production during inflation can generate a feature in the spectrum of primordial gravitational waves. We discuss the possibility that such a feature might be detected by ground-based laser...

  9. NASA Requirements for Ground-Based Pressure Vessels and Pressurized Systems (PVS). Revision C

    Science.gov (United States)

    Greulich, Owen Rudolf

    2017-01-01

    The purpose of this document is to ensure the structural integrity of PVS through implementation of a minimum set of requirements for ground-based PVS in accordance with this document, NASA Policy Directive (NPD) 8710.5, NASA Safety Policy for Pressure Vessels and Pressurized Systems, NASA Procedural Requirements (NPR) 8715.3, NASA General Safety Program Requirements, applicable Federal Regulations, and national consensus codes and standards (NCS).

  10. Comparison of NO2 vertical profiles from satellite and ground based measurements over Antarctica

    OpenAIRE

    Kulkarni, Pavan; Bortoli, Daniele; Costa, Maria João; Silva, Ana Maria; Ravegnani, Fabrizio; Giovanelli, Giorgio

    2011-01-01

    The Intercomparison of nitrogen dioxide (NO2) vertical profiles, derived from the satellite based HALogen Occultation Experiment (HALOE) measurements and from the ground based UV-VIS spectrometer GASCOD (Gas Analyzer Spectrometer Correlating Optical Differences) observations at the Mario Zucchelli Station (MZS), in Antarctica, are done for the first time. It is shown here that both datasets are in good agreement showing the same features in terms of magnitude, profile structure, a...

  11. The Gaia Era: synergy between space missions and ground based surveys

    CERN Document Server

    Vallenari, A

    2008-01-01

    The Gaia mission is expected to provide highly accurate astrometric, photometric, and spectroscopic measurements for about $10^9$ objects. Automated classification of detected sources is a key part of the data processing. Here a few aspects of the Gaia classification process are presented. Information from other surveys at longer wavelengths, and from follow-up ground based observations will be complementary to Gaia data especially at faint magnitudes, and will offer a great opportunity to understand our Galaxy.

  12. 42 CFR 440.385 - Delivery of benchmark and benchmark-equivalent coverage through managed care entities.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 4 2010-10-01 2010-10-01 false Delivery of benchmark and benchmark-equivalent...: GENERAL PROVISIONS Benchmark Benefit and Benchmark-Equivalent Coverage § 440.385 Delivery of benchmark and benchmark-equivalent coverage through managed care entities. In implementing benchmark or...

  13. First-generation Science Cases for Ground-based Terahertz Telescopes

    CERN Document Server

    Hirashita, Hiroyuki; Matsushita, Satoki; Takakuwa, Shigehisa; Nakamura, Masanori; Asada, Keiichi; Liu, Hauyu Baobab; Urata, Yuji; Wang, Ming-Jye; Wang, Wei-Hao; Takahashi, Satoko; Tang, Ya-Wen; Chang, Hsian-Hong; Huang, Kuiyun; Morata, Oscar; Otsuka, Masaaki; Lin, Kai-Yang; Tsai, An-Li; Lin, Yen-Ting; Srinivasan, Sundar; Martin-Cocher, Pierre; Pu, Hung-Yi; Kemper, Francisca; Patel, Nimesh; Grimes, Paul; Huang, Yau-De; Han, Chih-Chiang; Huang, Yen-Ru; Nishioka, Hiroaki; Lin, Lupin Chun-Che; Zhang, Qizhou; Keto, Eric; Burgos, Roberto; Chen, Ming-Tang; Inoue, Makoto; Ho, Paul T P

    2015-01-01

    Ground-based observations at terahertz (THz) frequencies are a newly explorable area of astronomy for the next ten years. We discuss science cases for a first-generation 10-m class THz telescope, focusing on the Greenland Telescope as an example of such a facility. We propose science cases and provide quantitative estimates for each case. The largest advantage of ground-based THz telescopes is their higher angular resolution (~ 4 arcsec for a 10-m dish), as compared to space or airborne THz telescopes. Thus, high-resolution mapping is an important scientific argument. In particular, we can isolate zones of interest for Galactic and extragalactic star-forming regions. The THz windows are suitable for observations of high-excitation CO lines and [N II] 205 um lines, which are scientifically relevant tracers of star formation and stellar feedback. Those lines are the brightest lines in the THz windows, so that they are suitable for the initiation of ground-based THz observations. THz polarization of star-forming...

  14. Interactive dynamic three-dimensional scene for the ground-based three-dimensional display

    Science.gov (United States)

    Hou, Peining; Sang, Xinzhu; Guo, Nan; Chen, Duo; Yan, Binbin; Wang, Kuiru; Dou, Wenhua; Xiao, Liquan

    2016-10-01

    Three-dimensional (3D) displays provides valuable tools for many fields, such as scientific experiment, education, information transmission, medical imaging and physical simulation. Ground based 360° 3D display with dynamic and controllable scene can find some special applications, such as design and construction of buildings, aeronautics, military sand table and so on. It can be utilized to evaluate and visualize the dynamic scene of the battlefield, surgical operation and the 3D canvas of art. In order to achieve the ground based 3D display, the public focus plane should be parallel to the camera's imaging planes, and optical axes should be offset to the center of public focus plane in both vertical and horizontal directions. Virtual cameras are used to display 3D dynamic scene with Unity 3D engine. Parameters of virtual cameras for capturing scene are designed and analyzed, and locations of virtual cameras are determined by the observer's eye positions in the observing space world. An interactive dynamic 3D scene for ground based 360° 3D display is demonstrated, which provides high-immersion 3D visualization.

  15. Intercomparison of ground-based ozone and NO2 measurements during the MANTRA 2004 campaign

    Directory of Open Access Journals (Sweden)

    K. Strong

    2007-11-01

    Full Text Available The MANTRA (Middle Atmosphere Nitrogen TRend Assessment 2004 campaign took place in Vanscoy, Saskatchewan, Canada (52° N, 107° W from 3 August to 15 September, 2004. In support of the main balloon launch, a suite of five zenith-sky and direct-Sun-viewing UV-visible ground-based spectrometers was deployed, primarily measuring ozone and NO2 total columns. Three Fourier transform spectrometers (FTSs that were part of the balloon payload also performed ground-based measurements of several species, including ozone. Ground-based measurements of ozone and NO2 differential slant column densities from the zenith-viewing UV-visible instruments are presented herein. They are found to partially agree within NDACC (Network for the Detection of Atmospheric Composition Change standards for instruments certified for process studies and satellite validation. Vertical column densities of ozone from the zenith-sky UV-visible instruments, the FTSs, a Brewer spectrophotometer, and ozonesondes are compared, and found to agree within the combined error estimates of the instruments (15%. NO2 vertical column densities from two of the UV-visible instruments are compared, and are also found to agree within combined error (15%.

  16. Limitation of Ground-based Estimates of Solar Irradiance Due to Atmospheric Variations

    Science.gov (United States)

    Wen, Guoyong; Cahalan, Robert F.; Holben, Brent N.

    2003-01-01

    The uncertainty in ground-based estimates of solar irradiance is quantitatively related to the temporal variability of the atmosphere's optical thickness. The upper and lower bounds of the accuracy of estimates using the Langley Plot technique are proportional to the standard deviation of aerosol optical thickness (approx. +/- 13 sigma(delta tau)). The estimates of spectral solar irradiance (SSI) in two Cimel sun photometer channels from the Mauna Loa site of AERONET are compared with satellite observations from SOLSTICE (Solar Stellar Irradiance Comparison Experiment) on UARS (Upper Atmospheric Research Satellite) for almost two years of data. The true solar variations related to the 27-day solar rotation cycle observed from SOLSTICE are about 0.15% at the two sun photometer channels. The variability in ground-based estimates is statistically one order of magnitude larger. Even though about 30% of these estimates from all Level 2.0 Cimel data fall within the 0.4 to approx. 0.5% variation level, ground-based estimates are not able to capture the 27-day solar variation observed from SOLSTICE.

  17. Kepler and Ground-based Transits of the Exo-Neptune HAT-P-11b

    CERN Document Server

    Deming, Drake; Jackson, Brian; Peterson, Steven W; Agol, Eric; Knutson, Heather A; Jennings, Donald E; Haase, Flynn; Bays, Kevin

    2011-01-01

    We analyze 26 archival Kepler transits of the exo-Neptune HAT-P-11b, supplemented by ground-based transits observed in the blue (B-band) and near-IR (J-band). Both the planet and host star are smaller than previously believed; our analysis yields Rp=4.31 +/-0.06 Earth-radii, and Rs = 0.683 +/-0.009 solar radii, both about 3-sigma smaller than the discovery values. Our ground-based transit data at wavelengths bracketing the Kepler bandpass serve to check the wavelength dependence of stellar limb darkening, and the J-band transit provides a precise and independent constraint on the transit duration. Both the limb darkening and transit duration from our ground-based data are consistent with the new Kepler values for the system parameters. Our smaller radius for the planet implies that its gaseous envelope can be less extensive than previously believed, being very similar to the H-He envelope of GJ436b and Kepler-4b. HAT-P-11 is an active star, and signatures of star spot crossings are ubiquitous in the Kepler tr...

  18. Structure and evolution of Pluto's Atmosphere from ground-based stellar occultations between 2002 and 2015

    Science.gov (United States)

    Meza, Erick; Sicardy, Bruno; Rio de Janeiro occultation team, Granada occultation team, International Occultation and Timing Association

    2016-10-01

    Ground-Based stellar occultations probe Pluto's atmosphere from about 3 km altitude (~ 10 μbar pressure level) up to 260 km altitude (~0.1 μbar). Our main goal is to derive Pluto's atmosphere evolution using thirteen ground-based occultations observed between 2002 and 2015 (plus 2016, if available). We consistently analyze the light curves using the Dias et al. (ApJ 811, 53, 2015) model, and confirm the general pressure increase by a factor of about 1.5 between 2002 and 2015 and a factor of almost three between 1988 and 2015. Implications for Pluto's seasonal evolution will be briefly discussed in the context of the New Horizons (NH) findings.Ground-based-derived temperature profiles will be compared with NH's results, where we use new temperature boundary conditions in our inversion procedures, as given by NH near 260 km altitude. Although the profiles reasonably agree, significant discrepancies are observed both in the deeper stratospheric zone (altitude topographic features revealed by NH.Finally, possible correlations between spike activity in the occultation light-curves and local underlying presence of free nitrogen ice terrains will be investigated.Part of the research leading to these results has received funding from the European Research Council under the European Community's H2020 (2014-2020/ ERC Grant Agreement n 669416 "LUCKY STAR").

  19. Flow Characteristics of Tidewater Glaciers in Greenland and Alaska using Ground-Based LiDAR

    Science.gov (United States)

    Finnegan, D. C.; Stearns, L. A.; Hamilton, G. S.; O'Neel, S.

    2010-12-01

    LiDAR scanning systems have been employed to characterize and quantify multi-temporal glacier and ice sheet changes for nearly three decades. Until recently, LiDAR scanning systems were limited to airborne and space-based platforms which come at a significant cost to deploy and are limited in spatial and temporal sampling capabilities necessary to compare with in-situ field measurements. Portable ground-based LiDAR scanning systems are now being used as a glaciological tool. We discuss research efforts to employ ground-based near-infrared LiDAR systems at two differing tidewater glacier systems in the spring of 2009; Helheim Glacier in southeast Greenland and Columbia Glacier in southeast Alaska. Preliminary results allow us to characterize short term displacement rates and detailed observations of calving processes. These results highlight the operational limitations and capabilities of commercially available LiDAR systems, and allow us to identify optimal operating characteristics for monitoring small to large-scale tidewater glaciers in near real-time. Furthermore, by identifying the operational limitations of these sensors it allows for optimal design characteristics of new sensors necessary to meet ground-based calibration and validation requirements of ongoing scientific missions.

  20. Phase-coherent mapping of gravitational-wave backgrounds using ground-based laser interferometers

    CERN Document Server

    Romano, Joseph D; Cornish, Neil J; Gair, Jonathan; Mingarelli, Chiara M F; van Haasteren, Rutger

    2015-01-01

    We extend the formalisms developed in Gair et al. and Cornish and van Haasteren to create maps of gravitational-wave backgrounds using a network of ground-based laser interferometers. We show that in contrast to pulsar timing arrays, which are insensitive to half of the gravitational-wave sky (the curl modes), a network of ground-based interferometers is sensitive to both the gradient and curl components of the background. The spatial separation of a network of interferometers, or of a single interferometer at different times during its rotational and orbital motion around the Sun, allows for recovery of both components. We derive expressions for the response functions of a laser interferometer in the small-antenna limit, and use these expressions to calculate the overlap reduction function for a pair of interferometers. We also construct maximum-likelihood estimates of the + and x-polarization modes of the gravitational-wave sky in terms of the response matrix for a network of ground-based interferometers, e...

  1. A Ground-Based Array to Observe Geospace Electrodynamics During Adverse Space Weather Conditions

    Science.gov (United States)

    Sojka, J. J.; Eccles, J. V.; Rice, D.

    2004-05-01

    Geomagnetic Storms occur with surprising frequency and create adverse space weather conditions. During these periods, our knowledge and ability to specify or forecast in adequate detail for user needs is negligible. Neither experimental observations nor theoretical developments have made a significant new impact on the problem for over two decades. Although we can now map Total Electron Content (TEC) in the ionosphere over a continent with sufficient resolution to see coherent long-lived structures, these do not provide constraints on the geospace electrodynamics that is at the heart of our lack of understanding. We present arguments for the need of a continental deployment of ground-based sensors to stepwise advance our understanding of the geospace electrodynamics when it is most adverse from a space weather perspective and also most frustrating from an understanding of Magnetosphere-Ionosphere coupling. That a continental-scale deployment is more productive at addressing the problem than a realizable global distribution is shown. Each measurement is discussed from the point-of-view of either providing new knowledge or becoming a key for future real-time specification and forecasting for user applications. An example of a storm database from one mid-latitude station for the 31 March 2002 is used as a conceptual point in a ground-based array. The presentation focuses on scientific questions that have eluded a quantitative solution for over three decades and view a ground-based array as an "IGY" type of catalyst for answering these questions.

  2. Benchmarking clinical photography services in the NHS.

    Science.gov (United States)

    Arbon, Giles

    2015-01-01

    Benchmarking is used in services across the National Health Service (NHS) using various benchmarking programs. Clinical photography services do not have a program in place and services have to rely on ad hoc surveys of other services. A trial benchmarking exercise was undertaken with 13 services in NHS Trusts. This highlights valuable data and comparisons that can be used to benchmark and improve services throughout the profession.

  3. Benchmarking: Achieving the best in class

    Energy Technology Data Exchange (ETDEWEB)

    Kaemmerer, L

    1996-05-01

    Oftentimes, people find the process of organizational benchmarking an onerous task, or, because they do not fully understand the nature of the process, end up with results that are less than stellar. This paper presents the challenges of benchmarking and reasons why benchmarking can benefit an organization in today`s economy.

  4. The LDBC Social Network Benchmark: Interactive Workload

    NARCIS (Netherlands)

    Erling, O.; Averbuch, A.; Larriba-Pey, J.; Chafi, H.; Gubichev, A.; Prat, A.; Pham, M.D.; Boncz, P.A.

    2015-01-01

    The Linked Data Benchmark Council (LDBC) is now two years underway and has gathered strong industrial participation for its mission to establish benchmarks, and benchmarking practices for evaluating graph data management systems. The LDBC introduced a new choke-point driven methodology for developin

  5. How Benchmarking and Higher Education Came Together

    Science.gov (United States)

    Levy, Gary D.; Ronco, Sharron L.

    2012-01-01

    This chapter introduces the concept of benchmarking and how higher education institutions began to use benchmarking for a variety of purposes. Here, benchmarking is defined as a strategic and structured approach whereby an organization compares aspects of its processes and/or outcomes to those of another organization or set of organizations to…

  6. Comparison of Thermal Structure Results from Venus Express and Ground Based Observations since Vira

    Science.gov (United States)

    Limaye, Sanjay

    2016-07-01

    An international team was formed in 2013 through the International Space Studies Institute (Bern, Switzerland) to compare recent results of the Venus atmospheric thermal structure from spacecraft and ground based observations made since the Venus International Reference Atmosphere (VIRA) was developed (Kliore et al., 1985, Keating et al., 1985). Five experiments on European Space Agency's Venus Express orbiter mission have yielded results on the atmospheric structure during is operational life (April 2006 - November 2014). Three of these were from occultation methods: at near infrared wavelengths from solar occultations, (SOIR, 70 - 170 km), at ultraviolet wavelengths from stellar occultations (SPICAV, 90-140 km), and occultation of the VEx-Earth radio signal (VeRa, 40-90 km). In-situ drag measurements from three different techniques (accelerometry, torque, and radio tracking, 130 - 200 km) were also obtained using the spacecraft itself while passive infrared remote sensing was used by the VIRTIS experiment (70 - 120 km). The only new data in the -40-70 km altitude range are from radio occultation, as no new profiles of the deep atmosphere have been obtained since the VeGa 2 lander measurements in 1985 (not included in VIRA). Some selected ground based results available to the team were also considered by team in the inter comparisons. The temperature structure in the lower thermosphere from disk resolved ground based observations (except for one ground based investigation), is generally consistent with the Venus Express results. These experiments sampled at different periods, at different locations and at different local times and have different vertical and horizontal resolution and coverage. The data were therefore binned in latitude and local time bins and compared, ignoring temporal variations over the life time of the Venus Express mission and assumed north-south symmetry. Alternating warm and cooler layers are present in the 120-160 altitude range in results

  7. Methodology for Benchmarking IPsec Gateways

    Directory of Open Access Journals (Sweden)

    Adam Tisovský

    2012-08-01

    Full Text Available The paper analyses forwarding performance of IPsec gateway over the rage of offered loads. It focuses on the forwarding rate and packet loss particularly at the gateway’s performance peak and at the state of gateway’s overload. It explains possible performance degradation when the gateway is overloaded by excessive offered load. The paper further evaluates different approaches for obtaining forwarding performance parameters – a widely used throughput described in RFC 1242, maximum forwarding rate with zero packet loss and us proposed equilibrium throughput. According to our observations equilibrium throughput might be the most universal parameter for benchmarking security gateways as the others may be dependent on the duration of test trials. Employing equilibrium throughput would also greatly shorten the time required for benchmarking. Lastly, the paper presents methodology and a hybrid step/binary search algorithm for obtaining value of equilibrium throughput.

  8. Geothermal Heat Pump Benchmarking Report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1997-01-17

    A benchmarking study was conducted on behalf of the Department of Energy to determine the critical factors in successful utility geothermal heat pump programs. A Successful program is one that has achieved significant market penetration. Successfully marketing geothermal heat pumps has presented some major challenges to the utility industry. However, select utilities have developed programs that generate significant GHP sales. This benchmarking study concludes that there are three factors critical to the success of utility GHP marking programs: (1) Top management marketing commitment; (2) An understanding of the fundamentals of marketing and business development; and (3) An aggressive competitive posture. To generate significant GHP sales, competitive market forces must by used. However, because utilities have functioned only in a regulated arena, these companies and their leaders are unschooled in competitive business practices. Therefore, a lack of experience coupled with an intrinsically non-competitive culture yields an industry environment that impedes the generation of significant GHP sales in many, but not all, utilities.

  9. Benchmarking Variable Selection in QSAR.

    Science.gov (United States)

    Eklund, Martin; Norinder, Ulf; Boyer, Scott; Carlsson, Lars

    2012-02-01

    Variable selection is important in QSAR modeling since it can improve model performance and transparency, as well as reduce the computational cost of model fitting and predictions. Which variable selection methods that perform well in QSAR settings is largely unknown. To address this question we, in a total of 1728 benchmarking experiments, rigorously investigated how eight variable selection methods affect the predictive performance and transparency of random forest models fitted to seven QSAR datasets covering different endpoints, descriptors sets, types of response variables, and number of chemical compounds. The results show that univariate variable selection methods are suboptimal and that the number of variables in the benchmarked datasets can be reduced with about 60 % without significant loss in model performance when using multivariate adaptive regression splines MARS and forward selection.

  10. A Benchmark for Management Effectiveness

    OpenAIRE

    Zimmermann, Bill; Chanaron, Jean-Jacques; Klieb, Leslie

    2007-01-01

    International audience; This study presents a tool to gauge managerial effectiveness in the form of a questionnaire that is easy to administer and score. The instrument covers eight distinct areas of organisational climate and culture of management inside a company or department. Benchmark scores were determined by administering sample-surveys to a wide cross-section of individuals from numerous firms in Southeast Louisiana, USA. Scores remained relatively constant over a seven-year timeframe...

  11. Restaurant Energy Use Benchmarking Guideline

    Energy Technology Data Exchange (ETDEWEB)

    Hedrick, R.; Smith, V.; Field, K.

    2011-07-01

    A significant operational challenge for food service operators is defining energy use benchmark metrics to compare against the performance of individual stores. Without metrics, multiunit operators and managers have difficulty identifying which stores in their portfolios require extra attention to bring their energy performance in line with expectations. This report presents a method whereby multiunit operators may use their own utility data to create suitable metrics for evaluating their operations.

  12. Ground-based structure from motion - multi view stereo (SFM-MVS) for upland soil erosion assessment.

    Science.gov (United States)

    McShane, Gareth; James, Mike; Quniton, John; Farrow, Luke; Glendell, Miriam; Jones, Lee; Kirkham, Matthew; Morgan, David; Evans, Martin; Anderson, Karen; Lark, Murray; Rawlins, Barry; Rickson, Jane; Quine, Timothy; Benaud, Pia; Brazier, Richard

    2016-04-01

    In upland environments, quantifying soil loss through erosion processes at a high resolution can be time consuming, costly and logistically difficult. In this pilot study 'A cost effective framework for monitoring soil erosion in England and Wales', funded by the UK Department for Environment, Food and Rural Affairs (Defra), we evaluate the use of annually repeated ground-based photography surveys, processed using structure-from-motion and multi-view stereo (SfM-MVS) 3-D reconstruction software (Agisoft Photoscan). The aim is to enable efficient but detailed site-scale studies of erosion forms in inaccessible UK upland environments, in order to quantify dynamic processes, such as erosion and mass movement. The evaluation of the SfM-MVS technique is particularly relevant in upland landscapes, where the remoteness and inaccessibility of field sites may render some of the more established survey techniques impractical. We present results from 5 upland sites across the UK, acquired over a 2-year period. Erosion features of varying width (3 m to 35 m) and length (20 m to 60 m), representing a range of spatial scales (from 100 m2 to 1000 m2) were surveyed, in upland habitats including bogs, peatland, upland grassland and moorland. For each feature, around 150 to 600 ground-based photographs were taken at oblique angles over a 10 to 20 minute period, using an uncalibrated Canon 600D SLR camera with a 28 mm lens (focal length set to infinity). Camera settings varied based upon light conditions (exposure 100-400 ISO, aperture F4.5 to F8, shutter speed 1/100 to 1/250 second). For inter-survey comparisons, models were geo-referenced using 20 to 30 ground control points (numbered black markers with a white target) placed around and within the feature, with their co-ordinates measured by survey-grade differential GNSS (Trimble R4). Volumetric estimates of soil loss were quantified using digital surface models (DSMs) derived from the repeat survey data and subtracted from a

  13. Thermal Performance Benchmarking: Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Moreno, Gilbert

    2016-04-08

    The goal for this project is to thoroughly characterize the performance of state-of-the-art (SOA) automotive power electronics and electric motor thermal management systems. Information obtained from these studies will be used to: Evaluate advantages and disadvantages of different thermal management strategies; establish baseline metrics for the thermal management systems; identify methods of improvement to advance the SOA; increase the publicly available information related to automotive traction-drive thermal management systems; help guide future electric drive technologies (EDT) research and development (R&D) efforts. The performance results combined with component efficiency and heat generation information obtained by Oak Ridge National Laboratory (ORNL) may then be used to determine the operating temperatures for the EDT components under drive-cycle conditions. In FY15, the 2012 Nissan LEAF power electronics and electric motor thermal management systems were benchmarked. Testing of the 2014 Honda Accord Hybrid power electronics thermal management system started in FY15; however, due to time constraints it was not possible to include results for this system in this report. The focus of this project is to benchmark the thermal aspects of the systems. ORNL's benchmarking of electric and hybrid electric vehicle technology reports provide detailed descriptions of the electrical and packaging aspects of these automotive systems.

  14. HS06 Benchmark for an ARM Server

    Science.gov (United States)

    Kluth, Stefan

    2014-06-01

    We benchmarked an ARM cortex-A9 based server system with a four-core CPU running at 1.1 GHz. The system used Ubuntu 12.04 as operating system and the HEPSPEC 2006 (HS06) benchmarking suite was compiled natively with gcc-4.4 on the system. The benchmark was run for various settings of the relevant gcc compiler options. We did not find significant influence from the compiler options on the benchmark result. The final HS06 benchmark result is 10.4.

  15. HS06 Benchmark for an ARM Server

    CERN Document Server

    Kluth, Stefan

    2013-01-01

    We benchmarked an ARM cortex-A9 based server system with a four-core CPU running at 1.1 GHz. The system used Ubuntu 12.04 as operating system and the HEPSPEC 2006 (HS06) benchmarking suite was compiled natively with gcc-4.4 on the system. The benchmark was run for various settings of the relevant gcc compiler options. We did not find significant influence from the compiler options on the benchmark result. The final HS06 benchmark result is 10.4.

  16. Argonne Code Center: Benchmark problem book.

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    1977-06-01

    This book is an outgrowth of activities of the Computational Benchmark Problems Committee of the Mathematics and Computation Division of the American Nuclear Society. This is the second supplement of the original benchmark book which was first published in February, 1968 and contained computational benchmark problems in four different areas. Supplement No. 1, which was published in December, 1972, contained corrections to the original benchmark book plus additional problems in three new areas. The current supplement. Supplement No. 2, contains problems in eight additional new areas. The objectives of computational benchmark work and the procedures used by the committee in pursuing the objectives are outlined in the original edition of the benchmark book (ANL-7416, February, 1968). The members of the committee who have made contributions to Supplement No. 2 are listed below followed by the contributors to the earlier editions of the benchmark book.

  17. Benchmarks

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — The National Flood Hazard Layer (NFHL) data incorporates all Digital Flood Insurance Rate Map(DFIRM) databases published by FEMA, and any Letters Of Map Revision...

  18. Kepler and Ground-Based Transits of the exo-Neptune HAT-P-11b

    Science.gov (United States)

    Deming, Drake; Sada, Pedro V.; Jackson, Brian; Peterson, Steven W.; Agol, Eric; Knutson, Heather A.; Jennings, Donald E.; Haase, Plynn; Bays, Kevin

    2011-01-01

    We analyze 26 archival Kepler transits of the exo-Neptune HAT-P-11b, supplemented by ground-based transits observed in the blue (B band) and near-IR (J band). Both the planet and host star are smaller than previously believed; our analysis yields Rp = 4.31 R xor 0.06 R xor and Rs = 0.683 R solar mass 0.009 R solar mass, both about 3 sigma smaller than the discovery values. Our ground-based transit data at wavelengths bracketing the Kepler bandpass serve to check the wavelength dependence of stellar limb darkening, and the J-band transit provides a precise and independent constraint on the transit duration. Both the limb darkening and transit duration from our ground-based data are consistent with the new Kepler values for the system parameters. Our smaller radius for the planet implies that its gaseous envelope can be less extensive than previously believed, being very similar to the H-He envelope of GJ 436b and Kepler-4b. HAT-P-11 is an active star, and signatures of star spot crossings are ubiquitous in the Kepler transit data. We develop and apply a methodology to correct the planetary radius for the presence of both crossed and uncrossed star spots. Star spot crossings are concentrated at phases 0.002 and +0.006. This is consistent with inferences from Rossiter-McLaughlin measurements that the planet transits nearly perpendicular to the stellar equator. We identify the dominant phases of star spot crossings with active latitudes on the star, and infer that the stellar rotational pole is inclined at about 12 deg 5 deg to the plane of the sky. We point out that precise transit measurements over long durations could in principle allow us to construct a stellar Butterfly diagram to probe the cyclic evolution of magnetic activity on this active K-dwarf star.

  19. Toward High Altitude Airship Ground-Based Boresight Calibration of Hyperspectral Pushbroom Imaging Sensors

    Directory of Open Access Journals (Sweden)

    Aiwu Zhang

    2015-12-01

    Full Text Available The complexity of the single linear hyperspectral pushbroom imaging based on a high altitude airship (HAA without a three-axis stabilized platform is much more than that based on the spaceborne and airborne. Due to the effects of air pressure, temperature and airflow, the large pitch and roll angles tend to appear frequently that create pushbroom images highly characterized with severe geometric distortions. Thus, the in-flight calibration procedure is not appropriate to apply to the single linear pushbroom sensors on HAA having no three-axis stabilized platform. In order to address this problem, a new ground-based boresight calibration method is proposed. Firstly, a coordinate’s transformation model is developed for direct georeferencing (DG of the linear imaging sensor, and then the linear error equation is derived from it by using the Taylor expansion formula. Secondly, the boresight misalignments are worked out by using iterative least squares method with few ground control points (GCPs and ground-based side-scanning experiments. The proposed method is demonstrated by three sets of experiments: (i the stability and reliability of the method is verified through simulation-based experiments; (ii the boresight calibration is performed using ground-based experiments; and (iii the validation is done by applying on the orthorectification of the real hyperspectral pushbroom images from a HAA Earth observation payload system developed by our research team—“LanTianHao”. The test results show that the proposed boresight calibration approach significantly improves the quality of georeferencing by reducing the geometric distortions caused by boresight misalignments to the minimum level.

  20. Estimation of Antarctic ozone loss from Ground-based total column measurements

    Directory of Open Access Journals (Sweden)

    J. Kuttippurath

    2010-03-01

    Full Text Available The passive ozone method is used to estimate ozone loss from ground-based measurements in the Antarctic. A sensitivity study shows that the O3 loss can be estimated within an accuracy of ~4%. The method is then applied to the observations from Amundsen-Scott/South Pole, Arrival Heights, Belgrano, Concordia, Dumont d'Urville, Faraday, Halley, Marambio, Neumayer, Rothera, Syowa and Zhongshan for the diagnosis of ozone loss in the Antarctic. On average, the five-day running mean of the vortex averaged ozone column loss deduced from the ground-based stations shows about 53% in 2009, 59% in 2008, 55% in 2007, 56% in 2006 and 61% in 2005. The observed O3 loss and loss rates are in very good agreement with the satellite observations (Ozone Monitoring Instrument and Sciamachy and are well reproduced by the model (Reprobus and SLIMCAT calculations.

    The historical ground-based total ozone measurements show that the depletion started in the late 1970s, reached a maximum in the early 1990s, stabilising afterwards at this level until present, with the exception of 2002, the year of an early vortex break-up. There is no indication of significant recovery yet.

    At southern mid-latitudes, a total ozone reduction of 40–50% is observed at the newly installed station Rio Gallegos and 25–35% at Kerguelen in October–November of 2008–2009 and 2005–2009 (except 2008 respectively, and of 10–20% at Macquarie Island in July–August of 2006–2009. This illustrates the significance of measurements at the edges of Antarctica.

  1. Comparison of OMI UV observations with ground-based measurements at high northern latitudes

    Directory of Open Access Journals (Sweden)

    G. Bernhard

    2015-03-01

    Full Text Available The Dutch-Finnish Ozone Monitoring Instrument (OMI on board NASA's Aura spacecraft provides estimates of erythemal (sunburning ultraviolet (UV dose rates and erythemal daily doses. These data were compared with ground-based measurements at 13 stations located throughout the Arctic and Scandinavia from 60 to 83° N. The study corroborates results from earlier work, but is based on a longer time series (eight vs. two years and considers additional data products, such as the erythemal dose rate at the time of the satellite overpass. Furthermore, systematic errors in satellite UV data resulting from inaccuracies in the surface albedo climatology used in the OMI UV algorithm are systematically assessed. At times when the surface albedo is correctly known, OMI data typically exceed ground-based measurements by 0–11%. When the OMI albedo climatology exceeds the actual albedo, OMI data may be biased high by as much as 55%. In turn, when the OMI albedo climatology is too low, OMI data can be biased low by up to 59%. Such large negative biases may occur when reflections from snow and ice, which increase downwelling UV irradiance, are misinterpreted as reflections from clouds, which decrease the UV flux at the surface. Results suggest that a better OMI albedo climatology would greatly improve the accuracy of OMI UV data products even if year-to-year differences of the actual albedo cannot be accounted for. A pathway for improving the OMI albedo climatology is discussed. Results also demonstrate that ground-based measurements from the center of Greenland, where high, homogenous surface albedo is observed year round, are ideally suited to detect systematic problems or temporal drifts in estimates of surface UV irradiance from space.

  2. Ground-based microwave measuring of middle atmosphere ozone and temperature profiles during sudden stratospheric warming

    Science.gov (United States)

    Feigin, A. M.; Shvetsov, A. A.; Krasilnikov, A. A.; Kulikov, M. Y.; Karashtin, D. A.; Mukhin, D.; Bolshakov, O. S.; Fedoseev, L. I.; Ryskin, V. G.; Belikovich, M. V.; Kukin, L. M.

    2012-12-01

    We carried out the experimental campaign aimed to study the response of middle atmosphere on a sudden stratospheric warming in winter 2011-2012 above Nizhny Novgorod, Russia (56N, 44E). We employed the ground-based microwave complex for remote sensing of middle atmosphere developed in the Institute of Applied Physics of the Russian Academy of Science. The complex combines two room-temperature radiometers, i.e. microwave ozonometer and the stratospheric thermometer. Ozonometer is a heterodyne spectroradiometer, operating in a range of frequencies that include the rotation transition of ozone molecules with resonance frequency 110.8 GHz. Operating frequency range of the stratospheric thermometer is 52.5-5.4 GHz and includes lower frequency edge of 5 mm molecular oxygen absorption bands and among them two relatively weak lines of O2 emission. Digital fast Fourier transform spectrometers developed by "Acqiris" are employed for signal spectral analysis. The spectrometers have frequency range 0.05-1 GHz and realizes the effective resolution about 61 KHz. For retrieval vertical profiles of ozone and temperature from radiometric data we applied novel method based on Bayesian approach to inverse problem solution, which assumed a construction of probability distribution of the characteristics of retrieved profiles with taking into account measurement noise and available a priori information about possible distributions of ozone and temperature in the middle atmosphere. Here we introduce the results of the campaign in comparison with Aura MLS data. Presented data includes one sudden stratospheric warming event which took place in January 13-14 and was accompanied by temperature increasing up to 310 K at 45 km height. During measurement period, ozone and temperature variations were (almost) anti-correlated, and total ozone abundance achieved a local maxima during the stratosphere cooling phase. In general, results of ground-based measurements are in good agreement with

  3. Ground-Based Network and Supersite Observations to Complement and Enrich EOS Research

    Science.gov (United States)

    Tsay, Si-Chee; Holben, Brent N.; Welton, Ellsworth J.

    2011-01-01

    Since 1997 NASA has been successfully launching a series of satellites - the Earth Observing System (EOS) - to intensively study, and gain a better understanding of, the Earth as an integrated system. Space-borne remote sensing observations, however, are often plagued by contamination of surface signatures. Thus, ground-based in-situ and remote-sensing measurements, where signals come directly from atmospheric constituents, the sun, and/or the Earth-atmosphere interactions, provide additional information content for comparisons that confirm quantitatively the usefulness of the integrated surface, aircraft, and satellite datasets. Through numerous participations, particularly but not limited to the EOS remote-sensing/retrieval and validation projects over the years, NASA/GSFC has developed and continuously refined ground-based networks and mobile observatories that proved to be vital in providing high temporal measurements, which complement and enrich the satellite observations. These are: the AERO NET (AErosol RObotic NETwork) a federation of ground-based globally distributed network of spectral sun-sky photometers; the MPLNET (Micro-Pulse Lidar NETwork, a similarly organized network of micro-pulse lidar systems measuring aerosol and cloud vertical structure continuously; and the SMART-COMMIT (Surface-sensing Measurements for Atmospheric Radiative Transfer - Chemical, Optical & Microphysical Measurements of In-situ Troposphere, mobile observatories, a suite of spectral radiometers and in-situ probes acquiring supersite measurements. Most MPLNET sites are collocated with those of AERONET, and both networks always support the deployment of SMART-COMMIT worldwide. These data products follow the data structure of EOS conventions: Level-0, instrument archived raw data; Level-1 (or 1.5), real-time data with no (or limited) quality assurance; Level-2, not real high temporal and spectral resolutions. In this talk, we will present NASA/GSFC groundbased facilities, serving

  4. Ground-based SMART-COMMIT Measurements for Studying Aerosol and Cloud Properties

    Science.gov (United States)

    Tsay, Si-Chee

    2008-01-01

    From radiometric principles, it is expected that the retrieved properties of extensive aerosols and clouds from reflected/emitted measurements by satellite (and/or aircraft) should be consistent with those retrieved from transmitted/emitted radiance observed at the surface. Although space-borne remote sensing observations cover large spatial domain, they are often plagued by contamination of surface signatures. Thus, ground-based in-situ and remote-sensing measurements, where signals come directly from atmospheric constituents, the sun, and/or the Earth-atmosphere interactions, provide additional information content for comparisons that confirm quantitatively the usefulness of the integrated surface, aircraft, and satellite data sets. The development and deployment of SMARTCOMMIT (Surface-sensing Measurements for Atmospheric Radiative Transfer - Chemical, Optical & Microphysical Measurements of In-situ Troposphere) mobile facilities are aimed for the optimal utilization of collocated ground-based observations as constraints to yield higher fidelity satellite retrievals and to determine any sampling bias due to target conditions. To quantify the energetics of the surface-atmosphere system and the atmospheric processes, SMART-COMMIT instruments fall into three categories: flux radiometer, radiance sensor and in-situ probe. In this paper, we will demonstrate the capability of SMART-COMMIT in recent field campaigns (e.g., CRYSTAL-FACE, UAE 2, BASEASIA, NAMMA) that were designed and executed to study the compelling variability in temporal scale of both anthropogenic and natural aerosols (e.g., biomass-burning smoke, airborne dust) and cirrus clouds. We envision robust approaches in which well-collocated ground-based measurements and space-borne observations will greatly advance our knowledge of extensive aerosols and clouds.

  5. Ground-based measurements of aerosol optical properties and radiative forcing in North China

    Institute of Scientific and Technical Information of China (English)

    Hongbin Chen; Xiangao Xia; Pucai Wang; Wenxing Zhang

    2007-01-01

    In order to gain an insight into the aerosol properties and their climatic effect over the continental source regions of China, it is of significance to carry out long-term ground-based measurements of aerosol optical properties and radiative forcing. A couple of temporary and permanent Aerosol Robotic Network (AERONET) sites and three comprehensive radiative sites were established in China as a result of international cooperation in recent years. Heavy aerosol loading and significant temporal and spatial variation over North China are revealed by the AERONET data.Aerosol-induced reductions in surface radiation budget are examined on the basis of collocated observations by sun photometers and pyranometers.

  6. Estimation of above ground biomass in boreal forest using ground-based Lidar

    Science.gov (United States)

    Taheriazad, L.; Moghadas, H.; Sanchez-Azofeifa, A.

