WorldWideScience

Sample records for ground water generally

  1. General database for ground water site information.

    Science.gov (United States)

    de Dreuzy, Jean-Raynald; Bodin, Jacques; Le Grand, Hervé; Davy, Philippe; Boulanger, Damien; Battais, Annick; Bour, Olivier; Gouze, Philippe; Porel, Gilles

    2006-01-01

    In most cases, analysis and modeling of flow and transport dynamics in ground water systems require long-term, high-quality, and multisource data sets. This paper discusses the structure of a multisite database (the H+ database) developed within the scope of the ERO program (French Environmental Research Observatory, http://www.ore.fr). The database provides an interface between field experimentalists and modelers, which can be used on a daily basis. The database structure enables the storage of a large number of data and data types collected from a given site or multiple-site network. The database is well suited to the integration, backup, and retrieval of data for flow and transport modeling in heterogeneous aquifers. It relies on the definition of standards and uses a templated structure, such that any type of geolocalized data obtained from wells, hydrological stations, and meteorological stations can be handled. New types of platforms other than wells, hydrological stations, and meteorological stations, and new types of experiments and/or parameters could easily be added without modifying the database structure. Thus, we propose that the database structure could be used as a template for designing databases for complex sites. An example application is the H+ database, which gathers data collected from a network of hydrogeological sites associated with the French Environmental Research Observatory.

  2. 40 CFR 264.97 - General ground-water monitoring requirements.

    Science.gov (United States)

    2010-07-01

    ... FACILITIES Releases From Solid Waste Management Units § 264.97 General ground-water monitoring requirements. The owner or operator must comply with the following requirements for any ground-water monitoring... 40 Protection of Environment 25 2010-07-01 2010-07-01 false General ground-water...

  3. Ground water and energy

    Energy Technology Data Exchange (ETDEWEB)

    1980-11-01

    This national workshop on ground water and energy was conceived by the US Department of Energy's Office of Environmental Assessments. Generally, OEA needed to know what data are available on ground water, what information is still needed, and how DOE can best utilize what has already been learned. The workshop focussed on three areas: (1) ground water supply; (2) conflicts and barriers to ground water use; and (3) alternatives or solutions to the various issues relating to ground water. (ACR)

  4. General and Localized corrosion of Austenitic and Borated Stainless Steels in Simulated Concentrated Ground Waters

    Energy Technology Data Exchange (ETDEWEB)

    D. Fix; J. Estill; L. Wong; R. Rebak

    2004-05-28

    Boron containing stainless steels are used in the nuclear industry for applications such as spent fuel storage, control rods and shielding. It was of interest to compare the corrosion resistance of three borated stainless steels with standard austenitic alloy materials such as type 304 and 316 stainless steels. Tests were conducted in three simulated concentrated ground waters at 90 C. Results show that the borated stainless were less resistant to corrosion than the witness austenitic materials. An acidic concentrated ground water was more aggressive than an alkaline concentrated ground water.

  5. General and Localized Corrosion of Austenitic And Borated Stainless Steels in Simulated Concentrated Ground Waters

    Energy Technology Data Exchange (ETDEWEB)

    Estill, J C; Rebak, R B; Fix, D V; Wong, L L

    2004-03-11

    Boron containing stainless steels are used in the nuclear industry for applications such as spent fuel storage, control rods and shielding. It was of interest to compare the corrosion resistance of three borated stainless steels with standard austenitic alloy materials such as type 304 and 316 stainless steels. Tests were conducted in three simulated concentrated ground waters at 90 C. Results show that the borated stainless were less resistant to corrosion than the witness austenitic materials. An acidic concentrated ground water was more aggressive than an alkaline concentrated ground water.

  6. Ground water in Oklahoma

    Science.gov (United States)

    Leonard, A.R.

    1960-01-01

    estimated that about one-third of the water used in the State in 1956, or 400,000 acre-feet, came from ground-water sources. In 1957, 71 percent of the irrigation water used in the State came from underground sources, and ground water was used for irrigation in 57 of the State's 77 counties. More than 300 of the towns and cities of the State obtain all their municipal water supplies from ground water. The major ground-water reservoirs, or aquifers, of Oklahoma may be classed in four general groups: (1) semiconsolidated sand and gravel underlying the High Plains, (2) unconsolidated alluvial deposits of sand and gravel along streams and adjacent to valleys, (3) sandstone aquifers, and (4) limestone aquifers, including, for the purpose of this generalized breakdown, dolomite and gypsum. The locations of these major aquifers are shown on figure 1. Areas on that map do not correspond exactly to outcrops, but are the areas where the formations contain significant quantities of potable water. Near their edges rock formations may be cut through by streams or they may be too thin to contain much water. On the other hand, some formations contain fresh ground water for many miles downdip from their outcrop areas, where wells must first penetrate overlying rocks to reach them. (available as photostat copy only)

  7. Pesticides in Ground Water

    DEFF Research Database (Denmark)

    Bjerg, Poul Løgstrup

    1996-01-01

    Review af: Jack E. Barbash & Elizabeth A. Resek (1996). Pesticides in Ground Water. Distribution trends and governing factors. Ann Arbor Press, Inc. Chelsea, Michigan. pp 588.......Review af: Jack E. Barbash & Elizabeth A. Resek (1996). Pesticides in Ground Water. Distribution trends and governing factors. Ann Arbor Press, Inc. Chelsea, Michigan. pp 588....

  8. Pesticides in Ground Water

    DEFF Research Database (Denmark)

    Bjerg, Poul Løgstrup

    1996-01-01

    Review af: Jack E. Barbash & Elizabeth A. Resek (1996). Pesticides in Ground Water. Distribution trends and governing factors. Ann Arbor Press, Inc. Chelsea, Michigan. pp 588.......Review af: Jack E. Barbash & Elizabeth A. Resek (1996). Pesticides in Ground Water. Distribution trends and governing factors. Ann Arbor Press, Inc. Chelsea, Michigan. pp 588....

  9. A Generalized Approach for the Interpretation of Geophysical Well Logs in Ground-Water Studies - Theory and Application

    Science.gov (United States)

    Paillet, Frederick L.; Crowder, R.E.

    1996-01-01

    Quantitative analysis of geophysical logs in ground-water studies often involves at least as broad a range of applications and variation in lithology as is typically encountered in petroleum exploration, making such logs difficult to calibrate and complicating inversion problem formulation. At the same time, data inversion and analysis depend on inversion model formulation and refinement, so that log interpretation cannot be deferred to a geophysical log specialist unless active involvement with interpretation can be maintained by such an expert over the lifetime of the project. We propose a generalized log-interpretation procedure designed to guide hydrogeologists in the interpretation of geophysical logs, and in the integration of log data into ground-water models that may be systematically refined and improved in an iterative way. The procedure is designed to maximize the effective use of three primary contributions from geophysical logs: (1) The continuous depth scale of the measurements along the well bore; (2) The in situ measurement of lithologic properties and the correlation with hydraulic properties of the formations over a finite sample volume; and (3) Multiple independent measurements that can potentially be inverted for multiple physical or hydraulic properties of interest. The approach is formulated in the context of geophysical inversion theory, and is designed to be interfaced with surface geophysical soundings and conventional hydraulic testing. The step-by-step procedures given in our generalized interpretation and inversion technique are based on both qualitative analysis designed to assist formulation of the interpretation model, and quantitative analysis used to assign numerical values to model parameters. The approach bases a decision as to whether quantitative inversion is statistically warranted by formulating an over-determined inversion. If no such inversion is consistent with the inversion model, quantitative inversion is judged not

  10. Ground water and climate change

    NARCIS (Netherlands)

    Taylor, R.G.; Scanlon, B.; Döll, P.; Rodell, M.; Beek, R. van; Wada, Y.; Longuevergne, L.; Leblanc, M.; Famiglietti, J.S.; Edmunds, M.; Konikow, L.; Green, T.R.; Chen, J.; Taniguchi, M.; Bierkens, M.F.P.; MacDonald, A.; Fan, Y.; Maxwell, R.M.; Yechieli, Y.; Gurdak, J.J.; Allen, D.M.; Shamsudduha, M.; Hiscock, K.; Yeh, Pat J.-F.; Holman, Ian; Treidel, Holger

    2012-01-01

    As the world’s largest distributed store of fresh water, ground water plays a central part in sustaining ecosystems and enabling human adaptation to climate variability and change. The strategic importance of ground water for global water and food security will probably intensify under climate chang

  11. Ground water and climate change

    NARCIS (Netherlands)

    Taylor, R.G.; Scanlon, B.; Döll, P.; Rodell, M.; Beek, R. van; Wada, Y.; Longuevergne, L.; Leblanc, M.; Famiglietti, J.S.; Edmunds, M.; Konikow, L.; Green, T.R.; Chen, J.; Taniguchi, M.; Bierkens, M.F.P.; MacDonald, A.; Fan, Y.; Maxwell, R.M.; Yechieli, Y.; Gurdak, J.J.; Allen, D.M.; Shamsudduha, M.; Hiscock, K.; Yeh, Pat J.-F.; Holman, Ian; Treidel, Holger

    2012-01-01

    As the world’s largest distributed store of fresh water, ground water plays a central part in sustaining ecosystems and enabling human adaptation to climate variability and change. The strategic importance of ground water for global water and food security will probably intensify under climate

  12. Ground water and climate change

    Science.gov (United States)

    Taylor, Richard G.; Scanlon, Bridget; Döll, Petra; Rodell, Matt; van Beek, Rens; Wada, Yoshihide; Longuevergne, Laurent; Leblanc, Marc; Famiglietti, James S.; Edmunds, Mike; Konikow, Leonard; Green, Timothy R.; Chen, Jianyao; Taniguchi, Makoto; Bierkens, Marc F.P.; MacDonald, Alan; Fan, Ying; Maxwell, Reed M.; Yechieli, Yossi; Gurdak, Jason J.; Allen, Diana M.; Shamsudduha, Mohammad; Hiscock, Kevin; Yeh, Pat J.-F.; Holman, Ian; Treidel, Holger

    2012-01-01

    As the world's largest distributed store of fresh water, ground water plays a central part in sustaining ecosystems and enabling human adaptation to climate variability and change. The strategic importance of ground water for global water and food security will probably intensify under climate change as more frequent and intense climate extremes (droughts and floods) increase variability in precipitation, soil moisture and surface water. Here we critically review recent research assessing the impacts of climate on ground water through natural and human-induced processes as well as through groundwater-driven feedbacks on the climate system. Furthermore, we examine the possible opportunities and challenges of using and sustaining groundwater resources in climate adaptation strategies, and highlight the lack of groundwater observations, which, at present, limits our understanding of the dynamic relationship between ground water and climate.

  13. Ground water and climate change

    Science.gov (United States)

    Taylor, Richard G.; Scanlon, Bridget; Döll, Petra; Rodell, Matt; van Beek, Rens; Wada, Yoshihide; Longuevergne, Laurent; Leblanc, Marc; Famiglietti, James S.; Edmunds, Mike; Konikow, Leonard; Green, Timothy R.; Chen, Jianyao; Taniguchi, Makoto; Bierkens, Marc F. P.; MacDonald, Alan; Fan, Ying; Maxwell, Reed M.; Yechieli, Yossi; Gurdak, Jason J.; Allen, Diana M.; Shamsudduha, Mohammad; Hiscock, Kevin; Yeh, Pat J.-F.; Holman, Ian; Treidel, Holger

    2013-04-01

    As the world's largest distributed store of fresh water, ground water plays a central part in sustaining ecosystems and enabling human adaptation to climate variability and change. The strategic importance of ground water for global water and food security will probably intensify under climate change as more frequent and intense climate extremes (droughts and floods) increase variability in precipitation, soil moisture and surface water. Here we critically review recent research assessing the impacts of climate on ground water through natural and human-induced processes as well as through groundwater-driven feedbacks on the climate system. Furthermore, we examine the possible opportunities and challenges of using and sustaining groundwater resources in climate adaptation strategies, and highlight the lack of groundwater observations, which, at present, limits our understanding of the dynamic relationship between ground water and climate.

  14. Ground Water and Climate Change

    Science.gov (United States)

    Taylor, Richard G.; Scanlon, Bridget; Doell, Petra; Rodell, Matt; van Beek, Rens; Wada, Yoshihide; Longuevergne, Laurent; Leblanc, Marc; Famiglietti, James S.; Edmunds, Mike; Konikow, Leonard; Green, Timothy R.; Chen, Jianyao; Taniguchi, Makoto; Bierkens, Marc F. P.; MacDonald, Alan; Fan, Ying; Maxwell, Reed M.; Yechieli, Yossi; Gurdak, Jason J.; Allen, Diana M.; Shamsudduha, Mohammad; Hiscock, Kevin; Yeh, Pat J. -F; Holman, Ian; Treidel, Holger

    2013-01-01

    As the world's largest distributed store of fresh water, ground water plays a central part in sustaining ecosystems and enabling human adaptation to climate variability and change. The strategic importance of ground water for global water and food security will probably intensify under climate change as more frequent and intense climate extremes (droughts and floods) increase variability in precipitation, soil moisture and surface water. Here we critically review recent research assessing the impacts of climate on ground water through natural and human-induced processes as well as through groundwater-driven feedbacks on the climate system. Furthermore, we examine the possible opportunities and challenges of using and sustaining groundwater resources in climate adaptation strategies, and highlight the lack of groundwater observations, which, at present, limits our understanding of the dynamic relationship between ground water and climate.

  15. Hanford site ground water protection management plan

    Energy Technology Data Exchange (ETDEWEB)

    1994-10-01

    Ground water protection at the Hanford Site consists of preventative and remedial measures that are implemented in compliance with a variety of environmental regulations at local, state, and federal levels. These measures seek to ensure that the resource can sustain a broad range of beneficial uses. To effectively coordinate and ensure compliance with applicable regulations, the U.S. Department of Energy has issued DOE Order 5400.1 (DOE 1988a). This order requires all U.S. Department of Energy facilities to prepare separate ground water protection program descriptions and plans. This document describes the Ground Water Protection Management Plan (GPMP) for the Hanford Site located in the state of Washington. DOE Order 5400.1 specifies that the GPMP covers the following general topical areas: (1) documentation of the ground water regime; (2) design and implementation of a ground water monitoring program to support resource management and comply with applicable laws and regulations; (3) a management program for ground water protection and remediation; (4) a summary and identification of areas that may be contaminated with hazardous waste; (5) strategies for controlling hazardous waste sources; (6) a remedial action program; and (7) decontamination, decommissioning, and related remedial action requirements. Many of the above elements are currently covered by existing programs at the Hanford Site; thus, one of the primary purposes of this document is to provide a framework for coordination of existing ground water protection activities. The GPMP provides the ground water protection policy and strategies for ground water protection/management at the Hanford Site, as well as an implementation plan to improve coordination of site ground water activities.

  16. Modeled ground water age distributions

    Science.gov (United States)

    Woolfenden, Linda R.; Ginn, Timothy R.

    2009-01-01

    The age of ground water in any given sample is a distributed quantity representing distributed provenance (in space and time) of the water. Conventional analysis of tracers such as unstable isotopes or anthropogenic chemical species gives discrete or binary measures of the presence of water of a given age. Modeled ground water age distributions provide a continuous measure of contributions from different recharge sources to aquifers. A numerical solution of the ground water age equation of Ginn (1999) was tested both on a hypothetical simplified one-dimensional flow system and under real world conditions. Results from these simulations yield the first continuous distributions of ground water age using this model. Complete age distributions as a function of one and two space dimensions were obtained from both numerical experiments. Simulations in the test problem produced mean ages that were consistent with the expected value at the end of the model domain for all dispersivity values tested, although the mean ages for the two highest dispersivity values deviated slightly from the expected value. Mean ages in the dispersionless case also were consistent with the expected mean ages throughout the physical model domain. Simulations under real world conditions for three dispersivity values resulted in decreasing mean age with increasing dispersivity. This likely is a consequence of an edge effect. However, simulations for all three dispersivity values tested were mass balanced and stable demonstrating that the solution of the ground water age equation can provide estimates of water mass density distributions over age under real world conditions.

  17. Ground Water Awareness

    Centers for Disease Control (CDC) Podcasts

    2008-03-06

    Protecting our water resources from contamination is a major concern. This podcast emphasizes the importance of private well maintenance and water testing.  Created: 3/6/2008 by National Center for Environmental Health (NCEH); ATSDR; Division of Parasitic Diseases; Division of Foodborne, Bacterial and Mycotic Diseases; and the Office of Global Health.   Date Released: 3/10/2008.

  18. Artificial Ground Water Recharge with Surface Water

    Science.gov (United States)

    Heviánková, Silvie; Marschalko, Marian; Chromíková, Jitka; Kyncl, Miroslav; Korabík, Michal

    2016-10-01

    With regard to the adverse manifestations of the recent climatic conditions, Europe as well as the world have been facing the problem of dry periods that reduce the possibility of drawing drinking water from the underground sources. The paper aims to describe artificial ground water recharge (infiltration) that may be used to restock underground sources with surface water from natural streams. Among many conditions, it aims to specify the boundary and operational conditions of the individual aspects of the artificial ground water recharge technology. The principle of artificial infiltration lies in the design of a technical system, by means of which it is possible to conduct surplus water from one place (in this case a natural stream) into another place (an infiltration basin in this case). This way, the water begins to infiltrate into the underground resources of drinking water, while the mixed water composition corresponds to the water parameters required for drinking water.

  19. Recharge estimation for transient ground water modeling.

    Science.gov (United States)

    Jyrkama, Mikko I; Sykes, Jon F; Normani, Stefano D

    2002-01-01

    Reliable ground water models require both an accurate physical representation of the system and appropriate boundary conditions. While physical attributes are generally considered static, boundary conditions, such as ground water recharge rates, can be highly variable in both space and time. A practical methodology incorporating the hydrologic model HELP3 in conjunction with a geographic information system was developed to generate a physically based and highly detailed recharge boundary condition for ground water modeling. The approach uses daily precipitation and temperature records in addition to land use/land cover and soils data. The importance of the method in transient ground water modeling is demonstrated by applying it to a MODFLOW modeling study in New Jersey. In addition to improved model calibration, the results from the study clearly indicate the importance of using a physically based and highly detailed recharge boundary condition in ground water quality modeling, where the detailed knowledge of the evolution of the ground water flowpaths is imperative. The simulated water table is within 0.5 m of the observed values using the method, while the water levels can differ by as much as 2 m using uniform recharge conditions. The results also show that the combination of temperature and precipitation plays an important role in the amount and timing of recharge in cooler climates. A sensitivity analysis further reveals that increasing the leaf area index, the evaporative zone depth, or the curve number in the model will result in decreased recharge rates over time, with the curve number having the greatest impact.

  20. Grounded Theory as a General Research Methodology

    Directory of Open Access Journals (Sweden)

    Judith A. Holton, Ph.D.

    2008-06-01

    Full Text Available Since its inception over forty years ago, grounded theory has achieved canonical status in the research world (Locke, 2001, p.1. Qualitative researchers, in particular, have embraced grounded theory although often without sufficient scholarship in the methodology (Partington, 2000, p.93; 2002, p.136. The embrace renders many researchers unable to perceive grounded theory as a general methodology and an alternative to the dominant qualitative and quantitative research paradigms. The result is methodological confusion and an often unconscious remodelling of the original methodology (Glaser, 2003. Given the various interpretations and approaches that have been popularised under the rubric of grounded theory, this paper addresses the important distinction between grounded theory as a general methodology and its popularisation as a qualitative research method. The paper begins with a brief overview of grounded theory’s origins and its philosophical foundations then continues by addressing the basic distinction between abstract conceptualisation as employed in classic grounded theory and the conceptual description approach as adopted by many qualitative researchers. The paper continues with a brief overview of the criteria for judging the quality of classic grounded theory and concludes by detailing its methodological principles.

  1. Radon determination in ground water

    Energy Technology Data Exchange (ETDEWEB)

    Segovia A, N.; Bulbulian G, S

    1991-08-15

    Studies on natural radioactivity in ground water were started in Mexico in San Luis Potosi state followed by samplings from deep wells and springs in the states of Mexico and Michoacan. The samples were analyzed for solubilized and {sup 226} Ra- supported {sup 222} Rn. Some of them were also studied for {sup 234} U/ {sup 238} U activity ratio. In this paper we discuss the activities obtained and their relationship with the geologic characteristics of the studied zones. (Author)

  2. Iowa ground-water quality

    Science.gov (United States)

    Buchmiller, R.C.; Squillace, P.J.; Drustrup, R.D.

    1987-01-01

    The population served by ground-water supplies in Iowa (fig. L4) is estimated to be about 2,392,000, or 82 percent of the total population (U.S. Geological Survey, 1985, p. 211). The population of Iowa is distributed fairly uniformly throughout the State (fig. IB), with 59 percent residing in rural areas or towns of less than 10,000 (U.S. Bureau of the Census, 1982). Surficial aquifers, the Jordan aquifer, and aquifers that form the uppermost bedrock aquifer in a particular area are most commonly used for drinking-water supplies and usually provide ample amounts of good quality water. However, naturally occurring properties or substances such as hardness, dissolved solids, and radioactivity limit the use of water for drinking purposes in some areas of each of the five principal aquifers (fig. 2/4). Median concentrations of nitrate in all aquifers and radium-226 in all aquifers except the Jordan are within the primary drinking-water standards established by the U.S. Environmental Protection Agency (1986a). Median concentrations for dissolved solids in the surficial, Dakota, and Jordan aquifers exceed secondary drinking-water standards established by the U.S. Environmental Protection Agency (1986b).

  3. Guide to Louisiana's ground-water resources

    Science.gov (United States)

    Stuart, C.G.; Knochenmus, D.D.; McGee, B.D.

    1994-01-01

    Ground water is one of the most valuable and abundant natural resources of Louisiana. Of the 4-.4 million people who live in the State, 61 percent use ground water as a source for drinking water. Most industrial and rural users and half of the irrigation users in the State rely on ground water. Quantity, however, is not the only aspect that makes ground water so valuable; quality also is important for its use. In most areas, little or no water treatment is required for drinking water and industrial purposes. Knowledge of Louisiana's ground-water resources is needed to ensure proper development and protection of this valuable resource. This report is designed to inform citizens about the availability and quality of ground water in Louisiana. It is not intended as a technical reference; rather, it is a guide to ground water and the significant role this resource plays in the state. Most of the ground water that is used in the State is withdrawn from 13 aquifers and aquifer systems: the Cockfield, Sparta, and Carrizo-Wilcox aquifersin northern Louisiana; Chicot aquifer system, Evangeline aquifer, Jasper aquifer system, and Catahoula aquifer in central and southwestern Louisiana; the Chicot equivalent, Evangeline equivalent, and Jasper equivalent aquifer systems in southeastern Louisiana; and the MississippiRiver alluvial, Red River alluvial, and upland terrace aquifers that are statewide. Ground water is affected by man's activities on the land surface, and the major ground-water concerns in Louisiana are: (1) contamination from surface disposal of hazardous waste, agricultural chemicals, and petroleum products; (2) contamination from surface wastes and saltwater through abandoned wells; (3) saltwater encroachment; and (4) local overdevelopment. Information about ground water in Louisiana is extensive and available to the public. Several State and Federal agencies provide published and unpublished material upon request.

  4. GROUND WATER CONTAMINATION POTENTIAL FROM STORMWATER INFILTRATION

    Science.gov (United States)

    Prior to urbanization, ground water recharge resulted from infiltration of precipitation through pervious surfaces, including grasslands and woods. This infiltration water was relatively uncontaminated. With urbanization, the permeable soil surface area through which recharge by...

  5. Ground-water models: Validate or invalidate

    Science.gov (United States)

    Bredehoeft, J.D.; Konikow, L.F.

    1993-01-01

    The word validation has a clear meaning to both the scientific community and the general public. Within the scientific community the validation of scientific theory has been the subject of philosophical debate. The philosopher of science, Karl Popper, argued that scientific theory cannot be validated, only invalidated. Popper’s view is not the only opinion in this debate; however, many scientists today agree with Popper (including the authors). To the general public, proclaiming that a ground-water model is validated carries with it an aura of correctness that we do not believe many of us who model would claim. We can place all the caveats we wish, but the public has its own understanding of what the word implies. Using the word valid with respect to models misleads the public; verification carries with it similar connotations as far as the public is concerned. Our point is this: using the terms validation and verification are misleading, at best. These terms should be abandoned by the ground-water community.

  6. Geotechnics - the key to ground water protection

    DEFF Research Database (Denmark)

    Baumann, Jens; Foged, Niels; Jørgensen, Peter

    2000-01-01

    During the past 5 to 10 years research into ground water protection has proved that fractures in clay till may increase the hydraulic conductivity and herby the vulnerability of the ground water considerably. However, research has not identified a non-expensive and efficient method to map...

  7. Procedures for ground-water investigations

    Energy Technology Data Exchange (ETDEWEB)

    1992-12-01

    This manual was developed by the Pacific Northwest Laboratory (PNL) to document the procedures used to carry out and control the technical aspects of ground-water investigations at the PNL. Ground-water monitoring procedures are developed and used in accordance with the PNL Quality Assurance Program.

  8. Magnificent Ground Water Connection. [Sample Activities].

    Science.gov (United States)

    Environmental Protection Agency, Washington, DC.

    Water conservation and usage is an important concept in science. This document, geared specifically to New England, provides many activities for protecting and discussing ground water situations. Sample activities for grades K-6 include: (1) All the Water in the World; (2) The Case of the Disappearing Water; (3) Deep Subjects--Wells and Ground…

  9. Shallow ground-water conditions, Tom Green County, Texas

    Science.gov (United States)

    Lee, J.N.

    1986-01-01

    Most of the water needs of Tom Green County, Texas, are supplied by ground water; however, the city of San Angelo is supplied by surface water. Groundwater withdrawals during 1980 (latest year for which data are available) in Tom Green County totaled about 15,300 acre-feet, all derived from shallow aquifers. Shallow aquifers in this report refer to the ground-water system generally less than 400 feet deep that contains water with less than a 10,000 milligrams per liter concentration of dissolved solids; aquifers comprising this system include: The Leona, Comanche Peak, Trinity, Blaine, San Angelo, Choza, Bullwagon, Vale, Standpipe, and Arroyo aquifers.

  10. Ground-water flow related to streamflow and water quality

    Science.gov (United States)

    Van Voast, W. A.; Novitzki, R.P.

    1968-01-01

    A ground-water flow system in southwestern Minnesota illustrates water movement between geologic units and between the land surface and the subsurface. The flow patterns indicate numerous zones of ground-water recharge and discharge controlled by topography, varying thicknesses of geologic units, variation in permeabilities, and the configuration of the basement rock surface. Variations in streamflow along a reach of the Yellow Medicine River agree with the subsurface flow system. Increases and decreases in runoff per square mile correspond, apparently, to ground-water discharge and recharge zones. Ground-water quality variations between calcium sulfate waters typical of the Quaternary drift and sodium chloride waters typical of the Cretaceous rocks are caused by mixing of the two water types. The zones of mixing are in agreement with ground-water flow patterns along the hydrologic section.

  11. Simulation of the Regional Ground-Water-Flow System and Ground-Water/Surface-Water Interaction in the Rock River Basin, Wisconsin

    Science.gov (United States)

    Juckem, Paul F.

    2009-01-01

    , the model routes tributary base flow through the river network to the Rock River. The parameter-estimation code PEST was linked to the GFLOW model to select the combination of parameter values best able to match more than 8,000 water-level measurements and base-flow estimates at 9 streamgages. Results from the calibrated GFLOW model show simulated (1) ground-water-flow directions, (2) ground-water/surface-water interactions, as depicted in a map of gaining and losing river and lake sections, (3) ground-water contributing areas for selected tributary rivers, and (4) areas of relatively local ground water captured by rivers. Ground-water flow patterns are controlled primarily by river geometries, with most river sections gaining water from the ground-water-flow system; losing sections are most common on the downgradient shore of lakes and reservoirs or near major pumping centers. Ground-water contributing areas to tributary rivers generally coincide with surface watersheds; however the locations of ground-water divides are controlled by the water table, whereas surface-water divides are controlled by surface topography. Finally, areas of relatively local ground water captured by rivers generally extend upgradient from rivers but are modified by the regional flow pattern, such that these areas tend to shift toward regional ground-water divides for relatively small rivers. It is important to recognize the limitations of this regional-scale model. Heterogeneities in subsurface properties and in recharge rates are considered only at a very broad scale (miles to tens of miles). No account is taken of vertical variations in properties or pumping rates, and no provision is made to account for stacked ground-water-flow systems that have different flow patterns at different depths. Small-scale flow systems (hundreds to thousands of feet) associated with minor water bodies are not considered; as a result, the model is not currently designed for simulating site-specifi

  12. Thermal use of ground water; Thermische Grundwassernutzung

    Energy Technology Data Exchange (ETDEWEB)

    Cathomen, N.; Stauffer, F.; Kinzelbach, W.; Osterkorn, F.

    2002-07-01

    This article discusses possible regional changes in ground water temperature caused by thermal use of the ground water in heat pump installations and by the infiltration of cooling water. The article reports on investigations made into the influence of ground water usage in the community of Altach in the Rhine Valley in Austria. The procedures used and the geology of the area investigated are described and the results of the measurements that were made are presented. The mathematical modelling of regional long-term heat transport is presented. The results of simulations are compared with long-term temperature measurements. The use of the results as a basis for the assessment of permissible thermal use of ground water is discussed.

  13. Ground-Water Protection and Monitoring Program

    Energy Technology Data Exchange (ETDEWEB)

    Dresel, P.E.

    1995-06-01

    This section of the 1994 Hanford Site Environmental Report summarizes the ground-water protection and monitoring program strategy for the Hanford Site in 1994. Two of the key elements of this strategy are to (1) protect the unconfined aquifer from further contamination, and (2) conduct a monitoring program to provide early warning when contamination of ground water does occur. The monitoring program at Hanford is designed to document the distribution and movement of existing ground-water contamination and provides a historical baseline for evaluating current and future risk from exposure to the contamination and for deciding on remedial action options.

  14. Artificial recharge of humic ground water.

    Science.gov (United States)

    Alborzfar, M; Villumsen, A; Grøn, C

    2001-01-01

    The purpose of this study was to investigate the efficiency of soil in removing natural organic matter from humic ground waters using artificial recharge. The study site, in western Denmark, was a 10,000 ml football field of which 2,000 m2 served as an infiltration field. The impact of the artificial recharge was studied by monitoring the water level and the quality of the underlying shallow aquifer. The humic ground water contained mainly humic adds with an organic carbon (OC) concentration of 100 to 200 mg C L(-1). A total of 5,000 mS of humic ground water were sprinkled onto the infiltration field at an average rate of 4.25 mm h(-1). This resulted in a rise in the water table of the shallow aquifer. The organic matter concentration of the water in the shallow aquifer, however, remained below 2.7 mg C L(-1). The organic matter concentration of the pore water in the unsaturated zone was measured at the end of the experiment. The organic matter concentration of the pore water decreased from 105 mg C L(-1) at 0.5 m to 20 mg C L(-1) at 2.5 m under the infiltration field indicating that the soil removed the organic matter from the humic ground water. From these results we conclude that artificial recharge is a possible method for humic ground water treatment.

  15. 40 CFR 265.91 - Ground-water monitoring system.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Ground-water monitoring system. 265.91... DISPOSAL FACILITIES Ground-Water Monitoring § 265.91 Ground-water monitoring system. (a) A ground-water monitoring system must be capable of yielding ground-water samples for analysis and must consist of: (1...

  16. Reagent removal of manganese from ground water

    Science.gov (United States)

    Brayalovsky, G.; Migalaty, E.; Naschetnikova, O.

    2017-06-01

    The study is aimed at the technology development of treating drinking water from ground waters with high manganese content and oxidizability. Current technologies, physical/chemical mechanisms and factors affecting in ground treatment efficiency are reviewed. Research has been conducted on manganese compound removal from ground waters with high manganese content (5 ppm) and oxidizability. The studies were carried out on granular sorbent industrial ODM-2F filters (0.7-1.5 mm fraction). It was determined that conventional reagent oxidization technologies followed by filtration do not allow us to obtain the manganese content below 0.1 ppm when treating ground waters with high oxidizability. The innovative oxidation-based manganese removal technology with continuous introduction of reaction catalytic agent is suggested. This technology is effective in alkalization up to pH 8.8-9. Potassium permanganate was used as a catalytic agent, sodium hypochlorite was an oxidizer and cauistic soda served an alkalifying agent.

  17. Section 10: Ground Water - Waste Characteristics & Targets

    Science.gov (United States)

    HRS Training. The waste characteristics factor category in the ground water pathway is made up of two components: the toxicity/mobility of the most hazardous substance associated with the site and the hazardous waste quantity at the site.

  18. Section 9: Ground Water - Likelihood of Release

    Science.gov (United States)

    HRS training. the ground water pathway likelihood of release factor category reflects the likelihood that there has been, or will be, a release of hazardous substances in any of the aquifers underlying the site.

  19. Ground-water resources of Cambodia

    Science.gov (United States)

    Rasmussen, William Charles; Bradford, Gary M.

    1977-01-01

    Cambodia (now the Khmer Republic), in tropical, humid southeast Asia, has an area of 175,630 km and a population of about 5 million. The Mekong River, one of the world's largest rivers, flows through Cambodia. Also, the Tonle Sap (Grand Lac), a highly productive fresh-water lake, functions as a huge off-channel storage reservoir for flood flow of the Mekong River. Surfacewater discharge in streams and rivers of Cambodia is abundant during the wet season, mid-May through mid-November, when 85 percent of the precipitation falls, but is frequently deficient during the remainder of the year. Annual rainfall ranges from 1,370 mm in the central lowlands to more than 5,000 mm in the mountainous highlands. The mean annual temperature for the country is 27.5?C and the evaporation rate is high. During 1960-63, 1,103 holes were drilled in 16 of the 18 khets (provinces), of which 795 or approximately 72 percent, were productive wells at rates ranging from 1.1 to 2,967 l/min. The productive wells ranged in depth from 2 to 209.4 m and were 23.2 m deep on the average. Mr. Rasmussen ' studied the subsurface geology of Cambodia in considerable detail by examining drillers' logs and constructing nine geologic cross sections. The principal aquifer tapped by drilled wells in Cambodia is the Old Alluvium. In many places, however, dug wells and a few shallow drilled wells obtain water from the Young Alluvium. Sandstone of the Indosinias Formation yields moderate to small quantities of water to wells in a number of places. Also, wells tapping water-bearing basalt have a small to moderate yield. The quality of water is recorded in only a few analyses. The dissolved solids concentrations appear to be generally low so that the water is usable for most purposes without treatment. Some well waters, however, are high in iron and would have to be aerated and filtered before use. In this report, well records are tabulated, and the geology and hydrology is discussed by khets. The bulk of the

  20. Radon-222 in the ground water of Chester County, Pennsylvania

    Science.gov (United States)

    Senior, Lisa A.

    1998-01-01

    Radon-222 concentrations in ground water in 31 geologic units in Chester County, Pa., were measured in 665 samples collected from 534 wells from 1986 to 1997. Chester County is underlain by schists, gneisses, quartzites, carbonates, sandstones, shales, and other rocks of the Piedmont Physiographic Province. On average, radon concentration was measured in water from one well per 1.4 square miles, throughout the 759 square-mile county, although the distribution of wells was not even areally or among geologic units. The median concentration of radon-222 in ground water from the 534 wells was 1,400 pCi/L (picocuries per liter). About 89 percent of the wells sampled contained radon-222 at concentrations greater than 300 pCi/L, and about 11 percent of the wells sampled contained radon-222 at concentrations greater than 5,000 pCi/L. The highest concentration measured was 53,000 pCi/L. Of the geologic units sampled, the median radon-222 concentration in ground water was greatest (4,400 pCi/L) in the Peters Creek Schist, the second most areally extensive formation in the county. Signifi- cant differences in the radon-222 concentrations in ground water among geologic units were observed. Generally, concentrations in ground water in schists, quartzites, and gneisses were greater than in ground water in anorthosite, carbonates, and ultramafic rocks. The distribution of radon-222 in ground water is related to the distribution of uranium in aquifer materials of the various rock types. Temporal variability in radon-222 concentrations in ground water does not appear to be greater than about a factor of two for most (75 percent) of wells sampled more than once but was observed to range up to almost a factor of three in water from one well. In water samples from this well, seasonal variations were observed; the maximum concentrations were measured in the fall and the minimum in the spring.

  1. Ground Water Quality of Selected Wells

    Directory of Open Access Journals (Sweden)

    Mosher R. Ahmed

    2013-05-01

    Full Text Available In order to characterize ground water quality in Zaweta district / Dohuk governorate, eight wells are selected to represent their water quality. Monthly samples are collected from the wells for the period from October 2005 to April 2006. The samples are tested for conductivity, total dissolved solids, pH, total hardness, chloride, alkalinity and nitrate according to the standard methods. The results of statistical analysis showed significant difference among the wells water quality in the measured parameters. Ground water quality of Zaweta district has high dissolved ions due to the nature of studied area rocks. Total dissolved solids of more than 1000 mg/l made the wells Gre-Qassroka, Kora and Swaratoka need to be treated to make taste palatable. Additionally high electrical conductivity and TDS made Zaweta ground water have a slight to moderate restriction to crop growth. The high alkalinity of Zaweta ground water indicated stabilized pH. The water quality of all the wells is found excessively hard. The nitrate concentration of Zaweta ground water ranged between 0.19-42.4 mg/l below the guidelines for WHO and the maximum nitrate concentration is recorded in Kora well .

  2. Estimating ground water discharge by hydrograph separation.

    Science.gov (United States)

    Hannula, Steven R; Esposito, Kenneth J; Chermak, John A; Runnells, Donald D; Keith, David C; Hall, Larry E

    2003-01-01

    Iron Mountain is located in the West Shasta Mining District in California. An investigation of the generation of acid rock drainage and metals loading to Boulder Creek at Iron Mountain was conducted. As part of that investigation, a hydrograph separation technique was used to determine the contribution of ground water to total flow in Boulder Creek. During high-flow storm events in the winter months, peak flow in Boulder Creek can exceed 22.7 m3/sec, and comprises surface runoff, interflow, and ground water discharge. A hydrograph separation technique was used to estimate ground water discharge into Boulder Creek during high-flow conditions. Total ground water discharge to the creek approaches 0.31 m3/sec during the high-flow season. The hydrograph separation technique combined with an extensive field data set provided reasonable estimates of ground water discharge. These estimates are useful for other investigations, such as determining a corresponding metals load from the metal-rich ground water found at Iron Mountain and thus contributing to remedial alternatives.

  3. Water law, with special reference to ground water

    Science.gov (United States)

    McGuinness, C.L.

    1951-01-01

    This report was prepared in July 1950 at the request of the President's Water Resources Policy Commission. It followed the report entitled Water facts in relation to a national water-resources policy," which, in part, has been published as Geological Survey Circular 114 under the title "The water situation in the United States, with special reference to ground water.''

  4. Ground-water provinces of southern Rhodesia

    Science.gov (United States)

    Dennis, Philip Eldon; Hindson, L.L.

    1964-01-01

    Ground-water development, utilization, and occurrence in nine ground-water provinces of Southern Rhodesia are summarized in this report. Water obtained from drilled wells for domestic and stock use has played an important part in the social and economic development of Southern Rhodesia from the beginnings of European settlement to the present. Most of the wells obtain water from fractures and weathered zones in crystalline rocks, before recently, there has been an interest in the possibility of obtaining water for irrigation from wells. Studies of the authors indicate that quantities of water sufficient for irrigation can be obtained from alluvial sediments in the S'abi Valley, from Kalahari sands in the western part of the country, are perhaps from aquifers in other areas. The ground-water provinces fall into two groups--those in the crystalline rocks and those in the noncrystalline rocks. Historically, the wells in crystalline rocks, especially the Gold belts province and the Intrusive granites province, have played a major role in supplying water for the needs of man. These provinces, together with two other less important crystalline rock provinces, form the broad arch which constitutes the central core of the country. The noncrystalline rocks overlie and flank the crystalline rocks to the southeast, northwest, and north. The noncrystalline rock provinces, especially the Alluvium-Kalahari province, contain the most productive or potentially productive ground-water reservoirs in Southern Rhodesia and offer promise of supplying water for irrigation and for other purposes.

  5. Ground-water quality atlas of Wisconsin

    Science.gov (United States)

    Kammerer, Phil A.

    1981-01-01

    This report summarizes data on ground-water quality stored in the U.S. Geological Survey's computer system (WATSTORE). The summary includes water quality data for 2,443 single-aquifer wells, which tap one of the State's three major aquifers (sand and gravel, Silurian dolomite, and sandstone). Data for dissolved solids, hardness, alkalinity, calcium, magnesium, sodium, potassium, iron, manganese, sulfate, chloride, fluoride, and nitrate are summarized by aquifer and by county, and locations of wells for which data are available 1 are shown for each aquifer. Calcium, magnesium, and bicarbonate (the principal component of alkalinity) are the major dissolved constituents in Wisconsin's ground water. High iron concentrations and hardness cause ground-water quality problems in much of the State. Statewide ,summaries of trace constituent (selected trace metals; arsenic, boron, and organic carbon) concentrations show that these constituents impair water quality in only a few isolated wells.

  6. 40 CFR 141.402 - Ground water source microbial monitoring and analytical methods.

    Science.gov (United States)

    2010-07-01

    ... Rule § 141.402 Ground water source microbial monitoring and analytical methods. (a) Triggered source water monitoring—(1) General requirements. A ground water system must conduct triggered source water... State, systems must submit for State approval a triggered source water monitoring plan that identifies...

  7. Ground Water Flow No Longer A Mystery

    Science.gov (United States)

    Lehr, Jay H.; Pettyjohn, Wayne A.

    1976-01-01

    Examined are the physical characteristics of ground water movement. Some potential pollution problems are identified. Models are used to explain mathematical and hydraulic principles of flow toward a pumping well and an effluent stream, flow around and through lenticular beds, and effects of pumping on the water table. (Author/MR)

  8. Depth to ground water of Nevada

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This is a raster-based, depth to ground-water data set for the State of Nevada. The source of this data set is a statewide water-table contour data set constructed...

  9. Hydrogeology, ground-water use, and ground-water levels in the Mill Creek Valley near Evendale, Ohio

    Science.gov (United States)

    Schalk, Charles; Schumann, Thomas

    2002-01-01

    Withdrawals of ground water in the central Mill Creek Valley near Evendale, Ohio, caused water-level declines of more than 100 feet by the 1950s. Since the 1950s, management practices have changed to reduce the withdrawals of ground water, and recovery of water levels in long-term monitoring wells in the valley has been documented. Changing conditions such as these prompted a survey of water use, streamflow conditions, and water levels in several aquifers in the central Mill Creek Valley, Hamilton and Butler Counties, Ohio. Geohydrologic information, water use, and water levels were compiled from historical records and collected during the regional survey. Data collected during the survey are presented in terms of updated geohydrologic information, water use in the study area, water levels in the aquifers, and interactions between ground water and surface water. Some of the data are concentrated at former Air Force Plant 36 (AFP36), which is collocated with the General Electric Aircraft Engines (GEAE) plant, and these data are used to describe geohydrology and water levels on a more local scale at and near the plant. A comparison of past and current ground-water use and levels indicates that the demand for ground water is decreasing and water levels are rising. Before 1955, most of the major industrial ground-water users had their own wells, ground water was mined from a confined surficial (lower) aquifer, and water levels were more than 100 feet below their predevelopment level. Since 1955, however, these users have been purchasing their water from the city of Cincinnati or a private water purveyor. The cities of Reading and Lockland, both producers of municipal ground-water supplies in the area, shut down their well fields within their city limits. Because the demand for ground-water supplies in the valley has lessened greatly since the 1950s, withdrawals have decreased, and, consequently, water levels in the lower aquifer are 65 to 105 feet higher than they were

  10. Isotopic composition of ground waters from Kufra (Lybia) as indicator for ground water formation

    Energy Technology Data Exchange (ETDEWEB)

    Swailem, F.M.; Hamza, M.S.; Aly, A.I.M. (Middle Eastern Regional Radioisotope Centre for the Arab Countries, Cairo (Egypt))

    1984-02-01

    The results of the isotopic composition of shallow and deep ground waters from the Kufra region indicate the fossil origin of these waters and that they are not recharged under the present climatic conditions. The virtual absence of tritium and the radiocarbon ages of these waters show that they were formed mainly in the past pluvial periods. Deuterium and oxygen-18 data indicate that the ground waters were recharged under cooler climatic conditions. These results may explain the origin of the large amounts of ground water which existed in the region.

  11. Ground-water hydraulics - A summary of lectures presented by John G. Ferris at short courses conducted by the Ground Water Branch, part 1, Theory

    Science.gov (United States)

    Knowles, D.B.

    1955-01-01

    The objective of the Ground Water Branch is to evaluate the occurrence, availability, and quality of ground water.  The science of ground-water hydrology is applied toward attaining that goal.  Although many ground-water investigations are of a qualitative nature, quantitative studies are necessarily an integral component of the complete evaluation of occurrence and availability.  The worth of an aquifer as a fully developed source of water depends largely on two inherent characteristics: its ability to store, and its ability to transmit water.  Furthermore, quantitative knowledge of these characteristics facilitates measurement of hydrologic entities such as recharge, leakage, evapotranspiration, etc.  It is recognized that these two characteristics, referred to as the coefficients of storage and transmissibility, generally provide the very foundation on which quantitative studies are constructed.  Within the science of ground-water hydrology, ground-water hydraulics methods are applied to determine these constats from field data.

  12. 40 CFR 257.22 - Ground-water monitoring systems.

    Science.gov (United States)

    2010-07-01

    ... operator. When physical obstacles preclude installation of ground-water monitoring wells at the relevant... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Ground-water monitoring systems. 257... Waste Disposal Units Ground-Water Monitoring and Corrective Action § 257.22 Ground-water......

  13. Case study on ground water flow (8)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-02-01

    The report comprises research activities made in fiscal year 1997 under the contract of Japan Nuclear Fuel Cycle Development Center and the main items are: (1) Evaluation of water permeability through discontinuous hard bedrock in deep strata in relevant with underground disposal of radioactive wastes, (2) Three dimensional analysis of permeated water in bedrock, including flow analysis in T ono district using neuro-network and modification of Evaporation Logging System, (3) Development of hydraulic tests and necessary equipment applicable to measurements of complex dielectric constants of contaminated soils using FUDR-V method, this giving information on soil component materials, (4) Investigation methods and modeling of hydraulics in deep strata, (5) Geological study of ground water using environmental isotopes such as {sup 14}C, {sup 36}Cl and {sup 4}He, particularly measurement of ages of ground water using an accelerator-mass spectrometer, and (6) Re-submerging phenomena affecting the long-term geological stability. (S. Ohno)

  14. Case study on ground water flow (8)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-02-01

    The report comprises research activities made in fiscal year 1997 under the contract of Japan Nuclear Fuel Cycle Development Center and the main items are: (1) Evaluation of water permeability through discontinuous hard bedrock in deep strata in relevant with underground disposal of radioactive wastes, (2) Three dimensional analysis of permeated water in bedrock, including flow analysis in T ono district using neuro-network and modification of Evaporation Logging System, (3) Development of hydraulic tests and necessary equipment applicable to measurements of complex dielectric constants of contaminated soils using FUDR-V method, this giving information on soil component materials, (4) Investigation methods and modeling of hydraulics in deep strata, (5) Geological study of ground water using environmental isotopes such as {sup 14}C, {sup 36}Cl and {sup 4}He, particularly measurement of ages of ground water using an accelerator-mass spectrometer, and (6) Re-submerging phenomena affecting the long-term geological stability. (S. Ohno)

  15. Pesticides in Ground Water of the Maryland Coastal Plain

    Science.gov (United States)

    Denver, Judith M.; Ator, Scott W.

    2006-01-01

    Selected pesticides are detectable at low levels (generally less than 0.1 microgram per liter) in unconfined ground water in many parts of the Maryland Coastal Plain. Samples were recently collected (2001-04) from 47 wells in the Coastal Plain and analyzed for selected pesticides and degradate compounds (products of pesticide degradation). Most pesticide degradation occurs in the soil zone before infiltration to the water table, and degradates of selected pesticides were commonly detected in ground water, often at higher concentrations than their respective parent compounds. Pesticides and their degradates often occur in ground water in mixtures of multiple compounds, reflecting similar patterns in usage. All measured concentrations in ground water were below established standards for drinking water, and nearly all were below other health-based guidelines. Although drinking-water standards and guidelines are typically much higher than observed concentrations in ground water, they do not exist for many detected compounds (particularly degradates), or for mixtures of multiple compounds. The distribution of observed pesticide compounds reflects known usage patterns, as well as chemical properties and environmental factors that affect the fate and transport of these compounds in the environment. Many commonly used pesticides, such as glyphosate, pendimethalin, and 2,4-D were not detected in ground water, likely because they were sorbed onto organic matter or degraded in the soil zone. Others that are more soluble and (or) persistent, like atrazine, metolachlor, and several of their degradates, were commonly detected in ground water where they have been used. Atrazine, for example, an herbicide used primarily on corn, was most commonly detected in ground water on the Eastern Shore (where agriculture is common), particularly where soils are well drained. Conversely, dieldrin, an insecticide previously used heavily for termite control, was detected only on the Western

  16. Polyfluorinated chemicals in European surface waters, ground- and drinking waters

    NARCIS (Netherlands)

    Eschauzier, C.; de Voogt, P.; Brauch, H.-J.; Lange, F.T.; Knepper, T.P.; Lange, F.T.

    2012-01-01

    Polyfluorinated chemicals (PFCs), especially short chain fluorinated alkyl sulfonates and carboxylates, are ubiquitously found in the environment. This chapter aims at giving an overview of PFC concentrations found in European surface, ground- and drinking waters and their behavior during convention

  17. Polyfluorinated chemicals in European surface waters, ground- and drinking waters

    NARCIS (Netherlands)

    Eschauzier, C.; de Voogt, P.; Brauch, H.-J.; Lange, F.T.; Knepper, T.P.; Lange, F.T.

    2012-01-01

    Polyfluorinated chemicals (PFCs), especially short chain fluorinated alkyl sulfonates and carboxylates, are ubiquitously found in the environment. This chapter aims at giving an overview of PFC concentrations found in European surface, ground- and drinking waters and their behavior during

  18. Nitrate Removal from Ground Water: A Review

    OpenAIRE

    Archna *; Surinder K. Sharma; Ranbir Chander Sobti

    2012-01-01

    Nitrate contamination of ground water resources has increased in Asia, Europe, United States, and various other parts of the world. This trend has raised concern as nitrates cause methemoglobinemia and cancer. Several treatment processes can remove nitrates from water with varying degrees of efficiency, cost, and ease of operation. Available technical data, experience, and economics indicate that biological denitrification is more acceptable for nitrate removal than reverse osmosis and ion ex...

  19. CHEMICAL QUALITY CHARACTERISTICS OF TEHRAN GROUND WATER

    Directory of Open Access Journals (Sweden)

    K. Imandel

    1994-06-01

    Full Text Available For better understanding of Tehran ground water, samples were taken randomly from 340 out of 655 deep & semi deep wells in 1993, which dug by Tehran Water Supply and Sewage Engineering Company. 260 Water specimens were examined chemically and physically and compared with the 1993 World Health Organization (WHO and Food and Agriculture Organization (FAO criteria and analyzed statistically. Logarithmic diagram of arithmetic mean of 53 deep wells which are now connected to Tehran water supply system showed Sodium- Sulphate category. Main chemical components of water are closely adjusted to the international standards and no overdoses were observed in any cases. Logarithmic diagram of arithmetic mean of 72 deep wells, which were rsed for the Tehran’s orbital town's drinking water, showed that chemical components of the water were Calcic-Chloride category and there were not observed any increases within the other compounds.

  20. A proposed ground-water quality monitoring network for Idaho

    Science.gov (United States)

    Whitehead, R.L.; Parliman, D.J.

    1979-01-01

    A ground water quality monitoring network is proposed for Idaho. The network comprises 565 sites, 8 of which will require construction of new wells. Frequencies of sampling at the different sites are assigned at quarterly, semiannual, annual, and 5 years. Selected characteristics of the water will be monitored by both laboratory- and field-analysis methods. The network is designed to: (1) Enable water managers to keep abreast of the general quality of the State 's ground water, and (2) serve as a warning system for undesirable changes in ground-water quality. Data were compiled for hydrogeologic conditions, ground-water quality, cultural elements, and pollution sources. A ' hydrologic unit priority index ' is used to rank 84 hydrologic units (river basins or segments of river basins) of the State for monitoring according to pollution potential. Emphasis for selection of monitoring sites is placed on the 15 highest ranked units. The potential for pollution is greatest in areas of privately owned agricultural land. Other areas of pollution potential are residential development, mining and related processes, and hazardous waste disposal. Data are given for laboratory and field analyses, number of site visits, manpower, subsistence, and mileage, from which costs for implementing the network can be estimated. Suggestions are made for data storage and retrieval and for reporting changes in water quality. (Kosco-USGS)

  1. Geology and ground-water resources of Goshen County, Wyoming; Chemical quality of the ground water

    Science.gov (United States)

    Rapp, J.R.; Visher, F.N.; Littleton, R.T.; Durum, W.H.

    1957-01-01

    Goshen County, which has an area of 2,186 square miles, lies in southeastern Wyoming. The purpose of this study was to evaluate the ground-water resources of the county by determining the character, thickness, and extent of the waterbearing materials; the source, occurrence, movement, quantity, and quality of the ground water; and the possibility of developing additional ground water. The rocks exposed in the area are sedimentary and range in age from Precambrian to Recent. A map that shows the areas of outcrop and a generalized section that summarizes the age, thickness, physical character, and water supply of these formations are included in the report. Owing to the great depths at which they lie beneath most of the county, the formations older than the Lance formation of Late Cretaceous age are not discussed in detail. The Lance formation, of Late Cretaceous age, which consists mainly of beds of fine-grained sandstone and shale, has a maximum thickness of about 1,400 feet. It yields water, which usually is under artesian pressure, to a large number of domestic and stock wells in the south-central part of the county. Tertiary rocks in the area include the Chadron and Brule formations of Oligocene age, the Arikaree formation of Miocene age, and channel deposits of Pliocene age. The Chadron formation is made up of two distinct units: a lower unit of highly variegated fluviatile deposits that has been found only in the report area; and an upper unit that is typical of the formation as it occurs in adjacent areas. The lower unit, which ranges in thickness from a knife edge to about 95 feet, is not known to yield water to wells, but its coarse-grained channel deposits probably would yield small quantities of water to wells. The upper unit, which ranges in thickness from a knife edge to about 150 feet, yields sufficient quantities of water for domestic and stock uses from channel deposits of sandstone under artesian pressure. The Brule formation, which is mainly a

  2. Ground water and the rural homeowner

    Science.gov (United States)

    Waller, Roger M.

