WorldWideScience

Sample records for ground-based adaptive-optics telescopes

  1. Tip-tilt compensation: Resolution limits for ground-based telescopes using laser guide star adaptive optics

    International Nuclear Information System (INIS)

    Olivier, S.S.; Max, C.E.; Gavel, D.T.; Brase, J.M.

    1992-01-01

    The angular resolution of long-exposure images from ground-based telescopes equipped with laser guide star adaptive optics systems is fundamentally limited by the the accuracy with which the tip-tilt aberrations introduced by the atmosphere can be corrected. Assuming that a natural star is used as the tilt reference, the residual error due to tilt anisoplanatism can significantly degrade the long-exposure resolution even if the tilt reference star is separated from the object being imaged by a small angle. Given the observed distribution of stars in the sky, the need to find a tilt reference star quite close to the object restricts the fraction of the sky over which long-exposure images with diffraction limited resolution can be obtained. In this paper, the authors present a comprehensive performance analysis of tip-tilt compensation systems that use a natural star as a tilt reference, taking into account properties of the atmosphere and of the Galactic stellar populations, and optimizing over the system operating parameters to determine the fundamental limits to the long-exposure resolution. Their results show that for a ten meter telescope on Mauna Kea, if the image of the tilt reference star is uncorrected, about half the sky can be imaged in the V band with long-exposure resolution less than 60 milli-arc-seconds (mas), while if the image of the tilt reference star is fully corrected, about half the sky can be imaged in the V band with long-exposure resolution less than 16 mas. Furthermore, V band images long-exposure resolution of less than 16 mas may be obtained with a ten meter telescope on Mauna Kea for unresolved objects brighter than magnitude 22 that are fully corrected by a laser guide star adaptive optics system. This level of resolution represents about 70% of the diffraction limit of a ten meter telescope in the V band and is more than a factor of 45 better than the median seeing in the V band on Mauna Kea

  2. Adaptive optics system application for solar telescope

    Science.gov (United States)

    Lukin, V. P.; Grigor'ev, V. M.; Antoshkin, L. V.; Botugina, N. N.; Emaleev, O. N.; Konyaev, P. A.; Kovadlo, P. G.; Krivolutskiy, N. P.; Lavrionova, L. N.; Skomorovski, V. I.

    2008-07-01

    The possibility of applying adaptive correction to ground-based solar astronomy is considered. Several experimental systems for image stabilization are described along with the results of their tests. Using our work along several years and world experience in solar adaptive optics (AO) we are assuming to obtain first light to the end of 2008 for the first Russian low order ANGARA solar AO system on the Big Solar Vacuum Telescope (BSVT) with 37 subapertures Shack-Hartmann wavefront sensor based of our modified correlation tracker algorithm, DALSTAR video camera, 37 elements deformable bimorph mirror, home made fast tip-tip mirror with separate correlation tracker. Too strong daytime turbulence is on the BSVT site and we are planning to obtain a partial correction for part of Sun surface image.

  3. Ground-based adaptive optics coronagraphic performance under closed-loop predictive control

    Science.gov (United States)

    Males, Jared R.; Guyon, Olivier

    2018-01-01

    The discovery of the exoplanet Proxima b highlights the potential for the coming generation of giant segmented mirror telescopes (GSMTs) to characterize terrestrial-potentially habitable-planets orbiting nearby stars with direct imaging. This will require continued development and implementation of optimized adaptive optics systems feeding coronagraphs on the GSMTs. Such development should proceed with an understanding of the fundamental limits imposed by atmospheric turbulence. Here, we seek to address this question with a semianalytic framework for calculating the postcoronagraph contrast in a closed-loop adaptive optics system. We do this starting with the temporal power spectra of the Fourier basis calculated assuming frozen flow turbulence, and then apply closed-loop transfer functions. We include the benefits of a simple predictive controller, which we show could provide over a factor of 1400 gain in raw point spread function contrast at 1 λ/D on bright stars, and more than a factor of 30 gain on an I=7.5 mag star such as Proxima. More sophisticated predictive control can be expected to improve this even further. Assuming a photon-noise limited observing technique such as high-dispersion coronagraphy, these gains in raw contrast will decrease integration times by the same large factors. Predictive control of atmospheric turbulence should therefore be seen as one of the key technologies that will enable ground-based telescopes to characterize terrestrial planets.

  4. Laser Guidestar Satellite for Ground-based Adaptive Optics Imaging of Geosynchronous Satellites and Astronomical Targets

    Science.gov (United States)

    Marlow, W. A.; Cahoy, K.; Males, J.; Carlton, A.; Yoon, H.

    2015-12-01

    Real-time observation and monitoring of geostationary (GEO) satellites with ground-based imaging systems would be an attractive alternative to fielding high cost, long lead, space-based imagers, but ground-based observations are inherently limited by atmospheric turbulence. Adaptive optics (AO) systems are used to help ground telescopes achieve diffraction-limited seeing. AO systems have historically relied on the use of bright natural guide stars or laser guide stars projected on a layer of the upper atmosphere by ground laser systems. There are several challenges with this approach such as the sidereal motion of GEO objects relative to natural guide stars and limitations of ground-based laser guide stars; they cannot be used to correct tip-tilt, they are not point sources, and have finite angular sizes when detected at the receiver. There is a difference between the wavefront error measured using the guide star compared with the target due to cone effect, which also makes it difficult to use a distributed aperture system with a larger baseline to improve resolution. Inspired by previous concepts proposed by A.H. Greenaway, we present using a space-based laser guide starprojected from a satellite orbiting the Earth. We show that a nanosatellite-based guide star system meets the needs for imaging GEO objects using a low power laser even from 36,000 km altitude. Satellite guide star (SGS) systemswould be well above atmospheric turbulence and could provide a small angular size reference source. CubeSatsoffer inexpensive, frequent access to space at a fraction of the cost of traditional systems, and are now being deployed to geostationary orbits and on interplanetary trajectories. The fundamental CubeSat bus unit of 10 cm cubed can be combined in multiple units and offers a common form factor allowing for easy integration as secondary payloads on traditional launches and rapid testing of new technologies on-orbit. We describe a 6U CubeSat SGS measuring 10 cm x 20 cm x

  5. Ground-Based Telescope Parametric Cost Model

    Science.gov (United States)

    Stahl, H. Philip; Rowell, Ginger Holmes

    2004-01-01

    A parametric cost model for ground-based telescopes is developed using multi-variable statistical analysis, The model includes both engineering and performance parameters. While diameter continues to be the dominant cost driver, other significant factors include primary mirror radius of curvature and diffraction limited wavelength. The model includes an explicit factor for primary mirror segmentation and/or duplication (i.e.. multi-telescope phased-array systems). Additionally, single variable models based on aperture diameter are derived. This analysis indicates that recent mirror technology advances have indeed reduced the historical telescope cost curve.

  6. A Status Report on the Thirty Meter Telescope Adaptive Optics

    Indian Academy of Sciences (India)

    2016-01-27

    Jan 27, 2016 ... We provide an update on the recent development of the adaptive optics (AO) systems for the Thirty Meter Telescope (TMT) since mid-2011. The first light AO facility for TMT consists of the Narrow Field Infra-Red AO System (NFIRAOS) and the associated Laser Guide Star Facility (LGSF). This order 60 × 60 ...

  7. SCIENTIFIC EFFICIENCY OF GROUND-BASED TELESCOPES

    International Nuclear Information System (INIS)

    Abt, Helmut A.

    2012-01-01

    I scanned the six major astronomical journals of 2008 for all 1589 papers that are based on new data obtained from ground-based optical/IR telescopes worldwide. Then I collected data on numbers of papers, citations to them in 3+ years, the most-cited papers, and annual operating costs. These data are assigned to four groups by telescope aperture. For instance, while the papers from telescopes with an aperture >7 m average 1.29 more citations than those with an aperture of 2 to 7 m) telescopes. I wonder why the large telescopes do so relatively poorly and suggest possible reasons. I also found that papers based on archival data, such as the Sloan Digital Sky Survey, produce 10.6% as many papers and 20.6% as many citations as those based on new data. Also, the 577.2 papers based on radio data produced 36.3% as many papers and 33.6% as many citations as the 1589 papers based on optical/IR telescopes.

  8. Solar Adaptive Optics

    Directory of Open Access Journals (Sweden)

    Thomas R. Rimmele

    2011-06-01

    Full Text Available Adaptive optics (AO has become an indispensable tool at ground-based solar telescopes. AO enables the ground-based observer to overcome the adverse effects of atmospheric seeing and obtain diffraction limited observations. Over the last decade adaptive optics systems have been deployed at major ground-based solar telescopes and revitalized ground-based solar astronomy. The relatively small aperture of solar telescopes and the bright source make solar AO possible for visible wavelengths where the majority of solar observations are still performed. Solar AO systems enable diffraction limited observations of the Sun for a significant fraction of the available observing time at ground-based solar telescopes, which often have a larger aperture than equivalent space based observatories, such as HINODE. New ground breaking scientific results have been achieved with solar adaptive optics and this trend continues. New large aperture telescopes are currently being deployed or are under construction. With the aid of solar AO these telescopes will obtain observations of the highly structured and dynamic solar atmosphere with unprecedented resolution. This paper reviews solar adaptive optics techniques and summarizes the recent progress in the field of solar adaptive optics. An outlook to future solar AO developments, including a discussion of Multi-Conjugate AO (MCAO and Ground-Layer AO (GLAO will be given.

  9. Solar Adaptive Optics.

    Science.gov (United States)

    Rimmele, Thomas R; Marino, Jose

    Adaptive optics (AO) has become an indispensable tool at ground-based solar telescopes. AO enables the ground-based observer to overcome the adverse effects of atmospheric seeing and obtain diffraction limited observations. Over the last decade adaptive optics systems have been deployed at major ground-based solar telescopes and revitalized ground-based solar astronomy. The relatively small aperture of solar telescopes and the bright source make solar AO possible for visible wavelengths where the majority of solar observations are still performed. Solar AO systems enable diffraction limited observations of the Sun for a significant fraction of the available observing time at ground-based solar telescopes, which often have a larger aperture than equivalent space based observatories, such as HINODE. New ground breaking scientific results have been achieved with solar adaptive optics and this trend continues. New large aperture telescopes are currently being deployed or are under construction. With the aid of solar AO these telescopes will obtain observations of the highly structured and dynamic solar atmosphere with unprecedented resolution. This paper reviews solar adaptive optics techniques and summarizes the recent progress in the field of solar adaptive optics. An outlook to future solar AO developments, including a discussion of Multi-Conjugate AO (MCAO) and Ground-Layer AO (GLAO) will be given. Supplementary material is available for this article at 10.12942/lrsp-2011-2.

  10. Adaptive Optics Simulation for the World's Largest Telescope on Multicore Architectures with Multiple GPUs

    KAUST Repository

    Ltaief, Hatem

    2016-06-02

    We present a high performance comprehensive implementation of a multi-object adaptive optics (MOAO) simulation on multicore architectures with hardware accelerators in the context of computational astronomy. This implementation will be used as an operational testbed for simulating the de- sign of new instruments for the European Extremely Large Telescope project (E-ELT), the world\\'s biggest eye and one of Europe\\'s highest priorities in ground-based astronomy. The simulation corresponds to a multi-step multi-stage pro- cedure, which is fed, near real-time, by system and turbulence data coming from the telescope environment. Based on the PLASMA library powered by the OmpSs dynamic runtime system, our implementation relies on a task-based programming model to permit an asynchronous out-of-order execution. Using modern multicore architectures associated with the enormous computing power of GPUS, the resulting data-driven compute-intensive simulation of the entire MOAO application, composed of the tomographic reconstructor and the observing sequence, is capable of coping with the aforementioned real-time challenge and stands as a reference implementation for the computational astronomy community.

  11. Silicon carbide optics for space and ground based astronomical telescopes

    Science.gov (United States)

    Robichaud, Joseph; Sampath, Deepak; Wainer, Chris; Schwartz, Jay; Peton, Craig; Mix, Steve; Heller, Court

    2012-09-01

    Silicon Carbide (SiC) optical materials are being applied widely for both space based and ground based optical telescopes. The material provides a superior weight to stiffness ratio, which is an important metric for the design and fabrication of lightweight space telescopes. The material also has superior thermal properties with a low coefficient of thermal expansion, and a high thermal conductivity. The thermal properties advantages are important for both space based and ground based systems, which typically need to operate under stressing thermal conditions. The paper will review L-3 Integrated Optical Systems - SSG’s (L-3 SSG) work in developing SiC optics and SiC optical systems for astronomical observing systems. L-3 SSG has been fielding SiC optical components and systems for over 25 years. Space systems described will emphasize the recently launched Long Range Reconnaissance Imager (LORRI) developed for JHU-APL and NASA-GSFC. Review of ground based applications of SiC will include supporting L-3 IOS-Brashear’s current contract to provide the 0.65 meter diameter, aspheric SiC secondary mirror for the Advanced Technology Solar Telescope (ATST).

  12. Modeling update for the Thirty Meter Telescope laser guide star dual-conjugate adaptive optics system

    Science.gov (United States)

    Gilles, Luc; Wang, Lianqi; Ellerbroek, Brent

    2010-07-01

    This paper describes the modeling efforts undertaken in the past couple of years to derive wavefront error (WFE) performance estimates for the Narrow Field Infrared Adaptive Optics System (NFIRAOS), which is the facility laser guide star (LGS) dual-conjugate adaptive optics (AO) system for the Thirty Meter Telescope (TMT). The estimates describe the expected performance of NFIRAOS as a function of seeing on Mauna Kea, zenith angle, and galactic latitude (GL). They have been developed through a combination of integrated AO simulations, side analyses, allocations, lab and lidar experiments.

  13. Augmenting WFIRST Microlensing with a Ground-Based Telescope Network

    Science.gov (United States)

    Zhu, Wei; Gould, Andrew

    2016-06-01

    Augmenting the Wide Field Infrared Survey Telescope (WFIRST) microlensing campaigns with intensive observations from a ground-based network of wide-field survey telescopes would have several major advantages. First, it would enable full two-dimensional (2-D) vector microlens parallax measurements for a substantial fraction of low-mass lenses as well as planetary and binary events that show caustic crossing features. For a significant fraction of the free-floating planet (FFP) events and all caustic-crossing planetary/binary events, these 2-D parallax measurements directly lead to complete solutions (mass, distance, transverse velocity) of the lens object (or lens system). For even more events, the complementary ground-based observations will yield 1-D parallax measurements. Together with the 1-D parallaxes from WFIRST alone, they can probe the entire mass range M > M_Earth. For luminous lenses, such 1-D parallax measurements can be promoted to complete solutions (mass, distance, transverse velocity) by high-resolution imaging. This would provide crucial information not only about the hosts of planets and other lenses, but also enable a much more precise Galactic model. Other benefits of such a survey include improved understanding of binaries (particularly with low mass primaries), and sensitivity to distant ice-giant and gas-giant companions of WFIRST lenses that cannot be detected by WFIRST itself due to its restricted observing windows. Existing ground-based microlensing surveys can be employed if WFIRST is pointed at lower-extinction fields than is currently envisaged. This would come at some cost to the event rate. Therefore the benefits of improved characterization of lenses must be weighed against these costs.

  14. Wavefront error budget development for the Thirty Meter Telescope laser guide star adaptive optics system

    Science.gov (United States)

    Gilles, Luc; Wang, Lianqi; Ellerbroek, Brent

    2008-07-01

    This paper describes the modeling effort undertaken to derive the wavefront error (WFE) budget for the Narrow Field Infrared Adaptive Optics System (NFIRAOS), which is the facility, laser guide star (LGS), dual-conjugate adaptive optics (AO) system for the Thirty Meter Telescope (TMT). The budget describes the expected performance of NFIRAOS at zenith, and has been decomposed into (i) first-order turbulence compensation terms (120 nm on-axis), (ii) opto-mechanical implementation errors (84 nm), (iii) AO component errors and higher-order effects (74 nm) and (iv) tip/tilt (TT) wavefront errors at 50% sky coverage at the galactic pole (61 nm) with natural guide star (NGS) tip/tilt/focus/astigmatism (TTFA) sensing in J band. A contingency of about 66 nm now exists to meet the observatory requirement document (ORD) total on-axis wavefront error of 187 nm, mainly on account of reduced TT errors due to updated windshake modeling and a low read-noise NGS wavefront sensor (WFS) detector. A detailed breakdown of each of these top-level terms is presented, together with a discussion on its evaluation using a mix of high-order zonal and low-order modal Monte Carlo simulations.

  15. A cost-performance model for ground-based optical communications receiving telescopes

    Science.gov (United States)

    Lesh, J. R.; Robinson, D. L.

    1986-01-01

    An analytical cost-performance model for a ground-based optical communications receiving telescope is presented. The model considers costs of existing telescopes as a function of diameter and field of view. This, coupled with communication performance as a function of receiver diameter and field of view, yields the appropriate telescope cost versus communication performance curve.

  16. Science with Adaptive Optics

    CERN Document Server

    Brandner, Wolfgang; ESO Workshop

    2005-01-01

    The field of Adaptive Optics (AO) for astronomy has matured in recent years, and diffraction-limited image resolution in the near-infrared is now routinely achieved by ground-based 8 to 10m class telescopes. This book presents the proceedings of the ESO Workshop on Science with Adaptive Optics held in the fall of 2003. The book provides an overview on AO instrumentation, data acquisition and reduction strategies, and covers observations of the sun, solar system objects, circumstellar disks, substellar companions, HII regions, starburst environments, late-type stars, the galactic center, active galaxies, and quasars. The contributions present a vivid picture of the multitude of science topics being addressed by AO in observational astronomy.

  17. Ground-based gamma-ray astronomy with Cherenkov telescopes

    International Nuclear Information System (INIS)

    Hinton, Jim

    2009-01-01

    Very high-energy (>100 GeV) γ-ray astronomy is emerging as an important discipline in both high-energy astrophysics and astro-particle physics. This field is currently dominated by imaging atmospheric-Cherenkov telescopes (IACTs) and arrays of these telescopes. Such arrays have achieved the best angular resolution and energy flux sensitivity in the γ-ray domain and are still far from the fundamental limits of the technique. Here, I will summarize some key aspects of this technique and go on to review the current status of the major instruments and to highlight selected recent results.

  18. PALM-3000: EXOPLANET ADAPTIVE OPTICS FOR THE 5 m HALE TELESCOPE

    Energy Technology Data Exchange (ETDEWEB)

    Dekany, Richard; Bouchez, Antonin; Baranec, Christoph; Hale, David; Zolkower, Jeffry; Henning, John; Croner, Ernest; McKenna, Dan; Hildebrandt, Sergi; Milburn, Jennifer [Caltech Optical Observatories, California Institute of Technology, 1200 East California Boulevard, MC 11-17, Pasadena, CA 91125 (United States); Roberts, Jennifer; Burruss, Rick; Truong, Tuan; Guiwits, Stephen; Angione, John; Trinh, Thang; Shelton, J. Christopher; Palmer, Dean; Troy, Mitchell; Tesch, Jonathan, E-mail: rgd@astro.caltech.edu [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Boulevard, Pasadena, CA 91109 (United States)

    2013-10-20

    We describe and report first results from PALM-3000, the second-generation astronomical adaptive optics (AO) facility for the 5.1 m Hale telescope at Palomar Observatory. PALM-3000 has been engineered for high-contrast imaging and emission spectroscopy of brown dwarfs and large planetary mass bodies at near-infrared wavelengths around bright stars, but also supports general natural guide star use to V ≈ 17. Using its unique 66 × 66 actuator deformable mirror, PALM-3000 has thus far demonstrated residual wavefront errors of 141 nm rms under ∼1'' seeing conditions. PALM-3000 can provide phase conjugation correction over a 6.''4 × 6.''4 working region at λ = 2.2 μm, or full electric field (amplitude and phase) correction over approximately one-half of this field. With optimized back-end instrumentation, PALM-3000 is designed to enable 10{sup –7} contrast at 1'' angular separation, including post-observation speckle suppression processing. While continued optimization of the AO system is ongoing, we have already successfully commissioned five back-end instruments and begun a major exoplanet characterization survey, Project 1640.

  19. The Laser Guide Star System for Adaptive Optics at Subaru Telescope

    Science.gov (United States)

    Hayano, Y.; Saito, Y.; Ito, M.; Saito, N.; Akagawa, K.; Takazawa, A.; Ito, M.; Wada, S.; Takami, H.; Iye, M.

    We report on the current status of developing the new laser guide star (LGS) system for the Subaru adaptive optics (AO) system. We have three major subsystems: the laser unit, the relay optical fiber and the laser launching telescope. A 4W-class all-solid-state 589nm laser has been developed as a light source for sodium laser guide star. We use two mode-locked Nd:YAG lasers operated at the wavelength of 1064nm and 1319nm to generate sum-frequency conversion into 589nm. The side-LD pumped configuration is used for the mode-locked Nd:YAG lasers. We have carefully considered the thermal lens effect in the cavity to achieve a high beam quality with TEM00; M2 = 1.06. The mode-locked frequency is selected at 143 MHz. We obtained the output powers of 16.5 W and 5.0 W at 1064nm and 1319 nm. Sum frequency generated by mixing two synchronized Nd:YAG mode-locked pulsed beams is precisely tuned to the sodium D2 line by thermal control of the etalon in the 1064nm Nd:YAG laser by observing the maximum fluorescence intensity of heated sodium vapor cell. The maximum output power at 589.159 nm reaches to 4.6 W using a PPMgOSLT crystal as a nonlinear optical crystal. And the output power can be maintained within a stability of +/- 1.2% for more than 3 days without optical damage. We developed a single-mode photonic crystal fiber (PCF) to relay the laser beam from laser clean room, in which the laser unit is located on the Nasmyth platform, to the laser launching telescope mounted behind the secondary mirror of Subaru Telescope. The photonic crystal fiber has solid pure silica core with the mode field diameter of 14 micron, which is relatively larger than that of the conventional step-index type single mode fiber. The length of the PCF is 35m and transmission loss due to the pure silica is 10dB/km at 589nm, which means PCF transmits 92% of the laser beam. We have preliminary achieved 75% throughput in total. Small mode-locked pulse width in time allows us to transmit the high

  20. Adaptive Optics Simulation for the World's Largest Telescope on Multicore Architectures with Multiple GPUs

    KAUST Repository

    Ltaief, Hatem; Gratadour, Damien; Charara, Ali; Gendron, Eric

    2016-01-01

    We present a high performance comprehensive implementation of a multi-object adaptive optics (MOAO) simulation on multicore architectures with hardware accelerators in the context of computational astronomy. This implementation will be used

  1. GLAS: engineering a common-user Rayleigh laser guide star for adaptive optics on the William Herschel Telescope

    Science.gov (United States)

    Talbot, Gordon; Abrams, Don Carlos; Apostolakos, Nikolaos; Bassom, Richard; Blackburn, Colin; Blanken, Maarten; Cano Infantes, Diego; Chopping, Alan; Dee, Kevin; Dipper, Nigel; Elswijk, Eddy; Enthoven, Bernard; Gregory, Thomas; ter Horst, Rik; Humphreys, Ron; Idserda, Jan; Jolley, Paul; Kuindersma, Sjouke; McDermid, Richard; Morris, Tim; Myers, Richard; Pico, Sergio; Pragt, Johan; Rees, Simon; Rey, Jürg; Reyes, Marcos; Rutten, René; Schoenmaker, Ton; Skvarc, Jure; Tromp, Niels; Tulloch, Simon; Veninga, Auke

    2006-06-01

    The GLAS (Ground-layer Laser Adaptive-optics System) project is to construct a common-user Rayleigh laser beacon that will work in conjunction with the existing NAOMI adaptive optics system, instruments (near IR imager INGRID, optical integral field spectrograph OASIS, coronagraph OSCA) and infrastructure at the 4.2-m William Herschel Telescope (WHT) on La Palma. The laser guide star system will increase sky coverage available to high-order adaptive optics from ~1% to approaching 100% and will be optimized for scientific exploitation of the OASIS integral-field spectrograph at optical wavelengths. Additionally GLAS will be used in on-sky experiments for the application of laser beacons to ELTs. This paper describes the full range of engineering of the project ranging through the laser launch system, wavefront sensors, computer control, mechanisms, diagnostics, CCD detectors and the safety system. GLAS is a fully funded project, with final design completed and all equipment ordered, including the laser. Integration has started on the WHT and first light is expected summer 2006.

  2. Methods for the performance enhancement and the error characterization of large diameter ground-based diffractive telescopes.

    Science.gov (United States)

    Zhang, Haolin; Liu, Hua; Lizana, Angel; Xu, Wenbin; Caompos, Juan; Lu, Zhenwu

    2017-10-30

    This paper is devoted to the improvement of ground-based telescopes based on diffractive primary lenses, which provide larger aperture and relaxed surface tolerance compared to non-diffractive telescopes. We performed two different studies devised to thoroughly characterize and improve the performance of ground-based diffractive telescopes. On the one hand, we experimentally validated the suitability of the stitching error theory, useful to characterize the error performance of subaperture diffractive telescopes. On the other hand, we proposed a novel ground-based telescope incorporated in a Cassegrain architecture, leading to a telescope with enhanced performance. To test the stitching error theory, a 300 mm diameter, 2000 mm focal length transmissive stitching diffractive telescope, based on a three-belt subaperture primary lens, was designed and implemented. The telescope achieves a 78 cy/mm resolution within 0.15 degree field of view while the working wavelength ranges from 582.8 nm to 682.8 nm without any stitching error. However, the long optical track (35.49 m) introduces air turbulence that reduces the final images contrast in the ground-based test. To enhance this result, a same diameter compacted Cassegrain ground-based diffractive (CGD) telescope with the total track distance of 1.267 m, was implemented within the same wavelength. The ground-based CGD telescope provides higher resolution and better contrast than the transmissive configuration. Star and resolution tests were experimentally performed to compare the CGD and the transmissive configurations, providing the suitability of the proposed ground-based CGD telescope.

  3. Opto-mechanical design of ShaneAO: the adaptive optics system for the 3-meter Shane Telescope

    Science.gov (United States)

    Ratliff, C.; Cabak, J.; Gavel, D.; Kupke, R.; Dillon, D.; Gates, E.; Deich, W.; Ward, J.; Cowley, D.; Pfister, T.; Saylor, M.

    2014-07-01

    A Cassegrain mounted adaptive optics instrument presents unique challenges for opto-mechanical design. The flexure and temperature tolerances for stability are tighter than those of seeing limited instruments. This criteria requires particular attention to material properties and mounting techniques. This paper addresses the mechanical designs developed to meet the optical functional requirements. One of the key considerations was to have gravitational deformations, which vary with telescope orientation, stay within the optical error budget, or ensure that we can compensate with a steering mirror by maintaining predictable elastic behavior. Here we look at several cases where deformation is predicted with finite element analysis and Hertzian deformation analysis and also tested. Techniques used to address thermal deformation compensation without the use of low CTE materials will also be discussed.

  4. Results from a portable Adaptive Optics system on the 1 meter telescope at the Naval Observatory Flagstaff Station

    Science.gov (United States)

    Restaino, Sergio R.; Gilbreath, G. Charmaine; Payne, Don M.; Baker, Jeffrey T.; Martinez, Ty; DiVittorio, Michael; Mozurkewich, David; Friedman, Jeffrey

    2003-02-01

    In this paper we present results using a compact, portable adaptive optics system. The system was developed as a joint venture between the Naval Research Laboratory, Air Force Research Laboratory, and two small, New Mexico based-businesses. The system has a footprint of 18x24x18 inches and weighs less than 100 lbs. Key hardware design characteristics enable portability, easy mounting, and stable alignment. The system also enables quick calibration procedures, stable performance, and automatic adaptability to various pupil configurations. The system was tested during an engineering run in late July 2002 at the Naval Observatory Flagstaff Station one-meter telescope. Weather prevented extensive testing and the seeing during the run was marginal but a sufficient opportunity was provided for proof-of-concept, initial characterization of closed loop performance, and to start addressing some of the most pressing engineering and scientific issues.

  5. Ground-based telescope pointing and tracking optimization using a neural controller.

    Science.gov (United States)

    Mancini, D; Brescia, M; Schipani, P

    2003-01-01

    Neural network models (NN) have emerged as important components for applications of adaptive control theories. Their basic generalization capability, based on acquired knowledge, together with execution rapidity and correlation ability between input stimula, are basic attributes to consider NN as an extremely powerful tool for on-line control of complex systems. By a control system point of view, not only accuracy and speed, but also, in some cases, a high level of adaptation capability is required in order to match all working phases of the whole system during its lifetime. This is particularly remarkable for a new generation ground-based telescope control system. Infact, strong changes in terms of system speed and instantaneous position error tolerance are necessary, especially in case of trajectory disturb induced by wind shake. The classical control scheme adopted in such a system is based on the proportional integral (PI) filter, already applied and implemented on a large amount of new generation telescopes, considered as a standard in this technological environment. In this paper we introduce the concept of a new approach, the neural variable structure proportional integral, (NVSPI), related to the implementation of a standard multi layer perceptron network in new generation ground-based Alt-Az telescope control systems. Its main purpose is to improve adaptive capability of the Variable structure proportional integral model, an already innovative control scheme recently introduced by authors [Proc SPIE (1997)], based on a modified version of classical PI control model, in terms of flexibility and accuracy of the dynamic response range also in presence of wind noise effects. The realization of a powerful well tested and validated telescope model simulation system allowed the possibility to directly compare performances of the two control schemes on simulated tracking trajectories, revealing extremely encouraging results in terms of NVSPI control robustness and

  6. Pipelining Computational Stages of the Tomographic Reconstructor for Multi-Object Adaptive Optics on a Multi?GPU System

    KAUST Repository

    Charara, Ali; Ltaief, Hatem; Gratadour, Damien; Keyes, David E.; Sevin, Arnaud; Abdelfattah, Ahmad; Gendron, Eric; Morel, Carine; Vidal, Fabrice

    2014-01-01

    European Extreme Large Telescope (E-ELT) is a high priority project in ground based astronomy that aims at constructing the largest telescope ever built. MOSAIC is an instrument proposed for E-ELT using Multi- Object Adaptive Optics (MOAO) technique for astronomical telescopes, which compensates for effects of atmospheric turbulence on image quality, and operates on patches across a large FoV.

  7. Pipelining Computational Stages of the Tomographic Reconstructor for Multi-Object Adaptive Optics on a Multi?GPU System

    KAUST Repository

    Charara, Ali

    2014-05-04

    European Extreme Large Telescope (E-ELT) is a high priority project in ground based astronomy that aims at constructing the largest telescope ever built. MOSAIC is an instrument proposed for E-ELT using Multi- Object Adaptive Optics (MOAO) technique for astronomical telescopes, which compensates for effects of atmospheric turbulence on image quality, and operates on patches across a large FoV.

  8. Reliability-centered maintenance for ground-based large optical telescopes and radio antenna arrays

    Science.gov (United States)

    Marchiori, G.; Formentin, F.; Rampini, F.

    2014-07-01

    In the last years, EIE GROUP has been more and more involved in large optical telescopes and radio antennas array projects. In this frame, the paper describes a fundamental aspect of the Logistic Support Analysis (LSA) process, that is the application of the Reliability-Centered Maintenance (RCM) methodology for the generation of maintenance plans for ground-based large optical telescopes and radio antennas arrays. This helps maintenance engineers to make sure that the telescopes continue to work properly, doing what their users require them to do in their present operating conditions. The main objective of the RCM process is to establish the complete maintenance regime, with the safe minimum required maintenance, carried out without any risk to personnel, telescope and subsystems. At the same time, a correct application of the RCM allows to increase the cost effectiveness, telescope uptime and items availability, and to provide greater understanding of the level of risk that the organization is managing. At the same time, engineers shall make a great effort since the initial phase of the project to obtain a telescope requiring easy maintenance activities and simple replacement of the major assemblies, taking special care on the accesses design and items location, implementation and design of special lifting equipment and handling devices for the heavy items. This maintenance engineering framework is based on seven points, which lead to the main steps of the RCM program. The initial steps of the RCM process consist of: system selection and data collection (MTBF, MTTR, etc.), definition of system boundaries and operating context, telescope description with the use of functional block diagrams, and the running of a FMECA to address the dominant causes of equipment failure and to lay down the Critical Items List. In the second part of the process the RCM logic is applied, which helps to determine the appropriate maintenance tasks for each identified failure mode. Once

  9. Ground-based VHE γ ray astronomy with air Cherenkov imaging telescopes

    International Nuclear Information System (INIS)

    Mirzoyan, R.

    2000-01-01

    The history of astronomy has been one of the scientific discovery following immediately the introduction of new technology. In this report, we will review shortly the basic development of the atmospheric air Cherenkov light detection technique, particularly the imaging telescope technique, which in the last years led to the firm establishment of a new branch in experimental astronomy, namely ground-based very high-energy (VHE) γ ray astronomy. Milestones in the technology and in the analysis of imaging technique will be discussed. The design of the 17 m diameter MAGIC Telescope, being currently under construction, is based on the development of new technologies for all its major parts and sets new standards in the performance of the ground-based γ detectors. MAGIC is one of the next major steps in the development of the technique being the first instrument that will allow one to carry out measurements also in the not yet investigated energy gap i.e. between 10 and 300 GeV

  10. Laser guide star adaptive optics at Lick Observatory

    OpenAIRE

    Gavel, Donald; Dillon, Daren; Kupke, Renate; Rudy, Alex

    2015-01-01

    We present an overview of the adaptive optics system at the Shane telescope (ShaneAO) along with research and development efforts on the technology and algorithms for that will advance AO into wider application for astronomy. Diffraction-limited imaging and spectroscopy from ground based large aperture telescopes will open up the opportunity for unprecedented science advancement. The AO challenges we are targeting are correction down to visible science wavelengths, which demands high-order wa...

  11. NASA's Newest Orbital Debris Ground-based Telescope Assets: MCAT and UKIRT

    Science.gov (United States)

    Lederer, S.; Frith, J.; Pace, L. F.; Cowardin, H. M.; Hickson, P.; Glesne, T.; Maeda, R.; Buckalew, B.; Nishimoto, D.; Douglas, D.; Stansbery, E. G.

    2014-09-01

    NASAs Orbital Debris Program Office (ODPO) will break ground on Ascension Island in 2014 to build the newest optical (0.30 1.06 microns) ground-based telescope asset dedicated to the study of orbital debris. The Meter Class Autonomous Telescope (MCAT) is a 1.3m optical telescope designed to track objects in orbits ranging from Low Earth Orbit (LEO) to Geosynchronous Earth Orbit (GEO). Ascension Island is located in the South Atlantic Ocean, offering longitudinal sky coverage not afforded by the Ground-based Electro-Optical Deep Space Surveillance (GEODSS) network. With a fast-tracking dome, a suite of visible wide-band filters, and a time-delay integration (TDI) capable camera, MCAT is capable of multiple observing modes ranging from tracking cataloged debris targets to surveying the overall debris environment. Access to the United Kingdom Infrared Telescope (UKIRT) will extend our spectral coverage into the near- (0.8-5 micron) and mid- to far-infrared (8-25 micron) regime. UKIRT is a 3.8m telescope located on Mauna Kea on the Big Island of Hawaii. At nearly 14,000-feet and above the atmospheric inversion layer, this is one of the premier astronomical sites in the world and is an ideal setting for an infrared telescope. An unprecedented one-third of this telescopes time has been allocated to collect orbital debris data for NASAs ODPO over a 2-year period. UKIRT has several instruments available to obtain low-resolution spectroscopy in both the near-IR and the mid/far-IR. Infrared spectroscopy is ideal for constraining the material types, albedos and sizes of debris targets, and potentially gaining insight into reddening effects caused by space weathering. In addition, UKIRT will be used to acquire broadband photometric imaging at GEO with the Wide Field Camera (WFCAM) for studying known objects of interest as well as collecting data in survey-mode to discover new targets. Results from the first stage of the debris campaign will be presented. The combination of

  12. Thirty Meter Telescope (TMT) Narrow Field Infrared Adaptive Optics System (NFIRAOS) real-time controller preliminary architecture

    Science.gov (United States)

    Kerley, Dan; Smith, Malcolm; Dunn, Jennifer; Herriot, Glen; Véran, Jean-Pierre; Boyer, Corinne; Ellerbroek, Brent; Gilles, Luc; Wang, Lianqi

    2016-08-01

    The Narrow Field Infrared Adaptive Optics System (NFIRAOS) is the first light Adaptive Optics (AO) system for the Thirty Meter Telescope (TMT). A critical component of NFIRAOS is the Real-Time Controller (RTC) subsystem which provides real-time wavefront correction by processing wavefront information to compute Deformable Mirror (DM) and Tip/Tilt Stage (TTS) commands. The National Research Council of Canada - Herzberg (NRC-H), in conjunction with TMT, has developed a preliminary design for the NFIRAOS RTC. The preliminary architecture for the RTC is comprised of several Linux-based servers. These servers are assigned various roles including: the High-Order Processing (HOP) servers, the Wavefront Corrector Controller (WCC) server, the Telemetry Engineering Display (TED) server, the Persistent Telemetry Storage (PTS) server, and additional testing and spare servers. There are up to six HOP servers that accept high-order wavefront pixels, and perform parallelized pixel processing and wavefront reconstruction to produce wavefront corrector error vectors. The WCC server performs low-order mode processing, and synchronizes and aggregates the high-order wavefront corrector error vectors from the HOP servers to generate wavefront corrector commands. The Telemetry Engineering Display (TED) server is the RTC interface to TMT and other subsystems. The TED server receives all external commands and dispatches them to the rest of the RTC servers and is responsible for aggregating several offloading and telemetry values that are reported to other subsystems within NFIRAOS and TMT. The TED server also provides the engineering GUIs and real-time displays. The Persistent Telemetry Storage (PTS) server contains fault tolerant data storage that receives and stores telemetry data, including data for Point-Spread Function Reconstruction (PSFR).

  13. Managing a big ground-based astronomy project: the Thirty Meter Telescope (TMT) project

    Science.gov (United States)

    Sanders, Gary H.

    2008-07-01

    TMT is a big science project and its scale is greater than previous ground-based optical/infrared telescope projects. This paper will describe the ideal "linear" project and how the TMT project departs from that ideal. The paper will describe the needed adaptations to successfully manage real world complexities. The progression from science requirements to a reference design, the development of a product-oriented Work Breakdown Structure (WBS) and an organization that parallels the WBS, the implementation of system engineering, requirements definition and the progression through Conceptual Design to Preliminary Design will be summarized. The development of a detailed cost estimate structured by the WBS, and the methodology of risk analysis to estimate contingency fund requirements will be summarized. Designing the project schedule defines the construction plan and, together with the cost model, provides the basis for executing the project guided by an earned value performance measurement system.

  14. The SPQR experiment: detecting damage to orbiting spacecraft with ground-based telescopes

    Science.gov (United States)

    Paolozzi, Antonio; Porfilio, Manfredi; Currie, Douglas G.; Dantowitz, Ronald F.

    2007-09-01

    The objective of the Specular Point-like Quick Reference (SPQR) experiment was to evaluate the possibility of improving the resolution of ground-based telescopic imaging of manned spacecraft in orbit. The concept was to reduce image distortions due to atmospheric turbulence by evaluating the Point Spread Function (PSF) of a point-like light reference and processing the spacecraft image accordingly. The target spacecraft was the International Space Station (ISS) and the point-like reference was provided by a laser beam emitted by the ground station and reflected back to the telescope by a Cube Corner Reflector (CCR) mounted on an ISS window. The ultimate objective of the experiment was to demonstrate that it is possible to image spacecraft in Low Earth Orbit (LEO) with a resolution of 20 cm, which would have probably been sufficient to detect the damage which caused the Columbia disaster. The experiment was successfully performed from March to May 2005. The paper provides an overview of the SPQR experiment.

  15. Wavelet methods in multi-conjugate adaptive optics

    International Nuclear Information System (INIS)

    Helin, T; Yudytskiy, M

    2013-01-01

    The next generation ground-based telescopes rely heavily on adaptive optics for overcoming the limitation of atmospheric turbulence. In the future adaptive optics modalities, like multi-conjugate adaptive optics (MCAO), atmospheric tomography is the major mathematical and computational challenge. In this severely ill-posed problem, a fast and stable reconstruction algorithm is needed that can take into account many real-life phenomena of telescope imaging. We introduce a novel reconstruction method for the atmospheric tomography problem and demonstrate its performance and flexibility in the context of MCAO. Our method is based on using locality properties of compactly supported wavelets, both in the spatial and frequency domains. The reconstruction in the atmospheric tomography problem is obtained by solving the Bayesian MAP estimator with a conjugate-gradient-based algorithm. An accelerated algorithm with preconditioning is also introduced. Numerical performance is demonstrated on the official end-to-end simulation tool OCTOPUS of European Southern Observatory. (paper)

  16. Overview of diffraction gratings technologies for spaceflight satellites and ground-based telescopes

    Science.gov (United States)

    Cotel, A.; Liard, A.; Desserouer, F.; Pichon, P.

    2017-11-01

    The diffraction gratings are widely used in Space-flight satellites for spectrograph instruments or in ground-based telescopes in astronomy. The diffraction gratings are one of the key optical components of such systems and have to exhibit very high optical performances. HORIBA Jobin Yvon S.A.S. (part of HORIBA Group) is in the forefront of such gratings development for more than 40 years. During the past decades, HORIBA Jobin Yvon (HJY) has developed a unique expertise in diffraction grating design and manufacturing processes for holographic, ruled or etched gratings. We will present in this paper an overview of diffraction grating technologies especially designed for space and astronomy applications. We will firstly review the heritage of the company in this field with the space qualification of different grating types. Then, we will describe several key grating technologies developed for specific space or astronomy projects: ruled blazed low groove density plane reflection grating, high-groove density holographic toroidal and spherical grating, and finally transmission Fused Silica Etched (FSE) grism-assembled grating. We will not present the Volume Phase Holographic (VPHG) grating type which is used in Astronomy.

  17. Characterizing GEO Titan IIIC Transtage Fragmentations Using Ground-based and Telescopic Measurements

    Science.gov (United States)

    Cowardin, H.; Anz-Meador, P.; Reyes, J. A.

    In a continued effort to better characterize the geosynchronous orbit (GEO) environment, NASA’s Orbital Debris Program Office (ODPO) utilizes various ground-based optical assets to acquire photometric and spectral data of known debris associated with fragmentations in or near GEO. The Titan IIIC Transtage upper stage is known to have fragmented four times. Two of the four fragmentations were in GEO while the Transtage fragmented a third time in GEO transfer orbit. The forth fragmentation occurred in low Earth orbit. To better assess and characterize these fragmentations, the NASA ODPO acquired a Titan Transtage test and display article previously in the custody of the 309th Aerospace Maintenance and Regeneration Group (AMARG) in Tucson, Arizona. After initial inspections at AMARG demonstrated that it was of sufficient fidelity to be of interest, the test article was brought to NASA Johnson Space Center (JSC) to continue material analysis and historical documentation. The Transtage has undergone two separate spectral measurement campaigns to characterize the reflectance spectroscopy of historical aerospace materials. These data have been incorporated into the NASA Spectral Database, with the goal of using telescopic data comparisons for potential material identification. A Light Detection and Ranging (LIDAR) system scan also has been completed and a scale model has been created for use in the Optical Measurement Center (OMC) for photometric analysis of an intact Transtage, including bidirectional reflectance distribution function (BRDF) measurements. An historical overview of the Titan IIIC Transtage, the current analysis that has been done to date, and the future work to be completed in support of characterizing the GEO and near GEO orbital debris environment will be discussed in the subsequent presentation.

  18. Gamma/hadron segregation for a ground based imaging atmospheric Cherenkov telescope using machine learning methods: Random Forest leads

    International Nuclear Information System (INIS)

    Sharma Mradul; Koul Maharaj Krishna; Mitra Abhas; Nayak Jitadeepa; Bose Smarajit

    2014-01-01

    A detailed case study of γ-hadron segregation for a ground based atmospheric Cherenkov telescope is presented. We have evaluated and compared various supervised machine learning methods such as the Random Forest method, Artificial Neural Network, Linear Discriminant method, Naive Bayes Classifiers, Support Vector Machines as well as the conventional dynamic supercut method by simulating triggering events with the Monte Carlo method and applied the results to a Cherenkov telescope. It is demonstrated that the Random Forest method is the most sensitive machine learning method for γ-hadron segregation. (research papers)

  19. Established Designs For Advanced Ground Based Astronomical Telescopes In The 1-meter To 4-meter Domain

    Science.gov (United States)

    Hull, Anthony B.; Barentine, J.; Legters, S.

    2012-01-01

    The same technology and analytic approaches that led to cost-effective unmitigated successes for the spaceborne Kepler and WISE telescopes are now being applied to meter-class to 4-meter-class ground telescopes, providing affordable solutions to ground astronomy, with advanced features as needed for the application. The range of optical and mechanical performance standards and features that can be supplied for ground astronomy shall be described. Both classical RC designs, as well as unobscured designs are well represented in the IOS design library, allowing heritage designs for both night time and day time operations, the latter even in the proximity of the sun. In addition to discussing this library of mature features, we will also describe a process for working with astronomers early in the definition process to provide the best-value solution. Solutions can include remote operation and astronomical data acquisition and transmission.

  20. Challenges of extreme load hexapod design and modularization for large ground-based telescopes

    Science.gov (United States)

    Gloess, Rainer; Lula, Brian

    2010-07-01

    The hexapod is a parallel kinematic manipulator that is the minimum arrangement for independent control of six degrees of freedom. Advancing needs for hexapod performance, capacity and configurations have driven development of highly capable new actuator designs. This paper describes new compact hexapod design proposals for high load capacity, and corresponding hexapod actuator only mechanisms suitable for integration as structural motion elements in next-generation telescope designs. These actuators provide up to 90 000N load capability while preserving sub-micrometer positional capability and in-position stability. The design is optimized for low power dissipation and incorporates novel encoders direct manufactured with the nut flange to achieve more than 100000 increments per revolution. In the hexapod design we choose cardan joints for the actuator that have axis offsets to provide optimized stiffness. The additional computational requirements for offset axes are readily solved by advanced kinematic algorithms and modern hardware. The paper also describes the hexapod controller concept with individual actuator designs, which allows the integration of hexapod actuators into the main telescope structure to reduce mass and provide the telescope designer more design freedom in the incorporation of these types of motion systems. An adaptive software package was developed including collision control feature for real-time safety during hexapod movements.

  1. HE 1113-0641: THE SMALLEST-SEPARATION QUADRUPLE LENS IDENTIFIED BY A GROUND-BASED OPTICAL TELESCOPE

    International Nuclear Information System (INIS)

    Blackburne, Jeffrey A.; Schechter, Paul L.; Wisotzki, Lutz

    2008-01-01

    The Hamburg/ESO quasar HE 1113-0641 is found to be a quadruple gravitational lens, based on observations with the twin 6.5 m Magellan telescopes at the Las Campanas Observatory, and subsequently with the Hubble Space Telescope. The z S = 1.235 quasar appears in a cross configuration, with i' band magnitudes ranging from 18.0 to 18.8. With a maximum image separation of 0''.67, this is the smallest-separation quadruple ever identified using a ground-based optical telescope. Point-spread function (PSF) subtraction reveals a faint lensing galaxy. A simple lens model succeeds in predicting the observed positions of the components, but fails to match their observed flux ratios by up to a magnitude. We estimate the redshift of the lensing galaxy to be z L ∼ 0.7. Time delay estimates are on the order of a day, suggesting that the flux ratio anomalies are not due to variability of the quasar, but may result from substructure or microlensing in the lens galaxy.

  2. Detection Techniques of Microsecond Gamma-Ray Bursts Using Ground-based Telescopes

    International Nuclear Information System (INIS)

    Krennrich, F.; Le Bohec, S.; Weekes, T. C.

    2000-01-01

    Gamma-ray observations above 200 MeV are conventionally made by satellite-based detectors. The EGRET detector on the Compton Gamma Ray Observatory has provided good sensitivity for the detection of bursts lasting for more than 200 ms. Theoretical predictions of high-energy gamma-ray bursts produced by quantum mechanical decay of primordial black holes (Hawking) suggest the emission of bursts on shorter timescales. The final stage of a primordial black hole results in a burst of gamma rays, peaking around 250 MeV and lasting for 1/10 of a microsecond or longer depending on particle physics. In this work we show that there is an observational window using ground-based imaging Cerenkov detectors to measure gamma-ray burst emission at energies E>200 MeV. This technique, with a sensitivity for bursts lasting nanoseconds to several microseconds, is based on the detection of multiphoton-initiated air showers. (c) (c) 2000. The American Astronomical Society

  3. A New Approach to Space Situational Awareness using Small Ground-Based Telescopes

    Energy Technology Data Exchange (ETDEWEB)

    Anheier, Norman C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Chen, Cliff S. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2014-12-01

    This report discusses a new SSA approach evaluated by Pacific Northwest National Laboratory (PNNL) that may lead to highly scalable, small telescope observing stations designed to help manage the growing space surveillance burden. Using the methods and observing tools described in this report, the team was able to acquire and track very faint satellites (near Pluto’s apparent brightness). Photometric data was collected and used to correlate object orbital position as a function of atomic clock-derived time. Object apparent brightness was estimated by image analysis and nearby star calibration. The measurement performance was only limited by weather conditions, object brightness, and the sky glow at the observation site. In the future, these new SSA technologies and techniques may be utilized to protect satellite assets, detect and monitor orbiting debris fields, and support Outer Space Treaty monitoring and transparency.

  4. The Performance of the Robo-AO Laser Guide Star Adaptive Optics System at the Kitt Peak 2.1 m Telescope

    Science.gov (United States)

    Jensen-Clem, Rebecca; Duev, Dmitry A.; Riddle, Reed; Salama, Maïssa; Baranec, Christoph; Law, Nicholas M.; Kulkarni, S. R.; Ramprakash, A. N.

    2018-01-01

    Robo-AO is an autonomous laser guide star adaptive optics (AO) system recently commissioned at the Kitt Peak 2.1 m telescope. With the ability to observe every clear night, Robo-AO at the 2.1 m telescope is the first dedicated AO observatory. This paper presents the imaging performance of the AO system in its first 18 months of operations. For a median seeing value of 1.″44, the average Strehl ratio is 4% in the i\\prime band. After post processing, the contrast ratio under sub-arcsecond seeing for a 2≤slant i\\prime ≤slant 16 primary star is five and seven magnitudes at radial offsets of 0.″5 and 1.″0, respectively. The data processing and archiving pipelines run automatically at the end of each night. The first stage of the processing pipeline shifts and adds the rapid frame rate data using techniques optimized for different signal-to-noise ratios. The second “high-contrast” stage of the pipeline is eponymously well suited to finding faint stellar companions. Currently, a range of scientific programs, including the synthetic tracking of near-Earth asteroids, the binarity of stars in young clusters, and weather on solar system planets are being undertaken with Robo-AO.

  5. The History of Ground-Based Very High Energy Gamma-Ray Astrophysics with the Atmospheric Air Cherenkov Telescope Technique

    Energy Technology Data Exchange (ETDEWEB)

    Mirzoyan, Razmik

    2013-06-15

    In the recent two decades the ground-based technique of imaging atmosphericescopes has established itself as a powerful new discipline in science. As of today some ∼ 150 sources of gamma rays of very different types, of both galactic and extragalactic origin, have been discovered due to this technique. The study of these sources is providing clues to many basic questions in astrophysics, astro-particle physics, physics of cosmic rays and cosmology. The current generation of telescopes, despite the young age of the technique, offers a solid performance. The technique is still maturing, leading to the next generation large instrument known under the name Cherenkov Telescope Array. The latter's sensitivity will be an order of magnitude higher than that of the currently best instruments VERITAS, H.E.S.S. and MAGIC. This article is devoted to outlining the milestones in a long history that step-by-step have given shape to this technique and have brought about today's successful source marathon.

  6. HUBBLE SPACE TELESCOPE AND GROUND-BASED OBSERVATIONS OF V455 ANDROMEDAE POST-OUTBURST

    Energy Technology Data Exchange (ETDEWEB)

    Szkody, Paula; Mukadam, Anjum S.; Brown, Justin; Funkhouser, Kelsey [Department of Astronomy, University of Washington, Box 351580, Seattle, WA 98195 (United States); Gänsicke, Boris T. [Department of Physics, University of Warwick, Coventry CV4 7AL (United Kingdom); Henden, Arne [AAVSO, 49 Bay State Road, Cambridge, MA 02138 (United States); Sion, Edward M. [Department of Astronomy and Astrophysics, Villanova University, Villanova, PA 19085 (United States); Townsley, Dean M. [Department of Physics and Astronomy, University of Alabama, Tuscaloosa, AL 35487 (United States); Christian, Damian [Department of Physics and Astronomy, California State University, Northridge, CA 91330 (United States); Falcon, Ross E. [Department of Astronomy, University of Texas, Austin, TX 78712 (United States); Pyrzas, Stylianos, E-mail: szkody@astro.washington.edu, E-mail: anjum@astro.washington.edu, E-mail: boris.gaensicke@warwick.ac.uk, E-mail: arne@aavso.org, E-mail: edward.sion@villanova.edu, E-mail: Dean.M.Townsley@ua.edu, E-mail: damian.christian@csun.edu, E-mail: cylver@astro.as.utexas.edu, E-mail: stylianos.pyrzas@gmail.com [Instituto de Astronomia, Universidad Catolica del Norte, Avenida Angamos 0619, Antofagasta (Chile)

    2013-09-20

    Hubble Space Telescope spectra obtained in 2010 and 2011, 3 and 4 yr after the large amplitude dwarf nova outburst of V455 And, were combined with optical photometry and spectra to study the cooling of the white dwarf, its spin, and possible pulsation periods after the outburst. The modeling of the ultraviolet (UV) spectra shows that the white dwarf temperature remains ∼600 K hotter than its quiescent value at 3 yr post-outburst, and still a few hundred degrees hotter at 4 yr post-outburst. The white dwarf spin at 67.6 s and its second harmonic at 33.8 s are visible in the optical within a month of outburst and are obvious in the later UV observations in the shortest wavelength continuum and the UV emission lines, indicating an origin in high-temperature regions near the accretion curtains. The UV light curves folded on the spin period show a double-humped modulation consistent with two-pole accretion. The optical photometry 2 yr after outburst shows a group of frequencies present at shorter periods (250-263 s) than the periods ascribed to pulsation at quiescence, and these gradually shift toward the quiescent frequencies (300-360 s) as time progresses past outburst. The most surprising result is that the frequencies near this period in the UV data are only prominent in the emission lines, not the UV continuum, implying an origin away from the white dwarf photosphere. Thus, the connection of this group of periods with non-radial pulsations of the white dwarf remains elusive.

  7. Hubble Space Telescope and Ground-Based Observations of the Type Iax Supernovae SN 2005hk and SN 2008A

    Energy Technology Data Exchange (ETDEWEB)

    McCully, Curtis; Jha, Saurabh W.; Foley, Ryan J.; Chornock, Ryan; Holtzman, Jon A.; Balam, David D.; Branch, David; Filippenko, Alexei V.; Frieman, Joshua; Fynbo, Johan; Galbany, Lluis; Ganeshalingam, Mohan; Garnavich, Peter M.; Graham, Melissa L.; Hsiao, Eric Y.; Leloudas, Giorgos; Leonard, Douglas C.; Li, Weidong; Riess, Adam G.; Sako, Masao; Schneider, Donald P.; Silverman, Jeffrey M.; Sollerman, Jesper; Steele, Thea N.; Thomas, Rollin C.; Wheeler, J. Craig; Zheng, Chen

    2014-04-24

    We present Hubble Space Telescope (HST) and ground-based optical and near-infrared observations of SN 2005hk and SN 2008A, typical members of the Type Iax class of supernovae (SNe). Here we focus on late-time observations, where these objects deviate most dramatically from all other SN types. Instead of the dominant nebular emission lines that are observed in other SNe at late phases, spectra of SNe 2005hk and 2008A show lines of Fe II, Ca II, and Fe I more than a year past maximum light, along with narrow [Fe II] and [Ca II] emission. We use spectral features to constrain the temperature and density of the ejecta, and find high densities at late times, with ne109 cm–3. Such high densities should yield enhanced cooling of the ejecta, making these objects good candidates to observe the expected "infrared catastrophe," a generic feature of SN Ia models. However, our HST photometry of SN 2008A does not match the predictions of an infrared catastrophe. Moreover, our HST observations rule out a "complete deflagration" that fully disrupts the white dwarf for these peculiar SNe, showing no evidence for unburned material at late times. Deflagration explosion models that leave behind a bound remnant can match some of the observed properties of SNe Iax, but no published model is consistent with all of our observations of SNe 2005hk and 2008A.

  8. Hubble space telescope and ground-based observations of the type Iax supernovae SN 2005hk and SN 2008A

    International Nuclear Information System (INIS)

    McCully, Curtis; Jha, Saurabh W.; Foley, Ryan J.; Chornock, Ryan; Holtzman, Jon A.; Balam, David D.; Branch, David; Filippenko, Alexei V.; Ganeshalingam, Mohan; Li, Weidong; Frieman, Joshua; Fynbo, Johan; Leloudas, Giorgos; Galbany, Lluis; Garnavich, Peter M.; Graham, Melissa L.; Hsiao, Eric Y.; Leonard, Douglas C.

    2014-01-01

    We present Hubble Space Telescope (HST) and ground-based optical and near-infrared observations of SN 2005hk and SN 2008A, typical members of the Type Iax class of supernovae (SNe). Here we focus on late-time observations, where these objects deviate most dramatically from all other SN types. Instead of the dominant nebular emission lines that are observed in other SNe at late phases, spectra of SNe 2005hk and 2008A show lines of Fe II, Ca II, and Fe I more than a year past maximum light, along with narrow [Fe II] and [Ca II] emission. We use spectral features to constrain the temperature and density of the ejecta, and find high densities at late times, with n e ≳ 10 9 cm –3 . Such high densities should yield enhanced cooling of the ejecta, making these objects good candidates to observe the expected 'infrared catastrophe', a generic feature of SN Ia models. However, our HST photometry of SN 2008A does not match the predictions of an infrared catastrophe. Moreover, our HST observations rule out a 'complete deflagration' that fully disrupts the white dwarf for these peculiar SNe, showing no evidence for unburned material at late times. Deflagration explosion models that leave behind a bound remnant can match some of the observed properties of SNe Iax, but no published model is consistent with all of our observations of SNe 2005hk and 2008A.

  9. Hubble space telescope and ground-based observations of the type Iax supernovae SN 2005hk and SN 2008A

    Energy Technology Data Exchange (ETDEWEB)

    McCully, Curtis; Jha, Saurabh W. [Department of Physics and Astronomy, Rutgers, the State University of New Jersey, 136 Frelinghuysen Road, Piscataway, NJ 08854 (United States); Foley, Ryan J. [Astronomy Department, University of Illinois at Urbana-Champaign, 1002 West Green Street, Urbana, IL 61801 (United States); Chornock, Ryan [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Holtzman, Jon A. [Department of Astronomy, MSC 4500, New Mexico State University, P.O. Box 30001, Las Cruces, NM 88003 (United States); Balam, David D. [Dominion Astrophysical Observatory, Herzberg Institute of Astrophysics, 5071 West Saanich Road, Victoria, BC V9E 2E7 (Canada); Branch, David [Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, Norman, OK 73019 (United States); Filippenko, Alexei V.; Ganeshalingam, Mohan; Li, Weidong [Department of Astronomy, University of California, Berkeley, CA 94720-3411 (United States); Frieman, Joshua [Kavli Institute for Cosmological Physics and Department of Astronomy and Astrophysics, University of Chicago, 5640 South Ellis Avenue, Chicago, IL 60637 (United States); Fynbo, Johan; Leloudas, Giorgos [Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-2100 Copenhagen Ø (Denmark); Galbany, Lluis [Institut de Física d' Altes Energies, Universitat Autònoma de Barcelona, E-08193 Bellaterra (Barcelona) (Spain); Garnavich, Peter M. [Department of Physics, University of Notre Dame, Notre Dame, IN 46556 (United States); Graham, Melissa L. [Las Cumbres Observatory Global Telescope Network, Goleta, CA 93117 (United States); Hsiao, Eric Y. [Carnegie Observatories, Las Campanas Observatory, Colina El Pino, Casilla 601 (Chile); Leonard, Douglas C., E-mail: cmccully@physics.rutgers.edu [Department of Astronomy, San Diego State University, San Diego, CA 92182 (United States); and others

    2014-05-10

    We present Hubble Space Telescope (HST) and ground-based optical and near-infrared observations of SN 2005hk and SN 2008A, typical members of the Type Iax class of supernovae (SNe). Here we focus on late-time observations, where these objects deviate most dramatically from all other SN types. Instead of the dominant nebular emission lines that are observed in other SNe at late phases, spectra of SNe 2005hk and 2008A show lines of Fe II, Ca II, and Fe I more than a year past maximum light, along with narrow [Fe II] and [Ca II] emission. We use spectral features to constrain the temperature and density of the ejecta, and find high densities at late times, with n{sub e} ≳ 10{sup 9} cm{sup –3}. Such high densities should yield enhanced cooling of the ejecta, making these objects good candidates to observe the expected 'infrared catastrophe', a generic feature of SN Ia models. However, our HST photometry of SN 2008A does not match the predictions of an infrared catastrophe. Moreover, our HST observations rule out a 'complete deflagration' that fully disrupts the white dwarf for these peculiar SNe, showing no evidence for unburned material at late times. Deflagration explosion models that leave behind a bound remnant can match some of the observed properties of SNe Iax, but no published model is consistent with all of our observations of SNe 2005hk and 2008A.

  10. Accuracy requirements of optical linear algebra processors in adaptive optics imaging systems

    Science.gov (United States)

    Downie, John D.

    1990-01-01

    A ground-based adaptive optics imaging telescope system attempts to improve image quality by detecting and correcting for atmospherically induced wavefront aberrations. The required control computations during each cycle will take a finite amount of time. Longer time delays result in larger values of residual wavefront error variance since the atmosphere continues to change during that time. Thus an optical processor may be well-suited for this task. This paper presents a study of the accuracy requirements in a general optical processor that will make it competitive with, or superior to, a conventional digital computer for the adaptive optics application. An optimization of the adaptive optics correction algorithm with respect to an optical processor's degree of accuracy is also briefly discussed.

  11. The Coming of Age of Adaptive Optics

    Science.gov (United States)

    1995-10-01

    How Ground-Based Astronomers Beat the Atmosphere Adaptive Optics (AO) is the new ``wonder-weapon'' in ground-based astronomy. By means of advanced electro-optical devices at their telescopes, astronomers are now able to ``neutralize'' the image-smearing turbulence of the terrestrial atmosphere (seen by the unaided eye as the twinkling of stars) so that much sharper images can be obtained than before. In practice, this is done with computer-controlled, flexible mirrors which refocus the blurred images up to 100 times per second, i.e. at a rate that is faster than the changes in the atmospheric turbulence. This means that finer details in astronomical objects can be studied and also - because of the improved concentration of light in the telescope's focal plane - that fainter objects can be observed. At the moment, Adaptive Optics work best in the infrared part of spectrum, but at some later time it may also significantly improve observations at the shorter wavelengths of visible light. The many-sided aspects of this new technology and its impact on astronomical instrumentation was the subject of a recent AO conference [1] with over 150 participants from about 30 countries, presenting a total of more than 100 papers. The Introduction of AO Techniques into Astronomy The scope of this meeting was the design, fabrication and testing of AO systems, characterisation of the sources of atmospheric disturbance, modelling of compensation systems, individual components, astronomical AO results, non-astronomical applications, laser guide star systems, non-linear optical phase conjugation, performance evaluation, and other areas of this wide and complex field, in which front-line science and high technology come together in a new and powerful symbiosis. One of the specific goals of the meeting was to develop contacts between AO scientists and engineers in the western world and their colleagues in Russia and Asia. For the first time at a conference of this type, nine Russian

  12. Design concepts for the Cherenkov Telescope Array CTA: an advanced facility for ground-based high-energy gamma-ray astronomy

    International Nuclear Information System (INIS)

    Allekotte, I.; Arnaldi, H.; Asorey, H.; Gomez Berisso, M.; Sofo Haro, M.; Cillis, A.; Rovero, A.C.; Supanitsky, A.D.; Actis, M.; Antico, F.; Bottani, A.; Ochoa, I.; Ringegni, P.; Vallejo, G.; De La Vega, G.; Etchegoyen, A.; Videla, M.; Gonzalez, F.; Pallota, J.; Quel, E.; Ristori, P.; Romero, G.E.; Suarez, A.; Papyan, G.; Pogosyan, L.; Sahakian, V.; Bissaldi, E.; Egberts, K.; Reimer, A.; Reimer, O.; Shellard, R.C.; Santos, E.M.; De Gouveia Dal Pino, E.M.; Kowal, G.; De Souza, V.; Todero Peixoto, C.J.; Maneva, G.; Temnikov, P.; Vankov, H.; Golev, V.; Ovcharov, E.; Bonev, T.; Dimitrov, D.; Hrupec, D.; Nedbal, D.; Rob, L.; Sillanpaa, A.; Takalo, L.; Beckmann, V.; Benallou, M.; Boutonnet, C.; Corlier, M.; Courty, B.; Djannati-Atai, A.; Dufour, C.; Gabici, S.; Guglielmi, L.; Olivetto, C.; Pita, S.; Punch, M.; Selmane, S.; Terrier, R.; Yoffo, B.; Brun, P.; Carton, P.H.; Cazaux, S.; Corpace, O.; Delagnes, E.; Disset, G.; Durand, D.; Glicenstein, J.F.; Guilloux, F.; Kosack, K.; Medina, C.; Micolon, P.; Mirabel, F.; Moulin, E.; Peyaud, B.; Reymond, J.M.; Veyssiere, C.

    2011-01-01

    Ground-based gamma-ray astronomy has had a major breakthrough with the impressive results obtained using systems of imaging atmospheric Cherenkov telescopes. Ground-based gamma-ray astronomy has a huge potential in astrophysics, particle physics and cosmology. CTA is an international initiative to build the next generation instrument, with a factor of 5-10 improvement in sensitivity in the 100 GeV-10 TeV range and the extension to energies well below 100 GeV and above 100 TeV. CTA will consist of two arrays (one in the north, one in the south) for full sky coverage and will be operated as open observatory. The design of CTA is based on currently available technology. This document reports on the status and presents the major design concepts of CTA. (authors)

  13. Adaptive optics and laser guide stars at Lick observatory

    Energy Technology Data Exchange (ETDEWEB)

    Brase, J.M. [Lawrence Livermore National Lab., CA (United States)

    1994-11-15

    For the past several years LLNL has been developing adaptive optics systems for correction of both atmospheric turbulence effects and thermal distortions in optics for high-power lasers. Our early work focused on adaptive optics for beam control in laser isotope separation and ground-based free electron lasers. We are currently developing innovative adaptive optics and laser systems for sodium laser guide star applications at the University of California`s Lick and Keck Observeratories. This talk will describe our adaptive optics technology and some of its applications in high-resolution imaging and beam control.

  14. [Adaptive optics for ophthalmology].

    Science.gov (United States)

    Saleh, M

    2016-04-01

    Adaptive optics is a technology enhancing the visual performance of an optical system by correcting its optical aberrations. Adaptive optics have already enabled several breakthroughs in the field of visual sciences, such as improvement of visual acuity in normal and diseased eyes beyond physiologic limits, and the correction of presbyopia. Adaptive optics technology also provides high-resolution, in vivo imaging of the retina that may eventually help to detect the onset of retinal conditions at an early stage and provide better assessment of treatment efficacy. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  15. The Durham Adaptive Optics Simulation Platform (DASP): Current status

    OpenAIRE

    Basden, Alastair; Bharmal, Nazim; Jenkins, David; Morris, Timothy; Osborn, James; Jia, Peng; Staykov, Lazar

    2018-01-01

    The Durham Adaptive Optics Simulation Platform (DASP) is a Monte-Carlo modelling tool used for the simulation of astronomical and solar adaptive optics systems. In recent years, this tool has been used to predict the expected performance of the forthcoming extremely large telescope adaptive optics systems, and has seen the addition of several modules with new features, including Fresnel optics propagation and extended object wavefront sensing. Here, we provide an overview of the features of D...

  16. Electronics for the camera of the First G-APD Cherenkov Telescope (FACT) for ground based gamma-ray astronomy

    International Nuclear Information System (INIS)

    Anderhub, H; Biland, A; Boller, A; Braun, I; Commichau, V; Djambazov, L; Dorner, D; Gendotti, A; Grimm, O; Gunten, H P von; Hildebrand, D; Horisberger, U; Huber, B; Kim, K-S; Krähenbühl, T; Backes, M; Köhne, J-H; Krumm, B; Bretz, T; Farnier, C

    2012-01-01

    Within the FACT project, we construct a new type of camera based on Geiger-mode avalanche photodiodes (G-APDs). Compared to photomultipliers, G-APDs are more robust, need a lower operation voltage and have the potential of higher photon-detection efficiency and lower cost, but were never fully tested in the harsh environments of Cherenkov telescopes. The FACT camera consists of 1440 G-APD pixels and readout channels, based on the DRS4 (Domino Ring Sampler) analog pipeline chip and commercial Ethernet components. Preamplifiers, trigger system, digitization, slow control and power converters are integrated into the camera.

  17. Improving a 1 meter telescope in order to follow giant planets in a pro-am collaboration. Next step : an affordable adaptive optic system.=

    Science.gov (United States)

    Dauvergne, J.-L.; Colas, F.; Delcroix, M.; Lecacheux, J.

    2017-09-01

    We already have very good result with the 1 meter telescope of Pic du Midi. Our goal is to have more and more people in the team in order to make a survey has long as possible of Jupiter, Uranus and Neptune. The next step is an OA system, we want to make it work on the 1 meter telescope and also make it available on the market to help other observatories to produce high resolution images of the solar system with middle size telescopes.

  18. Opportune acquisition and tracking time for the fast-moving targets in a ground-based telescope

    Science.gov (United States)

    Chen, Juan; Wang, Jianli; Chen, Tao

    2004-10-01

    Acquisition is defined as identification for a fixed target in the related field of sight (FOS), while tracking means the sway of the telescope's axis of sight (AOS). The automatic acquisition and tracking is a process in which the operating way of the telescope should be switched from guiding to automatic tracking. There are some kinds of method to improve the acquisition and tracking ability for fast moving targets: to extend the acquisition and tracking FOS with memory and storage information of the sensor system; the multimode control to improve the dynamic property of the servo system; to choose an opportune time for acquisition and tracking; to select the control regulator parameter in every working states. If the processor of the CCD sensor can temporarily remember and save the information of the target before it moves out of the FOS, correspondingly, the FOS may be extended. The data forecast technology is used to store the target information. The automatic interception experiments are carried out to verify the control strategy.

  19. A FPGA-based Fast Converging Digital Adaptive Filter for Real-time RFI Mitigation on Ground Based Radio Telescopes

    Science.gov (United States)

    Finger, R.; Curotto, F.; Fuentes, R.; Duan, R.; Bronfman, L.; Li, D.

    2018-02-01

    Radio Frequency Interference (RFI) is a growing concern in the radio astronomy community. Single-dish telescopes are particularly susceptible to RFI. Several methods have been developed to cope with RF-polluted environments, based on flagging, excision, and real-time blanking, among others. All these methods produce some degree of data loss or require assumptions to be made on the astronomical signal. We report the development of a real-time, digital adaptive filter implemented on a Field Programmable Gate Array (FPGA) capable of processing 4096 spectral channels in a 1 GHz of instantaneous bandwidth. The filter is able to cancel a broad range of interference signals and quickly adapt to changes on the RFI source, minimizing the data loss without any assumption on the astronomical or interfering signal properties. The speed of convergence (for a decrease to a 1%) was measured to be 208.1 μs for a broadband noise-like RFI signal and 125.5 μs for a multiple-carrier RFI signal recorded at the FAST radio telescope.

  20. Microshutter Array Development for the Multi-Object Spectrograph for the New Generation Space Telescope, and Its Ground-based Demonstrator

    Science.gov (United States)

    Woodgate, Bruce E.; Moseley, Harvey; Fettig, Rainer; Kutyrev, Alexander; Ge, Jian; Fisher, Richard R. (Technical Monitor)

    2001-01-01

    The 6.5-m NASA/ESA/Canada New Generation Space Telescope to be operated at the L2 Lagrangian point will require a multi-object spectrograph (MOS) operating from 1 to 5 microns. Up to 3000 targets will be selected for simultaneous spectroscopy using a programmable cryogenic (approx. 35K) aperture array, consisting of a mosaic of arrays of micromirrors or microshutters. We describe the current status of the GSFC microshutter array development. The 100 micron square shutters are opened magnetically and latched open or closed electrostatically. Selection will be by two crossed one-dimensional addressing circuits. We will demonstrate the use of a 512 x 512 unit array on a ground-based IR MOS which will cover 0.6 to 5 microns, and operate rapidly to include spectroscopy of gamma ray burst afterglows.

  1. Solar tomography adaptive optics.

    Science.gov (United States)

    Ren, Deqing; Zhu, Yongtian; Zhang, Xi; Dou, Jiangpei; Zhao, Gang

    2014-03-10

    Conventional solar adaptive optics uses one deformable mirror (DM) and one guide star for wave-front sensing, which seriously limits high-resolution imaging over a large field of view (FOV). Recent progress toward multiconjugate adaptive optics indicates that atmosphere turbulence induced wave-front distortion at different altitudes can be reconstructed by using multiple guide stars. To maximize the performance over a large FOV, we propose a solar tomography adaptive optics (TAO) system that uses tomographic wave-front information and uses one DM. We show that by fully taking advantage of the knowledge of three-dimensional wave-front distribution, a classical solar adaptive optics with one DM can provide an extra performance gain for high-resolution imaging over a large FOV in the near infrared. The TAO will allow existing one-deformable-mirror solar adaptive optics to deliver better performance over a large FOV for high-resolution magnetic field investigation, where solar activities occur in a two-dimensional field up to 60'', and where the near infrared is superior to the visible in terms of magnetic field sensitivity.

  2. High Resolution Observations using Adaptive Optics: Achievements ...

    Indian Academy of Sciences (India)

    ground-based telescope (aperture >= 50 cm) designs have an integrated AO system. The realisation of the .... netic field measurements are started to produce quantitative information about ... A 10 × 10 sub-aperture for sampling the wavefront ...