    2017-05-01

    Assessing above ground biomass of forest is important for carbon storage monitoring in boreal forest. In this study, a new model is developed to estimate the above ground biomass using ground based Lidar data. 21 trees were measured and scanned across the plot area study in boreal forests of Alberta, Canada. The study area was scanned in the summer season 2014 to quantify the green biomass. The average of total crown biomass and green biomass in this study was 377 kg (standard deviation, S.D. = 243 kg) and 6.42 kg (S.D. = 2.69 m), respectively.

  7. Synergetic ground-based methods for remote measurements of ozone vertical profiles

    Science.gov (United States)

    Timofeyev, Yuriy; Kostsov, Vladimir; Virolainen, Yana

    2013-05-01

    The technique of combining ground-based measurements in infrared and microwave spectral regions in order to achieve higher accuracy of ozone profile retrieval in extensive altitude ranges is described and analyzed. The information content, errors, altitude ranges and vertical resolution of ozone profile retrieval have been studied on the basis of numerical simulation of synergetic experiments. Optimal conditions of measurements are defined and requirements to additional information are formulated. The first results on ozone vertical profile retrieval using groundbased measurements of FTIR-spectrometer and microwave radiometer are given.

  8. Solar diameter, eclipses and transits: the importance of ground-based observations

    CERN Document Server

    Sigismondi, Costantino

    2012-01-01

    According to satellite measurements the difference between polar and equatorial radius does not exceed 10 milliarcsec. These measurements are differential, and the absolute value of the solar diameter is not precisely known to a level of accuracy needed for finding variations during years or decades. Moreover the lifetime of a satellite is limited, and its calibration is not stable. This shows the need to continue ground-based observations of the Sun exploiting in particular the methods less affected by atmospheric turbulence, as the planetary transits and the total and annular eclipses. The state of art, the advantages and the limits of these two methods are here considered.

  9. Asteroseismology of Solar-type stars with Kepler III. Ground-based Data

    CERN Document Server

    Molenda-Zakowicz, Joanna; Sousa, Sergio; Frasca, Antonio; Biazzo, Katia; Huber, Daniel; Ireland, Mike; Bedding, Tim; Stello, Dennis; Uytterhoeven, Katrien; Dreizler, Stefan; De Cat, Peter; Briquet, Maryline; Catanzaro, Giovanni; Karoff, Chistoffer; Frandsen, Soeren; Spezzi, Loredana; Catala, Claude

    2010-01-01

    We report on the ground-based follow-up program of spectroscopic and photometric observations of solar-like asteroseismic targets for the Kepler space mission. These stars constitute a large group of more than thousand objects which are the subject of an intensive study of the Kepler Asteroseismic Science Consortium Working Group 1 (KASC WG-1). The main goal of this coordinated research is the determination of the fundamental stellar atmospheric parameters, which are used for the computing of their asteroseismic models, as well as for the verification of the Kepler Input Catalogue (KIC).

  10. Boost-Phase ballistic missile trajectory estimation with ground based radar

    Institute of Scientific and Technical Information of China (English)

    Tang Yuyan; Huang Peikang

    2006-01-01

    A conditional boost-phase trajectory estimation method based on ballistic missile (BM) information database and classification is developed to estimate and predict boos-phase BM trajectory. The main uncertain factors to describe BM dynamics equation are reduced to the control law of trajectory pitch angle in boost-phase. After the BM mass at the beginning of estimation, the BM attack angle and the modification of engine thrust denoting BM acceleration are modeled reasonably, the boost-phase BM trajectory estimation with ground based radar is well realized. The validity of this estimation method is testified by computer simulation with a typical example.

  11. Integrated interpretation of helicopter and ground-based geophysical data recorded within the Okavango Delta, Botswana

    DEFF Research Database (Denmark)

    Podgorski, Joel E.; Green, Alan G.; Kalscheuer, Thomas

    2015-01-01

    ) data recorded across most of the delta, (ii) 2D models and images derived from ground-based electrical resistance tomographic, transient electromagnetic, and high resolution seismic reflection/refraction tomographic data acquired at four selected sites in western and north-central regions of the delta...... resistivities and very low to low P-wave velocities. Except for images of several buried abandoned river channels, it is non-reflective. The laterally extensive underlying unit of low resistivities, low P-wave velocity, and subhorizontal reflectors very likely contains saline-water-saturated sands and clays...... reflectivity. The interface between the POM unit and basement is a prominent seismic reflector....

  12. Hypergravity Facilities in the ESA Ground-Based Facility Program - Current Research Activities and Future Tasks

    Science.gov (United States)

    Frett, Timo; Petrat, Guido; W. A. van Loon, Jack J.; Hemmersbach, Ruth; Anken, Ralf

    2016-06-01

    Research on Artificial Gravity (AG) created by linear acceleration or centrifugation has a long history and could significantly contribute to realize long-term human spaceflight in the future. Employing centrifuges plays a prominent role in human physiology and gravitational biology. This article gives a short review about the background of Artificial Gravity with respect to hypergravity (including partial gravity) and provides information about actual ESA ground-based facilities for research on a variety of biosystems such as cells, plants, animals or, particularly, humans.

  13. Images of Neptune's ring arcs obtained by a ground-based telescope

    Science.gov (United States)

    Sicardy, B.; Roddier, F.; Roddier, C.; Perozzi, E.; Graves, J. E.; Guyon, O.; Northcott, M. J.

    1999-08-01

    Neptune has a collection of incomplete narrow rings, known as ring arcs, which should in isolation be destroyed by differential motion in a matter of months. Yet since first discovered by stellar occultations in 1984, they appear to have persisted, perhaps through a gravitational resonance effect involving the satellite Galatea. Here we report ground-based observations of the ring arcs, obtained using an adaptive optics system. Our data, and those obtained using the Hubble Space Telescope (reported in a companion paper), indicate that the ring arcs are near, but not within the resonance with Galatea, in contrast to what is predicted by some models.

  14. SCENARIO AND TARGET SIMULATION FOR A GROUND BASED MULTIFUNCTION PHASED ARRAY RADAR

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    This paper describes a scenario and target simulation which operates in non real-time to provide full closed-loop operation of the ground based multifunction phased array radar simulation system in support of ballistic missile defence experiments against countermeasure.By simulating the target scattering signature and dynamical signature,this scenario and target simulation provide re- alistic scenario source to evaluate the system performance of multifunction phased array radar,and the key algorithms verification and validation such as target tracking,multi-target imaging and target recognition.

  15. Improved ground-based FTS measurement for column abundance CO2 retrievals(Conference Presentation)

    Science.gov (United States)

    Goo, Tae-Young

    2016-10-01

    The National Institute of Meteorological Sciences has operated a ground-based Fourier Transform Spectrometer (FTS) at Anmyeondo, Korea since December 2012. Anmyeondo FTS site is a designated operational station of Total Carbon Column Observing Network (TCCON) and belongs to regional Global Atmosphere Watch observatory. A Bruker IFS-125HR model, which has a significantly high spectral resolution by 0.02 cm-1, is employed and instrument specification is almost same as the TCCON configuration. such as a spectrum range of 3,800 16,000 cm-1, a resolution of 1 cm-1, InGaAs and Si-Diode detectors and CaF2 beam splitter. It is found that measured spectra have a good agreement with simulated spectra. In order to improve the spectral accuracy and stability, The Operational Automatic System for Intensity of Sunray (OASIS) has been developed. The OASIS can provide consistent photon energy optimized to detector range by controlling the diameter of solar beam reflected from the mirror of suntracker. As a result, monthly modulation efficiency (ME), which indicates the spectral accuracy of FTS measurement, has been recorded the vicinity of 99.9% since Feb 2015. The ME of 98% is regarded as the error of 0.1% in the ground-based in-situ CO2 measurement. Total column abundances of CO2 and CH4 during 2015 are estimated by using GGG v14 and compared with ground-based in-situ CO2 and CH4 measurements at the height of 86 m above sea level. The seasonality of CO2 is well captured by both FTS and in-situ measurements while there is considerable difference on the amplitude of CO2 seasonal variation due to the insensitivity of column CO2 to the surface carbon cycle dynamics in nature as well as anthropogenic sources. Total column CO2 and CH4 approximately vary from 395 ppm to 405 ppm and from 1.82 ppm to 1.88 ppm, respectively. It should be noted that few measurements obtained in July to August because of a lot of cloud and fog. It is found that enhancement of CH4 from the FTS at Anmyeondo

  16. The laser calibration system for the STACEE ground-based gamma ray detector

    CERN Document Server

    Hanna, D

    2002-01-01

    We describe the design and performance of the laser system used for calibration monitoring of components of the STACEE detector. STACEE is a ground based gamma ray detector which uses the heliostats of a solar power facility to collect and focus Cherenkov light onto a system of secondary optics and photomultiplier tubes. To monitor the gain and check the linearity and timing properties of the phototubes and associated electronics, a system based on a dye laser, neutral density filters and optical fibres has been developed. In this paper we describe the system and present some results from initial tests made with it.

  17. Ground-Based Gas-Liquid Flow Research in Microgravity Conditions: State of Knowledge

    Science.gov (United States)

    McQuillen, J.; Colin, C.; Fabre, J.

    1999-01-01

    During the last decade, ground-based microgravity facilities have been utilized in order to obtain predictions for spacecraft system designers and further the fundamental understanding of two-phase flow. Although flow regime, pressure drop and heat transfer coefficient data has been obtained for straight tubes and a limited number of fittings, measurements of the void fraction, film thickness, wall shear stress, local velocity and void information are also required in order to develop general mechanistic models that can be utilized to ascertain the effects of fluid properties, tube geometry and acceleration levels. A review of this research is presented and includes both empirical data and mechanistic models of the flow behavior.

  18. Ground-based and spaceborn observations of the type II burst with developed fine structure

    Science.gov (United States)

    Dorovskyy, V.; Melnik, V.; Konovalenko, A.; Brazhenko, A.; Rucker, H.; Stanislavskyy, A.; Panchenko, M.

    2012-09-01

    The combination of two huge ground-based radio telescopes (UTR-2 and URAN-2) operated in decameter wavelengths with three spatially separated spacecrafts (SOHO, STEREO-A and STEREO-B) equipped with white light coronagraphs, UV telescopes and decameter-hectometer band radio telescopes created a unique opportunity to investigate the high energy solar transients, such as CMEs and their manifestations in radio bands - type II bursts. In this paper we made detailed analysis of the powerful and complex event occurred on 7 June 2011 consisted of Halo-CME and type II burst with rich fine structure.

  19. Advanced ground-based gravitational-wave detectors' potential to detect generic deviations from general relativity

    CERN Document Server

    Narikawa, Tatsuya

    2016-01-01

    We discuss the potential of the advanced ground-based gravitational-wave detectors, such as LIGO, Virgo, and KAGRA, to detect generic deviations of gravitational waveforms from the prediction of General Relativity. We use the parameterized post-Einsteinian formalism to characterize the deviations, and assess how much magnitude of the deviations are detectable by using an approximate decision scheme based on Bayesian statistics. We find that there exist detectable regions of the parameterized post-Einsteinian parameters by using a single gravitational wave event. The regions are not excluded by currently existing binary pulsar observations for the parameterized post-Einsteinian parameters at higher post-Newtonian order.

  20. Benchmark dose profiles for joint-action quantal data in quantitative risk assessment.

    Science.gov (United States)

    Deutsch, Roland C; Piegorsch, Walter W

    2012-12-01

    Benchmark analysis is a widely used tool in public health risk analysis. Therein, estimation of minimum exposure levels, called Benchmark Doses (BMDs), that induce a prespecified Benchmark Response (BMR) is well understood for the case of an adverse response to a single stimulus. For cases where two agents are studied in tandem, however, the benchmark approach is far less developed. This article demonstrates how the benchmark modeling paradigm can be expanded from the single-dose setting to joint-action, two-agent studies. Focus is on response outcomes expressed as proportions. Extending the single-exposure setting, representations of risk are based on a joint-action dose-response model involving both agents. Based on such a model, the concept of a benchmark profile (BMP) - a two-dimensional analog of the single-dose BMD at which both agents achieve the specified BMR - is defined for use in quantitative risk characterization and assessment. The resulting, joint, low-dose guidelines can improve public health planning and risk regulation when dealing with low-level exposures to combinations of hazardous agents.

  1. PageRank Pipeline Benchmark: Proposal for a Holistic System Benchmark for Big-Data Platforms

    CERN Document Server

    Dreher, Patrick; Hill, Chris; Gadepally, Vijay; Kuszmaul, Bradley; Kepner, Jeremy

    2016-01-01

    The rise of big data systems has created a need for benchmarks to measure and compare the capabilities of these systems. Big data benchmarks present unique scalability challenges. The supercomputing community has wrestled with these challenges for decades and developed methodologies for creating rigorous scalable benchmarks (e.g., HPC Challenge). The proposed PageRank pipeline benchmark employs supercomputing benchmarking methodologies to create a scalable benchmark that is reflective of many real-world big data processing systems. The PageRank pipeline benchmark builds on existing prior scalable benchmarks (Graph500, Sort, and PageRank) to create a holistic benchmark with multiple integrated kernels that can be run together or independently. Each kernel is well defined mathematically and can be implemented in any programming environment. The linear algebraic nature of PageRank makes it well suited to being implemented using the GraphBLAS standard. The computations are simple enough that performance predictio...

  2. Exploring the relationship between monitored ground-based and satellite aerosol measurements over the City of Johannesburg

    CSIR Research Space (South Africa)

    Garland, Rebecca M

    2012-09-01

    Full Text Available This project studied the relationship between aerosol optical depth (AOD) from the Multi-angle Imaging SpectroRadiometer (MISR) instrument on the Terra satellite, and ground-based monitored particulate matter (PM) mass concentrations measured...

  3. A Process Model for Deployment Planning of Ground-based Air Defense System Against Asymmetric Homeland Threat

    Science.gov (United States)

    2009-01-01

    A Process Model for Deployment Planning of Ground-based Air Defense System Against Asymmetric Homeland Threat Ronald L. Cypert Scientific...units, along with coordination at the state and federal agency level, a dynamic process modeling capability was chosen to chart the myriad...COVERED 00-00-2009 to 00-00-2009 4. TITLE AND SUBTITLE A Process Model for Deployment Planning of Ground-based Air Defense System Against

  4. NASA Software Engineering Benchmarking Effort

    Science.gov (United States)

    Godfrey, Sally; Rarick, Heather

    2012-01-01

    Benchmarking was very interesting and provided a wealth of information (1) We did see potential solutions to some of our "top 10" issues (2) We have an assessment of where NASA stands with relation to other aerospace/defense groups We formed new contacts and potential collaborations (1) Several organizations sent us examples of their templates, processes (2) Many of the organizations were interested in future collaboration: sharing of training, metrics, Capability Maturity Model Integration (CMMI) appraisers, instructors, etc. We received feedback from some of our contractors/ partners (1) Desires to participate in our training; provide feedback on procedures (2) Welcomed opportunity to provide feedback on working with NASA

  5. Benchmarking of human resources management

    OpenAIRE

    David M. Akinnusi

    2008-01-01

    This paper reviews the role of human resource management (HRM) which, today, plays a strategic partnership role in management. The focus of the paper is on HRM in the public sector, where much hope rests on HRM as a means of transforming the public service and achieving much needed service delivery. However, a critical evaluation of HRM practices in the public sector reveals that these services leave much to be desired. The paper suggests the adoption of benchmarking as a process to revamp HR...

  6. Development of a Ground-Based Atmospheric Monitoring Network for the Global Mercury Observation System (GMOS

    Directory of Open Access Journals (Sweden)

    Sprovieri F.

    2013-04-01

    Full Text Available Consistent, high-quality measurements of atmospheric mercury (Hg are necessary in order to better understand Hg emissions, transport, and deposition on a global scale. Although the number of atmospheric Hg monitoring stations has increased in recent years, the available measurement database is limited and there are many regions of the world where measurements have not been extensively performed. Long-term atmospheric Hg monitoring and additional ground-based monitoring sites are needed in order to generate datasets that will offer new insight and information about the global scale trends of atmospheric Hg emissions and deposition. In the framework of the Global Mercury Observation System (GMOS project, a coordinated global observational network for atmospheric Hg is being established. The overall research strategy of GMOS is to develop a state-of-the-art observation system able to provide information on the concentration of Hg species in ambient air and precipitation on the global scale. This network is being developed by integrating previously established ground-based atmospheric Hg monitoring stations with newly established GMOS sites that are located both at high altitude and sea level locations, as well as in climatically diverse regions. Through the collection of consistent, high-quality atmospheric Hg measurement data, we seek to create a comprehensive assessment of atmospheric Hg concentrations and their dependence on meteorology, long-range atmospheric transport and atmospheric emissions.

  7. Potential use of ground-based sensor technologies for weed detection.

    Science.gov (United States)

    Peteinatos, Gerassimos G; Weis, Martin; Andújar, Dionisio; Rueda Ayala, Victor; Gerhards, Roland

    2014-02-01

    Site-specific weed management is the part of precision agriculture (PA) that tries to effectively control weed infestations with the least economical and environmental burdens. This can be achieved with the aid of ground-based or near-range sensors in combination with decision rules and precise application technologies. Near-range sensor technologies, developed for mounting on a vehicle, have been emerging for PA applications during the last three decades. These technologies focus on identifying plants and measuring their physiological status with the aid of their spectral and morphological characteristics. Cameras, spectrometers, fluorometers and distance sensors are the most prominent sensors for PA applications. The objective of this article is to describe-ground based sensors that have the potential to be used for weed detection and measurement of weed infestation level. An overview of current sensor systems is presented, describing their concepts, results that have been achieved, already utilized commercial systems and problems that persist. A perspective for the development of these sensors is given. © 2013 Society of Chemical Industry.

  8. Ground-based observation of emission lines from the corona of a red-dwarf star.

    Science.gov (United States)

    Schmitt, J H; Wichmann, R

    2001-08-02

    All 'solar-like' stars are surrounded by coronae, which contain magnetically confined plasma at temperatures above 106 K. (Until now, only the Sun's corona could be observed in the optical-as a shimmering envelope during a total solar eclipse.) As the underlying stellar 'surfaces'-the photospheres-are much cooler, some non-radiative process must be responsible for heating the coronae. The heating mechanism is generally thought to be magnetic in origin, but is not yet understood even for the case of the Sun. Ultraviolet emission lines first led to the discovery of the enormous temperature of the Sun's corona, but thermal emission from the coronae of other stars has hitherto been detectable only from space, at X-ray wavelengths. Here we report the detection of emission from highly ionized iron (Fe XIII at 3,388.1 A) in the corona of the red-dwarf star CN Leonis, using a ground-based telescope. The X-ray flux inferred from our data is consistent with previously measured X-ray fluxes, and the non-thermal line width of 18.4 km s-1 indicates great similarities between solar and stellar coronal heating mechanisms. The accessibility and spectral resolution (45,000) of the ground-based instrument are much better than those of X-ray satellites, so a new window to the study of stellar coronae has been opened.

  9. Proceedings of the 2011 Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Wetovsky, Marvin A. [Editor; Patterson, Eileen F. [Editor; Sandoval, Marisa N. [Editor

    2011-09-13

    These proceedings contain papers prepared for the Monitoring Research Review 2011: Ground-Based Nuclear Explosion Monitoring Technologies, held 13-15 September, 2011 in Tucson, Arizona. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Defense Threat Reduction Agency (DTRA), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO), National Science Foundation (NSF), and other invited sponsors. The scientific objectives of the research are to improve the United States' capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  10. Ground-based Observations of the Solar Sources of Space Weather (Invited Review)

    CERN Document Server

    Veronig, Astrid M

    2016-01-01

    Monitoring of the Sun and its activity is a task of growing importance in the frame of space weather research and awareness. Major space weather disturbances at Earth have their origin in energetic outbursts from the Sun: solar flares, coronal mass ejections and associated solar energetic particles. In this review we discuss the importance and complementarity of ground-based and space-based observations for space weather studies. The main focus is drawn on ground-based observations in the visible range of the spectrum, in particular in the diagnostically manifold H$\\alpha$ spectral line, which enables us to detect and study solar flares, filaments, filament eruptions, and Moreton waves. Existing H$\\alpha$ networks such as the GONG and the Global High-Resolution H$\\alpha$ Network are discussed. As an example of solar observations from space weather research to operations, we present the system of real-time detection of H$\\alpha$ flares and filaments established at Kanzelh\\"ohe Observatory (KSO; Austria) in the...

  11. Proceedings of the 27th Seismic Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Wetovsky, Marvin A. [Editor; Benson, Jody [Editor; Patterson, Eileen F. [Editor

    2005-09-20

    These proceedings contain papers prepared for the 27th Seismic Research Review: Ground-Based Nuclear Explosion Monitoring Technologies, held 20-22 September, 2005 in Rancho Mirage, California. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Air Force Technical Applications Center (AFTAC), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  12. Modelling systematics of ground-based transit photometry I. Implications on transit timing variations

    CERN Document Server

    von Essen, C; Mallonn, M; Tingley, B; Marcussen, M

    2016-01-01

    The transit timing variation technique (TTV) has been widely used to detect and characterize multiple planetary systems. Due to the observational biases imposed mainly by the photometric conditions and instrumentation and the high signal-to-noise required to produce primary transit observations, ground-based data acquired using small telescopes limit the technique to the follow-up of hot Jupiters. However, space-based missions such as Kepler and CoRoT have already revealed that hot Jupiters are mainly found in single systems. Thus, it is natural to question ourselves if we are properly using the observing time at hand carrying out such follow-ups, or if the use of medium-to-low quality transit light curves, combined with current standard techniques of data analysis, could be playing a main role against exoplanetary search via TTVs. The purpose of this work is to investigate to what extent ground-based observations treated with current modelling techniques are reliable to detect and characterize additional pla...

  13. Pc5 Oscillation Analysis by the Satellite and Ground-Based Data

    Institute of Scientific and Technical Information of China (English)

    A. Potapov; T. Polyushkina; T. L. Zhang; H. Zhao; A. Guglielmi; J. Kultima

    2005-01-01

    Large amplitude Pc5 event was observed in the space and on ground on August 3, 2001, about three hours after contact of the strong discontinuity in the solar wind with the magnetosphere according to data from ACE and Wind satellites. The Pc5 amplitude was as high as 15 nT in the tail of magnetosphere and about 5 nT at the ground based stations. In the magnetosphere Pc5 waves were observed by Cluster and Polar satellites, which occupied positions in the morning part of the near tail at the close field lines but were parted by distance of 11.5 Re, mainly along the x-axis of the GSM coordinate system. Both compressional and transverse components of the Pc5 wave activity were observed in the space, with the transverse component having the larger amplitude. Time delay between the Cluster and Polar satellites was about 8 minutes, which could be interpreted as a wave propagation from the geomagnetic tail to the Earth with the 150km/s group velocity.The ground-based Pc5 activity was analysed by using data from the Image magnetometer network. Doubtless demonstrations of a field line resonant structure were found in variations of amplitude and polarization with latitude. Finnish chain of search coil magnetometers observed modulated Pc1 emission simultaneously with the Pc5 wave train. A possibility of non-linear impact of Pc5 wave energy on the plasma and waves in the magnetosphere is discussed.

  14. CRRES/Ground-based multi-instrument observations of an interval of substorm activity

    Directory of Open Access Journals (Sweden)

    T. K. Yeoman

    Full Text Available Observations are presented of data taken during a 3-h interval in which five clear substorm onsets/intensifications took place. During this interval ground-based data from the EISCAT incoherent scatter radar, a digital CCD all sky camera, and an extensive array of magnetometers were recorded. In addition data from the CRRES and DMSP spacecraft, whose footprints passed over Scandinavia very close to most of the ground-based instrumentation, are available. The locations and movements of the substorm current system in latitude and longitude, determined from ground and spacecraft magnetic field data, have been correlated with the locations and propagation of increased particle precipitation in the E-region at EISCAT, increased particle fluxes measured by CRRES and DMSP, with auroral luminosity and with ionospheric convection velocities. The onsets and propagation of the injection of magnetospheric particle populations and auroral luminosity have been compared. CRRES was within or very close to the substorm expansion phase onset sector during the interval. The onset region was observed at low latitudes on the ground, and has been confirmed to map back to within L=7 in the magnetotail. The active region was then observed to propagate tailward and poleward. Delays between the magnetic signature of the substorm field aligned currents and field dipolarisation have been measured. The observations support a near-Earth plasma instability mechanism for substorm expansion phase onset.

  15. Towards the development of tamper-resistant, ground-based mobile sensor nodes

    Science.gov (United States)

    Mascarenas, David; Stull, Christopher; Farrar, Charles

    2011-11-01

    Mobile sensor nodes hold great potential for collecting field data using fewer resources than human operators would require and potentially requiring fewer sensors than a fixed-position sensor array. It would be very beneficial to allow these mobile sensor nodes to operate unattended with a minimum of human intervention. In order to allow mobile sensor nodes to operate unattended in a field environment, it is imperative that they be capable of identifying and responding to external agents that may attempt to tamper with, damage or steal the mobile sensor nodes, while still performing their data collection mission. Potentially hostile external agents could include animals, other mobile sensor nodes, or humans. This work will focus on developing control policies to help enable a mobile sensor node to identify and avoid capture by a hostile un-mounted human. The work is developed in a simulation environment, and demonstrated using a non-holonomic, ground-based mobile sensor node. This work will be a preliminary step toward ensuring the cyber-physical security of ground-based mobile sensor nodes that operate unattended in potentially unfriendly environments.

  16. a Universal De-Noising Algorithm for Ground-Based LIDAR Signal

    Science.gov (United States)

    Ma, Xin; Xiang, Chengzhi; Gong, Wei

    2016-06-01

    Ground-based lidar, working as an effective remote sensing tool, plays an irreplaceable role in the study of atmosphere, since it has the ability to provide the atmospheric vertical profile. However, the appearance of noise in a lidar signal is unavoidable, which leads to difficulties and complexities when searching for more information. Every de-noising method has its own characteristic but with a certain limitation, since the lidar signal will vary with the atmosphere changes. In this paper, a universal de-noising algorithm is proposed to enhance the SNR of a ground-based lidar signal, which is based on signal segmentation and reconstruction. The signal segmentation serving as the keystone of the algorithm, segments the lidar signal into three different parts, which are processed by different de-noising method according to their own characteristics. The signal reconstruction is a relatively simple procedure that is to splice the signal sections end to end. Finally, a series of simulation signal tests and real dual field-of-view lidar signal shows the feasibility of the universal de-noising algorithm.

  17. Understanding the Laminar Distribution of Tropospheric Ozone from Ground-Based, Airborne, Spaceborne, and Modeling Perspectives

    Science.gov (United States)

    Newchurch, Mike; Johnson, Matthew S.; Huang, Guanyu; Kuang, Shi; Wang, Lihua; Chance, Kelly; Liu, Xiong

    2016-01-01

    Laminar ozone structure is a ubiquitous feature of tropospheric-ozone distributions resulting from dynamic and chemical atmospheric processes. Understanding the characteristics of these ozone laminae and the mechanisms responsible for producing them is important to outline the transport pathways of trace gases and to quantify the impact of different sources on tropospheric background ozone. In this study, we present a new method to detect ozone laminae to understand their climatological characteristics of occurrence frequency in terms of thickness and altitude. We employ both ground-based and airborne ozone lidar measurements and other synergistic observations and modeling to investigate the sources and mechanisms such as biomass burning transport, stratospheric intrusion, lightning-generated NOx, and nocturnal low-level jets that are responsible for depleted or enhanced tropospheric ozone layers. Spaceborne (e.g., OMI (Ozone Monitoring Instrument), TROPOMI (Tropospheric Monitoring Instrument), TEMPO (Tropospheric Emissions: Monitoring of Pollution)) measurements of these laminae will observe greater horizontal extent and lower vertical resolution than balloon-borne or lidar measurements will quantify. Using integrated ground-based, airborne, and spaceborne observations in a modeling framework affords insight into how to gain knowledge of both the vertical and horizontal evolution of these ubiquitous ozone laminae.

  18. Ground Based Retrievals of Small Ice Crystals and Water Phase in Arctic Cirrus

    Science.gov (United States)

    Mishra, Subhashree; Mitchell, David L.; DeSlover, Daniel

    2009-03-01

    The microphysical properties of cirrus clouds are uncertain due to the problem of ice particles shattering at the probe inlet upon sampling. To facilitate better estimation of small ice crystal concentrations in cirrus clouds, a new ground-based remote sensing technique has been used in combination with in situ aircraft measurements. Data from the Mixed-Phase Arctic Cloud Experiment (M-PACE), conducted at the north slope of Alaska (winter 2004), have been used to test a new method for retrieving the liquid water path (LWP) and ice water path (IWP) in mixed phase clouds. The framework of the retrieval algorithm consists of the modified anomalous diffraction approximation or MADA (for mixed phase cloud optical properties), a radar reflectivity-ice microphysics relationship and a temperature-dependent ice particle size distribution (PSD) scheme. Cloud thermal emission measurements made by the ground-based Atmospheric Emitted Radiance Interferometer (AERI) yield information on the total water path (TWP) while reflectivity measurements from the Millimeter Cloud Radar (MMCR) are used to derive the IWP. The AERI is also used to indicate the concentration of small ice crystals (DBeer's law absorption. While this is still a work in progress, the anticipated products from this AERI-radar retrieval scheme are the IWP, LWP, small-to-large ice crystal number concentration ratio and effective diameter for cirrus, as well as the ice particle number concentration for a given ice water content (IWC).

  19. Synchronized observations by using the STEREO and the largest ground-based decametre radio telescope

    Science.gov (United States)

    Konovalenko, A. A.; Stanislavsky, A. A.; Rucker, H. O.; Lecacheux, A.; Mann, G.; Bougeret, J.-L.; Kaiser, M. L.; Briand, C.; Zarka, P.; Abranin, E. P.; Dorovsky, V. V.; Koval, A. A.; Mel'nik, V. N.; Mukha, D. V.; Panchenko, M.

    2013-08-01

    We consider the approach to simultaneous (synchronous) solar observations of radio emission by using the STEREO-WAVES instruments (frequency range 0.125-16 MHz) and the largest ground-based low-frequency radio telescope. We illustrate it by the UTR-2 radio telescope implementation (10-30 MHz). The antenna system of the radio telescope is a T-shape-like array of broadband dipoles and is located near the village Grakovo in the Kharkiv region (Ukraine). The third observation point on the ground in addition to two space-based ones improves the space-mission performance capabilities for the determination of radio-emission source directivity. The observational results from the high sensitivity antenna UTR-2 are particularly useful for analysis of STEREO data in the condition of weak event appearances during solar activity minima. In order to improve the accuracy of flux density measurements, we also provide simultaneous observations with a large part of the UTR-2 radio telescope array and its single dipole close to the STEREO-WAVES antennas in sensitivity. This concept has been studied by comparing the STEREO data with ground-based records from 2007-2011 and shown to be effective. The capabilities will be useful in the implementation of new instruments (LOFAR, LWA, MWA, etc.) and during the future Solar Orbiter mission.

  20. Ground-based and spacecraft observations of lightning activity on Saturn

    Science.gov (United States)

    Zakharenko, V.; Mylostna, C.; Konovalenko, A.; Zarka, P.; Fischer, G.; Grießmeier, J.-M.; Litvinenko, G.; Rucker, H.; Sidorchuk, M.; Ryabov, B.; Vavriv, D.; Ryabov, V.; Cecconi, B.; Coffre, A.; Denis, L.; Fabrice, C.; Pallier, L.; Schneider, J.; Kozhyn, R.; Vinogradov, V.; Mukha, D.; Weber, R.; Shevchenko, V.; Nikolaenko, V.

    2012-02-01

    In late 2007, Saturn electrostatic discharges (SED) were simultaneously observed at the radio telescope UTR-2 and with the Cassini spacecraft. Observations at UTR-2 were performed with a multichannel receiver in the frequency range 12-33 MHz, and those performed on Cassini-with a swept frequency receiver that is part of the RPWS (Radio and Plasma Wave Science) instrument in the frequency band 1.8-16 MHz. We got a very good coincidence between data of UTR-2 and Cassini. It is shown for the first time that ground-based radio astronomy lets us detect Saturn's lightning with a high degree of reliability despite terrestrial interferences. This is the necessary basis for further detailed study of the temporal and spectral characteristics of the SEDs with ground based radio telescopes. Based on six observation sessions, several parameters of SEDs were determined, in particularly a correlation of 0.77±0.15 between the average intensity of storms and the e-folding time.

  1. Nighttime Aerosol Optical Depth Measurements Using a Ground-based Lunar Photometer

    Science.gov (United States)

    Berkoff, Tim; Omar, Ali; Haggard, Charles; Pippin, Margaret; Tasaddaq, Aasam; Stone, Tom; Rodriguez, Jon; Slutsker, Ilya; Eck, Tom; Holben, Brent; hide

    2015-01-01

    In recent years it was proposed to combine AERONET network photometer capabilities with a high precision lunar model used for satellite calibration to retrieve columnar nighttime AODs. The USGS lunar model can continuously provide pre-atmosphere high precision lunar irradiance determinations for multiple wavelengths at ground sensor locations. When combined with measured irradiances from a ground-based AERONET photometer, atmospheric column transmissions can determined yielding nighttime column aerosol AOD and Angstrom coefficients. Additional demonstrations have utilized this approach to further develop calibration methods and to obtain data in polar regions where extended periods of darkness occur. This new capability enables more complete studies of the diurnal behavior of aerosols, and feedback for models and satellite retrievals for the nighttime behavior of aerosols. It is anticipated that the nighttime capability of these sensors will be useful for comparisons with satellite lidars such as CALIOP and CATS in additional to ground-based lidars in MPLNET at night, when the signal-to-noise ratio is higher than daytime and more precise AOD comparisons can be made.

  2. Evaluation of brightness temperature from a forward model of ground-based microwave radiometer

    Indian Academy of Sciences (India)

    S Rambabu; J S Pillai; A Agarwal; G Pandithurai

    2014-06-01

    Ground-based microwave radiometers are getting great attention in recent years due to their capability to profile the temperature and humidity at high temporal and vertical resolution in the lower troposphere. The process of retrieving these parameters from the measurements of radiometric brightness temperature () includes the inversion algorithm, which uses the background information from a forward model. In the present study, an algorithm development and evaluation of this forward model for a ground-based microwave radiometer, being developed by Society for Applied Microwave Electronics Engineering and Research (SAMEER) of India, is presented. Initially, the analysis of absorption coefficient and weighting function at different frequencies was made to select the channels. Further the range of variation of for these selected channels for the year 2011, over the two stations Mumbai and Delhi is discussed. Finally the comparison between forward-model simulated s and radiometer measured s at Mahabaleshwar (73.66°E and 17.93°N) is done to evaluate the model. There is good agreement between model simulations and radiometer observations, which suggests that these forward model simulations can be used as background for inversion models for retrieving the temperature and humidity profiles.

  3. Proceedings of the 29th Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Wetovsky, Marvin A. [Editor; Benson, Jody [Editor; Patterson, Eileen F. [Editor

    2007-09-25

    These proceedings contain papers prepared for the 29th Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies, held 25-27 September, 2007 in Denver, Colorado. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Air Force Technical Applications Center (AFTAC), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO), and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  4. Proceedings of the 28th Seismic Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Wetovsky, Marvin A. [Editor; Benson, Jody [Editor; Patterson, Eileen F. [Editor

    2006-09-19

    These proceedings contain papers prepared for the 28th Seismic Research Review: Ground-Based Nuclear Explosion Monitoring Technologies, held 19-21 September, 2006 in Orlando, Florida. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Air Force Technical Applications Center (AFTAC), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO), and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  5. Proceedings of the 30th Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Wetovsky, Marv A [Los Alamos National Laboratory; Aguilar-chang, Julio [Los Alamos National Laboratory; Arrowsmith, Marie [Los Alamos National Laboratory; Arrowsmith, Stephen [Los Alamos National Laboratory; Baker, Diane [Los Alamos National Laboratory; Begnaud, Michael [Los Alamos National Laboratory; Harste, Hans [Los Alamos National Laboratory; Maceira, Monica [Los Alamos National Laboratory; Patton, Howard [Los Alamos National Laboratory; Phillips, Scott [Los Alamos National Laboratory; Randall, George [Los Alamos National Laboratory; Revelle, Douglas [Los Alamos National Laboratory; Rowe, Charlotte [Los Alamos National Laboratory; Stead, Richard [Los Alamos National Laboratory; Steck, Lee [Los Alamos National Laboratory; Whitaker, Rod [Los Alamos National Laboratory; Yang, Xiaoning [Los Alamos National Laboratory

    2008-09-23

    These proceedings contain papers prepared for the 30th Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies, held 23-25 September, 2008 in Portsmouth, Virginia. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Air Force Technical Applications Center (AFTAC), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO), and other invited sponsors. The scientific objectives of the research are to improve the United States’ capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  6. Proceedings of the 2010 Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Wetovsky, Marvin A [Editor; Patterson, Eileen F [Editor

    2010-09-21

    These proceedings contain papers prepared for the Monitoring Research Review 2010: Ground-Based Nuclear Explosion Monitoring Technologies, held 21-23 September, 2010 in Orlando, Florida,. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, National Science Foundation (NSF), Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO), and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  7. Proceedings of the 2009 Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Wetovsky, Marv A [Los Alamos National Laboratory; Aguilar - Chang, Julio [Los Alamos National Laboratory; Anderson, Dale [Los Alamos National Laboratory; Arrowsmith, Marie [Los Alamos National Laboratory; Arrowsmith, Stephen [Los Alamos National Laboratory; Baker, Diane [Los Alamos National Laboratory; Begnaud, Michael [Los Alamos National Laboratory; Harste, Hans [Los Alamos National Laboratory; Maceira, Monica [Los Alamos National Laboratory; Patton, Howard [Los Alamos National Laboratory; Phillips, Scott [Los Alamos National Laboratory; Randall, George [Los Alamos National Laboratory; Rowe, Charlotte [Los Alamos National Laboratory; Stead, Richard [Los Alamos National Laboratory; Steck, Lee [Los Alamos National Laboratory; Whitaker, Rod [Los Alamos National Laboratory; Yang, Xiaoning ( David ) [Los Alamos National Laboratory

    2009-09-21

    These proceedings contain papers prepared for the Monitoring Research Review 2009: Ground -Based Nuclear Explosion Monitoring Technologies, held 21-23 September, 2009 in Tucson, Arizona,. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, Comprehensive Test Ban Treaty Organization (CTBTO), and other invited sponsors. The scientific objectives of the research are to improve the United States’ capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  8. De-mystifying earned value management for ground based astronomy projects, large and small

    Science.gov (United States)

    Norton, Timothy; Brennan, Patricia; Mueller, Mark

    2014-08-01

    The scale and complexity of today's ground based astronomy projects have justifiably required Principal Investigator's and their project teams to adopt more disciplined management processes and tools in order to achieve timely and accurate quantification of the progress and relative health of their projects. Earned Value Management (EVM) is one such tool. Developed decades ago and used extensively in the defense and construction industries, and now a requirement of NASA projects greater than $20M; EVM has gained a foothold in ground-based astronomy projects. The intent of this paper is to de-mystify EVM by discussing the fundamentals of project management, explaining how EVM fits with existing principles, and describing key concepts every project can use to implement their own EVM system. This paper also discusses pitfalls to avoid during implementation and obstacles to its success. The authors report on their organization's most recent experience implementing EVM for the GMT-Consortium Large Earth Finder (G-CLEF) project. G-CLEF is a fiber-fed, optical echelle spectrograph that has been selected as a first light instrument for the Giant Magellan Telescope (GMT), planned for construction at the Las Campanas Observatory in Chile's Atacama Desert region.