    1994-01-01

    As the salesmen sang in the musical The Music Man, "You gotta know the territory." This saying is also true when planning to buy or build a house. Learn as much as possible about the land, the water supply, and the septic system of the house before buying or building. Do not just look at the construction aspects or the beauty of the home and surroundings. Be sure to consider the environmental conditions around and beneath the site as well. Try to visit the site under adverse conditions, such as during heavy rain or meltwater runoff, to observe the drainage characteristics, particularly the condition of the basement. Many of the conditions discussed in this book, such as lowered well-water levels, flooded basements, and contamination from septic systems, are so common that rural families often have to deal with one or more of them. The purpose of this book is to awaken an interest in ground water and an awareness of where it is available, how it moves, how people can adjust to its patterns to avoid problems, and how it can be protected and used wisely. This booklet provides both present and prospective rural homeowners, particularly those in the glaciated northern parts of the United States, with a basic but comprehensive description of ground water. It also presents problems one may expect to encounter with ground water and some solutions or suggestions for help with these problems.

  3. Characterization of Climax granite ground water

    Energy Technology Data Exchange (ETDEWEB)

    Isherwood, D.; Harrar, J.; Raber, E.

    1982-08-01

    The Climax ground water fails to match the commonly held views regarding the nature of deep granitic ground waters. It is neither dilute nor in equilibrium with the granite. Ground-water samples were taken for chemical analysis from five sites in the fractured Climax granite at the Nevada Test Site. The waters are high in total dissolved solids (1200 to 2160 mg/L) and rich in sodium (56 to 250 mg/L), calcium (114 to 283 mg/L) and sulfate (325 to 1060 mg/L). Two of the samples contained relatively high amounts of uranium (1.8 and 18.5 mg/L), whereas the other three contained uranium below the level of detection (< 0.1 mg/L). The pH is in the neutral range (7.3 to 8.2). The differences in composition between samples (as seen in the wide range of values for the major constituents and total dissolved solids) suggest the samples came from different, independent fracture systems. However, the apparent trend of increasing sodium with depth at the expense of calcium and magnesium suggests a common evolutionary chemical process, if not an interconnected system. The waters appear to be less oxidizing with depth (+ 410 mV at 420 m below the surface vs + 86 mV at 565 m). However, with Eh measurements on only two samples, this correlation is questionable. Isotopic analyses show that the waters are of meteoric origin and that the source of the sulfate is probably the pyrite in the fracture-fill material. Analysis of the measured water characteristics using the chemical equilibrium computer program EQ3 indicates that the waters are not in equilibrium with the local mineral assemblage. The solutions appear to be supersaturated with respect to the mineral calcite, quartz, kaolinite, muscovite, k-feldspar, and many others.

  4. SUPERFUND GROUND WATER ISSUE - ACCURACY OF DEPTH TO WATER MEASUREMENTS

    Science.gov (United States)

    Accuracy of depth to water measurements is an issue identified by the Forum as a concern of Superfund decision-makers as they attempt to determine directions of ground-water flow, areas of recharge of discharge, the hydraulic characteristics of aquifers, or the effects of manmade...

  5. Water management, agriculture, and ground-water supplies

    Science.gov (United States)

    Nace, Raymond L.

    1960-01-01

    Encyclopedic data on world geography strikingly illustrate the drastic inequity in the distribution of the world's water supply. About 97 percent of the total volume of water is in the world's oceans. The area of continents and islands not under icecaps, glaciers, lakes, and inland seas is about 57.5 million square miles, of which 18 million (36 percent) is arid to semiarid. The total world supply of water is about 326.5 million cubic miles, of which about 317 million is in the oceans and about 9.4 million is in the land areas. Atmospheric moisture is equivalent to only about 3,100 cubic miles of water. The available and accessible supply of ground water in the United States is somewhat more than 53,000 cubic miles (about 180 billion acre ft). The amount of fresh water on the land areas of the world at any one time is roughly 30,300 cubic miles and more than a fourth of this is in large fresh-water lakes on the North American Continent. Annual recharge of ground water in the United States may average somewhat more than 1 billion acre-feet yearly, but the total volume of ground water in storage is equivalent to all the recharge in about the last 160 years. This accumulation of ground water is the nation's only reserve water resource, but already it is being withdrawn or mined on a large scale in a few areas. The principal withdrawals of water in the United States are for agriculture and industry. Only 7.4 percent of agricultural land is irrigated, however; so natural soil moisture is the principal source of agricultural water, and on that basis agriculture is incomparably the largest water user. In view of current forecasts of population and industrial expansion, new commitments of water for agriculture should be scrutinized very closely, and thorough justification should be required. The 17 Western States no longer contain all the large irrigation developments. Nearly 10 percent of the irrigated area is in States east of the western bloc, chiefly in several

  6. Water management, agriculture, and ground-water supplies

    Science.gov (United States)

    Nace, Raymond L.

    1960-01-01

    Encyclopedic data on world geography strikingly illustrate the drastic inequity in the distribution of the world's water supply. About 97 percent of the total volume of water is in the world's oceans. The area of continents and islands not under icecaps, glaciers, lakes, and inland seas is about 57.5 million square miles, of which 18 million (36 percent) is arid to semiarid. The total world supply of water is about 326.5 million cubic miles, of which about 317 million is in the oceans and about 9.4 million is in the land areas. Atmospheric moisture is equivalent to only about 3,100 cubic miles of water. The available and accessible supply of ground water in the United States is somewhat more than 53,000 cubic miles (about 180 billion acre ft). The amount of fresh water on the land areas of the world at any one time is roughly 30,300 cubic miles and more than a fourth of this is in large fresh-water lakes on the North American Continent. Annual recharge of ground water in the United States may average somewhat more than 1 billion acre-feet yearly, but the total volume of ground water in storage is equivalent to all the recharge in about the last 160 years. This accumulation of ground water is the nation's only reserve water resource, but already it is being withdrawn or mined on a large scale in a few areas. The principal withdrawals of water in the United States are for agriculture and industry. Only 7.4 percent of agricultural land is irrigated, however; so natural soil moisture is the principal source of agricultural water, and on that basis agriculture is incomparably the largest water user. In view of current forecasts of population and industrial expansion, new commitments of water for agriculture should be scrutinized very closely, and thorough justification should be required. The 17 Western States no longer contain all the large irrigation developments. Nearly 10 percent of the irrigated area is in States east of the western bloc, chiefly in several

  7. Geohydrology, simulation of ground-water flow, and ground-water quality at two landfills, Marion County, Indiana. Water Resources Investigation

    Energy Technology Data Exchange (ETDEWEB)

    Duwelius, R.F.; Greeman, T.K.

    1989-01-01

    The report presents the results of a study to provide a quantitative evaluation of the ground-water flow system at the Julietta and Tibbs-Banta landfills and provide a general description of the ground-water quality beneath and near the two landfills. These objectives provide the information necessary to evaluate the effects of the landfills on ground-water quality. Geologic, hydrologic, and water-quality data were collected in 1985 and 1986 at the Julietta and Tibbs-Banta landfills to fulfill the study objectives. Ground-water models were used to investigate the flow systems and estimate the volume of flow at the landfills. The report includes descriptions of the data collection, geologic and hydrologic descriptions of the two landfills, and brief histories of trash and sludge disposal. Ground-water-flow models are described and estimates of the volume of flow are discussed. A description of the quality-assurance plan used in conjunction with the water-quality data collection and analysis is included. Water-quality data are presented with statistical summaries of ground-water quality related to well depth and position in the flow system.

  8. Procedures for ground-water investigations

    Energy Technology Data Exchange (ETDEWEB)

    1989-09-01

    This manual was developed by the Pacific Northwest Laboratory (PNL) to document the procedures used to carry out and control the technical aspects of ground-water investigations at the PNL. Ground-water investigations are carried out to fulfill the requirements for the US Department of Energy (DOE) to meet the requirements of DOE Orders. Investigations are also performed for various clients to meet the requirements of the Resource Conservation and Recovery Act of 1976 (RCRA) and the Comprehensive Environmental Response, Compensation and Liability Act of 1980 (CERCLA). National standards including procedures published by the American Society for Testing and Materials (ASTM) and the US Geological Survey were utilized in developing the procedures contained in this manual.

  9. Hydrology and geochemistry of thermal ground water in southwestern Idaho and north-central Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Young, H.W.; Lewis, R.E.

    1980-12-01

    The study area occupies about 14,500 square miles in southwestern Idaho and north-central Nevada. Thermal ground water occurs under artesian conditions, in discontinuous or compartmented zones, in igneous or sedimentary rocks of Tertiary age. Ground-water movement is generally northward. Temperatures of the ground water range from about 30/sup 0/ to more than 80/sup 0/C. Chemical analyses of water from 12 wells and 9 springs indicate that nonthermal waters are a calcium bicarbonate type; thermal waters are a sodium bicarbonate type. Chemical geothermometers indicate probable maximum reservoir temperatures are near 100/sup 0/C. Concentration of tritium in the thermal water water is near zero.

  10. Geology and ground-water resources of Richardson County, Nebraska

    Science.gov (United States)

    Emery, Philip A.

    1964-01-01

    Richardson County is in the extreme southeast corner of Nebraska. It has an area of 545 square miles, and in 1960 it had a population of 13,903. The county is in the physiographic region referred to as the Dissected Loess-covered Till Prairies. Major drainage consists of the Big Nemaha River, including its North and South Forks, and Muddy Creek. These streams flow southeastward and empty into the Missouri River, which forms the eastern boundary of the county. The climate of Richardson County is subhumid; the normal annual precipitation is about 35 inches. Agriculture is the chief industry, and corn is the principal crop. Pleistocene glacial drift, loess, and alluvial deposits mantle the bedrock except in the southern and southwestern parts of the county where the bedrock is at the surface. Ground water is obtained from glacial till, fluvioglacial material, terrace deposits, and coarse alluvial deposits, all of Pleistocene age--and some is obtained from bedrock aquifers of Pennsylvanian and Permian age. Adequate supplies of ground water are in many places difficult to locate because the water-bearing sands and gravels of Pleistocene age vary in composition and lack lateral persistence. Perched water tables are common in the upland areas and provide limited amounts of water to many of the shallow wells, Very few wells in bedrock yield adequate supplies, as the permeability of the rock is low and water that is more than a few tens of feet below the bedrock surface is highly mineralized. Recharge is primarily from local precipitation, and water levels in many wells respond rapidly to increased or decreased precipitation. The quality of the ground water is generally satisfactory for most uses, although all the water is hard, and iron and manganese concentrations, in some areas, are relatively high. Ground water is used mainly for domestic and stock purposes.

  11. Ground-water resources in the Hood Basin, Oregon

    Science.gov (United States)

    Grady, Stephen J.

    1983-01-01

    The Hood Basin, an area of 1,035 square miles in north-central Oregon, includes the drainage basins of all tributaries of the Columbia River between Eagle Creek and Fifteenmile Creek. The physical characteristics and climate of the basin are diverse. The Wasco subarea, in the eastern half of the basin, has moderate relief, mostly intermittent streams, and semiarid climate. The Hood subarea, in the western half, has rugged topography, numerous perennial streams, and a humid climate.Water-bearing geologic units that underlie the basin include volcanic, volcaniclastic, and sedimentary rocks of Miocene to Holocene age, and unconsolidated surficial deposits of Pleistocene and Holocene age. The most important water-bearing unit, the Columbia River Basalt Group, underlies almost the entire basin. Total thickness probably exceeds 2,000 feet, but by 1980 only the upper 1,000 feet or less had been developed by wells. Wells in this unit generally yield from 15 to 1,000 gallons per minute and a few yield as much as 3,300 gallons per minute.The most productive aquifer in the Columbia River Basalt Group is The Dalles Ground Water Reservoir, a permeable zone of fractured basalt about 25 to 30 square miles in extent that underlies the city of The Dalles. During the late 1950's and mid-1960's, withdrawals of 15,000 acre-feet per year or more caused water levels in the aquifer to decline sharply. Pumpage had diminished to about 5,000 acre-feet per year in 1979 and water levels have stabilized, indicating that ground water recharge and discharge, including the pumping, are in balance.The other principal geologic units in the basin have more limited areal distribution and less saturated thickness than the Columbia River Basalt Group. Generally, these units are capable of yielding from a few to a hundred gallons per minute to wells.Most of the ground water in the basin is chemically suitable for domestic, irrigation, or other uses. Some ground water has objectionable concentrations of

  12. Methods and Indicators for Assessment of Regional Ground-Water Conditions in the Southwestern United States

    Science.gov (United States)

    Tillman, Fred D; Leake, Stanley A.; Flynn, Marilyn E.; Cordova, Jeffrey T.; Schonauer, Kurt T.; Dickinson, Jesse E.

    2008-01-01

    Monitoring the status and trends in the availability of the Nation's ground-water supplies is important to scientists, planners, water managers, and the general public. This is especially true in the semiarid to arid southwestern United States where rapid population growth and limited surface-water resources have led to increased use of ground-water supplies and water-level declines of several hundred feet in many aquifers. Individual well observations may only represent aquifer conditions in a limited area, and wells may be screened over single or multiple aquifers, further complicating single-well interpretations. Additionally, changes in ground-water conditions may involve time scales ranging from days to many decades, depending on the timing of recharge, soil and aquifer properties, and depth to the water table. The lack of an easily identifiable ground-water property indicative of current conditions, combined with differing time scales of water-level changes, makes the presentation of ground-water conditions a difficult task, particularly on a regional basis. One approach is to spatially present several indicators of ground-water conditions that address different time scales and attributes of the aquifer systems. This report describes several methods and indicators for presenting differing aspects of ground-water conditions using water-level observations in existing data-sets. The indicators of ground-water conditions developed in this study include areas experiencing water-level decline and water-level rise, recent trends in ground-water levels, and current depth to ground water. The computer programs written to create these indicators of ground-water conditions and display them in an interactive geographic information systems (GIS) format are explained and results illustrated through analyses of ground-water conditions for selected alluvial basins in the Lower Colorado River Basin in Arizona.

  13. Assessment of ground water pollution in the residential areas of ...

    African Journals Online (AJOL)

    Assessment of ground water pollution in the residential areas of Ewekoro and Shagamu ... of the ground water distribution of the settlements around cement factories in ... The concentrations of lead and cadmium are above the World Health ...

  14. Determining extreme parameter correlation in ground water models

    DEFF Research Database (Denmark)

    Hill, Mary Cole; Østerby, Ole

    2003-01-01

    In ground water flow system models with hydraulic-head observations but without significant imposed or observed flows, extreme parameter correlation generally exists. As a result, hydraulic conductivity and recharge parameters cannot be uniquely estimated. In complicated problems, such correlation...... correlation coefficients, but it required sensitivities that were one to two significant digits less accurate than those that required using parameter correlation coefficients; and (3) both the SVD and parameter correlation coefficients identified extremely correlated parameters better when the parameters...

  15. 40 CFR 258.51 - Ground-water monitoring systems.

    Science.gov (United States)

    2010-07-01

    ... preclude installation of ground-water monitoring wells at the relevant point of compliance at existing... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Ground-water monitoring systems. 258... CRITERIA FOR MUNICIPAL SOLID WASTE LANDFILLS Ground-Water Monitoring and Corrective Action § 258.51...

  16. Bacteriophages as surface and ground water tracers

    Directory of Open Access Journals (Sweden)

    P. Rossi

    1998-01-01

    Full Text Available Bacteriophages are increasingly used as tracers for quantitative analysis in both hydrology and hydrogeology. The biological particles are neither toxic nor pathogenic for other living organisms as they penetrate only a specific bacterial host. They have many advantages over classical fluorescent tracers and offer the additional possibility of multi-point injection for tracer tests. Several years of research make them suitable for quantitative transport analysis and flow boundary delineation in both surface and ground waters, including karst, fractured and porous media aquifers. This article presents the effective application of bacteriophages based on their use in differing Swiss hydrological environments and compares their behaviour to conventional coloured dye or salt-type tracers. In surface water and karst aquifers, bacteriophages travel at about the same speed as the typically referenced fluorescent tracers (uranine, sulphurhodamine G extra. In aquifers of interstitial porosity, however, they appear to migrate more rapidly than fluorescent tracers, albeit with a significant reduction in their numbers within the porous media. This faster travel time implies that a modified rationale is needed for defining some ground water protection area boundaries. Further developments of other bacteriophages and their documentation as tracer methods should result in an accurate and efficient tracer tool that will be a proven alternative to conventional fluorescent dyes.

  17. Bacteriophages as surface and ground water tracers

    Science.gov (United States)

    Rossi, P.; Dörfliger, N.; Kennedy, K.; Müller, I.; Aragno, M.

    Bacteriophages are increasingly used as tracers for quantitative analysis in both hydrology and hydrogeology. The biological particles are neither toxic nor pathogenic for other living organisms as they penetrate only a specific bacterial host. They have many advantages over classical fluorescent tracers and offer the additional possibility of multi-point injection for tracer tests. Several years of research make them suitable for quantitative transport analysis and flow boundary delineation in both surface and ground waters, including karst, fractured and porous media aquifers. This article presents the effective application of bacteriophages based on their use in differing Swiss hydrological environments and compares their behaviour to conventional coloured dye or salt-type tracers. In surface water and karst aquifers, bacteriophages travel at about the same speed as the typically referenced fluorescent tracers (uranine, sulphurhodamine G extra). In aquifers of interstitial porosity, however, they appear to migrate more rapidly than fluorescent tracers, albeit with a significant reduction in their numbers within the porous media. This faster travel time implies that a modified rationale is needed for defining some ground water protection area boundaries. Further developments of other bacteriophages and their documentation as tracer methods should result in an accurate and efficient tracer tool that will be a proven alternative to conventional fluorescent dyes.

  18. Pumpage for the transient ground-water flow model, Death Valley regional ground-water flow system, Nevada and California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This digital data set represents ground-water discharged from the Death Valley regional ground-water flow system (DVRFS) through pumped wells. Pumping from wells in...

  19. Ground-water resources of Catron County, New Mexico

    Science.gov (United States)

    Basabilvazo, G.T.

    1997-01-01

    This report describes the occurrence, availability, and quality of ground-water and related surface-water resources in Catron County, the largest county in New Mexico. The county is located in the Lower Colorado River Basin and the Rio Grande Basin, and the Continental Divide is the boundary between the two river basins. Increases in water used for mining activities (coal, mineral, and geothermal), irrigated agriculture, reservoir construction, or domestic purposes could affect the quantity or quality of ground- water and surface-water resources in the county. Parts of seven major drainage basins are within the two regional river basins in the county--Carrizo Wash, North Plains, Rio Salado, San Agustin, Alamosa Creek, Gila, and San Francisco Basins. The San Francisco, Gila, and Tularosa Rivers typically flow perennially. During periods of low flow, most streamflow is derived from baseflow. The stream channels of the Rio Salado and Carrizo Wash Basins are commonly perennial in their upper reaches and ephemeral in their lower reaches. Largo Creek in the Carrizo Wash Basin is perennial downstream from Quemado Lake and ephemeral in the lower reaches. Aquifers in Catron County include Quaternary alluvium and bolson fill; Quaternary to Tertiary Gila Conglomerate; Tertiary Bearwallow Mountain Andesite, Datil Group, and Baca Formation; Cretaceous Mesaverde Group, Crevasse Canyon Formation, Gallup Sandstone, Mancos Shale, and Dakota Sandstone; Triassic Chinle Formation; and undifferentiated rocks of Permian age. Water in the aquifers in the county generally is unconfined; however, confined conditions may exist where the aquifers are overlain by other units of lower permeability. Yields of ground water from the Quaternary alluvium in the county range from 1 to 375 gallons per minute. Yields of ground water from the alluvium in the Carrizo Wash Basin are as much as 250 gallons per minute for short time periods. North of the Plains of San Agustin, ground-water yields from the

  20. Contamination of ground water, surface water, and soil, and evaluation of selected ground-water pumping alternatives in the Canal Creek area of Aberdeen Proving Ground, Maryland

    Science.gov (United States)

    Lorah, Michelle M.; Clark, Jeffrey S.

    1996-01-01

    Chemical manufacturing, munitions filling, and other military-support activities have resulted in the contamination of ground water, surface water, and soil in the Canal Creek area of Aberdeen Proving Ground, Maryland. Chlorinated volatile organic compounds, including 1,1,2,2-tetrachloroethane and trichloroethylene, are widespread ground-water contaminants in two aquifers that are composed of unconsolidated sand and gravel. Distribution and fate of chlorinated organic compounds in the ground water has been affected by the movement and dissolution of solvents in their dense immiscible phase and by microbial degradation under anaerobic conditions. Detection of volatile organic contaminants in adjacent surface water indicates that shallow contaminated ground water discharges to surface water. Semivolatile organic compounds, especially polycyclic aromatic hydrocarbons, are the most prevalent organic contaminants in soils. Various trace elements, such as arsenic, cadmium, lead, and zinc, were found in elevated concentrations in ground water, surface water, and soil. Simulations with a ground-water-flow model and particle tracker postprocessor show that, without remedial pumpage, the contaminants will eventually migrate to Canal Creek and Gunpowder River. Simulations indicate that remedial pumpage of 2.0 million gallons per day from existing wells is needed to capture all particles originating in the contaminant plumes. Simulated pumpage from offsite wells screened in a lower confined aquifer does not affect the flow of contaminated ground water in the Canal Creek area.

  1. Shallow Alluvial Aquifer Ground Water System and Surface Water/Ground Water Interaction, Boulder Creek, Boulder, Colorado

    Science.gov (United States)

    Babcock, K. P.; Ge, S.; Crifasi, R. R.

    2006-12-01

    Water chemistry in Boulder Creek, Colorado, shows significant variation as the Creek flows through the City of Boulder [Barber et al., 2006]. This variation is partially due to ground water inputs, which are not quantitatively understood. The purpose of this study is (1) to understand ground water movement in a shallow alluvial aquifer system and (2) to assess surface water/ground water interaction. The study area, encompassing an area of 1 mi2, is located at the Sawhill and Walden Ponds area in Boulder. This area was reclaimed by the City of Boulder and Boulder County after gravel mining operations ceased in the 1970's. Consequently, ground water has filled in the numerous gravel pits allowing riparian vegetation regrowth and replanting. An integrated approach is used to examine the shallow ground water and surface water of the study area through field measurements, water table mapping, graphical data analysis, and numerical modeling. Collected field data suggest that lateral heterogeneity exists throughout the unconsolidated sediment. Alluvial hydraulic conductivities range from 1 to 24 ft/day and flow rates range from 0.01 to 2 ft/day. Preliminary data analysis suggests that ground water movement parallels surface topography and does not noticeably vary with season. Recharge via infiltrating precipitation is dependent on evapotranspiration (ET) demands and is influenced by preferential flow paths. During the growing season when ET demand exceeds precipitation rates, there is little recharge; however recharge occurs during cooler months when ET demand is insignificant. Preliminary data suggest that the Boulder Creek is gaining ground water as it traverses the study area. Stream flow influences the water table for distances up to 400 feet. The influence of stream flow is reflected in the zones relatively low total dissolved solids concentration. A modeling study is being conducted to synthesize aquifer test data, ground water levels, and stream flow data. The

  2. Vulnerability of ground water to contamination, northern Bexar County, Texas

    Science.gov (United States)

    Clark, Amy R.

    2003-01-01

    The Trinity aquifer, composed of Lower Cretaceous carbonate rocks, largely controls the ground-water hydrology in the study area of northern Bexar County, Texas. Discharge from the Trinity aquifer recharges the downgradient, hydraulically connected Edwards aquifer one of the most permeable and productive aquifers in the Nation and the sole source of water for more than a million people in south-central Texas. The unconfined, karstic outcrop of the Edwards aquifer makes it particularly vulnerable to contamination resulting from urbanization that is spreading rapidly northward across an "environmentally sensitive" recharge zone of the Edwards aquifer and its upgradient "catchment area," composed mostly of the less permeable Trinity aquifer.A better understanding of the Trinity aquifer is needed to evaluate water-management decisions affecting the quality of water in both the Trinity and Edwards aquifers. A study was made, therefore, in cooperation with the San Antonio Water System to assess northern Bexar County's vulnerability to ground-water contamination. The vulnerability of ground water to contamination in this area varies with the effects of five categories of natural features (hydrogeologic units, faults, caves and (or) sinkholes, slopes, and soils) that occur on the outcrop and in the shallow subcrop of the Glen Rose Limestone.Where faults affect the rates of recharge or discharge or the patterns of ground-water flow in the Glen Rose Limestone, they likewise affect the risk of water-quality degradation. Caves and sinkholes generally increase the vulnerability of ground water to contamination, especially where their occurrences are concentrated. The slope of land surface can affect the vulnerability of ground water by controlling where and how long a potential contaminant remains on the surface. Disregarding the exception of steep slopes which are assumed to have no soil cover the greater the slope, the less the risk of ground-water contamination. Because most

  3. Animating ground water levels with Excel.

    Science.gov (United States)

    Shikaze, Steven G; Crowe, Allan S

    2003-01-01

    This note describes the use of Microsoft Excel macros (programs written in Excel's internal language, Visual Basic for Applications) to create simple onscreen animations of transient ground water data within Excel. Compared to many specialized visualization software packages, the use of Excel macros is much cheaper, much simpler, and can rapidly be learned. The Excel macro can also be used to create individual GIF files for each animation frame. This series of frames can then be used to create an AVI video file using any of a number of graphics packages, such as Corel PhotoPaint. The technique is demonstrated through a macro that animates changes in the elevation of a water table along a transect over several years.

  4. Ground-water status report, Pearl Harbor area, Hawaii, 1978

    Science.gov (United States)

    Soroos, Ronald L.; Ewart, Charles J.

    1979-01-01

    Increasing demand for freshwater in Hawaii has placed heavy stress on many of the State 's basal aquifer systems. The most heavily stressed of these systems is the Pearl Harbor on Oahu. The Pearl Harbor basal aquifer supplies as much as 277 million gallons per day. Since early in this century, spring discharge has been declining while pumpage has been increasing. Total ground-water discharge has remained steady despite short-term fluctuations. Some wells show general increases in chloride concentration while others remain steady. Chloride concentrations throughout the area show no apparent increase since 1970. Basal water head maps of the Pearl Harbor area clearly reflect the natural discharge points, which are the springs located along the shore near the center of Pearl Harbor. Basal-water hydrographs show a general decline of about 0.09 foot per year. This implies depletion of storage at a rate of about 25 million gallons per day. (USGS).

  5. Ground-Water Temperature Data, Nevada Test Site and Vicinity, Nye, Clark, and Lincoln Counties, Nevada, 2000-2006.

    Energy Technology Data Exchange (ETDEWEB)

    Steven R. Reiner

    2007-08-07

    Ground-water temperature data were collected by the U.S. Geological Survey in wells at and in the vicinity of the Nevada Test Site during the years 2000–2006. Periodic ground-water temperatures were collected in 166 wells. In general, periodic ground-water temperatures were measured annually in each well at 5 and 55 feet below the water surface. Ground-water temperature profiles were collected in 73 wells. Temperatures were measured at multiple depths below the water surface to produce these profiles. Databases were constructed to present the ground-water temperature data.

  6. Ground-Water Temperature Data, Nevada Test Site and Vicinity, Nye, Clark, and Lincoln Counties, Nevada, 2000-2006

    Science.gov (United States)

    Reiner, Steven R.

    2007-01-01

    Ground-water temperature data were collected by the U.S. Geological Survey in wells at and in the vicinity of the Nevada Test Site during the years 2000-2006. Periodic ground-water temperatures were collected in 166 wells. In general, periodic ground-water temperatures were measured annually in each well at 5 and 55 feet below the water surface. Ground-water temperature profiles were collected in 73 wells. Temperatures were measured at multiple depths below the water surface to produce these profiles. Databases were constructed to present the ground-water temperature data.

  7. Ground water hydrology report: Revision 1, Attachment 3. Final

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-01

    This report presents ground water hydrogeologic activities for the Maybell, Colorado, Uranium Mill Tailings Remedial Action Project site. The Department of Energy has characterized the hydrogeology, water quality, and water resources at the site and determined that the proposed remedial action would comply with the requirements of the EPA ground water protection standards.

  8. Geology and ground-water resources of Washington County, Colorado

    Science.gov (United States)

    McGovern, Harold E.

    1964-01-01

    Washington County, in northeastern Colorado, has an area of 2,520 square miles. The eastern two-thirds of the county, part of the High Plains physiographic section, is relatively flat and has been moderately altered by the deposition of loess and dune sand, and by stream erosion. The western one-third is a part of the South Platte River basin and has been deeply dissected by tributary streams. The soils and climate of the county are generally suited for agriculture, which is the principal industry. The rocks that crop out in the county influence the availability of ground water. The Pierre Shale, of Late Cretaceous age, underlies the entire area and ranges in thickness from 2,000 to 4,500 feet. This dense shale is a barrier to the downward movement of water and yields little or no water to wells. The Chadron Formation, of Oligocene age, overlies the Pierre Shale in the northern and central parts of the area. The thickness of the formation ranges from a few feet to about 300 feet. Small to moderate quantities of water are available from the scattered sand lenses and from the highly fractured zones of the siltstone. The Ogallala Formation, of Pliocene age, overlies the Chadron Formation and in Washington County forms the High Plains section of the Great Plains province. The thickness of the Ogallala Formation ranges from 0 to about 400 feet, and the yield from wells ranges from a few gallons per hour to about 1,500 gpm. Peorian loess, of Pleistocene age, and dune sand, of Pleistocene to Recent age, mantle a large pan of the county and range in thickness from a few inches to about 120 feet Although the loess and dune sand yield little water to wells, they absorb much of the precipitation and conduct the water to underlying formations. Alluvium, of Pleistocene and Recent age, occupies most of the major stream valleys in thicknesses of a few feet to about 250 feet. The yield of wells tapping the alluvium ranges from a few gallons per minute to about 3,000 gpm, according

  9. A national look at nitrate contamination of ground water

    Science.gov (United States)

    Nolan, Bernard T.; Ruddy, Barbara C.; Hitt, Kerie J.; Helsel, Dennis R.

    1998-01-01

    Ground water provides drinking water for more than one-half of the Nation's population (Solley and others, 1993), and is the sole source of drinking water for many rural communities and some large cities. In 1990, ground water accounted for 39 percent of water withdrawn for public supply for cities and towns and 96 percent of water withdrawn by self-supplied systems for domestic use.

  10. Ground-water geology of Kordofan Province, Sudan

    Science.gov (United States)

    Rodis, Harry G.; Hassan, Abdulla; Wahadan, Lutfi

    1968-01-01

    For much of Kordofan Province, surface-water supplies collected and stored in hafirs, fulas, and tebeldi trees are almost completely appropriated for present needs, and water from wells must serve as the base for future economic and cultural development. This report describes the results of a reconnaissance hydrogeologic investigation of the Province and the nature and distribution of the ground-water resources with respect to their availability for development. Kordofan Province, in central Sudan, lies within the White Nile-Nile River drainage basin. The land surface is largely a plain of low relief; jebels (hills) occur sporadically, and sandy soils are common in most areas except in the south where clayey soils predominate. Seasonal rainfall, ranging from less than 100 millimeters in the north to about 800 millimeters in the south, occurs almost entirely during the summer months, but little runoff ever reaches the Nile or White Nile Rivers. The rocks beneath the surficial depsits (Pleistocene to Recent) in the Province comprise the basement complex (Precambrian), Nawa Series (upper Paleozoic), Nubian Series (Mesozoic), laterite (lower to middle Tertiary), and the Umm Ruwaba Series (Pliocene to Pleistocene). Perennial ground-water supplies in the Province are found chiefly in five hydrologic units, each having distinct geologic or hydrologic characteristics. These units occur in Nubian or Umm Ruwaba strata or both, and the sandstone and conglomerate beds form the :principal aquifers. The water is generally under slight artesian head, and the upper surface of the zone of saturation ranges from about 50 meters to 160 meters below land surface. The surficial deposits and basement rocks are generally poor sources of ground water in most of the Province. Supplies from such sources are commonly temporary and may dissipate entirely during the dry season. Locally, however, perennial supplies are obtained from the surficial deposits and from the basement rocks. Generally

  11. 40 CFR 257.3-4 - Ground water.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Ground water. 257.3-4 Section 257.3-4... and Practices § 257.3-4 Ground water. (a) A facility or practice shall not contaminate an underground drinking water source beyond the solid waste boundary or beyond an alternative boundary specified...

  12. Petroleum contaminated ground-water: Remediation using activated carbon.

    OpenAIRE

    2006-01-01

    Ground-water contamination resulting from the leakage of crude oil and refined petroleum products during extraction and processing operations is a serious and a growing environmental problem in Nigeria. Consequently, a study of the use of activated carbon (AC) in the clean up was undertaken with the aim of reducing the water contamination to a more acceptable level. In the experiments described, crude-oil contamination of ground water was simulated under laboratory conditions using ground-wat...

  13. Documentation of the Santa Clara Valley regional ground-water/surface-water flow model, Santa Clara Valley, California

    Science.gov (United States)

    Hanson, R.T.; Li, Zhen; Faunt, C.C.

    2004-01-01

    into upper- and lower-aquifer systems. Ground-water inflow occurs as natural recharge in the form of streamflow infiltration and areal infiltration of precipitation along stream channels, artificial recharge from infiltration of imported water at recharge ponds and along selected stream channels, and leakage along selected transmission pipelines. Ground-water outflow occurs as evapotranspiration, stream base flow, discharge through pumpage from wells, and subsurface flow to the San Francisco Bay. The geohydrologic framework of the regional ground-water flow system was represented as six model layers. The hydraulic properties were redefined on the basis of cell-based lithologic properties that were delineated in terms of aggregate thicknesses of coarse-grained, fine-grained, and mixed textural categories. The regional aquifer systems also are dissected by several laterally extensive faults that may form at least partial barriers to the lateral flow of ground water. The spatial extent of the ground-water flow model was extended and refined to cover the entire Santa Clara Valley, including the Evergreen subregion. The temporal discretization was refined and the period of simulation was extended to 197099. The model was upgraded to MODFLOW-2000 (MF2K) and was calibrated to fit historical ground-water levels, streamflow, and land subsidence for the period 197099. The revised model slightly overestimates measured water levels with an root-mean-square error of -7.34 feet. The streamflow generally shows a good match on gaged creeks and rivers for flows greater than 1.2 cubic feet per second. The revised model also fits the measured deformation at the borehole extensometer site located near San Jose within 16 to 27 percent and the extensometer site near Sunnyvale within 3 percent of the maximum measured seasonal deformation for the deepest extensometers. The total ground-water inflow and outflow of about 225,500 acre-feet per

  14. Salinization of a fresh palaeo-ground water resource by enhanced recharge.

    Science.gov (United States)

    Leaney, F W; Herczeg, A L; Walker, G R

    2003-01-01

    Deterioration of fresh ground water resources caused by salinization is a growing issue in many arid and semi-arid parts of the world. We discuss here the incipient salinization of a 10(4) km2 area of fresh ground water (Ground water 14C concentrations and unsaturated zone Cl soil water inventories indicate that the low salinity ground water originated mainly from palaeo-recharge during wet climatic periods more than 20,000 years ago. However, much of the soil water in the 20 to 60 m thick unsaturated zone throughout the area is generally saline (>15,000 mg/L) because of relatively high evapotranspiration during the predominantly semiarid climate of the last 20,000 years. Widespread clearing of native vegetation over the last 100 years and replacement with crops and pastures leads to enhancement of recharge rates that progressively displace the saline soil-water from the unsaturated zone into the ground water. To quantify the impact of this new hydrologic regime, a one-dimensional model that simulates projected ground water salinities as a function of depth to ground water, recharge rates, and soil water salt inventory was developed. Results from the model suggest that, in some areas, the ground water salinity within the top 10 m of the water table is likely to increase by a factor of 2 to 6 during the next 100 years. Ground water quality will therefore potentially degrade beyond the point of usefulness well before extraction of the ground water exhausts the resource.

  15. Ground-water and precipitation data for South Carolina, 1990

    Science.gov (United States)

    Conrads, Paul A.; Jones, Kathy H.; Stringfield, Whitney J.

    1994-01-01

    Continuous water-level data collected from 53 wells in South Carolina during 1990 provide the basic data for this report. Hydrographs are presented for selected wells to illustrate the effects that changes in ground-water recharge and artificial ground-water discharge have had on the ground-water reservoirs in the State. Daily mean water levels are listed in tables. Monthly mean water levels for 1990 and for the entire period of record at each monitoring well are depicted in hydrographs. Also included are precipitation records from ten National Weather Service stations in South Carolina.

  16. Ground-water conditions in Utah, spring of 2009

    Science.gov (United States)

    Burden, Carole B.; Allen, David V.; Rowland, Ryan C.; Fisher, Martel J.; Freeman, Michael L.; Downhour, Paul; Nielson, Ashley; Eacret, Robert J.; Myers, Andrew; Slaugh, Bradley A.; Swenson, Robert L.; Howells, James H.; Christiansen, Howard K.

    2009-01-01

    This is the forty-sixth in a series of annual reports that describe ground-water conditions in Utah. Reports in this series, published cooperatively by the U.S. Geological Survey and the Utah Department of Natural Resources, Division of Water Resources and Division of Water Rights, and the Utah Department of Environmental Quality, Division of Water Quality, provide data to enable interested parties to maintain awareness of changing ground-water conditions. This report, like the others in the series, contains information on well construction, ground-water withdrawal from wells, water-level changes, precipitation, streamflow, and chemical quality of water. Information on well construction included in this report refers only to wells constructed for new appropriations of ground water. Supplementary data are included in reports of this series only for those years or areas which are important to a discussion of changing ground-water conditions and for which applicable data are available.This report includes individual discussions of selected significant areas of ground-water development in the State for calendar year 2008. Most of the reported data were collected by the U.S. Geological Survey in cooperation with the Utah Department of Natural Resources, Division of Water Resources and Division of Water Rights, and the Utah Department of Environmental Quality, Division of Water Quality. This report is available online at http://www.waterrights. utah.gov/techinfo/ and http://ut.water.usgs.gov/publications/ GW2009.pdf.

  17. Ground-water conditions in Utah, spring of 2008

    Science.gov (United States)

    Burden, Carole B.; Allen, David V.; Danner, M.R.; Fisher, Martel J.; Freeman, Michael L.; Downhour, Paul; Wilkowske, C.D.; Eacret, Robert J.; Enright, Michael; Swenson, Robert L.; Howells, James H.; Christiansen, Howard K.

    2008-01-01

    This is the forty-fifth in a series of annual reports that describe ground-water conditions in Utah. Reports in this series, published cooperatively by the U.S. Geological Survey and the Utah Department of Natural Resources, Division of Water Resources and Division of Water Rights, and the Utah Department of Environmental Quality, Division of Water Quality, provide data to enable interested parties to maintain awareness of changing ground-water conditions.This report, like the others in the series, contains information on well construction, ground-water withdrawal from wells, water-level changes, precipitation, streamflow, and chemical quality of water. Information on well construction included in this report refers only to wells constructed for new appropriations of ground water. Supplementary data are included in reports of this series only for those years or areas which are important to a discussion of changing ground-water conditions and for which applicable data are available.This report includes individual discussions of selected significant areas of ground-water development in the State for calendar year 2007. Most of the reported data were collected by the U.S. Geological Survey in cooperation with the Utah Department of Natural Resources, Division of Water Resources and Division of Water Rights, and the Utah Department of Environmental Quality, Division of Water Quality. This report is available online at http://www.waterrights.utah.gov/techinfo/ and http://ut.water.usgs.gov/publications/GW2008.pdf.

  18. Ground-water conditions in Utah, spring of 2007

    Science.gov (United States)

    Burden, Carole B.; Allen, David V.; Danner, M.R.; Enright, Michael; Cillessen, J.L.; Gerner, S.J.; Eacret, Robert J.; Downhour, Paul; Slaugh, Bradley A.; Swenson, Robert L.; Howells, James H.; Christiansen, Howard K.; Fisher, Martel J.

    2007-01-01

    This is the forty-fourth in a series of annual reports that describe ground-water conditions in Utah. Reports in this series, published cooperatively by the U.S. Geological Survey and the Utah Department of Natural Resources, Division of Water Resources and Division of Water Rights, and the Utah Department of Environmental Quality, Division of Water Quality, provide data to enable interested parties to maintain awareness of changing ground-water conditions.This report, like the others in the series, contains information on well construction, ground-water withdrawal from wells, water-level changes, precipitation, streamflow, and chemical quality of water. Information on well construction included in this report refers only to wells constructed for new appropriations of ground water. Supplementary data are included in reports of this series only for those years or areas which are important to a discussion of changing ground-water conditions and for which applicable data are available.This report includes individual discussions of selected significant areas of ground-water development in the State for calendar year 2006. Most of the reported data were collected by the U.S. Geological Survey in cooperation with the Utah Department of Natural Resources, Division of Water Resources and Division of Water Rights, and the Utah Department of Environmental Quality, Division of Water Quality. This report is available online at http://www.waterrights.utah. gov/ and http://ut.water.usgs.gov/newUTAH/GW2007.pdf.

  19. Hanford Site ground-water monitoring for 1994

    Energy Technology Data Exchange (ETDEWEB)

    Dresel, P.E.; Thorne, P.D.; Luttrell, S.P. [and others

    1995-08-01

    This report presents the results of the Ground-Water Surveillance Project monitoring for calendar year 1994 on the Hanford Site, Washington. Hanford Site operations from 1943 onward produced large quantities of radiologic and chemical waste that have impacted ground-water quality on the Site. Monitoring of water levels and ground-water chemistry is performed to track the extent of contamination and trends in contaminant concentrations. The 1994 monitoring was also designed to identify emerging ground-water quality problems. The information obtained is used to verify compliance with applicable environmental regulations and to evaluate remedial actions. Data from other monitoring and characterization programs were incorporated to provide an integrated assessment of Site ground-water quality. Additional characterization of the Site`s geologic setting and hydrology was performed to support the interpretation of contaminant distributions. Numerical modeling of sitewide ground-water flow also supported the overall project goals. Water-level monitoring was performed to evaluate ground-water flow directions, to track changes in water levels, and to relate such changes to changes in site disposal practices. Water levels over most of the Hanford Site continued to decline between June 1993 and June 1994. These declines are part of the continued response to the cessation of discharge to U Pond and other disposal facilities. The low permeability in this area which enhanced mounding of waste-water discharge has also slowed the response to the reduction of disposal.

  20. Ground water budget analysis and cross-formational leakage in an arid basin.

    Science.gov (United States)

    Hutchison, William R; Hibbs, Barry J

    2008-01-01

    Ground water budget analysis in arid basins is substantially aided by integrated use of numerical models and environmental isotopes. Spatial variability of recharge, storage of water of both modern and pluvial age, and complex three-dimensional flow processes in these basins provide challenges to the development of a good conceptual model. Ground water age dating and mixing analysis with isotopic tracers complement standard hydrogeologic data that are collected and processed as an initial step in the development and calibration of a numerical model. Environmental isotopes can confirm or refute a priori assumptions of ground water flow, such as the general assumption that natural recharge occurs primarily along mountains and mountain fronts. Isotopes also serve as powerful tools during postaudits of numerical models. Ground water models provide a means of developing ground water budgets for entire model domains or for smaller regions within the model domain. These ground water budgets can be used to evaluate the impacts of pumping and estimate the magnitude of capture in the form of induced recharge from streams, as well as quantify storage changes within the system. The coupled analyses of ground water budget analysis and isotope sampling and analysis provide a means to confirm, refute, or modify conceptual models of ground water flow.

  1. Ground-water resources of Riverton irrigation project area, Wyoming

    Science.gov (United States)

    Morris, Donald Arthur; Hackett, O.M.; Vanlier, K.E.; Moulder, E.A.; Durum, W.H.

    1959-01-01

    streams, drains, or lakes; by pumping or flow of wells; or by flow of springs. Waterlogging and the associated development of saline soils are common in parts of the Riverton irrigation project and adjacent irrigated land. The waterlogging is in part the result of the infiltration of irrigation water in excess of the capacity of the aquifers to store and transmit this added recharge. The solution of the drainage problems involves the consideration of a number of factors, some of which are inadequately known in some parts of the area and require further investigation before fully effective drainage measures can be designed. The results of an aquifer test to determine the hydrologic characteristics of the Wind River formation at Riverton indicate a transmissibility of 10,000 gallons per day per foot (10,000 gpd per ft) and a storage coefficient of 2 x 10-4. The results of the test provide a part of the necessary foundation for the solution of present and future water-supply problems at Riverton and throughout the project area. Water from shallow aquifers in irrigated tracts in the Riverton irrigation project area generally contains large amounts of dissolved solids that were leached from the soil and rocks by infiltrating irrigation water. However, wells tapping beds that receive considerable recharge from influent canal and drain seepage yield water of relatively low mineralizatoin. Dilute water is obtained also from some shallow wells in the alluvial bottom lands and on low stream terraces that border the Wind Rover. Water from deep aquifers generally is more dilute than that from shallow aquifers. However, ground water from the deep aquifers, unmixed with irrigation water, generally has a percent sodium greater than 80. Analyses of salt crusts on the ground surface in low areas that are affected by effluent seepage and a high water table show predominance of sodium sulfate salinity, and from determinations of the water-soluble and acid-soluble substances in several

  2. Ground-water monitoring sites for Carson Valley, Nevada

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This data set contains the monitoring sites where water levels were collected and used to develop a spatial ground-water data base in Carson Valley, west-central...

  3. Recycling ground water in Waushara County, Wisconsin : resource management for cold-water fish hatcheries

    Science.gov (United States)

    Novitzki, R.P.

    1976-01-01

    Recycling water within the local ground-water system can increase the quantity of water available for use, control or avoid environmental pollution, and control temperature of the water supply. Pumped ground water supplied a fish-rearing facility for 15 months, and the waste water recharged the local ground-water system through an infiltration pond. Eighty-three percent of the recharged water returned to the well (recycled). Make-up water from the ground-water system provided the remaining 17 percent.

  4. Ground-water conditions in Whisky Flat, Mineral County, Nevada

    Science.gov (United States)

    Eakin, T.E.; Robinson, T.W.

    1950-01-01

    As a part of the State-wide cooperative program between the Office of the State Engineer of Nevada and the U.S. Geological Survey, the Ground Water Branch of the Geological Survey made a reconnaissance study of ground-water conditions in Whisky Flat, Mineral County, Nevada.

  5. Contamination of Ground Water Samples from Well Installations

    DEFF Research Database (Denmark)

    Grøn, Christian; Madsen, Jørgen Øgaard; Simonsen, Y.

    1996-01-01

    Leaching of a plasticizer, N-butylbenzenesulfonamide, from ground water multilevel sampling installations in nylon has been demonstrated. The leaching resulted in concentrations of DOC and apparent AOX, both comparable with those observed in landfill contaminated ground waters. It is concluded th...

  6. IN-SITU BIOREMEDIATION OF CONTAMINATED GROUND WATER

    Science.gov (United States)

    This document is one in a series of Ground Water Issue papers which have been prepared in response to needs expressed by the Ground Water Forum. It is based on findings from the research community in concert with experience gained at sites undergoing remediation. the intent of th...

  7. Procedures for ground-water investigations. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    1992-12-01

    This manual was developed by the Pacific Northwest Laboratory (PNL) to document the procedures used to carry out and control the technical aspects of ground-water investigations at the PNL. Ground-water monitoring procedures are developed and used in accordance with the PNL Quality Assurance Program.

  8. Ground-water conditions in Utah, spring of 2003

    Science.gov (United States)

    Burden, Carole B.; Enright, Michael; Danner, M.R.; Fisher, M.J.; Haraden, Peter L.; Kenney, T.A.; Wilkowske, C.D.; Eacret, Robert J.; Downhour, Paul; Slaugh, B.A.; Swenson, R.L.; Howells, J.H.; Christiansen, H.K.

    2003-01-01

    This is the fortieth in a series of annual reports that describe ground-water conditions in Utah. Reports in this series, published cooperatively by the U.S. Geological Survey and the Utah Department of Natural Resources, Division of Water Resources and Division of Water Rights, provide data to enable interested parties to maintain awareness of changing ground-water conditions.This report, like the others in the series, contains information on well construction, ground-water withdrawal from wells, water-level changes, precipitation, streamflow, and chemical quality of water. Information on well construction included in this report refers only to wells constructed for new appropriations of ground water. Supplementary data are included in reports of this series only for those years or areas which are important to a discussion of changing ground-water conditions and for which applicable data are available.This report includes individual discussions of selected significant areas of ground-water development in the State for calendar year 2002. Most of the reported data were collected by the U.S. Geological Survey in cooperation with the Utah Department of Natural Resources, Division of Water Rights and Division of Water Resources.

  9. Ground-water conditions in Utah, spring of 2002

    Science.gov (United States)

    Burden, Carole B.; Enright, Michael; Danner, M.R.; Fisher, M.J.; Haraden, Peter L.; Kenney, T.A.; Wilkowske, C.D.; Eacret, Robert J.; Downhour, Paul; Slaugh, B.A.; Swenson, R.L.; Howells, J.H.; Christiansen, H.K.

    2002-01-01

    This is the thirty-ninth in a series of annual reports that describe ground-water conditions in Utah. Reports in this series, published cooperatively by the U.S. Geological Survey and the Utah Department of Natural Resources, Division of Water Resources and Division of Water Rights, provide data to enable interested parties to maintain awareness of changing ground-water conditions.This report, like the others in the series, contains information on well construction, ground-water withdrawal from wells, water-level changes, precipitation, streamflow, and chemical quality of water. Information on well construction included in this report refers only to wells constructed for new appropriations of ground water. Supplementary data are included in reports of this series only for those years or areas which are important to a discussion of changing ground-water conditions and for which applicable data are available.This report includes individual discussions of selected significant areas of ground-water development in the State for calendar year 2001. Most of the reported data were collected by the U.S. Geological Survey in cooperation with the Utah Department of Natural Resources, Division of Water Rights and Division of Water Resources.

  10. Evaluating data worth for ground-water management under uncertainty

    Science.gov (United States)

    Wagner, B.J.

    1999-01-01

    A decision framework is presented for assessing the value of ground-water sampling within the context of ground-water management under uncertainty. The framework couples two optimization models-a chance-constrained ground-water management model and an integer-programing sampling network design model-to identify optimal pumping and sampling strategies. The methodology consists of four steps: (1) The optimal ground-water management strategy for the present level of model uncertainty is determined using the chance-constrained management model; (2) for a specified data collection budget, the monitoring network design model identifies, prior to data collection, the sampling strategy that will minimize model uncertainty; (3) the optimal ground-water management strategy is recalculated on the basis of the projected model uncertainty after sampling; and (4) the worth of the monitoring strategy is assessed by comparing the value of the sample information-i.e., the projected reduction in management costs-with the cost of data collection. Steps 2-4 are repeated for a series of data collection budgets, producing a suite of management/monitoring alternatives, from which the best alternative can be selected. A hypothetical example demonstrates the methodology's ability to identify the ground-water sampling strategy with greatest net economic benefit for ground-water management.A decision framework is presented for assessing the value of ground-water sampling within the context of ground-water management under uncertainty. The framework couples two optimization models - a chance-constrained ground-water management model and an integer-programming sampling network design model - to identify optimal pumping and sampling strategies. The methodology consists of four steps: (1) The optimal ground-water management strategy for the present level of model uncertainty is determined using the chance-constrained management model; (2) for a specified data collection budget, the monitoring

  11. Processing, Analysis, and General Evaluation of Well-Driller Logs for Estimating Hydrogeologic Parameters of the Glacial Sediments in a Ground-Water Flow Model of the Lake Michigan Basin

    Science.gov (United States)

    Arihood, Leslie D.

    2009-01-01

    In 2005, the U.S. Geological Survey began a pilot study for the National Assessment of Water Availability and Use Program to assess the availability of water and water use in the Great Lakes Basin. Part of the study involves constructing a ground-water flow model for the Lake Michigan part of the Basin. Most ground-water flow occurs in the glacial sediments above the bedrock formations; therefore, adequate representation by the model of the horizontal and vertical hydraulic conductivity of the glacial sediments is important to the accuracy of model simulations. This work processed and analyzed well records to provide the hydrogeologic parameters of horizontal and vertical hydraulic conductivity and ground-water levels for the model layers used to simulated ground-water flow in the glacial sediments. The methods used to convert (1) lithology descriptions into assumed values of horizontal and vertical hydraulic conductivity for entire model layers, (2) aquifer-test data into point values of horizontal hydraulic conductivity, and (3) static water levels into water-level calibration data are presented. A large data set of about 458,000 well driller well logs for monitoring, observation, and water wells was available from three statewide electronic data bases to characterize hydrogeologic parameters. More than 1.8 million records of lithology from the well logs were used to create a lithologic-based representation of horizontal and vertical hydraulic conductivity of the glacial sediments. Specific-capacity data from about 292,000 well logs were converted into horizontal hydraulic conductivity values to determine specific values of horizontal hydraulic conductivity and its aerial variation. About 396,000 well logs contained data on ground-water levels that were assembled into a water-level calibration data set. A lithology-based distribution of hydraulic conductivity was created by use of a computer program to convert well-log lithology descriptions into aquifer or

  12. Estimation of ground water hydraulic parameters

    Energy Technology Data Exchange (ETDEWEB)

    Hvilshoej, Soeren

    1998-11-01

    The main objective was to assess field methods to determine ground water hydraulic parameters and to develop and apply new analysis methods to selected field techniques. A field site in Vejen, Denmark, which previously has been intensively investigated on the basis of a large amount of mini slug tests and tracer tests, was chosen for experimental application and evaluation. Particular interest was in analysing partially penetrating pumping tests and a recently proposed single-well dipole test. Three wells were constructed in which partially penetrating pumping tests and multi-level single-well dipole tests were performed. In addition, multi-level slug tests, flow meter tests, gamma-logs, and geologic characterisation of soil samples were carried out. In addition to the three Vejen analyses, data from previously published partially penetrating pumping tests were analysed assuming homogeneous anisotropic aquifer conditions. In the present study methods were developed to analyse partially penetrating pumping tests and multi-level single-well dipole tests based on an inverse numerical model. The obtained horizontal hydraulic conductivities from the partially penetrating pumping tests were in accordance with measurements obtained from multi-level slug tests and mini slug tests. Accordance was also achieved between the anisotropy ratios determined from partially penetrating pumping tests and multi-level single-well dipole tests. It was demonstrated that the partially penetrating pumping test analysed by and inverse numerical model is a very valuable technique that may provide hydraulic information on the storage terms and the vertical distribution of the horizontal and vertical hydraulic conductivity under both confined and unconfined aquifer conditions. (EG) 138 refs.