  3. Advancing High Contrast Adaptive Optics

    Science.gov (United States)

    Ammons, M.; Poyneer, L.; GPI Team

    2014-09-01

    A long-standing challenge has been to directly image faint extrasolar planets adjacent to their host suns, which may be ~1-10 million times brighter than the planet. Several extreme AO systems designed for high-contrast observations have been tested at this point, including SPHERE, Magellan AO, PALM-3000, Project 1640, NICI, and the Gemini Planet Imager (GPI, Macintosh et al. 2014). The GPI is the world's most advanced high-contrast adaptive optics system on an 8-meter telescope for detecting and characterizing planets outside of our solar system. GPI will detect a previously unstudied population of young analogs to the giant planets of our solar system and help determine how planetary systems form. GPI employs a 44x44 woofer-tweeter adaptive optics system with a Shack-Hartmann wavefront sensor operating at 1 kHz. The controller uses Fourier-based reconstruction and modal gains optimized from system telemetry (Poyneer et al. 2005, 2007). GPI has an apodized Lyot coronal graph to suppress diffraction and a near-infrared integral field spectrograph for obtaining planetary spectra. This paper discusses current performance limitations and presents the necessary instrumental modifications and sensitivity calculations for scenarios related to high-contrast observations of non-sidereal targets.

  4. Adaptive optics ophthalmoscopy.

    Science.gov (United States)

    Roorda, Austin; Duncan, Jacque L

    2015-11-01

    This review starts with a brief history and description of adaptive optics (AO) technology, followed by a showcase of the latest capabilities of AO systems for imaging the human retina and an extensive review of the literature on where AO is being used clinically. The review concludes with a discussion on future directions and guidance on usage and interpretation of images from AO systems for the eye.

  5. Adaptive optics ophthalmoscopy

    OpenAIRE

    Roorda, Austin; Duncan, Jacque L.

    2015-01-01

    This review starts with a brief history and description of adaptive optics (AO) technology, followed by a showcase of the latest capabilities of AO systems for imaging the human retina and an extensive review of the literature on where AO is being used clinically. The review concludes with a discussion on future directions and guidance on usage and interpretation of images from AO systems for the eye.

  6. Solar adaptive optics: specificities, lessons learned, and open alternatives

    Science.gov (United States)

    Montilla, I.; Marino, J.; Asensio Ramos, A.; Collados, M.; Montoya, L.; Tallon, M.

    2016-07-01

    First on sky adaptive optics experiments were performed on the Dunn Solar Telescope on 1979, with a shearing interferometer and limited success. Those early solar adaptive optics efforts forced to custom-develop many components, such as Deformable Mirrors and WaveFront Sensors, which were not available at that time. Later on, the development of the correlation Shack-Hartmann marked a breakthrough in solar adaptive optics. Since then, successful Single Conjugate Adaptive Optics instruments have been developed for many solar telescopes, i.e. the National Solar Observatory, the Vacuum Tower Telescope and the Swedish Solar Telescope. Success with the Multi Conjugate Adaptive Optics systems for GREGOR and the New Solar Telescope has proved to be more difficult to attain. Such systems have a complexity not only related to the number of degrees of freedom, but also related to the specificities of the Sun, used as reference, and the sensing method. The wavefront sensing is performed using correlations on images with a field of view of 10", averaging wavefront information from different sky directions, affecting the sensing and sampling of high altitude turbulence. Also due to the low elevation at which solar observations are performed we have to include generalized fitting error and anisoplanatism, as described by Ragazzoni and Rigaut, as non-negligible error sources in the Multi Conjugate Adaptive Optics error budget. For the development of the next generation Multi Conjugate Adaptive Optics systems for the Daniel K. Inouye Solar Telescope and the European Solar Telescope we still need to study and understand these issues, to predict realistically the quality of the achievable reconstruction. To improve their designs other open issues have to be assessed, i.e. possible alternative sensing methods to avoid the intrinsic anisoplanatism of the wide field correlation Shack-Hartmann, new parameters to estimate the performance of an adaptive optics solar system, alternatives to

  7. THE EXPANDING NEBULAR REMNANT OF THE RECURRENT NOVA RS OPHIUCHI (2006). II. MODELING OF COMBINED HUBBLE SPACE TELESCOPE IMAGING AND GROUND-BASED SPECTROSCOPY

    International Nuclear Information System (INIS)

    Ribeiro, V. A. R. M.; Bode, M. F.; Darnley, M. J.

    2009-01-01

    We report Hubble Space Telescope (HST) imaging, obtained 155 and 449 days after the 2006 outburst of the recurrent nova RS Ophiuchi, together with ground-based spectroscopic observations, obtained from the Observatorio Astronomico Nacional en San Pedro Martir, Baja California, Mexico and at the Observatorio AstrofIsico Guillermo Haro, at Cananea, Sonora, Mexico. The observations at the first epoch were used as inputs to model the geometry and kinematic structure of the evolving RS Oph nebular remnant. We find that the modeled remnant comprises two distinct co-aligned bipolar components; a low-velocity, high-density innermost (hour glass) region and a more extended, high-velocity (dumbbell) structure. This overall structure is in agreement with that deduced from radio observations and optical interferometry at earlier epochs. We find that the asymmetry observed in the west lobe is an instrumental effect caused by the profile of the HST filter and hence demonstrate that this lobe is approaching the observer. We then conclude that the system has an inclination to the line of sight of 39 +10 -10 . This is in agreement with the inclination of the binary orbit and lends support to the proposal that this morphology is due to the interaction of the outburst ejecta with either an accretion disk around the central white dwarf and/or a pre-existing red giant wind that is significantly denser in the equatorial regions of the binary than at the poles. The second epoch HST observation was also modeled. However, as no spectra were taken at this epoch, it is more difficult to constrain any model. Nevertheless, we demonstrate that between the two HST epochs the outer dumbbell structure seems to have expanded linearly. For the central (hour glass) region, there may be evidence of deceleration, but it is harder to draw firm conclusions in this case.

  8. Center for Adaptive Optics | Software

    Science.gov (United States)

    Optics Software The Center for Adaptive Optics acts as a clearing house for distributing Software to Institutes it gives specialists in Adaptive Optics a place to distribute their software. All software is shared on an "as-is" basis and the users should consult with the software authors with any

  9. High-speed optical feeder-link system using adaptive optics

    Science.gov (United States)

    Arimoto, Yoshinori; Hayano, Yutaka; Klaus, Werner

    1997-05-01

    We propose a satellite laser communication system between a ground station and a geostationary satellite, named high- speed optical feeder link system. It is based on the application of (a) high-speed optical devices, which have been developed for ground-based high-speed fiber-optic communications, and (b) the adaptive optics which compensates wavefront distortions due to atmospheric turbulences using a real time feedback control. A link budget study shows that a system with 10-Gbps bit-rate are available assuming the state-of-the-art device performance of the Er-doped fiber amplifier. We further discuss preliminary measurement results of the atmospheric turbulence at the telescope site in Tokyo, and present current study on the design of the key components for the feeder-link laser transceiver.

  10. Reflective afocal broadband adaptive optics scanning ophthalmoscope

    Science.gov (United States)

    Dubra, Alfredo; Sulai, Yusufu

    2011-01-01

    A broadband adaptive optics scanning ophthalmoscope (BAOSO) consisting of four afocal telescopes, formed by pairs of off-axis spherical mirrors in a non-planar arrangement, is presented. The non-planar folding of the telescopes is used to simultaneously reduce pupil and image plane astigmatism. The former improves the adaptive optics performance by reducing the root-mean-square (RMS) of the wavefront and the beam wandering due to optical scanning. The latter provides diffraction limited performance over a 3 diopter (D) vergence range. This vergence range allows for the use of any broadband light source(s) in the 450-850 nm wavelength range to simultaneously image any combination of retinal layers. Imaging modalities that could benefit from such a large vergence range are optical coherence tomography (OCT), multi- and hyper-spectral imaging, single- and multi-photon fluorescence. The benefits of the non-planar telescopes in the BAOSO are illustrated by resolving the human foveal photoreceptor mosaic in reflectance using two different superluminescent diodes with 680 and 796 nm peak wavelengths, reaching the eye with a vergence of 0.76 D relative to each other. PMID:21698035

  11. Adaptive Optics for Industry and Medicine

    Science.gov (United States)

    Dainty, Christopher

    2008-01-01

    . Improved beam quality of a high power Yb: YAG laser (oral paper) / Dennis G. Harris ... [et al.]. Intracavity adaptive optics optimization of an end-pumped Nd:YVO4 laser (oral paper) / Petra Welp, Ulrich Wittrock. New results in high power lasers beam correction (oral paper) / Alexis Kudryashov ... [et al.]. Adaptive optical systems for the Shenguang-III prototype facility (oral paper) / Zeping Yang ... [et al.]. Adaptive optics control of solid-state lasers (poster paper) / Walter Lubeigt ... [et al.]. Gerchberg-Saxton algorithm for multimode beam reshaping (poster paper) / Inna V. Ilyina, Tatyana Yu. Cherezova. New algorithm of combining for spatial coherent beams (poster paper) / Ruofu Yang ... [et al.]. Intracavity mode control of a solid-state laser using a 19-element deformable mirror (poster paper) / Ping Yang ... [et al.] -- pt. 6. Adaptive optics in communication and atmospheric compensation. Fourier image sharpness sensor for laser communications (oral paper) / Kristin N. Walker and Robert K. Tyson. Fast closed-loop adaptive optics system for imaging through strong turbulence layers (oral paper) / Ivo Buske and Wolfgang Riede. Correction of wavefront aberrations and optical communication using aperture synthesis (oral paper) / R. J. Eastwood ... [et al.]. Adaptive optics system for a small telescope (oral paper) / G. Vdovin, M. Loktev and O. Soloviev. Fast correction of atmospheric turbulence using a membrane deformable mirror (poster paper) / Ivan Capraro, Stefano Bonora, Paolo Villoresi. Atmospheric turbulence measurements over a 3km horizontal path with a Shack-Hartmann wavefront sensor (poster paper) / Ruth Mackey, K. Murphy and Chris Dainty. Field-oriented wavefront sensor for laser guide stars (poster paper) / Lidija Bolbasova, Alexander Goncharov and Vladimir Lukin.

  12. Object-oriented Matlab adaptive optics toolbox

    Science.gov (United States)

    Conan, R.; Correia, C.

    2014-08-01

    Object-Oriented Matlab Adaptive Optics (OOMAO) is a Matlab toolbox dedicated to Adaptive Optics (AO) systems. OOMAO is based on a small set of classes representing the source, atmosphere, telescope, wavefront sensor, Deformable Mirror (DM) and an imager of an AO system. This simple set of classes allows simulating Natural Guide Star (NGS) and Laser Guide Star (LGS) Single Conjugate AO (SCAO) and tomography AO systems on telescopes up to the size of the Extremely Large Telescopes (ELT). The discrete phase screens that make the atmosphere model can be of infinite size, useful for modeling system performance on large time scales. OOMAO comes with its own parametric influence function model to emulate different types of DMs. The cone effect, altitude thickness and intensity profile of LGSs are also reproduced. Both modal and zonal modeling approach are implemented. OOMAO has also an extensive library of theoretical expressions to evaluate the statistical properties of turbulence wavefronts. The main design characteristics of the OOMAO toolbox are object-oriented modularity, vectorized code and transparent parallel computing. OOMAO has been used to simulate and to design the Multi-Object AO prototype Raven at the Subaru telescope and the Laser Tomography AO system of the Giant Magellan Telescope. In this paper, a Laser Tomography AO system on an ELT is simulated with OOMAO. In the first part, we set-up the class parameters and we link the instantiated objects to create the source optical path. Then we build the tomographic reconstructor and write the script for the pseudo-open-loop controller.

  13. Ground-based observations of exoplanet atmospheres

    NARCIS (Netherlands)

    Mooij, Ernst Johan Walter de

    2011-01-01

    This thesis focuses on the properties of exoplanet atmospheres. The results for ground-based near-infrared secondary eclipse observations of three different exoplanets, TrES-3b, HAT-P-1b and WASP-33b, are presented which have been obtained with ground-based telescopes as part of the GROUSE project.

  14. Intelligent Optical Systems Using Adaptive Optics

    Science.gov (United States)

    Clark, Natalie

    2012-01-01

    Until recently, the phrase adaptive optics generally conjured images of large deformable mirrors being integrated into telescopes to compensate for atmospheric turbulence. However, the development of smaller, cheaper devices has sparked interest for other aerospace and commercial applications. Variable focal length lenses, liquid crystal spatial light modulators, tunable filters, phase compensators, polarization compensation, and deformable mirrors are becoming increasingly useful for other imaging applications including guidance navigation and control (GNC), coronagraphs, foveated imaging, situational awareness, autonomous rendezvous and docking, non-mechanical zoom, phase diversity, and enhanced multi-spectral imaging. The active components presented here allow flexibility in the optical design, increasing performance. In addition, the intelligent optical systems presented offer advantages in size and weight and radiation tolerance.

  15. The ground based plan

    International Nuclear Information System (INIS)

    1989-01-01

    The paper presents a report of ''The Ground Based Plan'' of the United Kingdom Science and Engineering Research Council. The ground based plan is a plan for research in astronomy and planetary science by ground based techniques. The contents of the report contains a description of:- the scientific objectives and technical requirements (the basis for the Plan), the present organisation and funding for the ground based programme, the Plan, the main scientific features and the further objectives of the Plan. (U.K.)

  16. Maritime adaptive optics beam control

    OpenAIRE

    Corley, Melissa S.

    2010-01-01

    The Navy is interested in developing systems for horizontal, near ocean surface, high-energy laser propagation through the atmosphere. Laser propagation in the maritime environment requires adaptive optics control of aberrations caused by atmospheric distortion. In this research, a multichannel transverse adaptive filter is formulated in Matlab's Simulink environment and compared to a complex lattice filter that has previously been implemented in large system simulations. The adaptive fil...

  17. High resolution observations using adaptive optics: Achievements and future needs

    Science.gov (United States)

    Sankarasubramanian, K.; Rimmele, T.

    2008-06-01

    Over the last few years, several interesting observations were obtained with the help of solar Adaptive Optics (AO). In this paper, few observations made using the solar AO are enlightened and briefly discussed. A list of disadvantages with the current AO system are presented. With telescopes larger than 1.5 m expected during the next decade, there is a need to develop the existing AO technologies for large aperture telescopes. Some aspects of this development are highlighted. Finally, the recent AO developments in India are also presented.

  18. Adaptive Optics Imaging of Pluto-Charon and the Discovery of a Moon aroun d the Asteroid 45 Eugenia: The Potential of Adaptive Optics in Planetary Astrono my

    Science.gov (United States)

    Close, L. M.; Merline, W. J.; Tholen, D.; Owen, T.; Roddier, F.; Dumas, C.

    1999-12-01

    We outline two separate projects which highlight the power of adaptive optics (AO) to aid planetary research. The first project utilized AO to resolve the Pluto-Charon system by producing 0.15" FWHM images. We used the University of Hawaii AO system (Roddier et al. PASP 103, 131,1991) at CFHT to obtain deep (20 min) narrow band images in/out the molecular bands of water and methane ices. Our images confirm that the variation of Pluto's albedo is mainly governed by the presence of methane ice over its surface, resulting in a lower albedo at 2.26 um than at 2.02 um. Our observations confirm also that Charon is mostly covered with water-ice (Buie et al. NATURE 329, 522,1987). See Tholen et al. (ICARUS submitted) for more details on these AO results. In another application of AO, we discovered a moon around asteroid 45 Eugenia by use of the PUEO AO facility at CFHT (Rigaut et al. PASP 110, 152, 1998). With PUEO we preformed a search for asteroidal satellites among two dozen asteroids, achieving moderate Strehl ratios (35%) and FWHM of about 0.12" at H band. During this survey, we detected a faint close companion to 45 Eugenia. The satellite was 6.14 magnitudes (at 1.65 um) fainter and located at most 0.75" from Eugenia. Without the ability of AO (to sharpen the contrast and increase the resolution to 0.1"), the detection of this companion would have been impossible with ground based-telescopes. The companion was found to be in a 1200 km circular orbit with a period of 4.7 days. A more detailed discussion of this new satellite is given by Merline et al. in this volume. Adaptive optics is entering a powerful new age as all the major ground based large telescopes are developing facility AO systems. Planetary astronomy is particularly well posed to take advantage of the diffraction-limited, near-IR images (0.050" FWHM) that will become commonplace at all 8 m facilities in the near future (It is already occurring on the KECK and GEMINI-North telescopes). In particular, we

  19. Adaptive Optics, LLLFT Interferometry, Astronomy

    National Research Council Canada - National Science Library

    2002-01-01

    We propose to build a three telescope Michelson optical interferometer equipped with wavefront compensation technology as a demonstration and test bed for high resolution Deep Space Surveillance (DSS) and Astronomy...

  20. Adaptive Optics, LLLFT Interferometry, Astronomy

    National Research Council Canada - National Science Library

    2002-01-01

    .... We will combine the wavefronts from the three telescopes using a conventional beam recombination system and acquire and track the fringes formed with a Low Light Level Fringe Tracking system (LLLFT...

  1. Artificial guide stars for adaptive optics using unmanned aerial vehicles

    Science.gov (United States)

    Basden, A. G.; Brown, Anthony M.; Chadwick, P. M.; Clark, P.; Massey, R.

    2018-06-01

    Astronomical adaptive optics (AO) systems are used to increase effective telescope resolution. However, they cannot be used to observe the whole sky since one or more natural guide stars of sufficient brightness must be found within the telescope field of view for the AO system to work. Even when laser guide stars are used, natural guide stars are still required to provide a constant position reference. Here, we introduce a technique to overcome this problem by using rotary unmanned aerial vehicles (UAVs) as a platform from which to produce artificial guide stars. We describe the concept that relies on the UAV being able to measure its precise relative position. We investigate the AO performance improvements that can be achieved, which in the cases presented here can improve the Strehl ratio by a factor of at least 2 for a 8 m class telescope. We also discuss improvements to this technique, which is relevant to both astronomical and solar AO systems.

  2. Linear zonal atmospheric prediction for adaptive optics

    Science.gov (United States)

    McGuire, Patrick C.; Rhoadarmer, Troy A.; Coy, Hanna A.; Angel, J. Roger P.; Lloyd-Hart, Michael

    2000-07-01

    We compare linear zonal predictors of atmospheric turbulence for adaptive optics. Zonal prediction has the possible advantage of being able to interpret and utilize wind-velocity information from the wavefront sensor better than modal prediction. For simulated open-loop atmospheric data for a 2- meter 16-subaperture AO telescope with 5 millisecond prediction and a lookback of 4 slope-vectors, we find that Widrow-Hoff Delta-Rule training of linear nets and Back- Propagation training of non-linear multilayer neural networks is quite slow, getting stuck on plateaus or in local minima. Recursive Least Squares training of linear predictors is two orders of magnitude faster and it also converges to the solution with global minimum error. We have successfully implemented Amari's Adaptive Natural Gradient Learning (ANGL) technique for a linear zonal predictor, which premultiplies the Delta-Rule gradients with a matrix that orthogonalizes the parameter space and speeds up the training by two orders of magnitude, like the Recursive Least Squares predictor. This shows that the simple Widrow-Hoff Delta-Rule's slow convergence is not a fluke. In the case of bright guidestars, the ANGL, RLS, and standard matrix-inversion least-squares (MILS) algorithms all converge to the same global minimum linear total phase error (approximately 0.18 rad2), which is only approximately 5% higher than the spatial phase error (approximately 0.17 rad2), and is approximately 33% lower than the total 'naive' phase error without prediction (approximately 0.27 rad2). ANGL can, in principle, also be extended to make non-linear neural network training feasible for these large networks, with the potential to lower the predictor error below the linear predictor error. We will soon scale our linear work to the approximately 108-subaperture MMT AO system, both with simulations and real wavefront sensor data from prime focus.

  3. Comparative Study of Neural Network Frameworks for the Next Generation of Adaptive Optics Systems.

    Science.gov (United States)

    González-Gutiérrez, Carlos; Santos, Jesús Daniel; Martínez-Zarzuela, Mario; Basden, Alistair G; Osborn, James; Díaz-Pernas, Francisco Javier; De Cos Juez, Francisco Javier

    2017-06-02

    Many of the next generation of adaptive optics systems on large and extremely large telescopes require tomographic techniques in order to correct for atmospheric turbulence over a large field of view. Multi-object adaptive optics is one such technique. In this paper, different implementations of a tomographic reconstructor based on a machine learning architecture named "CARMEN" are presented. Basic concepts of adaptive optics are introduced first, with a short explanation of three different control systems used on real telescopes and the sensors utilised. The operation of the reconstructor, along with the three neural network frameworks used, and the developed CUDA code are detailed. Changes to the size of the reconstructor influence the training and execution time of the neural network. The native CUDA code turns out to be the best choice for all the systems, although some of the other frameworks offer good performance under certain circumstances.

  4. Adaptive optics imaging of the retina

    Directory of Open Access Journals (Sweden)

    Rajani Battu

    2014-01-01

    Full Text Available Adaptive optics is a relatively new tool that is available to ophthalmologists for study of cellular level details. In addition to the axial resolution provided by the spectral-domain optical coherence tomography, adaptive optics provides an excellent lateral resolution, enabling visualization of the photoreceptors, blood vessels and details of the optic nerve head. We attempt a mini review of the current role of adaptive optics in retinal imaging. PubMed search was performed with key words Adaptive optics OR Retina OR Retinal imaging. Conference abstracts were searched from the Association for Research in Vision and Ophthalmology (ARVO and American Academy of Ophthalmology (AAO meetings. In total, 261 relevant publications and 389 conference abstracts were identified.

  5. Neptune’s zonal winds from near-IR Keck adaptive optics imaging in August 2001

    NARCIS (Netherlands)

    Martin, S.C.; De Pater, I.; Marcus, P.

    2011-01-01

    We present H-band (1.4–1.8 ?m) images of Neptune with a spatial resolution of ?0.06?, taken with the W.M. Keck II telescope using the slit-viewing camera (SCAM) of the NIRSPEC instrument backed with Adaptive Optics. Images with 60-second integration times span 4 hours each on UT 20 and 21 August,

  6. The TMT Adaptive Optics Program

    Science.gov (United States)

    Ellerbroek, Brent

    2011-09-01

    We provide an overview of the Thirty Meter Telescope (TMT) AO program, with an emphasis upon the progress made since the first AO4ELT conference held in 2009. The first light facility AO system for TMT is the Narrow Field Infra-Red AO System (NFIRAOS), which will provide diffraction-limited performance in the J, H, and K bands over 18-30 arc sec diameter fields with 50% sky coverage at the galactic pole. This is accomplished with order 60x60 wavefront sensing and correction, two deformable mirrors conjugate to ranges of 0 and 11.2 km, 6 sodium laser guide stars in an asterism with a diameter of 70 arc sec, and three low order (tip/tilt or tip/tilt focus), infra-red natural guide star (NGS) wavefront sensors deployable within a 2 arc minute diameter patrol field. The first light LGS asterism is generated by the Laser Guide Star Facility (LGSF), which initially incorporates 6 20-25W class laser systems mounted to the telescope elevation journal, a mirror-based beam transfer optics system, and a 0.4m diameter laser launch telescope located behind the TMT secondary mirror. Future plans for additional AO capabilities include a mid infra-red AO (MIRAO) system to support science instruments in the 4-20 micron range, a ground-layer AO (GLAO) system for wide-field spectroscopy, a multi-object AO (MOAO) system for multi-object integral field unit spectroscopy, and extreme AO (ExAO) for high contrast imaging. Significant progress has been made in developing the first-light AO architecture since 2009. This includes the adoption of a new NFIRAOS opto-mechanical design consisting of two off-axis parabola (OAP) relays in series, which eliminates field distortion and also significantly simplifies the designs of the LGS wavefront sensors, optical source simulators, and turbulence generator subsystem. The design of the LGSF has also been interated, and has been simplfied by the relocation of the (smaller, gravity invarient) laser systems to the telescope elevation journal

  7. NAOMI: a low-order adaptive optics system for the VLT interferometer

    Science.gov (United States)

    Gonté, Frédéric Yves J.; Alonso, Jaime; Aller-Carpentier, Emmanuel; Andolfato, Luigi; Berger, Jean-Philippe; Cortes, Angela; Delplancke-Strobele, Françoise; Donaldson, Rob; Dorn, Reinhold J.; Dupuy, Christophe; Egner, Sebastian E.; Huber, Stefan; Hubin, Norbert; Kirchbauer, Jean-Paul; Le Louarn, Miska; Lilley, Paul; Jolley, Paul; Martis, Alessandro; Paufique, Jérôme; Pasquini, Luca; Quentin, Jutta; Ridings, Robert; Reyes, Javier; Shchkaturov, Pavel; Suarez, Marcos; Phan Duc, Thanh; Valdes, Guillermo; Woillez, Julien; Le Bouquin, Jean-Baptiste; Beuzit, Jean-Luc; Rochat, Sylvain; Vérinaud, Christophe; Moulin, Thibaut; Delboulbé, Alain; Michaud, Laurence; Correia, Jean-Jacques; Roux, Alain; Maurel, Didier; Stadler, Eric; Magnard, Yves

    2016-08-01

    The New Adaptive Optics Module for Interferometry (NAOMI) will be developed for and installed at the 1.8-metre Auxiliary Telescopes (ATs) at ESO Paranal. The goal of the project is to equip all four ATs with a low-order Shack- Hartmann adaptive optics system operating in the visible. By improving the wavefront quality delivered by the ATs for guide stars brighter than R = 13 mag, NAOMI will make the existing interferometer performance less dependent on the seeing conditions. Fed with higher and more stable Strehl, the fringe tracker(s) will achieve the fringe stability necessary to reach the full performance of the second-generation instruments GRAVITY and MATISSE.

  8. Wavefront measurement using computational adaptive optics.

    Science.gov (United States)

    South, Fredrick A; Liu, Yuan-Zhi; Bower, Andrew J; Xu, Yang; Carney, P Scott; Boppart, Stephen A

    2018-03-01

    In many optical imaging applications, it is necessary to correct for aberrations to obtain high quality images. Optical coherence tomography (OCT) provides access to the amplitude and phase of the backscattered optical field for three-dimensional (3D) imaging samples. Computational adaptive optics (CAO) modifies the phase of the OCT data in the spatial frequency domain to correct optical aberrations without using a deformable mirror, as is commonly done in hardware-based adaptive optics (AO). This provides improvement of image quality throughout the 3D volume, enabling imaging across greater depth ranges and in highly aberrated samples. However, the CAO aberration correction has a complicated relation to the imaging pupil and is not a direct measurement of the pupil aberrations. Here we present new methods for recovering the wavefront aberrations directly from the OCT data without the use of hardware adaptive optics. This enables both computational measurement and correction of optical aberrations.

  9. A Status Report on the Thirty Meter Telescope Adaptive Optics ...

    Indian Academy of Sciences (India)

    Derived architecture and technology choices. Figure 1 ..... Fortunately, the challenge of implementing the NFIRAOS RTC has diminished with the ... investigation of innovative real-time estimation and control algorithms, includ- ing (i) LQG ...

  10. Pipelining Computational Stages of the Tomographic Reconstructor for Multi-Object Adaptive Optics on a Multi-GPU System

    KAUST Repository

    Charara, Ali

    2014-11-01

    The European Extremely Large Telescope project (E-ELT) is one of Europe\\'s highest priorities in ground-based astronomy. ELTs are built on top of a variety of highly sensitive and critical astronomical instruments. In particular, a new instrument called MOSAIC has been proposed to perform multi-object spectroscopy using the Multi-Object Adaptive Optics (MOAO) technique. The core implementation of the simulation lies in the intensive computation of a tomographic reconstruct or (TR), which is used to drive the deformable mirror in real time from the measurements. A new numerical algorithm is proposed (1) to capture the actual experimental noise and (2) to substantially speed up previous implementations by exposing more concurrency, while reducing the number of floating-point operations. Based on the Matrices Over Runtime System at Exascale numerical library (MORSE), a dynamic scheduler drives all computational stages of the tomographic reconstruct or simulation and allows to pipeline and to run tasks out-of order across different stages on heterogeneous systems, while ensuring data coherency and dependencies. The proposed TR simulation outperforms asymptotically previous state-of-the-art implementations up to 13-fold speedup. At more than 50000 unknowns, this appears to be the largest-scale AO problem submitted to computation, to date, and opens new research directions for extreme scale AO simulations. © 2014 IEEE.

  11. Sky coverage modeling for the whole sky for laser guide star multiconjugate adaptive optics.

    Science.gov (United States)

    Wang, Lianqi; Andersen, David; Ellerbroek, Brent

    2012-06-01

    The scientific productivity of laser guide star adaptive optics systems strongly depends on the sky coverage, which describes the probability of finding natural guide stars for the tip/tilt wavefront sensor(s) to achieve a certain performance. Knowledge of the sky coverage is also important for astronomers planning their observations. In this paper, we present an efficient method to compute the sky coverage for the laser guide star multiconjugate adaptive optics system, the Narrow Field Infrared Adaptive Optics System (NFIRAOS), being designed for the Thirty Meter Telescope project. We show that NFIRAOS can achieve more than 70% sky coverage over most of the accessible sky with the requirement of 191 nm total rms wavefront.

  12. Overview of deformable mirror technologies for adaptive optics and astronomy

    Science.gov (United States)

    Madec, P.-Y.

    2012-07-01

    From the ardent bucklers used during the Syracuse battle to set fire to Romans’ ships to more contemporary piezoelectric deformable mirrors widely used in astronomy, from very large voice coil deformable mirrors considered in future Extremely Large Telescopes to very small and compact ones embedded in Multi Object Adaptive Optics systems, this paper aims at giving an overview of Deformable Mirror technology for Adaptive Optics and Astronomy. First the main drivers for the design of Deformable Mirrors are recalled, not only related to atmospheric aberration compensation but also to environmental conditions or mechanical constraints. Then the different technologies available today for the manufacturing of Deformable Mirrors will be described, pros and cons analyzed. A review of the Companies and Institutes with capabilities in delivering Deformable Mirrors to astronomers will be presented, as well as lessons learned from the past 25 years of technological development and operation on sky. In conclusion, perspective will be tentatively drawn for what regards the future of Deformable Mirror technology for Astronomy.

  13. Photometric Calibration of the Gemini South Adaptive Optics Imager

    Science.gov (United States)

    Stevenson, Sarah Anne; Rodrigo Carrasco Damele, Eleazar; Thomas-Osip, Joanna

    2017-01-01

    The Gemini South Adaptive Optics Imager (GSAOI) is an instrument available on the Gemini South telescope at Cerro Pachon, Chile, utilizing the Gemini Multi-Conjugate Adaptive Optics System (GeMS). In order to allow users to easily perform photometry with this instrument and to monitor any changes in the instrument in the future, we seek to set up a process for performing photometric calibration with standard star observations taken across the time of the instrument’s operation. We construct a Python-based pipeline that includes IRAF wrappers for reduction and combines the AstroPy photutils package and original Python scripts with the IRAF apphot and photcal packages to carry out photometry and linear regression fitting. Using the pipeline, we examine standard star observations made with GSAOI on 68 nights between 2013 and 2015 in order to determine the nightly photometric zero points in the J, H, Kshort, and K bands. This work is based on observations obtained at the Gemini Observatory, processed using the Gemini IRAF and gemini_python packages, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the National Research Council (Canada), CONICYT (Chile), Ministerio de Ciencia, Tecnología e Innovación Productiva (Argentina), and Ministério da Ciência, Tecnologia e Inovação (Brazil).

  14. Optical design of the adaptive optics laser guide star system

    Energy Technology Data Exchange (ETDEWEB)

    Bissinger, H. [Lawrence Livermore National Lab., CA (United States)

    1994-11-15

    The design of an adaptive optics package for the 3 meter Lick telescope is presented. This instrument package includes a 69 actuator deformable mirror and a Hartmann type wavefront sensor operating in the visible wavelength; a quadrant detector for the tip-tile sensor and a tip-tilt mirror to stabilize atmospheric first order tip-tile errors. A high speed computer drives the deformable mirror to achieve near diffraction limited imagery. The different optical components and their individual design constraints are described. motorized stages and diagnostics tools are used to operate and maintain alignment throughout observation time from a remote control room. The expected performance are summarized and actual results of astronomical sources are presented.

  15. Solar multi-conjugate adaptive optics performance improvement

    Science.gov (United States)

    Zhang, Zhicheng; Zhang, Xiaofang; Song, Jie

    2015-08-01

    In order to overcome the effect of the atmospheric anisoplanatism, Multi-Conjugate Adaptive Optics (MCAO), which was developed based on turbulence correction by means of several deformable mirrors (DMs) conjugated to different altitude and by which the limit of a small corrected FOV that is achievable with AO is overcome and a wider FOV is able to be corrected, has been widely used to widen the field-of-view (FOV) of a solar telescope. With the assistance of the multi-threaded Adaptive Optics Simulator (MAOS), we can make a 3D reconstruction of the distorted wavefront. The correction is applied by one or more DMs. This technique benefits from information about atmospheric turbulence at different layers, which can be used to reconstruct the wavefront extremely well. In MAOS, the sensors are either simulated as idealized wavefront gradient sensors, tip-tilt sensors based on the best Zernike fit, or a WFS using physical optics and incorporating user specified pixel characteristics and a matched filter pixel processing algorithm. Only considering the atmospheric anisoplanatism, we focus on how the performance of a solar MCAO system is related to the numbers of DMs and their conjugate heights. We theoretically quantify the performance of the tomographic solar MCAO system. The results indicate that the tomographic AO system can improve the average Strehl ratio of a solar telescope by only employing one or two DMs conjugated to the optimum altitude. And the S.R. has a significant increase when more deformable mirrors are used. Furthermore, we discuss the effects of DM conjugate altitude on the correction achievable by the MCAO system, and present the optimum DM conjugate altitudes.

  16. Terahertz adaptive optics with a deformable mirror.

    Science.gov (United States)

    Brossard, Mathilde; Sauvage, Jean-François; Perrin, Mathias; Abraham, Emmanuel

    2018-04-01

    We report on the wavefront correction of a terahertz (THz) beam using adaptive optics, which requires both a wavefront sensor that is able to sense the optical aberrations, as well as a wavefront corrector. The wavefront sensor relies on a direct 2D electro-optic imaging system composed of a ZnTe crystal and a CMOS camera. By measuring the phase variation of the THz electric field in the crystal, we were able to minimize the geometrical aberrations of the beam, thanks to the action of a deformable mirror. This phase control will open the route to THz adaptive optics in order to optimize the THz beam quality for both practical and fundamental applications.

  17. Micromirror Arrays for Adaptive Optics; TOPICAL

    International Nuclear Information System (INIS)

    Carr, E.J.

    2000-01-01

    The long-range goal of this project is to develop the optical and mechanical design of a micromirror array for adaptive optics that will meet the following criteria: flat mirror surface ((lambda)/20), high fill factor ( and gt; 95%), large stroke (5-10(micro)m), and pixel size(approx)-200(micro)m. This will be accomplished by optimizing the mirror surface and actuators independently and then combining them using bonding technologies that are currently being developed

  18. Accuracies Of Optical Processors For Adaptive Optics

    Science.gov (United States)

    Downie, John D.; Goodman, Joseph W.

    1992-01-01

    Paper presents analysis of accuracies and requirements concerning accuracies of optical linear-algebra processors (OLAP's) in adaptive-optics imaging systems. Much faster than digital electronic processor and eliminate some residual distortion. Question whether errors introduced by analog processing of OLAP overcome advantage of greater speed. Paper addresses issue by presenting estimate of accuracy required in general OLAP that yields smaller average residual aberration of wave front than digital electronic processor computing at given speed.

  19. Ground-based photo monitoring

    Science.gov (United States)

    Frederick C. Hall

    2000-01-01

    Ground-based photo monitoring is repeat photography using ground-based cameras to document change in vegetation or soil. Assume those installing the photo location will not be the ones re-photographing it. This requires a protocol that includes: (1) a map to locate the monitoring area, (2) another map diagramming the photographic layout, (3) type and make of film such...

  20. Construction of the Advanced Technology Solar Telescope

    Science.gov (United States)

    Rimmele, T. R.; Keil, S.; McMullin, J.; Knölker, M.; Kuhn, J. R.; Goode, P. R.; Rosner, R.; Casini, R.; Lin, H.; Tritschler, A.; Wöger, F.; ATST Team

    2012-12-01

    The 4m Advance Technology Solar Telescope (ATST) will be the most powerful solar telescope and the world's leading ground-based resource for studying solar magnetism that controls the solar wind, flares, coronal mass ejections and variability in the Sun's output. The project has entered its construction phase. Major subsystems have been contracted. As its highest priority science driver ATST shall provide high resolution and high sensitivity observations of the dynamic solar magnetic fields throughout the solar atmosphere, including the corona at infrared wavelengths. With its 4m aperture, ATST will resolve features at 0.″03 at visible wavelengths and obtain 0.″1 resolution at the magnetically highly sensitive near infrared wavelengths. A high order adaptive optics system delivers a corrected beam to the initial set of state-of-the-art, facility class instrumentation located in the Coudé laboratory facility. The initial set of first generation instruments consists of five facility class instruments, including imagers and spectro-polarimeters. The high polarimetric sensitivity and accuracy required for measurements of the illusive solar magnetic fields place strong constraints on the polarization analysis and calibration. Development and construction of a four-meter solar telescope presents many technical challenges, including thermal control of the enclosure, telescope structure and optics and wavefront control. A brief overview of the science goals and observational requirements of the ATST will be given, followed by a summary of the design status of the telescope and its instrumentation, including design status of major subsystems, such as the telescope mount assembly, enclosure, mirror assemblies, and wavefront correction

  1. Scanning laser ophthalmoscope design with adaptive optics

    OpenAIRE

    Laut, SP; Jones, SM; Olivier, SS; Werner, JS

    2005-01-01

    A design for a high-resolution scanning instrument is presented for in vivo imaging of the human eye at the cellular scale. This system combines adaptive optics technology with a scanning laser ophthalmoscope (SLO) to image structures with high lateral (∼2 μm) resolution. In this system, the ocular wavefront aberrations that reduce the resolution of conventional SLOs are detected by a Hartmann-Shack wavefront sensor, and compensated with two deformable mirrors in a closed-loop for dynamic cor...

  2. Task performance in astronomical adaptive optics

    Science.gov (United States)

    Barrett, Harrison H.; Myers, Kyle J.; Devaney, Nicholas; Dainty, J. C.; Caucci, Luca

    2006-06-01

    In objective or task-based assessment of image quality, figures of merit are defined by the performance of some specific observer on some task of scientific interest. This methodology is well established in medical imaging but is just beginning to be applied in astronomy. In this paper we survey the theory needed to understand the performance of ideal or ideal-linear (Hotelling) observers on detection tasks with adaptive-optical data. The theory is illustrated by discussing its application to detection of exoplanets from a sequence of short-exposure images.

  3. Multifocal multiphoton microscopy with adaptive optical correction

    Science.gov (United States)

    Coelho, Simao; Poland, Simon; Krstajic, Nikola; Li, David; Monypenny, James; Walker, Richard; Tyndall, David; Ng, Tony; Henderson, Robert; Ameer-Beg, Simon

    2013-02-01

    Fluorescence lifetime imaging microscopy (FLIM) is a well established approach for measuring dynamic signalling events inside living cells, including detection of protein-protein interactions. The improvement in optical penetration of infrared light compared with linear excitation due to Rayleigh scattering and low absorption have provided imaging depths of up to 1mm in brain tissue but significant image degradation occurs as samples distort (aberrate) the infrared excitation beam. Multiphoton time-correlated single photon counting (TCSPC) FLIM is a method for obtaining functional, high resolution images of biological structures. In order to achieve good statistical accuracy TCSPC typically requires long acquisition times. We report the development of a multifocal multiphoton microscope (MMM), titled MegaFLI. Beam parallelization performed via a 3D Gerchberg-Saxton (GS) algorithm using a Spatial Light Modulator (SLM), increases TCSPC count rate proportional to the number of beamlets produced. A weighted 3D GS algorithm is employed to improve homogeneity. An added benefit is the implementation of flexible and adaptive optical correction. Adaptive optics performed by means of Zernike polynomials are used to correct for system induced aberrations. Here we present results with significant improvement in throughput obtained using a novel complementary metal-oxide-semiconductor (CMOS) 1024 pixel single-photon avalanche diode (SPAD) array, opening the way to truly high-throughput FLIM.

  4. Advancing adaptive optics technology: Laboratory turbulence simulation and optimization of laser guide stars

    Science.gov (United States)

    Rampy, Rachel A.

    Since Galileo's first telescope some 400 years ago, astronomers have been building ever-larger instruments. Yet only within the last two decades has it become possible to realize the potential angular resolutions of large ground-based telescopes, by using adaptive optics (AO) technology to counter the blurring effects of Earth's atmosphere. And only within the past decade have the development of laser guide stars (LGS) extended AO capabilities to observe science targets nearly anywhere in the sky. Improving turbulence simulation strategies and LGS are the two main topics of my research. In the first part of this thesis, I report on the development of a technique for manufacturing phase plates for simulating atmospheric turbulence in the laboratory. The process involves strategic application of clear acrylic paint onto a transparent substrate. Results of interferometric characterization of the plates are described and compared to Kolmogorov statistics. The range of r0 (Fried's parameter) achieved thus far is 0.2--1.2 mm at 650 nm measurement wavelength, with a Kolmogorov power law. These plates proved valuable at the Laboratory for Adaptive Optics at University of California, Santa Cruz, where they have been used in the Multi-Conjugate Adaptive Optics testbed, during integration and testing of the Gemini Planet Imager, and as part of the calibration system of the on-sky AO testbed named ViLLaGEs (Visible Light Laser Guidestar Experiments). I present a comparison of measurements taken by ViLLaGEs of the power spectrum of a plate and the real sky turbulence. The plate is demonstrated to follow Kolmogorov theory well, while the sky power spectrum does so in a third of the data. This method of fabricating phase plates has been established as an effective and low-cost means of creating simulated turbulence. Due to the demand for such devices, they are now being distributed to other members of the AO community. The second topic of this thesis pertains to understanding and

  5. Practical guidelines for implementing adaptive optics in fluorescence microscopy

    Science.gov (United States)

    Wilding, Dean; Pozzi, Paolo; Soloviev, Oleg; Vdovin, Gleb; Verhaegen, Michel

    2018-02-01

    In life sciences, interest in the microscopic imaging of increasingly complex three dimensional samples, such as cell spheroids, zebrafish embryos, and in vivo applications in small animals, is growing quickly. Due to the increasing complexity of samples, more and more life scientists are considering the implementation of adaptive optics in their experimental setups. While several approaches to adaptive optics in microscopy have been reported, it is often difficult and confusing for the microscopist to choose from the array of techniques and equipment. In this poster presentation we offer a small guide to adaptive optics providing general guidelines for successful adaptive optics implementation.

  6. Adaptive optics imaging of inherited retinal diseases.

    Science.gov (United States)

    Georgiou, Michalis; Kalitzeos, Angelos; Patterson, Emily J; Dubra, Alfredo; Carroll, Joseph; Michaelides, Michel

    2017-11-15

    Adaptive optics (AO) ophthalmoscopy allows for non-invasive retinal phenotyping on a microscopic scale, thereby helping to improve our understanding of retinal diseases. An increasing number of natural history studies and ongoing/planned interventional clinical trials exploit AO ophthalmoscopy both for participant selection, stratification and monitoring treatment safety and efficacy. In this review, we briefly discuss the evolution of AO ophthalmoscopy, recent developments and its application to a broad range of inherited retinal diseases, including Stargardt disease, retinitis pigmentosa and achromatopsia. Finally, we describe the impact of this in vivo microscopic imaging on our understanding of disease pathogenesis, clinical trial design and outcome metrics, while recognising the limitation of the small cohorts reported to date. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  7. Adaptive Optics Facility: control strategy and first on-sky results of the acquisition sequence

    Science.gov (United States)

    Madec, P.-Y.; Kolb, J.; Oberti, S.; Paufique, J.; La Penna, P.; Hackenberg, W.; Kuntschner, H.; Argomedo, J.; Kiekebusch, M.; Donaldson, R.; Suarez, M.; Arsenault, R.

    2016-07-01

    The Adaptive Optics Facility is an ESO project aiming at converting Yepun, one of the four 8m telescopes in Paranal, into an adaptive telescope. This is done by replacing the current conventional secondary mirror of Yepun by a Deformable Secondary Mirror (DSM) and attaching four Laser Guide Star (LGS) Units to its centerpiece. In the meantime, two Adaptive Optics (AO) modules have been developed incorporating each four LGS WaveFront Sensors (WFS) and one tip-tilt sensor used to control the DSM at 1 kHz frame rate. The four LGS Units and one AO module (GRAAL) have already been assembled on Yepun. Besides the technological challenge itself, one critical area of AOF is the AO control strategy and its link with the telescope control, including Active Optics used to shape M1. Another challenge is the request to minimize the overhead due to AOF during the acquisition phase of the observation. This paper presents the control strategy of the AOF. The current control of the telescope is first recalled, and then the way the AO control makes the link with the Active Optics is detailed. Lab results are used to illustrate the expected performance. Finally, the overall AOF acquisition sequence is presented as well as first results obtained on sky with GRAAL.

  8. Control code for laboratory adaptive optics teaching system

    Science.gov (United States)

    Jin, Moonseob; Luder, Ryan; Sanchez, Lucas; Hart, Michael

    2017-09-01

    By sensing and compensating wavefront aberration, adaptive optics (AO) systems have proven themselves crucial in large astronomical telescopes, retinal imaging, and holographic coherent imaging. Commercial AO systems for laboratory use are now available in the market. One such is the ThorLabs AO kit built around a Boston Micromachines deformable mirror. However, there are limitations in applying these systems to research and pedagogical projects since the software is written with limited flexibility. In this paper, we describe a MATLAB-based software suite to interface with the ThorLabs AO kit by using the MATLAB Engine API and Visual Studio. The software is designed to offer complete access to the wavefront sensor data, through the various levels of processing, to the command signals to the deformable mirror and fast steering mirror. In this way, through a MATLAB GUI, an operator can experiment with every aspect of the AO system's functioning. This is particularly valuable for tests of new control algorithms as well as to support student engagement in an academic environment. We plan to make the code freely available to the community.

  9. The DKIST Data Center: Meeting the Data Challenges for Next-Generation, Ground-Based Solar Physics

    Science.gov (United States)

    Davey, A. R.; Reardon, K.; Berukoff, S. J.; Hays, T.; Spiess, D.; Watson, F. T.; Wiant, S.

    2016-12-01

    The Daniel K. Inouye Solar Telescope (DKIST) is under construction on the summit of Haleakalā in Maui, and scheduled to start science operations in 2020. The DKIST design includes a four-meter primary mirror coupled to an adaptive optics system, and a flexible instrumentation suite capable of delivering high-resolution optical and infrared observations of the solar chromosphere, photosphere, and corona. Through investigator-driven science proposals, the facility will generate an average of 8 TB of data daily, comprised of millions of images and hundreds of millions of metadata elements. The DKIST Data Center is responsible for the long-term curation and calibration of data received from the DKIST, and for distributing it to the user community for scientific use. Two key elements necessary to meet the inherent big data challenge are the development of flexible public/private cloud computing and coupled relational and non-relational data storage mechanisms. We discuss how this infrastructure is being designed to meet the significant expectation of automatic and manual calibration of ground-based solar physics data, and the maximization the data's utility through efficient, long-term data management practices implemented with prudent process definition and technology exploitation.

  10. Lithographic manufacturing of adaptive optics components

    Science.gov (United States)

    Scott, R. Phillip; Jean, Madison; Johnson, Lee; Gatlin, Ridley; Bronson, Ryan; Milster, Tom; Hart, Michael

    2017-09-01

    Adaptive optics systems and their laboratory test environments call for a number of unusual optical components. Examples include lenslet arrays, pyramids, and Kolmogorov phase screens. Because of their specialized application, the availability of these parts is generally limited, with high cost and long lead time, which can also significantly drive optical system design. These concerns can be alleviated by a fast and inexpensive method of optical fabrication. To that end, we are exploring direct-write lithographic techniques to manufacture three different custom elements. We report results from a number of prototype devices including 1, 2, and 3 wave Multiple Order Diffractive (MOD) lenslet arrays with 0.75 mm pitch and phase screens with near Kolmogorov structure functions with a Fried length r0 around 1 mm. We also discuss plans to expand our research to include a diffractive pyramid that is smaller, lighter, and more easily manufactured than glass versions presently used in pyramid wavefront sensors. We describe how these components can be produced within the limited dynamic range of the lithographic process, and with a rapid prototyping and manufacturing cycle. We discuss exploratory manufacturing methods, including replication, and potential observing techniques enabled by the ready availability of custom components.

  11. Adaptive optics without altering visual perception.

    Science.gov (United States)

    Koenig, D E; Hart, N W; Hofer, H J

    2014-04-01

    Adaptive optics combined with visual psychophysics creates the potential to study the relationship between visual function and the retina at the cellular scale. This potential is hampered, however, by visual interference from the wavefront-sensing beacon used during correction. For example, we have previously shown that even a dim, visible beacon can alter stimulus perception (Hofer et al., 2012). Here we describe a simple strategy employing a longer wavelength (980nm) beacon that, in conjunction with appropriate restriction on timing and placement, allowed us to perform psychophysics when dark adapted without altering visual perception. The method was verified by comparing detection and color appearance of foveally presented small spot stimuli with and without the wavefront beacon present in 5 subjects. As an important caution, we found that significant perceptual interference can occur even with a subliminal beacon when additional measures are not taken to limit exposure. Consequently, the lack of perceptual interference should be verified for a given system, and not assumed based on invisibility of the beacon. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Robust adaptive optics systems for vision science

    Science.gov (United States)

    Burns, S. A.; de Castro, A.; Sawides, L.; Luo, T.; Sapoznik, K.

    2018-02-01

    Adaptive Optics (AO) is of growing importance for understanding the impact of retinal and systemic diseases on the retina. While AO retinal imaging in healthy eyes is now routine, AO imaging in older eyes and eyes with optical changes to the anterior eye can be difficult and requires a control and an imaging system that is resilient when there is scattering and occlusion from the cornea and lens, as well as in the presence of irregular and small pupils. Our AO retinal imaging system combines evaluation of local image quality of the pupil, with spatially programmable detection. The wavefront control system uses a woofer tweeter approach, combining an electromagnetic mirror and a MEMS mirror and a single Shack Hartmann sensor. The SH sensor samples an 8 mm exit pupil and the subject is aligned to a region within this larger system pupil using a chin and forehead rest. A spot quality metric is calculated in real time for each lenslet. Individual lenslets that do not meet the quality metric are eliminated from the processing. Mirror shapes are smoothed outside the region of wavefront control when pupils are small. The system allows imaging even with smaller irregular pupils, however because the depth of field increases under these conditions, sectioning performance decreases. A retinal conjugate micromirror array selectively directs mid-range scatter to additional detectors. This improves detection of retinal capillaries even when the confocal image has poorer image quality that includes both photoreceptors and blood vessels.

  13. MAD ADAPTIVE OPTICS IMAGING OF HIGH-LUMINOSITY QUASARS: A PILOT PROJECT

    Energy Technology Data Exchange (ETDEWEB)

    Liuzzo, E. [Osservatorio di Radioastronomia, INAF, via Gobetti 101, I-40129 Bologna (Italy); Falomo, R.; Paiano, S.; Baruffolo, A.; Farinato, J.; Moretti, A.; Ragazzoni, R. [Osservatorio Astronomico di Padova, INAF, vicolo dell’Osservatorio 5, I-35122 Padova (Italy); Treves, A. [Università dell’Insubria (Como) (Italy); Uslenghi, M. [INAF-IASF, via E. Bassini 15, I-20133 Milano (Italy); Arcidiacono, C.; Diolaiti, E.; Lombini, M. [Osservatorio Astronomico di Bologna, INAF, Bologna, Via Ranzani 1, I-40127 Bologna (Italy); Brast, R. [Dipartimento di Fisica e Astronomia, Università di Bologna, Via Irnerio, 46, I-40126, Bologna (Italy); Donaldson, R.; Kolb, J.; Marchetti, E.; Tordo, S., E-mail: liuzzo@ira.inaf.it [European Southern Observatory, Karl-Schwarschild-Strasse 2, D-85748 Garching bei München (Germany)

    2016-08-01

    We present near-IR images of five luminous quasars at z ∼ 2 and one at z ∼ 4 obtained with an experimental adaptive optics (AO) instrument at the European Southern Observatory Very Large Telescope. The observations are part of a program aimed at demonstrating the capabilities of multi-conjugated adaptive optics imaging combined with the use of natural guide stars for high spatial resolution studies on large telescopes. The observations were mostly obtained under poor seeing conditions but in two cases. In spite of these nonoptimal conditions, the resulting images of point sources have cores of FWHM ∼ 0.2 arcsec. We are able to characterize the host galaxy properties for two sources and set stringent upper limits to the galaxy luminosity for the others. We also report on the expected capabilities for investigating the host galaxies of distant quasars with AO systems coupled with future Extremely Large Telescopes. Detailed simulations show that it will be possible to characterize compact (2–3 kpc) quasar host galaxies for quasi-stellar objects at z = 2 with nucleus K -magnitude spanning from 15 to 20 (corresponding to absolute magnitude −31 to −26) and host galaxies that are 4 mag fainter than their nuclei.

  14. MAD Adaptive Optics Imaging of High-luminosity Quasars: A Pilot Project

    Science.gov (United States)

    Liuzzo, E.; Falomo, R.; Paiano, S.; Treves, A.; Uslenghi, M.; Arcidiacono, C.; Baruffolo, A.; Diolaiti, E.; Farinato, J.; Lombini, M.; Moretti, A.; Ragazzoni, R.; Brast, R.; Donaldson, R.; Kolb, J.; Marchetti, E.; Tordo, S.

    2016-08-01

    We present near-IR images of five luminous quasars at z ˜ 2 and one at z ˜ 4 obtained with an experimental adaptive optics (AO) instrument at the European Southern Observatory Very Large Telescope. The observations are part of a program aimed at demonstrating the capabilities of multi-conjugated adaptive optics imaging combined with the use of natural guide stars for high spatial resolution studies on large telescopes. The observations were mostly obtained under poor seeing conditions but in two cases. In spite of these nonoptimal conditions, the resulting images of point sources have cores of FWHM ˜ 0.2 arcsec. We are able to characterize the host galaxy properties for two sources and set stringent upper limits to the galaxy luminosity for the others. We also report on the expected capabilities for investigating the host galaxies of distant quasars with AO systems coupled with future Extremely Large Telescopes. Detailed simulations show that it will be possible to characterize compact (2-3 kpc) quasar host galaxies for quasi-stellar objects at z = 2 with nucleus K-magnitude spanning from 15 to 20 (corresponding to absolute magnitude -31 to -26) and host galaxies that are 4 mag fainter than their nuclei.

  15. Multiconjugate adaptive optics applied to an anatomically accurate human eye model.

    Science.gov (United States)

    Bedggood, P A; Ashman, R; Smith, G; Metha, A B

    2006-09-04

    Aberrations of both astronomical telescopes and the human eye can be successfully corrected with conventional adaptive optics. This produces diffraction-limited imagery over a limited field of view called the isoplanatic patch. A new technique, known as multiconjugate adaptive optics, has been developed recently in astronomy to increase the size of this patch. The key is to model atmospheric turbulence as several flat, discrete layers. A human eye, however, has several curved, aspheric surfaces and a gradient index lens, complicating the task of correcting aberrations over a wide field of view. Here we utilize a computer model to determine the degree to which this technology may be applied to generate high resolution, wide-field retinal images, and discuss the considerations necessary for optimal use with the eye. The Liou and Brennan schematic eye simulates the aspheric surfaces and gradient index lens of real human eyes. We show that the size of the isoplanatic patch of the human eye is significantly increased through multiconjugate adaptive optics.

  16. Multiconjugate adaptive optics applied to an anatomically accurate human eye model

    Science.gov (United States)

    Bedggood, P. A.; Ashman, R.; Smith, G.; Metha, A. B.

    2006-09-01

    Aberrations of both astronomical telescopes and the human eye can be successfully corrected with conventional adaptive optics. This produces diffraction-limited imagery over a limited field of view called the isoplanatic patch. A new technique, known as multiconjugate adaptive optics, has been developed recently in astronomy to increase the size of this patch. The key is to model atmospheric turbulence as several flat, discrete layers. A human eye, however, has several curved, aspheric surfaces and a gradient index lens, complicating the task of correcting aberrations over a wide field of view. Here we utilize a computer model to determine the degree to which this technology may be applied to generate high resolution, wide-field retinal images, and discuss the considerations necessary for optimal use with the eye. The Liou and Brennan schematic eye simulates the aspheric surfaces and gradient index lens of real human eyes. We show that the size of the isoplanatic patch of the human eye is significantly increased through multiconjugate adaptive optics.

  17. TESTING THE APODIZED PUPIL LYOT CORONAGRAPH ON THE LABORATORY FOR ADAPTIVE OPTICS EXTREME ADAPTIVE OPTICS TESTBED

    International Nuclear Information System (INIS)

    Thomas, Sandrine J.; Dillon, Daren; Gavel, Donald; Soummer, Remi; Macintosh, Bruce; Sivaramakrishnan, Anand

    2011-01-01

    We present testbed results of the Apodized Pupil Lyot Coronagraph (APLC) at the Laboratory for Adaptive Optics (LAO). These results are part of the validation and tests of the coronagraph and of the Extreme Adaptive Optics (ExAO) for the Gemini Planet Imager (GPI). The apodizer component is manufactured with a halftone technique using black chrome microdots on glass. Testing this APLC (like any other coronagraph) requires extremely good wavefront correction, which is obtained to the 1 nm rms level using the microelectricalmechanical systems (MEMS) technology, on the ExAO visible testbed of the LAO at the University of Santa Cruz. We used an APLC coronagraph without central obstruction, both with a reference super-polished flat mirror and with the MEMS to obtain one of the first images of a dark zone in a coronagraphic image with classical adaptive optics using a MEMS deformable mirror (without involving dark hole algorithms). This was done as a complementary test to the GPI coronagraph testbed at American Museum of Natural History, which studied the coronagraph itself without wavefront correction. Because we needed a full aperture, the coronagraph design is very different from the GPI design. We also tested a coronagraph with central obstruction similar to that of GPI. We investigated the performance of the APLC coronagraph and more particularly the effect of the apodizer profile accuracy on the contrast. Finally, we compared the resulting contrast to predictions made with a wavefront propagation model of the testbed to understand the effects of phase and amplitude errors on the final contrast.

  18. Custom CCD for adaptive optics applications

    Science.gov (United States)

    Downing, Mark; Arsenault, Robin; Baade, Dietrich; Balard, Philippe; Bell, Ray; Burt, David; Denney, Sandy; Feautrier, Philippe; Fusco, Thierry; Gach, Jean-Luc; Diaz Garcia, José Javier; Guillaume, Christian; Hubin, Norbert; Jorden, Paul; Kasper, Markus; Meyer, Manfred; Pool, Peter; Reyes, Javier; Skegg, Michael; Stadler, Eric; Suske, Wolfgang; Wheeler, Patrick

    2006-06-01

    ESO and JRA2 OPTICON have funded e2v technologies to develop a compact packaged Peltier cooled 24 μm square 240x240 pixels split frame transfer 8-output back-illuminated L3Vision CCD3, L3Vision CCD for Adaptive Optic Wave Front Sensor (AO WFS) applications. The device is designed to achieve sub-electron read noise at frame rates from 25 Hz to 1,500 Hz and dark current lower than 0.01 e-/pixel/frame. The development has many unique features. To obtain high frame rates, multi-output EMCCD gain registers and metal buttressing of row clock lines are used. The baseline device is built in standard silicon. In addition, a split wafer run has enabled two speculative variants to be built; deep depletion silicon devices to improve red response and devices with an electronic shutter to extend use to Rayleigh and Pulsed Laser Guide Star applications. These are all firsts for L3Vision CCDs. The designs of the CCD and Peltier package have passed their reviews and fabrication has begun. This paper will describe the progress to date, the requirements and the design of the CCD and compact Peltier package, technology trade-offs, schedule and proposed test plan. High readout speed, low noise and compactness (requirement to fit in confined spaces) provide special challenges to ESO's AO variant of its NGC, New General detector Controller to drive this CCD. This paper will describe progress made on the design of the controller to meet these special needs.

  19. Adaptive Optics Observations of Exoplanets, Brown Dwarfs, and Binary Stars

    Science.gov (United States)

    Hinkley, Sasha

    2012-04-01

    The current direct observations of brown dwarfs and exoplanets have been obtained using instruments not specifically designed for overcoming the large contrast ratio between the host star and any wide-separation faint companions. However, we are about to witness the birth of several new dedicated observing platforms specifically geared towards high contrast imaging of these objects. The Gemini Planet Imager, VLT-SPHERE, Subaru HiCIAO, and Project 1640 at the Palomar 5m telescope will return images of numerous exoplanets and brown dwarfs over hundreds of observing nights in the next five years. Along with diffraction-limited coronagraphs and high-order adaptive optics, these instruments also will return spectral and polarimetric information on any discovered targets, giving clues to their atmospheric compositions and characteristics. Such spectral characterization will be key to forming a detailed theory of comparative exoplanetary science which will be widely applicable to both exoplanets and brown dwarfs. Further, the prevalence of aperture masking interferometry in the field of high contrast imaging is also allowing observers to sense massive, young planets at solar system scales (~3-30 AU)- separations out of reach to conventional direct imaging techniques. Such observations can provide snapshots at the earliest phases of planet formation-information essential for constraining formation mechanisms as well as evolutionary models of planetary mass companions. As a demonstration of the power of this technique, I briefly review recent aperture masking observations of the HR 8799 system. Moreover, all of the aforementioned techniques are already extremely adept at detecting low-mass stellar companions to their target stars, and I present some recent highlights.

  20. Research on the adaptive optical control technology based on DSP

    Science.gov (United States)

    Zhang, Xiaolu; Xue, Qiao; Zeng, Fa; Zhao, Junpu; Zheng, Kuixing; Su, Jingqin; Dai, Wanjun

    2018-02-01

    Adaptive optics is a real-time compensation technique using high speed support system for wavefront errors caused by atmospheric turbulence. However, the randomness and instantaneity of atmospheric changing introduce great difficulties to the design of adaptive optical systems. A large number of complex real-time operations lead to large delay, which is an insurmountable problem. To solve this problem, hardware operation and parallel processing strategy are proposed, and a high-speed adaptive optical control system based on DSP is developed. The hardware counter is used to check the system. The results show that the system can complete a closed loop control in 7.1ms, and improve the controlling bandwidth of the adaptive optical system. Using this system, the wavefront measurement and closed loop experiment are carried out, and obtain the good results.

  1. A Miniaturized Adaptive Optic Device for Optical Telecommunications, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — To advance the state-of-the-art uplink laser communication technology, new adaptive optic beam compensation techniques are needed for removing various time-varying...

  2. Multi-GPU Development of a Neural Networks Based Reconstructor for Adaptive Optics

    Directory of Open Access Journals (Sweden)

    Carlos González-Gutiérrez

    2018-01-01

    Full Text Available Aberrations introduced by the atmospheric turbulence in large telescopes are compensated using adaptive optics systems, where the use of deformable mirrors and multiple sensors relies on complex control systems. Recently, the development of larger scales of telescopes as the E-ELT or TMT has created a computational challenge due to the increasing complexity of the new adaptive optics systems. The Complex Atmospheric Reconstructor based on Machine Learning (CARMEN is an algorithm based on artificial neural networks, designed to compensate the atmospheric turbulence. During recent years, the use of GPUs has been proved to be a great solution to speed up the learning process of neural networks, and different frameworks have been created to ease their development. The implementation of CARMEN in different Multi-GPU frameworks is presented in this paper, along with its development in a language originally developed for GPU, like CUDA. This implementation offers the best response for all the presented cases, although its advantage of using more than one GPU occurs only in large networks.

  3. Layer-oriented multigrid wavefront reconstruction algorithms for multi-conjugate adaptive optics

    Science.gov (United States)

    Gilles, Luc; Ellerbroek, Brent L.; Vogel, Curtis R.

    2003-02-01

    Multi-conjugate adaptive optics (MCAO) systems with 104-105 degrees of freedom have been proposed for future giant telescopes. Using standard matrix methods to compute, optimize, and implement wavefront control algorithms for these systems is impractical, since the number of calculations required to compute and apply the reconstruction matrix scales respectively with the cube and the square of the number of AO degrees of freedom. In this paper, we develop an iterative sparse matrix implementation of minimum variance wavefront reconstruction for telescope diameters up to 32m with more than 104 actuators. The basic approach is the preconditioned conjugate gradient method, using a multigrid preconditioner incorporating a layer-oriented (block) symmetric Gauss-Seidel iterative smoothing operator. We present open-loop numerical simulation results to illustrate algorithm convergence.

  4. Enhancing Ground Based Telescope Performance with Image Processing

    Science.gov (United States)

    2013-11-13

    called the hybrid diversity algorithm ( HDA ) that is based on the Gerchberg-Saxton algorithm with another process to perform phase-unwraping [36, 45...47]. The HDA requires phase diversity similar to the LM least squares method used for characterizing the HST [32]. The problem of generating...addition, the new phase retrieval algorithm proposed in this chapter has the advantage over NASA’s hybrid diversity algorithm ( HDA ) planned for use on JWST

  5. Robo-AO KP: A new era in robotic adaptive optics

    Science.gov (United States)

    Riddle, Reed L.; Baranec, Christoph; Law, Nicholas M.; Kulkarni, Shrinivas R.; Duev, Dmitry; Ziegler, Carl; Jensen-Clem, Rebecca M.; Atkinson, Dani Eleanor; Tanner, Angelle M.; Zhang, Celia; Ray, Amy

    2016-01-01

    Robo-AO is the first and only fully automated adaptive optics laser guide star AO instrument. It was developed as an instrument for 1-3m robotic telescopes, in order to take advantage of their availability to pursue large survey programs and target of opportunity observations that aren't possible with other AO systems. Robo-AO is currently the most efficient AO system in existence, and it can achieve an observation rate of 20+ science targets per hour. In more than three years of operations at Palomar Observatory, it has been quite successful, producing technology that is being adapted by other AO systems and robotic telescope projects, as well as several high impact scientific publications. Now, Robo-AO has been selected to take over operation of the Kitt Peak National Observatory 2.1m telescope. This will give Robo-AO KP the opportunity to pursue multiple science programs consisting of several thousand targets each during the three years it will be on the telescope. One-sixth of the observing time will be allocated to the US community through the NOAO TAC process. This presentation will discuss the process adapting Robo-AO to the KPNO 2.1m telescope, the plans for integration and initial operations, and the science operations and programs to be pursued.

  6. Meaning of visualizing retinal cone mosaic on adaptive optics images.

    Science.gov (United States)

    Jacob, Julie; Paques, Michel; Krivosic, Valérie; Dupas, Bénédicte; Couturier, Aude; Kulcsar, Caroline; Tadayoni, Ramin; Massin, Pascale; Gaudric, Alain

    2015-01-01

    To explore the anatomic correlation of the retinal cone mosaic on adaptive optics images. Retrospective nonconsecutive observational case series. A retrospective review of the multimodal imaging charts of 6 patients with focal alteration of the cone mosaic on adaptive optics was performed. Retinal diseases included acute posterior multifocal placoid pigment epitheliopathy (n = 1), hydroxychloroquine retinopathy (n = 1), and macular telangiectasia type 2 (n = 4). High-resolution retinal images were obtained using a flood-illumination adaptive optics camera. Images were recorded using standard imaging modalities: color and red-free fundus camera photography; infrared reflectance scanning laser ophthalmoscopy, fluorescein angiography, indocyanine green angiography, and spectral-domain optical coherence tomography (OCT) images. On OCT, in the marginal zone of the lesions, a disappearance of the interdigitation zone was observed, while the ellipsoid zone was preserved. Image recording demonstrated that such attenuation of the interdigitation zone co-localized with the disappearance of the cone mosaic on adaptive optics images. In 1 case, the restoration of the interdigitation zone paralleled that of the cone mosaic after a 2-month follow-up. Our results suggest that the interdigitation zone could contribute substantially to the reflectance of the cone photoreceptor mosaic. The absence of cones on adaptive optics images does not necessarily mean photoreceptor cell death. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. THE INNER KILOPARSEC OF Mrk 273 WITH KECK ADAPTIVE OPTICS

    Energy Technology Data Exchange (ETDEWEB)

    U, Vivian; Sanders, David; Kewley, Lisa [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Dr., Honolulu, HI 96822 (United States); Medling, Anne; Max, Claire [Department of Astronomy and Astrophysics, University of California, Santa Cruz, 1156 High Street, Santa Cruz, CA 95064 (United States); Armus, Lee [Spitzer Science Center, California Institute of Technology, 1200 E. California Blvd., Pasadena, CA 91125 (United States); Iwasawa, Kazushi [ICREA and Institut del Ciències del Cosmos, Universitat de Barcelona (IEEC-UB), Martí i Franquès, 1, E-08028 Barcelona (Spain); Evans, Aaron [Department of Astronomy, University of Virginia, 530 McCormick Road, Charlottesville, VA 22904 (United States); Fazio, Giovanni, E-mail: vivianu@ucr.edu [Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138 (United States)

    2013-10-01

    There is X-ray, optical, and mid-infrared imaging and spectroscopic evidence that the late-stage ultraluminous infrared galaxy merger Mrk 273 hosts a powerful active galactic nucleus (AGN). However, the exact location of the AGN and the nature of the nucleus have been difficult to determine due to dust obscuration and the limited wavelength coverage of available high-resolution data. Here we present near-infrared integral-field spectra and images of the nuclear region of Mrk 273 taken with OSIRIS and NIRC2 on the Keck II Telescope with laser guide star adaptive optics. We observe three spatially resolved components, and analyze the nuclear molecular and ionized gas emission lines and their kinematics. We confirm the presence of the hard X-ray AGN in the southwest nucleus. In the north nucleus, we find a strongly rotating gas disk whose kinematics indicate a central black hole of mass 1.04 ± 0.1 × 10{sup 9} M{sub ☉}. The H{sub 2} emission line shows an increase in velocity dispersion along the minor axis in both directions, and an increased flux with negative velocities in the southeast direction; this provides direct evidence for a collimated molecular outflow along the axis of rotation of the disk. The third spatially distinct component appears to the southeast, 640 and 750 pc from the north and southwest nuclei, respectively. This component is faint in continuum emission but shows several strong emission line features, including [Si VI] 1.964 μm which traces an extended coronal-line region. The geometry of the [Si VI] emission combined with shock models and energy arguments suggest that [Si VI] in the southeast component must be at least partly ionized by the SW AGN or a putative AGN in the northern disk, either through photoionization or through shock-heating from strong AGN- and circumnuclear-starburst-driven outflows. This lends support to a scenario in which Mrk 273 may be a dual AGN system.

  8. Wavefront sensorless adaptive optics ophthalmoscopy in the human eye

    Science.gov (United States)

    Hofer, Heidi; Sredar, Nripun; Queener, Hope; Li, Chaohong; Porter, Jason

    2011-01-01

    Wavefront sensor noise and fidelity place a fundamental limit on achievable image quality in current adaptive optics ophthalmoscopes. Additionally, the wavefront sensor ‘beacon’ can interfere with visual experiments. We demonstrate real-time (25 Hz), wavefront sensorless adaptive optics imaging in the living human eye with image quality rivaling that of wavefront sensor based control in the same system. A stochastic parallel gradient descent algorithm directly optimized the mean intensity in retinal image frames acquired with a confocal adaptive optics scanning laser ophthalmoscope (AOSLO). When imaging through natural, undilated pupils, both control methods resulted in comparable mean image intensities. However, when imaging through dilated pupils, image intensity was generally higher following wavefront sensor-based control. Despite the typically reduced intensity, image contrast was higher, on average, with sensorless control. Wavefront sensorless control is a viable option for imaging the living human eye and future refinements of this technique may result in even greater optical gains. PMID:21934779

  9. Implementation and on-sky results of an optimal wavefront controller for the MMT NGS adaptive optics system

    Science.gov (United States)

    Powell, Keith B.; Vaitheeswaran, Vidhya

    2010-07-01

    The MMT observatory has recently implemented and tested an optimal wavefront controller for the NGS adaptive optics system. Open loop atmospheric data collected at the telescope is used as the input to a MATLAB based analytical model. The model uses nonlinear constrained minimization to determine controller gains and optimize the system performance. The real-time controller performing the adaptive optics close loop operation is implemented on a dedicated high performance PC based quad core server. The controller algorithm is written in C and uses the GNU scientific library for linear algebra. Tests at the MMT confirmed the optimal controller significantly reduced the residual RMS wavefront compared with the previous controller. Significant reductions in image FWHM and increased peak intensities were obtained in J, H and K-bands. The optimal PID controller is now operating as the baseline wavefront controller for the MMT NGS-AO system.

  10. Robustness study of the pseudo open-loop controller for multiconjugate adaptive optics.

    Science.gov (United States)

    Piatrou, Piotr; Gilles, Luc

    2005-02-20

    Robustness of the recently proposed "pseudo open-loop control" algorithm against various system errors has been investigated for the representative example of the Gemini-South 8-m telescope multiconjugate adaptive-optics system. The existing model to represent the adaptive-optics system with pseudo open-loop control has been modified to account for misalignments, noise and calibration errors in deformable mirrors, and wave-front sensors. Comparison with the conventional least-squares control model has been done. We show with the aid of both transfer-function pole-placement analysis and Monte Carlo simulations that POLC remains remarkably stable and robust against very large levels of system errors and outperforms in this respect least-squares control. Approximate stability margins as well as performance metrics such as Strehl ratios and rms wave-front residuals averaged over a 1-arc min field of view have been computed for different types and levels of system errors to quantify the expected performance degradation.

  11. Space debris removal using a high-power ground-based laser

    Energy Technology Data Exchange (ETDEWEB)

    Monroe, D.K.

    1993-12-31

    The feasibility and practicality of using a ground-based laser (GBL) to remove artificial space debris is examined. Physical constraints indicate that a reactor-pumped laser (RPL) may be best suited for this mission, because of its capabilities for multimegawatt output long run-times, and near-diffraction-limited initial beams. Simulations of a laser-powered debris removal system indicate that a 5-MW RPL with a 10-meter-diameter beam director and adaptive optics capabilities can deorbit 1-kg debris from space station altitudes. Larger debris can be deorbited or transferred to safer orbits after multiple laser engagements. A ground-based laser system may be the only realistic way to access and remove some 10,000 separate objects, having velocities in the neighborhood of 7 km/sec, and being spatially distributed over some 10{sup 10} km{sup 3} of space.