  9. Augmenting WFIRST Microlensing with a Ground-based Optical Telescope Network

    CERN Document Server

    Zhu, Wei

    2016-01-01

    Augmenting the WFIRST microlensing campaigns with intensive observations from a ground-based network of wide-field survey telescopes would have several major advantages. First, it would enable one-dimensional (1-D) microlens parallax measurements over the entire mass range $M\\gtrsim M_\\oplus$. For luminous lenses, such 1-D parallax measurements can be promoted to complete solutions (mass, distance, transverse velocity) by high-resolution imaging a few years after the observations. This would provide crucial information not only about the hosts of planets and other lenses, but also enable a much more precise Galactic model. The addition of such a ground-based survey would also yield full 2-D vector parallax measurements, with largest sensitivity to low-mass lenses, which (being non-luminous) are not subject to followup imaging. These 2-D parallax measurements will directly yield mass and distance measurements for most planetary and binary events. It would also yield additional complete solutions for single-len...

  10. Which future for electromagnetic Astronomy: Ground Based vs Space Borne Large Astrophysical Facilities

    Science.gov (United States)

    Ubertini, Pietro

    2015-08-01

    The combined use of large ground based facilities and large space observatories is playing a key role in the advance of astrophysics by providing access to the entire electromagnetic spectrum, allowing high sensitivity observations from the lower radio wavelength to the higher energy gamma rays.It is nowadays clear that a forward steps in the understanding of the Universe evolution and large scale structure formation is essential and only possible with the combined use of multiwavelength imaging and spectral high resolution instruments.The increasing size, complexity and cost of large ground and space observatories places a growing emphasis on international collaboration. If the present set of astronomical facilities is impressive and complete, with nicely complementary space and ground based telescopes, the scenario becomes worrisome and critical in the next two decades. In fact, only a few ‘Large’ main space missions are planned and there is a need to ensure proper ground facility coverage: the synergy Ground-Space is not escapable in the timeframe 2020-2030.The scope of this talk is to review the current astronomical instrumentation panorama also in view of the recent major national agencies and international bodies programmatic decisions.This Division B meeting give us a unique opportunity to review the current situation and discuss the future perspectives taking advantage of the large audience ensured by the IAU GA.

  11. [Benchmarking in health care: conclusions and recommendations].

    Science.gov (United States)

    Geraedts, Max; Selbmann, Hans-Konrad

    2011-01-01

    The German Health Ministry funded 10 demonstration projects and accompanying research of benchmarking in health care. The accompanying research work aimed to infer generalisable findings and recommendations. We performed a meta-evaluation of the demonstration projects and analysed national and international approaches to benchmarking in health care. It was found that the typical benchmarking sequence is hardly ever realised. Most projects lack a detailed analysis of structures and processes of the best performers as a starting point for the process of learning from and adopting best practice. To tap the full potential of benchmarking in health care, participation in voluntary benchmarking projects should be promoted that have been demonstrated to follow all the typical steps of a benchmarking process.

  12. An Effective Approach for Benchmarking Implementation

    OpenAIRE

    B. M. Deros; Tan, J.; M.N.A. Rahman; N. A.Q.M. Daud

    2011-01-01

    Problem statement: The purpose of this study is to present a benchmarking guideline, conceptual framework and computerized mini program to assists companies achieve better performance in terms of quality, cost, delivery, supply chain and eventually increase their competitiveness in the market. The study begins with literature review on benchmarking definition, barriers and advantages from the implementation and the study of benchmarking framework. Approach: Thirty res...

  13. Computational Chemistry Comparison and Benchmark Database

    Science.gov (United States)

    SRD 101 NIST Computational Chemistry Comparison and Benchmark Database (Web, free access)   The NIST Computational Chemistry Comparison and Benchmark Database is a collection of experimental and ab initio thermochemical properties for a selected set of molecules. The goals are to provide a benchmark set of molecules for the evaluation of ab initio computational methods and allow the comparison between different ab initio computational methods for the prediction of thermochemical properties.

  14. Benchmarking i eksternt regnskab og revision

    DEFF Research Database (Denmark)

    Thinggaard, Frank; Kiertzner, Lars

    2001-01-01

    løbende i en benchmarking-proces. Dette kapitel vil bredt undersøge, hvor man med nogen ret kan få benchmarking-begrebet knyttet til eksternt regnskab og revision. Afsnit 7.1 beskæftiger sig med det eksterne årsregnskab, mens afsnit 7.2 tager fat i revisionsområdet. Det sidste afsnit i kapitlet opsummerer...... betragtningerne om benchmarking i forbindelse med begge områder....

  15. A ground-based comparison of the Muscle Atrophy Research and Exercise System (MARES) and a commercially available isokinetic dynamometer

    Science.gov (United States)

    English, Kirk L.; Hackney, Kyle J.; De Witt, John K.; Ploutz-Snyder, Robert J.; Goetchius, Elizabeth L.; Ploutz-Snyder, Lori L.

    2013-11-01

    IntroductionInternational Space Station (ISS) crewmembers perform muscle strength and endurance testing pre- and postflight to assess the physiologic adaptations associated with long-duration exposure to microgravity. However, a reliable and standardized method to document strength changes in-flight has not been established. To address this issue, a proprietary dynamometer, the Muscle Atrophy Research and Exercise System (MARES) has been developed and flown aboard the ISS. The aims of this ground-based investigation were to: (1) evaluate the test-retest reliability of MARES and (2) determine its agreement with a commercially available isokinetic dynamometer previously used for pre- and postflight medical testing. MethodsSix males (179.5±4.7 cm; 82.0±8.7 kg; 31.3±4.0 yr) and four females (163.2±7.3 cm; 63.2±1.9 kg; 32.3±6.8 yr) completed two testing sessions on a HUMAC NORM isokinetic dynamometer (NORM) and two sessions on MARES using a randomized, counterbalanced, cross-over design. Peak torque values at 60° and 180° s-1 were calculated from five maximal repetitions of knee extension (KE) and knee flexion (KF) for each session. Total work at 180° s-1 was determined from the area under the torque versus displacement curve during 20 maximal repetitions of KE and KF. ResultsIntraclass correlation coefficients were relatively high for both devices (0.90-0.99). Only one dependent measure, KE peak torque at 60° s-1 exhibited good concordance between devices (ρ=0.92) and a small average difference (0.9±17.3 N m). ConclusionMARES demonstrated acceptable test-retest reliability and thus should serve as a good tool to monitor in-flight strength changes. However, due to poor agreement with NORM, it is not advisable to compare absolute values obtained on these devices.

  16. Automated Ground-based Time-lapse Camera Monitoring of West Greenland ice sheet outlet Glaciers: Challenges and Solutions

    Science.gov (United States)

    Ahn, Y.; Box, J. E.; Balog, J.; Lewinter, A.

    2008-12-01

    Monitoring Greenland outlet glaciers using remotely sensed data has drawn a great attention in earth science communities for decades and time series analysis of sensory data has provided important variability information of glacier flow by detecting speed and thickness changes, tracking features and acquiring model input. Thanks to advancements of commercial digital camera technology and increased solid state storage, we activated automatic ground-based time-lapse camera stations with high spatial/temporal resolution in west Greenland outlet and collected one-hour interval data continuous for more than one year at some but not all sites. We believe that important information of ice dynamics are contained in these data and that terrestrial mono-/stereo-photogrammetry can provide theoretical/practical fundamentals in data processing along with digital image processing techniques. Time-lapse images over periods in west Greenland indicate various phenomenon. Problematic is rain, snow, fog, shadows, freezing of water on camera enclosure window, image over-exposure, camera motion, sensor platform drift, and fox chewing of instrument cables, and the pecking of plastic window by ravens. Other problems include: feature identification, camera orientation, image registration, feature matching in image pairs, and feature tracking. Another obstacle is that non-metric digital camera contains large distortion to be compensated for precise photogrammetric use. Further, a massive number of images need to be processed in a way that is sufficiently computationally efficient. We meet these challenges by 1) identifying problems in possible photogrammetric processes, 2) categorizing them based on feasibility, and 3) clarifying limitation and alternatives, while emphasizing displacement computation and analyzing regional/temporal variability. We experiment with mono and stereo photogrammetric techniques in the aide of automatic correlation matching for efficiently handling the enormous

  17. Developing Benchmarks for Solar Radio Bursts

    Science.gov (United States)

    Biesecker, D. A.; White, S. M.; Gopalswamy, N.; Black, C.; Domm, P.; Love, J. J.; Pierson, J.

    2016-12-01

    Solar radio bursts can interfere with radar, communication, and tracking signals. In severe cases, radio bursts can inhibit the successful use of radio communications and disrupt a wide range of systems that are reliant on Position, Navigation, and Timing services on timescales ranging from minutes to hours across wide areas on the dayside of Earth. The White House's Space Weather Action Plan has asked for solar radio burst intensity benchmarks for an event occurrence frequency of 1 in 100 years and also a theoretical maximum intensity benchmark. The solar radio benchmark team was also asked to define the wavelength/frequency bands of interest. The benchmark team developed preliminary (phase 1) benchmarks for the VHF (30-300 MHz), UHF (300-3000 MHz), GPS (1176-1602 MHz), F10.7 (2800 MHz), and Microwave (4000-20000) bands. The preliminary benchmarks were derived based on previously published work. Limitations in the published work will be addressed in phase 2 of the benchmark process. In addition, deriving theoretical maxima requires additional work, where it is even possible to, in order to meet the Action Plan objectives. In this presentation, we will present the phase 1 benchmarks and the basis used to derive them. We will also present the work that needs to be done in order to complete the final, or phase 2 benchmarks.

  18. Benchmarking for controllere: Metoder, teknikker og muligheder

    DEFF Research Database (Denmark)

    Bukh, Per Nikolaj; Sandalgaard, Niels; Dietrichson, Lars

    2008-01-01

    Der vil i artiklen blive stillet skarpt på begrebet benchmarking ved at præsentere og diskutere forskellige facetter af det. Der vil blive redegjort for fire forskellige anvendelser af benchmarking for at vise begrebets bredde og væsentligheden af at klarlægge formålet med et benchmarkingprojekt......, inden man går i gang. Forskellen på resultatbenchmarking og procesbenchmarking vil blive behandlet, hvorefter brugen af intern hhv. ekstern benchmarking vil blive diskuteret. Endelig introduceres brugen af benchmarking i budgetlægning og budgetopfølgning....

  19. Establishing benchmarks and metrics for utilization management.

    Science.gov (United States)

    Melanson, Stacy E F

    2014-01-01

    The changing environment of healthcare reimbursement is rapidly leading to a renewed appreciation of the importance of utilization management in the clinical laboratory. The process of benchmarking of laboratory operations is well established for comparing organizational performance to other hospitals (peers) and for trending data over time through internal benchmarks. However, there are relatively few resources available to assist organizations in benchmarking for laboratory utilization management. This article will review the topic of laboratory benchmarking with a focus on the available literature and services to assist in managing physician requests for laboratory testing. © 2013.

  20. Monitoring greenhouse gas emissions in Australian landscapes: Comparing ground based mobile surveying data to GOSAT observations

    Science.gov (United States)

    Bashir, S.; Iverach, C.; Kelly, B. F. J.

    2016-12-01

    Climate change is threatening the health and stability of the natural world and human society. Such concerns were emphasized at COP21 conference in Paris 2015 which highlighted the global need to improve our knowledge of sources of greenhouse gas and to develop methods to mitigate the effects of their emissions. Ongoing spatial and temporal measurements of greenhouse gases at both point and regional scales is important for clarification of climate change mechanisms and accounting. The Greenhouse gas Observing SATellite (GOSAT) is designed to monitor the global distribution of carbon dioxide (CO2) and methane (CH4) from orbit. As existing ground monitoring stations are limited and still unevenly distributed, satellite observations provide important frequent, spatially extensive, but low resolution observations. Recent developments in portable laser based greenhouse gas measurement systems have enabled the rapid measurement of greenhouse gases in ppb at the ground surface. This study was conducted to map major sources of CO2 and CH4 in the eastern states of Australia at the landscape scale and to compare the results to GOSAT observations. During April 2016 we conducted a regional CH4 and CO2 mobile survey, using an LGR greenhouse gas analyzer. Measurements were made along a 4000 KM circuit through major cities, country towns, dry sclerophyll forests, coastal wetlands, coal mining regions, coal seam gas developments, dryland farming and irrigated agricultural landscapes. The ground-based survey data were then compared with the data (L2) from GOSAT. Ground-based mobile surveys showed that there are clear statistical differences in the ground level atmospheric concentration of CH4 and CO2 associated with all major changes in land use. These changes extend for kilometers, and cover one or more GOSAT pixels. In the coal mining districts the ground-level atmospheric concentration of CH4 exceeded 2 ppm for over 40 km, yet this was not discernable in the retrieved data (L2

  1. Aerosol Single Scattering Albedo retrieved from ground-based measurements in the UV-visible

    Directory of Open Access Journals (Sweden)

    V. Buchard

    2010-07-01

    Full Text Available Estimates of Aerosol Single Scattering Albedo (SSA from ground-based spectral measurements in the UV-visible are conducted at Villeneuve d'Ascq (VdA in France. In order to estimate this parameter, measurements of global and diffuse UV-visible solar irradiances performed under cloud-free conditions since 2003 with a spectroradiometer operated by the Laboratoire d'Optique Atmosphérique (LOA are used. The technique consists in comparing the measured irradiance values to modelled irradiances computed for various SSA. The retrieval is restricted to the 330–450 nm range to avoid ozone influence.

    For validation purpose, the retrieved values of SSA at 440 nm are compared to the ones obtained from sunphotometer measurements of the AERONET/PHOTONS network available on the LOA site. The results are rather satisfying: in 2003 and 2005–2006 the Root Mean Square (RMS of the differences are about 0.05, these values are within the uncertainty domain of retrieval of both products. Distinction between days characterized by different aerosol content, by means of the aerosol optical thickness (AOT retrieved from ground-based measurements at the same wavelength, shows that the comparisons between both products are better when AOT are higher. Indeed in case AOT are greater than 0.2, the RMS is 0.027 in 2003 and 0.035 in 2005–2006. The SSA estimated at 340 and 380 nm from ground-based spectra are also studied, though no validation can be carried out with sunphotometer data (440 nm is the shortest wavelength at which the SSA is provided by the network. The good comparisons observed at 440 nm can let assume that the SSA retrieved from spectroradiometer measurements at the two other wavelengths are also obtained with a good confidence level. Thus these values in the UV range can be used to complete aerosol data provided by AERONET/PHOTONS at VdA. Moreover they can be used for a best knowledge of the aerosol absorption that is necessary to quantify the

  2. Investigation of Rainfall Characteristics Using TRMM PR and Ground Based Radar

    Science.gov (United States)

    Dolan, B.; Lang, T. J.; Nesbitt, S. W.; Cifelli, R.; Rutledge, S. A.

    2011-12-01

    Despite relatively good agreement between reflectivity profiles, comparisons of rainfall statistics derived from TRMM Precipitation Radar (PR) deviate from ground-based radar (GR) observations in various field locations across the globe. TRMM PR rain rate probability distribution functions underestimate the occurrence of high rain rates (> 80 mm hr-1) compared with similar ground-based statistics, and similarly, GR distributes the total rain volume over a larger range of rain rates. Analysis of ten years of TRMM data over three field sites has shown that the greatest disagreements occur in the most intense convection, such as over land and during the east and break wind regimes over the Amazon and Australia, respectively. These differences are investigated further in this study. Ten years of TRMM PR data are analyzed in conjunction with data collected during two field experiments involving the NCAR S-Pol radar. S-Pol was deployed in Brazil in the Amazon during TRMM LBA in 1998-1999 and near Mazatlan, Mexico as part of the North American Monsoon Experiment (NAME) in 2004. Additionally, multiple years of data from the Australian Bureau of Meteorology CPOL radar located in Darwin, Australia, are examined to extend the robustness of the GR observations beyond the relatively short field campaigns. Polarimetric data collected by the two radars are used to characterize the differences between TRMM PR and GR observations as a function of bulk hydrometeor type. For example, profiles with significant graupel, as identified by GR, are analyzed to investigate the role of mixed phase in the PR retrievals. The vertical variability of D0 is examined as a function of reflectivity and related to the underlying microphysical conditions using the polarimetric data provided by the GR observations. Spatial variability of D0 is also explored by correlating D0 values derived from GR at different heights. Several significant changes were made to the TRMM processing algorithms in the

  3. Ground-based Observations of the Solar Sources of Space Weather

    Science.gov (United States)

    Veronig, A. M.; Pötzi, W.

    2016-04-01

    Monitoring of the Sun and its activity is a task of growing importance in the frame of space weather research and awareness. Major space weather disturbances at Earth have their origin in energetic outbursts from the Sun: solar flares, coronal mass ejections and associated solar energetic particles. In this review we discuss the importance and complementarity of ground-based and space-based observations for space weather studies. The main focus is drawn on ground-based observations in the visible range of the spectrum, in particular in the diagnostically manifold Hα spectral line, which enables us to detect and study solar flares, filaments (prominences), filament (prominence) eruptions, and Moreton waves. Existing Hα networks such as the GONG and the Global High-Resolution Hα Network are discussed. As an example of solar observations from space weather research to operations, we present the system of real-time detection of Hα flares and filaments established at Kanzelhöhe Observatory (KSO; Austria) in the frame of the space weather segment of the ESA Space Situational Awareness programme (swe.ssa.esa.int). An evaluation of the system, which is continuously running since July 2013 is provided, covering an evaluation period of almost 2.5 years. During this period, KSO provided 3020 hours of real-time Hα observations at the ESA SWE portal. In total, 824 Hα flares were detected and classified by the real-time detection system, including 174 events of Hα importance class 1 and larger. For the total sample of events, 95 % of the automatically determined flare peak times lie within ±5 min of the values given in the official optical flares reports (by NOAA and KSO), and 76 % of the start times. The heliographic positions determined are better than ±5°. The probability of detection of flares of importance 1 or larger is 95 %, with a false alarm rate of 16 %. These numbers confirm the high potential of automatic flare detection and alerting from ground-based

  4. Ground-based follow-up in relation to Kepler asteroseismic investigation

    Science.gov (United States)

    Uytterhoeven, K.; Briquet, M.; Bruntt, H.; De Cat, P.; Frandsen, S.; Gutiérrez-Soto, J.; Kiss, L.; Kurtz, D. W.; Marconi, M.; Molenda-Żakowicz, J.; Østensen, R.; Randall, S.; Southworth, J.; Szabó, R.

    2010-12-01

    The Kepler space mission, successfully launched in March 2009, is providing continuous and high-precision photometry of thousands of stars simultaneously. The uninterrupted time-series of stars of all known pulsation types are a precious source for asteroseismic studies. The Kepler data do not provide information on the physical parameters, such as T_eff, log g, metallicity, and v sin i, which are crucial for successful asteroseismic modelling. Additional ground-based time-series data are needed to characterize mode parameters in several types of pulsating stars. Therefore, ground-based multi-colour photometry and mid/high-resolution spectroscopy are needed to complement the space data. We present ground-based activities within KASC on selected asteroseismic Kepler targets of several pulsation types. Based on observations made with the Isaac Newton Telescope and William Herschel Telescope operated by the Isaac Newton Group, with the Nordic Optical Telescope, operated jointly by Denmark, Finland, Iceland, Norway, and Sweden, with the Italian Telescopio Nazionale Galileo (TNG) operated by the Fundación Galileo Galilei of the INAF (Istituto Nazionale di Astrofisica), and with the Mercator telescope, operated by the Flemish Community, all on the island of La Palma at the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias (IAC). Based on observations made with the IAC-80 operated on the island of Tenerife by the IAC at the Spanish Observatorio del Teide. Also based on observations taken at the observatories of Sierra Nevada, San Pedro Mártir, Vienna, Xinglong, Apache Point, Lulin, Tautenburg, McDonald, Skinakas, Pic du Midi, Mauna Kea, Steward Observatory, Mt. Wilson, Białków Observatory of the Wrocław University, Piszkésteto Mountain Station, and Observatoire de Haute Provence. Based on spectra taken at the Loiano (INAF - OA Bologna), Serra La Nave (INAF - OA Catania) and Asiago (INAF - OA Padova) observatories. Also

  5. Ground-based acoustic parametric generator impact on the atmosphere and ionosphere in an active experiment

    Science.gov (United States)

    Rapoport, Yuriy G.; Cheremnykh, Oleg K.; Koshovy, Volodymyr V.; Melnik, Mykola O.; Ivantyshyn, Oleh L.; Nogach, Roman T.; Selivanov, Yuriy A.; Grimalsky, Vladimir V.; Mezentsev, Valentyn P.; Karataeva, Larysa M.; Ivchenko, Vasyl. M.; Milinevsky, Gennadi P.; Fedun, Viktor N.; Tkachenko, Eugen N.

    2017-01-01

    We develop theoretical basics of active experiments with two beams of acoustic waves, radiated by a ground-based sound generator. These beams are transformed into atmospheric acoustic gravity waves (AGWs), which have parameters that enable them to penetrate to the altitudes of the ionospheric E and F regions where they influence the electron concentration of the ionosphere. Acoustic waves are generated by the ground-based parametric sound generator (PSG) at the two close frequencies. The main idea of the experiment is to design the output parameters of the PSG to build a cascade scheme of nonlinear wave frequency downshift transformations to provide the necessary conditions for their vertical propagation and to enable penetration to ionospheric altitudes. The PSG generates sound waves (SWs) with frequencies f1 = 600 and f2 = 625 Hz and large amplitudes (100-420 m s-1). Each of these waves is modulated with the frequency of 0.016 Hz. The novelty of the proposed analytical-numerical model is due to simultaneous accounting for nonlinearity, diffraction, losses, and dispersion and inclusion of the two-stage transformation (1) of the initial acoustic waves to the acoustic wave with the difference frequency Δf = f2 - f1 in the altitude ranges 0-0.1 km, in the strongly nonlinear regime, and (2) of the acoustic wave with the difference frequency to atmospheric acoustic gravity waves with the modulational frequency in the altitude ranges 0.1-20 km, which then reach the altitudes of the ionospheric E and F regions, in a practically linear regime. AGWs, nonlinearly transformed from the sound waves, launched by the two-frequency ground-based sound generator can increase the transparency of the ionosphere for the electromagnetic waves in HF (MHz) and VLF (kHz) ranges. The developed theoretical model can be used for interpreting an active experiment that includes the PSG impact on the atmosphere-ionosphere system, measurements of electromagnetic and acoustic fields, study of

  6. Overview and Initial Results from the DEEPWAVE Airborne and Ground-Based Measurement Program

    Science.gov (United States)

    Fritts, D. C.

    2015-12-01

    The deep-propagating gravity wave experiment (DEEPWAVE) was performed on and over New Zealand, the Tasman Sea, and the Southern Ocean with core airborne measurements extending from 5 June to 21 July 2014 and supporting ground-based measurements spanning a longer interval. The NSF/NCAR GV employed standard flight-level measurements and new airborne lidar and imaging measurements of gravity waves (GWs) from sources at lower altitudes throughout the stratosphere and into the mesosphere and lower thermosphere (MLT). The new GV lidars included a Rayleigh lidar measuring atmospheric density and temperature from ~20-60 km and a sodium resonance lidar measuring sodium density and temperature at ~75-105 km. An airborne Advanced Mesosphere Temperature Mapper (AMTM) and two IR "wing" cameras imaged the OH airglow temperature and/or intensity fields extending ~900 km across the GV flight track. The DLR Falcon was equipped with its standard flight-level instruments and an aerosol Doppler lidar measuring radial winds below the Falcon. DEEPWAVE also included extensive ground-based measurements in New Zealand, Tasmania, and Southern Ocean Islands. DEEPWAVE performed 26 GV flights and 13 Falcon flights, and ground-based measurements occurred whether or not the aircraft were flying. Collectively, many diverse cases of GW forcing, propagation, refraction, and dissipation spanning altitudes of 0-100 km were observed. Examples include strong mountain wave (MW) forcing and breaking in the lower and middle stratosphere, weak MW forcing yielding MW penetration into the MLT having very large amplitudes and momentum fluxes, MW scales at higher altitudes ranging from ~10-250 km, large-scale trailing waves from orography refracting into the polar vortex and extending to high altitudes, GW generation by deep convection, large-scale GWs arising from jet stream sources, and strong MWs in the MLT arising from strong surface flow over a small island. DEEPWAVE yielded a number of surprises, among

  7. System-level view of geospace dynamics: Challenges for high-latitude ground-based observations

    Science.gov (United States)

    Donovan, E.

    2014-12-01

    Increasingly, research programs including GEM, CEDAR, GEMSIS, GO Canada, and others are focusing on how geospace works as a system. Coupling sits at the heart of system level dynamics. In all cases, coupling is accomplished via fundamental processes such as reconnection and plasma waves, and can be between regions, energy ranges, species, scales, and energy reservoirs. Three views of geospace are required to attack system level questions. First, we must observe the fundamental processes that accomplish the coupling. This "observatory view" requires in situ measurements by satellite-borne instruments or remote sensing from powerful well-instrumented ground-based observatories organized around, for example, Incoherent Scatter Radars. Second, we need to see how this coupling is controlled and what it accomplishes. This demands quantitative observations of the system elements that are being coupled. This "multi-scale view" is accomplished by networks of ground-based instruments, and by global imaging from space. Third, if we take geospace as a whole, the system is too complicated, so at the top level we need time series of simple quantities such as indices that capture important aspects of the system level dynamics. This requires a "key parameter view" that is typically provided through indices such as AE and DsT. With the launch of MMS, and ongoing missions such as THEMIS, Cluster, Swarm, RBSP, and ePOP, we are entering a-once-in-a-lifetime epoch with a remarkable fleet of satellites probing processes at key regions throughout geospace, so the observatory view is secure. With a few exceptions, our key parameter view provides what we need. The multi-scale view, however, is compromised by space/time scales that are important but under-sampled, combined extent of coverage and resolution that falls short of what we need, and inadequate conjugate observations. In this talk, I present an overview of what we need for taking system level research to its next level, and how

  8. Benchmarking Implementations of Functional Languages with ``Pseudoknot'', a Float-Intensive Benchmark

    NARCIS (Netherlands)

    Hartel, P.H.; Feeley, M.; Alt, M.; Augustsson, L.

    1996-01-01

    Over 25 implementations of different functional languages are benchmarked using the same program, a floatingpoint intensive application taken from molecular biology. The principal aspects studied are compile time and execution time for the various implementations that were benchmarked. An important

  9. The Zoo, Benchmarks & You: How To Reach the Oregon State Benchmarks with Zoo Resources.

    Science.gov (United States)

    2002

    This document aligns Oregon state educational benchmarks and standards with Oregon Zoo resources. Benchmark areas examined include English, mathematics, science, social studies, and career and life roles. Brief descriptions of the programs offered by the zoo are presented. (SOE)

  10. The Zoo, Benchmarks & You: How To Reach the Oregon State Benchmarks with Zoo Resources.

    Science.gov (United States)

    2002

    This document aligns Oregon state educational benchmarks and standards with Oregon Zoo resources. Benchmark areas examined include English, mathematics, science, social studies, and career and life roles. Brief descriptions of the programs offered by the zoo are presented. (SOE)

  11. Benchmarking Implementations of Functional Languages with "Pseudoknot", a float-intensive benchmark

    NARCIS (Netherlands)

    Hartel, Pieter H.; Feeley, M.; Alt, M.; Augustsson, L.

    Over 25 implementations of different functional languages are benchmarked using the same program, a floatingpoint intensive application taken from molecular biology. The principal aspects studied are compile time and execution time for the various implementations that were benchmarked. An important

  12. Large Core Code Evaluation Working Group Benchmark Problem Four: neutronics and burnup analysis of a large heterogeneous fast reactor. Part 1. Analysis of benchmark results. [LMFBR

    Energy Technology Data Exchange (ETDEWEB)

    Cowan, C.L.; Protsik, R.; Lewellen, J.W. (eds.)

    1984-01-01

    The Large Core Code Evaluation Working Group Benchmark Problem Four was specified to provide a stringent test of the current methods which are used in the nuclear design and analyses process. The benchmark specifications provided a base for performing detailed burnup calculations over the first two irradiation cycles for a large heterogeneous fast reactor. Particular emphasis was placed on the techniques for modeling the three-dimensional benchmark geometry, and sensitivity studies were carried out to determine the performance parameter sensitivities to changes in the neutronics and burnup specifications. The results of the Benchmark Four calculations indicated that a linked RZ-XY (Hex) two-dimensional representation of the benchmark model geometry can be used to predict mass balance data, power distributions, regionwise fuel exposure data and burnup reactivities with good accuracy when compared with the results of direct three-dimensional computations. Most of the small differences in the results of the benchmark analyses by the different participants were attributed to ambiguities in carrying out the regionwise flux renormalization calculations throughout the burnup step.

  13. Using the FLUKA Monte Carlo Code to Simulate the Interactions of Ionizing Radiation with Matter to Assist and Aid Our Understanding of Ground Based Accelerator Testing, Space Hardware Design, and Secondary Space Radiation Environments

    Science.gov (United States)

    Reddell, Brandon

    2015-01-01

    Designing hardware to operate in the space radiation environment is a very difficult and costly activity. Ground based particle accelerators can be used to test for exposure to the radiation environment, one species at a time, however, the actual space environment cannot be duplicated because of the range of energies and isotropic nature of space radiation. The FLUKA Monte Carlo code is an integrated physics package based at CERN that has been under development for the last 40+ years and includes the most up-to-date fundamental physics theory and particle physics data. This work presents an overview of FLUKA and how it has been used in conjunction with ground based radiation testing for NASA and improve our understanding of secondary particle environments resulting from the interaction of space radiation with matter.

  14. Ground-Based Sub-Millimagnitude CCD Photometry of Bright Stars using Snapshot Observations

    CERN Document Server

    Mann, Andrew W; Aldering, Greg

    2011-01-01

    We demonstrate ground-based sub-millimagnitude (10^7 electrons) to be acquired in a single integration; (iii) pointing the telescope so that all stellar images fall on the same detector pixels; and (iv) using a region of the CCD detector that is free of non-linear or aberrant pixels. We describe semi-automated observations with the Supernova Integrated Field Spectrograph (SNIFS) on the University of Hawaii 2.2m telescope on Mauna Kea, with which we achieved photometric precision as good as 5.2x10^-4 (0.56 mmag) with a 5 minute cadence over a two hour interval. In one experiment, we monitored 8 stars, each separated by several degrees, and achieved sub-mmag precision with a cadence (per star) of ~17 min. Our snapshot technique is suitable for automated searches for planetary transits among multiple, bright-stars.

  15. Global impacts of a Foreshock Bubble: Magnetosheath, magnetopause and ground-based observations

    CERN Document Server

    Archer, Martin; Eastwood, Jonathan; Schwartz, Steven; Horbury, Timothy

    2014-01-01

    Using multipoint observations we show, for the first time, that Foreshock Bubbles (FBs) have a global impact on Earth's magnetosphere. We show that an FB, a transient kinetic phenomenon due to the interaction of backstreaming suprathermal ions with a discontinuity, modifies the total pressure upstream of the bow shock showing a decrease within the FB's core and sheath regions. Magnetosheath plasma is accelerated towards the the intersection of the FB's current sheet with the bow shock resulting in fast, sunward, flows as well as outward motion of the magnetopause. Ground-based magnetometers also show signatures of this magnetopause motion simultaneously across at least 7 hours of magnetic local time, corresponding to a distance of 21.5 RE transverse to the Sun-Earth line along the magnetopause. These observed global impacts of the FB are in agreement with previous simulations and in stark contrast to the known localised, smaller scale effects of Hot Flow Anomalies (HFAs).

  16. Heat-stop structure design with high cooling efficiency for large ground-based solar telescope.

    Science.gov (United States)

    Liu, Yangyi; Gu, Naiting; Rao, Changhui; Li, Cheng

    2015-07-20

    A heat-stop is one of the most important thermal control devices for a large ground-based solar telescope. For controlling the internal seeing effect, the temperature difference between the heat-stop and the ambient environment needs to be reduced, and a heat-stop with high cooling efficiency is required. In this paper, a novel design concept for the heat-stop, in which a multichannel loop cooling system is utilized to obtain higher cooling efficiency, is proposed. To validate the design, we analyze and compare the cooling efficiency for the multichannel and existing single-channel loop cooling system under the same conditions. Comparative results show that the new design obviously enhances the cooling efficiency of the heat-stop, and the novel design based on the multichannel loop cooling system is obviously better than the existing design by increasing the thermal transfer coefficient.

  17. Chlorine oxide in the stratospheric ozone layer Ground-based detection and measurement

    Science.gov (United States)

    Parrish, A.; De Zafra, R. L.; Solomon, P. M.; Barrett, J. W.; Carlson, E. R.

    1981-01-01

    Stratospheric chlorine oxide, a significant intermediate product in the catalytic destruction of ozone by atomic chlorine, has been detected and measured by a ground-based 204 GHz, millimeter-wave receiver. Data taken at latitude 42 deg N on 17 days between January 10 and February 18, 1980 yield an average chlorine oxide column density of approximately 1.05 x 10 to the 14th/sq cm or approximately 2/3 that of the average of eight in situ balloon flight measurements (excluding the anomalously high data of July 14, 1977) made over the past four years at 32 deg N. Less chlorine oxide below 35 km and a larger vertical gradient than predicted by theoretical models of the stratospheric ozone layer are found.

  18. Autonomous landing of a helicopter UAV with a ground-based multisensory fusion system

    Science.gov (United States)

    Zhou, Dianle; Zhong, Zhiwei; Zhang, Daibing; Shen, Lincheng; Yan, Chengping

    2015-02-01

    In this study, this paper focus on the vision-based autonomous helicopter unmanned aerial vehicle (UAV) landing problems. This paper proposed a multisensory fusion to autonomous landing of an UAV. The systems include an infrared camera, an Ultra-wideband radar that measure distance between UAV and Ground-Based system, an PAN-Tilt Unit (PTU). In order to identify all weather UAV targets, we use infrared cameras. To reduce the complexity of the stereovision or one-cameral calculating the target of three-dimensional coordinates, using the ultra-wideband radar distance module provides visual depth information, real-time Image-PTU tracking UAV and calculate the UAV threedimensional coordinates. Compared to the DGPS, the test results show that the paper is effectiveness and robustness.

  19. Optical turbulence forecast: toward a new era of ground-based astronomy

    CERN Document Server

    Masciadri, E

    2009-01-01

    The simulation of the optical turbulence (OT) for astronomical applications obtained with non-hydrostatic atmospherical models at meso-scale presents, with respect to measurements, some advantages. The future of the ground-based astronomy relies upon the potentialities and feasibility of the ELTs. Our ability in knowing, controlling and 'managing' the effects of the turbulence on such a new generation telescopes and facilities are determinant to assure their competitiveness with respect to the space astronomy. In the past several studies have been carried out proving the feasibility of the simulation of realistic Cn2 profiles above astronomical sites. The European Community (FP6 Program) decided recently to fund a Project aiming, from one side, to prove the feasibility of the OT forecasts and the ability of meso-scale models in discriminating astronomical sites from optical turbulence point of view and, from the other side, to boost the development of this discipline at the borderline between the astrophysics...

  20. (21) Lutetia spectrophotometry from Rosetta-OSIRIS images and comparison to ground-based observations

    Science.gov (United States)

    Magrin, S.; La Forgia, F.; Pajola, M.; Lazzarin, M.; Massironi, M.; Ferri, F.; da Deppo, V.; Barbieri, C.; Sierks, H.; Osiris Team

    2012-06-01

    Here we present some preliminary results on surface variegation found on (21) Lutetia from ROSETTA-OSIRIS images acquired on 2010-07-10. The spectrophotometry obtained by means of the two cameras NAC and WAC (Narrow and Wide Angle Cameras) is consistent with ground based observations, and does not show surface diversity above the data error bars. The blue and UV images (shortward 500 nm) may, however, indicate a variegation of the optical properties of the asteroid surface on the Baetica region (Sierks et al., 2011). We also speculate on the contribution due to different illumination and to different ground properties (composition or, more probably, grain size diversity). In particular a correlation with geologic units independently defined by Massironi et al. (2012) is evident, suggesting that the variegation of the ground optical properties is likely to be real.

  1. DATA PROCESSING AND ANALYSIS TOOLS BASED ON GROUND-BASED SYNTHETIC APERTURE RADAR IMAGERY

    Directory of Open Access Journals (Sweden)

    M. Crosetto

    2017-09-01

    Full Text Available The Ground-Based SAR (GBSAR is a terrestrial remote sensing technique used to measure and monitor deformation. In this paper we describe two complementary approaches to derive deformation measurements using GBSAR data. The first approach is based on radar interferometry, while the second one exploits the GBSAR amplitude. In this paper we consider the so-called discontinuous GBSAR acquisition mode. The interferometric process is not always straightforward: it requires appropriate data processing and analysis tools. One of the main critical steps is phase unwrapping, which can critically affect the deformation measurements. In this paper we describe the procedure used at the CTTC to process and analyse discontinuous GBSAR data. In the second part of the paper we describe the approach based on GBSAR amplitude images and an image-matching method.

  2. Quantitative analysis results of CE-1 X-ray fluorescence spectrometer ground base experiment

    Institute of Scientific and Technical Information of China (English)

    CUI Xing-Zhu; GAO Min; YANG Jia-Wei; WANG Huan-Yu; ZHANG Cheng-Mo; CHEN Yong; ZHANG Jia-Yu; PENG Wen-Xi; CAO Xue-Lei; LIANG Xiao-Hua; WANG Jin-Zhou

    2008-01-01

    As the nearest celestial body to the earth, the moon has become a hot spot again in astronomy field recently. The element analysis is a much important subject in many lunar projects. Remote X-ray spectrometry plays an important role in the geochemical exploration of the solar bodies. Because of th equasi-vacuum atmosphere on the moon, which has no absorption of X-ray, the X-ray fluorescence analysis is an effective way to determine the elemental abundance of lunar surface. The CE-1 X-ray fluorescence spectrometer (CE-1/XFS) aims to map the major elemental compositions on the lunar surface. This paper describes a method for quantitative analysis of elemental compositions. A series of ground base experiments are done to examine the capability of XFS. The obtained results, which show a reasonable agreement with the certified values at a 30% uncertainty level for major elements, are presented.

  3. A 14-day ground-based hypokinesia study in nonhuman primates: A compilation of results

    Science.gov (United States)

    Kazarian, L.; Cann, C. E.; Parfitt, M.; Simmons, D.; Morey-Holton, E.

    1981-01-01

    A 14 day ground based hypokinesia study with rhesus monkeys was conducted to determine if a spaceflight of similar duration might affect bone remodeling and calcium homeostatis. The monkeys were placed in total body casts and sacrificed either immediately upon decasting or 14 days after decasting. Changes in vertebral strength were noted and further deterioration of bone strength continued during the recovery phase. Resorption in the vertebrae increased dramatically while formation decreased. Cortical bone formation was impaired in the long bones. The immobilized animals showed a progressive decrease in total serum calcium which rebounded upon remobilization. Most mandibular parameters remained unchanged during casting except for retardation of osteon birth or maturation rate and density distribution of matrix and mineral moieties.