  13. Simulation of regional ground-water flow in the Upper Deschutes Basin, Oregon

    Science.gov (United States)

    Gannett, Marshall W.; Lite, Kenneth E.

    2004-01-01

    This report describes a numerical model that simulates regional ground-water flow in the upper Deschutes Basin of central Oregon. Ground water and surface water are intimately connected in the upper Deschutes Basin and most of the flow of the Deschutes River is supplied by ground water. Because of this connection, ground-water pumping and reduction of artificial recharge by lining leaking irrigation canals can reduce the amount of ground water discharging to streams and, consequently, streamflow. The model described in this report is intended to help water-management agencies and the public evaluate how the regional ground-water system and streamflow will respond to ground-water pumping, canal lining, drought, and other stresses. Ground-water flow is simulated in the model by the finite-difference method using MODFLOW and MODFLOWP. The finite-difference grid consists of 8 layers, 127 rows, and 87 columns. All major streams and most principal tributaries in the upper Deschutes Basin are included. Ground-water recharge from precipitation was estimated using a daily water-balance approach. Artificial recharge from leaking irrigation canals and on-farm losses was estimated from diversion and delivery records, seepage studies, and crop data. Ground-water pumpage for irrigation and public water supplies, and evapotranspiration are also included in the model. The model was calibrated to mean annual (1993-95) steady-state conditions using parameter-estimation techniques employing nonlinear regression. Fourteen hydraulic-conductivity parameters and two vertical conductance parameters were determined using nonlinear regression. Final parameter values are all within expected ranges. The general shape and slope of the simulated water-table surface and overall hydraulic-head distribution match the geometry determined from field measurements. The fitted standard deviation for hydraulic head is about 76 feet. The general magnitude and distribution of ground-water discharge to

  14. Ground water recharge and flow characterization using multiple isotopes.

    Science.gov (United States)

    Chowdhury, Ali H; Uliana, Matthew; Wade, Shirley

    2008-01-01

    Stable isotopes of delta(18)O, delta(2)H, and (13)C, radiogenic isotopes of (14)C and (3)H, and ground water chemical compositions were used to distinguish ground water, recharge areas, and possible recharge processes in an arid zone, fault-bounded alluvial aquifer. Recharge mainly occurs through exposed stream channel beds as opposed to subsurface inflow along mountain fronts. This recharge distribution pattern may also occur in other fault-bounded aquifers, with important implications for conceptualization of ground water flow systems, development of ground water models, and ground water resource management. Ground water along the mountain front near the basin margins contains low delta(18)O, (14)C (percent modern carbon [pmC]), and (3)H (tritium units [TU]), suggesting older recharge. In addition, water levels lie at greater depths, and basin-bounding faults that locally act as a flow barrier may further reduce subsurface inflow into the aquifer along the mountain front. Chemical differences in ground water composition, attributed to varying aquifer mineralogy and recharge processes, further discriminate the basin-margin and the basin-center water. Direct recharge through the indurated sandstones and mudstones in the basin center is minimal. Modern recharge in the aquifer is mainly through the broad, exposed stream channel beds containing coarse sand and gravel where ground water contains higher delta(18)O, (14)C (pmC), and (3)H (TU). Spatial differences in delta(18)O, (14)C (pmC), and (3)H (TU) and occurrences of extensive mudstones in the basin center suggest sluggish ground water movement, including local compartmentalization of the flow system.

  15. Ground-water resources of Pavant Valley, Utah

    Science.gov (United States)

    Mower, R.W.

    1965-01-01

    from the recharge areas near the mountains, it becomes confined beneath clay beds; thus artesian conditions prevail in the lower parts of the valley. Although as many as 12 saturated beds of sand and gravel are penetrated in drilling wells to depths of 800 feet, they constitute, generally, one aquifer. The beds of coarser material are interconnected laterally, and the confining beds between them are not perfect aquicludes but merely impede the vertical movement of water. Artesian pressure increases with depth; thus, there is a continual upward flow of water from the lowest to the highest aquifer, and water not withdrawn through wells is discharged at the land surface or into basalt flows along the western edge of the valley. Most recharge to the sand and gravel aquifers enters the ground on the alluvial fans as percolation from streams, irrigation ditches, and irrigated fields. Some recharge results from underflow from the canyons and the face of the mountains and also from precipitation on the alluvial fans. Leakage from the Central Utah Canal is a major source of recharge to alluvial aquifers in the northern half of the valley. The Pavant Flow in the western part of the valley and the basalt underlying the area west of the Black Rock Volcano in the southern part are both major unconfined basalt aquifers. The Pavant Flow is recharged by upward leakage of water from the underlying artesian aquifer, by percolation of irrigation water, by water moving laterally in shallow sand and gravel deposits, and by precipitation on outcrops along the western side of the valley. The basalt underlying the area west of the Black Rock Volcano is recharged by precipitation in the mountains, leakage from the artesian aquifer, and percolation of irrigation water. The ,basalt ,aquifers are relatively thin, averaging 30-60 feet in thickness where -they supply water to irrigation wells. The valley is divided into six districts based on geologic and hydrologic diffe

  16. Ground-water contribution to dose from past Hanford Operations

    Energy Technology Data Exchange (ETDEWEB)

    Freshley, M.D.; Thorne, P.D.

    1992-08-01

    The Hanford Environmental Dose Reconstruction (HEDR) Project is being conducted to estimate radiation doses that populations and individuals could have received from Hanford Site operations from 1944 to the present. Four possible pathways by which radionuclides migrating in ground water on the Hanford Site could have reached the public have been identified: (1) through contaminated ground water migrating to the Columbia River; (2) through wells on or adjacent to the Hanford Site; (3) through wells next to the Columbia River downstream of Hanford that draw some or all of their water from the river (riparian wells); and (4) through atmospheric deposition resulting in contamination of a small watershed that, in turn, results in contamination of a shallow well or spring by transport in the ground water. These four pathways make up the ground-water pathway,'' which is the subject of this study. Assessment of the ground-water pathway was performed by (1) reviewing the existing extensive literature on ground water and ground-water monitoring at Hanford and (2) performing calculations to estimate radionuclide concentrations where no monitoring data were collected. Radiation doses that would result from exposure to these radionuclides were calculated.

  17. Dynamic factor analysis for estimating ground water arsenic trends.

    Science.gov (United States)

    Kuo, Yi-Ming; Chang, Fi-John

    2010-01-01

    Drinking ground water containing high arsenic (As) concentrations has been associated with blackfoot disease and the occurrence of cancer along the southwestern coast of Taiwan. As a result, 28 ground water observation wells were installed to monitor the ground water quality in this area. Dynamic factor analysis (DFA) is used to identify common trends that represent unexplained variability in ground water As concentrations of decommissioned wells and to investigate whether explanatory variables (total organic carbon [TOC], As, alkalinity, ground water elevation, and rainfall) affect the temporal variation in ground water As concentration. The results of the DFA show that rainfall dilutes As concentration in areas under aquacultural and agricultural use. Different combinations of geochemical variables (As, alkalinity, and TOC) of nearby monitoring wells affected the As concentrations of the most decommissioned wells. Model performance was acceptable for 11 wells (coefficient of efficiency >0.50), which represents 52% (11/21) of the decommissioned wells. Based on DFA results, we infer that surface water recharge may be effective for diluting the As concentration, especially in the areas that are relatively far from the coastline. We demonstrate that DFA can effectively identify the important factors and common effects representing unexplained variability common to decommissioned wells on As variation in ground water and extrapolate information from existing monitoring wells to the nearby decommissioned wells.

  18. Records of wells, ground-water levels, and ground-water withdrawals in the lower Goose Creek Basin, Cassia County, Idaho

    Science.gov (United States)

    Mower, R.W.

    1954-01-01

    Investigations by the United States Geological Survey of Ground Water in the Southern border area of the Snake Rive Plain, south of the Snake River, a re concerned at the present time with delineation of the principal ground-water districts, the extent and location of existing ground-water developments, the possibilities for additional development, and the effects of ground-water development on the regimen of streams and reservoirs whose waters are appropriate for beneficial use. The lower part of the Goose Creek Basin is one of the important ground-water districts of the southern plains area and there are substantial but spotty developments of ground water for irrigation in the basin. Several thousand irrigable acres that are now dry could be put under irrigation if a dependable supply of ground water could be developed. The relations of the ground-water reservoirs to the regime of the Snake River and Goose Cree, and to the large body of ground water in the Snake River Plain north of the Snake, are poorly known. A large amount of geologic and hydrologic study remains to be done before those relations can be accurately determined. Investigations will be continued in the future but file work and preparation of a comprehensive report inevitably will be delayed. Therefore the available records are presented herein in order to make them accessible to farmers, well drillers, government agencies, and the general public. Interpretation of the records is not attempted in this report and is deferred pending the accumulation of additional and quantitative information. The data summarized herein include records of the locations and physical characteristics of wells, the depth to water in wells, fluctuations of water levels in observation wells, and estimated rates and volumes of seasonal ans yearly ground-water pumpage for irrigation, municipal, and other uses. This information is complete for work done as of December 31, 1952. The investigations upon which this report is

  19. Hanford Site ground-water monitoring for 1993

    Energy Technology Data Exchange (ETDEWEB)

    Dresel, P.E.; Luttrell, S.P.; Evans, J.C. [and others

    1994-09-01

    This report presents the results of the Ground-Water Surveillance Project monitoring for calendar year 1993 on the Hanford Site, Washington. Hanford Site operations from 1943 onward produced large quantities of radiological and chemical waste that have impacted ground-water quality on the Site. Monitoring of water levels and ground-water chemistry is performed to track the extent of contamination and trends in contaminant concentrations. The 1993 monitoring was also designed to identify emerging ground-water quality problems. The information obtained is used to verify compliance with applicable environmental regulations and to evaluate remedial actions. Data from other monitoring and characterization programs were incorporated to provide an integrated assessment of Site ground-water quality. Additional characterization of the Site`s geologic setting and hydrology was performed to support the interpretation of contaminant distributions. Numerical modeling of sitewide ground-water flow also supported the overall project goals. Water-level monitoring was performed to evaluate ground-water flow directions, to track changes in water levels, and to relate such changes to changes in site disposal practices. Water levels over most of the Hanford Site continued to decline between June 1992 and June 1993. The greatest declines occurred in the 200-West Area. These declines are part of the continued response to the cessation of discharge to U Pond and other disposal facilities. The low permeability in this area which enhanced mounding of waste-water discharge has also slowed the response to the reduction of disposal. Water levels remained nearly constant in the vicinity of B Pond, as a result of continued disposal to the pond. Water levels measured from wells in the unconfined aquifer north and east of the Columbia River indicate that the primary source of recharge is irrigation practices.

  20. Hydrogeology and water quality in the Graces Quarters area of Aberdeen Proving Ground, Maryland

    Science.gov (United States)

    Tenbus, Frederick J.; Blomquist, Joel D.

    1995-01-01

    Graces Quarters was used for open-air testing of chemical-warfare agents from the late 1940's until 1971. Testing and disposal activities have resulted in the contamination of ground water and surface water. The hydrogeology and water quality were examined at three test areas, four disposal sites, a bunker, and a service area on Graces Quarters. Methods of investigation included surface and borehole geophysics, water-quality sampling, water- level measurement, and hydrologic testing. The hydrogeologic framework is complex and consists of a discontinuous surficial aquifer, one or more upper confining units, and a confined aquifer system. Directions of ground-water flow vary spatially and temporally, and results of site investigations show that ground-water flow is controlled by the geology of the area. The ground water and surface water at Graces Quarters generally are unmineralized; the ground water is mildly acidic (median pH is 5.38) and poorly buffered. Inorganic constituents in excess of certain Federal drinking-water regulations and ambient water-quality criteria were detected at some sites, but they probably were present naturally. Volatile and semivolatile organic com- pounds were detected in the ground water and surface water at seven of the nine sites that were investi- gated. Concentrations of organic compounds at two of the nine sites exceeded Federal drinking-water regulations. Volatile compounds in concentrations as high as 6,000 m/L (micrograms per liter) were detected in the ground water at the site known as the primary test area. Concentrations of volatile compounds detected in the other areas ranged from 0.57 to 17 m/L.

  1. Death Valley regional ground-water flow system, Nevada and California -- hydrogeologic framework and transient ground-water flow model

    Science.gov (United States)

    : Belcher, Wayne R.

    2004-01-01

    A numerical three-dimensional (3D) transient ground-water flow model of the Death Valley region was developed by the U.S. Geological Survey for the U.S. Department of Energy programs at the Nevada Test Site and at Yucca Mountain, Nevada. Decades of study of aspects of the ground-water flow system and previous less extensive ground-water flow models were incorporated and reevaluated together with new data to provide greater detail for the complex, digital model. A 3D digital hydrogeologic framework model (HFM) was developed from digital elevation models, geologic maps, borehole information, geologic and hydrogeologic cross sections, and other 3D models to represent the geometry of the hydrogeologic units (HGUs). Structural features, such as faults and fractures, that affect ground-water flow also were added. The HFM represents Precambrian and Paleozoic crystalline and sedimentary rocks, Mesozoic sedimentary rocks, Mesozoic to Cenozoic intrusive rocks, Cenozoic volcanic tuffs and lavas, and late Cenozoic sedimentary deposits of the Death Valley Regional Ground-Water Flow System (DVRFS) region in 27 HGUs. Information from a series of investigations was compiled to conceptualize and quantify hydrologic components of the ground-water flow system within the DVRFS model domain and to provide hydraulic-property and head-observation data used in the calibration of the transient-flow model. These studies reevaluated natural ground-water discharge occurring through evapotranspiration and spring flow; the history of ground-water pumping from 1913 through 1998; ground-water recharge simulated as net infiltration; model boundary inflows and outflows based on regional hydraulic gradients and water budgets of surrounding areas; hydraulic conductivity and its relation to depth; and water levels appropriate for regional simulation of prepumped and pumped conditions within the DVRFS model domain. Simulation results appropriate for the regional extent and scale of the model were

  2. Environmental Effect / Impact Assessment of Industrial Effulent on Ground Water

    Directory of Open Access Journals (Sweden)

    Dr. Parmod Kumar

    2013-12-01

    Full Text Available In the present study the aim of investigation is physical and chemical parameters of ground water and soil. By selected Physical and chemical parameters it is found that (1.Biological oxygen demand (BOD and chemical oxygen demand (COD are directly proportional to each other where dissolved oxygen (DO is indirectly proportional to BOD and COD. (2. Total dissolved solids, alkalinity and hardness are significantly higher in pre monsoon and winter season as compared to monsoon season.(3. High values of different parameters of ground water sources indicate the influence of industrial wastes on ground water.

  3. Identification of Naegleria fowleri in warm ground water aquifers.

    Science.gov (United States)

    Laseke, Ian; Korte, Jill; Lamendella, Regina; Kaneshiro, Edna S; Marciano-Cabral, Francine; Oerther, Daniel B

    2010-01-01

    The free-living amoeba Naegleria fowleri was identified as the etiological agent of primary amoebic meningoencephalitis that caused the deaths of two children in Peoria, Arizona, in autumn of 2002. It was suspected that the source of N. fowleri was the domestic water supply, which originates from ground water sources. In this study, ground water from the greater Phoenix Metropolitan area was tested for the presence of N. fowleri using a nested polymerase chain reaction approach. Phylogenetic analyses of 16S rRNA sequences of bacterial populations in the ground water were performed to examine the potential link between the presence of N. fowleri and bacterial groups inhabiting water wells. The results showed the presence of N. fowleri in five out of six wells sampled and in 26.6% of all ground water samples tested. Phylogenetic analyses showed that beta- and gamma-proteobacteria were the dominant bacterial populations present in the ground water. Bacterial community analyses revealed a very diverse community structure in ground water samples testing positive for N. fowleri.

  4. An imminent human resource crisis in ground water hydrology?

    Science.gov (United States)

    Stephens, Daniel B

    2009-01-01

    Anecdotal evidence, mostly from the United States, suggests that it has become increasingly difficult to find well-trained, entry-level ground water hydrologists to fill open positions in consulting firms and regulatory agencies. The future prospects for filling positions that require training in ground water hydrology are assessed by considering three factors: the market, the numbers of qualified students entering colleges and universities, and the aging of the existing workforce. The environmental and water resources consulting industry has seen continuous albeit variable growth, and demand for environmental scientists and hydrologists is expected to increase significantly. Conversely, students' interest and their enrollment in hydrology and water resources programs have waned in recent years, and the interests of students within these departments have shifted away from ground water hydrology in some schools. This decrease in the numbers of U.S. students graduating in hydrology or emphasizing ground water hydrology is coinciding with the aging of and pending retirement of ground water scientists and engineers in the baby boomer generation. We need to both trigger the imagination of students at the elementary school level so that they later want to apply science and math and communicate the career opportunities in ground water hydrology to those high school and college graduates who have acquired the appropriate technical background. Because the success of a consulting firm, research organization, or regulatory agency is derived from the skills and judgment of the employees, human resources will be an increasingly more critical strategic issue for many years.

  5. Ground-water and geohydrologic conditions in Queens County, Long Island, New York

    Science.gov (United States)

    Soren, Julian

    1971-01-01

    Queens County is a heavily populated borough of New York City, at the western end of Long Island, N. Y., in which large amounts of ground water are used, mostly for public supply. Ground water, pumped from local aquifers, by privately owned water-supply companies, supplied the water needs of about 750,000 of the nearly 2 million residents of the county in 1967; the balance was supplied by New York City from surface sources outside the county in upstate New York. The county's aquifers consist of sand and gravel of Late Cretaceous and of Pleistocene ages, and the aquifers comprise a wedge-shaped ground-water reservoir lying on a southeastward-sloping floor of Precambrian(?) bedrock. Beds of clay and silt generally confine water in the deeper parts of the reservoir; water in the deeper aquifers ranges from poorly confined to well confined. Wisconsin-age glacial deposits in the uppermost part of the reservoir contain ground water under water-table conditions. Ground water pumpage averaged about 60 mgd (million gallons per day) in Queens County from about 1900 to 1967. Much of the water was used in adjacent Kings County, another borough of New York City, prior to 1950. The large ground-water withdrawal has resulted in a wide-spread and still-growing cone of depression in the water table, reflecting a loss of about 61 billion gallons of fresh water from storage. Significant drawdown of the water table probably began with rapid urbanization of Queens County in the 1920's. The county has been extensively paved, and storm and sanitary sewers divert water, which formerly entered the ground, to tidewater north and south of the county. Natural recharge to the aquifers has been reduced to about one half of the preurban rate and is below the withdrawal rate. Ground-water levels have declined more than 40. feet from the earliest-known levels, in 1903, to 1967, and the water table is below sea level in much of the county. The aquifers are being contaminated by the movement of

  6. Geohydrological characterization, water-chemistry, and ground-water flow simulation model of the Sonoma Valley area, Sonoma County, California

    Science.gov (United States)

    Farrar, Christopher D.; Metzger, Loren F.; Nishikawa, Tracy; Koczot, Kathryn M.; Reichard, Eric G.; Langenheim, V.E.

    2006-01-01

    changes by region. In recent years, pumping depressions have developed southeast of Sonoma and southwest of El Verano. Water-chemistry data for samples collected from 75 wells during 2002-04 indicate that the ground-water quality in the study area generally is acceptable for potable use. The water from some wells, however, contains one or more constituents in excess of the recommended standards for drinking water. The chemical composition of water from creeks, springs, and wells sampled for major ions plot within three groups on a trilinear diagram: mixed-bicarbonate, sodium-mixed anion, and sodium-bicarbonate. An area of saline ground water in the southern part of the Sonoma Valley appears to have shifted since the late 1940s and early 1950s, expanding in one area, but receding in another. Sparse temperature data from wells southwest of the known occurrence of thermal water suggest that thermal water may be present beneath a larger part of the valley than previously thought. Thermal water contains higher concentrations of dissolved minerals than nonthermal waters because mineral solubilities generally increase with temperature. Geohydrologic Characterization, Water-Chemistry, and Ground-Water Flow Simulation Model of the Sonoma Valley Area, Sonoma County, California Oxygen-18 (d18 O) and deuterium (dD) values for water from most wells plot along the global meteoric water line, indicating that recharge primarily is derived from the direct infiltration of precipitation or the infiltration of seepage from creeks. Samples from shallow- and intermediate-depth wells located near Sonoma Creek and (or) in the vicinity of Shellville plot to the right of the global meteoric water line, indicating that these waters are partly evaporated. The d18 O and dD composition of water from sampled wells indicates that water from wells deeper than 200 feet is isotopically lighter (more negative) than water from wells less than 200 feet deep, possibly indicating that older ground wate

  7. Estimating pumping time and ground-water withdrawals using energy-consumption data. Water-Resources Investigation

    Energy Technology Data Exchange (ETDEWEB)

    Hurr, R.T.; Litke, D.W.

    1989-01-01

    Evaluation of the hydrology of an aquifer requires knowledge about the volume of ground water in storage and also about the volume of ground-water withdrawals. Totalizer flow meters may be installed at pumping plants to measure withdrawals; however, it generally is impractical to equip all wells in an area with meters. A viable alternative is the use of rate-time methods to estimate withdrawals. The relation between power demand and pumping rate at a pumping plant can be described through the use of the power-consumption coefficient. Where equipment and hydrologic conditions are stable, this coefficient can be applied to total energy consumption at a site to estimate total ground-water withdrawals. Random sampling of power-consumption coefficients can be used to estimate area-wide ground-water withdrawals.

  8. Water Treatment Technology - General Plant Operation.

    Science.gov (United States)

    Ross-Harrington, Melinda; Kincaid, G. David

    One of twelve water treatment technology units, this student manual on general plant operations provides instructional materials for seven competencies. (The twelve units are designed for a continuing education training course for public water supply operators.) The competencies focus on the following areas: water supply regulations, water plant…

  9. EFFECT OF GROUND-WATER REMEDIATION ACTIVITIES ON INDIGENOUS MICROFLORA

    Science.gov (United States)

    The United States Environmental Protection Agency (EPA), working with the Interagency DNAPL Consortium, completed an independent evaluation of microbial responses to ground-water remediation technology demonstrations at Launch Pad 34 at Cape Canaveral Air Station in Brevard Count...

  10. Arsenic in Ground Water of the United States - Direct Download

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This image shows national-scale patterns of naturally occurring arsenic in potable ground-water resources of the continental United States. The image was generated...

  11. Contamination of Ground Water Due To Landfill Leachate

    Directory of Open Access Journals (Sweden)

    M. V. S. Raju

    2012-12-01

    Full Text Available The present site under investigation at Ajitsingh Nagar in Vijayawada of Andhra Pradesh is initially a low lying area and used for disposing the urban solid waste for the last few years, through open dumping with out taking any measures to protect the Ground water against pollution. The present study has been taken up to measure the degree of pollution of ground water due to leachate produced in the landfill site. Bore holes were made at eight random locations to measure the depth and characteristics of solid waste. Four sampling wells were made for the collection of ground water samples and they were analyzed for various parameters. All parameters were measured based on Standard methods. It is found that the ground water is contaminated due leachates of Landfill to the large extent and is not suitable for Drinking, Domestic and Irrigation purposes.

  12. Ground and Intermediate Water Equilibrium with Water-Bearing Rock Minerals (Moldova) under Anthropogenic Impact

    Science.gov (United States)

    Timoshenkova, A. N.; Moraru, C. Ye; Pasechnik, Ye Yu; Tokarenko, O. G.; Butoshina, V. A.

    2016-03-01

    The calculation results of ground water equilibrium with the major water-bearing rock minerals (Moldova) are presented under the condition of anthropogenic impact. As a calculation model the HydroGeo software is used. It is shown that both “ground water-rock” and “intermediate water-rock” systems are in equilibrium with a number of minerals.

  13. Movement of coliform bacteria and nutrients in ground water flowing through basalt and sand aquifers.

    Science.gov (United States)

    Entry, J A; Farmer, N

    2001-01-01

    Large-scale deposition of animal manure can result in contamination of surface and ground water and in potential transfer of disease-causing enteric bacteria to animals or humans. We measured total coliform bacteria (TC), fecal coliform bacteria (FC), NO3, NH4, total P, and PO4 in ground water flowing from basalt and sand aquifers, in wells into basalt and sand aquifers, in irrigation water, and in river water. Samples were collected monthly for 1 yr. Total coliform and FC numbers were always higher in irrigation water than in ground water, indicating that soil and sediment filtered most of these bacteria before they entered the aquifers. Total coliform and FC numbers in ground water were generally higher in the faster flowing basalt aquifer than in the sand aquifer, indicating that the slower flow and finer grain size may filter more TC and FC bacteria from water. At least one coliform bacterium/100 mL of water was found in ground water from both basalt and sand aquifers, indicating that ground water pumped from these aquifers is not necessarily safe for human consumption according to the American Public Health Association and the USEPA. The NO3 concentrations were usually higher in water flowing from the sand aquifer than in water flowing from the basalt aquifer or in perched water tables in the basalt aquifer. The PO4 concentrations were usually higher in water flowing from the basalt aquifer than in water flowing from the sand aquifer. The main concern is fecal contamination of these aquifers and health consequences that may arise from human consumption.

  14. Lithium content in potable water, surface water, ground water, and mineral water on the territory of Republic of Macedonia

    OpenAIRE

    Vesna Kostik; Biljana Bauer; Zoran Kavrakovski

    2014-01-01

    The aim of this study was to determine lithium concentration in potable water, surface water, ground, and mineral water on the territory of the Republic of Macedonia. Water samples were collected from water bodies such as multiple public water supply systems located in 13 cities, wells boreholes located in 12 areas, lakes and rivers located in three different areas. Determination of lithium concentration in potable water, surface water was performed by the technique of inductively coupl...

  15. Geospatial Database of Ground-Water Altitude and Depth-to-Ground-Water Data for Utah, 1971-2000

    Science.gov (United States)

    Buto, Susan G.; Jorgensen, Brent E.

    2007-01-01

    A geospatial database of ground-water-level altitude and depth-to-ground-water data for Utah was developed. Water-level contours from selected published reports were converted to digital Geographic Information System format and attributes describing the contours were added. Water-level altitude values were input to an inverse distance weighted interpolator to create a raster of interpolated water-level altitude for each report. The water-level altitude raster was subtracted from digital land-surface altitude data to obtain depth-to-water rasters for each study. Comparison of the interpolated rasters to actual water-level measurements shows that the interpolated water-level altitudes are well correlated with measured water-level altitudes from the same time period. The data can be downloaded and displayed in any Geographic Information System or can be explored by downloading a data package and map from the U.S. Geological Survey.

  16. Ground water dependence of endangered ecosystems: Nebraska's eastern saline wetlands.

    Science.gov (United States)

    Harvey, F Edwin; Ayers, Jerry F; Gosselin, David C

    2007-01-01

    Many endangered or threatened ecosystems depend on ground water for their survival. Nebraska's saline wetlands, home to a number of endangered species, are ecosystems whose development, sustenance, and survival depend on saline ground water discharge at the surface. This study demonstrates that the saline conditions present within the eastern Nebraska saline wetlands result from the upwelling of saline ground water from within the underlying Dakota Aquifer and deeper underlying formations of Pennsylvanian age. Over thousands to tens of thousands of years, saline ground water has migrated over regional scale flowpaths from recharge zones in the west to the present-day discharge zones along the saline streams of Rock, Little Salt, and Salt Creeks in Lancaster and Saunders counties. An endangered endemic species of tiger beetle living within the wetlands has evolved under a unique set of hydrologic conditions, is intolerant to recent anthropogenic changes in hydrology and salinity, and is therefore on the brink of extinction. As a result, the fragility of such systems demands an even greater understanding of the interrelationships among geology, hydrology, water chemistry, and biology than in less imperiled systems where adaptation is more likely. Results further indicate that when dealing with ground water discharge-dependent ecosystems, and particularly those dependent on dissolved constituents as well as the water, wetland management must be expanded outside of the immediate surface location of the visible ecosystem to include areas where recharge and lateral water movement might play a vital role in wetland hydrologic and chemical mixing dynamics.

  17. Hydrogeology, simulated ground-water flow, and ground-water quality, Wright-Patterson Air Force Base, Ohio

    Science.gov (United States)

    Dumouchelle, D.H.; Schalk, C.W.; Rowe, G.L.; De Roche, J.T.

    1993-01-01

    Ground water is the primary source of water in the Wright-Patterson Air Force Base area. The aquifer consists of glacial sands and gravels that fill a buried bedrock-valley system. Consolidated rocks in the area consist of poorly permeable Ordovician shale of the Richmondian stage, in the upland areas, the Brassfield Limestone of Silurian age. The valleys are filled with glacial sediments of Wisconsinan age consisting of clay-rich tills and coarse-grained outwash deposits. Estimates of hydraulic conductivity of the shales based on results of displacement/recovery tests range from 0.0016 to 12 feet per day; estimates for the glacial sediments range from less than 1 foot per day to more than 1,000 feet per day. Ground water flow from the uplands towards the valleys and the major rivers in the region, the Great Miami and the Mad Rivers. Hydraulic-head data indicate that ground water flows between the bedrock and unconsolidated deposits. Data from a gain/loss study of the Mad River System and hydrographs from nearby wells reveal that the reach of the river next to Wright-Patterson Air Force Base is a ground-water discharge area. A steady-state, three-dimensional ground-water-flow model was developed to simulate ground-water flow in the region. The model contains three layers and encompasses about 100 square miles centered on Wright-Patterson Air Force Base. Ground water enters the modeled area primarily by river leakage and underflow at the model boundary. Ground water exits the modeled area primarily by flow through the valleys at the model boundaries and through production wells. A model sensitivity analysis involving systematic changes in values of hydrologic parameters in the model indicates that the model is most sensitive to decreases in riverbed conductance and vertical conductance between the upper two layers. The analysis also indicates that the contribution of water to the buried-valley aquifer from the bedrock that forms the valley walls is about 2 to 4

  18. 46 CFR 183.370 - General grounding requirements.

    Science.gov (United States)

    2010-10-01

    ... requirements. (a) A vessel's hull must not carry current as a conductor except for the following systems: (1... more, must have a grounding pole and a grounding conductor in the portable cord. (c) Each nonmetallic mast and top mast must have a lightning ground conductor....

  19. Potential structural barriers to ground-water flow, Death Valley regional ground-water flow system, Nevada and California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This digital dataset defines the surface traces of regional geologic structures designated as potential ground-water flow barriers in an approximately 45,000...

  20. Potential structural barriers to ground-water flow, Death Valley regional ground-water flow system, Nevada and California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This digital dataset defines the surface traces of regional geologic structures designated as potential ground-water flow barriers in an approximately 45,000...

  1. Coliphages and bacteria in ground water from Tehran, Iran

    Energy Technology Data Exchange (ETDEWEB)

    Shariatpanahi, M.; Anderson, A.C.

    1987-07-01

    The purpose of this study was to examine the microbial quality of Tehran's ground water and selected springs, using coliphages and selected bacteria as indicator organisms. The water table in Tehran varies from approximately 160 meters in the north to approximately 5 meters in the south. Individual wells and subterranean man-made aqueducts (qanate) tap the ground water. Since Tehran lacks municipal sewage facilities, waste disposal is by means of seepage pits, privies and leaching cesspools. There is potential for waste from these sites to leach into the ground water, particularly in the south where the water table is near the surface and the clay content of the soil holds moisture during periods of heavy rainfall.

  2. Ground-Water Quality in Western New York, 2006

    Science.gov (United States)

    Eckhardt, David A.V.; Reddy, James E.; Tamulonis, Kathryn L.

    2008-01-01

    Water samples were collected from 7 production wells and 26 private residential wells in western New York from August through December 2006 and analyzed to characterize the chemical quality of ground water. Wells at 15 of the sites were screened in sand and gravel aquifers, and 18 were finished in bedrock aquifers. The wells were selected to represent areas of greatest ground-water use and to provide a geographical sampling from the 5,340-square-mile study area. Samples were analyzed for 5 physical properties and 219 constituents that included nutrients, major inorganic ions, trace elements, radionuclides, pesticides, volatile organic compounds (VOC), phenolic compounds, organic carbon, and bacteria. Results indicate that ground water used for drinking supply is generally of acceptable quality, although concentrations of some constituents or bacteria exceeded at least one drinking-water standard at 27 of the 33 wells. The cations that were detected in the highest concentrations were calcium, magnesium, and sodium; anions that were detected in the highest concentrations were bicarbonate, chloride, and sulfate. The predominant nutrients were nitrate and ammonia; nitrate concentrations were higher in samples from sand and gravel aquifers than in samples from bedrock. The trace elements barium, boron, copper, lithium, nickel, and strontium were detected in every sample; the trace elements with the highest concentrations were barium, boron, iron, lithium, manganese, and strontium. Eighteen pesticides, including 9 pesticide degradates, were detected in water from 14 of the 33 wells, but none of the concentrations exceeded State or Federal Maximum Contaminant Levels (MCLs). Fourteen volatile organic compounds were detected in water from 12 of the 33 wells, but none of the concentrations exceeded MCLs. Eight chemical analytes and three types of bacteria were detected in concentrations that exceeded Federal and State drinking-water standards, which are typically identical

  3. Ground-water conditions and studies in Georgia, 2001

    Science.gov (United States)

    Leeth, David C.; Clarke, John S.; Craigg, Steven D.; Wipperfurth, Caryl J.

    2003-01-01

    The U.S. Geological Survey (USGS) collects ground-water data and conducts studies to monitor hydrologic conditions, to better define ground-water resources, and address problems related to water supply and water quality. Data collected as part of ground-water studies include geologic, geophysical, hydraulic property, water level, and water quality. A ground-water-level network has been established throughout most of the State of Georgia, and ground-water-quality networks have been established in the cities of Albany, Savannah, and Brunswick and in Camden County, Georgia. Ground-water levels are monitored continuously in a network of wells completed in major aquifers of the State. This network includes 17 wells in the surficial aquifer, 12 wells in the upper and lower Brunswick aquifers, 73 wells in the Upper Floridan aquifer, 10 wells in the Lower Floridan aquifer and underlying units, 12 wells in the Claiborne aquifer, 1 well in the Gordon aquifer, 11 wells in the Clayton aquifer, 11 wells in the Cretaceous aquifer system, 2 wells in Paleozoic-rock aquifers, and 7 wells in crystalline-rock aquifers. In this report, data from these 156 wells were evaluated to determine whether mean-annual ground-water levels were within, below, or above the normal range during 2001, based on summary statistics for the period of record. Information from these summaries indicates that water levels during 2001 were below normal in almost all aquifers monitored, largely reflecting climatic effects from drought and pumping. In addition, water-level hydrographs for selected wells indicate that water levels have declined during the past 5 years (since 1997) in almost all aquifers monitored, with water levels in some wells falling below historical lows. In addition to continuous water-level data, periodic measurements taken in 52 wells in the Camden County-Charlton County area, and 65 wells in the city of Albany-Dougherty County area were used to construct potentiometric-surface maps for

  4. Ground-water resources of north-central Connecticut

    Science.gov (United States)

    Cushman, Robert Vittum

    1964-01-01

    The term 'north-central Connecticut' in this report refers to an area of about 640 square miles within the central lowland of the Connecticut River basin north of Middletown. The area is mostly a broad valley floor underlain by unconsolidated deposits of Pleistocene and Recent age which mantle an erosional surface formed on consolidated rocks of pre-Triassic and Triassic age. The mean annual precipitation at Hartford, near the center of the area, is 42.83 inches and is uniformly distributed throughout the year. The average annual streamflow from the area is about 22 inches or about half the precipitation. The consolidated water-bearing formations are crystalline rocks of pre-Triassic age and sedimentary and igneous rocks of the Newark group of Triassic age. The crystalline rocks include the Middletown gneiss, the Maromas granite gneiss, the Glastonbury granite-gneiss of Rice and Gregory (1906), and the Bolton schist which form the basement complex and the Eastern Upland of north-central Connecticut. Enough water for domestic, stock, and small commercial use generally can be obtained from the crystalline rocks. Recoverable ground water occurs in the interconnected joints and fracture zones and is yielded in amounts ranging from 29 to 35 gpm (gallons per minute) to wells ranging in depth from 29 to 550 feet. The sedimentary rocks of Triassic age underlie all the Connecticut River Lowland and are predominantly arkosic sandstone and shale. Water supplies sufficient for domestic, stock, and small commercial use can be obtained from shallow wells penetrating these rocks, and larger supplies sufficient for industries and smaller municipalities can probably be obtained from deeper wells. Reported yields range from ? to 578 gpm; the larger yields are generally obtained from wells between 300 and 600 feet in depth. Yields are larger where the overlying material is sand and gravel or where the rocks are well fractured. The igneous rocks of Triassic age are basalt and have

  5. Chester County ground-water atlas, Chester County, Pennsylvania

    Science.gov (United States)

    Ludlow, Russell A.; Loper, Connie A.

    2004-01-01

    Chester County encompasses 760 square miles in southeastern Pennsylvania. Groundwater- quality studies have been conducted in the county over several decades to address specific hydrologic issues. This report compiles and describes water-quality data collected during studies conducted mostly after 1990 and summarizes the data in a county-wide perspective. In this report, water-quality constituents are described in regard to what they are, why the constituents are important, and where constituent concentrations vary relative to geology or land use. Water-quality constituents are grouped into logical units to aid presentation: water-quality constituents measured in the field (pH, alkalinity, specific conductance, and dissolved oxygen), common ions, metals, radionuclides, bacteria, nutrients, pesticides, and volatile organic compounds.Waterquality constituents measured in the field, common ions (except chloride), metals, and radionuclides are discussed relative to geology. Bacteria, nutrients, pesticides, and volatile organic compounds are discussed relative to land use. If the U.S. Environmental Protection Agency (USEPA) or Chester County Health Department has drinkingwater standards for a constituent, the standards are included. Tables and maps are included to assist Chester County residents in understanding the water-quality constituents and their distribution in the county. Ground water in Chester County generally is of good quality and is mostly acidic except in the carbonate rocks and serpentinite, where it is neutral to strongly basic. Calcium carbonate and magnesium carbonate are major constituents of these rocks. Both compounds have high solubility, and, as such, both are major contributors to elevated pH, alkalinity, specific conductance, and the common ions. Elevated pH and alkalinity in carbonate rocks and serpentinite can indicate a potential for scaling in water heaters and household plumbing. Low pH and low alkalinity in the schist, quartzite, and

  6. Submarine ground-water discharge: nutrient loading and nitrogen transformations

    Science.gov (United States)

    Kroeger, Kevin D.; Swarzenski, Peter W.; Crusius, John; Bratton, John F.; Charette, Matthew A.

    2006-01-01

    Eutrophication of coastal waters due to nonpoint source land-derived nitrogen (N) loads is a worldwide phenomenon and perhaps the greatest agent of change altering coastal ecology (National Research Council, 2000; Howarth and others, 2000). Within the United States, a majority of estuaries have been determined to be moderately to severely impaired by eutrophication associated with increasing nutrient loads (Bricker and others, 1999).In coastal watersheds with soils of high hydraulic conductivity and permeable coastal sediments, ground water is a major route of transport of freshwater and its solutes from land to sea. Freshwater flowing downgradient from aquifers may either discharge from a seepage face near the intertidal zone, or flow directly into the sea as submarine ground-water discharge (SGD) (fig. 1). In the coastal aquifer, entrainment of saline pore water occurs prior to discharge, producing a gradient in ground-water salinity from land to sea, referred to as a subterranean estuary (Moore, 1999). In addition, processes including density-driven flow and tidal pumping create brackish and saline ground-water circulation. Hence, submarine ground-water discharge often consists of a substantial amount of recirculating seawater. Mixing of fresh and saline ground waters in the context of coastal sediments may alter the chemical composition of the discharging fluid. Depending on the biogeochemical setting, removal of fixed N due to processes leading to N2 (dinitrogen gas) production in the nearshore aquifer and subterranean estuary may significantly attenuate land-derived N loads; or, processes such as ion exchange and tidal pumping in the subterranean estuary may substantially accelerate the transport of both land-derived and sediment re-mineralized N to estuarine water columns.As emphasized by Burnett and others (2001, 2002), a fundamental problem in evaluating the importance of ground-water discharge in marine geochemical budgets is the difficulty of collecting

  7. Quality of the ground water in basalt of the Columbia River group, Washington, Oregon, and Idaho

    Science.gov (United States)

    Newcomb, Reuben Clair

    1972-01-01

    The ground water within the 50,000-square-mile area of the layered basalt of the Columbia River Group is a generally uniform bicarbonate water having calcium and sodium in nearly equal amounts as the principal cations. water contains a relatively large amount of silica. The 525 chemical analyses indicate that the prevalent ground water is of two related kinds--a calcium and a sodium water. The sodium water is more common beneath the floors of the main synclinal valleys; the calcium water, elsewhere. In addition to the prevalent type, five special types form a small part of the ground water; four of these are natural and one is artificial. The four natural special types are: (1) calcium sodium chloride waters that rise from underlying sedimentary rocks west of the Cascade Range, (2) mineralized water at or near warm or hot springs, (3) water having unusual ion concentrations, especially of chloride, near sedimentary rocks intercalated at the edges of the basalt, and (4) more mineralized water near one locality of excess carbon dioxide. The one artificial kind of special ground water has resulted from unintentional artificial recharge incidental to irrigation in parts of central Washington. The solids dissolved in the ground water have been picked up on the surface, within the overburden, and from minerals and glasses within the basalt. Evidence for the removal of ions from solution is confined to calcium and magnesium, only small amounts of which are present in some of the sodium-rich water. Minor constituents, such as the heavy metals, alkali metals, and alkali earths, occur in the ground water in trace, or small, amounts. The natural radioactivity of the ground waters is very low. Except for a few of the saline calcium sodium chloride waters and a few occurrences of excessive nitrate, the ground water generally meets the common standards of water good for most ordinary uses, but some of it can be improved by treatment. The water is clear and colorless and has a

  8. Assessment of Ground Water Quality in Rajajinagar of Bangalore

    Directory of Open Access Journals (Sweden)

    Alimuddin

    2015-04-01

    Full Text Available Water borne diseases continue to be a dominant cause of water borne morbidities and mortality all over the world. Hence, drinking water needs to be protected from pollution and biological contamination. Ground water samples were collected from ten different sampling point in Rajajinagar area of Bangalore and analysed for water quality parameters viz. pH , total alkalinity, chloride, total dissolved solids, electrical conductivity, sodium, potassium, calcium, magnesium, dissolved oxygen, BOD, COD and total hardness. The pH value of the study area ranges between 7.3 to 8.4 indicating that ground water is slightly alkaline. The total alkalinity are varied in the range from 122 to 282 mg/l which is well within the limit prescribed by BIS. The TDS value found from 397 to 546 mg/l. The values of hardness of water ranges from 125 to 267 mg/l which is within the prescribed limit as per BIS.

  9. Ground-Water Temperature, Noble Gas, and Carbon Isotope Data from the Espanola Basin, New Mexico

    Science.gov (United States)

    Manning, Andrew H.

    2009-01-01

    Ground-water samples were collected from 56 locations throughout the Espanola Basin and analyzed for general chemistry (major ions and trace elements), carbon isotopes (delta 13C and 14C activity) in dissolved inorganic carbon, noble gases (He, Ne, Ar, Kr, Xe, and 3He/4He ratio), and tritium. Temperature profiles were measured at six locations in the southeastern part of the basin. Temperature profiles suggest that ground water generally becomes warmer with distance from the mountains and that most ground-water flow occurs at depths 50 years old, consistent with the 14C ages. Terrigenic He (Heterr) concentrations in ground water are high (log Delta Heterr of 2 to 5) throughout much of the basin. High Heterr concentrations are probably caused by in situ production in the Tesuque Formation from locally high concentrations of U-bearing minerals (Northeast zone only), or by upward diffusive/advective transport of crustal- and mantle-sourced He possibly enhanced by basement piercing faults, or by both. The 3He/4He ratio of Heterr (Rterr) is commonly high (Rterr/Ra of 0.3-2.0, where Ra is the 3He/4He ratio in air) suggesting that Espanola Basin ground water commonly contains mantle-sourced He. The 3He/4He ratio of Heterr is generally the highest in the western and southern parts of the basin, closest to the western border fault system and the Quaternary to Miocene volcanics of the Jemez Mountains and Cerros del Rio.

  10. THE DYNAMICS OF WATER RESERVES ON POST MINING GROUNDS

    Directory of Open Access Journals (Sweden)

    Piotr Stachowski

    2014-11-01

    Full Text Available The report shows the results of investigations and analyses on four experimental areas located at the “Kazimierz” quarry (in Pojezierze Kujawskie latitude 52o20’ N, longitude 18o05’ E. The results of the investigations show the dynamics of moisture in the upper layer of post mining grounds are formed under metrological conditions. It shows that the most important dynamic of water retention occurred on the upper cultivated layer of post mining grounds in which there was a moisture reaction to the water precipitation. An unprofitable distribution of precipitation during the vegetation period 2013 caused this water deficit to the plants cultivated on post mining grounds. The longest water deficit (63 days occurred in profiles typical to crop cultivation (average 12 mm. The results of the investigation confirm that post mining grounds should cultivate plants which are resistant to water deficit and which would benefit from the water reserves in the deeper layers of post mining grounds and which have deep roots system, such as lucerne.

  11. Ground-Water, Surface-Water, and Water-Chemistry Data, Black Mesa Area, Northeastern Arizona - 2006-07

    Science.gov (United States)

    Truini, Margot; Macy, J.P.

    2008-01-01

    once in 2006 and once in 2007 at Moenkopi School Spring. Flow decreased by 18.9 percent at Moenkopi School Spring. During the period of record, flow fluctuated, and a decreasing trend was apparent. Continuous records of surface-water discharge in the Black Mesa area have been collected from streamflow gages at the following sites: Moenkopi Wash at Moenkopi (1976 to 2006), Dinnebito Wash near Sand Springs (1993 to 2006), Polacca Wash near Second Mesa (1994 to 2006), and Pasture Canyon Springs (August 2004 to December 2006). Median flows during November, December, January, and February of each water year were used as an index of the amount of ground-water discharge to the above named sites. For the period of record at each streamflow-gaging station, the median winter flows have generally remained even, showing neither a significant increase nor decrease in flows. There is not a long enough period of record for Pasture Canyon Spring for a trend to be apparent. In 2007, water samples were collected from 1 well and 1 spring in the Black Mesa area and were analyzed for selected chemical constituents. Concentrations of dissolved solids, chloride, and sulfate have varied at Peabody well 5 for the period of record, and there is an apparent increasing trend. Dissolved-solids, chloride, and sulfate concentrations increased at Moenkopi School Spring during the more than 12 years of record.

  12. Apparatus for ground water chemistry investigations in field caissons

    Energy Technology Data Exchange (ETDEWEB)

    Cokal, E.J.; Stallings, E.; Walker, R.; Nyhan, J.W.; Polzer, W.L.; Essington, E.H.

    1985-01-01

    Los Alamos is currently in its second season of ground water chemistry and hydrology experimentation in a field facility that incorporates clusters of six, 3-meter-diameter by 6-meter-deep, soil-filled caissons and required ancillaries. Initial experience gained during the 1983 field season indicated the need for further development of the technology of this type of experimentation supporting hydrologic waste management research. Uniform field application of water/matrix solutions to the caisson, matrix and tracer solution blending/storage, and devices for ground water sampling are discussed.

  13. Regional estimation of total recharge to ground water in Nebraska.

    Science.gov (United States)

    Szilagyi, Jozsef; Harvey, F Edwin; Ayers, Jerry F

    2005-01-01

    Naturally occurring long-term mean annual recharge to ground water in Nebraska was estimated by a novel water-balance approach. This approach uses geographic information systems (GIS) layers of land cover, elevation of land and ground water surfaces, base recharge, and the recharge potential in combination with monthly climatic data. Long-term mean recharge > 140 mm per year was estimated in eastern Nebraska, having the highest annual precipitation rates within the state, along the Elkhorn, Platte, Missouri, and Big Nemaha River valleys where ground water is very close to the surface. Similarly high recharge values were obtained for the Sand Hills sections of the North and Middle Loup, as well as Cedar River and Beaver Creek valleys due to high infiltration rates of the sandy soil in the area. The westernmost and southwesternmost parts of the state were estimated to typically receive recharge a year.

  14. Quality-control results for ground-water and surface-water data, Sacramento River Basin, California, National Water-Quality Assessment, 1996-1998

    Science.gov (United States)

    Munday, Cathy; Domagalski, Joseph L.

    2003-01-01

    Evaluating the extent that bias and variability affect the interpretation of ground- and surface-water data is necessary to meet the objectives of the National Water-Quality Assessment (NAWQA) Program. Quality-control samples used to evaluate the bias and variability include annual equipment blanks, field blanks, field matrix spikes, surrogates, and replicates. This report contains quality-control results for the constituents critical to the ground- and surface-water components of the Sacramento River Basin study unit of the NAWQA Program. A critical constituent is one that was detected frequently (more than 50 percent of the time in blank samples), was detected at amounts exceeding water-quality standards or goals, or was important for the interpretation of water-quality data. Quality-control samples were collected along with ground- and surface-water samples during the high intensity phase (cycle 1) of the Sacramento River Basin NAWQA beginning early in 1996 and ending in 1998. Ground-water field blanks indicated contamination of varying levels of significance when compared with concentrations detected in environmental ground-water samples for ammonia, dissolved organic carbon, aluminum, and copper. Concentrations of aluminum in surface-water field blanks were significant when compared with environmental samples. Field blank samples collected for pesticide and volatile organic compound analyses revealed no contamination in either ground- or surface-water samples that would effect the interpretation of environmental data, with the possible exception of the volatile organic compound trichloromethane (chloroform) in ground water. Replicate samples for ground water and surface water indicate that variability resulting from sample collection, processing, and analysis was generally low. Some of the larger maximum relative percentage differences calculated for replicate samples occurred between samples having lowest absolute concentration differences and(or) values near

  15. Tracing ground water input to base flow using sulfate (S, O) isotopes.

    Science.gov (United States)

    Gu, Ailiang; Gray, Floyd; Eastoe, Christopher J; Norman, Laura M; Duarte, Oscar; Long, Austin

    2008-01-01

    Sulfate (S and O) isotopes used in conjunction with sulfate concentration provide a tracer for ground water contributions to base flow. They are particularly useful in areas where rock sources of contrasting S isotope character are juxtaposed, where water chemistry or H and O isotopes fail to distinguish water sources, and in arid areas where rain water contributions to base flow are minimal. Sonoita Creek basin in southern Arizona, where evaporite and igneous sources of sulfur are commonly juxtaposed, serves as an example. Base flow in Sonoita Creek is a mixture of three ground water sources: A, basin ground water with sulfate resembling that from Permian evaporite; B, ground water from the Patagonia Mountains; and C, ground water associated with Temporal Gulch. B and C contain sulfate like that of acid rock drainage in the region but differ in sulfate content. Source A contributes 50% to 70%, with the remainder equally divided between B and C during the base flow seasons. The proportion of B generally increases downstream. The proportion of A is greatest under drought conditions.

  16. Tracing ground water input to base flow using sulfate (S, O) isotopes

    Science.gov (United States)

    Gu, A.; Gray, F.; Eastoe, C.J.; Norman, L.M.; Duarte, O.; Long, A.

    2008-01-01

    Sulfate (S and O) isotopes used in conjunction with sulfate concentration provide a tracer for ground water contributions to base flow. They are particularly useful in areas where rock sources of contrasting S isotope character are juxtaposed, where water chemistry or H and O isotopes fail to distinguish water sources, and in arid areas where rain water contributions to base flow are minimal. Sonoita Creek basin in southern Arizona, where evaporite and igneous sources of sulfur are commonly juxtaposed, serves as an example. Base flow in Sonoita Creek is a mixture of three ground water sources: A, basin ground water with sulfate resembling that from Permian evaporite; B, ground water from the Patagonia Mountains; and C, ground water associated with Temporal Gulch. B and C contain sulfate like that of acid rock drainage in the region but differ in sulfate content. Source A contributes 50% to 70%, with the remainder equally divided between B and C during the base flow seasons. The proportion of B generally increases downstream. The proportion of A is greatest under drought conditions.

  17. The role of hand calculations in ground water flow modeling.

    Science.gov (United States)

    Haitjema, Henk

    2006-01-01

    Most ground water modeling courses focus on the use of computer models and pay little or no attention to traditional analytic solutions to ground water flow problems. This shift in education seems logical. Why waste time to learn about the method of images, or why study analytic solutions to one-dimensional or radial flow problems? Computer models solve much more realistic problems and offer sophisticated graphical output, such as contour plots of potentiometric levels and ground water path lines. However, analytic solutions to elementary ground water flow problems do have something to offer over computer models: insight. For instance, an analytic one-dimensional or radial flow solution, in terms of a mathematical expression, may reveal which parameters affect the success of calibrating a computer model and what to expect when changing parameter values. Similarly, solutions for periodic forcing of one-dimensional or radial flow systems have resulted in a simple decision criterion to assess whether or not transient flow modeling is needed. Basic water balance calculations may offer a useful check on computer-generated capture zones for wellhead protection or aquifer remediation. An easily calculated "characteristic leakage length" provides critical insight into surface water and ground water interactions and flow in multi-aquifer systems. The list goes on. Familiarity with elementary analytic solutions and the capability of performing some simple hand calculations can promote appropriate (computer) modeling techniques, avoids unnecessary complexity, improves reliability, and is likely to save time and money. Training in basic hand calculations should be an important part of the curriculum of ground water modeling courses.