  12. Holographic fluorescence microscopy with incoherent digital holographic adaptive optics.

    Science.gov (United States)

    Jang, Changwon; Kim, Jonghyun; Clark, David C; Lee, Seungjae; Lee, Byoungho; Kim, Myung K

    2015-01-01

    Introduction of adaptive optics technology into astronomy and ophthalmology has made great contributions in these fields, allowing one to recover images blurred by atmospheric turbulence or aberrations of the eye. Similar adaptive optics improvement in microscopic imaging is also of interest to researchers using various techniques. Current technology of adaptive optics typically contains three key elements: a wavefront sensor, wavefront corrector, and controller. These hardware elements tend to be bulky, expensive, and limited in resolution, involving, for example, lenslet arrays for sensing or multiactuator deformable mirrors for correcting. We have previously introduced an alternate approach based on unique capabilities of digital holography, namely direct access to the phase profile of an optical field and the ability to numerically manipulate the phase profile. We have also demonstrated that direct access and compensation of the phase profile are possible not only with conventional coherent digital holography, but also with a new type of digital holography using incoherent light: selfinterference incoherent digital holography (SIDH). The SIDH generates a complex—i.e., amplitude plus phase—hologram from one or several interferograms acquired with incoherent light, such as LEDs, lamps, sunlight, or fluorescence. The complex point spread function can be measured using guide star illumination and it allows deterministic deconvolution of the full-field image. We present experimental demonstration of aberration compensation in holographic fluorescence microscopy using SIDH. Adaptive optics by SIDH provides new tools for improved cellular fluorescence microscopy through intact tissue layers or other types of aberrant media.

  13. Binary stars observed with adaptive optics at the starfire optical range

    Energy Technology Data Exchange (ETDEWEB)

    Drummond, Jack D. [Air Force Research Laboratory, Directed Energy Directorate, RDSAM, 3550 Aberdeen Avenue SE, Kirtland AFB, NM 87117-5776 (United States)

    2014-03-01

    In reviewing observations taken of binary stars used as calibration objects for non-astronomical purposes with adaptive optics on the 3.5 m Starfire Optical Range telescope over the past 2 years, one-fifth of them were found to be off-orbit. In order to understand such a high number of discrepant position angles and separations, all previous observations in the Washington Double Star Catalog for these rogue binaries were obtained from the Naval Observatory. Adding our observations to these yields new orbits for all, resolving the discrepancies. We have detected both components of γ Gem for the first time, and we have shown that 7 Cam is an optical pair, not physically bound.

  14. The large binocular telescope.

    Science.gov (United States)

    Hill, John M

    2010-06-01

    The Large Binocular Telescope (LBT) Observatory is a collaboration among institutions in Arizona, Germany, Italy, Indiana, Minnesota, Ohio, and Virginia. The telescope on Mount Graham in Southeastern Arizona uses two 8.4 m diameter primary mirrors mounted side by side. A unique feature of the LBT is that the light from the two Gregorian telescope sides can be combined to produce phased-array imaging of an extended field. This cophased imaging along with adaptive optics gives the telescope the diffraction-limited resolution of a 22.65 m aperture and a collecting area equivalent to an 11.8 m circular aperture. This paper describes the design, construction, and commissioning of this unique telescope. We report some sample astronomical results with the prime focus cameras. We comment on some of the technical challenges and solutions. The telescope uses two F/15 adaptive secondaries to correct atmospheric turbulence. The first of these adaptive mirrors has completed final system testing in Firenze, Italy, and is planned to be at the telescope by Spring 2010.

  15. Preconditioned conjugate gradient wave-front reconstructors for multiconjugate adaptive optics

    Science.gov (United States)

    Gilles, Luc; Ellerbroek, Brent L.; Vogel, Curtis R.

    2003-09-01

    Multiconjugate adaptive optics (MCAO) systems with 104-105 degrees of freedom have been proposed for future giant telescopes. Using standard matrix methods to compute, optimize, and implement wave-front control algorithms for these systems is impractical, since the number of calculations required to compute and apply the reconstruction matrix scales respectively with the cube and the square of the number of adaptive optics degrees of freedom. We develop scalable open-loop iterative sparse matrix implementations of minimum variance wave-front reconstruction for telescope diameters up to 32 m with more than 104 actuators. The basic approach is the preconditioned conjugate gradient method with an efficient preconditioner, whose block structure is defined by the atmospheric turbulent layers very much like the layer-oriented MCAO algorithms of current interest. Two cost-effective preconditioners are investigated: a multigrid solver and a simpler block symmetric Gauss-Seidel (BSGS) sweep. Both options require off-line sparse Cholesky factorizations of the diagonal blocks of the matrix system. The cost to precompute these factors scales approximately as the three-halves power of the number of estimated phase grid points per atmospheric layer, and their average update rate is typically of the order of 10-2 Hz, i.e., 4-5 orders of magnitude lower than the typical 103 Hz temporal sampling rate. All other computations scale almost linearly with the total number of estimated phase grid points. We present numerical simulation results to illustrate algorithm convergence. Convergence rates of both preconditioners are similar, regardless of measurement noise level, indicating that the layer-oriented BSGS sweep is as effective as the more elaborated multiresolution preconditioner.

  16. Preconditioned conjugate gradient wave-front reconstructors for multiconjugate adaptive optics.

    Science.gov (United States)

    Gilles, Luc; Ellerbroek, Brent L; Vogel, Curtis R

    2003-09-10

    Multiconjugate adaptive optics (MCAO) systems with 10(4)-10(5) degrees of freedom have been proposed for future giant telescopes. Using standard matrix methods to compute, optimize, and implement wavefront control algorithms for these systems is impractical, since the number of calculations required to compute and apply the reconstruction matrix scales respectively with the cube and the square of the number of adaptive optics degrees of freedom. We develop scalable open-loop iterative sparse matrix implementations of minimum variance wave-front reconstruction for telescope diameters up to 32 m with more than 10(4) actuators. The basic approach is the preconditioned conjugate gradient method with an efficient preconditioner, whose block structure is defined by the atmospheric turbulent layers very much like the layer-oriented MCAO algorithms of current interest. Two cost-effective preconditioners are investigated: a multigrid solver and a simpler block symmetric Gauss-Seidel (BSGS) sweep. Both options require off-line sparse Cholesky factorizations of the diagonal blocks of the matrix system. The cost to precompute these factors scales approximately as the three-halves power of the number of estimated phase grid points per atmospheric layer, and their average update rate is typically of the order of 10(-2) Hz, i.e., 4-5 orders of magnitude lower than the typical 10(3) Hz temporal sampling rate. All other computations scale almost linearly with the total number of estimated phase grid points. We present numerical simulation results to illustrate algorithm convergence. Convergence rates of both preconditioners are similar, regardless of measurement noise level, indicating that the layer-oriented BSGS sweep is as effective as the more elaborated multiresolution preconditioner.

  17. Reducing adaptive optics latency using Xeon Phi many-core processors

    Science.gov (United States)

    Barr, David; Basden, Alastair; Dipper, Nigel; Schwartz, Noah

    2015-11-01

    The next generation of Extremely Large Telescopes (ELTs) for astronomy will rely heavily on the performance of their adaptive optics (AO) systems. Real-time control is at the heart of the critical technologies that will enable telescopes to deliver the best possible science and will require a very significant extrapolation from current AO hardware existing for 4-10 m telescopes. Investigating novel real-time computing architectures and testing their eligibility against anticipated challenges is one of the main priorities of technology development for the ELTs. This paper investigates the suitability of the Intel Xeon Phi, which is a commercial off-the-shelf hardware accelerator. We focus on wavefront reconstruction performance, implementing a straightforward matrix-vector multiplication (MVM) algorithm. We present benchmarking results of the Xeon Phi on a real-time Linux platform, both as a standalone processor and integrated into an existing real-time controller (RTC). Performance of single and multiple Xeon Phis are investigated. We show that this technology has the potential of greatly reducing the mean latency and variations in execution time (jitter) of large AO systems. We present both a detailed performance analysis of the Xeon Phi for a typical E-ELT first-light instrument along with a more general approach that enables us to extend to any AO system size. We show that systematic and detailed performance analysis is an essential part of testing novel real-time control hardware to guarantee optimal science results.

  18. The Chandra Deep Field South as a test case for Global Multi Conjugate Adaptive Optics

    Science.gov (United States)

    Portaluri, E.; Viotto, V.; Ragazzoni, R.; Gullieuszik, M.; Bergomi, M.; Greggio, D.; Biondi, F.; Dima, M.; Magrin, D.; Farinato, J.

    2017-04-01

    The era of the next generation of giant telescopes requires not only the advent of new technologies but also the development of novel methods, in order to exploit fully the extraordinary potential they are built for. Global Multi Conjugate Adaptive Optics (GMCAO) pursues this approach, with the goal of achieving good performance over a field of view of a few arcmin and an increase in sky coverage. In this article, we show the gain offered by this technique to an astrophysical application, such as the photometric survey strategy applied to the Chandra Deep Field South as a case study. We simulated a close-to-real observation of a 500 × 500 arcsec2 extragalactic deep field with a 40-m class telescope that implements GMCAO. We analysed mock K-band images of 6000 high-redshift (up to z = 2.75) galaxies therein as if they were real to recover the initial input parameters. We attained 94.5 per cent completeness for source detection with SEXTRACTOR. We also measured the morphological parameters of all the sources with the two-dimensional fitting tools GALFIT. The agreement we found between recovered and intrinsic parameters demonstrates GMCAO as a reliable approach to assist extremely large telescope (ELT) observations of extragalactic interest.

  19. Extreme Computing for Extreme Adaptive Optics: the Key to Finding Life Outside our Solar System

    KAUST Repository

    Ltaief, Hatem; Sukkari, Dalal; Guyon, Olivier; Keyes, David E.

    2018-01-01

    The real-time correction of telescopic images in the search for exoplanets is highly sensitive to atmospheric aberrations. The pseudo- inverse algorithm is an efficient mathematical method to filter out these turbulences. We introduce a new partial singular value decomposition (SVD) algorithm based on QR-based Diagonally Weighted Halley (QDWH) iteration for the pseudo-inverse method of adaptive optics. The QDWH partial SVD algorithm selectively calculates the most significant singular values and their corresponding singular vectors. We develop a high performance implementation and demonstrate the numerical robustness of the QDWH-based partial SVD method. We also perform a benchmarking campaign on various generations of GPU hardware accelerators and compare against the state-of-the-art SVD implementation SGESDD from the MAGMA library. Numerical accuracy and performance results are reported using synthetic and real observational datasets from the Subaru telescope. Our implementation outperforms SGESDD by up to fivefold and fourfold performance speedups on ill-conditioned synthetic matrices and real observational datasets, respectively. The pseudo-inverse simulation code will be deployed on-sky for the Subaru telescope during observation nights scheduled early 2018.

  20. The ARGOS laser system: green light for ground layer adaptive optics at the LBT

    Science.gov (United States)

    Raab, Walfried; Rabien, Sebastian; Gässler, Wolfgang; Esposito, Simone; Barl, Lothar; Borelli, Jose; Daysenroth, Matthias; Gemperlein, Hans; Kulas, Martin; Ziegleder, Julian

    2014-07-01

    We report on the development of the laser system of ARGOS, the multiple laser guide star adaptive optics system for the Large Binocular Telescope (LBT). The system uses a total of six high powered, pulsed Nd:YAG lasers frequency-doubled to a wavelength of 532 nm to generate a set of three guide stars above each of the LBT telescopes. The position of each of the LGS constellations on sky as well as the relative position of the individual laser guide stars within this constellation is controlled by a set of steerable mirrors and a fast tip-tilt mirror within the laser system. The entire opto-mechanical system is housed in two hermetically sealed and thermally controlled enclosures on the SX and DX side of the LBT telescope. The laser beams are propagated through two refractive launch telescopes which focus the beams at an altitude of 12 km, creating a constellation of laser guide stars around a 4 arcminute diameter circle by means of Rayleigh scattering. In addition to the GLAO Rayleigh beacon system, ARGOS has also been designed for a possible future upgrade with a hybrid sodium laser - Rayleigh beacon combination, enabling diffraction limited operation. The ARGOS laser system was successfully installed at the LBT in April 2013. Extensive functional tests have been carried out and have verified the operation of the systems according to specifications. The alignment of the laser system with respect to the launch telescope was carried out during two more runs in June and October 2013, followed by the first propagation of laser light on sky in November 2013.

  1. Adaptive optics scanning laser ophthalmoscopy in fundus imaging, a review and update

    OpenAIRE

    Zhang, Bing; Li, Ni; Kang, Jie; He, Yi; Chen, Xiao-Ming

    2017-01-01

    Adaptive optics scanning laser ophthalmoscopy (AO-SLO) has been a promising technique in funds imaging with growing popularity. This review firstly gives a brief history of adaptive optics (AO) and AO-SLO. Then it compares AO-SLO with conventional imaging methods (fundus fluorescein angiography, fundus autofluorescence, indocyanine green angiography and optical coherence tomography) and other AO techniques (adaptive optics flood-illumination ophthalmoscopy and adaptive optics optical coherenc...

  2. Atmospheric free-space coherent optical communications with adaptive optics

    Science.gov (United States)

    Ting, Chueh; Zhang, Chengyu; Yang, Zikai

    2017-02-01

    Free-space coherent optical communications have a potential application to offer last mile bottleneck solution in future local area networks (LAN) because of their information carrier, information security and license-free status. Coherent optical communication systems using orthogonal frequency division multiplexing (OFDM) digital modulation are successfully demonstrated in a long-haul tens Giga bits via optical fiber, but they are not yet available in free space due to atmospheric turbulence-induced channel fading. Adaptive optics is recognized as a promising technology to mitigate the effects of atmospheric turbulence in free-space optics. In this paper, a free-space coherent optical communication system using an OFDM digital modulation scheme and adaptive optics (FSO OFDM AO) is proposed, a Gamma-Gamma distribution statistical channel fading model for the FSO OFDM AO system is examined, and FSO OFDM AO system performance is evaluated in terms of bit error rate (BER) versus various propagation distances.

  3. Modeling for deformable mirrors and the adaptive optics optimization program

    International Nuclear Information System (INIS)

    Henesian, M.A.; Haney, S.W.; Trenholme, J.B.; Thomas, M.

    1997-01-01

    We discuss aspects of adaptive optics optimization for large fusion laser systems such as the 192-arm National Ignition Facility (NIF) at LLNL. By way of example, we considered the discrete actuator deformable mirror and Hartmann sensor system used on the Beamlet laser. Beamlet is a single-aperture prototype of the 11-0-5 slab amplifier design for NIF, and so we expect similar optical distortion levels and deformable mirror correction requirements. We are now in the process of developing a numerically efficient object oriented C++ language implementation of our adaptive optics and wavefront sensor code, but this code is not yet operational. Results are based instead on the prototype algorithms, coded-up in an interpreted array processing computer language

  4. Contrast-based sensorless adaptive optics for retinal imaging.

    Science.gov (United States)

    Zhou, Xiaolin; Bedggood, Phillip; Bui, Bang; Nguyen, Christine T O; He, Zheng; Metha, Andrew

    2015-09-01

    Conventional adaptive optics ophthalmoscopes use wavefront sensing methods to characterize ocular aberrations for real-time correction. However, there are important situations in which the wavefront sensing step is susceptible to difficulties that affect the accuracy of the correction. To circumvent these, wavefront sensorless adaptive optics (or non-wavefront sensing AO; NS-AO) imaging has recently been developed and has been applied to point-scanning based retinal imaging modalities. In this study we show, for the first time, contrast-based NS-AO ophthalmoscopy for full-frame in vivo imaging of human and animal eyes. We suggest a robust image quality metric that could be used for any imaging modality, and test its performance against other metrics using (physical) model eyes.

  5. Adaptive Optics Technology for High-Resolution Retinal Imaging

    Science.gov (United States)

    Lombardo, Marco; Serrao, Sebastiano; Devaney, Nicholas; Parravano, Mariacristina; Lombardo, Giuseppe

    2013-01-01

    Adaptive optics (AO) is a technology used to improve the performance of optical systems by reducing the effects of optical aberrations. The direct visualization of the photoreceptor cells, capillaries and nerve fiber bundles represents the major benefit of adding AO to retinal imaging. Adaptive optics is opening a new frontier for clinical research in ophthalmology, providing new information on the early pathological changes of the retinal microstructures in various retinal diseases. We have reviewed AO technology for retinal imaging, providing information on the core components of an AO retinal camera. The most commonly used wavefront sensing and correcting elements are discussed. Furthermore, we discuss current applications of AO imaging to a population of healthy adults and to the most frequent causes of blindness, including diabetic retinopathy, age-related macular degeneration and glaucoma. We conclude our work with a discussion on future clinical prospects for AO retinal imaging. PMID:23271600

  6. Simulated annealing in adaptive optics for imaging the eye retina

    International Nuclear Information System (INIS)

    Zommer, S.; Adler, J.; Lipson, S. G.; Ribak, E.

    2004-01-01

    Full Text:Adaptive optics is a method designed to correct deformed images in real time. Once the distorted wavefront is known, a deformable mirror is used to compensate the aberrations and return the wavefront to a plane wave. This study concentrates on methods that omit wave front sensing from the reconstruction process. Such methods use stochastic algorithms to find the extremum of a certain sharpness function, thereby correcting the image without any information on the wavefront. Theoretical work [l] has shown that the optical problem can be mapped onto a model for crystal roughening. The main algorithm applied is simulated annealing. We present a first hardware realization of this algorithm in an adaptive optics system designed to image the retina of the human eye

  7. Adaptive optical microscope for brain imaging in vivo

    Science.gov (United States)

    Wang, Kai

    2017-04-01

    The optical heterogeneity of biological tissue imposes a major limitation to acquire detailed structural and functional information deep in the biological specimens using conventional microscopes. To restore optimal imaging performance, we developed an adaptive optical microscope based on direct wavefront sensing technique. This microscope can reliably measure and correct biological samples induced aberration. We demonstrated its performance and application in structural and functional brain imaging in various animal models, including fruit fly, zebrafish and mouse.

  8. Adaptive Optical System for Retina Imaging Approaches Clinic Applications

    Science.gov (United States)

    Ling, N.; Zhang, Y.; Rao, X.; Wang, C.; Hu, Y.; Jiang, W.; Jiang, C.

    We presented "A small adaptive optical system on table for human retinal imaging" at the 3rd Workshop on Adaptive Optics for Industry and Medicine. In this system, a 19 element small deformable mirror was used as wavefront correction element. High resolution images of photo receptors and capillaries of human retina were obtained. In recent two years, at the base of this system a new adaptive optical system for human retina imaging has been developed. The wavefront correction element is a newly developed 37 element deformable mirror. Some modifications have been adopted for easy operation. Experiments for different imaging wavelengths and axial positions were conducted. Mosaic pictures of photoreceptors and capillaries were obtained. 100 normal and abnormal eyes of different ages have been inspected.The first report in the world concerning the most detailed capillary distribution images cover ±3° by ± 3° field around the fovea has been demonstrated. Some preliminary very early diagnosis experiment has been tried in laboratory. This system is being planned to move to the hospital for clinic experiments.

  9. Adaptive optics with pupil tracking for high resolution retinal imaging.

    Science.gov (United States)

    Sahin, Betul; Lamory, Barbara; Levecq, Xavier; Harms, Fabrice; Dainty, Chris

    2012-02-01

    Adaptive optics, when integrated into retinal imaging systems, compensates for rapidly changing ocular aberrations in real time and results in improved high resolution images that reveal the photoreceptor mosaic. Imaging the retina at high resolution has numerous potential medical applications, and yet for the development of commercial products that can be used in the clinic, the complexity and high cost of the present research systems have to be addressed. We present a new method to control the deformable mirror in real time based on pupil tracking measurements which uses the default camera for the alignment of the eye in the retinal imaging system and requires no extra cost or hardware. We also present the first experiments done with a compact adaptive optics flood illumination fundus camera where it was possible to compensate for the higher order aberrations of a moving model eye and in vivo in real time based on pupil tracking measurements, without the real time contribution of a wavefront sensor. As an outcome of this research, we showed that pupil tracking can be effectively used as a low cost and practical adaptive optics tool for high resolution retinal imaging because eye movements constitute an important part of the ocular wavefront dynamics.

  10. Can we use adaptive optics for UHR spectroscopy with PEPSI at the LBT?

    Science.gov (United States)

    Sacco, Germano G.; Pallavicini, Roberto; Spano, Paolo; Andersen, Michael; Woche, Manfred F.; Strassmeier, Klaus G.

    2004-10-01

    We investigate the potential of using adaptive optics (AO) in the V, R, and I bands to reach ultra-high resolution (UHR, R >= 200,000) in echelle spectrographs at 8-10m telescopes. In particular, we investigate the possibility of implementing an UHR mode for the fiber-fed spectrograph PEPSI (Potsdam Echelle Polarimetric and Spectrographic Instrument) being developed for the Large Binocular Telescope (LBT). By simulating the performances of the advanced AO system that will be available at first light at the LBT, and by using first-order estimates of the spectrograph performances, we calculate the total efficiency and signal to noise ratio (SNR) of PEPSI in the AO mode for stars of different magnitudes, different fiber core sizes, and different fractions of incident light diverted to the wavefront sensor. We conclude that AO can provide a significant advantage, of up to a factor ~2 in the V, R and I bands, for stars brighter than mR ~ 12 - 13. However, if these stars are observed at UHR in non-AO mode, slit losses caused by the need to use a very narrow slit can be compensated more effectively by the use of image slicers.

  11. ABISM: an interactive image quality assessment tool for adaptive optics instruments

    Science.gov (United States)

    Girard, Julien H.; Tourneboeuf, Martin

    2016-07-01

    ABISM (Automatic Background Interactive Strehl Meter) is a interactive tool to evaluate the image quality of astronomical images. It works on seeing-limited point spread functions (PSF) but was developed in particular for diffraction-limited PSF produced by adaptive optics (AO) systems. In the VLT service mode (SM) operations framework, ABISM is designed to help support astronomers or telescope and instruments operators (TIOs) to quickly measure the Strehl ratio (SR) during or right after an observing block (OB) to evaluate whether it meets the requirements/predictions or whether is has to be repeated and will remain in the SM queue. It's a Python-based tool with a graphical user interface (GUI) that can be used with little AO knowledge. The night astronomer (NA) or Telescope and Instrument Operator (TIO) can launch ABISM in one click and the program is able to read keywords from the FITS header to avoid mistakes. A significant effort was also put to make ABISM as robust (and forgiven) with a high rate of repeatability. As a matter of fact, ABISM is able to automatically correct for bad pixels, eliminate stellar neighbours and estimate/fit properly the background, etc.

  12. Towards an automatic wind speed and direction profiler for Wide Field adaptive optics systems

    Science.gov (United States)

    Sivo, G.; Turchi, A.; Masciadri, E.; Guesalaga, A.; Neichel, B.

    2018-05-01

    Wide Field Adaptive Optics (WFAO) systems are among the most sophisticated adaptive optics (AO) systems available today on large telescopes. Knowledge of the vertical spatio-temporal distribution of wind speed (WS) and direction (WD) is fundamental to optimize the performance of such systems. Previous studies already proved that the Gemini Multi-Conjugated AO system (GeMS) is able to retrieve measurements of the WS and WD stratification using the SLOpe Detection And Ranging (SLODAR) technique and to store measurements in the telemetry data. In order to assess the reliability of these estimates and of the SLODAR technique applied to such complex AO systems, in this study we compared WS and WD values retrieved from GeMS with those obtained with the atmospheric model Meso-NH on a rich statistical sample of nights. It has previously been proved that the latter technique provided excellent agreement with a large sample of radiosoundings, both in statistical terms and on individual flights. It can be considered, therefore, as an independent reference. The excellent agreement between GeMS measurements and the model that we find in this study proves the robustness of the SLODAR approach. To bypass the complex procedures necessary to achieve automatic measurements of the wind with GeMS, we propose a simple automatic method to monitor nightly WS and WD using Meso-NH model estimates. Such a method can be applied to whatever present or new-generation facilities are supported by WFAO systems. The interest of this study is, therefore, well beyond the optimization of GeMS performance.

  13. Night myopia studied with an adaptive optics visual analyzer.

    Directory of Open Access Journals (Sweden)

    Pablo Artal

    Full Text Available PURPOSE: Eyes with distant objects in focus in daylight are thought to become myopic in dim light. This phenomenon, often called "night myopia" has been studied extensively for several decades. However, despite its general acceptance, its magnitude and causes are still controversial. A series of experiments were performed to understand night myopia in greater detail. METHODS: We used an adaptive optics instrument operating in invisible infrared light to elucidate the actual magnitude of night myopia and its main causes. The experimental setup allowed the manipulation of the eye's aberrations (and particularly spherical aberration as well as the use of monochromatic and polychromatic stimuli. Eight subjects with normal vision monocularly determined their best focus position subjectively for a Maltese cross stimulus at different levels of luminance, from the baseline condition of 20 cd/m(2 to the lowest luminance of 22 × 10(-6 cd/m(2. While subjects performed the focusing tasks, their eye's defocus and aberrations were continuously measured with the 1050-nm Hartmann-Shack sensor incorporated in the adaptive optics instrument. The experiment was repeated for a variety of controlled conditions incorporating specific aberrations of the eye and chromatic content of the stimuli. RESULTS: We found large inter-subject variability and an average of -0.8 D myopic shift for low light conditions. The main cause responsible for night myopia was the accommodation shift occurring at low light levels. Other factors, traditionally suggested to explain night myopia, such as chromatic and spherical aberrations, have a much smaller effect in this mechanism. CONCLUSIONS: An adaptive optics visual analyzer was applied to study the phenomenon of night myopia. We found that the defocus shift occurring in dim light is mainly due to accommodation errors.

  14. Conjugate adaptive optics with remote focusing in multiphoton microscopy

    Science.gov (United States)

    Tao, Xiaodong; Lam, Tuwin; Zhu, Bingzhao; Li, Qinggele; Reinig, Marc R.; Kubby, Joel

    2018-02-01

    The small correction volume for conventional wavefront shaping methods limits their application in biological imaging through scattering media. In this paper, we take advantage of conjugate adaptive optics (CAO) and remote focusing (CAORF) to achieve three-dimensional (3D) scanning through a scattering layer with a single correction. Our results show that the proposed system can provide 10 times wider axial field of view compared with a conventional conjugate AO system when 16,384 segments are used on a spatial light modulator. We demonstrate two-photon imaging with CAORF through mouse skull. The fluorescent microspheres embedded under the scattering layers can be clearly observed after applying the correction.

  15. Adaptive optics system for the IRSOL solar observatory

    Science.gov (United States)

    Ramelli, Renzo; Bucher, Roberto; Rossini, Leopoldo; Bianda, Michele; Balemi, Silvano

    2010-07-01

    We present a low cost adaptive optics system developed for the solar observatory at Istituto Ricerche Solari Locarno (IRSOL), Switzerland. The Shack-Hartmann Wavefront Sensor is based on a Dalsa CCD camera with 256 pixels × 256 pixels working at 1kHz. The wavefront compensation is obtained by a deformable mirror with 37 actuators and a Tip-Tilt mirror. A real time control software has been developed on a RTAI-Linux PC. Scicos/Scilab based software has been realized for an online analysis of the system behavior. The software is completely open source.

  16. Optimal model-based sensorless adaptive optics for epifluorescence microscopy.

    Science.gov (United States)

    Pozzi, Paolo; Soloviev, Oleg; Wilding, Dean; Vdovin, Gleb; Verhaegen, Michel

    2018-01-01

    We report on a universal sample-independent sensorless adaptive optics method, based on modal optimization of the second moment of the fluorescence emission from a point-like excitation. Our method employs a sample-independent precalibration, performed only once for the particular system, to establish the direct relation between the image quality and the aberration. The method is potentially applicable to any form of microscopy with epifluorescence detection, including the practically important case of incoherent fluorescence emission from a three dimensional object, through minor hardware modifications. We have applied the technique successfully to a widefield epifluorescence microscope and to a multiaperture confocal microscope.

  17. Segmented bimorph mirrors for adaptive optics: morphing strategy.

    Science.gov (United States)

    Bastaits, Renaud; Alaluf, David; Belloni, Edoardo; Rodrigues, Gonçalo; Preumont, André

    2014-08-01

    This paper discusses the concept of a light weight segmented bimorph mirror for adaptive optics. It focuses on the morphing strategy and addresses the ill-conditioning of the Jacobian of the segments, which are partly outside the optical pupil. Two options are discussed, one based on truncating the singular values and one called damped least squares, which minimizes a combined measure of the sensor error and the voltage vector. A comparison of various configurations of segmented mirrors was conducted; it is shown that segmentation sharply increases the natural frequency of the system with limited deterioration of the image quality.

  18. The CHARA array adaptive optics I: common-path optical and mechanical design, and preliminary on-sky results

    Science.gov (United States)

    Che, Xiao; Sturmann, Laszlo; Monnier, John D.; ten Brummelaar, Theo A.; Sturmann, Judit; Ridgway, Stephen T.; Ireland, Michael J.; Turner, Nils H.; McAlister, Harold A.

    2014-07-01

    The CHARA array is an optical interferometer with six 1-meter diameter telescopes, providing baselines from 33 to 331 meters. With sub-milliarcsecond angular resolution, its versatile visible and near infrared combiners offer a unique angle of studying nearby stellar systems by spatially resolving their detailed structures. To improve the sensitivity and scientific throughput, the CHARA array was funded by NSF-ATI in 2011 to install adaptive optics (AO) systems on all six telescopes. The initial grant covers Phase I of the AO systems, which includes on-telescope Wavefront Sensors (WFS) and non-common-path (NCP) error correction. Meanwhile we are seeking funding for Phase II which will add large Deformable Mirrors on telescopes to close the full AO loop. The corrections of NCP error and static aberrations in the optical system beyond the WFS are described in the second paper of this series. This paper describes the design of the common-path optical system and the on-telescope WFS, and shows the on-sky commissioning results.

  19. Sub-Airy Confocal Adaptive Optics Scanning Ophthalmoscopy.

    Science.gov (United States)

    Sredar, Nripun; Fagbemi, Oladipo E; Dubra, Alfredo

    2018-04-01

    To demonstrate the viability of improving transverse image resolution in reflectance scanning adaptive optics ophthalmoscopy using sub-Airy disk confocal detection. The foveal cone mosaic was imaged in five human subjects free of known eye disease using two custom adaptive optics scanning light ophthalmoscopes (AOSLOs) in reflectance with 7.75 and 4.30 mm pupil diameters. Confocal pinholes of 0.5, 0.6, 0.8, and 1.0 Airy disk diameters (ADDs) were used in a retinal conjugate plane before the light detector. Average cone photoreceptor intensity profile width and power spectrum were calculated for the resulting images. Detected energy using a model eye was recorded for each pinhole size. The cone photoreceptor mosaic is better resolved with decreasing confocal pinhole size, with the high spatial frequency content of the images enhanced in both the large- and small-pupil AOSLOs. The average cone intensity profile width was reduced by ∼15% with the use of a 0.5 ADD pinhole when compared to a 1.0 ADD, with an accompanying reduction in signal greater than a factor of four. The use of sub-Airy disk confocal pinhole detection without increasing retinal light exposure results in a substantial improvement in image resolution at the cost of larger than predicted signal reduction. Improvement in transverse resolution using sub-Airy disk confocal detection is a practical and low-cost approach that is applicable to all point- and line-scanning ophthalmoscopes, including optical coherence tomographers.

  20. Refined adaptive optics simulation with wide field of view for the E-ELT

    International Nuclear Information System (INIS)

    Chebbo, Manal

    2012-01-01

    Refined simulation tools for wide field AO systems (such as MOAO, MCAO or LTAO) on ELTs present new challenges. Increasing the number of degrees of freedom (scales as the square of the telescope diameter) makes the standard simulation's codes useless due to the huge number of operations to be performed at each step of the Adaptive Optics (AO) loop process. This computational burden requires new approaches in the computation of the DM voltages from WFS data. The classical matrix inversion and the matrix vector multiplication have to be replaced by a cleverer iterative resolution of the Least Square or Minimum Mean Square Error criterion (based on sparse matrices approaches). Moreover, for this new generation of AO systems, concepts themselves will become more complex: data fusion coming from multiple Laser and Natural Guide Stars (LGS / NGS) will have to be optimized, mirrors covering all the field of view associated to dedicated mirrors inside the scientific instrument itself will have to be coupled using split or integrated tomography schemes, differential pupil or/and field rotations will have to be considered, etc. All these new entries should be carefully simulated, analysed and quantified in terms of performance before any implementation in AO systems. For those reasons I developed, in collaboration with the ONERA, a full simulation code, based on iterative solution of linear systems with many parameters (use of sparse matrices). On this basis, I introduced new concepts of filtering and data fusion (LGS / NGS) to effectively manage modes such as tip, tilt and defocus in the entire process of tomographic reconstruction. The code will also eventually help to develop and test complex control laws (Multi-DM and multi-field) who have to manage a combination of adaptive telescope and post-focal instrument including dedicated deformable mirrors. The first application of this simulation tool has been studied in the framework of the EAGLE multi-object spectrograph

  1. Calibration of Ground -based Lidar instrument

    DEFF Research Database (Denmark)

    Villanueva, Héctor; Yordanova, Ginka

    This report presents the result of the lidar calibration performed for the given Ground-based Lidar at DTU’s test site for large wind turbines at Høvsøre, Denmark. Calibration is here understood as the establishment of a relation between the reference wind speed measurements with measurement...

  2. Research on Adaptive Optics Image Restoration Algorithm by Improved Expectation Maximization Method

    OpenAIRE

    Zhang, Lijuan; Li, Dongming; Su, Wei; Yang, Jinhua; Jiang, Yutong

    2014-01-01

    To improve the effect of adaptive optics images’ restoration, we put forward a deconvolution algorithm improved by the EM algorithm which joints multiframe adaptive optics images based on expectation-maximization theory. Firstly, we need to make a mathematical model for the degenerate multiframe adaptive optics images. The function model is deduced for the points that spread with time based on phase error. The AO images are denoised using the image power spectral density and support constrain...

  3. A Fossil Bulge Globular Cluster Revealed by very Large Telescope Multi-conjugate Adaptive Optics

    Czech Academy of Sciences Publication Activity Database

    Ortolani, S.; Barbuy, B.; Momany, Y.; Saviane, I.; Bica, E.; Jílková, L.; Salerno, G.M.; Jungwiert, Bruno

    2011-01-01

    Roč. 737, č. 1 (2011), 31/1-31/9 ISSN 0004-637X Institutional research plan: CEZ:AV0Z10030501 Keywords : galaxy * globular clusters Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 6.024, year: 2011

  4. Aberrations and adaptive optics in super-resolution microscopy

    Science.gov (United States)

    Booth, Martin; Andrade, Débora; Burke, Daniel; Patton, Brian; Zurauskas, Mantas

    2015-01-01

    As one of the most powerful tools in the biological investigation of cellular structures and dynamic processes, fluorescence microscopy has undergone extraordinary developments in the past decades. The advent of super-resolution techniques has enabled fluorescence microscopy – or rather nanoscopy – to achieve nanoscale resolution in living specimens and unravelled the interior of cells with unprecedented detail. The methods employed in this expanding field of microscopy, however, are especially prone to the detrimental effects of optical aberrations. In this review, we discuss how super-resolution microscopy techniques based upon single-molecule switching, stimulated emission depletion and structured illumination each suffer from aberrations in different ways that are dependent upon intrinsic technical aspects. We discuss the use of adaptive optics as an effective means to overcome this problem. PMID:26124194

  5. Fourier transform digital holographic adaptive optics imaging system

    Science.gov (United States)

    Liu, Changgeng; Yu, Xiao; Kim, Myung K.

    2013-01-01

    A Fourier transform digital holographic adaptive optics imaging system and its basic principles are proposed. The CCD is put at the exact Fourier transform plane of the pupil of the eye lens. The spherical curvature introduced by the optics except the eye lens itself is eliminated. The CCD is also at image plane of the target. The point-spread function of the system is directly recorded, making it easier to determine the correct guide-star hologram. Also, the light signal will be stronger at the CCD, especially for phase-aberration sensing. Numerical propagation is avoided. The sensor aperture has nothing to do with the resolution and the possibility of using low coherence or incoherent illumination is opened. The system becomes more efficient and flexible. Although it is intended for ophthalmic use, it also shows potential application in microscopy. The robustness and feasibility of this compact system are demonstrated by simulations and experiments using scattering objects. PMID:23262541

  6. Pupil-segmentation-based adaptive optics for microscopy

    Science.gov (United States)

    Ji, Na; Milkie, Daniel E.; Betzig, Eric

    2011-03-01

    Inhomogeneous optical properties of biological samples make it difficult to obtain diffraction-limited resolution in depth. Correcting the sample-induced optical aberrations needs adaptive optics (AO). However, the direct wavefront-sensing approach commonly used in astronomy is not suitable for most biological samples due to their strong scattering of light. We developed an image-based AO approach that is insensitive to sample scattering. By comparing images of the sample taken with different segments of the pupil illuminated, local tilt in the wavefront is measured from image shift. The aberrated wavefront is then obtained either by measuring the local phase directly using interference or with phase reconstruction algorithms similar to those used in astronomical AO. We implemented this pupil-segmentation-based approach in a two-photon fluorescence microscope and demonstrated that diffraction-limited resolution can be recovered from nonbiological and biological samples.

  7. Proton irradiation of liquid crystal based adaptive optical devices

    International Nuclear Information System (INIS)

    Buis, E.J.; Berkhout, G.C.G.; Love, G.D.; Kirby, A.K.; Taylor, J.M.; Hannemann, S.; Collon, M.J.

    2012-01-01

    To assess its radiation hardness, a liquid crystal based adaptive optical element has been irradiated using a 60 MeV proton beam. The device with the functionality of an optical beam steerer was characterised before, during and after the irradiation. A systematic set of measurements on the transmission and beam deflection angles was carried out. The measurements showed that the transmission decreased only marginally and that its optical performance degraded only after a very high proton fluence (10 10 p/cm 2 ). The device showed complete annealing in the functionality as a beam steerer, which leads to the conclusion that the liquid crystal technology for optical devices is not vulnerable to proton irradiation as expected in space.

  8. Proton irradiation of liquid crystal based adaptive optical devices

    Energy Technology Data Exchange (ETDEWEB)

    Buis, E.J., E-mail: ernst-jan.buis@tno.nl [cosine Science and Computing BV, Niels Bohrweg 11, 2333 CA Leiden (Netherlands); Berkhout, G.C.G. [cosine Science and Computing BV, Niels Bohrweg 11, 2333 CA Leiden (Netherlands); Huygens Laboratory, Leiden University, P.O. Box 9504, 2300 RA Leiden (Netherlands); Love, G.D.; Kirby, A.K.; Taylor, J.M. [Department of Physics, Durham University, South Road, Durham DH1 3LE (United Kingdom); Hannemann, S.; Collon, M.J. [cosine Research BV, Niels Bohrweg 11, 2333 CA Leiden (Netherlands)

    2012-01-01

    To assess its radiation hardness, a liquid crystal based adaptive optical element has been irradiated using a 60 MeV proton beam. The device with the functionality of an optical beam steerer was characterised before, during and after the irradiation. A systematic set of measurements on the transmission and beam deflection angles was carried out. The measurements showed that the transmission decreased only marginally and that its optical performance degraded only after a very high proton fluence (10{sup 10}p/cm{sup 2}). The device showed complete annealing in the functionality as a beam steerer, which leads to the conclusion that the liquid crystal technology for optical devices is not vulnerable to proton irradiation as expected in space.

  9. Brillouin micro-spectroscopy through aberrations via sensorless adaptive optics

    Science.gov (United States)

    Edrei, Eitan; Scarcelli, Giuliano

    2018-04-01

    Brillouin spectroscopy is a powerful optical technique for non-contact viscoelastic characterizations which has recently found applications in three-dimensional mapping of biological samples. Brillouin spectroscopy performances are rapidly degraded by optical aberrations and have therefore been limited to homogenous transparent samples. In this work, we developed an adaptive optics (AO) configuration designed for Brillouin scattering spectroscopy to engineer the incident wavefront and correct for aberrations. Our configuration does not require direct wavefront sensing and the injection of a "guide-star"; hence, it can be implemented without the need for sample pre-treatment. We used our AO-Brillouin spectrometer in aberrated phantoms and biological samples and obtained improved precision and resolution of Brillouin spectral analysis; we demonstrated 2.5-fold enhancement in Brillouin signal strength and 1.4-fold improvement in axial resolution because of the correction of optical aberrations.

  10. Performance of the Keck Observatory adaptive-optics system.

    Science.gov (United States)

    van Dam, Marcos A; Le Mignant, David; Macintosh, Bruce A

    2004-10-10

    The adaptive-optics (AO) system at the W. M. Keck Observatory is characterized. We calculate the error budget of the Keck AO system operating in natural guide star mode with a near-infrared imaging camera. The measurement noise and bandwidth errors are obtained by modeling the control loops and recording residual centroids. Results of sky performance tests are presented: The AO system is shown to deliver images with average Strehl ratios of as much as 0.37 at 1.58 microm when a bright guide star is used and of 0.19 for a magnitude 12 star. The images are consistent with the predicted wave-front error based on our error budget estimates.

  11. Adaptive optics retinal imaging in the living mouse eye

    Science.gov (United States)

    Geng, Ying; Dubra, Alfredo; Yin, Lu; Merigan, William H.; Sharma, Robin; Libby, Richard T.; Williams, David R.

    2012-01-01

    Correction of the eye’s monochromatic aberrations using adaptive optics (AO) can improve the resolution of in vivo mouse retinal images [Biss et al., Opt. Lett. 32(6), 659 (2007) and Alt et al., Proc. SPIE 7550, 755019 (2010)], but previous attempts have been limited by poor spot quality in the Shack-Hartmann wavefront sensor (SHWS). Recent advances in mouse eye wavefront sensing using an adjustable focus beacon with an annular beam profile have improved the wavefront sensor spot quality [Geng et al., Biomed. Opt. Express 2(4), 717 (2011)], and we have incorporated them into a fluorescence adaptive optics scanning laser ophthalmoscope (AOSLO). The performance of the instrument was tested on the living mouse eye, and images of multiple retinal structures, including the photoreceptor mosaic, nerve fiber bundles, fine capillaries and fluorescently labeled ganglion cells were obtained. The in vivo transverse and axial resolutions of the fluorescence channel of the AOSLO were estimated from the full width half maximum (FWHM) of the line and point spread functions (LSF and PSF), and were found to be better than 0.79 μm ± 0.03 μm (STD)(45% wider than the diffraction limit) and 10.8 μm ± 0.7 μm (STD)(two times the diffraction limit), respectively. The axial positional accuracy was estimated to be 0.36 μm. This resolution and positional accuracy has allowed us to classify many ganglion cell types, such as bistratified ganglion cells, in vivo. PMID:22574260

  12. Space and Ground-Based Infrastructures

    Science.gov (United States)

    Weems, Jon; Zell, Martin

    This chapter deals first with the main characteristics of the space environment, outside and inside a spacecraft. Then the space and space-related (ground-based) infrastructures are described. The most important infrastructure is the International Space Station, which holds many European facilities (for instance the European Columbus Laboratory). Some of them, such as the Columbus External Payload Facility, are located outside the ISS to benefit from external space conditions. There is only one other example of orbital platforms, the Russian Foton/Bion Recoverable Orbital Capsule. In contrast, non-orbital weightless research platforms, although limited in experimental time, are more numerous: sounding rockets, parabolic flight aircraft, drop towers and high-altitude balloons. In addition to these facilities, there are a number of ground-based facilities and space simulators, for both life sciences (for instance: bed rest, clinostats) and physical sciences (for instance: magnetic compensation of gravity). Hypergravity can also be provided by human and non-human centrifuges.

  13. Illumination compensation in ground based hyperspectral imaging

    Science.gov (United States)

    Wendel, Alexander; Underwood, James

    2017-07-01

    Hyperspectral imaging has emerged as an important tool for analysing vegetation data in agricultural applications. Recently, low altitude and ground based hyperspectral imaging solutions have come to the fore, providing very high resolution data for mapping and studying large areas of crops in detail. However, these platforms introduce a unique set of challenges that need to be overcome to ensure consistent, accurate and timely acquisition of data. One particular problem is dealing with changes in environmental illumination while operating with natural light under cloud cover, which can have considerable effects on spectral shape. In the past this has been commonly achieved by imaging known reference targets at the time of data acquisition, direct measurement of irradiance, or atmospheric modelling. While capturing a reference panel continuously or very frequently allows accurate compensation for illumination changes, this is often not practical with ground based platforms, and impossible in aerial applications. This paper examines the use of an autonomous unmanned ground vehicle (UGV) to gather high resolution hyperspectral imaging data of crops under natural illumination. A process of illumination compensation is performed to extract the inherent reflectance properties of the crops, despite variable illumination. This work adapts a previously developed subspace model approach to reflectance and illumination recovery. Though tested on a ground vehicle in this paper, it is applicable to low altitude unmanned aerial hyperspectral imagery also. The method uses occasional observations of reference panel training data from within the same or other datasets, which enables a practical field protocol that minimises in-field manual labour. This paper tests the new approach, comparing it against traditional methods. Several illumination compensation protocols for high volume ground based data collection are presented based on the results. The findings in this paper are

  14. REFERENCE-LESS DETECTION, ASTROMETRY, AND PHOTOMETRY OF FAINT COMPANIONS WITH ADAPTIVE OPTICS

    International Nuclear Information System (INIS)

    Gladysz, Szymon; Christou, Julian C.

    2009-01-01

    We propose a complete framework for the detection, astrometry, and photometry of faint companions from a sequence of adaptive optics (AO) corrected short exposures. The algorithms exploit the difference in statistics between the on-axis and off-axis intensity of the AO point-spread function (PSF) to differentiate real sources from speckles. We validate the new approach and illustrate its performance using moderate Strehl ratio data obtained with the natural guide star AO system on the Lick Observatory's 3 m Shane Telescope. We obtain almost a 2 mag gain in achievable contrast by using our detection method compared to 5σ detectability in long exposures. We also present a first guide to expected accuracy of differential photometry and astrometry with the new techniques. Our approach performs better than PSF-fitting in general and especially so for close companions, which are located within the uncompensated seeing (speckle) halo. All three proposed algorithms are self-calibrating, i.e., they do not require observation of a calibration star. One of the advantages of this approach is improved observing efficiency.

  15. Modeling astronomical adaptive optics performance with temporally filtered Wiener reconstruction of slope data

    Science.gov (United States)

    Correia, Carlos M.; Bond, Charlotte Z.; Sauvage, Jean-François; Fusco, Thierry; Conan, Rodolphe; Wizinowich, Peter L.

    2017-10-01

    We build on a long-standing tradition in astronomical adaptive optics (AO) of specifying performance metrics and error budgets using linear systems modeling in the spatial-frequency domain. Our goal is to provide a comprehensive tool for the calculation of error budgets in terms of residual temporally filtered phase power spectral densities and variances. In addition, the fast simulation of AO-corrected point spread functions (PSFs) provided by this method can be used as inputs for simulations of science observations with next-generation instruments and telescopes, in particular to predict post-coronagraphic contrast improvements for planet finder systems. We extend the previous results and propose the synthesis of a distributed Kalman filter to mitigate both aniso-servo-lag and aliasing errors whilst minimizing the overall residual variance. We discuss applications to (i) analytic AO-corrected PSF modeling in the spatial-frequency domain, (ii) post-coronagraphic contrast enhancement, (iii) filter optimization for real-time wavefront reconstruction, and (iv) PSF reconstruction from system telemetry. Under perfect knowledge of wind velocities, we show that $\\sim$60 nm rms error reduction can be achieved with the distributed Kalman filter embodying anti- aliasing reconstructors on 10 m class high-order AO systems, leading to contrast improvement factors of up to three orders of magnitude at few ${\\lambda}/D$ separations ($\\sim1-5{\\lambda}/D$) for a 0 magnitude star and reaching close to one order of magnitude for a 12 magnitude star.

  16. The PALM-3000 high-order adaptive optics system for Palomar Observatory

    Science.gov (United States)

    Bouchez, Antonin H.; Dekany, Richard G.; Angione, John R.; Baranec, Christoph; Britton, Matthew C.; Bui, Khanh; Burruss, Rick S.; Cromer, John L.; Guiwits, Stephen R.; Henning, John R.; Hickey, Jeff; McKenna, Daniel L.; Moore, Anna M.; Roberts, Jennifer E.; Trinh, Thang Q.; Troy, Mitchell; Truong, Tuan N.; Velur, Viswa

    2008-07-01

    Deployed as a multi-user shared facility on the 5.1 meter Hale Telescope at Palomar Observatory, the PALM-3000 highorder upgrade to the successful Palomar Adaptive Optics System will deliver extreme AO correction in the near-infrared, and diffraction-limited images down to visible wavelengths, using both natural and sodium laser guide stars. Wavefront control will be provided by two deformable mirrors, a 3368 active actuator woofer and 349 active actuator tweeter, controlled at up to 3 kHz using an innovative wavefront processor based on a cluster of 17 graphics processing units. A Shack-Hartmann wavefront sensor with selectable pupil sampling will provide high-order wavefront sensing, while an infrared tip/tilt sensor and visible truth wavefront sensor will provide low-order LGS control. Four back-end instruments are planned at first light: the PHARO near-infrared camera/spectrograph, the SWIFT visible light integral field spectrograph, Project 1640, a near-infrared coronagraphic integral field spectrograph, and 888Cam, a high-resolution visible light imager.

  17. A High-resolution Multi-wavelength Simultaneous Imaging System with Solar Adaptive Optics

    Energy Technology Data Exchange (ETDEWEB)

    Rao, Changhui; Zhu, Lei; Gu, Naiting; Rao, Xuejun; Zhang, Lanqiang; Bao, Hua; Kong, Lin; Guo, Youming; Zhong, Libo; Ma, Xue’an; Li, Mei; Wang, Cheng; Zhang, Xiaojun; Fan, Xinlong; Chen, Donghong; Feng, Zhongyi; Wang, Xiaoyun; Wang, Zhiyong, E-mail: gunaiting@ioe.ac.cn [The Key Laboratory on Adaptive Optics, Chinese Academy of Sciences, P.O. Box 350, Shuangliu, Chengdu 610209, Sichuan (China)

    2017-10-01

    A high-resolution multi-wavelength simultaneous imaging system from visible to near-infrared bands with a solar adaptive optics system, in which seven imaging channels, including the G band (430.5 nm), the Na i line (589 nm), the H α line (656.3 nm), the TiO band (705.7 nm), the Ca ii IR line (854.2 nm), the He i line (1083 nm), and the Fe i line (1565.3 nm), are chosen, is developed to image the solar atmosphere from the photosphere layer to the chromosphere layer. To our knowledge, this is the solar high-resolution imaging system with the widest spectral coverage. This system was demonstrated at the 1 m New Vaccum Solar Telescope and the on-sky high-resolution observational results were acquired. In this paper, we will illustrate the design and performance of the imaging system. The calibration and the data reduction of the system are also presented.

  18. Simpler Adaptive Optics using a Single Device for Processing and Control

    Science.gov (United States)

    Zovaro, A.; Bennet, F.; Rye, D.; D'Orgeville, C.; Rigaut, F.; Price, I.; Ritchie, I.; Smith, C.

    The management of low Earth orbit is becoming more urgent as satellite and debris densities climb, in order to avoid a Kessler syndrome. A key part of this management is to precisely measure the orbit of both active satellites and debris. The Research School of Astronomy and Astrophysics at the Australian National University have been developing an adaptive optics (AO) system to image and range orbiting objects. The AO system provides atmospheric correction for imaging and laser ranging, allowing for the detection of smaller angular targets and drastically increasing the number of detectable objects. AO systems are by nature very complex and high cost systems, often costing millions of dollars and taking years to design. It is not unusual for AO systems to comprise multiple servers, digital signal processors (DSP) and field programmable gate arrays (FPGA), with dedicated tasks such as wavefront sensor data processing or wavefront reconstruction. While this multi-platform approach has been necessary in AO systems to date due to computation and latency requirements, this may no longer be the case for those with less demanding processing needs. In recent years, large strides have been made in FPGA and microcontroller technology, with todays devices having clock speeds in excess of 200 MHz whilst using a 1kHz) with low latency (general AO applications, such as in 1-3 m telescopes for space surveillance, or even for amateur astronomy.

  19. The Last Gasps of VY Canis Majoris: Aperture Synthesis and Adaptive Optics Imagery

    Science.gov (United States)

    Monnier, J. D.; Tuthill, P. G.; Lopez, B.; Cruzalebes, P.; Danchi, W. C.; Haniff, C. A.

    1999-02-01

    We present new observations of the red supergiant VY CMa at 1.25, 1.65, 2.26, 3.08, and 4.8 μm. Two complementary observational techniques were utilized: nonredundant aperture masking on the 10 m Keck I telescope, yielding images of the innermost regions at unprecedented resolution, and adaptive optics imaging on the ESO 3.6 m telescope at La Silla, attaining an extremely high (~105) peak-to-noise dynamic range over a wide field. For the first time the inner dust shell has been resolved in the near-infrared to reveal a one-sided extension of circumstellar emission within 0.1" (~15 R*) of the star. The line-of-sight optical depths of the circumstellar dust shell at 1.65, 2.26, and 3.08 μm have been estimated to be 1.86+/-0.42, 0.85+/-0.20, and 0.44+/-0.11, respectively. These new results allow the bolometric luminosity of VY CMa to be estimated independent of the dust shell geometry, yielding L*~2×105 Lsolar. A variety of dust condensations, including a large scattering plume and a bow-shaped dust feature, were observed in the faint, extended nebula up to 4" from the central source. While the origin of the nebulous plume remains uncertain, a geometrical model is developed assuming the plume is produced by radially driven dust grains forming at a rotating flow insertion point with a rotational period between 1200 and 4200 yr, which is perhaps the stellar rotational period or the orbital period of an unseen companion.

  20. Project management for complex ground-based instruments: MEGARA plan

    Science.gov (United States)

    García-Vargas, María. Luisa; Pérez-Calpena, Ana; Gil de Paz, Armando; Gallego, Jesús; Carrasco, Esperanza; Cedazo, Raquel; Iglesias, Jorge

    2014-08-01

    The project management of complex instruments for ground-based large telescopes is a challenge itself. A good management is a clue for project success in terms of performance, schedule and budget. Being on time has become a strict requirement for two reasons: to assure the arrival at the telescope due to the pressure on demanding new instrumentation for this first world-class telescopes and to not fall in over-costs. The budget and cash-flow is not always the expected one and has to be properly handled from different administrative departments at the funding centers worldwide distributed. The complexity of the organizations, the technological and scientific return to the Consortium partners and the participation in the project of all kind of professional centers working in astronomical instrumentation: universities, research centers, small and large private companies, workshops and providers, etc. make the project management strategy, and the tools and procedures tuned to the project needs, crucial for success. MEGARA (Multi-Espectrógrafo en GTC de Alta Resolución para Astronomía) is a facility instrument of the 10.4m GTC (La Palma, Spain) working at optical wavelengths that provides both Integral-Field Unit (IFU) and Multi-Object Spectrograph (MOS) capabilities at resolutions in the range R=6,000-20,000. The project is an initiative led by Universidad Complutense de Madrid (Spain) in collaboration with INAOE (Mexico), IAA-CSIC (Spain) and Universidad Politécnica de Madrid (Spain). MEGARA is being developed under contract with GRANTECAN.

  1. Simulating the Performance of Ground-Based Optical Asteroid Surveys

    Science.gov (United States)

    Christensen, Eric J.; Shelly, Frank C.; Gibbs, Alex R.; Grauer, Albert D.; Hill, Richard E.; Johnson, Jess A.; Kowalski, Richard A.; Larson, Stephen M.

    2014-11-01

    We are developing a set of asteroid survey simulation tools in order to estimate the capability of existing and planned ground-based optical surveys, and to test a variety of possible survey cadences and strategies. The survey simulator is composed of several layers, including a model population of solar system objects and an orbital integrator, a site-specific atmospheric model (including inputs for seeing, haze and seasonal cloud cover), a model telescope (with a complete optical path to estimate throughput), a model camera (including FOV, pixel scale, and focal plane fill factor) and model source extraction and moving object detection layers with tunable detection requirements. We have also developed a flexible survey cadence planning tool to automatically generate nightly survey plans. Inputs to the cadence planner include camera properties (FOV, readout time), telescope limits (horizon, declination, hour angle, lunar and zenithal avoidance), preferred and restricted survey regions in RA/Dec, ecliptic, and Galactic coordinate systems, and recent coverage by other asteroid surveys. Simulated surveys are created for a subset of current and previous NEO surveys (LINEAR, Pan-STARRS and the three Catalina Sky Survey telescopes), and compared against the actual performance of these surveys in order to validate the model’s performance. The simulator tracks objects within the FOV of any pointing that were not discovered (e.g. too few observations, too trailed, focal plane array gaps, too fast or slow), thus dividing the population into “discoverable” and “discovered” subsets, to inform possible survey design changes. Ongoing and future work includes generating a realistic “known” subset of the model NEO population, running multiple independent simulated surveys in coordinated and uncoordinated modes, and testing various cadences to find optimal strategies for detecting NEO sub-populations. These tools can also assist in quantifying the efficiency of novel

  2. 4th International Workshop on Adaptive Optics for Industry and Medicine

    CERN Document Server

    Wittrock, Ulrich

    2005-01-01

    This book treats the development and application of adaptive optics for industry and medicine. The contributions describe recently developed components for adaptive-optics systems such as deformable mirrors, wavefront sensors, and mirror drivers as well as complete adaptive optical systems and their applications in industry and medicine. Applications range from laser-beam forming and adaptive aberration correction for high-power lasers to retinal imaging in ophthalmology. The contributions are based on presentations made at the 4th International Workshop on Adaptive Optics in Industry and Medicine which took place in Münster, Germany, in October 2003. This highly successful series of workshops on adaptive optics started in 1997 and continues with the 5th workshop in Beijing in 2005.

  3. Secondary mirror system for the European Solar Telescope (EST)

    Science.gov (United States)

    Cavaller, L.; Siegel, B.; Prieto, G.; Hernandez, E.; Casalta, J. M.; Mercader, J.; Barriga, J.

    2010-07-01

    The European Solar Telescope (EST) is a European collaborative project to build a 4m class solar telescope in the Canary Islands, which is now in its design study phase. The telescope will provide diffraction limited performance for several instruments observing simultaneously at the Coudé focus at different wavelengths. A multi-conjugated adaptive optics system composed of a tip-tilt mirror and several deformable mirrors will be integrated in the telescope optical path. The secondary mirror system is composed of the mirror itself (Ø800mm), the alignment drives and the cooling system needed to remove the solar heat load from the mirror. During the design study the feasibility to provide fast tip-tilt capabilities at the secondary mirror to work as the adaptive optics tip-tilt mirror is also being evaluated.

  4. Calibration of Ground-based Lidar instrument

    DEFF Research Database (Denmark)

    Yordanova, Ginka; Gómez Arranz, Paula

    This report presents the result of the lidar calibration performed for the given Ground-based Lidar at DTU’s test site for large wind turbines at Høvsøre, Denmark. Calibration is here understood as the establishment of a relation between the reference wind speed measurements with measurement...... uncertainties provided by measurement standard and corresponding lidar wind speed indications with associated measurement uncertainties. The lidar calibration concerns the 10 minute mean wind speed measurements. The comparison of the lidar measurements of the wind direction with that from wind vanes...

  5. Adaptive optics scanning laser ophthalmoscope imaging: technology update

    Directory of Open Access Journals (Sweden)

    Merino D

    2016-04-01

    Full Text Available David Merino, Pablo Loza-Alvarez The Institute of Photonic Sciences (ICFO, The Barcelona Institute of Science and Technology, Castelldefels, Barcelona, Spain Abstract: Adaptive optics (AO retinal imaging has become very popular in the past few years, especially within the ophthalmic research community. Several different retinal techniques, such as fundus imaging cameras or optical coherence tomography systems, have been coupled with AO in order to produce impressive images showing individual cell mosaics over different layers of the in vivo human retina. The combination of AO with scanning laser ophthalmoscopy has been extensively used to generate impressive images of the human retina with unprecedented resolution, showing individual photoreceptor cells, retinal pigment epithelium cells, as well as microscopic capillary vessels, or the nerve fiber layer. Over the past few years, the technique has evolved to develop several different applications not only in the clinic but also in different animal models, thanks to technological developments in the field. These developments have specific applications to different fields of investigation, which are not limited to the study of retinal diseases but also to the understanding of the retinal function and vision science. This review is an attempt to summarize these developments in an understandable and brief manner in order to guide the reader into the possibilities that AO scanning laser ophthalmoscopy offers, as well as its limitations, which should be taken into account when planning on using it. Keywords: high-resolution, in vivo retinal imaging, AOSLO

  6. Nanomechanical characterization of adaptive optics components in microprojectors

    International Nuclear Information System (INIS)

    Palacio, Manuel; Bhushan, Bharat

    2010-01-01

    Compact microprojectors are being developed for information display in mobile electronic devices. A key component of the microprojector is the green laser package, which consists of an adaptive optics component with a drive mechanism. A crucial concern is the mechanical wear of key drive mechanism components, such as the carbon fiber reinforced polymer (CFRP) driving rod, the Zn alloy body and the stainless steel friction plate, after prolonged operation. Since friction and wear are dependent on the mechanical properties, nanoindentation experiments were conducted on these drive mechanism components using a depth-sensing nanoindenter at room and elevated temperatures up to 100 °C. The hardness and elastic modulus of all the materials studied decrease at increasing test temperatures. From plasticity index analysis, a correlation between the tendency for plastic deformation and the mechanical properties was obtained. Nanoscratch studies were also conducted in order to simulate wear, as well as examine the scratch resistance and deformation modes of these materials, where it was found that the CFRP rod exhibited the highest scratch resistance. The CFRP rod undergoes mostly brittle deformation, while the Zn alloy body and friction plate undergo plastic deformation.

  7. Optically sensitive Medipix2 detector for adaptive optics wavefront sensing

    CERN Document Server

    Vallerga, John; Tremsina, Anton; Siegmund, Oswald; Mikulec, Bettina; Clark, Allan G; CERN. Geneva

    2005-01-01

    A new hybrid optical detector is described that has many of the attributes desired for the next generation adaptive optics (AO) wavefront sensors. The detector consists of a proximity focused microchannel plate (MCP) read out by multi-pixel application specific integrated circuit (ASIC) chips developed at CERN ("Medipix2") with individual pixels that amplify, discriminate and count input events. The detector has 256 x 256 pixels, zero readout noise (photon counting), can be read out at 1 kHz frame rates and is abutable on 3 sides. The Medipix2 readout chips can be electronically shuttered down to a temporal window of a few microseconds with an accuracy of 10 ns. When used in a Shack-Hartmann style wavefront sensor, a detector with 4 Medipix chips should be able to centroid approximately 5000 spots using 7 x 7 pixel sub-apertures resulting in very linear, off-null error correction terms. The quantum efficiency depends on the optical photocathode chosen for the bandpass of interest.

  8. Adaptive optics improves multiphoton super-resolution imaging

    Science.gov (United States)

    Zheng, Wei; Wu, Yicong; Winter, Peter; Shroff, Hari

    2018-02-01

    Three dimensional (3D) fluorescence microscopy has been essential for biological studies. It allows interrogation of structure and function at spatial scales spanning the macromolecular, cellular, and tissue levels. Critical factors to consider in 3D microscopy include spatial resolution, signal-to-noise (SNR), signal-to-background (SBR), and temporal resolution. Maintaining high quality imaging becomes progressively more difficult at increasing depth (where optical aberrations, induced by inhomogeneities of refractive index in the sample, degrade resolution and SNR), and in thick or densely labeled samples (where out-of-focus background can swamp the valuable, in-focus-signal from each plane). In this report, we introduce our new instrumentation to address these problems. A multiphoton structured illumination microscope was simply modified to integrate an adpative optics system for optical aberrations correction. Firstly, the optical aberrations are determined using direct wavefront sensing with a nonlinear guide star and subsequently corrected using a deformable mirror, restoring super-resolution information. We demonstrate the flexibility of our adaptive optics approach on a variety of semi-transparent samples, including bead phantoms, cultured cells in collagen gels and biological tissues. The performance of our super-resolution microscope is improved in all of these samples, as peak intensity is increased (up to 40-fold) and resolution recovered (up to 176+/-10 nm laterally and 729+/-39 nm axially) at depths up to 250 μm from the coverslip surface.

  9. Control algorithms and applications of the wavefront sensorless adaptive optics

    Science.gov (United States)

    Ma, Liang; Wang, Bin; Zhou, Yuanshen; Yang, Huizhen

    2017-10-01

    Compared with the conventional adaptive optics (AO) system, the wavefront sensorless (WFSless) AO system need not to measure the wavefront and reconstruct it. It is simpler than the conventional AO in system architecture and can be applied to the complex conditions. Based on the analysis of principle and system model of the WFSless AO system, wavefront correction methods of the WFSless AO system were divided into two categories: model-free-based and model-based control algorithms. The WFSless AO system based on model-free-based control algorithms commonly considers the performance metric as a function of the control parameters and then uses certain control algorithm to improve the performance metric. The model-based control algorithms include modal control algorithms, nonlinear control algorithms and control algorithms based on geometrical optics. Based on the brief description of above typical control algorithms, hybrid methods combining the model-free-based control algorithm with the model-based control algorithm were generalized. Additionally, characteristics of various control algorithms were compared and analyzed. We also discussed the extensive applications of WFSless AO system in free space optical communication (FSO), retinal imaging in the human eye, confocal microscope, coherent beam combination (CBC) techniques and extended objects.

  10. Sensorless adaptive optics for isoSTED nanoscopy

    Science.gov (United States)

    Antonello, Jacopo; Hao, Xiang; Allgeyer, Edward S.; Bewersdorf, Joerg; Rittscher, Jens; Booth, Martin J.

    2018-02-01

    The presence of aberrations is a major concern when using fluorescence microscopy to image deep inside tissue. Aberrations due to refractive index mismatch and heterogeneity of the specimen under investigation cause severe reduction in the amount of fluorescence emission that is collected by the microscope. Furthermore, aberrations adversely affect the resolution, leading to loss of fine detail in the acquired images. These phenomena are particularly troublesome for super-resolution microscopy techniques such as isotropic stimulated-emission-depletion microscopy (isoSTED), which relies on accurate control of the shape and co-alignment of multiple excitation and depletion foci to operate as expected and to achieve the super-resolution effect. Aberrations can be suppressed by implementing sensorless adaptive optics techniques, whereby aberration correction is achieved by maximising a certain image quality metric. In confocal microscopy for example, one can employ the total image brightness as an image quality metric. Aberration correction is subsequently achieved by iteratively changing the settings of a wavefront corrector device until the metric is maximised. This simplistic approach has limited applicability to isoSTED microscopy where, due to the complex interplay between the excitation and depletion foci, maximising the total image brightness can lead to introducing aberrations in the depletion foci. In this work we first consider the effects that different aberration modes have on isoSTED microscopes. We then propose an iterative, wavelet-based aberration correction algorithm and evaluate its benefits.

  11. Optically sensitive Medipix2 detector for adaptive optics wavefront sensing

    International Nuclear Information System (INIS)

    Vallerga, John; McPhate, Jason; Tremsin, Anton; Siegmund, Oswald; Mikulec, Bettina; Clark, Allan

    2005-01-01

    A new hybrid optical detector is described that has many of the attributes desired for the next generation adaptive optics (AO) wavefront sensors. The detector consists of a proximity focused microchannel plate (MCP) read out by multi-pixel application specific integrated circuit (ASIC) chips developed at CERN ('Medipix2') with individual pixels that amplify, discriminate and count input events. The detector has 256x256 pixels, zero readout noise (photon counting), can be read out at 1 kHz frame rates and is abutable on 3 sides. The Medipix2 readout chips can be electronically shuttered down to a temporal window of a few microseconds with an accuracy of 10 ns. When used in a Shack-Hartmann style wavefront sensor, a detector with 4 Medipix chips should be able to centroid approximately 5000 spots using 7x7 pixel sub-apertures resulting in very linear, off-null error correction terms. The quantum efficiency depends on the optical photocathode chosen for the bandpass of interest

  12. Space weather effects on ground based technology

    Science.gov (United States)

    Clark, T.

    Space weather can affect a variety of forms of ground-based technology, usually as a result of either the direct effects of the varying geomagnetic field, or as a result of the induced electric field that accompanies such variations. Technologies affected directly by geomagnetic variations include magnetic measurements made d ringu geophysical surveys, and navigation relying on the geomagnetic field as a direction reference, a method that is particularly common in the surveying of well-bores in the oil industry. The most obvious technology affected by induced electric fields during magnetic storms is electric power transmission, where the example of the blackout in Quebec during the March 1989 magnetic storm is widely known. Additionally, space weather effects must be taken into account in the design of active cathodic protection systems on pipelines to protect them against corrosion. Long-distance telecommunication cables may also have to be designed to cope with space weather related effects. This paper reviews the effects of space weather in these different areas of ground-based technology, and provides examples of how mitigation against hazards may be achieved. (The paper does not include the effects of space weather on radio communication or satellite navigation systems).

  13. An adaptive optics imaging system designed for clinical use

    Science.gov (United States)

    Zhang, Jie; Yang, Qiang; Saito, Kenichi; Nozato, Koji; Williams, David R.; Rossi, Ethan A.

    2015-01-01

    Here we demonstrate a new imaging system that addresses several major problems limiting the clinical utility of conventional adaptive optics scanning light ophthalmoscopy (AOSLO), including its small field of view (FOV), reliance on patient fixation for targeting imaging, and substantial post-processing time. We previously showed an efficient image based eye tracking method for real-time optical stabilization and image registration in AOSLO. However, in patients with poor fixation, eye motion causes the FOV to drift substantially, causing this approach to fail. We solve that problem here by tracking eye motion at multiple spatial scales simultaneously by optically and electronically integrating a wide FOV SLO (WFSLO) with an AOSLO. This multi-scale approach, implemented with fast tip/tilt mirrors, has a large stabilization range of ± 5.6°. Our method consists of three stages implemented in parallel: 1) coarse optical stabilization driven by a WFSLO image, 2) fine optical stabilization driven by an AOSLO image, and 3) sub-pixel digital registration of the AOSLO image. We evaluated system performance in normal eyes and diseased eyes with poor fixation. Residual image motion with incremental compensation after each stage was: 1) ~2–3 arc minutes, (arcmin) 2) ~0.5–0.8 arcmin and, 3) ~0.05–0.07 arcmin, for normal eyes. Performance in eyes with poor fixation was: 1) ~3–5 arcmin, 2) ~0.7–1.1 arcmin and 3) ~0.07–0.14 arcmin. We demonstrate that this system is capable of reducing image motion by a factor of ~400, on average. This new optical design provides additional benefits for clinical imaging, including a steering subsystem for AOSLO that can be guided by the WFSLO to target specific regions of interest such as retinal pathology and real-time averaging of registered images to eliminate image post-processing. PMID:26114033

  14. Through-focus scanning optical microscopy (TSOM) with adaptive optics

    Science.gov (United States)

    Lee, Jun Ho; Park, Gyunam; Jeong, Junhee; Park, Chris

    2018-03-01

    Through-focus optical microscopy (TSOM) with nanometer-scale lateral and vertical sensitivity levels matching those of scanning electron microscopy has been demonstrated to be useful both for 3D inspections and metrology assessments. In 2014, funded by two private companies (Nextin/Samsung Electronics) and the Korea Evaluation Institute of Industrial Technology (KEIT), a research team from four universities in South Korea set out to investigate core technologies for developing in-line TSOM inspection and metrology tools, with the respective teams focusing on optics implementation, defect inspection, computer simulation and high-speed metrology matching. We initially confirmed the reported validity of the TSOM operation through a computer simulation, after which we implemented the TSOM operation by throughfocus scanning of existing UV (355nm) and IR (800nm) inspection tools. These tools have an identical sampling distance of 150 nm but have different resolving distances (310 and 810 nm, respectively). We initially experienced some improvement in the defect inspection sensitivity level over TSV (through-silicon via) samples with 6.6 μm diameters. However, during the experiment, we noted sensitivity and instability issues when attempting to acquire TSOM images. As TSOM 3D information is indirectly extracted by differentiating a target TSOM image from reference TSOM images, any instability or mismatch in imaging conditions can result in measurement errors. As a remedy to such a situation, we proposed the application of adaptive optics to the TSOM operation and developed a closed-loop system with a tip/tilt mirror and a Shack-Hartmann sensor on an optical bench. We were able to keep the plane position within in RMS 0.4 pixel by actively compensating for any position instability which arose during the TSOM scanning process along the optical axis. Currently, we are also developing another TSOM tool with a deformable mirror instead of a tip/tilt mirror, in which case we

  15. Electrostatic polymer-based microdeformable mirror for adaptive optics

    Science.gov (United States)

    Zamkotsian, Frederic; Conedera, Veronique; Granier, Hugues; Liotard, Arnaud; Lanzoni, Patrick; Salvagnac, Ludovic; Fabre, Norbert; Camon, Henri

    2007-02-01

    Future adaptive optics (AO) systems require deformable mirrors with very challenging parameters, up to 250 000 actuators and inter-actuator spacing around 500 μm. MOEMS-based devices are promising for the development of a complete generation of new deformable mirrors. Our micro-deformable mirror (MDM) is based on an array of electrostatic actuators with attachments to a continuous mirror on top. The originality of our approach lies in the elaboration of layers made of polymer materials. Mirror layers and active actuators have been demonstrated. Based on the design of this actuator and our polymer process, realization of a complete polymer-MDM has been done using two process flows: the first involves exclusively polymer materials while the second uses SU8 polymer for structural layers and SiO II and sol-gel for sacrificial layers. The latest shows a better capability in order to produce completely released structures. The electrostatic force provides a non-linear actuation, while AO systems are based on linear matrices operations. Then, we have developed a dedicated 14-bit electronics in order to "linearize" the actuation, using a calibration and a sixth-order polynomial fitting strategy. The response is nearly perfect over our 3×3 MDM prototype with a standard deviation of 3.5 nm; the influence function of the central actuator has been measured. First evaluation on the cross non-linarities has also been studied on OKO mirror and a simple look-up table is sufficient for determining the location of each actuator whatever the locations of the neighbor actuators. Electrostatic MDM are particularly well suited for open-loop AO applications.

  16. Compact adaptive optic-optical coherence tomography system

    Science.gov (United States)

    Olivier, Scot S [Livermore, CA; Chen, Diana C [Fremont, CA; Jones, Steven M [Danville, CA; McNary, Sean M [Stockton, CA

    2011-05-17

    Badal Optometer and rotating cylinders are inserted in the AO-OCT to correct large spectacle aberrations such as myopia, hyperopic and astigmatism for ease of clinical use and reduction. Spherical mirrors in the sets of the telescope are rotated orthogonally to reduce aberrations and beam displacement caused by the scanners. This produces greatly reduced AO registration errors and improved AO performance to enable high order aberration correction in a patient eyes.