  4. Ground-based Gamma-Ray Observations of Pulsars and their Nebulae: Towards a New Order

    CERN Document Server

    De Jager, O C

    2005-01-01

    The excellent sensitivity and high resolution capability of wide FoV ground-based imaging atmospheric Cerenkov telescopes allow us for the first time to resolve the morphological structures of pulsar wind nebulae (PWN) which are older and more extended than the Crab Nebula. VHE gamma-ray observations of such extended nebulae (with field strengths below ~ 20 micro Gauss) probe the electron component corresponding to the unseen extreme ultraviolet (EUV) synchrotron component, which measures electron injection from earlier evolutionary epochs. VHE observations of PWN therefore introduce a new window on PWN research. This review paper also identifies conditions for maximal VHE visbility of PWN. Regarding pulsar pulsed emission, it is becoming clear that the threshold energies of current telescopes are not sufficient to probe the pulsed gamma-ray component from canonical pulsars. Theoretical estimates of pulsed gamma-ray emission from millisecond pulsars seem to converge and it becomes clear that such detections w...

  5. On the Interpretation of Gravity Wave Measurements by Ground-Based Lidars

    Directory of Open Access Journals (Sweden)

    Andreas Dörnbrack

    2017-03-01

    Full Text Available This paper asks the simple question: How can we interpret vertical time series of middle atmosphere gravity wave measurements by ground-based temperature lidars? Linear wave theory is used to show that the association of identified phase lines with quasi-monochromatic waves should be considered with great care. The ambient mean wind has a substantial effect on the inclination of the detected phase lines. The lack of knowledge about the wind might lead to a misinterpretation of the vertical propagation direction of the observed gravity waves. In particular, numerical simulations of three archetypal atmospheric mountain wave regimes show a sensitivity of virtual lidar observations on the position relative to the mountain and on the scale of the mountain.

  6. Concurrent aerial and ground-based optical turbulence measurements along a long elevated path

    Science.gov (United States)

    Nowlin, Scott R.; Hahn, Ila L.; Hugo, Ronald J.; Bishop, Kenneth P.

    1999-08-01

    We report concurrent ground-based scintillator/airborne constant-current anemometer (CCA) measurements made along a 51.4 km-long slant path between Salinas and North Oscura peaks, NM. Simultaneous path-averaged refractive index structure parameter (Cn2) measurements from the CCA and the scintillometer show good agreement, with deviations apparently due to localized effects of underlying topography and metrology. Statistics from both data sets are presented in the form of histograms and cumulative distribution functions. CCA Cn2 point measurements are compared to underlying surface topography. We discuss possible effects of instruments anomalies, analysis methods, and atmospheric velocity fluctuation levels. We present conclusions and made recommendations for future similar experimental efforts.

  7. Space life sciences: ground-based iron-ion biology and physics, including shielding.

    Science.gov (United States)

    2005-01-01

    This session of the 35th Scientific Assembly of COSPAR focuses on recent advances in ground-based studies of high-energy (mainly 1 GeV/nucleon) iron ions. The theme is interdisciplinary in nature and encompasses both physics and biology reports. Manned space missions, including those of the International Space Station and the planned Mars mission, will require the extended presence of crew members in space. As such, a better understanding in shielding design--in radiation detection as well as radio-protection based on simulating studies--is much needed. On the other hand, a better understanding of the basic mechanisms that modulate radiation sensitivity; in determining DNA double strand breaks, chromosomal aberrations, and the induction of apoptosis, will provide important information for an interventional approach.

  8. Space situational awareness satellites and ground based radiation counting and imaging detector technology

    Energy Technology Data Exchange (ETDEWEB)

    Jansen, Frank, E-mail: frank.jansen@dlr.de [DLR Institute of Space Systems, Robert-Hooke-Str. 7, 28359 Bremen (Germany); Behrens, Joerg [DLR Institute of Space Systems, Robert-Hooke-Str. 7, 28359 Bremen (Germany); Pospisil, Stanislav [Czech Technical University, IEAP, 12800 Prague 2, Horska 3a/22 (Czech Republic); Kudela, Karel [Slovak Academy of Sciences, IEP, 04001 Kosice, Watsonova 47 (Slovakia)

    2011-05-15

    We review the current status from the scientific and technological point of view of solar energetic particles, solar and galactic cosmic ray measurements as well as high energy UV-, X- and gamma-ray imaging of the Sun. These particles and electromagnetic data are an important tool for space situational awareness (SSA) aspects like space weather storm predictions to avoid failures in space, air and ground based technological systems. Real time data acquisition, position and energy sensitive imaging are demanded by the international space weather forecast services. We present how newly developed, highly miniaturized radiation detectors can find application in space in view of future SSA related satellites as a novel space application due to their counting and imaging capabilities.

  9. Ground-based testing of the dynamics of flexible space structures using band mechanisms

    Science.gov (United States)

    Yang, L. F.; Chew, Meng-Sang

    1991-01-01

    A suspension system based on a band mechanism is studied to provide the free-free conditions for ground based validation testing of flexible space structures. The band mechanism consists of a noncircular disk with a convex profile, preloaded by torsional springs at its center of rotation so that static equilibrium of the test structure is maintained at any vertical location; the gravitational force will be directly counteracted during dynamic testing of the space structure. This noncircular disk within the suspension system can be configured to remain unchanged for test articles with the different weights as long as the torsional spring is replaced to maintain the originally designed frequency ratio of W/k sub s. Simulations of test articles which are modeled as lumped parameter as well as continuous parameter systems, are also presented.

  10. Impact of particles on the Planck HFI detectors: Ground-based measurements and physical interpretation

    CERN Document Server

    Catalano, A; Atik, Y; Benoit, A; Bréele, E; Bock, J J; Camus, P; Chabot, M; Charra, M; Crill, B P; Coron, N; Coulais, A; Désert, F -X; Fauvet, L; Giraud-Héraud, Y; Guillaudin, O; Holmes, W; Jones, W C; Lamarre, J -M; Macías-Pérez, J; Martinez, M; Miniussi, A; Monfardini, A; Pajot, F; Patanchon, G; Pelissier, A; Piat, M; Puget, J -L; Renault, C; Rosset, C; Santos, D; Sauvé, A; Spencer, L D; Sudiwala, R

    2014-01-01

    The Planck High Frequency Instrument (HFI) surveyed the sky continuously from August 2009 to January 2012. Its noise and sensitivity performance were excellent, but the rate of cosmic ray impacts on the HFI detectors was unexpectedly high. Furthermore, collisions of cosmic rays with the focal plane produced transient signals in the data (glitches) with a wide range of characteristics. A study of cosmic ray impacts on the HFI detector modules has been undertaken to categorize and characterize the glitches, to correct the HFI time-ordered data, and understand the residual effects on Planck maps and data products. This paper presents an evaluation of the physical origins of glitches observed by the HFI detectors. In order to better understand the glitches observed by HFI in flight, several ground-based experiments were conducted with flight-spare HFI bolometer modules. The experiments were conducted between 2010 and 2013 with HFI test bolometers in different configurations using varying particles and impact ener...

  11. Ground-based activities in preparation of SELENE ISS experiment on self-rewetting fluids

    Science.gov (United States)

    Savino, R.; Abe, Y.; Castagnolo, D.; Celata, G. P.; Kabov, O.; Kawaji, M.; Sato, M.; Tanaka, K.; Thome, J. R.; Van Vaerenbergh, S.

    2011-12-01

    SELENE (SELf rewetting fluids for thermal ENErgy management) is a microgravity experiment proposed to the European Space Agency (ESA) in response to the Announcement of Opportunities for Physical Sciences. Main objectives of the microgravity research onboard ISS include the quantitative investigation of heat transfer performances of "self-rewetting fluids" and "nano self-rewetting fluids" in model heat pipes and validation of adequate theoretical and numerical modelling able to predict their behaviour in microgravity conditions. This article summarizes the results of ground-based research activities in preparation of the microgravity experiments. They include: 1) thermophysical properties measurements; 2) study of thermo-soluto-capillary effects in micro-channels; 3) numerical modelling; 4) thermal and concentration distribution measurements with optical (e.g. interferometric) and intrusive techniques; 5) surface tension-driven effects and thermal performances test on different capillary structures and heat pipes; 6) breadboards development and support to definition of scientific requirements.

  12. Cloud Base Height and Effective Cloud Emissivity Retrieval with Ground-Based Infrared Interferometer

    Institute of Scientific and Technical Information of China (English)

    PAN Lin-Jun; LU Da-Ren

    2012-01-01

    Based on ground-based Atmospheric Emitted Radiance Interferometer (AERI) observations in Shouxian, Anhui province, China, the authors retrieve the cloud base height (CBH) and effective cloud emissivity by using the minimum root-mean-square difference method. This method was originally developed for satellite remote sensing. The high-temporal-resolution retrieval results can depict the trivial variations of the zenith clouds continu- ously. The retrieval results are evaluated by comparing them with observations by the cloud radar. The compari- son shows that the retrieval bias is smaller for the middle and low cloud, especially for the opaque cloud. When two layers of clouds exist, the retrieval results reflect the weighting radiative contribution of the multi-layer cloud. The retrieval accuracy is affected by uncertainties of the AERI radiances and sounding profiles, in which the role of uncertainty in the temperature profile is dominant.

  13. Future Ground-Based Solar System Research: a Prospective Workshop Summary

    Science.gov (United States)

    Boehnhardt, H.; Käufl, H. U.

    2009-09-01

    The article tries to provide a perspective summary of the planetary science to be performed with future extremely large telescopes (ELTs) as an outcome of the workshop on ‘Future Ground-based Solar System Research: Synergies between Space Probes and Space Telescopes’ held on 8-12 September 2008 in Portoferraio on Isola d’ Elba, Italy. It addresses science cases on solar system objects that might challenge the capabilities of ELTs and that provide a major step forward in the knowledge and understanding of planetary system objects per se and all populations. We also compile high-level requirements for such telescopes and their instrumentation that should enable successful ELT usage for research on objects in the Solar System, the ‘disturbing foreground to real astronomy’.

  14. Finding extraterrestrial life using ground-based high-resolution spectroscopy

    CERN Document Server

    Snellen, Ignas; Poole, Rudolf Le; Brogi, Matteo; Birkby, Jayne

    2013-01-01

    Exoplanet observations promise one day to unveil the presence of extraterrestrial life. Atmospheric compounds in strong chemical disequilibrium would point to large-scale biological activity just as oxygen and methane do in the Earth's atmosphere. The cancellation of both the Terrestrial Planet Finder and Darwin missions means that it is unlikely that a dedicated space telescope to search for biomarker gases in exoplanet atmospheres will be launched within the next 25 years. Here we show that ground-based telescopes provide a strong alternative for finding biomarkers in exoplanet atmospheres through transit observations. Recent results on hot Jupiters show the enormous potential of high-dispersion spectroscopy to separate the extraterrestrial and telluric signals making use of the Doppler shift of the planet. The transmission signal of oxygen from an Earth-twin orbiting a small red dwarf star is only a factor 3 smaller than that of carbon monoxide recently detected in the hot Jupiter tau Bootis b, albeit such...

  15. Ground-based multisite observations of two transits of HD 80606b

    CERN Document Server

    Shporer, A; Dreizler, S; Colon, K D; Wood-Vasey, W M; Choi, P I; Morley, C; Moutou, C; Welsh, W F; Pollaco, D; Starkey, D; Adams, E; Barros, S C C; Bouchy, F; Cabrera-Lavers, A; Cerutti, S; Coban, L; Costello, K; Deeg, H; Diaz, R F; Esquerdo, G A; Fernandez, J; Fleming, S W; Ford, E B; Fulton, B J; Good, M; Hebrard, G; Holman, M J; Hunt, M; Kadakia, S; Lander, G; Lockhart, M; Mazeh, T; Morehead, R C; Nelson, B E; Nortmann, L; Reyes, F; Roebuck, E; Rudy, A R; Ruth, R; Simpson, E; Vincent, C; Weaver, G; Xie, J -W

    2010-01-01

    We present ground-based optical observations of the September 2009 and January 2010 transits of HD 80606b. Based on 3 partial light curves of the September 2009 event, we derive a midtransit time of T_c [HJD] = 2455099.196 +- 0.026, which is about 1 sigma away from the previously predicted time. We observed the January 2010 event from 9 different locations, with most phases of the transit being observed by at least 3 different teams. We determine a midtransit time of T_c [HJD] = 2455210.6502 +- 0.0064, which is within 1.3 sigma of the time derived from a Spitzer observation of the same event.

  16. AOLI: Near-diffraction limited imaging in the visible on large ground-based telescopes

    CERN Document Server

    Mackay, Craig; King, David; Labadie, Lucas; Antolin, Marta Puga; Garrido, Antonio; Colodro-Conde, Carlos; Lopez, Roberto; Muthusubramanian, Balaji; Oscoz, Alejandro; Rodriguez-Ramos, Jose; Rodriquez-Ramos, Luis; Fernandez-Valdivia, Jose; Velasco, Sergio

    2016-01-01

    The combination of Lucky Imaging with a low order adaptive optics system was demonstrated very successfully on the Palomar 5m telescope nearly 10 years ago. It is still the only system to give such high-resolution images in the visible or near infrared on ground-based telescope of faint astronomical targets. The development of AOLI for deployment initially on the WHT 4.2 m telescope in La Palma, Canary Islands, will be described in this paper. In particular, we will look at the design and status of our low order curvature wavefront sensor which has been somewhat simplified to make it more efficient, ensuring coverage over much of the sky with natural guide stars as reference object. AOLI uses optically butted electron multiplying CCDs to give an imaging array of 2000 x 2000 pixels.

  17. Bubble motion in a rotating liquid body. [ground based tests for space shuttle experiments

    Science.gov (United States)

    Annamalai, P.; Subramanian, R. S.; Cole, R.

    1982-01-01

    The behavior of a single gas bubble inside a rotating liquid-filled sphere has been investigated analytically and experimentally as part of ground-based investigations aimed at aiding in the design and interpretation of Shuttle experiments. In the analysis, a quasi-static description of the motion of a bubble was developed in the limit of small values of the Taylor number. A series of rotation experiments using air bubbles and silicone oils were designed to match the conditions specified in the analysis, i.e., the bubble size, sphere rotation rate, and liquid kinematic viscosity were chosen such that the Taylor number was much less than unity. The analytical description predicts the bubble velocity and its asymptotic location. It is shown that the asymptotic position is removed from the axis of rotation.

  18. The Holy Grail of Resource Assessment: Low Cost Ground-Based Measurements with Good Accuracy

    Energy Technology Data Exchange (ETDEWEB)

    Marion, Bill; Smith, Benjamin

    2017-06-22

    Using performance data from some of the millions of installed photovoltaic (PV) modules with micro-inverters may afford the opportunity to provide ground-based solar resource data critical for developing PV projects. The method used back-solves for the direct normal irradiance (DNI) and the diffuse horizontal irradiance (DHI) from the micro-inverter ac production data. When the derived values of DNI and DHI were then used to model the performance of other PV systems, the annual mean bias deviations were within +/- 4%, and only 1% greater than when the PV performance was modeled using high quality irradiance measurements. An uncertainty analysis shows the method better suited for modeling PV performance than using satellite-based global horizontal irradiance.

  19. A six-beam method to measure turbulence statistics using ground-based wind lidars

    DEFF Research Database (Denmark)

    Sathe, Ameya; Mann, Jakob; Vasiljevic, Nikola

    2015-01-01

    A so-called six-beam method is proposed to measure atmospheric turbulence using a ground-based wind lidar. This method requires measurement of the radial velocity variances at five equally spaced azimuth angles on the base of a scanning cone and one measurement at the centre of the scanning circle...... lidar (WindScanner), and the derived turbulence statistics (using both methods) such as the u and v variances are compared with those obtained from a reference cup anemometer and a wind vane at 89m height under different atmospheric stabilities. The measurements show that in comparison to the reference...... cup anemometer, depending on the atmospheric stability and the wind field component, the six-beam method measures between 85 and 101% of the reference turbulence, whereas the VAD method measures between 66 and 87% of the reference turbulence....

  20. A review of turbulence measurements using ground-based wind lidars

    DEFF Research Database (Denmark)

    Sathe, Ameya; Mann, Jakob

    2013-01-01

    pioneered in the first 15 yr, i.e., from 1972–1997, when standard techniques could not be used to measure turbulence. Obtaining unfiltered turbulence statistics from the large probe volume of the lidars has been and still remains the most challenging aspect. Until now, most of the processing algorithms......A review of turbulence measurements using ground-based wind lidars is carried out. Works performed in the last 30 yr, i.e., from 1972–2012 are analyzed. More than 80% of the work has been carried out in the last 15 yr, i.e., from 1997–2012. New algorithms to process the raw lidar data were...... that have been developed have shown that by combining an isotropic turbulence model with raw lidar measurements, we can obtain unfiltered statistics.We believe that an anisotropic turbulence model will provide a more realistic measure of turbulence statistics. Future development in algorithms will depend...

  1. A six-beam method to measure turbulence statistics using ground-based wind lidars

    DEFF Research Database (Denmark)

    Sathe, Ameya; Mann, Jakob; Vasiljevic, Nikola

    2014-01-01

    A so-called six-beam method is proposed to measure atmospheric turbulence using a ground-based wind lidar. This method requires measurement of the radial velocity variances at five equally spaced azimuth angles on the base of a scanning cone and one measurement at the center of the scanning circle...... lidar (WindScanner), and the derived turbulence statistics (using both methods) such as the u and v variances are compared with those obtained from a reference cup anemometer and a wind vane at 89m height under different atmospheric stabilities. The measurements show that in comparison to the reference...... cup anemometer, depending on the atmospheric stability and the wind field component, the six-beam method measures between 85–101% of the reference turbulence, whereas the VAD method measures between 66–87% of the reference turbulence....

  2. Airborne and ground based lidar measurements of the atmospheric pressure profile

    Science.gov (United States)

    Korb, C. Laurence; Schwemmer, Geary K.; Dombrowski, Mark; Weng, Chi Y.

    1989-01-01

    The first high accuracy remote measurements of the atmospheric pressure profile have been made. The measurements were made with a differential absorption lidar system that utilizes tunable alexandrite lasers. The absorption in the trough between two lines in the oxygen A-band near 760 nm was used for probing the atmosphere. Measurements of the two-dimensional structure of the pressure field were made in the troposphere from an aircraft looking down. Also, measurements of the one-dimensional structure were made from the ground looking up. Typical pressure accuracies for the aircraft measurements were 1.5-2 mbar with a 30-m vertical resolution and a 100-shot average (20 s), which corresponds to a 2-km horizontal resolution. Typical accuracies for the upward viewing ground based measurements were 2.0 mbar for a 30-m resolution and a 100-shot average.

  3. Flight validation of ground-based assessment for control power requirements at high angles of attack

    Science.gov (United States)

    Ogburn, Marilyn E.; Ross, Holly M.; Foster, John V.; Pahle, Joseph W.; Sternberg, Charles A.; Traven, Ricardo; Lackey, James B.; Abbott, Troy D.

    1994-01-01

    A review is presented in viewgraph format of an ongoing NASA/U.S. Navy study to determine control power requirements at high angles of attack for the next generation high-performance aircraft. This paper focuses on recent flight test activities using the NASA High Alpha Research Vehicle (HARV), which are intended to validate results of previous ground-based simulation studies. The purpose of this study is discussed, and the overall program structure, approach, and objectives are described. Results from two areas of investigation are presented: (1) nose-down control power requirements and (2) lateral-directional control power requirements. Selected results which illustrate issues and challenges that are being addressed in the study are discussed including test methodology, comparisons between simulation and flight, and general lessons learned.

  4. Precision in ground based solar polarimetry: Simulating the role of adaptive optics

    CERN Document Server

    Nagaraju, K

    2012-01-01

    Accurate measurement of polarization in spectral lines is important for the reliable inference of magnetic fields on the Sun. For ground based observations, polarimetric precision is severely limited by the presence of Earth's atmosphere. Atmospheric turbulence (seeing) produces signal fluctuations which combined with the non-simultaneous nature of the measurement process cause intermixing of the Stokes parameters known as seeing induced polarization cross-talk. Previous analysis of this effect (Judge et al., 2004) suggests that cross-talk is reduced not only with increase in modulation frequency but also by compensating the seeing induced image aberrations by an Adaptive Optics (AO) system. However, in those studies the effect of higher order image aberrations than those corrected by the AO system was not taken into account. We present in this paper an analysis of seeing induced cross-talk in the presence of higher order image aberrations through numerical simulation. In this analysis we find that the amount...

  5. Intermittency of the turbulent processes in the Earth's magnetosphere detected from the ground-based measurements

    Science.gov (United States)

    Stepanova, Marina; Foppiano, Alberto; Ovalle, Elias; Antonova, Elizavieta; Troshichev, Oleg

    2008-11-01

    Turbulent processes in the Earth's magnetosphere are reflected in the dynamical behavior of the geomagnetic indices and other parameters determined from ground based observations. Intermittent properties of one minute Polar Cap (PC) index and auroral radio wave absorption are studied using 1995-2000 data sets. It was found that the probability distribution functions (PDFs) of both PC-index and absorption fluctuations display a strong non-Gaussian shape. This indicates that they are not characterized by a global time self-similarity but rather exhibit intermittency, as previously reported for solar wind velocity and auroral electrojet index values. In the case of the auroral absorption it was also found that intermittency strongly depends on the magnetic local time, being largest in the nighttime sector. This shows that the acceleration of precipitating particles is intermittent, especially near the substorm eye, where the level of turbulence increases. Application of the Local Intermittency Measure (LIM) technique confirms the aforementioned results to a better precision.

  6. Integrated ground-based and remotely sensed data to support global studies of environmental change

    Energy Technology Data Exchange (ETDEWEB)

    Olson, R.J.; Turner, R.S.; Garten, C.T.

    1994-09-15

    Data centers routinely archive and distribute large databases of high quality and with rigorous documentation but, to meet the needs of global studies effectively and efficiently, data centers must go beyond these traditional roles. Global studies of environmental change require integrated databases of multiple data types that are accurately coordinated in terms of spatial, temporal and thematic properties. Such datasets must be designed and developed jointly by scientific researchers, computer specialists, and policy analysts. The presentation focuses on our approach for organizing data from ground-based research programs so that the data can be linked with remotely sensed data and other map data into integrated databases with spatial, temporal, and thematic characteristics relevant to global studies. The development of an integrated database for Net Primary Productivity is described to illustrate the process.

  7. Coastal wind study based on Sentinel-1 and ground-based scanning lidar

    DEFF Research Database (Denmark)

    Ahsbahs, Tobias Torben; Badger, Merete; Pena Diaz, Alfredo

    , the project "Reducing the Uncertainty of Near-shore Energy estimates from meso- and micro-scale wind models" (RUNE) was established. The lidar measurement campaign started November 2015 and ended in February 2016 at the Danish North Sea coast at around 56.5 ◦N, 8.2 ◦E. 107 satellite SAR scenes were collected...... fields from the Sentinel-1A satellite using APL/NOAA’s SAROPS system with GFS model wind directions as input. For the presented cases CMOD5.n is used. Ground-based scanning lidar located on land can also cover near shore areas. In order to improve wind farm planning for near-shore coastal areas...

  8. Dynamical study of low Earth orbit debris collision avoidance using ground based laser

    Directory of Open Access Journals (Sweden)

    N.S. Khalifa

    2015-06-01

    Full Text Available The objective of this paper was to investigate the orbital velocity changes due to the effect of ground based laser force. The resulting perturbations of semi-major axis, miss distance and collision probability of two approaching objects are studied. The analytical model is applied for low Earth orbit debris of different eccentricities and area to mass ratio and the numerical test shows that laser of medium power ∼5 kW can perform a small change ΔV‾ of an average magnitude of 0.2 cm/s which can be accumulated over time to be about 3 cm/day. Moreover, it is confirmed that applying laser ΔV‾ results in decreasing collision probability and increasing miss distance in order to avoid collision.

  9. Ground-based RGB imaging to determine the leaf water potential of potato plants

    Science.gov (United States)

    Zakaluk, Robert F.

    The determination of plant water status from leaf water potential (Psi L) data obtained by conventional methods is impractical for meeting real time irrigation monitoring requirements. This research, undertaken first, in a greenhouse and then in the field, examined the use of artificial neural network (ANN) modeling of RGB (red green blue) images, captured by a ground-based, five mega pixel digital camera, to predict the leaf water potential of potato (Solanum tuberosum L). The greenhouse study examined cv. Russet Burbank, while the field study examined cv. Sangre. The protocol was similar in both studies: (1) images were acquired over different soil nitrate (N) and volumetric water content levels, (2) images were radiometrically calibrated, (3) green foliage was classified and extracted from the images, and (4) image transformations, and vegetation indices were calculated and transformed using principal components analysis (PCA). The findings from both studies were similar: (1) the R and G bands were more important than the B image band in the classification of green leaf pigment, (2) soil N showed an inverse linear relationship against leaf reflectance in the G image band, (3) the ANN model input neuron weights with more separation between soil N and PsiL were more important than other input neurons in predicting PsiL, and (4) the measured and predicted PsiL validation datasets were normally distributed with equal variances and means that were not significantly different. Based on these research findings, the ground-based digital camera proved to be an adequate sensor for image acquisition and a practical tool for acquiring data for predicting the PsiL of potato plants. Keywords: nitrogen, IHS transformation, chromaticity transformation, principal components, vegetation indices, remote sensing, artificial neural network, digital camera.

  10. Detection and quantification of localized groundwater inflow in small streams using ground-based infrared thermography

    Science.gov (United States)

    Schuetz, Tobias; Weiler, Markus

    2010-05-01

    Localized groundwater (GW) inflow into small streams can be a major source of runoff during low flow periods in headwater catchments. The localization and determination of the fraction of runoff corresponding to a certain area may give insights into aquifer type, flow processes, the composition of base-flow concerning the spatial distribution of catchment storage and water quality issues. Though GW temperature has a small amplitude during the year compared to surface water, a significant temperature difference between stream water and groundwater can be expected in summer and winter. As the technical development of infrared thermography is progressing (the spatial resolution of infrared camera systems is increasing and the measuring error is decreasing) we tested ground based infrared thermography as a non-invasive and remote applicable method to detect and quantify GW entries in small streams during baseflow periods (INFRATEC). In addition, water temperature and electric conductivity of the groundwater entering the stream and of the stream water up- and downstream of localized GW inflow were measured with temperature and EC sensors. Though the zones of complete mixing were identified, point measurements and surface radiation temperatures were taken from the same areas. Discharge measurements were conducted using the salt dilution method with continuous injection. End-member mixing calculations were done using the measured EC and water temperature data and compared to the results of mixing calculations of observed water surface radiation temperatures. The discharge observations were used to validate the fraction calculations. Calculated GW entries using thermogramms had comparable deviations from the measured runoff fractions to those from direct temperature and EC measurements. This leads to the conclusion that the use of ground-based infrared thermography for the detection and quantification of localized groundwater inflows into small streams is a valuable and

  11. An evaluation of IASI-NH3 with ground-based Fourier transform infrared spectroscopy measurements

    Science.gov (United States)

    Dammers, Enrico; Palm, Mathias; Van Damme, Martin; Vigouroux, Corinne; Smale, Dan; Conway, Stephanie; Toon, Geoffrey C.; Jones, Nicholas; Nussbaumer, Eric; Warneke, Thorsten; Petri, Christof; Clarisse, Lieven; Clerbaux, Cathy; Hermans, Christian; Lutsch, Erik; Strong, Kim; Hannigan, James W.; Nakajima, Hideaki; Morino, Isamu; Herrera, Beatriz; Stremme, Wolfgang; Grutter, Michel; Schaap, Martijn; Wichink Kruit, Roy J.; Notholt, Justus; Coheur, Pierre-F.; Erisman, Jan Willem

    2016-08-01

    Global distributions of atmospheric ammonia (NH3) measured with satellite instruments such as the Infrared Atmospheric Sounding Interferometer (IASI) contain valuable information on NH3 concentrations and variability in regions not yet covered by ground-based instruments. Due to their large spatial coverage and (bi-)daily overpasses, the satellite observations have the potential to increase our knowledge of the distribution of NH3 emissions and associated seasonal cycles. However the observations remain poorly validated, with only a handful of available studies often using only surface measurements without any vertical information. In this study, we present the first validation of the IASI-NH3 product using ground-based Fourier transform infrared spectroscopy (FTIR) observations. Using a recently developed consistent retrieval strategy, NH3 concentration profiles have been retrieved using observations from nine Network for the Detection of Atmospheric Composition Change (NDACC) stations around the world between 2008 and 2015. We demonstrate the importance of strict spatio-temporal collocation criteria for the comparison. Large differences in the regression results are observed for changing intervals of spatial criteria, mostly due to terrain characteristics and the short lifetime of NH3 in the atmosphere. The seasonal variations of both datasets are consistent for most sites. Correlations are found to be high at sites in areas with considerable NH3 levels, whereas correlations are lower at sites with low atmospheric NH3 levels close to the detection limit of the IASI instrument. A combination of the observations from all sites (Nobs = 547) give a mean relative difference of -32.4 ± (56.3) %, a correlation r of 0.8 with a slope of 0.73. These results give an improved estimate of the IASI-NH3 product performance compared to the previous upper-bound estimates (-50 to +100 %).

  12. A novel technique for extracting clouds base height using ground based imaging

    Directory of Open Access Journals (Sweden)

    E. Hirsch

    2011-01-01

    Full Text Available The height of a cloud in the atmospheric column is a key parameter in its characterization. Several remote sensing techniques (passive and active, either ground-based or on space-borne platforms and in-situ measurements are routinely used in order to estimate top and base heights of clouds. In this article we present a novel method that combines thermal imaging from the ground and sounded wind profile in order to derive the cloud base height. This method is independent of cloud types, making it efficient for both low boundary layer and high clouds. In addition, using thermal imaging ensures extraction of clouds' features during daytime as well as at nighttime. The proposed technique was validated by comparison to active sounding by ceilometers (which is a standard ground based method, to lifted condensation level (LCL calculations, and to MODIS products obtained from space. As all passive remote sensing techniques, the proposed method extracts only the height of the lowest cloud layer, thus upper cloud layers are not detected. Nevertheless, the information derived from this method can be complementary to space-borne cloud top measurements when deep-convective clouds are present. Unlike techniques such as LCL, this method is not limited to boundary layer clouds, and can extract the cloud base height at any level, as long as sufficient thermal contrast exists between the radiative temperatures of the cloud and its surrounding air parcel. Another advantage of the proposed method is its simplicity and modest power needs, making it particularly suitable for field measurements and deployment at remote locations. Our method can be further simplified for use with visible CCD or CMOS camera (although nighttime clouds will not be observed.

  13. Characterizing the Vertical Distribution of Aerosols using Ground-based Multiwavelength Lidar Data

    Science.gov (United States)

    Ferrare, R. A.; Thorsen, T. J.; Clayton, M.; Mueller, D.; Chemyakin, E.; Burton, S. P.; Goldsmith, J.; Holz, R.; Kuehn, R.; Eloranta, E. W.; Marais, W.; Newsom, R. K.; Liu, X.; Sawamura, P.; Holben, B. N.; Hostetler, C. A.

    2016-12-01

    Observations of aerosol optical and microphysical properties are critical for developing and evaluating aerosol transport model parameterizations and assessing global aerosol-radiation impacts on climate. During the Combined HSRL And Raman lidar Measurement Study (CHARMS), we investigated the synergistic use of ground-based Raman lidar and High Spectral Resolution Lidar (HSRL) measurements to retrieve aerosol properties aloft. Continuous (24/7) operation of these co-located lidars during the ten-week CHARMS mission (mid-July through September 2015) allowed the acquisition of a unique, multiwavelength ground-based lidar dataset for studying aerosol properties above the Southern Great Plains (SGP) site. The ARM Raman lidar measured profiles of aerosol backscatter, extinction and depolarization at 355 nm as well as profiles of water vapor mixing ratio and temperature. The University of Wisconsin HSRL simultaneously measured profiles of aerosol backscatter, extinction and depolarization at 532 nm and aerosol backscatter at 1064 nm. Recent advances in both lidar retrieval theory and algorithm development demonstrate that vertically-resolved retrievals using such multiwavelength lidar measurements of aerosol backscatter and extinction can help constrain both the aerosol optical (e.g. complex refractive index, scattering, etc.) and microphysical properties (e.g. effective radius, concentrations) as well as provide qualitative aerosol classification. Based on this work, the NASA Langley Research Center (LaRC) HSRL group developed automated algorithms for classifying and retrieving aerosol optical and microphysical properties, demonstrated these retrievals using data from the unique NASA/LaRC airborne multiwavelength HSRL-2 system, and validated the results using coincident airborne in situ data. We apply these algorithms to the CHARMS multiwavelength (Raman+HSRL) lidar dataset to retrieve aerosol properties above the SGP site. We present some profiles of aerosol effective

  14. Ground-based imaging remote sensing of ice clouds: uncertainties caused by sensor, method and atmosphere

    Science.gov (United States)

    Zinner, Tobias; Hausmann, Petra; Ewald, Florian; Bugliaro, Luca; Emde, Claudia; Mayer, Bernhard

    2016-09-01

    In this study a method is introduced for the retrieval of optical thickness and effective particle size of ice clouds over a wide range of optical thickness from ground-based transmitted radiance measurements. Low optical thickness of cirrus clouds and their complex microphysics present a challenge for cloud remote sensing. In transmittance, the relationship between optical depth and radiance is ambiguous. To resolve this ambiguity the retrieval utilizes the spectral slope of radiance between 485 and 560 nm in addition to the commonly employed combination of a visible and a short-wave infrared wavelength.An extensive test of retrieval sensitivity was conducted using synthetic test spectra in which all parameters introducing uncertainty into the retrieval were varied systematically: ice crystal habit and aerosol properties, instrument noise, calibration uncertainty and the interpolation in the lookup table required by the retrieval process. The most important source of errors identified are uncertainties due to habit assumption: Averaged over all test spectra, systematic biases in the effective radius retrieval of several micrometre can arise. The statistical uncertainties of any individual retrieval can easily exceed 10 µm. Optical thickness biases are mostly below 1, while statistical uncertainties are in the range of 1 to 2.5.For demonstration and comparison to satellite data the retrieval is applied to observations by the Munich hyperspectral imager specMACS (spectrometer of the Munich Aerosol and Cloud Scanner) at the Schneefernerhaus observatory (2650 m a.s.l.) during the ACRIDICON-Zugspitze campaign in September and October 2012. Results are compared to MODIS and SEVIRI satellite-based cirrus retrievals (ACRIDICON - Aerosol, Cloud, Precipitation, and Radiation Interactions and Dynamics of Convective Cloud Systems; MODIS - Moderate Resolution Imaging Spectroradiometer; SEVIRI - Spinning Enhanced Visible and Infrared Imager). Considering the identified

  15. Mountain wave PSC dynamics and microphysics from ground-based lidar measurements and meteorological modeling

    Directory of Open Access Journals (Sweden)

    J. Reichardt

    2004-01-01

    Full Text Available The day-long observation of a polar stratospheric cloud (PSC by two co-located ground-based lidars at the Swedish research facility Esrange (67.9° N, 21.1° E on 16 January 1997 is analyzed in terms of PSC dynamics and microphysics. Mesoscale modeling is utilized to simulate the meteorological setting of the lidar measurements. Microphysical properties of the PSC particles are retrieved by comparing the measured particle depolarization ratio and the PSC-averaged lidar ratio with theoretical optical data derived for different particle shapes. In the morning, nitric acid trihydrate (NAT particles and then increasingly coexisting liquid ternary aerosol (LTA were detected as outflow from a mountain wave-induced ice PSC upwind Esrange. The NAT PSC is in good agreement with simulations for irregular-shaped particles with length-to-diameter ratios between 0.75 and 1.25, maximum dimensions from 0.7 to 0.9 µm, and a number density from 8 to 12 cm-3 and the coexisting LTA droplets had diameters from 0.7 to 0.9 µm, a refractive index of 1.39 and a number density from 7 to 11 cm-3. The total amount of condensed HNO3 was in the range of 8–12 ppbv. The data provide further observational evidence that NAT forms via deposition nucleation on ice particles as a number of recently published papers suggest. By early afternoon the mountain-wave ice PSC expanded above the lidar site. Its optical data indicate a decrease in minimum particle size from 3 to 1.9 µm with time. Later on, following the weakening of the mountain wave, wave-induced LTA was observed only. Our study demonstrates that ground-based lidar measurements of PSCs can be comprehensively interpreted if combined with mesoscale meteorological data.

  16. Critical Evaluation of the ISCCP Simulator Using Ground-Based Remote Sensing Data

    Energy Technology Data Exchange (ETDEWEB)

    Mace, G G; Houser, S; Benson, S; Klein, S A; Min, Q

    2009-11-02

    Given the known shortcomings in representing clouds in Global Climate Models (GCM) comparisons with observations are critical. The International Satellite Cloud Climatology Project (ISCCP) diagnostic products provide global descriptions of cloud top pressure and column optical depth that extends over multiple decades. The necessary limitations of the ISCCP retrieval algorithm require that before comparisons can be made between model output and ISCCP results the model output must be modified to simulate what ISCCP would diagnose under the simulated circumstances. We evaluate one component of the so-called ISCCP simulator in this study by comparing ISCCP and a similar algorithm with various long-term statistics derived from the Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) Climate Research Facility ground-based remote sensors. We find that were a model to simulate the cloud radiative profile with the same accuracy as can be derived from the ARM data, then the likelihood of that occurrence being placed in the same cloud top pressure and optical depth bin as ISCCP of the 9 bins that have become standard ranges from 30% to 70% depending on optical depth. While the ISCCP simulator improved the agreement of cloud-top pressure between ground-based remote sensors and satellite observations, we find minor discrepancies due to the parameterization of cloud top pressure in the ISCCP simulator. The primary source of error seems to be related to discrepancies in visible optical depth that are not accounted for in the ISCCP simulator. We show that the optical depth discrepancies are largest when the assumptions necessary for plane parallel radiative transfer optical depths retrievals are violated.

  17. Evaluation of satellite soil moisture products over Norway using ground-based observations

    Science.gov (United States)

    Griesfeller, A.; Lahoz, W. A.; Jeu, R. A. M. de; Dorigo, W.; Haugen, L. E.; Svendby, T. M.; Wagner, W.