  18. Trace organic chemicals contamination in ground water recharge.

    Science.gov (United States)

    Díaz-Cruz, M Silvia; Barceló, Damià

    2008-06-01

    Population growth and unpredictable climate changes will pose high demands on water resources in the future. Even at present, surface water is certainly not enough to cope with the water requirement for agricultural, industrial, recreational and drinking purposes. In this context, the usage of ground water has become essential, therefore, their quality and quantity has to be carefully managed. Regarding quantity, artificial recharge can guarantee a sustainable level of ground water, whilst the strict quality control of the waters intended for recharge will minimize contamination of both the ground water and aquifer area. However, all water resources in the planet are threatened by multiple sources of contamination coming from the extended use of chemicals worldwide. In this respect, the environmental occurrence of organic micropollutants such as pesticides, pharmaceuticals, industrial chemicals and their metabolites has experienced fast growing interest. In this paper an overview of the priority and emerging organic micropollutants in the different source waters used for artificial aquifer recharge purposes and in the recovered water is presented. Besides, some considerations regarding fate and removal of such compounds are also addressed.

  19. Ground-water system, estimation of aquifer hydraulic properties, and effects of pumping on ground-water flow in Triassic sedimentary rocks in and near Lansdale, Pennsylvania

    Science.gov (United States)

    Senior, Lisa A.; Goode, Daniel J.

    1999-01-01

    Ground water in Triassic-age sedimentary fractured-rock aquifers in the area of Lansdale, Pa., is used as drinking water and for industrial supply. In 1979, ground water in the Lansdale area was found to be contaminated with trichloroethylene, tetrachloroethylene, and other man-made organic compounds, and in 1989, the area was placed on the U.S. Environmental Protection Agency's (USEPA) National Priority List as the North Penn Area 6 site. To assist the USEPA in the hydrogeological assessment of the site, the U.S. Geological Survey began a study in 1995 to describe the ground-water system and to determine the effects of changes in the well pumping patterns on the direction of ground-water flow in the Lansdale area. This determination is based on hydrologic and geophysical data collected from 1995-98 and on results of the simulation of the regional ground-water-flow system by use of a numerical model.Correlation of natural-gamma logs indicate that the sedimentary rock beds strike generally northeast and dip at angles less than 30 degrees to the northwest. The ground-water system is confined or semi-confined, even at shallow depths; depth to bedrock commonly is less than 20 feet (6 meters); and depth to water commonly is about 15 to 60 feet (5 to 18 meters) below land surface. Single-well, aquifer-interval-isolation (packer) tests indicate that vertical permeability of the sedimentary rocks is low. Multiple-well aquifer tests indicate that the system is heterogeneous and that flow appears primarily in discrete zones parallel to bedding. Preferred horizontal flow along strike was not observed in the aquifer tests for wells open to the pumped interval. Water levels in wells that are open to the pumped interval, as projected along the dipping stratigraphy, are drawn down more than water levels in wells that do not intersect the pumped interval. A regional potentiometric map based on measured water levels indicates that ground water flows from Lansdale towards discharge

  20. Summary of Ground-Water Data for Brunswick County, North Carolina, Water Year 2006

    Science.gov (United States)

    McSwain, Kristen Bukowski

    2008-01-01

    Ground-water availability in Brunswick County, North Carolina, has been monitored continuously since 2000 through the operation and maintenance of ground-water-level observation wells in the surficial, Castle Hayne, Peedee, and Black Creek aquifers of the North Atlantic Coastal Plain aquifer system. Ground-water-resource conditions for the Brunswick County area were determined by relating the period-of-record normal (25th to 75th percentile) monthly mean ground-water-level and precipitation data to median monthly mean ground-water levels and monthly sum of daily precipitation for water year 2006. Summaries of precipitation and ground-water conditions for the Brunswick County area and hydrographs and statistics of continuous ground-water levels collected during the 2006 water year are presented in this report. Ground-water resource conditions varied by aquifer and geographic location within Brunswick County. Water levels were normal in 3 of the 11 observation wells, above normal in 5, and below normal in the remaining 3 wells.

  1. Influence on shallow ground water by nitrogen in polluted river

    Institute of Scientific and Technical Information of China (English)

    LI Zhi-ping; CAO Lian-hai; CHEN Xiao-gang; SHEN Zhao-li; ZHONG Zuo-shen

    2008-01-01

    The main purpose of the research is to discuss the influence on ground water by NH4-N in polluted river and river bed. In the lab-scale experiment three kinds of natural sand were chosen as infiltration medium, and polluted rivers were simulated by domestic sewage, after 10-month sand column test it was found that NH4-N came to adsorption sa-turation on the 17th day in coarse sand and on the 130~140th day in medium sand, then had a higher effluent concentration because of desorption. It is concluded that NH4-N eas-ily moved to ground water. When the concentration of NH4-N in Liangshui River were 46.86, 26.95 mg/L, that in groundwater are less than 1.10 mg/L. It is found that Liangshui River have a little influence on groundwater because of bottom mud, thickness and char-acter of the infiltration medium under the river bed and seepage quantity of river water.Clean water leaching test states that after the silt is cleared away and clean water is poured, NH4-N in the penetration media under the polluted river is obviously carried into ground water, and ground water is polluted secondly.

  2. The Use Of Permeable Concrete For Ground Water Recharge

    Directory of Open Access Journals (Sweden)

    Akshay Tejankar

    2016-09-01

    Full Text Available In order to develop Smart Cities in India, we need to develop smart technologies and smart construction materials. Permeable concrete an innovative material is environment friendly and a smart material which can be used for construction of several structures. In India, the ground water table is decreasing at a faster rate due to reduction in ground water recharge. These days, the vegetation cover is replaced by infrastructure hence the water gets very less opportunity to infiltrate itself into the soil. If the permeable concrete which has a high porosity is used for the construction of pavements, walking tracks, parking lots, well lining, etc. then it can reduce the runoff from the site and help in the ground water recharge. Such type of smart materials will play an important role for Indian conditions where government is putting lot of efforts to implement ground water recharging techniques. During the research work, the runoff for a particular storm was calculated for a bitumen pavement on a sloping ground. Later after studying the various topographical features, the traffic intensity and the rainfall for that particular area, the concrete was designed and tested for the different proportion and thus the mix design for the permeable concrete was finalized based upon its permeability and strength characteristics. Later by using this permeable concrete the infiltration and runoff for the same storm was compared and studied. The research paper will thus give an account of the properties of permeable concrete where it can be used over an existing road.

  3. GWVis: A tool for comparative ground-water data visualization

    Science.gov (United States)

    Best, Daniel M.; Lewis, Robert R.

    2010-11-01

    The Ground-Water Visualization application ( GWVis) presents ground-water data visually in order to educate the public on ground-water issues. It is also intended for presentations to government and other funding agencies. GWVis works with ground-water level elevation data collected or modeled over a given time span, together with a matching fixed underlying terrain. GWVis was developed using the Python programming language in conjunction with associated extension packages and application program interfaces such as OpenGLTM to improve performance and allow us fine control of attributes of the model such as lighting, material properties, transformations, and interpolation. There are currently several systems available for visualizing ground-water data. We classify these into two categories: research-oriented models and static presentation-based models. While both of them have their strengths, we find the former overly complex and non-intuitive and the latter not engaging and presenting problems showing multiple data dimensions. GWVis bridges the gap between static and research based visualizations by providing an intuitive, interactive design that allows participants to view the model from different perspectives, infer information about simulations, and view a comparison of two datasets. By incorporating scientific data in an environment that can be easily understood, GWVis allows that information to be presented to a large audience base.

  4. Practical aspects of tritium measurement in ground and surface waters

    Energy Technology Data Exchange (ETDEWEB)

    Nitzsche, O. [Technische Univ. Bergakademie Freiberg (Germany). Inst. fuer Angewandte Physik; Hebert, D. [Technische Univ. Bergakademie Freiberg (Germany). Inst. fuer Angewandte Physik

    1997-03-01

    Tritium measurements are a powerful tool in hydrological and hydrogeological investigations for detecting mean residence times of several water reservoirs. Due to the low tritium activities in precipitation, ground and surface waters a low level measurement is necessary. Therefore often the liquid scintillation counting after an electrolytic enrichment of water is used. In this paper some practical aspects and problems of measurement are discussed and the problem of contamination in low level laboratories is shown. (orig.)

  5. Ground-water, surface-water, and bottom-sediment contamination in the O-field area, Aberdeen Proving Ground, Maryland, and the possible effects of selected remedial actions on ground water

    Science.gov (United States)

    Vroblesky, Don A.; Lorah, Michelle M.; Oliveros, James P.

    1995-01-01

    Disposal of munitions and chemical-warfare substances has introduced inorganic and organic contaminants to the ground water, surface water, and bottom sediment at O-Field, in the Edgewood area of Aberdeen Proving Ground, Maryland. Contaminants include chloride, arsenic, transition metals, chlorinated aliphatic hydrocarbons, aromatic compounds, and organosulfur and organophosphorus compounds. The hydrologic effects of several remedial actions were estimated by use of a ground-water-flow model. The remedial actions examined were an impermeable covering, encapsulation, subsurface barriers, a ground-water drain, pumping of wells to manage water levels or to remove contaminated ground water for treatment, and no action.

  6. Hydrogeologic Setting, Ground-Water Flow, and Ground-Water Quality at the Langtree Peninsula Research Station, Iredell County, North Carolina, 2000-2005

    Science.gov (United States)

    Pippin, Charles G.; Chapman, Melinda J.; Huffman, Brad A.; Heller, Matthew J.; Schelgel, Melissa E.

    2008-01-01

    as much as 479 feet below land surface. Well yields ranged from about 3 to 50 gallons per minute. The connection of fracture zones at depth was demonstrated in three bedrock wells during a 48-hour aquifer test, and drawdown curves were similar for all three wells. General findings of this study help characterize ground-water flow in the Piedmont and Mountains ground-water systems. Ground-water flow generally is from high to low topographic settings. Ground-water flow discharges toward a surface-water boundary (Lake Norman), and vertical hydraulic gradients generally are downward in recharge areas and upward in discharge areas. Dominant water types are calcium-bicarbonate and are similar in all three zones (regolith, transition zone, and bedrock) of the ground-water system. Results of continuous ground-water-quality monitoring indicate that ground-water recharge may occur seasonally over a period of several months or after heavy rainfall periods over a shorter period of a few to several weeks.

  7. Nutrients in ground water and surface water of the United States; an analysis of data through 1992

    Science.gov (United States)

    Mueller, D.K.; Hamilton, P.A.; Helsel, D.R.; Hitt, K.J.; Ruddy, B.C.

    1995-01-01

    Historical data on nutrient (nitrogen and phosphorus species) concentrations in ground-and surface-water samples were compiled from 20 study units of the National Water-Quality Assessment (NAWQA) Program and 5 supplemental study areas. The resultant national retrospective data sets contained analyses of about 12,000 Found-water and more than 22,000 surface-water samples. These data were interpreted on regional and national scales by relating the distributions of nutrient concentrations to ancillary data, such as land use, soil characteristics, and hydrogeology, provided by local study-unit personnel. The information provided in this report on environmental factors that affect nutrient concentrations in ground and surface water can be used to identify areas of the Nation where the vulnerability to nutrient contamination is greatest. Nitrate was the nutrient of greatest concern in the historical ground-water data. It is the only nutrient that is regulated by a national drinking-water standard. Nitrate concentrations were significantly different in ground water affected by various land uses. Concentrations in about 16 percent of the samples collected in agricultural areas exceeded the drinking-water standard. However, the standard was exceeded in only about 1 percent of samples collected from public-supply wells. A variety of ancillary factors had significant relations to nitrate concentrations in ground water beneath agricultural areas. Concentrations generally were highest within 100 feet of the land surface. They were also higher in areas where soil and geologic characteristics promoted rapid movement of water to the aquifer. Elevated concentrations commonly occurred in areas underlain by permeable materials, such as carbonate bedrock or unconsolidated sand and gravel, and where soils are generally well drained. In areas where water movement is impeded, denitrification might lead to low concentrations of nitrate in the ground water. Low concentrations were also

  8. Ground-Water Recharge in Humid Areas of the United States--A Summary of Ground-Water Resources Program Studies, 2003-2006

    Science.gov (United States)

    Delin, Geoffrey N.; Risser, Dennis W.

    2007-01-01

    Increased demands on water resources by a growing population and recent droughts have raised awareness about the adequacy of ground-water resources in humid areas of the United States. The spatial and temporal variability of ground-water recharge are key factors that need to be quantified to determine the sustainability of ground-water resources. Ground-water recharge is defined herein as the entry into the saturated zone of water made available at the water-table surface, together with the associated flow away from the water table within the saturated zone (Freeze and Cherry, 1979). In response to the need for better estimates of ground-water recharge, the Ground-Water Resources Program (GWRP) of the U.S. Geological Survey (USGS) began an initiative in 2003 to estimate ground-water recharge rates in the relatively humid areas of the United States.

  9. Regression modeling of ground-water flow

    Science.gov (United States)

    Cooley, R.L.; Naff, R.L.

    1985-01-01

    Nonlinear multiple regression methods are developed to model and analyze groundwater flow systems. Complete descriptions of regression methodology as applied to groundwater flow models allow scientists and engineers engaged in flow modeling to apply the methods to a wide range of problems. Organization of the text proceeds from an introduction that discusses the general topic of groundwater flow modeling, to a review of basic statistics necessary to properly apply regression techniques, and then to the main topic: exposition and use of linear and nonlinear regression to model groundwater flow. Statistical procedures are given to analyze and use the regression models. A number of exercises and answers are included to exercise the student on nearly all the methods that are presented for modeling and statistical analysis. Three computer programs implement the more complex methods. These three are a general two-dimensional, steady-state regression model for flow in an anisotropic, heterogeneous porous medium, a program to calculate a measure of model nonlinearity with respect to the regression parameters, and a program to analyze model errors in computed dependent variables such as hydraulic head. (USGS)

  10. Geology and ground-water resources of the Big Sandy Creek Valley, Lincoln, Cheyenne, and Kiowa Counties, Colorado; with a section on Chemical quality of the ground water

    Science.gov (United States)

    Coffin, Donald L.; Horr, Clarence Albert

    1967-01-01

    This report describes the geology and ground-water resources of that part of the Big Sandy Creek valley from about 6 miles east of Limon, Colo., downstream to the Kiowa County and Prowers County line, an area of about 1,400 square miles. The valley is drained by Big Sandy Creek and its principal tributary, Rush Creek. The land surface ranges from flat to rolling; the most irregular topography is in the sandhills south and west of Big Sandy Creek. Farming and livestock raising are the principal occupations. Irrigated lands constitute only a sin311 part of the project area, but during the last 15 years irrigation has expanded. Exposed rocks range in age from Late Cretaceous to Recent. They comprise the Carlile Shale, Niobrara Formations, Pierre Shale (all Late Cretaceous), upland deposits (Pleistocene), valley-fill deposits (Pleistocene and Recent), and dune sand (Pleistocene and Recent). Because the Upper Cretaceous formations are relatively impermeable and inhibit water movement, they allow ground water to accumul3te in the overlying unconsolidated Pleistocene and Recent deposits. The valley-fill deposits constitute the major aquifer and yield as much as 800 gpm (gallons per mixture) to wells along Big Sandy and Rush Creeks. Transmissibilities average about 45,000 gallons per day per foot. Maximum well yields in the tributary valleys are about 200 gpm and average 5 to 10 gpm. The dune sand and upland deposits generally are drained and yield water to wells in only a few places. The ground-water reservoir is recharged only from direct infiltration of precipitation, which annually averages about 12 inches for the entire basin, and from infiltration of floodwater. Floods in the ephemeral Big Sandy Creek are a major source of recharge to ground-water reservoirs. Observations of a flood near Kit Carson indicated that about 3 acre-feet of runoff percolated into the ground-water reservoir through each acre of the wetted stream channel The downstream decrease in channel and

  11. Seasonal variations of ground water quality and its agglomerates by water quality index

    Directory of Open Access Journals (Sweden)

    S. Sharma

    2016-01-01

    Full Text Available Water is a unique natural resource among all sources available on earth. It plays an important role in economic development and the general well-being of the country. This study aimed at using the application of water quality index in evaluating the ground water quality innorth-east area of Jaipur in pre and post monsoon for public usage. Total eleven physico–chemical characteristics; total dissolved solids, total hardness,chloride, nitrate, electrical conductance, sodium, fluorideand potassium, pH, turbidity, temperature were analyzed and observed values were compared with standard values recommended by Indian standard and World Health Organization. Most of parameter show higher value than permissible limit in pre and post monsoon. Water quality index study showed that drinking water in Amer (221.58,277.70, Lalawas (362.74,396.67, Jaisinghpura area (286.00,273.78 were found to be highly contaminated due to high value of total dissolved solids, electrical conductance, total hardness, chloride, nitrate and sodium.Saipura (122.52, 131.00, Naila (120.25, 239.86, Galta (160.9, 204.1 were found to be moderately contaminated for both monsoons. People dependent on this water may prone to health hazard. Therefore some effective measures are urgently required to enhance the quality of water in these areas.

  12. Raster-based regolith thickness of the Lost Creek Designated Ground Water Basin, Weld, Adams, and Arapahoe Counties, Colorado

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This dataset consists of raster-based generalized thickness of regolith (unconsolidated sediments) overlying bedrock in the Lost Creek Designated Ground Water Basin,...

  13. National water-information clearinghouse activities; ground-water perspective

    Science.gov (United States)

    Haupt, C.A.; Jensen, R.A.

    1988-01-01

    The US Geological Survey (USGS) has functioned for many years as an informal clearinghouse for water resources information, enabling users to access groundwater information effectively. Water resources clearinghouse activities of the USGS are conducted through several separate computerized water information programs that are involved in the collection, storage, retrieval, and distribution of different types of water information. The following USGS programs perform water information clearinghouse functions and provide the framework for a formalized National Water-Information Clearinghouse: (1) The National Water Data Exchange--a nationwide confederation of more than 300 Federal, State, local, government, academic, and private water-oriented organizations that work together to improve access to water data; (2) the Water Resources Scientific Information Center--acquires, abstracts, and indexes the major water-resources-related literature of the world, and provides this information to the water resources community; (3) the Information Transfer Program--develops innovative approaches to transfer information and technology developed within the USGS to audiences in the public and private sectors; (4) the Hydrologic Information Unit--provides responses to a variety of requests, both technical and lay-oriented, for water resources information , and helps efforts to conduct water resources research; (5) the Water Data Storage and Retrieval System--maintains accessible computerized files of hydrologic data collected nationwide, by the USGS and other governmental agencies, from stream gaging stations, groundwater observation wells, and surface- and groundwater quality sampling sites; (6) the Office of Water Data Coordination--coordinate the water data acquisition activities of all agencies of the Federal Government, and is responsible for the planning, design, and inter-agency coordination of a national water data and information network; and (7) the Water Resources Research

  14. Assessment of the hydraulic connection between ground water and the Peace River, west-central Florida

    Science.gov (United States)

    Lewelling, B.R.; Tihansky, A.B.; Kindinger, J.L.

    1998-01-01

    . Generally, the upper Peace River is characterized by a shallow, buried irregular top of rock, numerous observed sinkholes, and subsidence depressions. The downward head gradient provides potential for the Peace River to lose water to the ground-water system. Along the middle Peace River area, head gradients alternate between downward and upward, creating both recharging and discharging ground-water conditions. Seismic records show that buried, laterally continuous reflectors in the lower Peace River pinch out in the middle Peace River streambed. Small springs have been observed along the streambed where these units pinch out. This area corresponds to the region where highest ground-water seepage volumes were measured during this study. Further south, along the lower Peace River, upward head gradients provide conditions for ground-water discharge into the Peace River. Generally, confinement between the surficial aquifer and the confined ground-water systems in this area is better than to the north. However, localized avenues for surface-water and ground-water interactions may exist along discontinuities observed in seismic reflectors associated with large-scale flexures or subsidence features. Ground-water seepage gains or losses along the Peace River were quantified by making three seepage runs during periods of: (1) low base flow, (2) high base flow, and (3) high flow. Low and high base-flow seepage runs were performed along a 74-mile length of the Peace River, between Bartow and Nocatee. Maximum losses of 17.3 cubic feet per second (11.2 million gallons per day) were measured along a 3.2-mile reach of the upper Peace River. The high-flow seepage run was conducted to quantify losses in the Peace River channel and floodplain between Bartow and Fort Meade. Seepage losses calculated during high-flow along a 7.2-mile reach of the Peace River, from the Clear Springs Mine bridge to the Mobil Mine bridge, were approximately 10 percent of the river flow, or 118 c

  15. Impacts of Irrigation and Drought on Salem Ground Water

    Directory of Open Access Journals (Sweden)

    T. Subramani

    2014-06-01

    Full Text Available This investigation is the first of three phases of a ground-water management study. In this report, effects of irrigation and drought on the ground-water resources of Salem are examined. Irrigation water use for five soil types is estimated from a monthly water budget model on the basis of precipitation and temperature data from the last 30 years at selected weather stations across Salem. Moisture deficits are computed for each soil type on the basis of the water requirements of a corn crop. It is assumed that irrigation is used to make up the moisture deficit in those places where irrigation systems already exist. Irrigation water use from each township with irrigated acreage is added to municipal and industrial ground-water use data and then compared to aquifer potential yields. The spatial analysis is accomplished with a statewide geographic information system. An important distinction is made between the seasonal effects of irrigation water use and the annual or long-term effects.

  16. Geophysical Methods for Investigating Ground-Water Recharge

    Science.gov (United States)

    Ferre, Ty P.A.; Binley, Andrew M.; Blasch, Kyle W.; Callegary, James B.; Crawford, Steven M.; Fink, James B.; Flint, Alan L.; Flint, Lorraine E.; Hoffmann, John P.; Izbicki, John A.; Levitt, Marc T.; Pool, Donald R.; Scanlon, Bridget R.

    2007-01-01

    While numerical modeling has revolutionized our understanding of basin-scale hydrologic processes, such models rely almost exclusively on traditional measurements?rainfall, streamflow, and water-table elevations?for calibration and testing. Model calibration provides initial estimates of ground-water recharge. Calibrated models are important yet crude tools for addressing questions about the spatial and temporal distribution of recharge. An inverse approach to recharge estimation is taken of necessity, due to inherent difficulties in making direct measurements of flow across the water table. Difficulties arise because recharging fluxes are typically small, even in humid regions, and because the location of the water table changes with time. Deep water tables in arid and semiarid regions make recharge monitoring especially difficult. Nevertheless, recharge monitoring must advance in order to improve assessments of ground-water recharge. Improved characterization of basin-scale recharge is critical for informed water-resources management. Difficulties in directly measuring recharge have prompted many efforts to develop indirect methods. The mass-balance approach of estimating recharge as the residual of generally much larger terms has persisted despite the use of increasing complex and finely gridded large-scale hydrologic models. Geophysical data pertaining to recharge rates, timing, and patterns have the potential to substantially improve modeling efforts by providing information on boundary conditions, by constraining model inputs, by testing simplifying assumptions, and by identifying the spatial and temporal resolutions needed to predict recharge to a specified tolerance in space and in time. Moreover, under certain conditions, geophysical measurements can yield direct estimates of recharge rates or changes in water storage, largely eliminating the need for indirect measures of recharge. This appendix presents an overview of physically based, geophysical methods

  17. Gross-beta activity in ground water: natural sources and artifacts of sampling and laboratory analysis

    Science.gov (United States)

    Welch, Alan H.

    1995-01-01

    Gross-beta activity has been used as an indicator of beta-emitting isotopes in water since at least the early 1950s. Originally designed for detection of radioactive releases from nuclear facilities and weapons tests, analysis of gross-beta activity is widely used in studies of naturally occurring radioactivity in ground water. Analyses of about 800 samples from 5 ground-water regions of the United States provide a basis for evaluating the utility of this measurement. The data suggest that measured gross-beta activities are due to (1) long-lived radionuclides in ground water, and (2) ingrowth of beta-emitting radionuclides during holding times between collection of samples and laboratory measurements.Although40K and228Ra appear to be the primary sources of beta activity in ground water, the sum of40K plus228Ra appears to be less than the measured gross-beta activity in most ground-water samples. The difference between the contribution from these radionuclides and gross-beta activity is most pronounced in ground water with gross-beta activities > 10 pCi/L, where these 2 radionuclides account for less than one-half the measured ross-beta activity. One exception is groundwater from the Coastal Plain of New Jersey, where40K plus228Ra generally contribute most of the gross-beta activity. In contrast,40K and228Ra generally contribute most of beta activity in ground water with gross-beta activities measure all beta activity in ground water. Although3H contributes beta activity to some ground water, it is driven from the sample before counting and therefore is not detected by gross-beta measurements. Beta-emitting radionuclides with half-lives shorter than a few days can decay to low values between sampling and counting. Although little is known about concentrations of most short-lived beta-emitting radionuclides in environmental ground water (water unaffected by direct releases from nuclear facilities and weapons tests), their activities are expected to be low.Ingrowth of

  18. Storm Water General Permit 2 for Construction

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — General permit #2 for storm water discharges associated with industrial activity for Construction Activities in Iowa for the National Pollutant Discharge Elimination...

  19. Use of a ground-water flow model with particle tracking to evaluate ground-water vulnerability, Clark County, Washington

    Science.gov (United States)

    Snyder, D.T.; Wilkinson, J.M.; Orzol, L.L.

    1996-01-01

    A ground-water flow model was used in conjunction with particle tracking to evaluate ground-water vulnerability in Clark County, Washington. Using the particle-tracking program, particles were placed in every cell of the flow model (about 60,000 particles) and tracked backwards in time and space upgradient along flow paths to their recharge points. A new computer program was developed that interfaces the results from a particle-tracking program with a geographic information system (GIS). The GIS was used to display and analyze the particle-tracking results. Ground-water vulnerability was evaluated by selecting parts of the ground-water flow system and combining the results with ancillary information stored in the GIS to determine recharge areas, characteristics of recharge areas, downgradient impact of land use at recharge areas, and age of ground water. Maps of the recharge areas for each hydrogeologic unit illustrate the presence of local, intermediate, or regional ground-water flow systems and emphasize the three-dimensional nature of the ground-water flow system in Clark County. Maps of the recharge points for each hydrogeologic unit were overlaid with maps depicting aquifer sensitivity as determined by DRASTIC (a measure of the pollution potential of ground water, based on the intrinsic characteristics of the near-surface unsaturated and saturated zones) and recharge from on-site waste-disposal systems. A large number of recharge areas were identified, particularly in southern Clark County, that have a high aquifer sensitivity, coincide with areas of recharge from on-site waste-disposal systems, or both. Using the GIS, the characteristics of the recharge areas were related to the downgradient parts of the ground-water system that will eventually receive flow that has recharged through these areas. The aquifer sensitivity, as indicated by DRASTIC, of the recharge areas for downgradient parts of the flow system was mapped for each hydrogeologic unit. A number of

  20. Salinity of the ground water in western Pinal County, Arizona

    Science.gov (United States)

    Kister, Lester Ray; Hardt, W.F.

    1966-01-01

    The chemical quality of the ground water in western Pinal County is nonuniform areally and stratigraphically. The main areas of highly mineralized water are near Casa Grande and near Coolidge. Striking differences have been noted in the quality of water from different depths in the same well. Water from one well, (D-6-7) 25cdd, showed an increase in chloride content from 248 ppm (parts per million) at 350 feet below the land surface to 6,580 ppm at 375 feet; the concentration of chloride increased to 10,400 ppm at 550 feet below the land surface. This change was accompanied by an increase in the total dissolved solids as indicated by conductivity measurements. The change in water quality can be correlated with sediment types. The upper and lower sand and gravel units seem to yield water of better quality than the intermediate silt and clay unit. In places the silt and clay unit contains zones of gypsum and common table salt. These zones yield water that contains large amounts of the dissolved minerals usually associated with water from playa deposits. Highly mineralized ground water in an area near Casa Grande has moved southward and westward as much as 4 miles. Similar water near Coolidge has moved a lesser distance. Good management practices and proper use of soil amendments have made possible the use of water that is high in salinity and alkali hazard for agricultural purposes in western Pinal County. The fluoride content of the ground water in western Pinal County is usually low; however, water from wells that penetrate either the bedrock or unconsolidated sediments that contain certain volcanic rocks may have as much as 9 ppm of fluoride.

  1. Ground Water Arsenic Contamination: A Local Survey in India

    Science.gov (United States)

    Kumar, Arun; Rahman, Md. Samiur; Iqubal, Md. Asif; Ali, Mohammad; Niraj, Pintoo Kumar; Anand, Gautam; Kumar, Prabhat; Abhinav; Ghosh, Ashok Kumar

    2016-01-01

    Background: In the present times, arsenic poisoning contamination in the ground water has caused lots of health-related problems in the village population residing in middle Gangetic plain. In Bihar, about 16 districts have been reported to be affected with arsenic poisoning. For the ground water and health assessment, Simri village of Buxar district was undertaken which is a flood plain region of river Ganga. Methods: In this study, 322 water samples were collected for arsenic estimation, and their results were analyzed. Furthermore, the correlation between arsenic contamination in ground water with depth and its distance from river Ganga were analyzed. Results are presented as mean ± standard deviation and total variation present in a set of data was analyzed through one-way analysis of variance. The difference among mean values has been analyzed by applying Dunnett's test. The criterion for statistical significance was set at P arsenic concentration in hand pumps. Furthermore, a correlation between the arsenic concentration with the depth of the hand pumps and the distance from the river Ganga was also a significant study. Conclusions: The present study concludes that in Simri village there is high contamination of arsenic in ground water in all the strips. Such a huge population is at very high risk leading the village on the verge of causing health hazards among them. Therefore, an immediate strategy is required to combat the present problem. PMID:27625765

  2. Ground Water Arsenic Contamination: A Local Survey in India.

    Science.gov (United States)

    Kumar, Arun; Rahman, Md Samiur; Iqubal, Md Asif; Ali, Mohammad; Niraj, Pintoo Kumar; Anand, Gautam; Kumar, Prabhat; Abhinav; Ghosh, Ashok Kumar

    2016-01-01

    In the present times, arsenic poisoning contamination in the ground water has caused lots of health-related problems in the village population residing in middle Gangetic plain. In Bihar, about 16 districts have been reported to be affected with arsenic poisoning. For the ground water and health assessment, Simri village of Buxar district was undertaken which is a flood plain region of river Ganga. In this study, 322 water samples were collected for arsenic estimation, and their results were analyzed. Furthermore, the correlation between arsenic contamination in ground water with depth and its distance from river Ganga were analyzed. Results are presented as mean ± standard deviation and total variation present in a set of data was analyzed through one-way analysis of variance. The difference among mean values has been analyzed by applying Dunnett's test. The criterion for statistical significance was set at P arsenic concentration in hand pumps. Furthermore, a correlation between the arsenic concentration with the depth of the hand pumps and the distance from the river Ganga was also a significant study. The present study concludes that in Simri village there is high contamination of arsenic in ground water in all the strips. Such a huge population is at very high risk leading the village on the verge of causing health hazards among them. Therefore, an immediate strategy is required to combat the present problem.

  3. Detection of Ground Water Availability at Buhias Island, Sitaro Regency

    Directory of Open Access Journals (Sweden)

    Zetly E Tamod

    2016-08-01

    Full Text Available The study aims to detect ground water availability at Buhias Island, Siau Timur Selatan District, Sitaro Regency. The research method used the survey method by geoelectrical instrument based on subsurface rock resistivity as a geophysical exploration results with geoelectrical method of Wenner-Schlumberger configuration. Resistivity geoelectrical method is done by injecting a flow into the earth surface, then it is measured the potential difference. This study consists of 4 tracks in which each track is made the stretch model of soil layer on subsurface of ground.  Then, the exploration results were processed using software RES2DINV to look at the data of soil layer based on the value of resistivity (2D. Interpretation result of the track 1 to 4 concluded that there is a layer of ground water. State of dominant ground water contains the saline (brackish. Location of trajectory in the basin to the lowland areas is mostly mangrove swamp vegetation. That location is the junction between the results of the runoff of rainfall water that falls down from the hills with sea water. Bedrock as a constituent of rock layer formed from marine sediments that carry minerals salts.

  4. Discharge areas for the transient ground-water flow model, Death Valley regional ground-water flow system, Nevada and California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This digital data set represents discharge areas in the Death Valley regional ground-water flow system (DVRFS) transient model. Natural ground-water discharge occurs...

  5. Material-property zones used in the transient ground-water flow model of the Death Valley regional ground-water flow system, Nevada and California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Zones in this data set represent spatially contiguous areas that influence ground-water flow in the Death Valley regional ground-water flow system (DVRFS), an...

  6. Model grid and infiltration values for the transient ground-water flow model, Death Valley regional ground-water flow system, Nevada and California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This digital data set defines the model grid and infiltration values simulated in the transient ground-water flow model of the Death Valley regional ground-water...

  7. Boundary of the ground-water flow model by IT Corporation (1996), for the Death Valley regional ground-water flow system study, Nevada and California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This digital data set defines the boundary of the steady-state ground-water flow model built by IT Corporation (1996). The regional, 20-layer ground-water flow...

  8. Material-property zones used in the transient ground-water flow model of the Death Valley regional ground-water flow system, Nevada and California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Zones in this data set represent spatially contiguous areas that influence ground-water flow in the Death Valley regional ground-water flow system (DVRFS), an...

  9. Model grid and infiltration values for the transient ground-water flow model, Death Valley regional ground-water flow system, Nevada and California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This digital data set defines the model grid and infiltration values simulated in the transient ground-water flow model of the Death Valley regional ground-water...

  10. Discharge areas for the transient ground-water flow model, Death Valley regional ground-water flow system, Nevada and California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This digital data set represents discharge areas in the Death Valley regional ground-water flow system (DVRFS) transient model. Natural ground-water discharge...

  11. Lithium content in potable water, surface water, ground water, and mineral water on the territory of Republic of Macedonia

    Directory of Open Access Journals (Sweden)

    Vesna Kostik

    2014-07-01

    Full Text Available The aim of this study was to determine lithium concentration in potable water, surface water, ground, and mineral water on the territory of the Republic of Macedonia. Water samples were collected from water bodies such as multiple public water supply systems located in 13 cities, wells boreholes located in 12 areas, lakes and rivers located in three different areas. Determination of lithium concentration in potable water, surface water was performed by the technique of inductively coupled plasma-mass spectrometry, while in ground water samples from wells boreholes and mineral waters with the technique of ion chromatography. The research shows that lithium concentration in potable water ranging from 0.1 to 5.2 μg/L; in surface water from 0.5 to 15.0 μg/L; ground water from wells boreholes from 16.0 to 49.1 μg/L and mineral water from 125.2 to 484.9 μg/L. Obtained values are in accordance with the relevant international values for the lithium content in water.

  12. 40 CFR Appendix Ix to Part 264 - Ground-Water Monitoring List

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Ground-Water Monitoring List IX... Pt. 264, App. IX Appendix IX to Part 264—Ground-Water Monitoring List Ground-Water Monitoring List... species in the ground water that contain this element are included. 3 CAS index names are those used in...

  13. Summary of Ground-Water Data for Brunswick County, North Carolina, Water Year 2007

    Science.gov (United States)

    McSwain, Kristen Bukowski

    2008-01-01

    Ground-water availability in Brunswick County, North Carolina, has been monitored continuously since 2000 through the operation and maintenance of ground-water-level observation wells in the surficial, Castle Hayne, Peedee, and Black Creek aquifers of the North Atlantic Coastal Plain aquifer system. Ground-water-resource conditions for the Brunswick County area were determined by relating the period-of-record normal (25th to 75th percentile) monthly mean groundwater- level and precipitation data to median monthly mean ground-water levels and monthly sum of daily precipitation for water year 2007. Summaries of precipitation and ground-water conditions for the Brunswick County area and hydrographs and statistics of continuous ground-water levels collected during the 2007 water year are presented in this report. Ground-water resource conditions varied by aquifer and geographic location within Brunswick County. Water levels were normal in 6 of the 11 observation wells, above normal in 1 well, and below normal in the remaining 4 wells.

  14. Ground water heat pumps and cooling with ground water basins as seasonal storage; Grundvandsvarmepumper og -koeling med grundvandsmagasiner som saesonlager

    Energy Technology Data Exchange (ETDEWEB)

    2008-04-15

    Ground water temperature is constant all the year round, in Denmark approximately 9 deg. C, which is ideal for a number of cooling purposes including cooling of buildings. The structures in which the ground water flows (sand, gravel and chalk) are efficient for storing coldness and heat over longer periods. By using seasonal storage of low-temperature heat and coldness in ground water layers close to the terrain it is feasible to reach profitable energy savings of up to 90% for cooling and heating of e.g. hotels, airports, shopping malls, office buildings and other larger buildings. At the same time the large energy savings means major reduction of CO{sub 2} emissions. (BA)

  15. Maps showing ground-water levels, springs, and depth to ground water, Basin and Range Province, Texas

    Science.gov (United States)

    Brady, B.T.; Bedinger, M.S.; Mulvihill, D.A.; Mikels, John; Langer, W.H.

    1984-01-01

    This report on ground-water levels, springs, and depth to ground water in the Basin and Range province of Texas (see index map) was prepared as part of a program of the U.S. Geological Survey to identify prospective regions for further study relative to isolation of high-level nuclear waste (Bedinger, Sargent, and Reed, 1984), utilizing program guidelines defined in Sargent and Bedinger (1984). Also included in this report are selected references on pertinent geologic and hydrologic studies of the region. Other map reports in this series contain detailed data on ground-water quality, surface distribution of selected rock types, tectonic conditions, areal geophysics, Pleistocene lakes and marshes, and mineral and energy resources.

  16. Ground water heat pumps and cooling with ground water basins as seasonal storage; Grundvandsvarmepumper og -koeling med grundvandsmagasiner som saesonlager

    Energy Technology Data Exchange (ETDEWEB)

    2008-04-15

    Ground water temperature is constant all the year round, in Denmark approximately 9 deg. C, which is ideal for a number of cooling purposes including cooling of buildings. The structures in which the ground water flows (sand, gravel and chalk) are efficient for storing coldness and heat over longer periods. By using seasonal storage of low-temperature heat and coldness in ground water layers close to the terrain it is feasible to reach profitable energy savings of up to 90% for cooling and heating of e.g. hotels, airports, shopping malls, office buildings and other larger buildings. At the same time the large energy savings means major reduction of CO{sub 2} emissions. (BA)

  17. Ground-water temperature of the Wyoming quadrangle in central Delaware : with application to ground-water-source heat pumps

    Science.gov (United States)

    Hodges, Arthur L.

    1982-01-01

    Ground-water temperature was measured during a one-year period (1980-81) in 20 wells in the Wyoming Quadrangle in central Delaware. Data from thermistors set at fixed depths in two wells were collected twice each week, and vertical temperature profiles of the remaining 18 wells were made monthly. Ground-water temperature at 8 feet below land surface in well Jc55-1 ranged from 45.0 degrees F in February to 70.1 degrees F in September. Temperature at 35 feet below land surface in the same well reached a minimum of 56.0 degrees F in August, and a maximum of 57.8 degrees F in February. Average annual temperature of ground water at 25 feet below land surface in all wells ranged from 54.6 degrees F to 57.8 degrees F. Variations of average temperature probably reflect the presence or absence of forestation in the recharge areas of the wells. Ground-water-source heat pumps supplied with water from wells 30 or more feet below land surface will operate more efficiently in both heating and cooling modes than those supplied with water from shallower depths. (USGS)

  18. Ground-water levels and directions of flow in Geauga County, Ohio, September 1994, and changes in ground-water levels, 1986-94

    Science.gov (United States)

    Jagucki, M.L.; Lesney, L.L.

    1995-01-01

    This report presents the results of a study by the U.S. Geological Survey, in cooperation with Geauga County Planning Commission and Board of County Commissioners, to determine directions of ground-water flow and to assess differences from 1986 to 1994 in ground-water levels in the glacial deposits and Pottsville Formation, Cuyahoga Group, and the Berea Sandstone. Water levels were measured in 219 wells in Geauga County, Ohio, in September 1994. Water levels measured in January and February 1986 in 88 of the 219 wells were used for comparison. Water-level maps constructed from measurements made in September 1994 to show that ground-water levels in the Pottsville Formation and the glacial deposits generally correspond to the land-surface configuration and that ground water flows from the uplands to adjacent streams and buried valleys. Ground-water flow in the Cuyahoga Group is generally downward from the Pottsville Formation to the Berea Sandstone. Directions of ground-water flow in the Berea Sandstone are toward outcrop areas at the north and east edges of Geauga County and toward sub-crops beneath buried glacial valley deposits in Chardon, Chester, Munson, and Russel Townships and along the west edge of the county. A comparison of water level measurements in 1986 and 1994 indicates that water levels declined in 70 percent of the measured wells and increased in 30 percent. The change in water levels from 1986 to 1994 ranged from an increase of 13.58 feet to a decrease of 29.25 feet. Thirty percent of all water-level changes were less than 1 foot in magnitude. In nearly 80 percent of the wells, water-level changes were within the range of plus or minus 5 feet. Among the wells for which two or more historical measurements were available, the 1994 water levels in 54 percent were outside the range of water-levels observed in previous studies (only 24 percent were greater than 1 foot outside of the previously-observed range). Water-level declines of greater than 10 feet

  19. [Metal contamination of the ground water in Mohammedia (Morocco)].

    Science.gov (United States)

    Serghini, Amal; Fekhaoui, Mohammed; El Abidi, Abdellah; Tahri, Latifa; Bouissi, Mostafa; El Houssine, Zaid

    2003-01-01

    This aim of this study was to assess the heavy metal contamination of the ground water in the Moroccan city of Mohammedia and its relation to the highly developed industrial and domestic activities in the region. Six heavy metals, Cu, Zn, Cd, Hg, Fe and Pb, were assayed in the waters of 19 wells throughout the city, in industrial areas, public landfills, and residential zones. Four sampling campaigns were conducted between January and May 1999. Analysis of the heavy metal levels revealed a causal relation between the human activities at the sites studied and the degree of contamination recorded. The sites in the industrial areas had elevated concentrations of Fe, Zn, Cu or Pb and most often a combination of at least two of these at a single site. Moreover, the spatial distribution of this pollution showed water in S7 areas to be high in iron and that in S5 and S7 (industrial) areas high in mercury. The concentrations measured are respectively 2.5 and 3-5 times greater than the Maximum Acceptable Concentration (MAC) recommended by WHO for potable water. This work has conclusively proven the presence of dangerous heavy metal contamination of the ground water supply in the area of Mohammedia; it demonstrates the need for conservation and antipollution measures aimed against heavy metal contamination of the overall water supply and in particular the ground water.

  20. Ground water quality evaluation near mining area and development of heavy metal pollution index

    Science.gov (United States)

    Prasad, Bably; Kumari, Puja; Bano, Shamima; Kumari, Shweta

    2014-03-01

    Opencast as well as underground coal mining are likely to disturb the underground water table in terms of quantity as well as quality. Added to this is the problem of leachates from the large number of industrial waste and overburden dumps that are in abundance in mining areas, reaching the ground water and adversely affecting its quality. Enhancement of heavy metals contamination of the ground water is one eventuality. In the present work, concentrations of 7 heavy metals have been evaluated at 20 important ground water sampling stations at Dhanbad township situated very near to Jharia coalfields. The concentration of heavy metals in general was found to be below the permissible levels although concentration of iron and manganese was found above the permissible limits at a few stations. These data have been used for the calculation of heavy metal pollution index (HPI). The HPI of ground water in total was found to be 6.8860 which is far below the critical index limit of 100 pointing to the fact that the ground water is not polluted with respect to heavy metals in spite of the prolific growth of mining and allied industrial activities near the town.

  1. Ground-water surveillance at the Hanford Site for CY 1982

    Energy Technology Data Exchange (ETDEWEB)

    Eddy, P.A.; Prater, L.S.; Rieger, J.T.

    1983-06-01

    Operations at the Hanford Site since 1944 have resulted in the discharge of large volumes of process cooling water and other waste waters to the ground. These effluents, which have reached the unconfined ground water, contain low levels of radioactive and chemical substances. The movement of these constituents in the unconfined ground water is monitored as part of the Ground-Water Surveillance Program. During 1982, 324 monitoring wells were sampled at various times for radioactive and chemical constituents. Tritium are the primary ones used to monitor the movement of the ground water. This report describes recent changes in the configuration of the tritium and nitrate plumes. The tritium plume continues to show increasing concentrations near the Columbia River. While it is mapped as having reached the Columbia River, its contribution to the river has not been distinguished from other sources at this time. The general plume configuration is much the same as in 1978, 1979, 1980, and 1981. The size of the nitrate plume appears stable. Concentrations of nitrate in the vicinity of the 100-H Area continue to be high as a result of past leaks from an evaporation facility.

  2. Hydrogeology and chemical quality of water and soil at Carroll Island, Aberdeen Proving Ground, Maryland

    Science.gov (United States)

    Tenbus, F.J.; Phillips, S.W.

    1996-01-01

    Carroll Island was used for open-air testing of chemical warfare agents from the late 1940's until 1971. Testing and disposal activities weresuspected of causing environmental contamination at 16 sites on the island. The hydrogeology and chemical quality of ground water, surface water, and soil at these sites were investigated with borehole logs, environmental samples, water-level measurements, and hydrologic tests. A surficial aquifer, upper confining unit, and upper confined aquifer were defined. Ground water in the surficial aquifer generally flows from the east-central part of the island toward the surface-water bodies, butgradient reversals caused by evapotranspiration can occur during dry seasons. In the confined aquifer, hydraulic gradients are low, and hydraulic head is affected by tidal loading and by seasonal pumpage from the west. Inorganic chemistry in the aquifers is affected by brackish-water intrusion from gradient reversals and by dissolution ofcarboniferous shell material in the confining unit.The concentrations of most inorganic constituents probably resulted from natural processes, but some concentrations exceeded Federal water-quality regulations and criteria. Organic compounds were detected in water and soil samples at maximum concentrations of 138 micrograms per liter (thiodiglycol in surface water) and 12 micrograms per gram (octadecanoic acid in soil).Concentrations of organic compounds in ground water exceeded Federal drinking-water regulations at two sites. The organic compounds that weredetected in environmental samples were variously attributed to natural processes, laboratory or field- sampling contamination, fallout from industrial air pollution, and historical military activities.

  3. Ground-water quality assessment of the central Oklahoma Aquifer, Oklahoma; project description

    Science.gov (United States)

    Christenson, S.C.; Parkhurst, D.L.

    1987-01-01

    In April 1986, the U.S. Geological Survey began a pilot program to assess the quality of the Nation's surface-water and ground-water resources. The program, known as the National Water-Quality Assessment (NAWQA) program, is designed to acquire and interpret information about a variety of water-quality issues. The Central Oklahoma aquifer project is one of three ground-water pilot projects that have been started. The NAWQA program also incudes four surface-water pilot projects. The Central Oklahoma aquifer project, as part of the pilot NAWQA program, will develop and test methods for performing assessments of ground-water quality. The objectives of the Central Oklahoma aquifer assessment are: (1) To investigate regional ground-water quality throughout the aquifer in the manner consistent with the other pilot ground-water projects, emphasizing the occurrence and distribution of potentially toxic substances in ground water, including trace elements, organic compounds, and radioactive constituents; (2) to describe relations between ground-water quality, land use, hydrogeology, and other pertinent factors; and (3) to provide a general description of the location, nature, and possible causes of selected prevalent water-quality problems within the study unit; and (4) to describe the potential for water-quality degradation of ground-water zones within the study unit. The Central Oklahoma aquifer, which includes in descending order the Garber Sandstone and Wellington Formation, the Chase Group, the Council Grove Group, the Admire Group, and overlying alluvium and terrace deposits, underlies about 3,000 square miles of central Oklahoma and is used extensively for municipal, industrial, commercial, and domestic water supplies. The aquifer was selected for study by the NAWQA program because it is a major source for water supplies in central Oklahoma and because it has several known or suspected water-quality problems. Known problems include concentrations of arsenic, chromium

  4. Precipitation; ground-water age; ground-water nitrate concentrations, 1995-2002; and ground-water levels, 2002-03 in Eastern Bernalillo County, New Mexico

    Science.gov (United States)

    Blanchard, Paul J.

    2004-01-01

    The eastern Bernalillo County study area consists of about 150 square miles and includes all of Bernalillo County east of the crests of the Sandia and Manzanita Mountains. Soil and unconsolidated alluvial deposits overlie fractured and solution-channeled limestone in most of the study area. North of Interstate Highway 40 and east of New Mexico Highway 14, the uppermost consolidated geologic units are fractured sandstones and shales. Average annual precipitation at three long-term National Oceanic and Atmospheric Administration precipitation and snowfall data-collection sites was 14.94 inches at approximately 6,300 feet (Sandia Ranger Station), 19.06 inches at about 7,020 feet (Sandia Park), and 23.07 inches at approximately 10,680 feet (Sandia Crest). The periods of record at these sites are 1933-74, 1939-2001, and 1953-79, respectively. Average annual snowfall during these same periods of record was 27.7 inches at Sandia Ranger Station, 60.8 inches at Sandia Park, and 115.5 inches at Sandia Crest. Seven precipitation data-collection sites were established during December 2000-March 2001. Precipitation during 2001-03 at three U.S. Geological Survey sites ranged from 66 to 94 percent of period-of-record average annual precipitation at corresponding National Oceanic and Atmospheric Administration long-term sites in 2001, from 51 to 75 percent in 2002, and from 34 to 81 percent during January through September 2003. Missing precipitation records for one site resulted in the 34-percent value in 2003. Analyses of concentrations of chlorofluorocarbons CFC-11, CFC-12, and CFC-113 in ground-water samples from nine wells and one spring were used to estimate when the sampled water entered the ground-water system. Apparent ages of ground water ranged from as young as about 10 to 16 years to as old as about 20 to 26 years. Concentrations of dissolved nitrates in samples collected from 24 wells during 2001-02 were similar to concentrations in samples collected from the same

  5. Sampling and analysis for radon-222 dissolved in ground water and surface water

    Science.gov (United States)

    DeWayne, Cecil L.; Gesell, T.F.

    1992-01-01

    Radon-222 is a naturally occurring radioactive gas in the uranium-238 decay series that has traditionally been called, simply, radon. The lung cancer risks associated with the inhalation of radon decay products have been well documented by epidemiological studies on populations of uranium miners. The realization that radon is a public health hazard has raised the need for sampling and analytical guidelines for field personnel. Several sampling and analytical methods are being used to document radon concentrations in ground water and surface water worldwide but no convenient, single set of guidelines is available. Three different sampling and analytical methods - bubbler, liquid scintillation, and field screening - are discussed in this paper. The bubbler and liquid scintillation methods have high accuracy and precision, and small analytical method detection limits of 0.2 and 10 pCi/l (picocuries per liter), respectively. The field screening method generally is used as a qualitative reconnaissance tool.

  6. Database Dictionary for Ethiopian National Ground-Water Database (ENGDA) Data Fields

    Science.gov (United States)

    2007-01-01

    Water Field Methods classes taught at the MoWR/Japanese International Cooperative Association ( JICA ) ground-water training facility in Addis Ababa...Technology Agency (ESTA) helped coordinate the development of ENGDA, by coordinating with IAEA, MoWR, GSE, JICA , and AAU. During USGS missions to...Tadesse, General Manager of GSE and Ato Mesfin Tegene, Vice Minister of MoWR and Ato Markos Tefera and Dr. Yuji Maruo, of the MoWR/ JICA training

  7. Uranium in US surface, ground, and domestic waters. Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    Drury, J.S.; Reynolds, S.; Owen, P.T.; Ross, R.H.; Ensminger, J.T.

    1981-04-01

    The report Uranium in US Surface, Ground, and Domestic Waters comprises four volumes. Volumes 2, 3, and 4 contain data characterizing the location, sampling date, type, use, and uranium conentrations of 89,994 individual samples presented in tabular form. The tabular data in volumes 2, 3, and 4 are summarized in volume 1 in narrative form and with maps and histograms.

  8. Reduction of large-scale numerical ground water flow models

    NARCIS (Netherlands)

    Vermeulen, P.T.M.; Heemink, A.W.; Testroet, C.B.M.

    2002-01-01

    Numerical models are often used for simulating ground water flow. Written in state space form, the dimension of these models is of the order of the number of model cells and can be very high (> million). As a result, these models are computationally very demanding, especially if many different scena

  9. RESEARCH TO SUPPORT RESTORATION OF GROUND WATER CONTAMINATED WITH ARSENIC

    Science.gov (United States)

    A brief programmatic overview will be presented to highlight research and technical support efforts underway at the Ground Water and Ecosystems Restoration Division in Ada, Oklahoma. Details from a case study will be presented to emphasize the technical challenges encountered du...

  10. Ground water arsenic contamination: A local survey in India

    Directory of Open Access Journals (Sweden)

    Arun Kumar

    2016-01-01

    Conclusions: The present study concludes that in Simri village there is high contamination of arsenic in ground water in all the strips. Such a huge population is at very high risk leading the village on the verge of causing health hazards among them. Therefore, an immediate strategy is required to combat the present problem.

  11. Delineating ground water recharge from leaking irrigation canals using water chemistry and isotopes.

    Science.gov (United States)

    Harvey, F E; Sibray, S S

    2001-01-01

    Across the Great Plains irrigation canals are used to transport water to cropland. Many of these canals are unlined, and leakage from them has been the focus of an ongoing legal, economic, and philosophical debate as to whether this lost water should be considered waste or be viewed as a beneficial and reasonable use since it contributes to regional ground water recharge. While historically there has been much speculation about the impact of canal leakage on local ground water, actual data are scarce. This study was launched to investigate the impact of leakage from the Interstate Canal, in the western panhandle of Nebraska, on the hydrology and water quality of the local aquifer using water chemistry and environmental isotopes. Numerous monitoring wells were installed in and around a small wetland area adjacent to the canal, and ground water levels were monitored from June 1992 until January 1995. Using the water level data, the seepage loss from the canal was estimated. In addition, the canal, the monitoring wells, and several nearby stock and irrigation wells were sampled for inorganic and environmental isotope analysis to assess water quality changes, and to determine the extent of recharge resulting from canal leakage. The results of water level monitoring within study wells indicates a rise in local ground water levels occurs seasonally as a result of leakage during periods when the canal is filled. This rise redirects local ground water flow and provides water to nearby wetland ecosystems during the summer months. Chemical and isotopic results were used to delineate canal, surface, and ground water and indicate that leaking canal water recharges both the surface alluvial aquifer and upper portions of the underlying Brule Aquifer. The results of this study indicate that lining the Interstate Canal could lower ground water levels adjacent to the canal, and could adversely impact the local aquifer.

  12. Geology and ground-water resources of Rock County, Wisconsin

    Science.gov (United States)

    LeRoux, E.F.