  17. Adaptive optics scanning laser ophthalmoscopy in fundus imaging, a review and update

    Directory of Open Access Journals (Sweden)

    Bing Zhang

    2017-11-01

    Full Text Available Adaptive optics scanning laser ophthalmoscopy (AO-SLO has been a promising technique in funds imaging with growing popularity. This review firstly gives a brief history of adaptive optics (AO and AO-SLO. Then it compares AO-SLO with conventional imaging methods (fundus fluorescein angiography, fundus autofluorescence, indocyanine green angiography and optical coherence tomography and other AO techniques (adaptive optics flood-illumination ophthalmoscopy and adaptive optics optical coherence tomography. Furthermore, an update of current research situation in AO-SLO is made based on different fundus structures as photoreceptors (cones and rods, fundus vessels, retinal pigment epithelium layer, retinal nerve fiber layer, ganglion cell layer and lamina cribrosa. Finally, this review indicates possible research directions of AO-SLO in future.

  18. Phase Diversity Wavefront Sensing for Control of Space Based Adaptive Optics Systems

    National Research Council Canada - National Science Library

    Schgallis, Richard J

    2007-01-01

    Phase Diversity Wavefront Sensing (PD WFS) is a wavefront reconstruction technique used in adaptive optics, which takes advantage of the curvature conjugating analog physical properties of a deformable mirror (MMDM or Bi-morph...

  19. Modeling and Control of Magnetic Fluid Deformable Mirrors for Adaptive Optics Systems

    CERN Document Server

    Wu, Zhizheng; Ben Amara, Foued

    2013-01-01

    Modeling and Control of Magnetic Fluid Deformable Mirrors for Adaptive Optics Systems presents a novel design of wavefront correctors based on magnetic fluid deformable mirrors (MFDM) as well as corresponding control algorithms. The presented wavefront correctors are characterized by their linear, dynamic response. Various mirror surface shape control algorithms are presented along with experimental evaluations of the performance of the resulting adaptive optics systems. Adaptive optics (AO) systems are used in various fields of application to enhance the performance of optical systems, such as imaging, laser, free space optical communication systems, etc. This book is intended for undergraduate and graduate students, professors, engineers, scientists and researchers working on the design of adaptive optics systems and their various emerging fields of application. Zhizheng Wu is an associate professor at Shanghai University, China. Azhar Iqbal is a research associate at the University of Toronto, Canada. Foue...

  20. Design of an optimized adaptive optics system with a photo-controlled deformable mirror

    Czech Academy of Sciences Publication Activity Database

    Pilař, Jan; Bonora, Stefano; Lucianetti, Antonio; Jelínková, H.; Mocek, Tomáš

    2016-01-01

    Roč. 28, č. 13 (2016), s. 1422-1425 ISSN 1041-1135 Institutional support: RVO:68378271 Keywords : adaptive optics * closed loop systems * deformable mirror Subject RIV: BH - Optics, Masers, Lasers Impact factor: 2.375, year: 2016

  1. Large-field-of-view imaging by multi-pupil adaptive optics.

    Science.gov (United States)

    Park, Jung-Hoon; Kong, Lingjie; Zhou, Yifeng; Cui, Meng

    2017-06-01

    Adaptive optics can correct for optical aberrations. We developed multi-pupil adaptive optics (MPAO), which enables simultaneous wavefront correction over a field of view of 450 × 450 μm 2 and expands the correction area to nine times that of conventional methods. MPAO's ability to perform spatially independent wavefront control further enables 3D nonplanar imaging. We applied MPAO to in vivo structural and functional imaging in the mouse brain.

  2. The Dimensions and Pole of Asteroid (21) Lutetia from Adaptive Optics Images

    Science.gov (United States)

    Drummond, Jack D.; Conrad, A.; Merline, W.; Carry, B.

    2009-09-01

    In a campaign to study the Rosetta mission target, asteroid (21) Lutetia, we obtained 81 images on December 2, 2008, at 2.12 microns with adaptive optics (AO) on the Keck-II 10 m telescope. From these nearly consecutive images obtained over a quarter of rotation, we have determined the asteroid's triaxial ellipsoid diameters to be 132x101x76 km, with formal uncertainties of 1 km for the equatorial dimensions, and 31 km for the shortest axis. This latter uncertainty occurs because the observations were made at the relatively high sub-Earth latitude of -69 degrees. From these observations we determine that Lutetia's pole lies at 2000.0 coordinates of RA=48, Dec=+9, or Ecliptic coordinates of [49;-8], with a formal uncertainty radius of 3 deg. (The other possible pole is eliminated by considering its lightcurve history.) The rotational pole derived for the lightcurve inversion model (available at http://astro.troja.mff.cuni.cz/ projects/asteroids3D/web.php), is only 5 deg from ours, but comparing our images to the lightcurve inversion model we find that Lutetia is more pointed than the model. Our technique of deriving the dimensions of asteroids from AO images has been calibrated against Pluto and 4 satellites of Saturn with precise diameters, and we find that any systematic errors can be no more than 1-3%. We acknowledge the assistance of other team members Christophe Dumas (ESO), Peter Tamblyn (SwRI), and Clark Chapman (SwRI). We also thank Hal Weaver (JHU/APL) as the lead for our collaboration with the Rosetta mission. We are grateful for telescope time made available to us by S. Kulkarni and M. Busch (Cal Tech) for a portion of our overall Lutetia effort. We also thank our collaborators on Team Keck, the Keck science staff, for making possible some of the Lutetia observations and for their participation. Additional Lutetia observations were acquired at Gemini North under NOAO time allocation.

  3. Reaching for the stars - New developments in ground-based astronomy

    CERN Document Server

    CERN. Geneva

    2015-01-01

    I will briefly review the state-of-the-art in ground-based astronomy - both on the telescope side and the instrument side. Interesting parallels can be drawn in cost, construction and operations with the particle physics facilities. I will then present some recent results in the two hottest topics in astronomy, driving the requests for more advanced facilities: exoplanets and the hunt for life beyond the solar system (calling for Extremely Large Telescope); and cosmology and the understanding of dark energy (calling for large survey telescopes). This will lead to a description of the latest telescope project developments on the ground: the on-going construction of the Large Synoptic Telescope on a quest to better understand dark energy, and the start of the construction of three Extremely Large Telescopes by European and US-led international consortia, hoping to find life on planets around nearby stars.   ATS Seminars Organisers: H. Burkhardt (BE), M. Modena (TE), T. Stora (EN) Coffee / tea will ...

  4. ELT-scale Adaptive Optics real-time control with thes Intel Xeon Phi Many Integrated Core Architecture

    Science.gov (United States)

    Jenkins, David R.; Basden, Alastair; Myers, Richard M.

    2018-05-01

    We propose a solution to the increased computational demands of Extremely Large Telescope (ELT) scale adaptive optics (AO) real-time control with the Intel Xeon Phi Knights Landing (KNL) Many Integrated Core (MIC) Architecture. The computational demands of an AO real-time controller (RTC) scale with the fourth power of telescope diameter and so the next generation ELTs require orders of magnitude more processing power for the RTC pipeline than existing systems. The Xeon Phi contains a large number (≥64) of low power x86 CPU cores and high bandwidth memory integrated into a single socketed server CPU package. The increased parallelism and memory bandwidth are crucial to providing the performance for reconstructing wavefronts with the required precision for ELT scale AO. Here, we demonstrate that the Xeon Phi KNL is capable of performing ELT scale single conjugate AO real-time control computation at over 1.0kHz with less than 20μs RMS jitter. We have also shown that with a wavefront sensor camera attached the KNL can process the real-time control loop at up to 966Hz, the maximum frame-rate of the camera, with jitter remaining below 20μs RMS. Future studies will involve exploring the use of a cluster of Xeon Phis for the real-time control of the MCAO and MOAO regimes of AO. We find that the Xeon Phi is highly suitable for ELT AO real time control.

  5. Preliminary Cost Model for Space Telescopes

    Science.gov (United States)

    Stahl, H. Philip; Prince, F. Andrew; Smart, Christian; Stephens, Kyle; Henrichs, Todd

    2009-01-01

    Parametric cost models are routinely used to plan missions, compare concepts and justify technology investments. However, great care is required. Some space telescope cost models, such as those based only on mass, lack sufficient detail to support such analysis and may lead to inaccurate conclusions. Similarly, using ground based telescope models which include the dome cost will also lead to inaccurate conclusions. This paper reviews current and historical models. Then, based on data from 22 different NASA space telescopes, this paper tests those models and presents preliminary analysis of single and multi-variable space telescope cost models.

  6. High performance pseudo-analytical simulation of multi-object adaptive optics over multi-GPU systems

    KAUST Repository

    Abdelfattah, Ahmad; Gendron, É ric; Gratadour, Damien; Keyes, David E.; Ltaief, Hatem; Sevin, Arnaud; Vidal, Fabrice

    2014-01-01

    Multi-object adaptive optics (MOAO) is a novel adaptive optics (AO) technique dedicated to the special case of wide-field multi-object spectrographs (MOS). It applies dedicated wavefront corrections to numerous independent tiny patches spread over a large field of view (FOV). The control of each deformable mirror (DM) is done individually using a tomographic reconstruction of the phase based on measurements from a number of wavefront sensors (WFS) pointing at natural and artificial guide stars in the field. The output of this study helps the design of a new instrument called MOSAIC, a multi-object spectrograph proposed for the European Extremely Large Telescope (E-ELT). We have developed a novel hybrid pseudo-analytical simulation scheme that allows us to accurately simulate in detail the tomographic problem. The main challenge resides in the computation of the tomographic reconstructor, which involves pseudo-inversion of a large dense symmetric matrix. The pseudo-inverse is computed using an eigenvalue decomposition, based on the divide and conquer algorithm, on multicore systems with multi-GPUs. Thanks to a new symmetric matrix-vector product (SYMV) multi-GPU kernel, our overall implementation scores significant speedups over standard numerical libraries on multicore, like Intel MKL, and up to 60% speedups over the standard MAGMA implementation on 8 Kepler K20c GPUs. At 40,000 unknowns, this appears to be the largest-scale tomographic AO matrix solver submitted to computation, to date, to our knowledge and opens new research directions for extreme scale AO simulations. © 2014 Springer International Publishing Switzerland.

  7. Adaptive optics correction into single mode fiber for a low Earth orbiting space to ground optical communication link using the OPALS downlink.

    Science.gov (United States)

    Wright, Malcolm W; Morris, Jeffery F; Kovalik, Joseph M; Andrews, Kenneth S; Abrahamson, Matthew J; Biswas, Abhijit

    2015-12-28

    An adaptive optics (AO) testbed was integrated to the Optical PAyload for Lasercomm Science (OPALS) ground station telescope at the Optical Communications Telescope Laboratory (OCTL) as part of the free space laser communications experiment with the flight system on board the International Space Station (ISS). Atmospheric turbulence induced aberrations on the optical downlink were adaptively corrected during an overflight of the ISS so that the transmitted laser signal could be efficiently coupled into a single mode fiber continuously. A stable output Strehl ratio of around 0.6 was demonstrated along with the recovery of a 50 Mbps encoded high definition (HD) video transmission from the ISS at the output of the single mode fiber. This proof of concept demonstration validates multi-Gbps optical downlinks from fast slewing low-Earth orbiting (LEO) spacecraft to ground assets in a manner that potentially allows seamless space to ground connectivity for future high data-rates network.

  8. Ground-Based VIS/NIR Reflectance Spectra of 25143 Itokawa: What Hayabusa will See and How Ground-Based Data can Augment Analyses

    Science.gov (United States)

    Vilas, Faith; Abell, P. A.; Jarvis, K. S.

    2004-01-01

    Planning for the arrival of the Hayabusa spacecraft at asteroid 25143 Itokawa includes consideration of the expected spectral information to be obtained using the AMICA and NIRS instruments. The rotationally-resolved spatial coverage the asteroid we have obtained with ground-based telescopic spectrophotometry in the visible and near-infrared can be utilized here to address expected spacecraft data. We use spectrophotometry to simulate the types of data that Hayabusa will receive with the NIRS and AMICA instruments, and will demonstrate them here. The NIRS will cover a wavelength range from 0.85 m, and have a dispersion per element of 250 Angstroms. Thus, we are limited in coverage of the 1.0 micrometer and 2.0 micrometer mafic silicate absorption features. The ground-based reflectance spectra of Itokawa show a large component of olivine in its surface material, and the 2.0 micrometer feature is shallow. Determining the olivine to pyroxene abundance ratio is critically dependent on the attributes of the 1.0- and 2.0 micrometer features. With a cut-off near 2,1 micrometer the longer edge of the 2.0- feature will not be obtained by NIRS. Reflectance spectra obtained using ground-based telescopes can be used to determine the regional composition around space-based spectral observations, and possibly augment the longer wavelength spectral attributes. Similarly, the shorter wavelength end of the 1.0 micrometer absorption feature will be partially lost to the NIRS. The AMICA filters mimic the ECAS filters, and have wavelength coverage overlapping with the NIRS spectral range. We demonstrate how merging photometry from AMICA will extend the spectral coverage of the NIRS. Lessons learned from earlier spacecraft to asteroids should be considered.

  9. Preparing for TESS: Precision Ground-based Light-curves of Newly Discovered Transiting Exoplanets

    Science.gov (United States)

    Li, Yiting; Stefansson, Gudmundur; Mahadevan, Suvrath; Monson, Andy; Hebb, Leslie; Wisniewski, John; Huehnerhoff, Joseph

    2018-01-01

    NASA’s Transiting Exoplanet Survey Satellite (TESS), to be launched in early 2018, is expected to catalog a myriad of transiting exoplanet candidates ranging from Earth-sized to gas giants, orbiting a diverse range of stellar types in the solar neighborhood. In particular, TESS will find small planets orbiting the closest and brightest stars, and will enable detailed atmospheric characterizations of planets with current and future telescopes. In the TESS era, ground-based follow-up resources will play a critical role in validating and confirming the planetary nature of the candidates TESS will discover. Along with confirming the planetary nature of exoplanet transits, high precision ground-based transit observations allow us to put further constraints on exoplanet orbital parameters and transit timing variations. In this talk, we present new observations of transiting exoplanets recently discovered by the K2 mission, using the optical diffuser on the 3.5m ARC Telescope at Apache Point Observatory. These include observations of the mini-Neptunes K2-28b and K2-104b orbiting early-to-mid M-dwarfs. In addition, other recent transit observations performed using the robotic 30cm telescope at Las Campanas Observatory in Chile will be presented.

  10. Active telescope systems; Proceedings of the Meeting, Orlando, FL, Mar. 28-31, 1989

    Science.gov (United States)

    Roddier, Francois J.

    1989-09-01

    The present conference discusses topics in the fundamental limitations of adaptive optics in astronomical telescopy, integrated telescope systems designs, novel components for adaptive telescopes, active interferometry, flexible-mirror and segmented-mirror telescopes, and various aspects of the NASA Precision Segmented Reflectors Program. Attention is given to near-ground atmospheric turbulence effects, a near-IR astronomical adaptive optics system, a simplified wavefront sensor for adaptive mirror control, excimer laser guide star techniques for adaptive astronomical imaging, active systems in long-baseline interferometry, mirror figure control primitives for a 10-m primary mirror, and closed-loop active optics for large flexible mirrors subject to wind buffet deformations. Also discussed are active pupil geometry control for a phased-array telescope, extremely lightweight space telescope mirrors, segmented-mirror manufacturing tolerances, and composite deformable mirror design.

  11. A convergent blind deconvolution method for post-adaptive-optics astronomical imaging

    International Nuclear Information System (INIS)

    Prato, M; Camera, A La; Bertero, M; Bonettini, S

    2013-01-01

    In this paper, we propose a blind deconvolution method which applies to data perturbed by Poisson noise. The objective function is a generalized Kullback–Leibler (KL) divergence, depending on both the unknown object and unknown point spread function (PSF), without the addition of regularization terms; constrained minimization, with suitable convex constraints on both unknowns, is considered. The problem is non-convex and we propose to solve it by means of an inexact alternating minimization method, whose global convergence to stationary points of the objective function has been recently proved in a general setting. The method is iterative and each iteration, also called outer iteration, consists of alternating an update of the object and the PSF by means of a fixed number of iterations, also called inner iterations, of the scaled gradient projection (SGP) method. Therefore, the method is similar to other proposed methods based on the Richardson–Lucy (RL) algorithm, with SGP replacing RL. The use of SGP has two advantages: first, it allows one to prove global convergence of the blind method; secondly, it allows the introduction of different constraints on the object and the PSF. The specific constraint on the PSF, besides non-negativity and normalization, is an upper bound derived from the so-called Strehl ratio (SR), which is the ratio between the peak value of an aberrated versus a perfect wavefront. Therefore, a typical application, but not a unique one, is to the imaging of modern telescopes equipped with adaptive optics systems for the partial correction of the aberrations due to atmospheric turbulence. In the paper, we describe in detail the algorithm and we recall the results leading to its convergence. Moreover, we illustrate its effectiveness by means of numerical experiments whose results indicate that the method, pushed to convergence, is very promising in the reconstruction of non-dense stellar clusters. The case of more complex astronomical targets

  12. An adaptive optics multiplicity census of young stars in Upper Scorpius

    Energy Technology Data Exchange (ETDEWEB)

    Lafrenière, David [Département de Physique, Université de Montréal, C.P. 6128 Succ. Centre-Ville, Montréal, QC H3C 3J7 (Canada); Jayawardhana, Ray; Van Kerkwijk, Marten H. [Department of Astronomy and Astrophysics, University of Toronto, 50 St. George Street, Toronto, ON M5S 3H4 (Canada); Brandeker, Alexis [Department of Astronomy, Stockholm University, SE-106 91 Stockholm (Sweden); Janson, Markus, E-mail: david@astro.umontreal.ca [Astrophysics Research Center, Queen' s University Belfast, BT7 1NN Belfast (United Kingdom)

    2014-04-10

    We present the results of a multiplicity survey of 91 stars spanning masses of ∼0.2-10 M {sub ☉} in the Upper Scorpius star-forming region, based on adaptive optics imaging with the Gemini North telescope. Our observations identified 29 binaries, 5 triples, and no higher order multiples. The corresponding raw multiplicity frequency is 0.37 ± 0.05. In the regime where our observations are complete—companion separations of 0.''1-5'' (∼15-800 AU) with magnitude limits ranging from K < 9.3 at 0.''1 to K < 15.8 at 5''—the multiplicity frequency is 0.27{sub −0.04}{sup +0.05}. For similar separations, the multiplicity frequency in Upper Scorpius is comparable to that in other dispersed star-forming regions, but is a factor of two to three higher than in denser star-forming regions or in the field. Our sample displays a constant multiplicity frequency as a function of stellar mass. Among our sample of binaries, we find that both wider (>100 AU) and higher-mass systems tend to have companions with lower companion-to-primary mass ratios. Three of the companions identified in our survey are unambiguously substellar and have estimated masses below 0.04 M {sub ☉} (two of them are new discoveries from this survey—1RXS J160929.1–210524b and HIP 78530B—although we have reported them separately in earlier papers). These three companions have projected orbital separations of 300-900 AU. Based on a statistical analysis factoring in sensitivity limits, we calculate an occurrence rate of 5-40 M {sub Jup} companions of ∼4.0% for orbital separations of 250-1000 AU, compared to <1.8% at smaller separations, suggesting that such companions are more frequent on wider orbits.

  13. New neighbours. III. 21 new companions to nearby dwarfs, discovered with adaptive optics

    Science.gov (United States)

    Beuzit, J.-L.; Ségransan, D.; Forveille, T.; Udry, S.; Delfosse, X.; Mayor, M.; Perrier, C.; Hainaut, M.-C.; Roddier, C.; Roddier, F.; Martín, E. L.

    2004-10-01

    We present some results of a CFHT adaptive optics search for companions to nearby dwarfs. We identify 21 new components in solar neighbourhood systems, of which 13 were found while surveying a volume-limited sample of M dwarfs within 12 pc. We are obtaining complete observations for this subsample, to derive unbiased multiplicity statistics for the very-low-mass disk population. Additionally, we resolve for the first time 6 known spectroscopic or astrometric binaries, for a total of 27 newly resolved companions. A significant fraction of the new binaries has favourable parameters for accurate mass determinations. The newly resolved companion of Gl 120.1C was thought to have a spectroscopic minimum mass in the brown-dwarf range (Duquennoy & Mayor \\cite{duquennoy91}), and it contributed to the statistical evidence that a few percent of solar-type stars might have close-in brown-dwarf companions. We find that Gl 120.1C actually is an unrecognised double-lined spectroscopic pair. Its radial-velocity amplitude had therefore been strongly underestimated by Duquennoy & Mayor (\\cite{duquennoy91}), and it does not truly belong to their sample of single-lined systems with minimum spectroscopic mass below the substellar limit. We also present the first direct detection of Gl 494B, an astrometric brown-dwarf candidate. Its luminosity straddles the substellar limit, and it is a brown dwarf if its age is less than ˜300 Myr. A few more years of observations will ascertain its mass and status from first principles. Based on observations made at Canada-France-Hawaii Telescope, operated by the National Research Council of Canada, the Centre National de la Recherche Scientifique de France and the University of Hawaii. Some of the data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The

  14. Observatories and Telescopes of Modern Times

    Science.gov (United States)

    Leverington, David

    2016-11-01

    Preface; Part I. Optical Observatories: 1. Palomar Mountain Observatory; 2. The United States Optical Observatory; 3. From the Next Generation Telescope to Gemini and SOAR; 4. Competing primary mirror designs; 5. Active optics, adaptive optics and other technical innovations; 6. European Northern Observatory and Calar Alto; 7. European Southern Observatory; 8. Mauna Kea Observatory; 9. Australian optical observatories; 10. Mount Hopkins' Whipple Observatory and the MMT; 11. Apache Point Observatory; 12. Carnegie Southern Observatory (Las Campanas); 13. Mount Graham International Optical Observatory; 14. Modern optical interferometers; 15. Solar observatories; Part II. Radio Observatories: 16. Australian radio observatories; 17. Cambridge Mullard Radio Observatory; 18. Jodrell Bank; 19. Early radio observatories away from the Australian-British axis; 20. The American National Radio Astronomy Observatory; 21. Owens Valley and Mauna Kea; 22. Further North and Central American observatories; 23. Further European and Asian radio observatories; 24. ALMA and the South Pole; Name index; Optical observatory and telescope index; Radio observatory and telescope index; General index.

  15. Deployment of a Pair of 3 M telescopes in Utah

    Energy Technology Data Exchange (ETDEWEB)

    Finnegan, G; Adams, B; Butler, K; Cardoza, J; Colin, P; Hui, C M; Kieda, D; Kirkwood, D; Kress, D; Kress, M; LeBohec, S; McGuire, C; Newbold, M; Nunez, P; Pham, K [University of Utah, Department of Physics, Salt Lake City, Utah 84112 (United States)

    2008-12-24

    Two 3 m telescopes are being installed in Grantsville Utah. They are intended for the testing of various approaches to the implementation of intensity interferometry using Cherenkov Telescopes in large arrays as receivers as well as for the testing of novel technology cameras and electronics for ground based gamma-ray astronomy.

  16. An adaptive optics system for solid-state laser systems used in inertial confinement fusion

    International Nuclear Information System (INIS)

    Salmon, J.T.; Bliss, E.S.; Byrd, J.L.; Feldman, M.; Kartz, M.A.; Toeppen, J.S.; Wonterghem, B. Van; Winters, S.E.

    1995-01-01

    Using adaptive optics the authors have obtained nearly diffraction-limited 5 kJ, 3 nsec output pulses at 1.053 microm from the Beamlet demonstration system for the National Ignition Facility (NIF). The peak Strehl ratio was improved from 0.009 to 0.50, as estimated from measured wavefront errors. They have also measured the relaxation of the thermally induced aberrations in the main beam line over a period of 4.5 hours. Peak-to-valley aberrations range from 6.8 waves at 1.053 microm within 30 minutes after a full system shot to 3.9 waves after 4.5 hours. The adaptive optics system must have enough range to correct accumulated thermal aberrations from several shots in addition to the immediate shot-induced error. Accumulated wavefront errors in the beam line will affect both the design of the adaptive optics system for NIF and the performance of that system

  17. High-Resolution Adaptive Optics Test-Bed for Vision Science

    International Nuclear Information System (INIS)

    Wilks, S.C.; Thomspon, C.A.; Olivier, S.S.; Bauman, B.J.; Barnes, T.; Werner, J.S.

    2001-01-01

    We discuss the design and implementation of a low-cost, high-resolution adaptive optics test-bed for vision research. It is well known that high-order aberrations in the human eye reduce optical resolution and limit visual acuity. However, the effects of aberration-free eyesight on vision are only now beginning to be studied using adaptive optics to sense and correct the aberrations in the eye. We are developing a high-resolution adaptive optics system for this purpose using a Hamamatsu Parallel Aligned Nematic Liquid Crystal Spatial Light Modulator. Phase-wrapping is used to extend the effective stroke of the device, and the wavefront sensing and wavefront correction are done at different wavelengths. Issues associated with these techniques will be discussed

  18. Adaptive optics fundus images of cone photoreceptors in the macula of patients with retinitis pigmentosa

    Directory of Open Access Journals (Sweden)

    Tojo N

    2013-01-01

    Full Text Available Naoki Tojo, Tomoko Nakamura, Chiharu Fuchizawa, Toshihiko Oiwake, Atsushi HayashiDepartment of Ophthalmology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, JapanBackground: The purpose of this study was to examine cone photoreceptors in the macula of patients with retinitis pigmentosa using an adaptive optics fundus camera and to investigate any correlations between cone photoreceptor density and findings on optical coherence tomography and fundus autofluorescence.Methods: We examined two patients with typical retinitis pigmentosa who underwent ophthalmological examination, including measurement of visual acuity, and gathering of electroretinographic, optical coherence tomographic, fundus autofluorescent, and adaptive optics fundus images. The cone photoreceptors in the adaptive optics images of the two patients with retinitis pigmentosa and five healthy subjects were analyzed.Results: An abnormal parafoveal ring of high-density fundus autofluorescence was observed in the macula in both patients. The border of the ring corresponded to the border of the external limiting membrane and the inner segment and outer segment line in the optical coherence tomographic images. Cone photoreceptors at the abnormal parafoveal ring were blurred and decreased in the adaptive optics images. The blurred area corresponded to the abnormal parafoveal ring in the fundus autofluorescence images. Cone densities were low at the blurred areas and at the nasal and temporal retina along a line from the fovea compared with those of healthy controls. The results for cone spacing and Voronoi domains in the macula corresponded with those for the cone densities.Conclusion: Cone densities were heavily decreased in the macula, especially at the parafoveal ring on high-density fundus autofluorescence in both patients with retinitis pigmentosa. Adaptive optics images enabled us to observe in vivo changes in the cone photoreceptors of

  19. Study of the unknown hemisphere of mercury by ground-based astronomical facilities

    Science.gov (United States)

    Ksanfomality, L. V.

    2011-08-01

    The short exposure method proved to be very productive in ground-based observations of Mercury. Telescopic observations with short exposures, together with computer codes for the processing of data arrays of many thousands of original electronic photos, make it possible to improve the resolution of images from ground-based instruments to almost the diffraction limit. The resulting composite images are comparable with images from spacecrafts approaching from a distance of about 1 million km. This paper presents images of the hemisphere of Mercury in longitude sectors 90°-180°W, 215°-350°W, and 50°-90°W, including, among others, areas not covered by spacecraft cameras. For the first time a giant S basin was discovered in the sector of longitudes 250°-290°W, which is the largest formation of this type on terrestrial planets. Mercury has a strong phase effects. As a result, the view of the surface changes completely with the change in the planetary phase. But the choice of the phase in the study using spacecrafts is limited by orbital characteristics of the mission. Thus, ground-based observations of the planet provide a valuable support.

  20. ADAPTIVE OPTICS IMAGING OF VY CANIS MAJORIS AT 2-5 μm WITH LBT/LMIRCam

    Energy Technology Data Exchange (ETDEWEB)

    Shenoy, Dinesh P.; Jones, Terry J.; Humphreys, Roberta M. [Minnesota Institute for Astrophysics, University of Minnesota, 116 Church Street SE, Minneapolis, MN 55455 (United States); Marengo, Massimo [Department of Physics, Iowa State University, Ames, IA 50011 (United States); Leisenring, Jarron M. [Institute for Astronomy, ETH, Wolfgang-Pauli-Strasse 27, 8093 Zurich (Switzerland); Nelson, Matthew J.; Wilson, John C.; Skrutskie, Michael F. [Department of Astronomy, University of Virginia, 530 McCormick Road, Charlottesville, VA 22904 (United States); Hinz, Philip M.; Hoffmann, William F.; Bailey, Vanessa; Skemer, Andrew; Rodigas, Timothy; Vaitheeswaran, Vidhya, E-mail: shenoy@astro.umn.edu [Steward Observatory, University of Arizona, 933 N. Cherry Avenue, Tucson, AZ 85721 (United States)

    2013-10-01

    We present adaptive optics images of the extreme red supergiant VY Canis Majoris in the K{sub s} , L', and M bands (2.15-4.8 μm) made with LMIRCam on the Large Binocular Telescope. The peculiar ''Southwest Clump'' previously imaged from 1 to 2.2 μm appears prominently in all three filters. We find its brightness is due almost entirely to scattering, with the contribution of thermal emission limited to at most 25%. We model its brightness as optically thick scattering from silicate dust grains using typical size distributions. We find a lower limit mass for this single feature of 5 × 10{sup –3} M {sub ☉} to 2.5 × 10{sup –2} M {sub ☉} depending on the assumed gas-to-dust ratio. The presence of the Clump as a distinct feature with no apparent counterpart on the other side of the star is suggestive of an ejection event from a localized region of the star and is consistent with VY CMa's history of asymmetric high-mass-loss events.

  1. ADAPTIVE OPTICS IMAGING OF VY CANIS MAJORIS AT 2-5 μm WITH LBT/LMIRCam

    International Nuclear Information System (INIS)

    Shenoy, Dinesh P.; Jones, Terry J.; Humphreys, Roberta M.; Marengo, Massimo; Leisenring, Jarron M.; Nelson, Matthew J.; Wilson, John C.; Skrutskie, Michael F.; Hinz, Philip M.; Hoffmann, William F.; Bailey, Vanessa; Skemer, Andrew; Rodigas, Timothy; Vaitheeswaran, Vidhya

    2013-01-01

    We present adaptive optics images of the extreme red supergiant VY Canis Majoris in the K s , L', and M bands (2.15-4.8 μm) made with LMIRCam on the Large Binocular Telescope. The peculiar ''Southwest Clump'' previously imaged from 1 to 2.2 μm appears prominently in all three filters. We find its brightness is due almost entirely to scattering, with the contribution of thermal emission limited to at most 25%. We model its brightness as optically thick scattering from silicate dust grains using typical size distributions. We find a lower limit mass for this single feature of 5 × 10 –3 M ☉ to 2.5 × 10 –2 M ☉ depending on the assumed gas-to-dust ratio. The presence of the Clump as a distinct feature with no apparent counterpart on the other side of the star is suggestive of an ejection event from a localized region of the star and is consistent with VY CMa's history of asymmetric high-mass-loss events

  2. Adaptive Optics Imaging of VY Canis Majoris at 2-5 μm with LBT/LMIRCam

    Science.gov (United States)

    Shenoy, Dinesh P.; Jones, Terry J.; Humphreys, Roberta M.; Marengo, Massimo; Leisenring, Jarron M.; Nelson, Matthew J.; Wilson, John C.; Skrutskie, Michael F.; Hinz, Philip M.; Hoffmann, William F.; Bailey, Vanessa; Skemer, Andrew; Rodigas, Timothy; Vaitheeswaran, Vidhya

    2013-10-01

    We present adaptive optics images of the extreme red supergiant VY Canis Majoris in the Ks , L', and M bands (2.15-4.8 μm) made with LMIRCam on the Large Binocular Telescope. The peculiar "Southwest Clump" previously imaged from 1 to 2.2 μm appears prominently in all three filters. We find its brightness is due almost entirely to scattering, with the contribution of thermal emission limited to at most 25%. We model its brightness as optically thick scattering from silicate dust grains using typical size distributions. We find a lower limit mass for this single feature of 5 × 10-3 M ⊙ to 2.5 × 10-2 M ⊙ depending on the assumed gas-to-dust ratio. The presence of the Clump as a distinct feature with no apparent counterpart on the other side of the star is suggestive of an ejection event from a localized region of the star and is consistent with VY CMa's history of asymmetric high-mass-loss events. The LBT is an international collaboration among institutions in the United States, Italy, and Germany. LBT Corporation partners are: The University of Arizona on behalf of the Arizona university system; Istituto Nazionale di Astrofisica, Italy; LBT Beteiligungsgesellschaft, Germany, representing the Max-Planck Society, the Astrophysical Institute Potsdam, and Heidelberg University; The Ohio State University; and The Research Corporation, on behalf of The University of Notre Dame, University of Minnesota, and University of Virginia.

  3. "Slow-scanning" in Ground-based Mid-infrared Observations

    Science.gov (United States)

    Ohsawa, Ryou; Sako, Shigeyuki; Miyata, Takashi; Kamizuka, Takafumi; Okada, Kazushi; Mori, Kiyoshi; Uchiyama, Masahito S.; Yamaguchi, Junpei; Fujiyoshi, Takuya; Morii, Mikio; Ikeda, Shiro

    2018-04-01

    Chopping observations with a tip-tilt secondary mirror have conventionally been used in ground-based mid-infrared observations. However, it is not practical for next generation large telescopes to have a large tip-tilt mirror that moves at a frequency larger than a few hertz. We propose an alternative observing method, a "slow-scanning" observation. Images are continuously captured as movie data, while the field of view is slowly moved. The signal from an astronomical object is extracted from the movie data by a low-rank and sparse matrix decomposition. The performance of the "slow-scanning" observation was tested in an experimental observation with Subaru/COMICS. The quality of a resultant image in the "slow-scanning" observation was as good as in a conventional chopping observation with COMICS, at least for a bright point-source object. The observational efficiency in the "slow-scanning" observation was better than that in the chopping observation. The results suggest that the "slow-scanning" observation can be a competitive method for the Subaru telescope and be of potential interest to other ground-based facilities to avoid chopping.

  4. FINDING EXTRATERRESTRIAL LIFE USING GROUND-BASED HIGH-DISPERSION SPECTROSCOPY

    International Nuclear Information System (INIS)

    Snellen, I. A. G.; Le Poole, R.; Brogi, M.; Birkby, J.; De Kok, R. J.

    2013-01-01

    Exoplanet observations promise one day to unveil the presence of extraterrestrial life. Atmospheric compounds in strong chemical disequilibrium would point to large-scale biological activity just as oxygen and methane do in the Earth's atmosphere. The cancellation of both the Terrestrial Planet Finder and Darwin missions means that it is unlikely that a dedicated space telescope to search for biomarker gases in exoplanet atmospheres will be launched within the next 25 years. Here we show that ground-based telescopes provide a strong alternative for finding biomarkers in exoplanet atmospheres through transit observations. Recent results on hot Jupiters show the enormous potential of high-dispersion spectroscopy to separate the extraterrestrial and telluric signals, making use of the Doppler shift of the planet. The transmission signal of oxygen from an Earth-twin orbiting a small red dwarf star is only a factor of three smaller than that of carbon monoxide recently detected in the hot Jupiter τ Boötis b, albeit such a star will be orders of magnitude fainter. We show that if Earth-like planets are common, the planned extremely large telescopes can detect oxygen within a few dozen transits. Ultimately, large arrays of dedicated flux-collector telescopes equipped with high-dispersion spectrographs can provide the large collecting area needed to perform a statistical study of life-bearing planets in the solar neighborhood.

  5. Alignment and qualification of the Gaia telescope using a Shack-Hartmann sensor

    Science.gov (United States)

    Dovillaire, G.; Pierot, D.

    2017-09-01

    Since almost 20 years, Imagine Optic develops, manufactures and offers to its worldwide customers reliable and accurate wavefront sensors and adaptive optics solutions. Long term collaboration between Imagine Optic and Airbus Defence and Space has been initiated on the Herschel program. More recently, a similar technology has been used to align and qualify the GAIA telescope.

  6. Optical Correction Of Space-Based Telescopes Using A Deformable Mirror System

    Science.gov (United States)

    2016-12-01

    492 DM. The quarter wave plates polarize the light so that as it reflects off the DM, the light is then redirected at the beam splitter to the one...1  II.  SPACE-BASED TELESCOPE DESIGN CONSIDERATIONS .......................3  A.  ADAPTIVE OPTICS...3  B.  DESIGN CONSTRAINTS

  7. Development of a scalable generic platform for adaptive optics real time control

    Science.gov (United States)

    Surendran, Avinash; Burse, Mahesh P.; Ramaprakash, A. N.; Parihar, Padmakar

    2015-06-01

    The main objective of the present project is to explore the viability of an adaptive optics control system based exclusively on Field Programmable Gate Arrays (FPGAs), making strong use of their parallel processing capability. In an Adaptive Optics (AO) system, the generation of the Deformable Mirror (DM) control voltages from the Wavefront Sensor (WFS) measurements is usually through the multiplication of the wavefront slopes with a predetermined reconstructor matrix. The ability to access several hundred hard multipliers and memories concurrently in an FPGA allows performance far beyond that of a modern CPU or GPU for tasks with a well-defined structure such as Adaptive Optics control. The target of the current project is to generate a signal for a real time wavefront correction, from the signals coming from a Wavefront Sensor, wherein the system would be flexible to accommodate all the current Wavefront Sensing techniques and also the different methods which are used for wavefront compensation. The system should also accommodate for different data transmission protocols (like Ethernet, USB, IEEE 1394 etc.) for transmitting data to and from the FPGA device, thus providing a more flexible platform for Adaptive Optics control. Preliminary simulation results for the formulation of the platform, and a design of a fully scalable slope computer is presented.

  8. Joint optimization of phase diversity and adaptive optics : Demonstration of potential

    NARCIS (Netherlands)

    Korkiakoski, V.; Keller, C.U.; Doelman, N.; Fraanje, P.R.; Verhaegen, M.H.G.

    2011-01-01

    We study different possibilities to use adaptive optics (AO) and phase diversity (PD) together in a jointly optimized system. The potential of the joint system is demonstrated through numerical simulations. We find that the most significant benefits are obtained from the improved deconvolution of

  9. Comparison between iterative wavefront control algorithm and direct gradient wavefront control algorithm for adaptive optics system

    International Nuclear Information System (INIS)

    Cheng Sheng-Yi; Liu Wen-Jin; Chen Shan-Qiu; Dong Li-Zhi; Yang Ping; Xu Bing

    2015-01-01

    Among all kinds of wavefront control algorithms in adaptive optics systems, the direct gradient wavefront control algorithm is the most widespread and common method. This control algorithm obtains the actuator voltages directly from wavefront slopes through pre-measuring the relational matrix between deformable mirror actuators and Hartmann wavefront sensor with perfect real-time characteristic and stability. However, with increasing the number of sub-apertures in wavefront sensor and deformable mirror actuators of adaptive optics systems, the matrix operation in direct gradient algorithm takes too much time, which becomes a major factor influencing control effect of adaptive optics systems. In this paper we apply an iterative wavefront control algorithm to high-resolution adaptive optics systems, in which the voltages of each actuator are obtained through iteration arithmetic, which gains great advantage in calculation and storage. For AO system with thousands of actuators, the computational complexity estimate is about O(n 2 ) ∼ O(n 3 ) in direct gradient wavefront control algorithm, while the computational complexity estimate in iterative wavefront control algorithm is about O(n) ∼ (O(n) 3/2 ), in which n is the number of actuators of AO system. And the more the numbers of sub-apertures and deformable mirror actuators, the more significant advantage the iterative wavefront control algorithm exhibits. (paper)

  10. Addition of Adapted Optics towards obtaining a quantitative detection of diabetic retinopathy

    Science.gov (United States)

    Yust, Brian; Obregon, Isidro; Tsin, Andrew; Sardar, Dhiraj

    2009-04-01

    An adaptive optics system was assembled for correcting the aberrated wavefront of light reflected from the retina. The adaptive optics setup includes a superluminous diode light source, Hartmann-Shack wavefront sensor, deformable mirror, and imaging CCD camera. Aberrations found in the reflected wavefront are caused by changes in the index of refraction along the light path as the beam travels through the cornea, lens, and vitreous humour. The Hartmann-Shack sensor allows for detection of aberrations in the wavefront, which may then be corrected with the deformable mirror. It has been shown that there is a change in the polarization of light reflected from neovascularizations in the retina due to certain diseases, such as diabetic retinopathy. The adaptive optics system was assembled towards the goal of obtaining a quantitative measure of onset and progression of this ailment, as one does not currently exist. The study was done to show that the addition of adaptive optics results in a more accurate detection of neovascularization in the retina by measuring the expected changes in polarization of the corrected wavefront of reflected light.

  11. A pilot study on slit lamp-adapted optical coherence tomography imaging of trabeculectomy filtering blebs.

    NARCIS (Netherlands)

    Theelen, T.; Wesseling, P.; Keunen, J.E.E.; Klevering, B.J.

    2007-01-01

    BACKGROUND: Our study aims to identify anatomical characteristics of glaucoma filtering blebs by means of slit lamp-adapted optical coherence tomography (SL-OCT) and to identify new parameters for the functional prognosis of the filter in the early post-operative period. METHODS: Patients with

  12. KSC ADVANCED GROUND BASED FIELD MILL V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The Advanced Ground Based Field Mill (AGBFM) network consists of 34 (31 operational) field mills located at Kennedy Space Center (KSC), Florida. The field mills...

  13. Adaptive optics fundus images of cone photoreceptors in the macula of patients with retinitis pigmentosa.

    Science.gov (United States)

    Tojo, Naoki; Nakamura, Tomoko; Fuchizawa, Chiharu; Oiwake, Toshihiko; Hayashi, Atsushi

    2013-01-01

    The purpose of this study was to examine cone photoreceptors in the macula of patients with retinitis pigmentosa using an adaptive optics fundus camera and to investigate any correlations between cone photoreceptor density and findings on optical coherence tomography and fundus autofluorescence. We examined two patients with typical retinitis pigmentosa who underwent ophthalmological examination, including measurement of visual acuity, and gathering of electroretinographic, optical coherence tomographic, fundus autofluorescent, and adaptive optics fundus images. The cone photoreceptors in the adaptive optics images of the two patients with retinitis pigmentosa and five healthy subjects were analyzed. An abnormal parafoveal ring of high-density fundus autofluorescence was observed in the macula in both patients. The border of the ring corresponded to the border of the external limiting membrane and the inner segment and outer segment line in the optical coherence tomographic images. Cone photoreceptors at the abnormal parafoveal ring were blurred and decreased in the adaptive optics images. The blurred area corresponded to the abnormal parafoveal ring in the fundus autofluorescence images. Cone densities were low at the blurred areas and at the nasal and temporal retina along a line from the fovea compared with those of healthy controls. The results for cone spacing and Voronoi domains in the macula corresponded with those for the cone densities. Cone densities were heavily decreased in the macula, especially at the parafoveal ring on high-density fundus autofluorescence in both patients with retinitis pigmentosa. Adaptive optics images enabled us to observe in vivo changes in the cone photoreceptors of patients with retinitis pigmentosa, which corresponded to changes in the optical coherence tomographic and fundus autofluorescence images.

  14. WEAVE: the next generation wide-field spectroscopy facility for the William Herschel Telescope : The next generation wide-field spectroscopy facility for the William Herschel Telescope

    NARCIS (Netherlands)

    Dalton, Gavin; Trager, Scott C.; Abrams, Don Carlos; Carter, David; Bonifacio, Piercarlo; Aguerri, J. Alfonso L.; MacIntosh, Mike; Evans, Chris; Lewis, Ian; Navarro, Ramon; Agocs, Tibor; Dee, Kevin; Rousset, Sophie; Tosh, Ian; Middleton, Kevin; Pragt, Johannes; Terrett, David; Brock, Matthew; Benn, Chris; Verheijen, Marc; Cano Infantes, Diego; Bevil, Craige; Steele, Iain; Mottram, Chris; Bates, Stuart; Gribbin, Francis J.; Rey, Jürg; Rodriguez, Luis Fernando; Delgado, Jose Miguel; Guinouard, Isabelle; Walton, Nic; Irwin, Michael J.; Jagourel, Pascal; Stuik, Remko; Gerlofsma, Gerrit; Roelfsma, Ronald; Skillen, Ian; Ridings, Andy; Balcells, Marc; Daban, Jean-Baptiste; Gouvret, Carole; Venema, Lars; Girard, Paul

    We present the preliminary design of the WEAVE next generation spectroscopy facility for the William Herschel Telescope (WHT), principally targeting optical ground-based follow up of upcoming ground-based (LOFAR) and spacebased (Gaia) surveys. WEAVE is a multi-object and multi-IFU facility utilizing

  15. SATELLITE-MOUNTED LIGHT SOURCES AS PHOTOMETRIC CALIBRATION STANDARDS FOR GROUND-BASED TELESCOPES

    Energy Technology Data Exchange (ETDEWEB)

    Albert, J., E-mail: jalbert@uvic.ca [Department of Physics and Astronomy, University of Victoria, Victoria, BC V8P 5C2 (Canada)

    2012-01-15

    A significant and growing portion of systematic error on a number of fundamental parameters in astrophysics and cosmology is due to uncertainties from absolute photometric and flux standards. A path toward achieving major reduction in such uncertainties may be provided by satellite-mounted light sources, resulting in improvement in the ability to precisely characterize atmospheric extinction, and thus helping to usher in the coming generation of precision results in astronomy. Using a campaign of observations of the 532 nm pulsed laser aboard the CALIPSO satellite, collected using a portable network of cameras and photodiodes, we obtain initial measurements of atmospheric extinction, which can apparently be greatly improved by further data of this type. For a future satellite-mounted precision light source, a high-altitude balloon platform under development (together with colleagues) can provide testing as well as observational data for calibration of atmospheric uncertainties.

  16. SATELLITE-MOUNTED LIGHT SOURCES AS PHOTOMETRIC CALIBRATION STANDARDS FOR GROUND-BASED TELESCOPES

    International Nuclear Information System (INIS)

    Albert, J.

    2012-01-01

    A significant and growing portion of systematic error on a number of fundamental parameters in astrophysics and cosmology is due to uncertainties from absolute photometric and flux standards. A path toward achieving major reduction in such uncertainties may be provided by satellite-mounted light sources, resulting in improvement in the ability to precisely characterize atmospheric extinction, and thus helping to usher in the coming generation of precision results in astronomy. Using a campaign of observations of the 532 nm pulsed laser aboard the CALIPSO satellite, collected using a portable network of cameras and photodiodes, we obtain initial measurements of atmospheric extinction, which can apparently be greatly improved by further data of this type. For a future satellite-mounted precision light source, a high-altitude balloon platform under development (together with colleagues) can provide testing as well as observational data for calibration of atmospheric uncertainties.

  17. The optical system of the proposed Chinese 12-m optical/infrared telescope

    Science.gov (United States)

    Su, Ding-qiang; Liang, Ming; Yuan, Xiangyan; Bai, Hua; Cui, Xiangqun

    2017-08-01

    The lack of a large-aperture optical/infrared telescope has seriously affected the development of astronomy in China. In 2016, the authors published their concept study and suggestions for a 12-m telescope optical system. This article presents the authors' further research and some new results. Considering that this telescope should be a general-purpose telescope for a wide range of scientific goals and could be used for frontier scientific research in the future, the authors studied and designed a variety of 12-m telescope optical systems for comparison and final decision-making. In general, we still adopt our previous configuration, but the Nasmyth and prime-focus corrector systems have been greatly improved. In this article, the adaptive optics is given special attention. Ground-layer adaptive optics (GLAO) is adopted. It has a 14-arcmin field of view. The secondary mirror is used as the adaptive optical deformable mirror. Obviously, not all the optical systems in this telescope configuration will be used or constructed at the same stage. Some will be for the future and some are meant for research rather than for construction.

  18. Imaging extrasolar planets with the European Extremely Large Telescope

    Directory of Open Access Journals (Sweden)

    Jolissaint L.

    2011-07-01

    Full Text Available The European Extremely Large Telescope (E-ELT is the most ambitious of the ELTs being planned. With a diameter of 42 m and being fully adaptive from the start, the E-ELT will be more than one hundred times more sensitive than the present-day largest optical telescopes. Discovering and characterising planets around other stars will be one of the most important aspects of the E-ELT science programme. We model an extreme adaptive optics instrument on the E-ELT. The resulting contrast curves translate to the detectability of exoplanets.

  19. Inexpensive Demonstration of Diffraction-Limited Telescope from NASA Stratospheric Balloons

    Science.gov (United States)

    Young, Elliot

    NASA s Balloon Program often flies payloads to altitudes of 120,000 ft or higher, above 99.5% of the atmosphere. At those altitudes, the imaging degradation due to atmospheric- induced wavefront errors is virtually zero. In 2009, the SUNRISE balloon mission quantified the wavefront errors with a Shack-Hartmann array and found no evidence of wavefront errors. This means that a large telescope on a balloon should be able to achieve diffraction-limited performance, provided it can be stabilized at a level that is finer than the diffraction limit. At visible wavelengths, the diffraction limit of a 1 or 2 m telescope is 0.1 arcsec or 0.05 arcsec, respectively. NASA recently demonstrated WASP (the Wallops Arc-Second Pointing system) on a balloon flight in October 2011, a coarse pointing system that kept a dummy telescope (24 ft long, 1500 lbs) stabilized at the 0.25 arcsec level. We propose to use an orthogonal transfer CCD (OTCCD) from MIT Lincoln Laboratory to improve the pointing to 0.05 arcsec, an order of magnitude better than the coarse pointing alone and sufficient to provide long integrations at the diffraction limit of a 2-m telescope. Imaging in visible wavelengths is an important new capability. Ground-based adaptive optics (AO) systems on 8-m and 10-m class telescope cannot effectively correct for atmospheric turbulence at wavelengths shorter than 1 μm; the atmospheric wavefront errors are larger at these wavelengths than in the infrared J-H-K bands. At present, only the Hubble Space Telescope can achieve 0.05 arcsec resolution images in visible wavelengths, a capability that is dramatically oversubscribed. With a camera based on an MIT/LL OTCCD, a 2-m balloon-borne telescope could match the spatial resolution of HST. Under this project (and in conjunction with a SWRI Internal Research proposal), we will perform ground tests of a motion-compensation camera based on an MIT/LL Orthogonal Transfer CCD (OTCCD). This device can shift charge in four directions

  20. Deep space telescopes

    CERN Multimedia

    CERN. Geneva

    2006-01-01

    The short series of seminars will address results and aims of current and future space astrophysics as the cultural framework for the development of deep space telescopes. It will then present such new tools, as they are currently available to, or imagined by, the scientific community, in the context of the science plans of ESA and of all major world space agencies. Ground-based astronomy, in the 400 years since Galileo’s telescope, has given us a profound phenomenological comprehension of our Universe, but has traditionally been limited to the narrow band(s) to which our terrestrial atmosphere is transparent. Celestial objects, however, do not care about our limitations, and distribute most of the information about their physics throughout the complete electromagnetic spectrum. Such information is there for the taking, from millimiter wavelengths to gamma rays. Forty years astronomy from space, covering now most of the e.m. spectrum, have thus given us a better understanding of our physical Universe then t...

  1. Technological Aspects of Creating Large-size Optical Telescopes

    Directory of Open Access Journals (Sweden)

    V. V. Sychev

    2015-01-01

    Full Text Available A concept of the telescope creation, first of all, depends both on a choice of the optical scheme to form optical radiation and images with minimum losses of energy and information and on a choice of design to meet requirements for strength, stiffness, and stabilization characteristics in real telescope operation conditions. Thus, the concept of creating large-size telescopes, certainly, involves the use of adaptive optics methods and means.The level of technological capabilities to realize scientific and engineering ideas define a successful development of large-size optical telescopes in many respects. All developers pursue the same aim that is to raise an amount of information by increasing a main mirror diameter of the telescope.The article analyses the adaptive telescope designs developed in our country. Using a domestic ACT-25 telescope as an example, it considers creation of large-size optical telescopes in terms of technological aspects. It also describes the telescope creation concept features, which allow reaching marginally possible characteristics to ensure maximum amount of information.The article compares a wide range of large-size telescopes projects. It shows that a domestic project to create the adaptive ACT-25 super-telescope surpasses its foreign counterparts, and there is no sense to implement Euro50 (50m and OWL (100m projects.The considered material gives clear understanding on a role of technological aspects in development of such complicated optic-electronic complexes as a large-size optical telescope. The technological criteria of an assessment offered in the article, namely specific informational content of the telescope, its specific mass, and specific cost allow us to reveal weaknesses in the project development and define a reserve regarding further improvement of the telescope.The analysis of results and their judgment have shown that improvement of optical largesize telescopes in terms of their maximum

  2. The mechanical design of CHARIS: an exoplanet IFS for the Subaru Telescope

    Science.gov (United States)

    Galvin, Michael B.; Carr, Michael A.; Groff, Tyler D.; Kasdin, N. Jeremy; Fagan, Radford; Hayashi, Masahiko; Takato, Naruhisa

    2014-07-01

    Princeton University is designing and building an integral field spectrograph (IFS), the Coronagraphic High Angular Resolution Imaging Spectrograph (CHARIS), for integration with the Subaru Corona Extreme Adaptive Optics (SCExAO) system and the AO188 adaptive optics system on the Subaru Telescope. CHARIS and SCExAO will measure spectra of hot, young Jovian planets in a coronagraphic image across J, H, and K bands down to an 80 milliarcsecond inner working angle. Here we present the current status of the mechanical design of the CHARIS instrument.

  3. Correction of a Space Telescope Active Primary Mirror Using Adaptive Optics in a Woofer-Tweeter Configuration

    Science.gov (United States)

    2015-09-01

    zirconium and zirconium/copper to form the laminate foil [21]. The substrate bonds directly to the foil while attached to the mandrel. Figure 5...fabrication process uses a negative shape polished mandrel to form the mirror surface. The manufacturer layers CFRP prepreg over the mandrel and after...thin shell made from CFRP. The reflective 17 layer is a nano- laminate bonded to the front of the CFRP substrate. An active layer is bonded to the

  4. Cone and Rod Loss in Stargardt Disease Revealed by Adaptive Optics Scanning Light Ophthalmoscopy

    Science.gov (United States)

    Song, Hongxin; Rossi, Ethan A.; Latchney, Lisa; Bessette, Angela; Stone, Edwin; Hunter, Jennifer J.; Williams, David R.; Chung, Mina

    2015-01-01

    Importance Stargardt disease (STGD1) is characterized by macular atrophy and flecks in the retinal pigment epithelium. The causative ABCA4 gene encodes a protein localizing to photoreceptor outer segments. The pathologic steps by which ABCA4 mutations lead to clinically detectable retinal pigment epithelium changes remain unclear. We investigated early STGD1 using adaptive optics scanning light ophthalmoscopy. Observations Adaptive optics scanning light ophthalmoscopy imaging of 2 brothers with early STGD1 and their unaffected parents was compared with conventional imaging. Cone and rod spacing were increased in both patients (P optics scanning light ophthalmoscopy reveals increased cone and rod spacing in areas that appear normal in conventional images, suggesting that photoreceptor loss precedes clinically detectable retinal pigment epithelial disease in STGD1. PMID:26247787

  5. Non-common path aberration correction in an adaptive optics scanning ophthalmoscope.

    Science.gov (United States)

    Sulai, Yusufu N; Dubra, Alfredo

    2014-09-01

    The correction of non-common path aberrations (NCPAs) between the imaging and wavefront sensing channel in a confocal scanning adaptive optics ophthalmoscope is demonstrated. NCPA correction is achieved by maximizing an image sharpness metric while the confocal detection aperture is temporarily removed, effectively minimizing the monochromatic aberrations in the illumination path of the imaging channel. Comparison of NCPA estimated using zonal and modal orthogonal wavefront corrector bases provided wavefronts that differ by ~λ/20 in root-mean-squared (~λ/30 standard deviation). Sequential insertion of a cylindrical lens in the illumination and light collection paths of the imaging channel was used to compare image resolution after changing the wavefront correction to maximize image sharpness and intensity metrics. Finally, the NCPA correction was incorporated into the closed-loop adaptive optics control by biasing the wavefront sensor signals without reducing its bandwidth.

  6. On distributed wavefront reconstruction for large-scale adaptive optics systems.

    Science.gov (United States)

    de Visser, Cornelis C; Brunner, Elisabeth; Verhaegen, Michel

    2016-05-01

    The distributed-spline-based aberration reconstruction (D-SABRE) method is proposed for distributed wavefront reconstruction with applications to large-scale adaptive optics systems. D-SABRE decomposes the wavefront sensor domain into any number of partitions and solves a local wavefront reconstruction problem on each partition using multivariate splines. D-SABRE accuracy is within 1% of a global approach with a speedup that scales quadratically with the number of partitions. The D-SABRE is compared to the distributed cumulative reconstruction (CuRe-D) method in open-loop and closed-loop simulations using the YAO adaptive optics simulation tool. D-SABRE accuracy exceeds CuRe-D for low levels of decomposition, and D-SABRE proved to be more robust to variations in the loop gain.

  7. Numerical analysis of modal tomography for solar multi-conjugate adaptive optics

    International Nuclear Information System (INIS)

    Dong Bing; Ren Deqing; Zhang Xi

    2012-01-01

    Multi-conjugate adaptive optics (MCAO) can considerably extend the corrected field of view with respect to classical adaptive optics, which will benefit solar observation in many aspects. In solar MCAO, the Sun structure is utilized to provide multiple guide stars and a modal tomography approach is adopted to implement three-dimensional wavefront restorations. The principle of modal tomography is briefly reviewed and a numerical simulation model is built with three equivalent turbulent layers and a different number of guide stars. Our simulation results show that at least six guide stars are required for an accurate wavefront reconstruction in the case of three layers, and only three guide stars are needed in the two layer case. Finally, eigenmode analysis results are given to reveal the singular modes that cannot be precisely retrieved in the tomography process.

  8. Design and realization of adaptive optical principle system without wavefront sensing

    Science.gov (United States)

    Wang, Xiaobin; Niu, Chaojun; Guo, Yaxing; Han, Xiang'e.

    2018-02-01

    In this paper, we focus on the performance improvement of the free space optical communication system and carry out the research on wavefront-sensorless adaptive optics. We use a phase only liquid crystal spatial light modulator (SLM) as the wavefront corrector. The optical intensity distribution of the distorted wavefront is detected by a CCD. We develop a wavefront controller based on ARM and a software based on the Linux operating system. The wavefront controller can control the CCD camera and the wavefront corrector. There being two SLMs in the experimental system, one simulates atmospheric turbulence and the other is used to compensate the wavefront distortion. The experimental results show that the performance quality metric (the total gray value of 25 pixels) increases from 3037 to 4863 after 200 iterations. Besides, it is demonstrated that our wavefront-sensorless adaptive optics system based on SPGD algorithm has a good performance in compensating wavefront distortion.

  9. Extended use of two crossed Babinet compensators for wavefront sensing in adaptive optics

    Science.gov (United States)

    Paul, Lancelot; Kumar Saxena, Ajay

    2010-12-01

    An extended use of two crossed Babinet compensators as a wavefront sensor for adaptive optics applications is proposed. This method is based on the lateral shearing interferometry technique in two directions. A single record of the fringes in a pupil plane provides the information about the wavefront. The theoretical simulations based on this approach for various atmospheric conditions and other errors of optical surfaces are provided for better understanding of this method. Derivation of the results from a laboratory experiment using simulated atmospheric conditions demonstrates the steps involved in data analysis and wavefront evaluation. It is shown that this method has a higher degree of freedom in terms of subapertures and on the choice of detectors, and can be suitably adopted for real-time wavefront sensing for adaptive optics.

  10. ADAPTIVE OPTICS IMAGING OF FOVEAL SPARING IN GEOGRAPHIC ATROPHY SECONDARY TO AGE-RELATED MACULAR DEGENERATION.

    Science.gov (United States)

    Querques, Giuseppe; Kamami-Levy, Cynthia; Georges, Anouk; Pedinielli, Alexandre; Capuano, Vittorio; Blanco-Garavito, Rocio; Poulon, Fanny; Souied, Eric H

    2016-02-01

    To describe adaptive optics (AO) imaging of foveal sparing in geographic atrophy (GA) secondary to age-related macular degeneration. Flood-illumination AO infrared (IR) fundus images were obtained in four consecutive patients with GA using an AO retinal camera (rtx1; Imagine Eyes). Adaptive optics IR images were overlaid with confocal scanning laser ophthalmoscope near-IR autofluorescence images to allow direct correlation of en face AO features with areas of foveal sparing. Adaptive optics appearance of GA and foveal sparing, preservation of functional photoreceptors, and cone densities in areas of foveal sparing were investigated. In 5 eyes of 4 patients (all female; mean age 74.2 ± 11.9 years), a total of 5 images, sized 4° × 4°, of foveal sparing visualized on confocal scanning laser ophthalmoscope near-IR autofluorescence were investigated by AO imaging. En face AO images revealed GA as regions of inhomogeneous hyperreflectivity with irregularly dispersed hyporeflective clumps. By direct comparison with adjacent regions of GA, foveal sparing appeared as well-demarcated areas of reduced reflectivity with less hyporeflective clumps (mean 14.2 vs. 3.2; P = 0.03). Of note, in these areas, en face AO IR images revealed cone photoreceptors as hyperreflective dots over the background reflectivity (mean cone density 3,271 ± 1,109 cones per square millimeter). Microperimetry demonstrated residual function in areas of foveal sparing detected by confocal scanning laser ophthalmoscope near-IR autofluorescence. Adaptive optics allows the appreciation of differences in reflectivity between regions of GA and foveal sparing. Preservation of functional cone photoreceptors was demonstrated on en face AO IR images in areas of foveal sparing detected by confocal scanning laser ophthalmoscope near-IR autofluorescence.

  11. Integration of adaptive optics into highEnergy laser modeling and simulation

    Science.gov (United States)

    2017-06-01

    contain hundreds of actuators with high control bandwidths and low hysteresis, all of which are ideal parameters for accurate reconstruction of higher... Available : https://web.archive.org/web/20110111093235/http: //csis.org/blog/missile-defense-umbrella [10] C. Kopp, “ High energy laser directed energy...NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA THESIS INTEGRATION OF ADAPTIVE OPTICS INTO HIGH ENERGY LASER MODELING AND SIMULATION by Donald Puent

  12. Comparison between iterative wavefront control algorithm and direct gradient wavefront control algorithm for adaptive optics system

    Science.gov (United States)

    Cheng, Sheng-Yi; Liu, Wen-Jin; Chen, Shan-Qiu; Dong, Li-Zhi; Yang, Ping; Xu, Bing

    2015-08-01

    Among all kinds of wavefront control algorithms in adaptive optics systems, the direct gradient wavefront control algorithm is the most widespread and common method. This control algorithm obtains the actuator voltages directly from wavefront slopes through pre-measuring the relational matrix between deformable mirror actuators and Hartmann wavefront sensor with perfect real-time characteristic and stability. However, with increasing the number of sub-apertures in wavefront sensor and deformable mirror actuators of adaptive optics systems, the matrix operation in direct gradient algorithm takes too much time, which becomes a major factor influencing control effect of adaptive optics systems. In this paper we apply an iterative wavefront control algorithm to high-resolution adaptive optics systems, in which the voltages of each actuator are obtained through iteration arithmetic, which gains great advantage in calculation and storage. For AO system with thousands of actuators, the computational complexity estimate is about O(n2) ˜ O(n3) in direct gradient wavefront control algorithm, while the computational complexity estimate in iterative wavefront control algorithm is about O(n) ˜ (O(n)3/2), in which n is the number of actuators of AO system. And the more the numbers of sub-apertures and deformable mirror actuators, the more significant advantage the iterative wavefront control algorithm exhibits. Project supported by the National Key Scientific and Research Equipment Development Project of China (Grant No. ZDYZ2013-2), the National Natural Science Foundation of China (Grant No. 11173008), and the Sichuan Provincial Outstanding Youth Academic Technology Leaders Program, China (Grant No. 2012JQ0012).

  13. Problems of Aero-optics and Adaptive Optical Systems: Analytical Review

    Directory of Open Access Journals (Sweden)

    Yu. I. Shanin

    2017-01-01

    Full Text Available The analytical review gives the basic concepts of the aero-optics problem arising from the radiation propagation in the region of the boundary layers of a laser installation carrier aircraft. Estimates the radiation wave front distortions at its propagation in the near and far field. Presents main calculation approaches and methods to solve the gas-dynamic and optical problems in propagating laser radiation. Conducts a detailed analysis of the flows and their generating optical aberrations introduced by the aircraft turret (a projection platform of the on-board laser. Considers the effect of various factors (shock wave, difference in wall and flow temperatures on the flow pattern and the optical aberrations. Provides research data on the aero-optics obtained in the flying laboratory directly while in flight. Briefly considers the experimental research methods, diagnostic equipment, and synthesis of results while studying the aero-optics problem. Discusses some methods for mitigating the aerodynamic effects on the light propagation under flight conditions. Presents data about the passive, active, and hybrid effects on the flow in the boundary layers in order to reduce aberrations through improving the flow aerodynamics.The paper considers operation of adaptive optical systems under conditions of aero-optical distortions. Presents the study results concerning the reduction of the aero-optics effect on the characteristics of radiation in far field. Gives some research results regarding the effect on the efficiency of the adaptive system of a laser beam jitter and a time delay in the feedback signal transmission, which occur under application conditions. Provides data on adaptive correction of aero-optical wave fronts of radiation. Considers some application aspects in control systems of the on-board adaptive optics of adaptive filtration as a way to improve the efficiency of adaptive optical systems. The project in mind is to use obtained results

  14. In vivo imaging of human photoreceptor mosaic with wavefront sensorless adaptive optics optical coherence tomography.

    Science.gov (United States)

    Wong, Kevin S K; Jian, Yifan; Cua, Michelle; Bonora, Stefano; Zawadzki, Robert J; Sarunic, Marinko V

    2015-02-01

    Wavefront sensorless adaptive optics optical coherence tomography (WSAO-OCT) is a novel imaging technique for in vivo high-resolution depth-resolved imaging that mitigates some of the challenges encountered with the use of sensor-based adaptive optics designs. This technique replaces the Hartmann Shack wavefront sensor used to measure aberrations with a depth-resolved image-driven optimization algorithm, with the metric based on the OCT volumes acquired in real-time. The custom-built ultrahigh-speed GPU processing platform and fast modal optimization algorithm presented in this paper was essential in enabling real-time, in vivo imaging of human retinas with wavefront sensorless AO correction. WSAO-OCT is especially advantageous for developing a clinical high-resolution retinal imaging system as it enables the use of a compact, low-cost and robust lens-based adaptive optics design. In this report, we describe our WSAO-OCT system for imaging the human photoreceptor mosaic in vivo. We validated our system performance by imaging the retina at several eccentricities, and demonstrated the improvement in photoreceptor visibility with WSAO compensation.

  15. Adaptive optics in spinning disk microscopy: improved contrast and brightness by a simple and fast method.

    Science.gov (United States)

    Fraisier, V; Clouvel, G; Jasaitis, A; Dimitrov, A; Piolot, T; Salamero, J

    2015-09-01

    Multiconfocal microscopy gives a good compromise between fast imaging and reasonable resolution. However, the low intensity of live fluorescent emitters is a major limitation to this technique. Aberrations induced by the optical setup, especially the mismatch of the refractive index and the biological sample itself, distort the point spread function and further reduce the amount of detected photons. Altogether, this leads to impaired image quality, preventing accurate analysis of molecular processes in biological samples and imaging deep in the sample. The amount of detected fluorescence can be improved with adaptive optics. Here, we used a compact adaptive optics module (adaptive optics box for sectioning optical microscopy), which was specifically designed for spinning disk confocal microscopy. The module overcomes undesired anomalies by correcting for most of the aberrations in confocal imaging. Existing aberration detection methods require prior illumination, which bleaches the sample. To avoid multiple exposures of the sample, we established an experimental model describing the depth dependence of major aberrations. This model allows us to correct for those aberrations when performing a z-stack, gradually increasing the amplitude of the correction with depth. It does not require illumination of the sample for aberration detection, thus minimizing photobleaching and phototoxicity. With this model, we improved both signal-to-background ratio and image contrast. Here, we present comparative studies on a variety of biological samples. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.

  16. Research on Adaptive Optics Image Restoration Algorithm by Improved Expectation Maximization Method

    Directory of Open Access Journals (Sweden)

    Lijuan Zhang

    2014-01-01

    Full Text Available To improve the effect of adaptive optics images’ restoration, we put forward a deconvolution algorithm improved by the EM algorithm which joints multiframe adaptive optics images based on expectation-maximization theory. Firstly, we need to make a mathematical model for the degenerate multiframe adaptive optics images. The function model is deduced for the points that spread with time based on phase error. The AO images are denoised using the image power spectral density and support constraint. Secondly, the EM algorithm is improved by combining the AO imaging system parameters and regularization technique. A cost function for the joint-deconvolution multiframe AO images is given, and the optimization model for their parameter estimations is built. Lastly, the image-restoration experiments on both analog images and the real AO are performed to verify the recovery effect of our algorithm. The experimental results show that comparing with the Wiener-IBD or RL-IBD algorithm, our iterations decrease 14.3% and well improve the estimation accuracy. The model distinguishes the PSF of the AO images and recovers the observed target images clearly.

  17. High-speed adaptive optics line scan confocal retinal imaging for human eye.

    Science.gov (United States)

    Lu, Jing; Gu, Boyu; Wang, Xiaolin; Zhang, Yuhua

    2017-01-01

    Continuous and rapid eye movement causes significant intraframe distortion in adaptive optics high resolution retinal imaging. To minimize this artifact, we developed a high speed adaptive optics line scan confocal retinal imaging system. A high speed line camera was employed to acquire retinal image and custom adaptive optics was developed to compensate the wave aberration of the human eye's optics. The spatial resolution and signal to noise ratio were assessed in model eye and in living human eye. The improvement of imaging fidelity was estimated by reduction of intra-frame distortion of retinal images acquired in the living human eyes with frame rates at 30 frames/second (FPS), 100 FPS, and 200 FPS. The device produced retinal image with cellular level resolution at 200 FPS with a digitization of 512×512 pixels/frame in the living human eye. Cone photoreceptors in the central fovea and rod photoreceptors near the fovea were resolved in three human subjects in normal chorioretinal health. Compared with retinal images acquired at 30 FPS, the intra-frame distortion in images taken at 200 FPS was reduced by 50.9% to 79.7%. We demonstrated the feasibility of acquiring high resolution retinal images in the living human eye at a speed that minimizes retinal motion artifact. This device may facilitate research involving subjects with nystagmus or unsteady fixation due to central vision loss.

  18. Compact binary coalescences in the band of ground-based gravitational-wave detectors

    International Nuclear Information System (INIS)

    Mandel, Ilya; O'Shaughnessy, Richard

    2010-01-01

    As the ground-based gravitational-wave telescopes LIGO, Virgo and GEO 600 approach the era of first detections, we review the current knowledge of the coalescence rates and the mass and spin distributions of merging neutron-star and black-hole binaries. We emphasize the bi-directional connection between gravitational-wave astronomy and conventional astrophysics. Astrophysical input will make possible informed decisions about optimal detector configurations and search techniques. Meanwhile, rate upper limits, detected merger rates and the distribution of masses and spins measured by gravitational-wave searches will constrain astrophysical parameters through comparisons with astrophysical models. Future developments necessary to the success of gravitational-wave astronomy are discussed.

  19. z'-BAND GROUND-BASED DETECTION OF THE SECONDARY ECLIPSE OF WASP-19b

    Energy Technology Data Exchange (ETDEWEB)

    Burton, J. R.; Watson, C. A.; Pollacco, D. [Astrophysics Research Centre, Queen' s University Belfast, Belfast BT7 1NN (United Kingdom); Littlefair, S. P.; Dhillon, V. S. [Department of Physics and Astronomy, University of Sheffield, Sheffield S3 7RH (United Kingdom); Gibson, N. P. [Department of Physics, University of Oxford, Oxford OX1 3RH (United Kingdom); Marsh, T. R., E-mail: jburton04@qub.ac.uk [Department of Physics and Astronomy, University of Warwick, Coventry CV4 7AL (United Kingdom)

    2012-08-01

    We present the ground-based detection of the secondary eclipse of the transiting exoplanet WASP-19b. The observations were made in the Sloan z' band using the ULTRACAM triple-beam CCD camera mounted on the New Technology Telescope. The measurement shows a 0.088% {+-} 0.019% eclipse depth, matching previous predictions based on H- and K-band measurements. We discuss in detail our approach to the removal of errors arising due to systematics in the data set, in addition to fitting a model transit to our data. This fit returns an eclipse center, T{sub 0}, of 2455578.7676 HJD, consistent with a circular orbit. Our measurement of the secondary eclipse depth is also compared to model atmospheres of WASP-19b and is found to be consistent with previous measurements at longer wavelengths for the model atmospheres we investigated.

  20. Scientific Performance Analysis of the SYZ Telescope Design versus the RC Telescope Design

    Science.gov (United States)

    Ma, Donglin; Cai, Zheng

    2018-02-01

    Recently, Su et al. propose an innovative design, referred as the “SYZ” design, for China’s new project of a 12 m optical-infrared telescope. The SYZ telescope design consists of three aspheric mirrors with non-zero power, including a relay mirror below the primary mirror. SYZ design yields a good imaging quality and has a relatively flat field curvature at Nasmyth focus. To evaluate the science-compatibility of this three-mirror telescope, in this paper, we thoroughly compare the performance of SYZ design with that of Ritchey–Chrétien (RC) design, a conventional two-mirror telescope design. Further, we propose the Observing Information Throughput (OIT) as a metric for quantitatively evaluating the telescopes’ science performance. We find that although a SYZ telescope yields a superb imaging quality over a large field of view, a two-mirror (RC) telescope design holds a higher overall throughput, a better diffraction-limited imaging quality in the central field of view (FOV < 5‧) which is better for the performance of extreme Adaptive Optics (AO), and a generally better scientific performance with a higher OIT value. D. Ma & Z. Cai contributed equally to this paper.