    2016-03-01

    In this study we evaluate satellite soil moisture products from the advanced SCATterometer (ASCAT) and the Advanced Microwave Scanning Radiometer - Earth Observing System (AMSR-E) over Norway using ground-based observations from the Norwegian water resources and energy directorate. The ASCAT data are produced using the change detection approach of Wagner et al. (1999), and the AMSR-E data are produced using the VUA-NASA algorithm (Owe et al., 2001, 2008). Although satellite and ground-based soil moisture data for Norway have been available for several years, hitherto, such an evaluation has not been performed. This is partly because satellite measurements of soil moisture over Norway are complicated owing to the presence of snow, ice, water bodies, orography, rocks, and a very high coastline-to-area ratio. This work extends the European areas over which satellite soil moisture is validated to the Nordic regions. Owing to the challenging conditions for soil moisture measurements over Norway, the work described in this paper provides a stringent test of the capabilities of satellite sensors to measure soil moisture remotely. We show that the satellite and in situ data agree well, with averaged correlation (R) values of 0.72 and 0.68 for ASCAT descending and ascending data vs in situ data, and 0.64 and 0.52 for AMSR-E descending and ascending data vs in situ data for the summer/autumn season (1 June-15 October), over a period of 3 years (2009-2011). This level of agreement indicates that, generally, the ASCAT and AMSR-E soil moisture products over Norway have high quality, and would be useful for various applications, including land surface monitoring, weather forecasting, hydrological modelling, and climate studies. The increasing emphasis on coupled approaches to study the earth system, including the interactions between the land surface and the atmosphere, will benefit from the availability of validated and improved soil moisture satellite datasets, including those

  18. Plans of a test bed for ionospheric modelling based on Fennoscandian ground-based instrumentation

    Science.gov (United States)

    Kauristie, Kirsti; Kero, Antti; Verronen, Pekka T.; Aikio, Anita; Vierinen, Juha; Lehtinen, Markku; Turunen, Esa; Pulkkinen, Tuija; Virtanen, Ilkka; Norberg, Johannes; Vanhamäki, Heikki; Kallio, Esa; Kestilä, Antti; Partamies, Noora; Syrjäsuo, Mikko

    2016-07-01

    One of the recommendations for teaming among research groups in the COSPAR/ILWS roadmap is about building test beds in which coordinated observing supports model development. In the presentation we will describe a test bed initiative supporting research on ionosphere-thermosphere-magnetosphere interactions. The EISCAT incoherent scatter radars with their future extension, EISCAT3D, form the backbone of the proposed system. The EISCAT radars are surrounded by versatile and dense arrays of ground-based instrumentation: magnetometers and auroral cameras (the MIRACLE and IMAGE networks), ionospheric tomography receivers (the TomoScand network) and other novel technology for upper atmospheric probing with radio waves (e.g. the KAIRA facility, riometers and the ionosonde maintained by the Sodankylä Geophysical Observatory). As a new opening, close coordination with the Finnish national cubesat program is planned. We will investigate opportunities to establish a cost efficient nanosatellite program which would support the ground-based observations in a systematic and persistent manner. First experiences will be gathered with the Aalto-1 and Aalto-2 satellites, latter of which will be the Finnish contribution to the international QB50 mission. We envisage close collaboration also in the development of data analysis tools with the goal to integrate routines and models from different research groups to one system, where the different elements support each other. In the longer run we are aiming for a modelling framework with observational guidance which gives a holistic description on ionosphere-thermosphere processes and this way enables reliable forecasts on upper atmospheric space weather activity.

  19. Ground based mobile isotopic methane measurements in the Front Range, Colorado

    Science.gov (United States)

    Vaughn, B. H.; Rella, C.; Petron, G.; Sherwood, O.; Mielke-Maday, I.; Schwietzke, S.

    2014-12-01

    Increased development of unconventional oil and gas resources in North America has given rise to attempts to monitor and quantify fugitive emissions of methane from the industry. Emission estimates of methane from oil and gas basins can vary significantly from one study to another as well as from EPA or State estimates. New efforts are aimed at reconciling bottom-up, or inventory-based, emission estimates of methane with top-down estimates based on atmospheric measurements from aircraft, towers, mobile ground-based vehicles, and atmospheric models. Attributing airborne measurements of regional methane fluxes to specific sources is informed by ground-based measurements of methane. Stable isotopic measurements (δ13C) of methane help distinguish between emissions from the O&G industry, Confined Animal Feed Operations (CAFO), and landfills, but analytical challenges typically limit meaningful isotopic measurements to individual point sampling. We are developing a toolbox to use δ13CH4 measurements to assess the partitioning of methane emissions for regions with multiple methane sources. The method was applied to the Denver-Julesberg Basin. Here we present data from continuous isotopic measurements obtained over a wide geographic area by using MegaCore, a 1500 ft. tube that is constantly filled with sample air while driving, then subsequently analyzed at slower rates using cavity ring down spectroscopy (CRDS). Pressure, flow and calibration are tightly controlled allowing precise attribution of methane enhancements to their point of collection. Comparisons with point measurements are needed to confirm regional values and further constrain flux estimates and models. This effort was made in conjunction with several major field campaigns in the Colorado Front Range in July-August 2014, including FRAPPÉ (Front Range Air Pollution and Photochemistry Experiment), DISCOVER-AQ, and the Air Water Gas NSF Sustainability Research Network at the University of Colorado.

  20. Microwave signatures of ice hydrometeors from ground-based observations above Summit, Greenland

    Directory of Open Access Journals (Sweden)

    C. Pettersen

    2015-12-01

    Full Text Available Multi-instrument, ground-based measurements provide unique and comprehensive datasets of the atmosphere for a specific location over long periods of time and resulting data compliments past and existing global satellite observations. This paper explores the effect of ice hydrometeors on ground-based, high frequency passive microwave measurements and attempts to isolate an ice signature for summer seasons at Summit, Greenland from 2010–2013. Data from a combination of passive microwave, cloud radar, radiosonde, and ceilometer were examined to isolate the ice signature at microwave wavelengths. By limiting the study to a cloud liquid water path of 40 g m−2 or less, the cloud radar can identify cases where the precipitation was dominated by ice. These cases were examined using liquid water and gas microwave absorption models, and brightness temperatures were calculated for the high frequency microwave channels: 90, 150, and 225 GHz. By comparing the measured brightness temperatures from the microwave radiometers and the calculated brightness temperature using only gas and liquid contributions, any residual brightness temperature difference is due to emission and scattering of microwave radiation from the ice hydrometeors in the column. The ice signature in the 90, 150, and 225 GHz channels for the Summit Station summer months was isolated. This measured ice signature was then compared to an equivalent brightness temperature difference calculated with a radiative transfer model including microwave single scattering properties for several ice habits. Initial model results compare well against the four years of summer season isolated ice signature in the high-frequency microwave channels.

  1. Nutritional status assessment in semiclosed environments: ground-based and space flight studies in humans

    Science.gov (United States)

    Smith, S. M.; Davis-Street, J. E.; Rice, B. L.; Nillen, J. L.; Gillman, P. L.; Block, G.

    2001-01-01

    Adequate nutrition is critical during long-term spaceflight, as is the ability to easily monitor dietary intake. A comprehensive nutritional status assessment profile was designed for use before, during and after flight. It included assessment of both dietary intake and biochemical markers of nutritional status. A spaceflight food-frequency questionnaire (FFQ) was developed to evaluate intake of key nutrients during spaceflight. The nutritional status assessment protocol was evaluated during two ground-based closed-chamber studies (60 and 91 d; n = 4/study), and was implemented for two astronauts during 4-mo stays on the Mir space station. Ground-based studies indicated that the FFQ, administered daily or weekly, adequately estimated intake of key nutrients. Chamber subjects maintained prechamber energy intake and body weight. Astronauts tended to eat 40--50% of WHO-predicted energy requirements, and lost >10% of preflight body mass. Serum ferritin levels were lower after the chamber stays, despite adequate iron intake. Red blood cell folate concentrations were increased after the chamber studies. Vitamin D stores were decreased by > 40% on chamber egress and after spaceflight. Mir crew members had decreased levels of most nutritional indices, but these are difficult to interpret given the insufficient energy intake and loss of body mass. Spaceflight food systems can provide adequate intake of macronutrients, although, as expected, micronutrient intake is a concern for any closed or semiclosed food system. These data demonstrate the utility and importance of nutritional status assessment during spaceflight and of the FFQ during extended-duration spaceflight.

  2. Comparing Aerosol Retrievals from Ground-Based Instruments at the Impact-Pm Field Campaign

    Science.gov (United States)

    Kupinski, M.; Bradley, C. L.; Kalashnikova, O. V.; Xu, F.; Diner, D. J.; Clements, C. B.; Camacho, C.

    2016-12-01

    Detection of aerosol types, components having different size and chemical composition, over urban areas is important for understanding their impact on health and climate. In particular, sustained contact with size-differentiated airborne particulate matter: PM10 and PM2.5 can lead to adverse health effects such as asthma attacks, heart and lung diseases, and premature mortality. Multi-angular polarimetric measurements have been advocated in recent years as an additional tool to better understand and retrieve the aerosol properties needed for improved predictions of aerosol impart on air quality and climate. We deployed the ground-based Multiangle SpectroPolarimetric Imager (GroundMSPI) for accurate spectropolarimetric and radiance measurements co-located with the AERONET CIMEL sun photometer and a Halo Doppler 18 m resolution lidar from San José State University at the Garland-Fresno Air Quality supersite in Fresno, CA on July 7 during the Imaging Polarimetric Assessment and Characterization of Tropospheric Particulate Matter (ImPACT-PM) field experiment. GroundMSPI sampled the atmospheric scattering phase function in and 90 degrees out of the principal plane every 15 minutes in an automated manner, utilizing the 2-axis gimbal mount in elevation and azimuth. The goal of this work is verify atmospheric measurement of GroundMSPI with the coincident CIMEL sun photometer and ground-based lidar. Diffuse-sky radiance measurements of GroundMSPI are compared with the CIMEL sun photometer throughout the day. AERONET aerosol parameters such as size, shape, and index of refraction as well as lidar aerosol extinction profiles will be used in a forward radiative transfer model to compare with GroundMSPI observations and optimize these parameters to best match GroundMSPI data.

  3. Ground-based Light Curves Two Pluto Days Before the New Horizons Passage

    Science.gov (United States)

    Bosh, A. S.; Pasachoff, J. M.; Babcock, B. A.; Durst, R. F.; Seeger, C. H.; Levine, S. E.; Abe, F.; Suzuki, D.; Nagakane, M.; Sickafoose, A. A.; Person, M. J.; Zuluaga, C.; Kosiarek, M. R.

    2015-12-01

    We observed the occultation of a 12th magnitude star, one of the two brightest occultation stars ever in our dozen years of continual monitoring of Pluto's atmosphere through such studies, on 29 June 2015 UTC. At Canterbury University's Mt. John University Observatory on the south island of New Zealand, in clear sky, we used our POETS frame-transfer CCD at 10 Hz with GPS timing on the 1-m McLellan telescope as well as an infrared camera on an 0.6-m telescope and three-color photometry at a slower cadence on a second 0.6-m telescope. The light curves show a central flash, indicating that we were close to the center of the occultation path, and allowing us to explore Pluto's atmosphere lower than usual. The light curves show that Pluto's atmosphere remained robust. Observations from 0.5- and 0.4-m telescopes at the Auckland Observatory gave the first half of the occultation before clouds came in. We coordinated our observations with aircraft observations with NASA's Stratospheric Observatory for Infrared Astronomy (SOFIA) and its High Speed Imaging Photometer for Occultations (HIPO). Our ground-based and airborne stellar-occultation effort came only just over two weeks of Earth days and two Pluto days (based on Pluto's rotational period) before the flyby of NASA's New Horizons spacecraft, meaning that the mission's exquisite snapshot of Pluto's atmosphere can be placed in the context of our series of ground-based occultation observations carried out on a regular basis since 2002 following a first Pluto occultation observed in 1988 from aloft. Our observations were supported by NASA Planetary Astronomy grants NNX12AJ29G to Williams College, NNX15AJ82G to Lowell Observatory, and NNX10AB27G to MIT, and by the National Research Foundation of South Africa. We thank Alan Gilmore, Pam Kilmartin, Robert Lucas, Paul Tristam, and Carolle Varughese for assistance at Mt. John.

  4. Mesospheric CO above Troll station, Antarctica observed by a ground based microwave radiometer

    Directory of Open Access Journals (Sweden)

    C. Straub

    2013-01-01

    Full Text Available This paper presents mesospheric carbon monoxide (CO data acquired by the ground-based microwave radiometer of the British Antarctic Survey (BAS radiometer stationed at Troll station in Antarctica (72° S, 2.5° E, 1270 a.m.s.l.. The data set covers the period from February 2008 to January 2010, however, due to very low CO concentrations below approximately 80 km altitude in summer, profiles can only be retrieved during Antarctic winter. CO is measured for approximately 2 h each day and profiles are retrieved approximately every half hour. The retrieved profiles, covering the pressure range from 1 to 0.01 hPa (approximately 48 to 80 km, are compared to measurements from Aura/MLS and SD-WACCM. This intercomparison reveals a low bias of 0.5 to 1 ppmv at 0.1 hPa (approximately 64 km and 2.5 to 3.5 ppmv at 0.01 hPa (approximately 80 km of the BAS microwave radiometer compared to both reference datasets. One explanation for this low bias could be the known high bias of MLS which is in the same order of magnitude. The ground based radiometer shows high and significant correlation (coefficients higher than 0.9/0.65 compared to MLS/SD-WACCM at all altitudes compared with both reference datasets. doi:10.5285/DE3E2092-406D-47A9-9205-3971A8DFB4A9

  5. Mesospheric CO above Troll station, Antarctica observed by a ground based microwave radiometer

    Directory of Open Access Journals (Sweden)

    C. Straub

    2013-06-01

    Full Text Available This paper presents mesospheric carbon monoxide (CO data acquired by the ground-based microwave radiometer of the British Antarctic Survey (BAS radiometer stationed at Troll station in Antarctica (72° S, 2.5° E, 1270 m a.s.l.. The dataset covers the period from February 2008 to January 2010, however, due to very low CO concentrations below approximately 80 km altitude in summer, profiles are only presented during the Antarctic winter. CO is measured for approximately 2 h each day and profiles are retrieved approximately every half hour. The retrieved profiles, covering the pressure range from 1 to 0.01 hPa (approximately 48 to 80 km, are compared to measurements from Microwave Limb Sounder on the Aura satellite (Aura/MLS and Whole Atmosphere Community Climate Model with Specified Dynamics (SD-WACCM. This intercomparison reveals a low bias of 0.5 to 1 ppmv at 0.1 hPa (approximately 64 km and 2.5 to 3.5 ppmv at 0.01 hPa (approximately 80 km of the BAS microwave radiometer compared to both reference datasets. One explanation for this low bias could be the known high bias of MLS which is on the same order of magnitude. The ground based radiometer shows high and significant correlation (coefficients higher than 0.9/0.7 compared to MLS/SD-WACCM at all altitudes compared with both reference datasets. The dataset can be accessed under http://dx.doi.org/10/mhq.

  6. High Resolution Spectral Analysis of Hiss and Chorus Emissions in Ground Based Data

    Science.gov (United States)

    Hosseini Aliabad, S. P.; Golkowski, M.; Gibby, A. R.

    2015-12-01

    The dynamic evolution of the radiation belts is believed to be controlled in large part by two separate but related classes of naturally occurring plasma waves: ELF/VLF chorus and hiss emissions. Although whistler mode chorus has been extensively studied since the first reports by Storey in 1953, the source mechanism and properties are still subjects of active research. Moreover, the origin of plasmaspheric hiss, the electromagnetic emission believed to be responsible for the gap between the inner and outer radiation belts, has been debated for over four decades. Although these waves can be observed in situ on spacecraft, ground-based observing stations can provide orders of magnitude higher data volumes and decades long data coverage essential for certain long-term and statistical studies of wave properties. Recent observational and theoretical works suggest that high resolution analysis of the spectral features of both hiss and chorus emissions can provide insight into generation processes and be used to validate existing theories. Application of the classic Fourier (FFT) technique unfortunately yields a tradeoff between time and frequency resolution. In additional to Fourier spectra, we employ novel methods to make spectrograms with high time and frequency resolutions, independently using minimum variance distortionless response (MVDR). These techniques are applied to ground based data observations of hiss and chorus made in Alaska. Plasmaspheric hiss has been widely regarded as a broadband, structure less, incoherent emission. We quantify the extent to which plasmaspheric hiss can be a coherent emission with complex fine structure. Likewise, to date, researchers have differentiated between hiss and chorus coherency primarily using qualitative "naked eye" approaches to amplitude spectra. Using a quantitative approach to observed amplitude and we present more rigorous classification criteria for these emissions.

  7. Network operability of ground-based microwave radiometers: Calibration and standardization efforts

    Science.gov (United States)

    Pospichal, Bernhard; Löhnert, Ulrich; Küchler, Nils; Czekala, Harald

    2017-04-01

    Ground-based microwave radiometers (MWR) are already widely used by national weather services and research institutions all around the world. Most of the instruments operate continuously and are beginning to be implemented into data assimilation for atmospheric models. Especially their potential for continuously observing boundary-layer temperature profiles as well as integrated water vapor and cloud liquid water path makes them valuable for improving short-term weather forecasts. However until now, most MWR have been operated as stand-alone instruments. In order to benefit from a network of these instruments, standardization of calibration, operation and data format is necessary. In the frame of TOPROF (COST Action ES1303) several efforts have been undertaken, such as uncertainty and bias assessment, or calibration intercomparison campaigns. The goal was to establish protocols for providing quality controlled (QC) MWR data and their uncertainties. To this end, standardized calibration procedures for MWR have been developed and recommendations for radiometer users compiled. Based on the results of the TOPROF campaigns, a new, high-accuracy liquid-nitrogen calibration load has been introduced for MWR manufactured by Radiometer Physics GmbH (RPG). The new load improves the accuracy of the measurements considerably and will lead to even more reliable atmospheric observations. Next to the recommendations for set-up, calibration and operation of ground-based MWR within a future network, we will present homogenized methods to determine the accuracy of a running calibration as well as means for automatic data quality control. This sets the stage for the planned microwave calibration center at JOYCE (Jülich Observatory for Cloud Evolution), which will be shortly introduced.

  8. Mesospheric minor species determinations from rocket and ground-based i.r. measurements

    Science.gov (United States)

    Ulwick, J. C.; Baker, K. D.; Baker, D. J.; Steed, A. J.; Pendleton, W. R.; Grossmann, K.; Brückelmann, H. G.

    As part of the MAP/WINE campaign the infrared hydroxyl airglow layer was investigated at Kiruna, Sweden, by simultaneous measurements with rocket probes of OH ≠ and O2( a1Δg) infrared emissions and concentrations of odd oxygen species (O and O 3). Coordinated measurements of OH ≠ and O2( a1Δg) zenith radiance and emission spectra and their time histories were made from the ground. The rocket-borne Λ = 1.55 μm radiometer ( ΔΛ ≊ 0.23 μm) provided volume emission rates for OH for both rocket ascent and descent, showing a peak near 87 km with a maximum of nearly 10 6 photons sec -1 cm -3. The atomic oxygen distribution showed a concentration of about 10 11 cm -3 between 88 and 100 km, dropping off sharply below 85 km. The ground-based radiometer at Λ = 1.56 μm, which had a similar filter bandpass to the rocket-borne instrument, yielded an equivalent of 130 kR for the total OH Δv = 2 sequence, which is consistent with the zenith-corrected rocket-based sequence radiance value of ≌ 110 kR. The rotational temperature of the OH night airglow obtained from the rotational structure of the OH M (3,1) band observed by the ground-based interferometer was about 195K at the time of the rocket measurement. Atomic oxygen concentrations were calculated from the OH profile and show agreement with the directly measured values. Atomic hydrogen concentrations of a few times 10 7 cm -3 near 85 km were inferred from the data set.

  9. Benchmarking: A tool to enhance performance

    Energy Technology Data Exchange (ETDEWEB)

    Munro, J.F. [Oak Ridge National Lab., TN (United States); Kristal, J. [USDOE Assistant Secretary for Environmental Management, Washington, DC (United States); Thompson, G.; Johnson, T. [Los Alamos National Lab., NM (United States)

    1996-12-31

    The Office of Environmental Management is bringing Headquarters and the Field together to implement process improvements throughout the Complex through a systematic process of organizational learning called benchmarking. Simply stated, benchmarking is a process of continuously comparing and measuring practices, processes, or methodologies with those of other private and public organizations. The EM benchmarking program, which began as the result of a recommendation from Xerox Corporation, is building trust and removing barriers to performance enhancement across the DOE organization. The EM benchmarking program is designed to be field-centered with Headquarters providing facilitatory and integrative functions on an ``as needed`` basis. One of the main goals of the program is to assist Field Offices and their associated M&O/M&I contractors develop the capabilities to do benchmarking for themselves. In this regard, a central precept is that in order to realize tangible performance benefits, program managers and staff -- the ones closest to the work - must take ownership of the studies. This avoids the ``check the box`` mentality associated with some third party studies. This workshop will provide participants with a basic level of understanding why the EM benchmarking team was developed and the nature and scope of its mission. Participants will also begin to understand the types of study levels and the particular methodology the EM benchmarking team is using to conduct studies. The EM benchmarking team will also encourage discussion on ways that DOE (both Headquarters and the Field) can team with its M&O/M&I contractors to conduct additional benchmarking studies. This ``introduction to benchmarking`` is intended to create a desire to know more and a greater appreciation of how benchmarking processes could be creatively employed to enhance performance.

  10. Benchmarking ICRF simulations for ITER

    Energy Technology Data Exchange (ETDEWEB)

    R. V. Budny, L. Berry, R. Bilato, P. Bonoli, M. Brambilla, R.J. Dumont, A. Fukuyama, R. Harvey, E.F. Jaeger, E. Lerche, C.K. Phillips, V. Vdovin, J. Wright, and members of the ITPA-IOS

    2010-09-28

    Abstract Benchmarking of full-wave solvers for ICRF simulations is performed using plasma profiles and equilibria obtained from integrated self-consistent modeling predictions of four ITER plasmas. One is for a high performance baseline (5.3 T, 15 MA) DT H-mode plasma. The others are for half-field, half-current plasmas of interest for the pre-activation phase with bulk plasma ion species being either hydrogen or He4. The predicted profiles are used by seven groups to predict the ICRF electromagnetic fields and heating profiles. Approximate agreement is achieved for the predicted heating power partitions for the DT and He4 cases. Profiles of the heating powers and electromagnetic fields are compared.

  11. Benchmarking Asteroid-Deflection Experiment

    Science.gov (United States)

    Remington, Tane; Bruck Syal, Megan; Owen, John Michael; Miller, Paul L.

    2016-10-01

    An asteroid impacting Earth could have devastating consequences. In preparation to deflect or disrupt one before it reaches Earth, it is imperative to have modeling capabilities that adequately simulate the deflection actions. Code validation is key to ensuring full confidence in simulation results used in an asteroid-mitigation plan. We are benchmarking well-known impact experiments using Spheral, an adaptive smoothed-particle hydrodynamics code, to validate our modeling of asteroid deflection. We describe our simulation results, compare them with experimental data, and discuss what we have learned from our work. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-ABS-695540

  12. NASA Software Engineering Benchmarking Study

    Science.gov (United States)

    Rarick, Heather L.; Godfrey, Sara H.; Kelly, John C.; Crumbley, Robert T.; Wifl, Joel M.

    2013-01-01

    To identify best practices for the improvement of software engineering on projects, NASA's Offices of Chief Engineer (OCE) and Safety and Mission Assurance (OSMA) formed a team led by Heather Rarick and Sally Godfrey to conduct this benchmarking study. The primary goals of the study are to identify best practices that: Improve the management and technical development of software intensive systems; Have a track record of successful deployment by aerospace industries, universities [including research and development (R&D) laboratories], and defense services, as well as NASA's own component Centers; and Identify candidate solutions for NASA's software issues. Beginning in the late fall of 2010, focus topics were chosen and interview questions were developed, based on the NASA top software challenges. Between February 2011 and November 2011, the Benchmark Team interviewed a total of 18 organizations, consisting of five NASA Centers, five industry organizations, four defense services organizations, and four university or university R and D laboratory organizations. A software assurance representative also participated in each of the interviews to focus on assurance and software safety best practices. Interviewees provided a wealth of information on each topic area that included: software policy, software acquisition, software assurance, testing, training, maintaining rigor in small projects, metrics, and use of the Capability Maturity Model Integration (CMMI) framework, as well as a number of special topics that came up in the discussions. NASA's software engineering practices compared favorably with the external organizations in most benchmark areas, but in every topic, there were ways in which NASA could improve its practices. Compared to defense services organizations and some of the industry organizations, one of NASA's notable weaknesses involved communication with contractors regarding its policies and requirements for acquired software. One of NASA's strengths

  13. COG validation: SINBAD Benchmark Problems

    Energy Technology Data Exchange (ETDEWEB)

    Lent, E M; Sale, K E; Buck, R M; Descalle, M

    2004-02-23

    We validated COG, a 3D Monte Carlo radiation transport code, against experimental data and MNCP4C simulations from the Shielding Integral Benchmark Archive Database (SINBAD) compiled by RSICC. We modeled three experiments: the Osaka Nickel and Aluminum sphere experiments conducted at the OKTAVIAN facility, and the liquid oxygen experiment conducted at the FNS facility. COG results are in good agreement with experimental data and generally within a few % of MCNP results. There are several possible sources of discrepancy between MCNP and COG results: (1) the cross-section database versions are different, MCNP uses ENDFB VI 1.1 while COG uses ENDFB VIR7, (2) the code implementations are different, and (3) the models may differ slightly. We also limited the use of variance reduction methods when running the COG version of the problems.

  14. General benchmarks for quantum repeaters

    CERN Document Server

    Pirandola, Stefano

    2015-01-01

    Using a technique based on quantum teleportation, we simplify the most general adaptive protocols for key distribution, entanglement distillation and quantum communication over a wide class of quantum channels in arbitrary dimension. Thanks to this method, we bound the ultimate rates for secret key generation and quantum communication through single-mode Gaussian channels and several discrete-variable channels. In particular, we derive exact formulas for the two-way assisted capacities of the bosonic quantum-limited amplifier and the dephasing channel in arbitrary dimension, as well as the secret key capacity of the qubit erasure channel. Our results establish the limits of quantum communication with arbitrary systems and set the most general and precise benchmarks for testing quantum repeaters in both discrete- and continuous-variable settings.

  15. HPC Analytics Support. Requirements for Uncertainty Quantification Benchmarks

    Energy Technology Data Exchange (ETDEWEB)

    Paulson, Patrick R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Purohit, Sumit [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Rodriguez, Luke R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-05-01

    This report outlines techniques for extending benchmark generation products so they support uncertainty quantification by benchmarked systems. We describe how uncertainty quantification requirements can be presented to candidate analytical tools supporting SPARQL. We describe benchmark data sets for evaluating uncertainty quantification, as well as an approach for using our benchmark generator to produce data sets for generating benchmark data sets.

  16. 42 CFR 440.330 - Benchmark health benefits coverage.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 4 2010-10-01 2010-10-01 false Benchmark health benefits coverage. 440.330 Section... SERVICES (CONTINUED) MEDICAL ASSISTANCE PROGRAMS SERVICES: GENERAL PROVISIONS Benchmark Benefit and Benchmark-Equivalent Coverage § 440.330 Benchmark health benefits coverage. Benchmark coverage is...

  17. An Effective Approach for Benchmarking Implementation

    Directory of Open Access Journals (Sweden)

    B. M. Deros

    2011-01-01

    Full Text Available Problem statement: The purpose of this study is to present a benchmarking guideline, conceptual framework and computerized mini program to assists companies achieve better performance in terms of quality, cost, delivery, supply chain and eventually increase their competitiveness in the market. The study begins with literature review on benchmarking definition, barriers and advantages from the implementation and the study of benchmarking framework. Approach: Thirty respondents were involved in the case study. They comprise of industrial practitioners, which had assessed usability and practicability of the guideline, conceptual framework and computerized mini program. Results: A guideline and template were proposed to simplify the adoption of benchmarking techniques. A conceptual framework was proposed by integrating the Deming’s PDCA and Six Sigma DMAIC theory. It was provided a step-by-step method to simplify the implementation and to optimize the benchmarking results. A computerized mini program was suggested to assist the users in adopting the technique as part of improvement project. As the result from the assessment test, the respondents found that the implementation method provided an idea for company to initiate benchmarking implementation and it guides them to achieve the desired goal as set in a benchmarking project. Conclusion: The result obtained and discussed in this study can be applied in implementing benchmarking in a more systematic way for ensuring its success.

  18. Synergetic effect of benchmarking competitive advantages

    Directory of Open Access Journals (Sweden)

    N.P. Tkachova

    2011-12-01

    Full Text Available It is analyzed the essence of synergistic competitive benchmarking. The classification of types of synergies is developed. It is determined the sources of synergies in conducting benchmarking of competitive advantages. It is proposed methodological framework definition of synergy in the formation of competitive advantage.

  19. Synergetic effect of benchmarking competitive advantages

    OpenAIRE

    N.P. Tkachova; P.G. Pererva

    2011-01-01

    It is analyzed the essence of synergistic competitive benchmarking. The classification of types of synergies is developed. It is determined the sources of synergies in conducting benchmarking of competitive advantages. It is proposed methodological framework definition of synergy in the formation of competitive advantage.

  20. Benchmarking set for domestic smart grid management

    NARCIS (Netherlands)

    Bosman, M.G.C.; Bakker, Vincent; Molderink, Albert; Hurink, Johann L.; Smit, Gerardus Johannes Maria

    2010-01-01

    In this paper we propose a benchmark for domestic smart grid management. It consists of an in-depth description of a domestic smart grid, in which local energy consumers, producers and buffers can be controlled. First, from this description a general benchmark framework is derived, which can be used

  1. Machines are benchmarked by code, not algorithms

    NARCIS (Netherlands)

    Poss, R.

    2013-01-01

    This article highlights how small modifications to either the source code of a benchmark program or the compilation options may impact its behavior on a specific machine. It argues that for evaluating machines, benchmark providers and users be careful to ensure reproducibility of results based on th

  2. Benchmark analysis of railway networks and undertakings

    NARCIS (Netherlands)

    Hansen, I.A.; Wiggenraad, P.B.L.; Wolff, J.W.

    2013-01-01

    Benchmark analysis of railway networks and companies has been stimulated by the European policy of deregulation of transport markets, the opening of national railway networks and markets to new entrants and separation of infrastructure and train operation. Recent international railway benchmarking s

  3. Benchmark Assessment for Improved Learning. AACC Report

    Science.gov (United States)

    Herman, Joan L.; Osmundson, Ellen; Dietel, Ronald

    2010-01-01

    This report describes the purposes of benchmark assessments and provides recommendations for selecting and using benchmark assessments--addressing validity, alignment, reliability, fairness and bias and accessibility, instructional sensitivity, utility, and reporting issues. We also present recommendations on building capacity to support schools'…

  4. Benchmark Two-Good Utility Functions

    NARCIS (Netherlands)

    de Jaegher, K.

    Benchmark two-good utility functions involving a good with zero income elasticity and unit income elasticity are well known. This paper derives utility functions for the additional benchmark cases where one good has zero cross-price elasticity, unit own-price elasticity, and zero own price

  5. Benchmark Two-Good Utility Functions

    NARCIS (Netherlands)

    de Jaegher, K.

    2007-01-01

    Benchmark two-good utility functions involving a good with zero income elasticity and unit income elasticity are well known. This paper derives utility functions for the additional benchmark cases where one good has zero cross-price elasticity, unit own-price elasticity, and zero own price elasticit

  6. Benchmarking Learning and Teaching: Developing a Method

    Science.gov (United States)

    Henderson-Smart, Cheryl; Winning, Tracey; Gerzina, Tania; King, Shalinie; Hyde, Sarah

    2006-01-01

    Purpose: To develop a method for benchmarking teaching and learning in response to an institutional need to validate a new program in Dentistry at the University of Sydney, Australia. Design/methodology/approach: After a collaborative partner, University of Adelaide, was identified, the areas of teaching and learning to be benchmarked, PBL…

  7. Assessment of NASA Airborne Laser Altimetry Data Using Ground-Based GPS Data near Summit Station, Greenland

    Science.gov (United States)

    Brunt, Kelly M.; Hawley, Robert L.; Lutz, Eric R.; Studinger, Michael; Sonntag, John G.; Hofton, Michelle A.; Andrews, Lauren C.; Neumann, Thomas A.

    2017-01-01

    A series of NASA airborne lidars have been used in support of satellite laser altimetry missions. These airbornelaser altimeters have been deployed for satellite instrument development, for spaceborne data validation, and to bridge the data gap between satellite missions. We used data from ground-based Global Positioning System (GPS) surveys of an 11 km long track near Summit Station, Greenland, to assess the surface elevation bias and measurement precision of three airborne laser altimeters including the Airborne Topographic Mapper (ATM), the Land, Vegetation, and Ice Sensor (LVIS), and the Multiple Altimeter Beam Experimental Lidar (MABEL). Ground-based GPS data from the monthly ground-based traverses, which commenced in 2006, allowed for the assessment of nine airborne lidar surveys associated with ATM and LVIS between 2007 and 2016. Surface elevation biases for these altimeters over the flat, ice-sheet interior are less than 0.12 m, while assessments of measurement precision are 0.09 m or better. Ground-based GPS positions determined both with and without differential post-processing techniques provided internally consistent solutions. Results from the analyses of ground-based and airborne data provide validation strategy guidance for the Ice, Cloud, and land Elevation Satellite 2 (ICESat-2) elevation and elevation-change data products.

  8. A Seafloor Benchmark for 3-dimensional Geodesy

    Science.gov (United States)

    Chadwell, C. D.; Webb, S. C.; Nooner, S. L.

    2014-12-01

    We have developed an inexpensive, permanent seafloor benchmark to increase the longevity of seafloor geodetic measurements. The benchmark provides a physical tie to the sea floor lasting for decades (perhaps longer) on which geodetic sensors can be repeatedly placed and removed with millimeter resolution. Global coordinates estimated with seafloor geodetic techniques will remain attached to the benchmark allowing for the interchange of sensors as they fail or become obsolete, or for the sensors to be removed and used elsewhere, all the while maintaining a coherent series of positions referenced to the benchmark. The benchmark has been designed to free fall from the sea surface with transponders attached. The transponder can be recalled via an acoustic command sent from the surface to release from the benchmark and freely float to the sea surface for recovery. The duration of the sensor attachment to the benchmark will last from a few days to a few years depending on the specific needs of the experiment. The recovered sensors are then available to be reused at other locations, or again at the same site in the future. Three pins on the sensor frame mate precisely and unambiguously with three grooves on the benchmark. To reoccupy a benchmark a Remotely Operated Vehicle (ROV) uses its manipulator arm to place the sensor pins into the benchmark grooves. In June 2014 we deployed four benchmarks offshore central Oregon. We used the ROV Jason to successfully demonstrate the removal and replacement of packages onto the benchmark. We will show the benchmark design and its operational capabilities. Presently models of megathrust slip within the Cascadia Subduction Zone (CSZ) are mostly constrained by the sub-aerial GPS vectors from the Plate Boundary Observatory, a part of Earthscope. More long-lived seafloor geodetic measures are needed to better understand the earthquake and tsunami risk associated with a large rupture of the thrust fault within the Cascadia subduction zone

  9. A fast, automatic camera image stabilization benchmarking scheme

    Science.gov (United States)

    Yu, Jun; Craver, Scott

    2012-01-01

    While image stabilization(IS ) has become a default functionality for most digital cameras, there is a lack of automatic IS evaluation scheme. Most publicly known camera IS reviews either require human visual assessment or resort to some generic blur metric. The former is slow and inconsistent, and the latter may not be easily scalable with respect to resolution variation and exposure variation when comparing different cameras. We proposed a histogram based automatic IS evaluation scheme, which employs a white noise pattern as shooting target. It is able to produce accurate and consistent IS benchmarks in a very fast manner.

  10. A review of ground-based heavy-ion radiobiology relevant to space radiation risk assessment: Part II. Cardiovascular and immunological effects

    Energy Technology Data Exchange (ETDEWEB)

    Blakely, Eleanor A.; Chang, Polly Y.

    2007-02-26

    The future of manned space flight depends on an analysis of the numerous potential risks of travel into deep space. Currently no radiation dose limits have been established for these exploratory missions. To set these standards more information is needed about potential acute and late effects on human physiology from appropriate radiation exposure scenarios, including pertinent radiation types and dose rates. Cancer risks have long been considered the most serious late effect from chronic daily relatively low-dose exposures to the complex space radiation environment. However, other late effects from space radiation exposure scenarios are under study in ground-based accelerator facilities and have revealed some unique particle radiation effects not observed with conventional radiations. A comprehensive review of pertinent literature that considers tissue effects of radiation leading to functional detriments in specific organ systems has recently been published (NCRP National Council on Radiation Protection and Measurements, Information Needed to Make Radiation Protection Recommendations for Space Missions Beyond Low-Earth Orbit, Report 153, Bethesda, MD, 2006). This paper highlights the review of two non-cancer concerns from this report: cardiovascular and immunological effects.

  11. Network analysis of geomagnetic substorms using the SuperMAG database of ground-based magnetometer stations

    CERN Document Server

    Dods, J; Gjerloev, J W

    2016-01-01

    The overall morphology and dynamics of magnetospheric substorms is well established in terms of the observed qualitative auroral features seen in ground-based magnetometers. This paper focuses on the quantitative characterization of substorm dynamics captured by ground-based magnetometer stations. We present the first analysis of substorms using dynamical networks obtained from the full available set of ground-based magnetometer observations in the Northern Hemisphere. The stations are connected in the network when the correlation between the vector magnetometer time series from pairs of stations within a running time window exceeds a threshold. Dimensionless parameters can then be obtained that characterize the network and by extension, the spatiotemporal dynamics of the substorm under observation. We analyze four isolated substorm test cases as well as a steady magnetic convection (SMC) event and a day in which no substorms occur. These test case substorms are found to give a consistent characteristic netwo...

  12. Determination of the Characteristics of Ground-Based IR Spectral Instrumentation for Environmental Monitoring of the Atmosphere

    Science.gov (United States)

    Makarova, M. V.; Poberovskii, A. V.; Hase, F.; Timofeyev, Yu. M.; Imhasin, Kh. Kh.

    2016-07-01

    This is a study of the spectral characteristics of a ground-based spectral system consisting of an original system for tracking the sun developed at St. Petersburg State University and a Bruker IFS125HR Fourier spectrometer. The importance of accounting for the actual instrument function of the spectral system during processing of ground-based IR spectra of direct solar radiation is illustrated by the example of determining the overall abundance of methane in the atmosphere. Spectral intervals are proposed for taking spectra of direct solar radiation with an HBr cell, which yield information on the parameters of the ground-based system, while simultaneously checking the alignment of the system for each spectrum of the atmosphere.

  13. Validation of CALIPSO space-borne-derived attenuated backscatter coefficient profiles using a ground-based lidar in Athens, Greece

    Directory of Open Access Journals (Sweden)

    R. E. Mamouri

    2009-09-01

    Full Text Available We present initial aerosol validation results of the space-borne lidar CALIOP -onboard the CALIPSO satellite- Level 1 attenuated backscatter coefficient profiles, using coincident observations performed with a ground-based lidar in Athens, Greece (37.9° N, 23.6° E. A multi-wavelength ground-based backscatter/Raman lidar system is operating since 2000 at the National Technical University of Athens (NTUA in the framework of the European Aerosol Research LIdar NETwork (EARLINET, the first lidar network for tropospheric aerosol studies on a continental scale. Since July 2006, a total of 40 coincidental aerosol ground-based lidar measurements were performed over Athens during CALIPSO overpasses. The ground-based measurements were performed each time CALIPSO overpasses the station location within a maximum distance of 100 km. The duration of the ground–based lidar measurements was approximately two hours, centred on the satellite overpass time. From the analysis of the ground-based/satellite correlative lidar measurements, a mean bias of the order of 22% for daytime measurements and of 8% for nighttime measurements with respect to the CALIPSO profiles was found for altitudes between 3 and 10 km. The mean bias becomes much larger for altitudes lower that 3 km (of the order of 60% which is attributed to the increase of aerosol horizontal inhomogeneity within the Planetary Boundary Layer, resulting to the observation of possibly different air masses by the two instruments. In cases of aerosol layers underlying Cirrus clouds, comparison results for aerosol tropospheric profiles become worse. This is attributed to the significant multiple scattering effects in Cirrus clouds experienced by CALIPSO which result in an attenuation which is less than that measured by the ground-based lidar.