    1964-01-01

    . This sandstone also yields some water to uncased wells that tap the deeper rocks of the Upper Cambrian series. East of the Rock River the Platteville, Decorah, and Galena formations undifferentiated, or Platteville-Galena unit, is the principal source of water for domestic and stock wells. Unconsolidated deposits of glacial origin cover most of Rock County and supply water to many small wells. In the outwash deposits along the Rock River, wells of extremely high capacity have been developed for industrial and municipal use. The most significant feature of the bedrock surface in Rock County is the ancestral Rock River valley, which has been filled with glacial outwash to a depth of at least 396 feet below the present land surface. East of the buried valley the bedrock has a fiat, relatively undissected surface. West of the valley the bedrock surface is rugged and greatly dissected. Ground water in Rock County occurs under both water-table and artesian conditions; however, because of the interconnection and close relation of all ground water in the county, the entire system is considered to be a single groundwater body whose surface may be represented by one piezometric map. Recharge occurs locally, throughout the county. Nearly all recharge is derived directly from precipitation that percolates downward to become a part of the groundwater body. Natural movement of water in the consolidated water-bearing units is generally toward the buried Rock and Sugar River valleys. Movement of water in the sandstones of Cambrian age was calculated to be about 44 million gallons a day toward the Rock River. Discharge from wells in Rock County in 1957 was about 23 million gallons a day. Nearly 90 percent of this water was drawn from the area along the Rock River. Drilled wells, most of which were drilled by the cable-tool method, range in diameter from 3 to 26 inches, and in depth from 46 to 1,225 feet. Driven wells in alluvium and glacial drift are usually 1? to 2? in

  13. Factors Affecting Nitrate Delivery to Streams from Shallow Ground Water in the North Carolina Coastal Plain

    Science.gov (United States)

    Harden, Stephen L.; Spruill, Timothy B.

    2008-01-01

    An analysis of data collected at five flow-path study sites between 1997 and 2006 was performed to identify the factors needed to formulate a comprehensive program, with a focus on nitrogen, for protecting ground water and surface water in the North Carolina Coastal Plain. Water-quality protection in the Coastal Plain requires the identification of factors that affect the transport of nutrients from recharge areas to streams through the shallow ground-water system. Some basins process or retain nitrogen more readily than others, and the factors that affect nitrogen processing and retention were the focus of this investigation to improve nutrient management in Coastal Plain streams and to reduce nutrient loads to coastal waters. Nitrate reduction in ground water was observed at all five flow-path study sites in the North Carolina Coastal Plain, although the extent of reduction at each site was influenced by various environmental, hydrogeologic, and geochemical factors. Denitrification was the most common factor responsible for decreases in nitrate along the ground-water flow paths. Specific factors, some of which affect denitrification rates, that appeared to influence ground-water nitrate concentrations along the flow paths or in the streams include soil drainage, presence or absence of riparian buffers, evapotranspiration, fertilizer use, ground-water recharge rates and residence times, aquifer properties, subsurface tile drainage, sources and amounts of organic matter, and hyporheic processes. The study data indicate that the nitrate-reducing capacity of the buffer zone combined with that of the hyporheic zone can substantially lower the amount of ground-water nitrate discharged to streams in agricultural settings of the North Carolina Coastal Plain. At the watershed scale, the effects of ground-water discharge on surface-water quality appear to be greatly influenced by streamflow conditions and the presence of extensive riparian vegetation. Streamflow statistics

  14. INVESTIGATIONS ON BIOCHEMICAL PURIFICATION OF GROUND WATER FROM HYDROGEN SULFIDE

    Directory of Open Access Journals (Sweden)

    Yu. P. Sedlukho

    2015-01-01

    Full Text Available The paper considers problems and features of biochemical removal of hydrogen sulfide from ground water. The analysis of existing methods for purification of ground water from hydrogen sulfide has been given in the paper. The paper has established shortcomings of physical and chemical purification of ground water. While using aeration methods for removal of hydrogen sulfide formation of colloidal sulfur that gives muddiness and opalescence to water occurs due to partial chemical air oxidation. In addition to this violation of sulfide-carbonate equilibrium taking place in the process of aeration due to desorption of H2S and CO2, often leads to clogging of degasifier nozzles with formed CaCO3 that causes serious operational problems. Chemical methods require relatively large flow of complex reagent facilities, storage facilities and transportation costs.In terms of hydrogen sulfide ground water purification the greatest interest is given to the biochemical method. Factors deterring widespread application of the biochemical method is its insufficient previous investigation and necessity to execute special research in order to determine optimal process parameters while purifying groundwater of a particular water supply source. Biochemical methods for oxidation of sulfur compounds are based on natural biological processes that ensure natural sulfur cycle. S. Vinogradsky has established a two-stage mechanism for oxidation of hydrogen sulfide with sulfur bacteria (Beggiatoa. The first stage presupposes oxidation of hydrogen sulphide to elemental sulfur which is accumulating in the cytoplasm in the form of globules. During the second stage sulfur bacteria begin to oxidize intracellular sulfur to sulfuric acid due to shortage of hydrogen sulfide.The paper provides the results of technological tests of large-scale pilot plants for biochemical purification of groundwater from hydrogen sulfide in semi-industrial conditions. Dependences of water quality

  15. Geology and ground-water resources of Wichita and Greeley Counties, Kansas

    Science.gov (United States)

    Prescott, G.C.; Branch, J.R.; Wilson, W.W.

    1954-01-01

    This report describes the geography, geology, and ground-water resources of Wichita and Greeley counties in western Kansas. The area consists of a flat to gently rolling plain, which slopes eastward [at] about 15 feet per mile. A short reach of Ladder Creek (Beaver) is the only perennially flowing stream in the two counties. Ephemeral streams, which flow only during and after heavy rains, are White Woman and Sand Creeks and the western reach of Ladder Creek. The climate is semiarid, the normal annual precipitation being about 17 inches in Wichita County and 16 inches in Greeley County. Agriculture is the principal occupation in the area, and wheat is the most important crop. A considerable area is irrigated; sugar beets and sorghums are the principal irrigated crops.The outcropping rocks range in age from late Cretaceous to Recent; the Smoky Hill chalk member of the Niobrara formation, which is exposed along White Woman Creek in western Greeley County, is the oldest. The Niobrara is almost everywhere overlain by the Ogallala formation of Pliocene age. Generally the Ogallala is overlain by windblown silt of the Pleistocene Sanborn formation, but in places it is exposed along streams. The most recent deposits are dune sand and the alluvium along the streams. The Dakota formation, which is an important aquifer in parts of Kansas, is 300 to 450 feet beneath the Niobrara formation.The ground water that is available to wells in Wichita and Greeley counties is derived entirely from precipitation in the area or in areas immediately west and north. Ground water moves in a generally easterly direction with a gradient that varies inversely with the permeability of the water-bearing beds. The ground-water reservoir is recharged principally by precipitation within the area or within adjacent areas, Ground-water discharge takes place principally by pumping from wells, subsurface outflow, and evaporation and transpiration. Most of the domestic, stock, public, and irrigation

  16. Ground-water resources of the Yucca Valley-Joshua Tree area, San Bernardino County, California

    Science.gov (United States)

    Lewis, R.E.

    1972-01-01

    The southeastern part of the Mojave Water Agency area included in this report comprises about 600 square miles. Recharge into the area is almost exclusively from precipitation in the San Bernardino and Little San Bernardino Mountains. About 500 acre-feet per year of recharge enters the western part of the area as underflow through Pipes Wash. Little direct recharge occurs as a result of precipitation directly on the unconsolidated deposits. Presently about 11,000 persons reside in the area and current gross pumpage is about 1,600 acre-feet annually. By the year 2000 the population is estimated to be 62,000 and annual gross pumpage is expected to be nearly 11,000 acre-feet. Although over 1,200,000 acre-feet of ground water are presently in storage, most of the population is centered in the southern part of the area around the towns of Yucca Valley and Joshua Tree. About 70 percent of the population resides in the vicinity of Yucca Valley and is supplied by ground water pumped from the Warren Valley basin. Of the 96,000 acre-feet of ground water in storage in that basin in 1969, about 80,000 acre-feet will be necessary to sustain projected growth there until 2000. Assuming negligible recharge and only about 50 percent recovery of the ground water in storage, if imported water from northern California is not available before about 1990, additional local supplies will have to be developed, possibly in the adjacent Pipes subbasin to the north. Ground water in the southern part of the study area generally contains less than 250 mg/l (milligrams per liter) dissolved solids and 1.0 mg/l fluoride. A general degradation of ground-water quality occurs northward toward the dry lakes where the concentrations of dissolved solids and fluoride approach 2,000 and 5.0 mg/l, respectively. In Reche subbasin some isolated occurrences of fluoride exceeding 1.5 mg/l were noted. The chemical character of ground water in Johnson Valley and Morongo Valley basins differs from well to well

  17. Simulation of the ground-water-flow system in the Kalamazoo County area, Michigan

    Science.gov (United States)

    Luukkonen, Carol L.; Blumer, Stephen P.; Weaver, T.L.; Jean, Julie

    2004-01-01

    streams was reduced based on steady-state simulation results. Transient results indicated a reduction of water levels with the simulated use of water for irrigation over the summer months. Generally the transient simulation with recharge only in the winter provided the best fit to observed water levels collected during synoptic water-level measurements in some wells and to the trends observed in water levels for other wells. Analysis of the regional hydrologic budgets provides an increased understanding of water movement within the ground-water-flow system in Kalamazoo County. Budgets for the steady-state simulations indicated that with reduced recharge, less water was available for streamflow and less water left the model area through the model boundaries. Similarly, with an increase in pumping rates, less water was available to enter streams and become streamflow. When recharge was assumed to remain constant and when it was allowed to vary throughout the year, the amount of water that entered storage was greater than that which left storage. However, when recharge was distributed through October?May only or when recharge rates were reduced from October to May, the amount of water that entered storage was less than that which left storage. Thus, on the basis of model simulations, with reduced recharge or increased withdrawals, water must come from storage, rivers, or from ground-flow-system boundaries to meet withdrawal demands.

  18. Tritium/Helium-3 Apparent Ages of Shallow Ground Water, Portland Basin, Oregon, 1997-98

    Science.gov (United States)

    Hinkle, Stephen R.

    2009-01-01

    Water samples for tritium/helium-3 age dating were collected from 12 shallow monitoring wells in the Portland basin, Oregon, in 1997, and again in 1998. Robust tritium/helium-3 apparent (piston-flow) ages were obtained for water samples from 10 of the 12 wells; apparent ages ranged from 1.1 to 21.2 years. Method precision was demonstrated by close agreement between data collected in 1997 and 1998. Tritium/helium-3 apparent ages generally increase with increasing depth below the water table, and agree well with age/depth relations based on assumptions of effects of recharge rate on vertical ground-water movement.

  19. Availability and quality of ground water, southern Ute Indian Reservation, southwestern Colorado

    Science.gov (United States)

    Brogden, Robert E.; Hutchinson, E. Carter; Hillier, Donald E.

    1979-01-01

    Population growth and the potential development of subsurface mineral resources have increased the need for information on the availability and quality of ground water on the Southern Ute Indian Reservation. The U.S. Geological Survey, in cooperation with the Southern Ute Tribal Council, the Four Corners Regional Planning Commission, and the U.S. Bureau of Indian Affairs, conducted a study during 1974-76 to assess the ground-water resources of the reservation. Water occurs in aquifers in the Dakota Sandstone, Mancos Shale, Mesaverde Group, Lewis Shale, Pictured Cliffs Sandstone, Fruitland Formation, Kirtland Shale, Animas and San Jose Formations, and terrace and flood-plain deposits. Well yields from sandstone and shale aquifers are small, generally in the range from 1 to 10 gallons per minute with maximum reported yields of 75 gallons per minute. Well yields from terrace deposits generally range from 5 to 10 gallons per minute with maximum yields of 50 gallons per minute. Well yields from flood-plain deposits are as much as 25 gallons per minute but average 10 gallons per minute. Water quality in aquifers depends in part on rock type. Water from sandstone, terrace, and flood-plain aquifers is predominantly a calcium bicarbonate type, whereas water from shale aquifers is predominantly a sodium bicarbonate type. Water from rocks containing interbeds of coal or carbonaceous shales may be either a calcium or sodium sulfate type. Dissolved-solids concentrations of ground water ranged from 115 to 7,130 milligrams per liter. Water from bedrock aquifers is the most mineralized, while water from terrace and flood-plain aquifers is the least mineralized. In many water samples collected from bedrock, terrace, and flood-plain aquifers, the concentrations of arsenic, chloride, dissolved solids, fluoride, iron, manganese, nitrate, selenium, and sulfate exceeded U.S. Public Health Service (1962) recommended limits for drinking water. Selenium in the ground water in excess of U

  20. Estimating the Ground Water Resources of Atoll Islands

    Directory of Open Access Journals (Sweden)

    Arne E. Olsen

    2010-01-01

    Full Text Available Ground water resources of atolls, already minimal due to the small surface area and low elevation of the islands, are also subject to recurring, and sometimes devastating, droughts. As ground water resources become the sole fresh water source when rain catchment supplies are exhausted, it is critical to assess current groundwater resources and predict their depletion during drought conditions. Several published models, both analytical and empirical, are available to estimate the steady-state freshwater lens thickness of small oceanic islands. None fully incorporates unique shallow geologic characteristics of atoll islands, and none incorporates time-dependent processes. In this paper, we provide a review of these models, and then present a simple algebraic model, derived from results of a comprehensive numerical modeling study of steady-state atoll island aquifer dynamics, to predict the ground water response to changes in recharge on atoll islands. The model provides an estimate thickness of the freshwater lens as a function of annual rainfall rate, island width, Thurber Discontinuity depth, upper aquifer hydraulic conductivity, presence or absence of a confining reef flat plate, and in the case of drought, time. Results compare favorably with published atoll island lens thickness observations. The algebraic model is incorporated into a spreadsheet interface for use by island water resources managers.

  1. Practical Guidelines for Water Percolation Capacity Determination of the Ground

    Directory of Open Access Journals (Sweden)

    Mihael Brenčič

    2011-06-01

    Full Text Available Determination of water infiltration capacity of ground soils and rocks represents important part of design and construction procedures of the facilities for the infiltration of clean precipitation water. With their help percolation capacity of ground as well as response of the infiltration facilities to the inflowing precipitation water is estimated.Comparing to other in situ hydrogeological tests they can be understood as simple. However, in every day’s practiceseveral problems during their on site application and desk interpretation can arise. Paper represents review of existingpractical engineering procedures during the performance of percolation tests. Procedures are described for the borehole and shaft percolation tests execution and calculation theory for stationary and non‑stationary percolation tests are given. Theory is illustrated with practical exercises. Interpretations of typical departures from theoretical presumptions according to Hvorslev test of non-stationary test are illustrated.

  2. CHEMICAL REACTIONS SIMULATED BY GROUND-WATER-QUALITY MODELS.

    Science.gov (United States)

    Grove, David B.; Stollenwerk, Kenneth G.

    1987-01-01

    Recent literature concerning the modeling of chemical reactions during transport in ground water is examined with emphasis on sorption reactions. The theory of transport and reactions in porous media has been well documented. Numerous equations have been developed from this theory, to provide both continuous and sequential or multistep models, with the water phase considered for both mobile and immobile phases. Chemical reactions can be either equilibrium or non-equilibrium, and can be quantified in linear or non-linear mathematical forms. Non-equilibrium reactions can be separated into kinetic and diffusional rate-limiting mechanisms. Solutions to the equations are available by either analytical expressions or numerical techniques. Saturated and unsaturated batch, column, and field studies are discussed with one-dimensional, laboratory-column experiments predominating. A summary table is presented that references the various kinds of models studied and their applications in predicting chemical concentrations in ground waters.

  3. Ground-water research in the U.S.A.

    Science.gov (United States)

    McGuinness, C.L.

    1967-01-01

    Ground-water reservoirs and the overlying unsaturated zone-collectively, the "subsurface"-have an enormous capacity to supply water to wells and useful plants, to store water to meet future needs for the same purposes, and, under suitable precautions, to accept wastes. This capacity can be exploited on a maximum scale, however, only on the basis of information one or more orders of magnitude greater than that available at present on the distribution, recoverability, and replenishability of subsurface water. Because usable water must be made available, and waste water must be disposed of, at costs of only a cent or a few cents per cubic meter, there is a critical need for research to devise methods of accomplishing these water-management tasks at reasonable cost. Among the chief target areas for research in subsurface hydrology are permeability distribution, including vertical permeability; prediction of the departure of the storage coefficient from the theoretically "instantaneous" property assumed in flow equations; theory of unsaturated flow based on fundamental soil characteristics that can be measured practicably; geochemical relations including the effects of injecting water of one composition into zones occupied by waters of different composition, generation of acid mine water, occurrence of saline water, and salt-fresh-water relations in coastal and other areas; prediction of the fate of wastes injected underground; geophysical techniques both surface and subsurface to extend, at low cost, information obtained by other means; and practical techniques of artificial recharge, especially through wells. ?? 1967.

  4. A Guide for Using the Transient Ground-Water Flow Model of the Death Valley Regional Ground-Water Flow System, Nevada and California

    Energy Technology Data Exchange (ETDEWEB)

    Joan B. Blainey; Claudia C. Faunt, and Mary C. Hill

    2006-05-16

    This report is a guide for executing numerical simulations with the transient ground-water flow model of the Death Valley regional ground-water flow system, Nevada and California using the U.S. Geological Survey modular finite-difference ground-water flow model, MODFLOW-2000. Model inputs, including observations of hydraulic head, discharge, and boundary flows, are summarized. Modification of the DVRFS transient ground-water model is discussed for two common uses of the Death Valley regional ground-water flow system model: predictive pumping scenarios that extend beyond the end of the model simulation period (1998), and model simulations with only steady-state conditions.

  5. Preliminary delineation of salty ground water in the northern Atlantic Coastal Plain

    Science.gov (United States)

    Meisler, Harold

    1980-01-01

    Salty ground water underlies freshwater in the eastern part of the northern Atlantic Coastal Plain. The transition zone between freshwater and saltwater is represented in this report by a series of maps showing the depths to chloride concentrations of 250, 1,000, 10,000, and 18,000 milligrams per liter. The maps are based on chloride concentrations obtained from self-potential logs as well as from water-quality analyses. Depths to the designated chloride concentrations generally increase inland from the coast except in New Jersey where they are greatest along the coast and in North Carolina where depths to the 10,000 and 18,000 milligrams per liter concentrations are greatest beneath Pamlico Sound. The transition zone between 250 and 18,000 milligrams per liter of chloride is generally 1,500 to 2,300 feet thick except in part of North Carolina, where it is less than 1,000 feet. Depths to 250 and 1,000 milligrams per liter of chloride are probably controlled by the natural flow pattern of fresh ground water. Areas where these concentrations are relatively shallow generally coincide with areas of natural ground-water discharge. Depths to 10,000 and 18,000 milligrams per liter of chloride, and the occurrence offshore of ground water that is fresher than seawater, is attributed to long-term hydrologic conditions during which sea level fluctuations of a few hundred feet recurred several times. The origin of ground water that is saltier than seawater is attributed to the leaching of evaporitic strata beneath the Continental Shelf and Slope followed by westward movement of the brines during periods of sea-level rise.

  6. Quality of surface and ground waters, Yakima Indian Reservation, Washington, 1973-74

    Science.gov (United States)

    Fretwell, M.O.

    1977-01-01

    This report describes the quality of the surface and ground waters of the Yakima Indian Reservation in south-central Washington, during the period November 1973-October 1974. The average dissolved-solids concentrations ranged from 48 to 116 mg/L (milligrams per liter) in the mountain streams, and from 88 to 372 mg/L in the lowland streams, drains, and a canal. All the mountain streams contain soft water (classified as 0-60 mg/L hardness as CaC03), and the lowland streams, drains, and canal contain soft to very hard water (more than 180 mg/L hardness as CaC03). The water is generally of suitable quality for irrigation, and neither salinity nor sodium hazards are a problem in waters from any of the streams studied. The specific conductance of water from the major aquifers ranged from 20 to 1 ,540 micromhos. Ground water was most dilute in mineral content in the Klickitat River basin and most concentrated in part of the Satus Creek basin. The ground water in the Satus Creek basin with the most concentrated mineral content also contained the highest percentage composition of sulfate, chloride, and nitrate. For drinking water, the nitrate-nitrogen concentrations exceeded the U.S. Public Health Service 's recommended limit of 10 mg/L over an area of several square miles, with a maximum observed concentration of 170 mg/L. (Woodard-USGS).

  7. Evaluation of geohydrologic framework, recharge estimates and ground-water flow of the Joshua Tree area, San Bernardino County, California

    Science.gov (United States)

    Nishikawa, Tracy; Izbicki, John A.; Hevesi, Joseph A.; Stamos, Christina L.; Martin, Peter

    2005-01-01

    Joshua Tree ground-water subbasin and 5 in the Copper Mountain ground-water subbasin) between 1980 and 2002 and analyzing the samples for major ions, nutrients, and selected trace elements. Selected samples also were analyzed for oxygen-18, deuterium, tritium, and carbon-14. The water-quality data indicated that dissolved solids and nitrate concentrations were below regulatory limits for potable water; however, fluoride concentrations in the lower aquifer exceeded regulatory limits. Arsenic concentrations and chromium concentrations were generally below regulatory limits; however, arsenic concentrations measured in water from wells perforated in the lower aquifer exceeded regulatory limits. The carbon-14 activities ranged from 2 to 72 percent modern carbon and are consistent with uncorrected ground-water ages (time since recharge) of about 32,300 to 2,700 years before present. The oxygen-18 and deuterium composition of water sampled from the upper aquifer is similar to the volume-weighted composition of present-day winter precipitation indicating that winter precipitation was the predominant source of ground-water recharge. Field studies, conducted during water years 2001 through 2003 to determine the distribution and quantity of recharge, included installation of instrumented boreholes in selected washes and at a nearby control site. Core material and cuttings from the boreholes were analyzed for physical, chemical, and hydraulic properties. Instruments installed in the boreholes were monitored to measure changes in matric potential and temperature. Borehole data were supplemented with temperature data collected from access tubes installed at additional sites along study washes. Streambed hydraulic properties and the response of instruments to infiltration were measured using infiltrometers. Physical and geochemical data collected away from the stream channels show that direct infiltration of precipitation to depths below the root zone and subsequent gro

  8. Saline Ground Water and Irrigation Water on Root Zone Salinity

    Directory of Open Access Journals (Sweden)

    T. Subramani

    2014-06-01

    Full Text Available Salinisation of land and rivers is a problem of national importance in India. Appropriate land management options to alleviate salinisation should be chosen with knowledge of the effects of land management on stream flow, stream salinity, stream salt load and land productivity. The Management of Catchment Salinisation (MCS modelling approach has been described in earlier work. It links a one-dimensional soil water model with a groundwater model to investigate the effects of management options in study areas of approximately 50 km2. The one dimensional model is used to characterize the annual soil water balance as a function of underlying aquifer Vpotential for all required combinations of soil, vegetation and groundwater salinity. It includes the effect of salt accumulation on plant water use. A groundwater model is then used to estimate the depth to water table across the study area that reflects the topography, hydrogeology and the distribution of vegetation. The MCS model is used to investigate the potential effects of future land use scenarios on catchment salt and water balance. Land use scenarios that have been considered include: forest plantations, revegetation with native trees and shrubs, and development of small areas of crops (10 to 20 ha irrigated with groundwater. This project focuses on the development of small crop areas irrigated with groundwater and investigates the sustainability of these schemes. It also compares the reduction of catchment salt load export under irrigation development with the reduction under afforestation

  9. Assessment of shallow ground-water quality in recently urbanized areas of Sacramento, California, 1998

    Science.gov (United States)

    Shelton, Jennifer L.

    2005-01-01

    recently developed urban areas. Five arsenic sample concentrations exceeded the U.S. Environmental Protection Agency (USEPA) primary maximum contaminant level (MCL) of 10 milligrams per liter adopted in 2001. Measurements that exceeded USEPA or California Department of Health Services recommended secondary maximum contaminant levels include manganese, iron, chloride, total dissolved solids, and specific conductance. These exceedances are probably a result of natural processes. Variations in stable isotope ratios of hydrogen (2H/1H) and oxygen (18O/16O) may indicate different sources or a mixing of recharge waters to the urban ground water. These variations also may indicate recharge directly from surface water in one well adjacent to the Sacramento River. Tritium concentrations indicate that most shallow ground water has been recharged since the mid-1950s, and tritium/helium-3 age dates suggest that recharge has occurred in the last 2 to 30 years in some areas. In areas where water table depths exceed 20 meters and wells are deeper, ground-water recharge may have occurred prior to 1950, but low concentrations of pesticides and VOCs detected in these deeper wells indicate a mixing of younger and older waters. Overall, the recently urbanized areas can be divided into two groups. One group contains wells where few VOCs and pesticides were detected, nitrate mostly was not detected, and National and State maximum contaminant levels, including the USEPA MCL for arsenic, were exceeded; these wells are adjacent to rivers and generally are characterized by younger water, shallow (1 to 4 meters) water table, chemically reducing conditions, finer grained sediments, and higher organics in the soils. In contrast, the other group contains wells where more VOCs, pesticides, and elevated nitrate concentrations were detected; these wells are farther from rivers and are generally characterized by a mixture of young and old waters, intermediate to deep (7 to 35 meters) wate

  10. Engineering water repellency in granular materials for ground applications

    Science.gov (United States)

    Lourenco, Sergio; Saulick, Yunesh; Zheng, Shuang; Kang, Hengyi; Liu, Deyun; Lin, Hongjie

    2017-04-01

    Synthetic water repellent granular materials are a novel technology for constructing water-tight barriers and fills that is both inexpensive and reliant on an abundant local resource - soils. Our research is verifying its stability, so that perceived risks to practical implementation are identified and alleviated. Current ground stabilization measures are intrusive and use concrete, steel, and glass fibres as reinforcement elements (e.g. soil nails), so more sustainable approaches that require fewer raw materials are strongly recommended. Synthetic water repellent granular materials, with persistent water repellency, have been tested for water harvesting and proposed as landfill and slope covers. By chemically, physically and biologically adjusting the magnitude of water repellency, they offer the unique advantage of controlling water infiltration and allow their deployment as semi-permeable or impermeable materials. Other advantages include (1) volumetric stability, (2) high air permeability and low water permeability, (3) suitability for flexible applications (permanent and temporary usage), (4) improved adhesion aggregate-bitumen in pavements. Application areas include hydraulic barriers (e.g. for engineered slopes and waste containment), pavements and other waterproofing systems. Chemical treatments to achieve water repellency include the use of waxes, oils and silicone polymers which affect the soil particles at sub-millimetric scales. To date, our research has been aimed at demonstrating their use as slope covers and establishing the chemical compounds that develop high and stable water repellency. Future work will determine the durability of the water repellent coatings and the mechanics and modelling of processes in such soils.

  11. Ground-water and surface-water quality data for the West Branch Canal Creek area, Aberdeen Proving Ground, Maryland

    Science.gov (United States)

    Spencer, Tracey A.; Phelan, Daniel J.; Olsen, Lisa D.; Lorah, Michelle M.

    2001-01-01

    This report presents ground-water and surface-water quality data from samples collected by the U.S. Geological Survey from November 1999 through May 2001 at West Branch Canal Creek, Aberdeen Proving Ground, Maryland. The report also provides a description of the sampling and analytical methods that were used to collect and analyze the samples, and includes an evaluation of the quality-assurance data. The ground-water sampling network included two 4-inch wells, two 2-inch wells, sixteen 1-inch piezometers, one hundred thirteen 0.75-inch piezometers, two 0.25-inch flexible-tubing piezo-meters, twenty-seven 0.25-inch piezometers, and forty-two multi-level monitoring system depths at six sites. Ground-water profiler samples were collected from nine sites at 34 depths. In addition, passive-diffusion-bag samplers were deployed at four sites, and porous-membrane sampling devices were installed in the upper sediment at five sites. Surface-water samples were collected from 20 sites. Samples were collected from wells and 0.75-inch piezometers for measurement of field parameters and reduction-oxidation constituents, and analysis of inorganic and organic constituents, during three sampling events in March?April and June?August 2000, and May 2001. Surface-water samples were collected from November 1999 through September 2000 during five sampling events for analysis of organic constituents. Ground-water profiler samples were collected in April?May 2000, and analyzed for field measure-ments, reduction-oxidation constituents, and inorganic constituents and organic constituents. Passive-diffusion-bag samplers were installed in September 2000, and samples were analyzed for organic constituents. Multi-level monitoring system samples were collected and analyzed for field measurements and reduction-oxidation con-stituents, inorganic constituents, and organic con-stituents in March?April and June?August 2000. Field measurements and organic constituents were collected from 0.25-inch

  12. A FIXED BED SORPTION SYSTEM FOR DEFLUORIDATION OF GROUND WATER

    Directory of Open Access Journals (Sweden)

    Ayoob Sulaiman

    2009-06-01

    Full Text Available The presence of excess fluoride in ground water has become a global threat with as many as 200 million people affected in more than 35 countries in all the continents. Of late, there have been significant advances in the knowledge base regarding the effects of excess fluoride on human health. As a result, defluoridation of ground water is regarded as one of the key areas of attention among the universal water community triggering global research. This study describes the sorptive responses of a newly developed adsorbent, alumina cement granules (ALC, in its real-life application in fixed beds, for removing fluoride from the ground waters of a rural Indian village. ALC exhibited almost consistent scavenging capacity at various bed depths in column studies with an enhanced adsorption potential of 0.818 mg/g at a flow rate of 4 ml/min. The Thomas model was examined to describe the sorption process. The process design parameters of the column were obtained by linear regression of the model. In all the conditions examined, the Thomas model could consistently predict its characteristic parameters and describe the breakthrough sorption profiles in the whole range of sorption process.

  13. Tomography of ground water flow from self-potential data

    Science.gov (United States)

    Revil, A.; Jardani, A.

    2007-12-01

    An inversion algorithm is developed to interpret self-potential (SP) data in terms of distribution of the seepage velocity of the ground water. The model is based on the proportionality existing between the electrokinetic source current density and the seepage velocity of the water phase. As the inverse problem is underdetermined, we use a Tikhonov regularization method with a smoothness constraint based on the differential Laplacian operator to solve the inverse problem. The regularization parameter is determined by the L-shape method. The recovery of the distribution of the seepage velocity vector of the ground water flow depends on the localization and number of non-polarizing electrodes and information relative to the distribution of the electrical resistivity of the ground. The inversion method is tested on two 2D synthetic cases and on two real SP data. The first field test corresponds to the infiltration of water from a ditch. The second one corresponds to large flow at the Cerro Prieto geothermal field in Baja California.

  14. Strontium isotopic identification of water-rock interaction and ground water mixing.

    Science.gov (United States)

    Frost, Carol D; Toner, Rachel N

    2004-01-01

    87Sr/86Sr ratios of ground waters in the Bighorn and Laramie basins' carbonate and carbonate-cemented aquifer systems, Wyoming, United States, reflect the distinctive strontium isotope signatures of the minerals in their respective aquifers. Well water samples from the Madison Aquifer (Bighorn Basin) have strontium isotopic ratios that match their carbonate host rocks. Casper Aquifer ground waters (Laramie Basin) have strontium isotopic ratios that differ from the bulk host rock; however, stepwise leaching of Casper Sandstone indicates that most of the strontium in Casper Aquifer ground waters is acquired from preferential dissolution of carbonate cement. Strontium isotope data from both Bighorn and Laramie basins, along with dye tracing experiments in the Bighorn Basin and tritium data from the Laramie Basin, suggest that waters in carbonate or carbonate-cemented aquifers acquire their strontium isotope composition very quickly--on the order of decades. Strontium isotopes were also used successfully to verify previously identified mixed Redbeds-Casper ground waters in the Laramie Basin. The strontium isotopic compositions of ground waters near Precambrian outcrops also suggest previously unrecognized mixing between Casper and Precambrian aquifers. These results demonstrate the utility of strontium isotopic ratio data in identifying ground water sources and aquifer interactions.

  15. Cost analysis of ground-water supplies in the North Atlantic region, 1970

    Science.gov (United States)

    Cederstrom, Dagfin John

    1973-01-01

    The cost of municipal and industrial ground water (or, more specifically, large supplies of ground water) at the wellhead in the North Atlantic Region in 1970 generally ranged from 1.5 to 5 cents per thousand gallons. Water from crystalline rocks and shale is relatively expensive. Water from sandstone is less so. Costs of water from sands and gravels in glaciated areas and from Coastal Plain sediments range from moderate to very low. In carbonate rocks costs range from low to fairly high. The cost of ground water at the wellhead is low in areas of productive aquifers, but owing to the cost of connecting pipe, costs increase significantly in multiple-well fields. In the North Atlantic Region, development of small to moderate supplies of ground water may offer favorable cost alternatives to planners, but large supplies of ground water for delivery to one point cannot generally be developed inexpensively. Well fields in the less productive aquifers may be limited by costs to 1 or 2 million gallons a day, but in the more favorable aquifers development of several tens of millions of gallons a day may be practicable and inexpensive. Cost evaluations presented cannot be applied to any one specific well or specific site because yields of wells in any one place will depend on the local geologic and hydrologic conditions; however, with such cost adjustments as may be necessary, the methodology presented should have wide applicability. Data given show the cost of water at the wellhead based on the average yield of several wells. The cost of water delivered by a well field includes costs of connecting pipe and of wells that have the yields and spacings specified. Cost of transport of water from the well field to point of consumption and possible cost of treatment are not evaluated. In the methodology employed, costs of drilling and testing, pumping equipment, engineering for the well field, amortization at 5% percent interest, maintenance, and cost of power are considered. The

  16. VISUAL INSPECTION OF WATER LEAKAGE FROM GROUND PENETRATING RADAR RADARGRAM

    Directory of Open Access Journals (Sweden)

    N. N. Halimshah

    2015-10-01

    Full Text Available Water loss in town and suburban is currently a significant issue which reflect the performance of water supply management in Malaysia. Consequently, water supply distribution system has to be maintained in order to prevent shortage of water supply in an area. Various techniques for detecting a mains water leaks are available but mostly are time-consuming, disruptive and expensive. In this paper, the potential of Ground Penetrating Radar (GPR as a non-destructive method to correctly and efficiently detect mains water leaks has been examined. Several experiments were designed and conducted to prove that GPR can be used as tool for water leakage detection. These include instrument validation test and soil compaction test to clarify the maximum dry density (MDD of soil and simulation studies on water leakage at a test bed consisting of PVC pipe burying in sand to a depth of 40 cm. Data from GPR detection are processed using the Reflex 2D software. Identification of water leakage was visually inspected from the anomalies in the radargram based on GPR reflection coefficients. The results have ascertained the capability and effectiveness of the GPR in detecting water leakage which could help avoiding difficulties with other leak detection methods.

  17. Supplementary report on surface-water and ground-water surveys, Nueces River Basin, Texas

    Science.gov (United States)

    Broadhurst, W.L.; Ellsworth, C.E.

    1950-01-01

    A report on the ground-water and surface-water surveys of the Nueces River Basin was included in a report by the Bureau of Reclamation, entitled "Comprehensive plan for water-resources development of the Nueces River Basin project planning report number 5-14.04-3, February 1946".

  18. An Excel Workbook for Identifying Redox Processes in Ground Water

    Science.gov (United States)

    Jurgens, Bryant C.; McMahon, Peter B.; Chapelle, Francis H.; Eberts, Sandra M.

    2009-01-01

    The reduction/oxidation (redox) condition of ground water affects the concentration, transport, and fate of many anthropogenic and natural contaminants. The redox state of a ground-water sample is defined by the dominant type of reduction/oxidation reaction, or redox process, occurring in the sample, as inferred from water-quality data. However, because of the difficulty in defining and applying a systematic redox framework to samples from diverse hydrogeologic settings, many regional water-quality investigations do not attempt to determine the predominant redox process in ground water. Recently, McMahon and Chapelle (2008) devised a redox framework that was applied to a large number of samples from 15 principal aquifer systems in the United States to examine the effect of redox processes on water quality. This framework was expanded by Chapelle and others (in press) to use measured sulfide data to differentiate between iron(III)- and sulfate-reducing conditions. These investigations showed that a systematic approach to characterize redox conditions in ground water could be applied to datasets from diverse hydrogeologic settings using water-quality data routinely collected in regional water-quality investigations. This report describes the Microsoft Excel workbook, RedoxAssignment_McMahon&Chapelle.xls, that assigns the predominant redox process to samples using the framework created by McMahon and Chapelle (2008) and expanded by Chapelle and others (in press). Assignment of redox conditions is based on concentrations of dissolved oxygen (O2), nitrate (NO3-), manganese (Mn2+), iron (Fe2+), sulfate (SO42-), and sulfide (sum of dihydrogen sulfide [aqueous H2S], hydrogen sulfide [HS-], and sulfide [S2-]). The logical arguments for assigning the predominant redox process to each sample are performed by a program written in Microsoft Visual Basic for Applications (VBA). The program is called from buttons on the main worksheet. The number of samples that can be analyzed

  19. Environmental and ground-water surveillance at Hanford

    Energy Technology Data Exchange (ETDEWEB)

    Dirkes, R.L.; Luttrell, S.P.

    1995-06-01

    Environmental and ground-water surveillance of the Hanford Site and surrounding region is conducted to demonstrate compliance with environmental regulations, confirm adherence to DOE environmental protection policies, support DOE environmental management decisions, and provide information to the public. Environmental surveillance encompasses sampling and analyzing for potential radiological and nonradiological chemical contaminants on and off the Hanford Site. Emphasis is placed on surveillance of exposure pathways and chemical constituents that pose the greatest risk to human health and the environment.

  20. Spatial and temporal variability of ground water recharge in central Australia: a tracer approach.

    Science.gov (United States)

    Harrington, Glenn A; Cook, Peter G; Herczeg, Andrew L

    2002-01-01

    Two environmental tracer methods are applied to the Ti-Tree Basin in central Australia to shed light on the importance of recharge from floodouts of ephemeral rivers in this arid environment. Ground water carbon-14 concentrations from boreholes are used to estimate the average recharge rate over the interval between where the ground water sample first entered the saturated zone and the bore. Environmental chloride concentrations in ground water samples provide estimates of the recharge rate at the exact point in the landscape where the sample entered the saturated zone. The results of the two tracer approaches indicate that recharge rates around one of the rivers and an extensive floodplain are generally higher than rates of diffuse recharge that occurs in areas of lower topographic relief. Ground water 2H/1H and 18O/16O compositions are all depleted in the heavier isotopes (delta2H = -67 per thousand to -50 per thousand; delta18O = -9.2 per thousand to -5.7%o) compared with the long-term, amount-weighted mean isotopic composition of rainfall in the area (delta2H = -33.8 per thousand; delta18O = -6.3 per thousand). This indicates that recharge throughout the basin occurs only after intense rainfall events of at least 150 to 200 mm/month. Finally, a recharge map is developed to highlight the spatial extent of the two recharge mechanisms. Floodout recharge to the freshest ground water (TDS recharge rate of approximately 0.2 mm/year to the remainder of the basin. These findings have important implications for management of the ground water resource.

  1. Water-quality and ground-water-level data, Bernalillo County, central New Mexico, 1995

    Science.gov (United States)

    Rankin, D.R.

    1996-01-01

    Water-quality and ground-water-level data were collected in two areas of eastern Bernalillo County in central New Mexico between March and July of 1995. Fifty-one wells, two springs, and the Ojo Grande Acequia in the east mountain area of Bernalillo County and nine wells in the northeast area of the city of Albuquerque were sampled. The water samples were analyzed for selected nutrient species; total organic carbon; major dissolved constituents; dissolved arsenic, boron, iron, and manganese; and methylene blue active substances. Analytical results were used to compute hardness, sodium adsorption ratio, and dissolved solids. Specific conductance, pH, temperature, and alkalinity were measured in the field at the time of sample collection. Ground- water-level and well-depth measurements were made at the time of sample collection when possible. Water-quality data, ground- water-level data, and well-depth data are presented in tabular form.

  2. Photodegradation of dimethenamid-P in deionised and ground water

    Directory of Open Access Journals (Sweden)

    Glavaški O.S.

    2016-01-01

    Full Text Available The study of photodegradation of dimethenamid-P herbicide was performed in deionised and ground water using TiO2 as a catalyst under UV light. The effect of electron acceptor (H2O2, scavenger of •OH radicals (C2H5OH and scavenger of holes (NaCl and Na2SO4 as well as solution pH was analyzed. The photodegradation of dimethenamid-P was followed by HPLC. The formation of transformation products was followed using high performance liquid chromatography-electrospray mass spectrometry. Ion chromatography and total organic carbon measurements were used for the determination of the mineralization level. HPLC analysis showed the almost complete removal of herbicide after 90 min in deionised and ground water, while total organic carbon analysis showed that dimethenamid-P was mineralized 64 and 50 % in deionised and ground water, respectively. The ion chromatography results showed that the mineralization process leads to the formation of chloride, sulphate and nitrate anions during the process. Transformation products were identified and the degradation mechanism was proposed. [Projekat Ministarstva nauke Republike Srbije, br. 172013

  3. User interface for ground-water modeling: Arcview extension

    Science.gov (United States)

    Tsou, M.-S.; Whittemore, D.O.

    2001-01-01

    Numerical simulation for ground-water modeling often involves handling large input and output data sets. A geographic information system (GIS) provides an integrated platform to manage, analyze, and display disparate data and can greatly facilitate modeling efforts in data compilation, model calibration, and display of model parameters and results. Furthermore, GIS can be used to generate information for decision making through spatial overlay and processing of model results. Arc View is the most widely used Windows-based GIS software that provides a robust user-friendly interface to facilitate data handling and display. An extension is an add-on program to Arc View that provides additional specialized functions. An Arc View interface for the ground-water flow and transport models MODFLOW and MT3D was built as an extension for facilitating modeling. The extension includes preprocessing of spatially distributed (point, line, and polygon) data for model input and postprocessing of model output. An object database is used for linking user dialogs and model input files. The Arc View interface utilizes the capabilities of the 3D Analyst extension. Models can be automatically calibrated through the Arc View interface by external linking to such programs as PEST. The efficient pre- and postprocessing capabilities and calibration link were demonstrated for ground-water modeling in southwest Kansas.

  4. UMTRA Ground Water Project management action process document

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    A critical U.S. Department of Energy (DOE) mission is to plan, implement, and complete DOE Environmental Restoration (ER) programs at facilities that were operated by or in support of the former Atomic Energy Commission (AEC). These facilities include the 24 inactive processing sites the Uranium Mill Tailings Radiation Control Act (UMTRCA) (42 USC Section 7901 et seq.) identified as Title I sites, which had operated from the late 1940s through the 1970s. In UMTRCA, Congress acknowledged the potentially harmful health effects associated with uranium mill tailings and directed the DOE to stabilize, dispose of, and control the tailings in a safe and environmentally sound manner. The UMTRA Surface Project deals with buildings, tailings, and contaminated soils at the processing sites and any associated vicinity properties (VP). Surface remediation at the processing sites will be completed in 1997 when the Naturita, Colorado, site is scheduled to be finished. The UMTRA Ground Water Project was authorized in an amendment to the UMTRCA (42 USC Section 7922(a)), when Congress directed DOE to comply with U.S. Environmental Protection Agency (EPA) ground water standards. The UMTRA Ground Water Project addresses any contamination derived from the milling operation that is determined to be present at levels above the EPA standards.

  5. Ground-Water Resources of Saipan, Commonwealth of the Northern Meriana Islands

    Science.gov (United States)

    Carruth, Robert L.

    2003-01-01

    Introduction Saipan has an area of 48 mi2 and is the largest of the 14 islands in the Commonwealth of the Northern Mariana Islands (CNMI). The island is formed by volcanic rocks overlain by younger limestones. The island is situated in the western Pacific Ocean at latitude 15?12'N and longitude 145?45'E, about 3,740 mi west-southwest of Honolulu and midway between Japan and New Guinea (fig. 1). The climate on Saipan is classified as tropical marine with an average temperature of 80?F. The natural beauty of the island and surrounding waters are the basis for a growing tourist-based economy. The resulting rapid development and increases in resident and tourist populations have added stresses to the island's limited water supplies. Freshwater resources on Saipan are not readily observable because, aside from the abundant rainfall, most freshwater occurs as ground water. Fresh ground water is found in aquifers composed mainly of fragmental limestones. About 90 percent of the municipal water supply comes from 140 shallow wells that withdraw about 11 Mgal/d. The chloride concentration of water withdrawn from production wells ranges from less than 100 mg/L for wells in the Akgak and Capital Hill well fields, to over 2,000 mg/L from wells in the Puerto Rico, Maui IV, and Marpi Quarry well fields. The chloride concentrations and rates of ground-water production are not currently adequate for providing island residents with a potable 24-hour water supply and future demands are expected to be higher. To better understand the ground-water resources of the island, and water resources on tropical islands in general, the U.S. Geological Survey (USGS) entered into a cooperative program with the Commonwealth Utilities Corporation (CUC). The objective of the program, initiated in 1989, is to assess the ground-water resources of Saipan and to make hydrologic information available to the CUC in support of their ongoing efforts to improve the quality and quantity of the municipal water

  6. Reconnaissance of ground-water quality, eastern Snake River basin, Idaho

    Science.gov (United States)

    Parliman, D.J.

    1982-01-01

    Water-quality, geologic, and hydrologic data were collected for 165 wells in the eastern Snake River basin, Idaho. Water-quality characteristics analyzed include specific conductance, pH, water temperature, major dissolved cations and anions, and coliform bacteria. Ground water from aquifers in all rock units is generally composed of calcium, magnesium, and bicarbonate type and contains carbonate ions. Changes in area trends of ground-water composition probably are most directly related to variability in aquifer composition and proximity to varying sources of recharge, especially those related to man 's land- and water-use activities. In the uplands subareas, median values for selected ground-water characteristics from current analyses are 2000 mg/l hardness; 7.6, pH; 200 mg/l alkalinity; 13C; 0.2 mg/l fluoride; 15 mg/l silica; 0.51 mg/l nitrite (as nitrogen); less than 1 colony per 100 milliliters of water coliform bacteria; 0.02 mg/l phosphorus (total); and 25 mg/l hardness; 7.7, pH; 180 mg/l alkalinity; 11C; 0.4 mg/l fluoride; 26 mg/l silica; 1.2 mg/l nitrite plus nitrate; less than 1 colony per 100 milliliters of water coliform bacteria; 0.01 amg/l phosphorus; and 283 mg/l dissolved solids. Ground-water quality in most of the study area meets recommended standards or criteria for most uses. (USGS)

  7. Ground Water Redox Zonation near La Pine, Oregon: Relation to River Position within the Aquifer-Riparian Zone Continuum

    Science.gov (United States)

    Hinkle, Stephen R.; Morgan, David S.; Orzol, Leonard L.; Polette, Danial J.

    2007-01-01

    Increasing residential development since in the 1960s has lead to increases in nitrate concentrations in shallow ground water in parts of the 247 square mile study area near La Pine, Oregon. Denitrification is the dominant nitrate-removal process that occurs in suboxic ground water, and suboxic ground water serves as a barrier to transport of most nitrate in the aquifer. Oxic ground water, on the other hand, represents a potential pathway for nitrate transport from terrestrial recharge areas to the Deschutes and Little Deschutes Rivers. The effects of present and potential future discharge of ground-water nitrate into the nitrogen-limited Deschutes and Little Deschutes Rivers are not known. However, additions of nitrogen to nitrogen-limited rivers can lead to increases in primary productivity which, in turn, can increase the magnitudes of dissolved oxygen and pH swings in river water. An understanding of the distribution of oxic ground water in the near-river environment could facilitate understanding the vulnerability of these rivers and could be a useful tool for management of these rivers. In this study, transects of temporary wells were installed in sub-river sediments beneath the Deschutes and Little Deschutes Rivers near La Pine to characterize near-river reduction/oxidation (redox) conditions near the ends of ground-water flow paths. Samples from transects installed near the center of the riparian zone or flood plain were consistently suboxic. Where transects were near edges of riparian zones, most ground-water samples also were suboxic. Oxic ground water (other than hyporheic water) was uncommon, and was only detected near the outside edge of some meander bends. This pattern of occurrence likely reflects geochemical controls throughout the aquifer as well as geochemical processes in the microbiologically active riparian zone near the end of ground-water flow paths. Younger, typically less reduced ground water generally enters near-river environments through

  8. Ground Water Redox Zonation near La Pine, Oregon: Relation to River Position within the Aquifer-Riparian Zone Continuum

    Science.gov (United States)

    Hinkle, Stephen R.; Morgan, David S.; Orzol, Leonard L.; Polette, Danial J.

    2007-01-01

    Increasing residential development since in the 1960s has lead to increases in nitrate concentrations in shallow ground water in parts of the 247 square mile study area near La Pine, Oregon. Denitrification is the dominant nitrate-removal process that occurs in suboxic ground water, and suboxic ground water serves as a barrier to transport of most nitrate in the aquifer. Oxic ground water, on the other hand, represents a potential pathway for nitrate transport from terrestrial recharge areas to the Deschutes and Little Deschutes Rivers. The effects of present and potential future discharge of ground-water nitrate into the nitrogen-limited Deschutes and Little Deschutes Rivers are not known. However, additions of nitrogen to nitrogen-limited rivers can lead to increases in primary productivity which, in turn, can increase the magnitudes of dissolved oxygen and pH swings in river water. An understanding of the distribution of oxic ground water in the near-river environment could facilitate understanding the vulnerability of these rivers and could be a useful tool for management of these rivers. In this study, transects of temporary wells were installed in sub-river sediments beneath the Deschutes and Little Deschutes Rivers near La Pine to characterize near-river reduction/oxidation (redox) conditions near the ends of ground-water flow paths. Samples from transects installed near the center of the riparian zone or flood plain were consistently suboxic. Where transects were near edges of riparian zones, most ground-water samples also were suboxic. Oxic ground water (other than hyporheic water) was uncommon, and was only detected near the outside edge of some meander bends. This pattern of occurrence likely reflects geochemical controls throughout the aquifer as well as geochemical processes in the microbiologically active riparian zone near the end of ground-water flow paths. Younger, typically less reduced ground water generally enters near-river environments through

  9. Ground-water flow and the possible effects of remedial actions at J-Field, Aberdeen Proving Ground, Maryland

    Science.gov (United States)

    Hughes, W.B.

    1995-01-01

    J-Field, located in the Edgewood Area of Aberdeen Proving Ground, Md, has been used since World War II to test and dispose of explosives, chemical warfare agents, and industrial chemicals resulting in ground-water, surface-water, and soil contami- nation. The U.S. Geological Survey finite-difference model was used to better understand ground-water flow at the site and to simulate the effects of remedial actions. A surficial aquifer and a confined aquifer were simulated with the model. A confining unit separates these units and is represented by leakance between the layers. The area modeled is 3.65 mi2; the model was constructed with a variably spaced 40 X 38 grid. The horizontal and lower boundaries of the model are all no-flow boundaries. Steady-state conditions were used. Ground water at the areas under investigation flows from disposal pit areas toward discharge areas in adjacent estuaries or wetlands. Simulations indicate that capping disposal areas with an impermeable cover effectively slows advective ground water flow by 0.7 to 0.5 times. Barriers to lateral ground-water flow were simulated and effectively prevented the movement of ground water toward discharge areas. Extraction wells were simulated as a way to contain ground-water contamination and to extract ground water for treatment. Two wells pumping 5 gallons per minute each at the toxic-materials disposal area and a single well pumping 2.5 gallons per minute at the riot-control-agent disposal area effectively contained contamination at these sites. A combi- nation of barriers to horizontal flow east and south of the toxic-materials disposal area, and a single extraction well pumping at 5 gallons per minute can extract contaminated ground water and prevent pumpage of marsh water.

  10. Estimated Depth to Ground Water and Configuration of the Water Table in the Portland, Oregon Area

    Science.gov (United States)

    Snyder, Daniel T.

    2008-01-01

    springs representative of where the water table is at land surface were used to augment the analysis. Ground-water and surface-water data were combined for use in interpolation of the water-table configuration. Interpolation of the two representations typically used to define water-table position - depth to the water table below land surface and elevation of the water table above a datum - can produce substantially different results and may represent the end members of a spectrum of possible interpolations largely determined by the quantity of recharge and the hydraulic properties of the aquifer. Datasets of depth-to-water and water-table elevation for the current study were interpolated independently based on kriging as the method of interpolation with parameters determined through the use of semivariograms developed individually for each dataset. Resulting interpolations were then combined to create a single, averaged representation of the water-table configuration. Kriging analysis also was used to develop a map of relative uncertainty associated with the values of the water-table position. Accuracy of the depth-to-water and water-table elevation maps is dependent on various factors and assumptions pertaining to the data, the method of interpolation, and the hydrogeologic conditions of the surficial aquifers in the study area. Although the water-table configuration maps generally are representative of the conditions in the study area, the actual position of the water-table may differ from the estimated position at site-specific locations, and short-term, seasonal, and long-term variations in the differences also can be expected. The relative uncertainty map addresses some but not all possible errors associated with the analysis of the water-table configuration and does not depict all sources of uncertainty. Depth to water greater than 300 feet in the Portland area is limited to parts of the Tualatin Mountains, the foothills of the Cascade Range, and muc

  11. Hydrogeologic setting, ground-water flow, and ground-water quality at the Lake Wheeler Road research station, 2001-03 : North Carolina Piedmont and Mountains Resource Evaluation Program

    Science.gov (United States)

    Chapman, Melinda J.; Bolich, Richard E.; Huffman, Brad A.

    2005-01-01

    Results of a 2-year field study of the regolith-fractured bedrock ground-water system at the Lake Wheeler Road research station in Wake County, North Carolina, indicate both disconnection and interaction among components of the ground-water system. The three components of the ground-water system include (1) shallow, porous regolith; (2) a transition zone, including partially weathered rock, having both secondary (fractures) and primary porosity; and (3) deeper, fractured bedrock that has little, if any, primary porosity and is dominated by secondary fractures. The research station includes 15 wells (including a well transect from topographic high to low settings) completed in the three major components of the ground-water-flow system and a surface-water gaging station on an unnamed tributary. The Lake Wheeler Road research station is considered representative of a felsic gneiss hydrogeologic unit having steeply dipping foliation and a relatively thick overlying regolith. Bedrock foliation generally strikes N. 10? E. to N. 30? E. and N. 20? W. to N. 40? W. to a depth of about 400 feet and dips between 70? and 80? SE. and NE., respectively. From 400 to 600 feet, the foliation generally strikes N. 70? E. to N. 80? E., dipping 70? to 80? SE. Depth to bedrock locally ranges from about 67 to 77 feet below land surface. Fractures in the bedrock generally occur in two primary sets: low dip angle, stress relief fractures that cross cut foliation, and steeply dipping fractures parallel to foliation. Findings of this study generally support the conceptual models of ground-water flow from high to low topographic settings developed for the Piedmont and Blue Ridge Provinces in previous investigations, but are considered a refinement of the generalized conceptual model based on a detailed local-scale investigation. Ground water flows toward a surface-water boundary, and hydraulic gradients generally are downward in recharge areas and upward in discharge areas; however, local

  12. 2002 Water-Table Contours of the Mojave River and the Morongo Ground-Water Basins, San Bernardino County, California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The Mojave River and Morongo ground-water basins are in the southwestern part of the Mojave Desert in southern California. Ground water from these basins supplies a...