  1. Ground-based observation of emission lines from the corona of a red-dwarf star.

    Science.gov (United States)

    Schmitt, J H; Wichmann, R

    2001-08-02

    All 'solar-like' stars are surrounded by coronae, which contain magnetically confined plasma at temperatures above 106 K. (Until now, only the Sun's corona could be observed in the optical-as a shimmering envelope during a total solar eclipse.) As the underlying stellar 'surfaces'-the photospheres-are much cooler, some non-radiative process must be responsible for heating the coronae. The heating mechanism is generally thought to be magnetic in origin, but is not yet understood even for the case of the Sun. Ultraviolet emission lines first led to the discovery of the enormous temperature of the Sun's corona, but thermal emission from the coronae of other stars has hitherto been detectable only from space, at X-ray wavelengths. Here we report the detection of emission from highly ionized iron (Fe XIII at 3,388.1 A) in the corona of the red-dwarf star CN Leonis, using a ground-based telescope. The X-ray flux inferred from our data is consistent with previously measured X-ray fluxes, and the non-thermal line width of 18.4 km s-1 indicates great similarities between solar and stellar coronal heating mechanisms. The accessibility and spectral resolution (45,000) of the ground-based instrument are much better than those of X-ray satellites, so a new window to the study of stellar coronae has been opened.

  2. The Polarization-Sensitive Bolometers for SPICA and their Potential Use for Ground-Based Application

    Science.gov (United States)

    Reveret, Vincent

    2018-01-01

    CEA is leading the development of Safari-POL, an imaging-polarimeter aboard the SPICA space observatory (ESA M5). SPICA will be able to reach unprecedented sensitivities thanks to its cooled telescope and its ultra-sensitive detectors. The detector assembly of Safari-POL holds three arrays that are cooled down to 50 mK and correspond to three spectral bands : 100, 200 and 350 microns. The detectors (silicon bolometers), benefit from the Herschel/PACS legacy and are also a big step forward in term of sensitivity (improved by two orders of magnitude compared to PACS bolometers) and for polarimetry capabilities. Indeed, each pixel is intrinsically sensitive to two polarization components (Horizontal and Vertical). We will present the Safari-POL concept, the first results of measurements made on the detectors, and future plans for possible ground-based instruments using this technology. We will also present the example of the ArTéMiS camera, installed at APEX, that was developped as a ground-based conterpart of the PACS photometer.

  3. Prospects for Ground-Based Detection and Follow-up of TESS-Discovered Exoplanets

    Science.gov (United States)

    Varakian, Matthew; Deming, Drake

    2018-01-01

    The Transiting Exoplanet Survey Satellite (TESS) will monitor over 200,000 main sequence dwarf stars for exoplanetary transits, with the goal of discovering small planets orbiting stars that are bright enough for follow-up observations. We here evaluate the prospects for ground-based transit detection and follow-up of the TESS-discovered planets. We focus particularly on the TESS planets that only transit once during each 27.4 day TESS observing window per region, and we calculate to what extent ground-based recovery of additional transits will be possible. Using simulated exoplanet systems from Sullivan et al. and assuming the use of a 60-cm telescope at a high quality observing site, we project the S/N ratios for transits of such planets. We use Phoenix stellar models for stars with surface temperatures from 2500K to 12000K, and we account for limb darkening, red atmospheric noise, and missed transits due to the day-night cycle and poor weather.

  4. Modeling ground-based timber harvesting systems using computer simulation

    Science.gov (United States)

    Jingxin Wang; Chris B. LeDoux

    2001-01-01

    Modeling ground-based timber harvesting systems with an object-oriented methodology was investigated. Object-oriented modeling and design promote a better understanding of requirements, cleaner designs, and better maintainability of the harvesting simulation system. The model developed simulates chainsaw felling, drive-to-tree feller-buncher, swing-to-tree single-grip...

  5. The COROT ground-based archive and access system

    Science.gov (United States)

    Solano, E.; González-Riestra, R.; Catala, C.; Baglin, A.

    2002-01-01

    A prototype of the COROT ground-based archive and access system is presented here. The system has been developed at LAEFF and it is based on the experience gained at Laboratorio de Astrofisica Espacial y Fisica Fundamental (LAEFF) with the INES (IUE Newly Extracted System) Archive.

  6. Pipelining Computational Stages of the Tomographic Reconstructor for Multi-Object Adaptive Optics on a Multi-GPU System

    KAUST Repository

    Charara, Ali; Ltaief, Hatem; Gratadour, Damien; Keyes, David E.; Sevin, Arnaud; Abdelfattah, Ahmad; Gendron, Eric; Morel, Carine; Vidal, Fabrice

    2014-01-01

    called MOSAIC has been proposed to perform multi-object spectroscopy using the Multi-Object Adaptive Optics (MOAO) technique. The core implementation of the simulation lies in the intensive computation of a tomographic reconstruct or (TR), which is used

  7. Exoplanets -New Results from Space and Ground-based Surveys

    Science.gov (United States)

    Udry, Stephane

    The exploration of the outer solar system and in particular of the giant planets and their environments is an on-going process with the Cassini spacecraft currently around Saturn, the Juno mission to Jupiter preparing to depart and two large future space missions planned to launch in the 2020-2025 time frame for the Jupiter system and its satellites (Europa and Ganymede) on the one hand, and the Saturnian system and Titan on the other hand [1,2]. Titan, Saturn's largest satellite, is the only other object in our Solar system to possess an extensive nitrogen atmosphere, host to an active organic chemistry, based on the interaction of N2 with methane (CH4). Following the Voyager flyby in 1980, Titan has been intensely studied from the ground-based large telescopes (such as the Keck or the VLT) and by artificial satellites (such as the Infrared Space Observatory and the Hubble Space Telescope) for the past three decades. Prior to Cassini-Huygens, Titan's atmospheric composition was thus known to us from the Voyager missions and also through the explorations by the ISO. Our perception of Titan had thus greatly been enhanced accordingly, but many questions remained as to the nature of the haze surrounding the satellite and the composition of the surface. The recent revelations by the Cassini-Huygens mission have managed to surprise us with many discoveries [3-8] and have yet to reveal more of the interesting aspects of the satellite. The Cassini-Huygens mission to the Saturnian system has been an extraordinary success for the planetary community since the Saturn-Orbit-Insertion (SOI) in July 2004 and again the very successful probe descent and landing of Huygens on January 14, 2005. One of its main targets was Titan. Titan was revealed to be a complex world more like the Earth than any other: it has a dense mostly nitrogen atmosphere and active climate and meteorological cycles where the working fluid, methane, behaves under Titan conditions the way that water does on

  8. Hubble Space Telescope, Faint Object Camera

    Science.gov (United States)

    1981-01-01

    This drawing illustrates Hubble Space Telescope's (HST's), Faint Object Camera (FOC). The FOC reflects light down one of two optical pathways. The light enters a detector after passing through filters or through devices that can block out light from bright objects. Light from bright objects is blocked out to enable the FOC to see background images. The detector intensifies the image, then records it much like a television camera. For faint objects, images can be built up over long exposure times. The total image is translated into digital data, transmitted to Earth, and then reconstructed. The purpose of the HST, the most complex and sensitive optical telescope ever made, is to study the cosmos from a low-Earth orbit. By placing the telescope in space, astronomers are able to collect data that is free of the Earth's atmosphere. The HST detects objects 25 times fainter than the dimmest objects seen from Earth and provides astronomers with an observable universe 250 times larger than visible from ground-based telescopes, perhaps as far away as 14 billion light-years. The HST views galaxies, stars, planets, comets, possibly other solar systems, and even unusual phenomena such as quasars, with 10 times the clarity of ground-based telescopes. The HST was deployed from the Space Shuttle Discovery (STS-31 mission) into Earth orbit in April 1990. The Marshall Space Flight Center had responsibility for design, development, and construction of the HST. The Perkin-Elmer Corporation, in Danbury, Cornecticut, developed the optical system and guidance sensors.

  9. A star-forming shock front in radio galaxy 4C+41.17 resolved with laser-assisted adaptive optics spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Steinbring, Eric, E-mail: Eric.Steinbring@nrc-cnrc.gc.ca [National Research Council Canada, Victoria, BC V9E 2E7 (Canada)

    2014-07-01

    Near-infrared integral-field spectroscopy of redshifted [O III], Hβ, and optical continuum emission from the z = 3.8 radio galaxy 4C+41.17 is presented, obtained with the laser-guide-star adaptive optics facility on the Gemini North telescope. Employing a specialized dithering technique, a spatial resolution of 0.''10, or 0.7 kpc, is achieved in each spectral element, with a velocity resolution of ∼70 km s{sup –1}. Spectra similar to local starbursts are found for bright knots coincident in archival Hubble Space Telescope ( HST) rest-frame ultraviolet images, which also allows a key line diagnostic to be mapped together with new kinematic information. There emerges a clearer picture of the nebular emission associated with the jet in 8.3 GHz and 15 GHz Very Large Array maps, closely tied to a Lyα-bright shell-shaped structure seen with HST. This supports a previous interpretation of that arc tracing a bow shock, inducing ∼10{sup 10–11} M {sub ☉} star formation regions that comprise the clumpy broadband optical/ultraviolet morphology near the core.

  10. New frontiers in ground-based optical astronomy

    Science.gov (United States)

    Strom, Steve

    1991-07-01

    Technological advances made in telescope designs during 1980's are outlined, including a segmented primary mirror for a 10-m telescope, new mirror-figuring techniques, and control systems based on computers and electronics. A new detector technology employing CCD's and advances in high-resolution telescopes are considered, along with such areas of research ready for major advances given new observing tools as the origin of large-scale structures in the universe, the creation and evolution of galaxies, and the formation of stars and planetary systems. Attention is focused on circumstellar disks, dust veils, jets, and brown dwarfs.

  11. New frontiers in ground-based optical astronomy

    International Nuclear Information System (INIS)

    Strom, S.

    1991-01-01

    Technological advances made in telescope designs during 1980's are outlined, including a segmented primary mirror for a 10-m telescope, new mirror-figuring techniques, and control systems based on computers and electronics. A new detector technology employing CCD's and advances in high-resolution telescopes are considered, along with such areas of research ready for major advances given new observing tools as the origin of large-scale structures in the universe, the creation and evolution of galaxies, and the formation of stars and planetary systems. Attention is focused on circumstellar disks, dust veils, jets, and brown dwarfs

  12. GROUND-BASED TRANSIT OBSERVATIONS OF THE SUPER-EARTH 55 Cnc e

    Energy Technology Data Exchange (ETDEWEB)

    De Mooij, E. J. W. [Astronomy and Astrophysics, University of Toronto, Toronto (Canada); López-Morales, M. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA (United States); Karjalainen, R.; Hrudkova, M. [Isaac Newton Group of Telescopes, La Palma (Spain); Jayawardhana, Ray, E-mail: demooij@astro.utoronto.ca [Physics and Astronomy, York University, Toronto (Canada)

    2014-12-20

    We report the first ground-based detections of the shallow transit of the super-Earth exoplanet 55 Cnc e using a 2 m class telescope. Using differential spectrophotometry, we observed one transit in 2013 and another in 2014, with average spectral resolutions of ∼700 and ∼250, spanning the Johnson BVR photometric bands. We find a white light planet-to-star radius ratio of 0.0190{sub −0.0027}{sup +0.0023} from the 2013 observations and 0.0200{sub −0.0018}{sup +0.0017} from the 2014 observations. The two data sets combined result in a radius ratio of 0.0198{sub −0.0014}{sup +0.0013}. These values are all in agreement with previous space-based results. Scintillation noise in the data prevents us from placing strong constraints on the presence of an extended hydrogen-rich atmosphere. Nevertheless, our detections of 55 Cnc e in transit demonstrate that moderate-sized telescopes on the ground will be capable of routine follow-up observations of super-Earth candidates discovered by the Transiting Exoplanet Survey Satellite around bright stars. We expect it also will be possible to place constraints on the atmospheric characteristics of those planets by devising observational strategies to minimize scintillation noise.

  13. Analysis technique for controlling system wavefront error with active/adaptive optics

    Science.gov (United States)

    Genberg, Victor L.; Michels, Gregory J.

    2017-08-01

    The ultimate goal of an active mirror system is to control system level wavefront error (WFE). In the past, the use of this technique was limited by the difficulty of obtaining a linear optics model. In this paper, an automated method for controlling system level WFE using a linear optics model is presented. An error estimate is included in the analysis output for both surface error disturbance fitting and actuator influence function fitting. To control adaptive optics, the technique has been extended to write system WFE in state space matrix form. The technique is demonstrated by example with SigFit, a commercially available tool integrating mechanical analysis with optical analysis.

  14. High-resolution retinal imaging using adaptive optics and Fourier-domain optical coherence tomography

    Science.gov (United States)

    Olivier, Scot S.; Werner, John S.; Zawadzki, Robert J.; Laut, Sophie P.; Jones, Steven M.

    2010-09-07

    This invention permits retinal images to be acquired at high speed and with unprecedented resolution in three dimensions (4.times.4.times.6 .mu.m). The instrument achieves high lateral resolution by using adaptive optics to correct optical aberrations of the human eye in real time. High axial resolution and high speed are made possible by the use of Fourier-domain optical coherence tomography. Using this system, we have demonstrated the ability to image microscopic blood vessels and the cone photoreceptor mosaic.

  15. High-resolution adaptive optics scanning laser ophthalmoscope with multiple deformable mirrors

    Science.gov (United States)

    Chen, Diana C.; Olivier, Scot S.; Jones; Steven M.

    2010-02-23

    An adaptive optics scanning laser ophthalmoscopes is introduced to produce non-invasive views of the human retina. The use of dual deformable mirrors improved the dynamic range for correction of the wavefront aberrations compared with the use of the MEMS mirror alone, and improved the quality of the wavefront correction compared with the use of the bimorph mirror alone. The large-stroke bimorph deformable mirror improved the capability for axial sectioning with the confocal imaging system by providing an easier way to move the focus axially through different layers of the retina.

  16. Extended depth of focus adaptive optics spectral domain optical coherence tomography

    Science.gov (United States)

    Sasaki, Kazuhiro; Kurokawa, Kazuhiro; Makita, Shuichi; Yasuno, Yoshiaki

    2012-01-01

    We present an adaptive optics spectral domain optical coherence tomography (AO-SDOCT) with a long focal range by active phase modulation of the pupil. A long focal range is achieved by introducing AO-controlled third-order spherical aberration (SA). The property of SA and its effects on focal range are investigated in detail using the Huygens-Fresnel principle, beam profile measurement and OCT imaging of a phantom. The results indicate that the focal range is extended by applying SA, and the direction of extension can be controlled by the sign of applied SA. Finally, we demonstrated in vivo human retinal imaging by altering the applied SA. PMID:23082278

  17. Accuracy requirements of optical linear algebra processors in adaptive optics imaging systems

    Science.gov (United States)

    Downie, John D.; Goodman, Joseph W.

    1989-10-01

    The accuracy requirements of optical processors in adaptive optics systems are determined by estimating the required accuracy in a general optical linear algebra processor (OLAP) that results in a smaller average residual aberration than that achieved with a conventional electronic digital processor with some specific computation speed. Special attention is given to an error analysis of a general OLAP with regard to the residual aberration that is created in an adaptive mirror system by the inaccuracies of the processor, and to the effect of computational speed of an electronic processor on the correction. Results are presented on the ability of an OLAP to compete with a digital processor in various situations.

  18. High energy astrophysics with ground-based gamma ray detectors

    International Nuclear Information System (INIS)

    Aharonian, F; Buckley, J; Kifune, T; Sinnis, G

    2008-01-01

    Recent advances in ground-based gamma ray astronomy have led to the discovery of more than 70 sources of very high energy (E γ ≥ 100 GeV) gamma rays, falling into a number of source populations including pulsar wind nebulae, shell type supernova remnants, Wolf-Rayet stars, giant molecular clouds, binary systems, the Galactic Center, active galactic nuclei and 'dark' (yet unidentified) galactic objects. We summarize the history of TeV gamma ray astronomy up to the current status of the field including a description of experimental techniques and highlight recent astrophysical results. We also discuss the potential of ground-based gamma ray astronomy for future discoveries and describe possible directions for future instrumental developments

  19. Ground-based Nuclear Detonation Detection (GNDD) Technology Roadmap

    International Nuclear Information System (INIS)

    Casey, Leslie A.

    2014-01-01

    This GNDD Technology Roadmap is intended to provide guidance to potential researchers and help management define research priorities to achieve technology advancements for ground-based nuclear explosion monitoring science being pursued by the Ground-based Nuclear Detonation Detection (GNDD) Team within the Office of Nuclear Detonation Detection in the National Nuclear Security Administration (NNSA) of the U.S. Department of Energy (DOE). Four science-based elements were selected to encompass the entire scope of nuclear monitoring research and development (R&D) necessary to facilitate breakthrough scientific results, as well as deliver impactful products. Promising future R&D is delineated including dual use associated with the Comprehensive Nuclear-Test-Ban Treaty (CTBT). Important research themes as well as associated metrics are identified along with a progression of accomplishments, represented by a selected bibliography, that are precursors to major improvements to nuclear explosion monitoring.

  20. Ground-based Nuclear Detonation Detection (GNDD) Technology Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    Casey, Leslie A.

    2014-01-13

    This GNDD Technology Roadmap is intended to provide guidance to potential researchers and help management define research priorities to achieve technology advancements for ground-based nuclear explosion monitoring science being pursued by the Ground-based Nuclear Detonation Detection (GNDD) Team within the Office of Nuclear Detonation Detection in the National Nuclear Security Administration (NNSA) of the U.S. Department of Energy (DOE). Four science-based elements were selected to encompass the entire scope of nuclear monitoring research and development (R&D) necessary to facilitate breakthrough scientific results, as well as deliver impactful products. Promising future R&D is delineated including dual use associated with the Comprehensive Nuclear-Test-Ban Treaty (CTBT). Important research themes as well as associated metrics are identified along with a progression of accomplishments, represented by a selected bibliography, that are precursors to major improvements to nuclear explosion monitoring.

  1. Automatic Barometric Updates from Ground-Based Navigational Aids

    Science.gov (United States)

    1990-03-12

    ro fAutomatic Barometric Updates US Department from of Transportation Ground-Based Federal Aviation Administration Navigational Aids Office of Safety...tighter vertical spacing controls , particularly for operations near Terminal Control Areas (TCAs), Airport Radar Service Areas (ARSAs), military climb and...E.F., Ruth, J.C., and Williges, B.H. (1987). Speech Controls and Displays. In Salvendy, G., E. Handbook of Human Factors/Ergonomics, New York, John

  2. Biomass burning aerosols characterization from ground based and profiling measurements

    Science.gov (United States)

    Marin, Cristina; Vasilescu, Jeni; Marmureanu, Luminita; Ene, Dragos; Preda, Liliana; Mihailescu, Mona

    2018-04-01

    The study goal is to assess the chemical and optical properties of aerosols present in the lofted layers and at the ground. The biomass burning aerosols were evaluated in low level layers from multi-wavelength lidar measurements, while chemical composition at ground was assessed using an Aerosol Chemical Speciation Monitor (ACSM) and an Aethalometer. Classification of aerosol type and specific organic markers were used to explore the potential to sense the particles from the same origin at ground base and on profiles.

  3. Reducing the Requirements and Cost of Astronomical Telescopes

    Science.gov (United States)

    Smith, W. Scott; Whitakter, Ann F. (Technical Monitor)

    2002-01-01

    Limits on astronomical telescope apertures are being rapidly approached. These limits result from logistics, increasing complexity, and finally budgetary constraints. In an historical perspective, great strides have been made in the area of aperture, adaptive optics, wavefront sensors, detectors, stellar interferometers and image reconstruction. What will be the next advances? Emerging data analysis techniques based on communication theory holds the promise of yielding more information from observational data based on significant computer post-processing. This paper explores some of the current telescope limitations and ponders the possibilities increasing the yield of scientific data based on the migration computer post-processing techniques to higher dimensions. Some of these processes hold the promise of reducing the requirements on the basic telescope hardware making the next generation of instruments more affordable.

  4. Neutrino Telescope

    International Nuclear Information System (INIS)

    Coelin Baldo, Milla

    2009-01-01

    The present volume contains the proceedings of the 13. International Workshop on 'Neutrino Telescope', 17. of the series 'Un altro modo di guardare il cielo', held in Venice at the 'Istituto Veneto di Scienze, Lettere ed Arti' from March 10 to March 13, 2009. This series started in Venice 21 years ago, in 1988, motivated by the growing interest in the exciting field of the neutrino physics and astrophysics, with the aim to bring together experimentalists and theorists and encourage discussion on the most recent results and to chart the direction of future researchers.

  5. Multi-conjugate adaptive optics observations of the Orion Trapezium Cluster

    International Nuclear Information System (INIS)

    Petr-Gotzens, M G; Kolb, J; Marchetti, E; Sterzik, M F; Ivanov, V D; Nuernberger, D; Koehler, R; Bouy, H; MartIn, E L; Huelamo, N; Navascues, D Barrado y

    2008-01-01

    We obtained very deep and high spatial resolution near-infrared images of the Orion Trapezium Cluster using the Multi-Conjugate Adaptive Optics Demonstrator (MAD) instrument at the VLT. The goal of these observations has been to search for objects at the very low-mass end of the IMF down to the planetary-mass regime. Three fields in the innermost dense part of the Trapezium Cluster, with a total area of 3.5 sq.arcmin have been surveyed at 1.65μm and 2.2μm. Several new candidate planetary mass objects with potential masses Jup have been detected based on their photometry and on their location in the colour-magnitude diagram. The performance of the multi-conjugate adaptive optics correction is excellent over a large field-of-view of ∼ 1'. The final data has a spatial resolution of Jup ), however, must await future confirmation by spectroscopic and/or photometric observations.

  6. Robust Multi-Frame Adaptive Optics Image Restoration Algorithm Using Maximum Likelihood Estimation with Poisson Statistics

    Directory of Open Access Journals (Sweden)

    Dongming Li

    2017-04-01

    Full Text Available An adaptive optics (AO system provides real-time compensation for atmospheric turbulence. However, an AO image is usually of poor contrast because of the nature of the imaging process, meaning that the image contains information coming from both out-of-focus and in-focus planes of the object, which also brings about a loss in quality. In this paper, we present a robust multi-frame adaptive optics image restoration algorithm via maximum likelihood estimation. Our proposed algorithm uses a maximum likelihood method with image regularization as the basic principle, and constructs the joint log likelihood function for multi-frame AO images based on a Poisson distribution model. To begin with, a frame selection method based on image variance is applied to the observed multi-frame AO images to select images with better quality to improve the convergence of a blind deconvolution algorithm. Then, by combining the imaging conditions and the AO system properties, a point spread function estimation model is built. Finally, we develop our iterative solutions for AO image restoration addressing the joint deconvolution issue. We conduct a number of experiments to evaluate the performances of our proposed algorithm. Experimental results show that our algorithm produces accurate AO image restoration results and outperforms the current state-of-the-art blind deconvolution methods.

  7. Improved fixation quality provided by a Bessel beacon in an adaptive optics system.

    Science.gov (United States)

    Lambert, Andrew J; Daly, Elizabeth M; Dainty, Christopher J

    2013-07-01

    We investigate whether a structured probe beam that creates the beacon for use in a retinal imaging adaptive optics system can provide useful side effects. In particular we investigate whether a Bessel beam that is seen by the subject as a set of concentric rings has a dampening effect on fixation variations of the subject under observation. This calming effect would allow longer periods of observation, particularly for patients with abnormal fixation. An experimental adaptive optics system developed for retinal imaging is used to monitor the fluctuations in aberrations for artificial and human subjects. The probe beam is alternated between a traditional beacon and one provided by a Bessel beam created by SLM. Time-frequency analysis is used to indicate the differences in power and time variation during fixation depending on whether the Bessel beam or the traditional beacon is employed. Comparison is made with the response for an artificial eye to discount systemic variations. Significant evidence is accrued to indicate the reduced fluctuations in fixation when the Bessel beam is employed to create the beacon. © 2013 The Authors Ophthalmic & Physiological Optics © 2013 The College of Optometrists.

  8. Noninvasive imaging of the human rod photoreceptor mosaic using a confocal adaptive optics scanning ophthalmoscope

    Science.gov (United States)

    Dubra, Alfredo; Sulai, Yusufu; Norris, Jennifer L.; Cooper, Robert F.; Dubis, Adam M.; Williams, David R.; Carroll, Joseph

    2011-01-01

    The rod photoreceptors are implicated in a number of devastating retinal diseases. However, routine imaging of these cells has remained elusive, even with the advent of adaptive optics imaging. Here, we present the first in vivo images of the contiguous rod photoreceptor mosaic in nine healthy human subjects. The images were collected with three different confocal adaptive optics scanning ophthalmoscopes at two different institutions, using 680 and 775 nm superluminescent diodes for illumination. Estimates of photoreceptor density and rod:cone ratios in the 5°–15° retinal eccentricity range are consistent with histological findings, confirming our ability to resolve the rod mosaic by averaging multiple registered images, without the need for additional image processing. In one subject, we were able to identify the emergence of the first rods at approximately 190 μm from the foveal center, in agreement with previous histological studies. The rod and cone photoreceptor mosaics appear in focus at different retinal depths, with the rod mosaic best focus (i.e., brightest and sharpest) being at least 10 μm shallower than the cones at retinal eccentricities larger than 8°. This study represents an important step in bringing high-resolution imaging to bear on the study of rod disorders. PMID:21750765

  9. Simulating the performance of adaptive optics techniques on FSO communications through the atmosphere

    Science.gov (United States)

    Martínez, Noelia; Rodríguez Ramos, Luis Fernando; Sodnik, Zoran

    2017-08-01

    The Optical Ground Station (OGS), installed in the Teide Observatory since 1995, was built as part of ESA efforts in the research field of satellite optical communications to test laser telecommunication terminals on board of satellites in Low Earth Orbit and Geostationary Orbit. As far as one side of the link is settled on the Earth, the laser beam (either on the uplink or on the downlink) has to bear with the atmospheric turbulence. Within the framework of designing an Adaptive Optics system to improve the performance of the Free-Space Optical Communications at the OGS, turbulence conditions regarding uplink and downlink have been simulated within the OOMAO (Object-Oriented Matlab Adaptive Optics) Toolbox as well as the possible utilization of a Laser Guide Star to measure the wavefront in this context. Simulations have been carried out by reducing available atmospheric profiles regarding both night-time and day-time measurements and by having into account possible seasonal changes. An AO proposal to reduce atmospheric aberrations and, therefore, ameliorate FSO links performance is presented and analysed in this paper

  10. Computational adaptive optics for broadband interferometric tomography of tissues and cells

    Science.gov (United States)

    Adie, Steven G.; Mulligan, Jeffrey A.

    2016-03-01

    Adaptive optics (AO) can shape aberrated optical wavefronts to physically restore the constructive interference needed for high-resolution imaging. With access to the complex optical field, however, many functions of optical hardware can be achieved computationally, including focusing and the compensation of optical aberrations to restore the constructive interference required for diffraction-limited imaging performance. Holography, which employs interferometric detection of the complex optical field, was developed based on this connection between hardware and computational image formation, although this link has only recently been exploited for 3D tomographic imaging in scattering biological tissues. This talk will present the underlying imaging science behind computational image formation with optical coherence tomography (OCT) -- a beam-scanned version of broadband digital holography. Analogous to hardware AO (HAO), we demonstrate computational adaptive optics (CAO) and optimization of the computed pupil correction in 'sensorless mode' (Zernike polynomial corrections with feedback from image metrics) or with the use of 'guide-stars' in the sample. We discuss the concept of an 'isotomic volume' as the volumetric extension of the 'isoplanatic patch' introduced in astronomical AO. Recent CAO results and ongoing work is highlighted to point to the potential biomedical impact of computed broadband interferometric tomography. We also discuss the advantages and disadvantages of HAO vs. CAO for the effective shaping of optical wavefronts, and highlight opportunities for hybrid approaches that synergistically combine the unique advantages of hardware and computational methods for rapid volumetric tomography with cellular resolution.

  11. Retinal axial focusing and multi-layer imaging with a liquid crystal adaptive optics camera

    International Nuclear Information System (INIS)

    Liu Rui-Xue; Zheng Xian-Liang; Li Da-Yu; Hu Li-Fa; Cao Zhao-Liang; Mu Quan-Quan; Xuan Li; Xia Ming-Liang

    2014-01-01

    With the help of adaptive optics (AO) technology, cellular level imaging of living human retina can be achieved. Aiming to reduce distressing feelings and to avoid potential drug induced diseases, we attempted to image retina with dilated pupil and froze accommodation without drugs. An optimized liquid crystal adaptive optics camera was adopted for retinal imaging. A novel eye stared system was used for stimulating accommodation and fixating imaging area. Illumination sources and imaging camera kept linkage for focusing and imaging different layers. Four subjects with diverse degree of myopia were imaged. Based on the optical properties of the human eye, the eye stared system reduced the defocus to less than the typical ocular depth of focus. In this way, the illumination light can be projected on certain retina layer precisely. Since that the defocus had been compensated by the eye stared system, the adopted 512 × 512 liquid crystal spatial light modulator (LC-SLM) corrector provided the crucial spatial fidelity to fully compensate high-order aberrations. The Strehl ratio of a subject with −8 diopter myopia was improved to 0.78, which was nearly close to diffraction-limited imaging. By finely adjusting the axial displacement of illumination sources and imaging camera, cone photoreceptors, blood vessels and nerve fiber layer were clearly imaged successfully. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  12. Project overview and update on WEAVE: the next generation wide-field spectroscopy facility for the William Herschel Telescope

    NARCIS (Netherlands)

    Dalton, Gavin; Trager, Scott; Abrams, Don Carlos; Bonifacio, Piercarlo; López Aguerri, J. Alfonso; Middleton, Kevin; Benn, Chris; Dee, Kevin; Sayède, Frédéric; Lewis, Ian; Pragt, Johan; Pico, Sergio; Walton, Nic; Rey, Juerg; Allende Prieto, Carlos; Peñate, José; Lhome, Emilie; Agócs, Tibor; Alonso, José; Terrett, David; Brock, Matthew; Gilbert, James; Ridings, Andy; Guinouard, Isabelle; Verheijen, Marc A.W.; Tosh, Ian; Rogers, Kevin; Steele, Iain; Stuik, Remko; Tromp, Neils; Jasko, Attila; Kragt, Jan; Lesman, Dirk; Mottram, Chris; Bates, Stuart; Gribbin, Frank; Rodriguez, Luis Fernando; Delgado, José M.; Martin, Carlos; Cano, Diego; Navarro, Ramón; Irwin, Mike; Lewis, Jim; Gonzalez Solares, Eduardo; O'Mahony, Neil; Bianco, Andrea; Zurita, Christina; ter Horst, Rik; Molinari, Emilio; Lodi, Marcello; Guerra, José; Vallenari, Antonella; Baruffolo, Andrea

    We present an overview of and status report on the WEAVE next-generation spectroscopy facility for the William Herschel Telescope (WHT). WEAVE principally targets optical ground-based follow up of upcoming ground-based (LOFAR) and space-based (Gaia) surveys. WEAVE is a multi-object and multi-IFU

  13. Academic Training: Deep Space Telescopes

    CERN Multimedia

    Françoise Benz

    2006-01-01

    2005-2006 ACADEMIC TRAINING PROGRAMME LECTURE SERIES 20, 21, 22, 23, 24 February from 11:00 to 12:00 - Council Chamber on 20, 21, 23, 24 February, TH Auditorium, bldg 4 - 3-006, on 22 February Deep Space Telescopes G. BIGNAMI / CNRS, Toulouse, F & Univ. di Pavia, I The short series of seminars will address results and aims of current and future space astrophysics as the cultural framework for the development of deep space telescopes. It will then present such new tools, as they are currently available to, or imagined by, the scientific community, in the context of the science plans of ESA and of all major world space agencies. Ground-based astronomy, in the 400 years since Galileo's telescope, has given us a profound phenomenological comprehension of our Universe, but has traditionally been limited to the narrow band(s) to which our terrestrial atmosphere is transparent. Celestial objects, however, do not care about our limitations, and distribute most of the information about their physics thro...

  14. EUSO-TA prototype telescope

    Energy Technology Data Exchange (ETDEWEB)

    Bisconti, Francesca, E-mail: francesca.bisconti@kit.edu

    2016-07-11

    EUSO-TA is one of the prototypes developed for the JEM-EUSO project, a space-based large field-of-view telescope to observe the fluorescence light emitted by cosmic ray air showers in the atmosphere. EUSO-TA is a ground-based prototype located at the Telescope Array (TA) site in Utah, USA, where an Electron Light Source and a Central Laser Facility are installed. The purpose of the EUSO-TA project is to calibrate the prototype with the TA fluorescence detector in presence of well-known light sources and cosmic ray air showers. In 2015, the detector started the first measurements and tests using the mentioned light sources have been performed successfully. A first cosmic ray candidate has been observed, as well as stars of different magnitude and color index. Since Silicon Photo-Multipliers (SiPMs) are very promising for fluorescence telescopes of next generation, they are under consideration for the realization of a new prototype of EUSO Photo Detector Module (PDM). The response of this sensor type is under investigation through simulations and laboratory experimentation.

  15. The NASA Spitzer Space Telescope.

    Science.gov (United States)

    Gehrz, R D; Roellig, T L; Werner, M W; Fazio, G G; Houck, J R; Low, F J; Rieke, G H; Soifer, B T; Levine, D A; Romana, E A

    2007-01-01

    The National Aeronautics and Space Administration's Spitzer Space Telescope (formerly the Space Infrared Telescope Facility) is the fourth and final facility in the Great Observatories Program, joining Hubble Space Telescope (1990), the Compton Gamma-Ray Observatory (1991-2000), and the Chandra X-Ray Observatory (1999). Spitzer, with a sensitivity that is almost three orders of magnitude greater than that of any previous ground-based and space-based infrared observatory, is expected to revolutionize our understanding of the creation of the universe, the formation and evolution of primitive galaxies, the origin of stars and planets, and the chemical evolution of the universe. This review presents a brief overview of the scientific objectives and history of infrared astronomy. We discuss Spitzer's expected role in infrared astronomy for the new millennium. We describe pertinent details of the design, construction, launch, in-orbit checkout, and operations of the observatory and summarize some science highlights from the first two and a half years of Spitzer operations. More information about Spitzer can be found at http://spitzer.caltech.edu/.

  16. EUSO-TA prototype telescope

    Science.gov (United States)

    Bisconti, Francesca; JEM-EUSO Collaboration

    2016-07-01

    EUSO-TA is one of the prototypes developed for the JEM-EUSO project, a space-based large field-of-view telescope to observe the fluorescence light emitted by cosmic ray air showers in the atmosphere. EUSO-TA is a ground-based prototype located at the Telescope Array (TA) site in Utah, USA, where an Electron Light Source and a Central Laser Facility are installed. The purpose of the EUSO-TA project is to calibrate the prototype with the TA fluorescence detector in presence of well-known light sources and cosmic ray air showers. In 2015, the detector started the first measurements and tests using the mentioned light sources have been performed successfully. A first cosmic ray candidate has been observed, as well as stars of different magnitude and color index. Since Silicon Photo-Multipliers (SiPMs) are very promising for fluorescence telescopes of next generation, they are under consideration for the realization of a new prototype of EUSO Photo Detector Module (PDM). The response of this sensor type is under investigation through simulations and laboratory experimentation.

  17. Study and use of an infrared camera optimized for ground based observations in the 10 micron wavelength range

    International Nuclear Information System (INIS)

    Remy, Sophie

    1991-01-01

    Astronomical observations in the 10 micron atmospheric window provide very important information for many of astrophysical topics. But because of the very large terrestrial photon background at that wavelength, ground based observations have been impeded. On the other band, the ground based telescopes offer a greater angular resolution than the spatially based telescopes. The recent development of detector arrays for the mid infrared range made easier the development of infrared cameras with optimized detectors for astronomical observations from the ground. The CAMIRAS infrared camera, built by the 'Service d'Astrophysique' in Saclay is the instrument we have studied and we present its performances. Its sensitivity, given for an integration time of one minute on source and a signal to noise ratio of 3, is 0.15 Jy for punctual sources, and 20 mJy arcs"-"2 for extended sources. But we need to get rid of the enormous photon background so we have to find a better way of observation based on modulation techniques as 'chopping' or 'nodding'. Thus we show that a modulation about 1 Hz is satisfactory with our detectors arrays without perturbing the signal to noise ratio. As we have a good instrument and because we are able to get rid of the photon background, we can study astronomical objects. Results from a comet, dusty stellar disks, and an ultra-luminous galaxy are presented. (author) [fr

  18. Lidar to lidar calibration of Ground-based Lidar

    DEFF Research Database (Denmark)

    Fernandez Garcia, Sergio; Courtney, Michael

    This report presents the result of the lidar to lidar calibration performed for ground-based lidar. Calibration is here understood as the establishment of a relation between the reference lidar wind speed measurements with measurement uncertainties provided by measurement standard and corresponding...... lidar wind speed indications with associated measurement uncertainties. The lidar calibration concerns the 10 minute mean wind speed measurements. The comparison of the lidar measurements of the wind direction with that from the reference lidar measurements are given for information only....

  19. Composite mirror facets for ground based gamma ray astronomy

    Energy Technology Data Exchange (ETDEWEB)

    Brun, P.; Carton, P.-H.; Durand, D.; Glicenstein, J.-F.; Jeanney, C. [CEA, Irfu, Centre de Saclay, F-91191 Gif sur Yvette (France); Medina, M.C., E-mail: clementina@iar.unlp.edu.ar [CEA, Irfu, Centre de Saclay, F-91191 Gif sur Yvette (France); Micolon, P.; Peyaud, B. [CEA, Irfu, Centre de Saclay, F-91191 Gif sur Yvette (France)

    2013-06-21

    Composite mirrors for gamma-ray astronomy have been developed to fulfill the specifications required for the next generation of Cherenkov telescopes represented by CTA (Cherenkov Telescope Array). In addition to the basic requirements on focus and reflection efficiency, the mirrors have to be stiff, lightweight, durable and cost efficient. In this paper, the technology developed to produce such mirrors is described, as well as some tests that have been performed to validate them. It is shown that these mirrors comply with the needs of CTA, making them good candidates for use on a significant part of the array.

  20. Operating performance of the gamma-ray Cherenkov telescope: An end-to-end Schwarzschild–Couder telescope prototype for the Cherenkov Telescope Array

    Energy Technology Data Exchange (ETDEWEB)

    Dournaux, J.L., E-mail: jean-laurent.dournaux@obspm.fr [GEPI, Observatoire de Paris, PSL Research University, CNRS, Sorbonne Paris Cité, Université Paris Diderot, Place J. Janssen, 92190 Meudon (France); De Franco, A. [Department of Physics, University of Oxford, Keble Road, Oxford OX1 3RH (United Kingdom); Laporte, P. [GEPI, Observatoire de Paris, PSL Research University, CNRS, Sorbonne Paris Cité, Université Paris Diderot, Place J. Janssen, 92190 Meudon (France); White, R. [Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg (Germany); Greenshaw, T. [University of Liverpool, Oliver Lodge Laboratory, P.O. Box 147, Oxford Street, Liverpool L69 3BX (United Kingdom); Sol, H. [LUTH, Observatoire de Paris, PSL Research University, CNRS, Université Paris Diderot, Place J. Janssen, 92190 Meudon (France); Abchiche, A. [CNRS, Division technique DT-INSU, 1 Place Aristide Briand, 92190 Meudon (France); Allan, D. [Department of Physics and Centre for Advanced Instrumentation, Durham University, South Road, Durham DH1 3LE (United Kingdom); Amans, J.P. [GEPI, Observatoire de Paris, PSL Research University, CNRS, Sorbonne Paris Cité, Université Paris Diderot, Place J. Janssen, 92190 Meudon (France); Armstrong, T.P. [Department of Physics and Centre for Advanced Instrumentation, Durham University, South Road, Durham DH1 3LE (United Kingdom); Balzer, A.; Berge, D. [GRAPPA, University of Amsterdam, Science Park 904, 1098 XH Amsterdam (Netherlands); Boisson, C. [LUTH, Observatoire de Paris, PSL Research University, CNRS, Université Paris Diderot, Place J. Janssen, 92190 Meudon (France); and others

    2017-02-11

    The Cherenkov Telescope Array (CTA) consortium aims to build the next-generation ground-based very-high-energy gamma-ray observatory. The array will feature different sizes of telescopes allowing it to cover a wide gamma-ray energy band from about 20 GeV to above 100 TeV. The highest energies, above 5 TeV, will be covered by a large number of Small-Sized Telescopes (SSTs) with a field-of-view of around 9°. The Gamma-ray Cherenkov Telescope (GCT), based on Schwarzschild–Couder dual-mirror optics, is one of the three proposed SST designs. The GCT is described in this contribution and the first images of Cherenkov showers obtained using the telescope and its camera are presented. These were obtained in November 2015 in Meudon, France.

  1. Characterization of Jupiter's Atmosphere from Observation of Thermal Emission by Juno and Ground-Based Supporting Observations

    Science.gov (United States)

    Orton, G. S.; Momary, T.; Tabataba-Vakili, F.; Janssen, M. A.; Hansen, C. J.; Bolton, S. J.; Li, C.; Adriani, A.; Mura, A.; Grassi, D.; Fletcher, L. N.; Brown, S. T.; Fujiyoshi, T.; Greathouse, T. K.; Kasaba, Y.; Sato, T. M.; Stephens, A.; Donnelly, P.; Eichstädt, G.; Rogers, J.

    2017-12-01

    Ground-breaking measurements of thermal emission at very long wavelengths have been made by the Juno mission's Microwave Radiometer (MWR). We examine the relationship between these and other thermal emission measurements by the Jupiter Infrared Auroral Mapper (JIRAM) at 5 µm and ground-based supporting observations in the thermal infrared that cover the 5-25 µm range. The relevant ground-based observations of thermal emission are constituted from imaging and scanning spectroscopy obtained at the NASA Infrared Telescope Facility (IRTF), the Gemini North Telescope, the Subaru Telescope and the Very Large Telescope. A comparison of these results clarifies the physical properties responsible for the observed emissions, i.e. variability of the temperature field, the cloud field or the distribution of gaseous ammonia. Cross-references to the visible cloud field from Juno's JunoCam experiment and Earth-based images are also useful. This work continues an initial comparison by Orton et al. (2017, GRL 44, doi: 10.1002/2017GL073019) between MWR and JIRAM results, together with ancillary 5-µm IRTF imaging and with JunoCam and ground-based visible imaging. These showed a general agreement between MWR and JIRAM results for the 5-bar NH3 abundance in specific regions of low cloud opacity but only a partial correlation between MWR and 5-µm radiances emerging from the 0.5-5 bar levels of the atmosphere in general. Similar to the latter, there appears to be an inconsistent correlation between MWR channels sensitive to 0.5-10 bars and shorter-wavelength radiances in the "tails" of 5-µm hot spots , which may be the result of the greater sensitivity of the latter to particulate opacity that could depend on the evolution history of the particular features sampled. Of great importance is the interpretation of MWR radiances in terms of the variability of temperature vs. NH3 abundances in the 0.5-5 bar pressure range. This is particularly important to understand MWR results in

  2. MODELING ATMOSPHERIC EMISSION FOR CMB GROUND-BASED OBSERVATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Errard, J.; Borrill, J. [Space Sciences Laboratory, University of California, Berkeley, CA 94720 (United States); Ade, P. A. R. [School of Physics and Astronomy, Cardiff University, Cardiff CF10 3XQ (United Kingdom); Akiba, Y.; Chinone, Y. [High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki 305-0801 (Japan); Arnold, K.; Atlas, M.; Barron, D.; Elleflot, T. [Department of Physics, University of California, San Diego, CA 92093-0424 (United States); Baccigalupi, C.; Fabbian, G. [International School for Advanced Studies (SISSA), Trieste I-34014 (Italy); Boettger, D. [Department of Astronomy, Pontifica Universidad Catolica de Chile (Chile); Chapman, S. [Department of Physics and Atmospheric Science, Dalhousie University, Halifax, NS, B3H 4R2 (Canada); Cukierman, A. [Department of Physics, University of California, Berkeley, CA 94720 (United States); Delabrouille, J. [AstroParticule et Cosmologie, Univ Paris Diderot, CNRS/IN2P3, CEA/Irfu, Obs de Paris, Sorbonne Paris Cité (France); Dobbs, M.; Gilbert, A. [Physics Department, McGill University, Montreal, QC H3A 0G4 (Canada); Ducout, A.; Feeney, S. [Department of Physics, Imperial College London, London SW7 2AZ (United Kingdom); Feng, C. [Department of Physics and Astronomy, University of California, Irvine (United States); and others

    2015-08-10

    Atmosphere is one of the most important noise sources for ground-based cosmic microwave background (CMB) experiments. By increasing optical loading on the detectors, it amplifies their effective noise, while its fluctuations introduce spatial and temporal correlations between detected signals. We present a physically motivated 3D-model of the atmosphere total intensity emission in the millimeter and sub-millimeter wavelengths. We derive a new analytical estimate for the correlation between detectors time-ordered data as a function of the instrument and survey design, as well as several atmospheric parameters such as wind, relative humidity, temperature and turbulence characteristics. Using an original numerical computation, we examine the effect of each physical parameter on the correlations in the time series of a given experiment. We then use a parametric-likelihood approach to validate the modeling and estimate atmosphere parameters from the polarbear-i project first season data set. We derive a new 1.0% upper limit on the linear polarization fraction of atmospheric emission. We also compare our results to previous studies and weather station measurements. The proposed model can be used for realistic simulations of future ground-based CMB observations.

  3. Strong Sporadic E Occurrence Detected by Ground-Based GNSS

    Science.gov (United States)

    Sun, Wenjie; Ning, Baiqi; Yue, Xinan; Li, Guozhu; Hu, Lianhuan; Chang, Shoumin; Lan, Jiaping; Zhu, Zhengping; Zhao, Biqiang; Lin, Jian

    2018-04-01

    The ionospheric sporadic E (Es) layer has significant impact on radio wave propagation. The traditional techniques employed for Es layer observation, for example, ionosondes, are not dense enough to resolve the morphology and dynamics of Es layer in spatial distribution. The ground-based Global Navigation Satellite Systems (GNSS) technique is expected to shed light on the understanding of regional strong Es occurrence, owing to the facts that the critical frequency (foEs) of strong Es structure is usually high enough to cause pulse-like disturbances in GNSS total electron content (TEC), and a large number of GNSS receivers have been deployed all over the world. Based on the Chinese ground-based GNSS networks, including the Crustal Movement Observation Network of China and the Beidou Ionospheric Observation Network, a large-scale strong Es event was observed in the middle latitude of China. The strong Es shown as a band-like structure in the southwest-northeast direction extended more than 1,000 km. By making a comparative analysis of Es occurrences identified from the simultaneous observations by ionosondes and GNSS TEC receivers over China middle latitude statistically, we found that GNSS TEC can be well employed to observe strong Es occurrence with a threshold value of foEs, 14 MHz.

  4. Functional photoreceptor loss revealed with adaptive optics: an alternate cause of color blindness.

    Science.gov (United States)

    Carroll, Joseph; Neitz, Maureen; Hofer, Heidi; Neitz, Jay; Williams, David R

    2004-06-01

    There is enormous variation in the X-linked L/M (long/middle wavelength sensitive) gene array underlying "normal" color vision in humans. This variability has been shown to underlie individual variation in color matching behavior. Recently, red-green color blindness has also been shown to be associated with distinctly different genotypes. This has opened the possibility that there may be important phenotypic differences within classically defined groups of color blind individuals. Here, adaptive optics retinal imaging has revealed a mechanism for producing dichromatic color vision in which the expression of a mutant cone photopigment gene leads to the loss of the entire corresponding class of cone photoreceptor cells. Previously, the theory that common forms of inherited color blindness could be caused by the loss of photoreceptor cells had been discounted. We confirm that remarkably, this loss of one-third of the cones does not impair any aspect of vision other than color.

  5. Super-resolution pupil filtering for visual performance enhancement using adaptive optics

    Science.gov (United States)

    Zhao, Lina; Dai, Yun; Zhao, Junlei; Zhou, Xiaojun

    2018-05-01

    Ocular aberration correction can significantly improve visual function of the human eye. However, even under ideal aberration correction conditions, pupil diffraction restricts the resolution of retinal images. Pupil filtering is a simple super-resolution (SR) method that can overcome this diffraction barrier. In this study, a 145-element piezoelectric deformable mirror was used as a pupil phase filter because of its programmability and high fitting accuracy. Continuous phase-only filters were designed based on Zernike polynomial series and fitted through closed-loop adaptive optics. SR results were validated using double-pass point spread function images. Contrast sensitivity was further assessed to verify the SR effect on visual function. An F-test was conducted for nested models to statistically compare different CSFs. These results indicated CSFs for the proposed SR filter were significantly higher than the diffraction correction (p vision optical correction of the human eye.

  6. An automated algorithm for photoreceptors counting in adaptive optics retinal images

    Science.gov (United States)

    Liu, Xu; Zhang, Yudong; Yun, Dai

    2012-10-01

    Eyes are important organs of humans that detect light and form spatial and color vision. Knowing the exact number of cones in retinal image has great importance in helping us understand the mechanism of eyes' function and the pathology of some eye disease. In order to analyze data in real time and process large-scale data, an automated algorithm is designed to label cone photoreceptors in adaptive optics (AO) retinal images. Images acquired by the flood-illuminated AO system are taken to test the efficiency of this algorithm. We labeled these images both automatically and manually, and compared the results of the two methods. A 94.1% to 96.5% agreement rate between the two methods is achieved in this experiment, which demonstrated the reliability and efficiency of the algorithm.

  7. Images of photoreceptors in living primate eyes using adaptive optics two-photon ophthalmoscopy

    Science.gov (United States)

    Hunter, Jennifer J.; Masella, Benjamin; Dubra, Alfredo; Sharma, Robin; Yin, Lu; Merigan, William H.; Palczewska, Grazyna; Palczewski, Krzysztof; Williams, David R.

    2011-01-01

    In vivo two-photon imaging through the pupil of the primate eye has the potential to become a useful tool for functional imaging of the retina. Two-photon excited fluorescence images of the macaque cone mosaic were obtained using a fluorescence adaptive optics scanning laser ophthalmoscope, overcoming the challenges of a low numerical aperture, imperfect optics of the eye, high required light levels, and eye motion. Although the specific fluorophores are as yet unknown, strong in vivo intrinsic fluorescence allowed images of the cone mosaic. Imaging intact ex vivo retina revealed that the strongest two-photon excited fluorescence signal comes from the cone inner segments. The fluorescence response increased following light stimulation, which could provide a functional measure of the effects of light on photoreceptors. PMID:21326644

  8. Immature visual neural system in children reflected by contrast sensitivity with adaptive optics correction

    Science.gov (United States)

    Liu, Rong; Zhou, Jiawei; Zhao, Haoxin; Dai, Yun; Zhang, Yudong; Tang, Yong; Zhou, Yifeng

    2014-01-01

    This study aimed to explore the neural development status of the visual system of children (around 8 years old) using contrast sensitivity. We achieved this by eliminating the influence of higher order aberrations (HOAs) with adaptive optics correction. We measured HOAs, modulation transfer functions (MTFs) and contrast sensitivity functions (CSFs) of six children and five adults with both corrected and uncorrected HOAs. We found that when HOAs were corrected, children and adults both showed improvements in MTF and CSF. However, the CSF of children was still lower than the adult level, indicating the difference in contrast sensitivity between groups cannot be explained by differences in optical factors. Further study showed that the difference between the groups also could not be explained by differences in non-visual factors. With these results we concluded that the neural systems underlying vision in children of around 8 years old are still immature in contrast sensitivity. PMID:24732728

  9. Adaptive Optics System with Deformable Composite Mirror and High Speed, Ultra-Compact Electronics

    Science.gov (United States)

    Chen, Peter C.; Knowles, G. J.; Shea, B. G.

    2006-06-01

    We report development of a novel adaptive optics system for optical astronomy. Key components are very thin Deformable Mirrors (DM) made of fiber reinforced polymer resins, subminiature PMN-PT actuators, and low power, high bandwidth electronics drive system with compact packaging and minimal wiring. By using specific formulations of fibers, resins, and laminate construction, we are able to fabricate mirror face sheets that are thin (2 KHz. By utilizing QorTek’s proprietary synthetic impendence power supply technology, all the power, control, and signal extraction for many hundreds to 1000s of actuators and sensors can be implemented on a single matrix controller printed circuit board co-mounted with the DM. The matrix controller, in turn requires only a single serial bus interface, thereby obviating the need for massive wiring harnesses. The technology can be scaled up to multi-meter aperture DMs with >100K actuators.

  10. Stochastic parallel gradient descent based adaptive optics used for a high contrast imaging coronagraph

    International Nuclear Information System (INIS)

    Dong Bing; Ren Deqing; Zhang Xi

    2011-01-01

    An adaptive optics (AO) system based on a stochastic parallel gradient descent (SPGD) algorithm is proposed to reduce the speckle noises in the optical system of a stellar coronagraph in order to further improve the contrast. The principle of the SPGD algorithm is described briefly and a metric suitable for point source imaging optimization is given. The feasibility and good performance of the SPGD algorithm is demonstrated by an experimental system featured with a 140-actuator deformable mirror and a Hartmann-Shark wavefront sensor. Then the SPGD based AO is applied to a liquid crystal array (LCA) based coronagraph to improve the contrast. The LCA can modulate the incoming light to generate a pupil apodization mask of any pattern. A circular stepped pattern is used in our preliminary experiment and the image contrast shows improvement from 10 -3 to 10 -4.5 at an angular distance of 2λ/D after being corrected by SPGD based AO.

  11. Holographic line field en-face OCT with digital adaptive optics in the retina in vivo.

    Science.gov (United States)

    Ginner, Laurin; Schmoll, Tilman; Kumar, Abhishek; Salas, Matthias; Pricoupenko, Nastassia; Wurster, Lara M; Leitgeb, Rainer A

    2018-02-01

    We demonstrate a high-resolution line field en-face time domain optical coherence tomography (OCT) system using an off-axis holography configuration. Line field en-face OCT produces high speed en-face images at rates of up to 100 Hz. The high frame rate favors good phase stability across the lateral field-of-view which is indispensable for digital adaptive optics (DAO). Human retinal structures are acquired in-vivo with a broadband light source at 840 nm, and line rates of 10 kHz to 100 kHz. Structures of different retinal layers, such as photoreceptors, capillaries, and nerve fibers are visualized with high resolution of 2.8 µm and 5.5 µm in lateral directions. Subaperture based DAO is successfully applied to increase the visibility of cone-photoreceptors and nerve fibers. Furthermore, en-face Doppler OCT maps are generated based on calculating the differential phase shifts between recorded lines.

  12. Compensation for the orbital angular momentum of a vortex beam in turbulent atmosphere by adaptive optics

    Science.gov (United States)

    Li, Nan; Chu, Xiuxiang; Zhang, Pengfei; Feng, Xiaoxing; Fan, ChengYu; Qiao, Chunhong

    2018-01-01

    A method which can be used to compensate for a distorted orbital angular momentum and wavefront of a beam in atmospheric turbulence, simultaneously, has been proposed. To confirm the validity of the method, an experimental setup for up-link propagation of a vortex beam in a turbulent atmosphere has been simulated. Simulation results show that both of the distorted orbital angular momentum and the distorted wavefront of a beam due to turbulence can be compensated by an adaptive optics system with the help of a cooperative beacon at satellite. However, when the number of the lenslet of wavefront sensor (WFS) and the actuators of the deform mirror (DM) is small, satisfactory results cannot be obtained.

  13. SILDENAFIL CITRATE INDUCED RETINAL TOXICITY-ELECTRORETINOGRAM, OPTICAL COHERENCE TOMOGRAPHY, AND ADAPTIVE OPTICS FINDINGS.

    Science.gov (United States)

    Yanoga, Fatoumata; Gentile, Ronald C; Chui, Toco Y P; Freund, K Bailey; Fell, Millie; Dolz-Marco, Rosa; Rosen, Richard B

    2018-02-27

    To report a case of persistent retinal toxicity associated with a high dose of sildenafil citrate intake. Single retrospective case report. A 31-year-old white man with no medical history presented with complaints of bilateral multicolored photopsias and erythropsia (red-tinted vision), shortly after taking sildenafil citrate-purchased through the internet. Patient was found to have cone photoreceptor damage, demonstrated using electroretinogram, optical coherence tomography, and adaptive optics imaging. The patient's symptoms and the photoreceptor structural changes persisted for several months. Sildenafil citrate is a widely used erectile dysfunction medication that is typically associated with transient visual symptoms in normal dosage. At high dosage, sildenafil citrate can lead to persistent retinal toxicity in certain individuals.

  14. Adaptive optics stochastic optical reconstruction microscopy (AO-STORM) by particle swarm optimization.

    Science.gov (United States)

    Tehrani, Kayvan F; Zhang, Yiwen; Shen, Ping; Kner, Peter

    2017-11-01

    Stochastic optical reconstruction microscopy (STORM) can achieve resolutions of better than 20nm imaging single fluorescently labeled cells. However, when optical aberrations induced by larger biological samples degrade the point spread function (PSF), the localization accuracy and number of localizations are both reduced, destroying the resolution of STORM. Adaptive optics (AO) can be used to correct the wavefront, restoring the high resolution of STORM. A challenge for AO-STORM microscopy is the development of robust optimization algorithms which can efficiently correct the wavefront from stochastic raw STORM images. Here we present the implementation of a particle swarm optimization (PSO) approach with a Fourier metric for real-time correction of wavefront aberrations during STORM acquisition. We apply our approach to imaging boutons 100 μm deep inside the central nervous system (CNS) of Drosophila melanogaster larvae achieving a resolution of 146 nm.

  15. An atmospheric turbulence and telescope simulator for the development of AOLI

    Science.gov (United States)

    Puga, Marta; López, Roberto; King, David; Oscoz, Alejandro

    2014-08-01

    AOLI, Adaptive Optics Lucky Imager, is the next generation of extremely high resolution instruments in the optical range, combining the two more promising techniques: Adaptive optics and lucky imaging. The possibility of reaching fainter objects at maximum resolution implies a better use of weak energy on each lucky image. AOLI aims to achieve this by using an adaptive optics system to reduce the dispersion that seeing causes on the spot and therefore increasing the number of optimal images to accumulate, maximizing the efficiency of the lucky imaging technique. The complexity of developments in hardware, control and software for in-site telescope tests claim for a system to simulate the telescope performance. This paper outlines the requirements and a concept/preliminary design for the William Herschel Telescope (WHT) and atmospheric turbulence simulator. The design consists of pupil resemble, a variable intensity point source, phase plates and a focal plane mask to assist in the alignment, diagnostics and calibration of AOLI wavefront sensor, AO loop and science detectors, as well as enabling stand-alone test operation of AOLI.

  16. Phenotypic diversity in autosomal-dominant cone-rod dystrophy elucidated by adaptive optics retinal imaging.

    Science.gov (United States)

    Song, Hongxin; Rossi, Ethan A; Stone, Edwin; Latchney, Lisa; Williams, David; Dubra, Alfredo; Chung, Mina

    2018-01-01

    Several genes causing autosomal-dominant cone-rod dystrophy (AD-CRD) have been identified. However, the mechanisms by which genetic mutations lead to cellular loss in human disease remain poorly understood. Here we combine genotyping with high-resolution adaptive optics retinal imaging to elucidate the retinal phenotype at a cellular level in patients with AD-CRD harbouring a defect in the GUCA1A gene. Nine affected members of a four-generation AD-CRD pedigree and three unaffected first-degree relatives underwent clinical examinations including visual acuity, fundus examination, Goldmann perimetry, spectral domain optical coherence tomography and electroretinography. Genome-wide scan followed by bidirectional sequencing was performed on all affected participants. High-resolution imaging using a custom adaptive optics scanning light ophthalmoscope (AOSLO) was performed for selected participants. Clinical evaluations showed a range of disease severity from normal fundus appearance in teenaged patients to pronounced macular atrophy in older patients. Molecular genetic testing showed a mutation in in GUCA1A segregating with disease. AOSLO imaging revealed that of the two teenage patients with mild disease, one had severe disruption of the photoreceptor mosaic while the other had a normal cone mosaic. AOSLO imaging demonstrated variability in the pattern of cone and rod cell loss between two teenage cousins with early AD-CRD, who had similar clinical features and had the identical disease-causing mutation in GUCA1A . This finding suggests that a mutation in GUCA1A does not lead to the same degree of AD-CRD in all patients. Modifying factors may mitigate or augment disease severity, leading to different retinal cellular phenotypes. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  17. Multimodal adaptive optics for depth-enhanced high-resolution ophthalmic imaging

    Science.gov (United States)

    Hammer, Daniel X.; Mujat, Mircea; Iftimia, Nicusor V.; Lue, Niyom; Ferguson, R. Daniel

    2010-02-01

    We developed a multimodal adaptive optics (AO) retinal imager for diagnosis of retinal diseases, including glaucoma, diabetic retinopathy (DR), age-related macular degeneration (AMD), and retinitis pigmentosa (RP). The development represents the first ever high performance AO system constructed that combines AO-corrected scanning laser ophthalmoscopy (SLO) and swept source Fourier domain optical coherence tomography (SSOCT) imaging modes in a single compact clinical prototype platform. The SSOCT channel operates at a wavelength of 1 μm for increased penetration and visualization of the choriocapillaris and choroid, sites of major disease activity for DR and wet AMD. The system is designed to operate on a broad clinical population with a dual deformable mirror (DM) configuration that allows simultaneous low- and high-order aberration correction. The system also includes a wide field line scanning ophthalmoscope (LSO) for initial screening, target identification, and global orientation; an integrated retinal tracker (RT) to stabilize the SLO, OCT, and LSO imaging fields in the presence of rotational eye motion; and a high-resolution LCD-based fixation target for presentation to the subject of stimuli and other visual cues. The system was tested in a limited number of human subjects without retinal disease for performance optimization and validation. The system was able to resolve and quantify cone photoreceptors across the macula to within ~0.5 deg (~100-150 μm) of the fovea, image and delineate ten retinal layers, and penetrate to resolve targets deep into the choroid. In addition to instrument hardware development, analysis algorithms were developed for efficient information extraction from clinical imaging sessions, with functionality including automated image registration, photoreceptor counting, strip and montage stitching, and segmentation. The system provides clinicians and researchers with high-resolution, high performance adaptive optics imaging to help

  18. Technical factors influencing cone packing density estimates in adaptive optics flood illuminated retinal images.

    Directory of Open Access Journals (Sweden)

    Marco Lombardo

    Full Text Available PURPOSE: To investigate the influence of various technical factors on the variation of cone packing density estimates in adaptive optics flood illuminated retinal images. METHODS: Adaptive optics images of the photoreceptor mosaic were obtained in fifteen healthy subjects. The cone density and Voronoi diagrams were assessed in sampling windows of 320×320 µm, 160×160 µm and 64×64 µm at 1.5 degree temporal and superior eccentricity from the preferred locus of fixation (PRL. The technical factors that have been analyzed included the sampling window size, the corrected retinal magnification factor (RMFcorr, the conversion from radial to linear distance from the PRL, the displacement between the PRL and foveal center and the manual checking of cone identification algorithm. Bland-Altman analysis was used to assess the agreement between cone density estimated within the different sampling window conditions. RESULTS: The cone density declined with decreasing sampling area and data between areas of different size showed low agreement. A high agreement was found between sampling areas of the same size when comparing density calculated with or without using individual RMFcorr. The agreement between cone density measured at radial and linear distances from the PRL and between data referred to the PRL or the foveal center was moderate. The percentage of Voronoi tiles with hexagonal packing arrangement was comparable between sampling areas of different size. The boundary effect, presence of any retinal vessels, and the manual selection of cones missed by the automated identification algorithm were identified as the factors influencing variation of cone packing arrangements in Voronoi diagrams. CONCLUSIONS: The sampling window size is the main technical factor that influences variation of cone density. Clear identification of each cone in the image and the use of a large buffer zone are necessary to minimize factors influencing variation of Voronoi

  19. Automated Photoreceptor Cell Identification on Nonconfocal Adaptive Optics Images Using Multiscale Circular Voting.

    Science.gov (United States)

    Liu, Jianfei; Jung, HaeWon; Dubra, Alfredo; Tam, Johnny

    2017-09-01

    Adaptive optics scanning light ophthalmoscopy (AOSLO) has enabled quantification of the photoreceptor mosaic in the living human eye using metrics such as cell density and average spacing. These rely on the identification of individual cells. Here, we demonstrate a novel approach for computer-aided identification of cone photoreceptors on nonconfocal split detection AOSLO images. Algorithms for identification of cone photoreceptors were developed, based on multiscale circular voting (MSCV) in combination with a priori knowledge that split detection images resemble Nomarski differential interference contrast images, in which dark and bright regions are present on the two sides of each cell. The proposed algorithm locates dark and bright region pairs, iteratively refining the identification across multiple scales. Identification accuracy was assessed in data from 10 subjects by comparing automated identifications with manual labeling, followed by computation of density and spacing metrics for comparison to histology and published data. There was good agreement between manual and automated cone identifications with overall recall, precision, and F1 score of 92.9%, 90.8%, and 91.8%, respectively. On average, computed density and spacing values using automated identification were within 10.7% and 11.2% of the expected histology values across eccentricities ranging from 0.5 to 6.2 mm. There was no statistically significant difference between MSCV-based and histology-based density measurements (P = 0.96, Kolmogorov-Smirnov 2-sample test). MSCV can accurately detect cone photoreceptors on split detection images across a range of eccentricities, enabling quick, objective estimation of photoreceptor mosaic metrics, which will be important for future clinical trials utilizing adaptive optics.

  20. Ground-Based Global Positioning System (GPS) Meteorology Integrated Precipitable Water Vapor (IPW)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Ground-Based Global Positioning System (GPS) Meteorology Integrated Precipitable Water Vapor (IPW) data set measures atmospheric water vapor using ground-based...

  1. Volumetric imaging of rod and cone photoreceptor structure with a combined adaptive optics-optical coherence tomography-scanning laser ophthalmoscope

    Science.gov (United States)

    Wells-Gray, Elaine M.; Choi, Stacey S.; Zawadzki, Robert J.; Finn, Susanna C.; Greiner, Cherry; Werner, John S.; Doble, Nathan

    2018-03-01

    We have designed and implemented a dual-mode adaptive optics (AO) imaging system that combines spectral domain optical coherence tomography (OCT) and scanning laser ophthalmoscopy (SLO) for in vivo imaging of the human retina. The system simultaneously acquires SLO frames and OCT B-scans at 60 Hz with an OCT volume acquisition time of 4.2 s. Transverse eye motion measured from the SLO is used to register the OCT B-scans to generate three-dimensional (3-D) volumes. Key optical design considerations include: minimizing system aberrations through the use of off-axis relay telescopes, conjugate pupil plane requirements, and the use of dichroic beam splitters to separate and recombine the OCT and SLO beams around the nonshared horizontal scanning mirrors. To demonstrate system performance, AO-OCT-SLO images and measurements are taken from three normal human subjects ranging in retinal eccentricity from the fovea out to 15-deg temporal and 20-deg superior. Also presented are en face OCT projections generated from the registered 3-D volumes. The ability to acquire high-resolution 3-D images of the human retina in the midperiphery and beyond has clinical importance in diseases, such as retinitis pigmentosa and cone-rod dystrophy.

  2. Seismic Imager Space Telescope

    Science.gov (United States)

    Sidick, Erkin; Coste, Keith; Cunningham, J.; Sievers,Michael W.; Agnes, Gregory S.; Polanco, Otto R.; Green, Joseph J.; Cameron, Bruce A.; Redding, David C.; Avouac, Jean Philippe; hide

    2012-01-01

    A concept has been developed for a geostationary seismic imager (GSI), a space telescope in geostationary orbit above the Pacific coast of the Americas that would provide movies of many large earthquakes occurring in the area from Southern Chile to Southern Alaska. The GSI movies would cover a field of view as long as 300 km, at a spatial resolution of 3 to 15 m and a temporal resolution of 1 to 2 Hz, which is sufficient for accurate measurement of surface displacements and photometric changes induced by seismic waves. Computer processing of the movie images would exploit these dynamic changes to accurately measure the rapidly evolving surface waves and surface ruptures as they happen. These measurements would provide key information to advance the understanding of the mechanisms governing earthquake ruptures, and the propagation and arrest of damaging seismic waves. GSI operational strategy is to react to earthquakes detected by ground seismometers, slewing the satellite to point at the epicenters of earthquakes above a certain magnitude. Some of these earthquakes will be foreshocks of larger earthquakes; these will be observed, as the spacecraft would have been pointed in the right direction. This strategy was tested against the historical record for the Pacific coast of the Americas, from 1973 until the present. Based on the seismicity recorded during this time period, a GSI mission with a lifetime of 10 years could have been in position to observe at least 13 (22 on average) earthquakes of magnitude larger than 6, and at least one (2 on average) earthquake of magnitude larger than 7. A GSI would provide data unprecedented in its extent and temporal and spatial resolution. It would provide this data for some of the world's most seismically active regions, and do so better and at a lower cost than could be done with ground-based instrumentation. A GSI would revolutionize the understanding of earthquake dynamics, perhaps leading ultimately to effective warning

  3. Observations of Anomalous Refraction with Co-housed Telescopes

    Science.gov (United States)

    Taylor, Malinda S.; McGraw, J. T.; Zimmer, P. C.

    2013-01-01

    Anomalous refraction is described as a low frequency, large angular scale motion of the entire image plane with respect to the celestial coordinate system as observed and defined by previous astrometric catalogs. These motions of typically several tenths of an arcsecond with timescales on the order of ten minutes are ubiquitous to drift-scan ground-based astrometric measurements regardless of location or telescopes used and have been attributed to meter scale slowly evolving coherent dynamical structures in the boundary-layer below 60 meters. The localized nature of the effect and general inconsistency of the motions seen by even closely spaced telescopes in individual domes has led to the hypothesis that the dome or other type of telescope housing may be responsible. This hypothesis is tested by observing anomalous refraction using two telescopes housed in a single roll-off roof observatory building with the expected outcome that the two telescopes will see correlated anomalous refraction induced motions.

  4. Reconstruction of Sky Illumination Domes from Ground-Based Panoramas

    Science.gov (United States)

    Coubard, F.; Lelégard, L.; Brédif, M.; Paparoditis, N.; Briottet, X.

    2012-07-01

    The knowledge of the sky illumination is important for radiometric corrections and for computer graphics applications such as relighting or augmented reality. We propose an approach to compute environment maps, representing the sky radiance, from a set of ground-based images acquired by a panoramic acquisition system, for instance a mobile-mapping system. These images can be affected by important radiometric artifacts, such as bloom or overexposure. A Perez radiance model is estimated with the blue sky pixels of the images, and used to compute additive corrections in order to reduce these radiometric artifacts. The sky pixels are then aggregated in an environment map, which still suffers from discontinuities on stitching edges. The influence of the quality of estimated sky radiance on the simulated light signal is measured quantitatively on a simple synthetic urban scene; in our case, the maximal error for the total sensor radiance is about 10%.

  5. Ground-based transmission line conductor motion sensor

    International Nuclear Information System (INIS)

    Jacobs, M.L.; Milano, U.

    1988-01-01

    A ground-based-conductor motion-sensing apparatus is provided for remotely sensing movement of electric-power transmission lines, particularly as would occur during the wind-induced condition known as galloping. The apparatus is comprised of a motion sensor and signal-generating means which are placed underneath a transmission line and will sense changes in the electric field around the line due to excessive line motion. The detector then signals a remote station when a conditioning of galloping is sensed. The apparatus of the present invention is advantageous over the line-mounted sensors of the prior art in that it is easier and less hazardous to install. The system can also be modified so that a signal will only be given when particular conditions, such as specific temperature range, large-amplitude line motion, or excessive duration of the line motion, are occurring

  6. RECONSTRUCTION OF SKY ILLUMINATION DOMES FROM GROUND-BASED PANORAMAS

    Directory of Open Access Journals (Sweden)

    F. Coubard

    2012-07-01

    Full Text Available The knowledge of the sky illumination is important for radiometric corrections and for computer graphics applications such as relighting or augmented reality. We propose an approach to compute environment maps, representing the sky radiance, from a set of ground-based images acquired by a panoramic acquisition system, for instance a mobile-mapping system. These images can be affected by important radiometric artifacts, such as bloom or overexposure. A Perez radiance model is estimated with the blue sky pixels of the images, and used to compute additive corrections in order to reduce these radiometric artifacts. The sky pixels are then aggregated in an environment map, which still suffers from discontinuities on stitching edges. The influence of the quality of estimated sky radiance on the simulated light signal is measured quantitatively on a simple synthetic urban scene; in our case, the maximal error for the total sensor radiance is about 10%.

  7. Satellite and Ground Based Monitoring of Aerosol Plumes

    International Nuclear Information System (INIS)

    Doyle, Martin; Dorling, Stephen

    2002-01-01

    Plumes of atmospheric aerosol have been studied using a range of satellite and ground-based techniques. The Sea-viewing WideField-of-view Sensor (SeaWiFS) has been used to observe plumes of sulphate aerosol and Saharan dust around the coast of the United Kingdom. Aerosol Optical Thickness (AOT) was retrieved from SeaWiFS for two events; a plume of Saharan dust transported over the United Kingdom from Western Africa and a period of elevated sulphate experienced over the Easternregion of the UK. Patterns of AOT are discussed and related to the synoptic and mesoscale weather conditions. Further observation of the sulphate aerosol event was undertaken using the Advanced Very High Resolution Radiometer instrument(AVHRR). Atmospheric back trajectories and weather conditions were studied in order to identify the meteorological conditions which led to this event. Co-located ground-based measurements of PM 10 and PM 2.5 were obtained for 4sites within the UK and PM 2.5/10 ratios were calculated in order to identify any unusually high or low ratios(indicating the dominant size fraction within the plume)during either of these events. Calculated percentiles ofPM 2.5/10 ratios during the 2 events examined show that these events were notable within the record, but were in noway unique or unusual in the context of a 3 yr monitoring record. Visibility measurements for both episodes have been examined and show that visibility degradation occurred during both the sulphate aerosol and Saharan dust episodes

  8. ASSOCIATIONS BETWEEN MACULAR EDEMA AND CIRCULATORY STATUS IN EYES WITH RETINAL VEIN OCCLUSION: An Adaptive Optics Scanning Laser Ophthalmoscopy Study.