  14. Functional proteomic analysis revealed ground-base ion radiations cannot reflect biological effects of space radiations of rice

    Science.gov (United States)

    Wang, Wei; Sun, Yeqing; Zhao, Qian; Han, Lu

    2016-07-01

    Highly ionizing radiation (HZE) in space is considered as main factor causing biological effects. Radiobiological studies during space flights are unrepeatable due to the variable space radiation environment, ground-base ion radiations are usually performed to simulate of the space biological effect. Spaceflights present a low-dose rate (0.1˜~0.3mGy/day) radiation environment inside aerocrafts while ground-base ion radiations present a much higher dose rate (100˜~500mGy/min). Whether ground-base ion radiation can reflect effects of space radiation is worth of evaluation. In this research, we compared the functional proteomic profiles of rice plants between on-ground simulated HZE particle radiation and spaceflight treatments. Three independent ground-base seed ionizing radiation experiments with different cumulative doses (dose range: 2˜~20000mGy) and different liner energy transfer (LET) values (13.3˜~500keV/μμm) and two independent seed spaceflight experiments onboard Chinese 20th satellite and SZ-6 spacecraft were carried out. Alterations in the proteome were analyzed by two-dimensional difference gel electrophoresis (2-D DIGE) with MALDI-TOF/TOF mass spectrometry identifications. 45 and 59 proteins showed significant (pmetabolic process, protein folding and phosphorylation. The results implied that ground-base radiations cannot truly reflect effects of spaceflight radiations, ground-base radiation was a kind of indirect effect to rice causing oxidation and metabolism stresses, but space radiation was a kind of direct effect leading to macromolecule (DNA and protein) damage and signal pathway disorders. This functional proteomic analysis work might provide a new evaluation method for further on-ground simulated HZE radiation experiments.

  15. Proteomic and Epigenetic Analysis of Rice after Seed Spaceflight and Ground-Base Ion Radiations

    Science.gov (United States)

    Wang, Wei; Sun, Yeqing; Peng, Yuming; Zhao, Qian; Wen, Bin; Yang, Jun

    Highly ionizing radiation (HZE) in space is considered as main factor causing biological effects to plant seeds. In previous work, we compared the proteomic profiles of rice plants growing after seed spaceflights to ground controls by two-dimensional difference gel electrophoresis (2-D DIGE) with mass spectrometry and found that the protein expression profiles were changed and differentially expressed proteins participated in most of the biological processes of rice. To further evaluate the dosage effects of space radiation and compare between low- and high-dose ion effects, we carried out three independent ground-base ionizing radiation experiments with different cumulative doses (low-dose range: 2~1000mGy, high-dose range: 2000~20000mGy) to rice seeds and performed proteomic analysis of seedlings. We found that protein expression profiles showed obvious boundaries between low- and high-dose radiation groups. Rates of differentially expressed proteins presented a dose-dependent effect, it reached the highest value at 2000mGy dosage point in all three radiation experiments coincidently; while proteins responded to low-dose radiations preferred to change their expressions at the minimum dosage (2mGy). Proteins participating in rice biological processes also responded differently between low- and high-dose radiations: proteins involved in energy metabolism and photosynthesis tended to be regulated after low-dose radiations while stress responding, protein folding and cell redox homeostasis related proteins preferred to change their expressions after high-dose radiations. By comparing the proteomic profiles between ground-base radiations and spaceflights, it was worth noting that ground-base low-dose ion radiation effects shared similar biological effects as space environment. In addition, we discovered that protein nucleoside diphosphate kinase 1 (NDPK1) showed obvious increased regulation after spaceflights and ion radiations. NDPK1 catalyzes nucleotide metabolism

  16. The use of products from ground-based GNSS observations in meteorological nowcasting

    Science.gov (United States)

    Terradellas, E.; Callado, A.; Pascual, R.; Téllez, B.

    2009-09-01

    Heavy rainfall is often focalized in areas of moisture convergence. A close relationship between precipitation and fast variations of vertically-integrated water vapour (IWV) has been found in numerous cases. Furthermore, a latency of several tens of minutes of the precipitation relative to a rapid increase of the water vapour contents appears to be a common truth. Therefore, continuous monitoring of atmospheric humidity and its spatial distribution is crucial to the operational forecaster for a proper nowcasting of heavy rainfall events. Radiosonde releases yield measurements of atmospheric humidity, but they are very sparse and present a limited time resolution of 6 to 12 hours. The microwave signals continuously broadcasted by the Global Navigation Satellite System (GNSS) satellites are influenced by the water vapour as they travel through the atmosphere to ground-based receivers. The total zenith delay (ZTD) of these signals, a by-product of the geodetic processing, is already operationally assimilated into numerical weather prediction (NWP) models and has positive impact on the prediction of precipitation events, as it has been reported after the analysis of parallel runs. Estimates of IWV retrieved from ground-based GNSS observations may also constitute a source of information on the horizontal distribution and the time evolution of atmospheric humidity that can be presented to the forecaster. Several advantages can be attributed to the ground-based GNSS as a meteorological observing system. First, receiving networks can be built and maintained at a relatively low cost, which it can, additionally, be shared among different users. Second, the quality of the processed observations is insensitive to the weather conditions and, third, the temporal resolution of its products is very high. On the other hand, the current latency of the data disposal, ranging between one and two hours, is acceptable for the NWP community, but appears to be excessive for nowcasting

  17. Sub-Seasonal Variability of Tropical Rainfall Observed by TRMM and Ground-based Polarimetric Radar

    Science.gov (United States)

    Dolan, Brenda; Rutledge, Steven; Lang, Timothy; Cifelli, Robert; Nesbitt, Stephen

    2010-05-01

    Studies of tropical precipitation characteristics from the TRMM-LBA and NAME field campaigns using ground-based polarimetric S-band data have revealed significant differences in microphysical processes occurring in the various meteorological regimes sampled in those projects. In TRMM-LMA (January-February 1999 in Brazil; a TRMM ground validation experiment), variability is driven by prevailing low-level winds. During periods of low-level easterlies, deeper and more intense convection is observed, while during periods of low-level westerlies, weaker convection embedded in widespread stratiform precipitation is common. In the NAME region (North American Monsoon Experiment, summer 2004 along the west coast of Mexico), strong terrain variability drives differences in precipitation, with larger drops and larger ice mass aloft associated with convection occurring over the coastal plain compared to convection over the higher terrain of the Sierra Madre Occidental, or adjacent coastal waters. Comparisons with the TRMM precipitation radar (PR) indicate that such sub-seasonal variability in these two regions are not well characterized by the TRMM PR reflectivity and rainfall statistics. TRMM PR reflectivity profiles in the LBA region are somewhat lower than S-Pol values, particularly in the more intense easterly regime convection. In NAME, mean reflectivities are even more divergent, with TRMM profiles below those of S-Pol. In both regions, the TRMM PR does not capture rain rates above 80 mm hr-1 despite much higher rain rates estimated from the S-Pol polarimetric data, and rain rates are generally lower for a given reflectivity from TRMM PR compared to S-Pol. These differences between TRMM PR and S-Pol may arise from the inability of Z-R relationships to capture the full variability of microphysical conditions or may highlight problems with TRMM retrievals over land. In addition to the TRMM-LBA and NAME regions, analysis of sub-seasonal precipitation variability and

  18. Ground-based aerosol characterization during the South American Biomass Burning Analysis (SAMBBA) field experiment

    Science.gov (United States)

    Brito, J.; Rizzo, L. V.; Morgan, W. T.; Coe, H.; Johnson, B.; Haywood, J.; Longo, K.; Freitas, S.; Andreae, M. O.; Artaxo, P.

    2014-11-01

    This paper investigates the physical and chemical characteristics of aerosols at ground level at a site heavily impacted by biomass burning. The site is located near Porto Velho, Rondônia, in the southwestern part of the Brazilian Amazon rainforest, and was selected for the deployment of a large suite of instruments, among them an Aerosol Chemical Speciation Monitor. Our measurements were made during the South American Biomass Burning Analysis (SAMBBA) field experiment, which consisted of a combination of aircraft and ground-based measurements over Brazil, aimed to investigate the impacts of biomass burning emissions on climate, air quality, and numerical weather prediction over South America. The campaign took place during the dry season and the transition to the wet season in September/October 2012. During most of the campaign, the site was impacted by regional biomass burning pollution (average CO mixing ratio of 0.6 ppm), occasionally superimposed by intense (up to 2 ppm of CO), freshly emitted biomass burning plumes. Aerosol number concentrations ranged from ~1000 cm-3 to peaks of up to 35 000 cm-3 (during biomass burning (BB) events, corresponding to an average submicron mass mean concentrations of 13.7 μg m-3 and peak concentrations close to 100 μg m-3. Organic aerosol strongly dominated the submicron non-refractory composition, with an average concentration of 11.4 μg m-3. The inorganic species, NH4, SO4, NO3, and Cl, were observed, on average, at concentrations of 0.44, 0.34, 0.19, and 0.01 μg m-3, respectively. Equivalent black carbon (BCe) ranged from 0.2 to 5.5 μg m-3, with an average concentration of 1.3 μg m-3. During BB peaks, organics accounted for over 90% of total mass (submicron non-refractory plus BCe), among the highest values described in the literature. We examined the ageing of biomass burning organic aerosol (BBOA) using the changes in the H : C and O : C ratios, and found that throughout most of the aerosol processing (O : C ≅ 0

  19. Ground based aerosol characterization during the South American Biomass Burning Analysis (SAMBBA field experiment

    Directory of Open Access Journals (Sweden)

    J. Brito

    2014-05-01

    Full Text Available This paper investigates the physical and chemical characteristics of aerosols at ground level at a site heavily impacted by biomass burning. The site is located near Porto Velho, Rondônia, in the Southwestern part of the Brazilian Amazon forest, and was selected for the deployment of a large suite of instruments, among them an Aerosol Chemical Speciation Monitor. Our measurements were made during the South American Biomass Burning Analysis (SAMBBA field experiment, which consisted of a combination of aircraft and ground based measurements over Brazil, aiming to investigate the impacts of biomass burning emissions on climate, air quality, and numerical weather prediction over South America. The campaign took place during the dry season and the transition to the wet season in September/October 2012. During most of the campaign, the site was impacted by regional biomass burning pollution (average CO mixing ratio of 0.6 ppm, occasionally superimposed by intense (up to 2 ppm of CO, freshly emitted biomass burning plumes. Aerosol number concentrations ranged from ∼1000 cm−3 to peaks of up to 35 000 cm−3 during biomass burning (BB events, corresponding to an average submicron mass mean concentrations of 13.7 μg m−3 and peak concentrations close to 100 μg m−3. Organic aerosol strongly dominated the submicron non-refractory composition, with an average concentration of 11.4 μg m−3. The inorganic species, NH4, SO4, NO3, and Cl, were observed on average at concentrations of 0.44, 0.34, 0.19, and 0.01 μg m−3, respectively. Equivalent Black Carbon (BCe ranged from 0.2 to 5.5 μg m−3, with an average concentration of 1.3 μg m−3. During BB peaks, organics accounted for over 90% of total mass (submicron non-refractory plus BCe, among the highest values described in the literature. We examined the ageing of Biomass Burning Organic Aerosol (BBOA using the changes in the H : C and O : C ratios, and found that throughout most of the aerosol

  20. NASA's Newest Orbital Debris Ground-based Telescope Assets: MCAT and UKIRT

    Science.gov (United States)

    Lederer, S. M.; Frith, J. M.; Pace, L. F.; Cowardin, H. M.; Cowardin, H. M.; Hickson, P.; Glesne, T.; Maeda, R.; Buckalew, B.; Nishimoto, D.; hide

    2014-01-01

    NASA's Orbital Debris Program Office (ODPO) will break ground on Ascension Island in 2014 to build the newest optical (0.30 - 1.06 micrometers) ground-based telescope asset dedicated to the study of orbital debris. The Meter Class Autonomous Telescope (MCAT) is a 1.3m optical telescope designed to track objects in orbits ranging from Low Earth Orbit (LEO) to Geosynchronous Earth Orbit (GEO). Ascension Island is located in the South Atlantic Ocean, offering longitudinal sky coverage not afforded by the Ground-based Electro-Optical Deep Space Surveillance (GEODSS) network. With a fast-tracking dome, a suite of visible wide-band filters, and a time-delay integration (TDI) capable camera, MCAT is capable of multiple observing modes ranging from tracking cataloged debris targets to surveying the overall debris environment. Access to the United Kingdom Infrared Telescope (UKIRT) will extend our spectral coverage into the near- (0.8-5 micrometers) and mid- to far-infrared (8-25 micrometers) regime. UKIRT is a 3.8m telescope located on Mauna Kea on the Big Island of Hawaii. At nearly 14,000-feet and above the atmospheric inversion layer, this is one of the premier astronomical sites in the world and is an ideal setting for an infrared telescope. An unprecedented one-third of this telescope's time has been allocated to collect orbital debris data for NASA's ODPO over a 2-year period. UKIRT has several instruments available to obtain low-resolution spectroscopy in both the near-IR and the mid/far-IR. Infrared spectroscopy is ideal for constraining the material types, albedos and sizes of debris targets, and potentially gaining insight into reddening effects caused by space weathering. In addition, UKIRT will be used to acquire broadband photometric imaging at GEO with the Wide Field Camera (WFCAM) for studying known objects of interest as well as collecting data in survey-mode to discover new targets. Results from the first stage of the debris campaign will be presented. The

  1. TEMIS UV product validation using NILU-UV ground-based measurements in Thessaloniki, Greece

    Science.gov (United States)

    Zempila, Melina-Maria; van Geffen, Jos H. G. M.; Taylor, Michael; Fountoulakis, Ilias; Koukouli, Maria-Elissavet; van Weele, Michiel; van der A, Ronald J.; Bais, Alkiviadis; Meleti, Charikleia; Balis, Dimitrios

    2017-06-01

    This study aims to cross-validate ground-based and satellite-based models of three photobiological UV effective dose products: the Commission Internationale de l'Éclairage (CIE) erythemal UV, the production of vitamin D in the skin, and DNA damage, using high-temporal-resolution surface-based measurements of solar UV spectral irradiances from a synergy of instruments and models. The satellite-based Tropospheric Emission Monitoring Internet Service (TEMIS; version 1.4) UV daily dose data products were evaluated over the period 2009 to 2014 with ground-based data from a Norsk Institutt for Luftforskning (NILU)-UV multifilter radiometer located at the northern midlatitude super-site of the Laboratory of Atmospheric Physics, Aristotle University of Thessaloniki (LAP/AUTh), in Greece. For the NILU-UV effective dose rates retrieval algorithm, a neural network (NN) was trained to learn the nonlinear functional relation between NILU-UV irradiances and collocated Brewer-based photobiological effective dose products. Then the algorithm was subjected to sensitivity analysis and validation. The correlation of the NN estimates with target outputs was high (r = 0. 988 to 0.990) and with a very low bias (0.000 to 0.011 in absolute units) proving the robustness of the NN algorithm. For further evaluation of the NILU NN-derived products, retrievals of the vitamin D and DNA-damage effective doses from a collocated Yankee Environmental Systems (YES) UVB-1 pyranometer were used. For cloud-free days, differences in the derived UV doses are better than 2 % for all UV dose products, revealing the reference quality of the ground-based UV doses at Thessaloniki from the NILU-UV NN retrievals. The TEMIS UV doses used in this study are derived from ozone measurements by the SCIAMACHY/Envisat and GOME2/MetOp-A satellite instruments, over the European domain in combination with SEVIRI/Meteosat-based diurnal cycle of the cloud cover fraction per 0. 5° × 0. 5° (lat × long) grid cells. TEMIS

  2. Validation of five years (2003–2007 of SCIAMACHY CO total column measurements using ground-based spectrometer observations

    Directory of Open Access Journals (Sweden)

    A. M. Poberovskii

    2010-10-01

    Full Text Available This paper presents a validation study of SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY carbon monoxide (CO total column measurements from the Iterative Maximum Likelihood Method (IMLM algorithm using ground-based spectrometer observations from twenty surface stations for the five year time period of 2003–2007. Overall we find a good agreement between SCIAMACHY and ground-based observations for both mean values as well as seasonal variations. For high-latitude Northern Hemisphere stations absolute differences between SCIAMACHY and ground-based measurements are close to or fall within the SCIAMACHY CO 2σ precision of 0.2 × 1018 molecules/cm2 (∼10% indicating that SCIAMACHY can observe CO accurately at high Northern Hemisphere latitudes. For Northern Hemisphere mid-latitude stations the validation is complicated due to the vicinity of emission sources for almost all stations, leading to higher ground-based measurements compared to SCIAMACHY CO within its typical sampling area of 8° × 8°. Comparisons with Northern Hemisphere mountain stations are hampered by elevation effects. After accounting for these effects, the validation provides satisfactory results. At Southern Hemisphere mid- to high latitudes SCIAMACHY is systematically lower than the ground-based measurements for 2003 and 2004, but for 2005 and later years the differences between SCIAMACHY and ground-based measurements fall within the SCIAMACHY precision. The 2003–2004 bias is consistent with previously reported results although its origin remains under investigation. No other systematic spatial or temporal biases could be identified based on the validation presented in this paper. Validation results are robust with regard to the choices of the instrument-noise error filter, sampling area, and time averaging required for the validation of SCIAMACHY CO total column measurements. Finally, our results show that the spatial coverage of the ground-based

  3. MAD-4-MITO, a Multi Array of Detectors for ground-based mm/submm SZ observations

    CERN Document Server

    Lamagna, L; Melchiorri, F; Battistelli, E S; De Grazia, M; Luzzi, G; Orlando, A E; Savini, G

    2002-01-01

    The last few years have seen a large development of mm technology and ultra-sensitive detectors devoted to microwave astronomy and astrophysics. The possibility to deal with large numbers of these detectors assembled into multi--pixel imaging systems has greatly improved the performance of microwave observations, even from ground--based stations, especially combining the power of multi--band detectors with their new imaging capabilities. Hereafter, we will present the development of a multi--pixel solution devoted to Sunyaev--Zel'dovich observations from ground--based telescopes, that is going to be operated from the Millimetre and Infrared Testagrigia Observatory.

  4. MetaSensing's FastGBSAR: ground based radar for deformation monitoring

    Science.gov (United States)

    Rödelsperger, Sabine; Meta, Adriano

    2014-10-01

    The continuous monitoring of ground deformation and structural movement has become an important task in engineering. MetaSensing introduces a novel sensor system, the Fast Ground Based Synthetic Aperture Radar (FastGBSAR), based on innovative technologies that have already been successfully applied to airborne SAR applications. The FastGBSAR allows the remote sensing of deformations of a slope or infrastructure from up to a distance of 4 km. The FastGBSAR can be setup in two different configurations: in Real Aperture Radar (RAR) mode it is capable of accurately measuring displacements along a linear range profile, ideal for monitoring vibrations of structures like bridges and towers (displacement accuracy up to 0.01 mm). Modal parameters can be determined within half an hour. Alternatively, in Synthetic Aperture Radar (SAR) configuration it produces two-dimensional displacement images with an acquisition time of less than 5 seconds, ideal for monitoring areal structures like dams, landslides and open pit mines (displacement accuracy up to 0.1 mm). The MetaSensing FastGBSAR is the first ground based SAR instrument on the market able to produce two-dimensional deformation maps with this high acquisition rate. By that, deformation time series with a high temporal and spatial resolution can be generated, giving detailed information useful to determine the deformation mechanisms involved and eventually to predict an incoming failure. The system is fully portable and can be quickly installed on bedrock or a basement. The data acquisition and processing can be fully automated leading to a low effort in instrument operation and maintenance. Due to the short acquisition time of FastGBSAR, the coherence between two acquisitions is very high and the phase unwrapping is simplified enormously. This yields a high density of resolution cells with good quality and high reliability of the acquired deformations. The deformation maps can directly be used as input into an Early

  5. Geospace Science from Ground-based Magnetometer Arrays: Advances in Sensors, Data Collection, and Data Integration

    Science.gov (United States)

    Mann, Ian; Chi, Peter

    2016-07-01

    Networks of ground-based magnetometers now provide the basis for the diagnosis of magnetic disturbances associated with solar wind-magnetosphere-ionosphere coupling on a truly global scale. Advances in sensor and digitisation technologies offer increases in sensitivity in fluxgate, induction coil, and new micro-sensor technologies - including the promise of hybrid sensors. Similarly, advances in remote connectivity provide the capacity for truly real-time monitoring of global dynamics at cadences sufficient for monitoring and in many cases resolving system level spatio-temporal ambiguities especially in combination with conjugate satellite measurements. A wide variety of the plasmaphysical processes active in driving geospace dynamics can be monitored based on the response of the electrical current system, including those associated with changes in global convection, magnetospheric substorms and nightside tail flows, as well as due to solar wind changes in both dynamic pressure and in response to rotations of the direction of the IMF. Significantly, any changes to the dynamical system must be communicated by the propagation of long-period Alfven and/or compressional waves. These wave populations hence provide diagnostics for not only the energy transport by the wave fields themselves, but also provide a mechanism for diagnosing the structure of the background plasma medium through which the waves propagate. Ultra-low frequency (ULF) waves are especially significant in offering a monitor for mass density profiles, often invisible to particle detectors because of their very low energy, through the application of a variety of magneto-seismology and cross-phase techniques. Renewed scientific interest in the plasma waves associated with near-Earth substorm dynamics, including magnetosphere-ionosphere coupling at substorm onset and their relation to magnetotail flows, as well the importance of global scale ultra-low frequency waves for the energisation, transport

  6. TESTING GROUND BASED GEOPHYSICAL TECHNIQUES TO REFINE ELECTROMAGNETIC SURVEYS NORTH OF THE 300 AREA HANFORD WASHINGTON

    Energy Technology Data Exchange (ETDEWEB)

    PETERSEN SW

    2010-12-02

    Airborne electromagnetic (AEM) surveys were flown during fiscal year (FY) 2008 within the 600 Area in an attempt to characterize the underlying subsurface and to aid in the closure and remediation design study goals for the 200-PO-1 Groundwater Operable Unit (OU). The rationale for using the AEM surveys was that airborne surveys can cover large areas rapidly at relatively low costs with minimal cultural impact, and observed geo-electrical anomalies could be correlated with important subsurface geologic and hydrogeologic features. Initial interpretation of the AEM surveys indicated a tenuous correlation with the underlying geology, from which several anomalous zones likely associated with channels/erosional features incised into the Ringold units were identified near the River Corridor. Preliminary modeling resulted in a slightly improved correlation but revealed that more information was required to constrain the modeling (SGW-39674, Airborne Electromagnetic Survey Report, 200-PO-1 Groundwater Operable Unit, 600 Area, Hanford Site). Both time-and frequency domain AEM surveys were collected with the densest coverage occurring adjacent to the Columbia River Corridor. Time domain surveys targeted deeper subsurface features (e.g., top-of-basalt) and were acquired using the HeliGEOTEM{reg_sign} system along north-south flight lines with a nominal 400 m (1,312 ft) spacing. The frequency domain RESOLVE system acquired electromagnetic (EM) data along tighter spaced (100 m [328 ft] and 200 m [656 ft]) north-south profiles in the eastern fifth of the 200-PO-1 Groundwater OU (immediately adjacent to the River Corridor). The overall goal of this study is to provide further quantification of the AEM survey results, using ground based geophysical methods, and to link results to the underlying geology and/or hydrogeology. Specific goals of this project are as follows: (1) Test ground based geophysical techniques for the efficacy in delineating underlying geology; (2) Use ground

  7. The thermo-vibrational convection in microgravity condition. Ground-based modelling.

    Science.gov (United States)

    Zyuzgin, A. V.; Putin, G. F.; Harisov, A. F.

    In 1995-2000 at orbital station "Mir" has been carried out the series of experiments with the equipment "Alice" for the studying regimes of heat transfer in the supercritical fluids under influence inertial microaccelerations. The experiments have found out existence of the thermo-vibrational and thermo-inertial convective movements in the real weightlessness[1] and controlling microgravity fields[2]. However regarding structures of thermovibrational convection the results of experiments have inconsistent character. Therefore carrying out the ground-based modeling of the given problem is actually. In this work in laboratory conditions were investigated the thermo-vibrational convective movements from the dot heat source at high-frequency vibrations of the cavity with the fluid and presence quasi-static microacceleration. As the result of ground-based modeling, the regimes of convective flows, similar observed in the space experiment are received. Evolution of the convective structures and the spatial-temporary characteristics of movements are investigated in a wide range of the problem parameters. The control criteria and its critical value are determined. The received results well coordinated to the data of space experiments and allow adding and expanding representation about thermo-vibrational effects in conditions of real weightlessness and remove the contradictions concerning structures thermo-vibrational convective flows, received at the analysis of the given orbital experiments. The research described in this publication was made possible in part by Russian Foundation for Basic Research and Administration of Perm Region, Russia, under grant 04-02-96038, and Award No. PE-009-0 of the U.S. Civilian Research & Development Foundation for the Independent States of the Former Soviet Union (CRDF). A.V. Zyuzgin, A. I. Ivanov, V. I. Polezhaev, G. F. Putin, E. B. Soboleva Convective Motions in Near-Critical Fluids under Real Zero-Gravity Conditions. Cosmic Research

  8. Evaluation of atmospheric dust prediction models using ground-based observations

    Science.gov (United States)

    Terradellas, Enric; María Baldasano, José; Cuevas, Emilio; Basart, Sara; Huneeus, Nicolás; Camino, Carlos; Dundar, Cinhan; Benincasa, Francesco

    2013-04-01

    An important step in numerical prediction of mineral dust is the model evaluation aimed to assess its performance to forecast the atmospheric dust content and to lead to new directions in model development and improvement. The first problem to address the evaluation is the scarcity of ground-based routine observations intended for dust monitoring. An alternative option would be the use of satellite products. They have the advantage of a large spatial coverage and a regular availability. However, they do have numerous drawbacks that make the quantitative retrievals of aerosol-related variables difficult and imprecise. This work presents the use of different ground-based observing systems for the evaluation of dust models in the Regional Center for Northern Africa, Middle East and Europe of the World Meteorological Organization (WMO) Sand and Dust Storm Warning Advisory and Assessment System (SDS-WAS). The dust optical depth at 550 nm forecast by different models is regularly compared with the AERONET measurements of Aerosol Optical Depth (AOD) for 40 selected stations. Photometric measurements are a powerful tool for remote sensing of the atmosphere allowing retrieval of aerosol properties, such as AOD. This variable integrates the contribution of different aerosol types, but may be complemented with spectral information that enables hypotheses about the nature of the particles. Comparison is restricted to cases with low Ångström exponent values in order to ensure that coarse mineral dust is the dominant aerosol type. Additionally to column dust load, it is important to evaluate dust surface concentration and dust vertical profiles. Air quality monitoring stations are the main source of data for the evaluation of surface concentration. However they are concentrated in populated and industrialized areas around the Mediterranean. In the present contribution, results of different models are compared with observations of PM10 from the Turkish air quality network for

  9. ICSBEP Benchmarks For Nuclear Data Applications

    Science.gov (United States)

    Briggs, J. Blair

    2005-05-01

    The International Criticality Safety Benchmark Evaluation Project (ICSBEP) was initiated in 1992 by the United States Department of Energy. The ICSBEP became an official activity of the Organization for Economic Cooperation and Development (OECD) — Nuclear Energy Agency (NEA) in 1995. Representatives from the United States, United Kingdom, France, Japan, the Russian Federation, Hungary, Republic of Korea, Slovenia, Serbia and Montenegro (formerly Yugoslavia), Kazakhstan, Spain, Israel, Brazil, Poland, and the Czech Republic are now participating. South Africa, India, China, and Germany are considering participation. The purpose of the ICSBEP is to identify, evaluate, verify, and formally document a comprehensive and internationally peer-reviewed set of criticality safety benchmark data. The work of the ICSBEP is published as an OECD handbook entitled "International Handbook of Evaluated Criticality Safety Benchmark Experiments." The 2004 Edition of the Handbook contains benchmark specifications for 3331 critical or subcritical configurations that are intended for use in validation efforts and for testing basic nuclear data. New to the 2004 Edition of the Handbook is a draft criticality alarm / shielding type benchmark that should be finalized in 2005 along with two other similar benchmarks. The Handbook is being used extensively for nuclear data testing and is expected to be a valuable resource for code and data validation and improvement efforts for decades to come. Specific benchmarks that are useful for testing structural materials such as iron, chromium, nickel, and manganese; beryllium; lead; thorium; and 238U are highlighted.

  10. The Isprs Benchmark on Indoor Modelling

    Science.gov (United States)

    Khoshelham, K.; Díaz Vilariño, L.; Peter, M.; Kang, Z.; Acharya, D.

    2017-09-01

    Automated generation of 3D indoor models from point cloud data has been a topic of intensive research in recent years. While results on various datasets have been reported in literature, a comparison of the performance of different methods has not been possible due to the lack of benchmark datasets and a common evaluation framework. The ISPRS benchmark on indoor modelling aims to address this issue by providing a public benchmark dataset and an evaluation framework for performance comparison of indoor modelling methods. In this paper, we present the benchmark dataset comprising several point clouds of indoor environments captured by different sensors. We also discuss the evaluation and comparison of indoor modelling methods based on manually created reference models and appropriate quality evaluation criteria. The benchmark dataset is available for download at: http://www2.isprs.org/commissions/comm4/wg5/benchmark-on-indoor-modelling.html"target="_blank">http://www2.isprs.org/commissions/comm4/wg5/benchmark-on-indoor-modelling.html.

  11. Plans to update benchmarking tool.

    Science.gov (United States)

    Stokoe, Mark

    2013-02-01

    The use of the current AssetMark system by hospital health facilities managers and engineers (in Australia) has decreased to a point of no activity occurring. A number of reasons have been cited, including cost, time to do, slow process, and level of information required. Based on current levels of activity, it would not be of any value to IHEA, or to its members, to continue with this form of AssetMark. For AssetMark to remain viable, it needs to be developed as a tool seen to be of value to healthcare facilities managers, and not just healthcare facility engineers. Benchmarking is still a very important requirement in the industry, and AssetMark can fulfil this need provided that it remains abreast of customer needs. The proposed future direction is to develop an online version of AssetMark with its current capabilities regarding capturing of data (12 Key Performance Indicators), reporting, and user interaction. The system would also provide end-users with access to live reporting features via a user-friendly web nterface linked through the IHEA web page.

  12. Academic Benchmarks for Otolaryngology Leaders.

    Science.gov (United States)

    Eloy, Jean Anderson; Blake, Danielle M; D'Aguillo, Christine; Svider, Peter F; Folbe, Adam J; Baredes, Soly

    2015-08-01

    This study aimed to characterize current benchmarks for academic otolaryngologists serving in positions of leadership and identify factors potentially associated with promotion to these positions. Information regarding chairs (or division chiefs), vice chairs, and residency program directors was obtained from faculty listings and organized by degree(s) obtained, academic rank, fellowship training status, sex, and experience. Research productivity was characterized by (a) successful procurement of active grants from the National Institutes of Health and prior grants from the American Academy of Otolaryngology-Head and Neck Surgery Foundation Centralized Otolaryngology Research Efforts program and (b) scholarly impact, as measured by the h-index. Chairs had the greatest amount of experience (32.4 years) and were the least likely to have multiple degrees, with 75.8% having an MD degree only. Program directors were the most likely to be fellowship trained (84.8%). Women represented 16% of program directors, 3% of chairs, and no vice chairs. Chairs had the highest scholarly impact (as measured by the h-index) and the greatest external grant funding. This analysis characterizes the current picture of leadership in academic otolaryngology. Chairs, when compared to their vice chair and program director counterparts, had more experience and greater research impact. Women were poorly represented among all academic leadership positions. © The Author(s) 2015.

  13. Benchmarking Measures of Network Influence

    Science.gov (United States)

    Bramson, Aaron; Vandermarliere, Benjamin

    2016-01-01

    Identifying key agents for the transmission of diseases (ideas, technology, etc.) across social networks has predominantly relied on measures of centrality on a static base network or a temporally flattened graph of agent interactions. Various measures have been proposed as the best trackers of influence, such as degree centrality, betweenness, and k-shell, depending on the structure of the connectivity. We consider SIR and SIS propagation dynamics on a temporally-extruded network of observed interactions and measure the conditional marginal spread as the change in the magnitude of the infection given the removal of each agent at each time: its temporal knockout (TKO) score. We argue that this TKO score is an effective benchmark measure for evaluating the accuracy of other, often more practical, measures of influence. We find that none of the network measures applied to the induced flat graphs are accurate predictors of network propagation influence on the systems studied; however, temporal networks and the TKO measure provide the requisite targets for the search for effective predictive measures. PMID:27670635

  14. Comparison of GOME tropospheric NO2 columns with NO2 profiles deduced from ground-based in situ measurements

    Directory of Open Access Journals (Sweden)

    D. Schaub

    2006-01-01

    Full Text Available Nitrogen dioxide (NO2 vertical tropospheric column densities (VTCs retrieved from the Global Ozone Monitoring Experiment (GOME are compared to coincident ground-based tropospheric NO2 columns. The ground-based columns are deduced from in situ measurements at different altitudes in the Alps for 1997 to June 2003, yielding a unique long-term comparison of GOME NO2 VTC data retrieved by a collaboration of KNMI (Royal Netherlands Meteorological Institute and BIRA/IASB (Belgian Institute for Space Aeronomy with independently derived tropospheric NO2 profiles. A first comparison relates the GOME retrieved tropospheric columns to the tropospheric columns obtained by integrating the ground-based NO2 measurements. For a second comparison, the tropospheric profiles constructed from the ground-based measurements are first multiplied with the averaging kernel (AK of the GOME retrieval. The second approach makes the comparison independent from the a priori NO2 profile used in the GOME retrieval. This allows splitting the total difference between the column data sets into two contributions: one that is due to differences between the a priori and the ground-based NO2 profile shapes, and another that can be attributed to uncertainties in both the remaining retrieval parameters (such as, e.g., surface albedo or aerosol concentration and the ground-based in situ NO2 profiles. For anticyclonic clear sky conditions the comparison indicates a good agreement between the columns (n=157, R=0.70/0.74 for the first/second comparison approach, respectively. The mean relative difference (with respect to the ground-based columns is −7% with a standard deviation of 40% and GOME on average slightly underestimating the ground-based columns. Both data sets show a similar seasonal behaviour with a distinct maximum of spring NO2 VTCs. Further analysis indicates small GOME columns being systematically smaller than the ground-based ones. The influence of different shapes in the a

  15. First ground-based column measurements of CO{sub 2} in the tropics

    Energy Technology Data Exchange (ETDEWEB)

    Warneke, T.; Petersen, K.; Macatangay, R.; Notholt, J. [Institute of Environmental Physics, University of Bremen, Bremen (Germany); Koerner, S.; Jordan, A.; Gerbig, C.; Rothe, M. [Max-Planck-Institute for Biogeochemistry (MPI-BGC), Jena (Germany); Schrems, O. [Alfred Wegener Institute for Polar and Marine Research (AWI), Bremerhaven (Germany)

    2009-07-01

    The first ground-based remote sensing measurements of the column averaged volume mixing ratio of CO{sub 2} (X{sub CO{sub 2}}) for the inner tropics have been obtained at Paramaribo, Suriname (5.8 N, 55.2 W). Due to the migration of the ITCZ over the measurement location the probed air masses belong to the northern or southern hemisphere depending on the time of the year. The X{sub CO{sub 2}} shows an average annual increase in the Southern Hemisphere of 2.2 ppm for the time period 2004 to 2007, which agrees within the error with model simulations. Co-located in-situ measurements are strongly influenced by a local source. From the isotopic composition of the air samples the local source component is suggested to be the terrestrial biosphere. Using d{sup {sub 13C}} from the NOAA/ESRL stations Ascension Is. (ASC) and Ragged Point (RPB) the data has been corrected for the local source component. The corrected mixing ratios for the surface agree with model simulations for the measurement campaigns in the LDS (Southern Hemisphere), but not for the SDS (Northern Hemisphere).

  16. Overview of the DACCIWA ground-based field campaign in southern West Africa

    Science.gov (United States)

    Lohou, Fabienne; Kalthoff, Norbert; Brooks, Barbara; Jegede, Gbenga; Adler, Bianca; Ajao, Adewale; Ayoola, Muritala; Babić, Karmen; Bessardon, Geoffrey; Delon, Claire; Dione, Cheikh; Handwerker, Jan; Jambert, Corinne; Kohler, Martin; Lothon, Marie; Pedruzo-Bagazgoitia, Xabier; Smith, Victoria; Sunmonu, Lukman; Wieser, Andreas; Derrien, Solène

    2017-04-01

    During June and July 2016, a ground-based field campaign took place in southern West Africa within the framework of the Dynamics-aerosol-chemistry-cloud interactions in West Africa (DACCIWA) project. In the investigated region, extended low-level stratus clouds form very frequently during night-time and persist long into the following day influencing the diurnal cycle of the atmospheric boundary layer and, hence, the regional climate. The motivation for the measurements was to identify the meteorological controls on the whole process chain from the formation of nocturnal stratus clouds, via the daytime transition to convective clouds and the formation of deep precipitating clouds. During the measurement period, extensive remote sensing and in-situ measurements were performed at three supersites in Kumasi (Ghana), Savè (Benin) and Ile-Ife (Nigeria). The gathered observations included the energy-balance components at the Earth's surface, the mean and turbulent conditions in the nocturnal and daytime ABL as well as the de- and entrainment processes between the ABL and the free troposphere. The meteorological measurements were supplemented by aerosol and air-chemistry observations. We will give an overview of the conducted measurements including instrument availability and strategy during intensive observation periods.

  17. Soil moisture retrieval using ground based bistatic scatterometer data at X-band

    Science.gov (United States)

    Gupta, Dileep Kumar; Prasad, Rajendra; Kumar, Pradeep; Vishwakarma, Ajeet Kumar

    2017-02-01

    Several hydrological phenomenon and applications need high quality soil moisture information of the top Earth surface. The advent of technologies like bistatic scatterometer can retrieve soil moisture information with high accuracy and hence used in present study. The radar data is acquired by specially designed ground based bistatic scatterometer system in the specular direction of 20-70° incidence angles at steps of 5° for HH and VV polarizations. This study provides first time comprehensive evaluation of different machine learning algorithms for the retrieval of soil moisture using the X-band bistatic scatterometer measurements. The comparison of different artificial neural network (ANN) models such as back propagation artificial neural network (BPANN), radial basis function artificial neural network (RBFANN), generalized regression artificial neural network (GRANN) along with linear regression model (LRM) are used to estimate the soil moisture. The performance indices such as %Bias, Root Mean Squared Error (RMSE) and Nash-Sutcliffe Efficiency (NSE) are used to evaluate the performances of the machine learning techniques. Among different models employed in this study, the BPANN is found to have marginally higher performance in case of HH polarization while RBFANN is found suitable with VV polarization followed by GRANN and LRM. The results obtained are of considerable scientific and practical value to the wider scientific community for the number of practical applications and research studies in which radar datasets are used.

  18. HMF sectors since 1926: Comparison of two ground-based data sets

    Science.gov (United States)

    Hiltula, T.; Mursula, K.