  13. Regional nitrate and pesticide trends in ground water in the eastern San Joaquin Valley, California.

    Science.gov (United States)

    Burow, Karen R; Shelton, Jennifer L; Dubrovsky, Neil M

    2008-01-01

    Protection of ground water for present and future use requires monitoring and understanding of the mechanisms controlling long-term quality of ground water. In this study, spatial and temporal trends in concentrations of nitrate and pesticides in ground water in the eastern San Joaquin Valley, California, were evaluated to determine the long-term effects of agricultural and urban development on regional ground-water quality. Trends in concentrations of nitrate, the nematocide 1,2-dibromo-3-chloropropane, and the herbicide simazine during the last two decades are generally consistent with known nitrogen fertilizer and pesticide use and with the position of the well networks in the regional ground-water flow system. Concentrations of nitrate and pesticides are higher in the shallow part of the aquifer system where domestic wells are typically screened, whereas concentrations are lower in the deep part of the aquifer system where public-supply wells are typically screened. Attenuation processes do not seem to significantly affect concentrations. Historical data indicate that concentrations of nitrate have increased since the 1950s in the shallow and deep parts of the aquifer system. Concentrations of nitrate and detection of pesticides in the deep part of the aquifer system will likely increase as the proportion of highly affected water contributed to these wells increases with time. Because of the time of travel between the water table and the deep part of the aquifer system, current concentrations in public-supply wells likely reflect the effects of 40- to 50-yr-old management practices.

  14. Regional nitrate and pesticide trends in ground water in the eastern San Joaquin Valley, California

    Science.gov (United States)

    Burow, K.R.; Shelton, James L.; Dubrovsky, N.M.

    2008-01-01

    Protection of ground water for present and future use requires monitoring and understanding of the mechanisms controlling long-term quality of ground water. In this study, spatial and temporal trends in concentrations of nitrate and pesticides in ground water in the eastern San Joaquin Valley, California, were evaluated to determine the long-term effects of agricultural and urban development on regional ground-water quality. Trends in concentrations of nitrate, the nematocide 1,2-dibromo-3-chloropropane, and the herbicide simazine during the last two decades are generally consistent with known nitrogen fertilizer and pesticide use and with the position of the well networks in the regional ground-water flow system. Concentrations of nitrate and pesticides are higher in the shallow part of the aquifer system where domestic wells are typically screened, whereas concentrations are lower in the deep part of the aquifer system where public-supply wells are typically screened. Attenuation processes do not seem to significantly affect concentrations. Historical data indicate that concentrations of nitrate have increased since the 1950s in the shallow and deep parts of the aquifer system. Concentrations of nitrate and detection of pesticides in the deep part of the aquifer system will likely increase as the proportion of highly affected water contributed to these wells increases with time. Because of the time of travel between the water table and the deep part of the aquifer system, current concentrations in public-supply wells likely reflect the effects of 40- to 50-yr-old management practices. Copyright ?? 2008 by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America. All rights reserved.

  15. Ground-water quality and geochemistry in Dayton, Stagecoach, and Churchill Valleys, western Nevada

    Science.gov (United States)

    Thomas, James M.; Lawrence, Stephen J.

    1994-01-01

    The U.S. Geological Survey investigated the quality of ground water in the Dayton, Stagecoach, and Churchill Valleys as part of the Carson River Basin National Water-Quality Assessment (NAWQA) pilot study. Four aquifer systems have been de- lineated in the study area. Principal aquifers are unconsolidated deposits at altitudes of less than 4,900 feet above sea level and more than 50 feet below land surface. Shallow aquifers are at altitudes of less than 4,900 feet and less than 50 feet below land surface. Upland aquifers are above 4,900 feet and provide recharge to the principal aquifers. Thermal aquifers, defined as those having a water temperature greater than 30 degrees Celsius, are also present. Ground water used in Dayton, Stagecoach, and Churchill Valleys is pumped from principal aquifers in unconsolidated basin-fill deposits. Ground water in these aquifers originates as precipitation in the adjacent mountains and is recharged by the Carson River and by underflow from adjacent upstream valleys. Ground-water flow is generally parallel to the direction of surface-water flow in the Carson River. Ground water is discharged by pumping, evapo- transpiration, and underflow into the Carson River. The results of geochemical modeling indicate that as ground water moves from upland aquifers in mountainous recharge areas to principal aquifers in basin-fill deposits, the following processes probably occur: (1) plagioclase feldspar, sodium chloride, gypsum (or pyrite), potassium feldspar, and biotite dissolve; (2) calcite precipitates; (3) kaolinite forms; (4) small amounts of calcium and magnesium in the water exchange for potassium on aquifer minerals; and (5) carbon dioxide is gained or lost. The geochemical models are consistent with (1) phases identified in basin- fill sediments; (2) chemical activity of major cations and silica; (3) saturation indices of calcite and amorphous silica; (4) phase relations for aluminosilicate minerals indicated by activity diagrams; and

  16. Ground water for public water supply at Windigo, Isle Royale National Park, Michigan

    Science.gov (United States)

    Grannemann, N.G.; Twenter, F.R.

    1982-01-01

    Three test holes drilled at Windigo in Isle Royale National Park in 1981 indicate that the ophitic basaltic lava flows underlying the area contain little water and cannot be considered a source for public water supply. The holes were 135, 175, and 71 feet deep. One hole yielded about 1 gallon of water perminute; the other two yielded less. Glacial deposits seem to offer the best opportunity for developing a ground-water supply of 5 to 10 gallons per minute.

  17. Nitrate source indicators in ground water of the Scimitar Subdivision, Peters Creek area, Anchorage, Alaska

    Science.gov (United States)

    Wang, Bronwen; Strelakos, Pat M.; Jokela, Brett

    2000-01-01

    A combination of aqueous chemistry, isotopic measurement, and in situ tracers were used to study the possible nitrate sources, the factors contributing to the spatial distribution of nitrate, and possible septic system influence in the ground water in the Scimitar Subdivision, Municipality of Anchorage, Alaska. Two water types were distinguished on the basis of the major ion chemistry: (1) a calcium sodium carbonate water, which was associated with isotopically heavier boron and with chlorofluorocarbons (CFC's) that were in the range expected from equilibration with the atmosphere (group A water) and (2) a calcium magnesium carbonate water, which was associated with elevated nitrate, chloride, and magnesium concentrations, generally isotopically lighter boron, and CFC's concentrations that were generally in excess of that expected from equilibration with the atmosphere (group B water). Water from wells in group B had nitrate concentrations that were greater than 3 milligrams per liter, whereas those in group A had nitrate concentrations of 0.2 milligram per liter or less. Nitrate does not appear to be undergoing extensive transformation in the ground-water system and behaves as a conservative ion. The major ion chemistry trends and the presence of CFC's in excess of an atmospheric source for group B wells are consistent with waste-water influences. The spatial distribution of the nitrate among wells is likely due to the magnitude of this influence on any given well. Using an expanded data set composed of 16 wells sampled only for nitrate concentration, a significant difference in the static water level relative to bedrock was found. Well water samples with less than 1 milligram per liter nitrate had static water levels within the bedrock, whereas those samples with greater than 1 milligram per liter nitrate had static water levels near or above the top of the bedrock. This observation would be consistent with a conceptual model of a low-nitrate fractured bedrock

  18. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site in Lakeview, Oregon

    Energy Technology Data Exchange (ETDEWEB)

    1994-10-01

    This Baseline Risk Assessment of Ground Water Contamination at the Uranium Mill Tailings Site in Lake view, Oregon evaluates potential impacts to public health or the environment resulting from ground water contamination at the former uranium mill processing site.

  19. Subregions of the Death Valley regional ground-water flow system, Nevada and California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This digital data set defines the subregions of the transient ground-water flow model of the Death Valley regional ground-water flow system (DVRFS). Subregions are...

  20. Ground-Based Global Positioning System (GPS) Meteorology Integrated Precipitable Water Vapor (IPW)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Ground-Based Global Positioning System (GPS) Meteorology Integrated Precipitable Water Vapor (IPW) data set measures atmospheric water vapor using ground-based...

  1. Depth to ground water contours of hydrographic area 153, Diamond Valley, Nevada

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This data set consists of depth to ground water contours for hydrographic-area (HA) 153, Diamond Valley, Nevada. These data represent static ground-water levels...

  2. Digital data set describing ground-water regions with unconsolidated watercourses in the conterminous US

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This data set describes ground-water regions in the United States defined by the U.S. Geological Survey. These ground-water regions are useful for dividing the...

  3. Ground-based Remote Sensing of Cloud Liquid Water Path

    Science.gov (United States)

    Crewell, S.; Loehnert, U.

    Within the BALTEX Cloud LIquid WAter NETwork (CLIWA-NET) measurements of cloud parameters were performed to improve/evaluate cloud parameterizations in numerical weather prediction and climate models. The key variable is the cloud liq- uid water path (LWP) which is measured by passive microwave radiometry from the ground during three two-month CLIWA-NET observational periods. Additionally to the high temporal resolution time series from the ground, LWP fields are derived from satellite measurements. During the first two campaigns a continental scale network consisting of 12 stations was established. Most stations included further cloud sen- sitive instruments like infrared radiometer and lidar ceilometer. The third campaign started with a two-week long microwave intercomparison campaign (MICAM) in Cabauw, The Netherlands, and proceeded with a regional network within a 100 by 100 km area. The presentation will focus on the accuracy of LWP derived from the ground by in- vestigating the accuracy of the microwave brightness temperature measurement and examining the LWP retrieval uncertainty. Up to now microwave radiometer are no standard instruments and the seven radiometer involved in MICAM differ in frequen- cies, bandwidths, angular resolution, integration time etc. The influence of this instru- ment specifications on the LWP retrieval will be discussed.

  4. Ground-Water Recharge in the Arid and Semiarid Southwestern United States

    Science.gov (United States)

    Stonestrom, David A.; Constantz, Jim; Ferre, Ty P.A.; Leake, Stanley A.

    2007-01-01

    , and distinct modes of recharge in the Colorado Plateau and Basin and Range subregions. The chapters in this professional paper present (first) an overview of climatic and hydrogeologic framework (chapter A), followed by a regional analysis of ground-water recharge across the entire study area (chapter B). These are followed by an overview of site-specific case studies representing different subareas of the geographically diverse arid and semiarid southwestern United States (chapter C); the case studies themselves follow in chapters D?K. The regional analysis includes detailed hydrologic modeling within the framework of a high-resolution geographic-information system (GIS). Results from the regional analysis are used to explore both the distribution of ground-water recharge for mean climatic conditions as well as the influence of two climatic patterns?the El Ni?o-Southern Oscillation and Pacific Decadal Oscillation?that impart a high degree of variability to the hydrologic cycle. Individual case studies employ a variety of geophysical and geochemical techniques to investigate recharge processes and relate the processes to local geologic and climatic conditions. All of the case studies made use of naturally occurring tracers to quantify recharge. Thermal and geophysical techniques that were developed in the course of the studies are presented in appendices. The quantification of ground-water recharge in arid settings is inherently difficult due to the generally low amount of recharge, its spatially and temporally spotty nature, and the absence of techniques for directly measuring fluxes entering the saturated zone from the unsaturated zone. Deep water tables in arid alluvial basins correspond to thick unsaturated zones that produce up to millennial time lags between changes in hydrologic conditions at the land surface and subsequent changes in recharge to underlying ground water. Recent advances in physical, chemical, isotopic, and modeling techniques have foster

  5. Ground-water conditions in the Dutch Flats area, Scotts Bluff and Sioux Counties, Nebraska, with a section on chemical quality of the ground water

    Science.gov (United States)

    Babcock, H.M.; Visher, F.N.; Durum, W.H.

    1951-01-01

    The U.S. Department of the Interior (DOI) studied contamination induced by irrigation drainage in 26 areas of the Western United States during 1986-95. Comprehensive compilation, synthesis, and evaluation of the data resulting from these studies were initiated by DOI in 1992. Soils and ground water in irrigated areas of the West can contain high concentrations of selenium because of (1) residual selenium from the soil's parent rock beneath irrigated land; (2) selenium derived from rocks in mountains upland from irrigated land by erosion and transport along local drainages, and (3) selenium brought into the area in surface water imported for irrigation. Application of irrigation water to seleniferous soils can dissolve and mobilize selenium and create hydraulic gradients that cause the discharge of seleniferous ground water into irrigation drains. Given a source of selenium, the magnitude of selenium contamination in drainage-affected aquatic ecosystems is strongly related to the aridity of the area and the presence of terminal lakes and ponds. Marine sedimentary rocks and deposits of Late Cretaceous or Tertiary age are generally seleniferous in the Western United States. Depending on their origin and history, some Tertiary continental sedimentary deposits also are seleniferous. Irrigation of areas associated with these rocks and deposits can result in concentrations of selenium in water that exceed criteria for the protection of freshwater aquatic life. Geologic and climatic data for the Western United States were evaluated and incorporated into a geographic information system (GIS) to produce a map identifying areas susceptible to irrigation-induced selenium contamination. Land is considered susceptible where a geologic source of selenium is in or near the area and where the evaporation rate is more than 2.5 times the precipitation rate. In the Western United States, about 160,000 square miles of land, which includes about 4,100 square miles (2.6 million acres) of

  6. Estimating ground water recharge from topography, hydrogeology, and land cover.

    Science.gov (United States)

    Cherkauer, Douglas S; Ansari, Sajjad A

    2005-01-01

    Proper management of ground water resources requires knowledge of the rates and spatial distribution of recharge to aquifers. This information is needed at scales ranging from that of individual communities to regional. This paper presents a methodology to calculate recharge from readily available ground surface information without long-term monitoring. The method is viewed as providing a reasonable, but conservative, first approximation of recharge, which can then be fine-tuned with other methods as time permits. Stream baseflow was measured as a surrogate for recharge in small watersheds in southeastern Wisconsin. It is equated to recharge (R) and then normalized to observed annual precipitation (P). Regression analysis was constrained by requiring that the independent and dependent variables be dimensionally consistent. It shows that R/P is controlled by three dimensionless ratios: (1) infiltrating to overland water flux, (2) vertical to lateral distance water must travel, and (3) percentage of land cover in the natural state. The individual watershed properties that comprise these ratios are now commonly available in GIS data bases. The empirical relationship for predicting R/P developed for the study watersheds is shown to be statistically viable and is then tested outside the study area and against other methods of calculating recharge. The method produces values that agree with baseflow separation from streamflow hydrographs (to within 15% to 20%), ground water budget analysis (4%), well hydrograph analysis (12%), and a distributed-parameter watershed model calibrated to total streamflow (18%). It has also reproduced the temporal variation over 5 yr observed at a well site with an average error < 12%.

  7. Heat as a tool for studying the movement of ground water near streams

    Science.gov (United States)

    Stonestrom, David A.; Constantz, Jim

    2003-01-01

    and practical constraints. As an alternative, naturally occurring variations in temperature can be used to track (or trace) the heat carried by flowing water. The hydraulic transport of heat enables its use as a tracer. Differences between temperatures in the stream and surrounding sediments are now being analyzed to trace the movement of ground water to and from streams. As shown in the subsequent chapters of this circular, tracing the transport of heat leads to a better understanding of the magnitudes and mechanisms of stream/ground-water exchanges, and helps quantify the resulting effects on stream and streambed temperatures. Chapter 1 describes the general principals and procedures by which the natural transport of heat can be utilized to infer the movement of subsurface water near streams. This information sets the foundation for understanding the advanced applications in chapters 2 through 8. Each of these chapters provides a case study, using heat tracing as a tool, of interactions between surface water and ground water for a different location in the western United States. Technical details of the use of heat as an environmental tracer appear in appendices.

  8. Influence on shallow ground water by heavy metal in polluted river

    Institute of Scientific and Technical Information of China (English)

    Li Zhi-ping; HAO Shi-long; CHEN Xiao-gang; SHEN Zhao-li; ZHONG Zuo-xin

    2007-01-01

    The main purpose of the research is to study the influence on shallow ground water by heavy metaI in polluted river.In the lab-scale experiment polluted rivers were simulated by domestic sewage.and three kinds of natural sand were chosen as infiltration medium,it was found that Cr(Ⅵ)penetrated on the 13th day and then had a removal ratio of 77%~99%in coarse sand.over 91%and 96%in two kinds of medium sand.From beginning to end in column 2 and column 3 the removal ratio of lead were greater than 97%.It is difficult for Cr(Ⅵ)and lead to enter ground water,In on-site test it indicates that the concentration of Cr(Ⅵ)in No.1~3 and coal yard well along the bank of Liangshui River is not greater than background concentration in groundwater.so Cr(Ⅵ)in Liangshui River has a little influence on ground water.The mechanism of Cr(Ⅵ) removal is reducing action and sedimentation.The removal mechanism of lead primarily is chemicaI adsorption and generation deposit.Cr(Ⅵ) mainly is transformed to precipitation by reducing action because of abundant reduction agent in the infiltration media.so the tests indicat that polluted river is not the source of Cr(Ⅵ) pollution in ground water.Generally lead may polluted soil,but not groundwater.

  9. Radon-222 concentrations in ground water and soil gas on Indian reservations in Wisconsin

    Science.gov (United States)

    DeWild, John F.; Krohelski, James T.

    1995-01-01

    The weighted average radon-222 concentration of indoor air in homes located on Wisconsin Indian Reservations is 5.8 picocuries per liter, which exceeds the U.S. Environmental Protection Agency action limit of 4 picocuries per liter. Ground water is the principle source of drinking water on Wisconsin Indian Reservations and generally accounts for about 5 percent of the total indoor air radon-222 concentrations found in homes. To determine the distribution of radon-222, ground water from 29 private and community Wisconsin Indian Reservation wells and soil gas at a depth of about 3 feet below land surface adjacent to the wells were sampled. Sites with wells were distributed among the 11 Wisconsin Indian Reservations so that each Reservation contained at least 2 sites. The remaining seven sites were divided among the Reservation by acreage held by each tribe.

  10. Selected coal-related ground-water data, Wasatch Plateau-Book Cliffs area, Utah

    Science.gov (United States)

    Sumsion, C.T.

    1979-01-01

    The Wasatch Plateau-Book Cliffs area in east-central Utah consists of about 8,000 square miles within the upper Colorado River drainage system. Coal production in the area is expected to increase from 8 million tons to as much as 30 million tons annually within the next 10 years. Most sources of water supply will be subjected to possible contamination and increased demands by coal-related municipal and industrial growth in the area. The report presents a compilation of coal-related ground-water data from many unpublished sources for the use of local and regional water planners and users. The report includes generalized stratigraphic sections and hydrologic characteristics of rocks in the Wasatch Plateau-Book Cliffs area , records of selected test holes and water wells, logs of selected test holes and water wells, water levels in selected wells, records of selected springs, records of ground-water discharge from selected mines, and chemical analyses of water from selected test holes, water wells, springs, and mines. (Kosco-USGS)

  11. Preliminary hydrogeologic assessment of a ground-water contamination area in Wolcott, Connecticut

    Science.gov (United States)

    Stone, J.R.; Casey, G.D.; Mondazzi, R.A.; Frick, T.W.

    1997-01-01

    Contamination of ground water by volatile organic compounds and inorganic constituents has been identified at a number of industrial sites in the Town of Wolcott, Connecticut. Contamination is also present at a municipal landfill in the City of Waterbury that is upgradient from the industrial sites in the local ground-water-flow system. The study area, which lies in the Western Highlands of Connecticut, is in the Mad River Valley, a tributary to the Naugatuck River. Geohydrologic units (aquifer materials) include unconsolidated glacial sediments (surficial materials) and fractured crystalline (metamorphic) bedrock. Surficial materials include glacial till, coarse-grained andfine-grained glacial stratified deposits, and postglacial floodplain alluvium and swamp deposits. The ground-water-flow system in the surficial aquifer is complex because the hydraulic properties of the surficial materials are highly variable. In the bedrock aquifer, ground water moves exclusively through fractures. Hydrologic characteristics of the crystalline bedrock-degree of confinement, hydraulic conductivity, storativity, and porosity-are poorly defined in the study area. Further study is needed to adequately assess ground-water flow and contaminant migration under current or past hydrologic conditions. All known water-supply wells in the study area obtain water from the bedrock aquifer. Twenty households in a hillside residential area on Tosun Road currently obtain drinking water from private wells tapping the bedrock aquifer. The extent of contamination in the bedrock aquifer and the potential for future contamination from known sources of contamination in the surficial aquifer is of concern to regulatory agencies. Previous investigations have identified ground-water contamination by volatile organic compounds at the Nutmeg Valley Road site area. Contamination has been associated with on-site disposal of heavy metals, chlorinated and non-chlorinated volatile organic compounds, and

  12. Hydrogeologic framework refinement, ground-water flow and storage, water-chemistry analyses, and water-budget components of the Yuma area, southwestern Arizona and southeastern California

    Science.gov (United States)

    Dickinson, Jesse E.; Land, Michael; Faunt, Claudia C.; Leake, S.A.; Reichard, Eric G.; Fleming, John B.; Pool, D.R.

    2006-01-01

    The ground-water and surface-water system in the Yuma area in southwestern Arizona and southeastern California is managed intensely to meet water-delivery requirements of customers in the United States, to manage high ground-water levels in the valleys, and to maintain treaty-mandated water-quality and quantity requirements of Mexico. The following components in this report, which were identified to be useful in the development of a ground-water management model, are: (1) refinement of the hydrogeologic framework; (2) updated water-level maps, general ground-water flow patterns, and an estimate of the amount of ground water stored in the mound under Yuma Mesa; (3) review and documentation of the ground-water budget calculated by the Bureau of Reclamation, U.S. Department of the Interior (Reclamation); and (4) water-chemistry characterization to identify the spatial distribution of water quality, information on sources and ages of ground water, and information about the productive-interval depths of the aquifer. A refined three-dimensional digital hydrogeologic framework model includes the following hydrogeologic units from bottom to top: (1) the effective hydrologic basement of the basin aquifer, which includes the Pliocene Bouse Formation, Tertiary volcanic and sedimentary rocks, and pre-Tertiary metamorphic and plutonic rocks; (2) undifferentiated lower units to represent the Pliocene transition zone and wedge zone; (3) coarse-gravel unit; (4) lower, middle, and upper basin fill to represent the upper, fine-grained zone between the top of the coarse-gravel unit and the land surface; and (5) clay A and clay B. Data for the refined model includes digital elevation models, borehole lithology data, geophysical data, and structural data to represent the geometry of the hydrogeologic units. The top surface of the coarse-gravel unit, defined by using borehole and geophysical data, varies similarly to terraces resulting from the down cutting of the Colorado River. Clay A

  13. Ground-water supplies of the Ypsilanti area, Michigan

    Science.gov (United States)

    McGuinness, Charles L.; Poindexter, O.F.; Otton, E.G.

    1949-01-01

    As of the date of this report (August 1945), the major water users in the Ypsilanti area are: (1) the city of Ypsilanti, (2) the Willow Run bomber plant, built by the Federal Government and operated by the Ford Motor Co., and (3) the war housing project of the Federal Public Housing Authority, designated in this report the Willow Run Townsite. The city, bomber plant, and townsite have required large quantities of water for domestic and industrial uses, and the necessary water supplies have been developed from wells. The Federal Works Agency had the responsibility of deciding whether the existing water facilities were adequate to meet the expected demands and determining the character of any additional public water-supply facilities that might be constructed with Federal assistance. In order to appraise the ground-water resources of the area the Federal Works Agency requested the Geological Survey to investigate the adequacy of the existing supplies and the availability of additional water. The present report is the result of the investigation, which was made in cooperation with the Michigan Geological Survey Division.The water supplies of the three major users are obtained from wells penetrating glacial and associated sands and gravels. Supplies for the city of Ypsilanti and the Willow Run bomber plant are obtained from wells in the valley of the Huron River; the supply for the Willow Run Townsite is obtained from wells penetrating glacial gravels underlying the upland northeast of the valley. The bedrock formations of the area either yield little water to wells or yield water that is too highly mineralized for most uses.The water supply for the bomber plant is obtained from three closely spaced, highly productive wells at the northern edge of the Huron River, a little more than 3 miles southeast of Ypsilanti. The water receives complete treatment in a modern treatment plant. River water also can be treated and has been used occasionally in the winter and spring

  14. SITE-94. Geochemical characterization of Simpevarp ground waters near the Aespoe Hard Rock Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Glynn, P.D.; Voss, C.I. [US Geological Survey, Reston, VA (United States)

    1999-09-01

    The present report analyzes the geochemical data in order to evaluate collection and interpretation techniques that will be used to site the repository and to assess its safety. Ground waters near the Aespoe Hard Rock Laboratory (HRL) may be grouped into five chemically and isotopically distinct water types, on the basis of their deuterium and chloride contents: 1) recent waters, 2) 5 g/L chloride waters, 3) deep waters, 4) seawater imprint waters, and 5) glacial melt waters. The sampled ground waters show a progressive change from a predominantly NaHCO{sub 3} composition at shallow depth to a CaCl{sub 2}-rich composition at depth. Despite the proximity of the Baltic, relatively few of the sampled ground waters contain any evidence of a seawater component. This finding, together with the rather shallow depths at which saline waters were found, indicates that Aespoe island is presently in a regional ground-water discharge area. The chemical and isotopic composition of the sampled waters also indicates that local recharge of dilute recent waters occurs only down to shallow depths (generally less than 100 in). The Aespoe ground waters are sulfidic and do not presently contain any dissolved oxygen. Measured E{sub H} values are generally near -300 mV, and on average are only about 50 mV lower than E{sub H} values calculated from the sulfide/sulfate couple. Maintenance of reducing conditions, such as presently found at the Aespoe HRL, is an important consideration in assessing the performance of nuclear waste disposal sites. Measurements of dissolved radon and of uranium concentrations in fracture-fill materials were used to calculate an average effective flow-wetted surface area of 3.1 m{sup 2} per liter of water for the Aespoe site. Estimation of flow-wetted surface areas is essential in determining the importance of matrix diffusion and surface sorption processes for radionuclide release calculations. The Rn calculation technique shows promise in helping narrow the

  15. Integrationof Remote Sensing and Geographic information system in Ground Water Quality Assessment and Management

    Science.gov (United States)

    Shakak, N.

    2015-04-01

    Spatial variations in ground water quality in the Khartoum state, Sudan, have been studied using geographic information system (GIS) and remote sensing technique. Gegraphical informtion system a tool which is used for storing, analyzing and displaying spatial data is also used for investigating ground water quality information. Khartoum landsat mosac image aquired in 2013was used, Arc/Gis software applied to extract the boundary of the study area, the image was classified to create land use/land cover map. The land use map,geological and soil map are used for correlation between land use , geological formations, and soil types to understand the source of natural pollution that can lower the ground water quality. For this study, the global positioning system (GPS), used in the field to identify the borehole location in a three dimentional coordinate (Latitude, longitude, and altitude), water samples were collected from 156 borehole wells, and analyzed for physico-chemical parameters like electrical conductivity, Total dissolved solid,Chloride, Nitrate, Sodium, Magnisium, Calcium,and Flouride, using standard techniques in the laboratory and compared with the standards.The ground water quality maps of the entire study area have been prepared using spatial interpolation technique for all the above parameters.then the created maps used to visualize, analyze, and understand the relationship among the measured points. Mapping was coded for potable zones, non-potable zones in the study area, in terms of water quality sutability for drinking water and sutability for irrigation. In general satellite remote sensing in conjunction with geographical information system (GIS) offers great potential for water resource development and management.

  16. 40 CFR 258.53 - Ground-water sampling and analysis requirements.

    Science.gov (United States)

    2010-07-01

    ....53 Ground-water sampling and analysis requirements. (a) The ground-water monitoring program must... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Ground-water sampling and analysis requirements. 258.53 Section 258.53 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED)...

  17. Ground-Water Flow, 2004-07, and Water Quality, 1992-2007, in McBaine Bottoms, Columbia, Missouri

    Science.gov (United States)

    Smith, Brenda Joyce; Richards, Joseph M.

    2008-01-01

    concentrations larger than 40 milligrams per liter. The chloride concentration of ground water in the alluvial aquifer reflects several sources, including precipitation, water from the Missouri River, water in the aquifer, and the treated effluent. Chloride concentrations from precipitation, the Missouri River, and water in the alluvial aquifer were less than 40 milligrams per liter. These monitoring wells affected by effluent are located in two general areas - adjacent to treatment wetland unit 1 and near the ground-water high on and north of the Eagle Bluffs Conservation Area. The probable source of the large chloride concentrations in well samples adjacent to treatment wetland unit 1 is leakage from the unit. The source for the large chloride concentrations in the other monitoring well samples is the effluent mixed with ground water and Missouri River water that is used to fill pools on the Eagle Bluffs Conservation Area. One monitoring well had a single sample with a chloride concentration larger than 40 milligrams per liter. That sample may have been affected by the use of road salt because of the presence of ice and snow immediately before the sample was collected. Lateral ground-water flow was dominated by the presence of a persistent ground-water high beneath the Eagle Bluffs Conservation Area and the presence of a cone of depression centered around the city of Columbia well field in the northern part of the study area. Ground-water flow was radially away from the apex of the ground-water high; west and south of the high, flow was toward the Missouri River, east of the high, flow was toward Perche Creek, and north of the high, flow was to the north toward the cone of depression around the city of Columbia well field. Another permanent feature on the water-level maps was a ground-water high beneath treatment wetland unit 1. Although the ground-water high was present throughout the study period, the subsurface expression of the high changed depending on hydrolo

  18. U and sr isotopes in ground water and calcite, yucca mountain, nevada: evidence against upwelling water.

    Science.gov (United States)

    Stuckless, J S; Peterman, Z E; Muhs, D R

    1991-10-25

    Hydrogenic calcite and opaline silica deposits in fault zones at Yucca Mountain, Nevada, have created considerable public and scientific controversy because of the possible development of a high-level nuclear waste repository at this location. Strontium and uranium isotopic compositions of hydrogenic materials were used to test whether the veins could have formed by upwelling of deep-seated waters. The vein deposits are isotopically distinct from ground water in the two aquifers that underlie Yucca Mountain, indicating that the calcite could not have precipitated from ground water. The data are consistent with a surficial origin for the hydrogenic deposits.

  19. Kinetic modeling of water sorption by roasted and ground coffee

    Directory of Open Access Journals (Sweden)

    Fernanda Machado Baptestini

    2017-05-01

    Full Text Available The objective of this study was to model the kinetics of water sorption in roasted and ground coffee. Crude Arabica coffee beans with an initial moisture content of 0.1234 kgwkgdm-1 were used. These beans were roasted to a medium roast level (SCCA # 55 and ground at three particle sizes: coarse (1.19 mm, medium (0.84 mm and fine (0.59 mm. To obtain the water sorption isotherms and the isosteric heat, different conditions of temperature and relative humidity were analyzed using the dynamic method at 25ºC (0.50, 0.60, 0.70, and 0.80 of RH and 30°C (0.30, 0.40, 0.50, 0.60, 0.70, and 0.80 of RH and using the static method at 25ºC (0.332 and 0.438 of RH. The GAB model best represented the hygroscopic equilibrium of roasted coffee at every particle size. Isosteric heat of sorption for the fine particle size increased with increments of equilibrium moisture content, indicating a strong bond energy between water molecules and the product components. The Gibbs free energy decreased with the increase in equilibrium moisture content and with temperature.

  20. Potential risk of microplastics transportation into ground water

    Science.gov (United States)

    Huerta, Esperanza; Gertsen, Hennie; Gooren, Harm; Peters, Piet; Salánki, Tamás; van der Ploeg, Martine; Besseling, Ellen; Koelmans, Albert A.; Geissen, Violette

    2016-04-01

    Microplastics, are plastics particles with a size smaller than 5mm. They are formed by the fragmentation of plastic wastes. They are present in the air, soil and water. But only in aquatic systems (ocean and rivers) are studies over their distribution, and the effect of microplastics on organisms. There is a lack of information of what is the distribution of microplastics in the soil, and in the ground water. This study tries to estimate the potential risk of microplastics transportation into the ground water by the activity of earthworms. Earthworms can produce burrows and/or galleries inside the soil, with the presence of earthworms some ecosystem services are enhanced, as infiltration. In this study we observed after 14 days with 5 treatments (0, 7, 28 and 60% w/w microplastics mixed with Populus nigra litter) and the anecic earthworm Lumbricus terrestris, in microcosms (3 replicas per treatment) that macroplastics are indeed deposit inside earthworms burrows, with 7% microplastics on the surface is possible to find 1.8 g.kg-1 microplastics inside the burrows, with a bioaumentation factor of 0.65. Burrows made by earthworms under 60% microplastics, are significant bigger (pmicroplastics in their soil surface. The amount of litter that is deposit inside the burrows is significant higher (pmicroplastics on the surface than without microplastics. The microplastics size distribution is smaller inside the burrows than on the surface, with an abundance of particles under 63 μm.

  1. Quality of ground water in the Payette River basin, Idaho

    Science.gov (United States)

    Parliman, D.J.

    1986-01-01

    As part of a study to obtain groundwater quality data in areas of Idaho were land- and water-resource development is expected to increase, water quality, geologic, and hydrologic data were collected for 74 wells in the Payette River basin, west-central Idaho, from July to October 1982. Historical (pre-1982) data from 13 wells were compiled with more recent (1982) data to define, on a reconnaissance level, water quality conditions in major aquifers and to identify factors that may have affected groundwater quality. Water from the major aquifers generally contains predominantly calcium, magnesium, and bicarbonate plus carbonate ions. Sodium and bicarbonate or sulfate are the predominant ions in groundwater from 25% of the 1982 samples. Areally, groundwater from the upper Payette River basin has proportionately lower ion concentrations than water from the lower Payette River basin. Water samples from wells 100 ft deep. Variations in groundwater quality probably are most affected by differences in aquifer composition and proximity to source(s) of recharge. Groundwater in the study area is generally suitable for most uses. In localized areas, pH and concentrations of hardness, alkalinity, dissolved solids, or dissolved nitrite plus nitrate as nitrogen, sulfate, fluoride, iron, or manganese exceed Federal drinking water limits and may restrict some uses of the water.

  2. Hydrogeology, ground-water quality, and source of ground water causing water-quality changes in the Davis well field at Memphis, Tennessee

    Science.gov (United States)

    Parks, William S.; Mirecki, June E.; Kingsbury, James A.

    1995-01-01

    An investigation was conducted by the U.S. Geological Survey from 1992 to 1994 to collect and interpret hydrogeologic and water-quality data to determine the source of ground water causing water-quality changes in water from wells screened in the Memphis aquifer in the Davis well field at Memphis, Tennessee. Water-quality changes in aquifers used for water supply are of concern because these changes can indicate a potential for contamination of the aquifers by downward leakage from near-surface sources.

  3. Hydrogeology and water quality of areas with persistent ground- water contamination near Blackfoot, Bingham County, Idaho

    Science.gov (United States)

    Parliman, D.J.

    1987-01-01

    The Groveland-Collins area near Blackfoot, Idaho, has a history of either periodic or persistent localized groundwater contamination. Water users in the area report offensive smell, metallic taste, rust deposits, and bacteria in water supplies. During 1984 and 1985, data were collected to define regional and local geologic, hydrologic, and groundwater quality conditions, and to identify factors that may have affected local groundwater quality. Infiltration or leakage of irrigation water is the major source of groundwater recharge, and water levels may fluctuate 15 ft or more during the irrigation season. Groundwater movement is generally northwestward. Groundwater contains predominantly calcium, magnesium, and bicarbonate ions and characteristically has more than 200 mg/L hardness. Groundwater near the Groveland-Collins area may be contaminated from one or more sources, including infiltration of sewage effluent, gasoline or liquid fertilizer spillage, or land application of food processing wastewater. Subsurface basalt ridges impede lateral movement of water in localized areas. Groundwater pools temporarily behind these ridges and anomalously high water levels result. Maximum concentrations or values of constituents that indicate contamination were 1,450 microsiemens/cm specific conductance, 630 mg/L bicarbonate (as HCO3), 11 mg/L nitrite plus nitrate (as nitrogen), 7.3 mg/L ammonia (as nitrogen), 5.9 mg/L organic nitrogen, 4.4 mg/L dissolved organic carbon, 7,000 micrograms/L dissolved iron, 5 ,100 microgram/L dissolved manganese, and 320 microgram/L dissolved zinc. Dissolved oxygen concentrations ranged from 8.9 mg/L in uncontaminated areas to 0 mg/L in areas where food processing wastewater is applied to the land surface. Stable-isotope may be useful in differentiating between contamination from potato-processing wastewater and whey in areas where both are applied to the land surface. Development of a ground-water model to evaluate effects of land applications

  4. HANFORD SITE ENVIRONMENTAL DATA FOR CALENDAR YEAR 1989 - GROUND WATER

    Energy Technology Data Exchange (ETDEWEB)

    Bryce, R. W.; Gorst, W. R.

    1990-12-01

    In a continuing effort for the U.S. Department of Energy, Pacific Northwest Laboratory (PNL) is conducting ground-water monitoring at the Hanford Site, near Richland, Washington. This document contains the data listing of monitoring results obtained by PNL and Westinghouse Hanford Company during the period January through December 1989. Samples taken during 1989 were analyzed and reported by United States Testing Company, Inc., Richland, Washington. The data listing contains all chemical results (above contractual reporting limits) and radiochemical results (for which the result is larger than two times the total error).

  5. Expertise in exploiting ground water in Australian prehistory

    Energy Technology Data Exchange (ETDEWEB)

    Bandler, H. [Macquarie Univ., Sydney, NSW (Australia)

    2000-12-01

    The presence of human beings on the Australian continent has been established to go back to at least 40 000 years. Recent research has put this back to about 60 000 years B.P. (Before Present). With the awareness of living on an extremely arid continent, the need to satisfy water demands was a constant concern. Finding water for all members of the various groups, but especially for those living in the Australian inland with extremely low precipitation, was a perpetual challenge. Thus, in desert areas seeking, finding and protecting ground water was demanded continuously. Native wells were established and used for many centuries often when surface water had dried in nearby watercourses. A number of wells found in the Simpson Desert, with habitation around them until recently, are most interesting. In Central Australia, in the Cleland Hills, the location of habitation has been found at a huge rock shelter close to a rock hole providing permanent ground water when all other sources in the vicinity have dried out. It was scientifically established that this occupation goes back 22 000 years. These examples of obtaining ground water in Australian prehistory many thousands of years ago by Aborigines show a highly developed culture. (orig.) [German] Bisher wurde angenommen, dass die Besiedelung des australischen Kontinents durch den Menschen vor 40 000 Jahren begann. Neueste Untersuchungen datieren diesen Zeitpunkt jedoch auf 60 000 Jahre zurueck. Fuer das Leben auf diesem extrem trockenen Erdteil war die Sicherung des Wasserbedarfs von jeher existenziell. Lebenswichtiges Wasser zu finden war fuer alle Mitglieder der verschiedenen Bevoelkerungsgruppen, vor allem aber fuer diejenigen, die sich im australischen Hinterland ansiedelten, von hoechster Bedeutung. Grundwasser in der Wueste zu suchen, zu finden und zu schuetzen war oberstes Ziel. Urspruengliche Brunnen wurden errichtet und ueber Jahrhunderte hindurch genutzt, wenn alle anderen Wasserressourcen versiegten. Hierbei

  6. Hydrogeologic setting, hydraulic properties, and ground-water flow at the O-Field area of Aberdeen Proving Ground, Maryland

    Science.gov (United States)

    Banks, W.S.; Smith, B.S.; Donnelly, C.A.

    1996-01-01

    The U.S. Army disposed chemical agents, laboratory materials, and unexploded ordnance at O-Field in the Edgewood area of Aberdeen Proving Ground, Maryland, from before World War II until at least the 1950's. Soil, ground water, surface water,and wetland sediments in the O-Field area were contaminated from the disposal activity. A ground-water-flow model of the O-Field area was constructed by the U.S. Geological Survey (USGS) in 1989 to simulate flow in the central and southern part of the Gunpowder Neck. The USGS began an additional study of the contamination in the O-Field area in cooperation with the U.S. Army in 1990 to (1) further define the hydrogeologic framework of the O-Field area, (2) characterize the hydraulic properties of the aquifers and confining units, and (3) define ground-water flow paths at O-Field based on the current data and simulations of ground-water flow. A water-table aquifer, an upper confining unit, and an upper confined aquifer comprise the shallow ground-water aquifer system of the O-Field area. A lower confining unit, through which ground-water movement is negligible, is considered a lower boundary to the shallow aquifer system. These units are all part of the Pleistocene Talbot Formation. The model developed in the previous study was redesigned using the data collected during this study and emphasized New O-Field. The current steady-state model was calibrated to water levels of June 1993. The rate of ground-water flow calculated by the model was approximately 0.48 feet per day (ft/d) and the rate determined from chlorofluorocarbon dates was approximately 0.39 ft/d.

  7. Geology and ground-water conditions in the Wilmington-Reading area, Massachusetts

    Science.gov (United States)

    Baker, John Augustus; Healy, H.G.; Hackett, O.M.

    1964-01-01

    The Wilmington-Reading area, as defined for this report, contains the headwaters of the Ipswich River in northeastern Massachusetts. Since World War II the growth of communities in this area and the change in character of some of them from rural to suburban have created new water problems and intensified old ones. The purpose of this report on ground-water conditions is to provide information that will aid in understanding and resolving some of these problems. The regional climate, which is humid and temperate, assures the area an ample natural supply of water. At the current stage of water-resources development a large surplus of water drains from the area by way of the Ipswich River during late autumn, winter, and spring each year and is unavailable for use during summer and early autumn, when during some years there is a general water deficiency. Ground water occurs both in bedrock and in the overlying deposits of glacial drift. The bedrock is a source of small but generally reliable supplies of water throughout the area. Glacial till also is a source of small supplies of water, but wells in till often fail to meet modern demands. Stratified glacial drift, including ice-contact deposits and outwash, yields small to large supplies of water. Stratified glacial drift forms the principal ground-water reservoir. It partly fills a system of preglacial valleys corresponding roughly to the valleys of the present Ipswich River system and is more than 100 feet thick at places. The ice-contact deposits generally are more permeable than the outwash deposits. Ground water occurs basically under water-table conditions. Recharge in the Wilmington-Reading area is derived principally from precipitation on outcrop areas of ice-contact deposits and outwash during late autumn, winter. and spring. It is estimated that the net annual recharge averages about 10 inches and generally ranges from 5 inches during unusually dry years to 15 inches during unusually wet years. Ground water

  8. Decadal-scale changes of pesticides in ground water of the United States, 1993-2003

    Science.gov (United States)

    Bexfield, L.M.

    2008-01-01

    Pesticide data for ground water sampled across the United States between 1993-1995 and 2001-2003 by the U.S. Geological Survey National Water-Quality Assessment Program were evaluated for trends in detection frequency and concentration. The data analysis evaluated samples collected from a total of 362 wells located in 12 local well networks characterizing shallow ground water in agricultural areas and six local well networks characterizing the drinking water resource in areas of variable land use. Each well network was sampled once during 1993-1995 and once during 2001-2003. The networks provide an overview of conditions across a wide range of hydrogeologic settings and in major agricultural areas that vary in dominant crop type and pesticide use. Of about 80 pesticide compounds analyzed, only six compounds were detected in ground water from at least 10 wells during both sampling events. These compounds were the triazine herbicides atrazine, simazine, and prometon; the acetanilide herbicide metolachlor; the urea herbicide tebuthiuron; and an atrazine degradate, deethylatrazine (DEA). Observed concentrations of these compounds generally were Society of Agronomy, Crop Science Society of America, and Soil Science Society of America. All rights reserved.

  9. Status of ground water in the 1100 Area

    Energy Technology Data Exchange (ETDEWEB)

    Law, A.G.

    1990-12-01

    This document contains the results of monthly sampling of 1100 Area Wells and ground water monitoring. Included is a table that presents all of the results of monthly sampling and analyses between April 1989 and May 1990, for four constituents selected to be most indicative of the potential for contamination from US Department of Energy facilities. The samples were collected from the three wells near the city of Richland well field. Also included is a table that presents a listing of the analytical results from sampling and analyses of five wells between April 1989, and May 1990 in the 1100 Area. The detection limit and drinking water standards or maximum contaminant level are also listed in the tables for each constituent.

  10. Chemometric characterisation of the quality of ground waters from different wells in Slovenia

    OpenAIRE

    Novič, Marjana; Vončina, Ernest; Brodnjak-Vončina, Darinka; Sovič, Nataša

    2015-01-01

    The quality of ground water as a source of drinking water in Slovenia is regularly monitored. One of the monitoring programmes is performed on 5 wells for drinking water supply, 3 industrial wells and 2 ground water monitoring wells. Two hundred and fourteen samples of ground waters were analysed in the time 2003-2004. Samples were gathered from ten different sampling sites and physical chemical measurements were performed. The following 13 physical chemical parameters were regularly controll...

  11. Ground-water data for the Beryl-Enterprise area, Escalante Desert, Utah

    Science.gov (United States)

    Mower, R.W.

    1981-01-01

    This report contains a compilation of selected ground-water data for the Beryl-Enterprise area, Iron and Washington Counties, Utah. The records of the wells include such information as driller 's logs, yield, drawdown, use, and temperature of the well water. There are also records of water levels in selected wells for the period 1973-79, chemical analyses of ground water, records of selected springs, and a tabulation of ground-water withdrawals for 1937-78. (USGS)

  12. Ground-water discharge determined from measurements of evapotranspiration, other available hydrologic components, and shallow water-level changes, Oasis Valley, Nye County, Nevada

    Science.gov (United States)

    Reiner, S.R.; Laczniak, R.J.; DeMeo, G.A.; Smith, Jody L.; Elliott, P.E.; Nylund, W.E.; Fridrich, C.J.

    2002-01-01

    component of 0.5 foot, is estimated to be about 6,000 acre-feet. Annual subsurface outflow from Oasis Valley into the Amargosa Desert is estimated to be between 30 and 130 acre-feet. Estimates of total annual ground-water withdrawal from Oasis Valley by municipal and non-municipal users in 1996 and 1999 are 440 acre-feet and 210 acre-feet, respectively. Based on these values, natural annual ground-water discharge from Oasis Valley is about 6,100 acre-feet. Total annual discharge was 6,500 acre-ft in 1996 and 6,300 acre-ft in 1999. This quantity of natural ground-water discharge from Oasis Valley exceeds the previous estimate made in 1962 by a factor of about 2.5. Water levels were measured in Oasis Valley to gain additional insight into the ET process. In shallow wells, water levels showed annual fluctuations as large as 7 feet and daily fluctuations as large as 0.2 foot. These fluctuations may be attributed to water loss associated with evapotranspiration. In shallow wells affected by ET, annual minimum depths to water generally occurred in winter or early spring shortly after daily ET reached minimum rates. Annual maximum depths to water generally occurred in late summer or fall shortly after daily ET reached maximum rates. The magnitude of daily water-level fluctuations generally increased as ET increased and decreased as depth to water increased.

  13. Nitrate removal using Brevundimonas diminuta MTCC 8486 from ground water.

    Science.gov (United States)

    Kavitha, S; Selvakumar, R; Sathishkumar, M; Swaminathan, K; Lakshmanaperumalsamy, P; Singh, A; Jain, S K

    2009-01-01

    Brevundimonas diminuta MTCC 8486, isolated from marine soil of coastal area of Trivandrum, Kerala, was used for biological removal of nitrate from ground water collected from Kar village of Pali district, Rajasthan. The organism was found to be resistance for nitrate up to 10,000 mg L(-1). The optimum growth conditions for biological removal of nitrate were established in batch culture. The effect of carbon sources on nitrate removal was investigated using mineral salt medium (MSM) containing 500 mg L(-1) of nitrate to select the most effective carbon source. Among glucose and starch as carbon source, glucose at 1% concentration increased the growth (182+/-8.24 x 10(4) CFU mL(-1)) and induced maximum nitrate reduction (86.4%) at 72 h. The ground water collected from Kar village, Pali district of Rajasthan containing 460+/-5.92 mg L(-1) of nitrate was subjected to three different treatment processes in pilot scale (T1 to T3). Higher removal of nitrate was observed in T2 process (88%) supplemented with 1% glucose. The system was scaled up to 10 L pilot scale treatment plant. At 72 h the nitrate removal was observed to be 95% in pilot scale plant. The residual nitrate level (23+/-0.41 mg L(-1)) in pilot scale treatment process was found to be below the permissible limit of WHO.

  14. Factors influencing biological treatment of MTBE contaminated ground water

    Energy Technology Data Exchange (ETDEWEB)

    Stringfellow, William T.; Hines Jr., Robert D.; Cockrum, Dirk K.; Kilkenny, Scott T.

    2001-09-14

    Methyl tert-butyl ether (MTBE) contamination has complicated the remediation of gasoline contaminated sites. Many sites are using biological processes for ground water treatment and would like to apply the same technology to MTBE. However, the efficiency and reliability of MTBE biological treatment is not well documented. The objective of this study was to examine the operational and environmental variables influencing MTBE biotreatment. A fluidized bed reactor was installed at a fuel transfer station and used to treat ground water contaminated with MTBE and gasoline hydrocarbons. A complete set of chemical and operational data was collected during this study and a statistical approach was used to determine what variables were influencing MTBE treatment efficiency. It was found that MTBE treatment was more sensitive to up-set than gasoline hydrocarbon treatment. Events, such as excess iron accumulation, inhibited MTBE treatment, but not hydrocarbon treatment. Multiple regression analysis identified biomass accumulation and temperature as the most important variables controlling the efficiency of MTBE treatment. The influent concentration and loading of hydrocarbons, but not MTBE, also impacted MTBE treatment efficiency. The results of this study suggest guidelines for improving MTBE treatment. Long cell retention times in the reactor are necessary for maintaining MTBE treatment. The onset of nitrification only occurs when long cell retention times have been reached and can be used as an indicator in fixed film reactors that conditions favorable to MTBE treatment exist. Conversely, if the reactor can not nitrify, it is unlikely to have stable MTBE treatment.

  15. Thermal Methods for Investigating Ground-Water Recharge

    Science.gov (United States)

    Blasch, Kyle W.; Constantz, Jim; Stonestrom, David A.

    2007-01-01

    Recharge of aquifers within arid and semiarid environments is defined as the downward flux of water across the regional water table. The introduction of recharging water at the land surface can occur at discreet locations, such as in stream channels, or be distributed over the landscape, such as across broad interarroyo areas within an alluvial ground-water basin. The occurrence of recharge at discreet locations is referred to as focused recharge, whereas the occurrence of recharge over broad regions is referred to as diffuse recharge. The primary interest of this appendix is focused recharge, but regardless of the type of recharge, estimation of downward fluxes is essential to its quantification. Like chemical tracers, heat can come from natural sources or be intentionally introduced to infer transport properties and aquifer recharge. The admission and redistribution of heat from natural processes such as insolation, infiltration, and geothermal activity can be used to quantify subsurface flow regimes. Heat is well suited as a ground-water tracer because it provides a naturally present dynamic signal and is relatively harmless over a useful range of induced perturbations. Thermal methods have proven valuable for recharge investigations for several reasons. First, theoretical descriptions of coupled water-and-heat transport are available for the hydrologic processes most often encountered in practice. These include land-surface mechanisms such as radiant heating from the sun, radiant cooling into space, and evapotranspiration, in addition to the advective and conductive mechanisms that usually dominate at depth. Second, temperature is theoretically well defined and readily measured. Third, thermal methods for depths ranging from the land surface to depths of hundreds of meters are based on similar physical principles. Fourth, numerical codes for simulating heat and water transport have become increasingly reliable and widely available. Direct measurement of water

  16. Environmental isotopes as indicators for ground water recharge to fractured granite.

    Science.gov (United States)

    Ofterdinger, U S; Balderer, W; Loew, S; Renard, P

    2004-01-01

    To assess the contribution of accumulated winter precipitation and glacial meltwater to the recharge of deep ground water flow systems in fracture crystalline rocks, measurements of environmental isotope ratios, hydrochemical composition, and in situ parameters of ground water were performed in a deep tunnel. The measurements demonstrate the significance of these ground water recharge components for deep ground water flow systems in fractured granites of a high alpine catchment in the Central Alps, Switzerland. Hydrochemical and in situ parameters, as well as delta(18)O in ground water samples collected in the tunnel, show only small temporal variations. The precipitation record of delta(18)O shows seasonal variations of approximately 14% and a decrease of 0.23% +/- 0.03% per 100 m elevation gain. delta(2)H and delta(18)O in precipitation are well correlated and plot close to the meteoric water line, as well as delta(2)H and delta(18)O in ground water samples, reflecting the meteoric origin of the latter. The depletion of 18O in ground water compared to 18O content in precipitation during the ground water recharge period indicates significant contributions from accumulated depleted winter precipitation to ground water recharge. The hydrochemical composition of the encountered ground water, Na-Ca-HCO3-SO4(-F), reflects an evolution of the ground water along the flowpath through the granite body. Observed tritium concentrations in ground water range from 2.6 to 16.6 TU, with the lowest values associated with a local negative temperature anomaly and anomalous depleted 18O in ground water. This demonstrates the effect of local ground water recharge from meltwater of submodern glacial ice. Such localized recharge from glaciated areas occurs along preferential flowpaths within the granite body that are mainly controlled by observed hydraulic active shear fractures and cataclastic faults.

  17. Ground-water recharge in Fortymile Wash near Yucca Mountain, Nevada, 1992--1993

    Energy Technology Data Exchange (ETDEWEB)

    Savard, C.S.