    Science.gov (United States)

    Iida, Yuto; Muraoka, Yuki; Uji, Akihito; Ooto, Sotaro; Murakami, Tomoaki; Suzuma, Kiyoshi; Tsujikawa, Akitaka; Arichika, Shigeta; Takahashi, Ayako; Miwa, Yuko; Yoshimura, Nagahisa

    2017-10-01

    To investigate associations between parafoveal microcirculatory status and foveal pathomorphology in eyes with macular edema (ME) secondary to retinal vein occlusion (RVO). Ten consecutive patients (10 eyes) with acute retinal vein occlusion were enrolled, 9 eyes of which received intravitreal ranibizumab (IVR) injections. Foveal morphologic changes were examined via optical coherence tomography (OCT), and parafoveal circulatory status was assessed via adaptive optics scanning laser ophthalmoscopy (AO-SLO). The mean parafoveal aggregated erythrocyte velocity (AEV) measured by adaptive optics scanning laser ophthalmoscopy in eyes with retinal vein occlusion was 0.99 ± 0.43 mm/second at baseline, which was significantly lower than that of age-matched healthy subjects (1.41 ± 0.28 mm/second, P = 0.042). The longitudinal adaptive optics scanning laser ophthalmoscopy examinations of each patient showed that parafoveal AEV was strongly inversely correlated with optical coherence tomography-measured central foveal thickness (CFT) over the entire observation period. Using parafoveal AEV and central foveal thickness measurements obtained at the first and second examinations, we investigated associations between differences in parafoveal AEV and central foveal thickness, which were significantly and highly correlated (r = -0.84, P = 0.002). Using adaptive optics scanning laser ophthalmoscopy in eyes with retinal vein occlusion macular edema, we could quantitatively evaluate the parafoveal AEV. A reduction or an increase in parafoveal AEV may be a clinical marker for the resolution or development/progression of macular edema respectively.

  9. DYNAMISM OF DOT SUBRETINAL DRUSENOID DEPOSITS IN AGE-RELATED MACULAR DEGENERATION DEMONSTRATED WITH ADAPTIVE OPTICS IMAGING.

    Science.gov (United States)

    Zhang, Yuhua; Wang, Xiaolin; Godara, Pooja; Zhang, Tianjiao; Clark, Mark E; Witherspoon, C Douglas; Spaide, Richard F; Owsley, Cynthia; Curcio, Christine A

    2018-01-01

    To investigate the natural history of dot subretinal drusenoid deposits (SDD) in age-related macular degeneration, using high-resolution adaptive optics scanning laser ophthalmoscopy. Six eyes of four patients with intermediate age-related macular degeneration were studied at baseline and 1 year later. Individual dot SDD within the central 30° retina were examined with adaptive optics scanning laser ophthalmoscopy and optical coherence tomography. A total of 269 solitary SDD were identified at baseline. Over 12.25 ± 1.18 months, all 35 Stage 1 SDD progressed to advanced stages. Eighteen (60%) Stage 2 lesions progressed to Stage 3 and 12 (40%) remained at Stage 2. Of 204 Stage 3 SDD, 12 (6.4%) disappeared and the rest remained. Twelve new SDD were identified, including 6 (50%) at Stage 1, 2 (16.7%) at Stage 2, and 4 (33.3%) at Stage 3. The mean percentage of the retina affected by dot SDD, measured by the adaptive optics scanning laser ophthalmoscopy, increased in 5/6 eyes (from 2.31% to 5.08% in the most changed eye) and decreased slightly in 1/6 eye (from 10.67% to 10.54%). Dynamism, the absolute value of the areas affected by new and regressed lesions, ranged from 0.7% to 9.3%. Adaptive optics scanning laser ophthalmoscopy reveals that dot SDD, like drusen, are dynamic.

  10. H2-optimal control of an adaptive optics system : Part I, data-driven modeling of the wavefront disturbance

    NARCIS (Netherlands)

    Hinnen, K.; Verhaegen, M.; Doelman, N.

    2005-01-01

    Even though the wavefront distortion introduced by atmospheric turbulence is a dynamic process, its temporal evolution is usually neglected in the adaptive optics (AO) control design. Most AO control systems consider only the spatial correlation in a separate wavefront reconstruction step. By

  11. Architectural design of a ground-based deep-space optical reception antenna

    Science.gov (United States)

    Kerr, E. L.

    1989-01-01

    An architectural design of a ground-based antenna (telescope) for receiving optical communications from deep space is presented. Physical and optical parameters, and their effect on the performance and cost considerations, are described. The channel capacity of the antenna is 100 kbits/s from Saturn and 5 Mbits/s from Mars. A novel sunshade is designed to permit optical communication even when the deep-space laser source is as close to the sun as 12 deg. Inserts in the tubes of the sunshade permit operations at solar elongations as small as 6 or 3 deg. The Nd:YAG source laser and the Fraunhofer filter (a narrow-band predetection optical filter) are tuned to match the Doppler shifts of the source and background. A typical Saturn-to-earth data link can reduce its source power requirement from 8.2 W to 2 W of laser output by employing a Fraunhofer filter instead of a conventional multilayer dielectric filter.

  12. A ground-based near-infrared emission spectrum of the exoplanet HD 189733b.

    Science.gov (United States)

    Swain, Mark R; Deroo, Pieter; Griffith, Caitlin A; Tinetti, Giovanna; Thatte, Azam; Vasisht, Gautam; Chen, Pin; Bouwman, Jeroen; Crossfield, Ian J; Angerhausen, Daniel; Afonso, Cristina; Henning, Thomas

    2010-02-04

    Detection of molecules using infrared spectroscopy probes the conditions and compositions of exoplanet atmospheres. Water (H(2)O), methane (CH(4)), carbon dioxide (CO(2)), and carbon monoxide (CO) have been detected in two hot Jupiters. These previous results relied on space-based telescopes that do not provide spectroscopic capability in the 2.4-5.2 microm spectral region. Here we report ground-based observations of the dayside emission spectrum for HD 189733b between 2.0-2.4 microm and 3.1-4.1 microm, where we find a bright emission feature. Where overlap with space-based instruments exists, our results are in excellent agreement with previous measurements. A feature at approximately 3.25 microm is unexpected and difficult to explain with models that assume local thermodynamic equilibrium (LTE) conditions at the 1 bar to 1 x 10(-6) bar pressures typically sampled by infrared measurements. The most likely explanation for this feature is that it arises from non-LTE emission from CH(4), similar to what is seen in the atmospheres of planets in our own Solar System. These results suggest that non-LTE effects may need to be considered when interpreting measurements of strongly irradiated exoplanets.

  13. A ground-based optical transmission spectrum of WASP-6b

    International Nuclear Information System (INIS)

    Jordán, Andrés; Espinoza, Néstor; Rabus, Markus; Eyheramendy, Susana; Sing, David K.; Désert, Jean-Michel; Bakos, Gáspár Á.; Fortney, Jonathan J.; López-Morales, Mercedes; Szentgyorgyi, Andrew; Maxted, Pierre F. L.; Triaud, Amaury H. M. J.

    2013-01-01

    We present a ground-based optical transmission spectrum of the inflated sub-Jupiter-mass planet WASP-6b. The spectrum was measured in 20 spectral channels from 480 nm to 860 nm using a series of 91 spectra over a complete transit event. The observations were carried out using multi-object differential spectrophotometry with the Inamori-Magellan Areal Camera and Spectrograph on the Baade Telescope at Las Campanas Observatory. We model systematic effects on the observed light curves using principal component analysis on the comparison stars and allow for the presence of short and long memory correlation structure in our Monte Carlo Markov Chain analysis of the transit light curves for WASP-6. The measured transmission spectrum presents a general trend of decreasing apparent planetary size with wavelength and lacks evidence for broad spectral features of Na and K predicted by clear atmosphere models. The spectrum is consistent with that expected for scattering that is more efficient in the blue, as could be caused by hazes or condensates in the atmosphere of WASP-6b. WASP-6b therefore appears to be yet another massive exoplanet with evidence for a mostly featureless transmission spectrum, underscoring the importance that hazes and condensates can have in determining the transmission spectra of exoplanets.

  14. Suitability assessment of OPC UA as the backbone of ground-based observatory control systems

    International Nuclear Information System (INIS)

    Pessemier, W.; Raskin, G.; Van Winckel, H.; Deconinck, G.; Saey, P.

    2012-01-01

    A common requirement of modern observatory control systems is to allow interaction between various heterogeneous subsystems in a transparent way. However, the integration of off-the-shelf (OTS) industrial products - such as Programmable Logic Controllers (PLCs) and Supervisory Control And Data Acquisition (SCADA) software - has long been hampered by the lack of an adequate interfacing method. With the advent of the Unified Architecture (UA) version of OPC (Object Linking and Embedding for Process Control), the limitations of the original industry accepted interface are now lifted, and also much more functionality has been defined. In this paper the most important features of OPC UA are matched against the requirements of ground-based observatory control systems in general and in particular of the 1.2 m Mercator Telescope. We investigate the opportunities of the 'information modelling' idea behind OPC UA, which could allow an extensive standardization in the field of astronomical instrumentation, similar to the efforts emerging in several industry domains. Because OPC UA is designed for both horizontal and vertical integration of heterogeneous subsystems, we explore its capabilities to serve as the backbone of a dependable and scalable observatory control system, treating industrial components like PLCs no differently than custom software components. Performance measurements and tests with a sample of OTS OPC UA products are presented. (authors)

  15. Cone structure imaged with adaptive optics scanning laser ophthalmoscopy in eyes with nonneovascular age-related macular degeneration.

    Science.gov (United States)

    Zayit-Soudry, Shiri; Duncan, Jacque L; Syed, Reema; Menghini, Moreno; Roorda, Austin J

    2013-11-15

    To evaluate cone spacing using adaptive optics scanning laser ophthalmoscopy (AOSLO) in eyes with nonneovascular AMD, and to correlate progression of AOSLO-derived cone measures with standard measures of macular structure. Adaptive optics scanning laser ophthalmoscopy images were obtained over 12 to 21 months from seven patients with AMD including four eyes with geographic atrophy (GA) and four eyes with drusen. Adaptive optics scanning laser ophthalmoscopy images were overlaid with color, infrared, and autofluorescence fundus photographs and spectral domain optical coherence tomography (SD-OCT) images to allow direct correlation of cone parameters with macular structure. Cone spacing was measured for each visit in selected regions including areas over drusen (n = 29), at GA margins (n = 14), and regions without drusen or GA (n = 13) and compared with normal, age-similar values. Adaptive optics scanning laser ophthalmoscopy imaging revealed continuous cone mosaics up to the GA edge and overlying drusen, although reduced cone reflectivity often resulted in hyporeflective AOSLO signals at these locations. Baseline cone spacing measures were normal in 13/13 unaffected regions, 26/28 drusen regions, and 12/14 GA margin regions. Although standard clinical measures showed progression of GA in all study eyes, cone spacing remained within normal ranges in most drusen regions and all GA margin regions. Adaptive optics scanning laser ophthalmoscopy provides adequate resolution for quantitative measurement of cone spacing at the margin of GA and over drusen in eyes with AMD. Although cone spacing was often normal at baseline and remained normal over time, these regions showed focal areas of decreased cone reflectivity. These findings may provide insight into the pathophysiology of AMD progression. (ClinicalTrials.gov number, NCT00254605).

  16. Revisiting the Effectiveness of Large Optical Telescopes

    Directory of Open Access Journals (Sweden)

    V. V. Sychev

    2015-01-01

    distortions in the optical path, which includes, actually, a laser resonator, a channel for transportation of powerful laser radiation with beam-deflecting mirrors to form the telescope with a compound main mirror;- forming the efficiency criteria of adaptive optical systems;- multi-loop system for adaptive correction of distortions.The paper discusses test results of transporting powerful laser radiation in the horizontal pathway and shows visual appearance of forming optical system of the test complex bench.It is convincingly proved that the use of offered postulates in development or modernization of optical complexes ensures the minimum level of residual distortions and the overall performance of adaptive optics.The offered postulates of adaptive correction of radiation wave-front and a positive experience of their use in full-scale optical complexes will substantially reduce terms and costs in creating effective aids to watch remote objects, as well as to form and supply the energy to the space objects for its various use such as power supply, communication, fight against space debris, ensuring asteroid safety, etc.It is possible to draw a conclusion that the state of domestic optical science, its potential in creation of adaptive means to provide formation and transportation of powerful laser radiation, and results of theoretical and pilot studies, encourage a reasonable hope for future creating a multi-purpose highly effective large-size optic-electronic facility.

  17. GMTIFS: the adaptive optics beam steering mirror for the GMT integral-field spectrograph

    Science.gov (United States)

    Davies, J.; Bloxham, G.; Boz, R.; Bundy, D.; Espeland, B.; Fordham, B.; Hart, J.; Herrald, N.; Nielsen, J.; Sharp, R.; Vaccarella, A.; Vest, C.; Young, P. J.

    2016-07-01

    To achieve the high adaptive optics sky coverage necessary to allow the GMT Integral-Field Spectrograph (GMTIFS) to access key scientific targets, the on-instrument adaptive-optics wavefront-sensing (OIWFS) system must patrol the full 180 arcsecond diameter guide field passed to the instrument. The OIWFS uses a diffraction limited guide star as the fundamental pointing reference for the instrument. During an observation the offset between the science target and the guide star will change due to sources such as flexure, differential refraction and non-sidereal tracking rates. GMTIFS uses a beam steering mirror to set the initial offset between science target and guide star and also to correct for changes in offset. In order to reduce image motion from beam steering errors to those comparable to the AO system in the most stringent case, the beam steering mirror is set a requirement of less than 1 milliarcsecond RMS. This corresponds to a dynamic range for both actuators and sensors of better than 1/180,000. The GMTIFS beam steering mirror uses piezo-walk actuators and a combination of eddy current sensors and interferometric sensors to achieve this dynamic range and control. While the sensors are rated for cryogenic operation, the actuators are not. We report on the results of prototype testing of single actuators, with the sensors, on the bench and in a cryogenic environment. Specific failures of the system are explained and suspected reasons for them. A modified test jig is used to investigate the option of heating the actuator and we report the improved results. In addition to individual component testing, we built and tested a complete beam steering mirror assembly. Testing was conducted with a point source microscope, however controlling environmental conditions to less than 1 micron was challenging. The assembly testing investigated acquisition accuracy and if there was any un-sensed hysteresis in the system. Finally we present the revised beam steering mirror

  18. Statistical learning methods for aero-optic wavefront prediction and adaptive-optic latency compensation

    Science.gov (United States)

    Burns, W. Robert

    Since the early 1970's research in airborne laser systems has been the subject of continued interest. Airborne laser applications depend on being able to propagate a near diffraction-limited laser beam from an airborne platform. Turbulent air flowing over the aircraft produces density fluctuations through which the beam must propagate. Because the index of refraction of the air is directly related to the density, the turbulent flow imposes aberrations on the beam passing through it. This problem is referred to as Aero-Optics. Aero-Optics is recognized as a major technical issue that needs to be solved before airborne optical systems can become routinely fielded. This dissertation research specifically addresses an approach to mitigating the deleterious effects imposed on an airborne optical system by aero-optics. A promising technology is adaptive optics: a feedback control method that measures optical aberrations and imprints the conjugate aberrations onto an outgoing beam. The challenge is that it is a computationally-difficult problem, since aero-optic disturbances are on the order of kilohertz for practical applications. High control loop frequencies and high disturbance frequencies mean that adaptive-optic systems are sensitive to latency in sensors, mirrors, amplifiers, and computation. These latencies build up to result in a dramatic reduction in the system's effective bandwidth. This work presents two variations of an algorithm that uses model reduction and data-driven predictors to estimate the evolution of measured wavefronts over a short temporal horizon and thus compensate for feedback latency. The efficacy of the two methods are compared in this research, and evaluated against similar algorithms that have been previously developed. The best version achieved over 75% disturbance rejection in simulation in the most optically active flow region in the wake of a turret, considerably outperforming conventional approaches. The algorithm is shown to be

  19. Pre-processing, registration and selection of adaptive optics corrected retinal images.

    Science.gov (United States)

    Ramaswamy, Gomathy; Devaney, Nicholas

    2013-07-01

    In this paper, the aim is to demonstrate enhanced processing of sequences of fundus images obtained using a commercial AO flood illumination system. The purpose of the work is to (1) correct for uneven illumination at the retina (2) automatically select the best quality images and (3) precisely register the best images. Adaptive optics corrected retinal images are pre-processed to correct uneven illumination using different methods; subtracting or dividing by the average filtered image, homomorphic filtering and a wavelet based approach. These images are evaluated to measure the image quality using various parameters, including sharpness, variance, power spectrum kurtosis and contrast. We have carried out the registration in two stages; a coarse stage using cross-correlation followed by fine registration using two approaches; parabolic interpolation on the peak of the cross-correlation and maximum-likelihood estimation. The angle of rotation of the images is measured using a combination of peak tracking and Procrustes transformation. We have found that a wavelet approach (Daubechies 4 wavelet at 6th level decomposition) provides good illumination correction with clear improvement in image sharpness and contrast. The assessment of image quality using a 'Designer metric' works well when compared to visual evaluation, although it is highly correlated with other metrics. In image registration, sub-pixel translation measured using parabolic interpolation on the peak of the cross-correlation function and maximum-likelihood estimation are found to give very similar results (RMS difference 0.047 pixels). We have confirmed that correcting rotation of the images provides a significant improvement, especially at the edges of the image. We observed that selecting the better quality frames (e.g. best 75% images) for image registration gives improved resolution, at the expense of poorer signal-to-noise. The sharpness map of the registered and de-rotated images shows increased

  20. Develop techniques for ion implantation of PLZT [lead-lanthanum-zirconate-titanate] for adaptive optics

    International Nuclear Information System (INIS)

    Batishko, C.R.; Brimhall, J.L.; Pawlewicz, W.T.; Stahl, K.A.; Toburen, L.H.

    1987-09-01

    Research was conducted at Pacific Northwest Laboratory to develop high photosensitivity adaptive optical elements utilizing ion implanted lanthanum-doped lead-zirconate-titanate (PLZT). One centimeter square samples were prepared by implanting ferroelectric and anti-ferroelectric PLZT with a variety of species or combinations of species. These included Ne, O, Ni, Ne/Cr, Ne/Al, Ne/Ni, Ne/O, and Ni/O, at a variety of energies and fluences. An indium-tin oxide (ITO) electrode coating was designed to give a balance of high conductivity and optical transmission at near uv to near ir wavelengths. Samples were characterized for photosensitivity; implanted layer thickness, index of refraction, and density; electrode (ITO) conductivity; and in some cases, residual stress curvature. Thin film anti-ferroelectric PLZT was deposited in a preliminary experiment. The structure was amorphous with x-ray diffraction showing the beginnings of a structure at substrate temperatures of approximately 550 0 C. This report summarizes the research and provides a sampling of the data taken during the report period

  1. eXtragalactic astronomy: the X-games of adaptive optics

    Science.gov (United States)

    Lai, Olivier

    2000-07-01

    Observing active nuclei, Ultra-Luminous Infrared Galaxies, starburst and merging galaxies, is both a challenge and a requirement for adaptive optics. It is a requirement, because models needed to explain the high infrared flux and the physics of these monsters need constraints that come, in part, from the fine details gleaned on high angular resolution images, and it is a challenge because, being distant, these objects are usually faint in apparent visual magnitude, meaning that the wavefront sensors have to operate in a photon starved regime. Many observations have been controversial in the past, and it is always difficult to tell an artifact such as astigmatism from an inner bar. The importance of observing the point spread function is therefore even more crucial than on bright objects, as PSF reconstruction methods 'a la Veran' break down when the photon noise dominates the statistics of the wave front, or when locking the loop on extended objects. Yet, while some cases have been controversial, some very clear and profound results have been obtained in the extragalactic domain, such as the detection of host galaxy to quasars and star formation studies. It turns out that the fundamental prerequisite to such success stories is a stable, well understood and well calibrated PSF.

  2. Investigation on adaptive optics performance from propagation channel characterization with the small optical transponder

    Science.gov (United States)

    Petit, Cyril; Védrenne, Nicolas; Velluet, Marie Therese; Michau, Vincent; Artaud, Geraldine; Samain, Etienne; Toyoshima, Morio

    2016-11-01

    In order to address the high throughput requested for both downlink and uplink satellite to ground laser links, adaptive optics (AO) has become a key technology. While maturing, application of this technology for satellite to ground telecommunication, however, faces difficulties, such as higher bandwidth and optimal operation for a wide variety of atmospheric conditions (daytime and nighttime) with potentially low elevations that might severely affect wavefront sensing because of scintillation. To address these specificities, an accurate understanding of the origin of the perturbations is required, as well as operational validation of AO on real laser links. We report here on a low Earth orbiting (LEO) microsatellite to ground downlink with AO correction. We discuss propagation channel characterization based on Shack-Hartmann wavefront sensor (WFS) measurements. Fine modeling of the propagation channel is proposed based on multi-Gaussian model of turbulence profile. This model is then used to estimate the AO performance and validate the experimental results. While AO performance is limited by the experimental set-up, it proves to comply with expected performance and further interesting information on propagation channel is extracted. These results shall help dimensioning and operating AO systems for LEO to ground downlinks.

  3. Stroke saturation on a MEMS deformable mirror for woofer-tweeter adaptive optics.

    Science.gov (United States)

    Morzinski, Katie; Macintosh, Bruce; Gavel, Donald; Dillon, Daren

    2009-03-30

    High-contrast imaging of extrasolar planet candidates around a main-sequence star has recently been realized from the ground using current adaptive optics (AO) systems. Advancing such observations will be a task for the Gemini Planet Imager, an upcoming "extreme" AO instrument. High-order "tweeter" and low-order "woofer" deformable mirrors (DMs) will supply a >90%-Strehl correction, a specialized coronagraph will suppress the stellar flux, and any planets can then be imaged in the "dark hole" region. Residual wavefront error scatters light into the DM-controlled dark hole, making planets difficult to image above the noise. It is crucial in this regard that the high-density tweeter, a micro-electrical mechanical systems (MEMS) DM, have sufficient stroke to deform to the shapes required by atmospheric turbulence. Laboratory experiments were conducted to determine the rate and circumstance of saturation, i.e. stroke insufficiency. A 1024-actuator 1.5-microm-stroke MEMS device was empirically tested with software Kolmogorov-turbulence screens of r(0) =10-15 cm. The MEMS when solitary suffered saturation approximately 4% of the time. Simulating a woofer DM with approximately 5-10 actuators across a 5-m primary mitigated MEMS saturation occurrence to a fraction of a percent. While no adjacent actuators were saturated at opposing positions, mid-to-high-spatial-frequency stroke did saturate more frequently than expected, implying that correlations through the influence functions are important. Analytical models underpredict the stroke requirements, so empirical studies are important.

  4. Performance analysis of an adaptive optics system for free-space optics communication through atmospheric turbulence.

    Science.gov (United States)

    Wang, Yukun; Xu, Huanyu; Li, Dayu; Wang, Rui; Jin, Chengbin; Yin, Xianghui; Gao, Shijie; Mu, Quanquan; Xuan, Li; Cao, Zhaoliang

    2018-01-18

    The performance of free-space optics communication (FSOC) is greatly degraded by atmospheric turbulence. Adaptive optics (AO) is an effective method for attenuating the influence. In this paper, the influence of the spatial and temporal characteristics of turbulence on the performance of AO in a FSOC system is investigated. Based on the Greenwood frequency (GF) and the ratio of receiver aperture diameter to atmospheric coherent length (D/r 0 ), the relationship between FSOC performance (CE) and AO parameters (corrected Zernike modes number and bandwidth) is derived for the first time. Then, simulations and experiments are conducted to analyze the influence of AO parameters on FSOC performance under different GF and D/r 0 . The simulation and experimental results show that, for common turbulence conditions, the number of corrected Zernike modes can be fixed at 35 and the bandwidth of the AO system should be larger than the GF. Measurements of the bit error rate (BER) for moderate turbulence conditions (D/r 0  = 10, f G  = 60 Hz) show that when the bandwidth is two times that of GF, the average BER is decreased by two orders of magnitude compared with f G /f 3dB  = 1. These results and conclusions can provide important guidance in the design of an AO system for FSOC.

  5. Design of a Compact, Bimorph Deformable Mirror-Based Adaptive Optics Scanning Laser Ophthalmoscope.

    Science.gov (United States)

    He, Yi; Deng, Guohua; Wei, Ling; Li, Xiqi; Yang, Jinsheng; Shi, Guohua; Zhang, Yudong

    2016-01-01

    We have designed, constructed and tested an adaptive optics scanning laser ophthalmoscope (AOSLO) using a bimorph mirror. The simulated AOSLO system achieves diffraction-limited criterion through all the raster scanning fields (6.4 mm pupil, 3° × 3° on pupil). The bimorph mirror-based AOSLO corrected ocular aberrations in model eyes to less than 0.1 μm RMS wavefront error with a closed-loop bandwidth of a few Hz. Facilitated with a bimorph mirror at a stroke of ±15 μm with 35 elements and an aperture of 20 mm, the new AOSLO system has a size only half that of the first-generation AOSLO system. The significant increase in stroke allows for large ocular aberrations such as defocus in the range of ±600° and astigmatism in the range of ±200°, thereby fully exploiting the AO correcting capabilities for diseased human eyes in the future.

  6. Use of focus measure operators for characterization of flood illumination adaptive optics ophthalmoscopy image quality.

    Science.gov (United States)

    Alonso-Caneiro, David; Sampson, Danuta M; Chew, Avenell L; Collins, Michael J; Chen, Fred K

    2018-02-01

    Adaptive optics flood illumination ophthalmoscopy (AO-FIO) allows imaging of the cone photoreceptor in the living human retina. However, clinical interpretation of the AO-FIO image remains challenging due to suboptimal quality arising from residual uncorrected wavefront aberrations and rapid eye motion. An objective method of assessing image quality is necessary to determine whether an AO-FIO image is suitable for grading and diagnostic purpose. In this work, we explore the use of focus measure operators as a surrogate measure of AO-FIO image quality. A set of operators are tested on data sets acquired at different focal depths and different retinal locations from healthy volunteers. Our results demonstrate differences in focus measure operator performance in quantifying AO-FIO image quality. Further, we discuss the potential application of the selected focus operators in (i) selection of the best quality AO-FIO image from a series of images collected at the same retinal location and (ii) assessment of longitudinal changes in the diseased retina. Focus function could be incorporated into real-time AO-FIO image processing and provide an initial automated quality assessment during image acquisition or reading center grading.

  7. Experimental demonstration of single-mode fiber coupling over relatively strong turbulence with adaptive optics.

    Science.gov (United States)

    Chen, Mo; Liu, Chao; Xian, Hao

    2015-10-10

    High-speed free-space optical communication systems using fiber-optic components can greatly improve the stability of the system and simplify the structure. However, propagation through atmospheric turbulence degrades the spatial coherence of the signal beam and limits the single-mode fiber (SMF) coupling efficiency. In this paper, we analyze the influence of the atmospheric turbulence on the SMF coupling efficiency over various turbulences. The results show that the SMF coupling efficiency drops from 81% without phase distortion to 10% when phase root mean square value equals 0.3λ. The simulations of SMF coupling with adaptive optics (AO) indicate that it is inevitable to compensate the high-order aberrations for SMF coupling over relatively strong turbulence. The SMF coupling efficiency experiments, using an AO system with a 137-element deformable mirror and a Hartmann-Shack wavefront sensor, obtain average coupling efficiency increasing from 1.3% in open loop to 46.1% in closed loop under a relatively strong turbulence, D/r0=15.1.

  8. Axial length and cone density as assessed with adaptive optics in myopia

    Directory of Open Access Journals (Sweden)

    Supriya Dabir

    2015-01-01

    Full Text Available Aim: To assess the variations in cone mosaic in myopia and its correlation with axial length (AL. Subjects and Methods: Twenty-five healthy myopic volunteers underwent assessment of photoreceptors using adaptive optics retinal camera at 2° and 3° from the foveal center in four quadrants superior, inferior, temporal and nasal. Data was analyzed using SPSS version 17 (IBM. Multivariable regression analysis was conducted to study the relation between cone density and AL, quadrant around the fovea and eccentricity from the fovea. Results: The mean cone density was significantly lower as the eccentricity increased from 2° from the fovea to 3° (18,560 ± 5455-16,404 ± 4494/mm 2 respectively. There was also a statistically significant difference between four quadrants around the fovea. The correlation of cone density and spacing with AL showed that there was a significant inverse relation of AL with the cone density. Conclusion: In myopic patients with good visual acuity cone density around the fovea depends on the quadrant, distance from the fovea as well as the AL. The strength of the relation of AL with cone density depends on the quadrant and distance.

  9. Testing for a slope-based decoupling algorithm in a woofer-tweeter adaptive optics system.

    Science.gov (United States)

    Cheng, Tao; Liu, WenJin; Yang, KangJian; He, Xin; Yang, Ping; Xu, Bing

    2018-05-01

    It is well known that using two or more deformable mirrors (DMs) can improve the compensation ability of an adaptive optics (AO) system. However, to keep the stability of an AO system, the correlation between the multiple DMs must be suppressed during the correction. In this paper, we proposed a slope-based decoupling algorithm to simultaneous control the multiple DMs. In order to examine the validity and practicality of this algorithm, a typical woofer-tweeter (W-T) AO system was set up. For the W-T system, a theory model was simulated and the results indicated in theory that the algorithm we presented can selectively make woofer and tweeter correct different spatial frequency aberration and suppress the cross coupling between the dual DMs. At the same time, the experimental results for the W-T AO system were consistent with the results of the simulation, which demonstrated in practice that this algorithm is practical for the AO system with dual DMs.

  10. PENETRATING THE HOMUNCULUS-NEAR-INFRARED ADAPTIVE OPTICS IMAGES OF ETA CARINAE

    International Nuclear Information System (INIS)

    Artigau, Etienne; Martin, John C.; Humphreys, Roberta M.; Davidson, Kris; Chesneau, Olivier; Smith, Nathan

    2011-01-01

    Near-infrared adaptive optics imaging with the Near-Infrared Coronagraphic Imager (NICI) and NaCO reveal what appears to be a three-winged or lobed pattern, the 'butterfly nebula', outlined by bright Brγ and H 2 emission and light scattered by dust. In contrast, the [Fe II] emission does not follow the outline of the wings, but shows an extended bipolar distribution which is tracing the Little Homunculus ejected in η Car's second or lesser eruption in the 1890s. Proper motions measured from the combined NICI and NaCO images together with radial velocities show that the knots and filaments that define the bright rims of the butterfly were ejected at two different epochs corresponding approximately to the great eruption and the second eruption. Most of the material is spatially distributed 10 0 -20 0 above and below the equatorial plane apparently behind the Little Homunculus and the larger SE lobe. The equatorial debris either has a wide opening angle or the clumps were ejected at different latitudes relative to the plane. The butterfly is not a coherent physical structure or equatorial torus but spatially separate clumps and filaments ejected at different times, and now 2000-4000 AU from the star.

  11. Optical design considerations when imaging the fundus with an adaptive optics correction

    Science.gov (United States)

    Wang, Weiwei; Campbell, Melanie C. W.; Kisilak, Marsha L.; Boyd, Shelley R.

    2008-06-01

    Adaptive Optics (AO) technology has been used in confocal scanning laser ophthalmoscopes (CSLO) which are analogous to confocal scanning laser microscopes (CSLM) with advantages of real-time imaging, increased image contrast, a resistance to image degradation by scattered light, and improved optical sectioning. With AO, the instrumenteye system can have low enough aberrations for the optical quality to be limited primarily by diffraction. Diffraction-limited, high resolution imaging would be beneficial in the understanding and early detection of eye diseases such as diabetic retinopathy. However, to maintain diffraction-limited imaging, sufficient pixel sampling over the field of view is required, resulting in the need for increased data acquisition rates for larger fields. Imaging over smaller fields may be a disadvantage with clinical subjects because of fixation instability and the need to examine larger areas of the retina. Reduction in field size also reduces the amount of light sampled per pixel, increasing photon noise. For these reasons, we considered an instrument design with a larger field of view. When choosing scanners to be used in an AOCSLO, the ideal frame rate should be above the flicker fusion rate for the human observer and would also allow user control of targets projected onto the retina. In our AOCSLO design, we have studied the tradeoffs between field size, frame rate and factors affecting resolution. We will outline optical approaches to overcome some of these tradeoffs and still allow detection of the earliest changes in the fundus in diabetic retinopathy.

  12. Modeling a space-based quantum link that includes an adaptive optics system

    Science.gov (United States)

    Duchane, Alexander W.; Hodson, Douglas D.; Mailloux, Logan O.

    2017-10-01

    Quantum Key Distribution uses optical pulses to generate shared random bit strings between two locations. If a high percentage of the optical pulses are comprised of single photons, then the statistical nature of light and information theory can be used to generate secure shared random bit strings which can then be converted to keys for encryption systems. When these keys are incorporated along with symmetric encryption techniques such as a one-time pad, then this method of key generation and encryption is resistant to future advances in quantum computing which will significantly degrade the effectiveness of current asymmetric key sharing techniques. This research first reviews the transition of Quantum Key Distribution free-space experiments from the laboratory environment to field experiments, and finally, ongoing space experiments. Next, a propagation model for an optical pulse from low-earth orbit to ground and the effects of turbulence on the transmitted optical pulse is described. An Adaptive Optics system is modeled to correct for the aberrations caused by the atmosphere. The long-term point spread function of the completed low-earth orbit to ground optical system is explored in the results section. Finally, the impact of this optical system and its point spread function on an overall quantum key distribution system as well as the future work necessary to show this impact is described.

  13. Implantable collamer lens and femtosecond laser for myopia: comparison using an adaptive optics visual simulator

    Directory of Open Access Journals (Sweden)

    Cari Pérez-Vives

    2014-04-01

    Full Text Available Purpose: To compare optical and visual quality of implantable collamer lens (ICL implantation and femtosecond laser in situ keratomileusis (F-LASIK for myopia. Methods: The CRX1 adaptive optics visual simulator (Imagine Eyes, Orsay, France was used to simulate the wavefront aberration pattern after the two surgical procedures for -3-diopter (D and -6-D myopia. Visual acuity at different contrasts and contrast sensitivities at 10, 20, and 25 cycles/degree (cpd were measured for 3-mm and 5-mm pupils. The modulation transfer function (MTF and point spread function (PSF were calculated for 5-mm pupils. Results: F-LASIK MTF was worse than ICL MTF, which was close to diffraction-limited MTF. ICL cases showed less spread out of PSF than F-LASIK cases. ICL cases showed better visual acuity values than F-LASIK cases for all pupils, contrasts, and myopic treatments (p0.05. For -6-D myopia, however, statistically significant differences in contrast sensitivities were found for both pupils for all evaluated spatial frequencies (p<0.05. Contrast sensitivities were better after ICL implantation than after F-LASIK. Conclusions: ICL implantation and F-LASIK provide good optical and visual quality, although the former provides better outcomes of MTF, PSF, visual acuity, and contrast sensitivity, especially for cases with large refractive errors and pupil sizes. These outcomes are related to the F-LASIK producing larger high-order aberrations.

  14. Simulated human eye retina adaptive optics imaging system based on a liquid crystal on silicon device

    International Nuclear Information System (INIS)

    Jiang Baoguang; Cao Zhaoliang; Mu Quanquan; Hu Lifa; Li Chao; Xuan Li

    2008-01-01

    In order to obtain a clear image of the retina of model eye, an adaptive optics system used to correct the wave-front error is introduced in this paper. The spatial light modulator that we use here is a liquid crystal on a silicon device instead of a conversional deformable mirror. A paper with carbon granule is used to simulate the retina of human eye. The pupil size of the model eye is adjustable (3-7 mm). A Shack–Hartman wave-front sensor is used to detect the wave-front aberration. With this construction, a value of peak-to-valley is achieved to be 0.086 λ, where λ is wavelength. The modulation transfer functions before and after corrections are compared. And the resolution of this system after correction (691p/m) is very close to the dirraction limit resolution. The carbon granule on the white paper which has a size of 4.7 μm is seen clearly. The size of the retina cell is between 4 and 10 mu;m. So this system has an ability to image the human eye's retina. (classical areas of phenomenology)

  15. Rapid and highly integrated FPGA-based Shack-Hartmann wavefront sensor for adaptive optics system

    Science.gov (United States)

    Chen, Yi-Pin; Chang, Chia-Yuan; Chen, Shean-Jen

    2018-02-01

    In this study, a field programmable gate array (FPGA)-based Shack-Hartmann wavefront sensor (SHWS) programmed on LabVIEW can be highly integrated into customized applications such as adaptive optics system (AOS) for performing real-time wavefront measurement. Further, a Camera Link frame grabber embedded with FPGA is adopted to enhance the sensor speed reacting to variation considering its advantage of the highest data transmission bandwidth. Instead of waiting for a frame image to be captured by the FPGA, the Shack-Hartmann algorithm are implemented in parallel processing blocks design and let the image data transmission synchronize with the wavefront reconstruction. On the other hand, we design a mechanism to control the deformable mirror in the same FPGA and verify the Shack-Hartmann sensor speed by controlling the frequency of the deformable mirror dynamic surface deformation. Currently, this FPGAbead SHWS design can achieve a 266 Hz cyclic speed limited by the camera frame rate as well as leaves 40% logic slices for additionally flexible design.

  16. Toward Adaptive X-Ray Telescopes

    Science.gov (United States)

    O'Dell, Stephen L.; Atkins, Carolyn; Button, Tim W.; Cotroneo, Vincenzo; Davis, William N.; Doel, Peer; Feldman, Charlotte H.; Freeman, Mark D.; Gubarev, Mikhail V.; Kolodziejczak, Jeffrey J.; hide

    2011-01-01

    Future x-ray observatories will require high-resolution (less than 1 inch) optics with very-large-aperture (greater than 25 square meter) areas. Even with the next generation of heavy-lift launch vehicles, launch-mass constraints and aperture-area requirements will limit the surface areal density of the grazing-incidence mirrors to about 1 kilogram per square meter or less. Achieving sub-arcsecond x-ray imaging with such lightweight mirrors will require excellent mirror surfaces, precise and stable alignment, and exceptional stiffness or deformation compensation. Attaining and maintaining alignment and figure control will likely involve adaptive (in-space adjustable) x-ray optics. In contrast with infrared and visible astronomy, adaptive optics for x-ray astronomy is in its infancy. In the middle of the past decade, two efforts began to advance technologies for adaptive x-ray telescopes: The Generation-X (Gen-X) concept studies in the United States, and the Smart X-ray Optics (SXO) Basic Technology project in the United Kingdom. This paper discusses relevant technological issues and summarizes progress toward adaptive x-ray telescopes.

  17. Bridge Testing With Ground-Based Interferometric Radar: Experimental Results

    International Nuclear Information System (INIS)

    Chiara, P.; Morelli, A.

    2010-01-01

    The research of innovative non-contact techniques aimed at the vibration measurement of civil engineering structures (also for damage detection and structural health monitoring) is continuously directed to the optimization of measures and methods. Ground-Based Radar Interferometry (GBRI) represents the more recent technique available for static and dynamic control of structures and ground movements.Dynamic testing of bridges and buildings in operational conditions are currently performed: (a) to assess the conformity of the structure to the project design at the end of construction; (b) to identify the modal parameters (i.e. natural frequencies, mode shapes and damping ratios) and to check the variation of any modal parameters over the years; (c) to evaluate the amplitude of the structural response to special load conditions (i.e. strong winds, earthquakes, heavy railway or roadway loads). If such tests are carried out by using a non-contact technique (like GBRI), the classical issues of contact sensors (like accelerometers) are easily overtaken.This paper presents and discusses the results of various tests carried out on full-scale bridges by using a Stepped Frequency-Continuous Wave radar system.

  18. Bridge Testing With Ground-Based Interferometric Radar: Experimental Results

    Science.gov (United States)

    Chiara, P.; Morelli, A.

    2010-05-01

    The research of innovative non-contact techniques aimed at the vibration measurement of civil engineering structures (also for damage detection and structural health monitoring) is continuously directed to the optimization of measures and methods. Ground-Based Radar Interferometry (GBRI) represents the more recent technique available for static and dynamic control of structures and ground movements. Dynamic testing of bridges and buildings in operational conditions are currently performed: (a) to assess the conformity of the structure to the project design at the end of construction; (b) to identify the modal parameters (i.e. natural frequencies, mode shapes and damping ratios) and to check the variation of any modal parameters over the years; (c) to evaluate the amplitude of the structural response to special load conditions (i.e. strong winds, earthquakes, heavy railway or roadway loads). If such tests are carried out by using a non-contact technique (like GBRI), the classical issues of contact sensors (like accelerometers) are easily overtaken. This paper presents and discusses the results of various tests carried out on full-scale bridges by using a Stepped Frequency-Continuous Wave radar system.

  19. Observing Tsunamis in the Ionosphere Using Ground Based GPS Measurements

    Science.gov (United States)

    Galvan, D. A.; Komjathy, A.; Song, Y. Tony; Stephens, P.; Hickey, M. P.; Foster, J.

    2011-01-01

    Ground-based Global Positioning System (GPS) measurements of ionospheric Total Electron Content (TEC) show variations consistent with atmospheric internal gravity waves caused by ocean tsunamis following recent seismic events, including the Tohoku tsunami of March 11, 2011. We observe fluctuations correlated in time, space, and wave properties with this tsunami in TEC estimates processed using JPL's Global Ionospheric Mapping Software. These TEC estimates were band-pass filtered to remove ionospheric TEC variations with periods outside the typical range of internal gravity waves caused by tsunamis. Observable variations in TEC appear correlated with the Tohoku tsunami near the epicenter, at Hawaii, and near the west coast of North America. Disturbance magnitudes are 1-10% of the background TEC value. Observations near the epicenter are compared to estimates of expected tsunami-driven TEC variations produced by Embry Riddle Aeronautical University's Spectral Full Wave Model, an atmosphere-ionosphere coupling model, and found to be in good agreement. The potential exists to apply these detection techniques to real-time GPS TEC data, providing estimates of tsunami speed and amplitude that may be useful for future early warning systems.

  20. A design for a ground-based data management system

    Science.gov (United States)

    Lambird, Barbara A.; Lavine, David

    1988-01-01

    An initial design for a ground-based data management system which includes intelligent data abstraction and cataloging is described. The large quantity of data on some current and future NASA missions leads to significant problems in providing scientists with quick access to relevant data. Human screening of data for potential relevance to a particular study is time-consuming and costly. Intelligent databases can provide automatic screening when given relevent scientific parameters and constraints. The data management system would provide, at a minimum, information of availability of the range of data, the type available, specific time periods covered together with data quality information, and related sources of data. The system would inform the user about the primary types of screening, analysis, and methods of presentation available to the user. The system would then aid the user with performing the desired tasks, in such a way that the user need only specify the scientific parameters and objectives, and not worry about specific details for running a particular program. The design contains modules for data abstraction, catalog plan abstraction, a user-friendly interface, and expert systems for data handling, data evaluation, and application analysis. The emphasis is on developing general facilities for data representation, description, analysis, and presentation that will be easily used by scientists directly, thus bypassing the knowledge acquisition bottleneck. Expert system technology is used for many different aspects of the data management system, including the direct user interface, the interface to the data analysis routines, and the analysis of instrument status.

  1. Use of ground-based wind profiles in mesoscale forecasting

    Science.gov (United States)

    Schlatter, Thomas W.

    1985-01-01

    A brief review is presented of recent uses of ground-based wind profile data in mesoscale forecasting. Some of the applications are in real time, and some are after the fact. Not all of the work mentioned here has been published yet, but references are given wherever possible. As Gage and Balsley (1978) point out, sensitive Doppler radars have been used to examine tropospheric wind profiles since the 1970's. It was not until the early 1980's, however, that the potential contribution of these instruments to operational forecasting and numerical weather prediction became apparent. Profiler winds and radiosonde winds compare favorably, usually within a few m/s in speed and 10 degrees in direction (see Hogg et al., 1983), but the obvious advantage of the profiler is its frequent (hourly or more often) sampling of the same volume. The rawinsonde balloon is launched only twice a day and drifts with the wind. In this paper, I will: (1) mention two operational uses of data from a wind profiling system developed jointly by the Wave Propagation and Aeronomy Laboratories of NOAA; (2) describe a number of displays of these same data on a workstation for mesoscale forecasting developed by the Program for Regional Observing and Forecasting Services (PROFS); and (3) explain some interesting diagnostic calculations performed by meteorologists of the Wave Propagation Laboratory.

  2. Ground-based observations coordinated with Viking satellite measurements

    International Nuclear Information System (INIS)

    Opgenoorth, H.J.; Kirkwood, S.

    1989-01-01

    The instrumentation and the orbit of the Viking satellite made this first Swedish satellite mission ideally suited for coordinated observations with the dense network of ground-based stations in northern Scandinavia. Several arrays of complementing instruments such as magnetometers, all-sky cameras, riometers and doppler radars monitored on a routine basis the ionosphere under the magnetospheric region passed by Viking. For a large number of orbits the Viking passages close to Scandinavia were covered by the operation of specially designed programmes at the European incoherent-scatter facility (EISCAT). First results of coordinated observations on the ground and aboard Viking have shed new light on the most spectacular feature of substorm expansion, the westward-travelling surge. The end of a substorm and the associated decay of a westward-travelling surge have been analysed. EISCAT measurements of high spatial and temporal resolution indicate that the conductivities and electric fields associated with westward-travelling surges are not represented correctly by the existing models. (author)

  3. Tissue Engineering of Cartilage on Ground-Based Facilities

    Science.gov (United States)

    Aleshcheva, Ganna; Bauer, Johann; Hemmersbach, Ruth; Egli, Marcel; Wehland, Markus; Grimm, Daniela

    2016-06-01

    Investigations under simulated microgravity offer the opportunity for a better understanding of the influence of altered gravity on cells and the scaffold-free three-dimensional (3D) tissue formation. To investigate the short-term influence, human chondrocytes were cultivated for 2 h, 4 h, 16 h, and 24 h on a 2D Fast-Rotating Clinostat (FRC) in DMEM/F-12 medium supplemented with 10 % FCS. We detected holes in the vimentin network, perinuclear accumulations of vimentin after 2 h, and changes in the chondrocytes shape visualised by F-actin staining after 4 h of FRC-exposure. Scaffold-free cultivation of chondrocytes for 7 d on the Random Positioning Machine (RPM), the FRC and the Rotating Wall Vessel (RWV) resulted in spheroid formation, a phenomenon already known from spaceflight experiments with chondrocytes (MIR Space Station) and thyroid cancer cells (SimBox/Shenzhou-8 space mission). The experiments enabled by the ESA-CORA-GBF programme gave us an optimal opportunity to study gravity-related cellular processes, validate ground-based facilities for our chosen cell system, and prepare long-term experiments under real microgravity conditions in space

  4. Ground-based detection of G star superflares with NGTS

    Science.gov (United States)

    Jackman, James A. G.; Wheatley, Peter J.; Pugh, Chloe E.; Gänsicke, Boris T.; Gillen, Edward; Broomhall, Anne-Marie; Armstrong, David J.; Burleigh, Matthew R.; Chaushev, Alexander; Eigmüller, Philipp; Erikson, Anders; Goad, Michael R.; Grange, Andrew; Günther, Maximilian N.; Jenkins, James S.; McCormac, James; Raynard, Liam; Thompson, Andrew P. G.; Udry, Stéphane; Walker, Simon; Watson, Christopher A.; West, Richard G.

    2018-04-01

    We present high cadence detections of two superflares from a bright G8 star (V = 11.56) with the Next Generation Transit Survey (NGTS). We improve upon previous superflare detections by resolving the flare rise and peak, allowing us to fit a solar flare inspired model without the need for arbitrary break points between rise and decay. Our data also enables us to identify substructure in the flares. From changing starspot modulation in the NGTS data we detect a stellar rotation period of 59 hours, along with evidence for differential rotation. We combine this rotation period with the observed ROSAT X-ray flux to determine that the star's X-ray activity is saturated. We calculate the flare bolometric energies as 5.4^{+0.8}_{-0.7}× 10^{34}and 2.6^{+0.4}_{-0.3}× 10^{34}erg and compare our detections with G star superflares detected in the Kepler survey. We find our main flare to be one of the largest amplitude superflares detected from a bright G star. With energies more than 100 times greater than the Carrington event, our flare detections demonstrate the role that ground-based instruments such as NGTS can have in assessing the habitability of Earth-like exoplanets, particularly in the era of PLATO.

  5. New advanced netted ground based and topside radio diagnostics for Space Weather Program

    Science.gov (United States)

    Rothkaehl, Hanna; Krankowski, Andrzej; Morawski, Marek; Atamaniuk, Barbara; Zakharenkova, Irina; Cherniak, Iurii

    2014-05-01

    To give a more detailed and complete understanding of physical plasma processes that govern the solar-terrestrial space, and to develop qualitative and quantitative models of the magnetosphere-ionosphere-thermosphere coupling, it is necessary to design and build the next generation of instruments for space diagnostics and monitoring. Novel ground- based wide-area sensor networks, such as the LOFAR (Low Frequency Array) radar facility, comprising wide band, and vector-sensing radio receivers and multi-spacecraft plasma diagnostics should help solve outstanding problems of space physics and describe long-term environmental changes. The LOw Frequency ARray - LOFAR - is a new fully digital radio telescope designed for frequencies between 30 MHz and 240 MHz located in Europe. The three new LOFAR stations will be installed until summer 2015 in Poland. The LOFAR facilities in Poland will be distributed among three sites: Lazy (East of Krakow), Borowiec near Poznan and Baldy near Olsztyn. All they will be connected via PIONIER dedicated links to Poznan. Each site will host one LOFAR station (96 high-band+96 low-band antennas). They will most time work as a part of European network, however, when less charged, they can operate as a national network The new digital radio frequency analyzer (RFA) on board the low-orbiting RELEC satellite was designed to monitor and investigate the ionospheric plasma properties. This two-point ground-based and topside ionosphere-located space plasma diagnostic can be a useful new tool for monitoring and diagnosing turbulent plasma properties. The RFA on board the RELEC satellite is the first in a series of experiments which is planned to be launched into the near-Earth environment. In order to improve and validate the large scales and small scales ionospheric structures we will used the GPS observations collected at IGS/EPN network employed to reconstruct diurnal variations of TEC using all satellite passes over individual GPS stations and the

  6. Monitoring Hydraulic Fracturing Using Ground-Based Controlled Source Electromagnetics

    Science.gov (United States)

    Hickey, M. S.; Trevino, S., III; Everett, M. E.

    2017-12-01

    Hydraulic fracturing allows hydrocarbon production in low permeability formations. Imaging the distribution of fluid used to create a hydraulic fracture can aid in the characterization of fracture properties such as extent of plume penetration as well as fracture azimuth and symmetry. This could contribute to improving the efficiency of an operation, for example, in helping to determine ideal well spacing or the need to refracture a zone. A ground-based controlled-source electromagnetics (CSEM) technique is ideal for imaging the fluid due to the change in field caused by the difference in the conductive properties of the fluid when compared to the background. With advances in high signal to noise recording equipment, coupled with a high-power, broadband transmitter we can show hydraulic fracture extent and azimuth with minimal processing. A 3D finite element code is used to model the complete well casing along with the layered subsurface. This forward model is used to optimize the survey design and isolate the band of frequencies with the best response. In the field, the results of the modeling are also used to create a custom pseudorandom numeric (PRN) code to control the frequencies transmitted through a grounded dipole source. The receivers record the surface voltage across two grounded dipoles, one parallel and one perpendicular to the transmitter. The data are presented as the displays of amplitude ratios across several frequencies with the associated spatial information. In this presentation, we show multiple field results in multiple basins in the United States along with the CSEM theory used to create the survey designs.

  7. OBSERVATIONAL SELECTION EFFECTS WITH GROUND-BASED GRAVITATIONAL WAVE DETECTORS

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Hsin-Yu; Holz, Daniel E. [University of Chicago, Chicago, Illinois 60637 (United States); Essick, Reed; Vitale, Salvatore; Katsavounidis, Erik [LIGO, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)

    2017-01-20

    Ground-based interferometers are not perfect all-sky instruments, and it is important to account for their behavior when considering the distribution of detected events. In particular, the LIGO detectors are most sensitive to sources above North America and the Indian Ocean, and as the Earth rotates, the sensitive regions are swept across the sky. However, because the detectors do not acquire data uniformly over time, there is a net bias on detectable sources’ right ascensions. Both LIGO detectors preferentially collect data during their local night; it is more than twice as likely to be local midnight than noon when both detectors are operating. We discuss these selection effects and how they impact LIGO’s observations and electromagnetic (EM) follow-up. Beyond galactic foregrounds associated with seasonal variations, we find that equatorial observatories can access over 80% of the localization probability, while mid-latitudes will access closer to 70%. Facilities located near the two LIGO sites can observe sources closer to their zenith than their analogs in the south, but the average observation will still be no closer than 44° from zenith. We also find that observatories in Africa or the South Atlantic will wait systematically longer before they can begin observing compared to the rest of the world; though, there is a preference for longitudes near the LIGOs. These effects, along with knowledge of the LIGO antenna pattern, can inform EM follow-up activities and optimization, including the possibility of directing observations even before gravitational-wave events occur.

  8. OBSERVATIONAL SELECTION EFFECTS WITH GROUND-BASED GRAVITATIONAL WAVE DETECTORS

    International Nuclear Information System (INIS)

    Chen, Hsin-Yu; Holz, Daniel E.; Essick, Reed; Vitale, Salvatore; Katsavounidis, Erik

    2017-01-01

    Ground-based interferometers are not perfect all-sky instruments, and it is important to account for their behavior when considering the distribution of detected events. In particular, the LIGO detectors are most sensitive to sources above North America and the Indian Ocean, and as the Earth rotates, the sensitive regions are swept across the sky. However, because the detectors do not acquire data uniformly over time, there is a net bias on detectable sources’ right ascensions. Both LIGO detectors preferentially collect data during their local night; it is more than twice as likely to be local midnight than noon when both detectors are operating. We discuss these selection effects and how they impact LIGO’s observations and electromagnetic (EM) follow-up. Beyond galactic foregrounds associated with seasonal variations, we find that equatorial observatories can access over 80% of the localization probability, while mid-latitudes will access closer to 70%. Facilities located near the two LIGO sites can observe sources closer to their zenith than their analogs in the south, but the average observation will still be no closer than 44° from zenith. We also find that observatories in Africa or the South Atlantic will wait systematically longer before they can begin observing compared to the rest of the world; though, there is a preference for longitudes near the LIGOs. These effects, along with knowledge of the LIGO antenna pattern, can inform EM follow-up activities and optimization, including the possibility of directing observations even before gravitational-wave events occur.

  9. Space- and Ground-based Coronal Spectro-Polarimetry

    Science.gov (United States)

    Fineschi, Silvano; Bemporad, Alessandro; Rybak, Jan; Capobianco, Gerardo

    This presentation gives an overview of the near-future perspectives of ultraviolet and visible-light spectro-polarimetric instrumentation for probing coronal magnetism from space-based and ground-based observatories. Spectro-polarimetric imaging of coronal emission-lines in the visible-light wavelength-band provides an important diagnostics tool of the coronal magnetism. The interpretation in terms of Hanle and Zeeman effect of the line-polarization in forbidden emission-lines yields information on the direction and strength of the coronal magnetic field. As study case, this presentation will describe the Torino Coronal Magnetograph (CorMag) for the spectro-polarimetric observation of the FeXIV, 530.3 nm, forbidden emission-line. CorMag - consisting of a Liquid Crystal (LC) Lyot filter and a LC linear polarimeter - has been recently installed on the Lomnicky Peak Observatory 20cm Zeiss coronagraph. The preliminary results from CorMag will be presented. The linear polarization by resonance scattering of coronal permitted line-emission in the ultraviolet (UV)can be modified by magnetic fields through the Hanle effect. Space-based UV spectro-polarimeters would provide an additional tool for the disgnostics of coronal magnetism. As a case study of space-borne UV spectro-polarimeters, this presentation will describe the future upgrade of the Sounding-rocket Coronagraphic Experiment (SCORE) to include the capability of imaging polarimetry of the HI Lyman-alpha, 121.6 nm. SCORE is a multi-wavelength imager for the emission-lines, HeII 30.4 nm and HI 121.6 nm, and visible-light broad-band emission of the polarized K-corona. SCORE has flown successfully in 2009. This presentation will describe how in future re-flights SCORE could observe the expected Hanle effect in corona with a HI Lyman-alpha polarimeter.

  10. Telescope Array Control System Based on Wireless Touch Screen Platform

    Science.gov (United States)

    Fu, Xia-nan; Huang, Lei; Wei, Jian-yan

    2017-10-01

    Ground-based Wide Angle Cameras (GMAC) are the ground-based observational facility for the SVOM (Space Variable Object Monitor) astronomical satellite of Sino-French cooperation, and Mini-GWAC is the pathfinder and supplement of GWAC. In the context of the Mini-GWAC telescope array, this paper introduces the design and implementation of a kind of telescope array control system based on the wireless touch screen platform. We describe the development and implementation of the system in detail in terms of control system principle, system hardware structure, software design, experiment, and test etc. The system uses a touch-control PC which is based on the Windows CE system as the upper computer, while the wireless transceiver module and PLC (Programmable Logic Controller) are taken as the system kernel. It has the advantages of low cost, reliable data transmission, and simple operation. And the control system has been applied to the Mini-GWAC successfully.

  11. IMAGING WITH MULTIMODAL ADAPTIVE-OPTICS OPTICAL COHERENCE TOMOGRAPHY IN MULTIPLE EVANESCENT WHITE DOT SYNDROME: THE STRUCTURE AND FUNCTIONAL RELATIONSHIP.

    Science.gov (United States)

    Labriola, Leanne T; Legarreta, Andrew D; Legarreta, John E; Nadler, Zach; Gallagher, Denise; Hammer, Daniel X; Ferguson, R Daniel; Iftimia, Nicusor; Wollstein, Gadi; Schuman, Joel S

    2016-01-01

    To elucidate the location of pathological changes in multiple evanescent white dot syndrome (MEWDS) with the use of multimodal adaptive optics (AO) imaging. A 5-year observational case study of a 24-year-old female with recurrent MEWDS. Full examination included history, Snellen chart visual acuity, pupil assessment, intraocular pressures, slit lamp evaluation, dilated fundoscopic exam, imaging with Fourier-domain optical coherence tomography (FD-OCT), blue-light fundus autofluorescence (FAF), fundus photography, fluorescein angiography, and adaptive-optics optical coherence tomography. Three distinct acute episodes of MEWDS occurred during the period of follow-up. Fourier-domain optical coherence tomography and adaptive-optics imaging showed disturbance in the photoreceptor outer segments (PR OS) in the posterior pole with each flare. The degree of disturbance at the photoreceptor level corresponded to size and extent of the visual field changes. All findings were transient with delineation of the photoreceptor recovery from the outer edges of the lesion inward. Hyperautofluorescence was seen during acute flares. Increase in choroidal thickness did occur with each active flare but resolved. Although changes in the choroid and RPE can be observed in MEWDS, Fourier-domain optical coherence tomography, and multimodal adaptive optics imaging localized the visually significant changes seen in this disease at the level of the photoreceptors. These transient retinal changes specifically occur at the level of the inner segment ellipsoid and OS/RPE line. En face optical coherence tomography imaging provides a detailed, yet noninvasive method for following the convalescence of MEWDS and provides insight into the structural and functional relationship of this transient inflammatory retinal disease.

  12. Fast optimal wavefront reconstruction for multi-conjugate adaptive optics using the Fourier domain preconditioned conjugate gradient algorithm.

    Science.gov (United States)

    Vogel, Curtis R; Yang, Qiang

    2006-08-21

    We present two different implementations of the Fourier domain preconditioned conjugate gradient algorithm (FD-PCG) to efficiently solve the large structured linear systems that arise in optimal volume turbulence estimation, or tomography, for multi-conjugate adaptive optics (MCAO). We describe how to deal with several critical technical issues, including the cone coordinate transformation problem and sensor subaperture grid spacing. We also extend the FD-PCG approach to handle the deformable mirror fitting problem for MCAO.

  13. Foundation Investigation for Ground Based Radar Project-Kwajalein Island, Marshall Islands

    Science.gov (United States)

    1990-04-01

    iL_ COPY MISCELLANEOUS PAPER GL-90-5 i iFOUNDATION INVESTIGATION FOR GROUND BASED RADAR PROJECT--KWAJALEIN ISLAND, MARSHALL ISLANDS by Donald E...C!assification) Foundatioa Investigation for Ground Based Radar Project -- Kwajalein Island, Marshall Islands 12. PERSONAL AUTHOR(S) Yule, Donald E...investigation for the Ground Based Radar Project -- Kwajalein Island, Marshall Islands , are presented.- eophysical tests comprised of surface refrac- tion

  14. Digital adaptive optics for achieving space-invariant lateral resolution in optical coherence tomography

    International Nuclear Information System (INIS)

    Kumar, A.

    2015-01-01

    Optical coherence tomography (OCT) is a non-invasive optical interferometric imaging technique that provides reflectivity profiles of the sample structures with high axial resolution. The high axial resolution is due to the use of low coherence (broad-band) light source. However, the lateral resolution in OCT depends on the numerical aperture (NA) of the focusing/imaging optics and it is affected by defocus and other higher order optical aberrations induced by the imperfect optics, or by the sample itself.Hardware based adaptive optics (AO) has been successfully combined with OCT to achieve high lateral resolution in combination with high axial resolution provided by OCT. AO, which conventionally uses Shack-Hartmann wavefront sensor (SH WFS) and deformable mirror for wavefront sensing and correction respectively, can compensate for optical aberration and can enable diffraction-limited resolution in OCT. Visualization of cone photoreceptors in 3-D has been successfully demonstrated using AO-OCT. However, OCT being an interferometric imaging technique can provide access to phase information.This phase information can be exploited by digital adaptive optics (DAO) techniques to correct optical aberration in the post-processing step to obtain diffraction-limited space invariant lateral resolution throughout the image volume. Thus, the need for hardware based AO can be eliminated, which in turn can reduce the system complexity and economical cost. In the first paper of this thesis, a novel DAO method based on sub-aperture correlation is presented which is the digital equivalent of SH WFS. The advantage of this method is that it is non-iterative in nature and it does not require a priori knowledge of any system parameters such wavelength, focal length, NA or detector pixel size. For experimental proof, a FF SS OCT system was used and the sample consisted of resolution test target and a plastic plate that introduced random optical aberration. Experimental results show that

  15. Gender equity issues in astronomy: facts, fiction, and what the adaptive optics community can do to close the gap

    Science.gov (United States)

    D'Orgeville, Céline; Rigaut, François; Maddison, Sarah; Masciadri, Elena

    2014-07-01

    Gender equality in modern societies is a topic that never fails to raise passion and controversy, in spite of the large body of research material and studies currently available to inform the general public and scientists alike. This paper brings the gender equity and equality discussion on the Adaptive Optics community doorstep. Its aim is threefold: (1) Raising awareness about the gender gap in science and astronomy in general, and in Adaptive Optics in particular; (2) Providing a snapshot of real and/or perceived causes for the gender gap existing in science and engineering; and (3) Presenting a range of practical solutions which have been or are being implemented at various institutions in order to bridge this gap and increase female participation at all levels of the scientific enterprise. Actual data will be presented to support aim (1), including existing gender data in science, engineering and astronomy, as well as original data specific to the Adaptive Optics community to be gathered in time for presentation at this conference. (2) will explore the often complex causes converging to explain gender equity issues that are deeply rooted in our male-dominated culture, including: conscious and unconscious gender biases in perceptions and attitudes, worklife balance, n-body problem, fewer numbers of female leaders and role models, etc. Finally, (3) will offer examples of conscious and pro-active gender equity measures which are helping to bring the female to male ratio closer to its desirable 50/50 target in science and astronomy.

  16. Adaptive optics parallel spectral domain optical coherence tomography for imaging the living retina

    Science.gov (United States)

    Zhang, Yan; Rha, Jungtae; Jonnal, Ravi S.; Miller, Donald T.

    2005-06-01

    Although optical coherence tomography (OCT) can axially resolve and detect reflections from individual cells, there are no reports of imaging cells in the living human retina using OCT. To supplement the axial resolution and sensitivity of OCT with the necessary lateral resolution and speed, we developed a novel spectral domain OCT (SD-OCT) camera based on a free-space parallel illumination architecture and equipped with adaptive optics (AO). Conventional flood illumination, also with AO, was integrated into the camera and provided confirmation of the focus position in the retina with an accuracy of ±10.3 μm. Short bursts of narrow B-scans (100x560 μm) of the living retina were subsequently acquired at 500 Hz during dynamic compensation (up to 14 Hz) that successfully corrected the most significant ocular aberrations across a dilated 6 mm pupil. Camera sensitivity (up to 94 dB) was sufficient for observing reflections from essentially all neural layers of the retina. Signal-to-noise of the detected reflection from the photoreceptor layer was highly sensitive to the level of cular aberrations and defocus with changes of 11.4 and 13.1 dB (single pass) observed when the ocular aberrations (astigmatism, 3rd order and higher) were corrected and when the focus was shifted by 200 μm (0.54 diopters) in the retina, respectively. The 3D resolution of the B-scans (3.0x3.0x5.7 μm) is the highest reported to date in the living human eye and was sufficient to observe the interface between the inner and outer segments of individual photoreceptor cells, resolved in both lateral and axial dimensions. However, high contrast speckle, which is intrinsic to OCT, was present throughout the AO parallel SD-OCT B-scans and obstructed correlating retinal reflections to cell-sized retinal structures.

  17. Increasing the field of view of adaptive optics scanning laser ophthalmoscopy.

    Science.gov (United States)

    Laslandes, Marie; Salas, Matthias; Hitzenberger, Christoph K; Pircher, Michael

    2017-11-01

    An adaptive optics scanning laser ophthalmoscope (AO-SLO) set-up with two deformable mirrors (DM) is presented. It allows high resolution imaging of the retina on a 4°×4° field of view (FoV), considering a 7 mm pupil diameter at the entrance of the eye. Imaging on such a FoV, which is larger compared to classical AO-SLO instruments, is allowed by the use of the two DMs. The first DM is located in a plane that is conjugated to the pupil of the eye and corrects for aberrations that are constant in the FoV. The second DM is conjugated to a plane that is located ∼0.7 mm anterior to the retina. This DM corrects for anisoplanatism effects within the FoV. The control of the DMs is performed by combining the classical AO technique, using a Shack-Hartmann wave-front sensor, and sensorless AO, which uses a criterion characterizing the image quality. The retinas of four healthy volunteers were imaged in-vivo with the developed instrument. In order to assess the performance of the set-up and to demonstrate the benefits of the 2 DM configuration, the acquired images were compared with images taken in conventional conditions, on a smaller FoV and with only one DM. Moreover, an image of a larger patch of the retina was obtained by stitching of 9 images acquired with a 4°×4° FoV, resulting in a total FoV of 10°×10°. Finally, different retinal layers were imaged by shifting the focal plane.

  18. Errors in the estimation method for the rejection of vibrations in adaptive optics systems

    Science.gov (United States)

    Kania, Dariusz

    2017-06-01

    In recent years the problem of the mechanical vibrations impact in adaptive optics (AO) systems has been renewed. These signals are damped sinusoidal signals and have deleterious effect on the system. One of software solutions to reject the vibrations is an adaptive method called AVC (Adaptive Vibration Cancellation) where the procedure has three steps: estimation of perturbation parameters, estimation of the frequency response of the plant, update the reference signal to reject/minimalize the vibration. In the first step a very important problem is the estimation method. A very accurate and fast (below 10 ms) estimation method of these three parameters has been presented in several publications in recent years. The method is based on using the spectrum interpolation and MSD time windows and it can be used to estimate multifrequency signals. In this paper the estimation method is used in the AVC method to increase the system performance. There are several parameters that affect the accuracy of obtained results, e.g. CiR - number of signal periods in a measurement window, N - number of samples in the FFT procedure, H - time window order, SNR, b - number of ADC bits, γ - damping ratio of the tested signal. Systematic errors increase when N, CiR, H decrease and when γ increases. The value for systematic error is approximately 10^-10 Hz/Hz for N = 2048 and CiR = 0.1. This paper presents equations that can used to estimate maximum systematic errors for given values of H, CiR and N before the start of the estimation process.

  19. Removing damped sinusoidal vibrations in adaptive optics systems using a DFT-based estimation method

    Science.gov (United States)

    Kania, Dariusz

    2017-06-01

    The problem of a vibrations rejection in adaptive optics systems is still present in publications. These undesirable signals emerge because of shaking the system structure, the tracking process, etc., and they usually are damped sinusoidal signals. There are some mechanical solutions to reduce the signals but they are not very effective. One of software solutions are very popular adaptive methods. An AVC (Adaptive Vibration Cancellation) method has been presented and developed in recent years. The method is based on the estimation of three vibrations parameters and values of frequency, amplitude and phase are essential to produce and adjust a proper signal to reduce or eliminate vibrations signals. This paper presents a fast (below 10 ms) and accurate estimation method of frequency, amplitude and phase of a multifrequency signal that can be used in the AVC method to increase the AO system performance. The method accuracy depends on several parameters: CiR - number of signal periods in a measurement window, N - number of samples in the FFT procedure, H - time window order, SNR, THD, b - number of A/D converter bits in a real time system, γ - the damping ratio of the tested signal, φ - the phase of the tested signal. Systematic errors increase when N, CiR, H decrease and when γ increases. The value of systematic error for γ = 0.1%, CiR = 1.1 and N = 32 is approximately 10^-4 Hz/Hz. This paper focuses on systematic errors of and effect of the signal phase and values of γ on the results.

  20. Nonlinear adaptive optics: aberration correction in three photon fluorescence microscopy for mouse brain imaging

    Science.gov (United States)

    Sinefeld, David; Paudel, Hari P.; Wang, Tianyu; Wang, Mengran; Ouzounov, Dimitre G.; Bifano, Thomas G.; Xu, Chris

    2017-02-01

    Multiphoton fluorescence microscopy is a well-established technique for deep-tissue imaging with subcellular resolution. Three-photon microscopy (3PM) when combined with long wavelength excitation was shown to allow deeper imaging than two-photon microscopy (2PM) in biological tissues, such as mouse brain, because out-of-focus background light can be further reduced due to the higher order nonlinear excitation. As was demonstrated in 2PM systems, imaging depth and resolution can be improved by aberration correction using adaptive optics (AO) techniques which are based on shaping the scanning beam using a spatial light modulator (SLM). In this way, it is possible to compensate for tissue low order aberration and to some extent, to compensate for tissue scattering. Here, we present a 3PM AO microscopy system for brain imaging. Soliton self-frequency shift is used to create a femtosecond source at 1675 nm and a microelectromechanical (MEMS) SLM serves as the wavefront shaping device. We perturb the 1020 segment SLM using a modified nonlinear version of three-point phase shifting interferometry. The nonlinearity of the fluorescence signal used for feedback ensures that the signal is increasing when the spot size decreases, allowing compensation of phase errors in an iterative optimization process without direct phase measurement. We compare the performance for different orders of nonlinear feedback, showing an exponential growth in signal improvement as the nonlinear order increases. We demonstrate the impact of the method by applying the 3PM AO system for in-vivo mouse brain imaging, showing improvement in signal at 1-mm depth inside the brain.

  1. Computational adaptive optics for broadband optical interferometric tomography of biological tissue.

    Science.gov (United States)

    Adie, Steven G; Graf, Benedikt W; Ahmad, Adeel; Carney, P Scott; Boppart, Stephen A

    2012-05-08

    Aberrations in optical microscopy reduce image resolution and contrast, and can limit imaging depth when focusing into biological samples. Static correction of aberrations may be achieved through appropriate lens design, but this approach does not offer the flexibility of simultaneously correcting aberrations for all imaging depths, nor the adaptability to correct for sample-specific aberrations for high-quality tomographic optical imaging. Incorporation of adaptive optics (AO) methods have demonstrated considerable improvement in optical image contrast and resolution in noninterferometric microscopy techniques, as well as in optical coherence tomography. Here we present a method to correct aberrations in a tomogram rather than the beam of a broadband optical interferometry system. Based on Fourier optics principles, we correct aberrations of a virtual pupil using Zernike polynomials. When used in conjunction with the computed imaging method interferometric synthetic aperture microscopy, this computational AO enables object reconstruction (within the single scattering limit) with ideal focal-plane resolution at all depths. Tomographic reconstructions of tissue phantoms containing subresolution titanium-dioxide particles and of ex vivo rat lung tissue demonstrate aberration correction in datasets acquired with a highly astigmatic illumination beam. These results also demonstrate that imaging with an aberrated astigmatic beam provides the advantage of a more uniform depth-dependent signal compared to imaging with a standard gaussian beam. With further work, computational AO could enable the replacement of complicated and expensive optical hardware components with algorithms implemented on a standard desktop computer, making high-resolution 3D interferometric tomography accessible to a wider group of users and nonspecialists.

  2. Dual-conjugate adaptive optics for wide-field high-resolution retinal imaging.

    Science.gov (United States)

    Thaung, Jörgen; Knutsson, Per; Popovic, Zoran; Owner-Petersen, Mette

    2009-03-16

    We present analysis and preliminary laboratory testing of a real-time dual-conjugate adaptive optics (DCAO) instrument for ophthalmology that will enable wide-field high resolution imaging of the retina in vivo. The setup comprises five retinal guide stars (GS) and two deformable mirrors (DM), one conjugate to the pupil and one conjugate to a plane close to the retina. The DCAO instrument has a closed-loop wavefront sensing wavelength of 834 nm and an imaging wavelength of 575 nm. It incorporates an array of collimator lenses to spatially filter the light from all guide stars using one adjustable iris, and images the Hartmann patterns of multiple reference sources on a single detector. Zemax simulations were performed at 834 nm and 575 nm with the Navarro 99 and the Liou- Brennan eye models. Two correction alternatives were evaluated; conventional single conjugate AO (SCAO, using one GS and a pupil DM) and DCAO (using multiple GS and two DM). Zemax simulations at 575 nm based on the Navarro 99 eye model show that the diameter of the corrected field of view for diffraction-limited imaging (Strehl >or= 0.8) increases from 1.5 deg with SCAO to 6.5 deg using DCAO. The increase for the less stringent condition of a wavefront error of 1 rad or less (Strehl >or= 0.37) is from 3 deg with SCAO to approximately 7.4 deg using DCAO. Corresponding results for the Liou-Brennan eye model are 3.1 deg (SCAO) and 8.2 deg (DCAO) for Strehl >or= 0.8, and 4.8 deg (SCAO) and 9.6 deg (DCAO) for Strehl >or= 0.37. Potential gain in corrected field of view with DCAO is confirmed both by laboratory experiments on a model eye and by preliminary in vivo imaging of a human eye. (c) 2009 Optical Society of America

  3. Multivariable Parametric Cost Model for Ground Optical Telescope Assembly

    Science.gov (United States)

    Stahl, H. Philip; Rowell, Ginger Holmes; Reese, Gayle; Byberg, Alicia

    2005-01-01

    A parametric cost model for ground-based telescopes is developed using multivariable statistical analysis of both engineering and performance parameters. While diameter continues to be the dominant cost driver, diffraction-limited wavelength is found to be a secondary driver. Other parameters such as radius of curvature are examined. The model includes an explicit factor for primary mirror segmentation and/or duplication (i.e., multi-telescope phased-array systems). Additionally, single variable models Based on aperture diameter are derived.