    In this paper, we compare two recent long-term data sets of daily HMF sector polarities since 1926 based on ground-based geomagnetic measurements: the combined data set by Echer and Svalgaard [Echer, E., Svalgaard, L. Asymmetry in the Rosenberg-Coleman effect around solar minimum revealed by wavelet analysis of the interplanetary magnetic field polarity data (1927-2002). Geophys. Res. Lett. 31, 12808, 2004] (ES data set) and a three-station data set derived by Vennerstroem et al. [Vennerstroem, S., Zieger, B., Friis-Christensen, E. An improved method of inferring interplanetary sector structure, 1905-present. J. Geophys. Res. 106 (15), 16011-16020, 2001] (VZF data set). The Rosenberg-Coleman rule is consistently valid in the ES data during the last 80 years, but fails in the VZF data set in the early cycles. There is a clear bias (T sector dominance) in the VZF data that is not observed in satellite measurements collected in the OMNI-2 data set, or in the ES data. Also, there is a difference on the success rates between the two sectors in the VZF data. Therefore, we conclude that the ES data set is more reliable, especially in cycles 16-18, in reproducing the HMF sector structure. Both data sets reproduce the southward shift of the heliospheric current sheet during the OMNI-2 interval. However, only the more reliable ES data set depicts this systematically also during the early cycles 16-18.

  19. A decade of dark matter searches with ground-based Cherenkov telescopes

    Energy Technology Data Exchange (ETDEWEB)

    Doro, Michele, E-mail: michele.doro@pd.infn.it [University and INFN Padova, via Marzolo 8, 35131 Padova (Italy); Department of Physics and CERES, Campus Universitat Autonoma Barcelona, 08135 Bellaterra (Spain)

    2014-04-01

    In the general scenario of Weakly Interacting Massive Particles (WIMP), dark matter (DM) can be observed via astrophysical gamma-rays because photons are produced in various DM annihilation or decay processes, either as broad-band or line emission, or because of the secondary processes of charged particles in the final stages of the annihilations or the decays. The energy range of the former processes is accessible by current ground-based Imaging Atmospheric Cherenkov telescopes (IACTs, like H.E.S.S., MAGIC and VERITAS). The strengths of this technique are (a) the expected DM gamma-ray spectra show peculiar features like bumps, spikes and cutoff that make them clearly distinguishable from the smoother astrophysical spectra and (b) the expected DM spectrum is universal and therefore by observing two or more DM targets with the same spectrum, a clear identification (besides detection) of DM would be enabled. The role of IACTs may gain more importance in the future as the results from the LHC may hint to a DM particle with mass at the TeV or above, where the IACTs sensitivity is unsurpassed by other experiments. In this contribution, a review of the search for DM with the current generation of IACT will be presented.

  20. Ground-based analysis of volcanic ash plumes using a new multispectral thermal infrared camera approach

    Science.gov (United States)

    Williams, D.; Ramsey, M. S.

    2015-12-01

    Volcanic plumes are complex mixtures of mineral, lithic and glass fragments of varying size, together with multiple gas species. These plumes vary in size dependent on a number of factors, including vent diameter, magma composition and the quantity of volatiles within a melt. However, determining the chemical and mineralogical properties of a volcanic plume immediately after an eruption is a great challenge. Thermal infrared (TIR) satellite remote sensing of these plumes is routinely used to calculate the volcanic ash particle size variations and sulfur dioxide concentration. These analyses are commonly performed using high temporal, low spatial resolution satellites, which can only reveal large scale trends. What is lacking is a high spatial resolution study specifically of the properties of the proximal plumes. Using the emissive properties of volcanic ash, a new method has been developed to determine the plume's particle size and petrology in spaceborne and ground-based TIR data. A multispectral adaptation of a FLIR TIR camera has been developed that simulates the TIR channels found on several current orbital instruments. Using this instrument, data of volcanic plumes from Fuego and Santiaguito volcanoes in Guatemala were recently obtained Preliminary results indicate that the camera is capable of detecting silicate absorption features in the emissivity spectra over the TIR wavelength range, which can be linked to both mineral chemistry and particle size. It is hoped that this technique can be expanded to isolate different volcanic species within a plume, validate the orbital data, and ultimately to use the results to better inform eruption dynamics modelling.

  1. Characterization of aerosol pollution events in France using ground-based and POLDER-2 satellite data

    Directory of Open Access Journals (Sweden)

    M. Kacenelenbogen

    2006-01-01

    Full Text Available We analyze the relationship between daily fine particle mass concentration (PM2.5 and columnar aerosol optical thickness derived from the Polarization and Directionality of Earth's Reflectances (POLDER satellite sensor. The study is focused over France during the POLDER-2 lifetime between April and October 2003. We have first compared the POLDER derived aerosol optical thickness (AOT with integrated volume size distribution derived from ground-based Sun Photometer observations. The good correlation (R=0.72 with sub-micron volume fraction indicates that POLDER derived AOT is sensitive to the fine aerosol mass concentration. Considering 1974 match-up data points over 28 fine particle monitoring sites, the POLDER-2 derived AOT is fairly well correlated with collocated PM2.5 measurements, with a correlation coefficient of 0.55. The correlation coefficient reaches a maximum of 0.80 for particular sites. We have analyzed the probability to find an appropriate air quality category (AQC as defined by U.S. Environmental Protection Agency (EPA from POLDER-2 AOT measurements. The probability can be up to 88.8% (±3.7% for the "Good" AQC and 89.1% (±3.6% for the "Moderate" AQC.

  2. Project ORION: Orbital Debris Removal Using Ground-Based Sensors and Lasers

    Science.gov (United States)

    Campbell, J. W.

    1996-01-01

    About 100,000 pieces of 1 to 10-cm debris in low-Earth orbit are too small to track reliably but large enough to cripple or destroy spacecraft. The ORION team studied the feasibility of removing the debris with ground-based laser impulses. Photoablation experiments were surveyed and applied to likely debris materials. Laser intensities needed for debris orbit modification call for pulses on the order of lOkJ or continuous wave lasers on the order of 1 MW. Adaptive optics are necessary to correct for atmospheric turbulence. Wavelength and pulse duration windows were found that limit beam degradation due to nonlinear atmospheric processes. Debris can be detected and located to within about 10 microrads with existing radar and passive optical technology. Fine targeting would be accomplished with laser illumination, which might also be used for detection. Bistatic detection with communications satellites may also be possible. We recommend that existing technology be used to demonstrate the concept at a loss of about $20 million. We calculate that an installation to clear altitudes up to 800 km of 1 to 10-cm debris over 2 years of operation would cost about $80 million. Clearing altitudes up to 1,500 km would take about 3 years and cost about $160 million.

  3. Investigation of tropical cirrus cloud properties using ground based lidar measurements

    Science.gov (United States)

    Dhaman, Reji K.; Satyanarayana, Malladi; Krishnakumar, V.; Mahadevan Pillai, V. P.; Jayeshlal, G. S.; Raghunath, K.; Venkat Ratnam, M.

    2016-05-01

    Cirrus clouds play a significant role in the Earths radiation budget. Therefore, knowledge of geometrical and optical properties of cirrus cloud is essential for the climate modeling. In this paper, the cirrus clouds microphysical and optical properties are made by using a ground based lidar measurements over an inland tropical station Gadanki (13.5°N, 79.2°E), Andhra Pradesh, India. The variation of cirrus microphysical and optical properties with mid cloud temperature is also studied. The cirrus clouds mean height is generally observed in the range of 9-17km with a peak occurrence at 13- 14km. The cirrus mid cloud temperature ranges from -81°C to -46°C. The cirrus geometrical thickness ranges from 0.9- 4.5km. During the cirrus occurrence days sub-visual, thin and dense cirrus were at 37.5%, 50% and 12.5% respectively. The monthly cirrus optical depth ranges from 0.01-0.47, but most (extinction ranges from 2.8E-06 to 8E-05 and depolarization ratio and lidar ratio varies from 0.13 to 0.77 and 2 to 52 sr respectively. A positive correlation exists for both optical depth and extinction with the mid-cloud temperature. The lidar ratio shows a scattered behavior with mid-cloud temperature.

  4. Real-time threat evaluation in a ground based air defence environment

    Directory of Open Access Journals (Sweden)

    JN Roux

    2008-06-01

    Full Text Available In a military environment a ground based air defence operator is required to evaluate the tactical situation in real-time and protect Defended Assets (DAs on the ground against aerial threats by assigning available Weapon Systems (WSs to engage enemy aircraft. Since this aerial environment requires rapid operational planning and decision making in stress situations, the associated responsibilities are typically divided between a number of operators and computerized systems that aid these operators during the decision making processes. One such a Decision Support System (DSS, a threat evaluation and weapon assignment system, assigns threat values to aircraft (with respect to DAs in real-time and uses these values to propose possible engagements of observed enemy aircraft by anti-aircraft WSs. In this paper a design of the threat evaluation part of such a DSS is put forward. The design follows the structured approach suggested in [Roux JN & van Vuuren JH, 2007, Threat evaluation and weapon assignment decision support: A review of the state of the art, ORiON, 23(2, pp. 151-187], phasing in a suite of increasingly complex qualitative and quantitative model components as more (reliable data become available.

  5. Ground-Based Robotic Sensing of an Agricultural Sub-Canopy Environment

    Science.gov (United States)

    Burns, A.; Peschel, J.

    2015-12-01

    Airborne remote sensing is a useful method for measuring agricultural crop parameters over large areas; however, the approach becomes limited to above-canopy characterization as a crop matures due to reduced visual access of the sub-canopy environment. During the growth cycle of an agricultural crop, such as soybeans, the micrometeorology of the sub-canopy environment can significantly impact pod development and reduced yields may result. Larger-scale environmental conditions aside, the physical structure and configuration of the sub-canopy matrix will logically influence local climate conditions for a single plant; understanding the state and development of the sub-canopy could inform crop models and improve best practices but there are currently no low-cost methods to quantify the sub-canopy environment at a high spatial and temporal resolution over an entire growth cycle. This work describes the modification of a small tactical and semi-autonomous, ground-based robotic platform with sensors capable of mapping the physical structure of an agricultural row crop sub-canopy; a soybean crop is used as a case study. Point cloud data representing the sub-canopy structure are stored in LAS format and can be used for modeling and visualization in standard GIS software packages.

  6. On Advanced Estimation Techniques for Exoplanet Detection and Characterization using Ground-Based Coronagraphs

    Science.gov (United States)

    Lawson, Peter R.; Frazin, Richard; Barrett, Harrison; Caucci, Luca; Devaney, Nicholas; Furenlid, Lars; Gladysz, Szymon; Guyon, Olivier; Krist, John; Maire, Jerome; Marois, Christian; Mawet, Dimitri; Mouillet, David; Mugnier, Laurent; Perrin, Marshall; Poyneer, Lisa; Pueyo, Laurent; Savransky, Dmitry; Soummer, Remi

    2012-01-01

    The direct imaging of planets around nearby stars is exceedingly difficult. Only about 14 exoplanets have been imaged to date that have masses less than 13 times that of Jupiter. The next generation of planet-finding coronagraphs, including VLT-SPHERE, the Gemini Planet Imager, Palomar P1640, and Subaru HiCIAO have predicted contrast performance of roughly a thousand times less than would be needed to detect Earth-like planets. In this paper we review the state of the art in exoplanet imaging, most notably the method of Locally Optimized Combination of Images (LOCI), and we investigate the potential of improving the detectability of faint exoplanets through the use of advanced statistical methods based on the concepts of the ideal observer and the Hotelling observer. We provide a formal comparison of techniques through a blind data challenge and evaluate performance using the Receiver Operating Characteristic (ROC) and Localization ROC (LROC) curves. We place particular emphasis on the understanding and modeling of realistic sources of measurement noise in ground-based AO-corrected coronagraphs. The work reported in this paper is the result of interactions between the co-authors during a week-long workshop on exoplanet imaging that was held in Squaw Valley, California, in March of 2012.

  7. A ground-based near-infrared emission spectrum of the exoplanet HD 189733b.

    Science.gov (United States)

    Swain, Mark R; Deroo, Pieter; Griffith, Caitlin A; Tinetti, Giovanna; Thatte, Azam; Vasisht, Gautam; Chen, Pin; Bouwman, Jeroen; Crossfield, Ian J; Angerhausen, Daniel; Afonso, Cristina; Henning, Thomas

    2010-02-01

    Detection of molecules using infrared spectroscopy probes the conditions and compositions of exoplanet atmospheres. Water (H(2)O), methane (CH(4)), carbon dioxide (CO(2)), and carbon monoxide (CO) have been detected in two hot Jupiters. These previous results relied on space-based telescopes that do not provide spectroscopic capability in the 2.4-5.2 microm spectral region. Here we report ground-based observations of the dayside emission spectrum for HD 189733b between 2.0-2.4 microm and 3.1-4.1 microm, where we find a bright emission feature. Where overlap with space-based instruments exists, our results are in excellent agreement with previous measurements. A feature at approximately 3.25 microm is unexpected and difficult to explain with models that assume local thermodynamic equilibrium (LTE) conditions at the 1 bar to 1 x 10(-6) bar pressures typically sampled by infrared measurements. The most likely explanation for this feature is that it arises from non-LTE emission from CH(4), similar to what is seen in the atmospheres of planets in our own Solar System. These results suggest that non-LTE effects may need to be considered when interpreting measurements of strongly irradiated exoplanets.

  8. Ozone vertical distribution retrieval from ground-based high resolution infrared solar spectra

    Science.gov (United States)

    Pougatchev, N. S.; Connor, B. J.; Rinsland, C. P.

    1995-01-01

    A practical procedure for the retrieval of ozone vertical profiles from ground-based high resolution Fourier transform infrared solar spectra has been developed. The analysis is based on a multilayer line-by-line forward model and a semi-empirical version of the optimal estimation inversion method of Rodgers. The 1002.6-1003.2 cm(exp -1) spectral interval has been selected for the analysis on the basis of synthetic spectrum calculations. This interval contains numerous ozone lines covering a range of intensities and providing retrieval sensitivity from ground level to about 35 km. Characterization of the method and an error analysis have been performed. For a spectral resolution of 0.05-0.01 cm(exp -1) and a signal-to-noise ratio greater than or equal to 100 the retrieval is stable with a vertical resolution of approximately 5 km attainable near the surface degrading to approximately 10 km in the stratosphere. Synthetic spectra studies show that the a priori profile and weak constraints selected for the retrievals introduce no significant biases for a wide range of ozone profiles.

  9. Continuous ground-based aerosol Lidar observation during seasonal pollution events at Wuxi, China

    Science.gov (United States)

    Wong, Man Sing; Qin, Kai; Lian, Hong; Campbell, James R.; Lee, Kwon Ho; Sheng, Shijie

    2017-04-01

    Haze pollution has long been a significant research topic and challenge in China, with adverse effects on air quality, agricultural production, as well as human health. In coupling with ground-based Lidar measurements, air quality observation, meteorological data, and backward trajectories model, two typical haze events at Wuxi, China are analyzed respectively, depicting summer and winter scenarios. Results indicate that the winter haze pollution is a compound pollution process mainly affected by calm winds that induce pollution accumulation near the surface. In the summer case, with the exception of influence from PM2.5 concentrations, ozone is the main pollutant and regional transport is also a significant influencing factor. Both events are marked by enhanced PM2.5 concentrations, driven by anthropogenic emissions of pollutants such as vehicle exhaust and factory fumes. Meteorological factors such as wind speed/direction and relative humidity are also contributed. These results indicate how the vertical profile offered by routine regional Lidar monitoring helps aid in understanding local variability and trends, which may be adapted for developing abatement strategies that improve air quality.

  10. Solar tower atmospheric Cherenkov effect experiment (STACEE) for ground based gamma ray astronomy

    Science.gov (United States)

    Bhattacharya, D.; Chantell, M. C.; Coppi, P.; Covault, C. E.; Dragovan, M.; Gregorich, D. T.; Hanna, D. S.; Mukherjee, R.; Ong, R. A.; Oser, S.; Ragan, K.; Tümer, O. T.; Williams, D. A.

    1997-05-01

    The STACEE experiment is being developed to study very high energy astrophysical gamma rays between 50 and 500 GeV. During the last few years this previously unexplored region has received much attention due to the detection of sources up to about 10 GeV by the EGRET instrument on board the CGRO. However, the paucity of detected sources at ~1 TeV indicates that fundamental processes working within these sources and/or in the intergalactic space are responsible for the cutoff in the photon spectra of the EGRET sources. The cutoff or the spectral change of these sources can be observed with ground-based Cherenkov detectors with a very low threshold. The use of large arrays of mirrors at solar power facilities is a promising way of lowering the threshold. Using this concept a series of tests were conducted at the National Solar Thermal Test Facility (NSTTF) at Sandia National Laboratories (Albuquerque, NM) with a full size prototype of the STACEE telescope system. The tests show that STACEE will be capable of meaningful exploration of the gamma-ray sky between 50 and 500 GeV with good sensitivity.

  11. Ground-Based Phase of Spaceflight Experiment "Biosignal" Using Autonomic Microflurimeter "Fluor-K"

    Science.gov (United States)

    Grigorieva, O. V.; Gal'chuk, S. V.; Rudimov, E. G.; Buravkova, L. B.

    2013-02-01

    The majority of flight experiments with the use of cell cultures and equipment like KUBIK and CRIOGEM carried out on board of the satellites (Bion, Foton) and ISS only allows the after-flight biosamples to be analyzed. As far as with few exceptions, the real-time cellular parameters registration for a long period is hard to be implemented. We developed the "Fluor-K" equipment - precision, small-sized, autonomous, two-channel, programmed fluorimeter. This device is designed for registration of differential fluorescent signal from organic and non-organic objects of microscale in small volumes (cellular organelles suspensions, animal and human cells, unicellular algae, bacteria, various fluorescent colloid solutions). Beside that, "Fluor-K" allows simultaneous detection of temperature. The ground-based tests of the device proved successful. The developed software can support experimental schedules while real-time data registration with the built-in storage device allows changes in selected parameters to be analyzed using wide range of fluorescent probes.

  12. Development of ground-based ELF/VLF receiver system in Wuhan and its first results

    Science.gov (United States)

    Chen, Yanping; Yang, Guobin; Ni, Binbin; Zhao, Zhengyu; Gu, Xudong; Zhou, Chen; Wang, Feng

    2016-05-01

    A new digital low-frequency receiver system has been developed at Wuhan University for sensitive reception of low-latitude broadband Extremely Low Frequency (ELF) and Very Low Frequency (VLF) radio waves originating from either natural or artificial sources. These low-frequency radio waves are useful for ionospheric remote sensing, geospace environment monitoring, and submarine communications. This paper presents the principle and architecture of the system framework, including magnetic loop antenna design, low-noise analog front-end and digital receiver with data sampling and transmission. A new structure is adopted in the analog front end to provide high common-mode rejection and to reduce interference. On basis of field programmable gate array (FPGA) device and Universal Serial Bus (USB) architecture, the digital receiver is developed along with time keeping and synchronization module. The validity and feasibility of the self-developed ground-based ELF/VLF receiver system is evaluated by first results of experimental data that show the temporal variation of broadband ELF/VLF wave spectral intensity in Wuhan (30.54 °N, 114.37 °E). In addition to the acquisition of VLF transmitter signals at various frequencies, tweek atmospherics are also clearly captured to occur at multiple modes up to n = 6.

  13. Ground-based near-infrared observations of water vapour in the Venus troposphere

    CERN Document Server

    Chamberlain, S; Crisp, D; Meadows, V S; 10.1016/j.icarus.2012.11.014

    2012-01-01

    We present a study of water vapour in the Venus troposphere obtained by modelling specific water vapour absorption bands within the 1.18 \\mu m window. We compare the results with the normal technique of obtaining the abundance by matching the peak of the 1.18 \\mu m window. Ground-based infrared imaging spectroscopy of the night side of Venus was obtained with the Anglo-Australian Telescope and IRIS2 instrument with a spectral resolving power of R ~ 2400. The spectra have been fitted with modelled spectra simulated using the radiative transfer model VSTAR. We find a best fit abundance of 31 ppmv (-6 + 9 ppmv), which is in agreement with recent results by B\\'ezard et al. 2011 using VEX/SPICAV (R ~ 1700) and contrary to prior results by B\\'ezard et al. 2009 of 44 ppmv (+/-9 ppmv) using VEX/VIRTIS-M (R ~ 200) data analyses. Comparison studies are made between water vapour abundances determined from the peak of the 1.18 \\mu m window and abundances determined from different water vapour absorption features within t...

  14. A ground-based transmission spectrum of the super-Earth exoplanet GJ 1214b.

    Science.gov (United States)

    Bean, Jacob L; Kempton, Eliza Miller-Ricci; Homeier, Derek

    2010-12-02

    In contrast to planets with masses similar to that of Jupiter and higher, the bulk compositions of planets in the so-called super-Earth regime (masses 2-10 times that of the Earth) cannot be uniquely determined from a measurement of mass and radius alone. For these planets, there is a degeneracy between the mass and composition of both the interior and a possible atmosphere in theoretical models. The recently discovered transiting super-Earth exoplanet GJ 1214b is one example of this problem. Three distinct models for the planet that are consistent with its mass and radius have been suggested. Breaking the degeneracy between these models requires obtaining constraints on the planet's atmospheric composition. Here we report a ground-based measurement of the transmission spectrum of GJ 1214b between wavelengths of 780 and 1,000 nm. The lack of features in this spectrum rules out (at 4.9σ confidence) cloud-free atmospheres composed primarily of hydrogen. If the planet's atmosphere is hydrogen-dominated, then it must contain clouds or hazes that are optically thick at the observed wavelengths at pressures less than 200 mbar. Alternatively, the featureless transmission spectrum is also consistent with the presence of a dense, water vapour atmosphere.

  15. Architectural design of a ground-based deep-space optical reception antenna

    Science.gov (United States)

    Kerr, E. L.

    1989-01-01

    An architectural design of a ground-based antenna (telescope) for receiving optical communications from deep space is presented. Physical and optical parameters, and their effect on the performance and cost considerations, are described. The channel capacity of the antenna is 100 kbits/s from Saturn and 5 Mbits/s from Mars. A novel sunshade is designed to permit optical communication even when the deep-space laser source is as close to the sun as 12 deg. Inserts in the tubes of the sunshade permit operations at solar elongations as small as 6 or 3 deg. The Nd:YAG source laser and the Fraunhofer filter (a narrow-band predetection optical filter) are tuned to match the Doppler shifts of the source and background. A typical Saturn-to-earth data link can reduce its source power requirement from 8.2 W to 2 W of laser output by employing a Fraunhofer filter instead of a conventional multilayer dielectric filter.

  16. New efforts using helicopter-borne and ground based electromagnetics for mineral exploration

    Science.gov (United States)

    Meyer, U.; Siemon, B.; Noell, U.; Gutzmer, J.; Spitzer, K.; Becken, M.

    2014-12-01

    Throughout the last decades mineral resources, especially rare earth elements, gained a steadily growing importance in industry and therefore as well in exploration. New targets for mineral investigations came into focus and known sources have been and will be revisited. Since most of the mining for mineral resources in the past took place in the upper hundred metres below surface new techniques made deeper mining economically feasible. Consequently, mining engineers need the best possible knowledge about the full spatial extent of prospective geological structures, including their maximum depths. Especially in Germany and Europe, politics changed in terms not to rely only on the global mineral trade market but on national resources, if available. BGR and partners therefore started research programs on different levels to evaluate and develop new technologies on environmental friendly, non-invasive spatial exploration using airborne and partly ground-based electromagnetic methods. Mining waste heaps have been explored for valuable residual minerals (research project ROBEHA), a promising tin bearing ore body is being explored by airborne electromagnetics (research project E3) and a new airborne technology is aimed at to be able to reach investigation depths of about 1 km (research project DESMEX). First results of the projects ROBEHA and E3 will be presented and the project layout of DESMEX will be discussed.

  17. Ozone ground-based measurements by the GASCOD near-UV and visible DOAS system

    Science.gov (United States)

    Giovanelli, G.; Bonasoni, P.; Cervino, M.; Evangelisti, F.; Ravegnani, F.

    1994-01-01

    GASCOD, a near-ultraviolet and visible differential optical spectrometer, was developed at CNR's FISBAT Institute in Bologna, Italy, and first tested at Terra Nova Bay station in Antarctica (74.6 deg S, 164.6 deg E) during the summer expeditions 1988-1990 of PNRA (PNRA is the national research program in Antarctica, 'Programma Nazionale di Ricerche in Atartide'). A comparison with coincident O3 total column measurements taken in the same Antarctic area is presented, as is another comparison performed in Italy. Also introduced is an updated model for solar zenith measurements taken from a ground-based, upward-looking GASCOD spectrometer, which was employed for the 1991-92 winter campaign at Aer-Ostersund in Sweden (63.3 deg N, 13.1 deg E) during AESOE (European Arctic Stratospheric Ozone Experiment). The GASCOD can examine the spectra from 300 to 700 nm, in 50 nm steps, by moving the spectrometer's grating. At present, it takes measurements of solar zenith radiation in the 310-342 nm range for O3 and in the 405-463 nm range for NO2.

  18. PSC and volcanic aerosol routine observations in Antarctica by UV-visible ground-based spectrometry

    Science.gov (United States)

    Sarkissian, A.; Pommereau, J. P.; Goutail, F.

    1994-01-01

    Polar statospheric clouds (PSC) and stratospheric aerosol can be observed by ground-based UV-visible spectrometry by looking at the variation of the color of the sky during twilight. A radiative transfer model shows that reddenings are caused by high altitude (22-28 km) thin layers of scatterers, while low altitude (12-20 km) thick ones result in blueings. The color index method applied on 4 years of observations at Dumont d'Urville (67 deg S), from 1988 to 1991, shows that probably because the station is located at the edge of the vortex, dense PSC are uncommon. More unexpected is the existence of a systematic seasonal variation of the color of the twilight sky - bluer at spring - which reveals the formation of a dense scattering layer at or just above the tropopause at the end of the winter. Large scattering layers are reported above the station in 1991, first in August around 12-14 km, later in September at 22-24 km. They are attributed to volcanic aerosol from Mt Hudson and Mt Pinatubo respectively, which erupted in 1991. Inspection of the data shows that the lowest entered rapidly into the polar vortex but not the highest which remained outside, demonstrating that the vortex was isolated at 22-26 km.

  19. Complementing the ground-based CMB Stage-4 experiment on large scales with the PIXIE satellite

    CERN Document Server

    Calabrese, Erminia; Dunkley, Jo

    2016-01-01

    We present forecasts for cosmological parameters from future Cosmic Microwave Background (CMB) data measured by the Stage-4 (S4) generation of ground-based experiments in combination with large-scale anisotropy data from the PIXIE satellite. We demonstrate the complementarity of the two experiments and focus on science targets that benefit from their combination. We show that a cosmic-variance-limited measurement of the optical depth to reionization provided by PIXIE, with error $\\sigma(\\tau)=0.002$, is vital for enabling a 5$\\sigma$ detection of the sum of the neutrino masses when combined with a CMB-S4 lensing measurement, and with lower-redshift constraints on the growth of structure and the distance-redshift relation. Parameters characterizing the epoch of reionization will also be tightly constrained; PIXIE's $\\tau$ constraint converts into $\\sigma(\\rm{z_{re}})=0.2$ for the mean time of reionization, and a kinematic Sunyaev-Zel'dovich measurement from S4 gives $\\sigma(\\Delta \\rm{z_{re}})=0.03$ for the du...

  20. Ground-Based Tests of Spacecraft Polymeric Materials under OXY-GEN Plasma-Beam

    Science.gov (United States)

    Chernik, Vladimir; Novikov, Lev; Gaidar, Anna

    2016-07-01

    Spacecraft LEO mission is accompanied by destruction of polymeric material surface under influence of atomic oxygen flow. Sources of molecular, plasma and ion beams are used for the accelerated ground-based tests of spacecraft materials. In the work application of oxygen plasma accelerator of a duoplasmatron type is described. Plasma particles have been accelerated up to average speed of 13-16 km/s. Influence of such beam on materials leads to more intensive destruction of polymers than in LEO. This fact allows to execute tests in the accelerated time scale by a method of an effective fluence. Special measures were given to decrease a concentration of both gaseous and electrode material impurities in the oxygen beam. In the work the results of simulative tests of spacecraft materials and experiments on LEO are considered. Comparison of plasma beam simulation with LEO data has shown conformity for structures of a number of polymeric materials. The relative erosion yields (normalized with respect to polyimide) of the tested materials are shown practically equal to those in LEO. The obtained results give grounds for using the plasma-generation mode with ion energies of 20-30 eV to accelerated testing of spacecraft materials for long -term LEO missions.

  1. Comparative study on earthquake and ground based transmitter induced radiation belt electron precipitation at middle latitudes

    Directory of Open Access Journals (Sweden)

    N. F. Sidiropoulos

    2011-07-01

    Full Text Available We examined (peak-to-background flux ratio p/b > 20 energetic electron bursts in the presence of VLF activity, as observed from the DEMETER satellite at low altitudes (~700 km. Our statistical analysis of measurements during two 6-month periods suggests that: (a the powerful transmitter NWC causes the strongest effects on the inner radiation belts in comparison with other ground-based VLF transmitters, (b the NWC transmitter was responsible for only ~1.5 % of total electron bursts examined during the 6-month period (1 July 2008 to 31 December 2008, (c VLF transmitter-related electron bursts are accompanied by the presence of a narrow band emission centered at the radiating frequency emission, whereas the earthquake-related electron bursts are accompanied by the presence of broadband emissions from a few kHz to >20 KHz, (d daytime events are less preferable than nighttime events, but this asymmetry was found to be less evident when the powerful transmitter NWC was turned off and (d seismic activity most probably dominated the electromagnetic interactions producing the electron precipitation at middle latitudes. The results of this study support the proposal that the detection of radiation belt electron precipitation, besides other kinds of studies, is a useful tool for earthquake prediction research.

  2. Ground-based grasslands data to support remote sensing and ecosystem modeling of terrestrial primary production

    Energy Technology Data Exchange (ETDEWEB)

    Olson, R.J.; Turner, R.S. [Oak Ridge National Lab., TN (United States); Scurlock, J.M.O. [King`s College London, (England); Jennings, S.V. [Tennessee Univ., Knoxville, TN (United States)

    1995-12-31

    Estimating terrestrial net primary production (NPP) using remote- sensing tools and ecosystem models requires adequate ground-based measurements for calibration, parameterization, and validation. These data needs were strongly endorsed at a recent meeting of ecosystem modelers organized by the International Geosphere-Biosphere Programme`s (IGBP`s) Data and Information System (DIS) and its Global Analysis, Interpretation, and Modelling (GAIM) Task Force. To meet these needs, a multinational, multiagency project is being coordinated by the IGBP DIS to compile existing NPP data from field sites and to regionalize NPP point estimates to various-sized grid cells. Progress at Oak Ridge National Laboratory (ORNL) on compiling NPP data for grasslands as part of the IGBP DIS data initiative is described. Site data and associated documentation from diverse field studies are being acquired for selected grasslands and are being reviewed for completeness, consistency, and adequacy of documentation, including a description of sampling methods. Data are being compiled in a database with spatial, temporal, and thematic characteristics relevant to remote sensing and global modeling. NPP data are available from the ORNL Distributed Active Archive Center (DAAC) for biogeochemical dynamics. The ORNL DAAC is part of the Earth Observing System Data and Information System, of the US National Aeronautics and Space Administration.

  3. The Effect of Pulsar Timing Noise and Glitches on Timing Analysis for Ground Based Telescopes Observation

    Science.gov (United States)

    Oña-Wilhelmi, E.; de Jager, O. C.; Contreras, J. L.; de los Reyes, R.; Fonseca, V.; López, M.; Lucarelli, F.; MAGIC Collaboration

    2003-07-01

    Pulsed emission from a number of gamma-ray pulsars is expected to be detectable with next generation ground-based gamma-ray telescopes such as MAGIC and possibly H.E.S.S. within a few hours of observations. The sensitivity is however not sufficient to enable a detection within a few seconds as reached by radio surveys. In some cases we may be fortunate to do a period search given a few hours' data, but if the signal is marginal, the correct period parameters must be known to allow a folding of the gamma-ray arrival times. The residual phases are then sub jected to a test for uniformity from which the significance of a signal can be assessed. If contemporary radio parameters are not available, we have to extrap olate archival radio parameters to the observation time in question. Such an extrap olation must then be accurate enough to avoid significant pulse smearing. The pulsar ephemerides from the archival data of HartRAO and Princeton (b etween 1989 and 1998) provide an excellent opportunity to study the accuracy of extrap olations of such ephemerides to the present moment, if an appropriate time shift is intro duced. The aim of this study is to investigate the smear in the gamma-ray pulse profile during a single night of observations.

  4. Ground-based studies of tropisms in hardware developed for the European Modular Cultivation System (EMCS)

    Science.gov (United States)

    Correll, Melanie J.; Edelmann, Richard E.; Hangarter, Roger P.; Mullen, Jack L.; Kiss, John Z.

    Phototropism and gravitropism play key roles in the oriented growth of roots in flowering plants. In blue or white light, roots exhibit negative phototropism, but red light induces positive phototropism in Arabidopsis roots. The blue-light response is controlled by the phototropins while the red-light response is mediated by the phytochrome family of photoreceptors. In order to better characterize root phototropism, we plan to perform experiments in microgravity so that this tropism can be more effectively studied without the interactions with the gravity response. Our experiments are to be performed on the European Modular Cultivation System (EMCS), which provides an incubator, lighting system, and high resolution video that are on a centrifuge palette. These experiments will be performed at μg, 1g (control) and fractional g-levels. In order to ensure success of this mission on the International Space Station, we have been conducting ground-based studies on growth, phototropism, and gravitropism in experimental unique equipment (EUE) that was designed for our experiments with Arabidopsis seedlings. Currently, the EMCS and our EUE are scheduled for launch on space shuttle mission STS-121. This project should provide insight into how the blue- and red-light signaling systems interact with each other and with the gravisensing system.

  5. Long-term ionospheric anomaly monitoring for ground based augmentation systems

    Science.gov (United States)

    Jung, Sungwook; Lee, Jiyun

    2012-08-01

    Extreme ionospheric anomalies can pose a potential integrity threat to ground-based augmentation of the Global Positioning System (GPS), and thus the development of ionospheric anomaly threat models for each region of operation is essential for system design and operation. This paper presents a methodology for automated long-term ionospheric anomaly monitoring, which will be used to build an ionospheric anomaly threat model, evaluate its validity over the life cycle of the system, continuously monitor ionospheric anomalies, and update the threat model if necessary. This procedure automatically processes GPS data collected from external networks and estimates ionospheric gradients at regular intervals. If ionospheric gradients large enough to be potentially hazardous to users are identified, manual data examination is triggered. This paper also develops a simplified truth processing method to create precise ionospheric delay estimates in near real-time, which is the key to automating the ionospheric monitoring procedure. The performance of the method is examined using data from the 20 November 2003 and 9 November 2004 ionospheric storms. These results demonstrate the effectiveness of simplified truth processing within long-term ionosphere monitoring. From the case studies, the automated procedure successfully identified extreme ionospheric anomalies, including the two worst ionospheric gradients observed and validated previously based on manual analysis. The automation of data processing enables us to analyze ionospheric data continuously going forward and to more accurately categorize ionospheric behavior under both nominal and anomalous conditions.

  6. A ground-based optical transmission spectrum of WASP-6b

    Energy Technology Data Exchange (ETDEWEB)

    Jordán, Andrés; Espinoza, Néstor; Rabus, Markus [Instituto de Astrofísica, Facultad de Física, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, 7820436 Macul, Santiago (Chile); Eyheramendy, Susana [Departmento de Estadística, Facultad de Matemáticas, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, 7820436 Macul, Santiago (Chile); Sing, David K. [School of Physics, University of Exeter, Stocker Road, Exeter EX4 4QL (United Kingdom); Désert, Jean-Michel [CASA, Department of Astrophysical and Planetary Sciences, University of Colorado, Boulder, CO 80309 (United States); Bakos, Gáspár Á. [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States); Fortney, Jonathan J. [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); López-Morales, Mercedes; Szentgyorgyi, Andrew [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Maxted, Pierre F. L. [Astrophysics Group, Keele University, Staffordshire ST5 5BG (United Kingdom); Triaud, Amaury H. M. J. [Department of Physics, and Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States)

    2013-12-01

    We present a ground-based optical transmission spectrum of the inflated sub-Jupiter-mass planet WASP-6b. The spectrum was measured in 20 spectral channels from 480 nm to 860 nm using a series of 91 spectra over a complete transit event. The observations were carried out using multi-object differential spectrophotometry with the Inamori-Magellan Areal Camera and Spectrograph on the Baade Telescope at Las Campanas Observatory. We model systematic effects on the observed light curves using principal component analysis on the comparison stars and allow for the presence of short and long memory correlation structure in our Monte Carlo Markov Chain analysis of the transit light curves for WASP-6. The measured transmission spectrum presents a general trend of decreasing apparent planetary size with wavelength and lacks evidence for broad spectral features of Na and K predicted by clear atmosphere models. The spectrum is consistent with that expected for scattering that is more efficient in the blue, as could be caused by hazes or condensates in the atmosphere of WASP-6b. WASP-6b therefore appears to be yet another massive exoplanet with evidence for a mostly featureless transmission spectrum, underscoring the importance that hazes and condensates can have in determining the transmission spectra of exoplanets.

  7. FINDING EXTRATERRESTRIAL LIFE USING GROUND-BASED HIGH-DISPERSION SPECTROSCOPY

    Energy Technology Data Exchange (ETDEWEB)

    Snellen, I. A. G.; Le Poole, R.; Brogi, M.; Birkby, J. [Leiden Observatory, Leiden University, Postbus 9513, 2300-RA Leiden (Netherlands); De Kok, R. J. [SRON, Sorbonnelaan 2, 3584-CA Utrecht (Netherlands)

    2013-02-20

    Exoplanet observations promise one day to unveil the presence of extraterrestrial life. Atmospheric compounds in strong chemical disequilibrium would point to large-scale biological activity just as oxygen and methane do in the Earth's atmosphere. The cancellation of both the Terrestrial Planet Finder and Darwin missions means that it is unlikely that a dedicated space telescope to search for biomarker gases in exoplanet atmospheres will be launched within the next 25 years. Here we show that ground-based telescopes provide a strong alternative for finding biomarkers in exoplanet atmospheres through transit observations. Recent results on hot Jupiters show the enormous potential of high-dispersion spectroscopy to separate the extraterrestrial and telluric signals, making use of the Doppler shift of the planet. The transmission signal of oxygen from an Earth-twin orbiting a small red dwarf star is only a factor of three smaller than that of carbon monoxide recently detected in the hot Jupiter {tau} Booetis b, albeit such a star will be orders of magnitude fainter. We show that if Earth-like planets are common, the planned extremely large telescopes can detect oxygen within a few dozen transits. Ultimately, large arrays of dedicated flux-collector telescopes equipped with high-dispersion spectrographs can provide the large collecting area needed to perform a statistical study of life-bearing planets in the solar neighborhood.

  8. Haze event monitoring and investigation in Penang Island, Malaysia using a ground-based backscatter Lidar

    Science.gov (United States)

    Hee, W. S.; Tan, F.; Lim, H. S.; Matjafri, M. Z.

    2014-06-01

    During 24th July 2013 to 1st August 2013, a haze event struck Penang Island, causing the visibility to decrease and increase in Air Pollution Index (API). A ground-based backscatter Lidar, operate at 355 nm which was setup at the roof top of the School of Physics, Universiti Sains Malaysia. It was used to monitor and investigate the haze event. For this work, we studied the daytime variation of the aerosol intensity, distribution, planetary boundary layer (PBL) height and the aerosol optical depth (AOD) values during these days. We found that the aerosol are very intense during the first two days of the haze event and slowly decline as time passed. Finally the haze event died off on 1st August 2013. As for daily aerosol distribution, aerosols are generally more intense during the afternoon. Its intensity is slightly lower in the morning and evening. Similar trends were observed for AOD values as they increase from morning to afternoon and slowly decrease in the evening. Most aerosols are found contained below the PBL which generally found at around 1000 - 2000 m in height.