    1994-12-31

    Quantification of the ground-water recharge from streamflow in the Fortymile Wash watershed will contribute to regional ground-water studies. Regional ground-water studies are an important component in the studies evaluating the ground-water flow system as a barrier to the potential migration of radionuclides from the potential underground high-level nuclear waste repository. Knowledge gained in understanding the ground-water recharge mechanisms and pathways in the Pah Canyon area, which is 10 km to the northeast of Yucca Mountain, may transfer to Yucca site specific studies. The current data collection network in Fortymile Canyon does not permit quantification of ground-water recharge, however a qualitative understanding of ground-water recharge was developed from these data.

  18. Boundary of the ground-water flow model by IT Corporation (1996), for the Death Valley regional ground-water flow system study, Nevada and California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This digital data set defines the boundary of the steady-state ground-water flow model built by IT Corporation (1996). The regional, 20-layer ground-water flow model...

  19. Ground-water-quality assessment of the Central Oklahoma Aquifer, Oklahoma; geochemical and geohydrologic investigations

    Science.gov (United States)

    Parkhurst, D.L.; Christenson, S.C.; Breit, G.N.

    1993-01-01

    seawater are the most likely source of bromide and chloride in the aquifer. The dominant reaction in recharge is the uptake of carbon dioxide gas from the unsaturated zone (about 2.0 to 4.0 millimoles per liter) and the dissolution of dolomite (about 0.3 to 1.0 millimoles per liter). This reaction generates calcium, magnesium, and bicarbonate water composition. If dolomite does not dissolve to equilibrium, pH values range from 6.0 to 7.3; if dolomite dissolves to equilibrium, pH values are about 7.5 By the time recharge enters the deeper flow system, all ground water is saturated or supersaturated with dolomite and calcite. After carbonate-mineral equilibration has occurred, cation exchange of calcium and magnesium for sodium is the dominant geochemical reaction, which occurs to a substantial extent only in parts of the aquifer. Mass transfers of cation exchange greater than 2.0 millimoles per liter occur in the confined part of the Garber Sandstone and Wellington Formation and in parts of the Chase, Council Grove, and Admire Groups. Associated with cation exchange is dissolution of small quantities of dolomite, calcite, biotite, chlorite, plagioclase, or potassium feldspar, which produces pH values that range from 8.6 to 9.1. Large tritium concentrations indicate ground-water ages of less than about 40 years for most samples of recharge. Carbon-14 ages for samples from the unconfined aquifer generally are less than 10,000 years. Carbon-14 ages of ground water in the confined part of the aquifer range from about 10,000 to 30,000 years or older. These ages produce a time trend in deuterium values that qualitatively is consistent with the timing of the transition from the last glacial maximum to the present interglacial period. The most transmissive geologic units in the Central Oklahoma aquifer are the Garber Sandstone and Wellington Formation and the alluvium and terrace deposits; the Chase, Council Grove, and Admire Groups are less transmissive on the bas

  20. Dynamics of flood water infiltration and ground water recharge in hyperarid desert.

    Science.gov (United States)

    Dahan, Ofer; Tatarsky, Boaz; Enzel, Yehouda; Kulls, Christoph; Seely, Mary; Benito, Gererdo

    2008-01-01

    A study on flood water infiltration and ground water recharge of a shallow alluvial aquifer was conducted in the hyperarid section of the Kuiseb River, Namibia. The study site was selected to represent a typical desert ephemeral river. An instrumental setup allowed, for the first time, continuous monitoring of infiltration during a flood event through the channel bed and the entire vadose zone. The monitoring system included flexible time domain reflectometry probes that were designed to measure the temporal variation in vadose zone water content and instruments to concurrently measure the levels of flood and ground water. A sequence of five individual floods was monitored during the rainy season in early summer 2006. These newly generated data served to elucidate the dynamics of flood water infiltration. Each flood initiated an infiltration event which was expressed in wetting of the vadose zone followed by a measurable rise in the water table. The data enabled a direct calculation of the infiltration fluxes by various independent methods. The floods varied in their stages, peaks, and initial water contents. However, all floods produced very similar flux rates, suggesting that the recharge rates are less affected by the flood stages but rather controlled by flow duration and available aquifer storage under it. Large floods flood the stream channel terraces and promote the larger transmission losses. These, however, make only a negligible contribution to the recharge of the ground water. It is the flood duration within the active streambed, which may increase with flood magnitude that is important to the recharge process.

  1. Areal studies aid protection of ground-water quality in Illinois, Indiana, and Wisconsin

    Science.gov (United States)

    Mills, Patrick C.; Kay, Robert T.; Brown, Timothy A.; Yeskis, Douglas J.

    1999-01-01

    In 1991, the U.S. Geological Survey, in cooperation with the U.S. Environmental Protection Agency, initiated studies designed to characterize the ground-water quality and hydrogeology in northern Illinois, and southern and eastern Wisconsin (with a focus on the north-central Illinois cities of Belvidere and Rockford, and the Calumet region of northeastern Illinois and northwestern Indiana). These areas are considered especially susceptible to ground-water contamination because of the high density of industrial and waste-disposal sites and the shallow depth to the unconsolidated sand and gravel aquifers and the fractured, carbonate bedrock aquifers that underlie the areas. The data and conceptual models of ground-water flow and contaminant distribution and movement developed as part of the studies have allowed Federal, State, and local agencies to better manage, protect, and restore the water supplies of the areas. Water-quality, hydrologic, geologic, and geophysical data collected as part of these areal studies indicate that industrial contaminants are present locally in the aquifers underlying the areas. Most of the contaminants, particularly those at concentrations that exceeded regulatory water-quality levels, were detected in the sand and gravel aquifers near industrial or waste-disposal sites. In water from water-supply wells, the contaminants that were present generally were at concentrations below regulatory levels. The organic compounds detected most frequently at concentrations near or above regulatory levels varied by area. Trichloroethene, tetrachloroethene, and 1,1,1-trichloroethane (volatile chlorinated compounds) were most prevalent in north-central Illinois; benzene (a petroleum-related compound) was most prevalent in the Calumet region. Differences in the type of organic compounds that were detected in each area likely reflect differences in the types of industrial sites that predominate in the areas. Nickel and aluminum were the trace metals

  2. Hydro-geochemical and isotopic composition of ground water in Helwan area

    Directory of Open Access Journals (Sweden)

    W.M. Salem

    2015-12-01

    The environmental stable isotopes oxygen and hydrogen (18O, and deuterium were studied and used to identify the sources of recharge. The studied ground waters are enriched in D and 18O and the isotopic features suggest that most of the ground water recharged indirectly after evaporation prior to infiltration from irrigation return water as well as the contribution from Nile water.

  3. 40 CFR 141.404 - Treatment technique violations for ground water systems.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 22 2010-07-01 2010-07-01 false Treatment technique violations for ground water systems. 141.404 Section 141.404 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Ground Water Rule § 141.404 Treatment technique violations for...

  4. Ground-water resources of coastal Citrus, Hernando, and southwestern Levy counties, Florida

    Science.gov (United States)

    Fretwell, J.D.

    1983-01-01

    Ground water in the coastal parts of Citrus, Hernando, and Levy Counties is obtained almost entirely from the Floridan aquifer. The aquifer is unconfined near the coast and semiconfined in the ridge area. Transmissivity ranges from 20,000 feet squared per day in the ridge area to greater than 2,000,000 feet squared per day near major springs. Changes in the potentiometric surface of the aquifer are small between the wet and dry seasons. Water quality within the study area is generally very good except immediately adjacent to the coast where saltwater from the Gulf of Mexico poses a threat to freshwater supply. This threat can be compensated for by placing well fields a sufficient distance away from the zone of transition from saltwater to freshwater so as not to reduce or reverse the hydraulic gradient in that zone. Computer models are presently available to help predict the extent of influence of ground-water withdrawals in an area. These may be used as management tools in planning ground-water development of the area. (USGS)

  5. A new formulation to compute self-potential signals associated with ground water flow

    Directory of Open Access Journals (Sweden)

    A. Bolève

    2007-06-01

    Full Text Available The classical formulation of the coupled hydroelectrical flow in porous media is based on a linear formulation of two coupled constitutive equations for the electrical current density and the seepage velocity of the water phase and obeying Onsager's reciprocity. This formulation shows that the streaming current density is controlled by the gradient of the fluid pressure of the water phase and a streaming current coupling coefficient that depends on the so-called zeta potential. Recently a new formulation has been introduced in which the streaming current density is directly connected to the seepage velocity of the water phase and to the excess of electrical charge per unit pore volume in the porous material. The advantages of this formulation are numerous. First this new formulation is more intuitive not only in terms of constitutive equation for the generalized Ohm's law but also in specifying boundary conditions for the influence of the flow field upon the streaming potential. With the new formulation, the streaming potential coupling coefficient shows a decrease of its magnitude with permeability in agreement with published results. The new formulation is also easily extendable to non-viscous laminar flow problems (high Reynolds number ground water flow in cracks for example and to unsaturated conditions with applications to the vadose zone. We demonstrate here that this formulation is suitable to model self-potential signals in the field. We investigate infiltration of water from an agricultural ditch, vertical infiltration of water into a sinkhole, and preferential horizontal flow of ground water in a paleochannel. For the three cases reported in the present study, a good match is obtained between the finite element simulations performed with the finite element code Comsol Multiphysics 3.3 and field observations. Finally, this formulation seems also very promising for the inversion of the geometry of ground water flow from the

  6. U.S. Geological Survey ground-water studies in Illinois

    Science.gov (United States)

    Avery, Charles F.

    1994-01-01

    Ground water is an important source of water supply in Illinois. The largest amount of ground*water withdrawal is in the northern one-third of the State where aquifers to a depth of about 1,500 feet below land surface contain large quantities of potable water. Approximately 74 percent of the public water-supply systems in Illinois use ground water to supply potable water to more than 5.5 million people. Ground-water withdrawals account for almost 25 percent of the total water withdrawn for public water supplies in Illinois. Many public water-supply systems in the Chicago area have recently changed from using ground water pumped from wells to using water delivered from Lake Michigan. The major issues related to ground water in Illinois are: Water- quality degradation or contamination from point and nonpoint sources, and Water availability, because of the lowering of ground-water levels in the bedrock aquifers in northeastern Illinois and elsewhere in the State where pumpage has exceeded aquifer recharge and the susceptibility of the limited surface-water supplies in central and southern Illinois to drought.

  7. Simulation of ground-water/surface-water flow in the Santa Clara-Calleguas ground-water basin, Ventura County, California

    Science.gov (United States)

    Hanson, Randall T.; Martin, Peter; Koczot, Kathryn M.

    2003-01-01

    Ground water is the main source of water in the Santa Clara-Calleguas ground-water basin that covers about 310 square miles in Ventura County, California. A steady increase in the demand for surface- and ground-water resources since the late 1800s has resulted in streamflow depletion and ground-water overdraft. This steady increase in water use has resulted in seawater intrusion, inter-aquifer flow, land subsidence, and ground-water contamination. The Santa Clara-Calleguas Basin consists of multiple aquifers that are grouped into upper- and lower-aquifer systems. The upper-aquifer system includes the Shallow, Oxnard, and Mugu aquifers. The lower-aquifer system includes the upper and lower Hueneme, Fox Canyon, and Grimes Canyon aquifers. The layered aquifer systems are each bounded below by regional unconformities that are overlain by extensive basal coarse-grained layers that are the major pathways for ground-water production from wells and related seawater intrusion. The aquifer systems are bounded below and along mountain fronts by consolidated bedrock that forms a relatively impermeable boundary to ground-water flow. Numerous faults act as additional exterior and interior boundaries to ground-water flow. The aquifer systems extend offshore where they crop out along the edge of the submarine shelf and within the coastal submarine canyons. Submarine canyons have dissected these regional aquifers, providing a hydraulic connection to the ocean through the submarine outcrops of the aquifer systems. Coastal landward flow (seawater intrusion) occurs within both the upper- and lower-aquifer systems. A numerical ground-water flow model of the Santa Clara-Calleguas Basin was developed by the U.S. Geological Survey to better define the geohydrologic framework of the regional ground-water flow system and to help analyze the major problems affecting water-resources management of a typical coastal aquifer system. Construction of the Santa Clara-Calleguas Basin model required

  8. Reconnaissance of the geology and ground-water hydrology of the Belle Fourche irrigation project, South Dakota

    Science.gov (United States)

    Rosier, Arthur J.

    1952-01-01

    The Belle Fourche irrigation project is in western South Dakota on the plains adjacent to the northeastern edge of the Black Hills. The project is drained by the Belle Fourche River and is characterized generally by broad shallow valleys that lie between hills with gentle slopes. The climate is semiarid. Most of the area is mantled by residual clay, terrace deposits, and alluvium. The terrace deposits contain much water and are the most permeable deposits in the project area. The alluvial deposits of the Belle Fourche River and of the creeks south of the river contain much sand and gravel and are relatively permeable. The alluvium of the creeks north of the river is predominantly clay and is only slightly permeable; it greatly resembles the residual clay of the weathered bedrock formations, which are mostly shale in this area. Although relatively abundant ground water is found in the unconsolidated materials above the bedrock formations, the ground water from the clayey deposits generally contains too great a concentration of objectionable salts to be fit for human or livestock consumption. The ground water in the more coarse materials is of better quality and in some small areas is satisfactory for domestic use. Most of the water for domestic use is hauled from deep artesian wells within the area. The chief source of ground water is seepage from irrigation canals in the terrace and alluvial deposits. When this water moves to areas of lower permeability a correspondingly greater rise of the water table compensates for the lower permeability and results in the waterlogging of many areas. Open drainage ditches have been constructed in all large areas that are affected by high ground-water levels. Except in those areas that are underlain predominantly by clayey materials, these ditches usually have proven to be satisfactory for the control of ground-water levels. However, lining the canals seems to be a more satisfactory method of preventing the seepage that causes

  9. Summary appraisals of the Nation's ground-water resources; Missouri Basin region

    Science.gov (United States)

    Taylor, O. James

    1978-01-01

    The Missouri Basin Region lies in the north-central part of the United States and southern Canada. It includes parts of Alberta and Saskatchewan in Canada; parts of Montana, Wyoming, North Dakota, South Dakota, Minnesota, Iowa, Colorado, Kansas, and Missouri, and all of Nebraska in the United States. The region includes about one-sixth of the contiguous United States and requires large water supplies for irrigation, industrial, public, and rural uses. Climate ranges from semiarid to subhumid. Normal annual precipitation increases generally eastward in the downstream direction, but precipitation is not a dependable source of supply. The Missouri River and its tributaries furnish water to many users, but surface water is often inadequate to meet large demands. Numerous surface reservoirs help to regulate streamflow and provide storage, but they also allow an increase in evapotranspiration, which in some areas exceeds normal precipitation. Ground water occurs in aquifers classified as alluvial deposits of sand and gravel, glacial deposits, dune-sand deposits, basin-fill deposits of sand and gravel, sandstone, siltstone, fractured sandy clay, limestone, and dolomite. Ground water can be developed and managed in an orderly manner provided adequate geologic and hydrologic data are available to determine aquifer characteristics and response to pumping and other hydraulic stresses. These data and determinations are essential to design, testing, and implementation of water management plans.

  10. Availability and chemical characteristics of ground water in central La Plata County, Colorado

    Science.gov (United States)

    Brogden, R.E.; Giles, T.F.

    1976-01-01

    The central part of La Plata County, Colo., has undergone rapid population growth in recent years. This growth has resulted in an increased demand for information for additional domestic, industrial, and municipal water supplies. A knowledge of the occurrence of ground water will permit a more efficient allocation of the resource. Aquifers in central La Plata County include: alluvium, Animas Formation of Quaternary and Tertiary age, Fruitland Formation, Pictured Cliffs Sandstone, three formations of the Mesa Verde Group, the Mancos Shale, Dakota Sandstone, Morrison Formation of Cretaceous and Jurassic age, and undifferentiated formations. Well yields generally are low, usually less than 25 gallons per minute. However, higher yields, 25 to 50 gallons per minute may be found locally in aquifers in the alluvium and the Animas Formation. The quality of water from the aquifers is dependent on rock type. Most of the water is a calcium bicarbonate type. However, aquifers that are predominantly fine-grained or contain interbeds of shale may contain sodium bicarbonate type water. The dissolution of minerals in the coal beds, which are present in the Mesa Verde Group and the Dakota Sandstone, can contribute high concentrations of iron, sulfate, and chloride to ground water. (Woodard-USGS)

  11. Surface-water, water-quality, and ground-water assessment of the Municipio of Carolina, Puerto Rico, 1997-99

    Science.gov (United States)

    Rodríguez-Martínez, Jesús; Gómez-Gómez, Fernando; Santiago-Rivera, Luis; Oliveras-Feliciano, M. L.

    2001-01-01

    To meet the increasing need for a safe and adequate supply of water in the municipio of Carolina, an integrated surface-water, water-quality, and ground-water assessment of the area was conducted. The major results of this study and other important hydrologic and water-quality features were compiled in a Geographic Information System and are presented in two 1:30,000-scale map plates to facilitate interpretation and use of the diverse water-resources data. Because the supply of safe drinking water was a critical issue during recent dry periods, the surface-water assessment portion of this study focused on analysis of low-flow characteristics in local streams and rivers. Low-flow characteristics were evaluated for one continuous-record gaging station, based on graphical curve-fitting techniques and log-Pearson Type III frequency analysis. Estimates of low-flow characteristics for seven partial-record stations were generated using graphical-correlation techniques. Flow-duration characteristics were computed for the one continuous-record gaging station and were estimated for the partial-record stations using the relation curves developed from the low-flow study. Stream low-flow statistics document the general hydrology under current land and water use. Low-flow statistics may substantially change as a result of streamflow diversions for public supply, and an increase in ground-water development, waste-water discharges, and flood-control measures; the current analysis provides baseline information to evaluate these impacts and develop water budgets. A sanitary quality survey of streams utilized 29 sampling stations to evaluate the sanitary quality of about 87 miles of stream channels. River and stream samples were collected on two occasions during base-flow conditions and were analyzed for fecal coliform and fecal streptococcus. Bacteriological analyses indicate that a significant portion of the stream reaches within the municipio of Carolina may have fecal coliform

  12. Characterization of lake water and ground water movement in the littoral zone of Williams Lake, a closed-basin lake in North central Minnesota

    Science.gov (United States)

    Schuster, P.F.; Reddy, M.M.; LaBaugh, J.W.; Parkhurst, R.S.; Rosenberry, D.O.; Winter, T.C.; Antweiler, R.C.; Dean, W.E.

    2003-01-01

    Williams Lake, Minnesota is a closed-basin lake that is a flow-through system with respect to ground water. Ground-water input represents half of the annual water input and most of the chemical input to the lake. Chemical budgets indicate that the lake is a sink for calcium, yet surficial sediments contain little calcium carbonate. Sediment pore-water samplers (peepers) were used to characterize solute fluxes at the lake-water-ground-water interface in the littoral zone and resolve the apparent disparity between the chemical budget and sediment data. Pore-water depth profiles of the stable isotopes ??18O and ??2H were non-linear where ground water seeped into the lake, with a sharp transition from lake-water values to ground-water values in the top 10 cm of sediment. These data indicate that advective inflow to the lake is the primary mechanism for solute flux from ground water. Linear interstitial velocities determined from ??2H profiles (316 to 528 cm/yr) were consistent with velocities determined independently from water budget data and sediment porosity (366 cm/yr). Stable isotope profiles were generally linear where water flowed out of the lake into ground water. However, calcium profiles were not linear in the same area and varied in response to input of calcium carbonate from the littoral zone and subsequent dissolution. The comparison of pore-water calcium profiles to pore-water stable isotope profiles indicate calcium is not conservative. Based on the previous understanding that 40-50 % of the calcium in Williams Lake is retained, the pore-water profiles indicate aquatic plants in the littoral zone are recycling the retained portion of calcium. The difference between the pore-water depth profiles of calcium and ??18O and ??2H demonstrate the importance of using stable isotopes to evaluate flow direction and source through the lake-water-ground-water interface and evaluate mechanisms controlling the chemical balance of lakes. Published in 2003 by John Wiley

  13. Electrochemical reduction of hexavalent chromium in ground water

    Energy Technology Data Exchange (ETDEWEB)

    Bansal, S. [Lawrence Livermore National Lab., CA (United States)

    1994-12-01

    Electrochemical reduction of hexavalent chromium (Cr{sup +6}) to its trivalent state (Cr{sup +3}) is showing promising results in treating ground water at Lawrence Livermore National Laboratory`s (LLNL`s) Main Site. An electrolytic cell using stainless-steel and brass electrodes has been found to offer the most efficient reduction while yielding the least amount of precipitate. Trials have successfully lowered concentrations of Cr{sup +6} to below 11 parts per billion (micrograms/liter), the California state standard. We ran several trials to determine optimal voltage for running the cell; each trial consisted of applying a voltage between 6V and 48V for ten minutes through samples obtained at Treatment Facility C(TFC). No conclusive data has been obtained yet.

  14. Ground water flow in a desert basin: challenges of simulating transport of dissolved chromium.

    Science.gov (United States)

    Andrews, Charles B; Neville, Christopher J

    2003-01-01

    A large chromium plume that evolved from chromium releases in a valley near the Mojave River was studied to understand the processes controlling fate and migration of chromium in ground water and used as a tracer to study the dynamics of a basin and range ground water system. The valley that was studied is naturally arid with high evapotranspiration such that essentially no precipitation infiltrates to the water table. The dominant natural hydrogeologic processes are recharge to the ground water system from the Mojave River during the infrequent episodes when there is flow in the river, and ground water flow toward a playa lake where the ground water evaporates. Agricultural pumping in the valley from the mid-1930s to the 1970s significantly altered ground water flow conditions by decreasing water levels in the valley by more than 20 m. This pumping declined significantly as a result of dewatering of the aquifer, and water levels have since recovered modestly. The ground water system was modeled using MODFLOW, and chromium transport was simulated using MT3D. Several innovative modifications were made to these modeling programs to simulate important processes in this ground water system. Modifications to MODFLOW include developing a new well package that estimates pumping rates from irrigation wells at each time step based on available drawdown. MT3D was modified to account for mass trapped above the water table when the water table declines beneath nonirrigated areas and to redistribute mass to the system when water levels rise.

  15. Ground-water resources of the Houston district, Texas

    Science.gov (United States)

    White, Walter N.; Rose, N.A.; Guyton, William F.

    1944-01-01

    This report covers the current phase of an investigation of the supply of ground water available for the Houston district and adjacent region, Texas,- that has been in progress during the past 10 years. The field operations included routine inventories of pumpage, measurements of water levels in observation wells and collection of other hydrologic data, pumping tests on 21 city-owned wells to determine coefficients of permeability and storage, and the drilling of 13 deep test wells in unexplored parts of the district. Considerable attention has been given to studies of the location of areas or beds of sand that contain salt water. The ground water occurs in beds of sand, sandstone, and gravel of Miocene, Pliocene, and Pleistocene age. These formations crop out in belts that dip southeastward from their outcrop areas and are encountered by wells at progressively greater depths toward the southeast. The beds throughout the section are lithologically similar, and there is little agreement among geologists as to their correlation. -In this investigation, however, the sediments, penetrated by the wells are separated into six zones, chiefly on the basis of electrical logs. Most of the water occurs in zone 3, which ranges in thickness from 800 to 1,200 feet. Large quantities of ground water are pumped in three areas in the Houston district, as follows: The Houston tromping area, which includes Houston and the areas immediately adjacent; the Pasadena pumping area, which includes the industrial section extending along the ship channel from the Houston city limits eastward to Deer Park; and the Katy pumping area, an irregular-shaped area of several hundred square miles, which is roughly centered around the town of Katy, 30 miles west of Houston. In 1930 the total combined withdrawal of ground water in the Houston and Pasadena pumping areas averaged about 50 million gallons a day. It declined somewhat during 1932 and 1933 and then gradually increased, until in 1935 the total

  16. Effect of well disinfection on arsenic in ground water

    Science.gov (United States)

    Gotkowitz, M.; Ellickson, K.; Clary, A.; Bowman, G.; Standridge, J.; Sonzogni, W.

    2008-01-01

    Domestic water wells are routinely subjected to in situ chemical disinfection treatments to control nuisance or pathogenic bacteria. Most treatments are chlorine based and presumably cause strongly oxidizing conditions in the wellbore. Water resource managers in Wisconsin were concerned that such treatments might facilitate release of arsenic from sulfide minerals disseminated within a confined sandstone aquifer. To test this hypothesis, a well was subjected to four disinfection treatments over 9 months time. The first treatment consisted of routine pumping of the well without chemical disinfection; three subsequent treatments included chlorine disinfection and pumping. Pretreatment arsenic concentrations in well water ranged from 7.4 to 18 ??g/L. Elevated arsenic concentrations up to 57 ??g/L in the chemical treatment solutions purged from the well are attributed to the disintegration or dissolution of biofilms or scale. Following each of the four treatments, arsenic concentrations decreased to less than 10 ??g/L during a period of pumping. Arsenic concentrations generally returned to pretreatment levels under stagnant, nonpumping conditions imposed following each treatment. Populations of iron-oxidizing, heterotrophic, and sulfate-reducing bacteria decreased following chemical treatments but were never fully eradicated from the well. Strongly oxidizing conditions were induced by the chlorine-based disinfections, but the treatments did not result in sustained increases in well water arsenic. Results suggest that disruption of biofilm and mineral deposits in the well and the water distribution system in tandem with chlorine disinfection can improve water quality in this setting. ?? 2008 The Author(s).

  17. Ground Water Monitoring Using Laser Fluorescence And Fiber Optics

    Science.gov (United States)

    Chudyk, Wayne; Pohlig, Kenneth; Rico, Nicola; Johnson, Gregory

    1989-01-01

    In-situ measurement of aromatic ground water contaminants, including the benzene, ethylbenzene, toluene, and xylenes (BTEX) fraction of gasoline, has been demonstrated using fiber optic systems. A prototype field instrument has shown that this method has advantages over traditional sampling and analysis. Problems encountered and solved include coupling of the laser energy into to fiber, sensor design, and detector configuration to optimize instrument sensitivity. The effects of sensor length, corresponding to well depth, on limits of detection are presented. Effects of potential interferences, including external fluorescence quenchers, are discuss-ed. The resolution of complex mixtures is addressed, with modifications to the detector shown to be effective in separation of groups of contaminants. Instrument design considerations include the need for portability, ruggedness at field sites, and ease of operation. The modular instrument design used is shown to help solve these potential problems, while maintaining analytical sensitivity and reproducibility. Modular optical system design has also shown to be useful when modifications are made. Changes in the detector as well as provisions for multiple laser sources have allowed a flexible system to be configured to meet analytical demands as they arise. Sensor design considerations included high ultraviolet transmission, physical flexibility, resistance to breakage, and resistance to chemical and/or biological fouling. The approach to these problem areas is presented, as well as discussion of the methods used to minimize effects of fiber solarization. Results of testing the field portable prototype are presented for a variety of typical ground water analysis sites, illustrating the usefulness of this new technology in environmental monitoring.

  18. Shallow ground-water quality in selected agricultural areas of south-central Georgia, 1994

    Science.gov (United States)

    Crandall, C.A.

    1996-01-01

    The Georgia-Florida Coastal Plain National Water-Quality Assessment Program began an agricultural land-use study in March 1994. The study area is located in the upper Suwannee River basin in Tift, Turner, Worth, Irwin, Wilcox, and Crisp Counties, Ga. Twenty-three shallow monitoring wells were installed in a 1,335-square- mile area characterized by intensive row-crop agriculture (peanuts, corn, cotton, and soybeans). The study focused on recently recharged shallow ground water in surficial aquifers to assess the relation between land-use activities and ground- water quality. All wells were sampled in March and April (spring) 1994, and 14 of these wells were resampled in August (summer) 1994. Shallow ground water in the study area is characterized by oxic and acidic conditions, low bicarbonate, and low dissolved-solids concentrations. The median pH of shallow ground water was 4.7 and the median bicarbonate concentration was 1.7 mg/L (milligrams per liter). Dissolved oxygen concentrations ranged from 3.0 to 8.0 mg/L. The median dissolved-solids concentration in samples collected in the spring was 86 mg/L. Major inorganic ion composition was generally mixed with no dominant cation; nitrate was the dominant anion (greater than 60 percent of the anion composition) in 14 of 23 samples. Only concentrations of bicarbonate, dissolved organic carbon, and nitrate had significant differences in concentrations between samples collected in the spring and the background samples. However, median concentrations of some of the major ingredients in fertilizer (including magnesium, chloride, nitrate, iron, and manganese) were higher in water samples from agricultural wells than in background samples. The median concentration of dissolved solids in ground-water samples collected in the spring (86 mg/L) was more than double the median concentration (41 mg/L) of the background samples. The median nitrate as nitrogen concentration of 6.7 mg/L in the spring samples reflects the effects of

  19. Ground water in the southeastern Uinta Basin, Utah and Colorado

    Science.gov (United States)

    Holmes, Walter F.; Kimball, Briant A.

    1987-01-01

    The potential for developing oil-shale resources in the southeastern Uinta Basin of Utah and Colorado has created the need for information on the quantity and quality of water available in the area. This report describes the availability and chemical quality of ground water, which might provide a source or supplement of water supply for an oil-shale industry. Ground water in the southeastern Uinta Basin occurs in three major aquifers. Alluvial aquifers of small areal extent are present in valley-fill deposits of six major drainages. Consolidated-rock aquifers include the bird?s-nest aquifer in the Parachute Creek Member of the Green River Formation, which is limited to the central part of the study area; and the Douglas Creek aquifer, which includes parts of the Douglas Creek Member of the Green River Formation and parts of the intertonguing Renegade Tongue of the Wasatch Formation; this aquifer underlies most of the study area. The alluvial aquifers are recharged by infiltration of streamflow and leakage from consolidated-rock aquifers. Recharge is estimated to average about 32,000 acre-feet per year. Discharge from alluvial aquifers, primarily by evapotranspiration, also averages about 32,000 acre-feet per year. The estimated volume of recoverable water in storage in alluvial aquifers is about 200,000 acre-feet. Maximum yields to individual wells are less than 1,000 gallons per minute. Recharge to the bird's-nest aquifer, primarily from stream infiltration and downward leakage from the overlying Uinta Formation, is estimated to average 670 acre-feet per year. Discharge from the bird's-nest aquifer, which is primarily by seepage to Bitter Creek and the White River, is estimated to be at 670 acre-feet per year. The estimated volume of recoverable water in storage in the bird's-nest aquifer is 1.9 million acre-feet. Maximum yields to individual wells in some areas may be as much as 5,000 gallons per minute. A digital-computer model of the flow system was used to

  20. Ground-water flow and quality near Canon City, Colorado

    Science.gov (United States)

    Hearne, G.A.; Litke, D.W.

    1987-01-01

    Water in aquifers that underlie the Lincoln Park area near Canon City, Colorado, contains measurable concentrations of chemical constituents that are similar to those in raffinate (liquid waste) produced by a nearby uranium ore processing mill. The objective of this study was to expand the existing geohydrologic data base by collecting additional geohydrologic and water quality, in order to refine the description of the geohydrologic and geochemical systems in the study area. Geohydrologic data were collected from nine tests wells drilled in the area between the U.S. Soil Conservation Service dam and Lincoln Park. Lithologic and geophysical logs of these wells indicated that the section of Vermejo Formation penetrated consisted of interbedded sandstone and shale. The sandstone beds had a small porosity and small hydraulic conductivity. Groundwater flow from the U.S. Soil Conservation Service dam to Lincoln Park seemed to be along an alluvium-filled channel in the irregular and relatively undescribed topography of the Vermejo Formation subcrop. North of the De Weese Dye Ditch, the alluvium becomes saturated and groundwater generally flows to the northeast. Water samples from 28 sites were collected and analyzed for major ions and trace elements; selected water samples also were analyzed for stable isotopes; samples were collected from wells near the uranium ore processing mill, from privately owned wells in Lincoln Park, and from the test wells drilled in the intervening area. Results from the quality assurance samples indicate that cross-contamination between samples from different wells was avoided and that the data are reliable. Water in the alluvial aquifer underlying Lincoln Park is mainly a calcium bicarbonate type. Small variations in the composition of water in the alluvial aquifer appears to result from a reaction of water leaking from the De Weese Dye Ditch with alluvial material. Upward leakage from underlying aquifers does not seem to be significant in

  1. Estimated ground-water recharge from streamflow in Fortymile Wash near Yucca Mountain, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Savard, C.S.

    1998-10-01

    The two purposes of this report are to qualitatively document ground-water recharge from stream-flow in Fortymile Wash during the period 1969--95 from previously unpublished ground-water levels in boreholes in Fortymile Canyon during 1982--91 and 1995, and to quantitatively estimate the long-term ground-water recharge rate from streamflow in Fortymile Wash for four reaches of Fortymile Wash (Fortymile Canyon, upper Jackass Flats, lower Jackass Flats, and Amargosa Desert). The long-term groundwater recharge rate was estimated from estimates of the volume of water available for infiltration, the volume of infiltration losses from streamflow, the ground-water recharge volume from infiltration losses, and an analysis of the different periods of data availability. The volume of water available for infiltration and ground-water recharge in the four reaches was estimated from known streamflow in ephemeral Fortymile Wash, which was measured at several gaging station locations. The volume of infiltration losses from streamflow for the four reaches was estimated from a streamflow volume loss factor applied to the estimated streamflows. the ground-water recharge volume was estimated from a linear relation between infiltration loss volume and ground-water recharge volume for each of the four reaches. Ground-water recharge rates were estimated for three different periods of data availability (1969--95, 1983--95, and 1992--95) and a long-term ground-water recharge rate estimated for each of the four reaches.

  2. Lake Tahoe Generalized California Department of Water Resources Well Locations

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — These data present a ground-water inventory of existing geospatial data and other information needed to determine the extent and characteristics of the aquifers in...

  3. RADIOLOGICAL STATUS OF THE GROUND-WATER BENEATH THE HANFORD PROJECT JANUARY-DECEMBER 1978

    Energy Technology Data Exchange (ETDEWEB)

    Eddy, PA

    1979-04-01

    This report is one of a series prepared annually for the Department of Energy, to provide an evaluation of the status of ground-water contamination resulting from Hanford's onsite discharges. Data collected during 1978 describe the movement of major plumes {{beta}{sub t}, {sup 3}H, NO{sub 3}) that respond to the influences of ground-water flow, ionic dispersion and radioactive decay. The total beta plume continues to recede, with the exception of a beta source that is beginning to show up in the 300 Area, a result of minor spills and leaks which have occurred during the operating life of the 300 Area. The tritium plume continues to expand and is mapped as having reached the Columbia River, although its contribution to the river cannot be distinguished from that attributable to atmospheric fallout. The plume now shows much the same configuration as in 1977. The nitrate plume shows general stability relative to its size with concentrations in the vicinity of the 100-H Area continuing to be high as a result of leaks from the evaporation facility. The results of a study to determine the vertical distribution of contaminants in the Hanford ground-water system indicate that the majority of contaminants are stratified in the upper portions of the unconfined aquifer.

  4. Reconnaissance of ground-water quality in the North Platte Natural Resources District, western Nebraska, June-July 1991

    Science.gov (United States)

    Verstraeten, Ingrid M.; Sibray, S.S.; Cannia, J.C.; Tanner, D.Q.

    1995-01-01

    One-hundred twenty wells completed in unconfined Quaternary alluvial, Ogallala, Arikaree, Brule fractured, sand and confined Chadron and undifferentiated Cretaceous water-bearing units were sampled in June and July 1991 to characterize the quality of ground water in the study area. More than 75 percent of the water samples had nitrate and nitrite as nitrogen concentrations equal to or less than 6.0 milligrams per liter. Samples from six wells completed in Quaternary alluvial and Brule fractured water-bearing units exceeded the U.S. Environmental Protection Agency Maximum Contaminant Level of 10 milligrams per liter nitrate and nitrite as nitrogen. Water from several wells completed in Quaternary alluvial and the Brule water-bearing units had detectable concentrations of alachlor, atrazine, deethylatrazine, or prometon. Major element concentrations in water from 44 wells indicated that the water-bearing units had distinct chemistry. Water from unconfined water- bearing units generally was a calcium bicarbonate type and water from the confined water-bearing units generally was a sodium bicarbonate type. Measurements of pH and concentrations of dissolved solids, sulfate, chloride, fluoride, arsenic, beryllium, manganese, adjusted gross alpha activities, radon, and uranium in ground water exceeded final or proposed U.S. Environmental Protection Agency Maximum Contaminant Levels or Secondary Maximum Contaminant Levels.

  5. Fracture control of ground water flow and water chemistry in a rock aquitard.

    Science.gov (United States)

    Eaton, Timothy T; Anderson, Mary P; Bradbury, Kenneth R

    2007-01-01

    There are few studies on the hydrogeology of sedimentary rock aquitards although they are important controls in regional ground water flow systems. We formulate and test a three-dimensional (3D) conceptual model of ground water flow and hydrochemistry in a fractured sedimentary rock aquitard to show that flow dynamics within the aquitard are more complex than previously believed. Similar conceptual models, based on regional observations and recently emerging principles of mechanical stratigraphy in heterogeneous sedimentary rocks, have previously been applied only to aquifers, but we show that they are potentially applicable to aquitards. The major elements of this conceptual model, which is based on detailed information from two sites in the Maquoketa Formation in southeastern Wisconsin, include orders of magnitude contrast between hydraulic diffusivity (K/S(s)) of fractured zones and relatively intact aquitard rock matrix, laterally extensive bedding-plane fracture zones extending over distances of over 10 km, very low vertical hydraulic conductivity of thick shale-rich intervals of the aquitard, and a vertical hydraulic head profile controlled by a lateral boundary at the aquitard subcrop, where numerous surface water bodies dominate the shallow aquifer system. Results from a 3D numerical flow model based on this conceptual model are consistent with field observations, which did not fit the typical conceptual model of strictly vertical flow through an aquitard. The 3D flow through an aquitard has implications for predicting ground water flow and for planning and protecting water supplies.

  6. A regression model to estimate regional ground water recharge.

    Science.gov (United States)

    Lorenz, David L; Delin, Geoffrey N

    2007-01-01

    A regional regression model was developed to estimate the spatial distribution of ground water recharge in subhumid regions. The regional regression recharge (RRR) model was based on a regression of basin-wide estimates of recharge from surface water drainage basins, precipitation, growing degree days (GDD), and average basin specific yield (SY). Decadal average recharge, precipitation, and GDD were used in the RRR model. The RRR estimates were derived from analysis of stream base flow using a computer program that was based on the Rorabaugh method. As expected, there was a strong correlation between recharge and precipitation. The model was applied to statewide data in Minnesota. Where precipitation was least in the western and northwestern parts of the state (50 to 65 cm/year), recharge computed by the RRR model also was lowest (0 to 5 cm/year). A strong correlation also exists between recharge and SY. SY was least in areas where glacial lake clay occurs, primarily in the northwest part of the state; recharge estimates in these areas were in the 0- to 5-cm/year range. In sand-plain areas where SY is greatest, recharge estimates were in the 15- to 29-cm/year range on the basis of the RRR model. Recharge estimates that were based on the RRR model compared favorably with estimates made on the basis of other methods. The RRR model can be applied in other subhumid regions where region wide data sets of precipitation, streamflow, GDD, and soils data are available.

  7. Microwave superheated water extraction of polysaccharides from spent coffee grounds.

    Science.gov (United States)

    Passos, Cláudia P; Coimbra, Manuel A

    2013-04-15

    The spent coffee grounds (SCG) are a food industry by-product that can be used as a rich source of polysaccharides. In the present work, the feasibility of microwave superheated water extraction of polysaccharides from SCG was studied. Different ratios of mass of SCG to water, from 1:30 to 1:5 (g:mL) were used for a total volume of 80 mL. Although the amount of material extracted/batch (MAE1) increased with the increase of the concentration of the sample, the amount of polysaccharides achieved a maximum of 0.57 g/batch for 1:10. Glycosidic-linkage composition showed that all extraction conditions allowed to obtain mainly arabinogalactans. When the unextracted insoluble material was re-extracted under the same conditions (MAE2), a further extraction of polysaccharides was observed (0.34 g/batch for 1:10), mainly galactomannans. Also, a high amount of oligosaccharides, mainly derived from galactomannans, can be obtained in MAE2 (0.96 g/batch for 1:10). This technology allows to obtain galactomannans and arabinogalactans in proportions that are dependent on the operating conditions.

  8. Radon concentrations of ground waters in Aichi Prefecture

    Energy Technology Data Exchange (ETDEWEB)

    Ohnuma, Shoko; Kawamura, Norihisa [Aichi Prefectural Inst. of Public Health, Nagoya (Japan)

    1997-02-01

    Aichi Prefectural Institute of Public Health has been collecting the data concerning the spacial distribution of Rn concentration of groundwater in Aichi Prefecture and its time course changes. In this report, the data was described chiefly from 1991 and the availability of newly developed polyethylene vessel was discussed. Determination of Rn concentration was performed at a total of 104 sites within the range from the horizon to the depth of 1800 m. The measurement has been repeatedly conducted for ca. 20 years. The maximum level of Rn was 896 Bq/l and the minimum was 0.3 Bq/l for the groundwater samples collected from different springs. Correlation of Rn concentration with other chemical and physical factors for ground water was investigated and a significant correlation was found only between Rn concentration and pH ({gamma}=0.304, p<0.01). No time course changes in Rn concentration was observed except for the water sample from the site affected by some newly dug wells. In addition, the newly developed extraction vessel was shown to be available for the determination and its operability in the field was superior to the conventional glass ware. (M.N.)

  9. 40 CFR 141.403 - Treatment technique requirements for ground water systems.

    Science.gov (United States)

    2010-07-01

    ....403 Treatment technique requirements for ground water systems. (a) Ground water systems with significant deficiencies or source water fecal contamination. (1) The treatment technique requirements of this... requirements of this section. (3) When a significant deficiency is identified at a Subpart H public...

  10. Monitoring of ground water aquifer by electrical prospecting; Denki tansaho ni yoru chikasui monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Ushijima, K. [Kyushu University, Fukuoka (Japan)] [Faculty of Engineering (Japan)

    1997-12-01

    This paper describes three case studies for monitoring ground water aquifers by electrical prospecting. An example in the Hofu plain, Yamaguchi Prefecture is presented, where the ground water environment has been monitored for more than 30 years from the viewpoint of hydrology. Then, transition from the fresh ground water to sea water is evaluated by a sharp boundary as salt-water wedges through the field survey in a coastal area of a large city for a short term using vertical electrical prospecting. Moreover, streaming potential measurements are described to grasp the real-time behavior of ground water flow. From the long-term monitoring of ground water aquifer, it was found that the variation of ground water streaming can be evaluated by monitoring the long-term successive change in the resistivity of ground water aquifer. From the vertical electrical prospecting, water quality can be immediately judged through data analysis. From the results of streaming potential measurements and vertical electrical prospecting using Schlumberger method, streaming behavior of ground water in the area of spring water source can be estimated by determining three-dimensional resistivity structure. 17 refs., 15 figs.

  11. Baseline risk assessment of ground water contamination at the uranium mill tailings site near Canonsburg, Pennsylvania

    Energy Technology Data Exchange (ETDEWEB)

    1994-09-01

    This baseline risk assessment evaluates potential impacts to public health and the environment resulting from ground water contamination from past activities at the former uranium processing site in Canonsburg, Pennsylvania. The US Department of Energy Uranium Mill Tailings Remedial Action (UMTRA) Project has placed contaminated material from this site in an on-site disposal cell. Currently, the UMTRA Project is evaluating ground water contamination. This risk assessment is the first document specific to this site for the UMTRA Ground Water Project. Currently, no domestic or drinking water well tap into contaminated ground water of the two distinct ground water units: the unconsolidated materials and the bedrock. Because there is no access, no current health or environmental risks are associated with the direct use of the contaminated ground water. However, humans and ecological organisms could be exposed to contaminated ground water if a domestic well were to be installed in the unconsolidated materials in that part of the site being considered for public use (Area C). The first step is evaluating ground water data collected from monitor wells at the site. For the Canonsburg site, this evaluation showed the contaminants in ground water exceeding background in the unconsolidated materials in Area C are ammonia, boron, calcium, manganese, molybdenum, potassium, strontium, and uranium.

  12. Surface-water, water-quality, and ground-water assessment of the Municipio of Comerio, Puerto Rico, 1997-99

    Science.gov (United States)

    Rodríguez-Martínez, Jesús; Gómez-Gómez, Fernando; Santiago-Rivera, Luis; Oliveras-Feliciano, M. L.

    2001-01-01

    To meet the increasing need for a safe and adequate supply of water in the municipio of Comerio, an integrated surface-water, water-quality, and ground-water assessment of the area was conducted. The major results of this study and other important hydrologic and water-quality features were compiled in a Geographic Information System, and are presented in two 1:30,000-scale map plates to facilitate interpretation and use of the diverse water-resource data. Because the supply of safe drinking water was a critical issue during recent dry periods, the surface-water assessment portion of this study focused on analysis of low-flow characteristics in local streams and rivers. Low-flow characteristics were evaluated at one continuous-record gaging station based on graphical curve-fitting techniques and log-Pearson Type III frequency curves. Estimates of low-flow characteristics for 13 partial-record stations were generated using graphical-correlation techniques. Flow-duration characteristics for the continuous- and partial-record stations were estimated using the relation curves developed for the low-flow study. Stream low-flow statistics document the general hydrology under current land- and water-use conditions. A sanitary quality survey of streams utilized 24 sampling stations to evaluate about 84 miles of stream channels with drainage to or within the municipio of Comerio. River and stream samples for fecal coliform and fecal streptococcus analyses were collected on two occasions at base-flow conditions to evaluate the sanitary quality of streams. Bacteriological analyses indicate that about 27 miles of stream reaches within the municipio of Comerio may have fecal coliform bacteria concentrations above the water-quality goal established by the Puerto Rico Environmental Quality Board (Junta de Calidad Ambiental de Puerto Rico) for inland surface waters. Sources of fecal contamination may include illegal discharge of sewage to storm-water drains, malfunction of sanitary

  13. Ground cover influence on evaporation and stable water isotopes in soil water

    Science.gov (United States)

    Magdalena Warter, Maria; Jiménez-Rodríguez, Cesar D.; Coenders-Gerrits, Miriam; Teuling, Adriaan J. Ryan

    2017-04-01

    Forest ecosystems are characterized by complex structures which influence hydrological processes such as evaporation. The vertical stratification of the forest modifies the effect of the evaporation process due to the composition and local distribution of species within the forest. The evaluation of it will improve the understanding of evaporation in forest ecosystems. To determine the influence of forest understory on the fractionation front, four ground cover types were selected from the Speulderbos forest in the Netherlands. The native species of Thamariskmoss (Thuidium thamariscinum), Rough Stalked Feathermoss (Brachythecium rutabulum), and Haircapmoss (Polytrichum commune) as well as one type of litter made up of Douglas-Fir needles (Pseudotsuga menziesii) were used to analyse the rate of evaporation and changes on the isotopic concentration of the soil water on an in-situ basis in a controlled environment. Over a period of 4 weeks soil water content and atmospheric conditions were continuously measured, while the rainfall simulations were performed with different amounts and timings. The reference water added to the boxes keeps a stable composition along the trial period with a δ ^2H value of -42.59±1.15 \\permil} and δ 18O of -6.01±0.21 \\permil}. The evaporation front in the four ground covers is located between 5 and 10 cm depth and deuterium excess values are bigger than 5 \\permil. The litter layer of Douglas-Fir needles is the cover with higher fractionation in respect to the added water at 10 cm depth (δ ^2H: -29.79 \\permil), while the Haircapmoss keeps the lower fractionation rate at 5 cm and 10 cm (δ ^2H: -33.62 and δ ^2H: -35.34 \\permil). The differences showed by the soil water beneath the different ground covers depict the influence of ground cover on fractionation rates of the soil water, underlining the importance of the spatial heterogeneity of the evaporation front in the first 15 cm of soil.

  14. 30 CFR 71.600 - Drinking water; general.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Drinking water; general. 71.600 Section 71.600 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH... Water § 71.600 Drinking water; general. An adequate supply of potable water shall be provided...

  15. Surface-Water and Ground-Water Interactions in the Central Everglades, Florida

    Science.gov (United States)

    Harvey, Judson W.; Newlin, Jessica T.; Krest, James M.; Choi, Jungyill; Nemeth, Eric A.; Krupa, Steven L.

    2004-01-01

    Recharge and discharge are hydrological processes that cause Everglades surface water to be exchanged for subsurface water in the peat soil and the underlying sand and limestone aquifer. These interactions are thought to be important to water budgets, water quality, and ecology in the Everglades. Nonetheless, relatively few studies of surface water and ground water interactions have been conducted in the Everglades, especially in its vast interior areas. This report is a product of a cooperative investigation conducted by the USGS and the South Florida Water Management District (SFWMD) aimed at developing and testing techniques that would provide reliable estimates of recharge and discharge in interior areas of WCA-2A (Water Conservation Area 2A) and several other sites in the central Everglades. The new techniques quantified flow from surface water to the subsurface (recharge) and the opposite (discharge) using (1) Darcy-flux calculations based on measured vertical gradients in hydraulic head and hydraulic conductivity of peat; (2) modeling transport through peat and decay of the naturally occurring isotopes 224Ra and 223Ra (with half-lives of 4 and 11 days, respectively); and (3) modeling transport and decay of naturally occurring and 'bomb-pulse' tritium (half-life of 12.4 years) in ground water. Advantages and disadvantages of each method for quantifying recharge and discharge were compared. In addition, spatial and temporal variability of recharge and discharge were evaluated and controlling factors identified. A final goal was to develop appropriately simplified (that is, time averaged) expressions of the results that will be useful in addressing a broad range of hydrological and ecological problems in the Everglades. Results were compared with existing information about water budgets from the South Florida Water Management Model (SFWMM), a principal tool used by the South Florida Water Management District to plan many of the hydrological aspects of the

  16. Ground-water resources in the lower Milliken--Sarco--Tulucay Creeks area, southeastern Napa County, California, 2000-2002

    Science.gov (United States)

    Farrar, Christopher D.; Metzger, Loren F.

    2003-01-01

    Ground water obtained from individual private wells is the sole source of water for about 4,800 residents living in the lower Milliken-Sarco-Tulucay Creeks area of southeastern Napa County. Increases in population and in irrigated vineyards during the past few decades have increased water demand. Estimated ground-water pumpage in 2000 was 5,350 acre-feet per year, an increase of about 80 percent since 1975. Water for agricultural irrigation is the dominant use, accounting for about 45 percent of the total. This increase in ground-water extraction has resulted in the general decline of ground-water levels. The purpose of this report is to present selected hydrologic data collected from 1975 to 2002 and to quantify changes in the ground-water system during the past 25 years. The study area lies in one of several prominent northwest-trending structural valleys in the North Coast Ranges. The area is underlain by alluvial deposits and volcanic rocks that exceed 1,000 feet in thickness in some places. Alluvial deposits and tuff beds in the volcanic sequence are the principal source of water to wells. The ground-water system is recharged by precipitation that infiltrates, in minor amounts, directly on the valley floor but mostly by infiltration in the Howell Mountains. Ground water moves laterally from the Howell Mountains into the study area. Although the area receives abundant winter precipitation in most years, nearly half of the precipitation is lost as surface runoff to the Napa River. Evapotranspiration also is high, accounting for nearly one-half of the total precipitation received. Because of the uncertainties in the estimates of precipitation, runoff, and evapotranspiration, a precise estimate of potential ground-water recharge cannot be made. Large changes in ground-water levels occurred between 1975 and 2001. In much of the western part of the area, water levels increased; but in the central and eastern parts, water levels declined by 25 to 125 feet. Ground-water

  17. Ground-Water Quality Data in the Central Sierra Study Unit, 2006 - Results from the California GAMA Program

    Science.gov (United States)

    Ferrari, Matthew J.; Fram, Miranda S.; Belitz, Kenneth

    2008-01-01

    the results for these samples were used to evaluate the quality of the data for the ground-water samples. Results from field blanks indicated contamination was not a noticeable source of bias in the data for ground-water samples. Differences between replicate samples were within acceptable ranges, indicating acceptably low variability. Matrix spike recoveries were within acceptable ranges for most constituents. This study did not attempt to evaluate the quality of water delivered to consumers; after withdrawal from the ground, water typically is treated, disinfected, or blended with other waters to maintain water quality. Regulatory thresholds apply to water that is served to the consumer, not to raw ground water. However, to provide some context for the results, concentrations of constituents measured in the raw ground water were compared with health-based thresholds established by the U.S. Environmental Protection Agency (USEPA) and California Department of Public Health (CDPH), and thresholds established for aesthetic concerns (Secondary Maximum Contaminant Levels, SMCL-CA) by CDPH. Therefore, any comparisons of the results of this study to drinking-water standards only is for illustrative purposes and is not indicative of compliance or non-compliance to those standards. Most constituents that were detected in ground-water samples were found at concentrations below drinking-water standards or thresholds. Six constituents? fluoride, arsenic, molybdenum, uranium, gross-alpha radioactivity, and radon-222?were detected at concentrations higher than thresholds set for health-based regulatory purposes. Three additional constituents?pH, iron and manganese?were detected at concentrations above thresholds set for aesthetic concerns. Volatile organic compounds (VOCs) and pesticides, were detected in less than one-third of the samples and generally at less than one one-hundredth of a health-based threshold.

  18. Availability, Sustainability, and Suitability of Ground Water, Rogers Mesa, Delta County, Colorado - Types of Analyses and Data for Use in Subdivision Water-Supply Reports

    Science.gov (United States)

    Watts, Kenneth R.

    2008-01-01

    Mesa consists of alluvial-fan deposits that overlie shale and, locally, sandstone. Maps of the base of the aquifer, the water table, and the saturated thickness of the aquifer were prepared from data from the well files of the Colorado Division of Water Resources. The base of the aquifer generally is topographically higher than the valleys of the North Fork Gunnison River and Leroux Creek, and direct hydraulic connection of the aquifer to North Fork Gunnison River and Leroux Creek is limited. The aquifer is recharged primarily by infiltration of surface water diverted for irrigation. Ground water discharges to seeps and springs and through slope deposits at the boundaries of the aquifer. Data from the well files also were used to estimate the specific capacity of wells and to estimate the transmissivity and hydraulic conductivity of the aquifer. A water budget was used to estimate recharge to and discharge from the aquifer. Although storage within the aquifer likely varies seasonally and from year to year, it was assumed that there were no long-term changes in ground-water storage. Estimated average annual recharge to and discharge from the aquifer during November 1998 through October 2006 were about 30,767 acre-feet per year. Although sufficient ground water is available on Rogers Mesa for additional domestic water supplies, conversion of irrigated land to residential land use likely would reduce recharge to the aquifer, affecting the sustainability of ground-water supplies on Rogers Mesa. Stream-depletion analyses indicate that the ground water in the aquifer likely would be considered tributary ground water and additional uses of ground water to supply new subdivisions likely would require implementation of augmentation plans. Although sufficient ground water is available on Rogers Mesa for additional domestic water supplies, conversion of irrigated land to residential land use likely would reduce recharge to the aquifer, affecting the sustainability

  19. Availability of ground water in the lower Pawcatuck River basin, Rhode Island

    Science.gov (United States)

    Gonthier, Joseph B.; Johnston, Herbert E.; Malmberg, Glenn T.