  4. Multivariable Parametric Cost Model for Ground Optical: Telescope Assembly

    Science.gov (United States)

    Stahl, H. Philip; Rowell, Ginger Holmes; Reese, Gayle; Byberg, Alicia

    2004-01-01

    A parametric cost model for ground-based telescopes is developed using multi-variable statistical analysis of both engineering and performance parameters. While diameter continues to be the dominant cost driver, diffraction limited wavelength is found to be a secondary driver. Other parameters such as radius of curvature were examined. The model includes an explicit factor for primary mirror segmentation and/or duplication (i.e. multi-telescope phased-array systems). Additionally, single variable models based on aperture diameter were derived.

  5. Techniques For Near-Earth Interplanetary Matter Detection And Characterisation From Optical Ground-Based Observatories

    Science.gov (United States)

    Ocaña, Francisco

    2017-05-01

    PhD Thesis defended the 5th June 2017. Universidad Complutense de Madrid.This dissertation undertakes the research of the interplanetary matter near the Earth using two different observational approaches.The first one is based on the detection of the sunlight reflected by the bodies. The detection and characterisation of these nearby population require networks of medium-sized telescopes to survey and track them. We design a robotic system (the TBT telescopes) for the European Space Agency as a prototype for a future network. The first unit is already installed in Spain and we present the results of the commissioning. Additionally we evaluate the expected performance of such an instrument using a simulation with a synthetic population. We consider that the system designed is a powerful instrument for nearby asteroid discovery and tracking. It is based on commercial components, and therefore ready for a scalable implementation in a global network.Meanwhile the bodies smaller than asteroids are observed using the atmosphere as a detector. When these particles collide with the atmospheric molecules they are heated, ablated, sublimated, and finally light is emitted by these hot vapours, what we call meteors. We conduct the investigation of these meteors to study the meteoroids. In particular we address two different topics: On one hand we explore the size/mass frequency distribution of meteoroids using flux determination when the collide into the atmosphere. We develop a method to determine this flux using video observations of meteors and analyse the properties of meteors as an optical proxy to meteoroids in order to maximise the detection. It yields three ground-based observational solutions that we transform into instrumental designs. First we design and develop a meteor all-sky detection station for Observatorio UCM and use the Draconids 2011 campaign as a showcase for the flux determination, with successful results. Then we investigate the observation of meteors

  6. PhotoSpec - Ground-based Remote Sensing of Solar-Induced Chlorophyll Fluorescence: First Results

    Science.gov (United States)

    Grossmann, K.; Magney, T. S.; Frankenberg, C.; Seibt, U.; Pivovaroff, A. L.; Hurlock, S. C.; Stutz, J.

    2016-12-01

    Solar-Induced Chlorophyll Fluorescence (SIF) emitted from vegetation can be used as a proxy for photosynthetic activity and is observable on a global scale from space. However, many issues on a leaf-to-canopy scale remain poorly understood, such as influences on the SIF signal from environmental conditions, water stress, or radiation. We have developed a novel ground-based spectrometer system for measuring SIF from natural ecosystems. The instrumental set-up, requirements, and measurement technique are based on decades of experience using Differential Optical Absorption Spectroscopy (DOAS), an established method to measure atmospheric trace gases. The instrument consists of three thermally stabilized commercial spectrometers that are linked to a 2D scanning telescope unit via optical fiber bundles, and also includes a commercial photosynthetic active radiation (PAR) sensor. The spectrometers cover a SIF retrieval wavelength range at high spectral resolution (670 - 780 nm, 0.1 nm FWHM), and also provide moderate resolution spectra (400 - 800 nm, 1.5 nm FWHM) to retrieve vegetation indices and the photochemical reflectance index (PRI). We report on results of the first continuous field measurements of this novel system at Stunt Ranch Santa Monica Mountains UC Reserve, where the PhotoSpec instrument was monitoring SIF of four native Californian shrubland species with different adaptations to seasonal summer drought. We report on the correlation with CO2 fluxes over both the growing season and the hot summer period in 2016. We also show detailed measurements of the diurnal cycle of the SIF signal of single broad leaves, as well as dark-light transitions, under controlled experimental conditions. In addition to demonstrating the instrumental set-up, retrieval algorithm, and instrument performance, our results illustrate that SIF measurements at the leaf to ecosystem scale are needed to understand and interpret the SIF signals retrieved at larger scales.

  7. Characterization of Oribtal Debris via Hyper-Velocity Ground-Based Tests

    Science.gov (United States)

    Cowardin, H.

    2015-01-01

    Existing DoD and NASA satellite breakup models are based on a key laboratory-based test, Satellite Orbital debris Characterization Impact Test (SOCIT), which has supported many applications and matched on-orbit events involving older satellite designs reasonably well over the years. In order to update and improve the break-up models and the NASA Size Estimation Model (SEM) for events involving more modern satellite designs, the NASA Orbital Debris Program Office has worked in collaboration with the University of Florida to replicate a hypervelocity impact using a satellite built with modern-day spacecraft materials and construction techniques. The spacecraft, called DebriSat, was intended to be a representative of modern LEO satellites and all major designs decisions were reviewed and approved by subject matter experts at Aerospace Corporation. DebriSat is composed of 7 major subsystems including attitude determination and control system (ADCS), command and data handling (C&DH), electrical power system (EPS), payload, propulsion, telemetry tracking and command (TT&C), and thermal management. To reduce cost, most components are emulated based on existing design of flight hardware and fabricated with the same materials. All fragments down to 2 mm is size will be characterized via material, size, shape, bulk density, and the associated data will be stored in a database for multiple users to access. Laboratory radar and optical measurements will be performed on a subset of fragments to provide a better understanding of the data products from orbital debris acquired from ground-based radars and telescopes. The resulting data analysis from DebriSat will be used to update break-up models and develop the first optical SEM in conjunction with updates into the current NASA SEM. The characterization of the fragmentation will be discussed in the subsequent presentation.

  8. Exploring the Diversity of Exoplanet Atmospheres Using Ground-Based Transit Spectroscopy

    Science.gov (United States)

    Bean, Jacob

    This is a proposal to fund an observational study of the atmospheres of exoplanets in order to improve our understanding of the nature and origins of these mysterious worlds. The observations will be performed using our new approach for ground-based transit spectroscopy measurements that yields space-telescope quality data. We will also carry out supporting theoretical calculations with new abundance retrieval codes to interpret the measurements. Our project includes a survey of giant exoplanets, and intensive study of especially compelling exoplanets. For the survey, optical and near-infrared transmission spectra, and near-infrared emission spectra will be measured for giant exoplanets with a wide range of estimated temperatures, heavy element abundance, and mass. This comprehensive characterization of a large sample of these planets is now crucial to investigate such issues for their atmospheres as the carbon-to-oxygen ratios and overall metallicities, cause of thermal inversions, and prevalence and nature of high-altitude hazes. The intensive study of compelling individual planets will focus on low-mass (M spectroscopy, and leveraging its particular sensitivity to the atmospheric scale height. Observations for the project will be carried out with Magellan, Keck, Gemini, and VLT. The team has institutional access to Magellan and Keck, and a demonstrated record of obtaining time on Gemini and VLT for these observations through public channels. This proposal is highly relevant for current and future NASA projects. We are seeking to understand the diversity of exoplanets revealed by planet searches like Kepler and the Eta-Earth survey. Our observations will complement, extend, and provide context for similar observations with HST and Spitzer. We will investigate the fundamental nature of the closest kin to Earth-size exoplanets, and this is an important foundation that must be laid down before studying habitable planets with JWST and a future TPF-like mission.

  9. OGLE-2015-BLG-0196: GROUND-BASED GRAVITATIONAL MICROLENS PARALLAX CONFIRMED BY SPACE-BASED OBSERVATION

    Energy Technology Data Exchange (ETDEWEB)

    Han, C. [Department of Physics, Chungbuk National University, Cheongju 361-763 (Korea, Republic of); Udalski, A.; Szymański, M. K.; Soszyński, I.; Skowron, J.; Mróz, P.; Poleski, R.; Pietrukowicz, P.; Kozłowski, S.; Ulaczyk, K.; Pawlak, M. [Warsaw University Observatory, Al. Ujazdowskie 4, 00-478 Warszawa (Poland); Gould, A.; Zhu, Wei; Fausnaugh, M.; Gaudi, B. S. [Department of Astronomy, Ohio State University, 140 W. 18th Ave., Columbus, OH 43210 (United States); Yee, J. C. [Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138 (United States); Beichman, C. [NASA Exoplanet Science Institute, MS 100-22, California Institute of Technology, Pasadena, CA 91125 (United States); Novati, S. Calchi [Dipartimento di Fisica “E. R. Caianiello,” Uńiversitá di Salerno, Via Giovanni Paolo II, I-84084 Fisciano (Italy); Carey, S. [Spitzer Science Center, MS 220-6, California Institute of Technology, Pasadena, CA (United States); Bryden, C. [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Dr., Pasadena, CA 91109 (United States); Collaboration: OGLE Collaboration; Spitzer Microlensing Team; and others

    2017-01-01

    In this paper, we present an analysis of the binary gravitational microlensing event OGLE-2015-BLG-0196. The event lasted for almost a year, and the light curve exhibited significant deviations from the lensing model based on the rectilinear lens-source relative motion, enabling us to measure the microlens parallax. The ground-based microlens parallax is confirmed by the data obtained from space-based microlens observations using the Spitzer telescope. By additionally measuring the angular Einstein radius from the analysis of the resolved caustic crossing, the physical parameters of the lens are determined up to the twofold degeneracy, u {sub 0} < 0 and u {sub 0} > 0, solutions caused by the well-known “ecliptic” degeneracy. It is found that the binary lens is composed of two M dwarf stars with similar masses, M {sub 1} = 0.38 ± 0.04 M {sub ⊙} (0.50 ± 0.05 M {sub ⊙}) and M {sub 2} = 0.38 ± 0.04 M {sub ⊙} (0.55 ± 0.06 M {sub ⊙}), and the distance to the lens is D {sub L} = 2.77 ± 0.23 kpc (3.30 ± 0.29 kpc). Here the physical parameters outside and inside the parentheses are for the u {sub 0} < 0 and u {sub 0} > 0 solutions, respectively.

  10. Development of a Multivariable Parametric Cost Analysis for Space-Based Telescopes

    Science.gov (United States)

    Dollinger, Courtnay

    2011-01-01

    Over the past 400 years, the telescope has proven to be a valuable tool in helping humankind understand the Universe around us. The images and data produced by telescopes have revolutionized planetary, solar, stellar, and galactic astronomy and have inspired a wide range of people, from the child who dreams about the images seen on NASA websites to the most highly trained scientist. Like all scientific endeavors, astronomical research must operate within the constraints imposed by budget limitations. Hence the importance of understanding cost: to find the balance between the dreams of scientists and the restrictions of the available budget. By logically analyzing the data we have collected for over thirty different telescopes from more than 200 different sources, statistical methods, such as plotting regressions and residuals, can be used to determine what drives the cost of telescopes to build and use a cost model for space-based telescopes. Previous cost models have focused their attention on ground-based telescopes due to limited data for space telescopes and the larger number and longer history of ground-based astronomy. Due to the increased availability of cost data from recent space-telescope construction, we have been able to produce and begin testing a comprehensive cost model for space telescopes, with guidance from the cost models for ground-based telescopes. By separating the variables that effect cost such as diameter, mass, wavelength, density, data rate, and number of instruments, we advance the goal to better understand the cost drivers of space telescopes.. The use of sophisticated mathematical techniques to improve the accuracy of cost models has the potential to help society make informed decisions about proposed scientific projects. An improved knowledge of cost will allow scientists to get the maximum value returned for the money given and create a harmony between the visions of scientists and the reality of a budget.

  11. Probing Hypergiant Mass Loss with Adaptive Optics Imaging and Polarimetry in the Infrared: MMT-Pol and LMIRCam Observations of IRC +10420 and VY Canis Majoris

    Science.gov (United States)

    Shenoy, Dinesh P.; Jones, Terry J.; Packham, Chris; Lopez-Rodriguez, Enrique

    2015-07-01

    We present 2-5 μm adaptive optics (AO) imaging and polarimetry of the famous hypergiant stars IRC +10420 and VY Canis Majoris. The imaging polarimetry of IRC +10420 with MMT-Pol at 2.2 μ {m} resolves nebular emission with intrinsic polarization of 30%, with a high surface brightness indicating optically thick scattering. The relatively uniform distribution of this polarized emission both radially and azimuthally around the star confirms previous studies that place the scattering dust largely in the plane of the sky. Using constraints on scattered light consistent with the polarimetry at 2.2 μ {m}, extrapolation to wavelengths in the 3-5 μm band predicts a scattered light component significantly below the nebular flux that is observed in our Large Binocular Telescope/LMIRCam 3-5 μm AO imaging. Under the assumption this excess emission is thermal, we find a color temperature of ˜500 K is required, well in excess of the emissivity-modified equilibrium temperature for typical astrophysical dust. The nebular features of VY CMa are found to be highly polarized (up to 60%) at 1.3 μm, again with optically thick scattering required to reproduce the observed surface brightness. This star’s peculiar nebular feature dubbed the “Southwest Clump” is clearly detected in the 3.1 μm polarimetry as well, which, unlike IRC +10420, is consistent with scattered light alone. The high intrinsic polarizations of both hypergiants’ nebulae are compatible with optically thick scattering for typical dust around evolved dusty stars, where the depolarizing effect of multiple scatters is mitigated by the grains’ low albedos. Observations reported here were obtained at the MMT Observatory, a joint facility of the Smithsonian Institution and the University of Arizona.

  12. Virtual Telescope Alignment System

    Data.gov (United States)

    National Aeronautics and Space Administration — Next-generation space telescopes require two spacecraft to fly in a coordinated fashion in space forming a virtual telescope. Achieving and maintaining this precise...

  13. Long term landslide monitoring with Ground Based SAR

    Science.gov (United States)

    Monserrat, Oriol; Crosetto, Michele; Luzi, Guido; Gili, Josep; Moya, Jose; Corominas, Jordi

    2014-05-01

    In the last decade, Ground-Based (GBSAR) has proven to be a reliable microwave Remote Sensing technique in several application fields, especially for unstable slopes monitoring. GBSAR can provide displacement measurements over few squared kilometres areas and with a very high spatial and temporal resolution. This work is focused on the use of GBSAR technique for long term landslide monitoring based on a particular data acquisition configuration, which is called discontinuous GBSAR (D-GBSAR). In the most commonly used GBSAR configuration, the radar is left installed in situ, acquiring data periodically, e.g. every few minutes. Deformations are estimated by processing sets of GBSAR images acquired during several weeks or months, without moving the system. By contrast, in the D-GBSAR the radar is installed and dismounted at each measurement campaign, revisiting a given site periodically. This configuration is useful to monitor slow deformation phenomena. In this work, two alternative ways for exploiting the D-GBSAR technique will be presented: the DInSAR technique and the Amplitude based Technique. The former is based on the exploitation of the phase component of the acquired SAR images and it allows providing millimetric precision on the deformation estimates. However, this technique presents several limitations like the reduction of measurable points with an increase in the period of observation, the ambiguous nature of the phase measurements, and the influence of the atmospheric phase component that can make it non applicable in some cases, specially when working in natural environments. The second approach, that is based on the use of the amplitude component of GB-SAR images combined with a image matching technique, will allow the estimation of the displacements over specific targets avoiding two of the limitations commented above: the phase unwrapping and atmosphere contribution but reducing the deformation measurement precision. Two successful examples of D

  14. The mysterious mid-latitude ionosphere of Saturn via ground-based observations of H3+: ring rain and other drivers

    Science.gov (United States)

    O'Donoghue, J.; Moore, L.; Stallard, T.; Melin, H.; Connerney, J. E. P.; Oliversen, R. J.

    2017-09-01

    In 2013, we discovered that the "ring rain" which falls on Saturn from the rings also leaves an imprint on the low-latitude upper-atmosphere. Specifically, the ionospheric-bound H3+ ion appeared to emit brightest where water products are known to fall. Here we show the first re-detections of the imprint of "ring rain" on Saturn's ionosphere, using ground-based Keck telescope data from 2013 and 2014. We have also found that the emission from low-latitudes decreases dramatically from 2011 to 2013, implying a planetary cooling over the time period, but we are unaware of the mechanism of this cooling at present.

  15. Development of a mid-sized Schwarzschild-Couder Telescope for the Cherenkov Telescope Array

    Energy Technology Data Exchange (ETDEWEB)

    Cameron, Robert A.

    2012-06-28

    The Cherenkov Telescope Array (CTA) is a ground-based observatory for very high-energy (10 GeV to 100 TeV) gamma rays, planned for operation starting in 2018. It will be an array of dozens of optical telescopes, known as Atmospheric Cherenkov Telescopes (ACTs), of 8 m to 24 m diameter, deployed over an area of more than 1 square km, to detect flashes of Cherenkov light from showers initiated in the Earth's atmosphere by gamma rays. CTA will have improved angular resolution, a wider energy range, larger fields of view and an order of magnitude improvement in sensitivity over current ACT arrays such as H.E.S.S., MAGIC and VERITAS. Several institutions have proposed a research and development program to eventually contribute 36 medium-sized telescopes (9 m to 12 m diameter) to CTA to enhance and optimize its science performance. The program aims to construct a prototype of an innovative, Schwarzschild-Couder telescope (SCT) design that will allow much smaller and less expensive cameras and much larger fields of view than conventional Davies-Cotton designs, and will also include design and testing of camera electronics for the necessary advances in performance, reliability and cost. We report on the progress of the mid-sized SCT development program.

  16. Electric field conjugation for ground-based high-contrast imaging: robustness study and tests with the Project 1640 coronagraph

    Science.gov (United States)

    Matthews, Christopher T.; Crepp, Justin R.; Vasisht, Gautam; Cady, Eric

    2017-10-01

    The electric field conjugation (EFC) algorithm has shown promise for removing scattered starlight from high-contrast imaging measurements, both in numerical simulations and laboratory experiments. To prepare for the deployment of EFC using ground-based telescopes, we investigate the response of EFC to unaccounted for deviations from an ideal optical model. We explore the linear nature of the algorithm by assessing its response to a range of inaccuracies in the optical model generally present in real systems. We find that the algorithm is particularly sensitive to unresponsive deformable mirror (DM) actuators, misalignment of the Lyot stop, and misalignment of the focal plane mask. Vibrations and DM registration appear to be less of a concern compared to values expected at the telescope. We quantify how accurately one must model these core coronagraph components to ensure successful EFC corrections. We conclude that while the condition of the DM can limit contrast, EFC may still be used to improve the sensitivity of high-contrast imaging observations. Our results have informed the development of a full EFC implementation using the Project 1640 coronagraph at Palomar observatory. While focused on a specific instrument, our results are applicable to the many coronagraphs that may be interested in employing EFC.

  17. A STUDY OF THE ELEMENTS COPPER THROUGH URANIUM IN SIRIUS A: CONTRIBUTIONS FROM STIS AND GROUND-BASED SPECTRA

    International Nuclear Information System (INIS)

    Cowley, C. R.; Ayres, T. R.; Castelli, F.; Gulliver, A. F.; Monier, R.; Wahlgren, G. M.

    2016-01-01

    We determine abundances or upper limits for all of the 55 stable elements from copper to uranium for the A1 Vm star Sirius. The purpose of the study is to assemble the most complete picture of elemental abundances with the hope of revealing the chemical history of the brightest star in the sky, apart from the Sun. We also explore the relationship of this hot metallic-line (Am) star to its cooler congeners, as well as the hotter, weakly- or non-magnetic Mercury-manganese (HgMn) stars. Our primary observational material consists of Hubble Space Telescope ( HST ) spectra taken with the Space Telescope Imaging Spectrograph in the ASTRAL project. We have also used archival material from the COPERNICUS satellite, and from the HST Goddard High-Resolution Spectrograph, as well as ground-based spectra from Furenlid, Westin, Kurucz, Wahlgren, and their coworkers, ESO spectra from the UVESPOP project, and NARVAL spectra retrieved from PolarBase. Our analysis has been primarily by spectral synthesis, and in this work we have had the great advantage of extensive atomic data unavailable to earlier workers. We find most abundances as well as upper limits range from 10 to 100 times above solar values. We see no indication of the huge abundance excesses of 1000 or more that occur among many chemically peculiar stars of the upper main sequence. The picture of Sirius as a hot Am star is reinforced.

  18. A STUDY OF THE ELEMENTS COPPER THROUGH URANIUM IN SIRIUS A: CONTRIBUTIONS FROM STIS AND GROUND-BASED SPECTRA

    Energy Technology Data Exchange (ETDEWEB)

    Cowley, C. R. [Department of Astronomy, University of Michigan, Ann Arbor, MI 48109-1107 (United States); Ayres, T. R. [Center for Astrophysics and Space Astronomy, University of Colorado, Boulder, CO 80309-0389 (United States); Castelli, F. [Instituto Nazionale di Astrofisica, Osservatorio Astronomico di Trieste, Via Tiepolo 11, I-34143 Trieste (Italy); Gulliver, A. F. [Department of Physics and Astronomy, Brandon University, Brandon MB RTA 6A9 (Canada); Monier, R. [LESIA, UMR 8109, Observatoire de Paris, Place J. Janssen, F-92195 Meudon (France); Wahlgren, G. M., E-mail: cowley@umich.edu [CSRA/STScI, 3700 San Martin Drive, Baltimore, MD 21218 (United States)

    2016-08-01

    We determine abundances or upper limits for all of the 55 stable elements from copper to uranium for the A1 Vm star Sirius. The purpose of the study is to assemble the most complete picture of elemental abundances with the hope of revealing the chemical history of the brightest star in the sky, apart from the Sun. We also explore the relationship of this hot metallic-line (Am) star to its cooler congeners, as well as the hotter, weakly- or non-magnetic Mercury-manganese (HgMn) stars. Our primary observational material consists of Hubble Space Telescope ( HST ) spectra taken with the Space Telescope Imaging Spectrograph in the ASTRAL project. We have also used archival material from the COPERNICUS satellite, and from the HST Goddard High-Resolution Spectrograph, as well as ground-based spectra from Furenlid, Westin, Kurucz, Wahlgren, and their coworkers, ESO spectra from the UVESPOP project, and NARVAL spectra retrieved from PolarBase. Our analysis has been primarily by spectral synthesis, and in this work we have had the great advantage of extensive atomic data unavailable to earlier workers. We find most abundances as well as upper limits range from 10 to 100 times above solar values. We see no indication of the huge abundance excesses of 1000 or more that occur among many chemically peculiar stars of the upper main sequence. The picture of Sirius as a hot Am star is reinforced.

  19. ATST telescope mount: telescope of machine tool

    Science.gov (United States)

    Jeffers, Paul; Stolz, Günter; Bonomi, Giovanni; Dreyer, Oliver; Kärcher, Hans

    2012-09-01

    The Advanced Technology Solar Telescope (ATST) will be the largest solar telescope in the world, and will be able to provide the sharpest views ever taken of the solar surface. The telescope has a 4m aperture primary mirror, however due to the off axis nature of the optical layout, the telescope mount has proportions similar to an 8 meter class telescope. The technology normally used in this class of telescope is well understood in the telescope community and has been successfully implemented in numerous projects. The world of large machine tools has developed in a separate realm with similar levels of performance requirement but different boundary conditions. In addition the competitive nature of private industry has encouraged development and usage of more cost effective solutions both in initial capital cost and thru-life operating cost. Telescope mounts move relatively slowly with requirements for high stability under external environmental influences such as wind buffeting. Large machine tools operate under high speed requirements coupled with high application of force through the machine but with little or no external environmental influences. The benefits of these parallel development paths and the ATST system requirements are being combined in the ATST Telescope Mount Assembly (TMA). The process of balancing the system requirements with new technologies is based on the experience of the ATST project team, Ingersoll Machine Tools who are the main contractor for the TMA and MT Mechatronics who are their design subcontractors. This paper highlights a number of these proven technologies from the commercially driven machine tool world that are being introduced to the TMA design. Also the challenges of integrating and ensuring that the differences in application requirements are accounted for in the design are discussed.

  20. A detrimental soil disturbance prediction model for ground-based timber harvesting

    Science.gov (United States)

    Derrick A. Reeves; Matthew C. Reeves; Ann M. Abbott; Deborah S. Page-Dumroese; Mark D. Coleman

    2012-01-01

    Soil properties and forest productivity can be affected during ground-based harvest operations and site preparation. The degree of impact varies widely depending on topographic features and soil properties. Forest managers who understand site-specific limits to ground-based harvesting can alter harvest method or season to limit soil disturbance. To determine the...

  1. Optical properties of photoreceptor and retinal pigment epithelium cells investigated with adaptive optics optical coherence tomography

    Science.gov (United States)

    Liu, Zhuolin

    Human vision starts when photoreceptors collect and respond to light. Photoreceptors do not function in isolation though, but share close interdependence with neighboring photoreceptors and underlying retinal pigment epithelium (RPE) cells. These cellular interactions are essential for normal function of the photoreceptor-RPE complex, but methods to assess these in the living human eye are limited. One approach that has gained increased promise is high-resolution retinal imaging that has undergone tremendous technological advances over the last two decades to probe the living retina at the cellular level. Pivotal in these advances has been adaptive optics (AO) and optical coherence tomography (OCT) that together allow unprecedented spatial resolution of retinal structures in all three dimensions. Using these high-resolution systems, cone photoreceptor are now routinely imaged in healthy and diseased retina enabling fundamental structural properties of cones to be studied such as cell spacing, packing arrangement, and alignment. Other important cell properties, however, have remained elusive to investigation as even better imaging performance is required and thus has resulted in an incomplete understanding of how cells in the photoreceptor-RPE complex interact with light. To address this technical bottleneck, we expanded the imaging capability of AO-OCT to detect and quantify more accurately and completely the optical properties of cone photoreceptor and RPE cells at the cellular level in the living human retina. The first objective of this thesis was development of a new AO-OCT method that is more precise and sensitive, thus enabling a more detailed view of the 3D optical signature of the photoreceptor-RPE complex than was previously possible (Chapter 2). Using this new system, the second objective was quantifying the waveguide properties of individual cone photoreceptor inner and outer segments across the macula (Chapter 3). The third objective extended the AO

  2. ADAPTIVE OPTICS IMAGING OF A MASSIVE GALAXY ASSOCIATED WITH A METAL-RICH ABSORBER

    International Nuclear Information System (INIS)

    Chun, Mark R.; Kulkarni, Varsha P.; Gharanfoli, Soheila; Takamiya, Marianne

    2010-01-01

    The damped and sub-damped Lyα absorption (DLA and sub-DLA) line systems in quasar spectra are believed to be produced by intervening galaxies. However, the connection of quasar absorbers to galaxies is not well-understood, since attempts to image the absorbing galaxies have often failed. While most DLAs appear to be metal poor, a population of metal-rich absorbers, mostly sub-DLAs, has been discovered in recent studies. Here we report high-resolution K-band imaging with the Keck laser guide star adaptive optics (LGSAO) system of the field of quasar SDSSJ1323-0021 in search of the galaxy producing the z = 0.72 sub-DLA absorber. With a metallicity of 2-4 times the solar level, this absorber is one of the most metal-rich systems found to date. Our data show a large bright galaxy with an angular separation of only 1.''25 from the quasar, well-resolved from the quasar at the high resolution of our data. The galaxy has a magnitude of K = 17.6-17.9, which corresponds to a luminosity of ∼3-6 L*. Morphologically, the galaxy is fitted with a model with an effective radius, enclosing half of the total light, of R e = 4 kpc and a bulge-to-total ratio of 0.4-1.0, indicating a substantial bulge stellar population. Based on the mass-metallicity relation of nearby galaxies, the absorber galaxy appears to have a stellar mass of ∼>10 11 M sun . Given the small impact parameter (9.0 kpc at the absorber redshift), this massive galaxy appears to be responsible for the metal-rich sub-DLA. The absorber galaxy is consistent with the metallicity-luminosity relation observed for nearby galaxies, but is near the upper end of metallicity. Our study marks the first application of LGSAO for the study of the structure of galaxies producing distant quasar absorbers. Finally, this study offers the first example of a massive galaxy with a substantial bulge producing a metal-rich absorber.

  3. Imaging retinal nerve fiber bundles using optical coherence tomography with adaptive optics.

    Science.gov (United States)

    Kocaoglu, Omer P; Cense, Barry; Jonnal, Ravi S; Wang, Qiang; Lee, Sangyeol; Gao, Weihua; Miller, Donald T

    2011-08-15

    Early detection of axonal tissue loss in retinal nerve fiber layer (RNFL) is critical for effective treatment and management of diseases such as glaucoma. This study aims to evaluate the capability of ultrahigh-resolution optical coherence tomography with adaptive optics (UHR-AO-OCT) for imaging the RNFL axonal bundles (RNFBs) with 3×3×3μm(3) resolution in the eye. We used a research-grade UHR-AO-OCT system to acquire 3°×3° volumes in four normal subjects and one subject with an arcuate retinal nerve fiber layer defect (n=5; 29-62years). Cross section (B-scans) and en face (C-scan) slices extracted from the volumes were used to assess visibility and size distribution of individual RNFBs. In one subject, we reimaged the same RNFBs twice over a 7month interval and compared bundle width and thickness between the two imaging sessions. Lastly we compared images of an arcuate RNFL defect acquired with UHR-AO-OCT and commercial OCT (Heidelberg Spectralis). Individual RNFBs were distinguishable in all subjects at 3° retinal eccentricity in both cross-sectional and en face views (width: 30-50μm, thickness: 10-15μm). At 6° retinal eccentricity, RNFBs were distinguishable in three of the five subjects in both views (width: 30-45μm, thickness: 20-40μm). Width and thickness RNFB measurements taken 7months apart were strongly correlated (p<0.0005). Mean difference and standard deviation of the differences between the two measurement sessions were -0.1±4.0μm (width) and 0.3±1.5μm (thickness). UHR-AO-OCT outperformed commercial OCT in terms of clarity of the microscopic retina. To our knowledge, these are the first measurements of RNFB cross section reported in the living human eye. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. San Pedro Martir Telescope: Mexican design endeavor

    Science.gov (United States)

    Toledo-Ramirez, Gengis K.; Bringas-Rico, Vicente; Reyes, Noe; Uribe, Jorge; Lopez, Aldo; Tovar, Carlos; Caballero, Xochitl; Del-Llano, Luis; Martinez, Cesar; Macias, Eduardo; Lee, William; Carramiñana, Alberto; Richer, Michael; González, Jesús; Sanchez, Beatriz; Lucero, Diana; Manuel, Rogelio; Segura, Jose; Rubio, Saul; Gonzalez, German; Hernandez, Obed; García, Mary; Lazaro, Jose; Rosales-Ortega, Fabian; Herrera, Joel; Sierra, Gerardo; Serrano, Hazael

    2016-08-01

    The Telescopio San Pedro Martir (TSPM) is a new ground-based optical telescope project, with a 6.5 meters honeycomb primary mirror, to be built in the Observatorio Astronomico Nacional on the Sierra San Pedro Martir (OAN-SPM) located in Baja California, Mexico. The OAN-SPM has an altitude of 2830 meters above sea level; it is among the best location for astronomical observation in the world. It is located 1830 m higher than the atmospheric inversion layer with 70% of photometric nights, 80% of spectroscopic nights and a sky brightness up to 22 mag/arcsec2. The TSPM will be suitable for general science projects intended to improve the knowledge of the universe established on the Official Mexican Program for Science, Technology and Innovation 2014-2018. The telescope efforts are headed by two Mexican institutions in name of the Mexican astronomical community: the Universidad Nacional Autonoma de Mexico and the Instituto Nacional de Astrofisica, Optica y Electronica. The telescope has been financially supported mainly by the Consejo Nacional de Ciencia y Tecnologia (CONACYT). It is under development by Mexican scientists and engineers from the Center for Engineering and Industrial Development. This development is supported by a Mexican-American scientific cooperation, through a partnership with the University of Arizona (UA), and the Smithsonian Astrophysical Observatory (SAO). M3 Engineering and Technology Corporation in charge of enclosure and building design. The TSPM will be designed to allow flexibility and possible upgrades in order to maximize resources. Its optical and mechanical designs are based upon those of the Magellan and MMT telescopes. The TSPM primary mirror and its cell will be provided by the INAOE and UA. The telescope will be optimized from the near ultraviolet to the near infrared wavelength range (0.35-2.5 m), but will allow observations up to 26μm. The TSPM will initially offer a f/5 Cassegrain focal station. Later, four folded Cassegrain and

  5. Biosensors for EVA: Improved Instrumentation for Ground-based Studies

    Science.gov (United States)

    Soller, B.; Ellerby, G.; Zou, F.; Scott, P.; Jin, C.; Lee, S. M. C.; Coates, J.

    2010-01-01

    During lunar excursions in the EVA suit, real-time measurement of metabolic rate is required to manage consumables and guide activities to ensure safe return to the base. Metabolic rate, or oxygen consumption (VO2), is normally measured from pulmonary parameters but cannot be determined with standard techniques in the oxygen-rich environment of a spacesuit. Our group has developed novel near infrared spectroscopic (NIRS) methods to calculate muscle oxygen saturation (SmO 2), hematocrit, and pH, and we recently demonstrated that we can use our NIRS sensor to measure VO 2 on the leg during cycling. Our NSBRI project has 4 objectives: (1) increase the accuracy of the metabolic rate calculation through improved prediction of stroke volume; (2) investigate the relative contributions of calf and thigh oxygen consumption to metabolic rate calculation for walking and running; (3) demonstrate that the NIRS-based noninvasive metabolic rate methodology is sensitive enough to detect decrement in VO 2 in a space analog; and (4) improve instrumentation to allow testing within a spacesuit. Over the past year we have made progress on all four objectives, but the most significant progress was made in improving the instrumentation. The NIRS system currently in use at JSC is based on fiber optics technology. Optical fiber bundles are used to deliver light from a light source in the monitor to the patient, and light reflected back from the patient s muscle to the monitor for spectroscopic analysis. The fiber optic cables are large and fragile, and there is no way to get them in and out of the test spacesuit used for ground-based studies. With complimentary funding from the US Army, we undertook a complete redesign of the sensor and control electronics to build a novel system small enough to be used within the spacesuit and portable enough to be used by a combat medic. In the new system the filament lamp used in the fiber optic system was replaced with a novel broadband near infrared

  6. ESO Council Visits First VLT Unit Telescope Structure in Milan

    Science.gov (United States)

    1995-12-01

    ), Luigi Guiffrida (SOIMI), Gianpietro Marchiori (EIE) and Prof. Massimo Tarenghi (ESO), describing the very successful implementation of this major VLT contract that was awarded by ESO in September 1991 [2]. All speakers praised the good collaboration between ESO and its industrial partners and Prof. Riccardo Giacconi , Director General of ESO, expressed his satisfaction `with the splendid performance of the ESO-Industry team which was bringing us close to the realisation of the premier telescope array in optical ground-based astronomy in the world'. The participants were also pleased to listen to several of the Italian engineers present who commented on the very positive experience of being personally involved in the world's largest telescope project. The VLT telescope structures incorporate many new technological concepts. Thanks to these and careful planning of the many components and their integration, it has been possible to achieve, among others, light weight construction, high mechanical stiffness, good thermal equilibrium with the ambient air (of importance for the seeing during the observations), low electromagnetic emissitivity (i.e. low interference with the sensitive astronomical instruments) and easy maintainability. Of particular interest is also the giant, direct drive system with a diameter of 9 metres and the sophisticated, innovative laser encoder system. In this way, there is no direct contact between the moving parts and the friction during the rotation is kept at an absolute minimum. The Next Steps The ESO VLT project is now entering into a decisive phase and the next years will see an increasing number of telescope parts and instruments from the scientific and industrial laboratories of Europe converging towards the VLT observatory at Cerro Paranal in Chile. It is gratifying that, despite its high degree of complexity and incorporation of a substantial number of new technologies, the project is within schedule and budget. There will be several

  7. Liverpool Telescope and Liverpool Telescope 2

    Science.gov (United States)

    Copperwheat, C. M.; Steele, I. A.; Barnsley, R. M.; Bates, S. D.; Clay, N. R.; Jermak, H.; Marchant, J. M.; Mottram, C. J.; Piascik, A.; Smith, R. J.

    2016-12-01

    The Liverpool Telescope is a fully robotic optical/near-infrared telescope with a 2-metre clear aperture, located at the Observatorio del Roque de los Muchachos on the Canary Island of La Palma. The telescope is owned and operated by Liverpool John Moores University, with financial support from the UK's Science and Technology Facilities Council. The telescope began routine science operations in 2004 and is a common-user facility with time available through a variety of committees via an open, peer reviewed process. Seven simultaneously mounted instruments support a broad science programme, with a focus on transient follow-up and other time domain topics well suited to the characteristics of robotic observing. Development has also begun on a successor facility, with the working title `Liverpool Telescope 2', to capitalise on the new era of time domain astronomy which will be brought about by the next generation of survey facilities such as LSST. The fully robotic Liverpool Telescope 2 will have a 4-metre aperture and an improved response time. In this paper we provide an overview of the current status of both facilities.

  8. Engaging Undergraduate Students in Transiting Exoplanet Research with Small Telescopes

    Science.gov (United States)

    Stephens, Denise C.; Stoker, E.; Gaillard, C.; Ranquist, E.; Lara, P.; Wright, K.

    2013-10-01

    Brigham Young University has a relatively large undergraduate physics program with 300 to 360 physics majors. Each of these students is required to be engaged in a research group and to produce a senior thesis before graduating. For the astronomy professors, this means that each of us is mentoring at least 4-6 undergraduate students at any given time. For the past few years I have been searching for meaningful research projects that make use of our telescope resources and are exciting for both myself and my students. We first started following up Kepler Objects of Interest with our 0.9 meter telescope, but quickly realized that most of the transits we could observe were better analyzed with Kepler data and were false positive objects. So now we have joined a team that is searching for transiting planets, and my students are using our 16" telescope to do ground based follow-up on the hundreds of possible transiting planet candidates produced by this survey. In this presentation I will describe our current telescopes, the observational setup, and how we use our telescopes to search for transiting planets. I'll describe some of the software the students have written. I'll also explain how to use the NASA Exoplanet Archive to gather data on known transiting planets and Kepler Objects of Interests. These databases are useful for determining the observational limits of your small telescopes and teaching your students how to reduce and report data on transiting planets. Once that is in place, you are potentially ready to join existing transiting planet missions by doing ground-based follow-up. I will explain how easy it can be to implement this type of research at any high school, college, or university with a small telescope and CCD camera.

  9. Adaptive optics imaging of healthy and abnormal regions of retinal nerve fiber bundles of patients with glaucoma.

    Science.gov (United States)

    Chen, Monica F; Chui, Toco Y P; Alhadeff, Paula; Rosen, Richard B; Ritch, Robert; Dubra, Alfredo; Hood, Donald C

    2015-01-08

    To better understand the nature of glaucomatous damage of the macula, especially the structural changes seen between relatively healthy and clearly abnormal (AB) retinal regions, using an adaptive optics scanning light ophthalmoscope (AO-SLO). Adaptive optics SLO images and optical coherence tomography (OCT) vertical line scans were obtained on one eye of seven glaucoma patients, with relatively deep local arcuate defects on the 10-2 visual field test in one (six eyes) or both hemifields (one eye). Based on the OCT images, the retinal nerve fiber (RNF) layer was divided into two regions: (1) within normal limits (WNL), relative RNF layer thickness within mean control values ±2 SD; and (2) AB, relative thickness less than -2 SD value. As seen on AO-SLO, the pattern of AB RNF bundles near the border of the WNL and AB regions differed across eyes. There were normal-appearing bundles in the WNL region of all eyes and AB-appearing bundles near the border with the AB region. This region with AB bundles ranged in extent from a few bundles to the entire AB region in the case of one eye. All other eyes had a large AB region without bundles. However, in two of these eyes, a few bundles were seen within this region of otherwise missing bundles. The AO-SLO images revealed details of glaucomatous damage that are difficult, if not impossible, to see with current OCT technology. Adaptive optics SLO may prove useful in following progression in clinical trials, or in disease management, if AO-SLO becomes widely available and easy to use. Copyright 2015 The Association for Research in Vision and Ophthalmology, Inc.

  10. Analysis of retinal capillaries in patients with type 1 diabetes and nonproliferative diabetic retinopathy using adaptive optics imaging.

    Science.gov (United States)

    Lombardo, Marco; Parravano, Mariacristina; Serrao, Sebastiano; Ducoli, Pietro; Stirpe, Mario; Lombardo, Giuseppe

    2013-09-01

    To illustrate a noninvasive method to analyze the retinal capillary lumen caliber in patients with Type 1 diabetes. Adaptive optics imaging of the retinal capillaries were acquired in two parafoveal regions of interest in eyes with nonproliferative diabetic retinopathy and unaffected controls. Measures of the retinal capillary lumen caliber were quantified using an algorithm written in Matlab by an independent observer in a masked manner. Comparison of the adaptive optics images with red-free and color wide fundus retinography images was also assessed. Eight eyes with nonproliferative diabetic retinopathy (eight patients, study group), no macular edema, and preserved visual acuity and eight control eyes (eight healthy volunteers; control group) were analyzed. The repeatability of capillary lumen caliber measurements was 0.22 μm (3.5%) with the 95% confidence interval between 0.12 and 0.31 μm in the study group. It was 0.30 μm (4.1%) with the 95% confidence interval between 0.16 and 0.43 μm in the control group. The average capillary lumen caliber was significantly narrower in eyes with nonproliferative diabetic retinopathy (6.27 ± 1.63 μm) than in the control eyes (7.31 ± 1.59 μm, P = 0.002). The authors demonstrated a noninvasive method to analyze, with micrometric scale of resolution, the lumen of retinal capillaries. The parafoveal capillaries were narrower in patients with Type 1 diabetes and nonproliferative diabetic retinopathy than in healthy subjects, showing the potential capability of adaptive optics imaging to detect pathologic variations of the retinal microvascular structures in vaso-occlusive diseases.

  11. A New Generation of Sub Mm Telescopes, Made of Carbon Fiber Reinforced Plastic

    Science.gov (United States)

    Mezger, P.; Baars, J. W. M.; Ulich, B. L.

    1984-01-01

    Carbon fiber reinforced plastic (CFRP) appears to be the material most suited for the construction of submillimeter telescopes (SMT) not only for ground-based use but also for space applications. The accuracy of the CFRP reflectors needs to be improved beyond value of the 17 micron rms envisaged for the 10 m SMT.

  12. Acute Solar Retinopathy Imaged With Adaptive Optics, Optical Coherence Tomography Angiography, and En Face Optical Coherence Tomography.

    Science.gov (United States)

    Wu, Chris Y; Jansen, Michael E; Andrade, Jorge; Chui, Toco Y P; Do, Anna T; Rosen, Richard B; Deobhakta, Avnish

    2018-01-01

    Solar retinopathy is a rare form of retinal injury that occurs after direct sungazing. To enhance understanding of the structural changes that occur in solar retinopathy by obtaining high-resolution in vivo en face images. Case report of a young adult woman who presented to the New York Eye and Ear Infirmary with symptoms of acute solar retinopathy after viewing the solar eclipse on August 21, 2017. Results of comprehensive ophthalmic examination and images obtained by fundus photography, microperimetry, spectral-domain optical coherence tomography (OCT), adaptive optics scanning light ophthalmoscopy, OCT angiography, and en face OCT. The patient was examined after viewing the solar eclipse. Visual acuity was 20/20 OD and 20/25 OS. The patient was left-eye dominant. Spectral-domain OCT images were consistent with mild and severe acute solar retinopathy in the right and left eye, respectively. Microperimetry was normal in the right eye but showed paracentral decreased retinal sensitivity in the left eye with a central absolute scotoma. Adaptive optics images of the right eye showed a small region of nonwaveguiding photoreceptors, while images of the left eye showed a large area of abnormal and nonwaveguiding photoreceptors. Optical coherence tomography angiography images were normal in both eyes. En face OCT images of the right eye showed a small circular hyperreflective area, with central hyporeflectivity in the outer retina of the right eye. The left eye showed a hyperreflective lesion that intensified in area from inner to middle retina and became mostly hyporeflective in the outer retina. The shape of the lesion on adaptive optics and en face OCT images of the left eye corresponded to the shape of the scotoma drawn by the patient on Amsler grid. Acute solar retinopathy can present with foveal cone photoreceptor mosaic disturbances on adaptive optics scanning light ophthalmoscopy imaging. Corresponding reflectivity changes can be seen on en face OCT, especially

  13. Adaptive optics plug-and-play setup for high-resolution microscopes with multi-actuator adaptive lens

    Science.gov (United States)

    Quintavalla, M.; Pozzi, P.; Verhaegen, Michelle; Bijlsma, Hielke; Verstraete, Hans; Bonora, S.

    2018-02-01

    Adaptive Optics (AO) has revealed as a very promising technique for high-resolution microscopy, where the presence of optical aberrations can easily compromise the image quality. Typical AO systems however, are almost impossible to implement on commercial microscopes. We propose a simple approach by using a Multi-actuator Adaptive Lens (MAL) that can be inserted right after the objective and works in conjunction with an image optimization software allowing for a wavefront sensorless correction. We presented the results obtained on several commercial microscopes among which a confocal microscope, a fluorescence microscope, a light sheet microscope and a multiphoton microscope.

  14. Airborne and Ground-Based Measurements Using a High-Performance Raman Lidar

    Science.gov (United States)

    Whiteman, David N.; Rush, Kurt; Rabenhorst, Scott; Welch, Wayne; Cadirola, Martin; McIntire, Gerry; Russo, Felicita; Adam, Mariana; Venable, Demetrius; Connell, Rasheen; hide

    2010-01-01

    A high-performance Raman lidar operating in the UV portion of the spectrum has been used to acquire, for the first time using a single lidar, simultaneous airborne profiles of the water vapor mixing ratio, aerosol backscatter, aerosol extinction, aerosol depolarization and research mode measurements of cloud liquid water, cloud droplet radius, and number density. The Raman Airborne Spectroscopic Lidar (RASL) system was installed in a Beechcraft King Air B200 aircraft and was flown over the mid-Atlantic United States during July August 2007 at altitudes ranging between 5 and 8 km. During these flights, despite suboptimal laser performance and subaperture use of the telescope, all RASL measurement expectations were met, except that of aerosol extinction. Following the Water Vapor Validation Experiment Satellite/Sondes (WAVES_2007) field campaign in the summer of 2007, RASL was installed in a mobile trailer for groundbased use during the Measurements of Humidity and Validation Experiment (MOHAVE-II) field campaign held during October 2007 at the Jet Propulsion Laboratory s Table Mountain Facility in southern California. This ground-based configuration of the lidar hardware is called Atmospheric Lidar for Validation, Interagency Collaboration and Education (ALVICE). During theMOHAVE-II field campaign, during which only nighttime measurements were made, ALVICE demonstrated significant sensitivity to lower-stratospheric water vapor. Numerical simulation and comparisons with a cryogenic frost-point hygrometer are used to demonstrate that a system with the performance characteristics of RASL ALVICE should indeed be able to quantify water vapor well into the lower stratosphere with extended averaging from an elevated location like Table Mountain. The same design considerations that optimize Raman lidar for airborne use on a small research aircraft are, therefore, shown to yield significant dividends in the quantification of lower-stratospheric water vapor. The MOHAVE

  15. Adaptive optics scanning laser ophthalmoscopy in combination with en-face optical coherence tomography

    International Nuclear Information System (INIS)

    Felberer, F.

    2014-01-01

    The human retina is a most important tissue and plays a fundamental role for the vision. Diseases of the eye affect the normal retinal function which, if untreated, may lead to vision loss or ultimately to blindness. Thus, in vivo diagnostic tools that provide detailed information on the retinal status are required in order to improve diagnosis and treatment. In recent years, several new optical imaging methods of the human retina have been developed and now represent the key part in a standard ophthalmic examination process. One of these technologies is optical coherence tomography (OCT), which provides images of the retina noninvasively and with a high axial resolution. However, imperfections of the eye's optics cause aberrations of the wavefront of the imaging light, thus limiting the transverse resolution of such systems. Improvements in the resolution of retinal images are necessary to resolve individual cells (e.g. photoreceptors) which may provide new opportunities in retinal diagnostics and therapy control. Adaptive optics (AO), a technology known from astronomy, may be used to increase image resolution. Aberrations of the imaging light are measured and corrected, resulting in an increase of lateral resolution up to the diffraction limit. Within this thesis, AO was combined with a scanning laser ophthalmoscope (SLO) that enables high resolution imaging of the retina. Measurements on healthy subjects demonstrated the ability of the system to resolve foveal cones (the smallest cone photoreceptors within the retina) and even rod photoreceptors. However, the depth resolution of the system remained limited compared to OCT instruments. Thus, in a second step, the instrument was extended to a combined AO-SLO/OCT system. The OCT system is based on transversal scanning (TS)-OCT which records en-face images of the retina and incorporates a high-speed axial eye tracking device. Together with transverse motion correction based on the AO-SLO images, the system

  16. ON THE RETRIEVAL OF MESOSPHERIC WINDS ON MARS AND VENUS FROM GROUND-BASED OBSERVATIONS AT 10 μm

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Valverde, M. A. [Instituto de Astrofisica de Andalucia, IAA/CSIC, Granada (Spain); Montabone, L. [Space Science Institute, Boulder, CO (United States); Sornig, M.; Sonnabend, G., E-mail: valverde@iaa.es [University of Cologne, KOSMA, Köln (Germany)

    2016-01-10

    A detailed analysis is presented of ground-based observations of atmospheric emissions on Mars and Venus under non-local thermodynamic equilibrium (non-LTE) conditions at high spectral resolution. Our first goal is to comprehend the difficulties behind the derivation of wind speeds from ground-based observations. A second goal is to set a framework to permit comparisons with other observations and with atmospheric models. A forward model including non-LTE radiative transfer is used to evaluate the information content within the telescopic beam, and is later convolved with the beam function and a typical wind field to discern the major contributions to the measured radiance, including limb and nadir views. The emission mostly arises from the non-LTE limb around altitudes of 75 km on Mars and 110 km on Venus. We propose a parameterization of the limb emission using few geophysical parameters which can be extended to other hypothetical CO{sub 2} planetary atmospheres. The tropospheric or LTE component of the emission varies with the temperature and is important at low solar illumination but only for the emerging radiance, not for the wind determinations since these are derived from the Doppler shift at the non-LTE line cores. We evaluated the sources of uncertainty and found that the forward model errors amount to approximately 12% of the measured winds, which is normally smaller than the instrumental errors. We applied this study to revise a set of measurements extending for three Martian years and confirmed previous results suggesting winds that are too large simulated by current Martian circulation models at equatorial latitudes during solstice. We encourage new observational campaigns, particularly for the strong jet at mid–high latitudes on Mars, and propose general guidelines and recommendations for future observations.

  17. ON THE RETRIEVAL OF MESOSPHERIC WINDS ON MARS AND VENUS FROM GROUND-BASED OBSERVATIONS AT 10 μm

    International Nuclear Information System (INIS)

    Lopez-Valverde, M. A.; Montabone, L.; Sornig, M.; Sonnabend, G.

    2016-01-01

    A detailed analysis is presented of ground-based observations of atmospheric emissions on Mars and Venus under non-local thermodynamic equilibrium (non-LTE) conditions at high spectral resolution. Our first goal is to comprehend the difficulties behind the derivation of wind speeds from ground-based observations. A second goal is to set a framework to permit comparisons with other observations and with atmospheric models. A forward model including non-LTE radiative transfer is used to evaluate the information content within the telescopic beam, and is later convolved with the beam function and a typical wind field to discern the major contributions to the measured radiance, including limb and nadir views. The emission mostly arises from the non-LTE limb around altitudes of 75 km on Mars and 110 km on Venus. We propose a parameterization of the limb emission using few geophysical parameters which can be extended to other hypothetical CO 2 planetary atmospheres. The tropospheric or LTE component of the emission varies with the temperature and is important at low solar illumination but only for the emerging radiance, not for the wind determinations since these are derived from the Doppler shift at the non-LTE line cores. We evaluated the sources of uncertainty and found that the forward model errors amount to approximately 12% of the measured winds, which is normally smaller than the instrumental errors. We applied this study to revise a set of measurements extending for three Martian years and confirmed previous results suggesting winds that are too large simulated by current Martian circulation models at equatorial latitudes during solstice. We encourage new observational campaigns, particularly for the strong jet at mid–high latitudes on Mars, and propose general guidelines and recommendations for future observations

  18. The Swift Ultra-Violet/Optical Telescope

    International Nuclear Information System (INIS)

    Roming, Peter; Hunsberger, S.D.; Nousek, John; Mason, Keith

    2001-01-01

    The Ultra-Violet/Optical Telescope (UVOT) provides the Swift Gamma-Ray Burst Explorer with the capability of quickly detecting and characterizing the optical and ultraviolet properties of gamma ray burst counterparts. The UVOT design is based on the design of the Optical Monitor on XMM-Newton. It is a Ritchey-Chretien telescope with microchannel plate intensified charged-coupled devices (MICs) that deliver sub-arcsecond imaging. These MICs are photon-counting devices, capable of detecting low intensity signal levels. When flown above the atmosphere, the UVOT will have the sensitivity of a 4m ground based telescope, attaining a limiting magnitude of 24 for a 1000 second observation in the white light filter. A rotating filter wheel allows sensitive photometry in six bands spanning the UV and visible, which will provide photometric redshifts of objects in the 1-3.5z range. For bright counterparts, such as the 9th magnitude GRB990123, or for fainter objects down to 17th magnitude, two grisms provide low-resolution spectroscopy

  19. The great Melbourne telescope

    CERN Document Server

    Gillespie, Richard

    2011-01-01

    Erected at Melbourne Observatory in 1869, the telescope was the second largest in the world, designed to explore the nature of the nebulae in the southern skies. Richard Gillespie, head of the History and Technology department at the Melbourne museum has written an entertaining account of the telescope's extraordinary history and tells the story through an amazing cast of characters whose lives intersected with the telescope.

  20. Near-infrared Thermal Emission Detections of a Number of Hot Jupiters and the Systematics of Ground-based Near-infrared Photometry

    Science.gov (United States)

    Croll, Bryce; Albert, Loic; Jayawardhana, Ray; Cushing, Michael; Moutou, Claire; Lafreniere, David; Johnson, John Asher; Bonomo, Aldo S.; Deleuil, Magali; Fortney, Jonathan

    2015-03-01

    We present detections of the near-infrared thermal emission of three hot Jupiters and one brown dwarf using the Wide-field Infrared Camera (WIRCam) on the Canada-France-Hawaii Telescope (CFHT). These include Ks-band secondary eclipse detections of the hot Jupiters WASP-3b and Qatar-1b and the brown dwarf KELT-1b. We also report Y-band, K CONT-band, and two new and one reanalyzed Ks-band detections of the thermal emission of the hot Jupiter WASP-12b. We present a new reduction pipeline for CFHT/WIRCam data, which is optimized for high precision photometry. We also describe novel techniques for constraining systematic errors in ground-based near-infrared photometry, so as to return reliable secondary eclipse depths and uncertainties. We discuss the noise properties of our ground-based photometry for wavelengths spanning the near-infrared (the YJHK bands), for faint and bright stars, and for the same object on several occasions. For the hot Jupiters WASP-3b and WASP-12b we demonstrate the repeatability of our eclipse depth measurements in the Ks band; we therefore place stringent limits on the systematics of ground-based, near-infrared photometry, and also rule out violent weather changes in the deep, high pressure atmospheres of these two hot Jupiters at the epochs of our observations. Based on observations obtained with WIRCam, a joint project of Canada-France-Hawaii Telescope (CFHT), Taiwan, Korea, Canada, France, at the CFHT, which is operated by the National Research Council (NRC) of Canada, the Institute National des Sciences de l'Univers of the Centre National de la Recherche Scientifique of France, and the University of Hawaii.

  1. Ground-Based Observations of Terrestrial Gamma Ray Flashes Associated with Downward-Directed Lightning Leaders

    Science.gov (United States)

    Belz, J.; Abbasi, R.; Krehbiel, P. R.; LeVon, R.; Remington, J.; Rison, W.; Thomas, R. J.

    2017-12-01

    Terrestrial Gamma Flashes (TGFs) have been observed in satellite-borne gamma ray detectors for several decades, starting with the BATSE instrument on the Compton Gamma-Ray observatory in 1994. TGFs consist of bursts of upwards of 1018 primary gamma rays, with a duration of up to a few milliseconds, originating in the Earth's atmosphere. More recent observations have shown that satellite-observed TGFs are generated in upward-propagating negative leaders of intracloud lightning, suggesting that they may be sensitive to the processes responsible for the initial lightning breakdown. Here, we present the first evidence that TGFs are also produced at the beginning of negative cloud-to-ground flashes, and that they may provide a new window through which ground-based observatories may contribute to understanding the breakdown process. The Telescope Array Surface Detector (TASD) is a 700 square kilometer cosmic ray observatory, an array of 507 3m2 scintillators on a 1.2 km grid. The array is triggered and read out when at least three adjacent detectors observe activity within an 8 μs window. Following the observation of bursts of anomalous TASD triggers, lasting a few hundred microseconds and correlated with local lightning activity, a Lightning Mapping Array (LMA) and slow electric field antenna were installed at the TASD site in order to study the effect. From data obtained between 2014 and 2016, correlated observations were obtained for ten -CG flashes. In 9 out of 10 cases, bursts of up to five anomalous triggers were detected during the first ms of the flash, as negative breakdown was descending into lower positive storm charge. The triggers occurred when the LMA-detected VHF radiation sources were at altitudes between 1.5 to 4.5 km AGL. The tenth flash was initiated by an unusually energetic leader that reached the ground in 2.5 ms and produced increasingly powerful triggers down to about 500 m AGL. While the TASD is not optimized for individual gamma ray detection

  2. Adaptive optics for reduced threshold energy in femtosecond laser induced optical breakdown in water based eye model

    Science.gov (United States)

    Hansen, Anja; Krueger, Alexander; Ripken, Tammo

    2013-03-01

    In ophthalmic microsurgery tissue dissection is achieved using femtosecond laser pulses to create an optical breakdown. For vitreo-retinal applications the irradiance distribution in the focal volume is distorted by the anterior components of the eye causing a raised threshold energy for breakdown. In this work, an adaptive optics system enables spatial beam shaping for compensation of aberrations and investigation of wave front influence on optical breakdown. An eye model was designed to allow for aberration correction as well as detection of optical breakdown. The eye model consists of an achromatic lens for modeling the eye's refractive power, a water chamber for modeling the tissue properties, and a PTFE sample for modeling the retina's scattering properties. Aberration correction was performed using a deformable mirror in combination with a Hartmann-Shack-sensor. The influence of an adaptive optics aberration correction on the pulse energy required for photodisruption was investigated using transmission measurements for determination of the breakdown threshold and video imaging of the focal region for study of the gas bubble dynamics. The threshold energy is considerably reduced when correcting for the aberrations of the system and the model eye. Also, a raise in irradiance at constant pulse energy was shown for the aberration corrected case. The reduced pulse energy lowers the potential risk of collateral damage which is especially important for retinal safety. This offers new possibilities for vitreo-retinal surgery using femtosecond laser pulses.

  3. γ astrophysics above 10-30 GeV with the MAGIC telescope

    International Nuclear Information System (INIS)

    Mirzoyan, Razmick

    1999-01-01

    The project on the 17 m oe telescope, dubbed MAGIC (Major Atmospheric Gamma Imaging Cherenkov Telescope), is dedicated for γ astrophysics in the energy range from 10-30 GeV till 50-100 TeV. MAGIC will for the first time allow to explore with very high sensitivity the energy range 10-300 GeV and to bridge the existing energy gap between satellite and ground-based air Cherenkov measurements. We believe MAGIC will serve as a prototype for future multi-telescope γ ray observatories

  4. Spectral Analysis of the Background in Ground-based, Long-slit ...

    Indian Academy of Sciences (India)

    1996-12-08

    Dec 8, 1996 ... Spectral Analysis of the Background in Ground-based,. Long-slit .... Figure 1 plots spectra from the 2-D array, after instrumental calibration and before correction for ..... which would merit attention and a better understanding.

  5. Ground-Based Global Navigation Satellite System Combined Broadcast Ephemeris Data (daily files) from NASA CDDIS

    Data.gov (United States)

    National Aeronautics and Space Administration — This dataset consists of ground-based Global Navigation Satellite System (GNSS) Combined Broadcast Ephemeris Data (daily files of all distinct navigation messages...

  6. Chasing Small Exoplanets with Ground-Based Near-Infrared Transit Photometry

    Science.gov (United States)

    Colon, K. D.; Barentsen, G.; Vinicius, Z.; Vanderburg, A.; Coughlin, J.; Thompson, S.; Mullally, F.; Barclay, T.; Quintana, E.

    2017-11-01

    I will present results from a ground-based survey to measure the infrared radius and other properties of small K2 exoplanets and candidates. The survey is preparation for upcoming discoveries from TESS and characterization with JWST.

  7. The Cherenkov Telescope Array For Very High-Energy Astrophysics

    Science.gov (United States)

    Kaaret, Philip

    2015-08-01

    The field of very high energy (VHE) astrophysics had been revolutionized by the results from ground-based gamma-ray telescopes, including the current imaging atmospheric Cherenkov telescope (IACT) arrays: HESS, MAGIC and VERITAS. A worldwide consortium of scientists from 29 countries has formed to propose the Cherenkov Telescope Array (CTA) that will capitalize on the power of this technique to greatly expand the scientific reach of ground-based gamma-ray telescopes. CTA science will include key topics such as the origin of cosmic rays and cosmic particle acceleration, understanding extreme environments in regions close to neutron stars and black holes, and exploring physics frontiers through, e.g., the search for WIMP dark matter, axion-like particles and Lorentz invariance violation. CTA is envisioned to consist of two large arrays of Cherenkov telescopes, one in the southern hemisphere and one in the north. Each array will contain telescopes of different sizes to provide a balance between cost and array performance over an energy range from below 100 GeV to above 100 TeV. Compared to the existing IACT arrays, CTA will have substantially better angular resolution and energy resolution, will cover a much wider energy range, and will have up to an order of magnitude better sensitivity. CTA will also be operated as an open observatory and high-level CTA data will be placed into the public domain; these aspects will enable broad participation in CTA science from the worldwide scientific community to fully capitalize on CTA's potential. This talk will: 1) review the scientific motivation and capabilities of CTA, 2) provide an overview of the technical design and the status of prototype development, and 3) summarize the current status of the project in terms of its proposed organization and timeline. The plans for access to CTA data and opportunities to propose for CTA observing time will be highlighed.Presented on behalf of the CTA Consortium.

  8. The 1.5 meter solar telescope GREGOR

    Science.gov (United States)

    Schmidt, W.; von der Lühe, O.; Volkmer, R.; Denker, C.; Solanki, S. K.; Balthasar, H.; Bello Gonzalez, N.; Berkefeld, Th.; Collados, M.; Fischer, A.; Halbgewachs, C.; Heidecke, F.; Hofmann, A.; Kneer, F.; Lagg, A.; Nicklas, H.; Popow, E.; Puschmann, K. G.; Schmidt, D.; Sigwarth, M.; Sobotka, M.; Soltau, D.; Staude, J.; Strassmeier, K. G.; Waldmann , T. A.

    2012-11-01

    The 1.5 m telescope GREGOR opens a new window to the understanding of solar small-scale magnetism. The first light instrumentation includes the Gregor Fabry Pérot Interferometer (GFPI), a filter spectro-polarimeter for the visible wavelength range, the GRating Infrared Spectro-polarimeter (GRIS) and the Broad-Band Imager (BBI). The excellent performance of the first two instruments has already been demonstrated at the Vacuum Tower Telescope. GREGOR is Europe's largest solar telescope and number 3 in the world. Its all-reflective Gregory design provides a large wavelength coverage from the near UV up to at least 5 microns. The field of view has a diameter of 150 arcsec. GREGOR is equipped with a high-order adaptive optics system, with a subaperture size of 10 cm, and a deformable mirror with 256 actuators. The science goals are focused on, but not limited to, solar magnetism. GREGOR allows us to measure the emergence and disappearance of magnetic flux at the solar surface at spatial scales well below 100 km. Thanks to its spectro-polarimetric capabilities, GREGOR will measure the interaction between the plasma flows, different kinds of waves, and the magnetic field. This will foster our understanding of the processes that heat the chromosphere and the outer layers of the solar atmosphere. Observations of the surface magnetic field at very small spatial scales will shed light on the variability of the solar brightness.

  9. The readout and control system of the mid-size telescope prototype of the Cherenkov telescope array

    International Nuclear Information System (INIS)

    Oya, I; Anguner, O; Birsin, E; Schwanke, U; Behera, B; Melkumyan, D; Schmidt, T; Sternberger, R; Wegner, P; Wiesand, S; Fuessling, M

    2014-01-01

    The Cherenkov Telescope Array (CTA) is one of the major ground-based astronomy projects being pursued and will be the largest facility for ground-based y-ray observations ever built. CTA will consist of two arrays: one in the Northern hemisphere composed of about 20 telescopes, and the other one in the Southern hemisphere composed of about 100 telescopes, both arrays containing telescopes of different type and size. A prototype for the Mid-Size Telescope (MST) with a diameter of 12 m has been installed in Berlin and is currently being commissioned. This prototype is composed of a mechanical structure, a drive system and mirror facets mounted with powered actuators to enable active control. Five Charge-Coupled Device (CCD) cameras, and a wide set of sensors allow the evaluation of the performance of the instrument. The design of the control software is following concepts and tools under evaluation within the CTA consortium in order to provide a realistic test-bed for the middleware: 1) The readout and control system for the MST prototype is implemented with the Atacama Large Millimeter/submillimeter Array (ALMA) Common Software (ACS) distributed control middleware; 2) the OPen Connectivity-Unified Architecture (OPC UA) is used for hardware access; 3) the document oriented MongoDB database is used for an efficient storage of CCD images, logging and alarm information: and 4) MySQL and MongoDB databases are used for archiving the slow control monitoring data and for storing the operation configuration parameters. In this contribution, the details of the implementation of the control system for the MST prototype telescope are described.

  10. The readout and control system of the mid-size telescope prototype of the Cherenkov Telescope Array

    Science.gov (United States)

    Oya, I.; Anguner, O.; Behera, B.; Birsin, E.; Fuessling, M.; Melkumyan, D.; Schmidt, T.; Schwanke, U.; Sternberger, R.; Wegner, P.; Wiesand, S.; Cta Consortium,the

    2014-06-01

    The Cherenkov Telescope Array (CTA) is one of the major ground-based astronomy projects being pursued and will be the largest facility for ground-based y-ray observations ever built. CTA will consist of two arrays: one in the Northern hemisphere composed of about 20 telescopes, and the other one in the Southern hemisphere composed of about 100 telescopes, both arrays containing telescopes of different type and size. A prototype for the Mid-Size Telescope (MST) with a diameter of 12 m has been installed in Berlin and is currently being commissioned. This prototype is composed of a mechanical structure, a drive system and mirror facets mounted with powered actuators to enable active control. Five Charge-Coupled Device (CCD) cameras, and a wide set of sensors allow the evaluation of the performance of the instrument. The design of the control software is following concepts and tools under evaluation within the CTA consortium in order to provide a realistic test-bed for the middleware: 1) The readout and control system for the MST prototype is implemented with the Atacama Large Millimeter/submillimeter Array (ALMA) Common Software (ACS) distributed control middleware; 2) the OPen Connectivity-Unified Architecture (OPC UA) is used for hardware access; 3) the document oriented MongoDB database is used for an efficient storage of CCD images, logging and alarm information: and 4) MySQL and MongoDB databases are used for archiving the slow control monitoring data and for storing the operation configuration parameters. In this contribution, the details of the implementation of the control system for the MST prototype telescope are described.

  11. Observing the Sun with Coronado telescopes telescopes

    CERN Document Server

    Pugh, Philip

    2007-01-01

    The Sun provides amateur astronomers with one of the few opportunities for daytime astronomy. In order to see the major features of our nearest star, special telescopes that have a very narrow visible bandwidth are essential. The bandwidth has to be as narrow as 1 A- 10-10 m (1 Angstrom) and centred on the absorption line of neutral hydrogen. This makes many major features of the Suna (TM)s chromosphere visible to the observer. Such narrow-band "Fabry-Perot etalon filters" are high technology, and until the introduction of the Coronado range of solar telescopes, were too expensive for amateur use. The entry-level Coronado telescope, the PST (Personal Solar Telescope) costs under 500. Solar prominences (vast columns of plasma, best seen at the edge of the solar disk), filaments, flares, sunspots, plage and active regions are all visible and can be imaged to produce spectacular solar photographs. Philip Pugh has assembled a team of contributors who show just how much solar work can be done with Coronado telesco...

  12. A concept for a thirty-meter telescope

    Science.gov (United States)

    Burgarella, Denis; Zamkotsian, Frederic; Dohlen, Kjetil; Ferrari, Marc; Hammer, Francois; Sayede, Frederic; Rigaud, Francois

    2004-07-01

    In May 2000, the Canada-France-Hawaii (CFHT) Telescope Science Advisory Committee solicited the Canadian, Hawaiian and French communities to propose concepts to replace the present CFH telescope by a larger telescope. Three groups were selected: Carlberg et al. (2001) in Canada, Khun et al. (2001) in Hawaii and Burgarella et al. (2001a) in France. The reports were delivered to CFHT in May 2001 and are now available throughout the CFHT website. One of the main constraints was due to the fact that the new and larger telescope should use as much as possible the existing site and be compliant with the Mauna Kea Science reserve Master Plan (2000). This plan analyses all aspects of the Mauna Kea summit but most of them are related to the facts that the mountain must be considered as a sacred area for indigenous Hawaiian people and that the ecosystem is fragile. But in addition, the plan also tries to account for the fact that the summit of Mauna Kea is a world famous site for astronomy. The points that we can highlight in the context of our project are of two types. Since then, the project evolved and Hawaii is not considered as the one and only site to build an Extremely Large Telescope (ELT). Moreover, the size of the primary mirror, which was strongly dependent on the above constraints, is no more limited to the 16 - 20 m which was our conclusion at this time. Nevertheless, the three points of the resolution are still valid and since then, we have kept on working on the concept by launching differnt follow-up studies that are necessary to start such a project. Of course, the main point is the Science Objectives which drive the main specifications for an ELT. But related technical studies are also mandatory e.g. Adaptive Optics, Building of a primary mirror larger than 30 m in diameter, Image Quality as a function of the segment size and shape.

  13. Ghost telescope and ghost Fourier telescope with thermal light

    International Nuclear Information System (INIS)

    Gong Wenlin; Han Shensheng

    2011-01-01

    As important observation tools, telescopes are very useful in remote observations. We report a proof-of-principle experimental demonstration of ghost telescope scheme and show that, by measuring the intensity correlation of two light fields and only changing the position of the detector in the reference path, ghost telescope and ghost Fourier telescope can be obtained even if a single-pixel detector is fixed in Fresnel region of the object. Differences between conventional telescope and ghost telescope are also discussed.

  14. A DETAILED GRAVITATIONAL LENS MODEL BASED ON SUBMILLIMETER ARRAY AND KECK ADAPTIVE OPTICS IMAGING OF A HERSCHEL-ATLAS SUBMILLIMETER GALAXY AT z = 4.243 {sup ,} {sup ,}

    Energy Technology Data Exchange (ETDEWEB)

    Bussmann, R. S.; Gurwell, M. A. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Fu Hai; Cooray, A. [Department of Physics and Astronomy, University of California, Irvine, CA 92697 (United States); Smith, D. J. B.; Bonfield, D.; Dunne, L. [Centre for Astrophysics, Science and Technology Research Institute, University of Hertfordshire, Hatfield, Herts AL10 9AB (United Kingdom); Dye, S.; Eales, S. [School of Physics and Astronomy, University of Nottingham, University Park, Nottingham NG7 2RD (United Kingdom); Auld, R. [Cardiff University, School of Physics and Astronomy, Queens Buildings, The Parade, Cardiff CF24 3AA (United Kingdom); Baes, M.; Fritz, J. [Sterrenkundig Observatorium, Universiteit Gent, Krijgslaan 281 S9, B-9000 Gent (Belgium); Baker, A. J. [Department of Physics and Astronomy, Rutgers, the State University of New Jersey, 136 Frelinghuysen Road, Piscataway, NJ 08854-8019 (United States); Cava, A. [Departamento de Astrofisica, Facultad de CC. Fisicas, Universidad Complutense de Madrid, E-28040 Madrid (Spain); Clements, D. L.; Dariush, A. [Imperial College London, Blackett Laboratory, Prince Consort Road, London SW7 2AZ (United Kingdom); Coppin, K. [Department of Physics, McGill University, Ernest Rutherford Building, 3600 Rue University, Montreal, Quebec, H3A 2T8 (Canada); Dannerbauer, H. [Universitaet Wien, Institut fuer Astronomie, Tuerkenschanzstrasse 17, 1180 Wien, Oesterreich (Austria); De Zotti, G. [Universita di Padova, Dipto di Astronomia, Vicolo dell' Osservatorio 2, IT 35122, Padova (Italy); Hopwood, R., E-mail: rbussmann@cfa.harvard.edu [Department of Physics and Astronomy, Open University, Walton Hall, Milton Keynes, MK7 6AA (United Kingdom); and others

    2012-09-10

    We present high-spatial resolution imaging obtained with the Submillimeter Array (SMA) at 880 {mu}m and the Keck adaptive optics (AO) system at the K{sub S}-band of a gravitationally lensed submillimeter galaxy (SMG) at z = 4.243 discovered in the Herschel Astrophysical Terahertz Large Area Survey. The SMA data (angular resolution Almost-Equal-To 0.''6) resolve the dust emission into multiple lensed images, while the Keck AO K{sub S}-band data (angular resolution Almost-Equal-To 0.''1) resolve the lens into a pair of galaxies separated by 0.''3. We present an optical spectrum of the foreground lens obtained with the Gemini-South telescope that provides a lens redshift of z{sub lens} = 0.595 {+-} 0.005. We develop and apply a new lens modeling technique in the visibility plane that shows that the SMG is magnified by a factor of {mu} = 4.1 {+-} 0.2 and has an intrinsic infrared (IR) luminosity of L{sub IR} = (2.1 {+-} 0.2) Multiplication-Sign 10{sup 13} L{sub Sun }. We measure a half-light radius of the background source of r{sub s} = 4.4 {+-} 0.5 kpc which implies an IR luminosity surface density of {Sigma}{sub IR} (3.4 {+-} 0.9) Multiplication-Sign 10{sup 11} L{sub Sun} kpc{sup -2}, a value that is typical of z > 2 SMGs but significantly lower than IR luminous galaxies at z {approx} 0. The two lens galaxies are compact (r{sub lens} Almost-Equal-To 0.9 kpc) early-types with Einstein radii of {theta}{sub E1} 0.57 {+-} 0.01 and {theta}{sub E2} = 0.40 {+-} 0.01 that imply masses of M{sub lens1} = (7.4 {+-} 0.5) Multiplication-Sign 10{sup 10} M{sub Sun} and M{sub lens2} = (3.7 {+-} 0.3) Multiplication-Sign 10{sup 10} M{sub Sun }. The two lensing galaxies are likely about to undergo a dissipationless merger, and the mass and size of the resultant system should be similar to other early-type galaxies at z {approx} 0.6. This work highlights the importance of high spatial resolution imaging in developing models of strongly lensed galaxies

  15. High-contrast imaging of the close environment of HD 142527. VLT/NaCo adaptive optics thermal and angular differential imaging

    Science.gov (United States)

    Rameau, J.; Chauvin, G.; Lagrange, A.-M.; Thébault, P.; Milli, J.; Girard, J. H.; Bonnefoy, M.