  9. Hybrid onboard and ground based digital channelizer beam-forming for SATCOM interference mitigation and protection

    Science.gov (United States)

    Xiong, Wenhao; Wang, Gang; Tian, Xin; Pham, Khanh; Blasch, Erik; Chen, Genshe

    2016-05-01

    In this work, we propose a novel beam-forming power allocation method for a satellite communication (SATCOM) multiple-input multiple-output (MIMO) system to mitigate the co-channel interference (CCI) as well as limiting the signal leakage to the adversary users. In SATCOM systems, the beam-forming technique is a conventional way of avoiding interference, controlling the antenna beams, and mitigating undesired signals. We propose to use an advanced beam-forming technique which considers the number of independent channels used and transmitting power deployed to reduce and mitigate the unintentional interference effect. With certain quality of service (QoS) for the SATCOM system, independent channels components will be selected. It is desired to use less and stronger channel components when possible. On the other hand, considering that SATCOM systems often face the problem that adversary receiver detects the signal, a proposed power allocation method can efficiently reduce the received power at the adversary receiver. To reduce the computational burden on the transponder in order to minimize the size, mass, power consumption and delay for the satellite, we apply a hybrid onboard and ground based beam-forming design to distribute the calculation between the transponder and ground terminals. Also the digital channelizer beam-forming (DCB) technique is employed to achieve dynamic spatial control.

  10. Simulated forecasts for primordial B-mode searches in ground-based experiments

    CERN Document Server

    Alonso, David; Naess, Sigurd; Thorne, Ben

    2016-01-01

    Detecting the imprint of inflationary gravitational waves on the $B$-mode polarization of the Cosmic Microwave Background (CMB) is one of the main science cases for current and next-generation CMB experiments. In this work we explore some of the challenges that ground-based facilities will have to face in order to carry out this measurement in the presence of Galactic foregrounds and correlated atmospheric noise. We present forecasts for Stage-3 (S3) and planned Stage-4 (S4) experiments based on the analysis of simulated sky maps using a map-based Bayesian foreground cleaning method. Our results thus consistently propagate the uncertainties on foreground parameters such as spatially-varying spectral indices, as well as the bias on the measured tensor-to-scalar ratio $r$ caused by an incorrect modelling of the foregrounds. We find that S3 and S4-like experiments should be able to put constraints on $r$ of the order $\\sigma(r)=(0.5-1.0)\\times10^{-2}$ and $\\sigma(r)=(0.5-1.0)\\times10^{-3}$ respectively, assuming...

  11. GROUND-BASED TRANSIT OBSERVATIONS OF THE SUPER-EARTH 55 Cnc e

    Energy Technology Data Exchange (ETDEWEB)

    De Mooij, E. J. W. [Astronomy and Astrophysics, University of Toronto, Toronto (Canada); López-Morales, M. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA (United States); Karjalainen, R.; Hrudkova, M. [Isaac Newton Group of Telescopes, La Palma (Spain); Jayawardhana, Ray, E-mail: demooij@astro.utoronto.ca [Physics and Astronomy, York University, Toronto (Canada)

    2014-12-20

    We report the first ground-based detections of the shallow transit of the super-Earth exoplanet 55 Cnc e using a 2 m class telescope. Using differential spectrophotometry, we observed one transit in 2013 and another in 2014, with average spectral resolutions of ∼700 and ∼250, spanning the Johnson BVR photometric bands. We find a white light planet-to-star radius ratio of 0.0190{sub −0.0027}{sup +0.0023} from the 2013 observations and 0.0200{sub −0.0018}{sup +0.0017} from the 2014 observations. The two data sets combined result in a radius ratio of 0.0198{sub −0.0014}{sup +0.0013}. These values are all in agreement with previous space-based results. Scintillation noise in the data prevents us from placing strong constraints on the presence of an extended hydrogen-rich atmosphere. Nevertheless, our detections of 55 Cnc e in transit demonstrate that moderate-sized telescopes on the ground will be capable of routine follow-up observations of super-Earth candidates discovered by the Transiting Exoplanet Survey Satellite around bright stars. We expect it also will be possible to place constraints on the atmospheric characteristics of those planets by devising observational strategies to minimize scintillation noise.

  12. Precipitable Water Vapor Estimates in the Australian Region from Ground-Based GPS Observations

    Directory of Open Access Journals (Sweden)

    Suelynn Choy

    2015-01-01

    Full Text Available We present a comparison of atmospheric precipitable water vapor (PWV derived from ground-based global positioning system (GPS receiver with traditional radiosonde measurement and very long baseline interferometry (VLBI technique for a five-year period (2008–2012 using Australian GPS stations. These stations were selectively chosen to provide a representative regional distribution of sites while ensuring conventional meteorological observations were available. Good agreement of PWV estimates was found between GPS and VLBI comparison with a mean difference of less than 1 mm and standard deviation of 3.5 mm and a mean difference and standard deviation of 0.1 mm and 4.0 mm, respectively, between GPS and radiosonde measurements. Systematic errors have also been discovered during the course of this study, which highlights the benefit of using GPS as a supplementary atmospheric PWV sensor and calibration system. The selected eight GPS sites sample different climates across Australia covering an area of approximately 30° NS/EW. It has also shown that the magnitude and variation of PWV estimates depend on the amount of moisture in the atmosphere, which is a function of season, topography, and other regional climate conditions.

  13. Operational optical turbulence forecast for the Service Mode of top-class ground based telescopes

    CERN Document Server

    Masciadri, E; Turchi, A; Fini, L

    2016-01-01

    In this contribution we present the most relevant results obtained in the context of a feasibility study (MOSE) undertaken for ESO. The principal aim of the project was to quantify the performances of a mesoscale model (Astro-Meso-NH code) in forecasting all the main atmospherical parameters relevant for the ground-based astronomical observations and the optical turbulence (CN2 and associated integrated astroclimatic parameters) above Cerro Paranal (site of the VLT) and Cerro Armazones (site of the E-ELT). A detailed analysis on the score of success of the predictive capacities of the system have been carried out for all the astroclimatic as well as for the atmospherical parameters. Considering the excellent results that we obtained, this study proved the opportunity to implement on these two sites an automatic system to be run nightly in an operational configuration to support the scheduling of scientific programs as well as of astronomical facilities (particularly those supported by AO systems) of the VLT a...

  14. Paper Productivity of Ground-based Large Optical Telescopes from 2000 to 2009

    CERN Document Server

    KIM, Sang Chul

    2011-01-01

    We present an analysis of the scientific ("refereed") paper productivity of the current largest (diameter >8 m) ground-based optical(-infrared) telescopes during the ten year period from 2000 to 2009. The telescopes for which we have gathered and analysed the scientific publication data are the two 10 m Keck telescopes, the four 8.2 m Very Large Telescopes (VLT), the two 8.1 m Gemini telescopes, the 8.2 m Subaru telescope, and the 9.2 m Hobby-Eberly Telescope (HET). We have analysed the rate of papers published in various astronomical journals produced by using these telescopes. While the total numbers of papers from these observatories are largest for the VLT followed by Keck, Gemini, Subaru, and HET, the number of papers produced by each component of the telescopes are largest for Keck followed by VLT, Subaru, Gemini, and HET. In 2009, each telescope of the Keck, VLT, Gemini, Subaru, and HET observatories produced 135, 109, 93, 107, and 5 refereed papers, respectively. We have shown that each telescope of t...

  15. Seven years of middle-atmospheric CO in the Arctic by ground based radiometry

    Science.gov (United States)

    Ryan, Niall; Palm, Mathias; Raffalski, Uwe; Larsson, Richard; Notholt, Justus

    2016-04-01

    During polar winter, carbon monoxide (CO) is a well-suited tracer for middle atmospheric dynamics and for studying the polar vortex boundary: In polar night the chemical reactions involving atmospheric carbon monoxide are negligible due to the lack of sunlight and, as a result, the gas exhibits strong vertical and horizontal gradients in the stratosphere and mesosphere. Due to the upcoming likely gap in satellite profiling instruments, and in order to maintain a long-term global record of atmospheric trace gas concentrations, current and future satellite missions must be inter-calibrated using measurements from ground-based instruments around the globe. The Kiruna Microwave Radiometer (KIMRA), installed at the Swedish Institute of Space Physics, Kiruna, Sweden (67.8 N, 20.4 E), has been measuring microwave spectra of emissions from atmospheric CO since 2007. This contribution presents the CO concentration record which has been retrieved from KIMRA measurements using different temperature datasets: measurements from the Defense Meteorological Satellite Program - F18 and model output from the European Centre for Medium-Range Weather Forecasts. The concentration profiles, retrieved between 40 and 80 km altitude, are compared to data from the Microwave Limb Sounder on the Aura satellite and are used to examine the concentration gradient across the polar vortex edge.

  16. Ground-based Optical Observations of Geophysical Phenomena: Aurora Borealis and Meteors

    Science.gov (United States)

    Samara, Marilia

    2010-10-01

    Advances in low-light level imaging technology have enabled significant improvements in the ground based study of geophysical phenomena. In this talk we focus on two such phenomena that occur in the Earth's ionosphere: aurorae and meteors. Imaging the aurora which is created by the interplay of the Earth's magnetosphere, ionosphere and atmosphere, provides a tool for remote sensing physical processes that are otherwise very difficult to study. By quantifying the intensities, scale sizes and lifetimes of auroral structures, we can gain significant insight into the physics behind the generation of the aurora and the interaction of the magnetosphere with the solar wind. Additionally, the combination of imaging with radars provides complimentary data and therefore more information than either method on its own. Meteor observations are a perfect example of this because the radar can accurately determine only the line-of-sight component of velocity, while imaging provides the direction of motion, the perpendicular velocity and brightness (a proxy for mass), therefore enabling a much more accurate determination of the full velocity vector and mass.

  17. NASA HRP Plans for Collaboration at the IBMP Ground-Based Experimental Facility (NEK)

    Science.gov (United States)

    Cromwell, Ronita L.

    2016-01-01

    NASA and IBMP are planning research collaborations using the IBMP Ground-based Experimental Facility (NEK). The NEK offers unique capabilities to study the effects of isolation on behavioral health and performance as it relates to spaceflight. The NEK is comprised of multiple interconnected modules that range in size from 50-250m(sup3). Modules can be included or excluded in a given mission allowing for flexibility of platform design. The NEK complex includes a Mission Control Center for communications and monitoring of crew members. In an effort to begin these collaborations, a 2-week mission is planned for 2017. In this mission, scientific studies will be conducted to assess facility capabilities in preparation for longer duration missions. A second follow-on 2-week mission may be planned for early in 2018. In future years, long duration missions of 4, 8 and 12 months are being considered. Missions will include scenarios that simulate for example, transit to and from asteroids, the moon, or other interplanetary travel. Mission operations will be structured to include stressors such as, high workloads, communication delays, and sleep deprivation. Studies completed at the NEK will support International Space Station expeditions, and future exploration missions. Topics studied will include communication, crew autonomy, cultural diversity, human factors, and medical capabilities.

  18. Evaluation of Satellite and Ground Based Precipitation Products for Flood Forecasting

    Science.gov (United States)

    Chintalapudi, S.; Sharif, H.; Yeggina, S.

    2012-04-01

    The development in satellite-derived rainfall estimates encouraged the hydrological modeling in sparse gauged basins or ungauged basins. Especially, physically-based distributed hydrological models can benefit from the good spatial and temporal coverage of satellite precipitation products. In this study, three satellite derived precipitation datasets (TRMM, CMORPH, and PERSIANN), NEXRAD, and rain gauge precipitation datasets were used to drive the hydrological model. The physically-based, distributed hydrological model Gridded Surface Subsurface Hydrological Analysis (GSSHA) was used in this study. Focus will be on the results from the Guadalupe River Basin above Canyon Lake and below Comfort, Texas. The Guadalupe River Basin above Canyon Lake and below Comfort Texas drains an area of 1232 km2. Different storm events will be used in these simulations. August 2007 event was used as calibration and June 2007 event was used as validation. Results are discussed interms of accuracy of satellite precipitation estimates with the ground based precipitation estimates, predicting peak discharges, runoff volumes, time lag, and spatial distribution. The initial results showed that, model was able to predict the peak discharges and runoff volumes when using NEXRAD MPE data, and TRMM 3B42 precipitation product. The results also showed that there was time lag in hydrographs driven by both PERSIANN and CMORPH data sets.

  19. A ground-based measurement of the relativistic beaming effect in a detached double WD binary

    CERN Document Server

    Shporer, Avi; Steinfadt, Justin D R; Bildsten, Lars; Howell, Steve B; Mazeh, Tsevi

    2010-01-01

    We report on the first ground-based measurement of the relativistic beaming effect (aka Doppler boosting). We observed the beaming effect in the detached, non-interacting eclipsing double white dwarf (WD) binary NLTT 11748. Our observations were motivated by the system's high mass ratio and low luminosity ratio, leading to a large beaming-induced variability amplitude at the orbital period of 5.6 hr. We observed the system during 3 nights at the 2.0m Faulkes Telescope North with the SDSS-g' filter, and fitted the data simultaneously for the beaming, ellipsoidal and reflection effects. Our fitted relative beaming amplitude is (3.0 +/- 0.4) x 10^(-3), consistent with the expected amplitude from a blackbody spectrum given the photometric primary radial velocity amplitude and effective temperature. This result is a first step in testing the relation between the photometric beaming amplitude and the spectroscopic radial velocity amplitude in NLTT 11748 and similar systems. We did not identify any variability due t...

  20. CO2 Total Column Variability From Ground-Based FTIR Measurements Over Central Mexico

    Science.gov (United States)

    Baylon, J. L.; Stremme, W.; Plaza, E.; Bezanilla, A.; Grutter, M.; Hase, F.; Blumenstock, T.

    2014-12-01

    There are now several space missions dedicated to measure greenhouse gases in order to improve the understanding of the carbon cycle. Ground based measurement sites are of great value in the validation process, however there are only a few stations in tropical latitudes. We present measurements of solar-absorption infrared spectra recorded on two locations over Central Mexico: the High-Altitude Station Altzomoni (19.12 N, 98.65 W), located in the Izta-Popo National Park outside of Mexico City; and the UNAM's Atmospheric Observatory (19.32 N, 99.17 W) in Mexico City. These measurements were performed using a high resolution Fourier transform infrared spectrometer FTIR (Bruker, HR 120/5) at Altzomoni and a moderate resolution FTIR (Bruker, Vertex 80) within the city. In this work, we present the first results for total vertical columns of CO2 derived from near-infrared spectra recorded at both locations using the retrieval code PROFFIT. We present the seasonal cycle and variability from the measurements, as well as the full diagnostics of the retrieval in order assess its quality and discuss the differences of both instruments and locations (altitudes, urban vs remote). This work aims to contribute to generate high quality datasets for satellite validation.

  1. The Diabolo photometer and the future of ground-based millimetric bolometer devices

    CERN Document Server

    Désert, F X; Camus, P; Giard, M; Pointecouteau, E; Aghanim, N; Bernard, J P; Coron, N; Lamarre, J M; Marty, P; Delabrouille, J; Soglasnova, V; Camus, Ph.; Marty, Ph.

    2001-01-01

    The millimetric atmospheric windows at 1 and 2 mm are interesting targets for cosmological studies. Two broad areas appear leading this field: 1) the search for high redshift star-forming galaxies and 2) the measurement of Sunyaev-Zel'dovich (SZ) effect in clusters of galaxies at all redshifts. The Diabolo photometer is a dual-channel photometer working at 1.2 and 2.1 mm and dedicated to high angular resolution measurements of the Sunyaev--Zel'dovich effect towards distant clusters. It uses 2 by 3 bolometers cooled down to 0.1 K with a compact open dilution cryostat. The high resolution is provided by the IRAM 30 m telescope. The result of several Winter campaigns are reported here, including the first millimetric map of the SZ effect that was obtained by Pointecouteau et al. (2001) on RXJ1347-1145, the non-detection of a millimetric counterpart to the radio decrement towards PC1643+4631 and 2 mm number count upper limits. We discuss limitations in ground-based single-dish millimetre observations, namely sky ...

  2. A Ground-Based Search for Thermal Emission from the Exoplanet TrES-1

    CERN Document Server

    Knutson, Heather A; Deming, Drake; Richardson, L Jeremy

    2007-01-01

    Eclipsing planetary systems give us an important window on extrasolar planet atmospheres. By measuring the depth of the secondary eclipse, when the planet moves behind the star, we can estimate the strength of the thermal emission from the day side of the planet. Attaining a ground-based detection of one of these eclipses has proven to be a significant challenge, as time-dependent variations in instrument throughput and atmospheric seeing and absorption overwhelm the small signal of the eclipse at infrared wavelengths. We gathered a series of simultaneous L grism spectra of the transiting planet system TrES-1 and a nearby comparison star of comparable brightness, allowing us to correct for these effects in principle. Combining the data from two eclipses, we demonstrate a detection sensitivity of 0.15% in the eclipse depth relative to the stellar flux. This approaches the sensitivity required to detect the planetary emission, which theoretical models predict should lie between 0.05-0.1% of the stellar flux in ...

  3. Assessment of the quality of OSIRIS mesospheric temperatures using satellite and ground-based measurements

    Directory of Open Access Journals (Sweden)

    P. E. Sheese

    2012-12-01

    Full Text Available The Optical Spectrograph and InfraRed Imaging System (OSIRIS on the Odin satellite is currently in its 12th year of observing the Earth's limb. For the first time, continuous temperature profiles extending from the stratopause to the upper mesosphere have been derived from OSIRIS measurements of Rayleigh-scattered sunlight. Through most of the mesosphere, OSIRIS temperatures are in good agreement with coincident temperature profiles derived from other satellite and ground-based measurements. In the altitude region of 55–80 km, OSIRIS temperatures are typically within 4–5 K of those from the SABER, ACE-FTS, and SOFIE instruments on the TIMED, SciSat-I, and AIM satellites, respectively. The mean differences between individual OSIRIS profiles and those of the other satellite instruments are typically within the combined uncertainties and previously reported biases. OSIRIS temperatures are typically within 2 K of those from the University of Western Ontario's Purple Crow Lidar in the altitude region of 52–79 km, where the mean differences are within combined uncertainties. Near 84 km, OSIRIS temperatures exhibit a cold bias of 10–15 K, which is due to a cold bias in OSIRIS O2 A-band temperatures at 85 km, the upper boundary of the Rayleigh-scatter derived temperatures; and near 48 km OSIRIS temperatures exhibit a cold bias of 5–15 K, which is likely due to multiple-scatter effects that are not taken into account in the retrieval.

  4. On the atmospheric limitations of ground-based submillimetre astronomy using array receivers

    CERN Document Server

    Archibald, E N; Holland, W S; Coulson, I M; Jessop, N E; Stevens, J A; Robson, E I; Tilanus, R P J; Duncan, W D; Lightfoot, J F

    2002-01-01

    The calibration of ground-based submillimetre observations has always been a difficult process. We discuss how to overcome the limitations imposed by the submillimetre atmosphere. Novel ways to improve line-of-sight opacity estimates are presented, resulting in tight relations between opacities at different wavelengths. The submillimetre camera SCUBA, mounted on the JCMT, is the first large-scale submillimetre array, and as such is ideal for combatting the effects of the atmosphere. For example, we find that the off-source pixels are crucial for removing sky-noise. Benefitting from several years of SCUBA operation, a database of deep SCUBA observations has been constructed to better understand the nature of sky-noise and the effects of the atmosphere on instrument sensitivity. This has revealed several results. Firstly, there is evidence for positive correlations between sky-noise and seeing and sky-noise and sky opacity. Furthermore, 850-micron and 450-micron sky-noise are clearly correlated, suggesting that...

  5. Heavy precipitation retrieval from combined satellite observations and ground-based lightning measurements

    Science.gov (United States)

    Mugnai, A.; Dietrich, S.; Casella, D.; di Paola, F.; Formenton, M.; Sanò, P.

    2010-09-01

    We have developed a series of algorithms for the retrieval of precipitation (especially, heavy precipitation) over the Mediterranean area using satellite observations from the available microwave (MW) radiometers onboard low Earth orbit (LEO) satellites and from the visible-infrared (VIS-IR) SEVIRI radiometer onboard the European geosynchronous (GEO) satellite Meteosat Second Generation (MSG), in conjunction with lightning data from ground-based networks - such as ZEUS and LINET. These are: • A new approach for precipitation retrieval from space (which we call the Cloud Dynamics and Radiation Database approach, CDRD) that incorporates lightning and environmental/dynamical information in addition to the upwelling microwave brightness temperatures (TB’s) so as to reduce the retrieval uncertainty and improve the retrieval performance; • A new combined MW-IR technique for producing frequent precipitation retrievals from space (which we call PM-GCD technique), that uses passive-microwave (PM) retrievals in conjunction with lightning information and the Global Convection Detection (GCD) technique to discriminate deep convective clouds within the GEO observations; • A new morphing approach (which we call the Lightning-based Precipitation Evolving Technique, L-PET) that uses the available lightning measurements for propagating the rainfall estimates from satellite-borne MW radiometers to a much higher time resolution than the MW observations. We will present and discuss our combined MW/IR/lightning precipitation algorithms and analyses with special reference to some case studies over the western Mediterranean.

  6. Simulated forecasts for primordial B -mode searches in ground-based experiments

    Science.gov (United States)

    Alonso, David; Dunkley, Joanna; Thorne, Ben; Næss, Sigurd

    2017-02-01

    Detecting the imprint of inflationary gravitational waves on the B -mode polarization of the cosmic microwave background (CMB) is one of the main science cases for current and next-generation CMB experiments. In this work we explore some of the challenges that ground-based facilities will have to face in order to carry out this measurement in the presence of galactic foregrounds and correlated atmospheric noise. We present forecasts for stage-3 (S3) and planned stage-4 (S4) experiments based on the analysis of simulated sky maps using a map-based Bayesian foreground-cleaning method. Our results thus consistently propagate the uncertainties on foreground parameters such as spatially varying spectral indices, as well as the bias on the measured tensor-to-scalar ratio r caused by an incorrect modeling of the foregrounds. We find that S3 and S4-like experiments should be able to put constraints on r of the order σ (r )=(0.5 - 1.0 )×10-2 and σ (r )=(0.5 - 1.0 )×10-3 respectively, assuming instrumental systematic effects are under control. We further study deviations from the fiducial foreground model, finding that, while the effects of a second polarized dust component would be minimal on both S3 and S4, a 2% polarized anomalous dust emission component would be clearly detectable by stage-4 experiments.

  7. OPUS BBM: Its performance and early results of ground-based measurements

    Science.gov (United States)

    Kuze, A.; Shibasaki, K.; Sano, T.; Kawashima, T.; Miyamura, N.; Tange, Y.; Yui, Y.; Suzuki, M.; Ogawa, T.

    2003-04-01

    OPUS(Ozone and Pollution measuring Ultraviolet Spectrometer) is the satellite-borne instrument for future Japanese mission. Its scientific goal is to monitor the tropospheric urban and severely polluted chemical species such as SO2 and NO2 as well as total and tropospheric ozone. Now its BBM has been constructed and under performance check. Several checks are now being made on performances under thermal and vacum environments suffered in orbit. The OPUS BBM showed very stable perfomance as expected. The CMOS type array detector reveals very low noise and high quantum efficiency suitable for space use. In this paper we show the results of performance check of OPUS BBM. We also carried out the ground-based, zenith sky (scatter light) measurement for checking the S/N ratio of OPUS BBM as well as for demonstrating its ability to derive NO2 in the atmosphere. A preliminary analysis result is shown, and also shown is the result of algorithm study for space mission.

  8. Ground-based infrared surveys: imaging the thermal fields at volcanoes and revealing the controlling parameters.

    Science.gov (United States)

    Pantaleo, Michele; Walter, Thomas

    2013-04-01

    Temperature monitoring is a widespread procedure in the frame of volcano hazard monitoring. Indeed temperature changes are expected to reflect changes in volcanic activity. We propose a new approach, within the thermal monitoring, which is meant to shed light on the parameters controlling the fluid pathways and the fumarole sites by using infrared measurements. Ground-based infrared cameras allow one to remotely image the spatial distribution, geometric pattern and amplitude of fumarole fields on volcanoes at metre to centimetre resolution. Infrared mosaics and time series are generated and interpreted, by integrating geological field observations and modeling, to define the setting of the volcanic degassing system at shallow level. We present results for different volcano morphologies and show that lithology, structures and topography control the appearance of fumarole field by the creation of permeability contrasts. We also show that the relative importance of those parameters is site-dependent. Deciphering the setting of the degassing system is essential for hazard assessment studies because it would improve our understanding on how the system responds to endogenous or exogenous modification.

  9. A six-beam method to measure turbulence statistics using ground-based wind lidars

    Directory of Open Access Journals (Sweden)

    A. Sathe

    2014-10-01

    Full Text Available A so-called six-beam method is proposed to measure atmospheric turbulence using a ground-based wind lidar. This method requires measurement of the radial velocity variances at five equally spaced azimuth angles on the base of a scanning cone and one measurement at the center of the scanning circle, i.e.using a vertical beam at the same height. The scanning configuration is optimized to minimize the sum of the random errors in the measurement of the second-order moments of the components (u,v, w of the wind field. We present this method as an alternative to the so-called velocity azimuth display (VAD method that is routinely used in commercial wind lidars, and which usually results in significant averaging effects of measured turbulence. In the VAD method, the high frequency radial velocity measurements are used instead of their variances. The measurements are performed using a pulsed lidar (WindScanner, and the derived turbulence statistics (using both methods such as the u and v variances are compared with those obtained from a reference cup anemometer and a wind vane at 89 m height under different atmospheric stabilities. The measurements show that in comparison to the reference cup anemometer, depending on the atmospheric stability and the wind field component, the six-beam method measures between 85–101% of the reference turbulence, whereas the VAD method measures between 66–87% of the reference turbulence.

  10. A ground-based transmission spectrum of the super-Earth exoplanet GJ1214b

    CERN Document Server

    Bean, Jacob L; Homeier, Derek

    2010-01-01

    In contrast to planets with masses similar to that of Jupiter and higher, the bulk compositions of planets in the so-called super-Earth regime cannot be uniquely determined from a mass and radius measurement alone. For these planets, there is a degeneracy between the mass and composition of the interior and a possible atmosphere in theoretical models. The recently discovered transiting super-Earth GJ1214b is one example of this problem. Three distinct models for the planet that are consistent with its mass and radius have been suggested, and breaking the degeneracy between these models requires obtaining constraints on the planet's atmospheric composition. Here we report a ground-based measurement of the transmission spectrum of GJ1214b between 780 and 1000 nm. The lack of features in this spectrum rules out cloud-free atmospheres composed primarily of hydrogen at 4.9 sigma confidence. If the planet's atmosphere is hydrogen-dominated, then it must contain clouds or hazes that are optically thick at the observ...

  11. Reevaluating the feasibility of ground-based Earth-mass microlensing planet detections

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Youn Kil; Park, Hyuk; Han, Cheongho; Hwang, Kyu-Ha; Shin, In-Gu; Choi, Joon-Young, E-mail: cheongho@astroph.chungbuk.ac.kr [Department of Physics, Institute for Astrophysics, Chungbuk National University, Cheongju 371-763 (Korea, Republic of)

    2014-05-10

    An important strength of the microlensing method to detect extrasolar planets is its high sensitivity to low-mass planets. However, many believe that microlensing detections of Earth-mass planets from ground-based observation would be difficult because of limits set by finite-source effects. This view comes from the previous estimation of planet detection probability based on the fractional deviation of planetary signals; however, a proper probability estimation is required when considering the source brightness, which is directly related to the photometric precision. In this paper, we reevaluate the feasibility of low-mass planet detections by considering photometric precision for different populations of source stars. From this, we find that the contribution of improved photometric precision to the planetary signal of a giant-source event is large enough to compensate for the decrease in magnification excess caused by finite-source effects. As a result, we conclude that giant-source events are suitable targets for Earth-mass planet detections with significantly higher detection probability than events involved with source stars of smaller radii, and we predict that Earth-mass planets could be detected by prospective high-cadence surveys.

  12. Astrometric star catalogues as combination of Hipparcos/Tycho catalogues with ground-based observations

    Directory of Open Access Journals (Sweden)

    Vondrák J.

    2004-01-01

    Full Text Available The successful ESA mission Hipparcos provided very precise parallaxes positions and proper motions of many stars in optical wavelength. Therefore it is a primary representation of International Celestial Reference System in this wavelength. However, the shortness of the mission (less than four years causes some problems with proper motions of the stars that are double or multiple. Therefore, a combination of the positions measured by Hipparcos satellite with ground-based observations with much longer history provides a better reference frame that is more stable in time. Several examples of such combinations are presented (ACT, TYCHO-2, FK6, GC+HIP, TYC2+HIP, ARIHIP and briefly described. The stress is put on the most recent Earth Orientation Catalogue (EOC that uses about 4.4 million optical observations of latitude/universal time variations (made during the twentieth century at 33 observatories in Earth orientation programmes, in combination with some of the above mentioned combined catalogues. The second version of the new catalogue EOC-2 contains 4418 objects, and the precision of their proper motions is far better than that of Hipparcos Catalogue.

  13. A Ground-based Optical Transmission Spectrum of WASP-6b

    CERN Document Server

    Jordán, Andrés; Rabus, Markus; Eyheramendy, Susana; Sing, David K; Désert, Jean-Michel; Bakos, Gáspár Á; Fortney, Jonathan J; López-Morales, Mercedes; Maxted, Pierre F L; Triaud, Amaury H M J; Szentgyorgyi, Andrew

    2013-01-01

    We present a ground based optical transmission spectrum of the inflated sub-Jupiter mass planet WASP-6b. The spectrum was measured in twenty spectral channels from 480 nm to 860nm using a series of 91 spectra over a complete transit event. The observations were carried out using multi-object differential spectrophotometry with the IMACS spectrograph on the Baade telescope at Las Campanas Observatory. We model systematic effects on the observed light curves using principal component analysis on the comparison stars, and allow for the presence of short and long memory correlation structure in our Monte Carlo Markov Chain analysis of the transit light curves for WASP-6. The measured transmission spectrum presents a general trend of decreasing apparent planetary size with wavelength and lacks evidence for broad spectral features of Na and K predicted by clear atmosphere models. The spectrum is consistent with that expected for scattering that is more efficient in the blue, as could be caused by hazes or condensat...

  14. Ground-Based Transit Observations of the Super-Earth 55 Cnc e

    CERN Document Server

    de Mooij, E J W; Karjalainen, R; Hrudkova, M; Jayawardhana, R

    2014-01-01

    We report the first ground-based detections of the shallow transit of the super-Earth exoplanet 55 Cnc e using a 2-meter-class telescope. Using differential spectrophotometry, we observed one transit in 2013 and another in 2014, with average spectral resolutions of ~700 and ~250, spanning the Johnson BVR photometric bands. We find a white-light planet-to-star radius ratio of 0.0190 -0.0027+0.0023 from the 2013 observations and 0.0200 -0.0018+0.0017 from the 2014 observations. The two datasets combined results in a radius ratio of 0.0198 -0.0014+0.0013. These values are all in agreement with previous space-based results. Scintillation noise in the data prevents us from placing strong constraints on the presence of an extended hydrogen-rich atmosphere. Nevertheless, our detections of 55 Cnc e in transit demonstrate that moderate-size telescopes on the ground will be capable of routine follow-up observations of super-Earth candidates discovered by the Transiting Exoplanet Survey Satellite (TESS) around bright st...

  15. Petascale Computing for Ground-Based Solar Physics with the DKIST Data Center

    Science.gov (United States)

    Berukoff, Steven J.; Hays, Tony; Reardon, Kevin P.; Spiess, DJ; Watson, Fraser; Wiant, Scott

    2016-05-01

    When construction is complete in 2019, the Daniel K. Inouye Solar Telescope will be the most-capable large aperture, high-resolution, multi-instrument solar physics facility in the world. The telescope is designed as a four-meter off-axis Gregorian, with a rotating Coude laboratory designed to simultaneously house and support five first-light imaging and spectropolarimetric instruments. At current design, the facility and its instruments will generate data volumes of 3 PB per year, and produce 107-109 metadata elements.The DKIST Data Center is being designed to store, curate, and process this flood of information, while providing association of science data and metadata to its acquisition and processing provenance. The Data Center will produce quality-controlled calibrated data sets, and make them available freely and openly through modern search interfaces and APIs. Documented software and algorithms will also be made available through community repositories like Github for further collaboration and improvement.We discuss the current design and approach of the DKIST Data Center, describing the development cycle, early technology analysis and prototyping, and the roadmap ahead. We discuss our iterative development approach, the underappreciated challenges of calibrating ground-based solar data, the crucial integration of the Data Center within the larger Operations lifecycle, and how software and hardware support, intelligently deployed, will enable high-caliber solar physics research and community growth for the DKIST's 40-year lifespan.

  16. Solidification kinetics of a Cu-Zr alloy: ground-based and microgravity experiments

    Science.gov (United States)

    Galenko, P. K.; Hanke, R.; Paul, P.; Koch, S.; Rettenmayr, M.; Gegner, J.; Herlach, D. M.; Dreier, W.; Kharanzhevski, E. V.

    2017-04-01

    Experimental and theoretical results obtained in the MULTIPHAS-project (ESA-European Space Agency and DLR-German Aerospace Center) are critically discussed regarding solidification kinetics of congruently melting and glass forming Cu50Zr50 alloy samples. The samples are investigated during solidification using a containerless technique in the Electromagnetic Levitation Facility [1]. Applying elaborated methodologies for ground-based and microgravity experimental investigations [2], the kinetics of primary dendritic solidification is quantitatively evaluated. Electromagnetic Levitator in microgravity (parabolic flights and on board of the International Space Station) and Electrostatic Levitator on Ground are employed. The solidification kinetics is determined using a high-speed camera and applying two evaluation methods: “Frame by Frame” (FFM) and “First Frame - Last Frame” (FLM). In the theoretical interpretation of the solidification experiments, special attention is given to the behavior of the cluster structure in Cu50Zr50 samples with the increase of undercooling. Experimental results on solidification kinetics are interpreted using a theoretical model of diffusion controlled dendrite growth.

  17. Ground-based remote sensing scheme for monitoring aerosol–cloud interactions

    Directory of Open Access Journals (Sweden)

    K. Sarna

    2015-11-01

    Full Text Available A method for continuous observation of aerosol–cloud interactions with ground-based remote sensing instruments is presented. The main goal of this method is to enable the monitoring of cloud microphysical changes due to the changing aerosol concentration. We use high resolution measurements from lidar, radar and radiometer which allow to collect and compare data continuously. This method is based on a standardised data format from Cloudnet and can be implemented at any observatory where the Cloudnet data set is available. Two example study cases were chosen from the Atmospheric Radiation Measurement (ARM Program deployment at Graciosa Island, Azores, Portugal in 2009 to present the method. We show the Pearson Product–Moment Correlation Coefficient, r, and the Coefficient of Determination, r2 for data divided into bins of LWP, each of 10 g m−2. We explain why the commonly used way of quantity aerosol cloud interactions by use of an ACI index (ACIr,τ = dln re,τ/dlnα is not the best way of quantifying aerosol–cloud interactions.

  18. Ground-Based Observations of Saturn's North Polar Spot and Hexagon.

    Science.gov (United States)

    Sanchez-Lavega, A; Lecacheux, J; Colas, F; Laques, P

    1993-04-16

    Ground-based observations of two conspicuous features near the north pole of Saturn, the polar vortex and the hexagonal wave structure, were made from July 1990 to October 1991, 10 years after their discovery. During this period the polar spot drifted in longitude, relative to system III, by -0.0353 degrees per day on average. Superimposed on this mean motion, the spot also underwent short-term rapid excursions in longitude of up to approximately 14 degrees at rates of up to approximately 1 degrees per day. The spot also exhibited irregular variations in its latitude location. A combination of these data together with those obtained by Voyager 1 and 2 in 1980 and 1981 shows that the spot drifted -0.0577 degrees per day for the 11-year interval from 1980 to 1991. The large lifetime of both features indicates that they are insensitive to the strong variations in the seasonal heating of the cloud layers in the upper polar atmosphere.

  19. Evidence of rock slope breathing using ground-based InSAR

    Science.gov (United States)

    Rouyet, Line; Kristensen, Lene; Derron, Marc-Henri; Michoud, Clément; Blikra, Lars Harald; Jaboyedoff, Michel; Lauknes, Tom Rune

    2017-07-01

    Ground-Based Interferometric Synthetic Aperture Radar (GB-InSAR) campaigns were performed in summer 2011 and 2012 in the Romsdalen valley (Møre & Romsdal county, western Norway) in order to assess displacements on Mannen/Børa rock slope. Located 1 km northwest, a second GB-InSAR system continuously monitors the large Mannen rockslide. The availability of two GB-InSAR positions creates a wide coverage of the rock slope, including a slight dataset overlap valuable for validation. A phenomenon of rock slope breathing is detected in a remote and hard-to-access area in mid-slope. Millimetric upward displacements are recorded in August 2011. Analysis of 2012 GB-InSAR campaign, combined with the large dataset from the continuous station, shows that the slope is affected by inflation/deflation phenomenon between 5 and 10 mm along the line-of-sight. The pattern is not homogenous in time and inversions of movement have a seasonal recurrence. These seasonal changes are confirmed by satellite InSAR observations and can possibly be caused by hydrogeological variations. In addition, combination of GB-InSAR results, in situ measurements and satellite InSAR analyses contributes to a better overview of movement distribution over the whole area.

  20. OGLE-2015-BLG-0196: Ground-based Gravitational Microlens Parallax Confirmed By Space-Based Observation

    CERN Document Server

    Han, C; Gould, A; Zhu, Wei; Szymański, M K; Soszyński, I; Skowron, J; Mróz, P; Poleski, R; Pietrukowicz, P; Kozłowski, S; Ulaczyk, K; Pawlak, M; Yee, J C; Beichman, C; Novati, S Calchi; Carey, S; Bryden, C; Fausnaugh, M; Gaudi, B S; Henderson, Calen B; Shvartzvald, Y; Wibking, B

    2016-01-01

    In this paper, we present the analysis of the binary gravitational microlensing event OGLE-2015-BLG-0196. The event lasted for almost a year and the light curve exhibited significant deviations from the lensing model based on the rectilinear lens-source relative motion, enabling us to measure the microlens parallax. The ground-based microlens parallax is confirmed by the data obtained from space-based microlens observations using the {\\it Spitzer} telescope. By additionally measuring the angular Einstein radius from the analysis of the resolved caustic crossing, the physical parameters of the lens are determined up to the two-fold degeneracy: $u_00$ solutions caused by the well-known "ecliptic" degeneracy. It is found that the binary lens is composed of two M dwarf stars with similar masses $M_1=0.38\\pm 0.04\\ M_\\odot$ ($0.50\\pm 0.05\\ M_\\odot)$ and $M_2=0.38\\pm 0.04\\ M_\\odot$ ($0.55\\pm 0.06\\ M_\\odot$) and the distance to the lens is $D_{\\rm L}=2.77\\pm 0.23$ kpc ($3.30\\pm 0.29$ kpc). Here the physical parameter...