    2012-10-01

    Context. It has long been suggested that circumstellar disks surrounding young stars may be the signposts of planets, and even more so since the recent discoveries of embedded substellar companions. According to models, the planet-disk interaction may create large structures, gaps, rings, or spirals in the disk. In that sense, the Herbig star HD 142527 is particularly compelling, as its massive disk displays intriguing asymmetries that suggest the existence of a dynamical peturber of unknown nature. Aims: Our goal was to obtain deep thermal images of the close circumstellar environment of HD 142527 to re-image the reported close-in structures (cavity, spiral arms) of the disk and to search for stellar and substellar companions that could be connected to their presence. Methods: We obtained high-contrast images with the NaCo adaptive optics system at the Very Large Telescope in L'-band. We applied different analysis strategies using both classical PSF-subtraction and angular differential imaging to probe for any extended structures or point-like sources. Results: The circumstellar environment of HD 142527 is revealed at an unprecedented spatial resolution down to the subarcsecond level for the first time at 3.8 μm. Our images reveal important radial and azimuthal asymmetries that invalidate an elliptical shape for the disk. It instead suggests a bright inhomogeneous spiral arm plus various fainter spiral arms. We also confirm an inner cavity down to 30 AU and two important dips at position angles of 0 and 135 deg. The detection performance in angular differential imaging enables exploration of the planetary mass regime for projected physical separations as close as 40 AU. Use of our detection map together with Monte Carlo simulations sets stringent constraints on the presence of planetary mass, brown dwarf or stellar companions as a function of the semi-major axis. They severely limit any presence of massive giant planets with semi-major axis beyond 50 AU, i

  16. Information and Communications Technology (ICT) Infrastructure for the ASTRI SST-2M telescope prototype for the Cherenkov Telescope Array

    Science.gov (United States)

    Gianotti, F.; Tacchini, A.; Leto, G.; Martinetti, E.; Bruno, P.; Bellassai, G.; Conforti, V.; Gallozzi, S.; Mastropietro, M.; Tanci, C.; Malaguti, G.; Trifoglio, M.

    2016-08-01

    The Cherenkov Telescope Array (CTA) represents the next generation of ground-based observatories for very high energy gamma-ray astronomy. The CTA will consist of two arrays at two different sites, one in the northern and one in the southern hemisphere. The current CTA design foresees, in the southern site, the installation of many tens of imaging atmospheric Cherenkov telescopes of three different classes, namely large, medium and small, so defined in relation to their mirror area; the northern hemisphere array would consist of few tens of the two larger telescope types. The Italian National Institute for Astrophysics (INAF) is developing the Cherenkov Small Size Telescope ASTRI SST- 2M end-to-end prototype telescope within the framework of the International Cherenkov Telescope Array (CTA) project. The ASTRI prototype has been installed at the INAF observing station located in Serra La Nave on Mt. Etna, Italy. Furthermore a mini-array, composed of nine of ASTRI telescopes, has been proposed to be installed at the Southern CTA site. Among the several different infrastructures belonging the ASTRI project, the Information and Communication Technology (ICT) equipment is dedicated to operations of computing and data storage, as well as the control of the entire telescope, and it is designed to achieve the maximum efficiency for all performance requirements. Thus a complete and stand-alone computer centre has been designed and implemented. The goal is to obtain optimal ICT equipment, with an adequate level of redundancy, that might be scaled up for the ASTRI mini-array, taking into account the necessary control, monitor and alarm system requirements. In this contribution we present the ICT equipment currently installed at the Serra La Nave observing station where the ASTRI SST-2M prototype will be operated. The computer centre and the control room are described with particular emphasis on the Local Area Network scheme, the computing and data storage system, and the

  17. The height variation of supergranular velocity fields determined from simultaneous OSO 8 satellite and ground-based observations

    Science.gov (United States)

    November, L. J.; Toomre, J.; Gebbie, K. B.; Simon, G. W.

    1979-01-01

    Results are reported for simultaneous satellite and ground-based observations of supergranular velocities in the sun, which were made using a UV spectrometer aboard OSO 8 and a diode-array instrument operating at the exit slit of an echelle spectrograph attached to a vacuum tower telescope. Observations of the steady Doppler velocities seen toward the limb in the middle chromosphere and the photosphere are compared; the observed spectral lines of Si II at 1817 A and Fe I at 5576 A are found to differ in height of formation by about 1400 km. The results show that supergranular motions are able to penetrate at least 11 density scale heights into the middle chromosphere, that the patterns of motion correlate well with the cellular structure seen in the photosphere, and that the motion increases from about 800 m/s in the photosphere to at least 3000 m/s in the middle chromosphere. These observations imply that supergranular velocities should be evident in the transition region and that strong horizontal shear layers in supergranulation should produce turbulence and internal gravity waves.

  18. Ground based measurements of SO2 and NO2 emissions from the oil refinery 'la Teja' in Montevideo city

    International Nuclear Information System (INIS)

    Frins, Erna; Casaballe, Nicolas; Osorio, Matias; Arismendi, Federico; Ibrahim, Ossama; Wagner, Thomas; Platt, Ulrich

    2011-01-01

    We present preliminary results of ground based measurements of SO 2 and NO 2 emissions from 'La Teja' oil refinery located in the northern part of Montevideo Bay. Our study is part of a long term effort to localize and monitor relevant emission sources in the city area of Montevideo. These measurements were performed with a Miniature Multi AXis Differential Optical Absorption Spectrometry (MiniMAX-DOAS) instrument, which is basically a temperature controlled medium-resolution spectrometer (∼ 0.5 nm) equipped with a small telescope and a stepper motor allowing automatic scans in one dimension. We present a discussion about the evolution and transformation of both above species in the atmosphere. Our observation site was approximately 1.9 km away from the oil refinery and we were able to perform vertical and horizontal scans of the plume emitted (during our measurements) almost horizontally from its stacks. The maximum value of the SO 2 slant column density (SCD) was found to be ∼ 4x10 17 molec cm -2 directly over the oil refinery, decreasing as the plume disperses. In contrast, the NO 2 SCD peaks at ∼ 1x10 16 molec cm -2 directly over the source and increases continuously as the plume disperses. The SO 2 flux measured immediately downwind of the refinery was found to be about 1200 kg h -1 (±40% uncertainty).

  19. Metadata database and data analysis software for the ground-based upper atmospheric data developed by the IUGONET project

    Science.gov (United States)

    Hayashi, H.; Tanaka, Y.; Hori, T.; Koyama, Y.; Shinbori, A.; Abe, S.; Kagitani, M.; Kouno, T.; Yoshida, D.; Ueno, S.; Kaneda, N.; Yoneda, M.; Tadokoro, H.; Motoba, T.; Umemura, N.; Iugonet Project Team

    2011-12-01

    The Inter-university Upper atmosphere Global Observation NETwork (IUGONET) is a Japanese inter-university project by the National Institute of Polar Research (NIPR), Tohoku University, Nagoya University, Kyoto University, and Kyushu University to build a database of metadata for ground-based observations of the upper atmosphere. The IUGONET institutes/universities have been collecting various types of data by radars, magnetometers, photometers, radio telescopes, helioscopes, etc. at various locations all over the world and at various altitude layers from the Earth's surface to the Sun. The metadata database will be of great help to researchers in efficiently finding and obtaining these observational data spread over the institutes/universities. This should also facilitate synthetic analysis of multi-disciplinary data, which will lead to new types of research in the upper atmosphere. The project has also been developing a software to help researchers download, visualize, and analyze the data provided from the IUGONET institutes/universities. The metadata database system is built on the platform of DSpace, which is an open source software for digital repositories. The data analysis software is written in the IDL language with the TDAS (THEMIS Data Analysis Software suite) library. These products have been just released for beta-testing.

  20. Statistical properties of single-mode fiber coupling of satellite-to-ground laser links partially corrected by adaptive optics.

    Science.gov (United States)

    Canuet, Lucien; Védrenne, Nicolas; Conan, Jean-Marc; Petit, Cyril; Artaud, Geraldine; Rissons, Angelique; Lacan, Jerome

    2018-01-01

    In the framework of satellite-to-ground laser downlinks, an analytical model describing the variations of the instantaneous coupled flux into a single-mode fiber after correction of the incoming wavefront by partial adaptive optics (AO) is presented. Expressions for the probability density function and the cumulative distribution function as well as for the average fading duration and fading duration distribution of the corrected coupled flux are given. These results are of prime interest for the computation of metrics related to coded transmissions over correlated channels, and they are confronted by end-to-end wave-optics simulations in the case of a geosynchronous satellite (GEO)-to-ground and a low earth orbit satellite (LEO)-to-ground scenario. Eventually, the impact of different AO performances on the aforementioned fading duration distribution is analytically investigated for both scenarios.

  1. Correlation Wave-Front Sensing Algorithms for Shack-Hartmann-Based Adaptive Optics using a Point Source

    International Nuclear Information System (INIS)

    Poynee, L A

    2003-01-01

    Shack-Hartmann based Adaptive Optics system with a point-source reference normally use a wave-front sensing algorithm that estimates the centroid (center of mass) of the point-source image 'spot' to determine the wave-front slope. The centroiding algorithm suffers for several weaknesses. For a small number of pixels, the algorithm gain is dependent on spot size. The use of many pixels on the detector leads to significant propagation of read noise. Finally, background light or spot halo aberrations can skew results. In this paper an alternative algorithm that suffers from none of these problems is proposed: correlation of the spot with a ideal reference spot. The correlation method is derived and a theoretical analysis evaluates its performance in comparison with centroiding. Both simulation and data from real AO systems are used to illustrate the results. The correlation algorithm is more robust than centroiding, but requires more computation

  2. The fundus photo has met its match: optical coherence tomography and adaptive optics ophthalmoscopy are here to stay.

    Science.gov (United States)

    Morgan, Jessica I W

    2016-05-01

    Over the past 25 years, optical coherence tomography (OCT) and adaptive optics (AO) ophthalmoscopy have revolutionised our ability to non-invasively observe the living retina. The purpose of this review is to highlight the techniques and human clinical applications of recent advances in OCT and adaptive optics scanning laser/light ophthalmoscopy (AOSLO) ophthalmic imaging. Optical coherence tomography retinal and optic nerve head (ONH) imaging technology allows high resolution in the axial direction resulting in cross-sectional visualisation of retinal and ONH lamination. Complementary AO ophthalmoscopy gives high resolution in the transverse direction resulting in en face visualisation of retinal cell mosaics. Innovative detection schemes applied to OCT and AOSLO technologies (such as spectral domain OCT, OCT angiography, confocal and non-confocal AOSLO, fluorescence, and AO-OCT) have enabled high contrast between retinal and ONH structures in three dimensions and have allowed in vivo retinal imaging to approach that of histological quality. In addition, both OCT and AOSLO have shown the capability to detect retinal reflectance changes in response to visual stimuli, paving the way for future studies to investigate objective biomarkers of visual function at the cellular level. Increasingly, these imaging techniques are being applied to clinical studies of the normal and diseased visual system. Optical coherence tomography and AOSLO technologies are capable of elucidating the structure and function of the retina and ONH noninvasively with unprecedented resolution and contrast. The techniques have proven their worth in both basic science and clinical applications and each will continue to be utilised in future studies for many years to come. © 2016 The Authors Ophthalmic & Physiological Optics © 2016 The College of Optometrists.

  3. Social Science at the Center for Adaptive Optics: Synergistic Systems of Program Evaluation, Applied Research, Educational Assessment, and Pedagogy

    Science.gov (United States)

    Goza, B. K.; Hunter, L.; Shaw, J. M.; Metevier, A. J.; Raschke, L.; Espinoza, E.; Geaney, E. R.; Reyes, G.; Rothman, D. L.

    2010-12-01

    This paper describes the interaction of four elements of social science as they have evolved in concert with the Center for Adaptive Optics Professional Development Program (CfAO PDP). We hope these examples persuade early-career scientists and engineers to include social science activities as they develop grant proposals and carry out their research. To frame our discussion we use a metaphor from astronomy. At the University of California Santa Cruz (UCSC), the CfAO PDP and the Educational Partnership Center (EPC) are two young stars in the process of forming a solar system. Together, they are surrounded by a disk of gas and dust made up of program evaluation, applied research, educational assessment, and pedagogy. An idea from the 2001 PDP intensive workshops program evaluation developed into the Assessing Scientific Inquiry and Leadership Skills (AScILS) applied research project. In iterative cycles, AScILS researchers participated in subsequent PDP intensive workshops, teaching social science while piloting AScILS measurement strategies. Subsequent "orbits" of the PDP program evaluation gathered ideas from the applied research and pedagogy. The denser regions of this disk of social science are in the process of forming new protoplanets as tools for research and teaching are developed. These tools include problem-solving exercises or simulations of adaptive optics explanations and scientific reasoning; rubrics to evaluate the scientific reasoning simulation responses, knowledge regarding inclusive science education, and student explanations of science/engineering inquiry investigations; and a scientific reasoning curriculum. Another applied research project is forming with the design of a study regarding how to assess engineering explanations. To illustrate the mutual shaping of the cross-disciplinary, intergenerational group of educational researchers and their projects, the paper ends with a description of the professional trajectories of some of the

  4. Goddard Robotic Telescope (GRT)

    Data.gov (United States)

    National Aeronautics and Space Administration — Since it is not possible to predict when a Gamma-Ray Burst (GRB) occurs, the follow-up ground telescopes must be distributed as uniform as possible all over the...

  5. RAVEN AND THE CENTER OF MAFFEI 1: MULTI-OBJECT ADAPTIVE OPTICS OBSERVATIONS OF THE CENTER OF A NEARBY ELLIPTICAL GALAXY AND THE DETECTION OF AN INTERMEDIATE AGE POPULATION

    Energy Technology Data Exchange (ETDEWEB)

    Davidge, T. J.; Andersen, D. R. [Dominion Astrophysical Observatory, National Research Council of Canada, 5071 West Saanich Road, Victoria, BC V9E 2E7 (Canada); Lardière, O.; Bradley, C.; Blain, C. [Department of Mechanical Engineering, University of Victoria, Victoria, BC V8W 3P2 (Canada); Oya, S. [Subaru Telescope, National Optical Observatory of Japan Hilo, HI 96720 (United States); Akiyama, M.; Ono, Y. H., E-mail: tim.davidge@nrc.ca, E-mail: david.andersen@nrc.ca, E-mail: lardiere@uvic.ca, E-mail: cbr@uvic.ca, E-mail: celia.blain@gmail.com, E-mail: oya@subaru.naoj.org, E-mail: akiyama@astr.tohoku.ac.jp, E-mail: yo-2007@astr.tohoku.ac.jp [Astronomical Institute, Tohoku University 6–3 Aramaki, Aoba-ku, Sedai, 980-8578 Japan (Japan)

    2015-10-01

    Near-infrared (NIR) spectra that have an angular resolution of ∼0.15 arcsec are used to examine the stellar content of the central regions of the nearby elliptical galaxy Maffei 1. The spectra were recorded at the Subaru Telescope, with wavefront distortions corrected by the RAVEN Multi-object Adaptive Optics science demonstrator. The Ballick–Ramsey C{sub 2} absorption bandhead near 1.76 μm is detected, and models in which ∼10%–20% of the light near 1.8 μm originates from stars of spectral type C5 reproduce the depth of this feature. Archival NIR and mid-infrared images are also used to probe the structural and photometric properties of the galaxy. Comparisons with models suggest that an intermediate age population dominates the spectral energy distribution between 1 and 5 μm near the galaxy center. This is consistent not only with the presence of C stars, but also with the large Hβ index that has been measured previously for Maffei 1. The J − K color is more or less constant within 15 arcsec of the galaxy center, suggesting that the brightest red stars are well-mixed in this area.

  6. Automatic Photoelectric Telescope Service

    International Nuclear Information System (INIS)

    Genet, R.M.; Boyd, L.J.; Kissell, K.E.; Crawford, D.L.; Hall, D.S.; BDM Corp., McLean, VA; Kitt Peak National Observatory, Tucson, AZ; Dyer Observatory, Nashville, TN)

    1987-01-01

    Automatic observatories have the potential of gathering sizable amounts of high-quality astronomical data at low cost. The Automatic Photoelectric Telescope Service (APT Service) has realized this potential and is routinely making photometric observations of a large number of variable stars. However, without observers to provide on-site monitoring, it was necessary to incorporate special quality checks into the operation of the APT Service at its multiple automatic telescope installation on Mount Hopkins. 18 references

  7. Adaptive deformable mirror : based on electromagnetic actuators

    NARCIS (Netherlands)

    Hamelinck, R.F.M.M.

    2010-01-01

    Refractive index variations in the earth's atmosphere cause wavefront aberrations and limit thereby the resolution in ground-based telescopes. With Adaptive Optics (AO) the temporally and spatially varying wavefront distortions can be corrected in real time. Most implementations in a ground based

  8. BigBOSS: The Ground-Based Stage IV BAO Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Schlegel, David; Bebek, Chris; Heetderks, Henry; Ho, Shirley; Lampton, Michael; Levi, Michael; Mostek, Nick; Padmanabhan, Nikhil; Perlmutter, Saul; Roe, Natalie; Sholl, Michael; Smoot, George; White, Martin; Dey, Arjun; Abraham, Tony; Jannuzi, Buell; Joyce, Dick; Liang, Ming; Merrill, Mike; Olsen, Knut; Salim, Samir

    2009-04-01

    The BigBOSS experiment is a proposed DOE-NSF Stage IV ground-based dark energy experiment to study baryon acoustic oscillations (BAO) and the growth of structure with an all-sky galaxy redshift survey. The project is designed to unlock the mystery of dark energy using existing ground-based facilities operated by NOAO. A new 4000-fiber R=5000 spectrograph covering a 3-degree diameter field will measure BAO and redshift space distortions in the distribution of galaxies and hydrogen gas spanning redshifts from 0.2< z< 3.5. The Dark Energy Task Force figure of merit (DETF FoM) for this experiment is expected to be equal to that of a JDEM mission for BAO with the lower risk and cost typical of a ground-based experiment.

  9. Using ISS to develop telescope technology

    Science.gov (United States)

    Saenz-Otero, Alvar; Miller, David W.

    2005-08-01

    Future space telescope missions concepts have introduced new technologies such as precision formation flight, optical metrology, and segmented mirrors. These new technologies require demonstration and validation prior to deployment in final missions such as the James Webb Space Telescope, Terrestrial Planet Finder, and Darwin. Ground based demonstrations do not provide the precision necessary to obtain a high level of confidence in the technology; precursor free flyer space missions suffer from the same problems as the final missions. Therefore, this paper proposes the use of the International Space Station as an intermediate research environment where these technologies can be developed, demonstrated, and validated. The ISS provides special resources, such as human presence, communications, power, and a benign atmosphere which directly reduce the major challenges of space technology maturation: risk, complexity, cost, remote operations, and visibility. Successful design of experiments for use aboard the space station, by enabling iterative research and supporting multiple scientists, can further reduce the effects of these challenges of space technology maturation. This paper presents results of five previous MIT Space Systems Laboratory experiments aboard the Space Shuttle, MIR, and the ISS to illustrate successful technology maturation aboard these facilities.

  10. Status and recent results of the MAGIC telescope system

    Energy Technology Data Exchange (ETDEWEB)

    Fruck, Christian [Max-Planck-Institut fuer Physik, Muenchen (Germany); Collaboration: MAGIC-Collaboration

    2016-07-01

    MAGIC is an instrument for pointed ground-based observations of the gamma-ray sky in the 50 GeV to 80 TeV regime. The two 17 m diameter Imaging Air Cherenkov Telescopes are located on 2200 m a.s.l. at the Roque de los Muchachos Observatory on the Canary island La Palma. We will report the status and recent technical developments of the instrument, highlight the most important scientific results obtained with observations of Galactic and extragalactic objects, and will summarize future plans.

  11. Editorial: The LAMOST survey at the Guo Shou Jing Telescope

    International Nuclear Information System (INIS)

    Bland-Hawthorn, Joss

    2012-01-01

    This special issue is devoted to the LAMOST star/galaxy survey now under way at the Guo Shou Jing Telescope in China. Here I review briefly the LAMOST survey in the context of recent, ongoing and future surveys on the international scene. The primary science goal is to obtain kinematics and abundance information for ten million stars over the Galaxy, far more than all other ground-based surveys combined. This rich trove will provide new insights and understanding about the workings of our Galaxy and its origins.

  12. Asteroseismology of solar-type stars with Kepler: III. Ground-based data

    DEFF Research Database (Denmark)

    Karoff, Christoffer; Molenda-Żakowicz , J.

    2010-01-01

    We report on the ground-based follow-up program of spectroscopic and photometric observations of solar-like asteroseismic targets for the Kepler space mission. These stars constitute a large group of more than a thousand objects which are the subject of an intensive study by the Kepler Asteroseis......We report on the ground-based follow-up program of spectroscopic and photometric observations of solar-like asteroseismic targets for the Kepler space mission. These stars constitute a large group of more than a thousand objects which are the subject of an intensive study by the Kepler...

  13. Status of advanced ground-based laser interferometers for gravitational-wave detection

    International Nuclear Information System (INIS)

    Dooley, K L; Akutsu, T; Dwyer, S; Puppo, P

    2015-01-01

    Ground-based laser interferometers for gravitational-wave (GW) detection were first constructed starting 20 years ago and as of 2010 collection of several years’ worth of science data at initial design sensitivities was completed. Upgrades to the initial detectors together with construction of brand new detectors are ongoing and feature advanced technologies to improve the sensitivity to GWs. This conference proceeding provides an overview of the common design features of ground-based laser interferometric GW detectors and establishes the context for the status updates of each of the four gravitational-wave detectors around the world: Advanced LIGO, Advanced Virgo, GEO 600 and KAGRA. (paper)

  14. Status of advanced ground-based laser interferometers for gravitational-wave detection

    Science.gov (United States)

    Dooley, K. L.; Akutsu, T.; Dwyer, S.; Puppo, P.

    2015-05-01

    Ground-based laser interferometers for gravitational-wave (GW) detection were first constructed starting 20 years ago and as of 2010 collection of several years’ worth of science data at initial design sensitivities was completed. Upgrades to the initial detectors together with construction of brand new detectors are ongoing and feature advanced technologies to improve the sensitivity to GWs. This conference proceeding provides an overview of the common design features of ground-based laser interferometric GW detectors and establishes the context for the status updates of each of the four gravitational-wave detectors around the world: Advanced LIGO, Advanced Virgo, GEO 600 and KAGRA.

  15. Pre-selecting muon events in the camera server of the ASTRI telescopes for the Cherenkov Telescope Array

    Science.gov (United States)

    Maccarone, Maria C.; Mineo, Teresa; Capalbi, Milvia; Conforti, Vito; Coffaro, Martina

    2016-08-01

    The Cherenkov Telescope Array (CTA) represents the next generation of ground based observatories for very high energy gamma ray astronomy. The CTA will consist of two arrays at two different sites, one in the northern and one in the southern hemisphere. The current CTA design foresees, in the southern site, the installation of many tens of imaging atmospheric Cherenkov telescopes of three different classes, namely large, medium, and small, so defined in relation to their mirror area; the northern hemisphere array would consist of few tens of the two larger telescope types. The telescopes will be equipped with cameras composed either of photomultipliers or silicon photomultipliers, and with different trigger and read-out electronics. In such a scenario, several different methods will be used for the telescopes' calibration. Nevertheless, the optical throughput of any CTA telescope, independently of its type, can be calibrated analyzing the characteristic image produced by local atmospheric highly energetic muons that induce the emission of Cherenkov light which is imaged as a ring onto the focal plane if their impact point is relatively close to the telescope optical axis. Large sized telescopes would be able to detect useful muon events under stereo coincidence and such stereo muon events will be directly addressed to the central CTA array data acquisition pipeline to be analyzed. For the medium and small sized telescopes, due to their smaller mirror area and large inter-telescope distance, the stereo coincidence rate will tend to zero; nevertheless, muon events will be detected by single telescopes that must therefore be able to identify them as possible useful calibration candidates, even if no stereo coincidence is available. This is the case for the ASTRI telescopes, proposed as pre-production units of the small size array of the CTA, which are able to detect muon events during regular data taking without requiring any dedicated trigger. We present two fast

  16. Close-up of primary and secondary asteroseismic CoRoT targets and the ground-based follow-up observations

    Energy Technology Data Exchange (ETDEWEB)

    Uytterhoeven, K; Poretti, E; Rainer, M; Mantegazza, L [INAF-Brera Astronomical Observatory, Via E. Bianchi 46, 23807 Merate (Italy); Zima, W; Aerts, C; Morel, T; Lefever, K [Institute of Astronomy, KULeuven, Celestijnenlaan 200D, 3001 Leuven (Belgium); Miglio, A [Institut d' Astrophysique et de Geophysique de l' Universite de Liege, Allee du 6 Aout 17, 4000 Liege (Belgium); Amado, P J; MartIn-Ruiz, S [Instituto de AstrofIsica de AndalucIa (CSIC), Apartado 3004, 18080 Granada (Spain); Mathias, P; Valtier, J C [Observatoire de la Cote d' Azur, GEMINI, CNRS, Universite Nice Sophia-Antipolis, BP 4229, 06304 Nice Cedex 4 (France); Paparo, M; Benkoe, J M [Konkoly Observatory, PO Box 67, 1525 Budapest (Hungary)], E-mail: katrien.uytterhoeven@brera.inaf.it

    2008-10-15

    To optimise the science results of the asteroseismic part of the CoRoT satellite mission a complementary simultaneous ground-based observational campaign is organised for selected CoRoT targets. The observations include both high-resolution spectroscopic and multicolour photometric data. We present the preliminary results of the analysis of the ground-based observations of three targets. A line-profile analysis of 216 high-resolution FEROS spectra of the {delta} Sct star HD 50844 reveals more than ten pulsation frequencies in the frequency range 5-18 d{sup -1}, including possibly one radial fundamental mode (6.92 d{sup -1}). Based on more than 600 multi-colour photometric datapoints of the {beta} Cep star HD 180642, spanning about three years and obtained with different telescopes and different instruments, we confirm the presence of a dominant radial mode {nu}{sub 1} = 5.48695 d{sup -1}, and detect also its first two harmonics. We find evidence for a second mode {nu}{sub 2} = 0.3017 d{sup -1}, possibly a g-mode, and indications for two more frequencies in the 7-8 d{sup -1} domain. From Stromgren photometry we find evidence for the hybrid 5 Sct/{gamma} Dor character of the F0 star HD 44195, as frequencies near 3 d{sup -1} and 21 d{sup -1} are detected simultaneously in the different filters.

  17. Simulated JWST/NIRISS Spectroscopy of Anticipated TESS Planets and Selected Super-Earths Discovered from K2 and Ground-Based Surveys

    Science.gov (United States)

    Louie, Dana; Albert, Loic; Deming, Drake

    2017-01-01

    The 2018 launch of James Webb Space Telescope (JWST), coupled with the 2017 launch of the Transiting Exoplanet Survey Satellite (TESS), heralds a new era in Exoplanet Science, with TESS projected to detect over one thousand transiting sub-Neptune-sized planets (Ricker et al, 2014), and JWST offering unprecedented spectroscopic capabilities. Sullivan et al (2015) used Monte Carlo simulations to predict the properties of the planets that TESS is likely to detect, and published a catalog of 962 simulated TESS planets. Prior to TESS launch, the re-scoped Kepler K2 mission and ground-based surveys such as MEarth continue to seek nearby Earth-like exoplanets orbiting M-dwarf host stars. The exoplanet community will undoubtedly employ JWST for atmospheric characterization follow-up studies of promising exoplanets, but the targeted planets for these studies must be chosen wisely to maximize JWST science return. The goal of this project is to estimate the capabilities of JWST’s Near InfraRed Imager and Slitless Spectrograph (NIRISS)—operating with the GR700XD grism in Single Object Slitless Spectrography (SOSS) mode—during observations of exoplanets transiting their host stars. We compare results obtained for the simulated TESS planets, confirmed K2-discovered super-Earths, and exoplanets discovered using ground-based surveys. By determining the target planet characteristics that result in the most favorable JWST observing conditions, we can optimize the choice of target planets in future JWST follow-on atmospheric characterization studies.

  18. Robotic and Survey Telescopes

    Science.gov (United States)

    Woźniak, Przemysław

    Robotic telescopes are revolutionizing the way astronomers collect their dataand conduct sky surveys. This chapter begins with a discussion of principles thatguide the process of designing, constructing, and operating telescopes andobservatories that offer a varying degree of automation, from instruments remotelycontrolled by observers to fully autonomous systems requiring no humansupervision during their normal operations. Emphasis is placed on designtrade-offs involved in building end-to-end systems intended for a wide range ofscience applications. The second part of the chapter contains descriptions ofseveral projects and instruments, both existing and currently under development.It is an attempt to provide a representative selection of actual systems thatillustrates state of the art in technology, as well as important ideas and milestonesin the development of the field. The list of presented instruments spans the fullrange in size starting from small all-sky monitors, through midrange robotic andsurvey telescopes, and finishing with large robotic instruments and surveys.Explosive growth of telescope networking is enabling entirely new modesof interaction between the survey and follow-up observing. Increasingimportance of standardized communication protocols and software is stressed.These developments are driven by the fusion of robotic telescope hardware,massive storage and databases, real-time knowledge extraction, and datacross-correlation on a global scale. The chapter concludes with examplesof major science results enabled by these new technologies and futureprospects.

  19. The South Pole Telescope

    Energy Technology Data Exchange (ETDEWEB)

    Ruhl, J.E.; Ade, P.A.R.; Carlstrom, J.E.; Cho, H.M.; Crawford,T.; Dobbs, M.; Greer, C.H.; Halverson, N.W.; Holzapfel, W.L.; Lanting,T.M.; Lee, A.T.; Leitch, E.M.; Leong, J.; Lu, W.; Lueker, M.; Mehl, J.; Meyer, S.S.; Mohr, J.J.; Padin, S.; Plagge, T.; Pryke, C.; Runyan, M.C.; Schwan, D.; Sharp, M.K.; Spieler, H.; Staniszewski, Z.; Stark, A.A.

    2004-11-04

    A new 10 meter diameter telescope is being constructed for deployment at the NSF South Pole research station. The telescope is designed for conducting large-area millimeter and sub-millimeter wave surveys of faint, low contrast emission, as required to map primary and secondary anisotropies in the cosmic microwave background. To achieve the required sensitivity and resolution, the telescope design employs an off-axis primary with a 10 m diameter clear aperture. The full aperture and the associated optics will have a combined surface accuracy of better than 20 microns rms to allow precision operation in the submillimeter atmospheric windows. The telescope will be surrounded with a large reflecting ground screen to reduce sensitivity to thermal emission from the ground and local interference. The optics of the telescope will support a square degree field of view at 2mm wavelength and will feed a new 1000-element micro-lithographed planar bolometric array with superconducting transition-edge sensors and frequency-multiplexed readouts. The first key project will be to conduct a survey over 4000 degrees for galaxy clusters using the Sunyaev-Zeldovich Effect. This survey should find many thousands of clusters with a mass selection criteria that is remarkably uniform with redshift. Armed with redshifts obtained from optical and infrared follow-up observations, it is expected that the survey will enable significant constraints to be placed on the equation of state of the dark energy.

  20. Take-off and Landing Using Ground Based Power - Landing Simulations Using Multibody Dynamics

    NARCIS (Netherlands)

    Wu, P.; Voskuijl, M.; Van Tooren, M.J.L.

    2014-01-01

    A novel take-off and landing system using ground based power is proposed in the EUFP7 project GABRIEL. The proposed system has the potential benefit to reduce aircraft weight, emissions and noise. A preliminary investigation of the feasibility of the structural design of the connection mechanism

  1. ForestCrowns: a software tool for analyzing ground-based digital photographs of forest canopies

    Science.gov (United States)

    Matthew F. Winn; Sang-Mook Lee; Phillip A. Araman

    2013-01-01

    Canopy coverage is a key variable used to characterize forest structure. In addition, the light transmitted through the canopy is an important ecological indicator of plant and animal habitat and understory climate conditions. A common ground-based method used to document canopy coverage is to take digital photographs from below the canopy. To assist with analyzing...

  2. Estimating and validating ground-based timber harvesting production through computer simulation

    Science.gov (United States)

    Jingxin Wang; Chris B. LeDoux

    2003-01-01

    Estimating ground-based timber harvesting systems production with an object oriented methodology was investigated. The estimation model developed generates stands of trees, simulates chain saw, drive-to-tree feller-buncher, swing-to-tree single-grip harvester felling, and grapple skidder and forwarder extraction activities, and analyzes costs and productivity. It also...

  3. On reconciling ground-based with spaceborne normalized radar cross section measurements

    DEFF Research Database (Denmark)

    Baumgartner, Francois; Munk, Jens; Jezek, K C

    2002-01-01

    This study examines differences in the normalized radar cross section, derived from ground-based versus spaceborne radar data. A simple homogeneous half-space model, indicates that agreement between the two improves as 1) the distance from the scatterer is increased; and/or 2) the extinction...

  4. Validation of the CrIS fast physical NH3 retrieval with ground-based FTIR

    NARCIS (Netherlands)

    Dammers, E.; Shephard, M.W.; Palm, M.; Cady-Pereira, K.; Capps, S.; Lutsch, E.; Strong, K.; Hannigan, J.W.; Ortega, I.; Toon, G.C.; Stremme, W.; Grutter, M.; Jones, N.; Smale, D.; Siemons, J.; Hrpcek, K.; Tremblay, D.; Schaap, M.; Notholt, J.; Willem Erisman, J.

    2017-01-01

    Presented here is the validation of the CrIS (Cross-track Infrared Sounder) fast physical NH3 retrieval (CFPR) column and profile measurements using ground-based Fourier transform infrared (FTIR) observations. We use the total columns and profiles from seven FTIR sites in the Network for the

  5. Retrieval of liquid water cloud properties from ground-based remote sensing observations

    NARCIS (Netherlands)

    Knist, C.L.

    2014-01-01

    Accurate ground-based remotely sensed microphysical and optical properties of liquid water clouds are essential references to validate satellite-observed cloud properties and to improve cloud parameterizations in weather and climate models. This requires the evaluation of algorithms for retrieval of

  6. Modern developments for ground-based monitoring of fire behavior and effects

    Science.gov (United States)

    Colin C. Hardy; Robert Kremens; Matthew B. Dickinson

    2010-01-01

    Advances in electronic technology over the last several decades have been staggering. The cost of electronics continues to decrease while system performance increases seemingly without limit. We have applied modern techniques in sensors, electronics and instrumentation to create a suite of ground based diagnostics that can be used in laboratory (~ 1 m2), field scale...

  7. Submillimetric motion detection with a 94 GHz ground based synthetic aperture radar

    OpenAIRE

    Martinez Cervera, Arturo; Lort Cuenca, Marc; Aguasca Solé, Alberto; Broquetas Ibars, Antoni

    2015-01-01

    The paper presents the validation and experimental assessment of a 94 GHz (W-Band) CW-FM Radar that can be configured as a Ground Based SAR for high resolution imaging and interferometry. Several experimental campaigns have been carried out to assess the capability of the system to remotely observe submillimetric deformation and vibration in infrastructures. Peer Reviewed

  8. Ground-based forest harvesting effects on soil physical properties and Douglas-fir growth.

    Science.gov (United States)

    Adrian Ares; Thomas A. Terry; Richard E. Miller; Harry W. Anderson; Barry L. Flaming

    2005-01-01

    Soil properties and forest productivity can be affected by heavy equipment used for harvest and site preparation but these impacts vary greatly with site conditions and operational practices. We assessed the effects of ground-based logging on soil physical properties and subsequent Douglas-fir [Pseudotsuga menziesii (Mirb) Franco] growth on a highly...

  9. Overview of Boundary Layer Clouds Using Satellite and Ground-Based Measurements

    Science.gov (United States)

    Xi, B.; Dong, X.; Wu, P.; Qiu, S.

    2017-12-01

    A comprehensive summary of boundary layer clouds properties based on our few recently studies will be presented. The analyses include the global cloud fractions and cloud macro/micro- physical properties based on satellite measurements using both CERES-MODIS and CloudSat/Caliposo data products,; the annual/seasonal/diurnal variations of stratocumulus clouds over different climate regions (mid-latitude land, mid-latitude ocean, and Arctic region) using DOE ARM ground-based measurements over Southern great plain (SGP), Azores (GRW), and North slope of Alaska (NSA) sites; the impact of environmental conditions to the formation and dissipation process of marine boundary layer clouds over Azores site; characterizing Arctice mixed-phase cloud structure and favorable environmental conditions for the formation/maintainess of mixed-phase clouds over NSA site. Though the presentation has widely spread topics, we will focus on the representation of the ground-based measurements over different climate regions; evaluation of satellite retrieved cloud properties using these ground-based measurements, and understanding the uncertainties of both satellite and ground-based retrievals and measurements.

  10. Telescopes and Techniques

    CERN Document Server

    Kitchin, C R

    2013-01-01

    Telescopes and Techniques has proved itself in its first two editions, having become probably one of the most widely used astronomy texts, both for amateur astronomers and astronomy and astrophysics undergraduates. Both earlier editions of the book were widely used for introductory practical astronomy courses in many universities. In this Third Edition the author guides the reader through the mathematics, physics and practical techniques needed to use today's telescopes (from the smaller models to the larger instruments installed in many colleges) and how to find objects in the sky. Most of the physics and engineering involved is described fully and requires little prior knowledge or experience. Both visual and electronic imaging techniques are covered, together with an introduction to how data (measurements) should be processed and analyzed. A simple introduction to radio telescopes is also included. Brief coverage of the more advanced topics of photometry and spectroscopy are included, but mainly to enable ...

  11. Amateur Telescope Making

    Science.gov (United States)

    Tonkin, Stephen

    Many amateur astronomers make their own instruments, either because of financial considerations or because they are just interested. Amateur Telescope Making offers a variety of designs for telescopes, mounts and drives which are suitable for the home-constructor. The designs range from simple to advanced, but all are within the range of a moderately well-equipped home workshop. The book not only tells the reader what he can construct, but also what it is sensible to construct given what time is available commercially. Thus each chapter begins with reasons for undertaking the project, then looks at theoretical consideration before finishing with practical instructions and advice. An indication is given as to the skills required for the various projects. Appendices list reputable sources of (mail order) materials and components. The telescopes and mounts range from "shoestring" (very cheap) instruments to specialist devices that are unavailable commercially.

  12. Ground-Based Global Navigation Satellite System (GNSS) GLONASS Broadcast Ephemeris Data (hourly files) from NASA CDDIS

    Data.gov (United States)

    National Aeronautics and Space Administration — This dataset consists of ground-based Global Navigation Satellite System (GNSS) GLObal NAvigation Satellite System (GLONASS) Broadcast Ephemeris Data (hourly files)...

  13. Modeling satellite-Earth quantum channel downlinks with adaptive-optics coupling to single-mode fibers

    Science.gov (United States)

    Gruneisen, Mark T.; Flanagan, Michael B.; Sickmiller, Brett A.

    2017-12-01

    The efficient coupling of photons from a free-space quantum channel into a single-mode optical fiber (SMF) has important implications for quantum network concepts involving SMF interfaces to quantum detectors, atomic systems, integrated photonics, and direct coupling to a fiber network. Propagation through atmospheric turbulence, however, leads to wavefront errors that degrade mode matching with SMFs. In a free-space quantum channel, this leads to photon losses in proportion to the severity of the aberration. This is particularly problematic for satellite-Earth quantum channels, where atmospheric turbulence can lead to significant wavefront errors. This report considers propagation from low-Earth orbit to a terrestrial ground station and evaluates the efficiency with which photons couple either through a circular field stop or into an SMF situated in the focal plane of the optical receiver. The effects of atmospheric turbulence on the quantum channel are calculated numerically and quantified through the quantum bit error rate and secure key generation rates in a decoy-state BB84 protocol. Numerical simulations include the statistical nature of Kolmogorov turbulence, sky radiance, and an adaptive-optics system under closed-loop control.

  14. Noninvasive near infrared autofluorescence imaging of retinal pigment epithelial cells in the human retina using adaptive optics.

    Science.gov (United States)

    Liu, Tao; Jung, HaeWon; Liu, Jianfei; Droettboom, Michael; Tam, Johnny

    2017-10-01

    The retinal pigment epithelial (RPE) cells contain intrinsic fluorophores that can be visualized using infrared autofluorescence (IRAF). Although IRAF is routinely utilized in the clinic for visualizing retinal health and disease, currently, it is not possible to discern cellular details using IRAF due to limits in resolution. We demonstrate that the combination of adaptive optics (AO) with IRAF (AO-IRAF) enables higher-resolution imaging of the IRAF signal, revealing the RPE mosaic in the living human eye. Quantitative analysis of visualized RPE cells in 10 healthy subjects across various eccentricities demonstrates the possibility for in vivo density measurements of RPE cells, which range from 6505 to 5388 cells/mm 2 for the areas measured (peaking at the fovea). We also identified cone photoreceptors in relation to underlying RPE cells, and found that RPE cells support on average up to 18.74 cone photoreceptors in the fovea down to an average of 1.03 cone photoreceptors per RPE cell at an eccentricity of 6 mm. Clinical application of AO-IRAF to a patient with retinitis pigmentosa illustrates the potential for AO-IRAF imaging to become a valuable complementary approach to the current landscape of high resolution imaging modalities.

  15. Robo-AO Kepler Asteroseismic Survey. I. Adaptive Optics Imaging of 99 Asteroseismic Kepler Dwarfs and Subgiants

    Energy Technology Data Exchange (ETDEWEB)

    Schonhut-Stasik, Jessica S.; Baranec, Christoph; Huber, Daniel; Atkinson, Dani; Hagelberg, Janis; Marel, Nienke van der; Hodapp, Klaus W. [Institute for Astronomy, University of Hawai‘i at Mānoa, Hilo, HI 96720-2700 (United States); Ziegler, Carl; Law, Nicholas M. [Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3255 (United States); Gaidos, Eric [Department of Geology and Geophysics, University of Hawai‘i at Mānoa, Honolulu, HI 96822 (United States); Riddle, Reed, E-mail: jstasik@hawaii.edu [Division of Physics, Mathematics, and Astronomy, California Institute of Technology, Pasadena, CA 91125 (United States)

    2017-10-01

    We used the Robo-AO laser adaptive optics (AOs) system to image 99 main sequence and subgiant stars that have Kepler -detected asteroseismic signals. Robo-AO allows us to resolve blended secondary sources at separations as close as ∼0.″15 that may contribute to the measured Kepler light curves and affect asteroseismic analysis and interpretation. We report eight new secondary sources within 4.″0 of these Kepler asteroseismic stars. We used Subaru and Keck AOs to measure differential infrared photometry for these candidate companion systems. Two of the secondary sources are likely foreground objects, while the remaining six are background sources; however, we cannot exclude the possibility that three of the objects may be physically associated. We measured a range of i ′-band amplitude dilutions for the candidate companion systems from 0.43% to 15.4%. We find that the measured amplitude dilutions are insufficient to explain the previously identified excess scatter in the relationship between asteroseismic oscillation amplitude and the frequency of maximum power.

  16. SEARCHING FOR BINARY Y DWARFS WITH THE GEMINI MULTI-CONJUGATE ADAPTIVE OPTICS SYSTEM (GeMS)

    International Nuclear Information System (INIS)

    Opitz, Daniela; Tinney, C. G.; Faherty, Jacqueline K.; Sweet, Sarah; Gelino, Christopher R.; Kirkpatrick, J. Davy

    2016-01-01

    The NASA Wide-field Infrared Survey Explorer (WISE) has discovered almost all the known members of the new class of Y-type brown dwarfs. Most of these Y dwarfs have been identified as isolated objects in the field. It is known that binaries with L- and T-type brown dwarf primaries are less prevalent than either M-dwarf or solar-type primaries, they tend to have smaller separations and are more frequently detected in near-equal mass configurations. The binary statistics for Y-type brown dwarfs, however, are sparse, and so it is unclear if the same trends that hold for L- and T-type brown dwarfs also hold for Y-type ones. In addition, the detection of binary companions to very cool Y dwarfs may well be the best means available for discovering even colder objects. We present results for binary properties of a sample of five WISE Y dwarfs with the Gemini Multi-Conjugate Adaptive Optics System. We find no evidence for binary companions in these data, which suggests these systems are not equal-luminosity (or equal-mass) binaries with separations larger than ∼0.5–1.9 AU. For equal-mass binaries at an age of 5 Gyr, we find that the binary binding energies ruled out by our observations (i.e., 10 42 erg) are consistent with those observed in previous studies of hotter ultra-cool dwarfs

  17. HIGH-REDSHIFT DUST OBSCURED GALAXIES: A MORPHOLOGY-SPECTRAL ENERGY DISTRIBUTION CONNECTION REVEALED BY KECK ADAPTIVE OPTICS

    International Nuclear Information System (INIS)

    Melbourne, J.; Matthews, K.; Soifer, B. T.

    2009-01-01

    A simple optical to mid-IR color selection, R - [24]>14, i.e., f ν (24 μm)/f ν (R) ∼> 1000, identifies highly dust obscured galaxies (DOGs) with typical redshifts of z ∼ 2 ± 0.5. Extreme mid-IR luminosities (L IR > 10 12-14 ) suggest that DOGs are powered by a combination of active galactic nuclei (AGNs) and star formation, possibly driven by mergers. In an effort to compare their photometric properties with their rest-frame optical morphologies, we obtained high-spatial resolution (0.''05-0.''1) Keck Adaptive Optics K'-band images of 15 DOGs. The images reveal a wide range of morphologies, including small exponential disks (eight of 15), small ellipticals (four of 15), and unresolved sources (two of 15). One particularly diffuse source could not be classified because of low signal-to-noise ratio. We find a statistically significant correlation between galaxy concentration and mid-IR luminosity, with the most luminous DOGs exhibiting higher concentration and smaller physical size. DOGs with high concentration also tend to have spectral energy distributions (SEDs) suggestive of AGN activity. Thus, central AGN light may be biasing the morphologies of the more luminous DOGs to higher concentration. Conversely, more diffuse DOGs tend to show an SED shape suggestive of star formation. Two of 15 in the sample show multiple resolved components with separations of ∼1 kpc, circumstantial evidence for ongoing mergers.

  18. Real-time wavefront processors for the next generation of adaptive optics systems: a design and analysis

    Science.gov (United States)

    Truong, Tuan; Brack, Gary L.; Troy, Mitchell; Trinh, Thang; Shi, Fang; Dekany, Richard G.

    2003-02-01

    Adaptive optics (AO) systems currently under investigation will require at least two orders of magitude increase in the number of actuators, which in turn translates to effectively a 104 increase in compute latency. Since the performance of an AO system invariably improves as the compute latency decreases, it is important to study how today's computer systems will scale to address this expected increase in actuator utilization. This paper answers this question by characterizing the performance of a single deformable mirror (DM) Shack-Hartmann natural guide star AO system implemented on the present-generation digital signal processor (DSP) TMS320C6701 from Texas Instruments. We derive the compute latency of such a system in terms of a few basic parameters, such as the number of DM actuators, the number of data channels used to read out the camera pixels, the number of DSPs, the available memory bandwidth, as well as the inter-processor communication (IPC) bandwidth and the pixel transfer rate. We show how the results would scale for future systems that utilizes multiple DMs and guide stars. We demonstrate that the principal performance bottleneck of such a system is the available memory bandwidth of the processors and to lesser extent the IPC bandwidth. This paper concludes with suggestions for mitigating this bottleneck.

  19. Adaptive optics scanning laser ophthalmoscope using liquid crystal on silicon spatial light modulator: Performance study with involuntary eye movement

    Science.gov (United States)

    Huang, Hongxin; Toyoda, Haruyoshi; Inoue, Takashi

    2017-09-01

    The performance of an adaptive optics scanning laser ophthalmoscope (AO-SLO) using a liquid crystal on silicon spatial light modulator and Shack-Hartmann wavefront sensor was investigated. The system achieved high-resolution and high-contrast images of human retinas by dynamic compensation for the aberrations in the eyes. Retinal structures such as photoreceptor cells, blood vessels, and nerve fiber bundles, as well as blood flow, could be observed in vivo. We also investigated involuntary eye movements and ascertained microsaccades and drifts using both the retinal images and the aberrations recorded simultaneously. Furthermore, we measured the interframe displacement of retinal images and found that during eye drift, the displacement has a linear relationship with the residual low-order aberration. The estimated duration and cumulative displacement of the drift were within the ranges estimated by a video tracking technique. The AO-SLO would not only be used for the early detection of eye diseases, but would also offer a new approach for involuntary eye movement research.

  20. NEAR-INFRARED ADAPTIVE OPTICS IMAGING OF INFRARED LUMINOUS GALAXIES: THE BRIGHTEST CLUSTER MAGNITUDE-STAR FORMATION RATE RELATION

    International Nuclear Information System (INIS)

    Randriamanakoto, Z.; Väisänen, P.; Escala, A.; Kankare, E.; Kotilainen, J.; Mattila, S.; Ryder, S.

    2013-01-01

    We have established a relation between the brightest super star cluster (SSC) magnitude in a galaxy and the host star formation rate (SFR) for the first time in the near-infrared (NIR). The data come from a statistical sample of ∼40 luminous IR galaxies (LIRGs) and starbursts utilizing K-band adaptive optics imaging. While expanding the observed relation to longer wavelengths, less affected by extinction effects, it also pushes to higher SFRs. The relation we find, M K ∼ –2.6log SFR, is similar to that derived previously in the optical and at lower SFRs. It does not, however, fit the optical relation with a single optical to NIR color conversion, suggesting systematic extinction and/or age effects. While the relation is broadly consistent with a size-of-sample explanation, we argue physical reasons for the relation are likely as well. In particular, the scatter in the relation is smaller than expected from pure random sampling strongly suggesting physical constraints. We also derive a quantifiable relation tying together cluster-internal effects and host SFR properties to possibly explain the observed brightest SSC magnitude versus SFR dependency

  1. Space astronomy for the mid-21st century: Robotically maintained space telescopes

    Science.gov (United States)

    Schartel, N.

    2012-04-01

    The historical development of ground based astronomical telescopes leads us to expect that space-based astronomical telescopes will need to be operational for many decades. The exchange of scientific instruments in space will be a prerequisite for the long lasting scientific success of such missions. Operationally, the possibility to repair or replace key spacecraft components in space will be mandatory. We argue that these requirements can be fulfilled with robotic missions and see the development of the required engineering as the main challenge. Ground based operations, scientifically and technically, will require a low operational budget of the running costs. These can be achieved through enhanced autonomy of the spacecraft and mission independent concepts for the support of the software. This concept can be applied to areas where the mirror capabilities do not constrain the lifetime of the mission. Online material is available at the CDS via http://cdsarc.u-strasbg.fr/cgi-bin/qcat?J/AN/333/209

  2. Detection of planets in extremely weak central perturbation microlensing events via next-generation ground-based surveys

    International Nuclear Information System (INIS)

    Chung, Sun-Ju; Lee, Chung-Uk; Koo, Jae-Rim

    2014-01-01

    Even though the recently discovered high-magnification event MOA-2010-BLG-311 had complete coverage over its peak, confident planet detection did not happen due to extremely weak central perturbations (EWCPs, fractional deviations of ≲ 2%). For confident detection of planets in EWCP events, it is necessary to have both high cadence monitoring and high photometric accuracy better than those of current follow-up observation systems. The next-generation ground-based observation project, Korea Microlensing Telescope Network (KMTNet), satisfies these conditions. We estimate the probability of occurrence of EWCP events with fractional deviations of ≤2% in high-magnification events and the efficiency of detecting planets in the EWCP events using the KMTNet. From this study, we find that the EWCP events occur with a frequency of >50% in the case of ≲ 100 M E planets with separations of 0.2 AU ≲ d ≲ 20 AU. We find that for main-sequence and sub-giant source stars, ≳ 1 M E planets in EWCP events with deviations ≤2% can be detected with frequency >50% in a certain range that changes with the planet mass. However, it is difficult to detect planets in EWCP events of bright stars like giant stars because it is easy for KMTNet to be saturated around the peak of the events because of its constant exposure time. EWCP events are caused by close, intermediate, and wide planetary systems with low-mass planets and close and wide planetary systems with massive planets. Therefore, we expect that a much greater variety of planetary systems than those already detected, which are mostly intermediate planetary systems, regardless of the planet mass, will be significantly detected in the near future.

  3. Ground-based characterization of Hayabusa2 mission target asteroid 162173 Ryugu: constraining mineralogical composition in preparation for spacecraft operations

    Science.gov (United States)

    Le Corre, Lucille; Sanchez, Juan A.; Reddy, Vishnu; Takir, Driss; Cloutis, Edward A.; Thirouin, Audrey; Becker, Kris J.; Li, Jian-Yang; Sugita, Seiji; Tatsumi, Eri

    2018-03-01

    Asteroids that are targets of spacecraft missions are interesting because they present us with an opportunity to validate ground-based spectral observations. One such object is near-Earth asteroid (NEA) (162173) Ryugu, which is the target of the Japanese Space Agency's (JAXA) Hayabusa2 sample return mission. We observed Ryugu using the 3-m NASA Infrared Telescope Facility on Mauna Kea, Hawaii, on 2016 July 13 to constrain the object's surface composition, meteorite analogues, and link to other asteroids in the main belt and NEA populations. We also modelled its photometric properties using archival data. Using the Lommel-Seeliger model we computed the predicted flux for Ryugu at a wide range of viewing geometries as well as albedo quantities such as geometric albedo, phase integral, and spherical Bond albedo. Our computed albedo quantities are consistent with results from Ishiguro et al. Our spectral analysis has found a near-perfect match between our spectrum of Ryugu and those of NEA (85275) 1994 LY and Mars-crossing asteroid (316720) 1998 BE7, suggesting that their surface regoliths have similar composition. We compared Ryugu's spectrum with that of main belt asteroid (302) Clarissa, the largest asteroid in the Clarissa asteroid family, suggested as a possible source of Ryugu by Campins et al. We found that the spectrum of Clarissa shows significant differences with our spectrum of Ryugu, but it is similar to the spectrum obtained by Moskovitz et al. The best possible meteorite analogues for our spectrum of Ryugu are two CM2 carbonaceous chondrites, Mighei and ALH83100.

  4. Exploring Galileo's Telescope

    Science.gov (United States)

    Straulino, Samuele; Terzuoli, Alessandra

    2010-01-01

    In the first months of 2009, the International Year of Astronomy, the authors developed an educational project for middle-level students connected with the first astronomical discoveries that Galileo Galilei (1564-1642) made 400 years ago. The project included the construction of a basic telescope and the observation of the Moon. The project, if…

  5. Taiwan Automated Telescope Network

    Directory of Open Access Journals (Sweden)

    Dean-Yi Chou

    2010-01-01

    can be operated either interactively or fully automatically. In the interactive mode, it can be controlled through the Internet. In the fully automatic mode, the telescope operates with preset parameters without any human care, including taking dark frames and flat frames. The network can also be used for studies that require continuous observations for selected objects.

  6. The Falcon Telescope Network

    Science.gov (United States)

    Chun, F.; Tippets, R.; Dearborn, M.; Gresham, K.; Freckleton, R.; Douglas, M.

    2014-09-01

    The Falcon Telescope Network (FTN) is a global network of small aperture telescopes developed by the Center for Space Situational Awareness Research in the Department of Physics at the United States Air Force Academy (USAFA). Consisting of commercially available equipment, the FTN is a collaborative effort between USAFA and other educational institutions ranging from two- and four-year colleges to major research universities. USAFA provides the equipment (e.g. telescope, mount, camera, filter wheel, dome, weather station, computers and storage devices) while the educational partners provide the building and infrastructure to support an observatory. The user base includes USAFA along with K-12 and higher education faculty and students. Since the FTN has a general use purpose, objects of interest include satellites, astronomical research, and STEM support images. The raw imagery, all in the public domain, will be accessible to FTN partners and will be archived at USAFA in the Cadet Space Operations Center. FTN users will be able to submit observational requests via a web interface. The requests will then be prioritized based on the type of user, the object of interest, and a user-defined priority. A network wide schedule will be developed every 24 hours and each FTN site will autonomously execute its portion of the schedule. After an observational request is completed, the FTN user will receive notification of collection and a link to the data. The Falcon Telescope Network is an ambitious endeavor, but demonstrates the cooperation that can be achieved by multiple educational institutions.

  7. High-redshift supernova rates measured with the gravitational telescope A 1689

    OpenAIRE

    Petrushevska, T.; Amanullah, R.; Goobar, A.; Fabbro, S.; Johansson, J.; Kjellsson, T.; Lidman, C.; Paech, K.; Richard, J.; Dahle, Håkon; Ferretti, R.; Kneib, J.-P.; Limousin, M.; Nordin, J.; Stanishev, V.

    2016-01-01

    Aims. We present a ground-based, near-infrared search for lensed supernovae behind the massive cluster Abell 1689 at z = 0.18, which is one of the most powerful gravitational telescopes that nature provides. Methods. Our survey was based on multi-epoch J-band observations with the HAWK-I instrument on VLT, with supporting optical data from the Nordic Optical Telescope. Results. Our search resulted in the discovery of five photometrically classified, core-collapse supernovae with high re...

  8. The Hubble Space Telescope from concept to success

    CERN Document Server

    Shayler, David J

    2016-01-01

    The highly successful Hubble Space Telescope was meant to change our view and understanding of the universe. Within weeks of its launch in 1990, however, the space community was shocked to find out that the primary mirror of the telescope was flawed. It was only the skills of scientists and engineers on the ground and the daring talents of astronauts sent to service the telescope in December 1993 that saved the mission. For over two decades NASA had developed the capabilities to service a payload in orbit. This involved numerous studies and the creation of a ground-based infrastructure to support the challenging missions. Unique tools and EVA hardware supported the skills developed in crew training that then enabled astronauts to complete a demanding series of spacewalks. Drawing upon first hand interviews with those closely involved in the project over thirty years ago this story explains the development of the servicing mission concept and the hurdles that had to be overcome to not only launch the telescope...

  9. Moving toward queue operations at the Large Binocular Telescope Observatory

    Science.gov (United States)

    Edwards, Michelle L.; Summers, Doug; Astier, Joseph; Suarez Sola, Igor; Veillet, Christian; Power, Jennifer; Cardwell, Andrew; Walsh, Shane

    2016-07-01

    The Large Binocular Telescope Observatory (LBTO), a joint scientific venture between the Instituto Nazionale di Astrofisica (INAF), LBT Beteiligungsgesellschaft (LBTB), University of Arizona, Ohio State University (OSU), and the Research Corporation, is one of the newest additions to the world's collection of large optical/infrared ground-based telescopes. With its unique, twin 8.4m mirror design providing a 22.8 meter interferometric baseline and the collecting area of an 11.8m telescope, LBT has a window of opportunity to exploit its singular status as the "first" of the next generation of Extremely Large Telescopes (ELTs). Prompted by urgency to maximize scientific output during this favorable interval, LBTO recently re-evaluated its operations model and developed a new strategy that augments classical observing with queue. Aided by trained observatory staff, queue mode will allow for flexible, multi-instrument observing responsive to site conditions. Our plan is to implement a staged rollout that will provide many of the benefits of queue observing sooner rather than later - with more bells and whistles coming in future stages. In this paper, we outline LBTO's new scientific model, focusing specifically on our "lean" resourcing and development, reuse and adaptation of existing software, challenges presented from our one-of-a-kind binocular operations, and lessons learned. We also outline further stages of development and our ultimate goals for queue.

  10. Prime focus architectures for large space telescopes: reduce surfaces to save cost

    Science.gov (United States)

    Breckinridge, J. B.; Lillie, C. F.

    2016-07-01

    Conceptual architectures are now being developed to identify future directions for post JWST large space telescope systems to operate in the UV Optical and near IR regions of the spectrum. Here we show that the cost of optical surfaces within large aperture telescope/instrument systems can exceed $100M/reflection when expressed in terms of the aperture increase needed to over come internal absorption loss. We recommend a program in innovative optical design to minimize the number of surfaces by considering multiple functions for mirrors. An example is given using the Rowland circle imaging spectrometer systems for UV space science. With few exceptions, current space telescope architectures are based on systems optimized for ground-based astronomy. Both HST and JWST are classical "Cassegrain" telescopes derived from the ground-based tradition to co-locate the massive primary mirror and the instruments at the same end of the metrology structure. This requirement derives from the dual need to minimize observatory dome size and cost in the presence of the Earth's 1-g gravitational field. Space telescopes, however function in the zero gravity of space and the 1- g constraint is relieved to the advantage of astronomers. Here we suggest that a prime focus large aperture telescope system in space may have potentially have higher transmittance, better pointing, improved thermal and structural control, less internal polarization and broader wavelength coverage than Cassegrain telescopes. An example is given showing how UV astronomy telescopes use single optical elements for multiple functions and therefore have a minimum number of reflections.

  11. Launch Will Create a Radio Telescope Larger than Earth

    Science.gov (United States)

    NASA and the National Radio Astronomy Observatory are joining with an international consortium of space agencies to support the launch of a Japanese satellite next week that will create the largest astronomical "instrument" ever built -- a radio telescope more than two-and-a-half times the diameter of the Earth that will give astronomers their sharpest view yet of the universe. The launch of the Very Long Baseline Interferometry (VLBI) Space Observatory Program (VSOP) satellite by Japan's Institute of Space and Astronautical Science (ISAS) is scheduled for Feb. 10 at 11:50 p.m. EST (1:50 p.m. Feb. 11, Japan time.) The satellite is part of an international collaboration led by ISAS and backed by Japan's National Astronomical Observatory; NASA's Jet Propulsion Laboratory (JPL), Pasadena, CA; the National Science Foundation's National Radio Astronomy Observatory (NRAO), Socorro, NM; the Canadian Space Agency; the Australia Telescope National Facility; the European VLBI Network and the Joint Institute for Very Long Baseline Interferometry in Europe. Very long baseline interferometry is a technique used by radio astronomers to electronically link widely separated radio telescopes together so they work as if they were a single instrument with extraordinarily sharp "vision," or resolving power. The wider the distance between telescopes, the greater the resolving power. By taking this technique into space for the first time, astronomers will approximately triple the resolving power previously available with only ground-based telescopes. The satellite system will have resolving power almost 1,000 times greater than the Hubble Space Telescope at optical wavelengths. The satellite's resolving power is equivalent to being able to see a grain of rice in Tokyo from Los Angeles. "Using space VLBI, we can probe the cores of quasars and active galaxies, believed to be powered by super massive black holes," said Dr. Robert Preston, project scientist for the U.S. Space Very Long

  12. Can Telescopes Help Leo Satellites Dodge Most Lethal Impacts?

    Science.gov (United States)

    GUDIEL, ANDREA; Carroll, Joseph; Rowe, David

    2018-01-01

    Authors: Joseph Carroll and David RoweABSTRACT LEO objects are tracked by radar because it works day and night, in all weather. This fits military interest in potentially hostile objects. There is less interest in objects too small to be credible active threats. But accidental hypervelocity impact by even 5-10 mm objects can disable most LEO satellites. Such “cm-class” objects greatly outnumber objects of military interest, and will cause most accidental impact losses.Under good viewing conditions, a sunlit 5mm sphere with 0.15 albedo at 800 km altitude is a 19th magnitude object. A ground-based 0.5m telescope tracking it against a 20 mag/arcsec2 sky can see it in seconds, and provide 1 million such objects in LEO, nearly all debris fragments, mostly cm-class and at 600-1200 km altitude.Maintaining a ~million-item catalog requires a world-wide network of several dozen telescope sites with several telescopes at each site. Each telescope needs a mount capable of ~1,000,000 fast slews/year without wearing out.The paper discusses recent advances that make such a service far more feasible:1. Automated tasking and remote control of distributed telescope networks,2. Direct-drive mounts that can make millions of fast slews without wearing out,3. Telescope optics with low focal curvature that are in focus across large imagers,4. CMOS imagers with 95% peak QE and 1.5e- noise at 2E8 pix/sec readout rates,5. Methods for uncued detection of most lethal LEO debris (eg., >5 mm at 800 km),6. Initial orbit determination using 3 alt-az fixes made during the discovery pass,7. High-speed photometry to infer debris spin axis, to predict drag area changes,8. Better conjunction predictions using explicit modeling of drag area variations.

  13. SHARP - III. First use of adaptive-optics imaging to constrain cosmology with gravitational lens time delays

    NARCIS (Netherlands)

    Chen, Geoff C. -F; Suyu, Sherry H.; Wong, Kenneth C.; Fassnacht, Christopher D.; Chiueh, Tzihong; Halkola, Aleksi; Hu, I. Shing; Auger, Matthew W.; Koopmans, Léon V. E.; Lagattuta, David J.; McKean, John P.; Vegetti, Simona

    2016-01-01

    Accurate and precise measurements of the Hubble constant are critical for testing our current standard cosmological model and revealing possibly new physics. With Hubble Space Telescope (HST) imaging, each strong gravitational lens system with measured time delays can allow one to determine the

  14. Development of a SiPM Camera for a Schwarzschild-Couder Cherenkov Telescope for the Cherenkov Telescope Array

    CERN Document Server

    Otte, A N; Dickinson, H.; Funk, S.; Jogler, T.; Johnson, C.A.; Karn, P.; Meagher, K.; Naoya, H.; Nguyen, T.; Okumura, A.; Santander, M.; Sapozhnikov, L.; Stier, A.; Tajima, H.; Tibaldo, L.; Vandenbroucke, J.; Wakely, S.; Weinstein, A.; Williams, D.A.

    2015-01-01

    We present the development of a novel 11328 pixel silicon photomultiplier (SiPM) camera for use with a ground-based Cherenkov telescope with Schwarzschild-Couder optics as a possible medium-sized telescope for the Cherenkov Telescope Array (CTA). The finely pixelated camera samples air-shower images with more than twice the optical resolution of cameras that are used in current Cherenkov telescopes. Advantages of the higher resolution will be a better event reconstruction yielding improved background suppression and angular resolution of the reconstructed gamma-ray events, which is crucial in morphology studies of, for example, Galactic particle accelerators and the search for gamma-ray halos around extragalactic sources. Packing such a large number of pixels into an area of only half a square meter and having a fast readout directly attached to the back of the sensors is a challenging task. For the prototype camera development, SiPMs from Hamamatsu with through silicon via (TSV) technology are used. We give ...

  15. Using frequency response functions to manage image degradation from equipment vibration in the Daniel K. Inouye Solar Telescope

    Science.gov (United States)

    McBride, William R.; McBride, Daniel R.

    2016-08-01

    The Daniel K Inouye Solar Telescope (DKIST) will be the largest solar telescope in the world, providing a significant increase in the resolution of solar data available to the scientific community. Vibration mitigation is critical in long focal-length telescopes such as the Inouye Solar Telescope, especially when adaptive optics are employed to correct for atmospheric seeing. For this reason, a vibration error budget has been implemented. Initially, the FRFs for the various mounting points of ancillary equipment were estimated using the finite element analysis (FEA) of the telescope structures. FEA analysis is well documented and understood; the focus of this paper is on the methods involved in estimating a set of experimental (measured) transfer functions of the as-built telescope structure for the purpose of vibration management. Techniques to measure low-frequency single-input-single-output (SISO) frequency response functions (FRF) between vibration source locations and image motion on the focal plane are described. The measurement equipment includes an instrumented inertial-mass shaker capable of operation down to 4 Hz along with seismic accelerometers. The measurement of vibration at frequencies below 10 Hz with good signal-to-noise ratio (SNR) requires several noise reduction techniques including high-performance windows, noise-averaging, tracking filters, and spectral estimation. These signal-processing techniques are described in detail.

  16. Informing hydrological models with ground-based time-lapse relative gravimetry: potential and limitations

    DEFF Research Database (Denmark)

    Bauer-Gottwein, Peter; Christiansen, Lars; Rosbjerg, Dan

    2011-01-01

    parameter uncertainty decreased significantly when TLRG data was included in the inversion. The forced infiltration experiment caused changes in unsaturated zone storage, which were monitored using TLRG and ground-penetrating radar. A numerical unsaturated zone model was subsequently conditioned on both......Coupled hydrogeophysical inversion emerges as an attractive option to improve the calibration and predictive capability of hydrological models. Recently, ground-based time-lapse relative gravity (TLRG) measurements have attracted increasing interest because there is a direct relationship between...

  17. (DCT-FY08) Target Detection Using Multiple Modality Airborne and Ground Based Sensors

    Science.gov (United States)

    2013-03-01

    resolution SIFT grids in metric-topological SLAM ,” in Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2009. [4] M. Bosse and R...single camera SLAM ,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 29, no. 6, pp. 1052–1067, 2007. [7] D. Nister, O. Naroditsky, and J. Bergen...segmentation with ground-based and airborne LIDAR range data,” in Proceedings of the Fourth International Symposium on 3D Data Processing

  18. The SPARC water vapor assessment II: intercomparison of satellite and ground-based microwave measurements

    Science.gov (United States)

    Nedoluha, Gerald E.; Kiefer, Michael; Lossow, Stefan; Gomez, R. Michael; Kämpfer, Niklaus; Lainer, Martin; Forkman, Peter; Christensen, Ole Martin; Oh, Jung Jin; Hartogh, Paul; Anderson, John; Bramstedt, Klaus; Dinelli, Bianca M.; Garcia-Comas, Maya; Hervig, Mark; Murtagh, Donal; Raspollini, Piera; Read, William G.; Rosenlof, Karen; Stiller, Gabriele P.; Walker, Kaley A.

    2017-12-01

    As part of the second SPARC (Stratosphere-troposphere Processes And their Role in Climate) water vapor assessment (WAVAS-II), we present measurements taken from or coincident with seven sites from which ground-based microwave instruments measure water vapor in the middle atmosphere. Six of the ground-based instruments are part of the Network for the Detection of Atmospheric Composition Change (NDACC) and provide datasets that can be used for drift and trend assessment. We compare measurements from these ground-based instruments with satellite datasets that have provided retrievals of water vapor in the lower mesosphere over extended periods since 1996. We first compare biases between the satellite and ground-based instruments from the upper stratosphere to the upper mesosphere. We then show a number of time series comparisons at 0.46 hPa, a level that is sensitive to changes in H2O and CH4 entering the stratosphere but, because almost all CH4 has been oxidized, is relatively insensitive to dynamical variations. Interannual variations and drifts are investigated with respect to both the Aura Microwave Limb Sounder (MLS; from 2004 onwards) and each instrument's climatological mean. We find that the variation in the interannual difference in the mean H2O measured by any two instruments is typically ˜ 1%. Most of the datasets start in or after 2004 and show annual increases in H2O of 0-1 % yr-1. In particular, MLS shows a trend of between 0.5 % yr-1 and 0.7 % yr-1 at the comparison sites. However, the two longest measurement datasets used here, with measurements back to 1996, show much smaller trends of +0.1 % yr-1 (at Mauna Loa, Hawaii) and -0.1 % yr-1 (at Lauder, New Zealand).

  19. Testing a ground-based canopy model using the wind river canopy crane

    Science.gov (United States)

    Robert Van Pelt; Malcolm P. North

    1999-01-01

    A ground-based canopy model that estimates the volume of occupied space in forest canopies was tested using the Wind River Canopy Crane. A total of 126 trees in a 0.25 ha area were measured from the ground and directly from a gondola suspended from the crane. The trees were located in a low elevation, old-growth forest in the southern Washington Cascades. The ground-...

  20. The SPARC water vapor assessment II: intercomparison of satellite and ground-based microwave measurements

    Directory of Open Access Journals (Sweden)

    G. E. Nedoluha

    2017-12-01

    Full Text Available As part of the second SPARC (Stratosphere–troposphere Processes And their Role in Climate water vapor assessment (WAVAS-II, we present measurements taken from or coincident with seven sites from which ground-based microwave instruments measure water vapor in the middle atmosphere. Six of the ground-based instruments are part of the Network for the Detection of Atmospheric Composition Change (NDACC and provide datasets that can be used for drift and trend assessment. We compare measurements from these ground-based instruments with satellite datasets that have provided retrievals of water vapor in the lower mesosphere over extended periods since 1996. We first compare biases between the satellite and ground-based instruments from the upper stratosphere to the upper mesosphere. We then show a number of time series comparisons at 0.46 hPa, a level that is sensitive to changes in H2O and CH4 entering the stratosphere but, because almost all CH4 has been oxidized, is relatively insensitive to dynamical variations. Interannual variations and drifts are investigated with respect to both the Aura Microwave Limb Sounder (MLS; from 2004 onwards and each instrument's climatological mean. We find that the variation in the interannual difference in the mean H2O measured by any two instruments is typically  ∼  1%. Most of the datasets start in or after 2004 and show annual increases in H2O of 0–1 % yr−1. In particular, MLS shows a trend of between 0.5 % yr−1 and 0.7 % yr−1 at the comparison sites. However, the two longest measurement datasets used here, with measurements back to 1996, show much smaller trends of +0.1 % yr−1 (at Mauna Loa, Hawaii and −0.1 % yr−1 (at Lauder, New Zealand.