    1974-01-01

    The lower Pawcatuck River basin in southwestern Rhode Island is an area of about 169 square miles underlain by crystalline bedrock over which lies a relatively thin mantle of glacial till and stratified drift. Stratified drift, consisting dominantly of sand and gravel, occurs in irregularly shaped linear deposits that are generally less than a mile wide and less than 125 feet thick; these deposits are found along the Pawcatuck River, its tributaries, and abandoned preglacial channels. Deposits of stratified sand and gravel constitute the principal aquifer in the lower Pawcatuck basin and the only one capable of sustaining yields of 100 gallons per minute or more to individual wells. Water available for development in this aquifer consists of water in storage--potential ground-water runoff to streams--plus infiltration that can be induced from streams. Minimum annual ground-water runoff from the sand and gravel aquifer is calculated to be at least 1.17 cubic feet per second per square mile, or 0.76 million gallons per day per square mile. Potential recharge by induced infiltration is estimated to range from about 250 to 600 gallons per day per linear foot of streambed for the principal streams. In most areas, induced infiltration from streams constitutes the major source of water potentially available for development by wells. Because subsurface hydraulic connection in the sand and gravel aquifer is poor in several places, the deposits are conveniently divisible into several ground-water reservoirs. The potential yield from five of the most promising ground-water reservoirs is evaluated by means of mathematical models. Results indicate that continuous withdrawals ranging from 1.3 to 10.3 million gallons per day, and totaling 31 million gallons per day, are obtainable from these reservoirs. Larger yields may be recovered by different well placement, spacing, construction and development, pumping practice, and so forth. Withdrawals at the rates indicated will reduce

  20. An overview of experiences of basin artificial recharge of ground water in Japan

    Science.gov (United States)

    Hida, Noboru

    In this paper, the author reviews the present situation of basin artificial recharge of ground water (MAR: managed aquifer recharge) as of 2007 in Japan. Most of the artificial recharge of basin method is carried out using alluvial fans. The enhancing groundwater resources in the Rokugo alluvial aquifer has resulted in sustainability for the groundwater environment, especially in the distal fan. As a general judgment, the basin artificial recharge contributes to sustainable aquifer management in alluvium. As a result of this review, the basin artificial recharge will be utilized more in the future, not only in Japan, but in monsoon Asian countries as well.

  1. Summary appraisals of the Nation's ground-water resources; Texas-Gulf region

    Science.gov (United States)

    Baker, E.T.; Wall, J.R.

    1976-01-01

    Ground water in the Texas-Gulf Region is a large and important resource that can provide a more significant percentage of the total water supply of the region. Total water requirements within the region are projected to rise sharply from 14 million acre-feet (17 cubic kilometres) in 1970 to nearly 26 million acre-feet (32 cubic kilometres) in 2020. About half of the water used in 1970 was ground water.

  2. Summary appraisals of the Nation's ground-water resources; Texas Gulf region

    Science.gov (United States)

    Baker, E.T.; Wall, James Ray

    1974-01-01

    Ground water in the Texas-Gulf Region is a large and important resource that can provide a more significant percentage of the total water supply of the region. Total water requirements within the region are projected to rise sharply from 14 million acre-feet (17 cubic kilometres) in 1970 to nearly 26 million acre-feet (32.cubic kilometres) in 2020. About half of the water used in 1970 was ground water.

  3. Development of a Ground Water Data Portal for Interoperable Data Exchange within the U.S. National Ground Water Monitoring Network and Beyond

    Science.gov (United States)

    Booth, N. L.; Brodaric, B.; Lucido, J. M.; Kuo, I.; Boisvert, E.; Cunningham, W. L.

    2011-12-01

    The need for a national groundwater monitoring network within the United States is profound and has been recognized by organizations outside government as a major data gap for managing ground-water resources. Our country's communities, industries, agriculture, energy production and critical ecosystems rely on water being available in adequate quantity and suitable quality. To meet this need the Subcommittee on Ground Water, established by the Federal Advisory Committee on Water Information, created a National Ground Water Monitoring Network (NGWMN) envisioned as a voluntary, integrated system of data collection, management and reporting that will provide the data needed to address present and future ground-water management questions raised by Congress, Federal, State and Tribal agencies and the public. The NGWMN Data Portal is the means by which policy makers, academics and the public will be able to access ground water data through one seamless web-based application from disparate data sources. Data systems in the United States exist at many organizational and geographic levels and differing vocabulary and data structures have prevented data sharing and reuse. The data portal will facilitate the retrieval of and access to groundwater data on an as-needed basis from multiple, dispersed data repositories allowing the data to continue to be housed and managed by the data provider while being accessible for the purposes of the national monitoring network. This work leverages Open Geospatial Consortium (OGC) data exchange standards and information models. To advance these standards for supporting the exchange of ground water information, an OGC Interoperability Experiment was organized among international participants from government, academia and the private sector. The experiment focused on ground water data exchange across the U.S. / Canadian border. WaterML2.0, an evolving international standard for water observations, encodes ground water levels and is exchanged

  4. Annotated bibliography on artificial recharge of ground water, 1955-67

    Science.gov (United States)

    Signor, Donald C.; Growitz, Douglas J.; Kam, William

    1970-01-01

    Artificial ground-water recharge has become more important as water use by agriculture, industry, and municipalities increases. Water management agencies are increasingly interested in potential use of recharge for pollution abatement, waste-water disposal, and re-use and reclamation of locally available supplies. Research projects and theoretical analyses of operational recharge systems show increased scientific emphasis on the practice. Overall ground-water basin management systems generally now contain considerations of artificial recharge, whether by direct or indirect methods. Artificial ground-water recharge is a means of conserving surface runoff for future use in places where it would otherwise be lost, of protecting ground-water basins from salt-water encroachment along coastal areas, and of storing and distributing imported water. The biblio-graphy emphasizes technology; however, annotations of articles on waste-water reclamation, ground-water management and ground-water basin management are included. Subjects closely related to artificial recharge, including colloidal flow through porous media, field or laboratory instrumentation, and waste disposal by deep well injection are included where they specifically relate to potential recharge problems. Where almost the same material has been published in several journals, all references are included on the assumption that some publications may be more readily available to interested persons than others. Other publications, especially those of foreign literature, provided abstracts that were used freely as time limitations precluded obtaining and annotating all materials. Abstracts taken from published sources are noted. These are: "Abstracts of North American Geology," U.S. Department of the Interior, Geological Survey; "Abstracts of Recent Published Material on Foil and Water Conservation," ARS-41 series, Agricultural F.esearch Service, U.S. Department of Agriculture; "Water and1 Water

  5. Ground-Water Quality Data in the Southern Sacramento Valley, California, 2005 - Results from the California GAMA Program

    Science.gov (United States)

    Milby Dawson, Barbara J.; Bennett, George L.; Belitz, Kenneth

    2008-01-01

    ) were collected at ten percent of the wells, and the results for these samples were used to evaluate the quality of the data for the ground-water samples. Assessment of the quality-control data resulted in censoring of less than 0.03 percent of the analyses of ground-water samples. This study did not evaluate the quality of water delivered to consumers; after withdrawal from the ground, water typically is treated, disinfected, and (or) blended with other waters to maintain acceptable water quality. Regulatory thresholds apply to treated water that is served to the consumer, not to raw ground water. However, to provide some context for the results, concentrations of constituents measured in the raw ground water were compared with health-based thresholds established by the U.S. Environmental Protection Agency (USEPA) and California Department of Health Services (CADHS) (Maximum Contaminant Levels [MCLs], notification levels [NLs], or lifetime health advisories [HA-Ls]) and thresholds established for aesthetic concerns (Secondary Maximum Contaminant Levels [SMCLs]). All wells were sampled for organic constituents and selected general water quality parameters; subsets of wells were sampled for inorganic constituents, nutrients, and radioactive constituents. Volatile organic compounds were detected in 49 out of 83 wells sampled and pesticides were detected in 35 out of 82 wells; all detections were below health-based thresholds, with the exception of 1 detection of 1,2,3-trichloropropane above a NL. Of the 43 wells sampled for trace elements, 27 had no detections of a trace element above a health-based threshold and 16 had at least one detection above. Of the 18 trace elements with health-based thresholds, 3 (arsenic, barium, and boron) were detected at concentrations higher an MCL. Of the 43 wells sampled for nitrate, only 1 well had a detection above the MCL. Twenty wells were sampled for radioactive constituents; only 1 (radon-222) was measured at activiti

  6. Geohydrology, Geochemistry, and Ground-Water Simulation-Optimization of the Central and West Coast Basins, Los Angeles County, California

    Science.gov (United States)

    Reichard, Eric G.; Land, Michael; Crawford, Steven M.; Johnson, Tyler D.; Everett, Rhett; Kulshan, Trayle V.; Ponti, Daniel J.; Halford, Keith L.; Johnson, Theodore A.; Paybins, Katherine S.; Nishikawa, Tracy

    2003-01-01

    Historical ground-water development of the Central and West Coast Basins in Los Angeles County, California through the first half of the 20th century caused large water-level declines and induced seawater intrusion. Because of this, the basins were adjudicated and numerous ground-water management activities were implemented, including increased water spreading, construction of injection barriers, increased delivery of imported water, and increased use of reclaimed water. In order to improve the scientific basis for these water management activities, an extensive data collection program was undertaken, geohydrological and geochemical analyses were conducted, and ground-water flow simulation and optimization models were developed. In this project, extensive hydraulic, geologic, and chemical data were collected from new multiple-well monitoring sites. On the basis of these data and data compiled and collected from existing wells, the regional geohydrologic framework was characterized. For the purposes of modeling, the three-dimensional aquifer system was divided into four aquifer systems?the Recent, Lakewood, Upper San Pedro, and Lower San Pedro aquifer systems. Most pumpage in the two basins is from the Upper San Pedro aquifer system. Assessment of the three-dimensional geochemical data provides insight into the sources of recharge and the movement and age of ground water in the study area. Major-ion data indicate the chemical character of water containing less than 500 mg/L dissolved solids generally grades from calcium-bicarbonate/sulfate to sodium bicarbonate. Sodium-chloride water, high in dissolved solids, is present in wells near the coast. Stable isotopes of oxygen and hydrogen provide information on sources of recharge to the basin, including imported water and water originating in the San Fernando Valley, San Gabriel Valley, and the coastal plain and surrounding hills. Tritium and carbon-14 data provide information on relative ground-water ages. Water with

  7. Geochemistry and the understanding of ground-water systems

    Science.gov (United States)

    Glynn, Pierre D.; Plummer, L. Niel

    2005-03-01

    Geochemistry has contributed significantly to the understanding of ground-water systems over the last 50 years. Historic advances include development of the hydrochemical facies concept, application of equilibrium theory, investigation of redox processes, and radiocarbon dating. Other hydrochemical concepts, tools, and techniques have helped elucidate mechanisms of flow and transport in ground-water systems, and have helped unlock an archive of paleoenvironmental information. Hydrochemical and isotopic information can be used to interpret the origin and mode of ground-water recharge, refine estimates of time scales of recharge and ground-water flow, decipher reactive processes, provide paleohydrological information, and calibrate ground-water flow models. Progress needs to be made in obtaining representative samples. Improvements are needed in the interpretation of the information obtained, and in the construction and interpretation of numerical models utilizing hydrochemical data. The best approach will ensure an optimized iterative process between field data collection and analysis, interpretation, and the application of forward, inverse, and statistical modeling tools. Advances are anticipated from microbiological investigations, the characterization of natural organics, isotopic fingerprinting, applications of dissolved gas measurements, and the fields of reaction kinetics and coupled processes. A thermodynamic perspective is offered that could facilitate the comparison and understanding of the multiple physical, chemical, and biological processes affecting ground-water systems. La géochimie a contribué de façon importante à la compréhension des systèmes d'eaux souterraines pendant les 50 dernières années. Les avancées ont portées sur le développement du concept des faciès hydrochimiques, sur l'application de la théorie des équilibres, l'étude des processus d'oxydoréduction, et sur la datation au radiocarbone. D'autres concepts, outils et

  8. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Sites near Rifle, Colorado

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-05-01

    The ground water project evaluates the nature and extent of ground water contamination resulting from the uranium ore processing activities. This report is a site specific document that will be used to evaluate current and future impacts to the public and the environment from exposure to contaminated ground water. Currently, no one is using the ground water and therefore, no one is at risk. However, the land will probably be developed in the future and so the possibility of people using the ground water does exist. This report examines the future possibility of health hazards resulting from the ingestion of contaminated drinking water, skin contact, fish ingestion, or contact with surface waters and sediments.

  9. Ground Water Atlas of the United States: Segment 8, Montana, North Dakota, South Dakota, Wyoming

    Science.gov (United States)

    Whitehead, R.L.

    1996-01-01

    The States of Montana, North Dakota, South Dakota, and Wyoming compose the 392,764-square-mile area of Segment 8, which is in the north-central part of the continental United States. The area varies topographically from the high rugged mountain ranges of the Rocky Mountains in western Montana and Wyoming to the gently undulating surface of the Central Lowland in eastern North Dakota and South Dakota (fig. 1). The Black Hills in southwestern South Dakota and northeastern Wyoming interrupt the uniformity of the intervening Great Plains. Segment 8 spans the Continental Divide, which is the drainage divide that separates streams that generally flow westward from those that generally flow eastward. The area of Segment 8 is drained by the following major rivers or river systems: the Green River drains southward to join the Colorado River, which ultimately discharges to the Gulf of California; the Clark Fork and the Kootenai Rivers drain generally westward by way of the Columbia River to discharge to the Pacific Ocean; the Missouri River system and the North Platte River drain eastward and southeastward to the Mississippi River, which discharges to the Gulf of Mexico; and the Red River of the North and the Souris River drain northward through Lake Winnipeg to ultimately discharge to Hudson Bay in Canada. These rivers and their tributaries are an important source of water for public-supply, domestic and commercial, agricultural, and industrial uses. Much of the surface water has long been appropriated for agricultural use, primarily irrigation, and for compliance with downstream water pacts. Reservoirs store some of the surface water for flood control, irrigation, power generation, and recreational purposes. Surface water is not always available when and where it is needed, and ground water is the only other source of supply. Ground water is obtained primarily from wells completed in unconsolidated-deposit aquifers that consist mostly of sand and gravel, and from wells

  10. Simulated constant-head boundary for the transient ground-water flow model, Death Valley regional ground-water flow system, Nevada and California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This digital data set represents the constant head-boundary used to simulate ground-water inflow or outflow at the lateral boundary of the Death Valley regional...

  11. Horizontal flow barriers for the transient ground-water flow model, Death Valley regional ground-water flow system, Nevada and California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This digital dataset defines the surface traces of regional features simulated as horizontal flow barriers in the Death Valley regional ground-water flow system...

  12. Reference springs in California for the regional ground-water potential map by Bedinger and Harrill (2004), Death Valley regional ground-water flow system, Nevada and California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This digital geospatial data set is a compilation of reference points representing springs in California that were used for the regional ground-water potential map...

  13. Initial hydraulic heads for the transient ground-water flow model, Death Valley regional ground-water flow system, Nevada and California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This digital data set defines the hydraulic-head values in 16 model layers used to initiate the transient simulation of the Death Valley regional ground-water flow...

  14. Lateral boundary of the transient ground-water flow model, Death Valley regional ground-water flow system, Nevada and California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This digital data set defines the lateral boundary and model domain of the area simulated by the transient ground-water flow model of the Death Valley regional...

  15. Altitudes of the top of model layers for the transient ground-water flow model, Death Valley regional ground-water flow system, Nevada and California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This digital data set defines the altitudes of the tops of 16 model layers simulated in the Death Valley regional ground-water flow system (DVRFS) transient flow...

  16. Reference springs in Nevada for the regional ground-water potential map by Bedinger and Harrill (2004), Death Valley regional ground-water flow system, Nevada and California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This digital geospatial data set is a compilation of reference points representing springs in Nevada that were used for the regional ground-water potential map by...

  17. Horizontal flow barriers for the transient ground-water flow model, Death Valley regional ground-water flow system, Nevada and California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This digital dataset defines the surface traces of regional features simulated as horizontal flow barriers in the Death Valley regional ground-water flow system...

  18. Reference springs in Nevada for the regional ground-water potential map by Bedinger and Harrill (2004), Death Valley regional ground-water flow system, Nevada and California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This digital geospatial data set is a compilation of reference points representing springs in Nevada that were used for the regional ground-water potential map by...

  19. Lateral boundary of the transient ground-water flow model, Death Valley regional ground-water flow system, Nevada and California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This digital data set defines the lateral boundary and model domain of the area simulated by the transient ground-water flow model of the Death Valley regional...

  20. Simulated constant-head boundary for the transient ground-water flow model, Death Valley regional ground-water flow system, Nevada and California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This digital data set represents the constant head-boundary used to simulate ground-water inflow or outflow at the lateral boundary of the Death Valley regional...

  1. Estimating the Probability of Elevated Nitrate Concentrations in Ground Water in Washington State

    Science.gov (United States)

    Frans, Lonna M.

    2008-01-01

    Logistic regression was used to relate anthropogenic (manmade) and natural variables to the occurrence of elevated nitrate concentrations in ground water in Washington State. Variables that were analyzed included well depth, ground-water recharge rate, precipitation, population density, fertilizer application amounts, soil characteristics, hydrogeomorphic regions, and land-use types. Two models were developed: one with and one without the hydrogeomorphic regions variable. The variables in both models that best explained the occurrence of elevated nitrate concentrations (defined as concentrations of nitrite plus nitrate as nitrogen greater than 2 milligrams per liter) were the percentage of agricultural land use in a 4-kilometer radius of a well, population density, precipitation, soil drainage class, and well depth. Based on the relations between these variables and measured nitrate concentrations, logistic regression models were developed to estimate the probability of nitrate concentrations in ground water exceeding 2 milligrams per liter. Maps of Washington State were produced that illustrate these estimated probabilities for wells drilled to 145 feet below land surface (median well depth) and the estimated depth to which wells would need to be drilled to have a 90-percent probability of drawing water with a nitrate concentration less than 2 milligrams per liter. Maps showing the estimated probability of elevated nitrate concentrations indicated that the agricultural regions are most at risk followed by urban areas. The estimated depths to which wells would need to be drilled to have a 90-percent probability of obtaining water with nitrate concentrations less than 2 milligrams per liter exceeded 1,000 feet in the agricultural regions; whereas, wells in urban areas generally would need to be drilled to depths in excess of 400 feet.

  2. Factors influencing ground-water recharge in the eastern United States

    Science.gov (United States)

    Nolan, B.T.; Healy, R.W.; Taber, P.E.; Perkins, K.; Hitt, K.J.; Wolock, D.M.

    2007-01-01

    Ground-water recharge estimates for selected locations in the eastern half of the United States were obtained by Darcian and chloride-tracer methods and compared using statistical analyses. Recharge estimates derived from unsaturated-zone (RUZC) and saturated-zone (RSZC) chloride mass balance methods are less variable (interquartile ranges or IQRs are 9.5 and 16.1 cm/yr, respectively) and more strongly correlated with climatic, hydrologic, land use, and sediment variables than Darcian estimates (IQR = 22.8 cm/yr). The unit-gradient Darcian estimates are a nonlinear function of moisture content and also reflect the uncertainty of pedotransfer functions used to estimate hydraulic parameters. Significance level is 0.3. Estimates of RSZC were evaluated using analysis of variance, multiple comparison tests, and an exploratory nonlinear regression (NLR) model. Recharge generally is greater in coastal plain surficial aquifers, fractured crystalline rocks, and carbonate rocks, or in areas with high sand content. Westernmost portions of the study area have low recharge, receive somewhat less precipitation, and contain fine-grained sediment. The NLR model simulates water input to the land surface followed by transport to ground water, depending on factors that either promote or inhibit water infiltration. The model explains a moderate amount of variation in the data set (coefficient of determination = 0.61). Model sensitivity analysis indicates that mean annual runoff, air temperature, and precipitation, and an index of ground-water exfiltration potential most influence estimates of recharge at sampled sites in the region. Soil characteristics and land use have less influence on the recharge estimates, but nonetheless are significant in the NLR model. ?? 2006 Elsevier B.V. All rights reserved.

  3. Effect of sewage sludge on formation of acidic ground water at a reclaimed coal mine

    Science.gov (United States)

    Cravotta, C.A.

    1998-01-01

    Data on rock, ground water, vadose water, and vadose gas chemistry were collected for two years after sewage sludge was applied at a reclaimed surface coal mine in Pennsylvania to determine if surface-applied sludge is an effective barrier to oxygen influx, contributes metals and nutrients to ground water, and promotes the acidification of ground water. Acidity, sulfate, and metals concentrations were elevated in the ground water (6- to 21-m depth) from spoil relative to unmined rock because of active oxidation of pyrite and dissolution of aluminosilicate, carbonate, and Mn-Fe-oxide minerals in the spoil. Concentrations of acidity, sulfate, metals (Fe, Mn, Al, Cd, Cu, Cr, Ni, Zn), and nitrate, and abundances of iron-oxidizing bacteria were elevated in the ground water from sludge-treated spoil relative to untreated spoil having a similar mineral composition; however, gaseous and dissolved oxygen concentrations did not differ between the treatments. Abundances of iron-oxidizing bacteria in the ground water samples were positively correlated with concentrations of ammonia, nitrate, acidity, metals, and sulfate. Concentrations of metals in vadose water samples (iron-oxidizing bacteria, the oxidation of pyrite, and the acidification of ground water. Nevertheless, the overall effects on ground water chemistry from the sludge were small and probably short-lived relative to the effects from mining only.

  4. Hanford Site ground-water monitoring for July through December 1987

    Energy Technology Data Exchange (ETDEWEB)

    Evans, J.C.; Dennison, D.I.; Bryce, R.W.; Mitchell, P.J.; Sherwood, D.R.; Krupka, K.M.; Hinman, N.W.; Jacobson, E.A.; Freshley, M.D.

    1988-12-01

    The Pacific Northwest Laboratory monitors ground-water quality at the Hanford Site for the US Department of Energy to assess the impact of Site operations on the environment. Work undertaken between July and December 1987 included monitoring ground-water elevations across the Site, monitoring hazardous chemicals and radionuclides in ground water, geochemical evaluations of unconfined ground-water data, and calibration of ground-water flow and transport models. Water levels continued to rise in areas receiving increased recharge (e.g., beneath B Pond) and decline in areas where the release of water to disposal facilities has been terminated (e.g., U Pond). The major areas of ground-water contamination defined by monitoring activities are (1) carbon tetrachloride in the 200-West Area; (2) cyanide in and north of the 200-East and 200-West Areas; (3) hexavalent chromium contamination in the 100-B, 100-D, 100-F, 100-H, 100-K, and 200-West Areas; (4) chlorinated hydrocarbons in the vicinity of the Central Landfill and 300 Area; (5) uranium in the 100-F, 100-H, 200-West, and 300 Areas; and (6) tritium and nitrate across the Site. The MINTEQ geochemical code was used to identify chemical reactions that may be affecting the concentrations of dissolved hazardous chemicals in the unconfined ground water. Results indicate that many cations are present mainly as dissolved carbonate complexes and that a majority of the ground-water samples are in near equilibrium with carbonate minerals (e.g., calcite, dolomite, otavite).

  5. Questa baseline and pre-mining ground-water-quality investigation. 16. Quality assurance and quality control for water analyses

    Science.gov (United States)

    McCleskey, R. Blaine; Nordstrom, D. Kirk; Naus, Cheryl A.

    2004-01-01

    recoveries were performed by spiking ground-water samples from SC2B, SC3A, SC3B, CC2A, and Hottentot with a mixed-element standard and then analyzing them by ICP-OES. The mean recovery for all the constituents by ICP-OES was 103 percent with a standard deviation of 16 percent. Fifteen surface- and ground-water sequential duplicates were collected from Straight Creek, Hottentot, and the Red River from 2002 to 2003. Except for chloride from well SC5B and low concentrations of iron (effects of filtration apparatuses (Minitan, plate, capsule, and syringe), pore sizes, and timing on dissolved metal concentrations. Except for iron and aluminum, constituents with concentrations greater than about 0.05 mg/L were generally not affected by the filtration apparatus, membrane pore-size, and filtration delays. Iron, aluminum, and some dissolved metals concentrations less than about 0.05 mg/L, especially copper, were generally lowest in filtrates from the tangential flow Minitan system containing a filter membrane with a pore size of 10,000 Daltons. As part of a filtration timing study, grab samples were collected from two sites along the Red River and were processed immediately and then again 1 to 3 hours later. Aluminum and iron colloids formed during the delay in the sample collected at the USGS gaging station and, after the delay, 0.1-?m filtrate aluminum an

  6. Database Dictionary for Ethiopian National Ground-Water DAtabase (ENGDA) Data Fields

    Science.gov (United States)

    Kuniansky, Eve L.; Litke, David W.; Tucci, Patrick

    2007-01-01

    Introduction This document describes the data fields that are used for both field forms and the Ethiopian National Ground-water Database (ENGDA) tables associated with information stored about production wells, springs, test holes, test wells, and water level or water-quality observation wells. Several different words are used in this database dictionary and in the ENGDA database to describe a narrow shaft constructed in the ground. The most general term is borehole, which is applicable to any type of hole. A well is a borehole specifically constructed to extract water from the ground; however, for this data dictionary and for the ENGDA database, the words well and borehole are used interchangeably. A production well is defined as any well used for water supply and includes hand-dug wells, small-diameter bored wells equipped with hand pumps, or large-diameter bored wells equipped with large-capacity motorized pumps. Test holes are borings made to collect information about the subsurface with continuous core or non-continuous core and/or where geophysical logs are collected. Test holes are not converted into wells. A test well is a well constructed for hydraulic testing of an aquifer in order to plan a larger ground-water production system. A water-level or water-quality observation well is a well that is used to collect information about an aquifer and not used for water supply. A spring is any naturally flowing, local, ground-water discharge site. The database dictionary is designed to help define all fields on both field data collection forms (provided in attachment 2 of this report) and for the ENGDA software screen entry forms (described in Litke, 2007). The data entered into each screen entry field are stored in relational database tables within the computer database. The organization of the database dictionary is designed based on field data collection and the field forms, because this is what the majority of people will use. After each field, however, the

  7. Ground-Water Resources in Kaloko-Honokohau National Historical Park, Island of Hawaii, and Numerical Simulation of the Effects of Ground-Water Withdrawals

    Science.gov (United States)

    Oki, Delwyn S.; Tribble, Gordon W.; Souza, William R.; Bolke, Edward L.

    1999-01-01

    Within the Kaloko-Honokohau National Historical Park, which was established in 1978, the ground-water flow system is composed of brackish water overlying saltwater. Ground-water levels measured in the Park range from about 1 to 2 feet above mean sea level, and fluctuate daily by about 0.5 to 1.5 feet in response to ocean tides. The brackish water is formed by mixing of seaward flowing fresh ground water with underlying saltwater from the ocean. The major source of fresh ground water is from subsurface flow originating from inland areas to the east of the Park. Ground-water recharge from the direct infiltration of precipitation within the Park area, which has land-surface altitudes less than 100 feet, is small because of low rainfall and high rates of evaporation. Brackish water flowing through the Park ultimately discharges to the fishponds in the Park or to the ocean. The ground water, fishponds, and anchialine ponds in the Park are hydrologically connected; thus, the water levels in the ponds mark the local position of the water table. Within the Park, ground water near the water table is brackish; measured chloride concentrations of water samples from three exploratory wells in the Park range from 2,610 to 5,910 milligrams per liter. Chromium and copper were detected in water samples from the three wells in the Park and one well upgradient of the Park at concentrations of 1 to 5 micrograms per liter. One semi-volatile organic compound, phenol, was detected in water samples from the three wells in the Park at concentrations between 4 and 10 micrograms per liter. A regional, two-dimensional (areal), freshwater-saltwater, sharp-interface ground-water flow model was used to simulate the effects of regional withdrawals on ground-water flow within the Park. For average 1978 withdrawal rates, the estimated rate of fresh ground-water discharge to the ocean within the Park is about 6.48 million gallons per day, or about 3 million gallons per day per mile of coastline

  8. Testing alternative ground water models using cross-validation and other methods

    Science.gov (United States)

    Foglia, L.; Mehl, S.W.; Hill, M.C.; Perona, P.; Burlando, P.

    2007-01-01

    Many methods can be used to test alternative ground water models. Of concern in this work are methods able to (1) rank alternative models (also called model discrimination) and (2) identify observations important to parameter estimates and predictions (equivalent to the purpose served by some types of sensitivity analysis). Some of the measures investigated are computationally efficient; others are computationally demanding. The latter are generally needed to account for model nonlinearity. The efficient model discrimination methods investigated include the information criteria: the corrected Akaike information criterion, Bayesian information criterion, and generalized cross-validation. The efficient sensitivity analysis measures used are dimensionless scaled sensitivity (DSS), composite scaled sensitivity, and parameter correlation coefficient (PCC); the other statistics are DFBETAS, Cook's D, and observation-prediction statistic. Acronyms are explained in the introduction. Cross-validation (CV) is a computationally intensive nonlinear method that is used for both model discrimination and sensitivity analysis. The methods are tested using up to five alternative parsimoniously constructed models of the ground water system of the Maggia Valley in southern Switzerland. The alternative models differ in their representation of hydraulic conductivity. A new method for graphically representing CV and sensitivity analysis results for complex models is presented and used to evaluate the utility of the efficient statistics. The results indicate that for model selection, the information criteria produce similar results at much smaller computational cost than CV. For identifying important observations, the only obviously inferior linear measure is DSS; the poor performance was expected because DSS does not include the effects of parameter correlation and PCC reveals large parameter correlations. ?? 2007 National Ground Water Association.

  9. 40 CFR 141.401 - Sanitary surveys for ground water systems.

    Science.gov (United States)

    2010-07-01

    ...) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Ground Water Rule § 141.401..., maintenance, and monitoring compliance of a public water system to evaluate the adequacy of the system, its sources and operations and the distribution of safe drinking water. (c) The sanitary survey must include...

  10. Use of Ground-water Temperature Patterns to Determine the Hydraulic Conductance of the Streambed Along the Middle Reaches of the Russian River, CA

    Science.gov (United States)

    Su, G. W.; Constantz, J.; Jasperse, J.; Seymour, D.

    2002-12-01

    Along the Russian River in Sonoma County, the alluvial aquifer is the preferred source of drinking water because sediments and other constituents in the river water would require additional treatment. From late spring to early winter, an inflatable dam is erected to raise the river stage and passively recharge the alluvial aquifer. The raised stage also permits diversion of river water to a series of recharge ponds located near the dam along the river. Improved understanding of stream exchanges with ground water is needed to better manage available water resources. Heat is used as a tracer of shallow ground-water movement for detailed hydraulic parameter estimation along the middle reaches of the river. Water-levels and ground-water temperatures were measured in a series of observations wells and compared to the river stage and surface-water temperatures. Hydraulic conductivities were predicted by optimizing simulated ground-water temperatures using VS2DHI, a heat and water transport model, to observed temperatures in the aquifer. These conductivity values will be used in a stream/ground-water model of this region being developed using MODFLOW. Temperature-based estimates of streambed conductance will be inserted in the STREAM package of the model to constrain this parameter. Although temperature-based predictions of hydraulic conductivity vary significantly along the reach, the results generally suggest that an anisotropy of 5 to 1 (horizontal to vertical) provides the best hydraulic conductivity matches for predicted versus observed ground-water temperatures.

  11. Seepage laws in aquifer near a partially penetrating river with an intensive extraction of ground water

    Institute of Scientific and Technical Information of China (English)

    刘国东; 李俊亭

    1997-01-01

    The intensive extraction of ground water from aquifers near a river is an efficient way to exploit ground water resources. A lot of problems, however, have arisen because the mechanism of ground water flow in this way has not been clear. A sand-box model and a numerical model are respectively used to simulate the extraction of ground water near a partially penetrating river physically and theoretically. The results show that the ground water will lose saturated hydraulic connection with the river water as the pumping intensity increases. The broken point of hydraulic connection is located in the interior of aquifers rather than on the riverbed. After hydraulic disconnection occurs, two saturated zones, a suspended saturated zone linked with river and an unconfined aquifer, are formed.

  12. Isotopic evidence of complex ground-water flow at Yucca mountain, Nevada, USA

    Science.gov (United States)

    Peterman, Zell E.; Stuckless, John S.

    1993-01-01

    Strontium isotopes (expressed as per mill deviation from mean sea water, ??87Sr) reflect interaction between ground water and the aquifer through which it is flowing. In the Cenozoic aquifer of the Yucca Mountain region, ??87Sr values increase from north to south downgradient in the flow system. The largest ??87Sr values occur in the Amargosa Desert where ground water probably encounters alluvial basin fill derived from Precambrian rocks in the Funeral Range. Similarly, large ??87Sr values for ground water in the Paleozoic aquifer at the western end of the Spring Mountains also probably reflect an encounter with Precambrian rocks. In several wells into the volcanic rocks, apparent isotopic disequilibrium between ground water and the producing units suggests that the ground water probably integrates over a substantial part of the saturated section in attaining its strontium isotope signature.

  13. Ground-water investigations of the Project Gnome area, Eddy and Lea Counties, New Mexico

    Science.gov (United States)

    Cooper, J.B.

    1962-01-01

    ground water of salt at the top of the Salado Formation and of anhydrite within the Rustler Formation has removed thick sections of these rocks. A subsequent lowering of the land surface and differential collapse of the Rustler has formed many sinkholes and has created a karst topography over much of the western part of the area. Ground water is obtained from rocks of Permian, Triassic, Tertiary, and Quaternary age in the general region. However, the only aquifer at the Gnome site is the Culebra Dolomite Member of the Rustler Formation of Permian age. The aquifer is about 500 feet beneath the surface at the site and is about 30 feet thick. An aquifer, immediately above the top of the salt, contains a brine solution in Nash Draw, a few miles west of the Gnome site. This aquifer discharges into the Pecos River and is a major source of contamination of the river water. No potable water is known to be present in the area below the top of the salt of the Salado Formation. The ground water in the area is generally under artesian pressure. The general direction of ground-water movement is toward the Pecos River both east and west of the river. At the Gnome site the artesian head of the water in the Culebra Dolomite Member is about 7.5 feet. The water moves westward through the aquifer at a rate of about ? foot per day. The most widespread utilization of ground water east of the river is for stock use. Irrigation usage west of the Pecos River accounts for the largest withdrawal of water. Wells range in depth from a few tens of feet to nearly 800 feet. Water levels range from a few feet to about 500 feet below the surface. A test well at the Gnome site drawing water from the Culebra Dolomite Member was pumped at a rate of 100 gpm (gallons per minute); however, most wells east of the river yield only a few gpm. Irrigation wells west of the river yield as much as 3,500 gpm. Most of the water in the area is highly mineralized and is suitable only for use by livest

  14. Questa Baseline and Pre-Mining Ground-Water-Quality Investigation 22 - Ground-Water Budget for the Straight Creek Drainage Basin, Red River Valley, New Mexico

    Science.gov (United States)

    McAda, Douglas P.; Naus, Cheryl A.

    2008-01-01

    In April 2001, the U.S. Geological Survey (USGS) and the New Mexico Environment Department (NMED) began a cooperative study to infer the pre-mining ground-water chemistry at the Molycorp molybdenum mine site in the Red River Valley. The Molycorp mine has been in operation since the 1920s. Because ground-water conditions prior to mining are not available, sites analogous to the pre-mining conditions at the mine site must be studied to infer those pre-mining conditions. The Straight Creek drainage basin (watershed) was selected as the primary analog site for this study because of its similar terrain and geology to the mine site, accessibility, potential for well construction, and minimal anthropogenic activity. The purpose of this report is to present results of a water-budget analysis of the debris-flow aquifer in the Straight Creek watershed. The water budget is based on mean annual conditions and is assumed to be steady state. For this study, the Straight Creek watershed was divided into sub-watersheds on the basis of locations of seismic lines, which were used to calculate cross-section area through the Straight Creek debris-flow deposits and underlying fractured and weathered bedrock (regolith). Water-budget components were calculated for areas upstream from and between the seismic lines. Components of the water budget were precipitation, evapotranspiration, surface-water flow, and ground-water flow under a steady-state mean annual condition. Watershed yield, defined as precipitation minus evapotranspiration, was separated into surface-water flow, ground-water flow through the debris-flow deposits and regolith, and ground-water flow through fractured bedrock. The approach to this calculation was to use Darcy?s Law to calculate the flow through the cross-section area of the saturated debris-flow deposits and underlying regolith as defined by the interpreted seismic data. The amount of watershed yield unaccounted for through this section then was attributed to

  15. Hydrogeology and simulation of ground-water flow at Arnold Air Force Base, Coffee and Franklin counties, Tennessee

    Science.gov (United States)

    Haugh, C.J.; Mahoney, E.N.

    1994-01-01

    The U.S. Air Force at Arnold Air Force Base (AAFB), in Coffee and Franklin Counties, Tennessee, is investigating ground-water contamination in selected areas of the base. This report documents the results of a comprehensive investigation of the regional hydrogeology of the AAFB area. Three aquifers within the Highland Rim aquifer system, the shallow aquifer, the Manchester aquifer, and the Fort Payne aquifer, have been identified in the study area. Of these, the Manchester aquifer is the primary source of water for domestic use. Drilling and water- quality data indicate that the Chattanooga Shale is an effective confining unit, isolating the Highland Rim aquifer system from the deeper, upper Central Basin aquifer system. A regional ground-water divide, approximately coinciding with the Duck River-Elk River drainage divide, underlies AAFB and runs from southwest to northeast. The general direction of most ground-water flow is to the north- west or to the northwest or to the southeast from the divide towards tributary streams that drain the area. Recharge estimates range from 4 to 11 inches per year. Digital computer modeling was used to simulate and provide a better understanding of the ground-water flow system. The model indicates that most of the ground-water flow occurs in the shallow and Manchester aquifers. The model was most sensitive to increases in hydraulic conductivity and changes in recharge rates. Particle-tracking analysis from selected sites of ground-water contamination indicates a potential for contami- nants to be transported beyond the boundary of AAFB.

  16. Ground-Water Quality in the St. Lawrence River Basin, New York, 2005-06

    Science.gov (United States)

    Nystrom, Elizabeth A.

    2007-01-01

    The Federal Clean Water Act requires that States monitor and report on the quality of ground water and surface water. To satisfy part of these requirements, the U.S. Geological Survey and New York State Department of Environmental Conservation have developed a program in which ground-water quality is assessed in 2 to 3 of New York State's 14 major river basins each year. To characterize the quality of ground water in the St. Lawrence River Basin in northern New York, water samples were collected from 14 domestic and 11 production wells between August 2005 and January 2006. Eight of the wells were finished in sand and gravel and 17 wells were finished in bedrock. Ground-water samples were collected and processed using standard U.S. Geological Survey procedures and were analyzed for 229 constituents and physical properties, including inorganic constituents, nutrients, trace elements, radon-222, pesticides and pesticide degradates, volatile organic compounds, and bacteria. Sixty-six constituents were detected above laboratory reporting levels. Concentrations of most compounds at most sites were within drinking water standards established by the U.S. Environmental Protection Agency and New York State Department of Health, but a few compounds exceeded drinking water standards at some sites. Water in the basin is generally hard to very hard (hardness equal to 121 mg/L as CaCO3 or greater); hardness and alkalinity were generally higher in the St. Lawrence Valley than in the Adirondack Mountains. The cation with the highest median concentration was calcium; the anion with the highest median concentration was bicarbonate. The concentration of chloride in one sample exceeded the 250 milligrams per liter U.S. Environmental Protection Agency Secondary Drinking Water Standard; the concentration of sulfate in one sample also exceeded the 250 milligrams per liter U.S. Environmental Protection Agency Secondary Drinking Water Standard. Nitrate was the predominant nutrient detected

  17. Ground-water flow and quality in Wisconsin's shallow aquifer system

    Science.gov (United States)

    Kammerer, P.A.

    1995-01-01

    The areal concentration distribution of commonmineral constituents and properties of ground water in Wisconsin's shallow aquifer system are described in this report. Maps depicting the water quality and the altitude of the water table are included. The shallow aquifer system in Wisconsin, composed of unconsolidated sand and gravel and shallow bedrock, is the source of most potable ground-water supplies in the State. Most ground water in the shallow aquifer system moves in local flow systems, but it interacts with regional flow systems in some areas.

  18. Availability of ground water in parts of the Acoma and Laguna Indian Reservations, New Mexico

    Science.gov (United States)

    Dinwiddie, George A.; Motts, Ward Sundt

    1964-01-01

    The need for additional water has increased in recent years on the Acoma and Laguna Indian Reservations in west-central New Mexico because the population and per capita use of water have increased; the tribes also desire water for light industry, for more modern schools, and to increase their irrigation program. Many wells have been drilled in the area, but most have been disappointing because of small yields and poor chemical quality of the water. The topography in the Acoma and Laguna Indian Reservations is controlled primarily by the regional and local dip of alternating beds of sandstone and shale and by the igneous complex of Mount Taylor. The entrenched alluvial valley along the Rio San Jose, which traverses the area, ranges in width from about 0.4 mile to about 2 miles. The climate is characterized by scant rainfall, which occurs mainly in summer, low relative humidity, and large daily fluctuations of temperature. Most of the surface water enters the area through the Rio San Jose. The average annual streamflow past the gaging station Rio San Jose near Grants, N. Mex. is about 4,000 acre-feet. Tributaries to the Rio San Jose within the area probably contribute about 1,000 acre-feet per year. At the present time, most of the surface water is used for irrigation. Ground water is obtained from consolidated sedimentary rocks that range in age from Triassic to Cretaceous, and from unconsolidated alluvium of Quaternary age. The principal aquifers are the Dakota Sandstone, the Tres Hermanos Sandstone Member of the Mancos Shale, and the alluvium. The Dakota Sandstone yields 5 to 50 gpm (gallons per minute) of water to domestic and stock wells. The Tres Hermanos sandstone Member generally yields 5 to 20 gpm of water to domestic and stock wells. Locally, beds of sandstone in the Chinle and Morrison Formations, the Entrada Sandstone, and the Bluff Sandstone also yield small supplies of water to domestic and stock wells. The alluvium yields from 2 gpm to as much as 150

  19. 30 CFR 75.1101-6 - Water sprinkler systems; general.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Water sprinkler systems; general. 75.1101-6 Section 75.1101-6 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Fire Protection § 75.1101-6 Water sprinkler systems; general. Water...

  20. Salmonella pollution in ground and surface waters. (Latest citations from Pollution abstracts). Published Search

    Energy Technology Data Exchange (ETDEWEB)

    1993-04-01

    The bibliography contains citations concerning the contamination of ground waters and surface waters by Salmonella bacteria. Articles discuss the occurence, survival, origin, and control of these bacteria in water sources including rivers, reservoirs, swimming pools, wastewater, aquifers, and ground water. Citations also address the use of Salmonella populations as biological indicators of pollution in aquatic systems. (Contains a minimum of 102 citations and includes a subject term index and title list.)

  1. Ground-Water Quality in the Delaware River Basin, New York, 2001 and 2005-2006

    Science.gov (United States)

    Nystrom, Elizabeth A.

    2007-01-01

    The Federal Clean Water Act Amendments of 1977 require that States monitor and report on the quality of ground water and surface water. To satisfy part of these requirements, the U.S. Geological Survey and New York State Department of Environmental Conservation have developed a program in which ground-water quality is assessed in 2 to 3 of New York State's 14 major basins each year. To characterize the quality of ground water in the Delaware River Basin in New York, water samples were collected from December 2005 to February 2006 from 10 wells finished in bedrock. Data from 9 samples collected from wells finished in sand and gravel in July and August 2001 for the National Water Quality Assessment Program also are included. Ground-water samples were collected and processed using standard U.S. Geological Survey procedures. Samples were analyzed for more than 230 properties and compounds, including physical properties, major ions, nutrients, trace elements, radon-222, pesticides and pesticide degradates, volatile organic compounds, and bacteria. Concentrations of most compounds were less than drinking-water standards established by the U.S. Environmental Protection Agency and New York State Department of Health; many of the organic analytes were not detected in any sample. Drinking-water standards that were exceeded at some sites include those for color, turbidity, pH, aluminum, arsenic, iron, manganese, radon-222, and bacteria. pH ranged from 5.6 to 8.3; the pH of nine samples was less than the U.S. Environmental Protection Agency secondary drinking-water standard range of 6.5 to 8.5. Water in the basin is generally soft to moderately hard (hardness 120 milligrams per liter as CaCO3 or less). The cation with the highest median concentration was calcium; the anion with the highest median concentrations was bicarbonate. Nitrate was the predominant nutrient detected but no sample exceeded the 10 mg/L U.S. Environmental Protection Agency maximum contaminant level. The

  2. Hydrogeology and simulation of ground-water flow at the Gettysburg Elevator Plant Superfund Site, Adams County, Pennsylvania

    Science.gov (United States)

    Low, Dennis J.; Goode, Daniel J.; Risser, Dennis W.

    2000-01-01

    Ground water in Triassic-age sedimentary fractured-rock aquifers in the area of Gettysburg, Pa., is used as drinking water and for industrial and commercial supply. In 1983, ground water at the Gettysburg Elevator Plant was found by the Pennsylvania Department of Environmental Resources to be contaminated with trichloroethene, 1,1,1-trichloroethane, and other synthetic organic compounds. As part of the U.S. Environmental Protection Agency?s Comprehensive Environmental Response, Compensation, and Liability Act, 1980 process, a Remedial Investigation was completed in July 1991, a method of site remediation was issued in the Record of Decision dated June 1992, and a Final Design Report was completed in May 1997. In cooperation with the U.S. Environmental Protection Agency in the hydrogeologic assessment of the site remediation, the U.S. Geological Survey began a study in 1997 to determine the effects of the onsite and offsite extraction wells on ground-water flow and contaminant migration from the Gettysburg Elevator Plant. This determination is based on hydrologic and geophysical data collected from 1991 to 1998 and on results of numerical model simulations of the local ground-water flow-system. The Gettysburg Elevator Site is underlain by red, green, gray, and black shales of the Heidlersburg Member of the Gettysburg Formation. Correlation of natural-gamma logs indicates the sedimentary rock strike about N. 23 degrees E. and dip about 23 degrees NW. Depth to bedrock onsite commonly is about 6 feet but offsite may be as deep as 40 feet. The ground-water system consists of two zones?a thin, shallow zone composed of soil, clay, and highly weathered bedrock and a thicker, nonweathered or fractured bedrock zone. The shallow zone overlies the bedrock zone and truncates the dipping beds parallel to land surface. Diabase dikes are barriers to ground-water flow in the bedrock zone. The ground-water system is generally confined or semi-confined, even at shallow depths. Depth

  3. The Effect of Degradation of Ground water Resources on Capital of Pistachio Growers in Kerman Province

    Directory of Open Access Journals (Sweden)

    Seyed Mostafa Mortazavi

    2014-12-01

    Full Text Available Real cost evaluation of water is necessary in agricultural products depending on obtained value by this input. In most areas of world especially in arid and semiarid areas, exist over pumping of ground water because the real value of water is much most than the costs of water supply and the lack of fit management water resources. In this study, using a sample of 110 farmers, water dealing value of over using of groundwater in Rafsanjan pistachio production area were investigated. Analysis and regression methods were used in this regard. The average determined value obtained 24 cents, for each share of water in this region which with over drafting of ground water, and decreasing quality and quantity of water has had significant relationship in the one percent significance level. Finally, for elimination or reduction of ground water degradation and its effects, this paper recommended in addition to reduction of licenses for ground water pumping. Determination of optimal economic water/land ratio in new and old pistachio producing areas is the other proposal of this research for alleviation groundwater over drafting effects. Permission for water conduction between wells and combination of fresh and saline water and also using desalination systems are methods for solving low quality of ground water.

  4. Chemical Analyses of Ground Water in the Carson Desert near Stillwater, Churchill County, Nevada, 2005

    Science.gov (United States)

    Fosbury, DeEtta; Walker, Mark; Stillings, Lisa L.

    2008-01-01

    This report presents the chemical analyses of ground-water samples collected in 2005 from domestic wells located in the Stillwater area of the Carson Desert (fig. 1). These data were evaluated for evidence of mixing with nearby geothermal waters (Fosbury, 2007). That study used several methods to identify mixing zones of ground and geothermal waters using trace elements, chemical equilibria, water temperature, geothermometer estimates, and statistical techniques. In some regions, geothermal sources influence the chemical quality of ground water used for drinking water supplies. Typical geothermal contaminants include arsenic, mercury, antimony, selenium, thallium, boron, lithium, and fluoride (Webster and Nordstrom, 2003). The Environmental Protection Agency has established primary drinking water standards for these, with the exception of boron and lithium. Concentrations of some trace metals in geothermal water may exceed drinking water standards by several orders of magnitude. Geothermal influences on water quality are likely to be localized, depending on directions of ground water flow, the relative volumes of geothermal sources and ground water originating from other sources, and depth below the surface from which water is withdrawn. It is important to understand the areal extent of shallow mixing of geothermal water because it may have adverse chemical and aesthetic effects on domestic drinking water. It would be useful to understand the areal extent of these effects.

  5. Estimates of ground-water discharge as determined from measurements of evapotranspiration, Ash Meadows area, Nye County, Nevada

    Science.gov (United States)

    Laczniak, R.J.; DeMeo, G.A.; Reiner, S.R.; Smith, Jody L.; Nylund, W.E.

    1999-01-01

    Ash Meadows is one of the major discharge areas within the regional Death Valley ground-water flow system of southern Nevada and adjacent California. Ground water discharging at Ash Meadows is replenished from inflow derived from an extensive recharge area that includes the eastern part of the Nevada Test Site (NTS). Currently, contaminants introduced into the subsurface by past nuclear testing at NTS are the subject of study by the U.S. Department of Energy's Environmental Restoration Program. The transport of any contaminant in contact with ground water is controlled in part by the rate and direction of ground-water flow, which itself depends on the location and quantity of ground water discharging from the flow system. To best evaluate any potential risk associated with these test-generated contaminants, studies were undertaken to accurately quantify discharge from areas downgradient from the NTS. This report presents results of a study to refine the estimate of ground-water discharge at Ash Meadows. The study estimates ground-water discharge from the Ash Meadows area through a rigorous quantification of evapotranspiration (ET). To accomplish this objective, the study identifies areas of ongoing ground-water ET, delineates unique areas of ET defined on the basis of similarities in vegetation and soil-moisture conditions, and computes ET rates for each of the delineated areas. A classification technique using spectral-reflectance characteristics determined from satellite images recorded in 1992 identified seven unique units representing areas of ground-water ET. The total area classified encompasses about 10,350 acres dominated primarily by lush desert vegetation. Each unique area, referred to as an ET unit, generally consists of one or more assemblages of local phreatophytes. The ET units identified range from sparse grasslands to open water. Annual ET rates are computed by energy-budget methods from micrometeorological measurements made at 10 sites within six

  6. Water consumption and water-saving characteristics of a ground cover rice production system

    Science.gov (United States)

    Jin, Xinxin; Zuo, Qiang; Ma, Wenwen; Li, Sen; Shi, Jianchu; Tao, Yueyue; Zhang, Yanan; Liu, Yang; Liu, Xiaofei; Lin, Shan; Ben-Gal, Alon

    2016-09-01

    The ground cover rice production system (GCRPS) offers a potentially water-saving alternative to the traditional paddy rice production system (TPRPS) by furrow irrigating mulched soil beds and maintaining soils under predominately unsaturated conditions. The guiding hypothesis of this study was that a GCRPS would decrease both physiological and non-physiological water consumption of rice compared to a TPRPS while either maintaining or enhancing production. This was tested in a two-year field experiment with three treatments (TPRPS, GCRPSsat keeping root zone average soil water content near saturated, and GCRPS80% keeping root zone average soil water content as 80-100% of field water capacity) and a greenhouse experiment with four treatments (TPRPS, GCRPSsat, GCRPSfwc keeping root zone average soil water content close to field water capacity, and GCRPS80%). The water-saving characteristics of GCRPS were analyzed as a function of the measured soil water conditions, plant parameters regarding growth and production, and water input and consumption. In the field experiment, significant reduction in both physiological and non-physiological water consumption under GCRPS lead to savings in irrigation water of ∼61-84% and reduction in total input water of ∼35-47%. Compared to TPRPS, deep drainage was reduced ∼72-88%, evaporation was lessened ∼83-89% and transpiration was limited ∼6-10% under GCRPS. In addition to saving water, plant growth and grain yield were enhanced under GCRPS due to increased soil temperature in the root zone. Therefore, water use efficiencies (WUEs), based on transpiration, irrigation and total input water, were respectively improved as much as 27%, 609% and 110% under GCRPS. Increased yield attributed to up to ∼19%, decreased deep drainage accounted for ∼75%, decreased evaporation accounted for ∼14% and reduced transpiration for ∼5% of the enhancement in WUE of input water under GCRPS, while increased runoff and water storage had

  7. (Environmental investigation of ground water contamination at Wright-Patterson Air Force Base, Ohio)

    Energy Technology Data Exchange (ETDEWEB)

    1992-03-01

    This report presents information related to the sampling of ground water at the Wright-Patterson Air Force Base. It is part of an investigation into possible ground water contamination. Information concerns well drilling/construction; x-ray diffraction and sampling; soil boring logs; and chain-of-custody records.

  8. 40 CFR 257.23 - Ground-water sampling and analysis requirements.

    Science.gov (United States)

    2010-07-01

    ... and analysis requirements. (a) The ground-water monitoring program must include consistent sampling... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Ground-water sampling and analysis requirements. 257.23 Section 257.23 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED)...

  9. Trace Analysis of Heavy Metals in Ground Waters of Vijayawada Industrial Area

    Science.gov (United States)

    Tadiboyina, Ravisankar; Ptsrk, Prasada Rao

    2016-01-01

    In recent years, the new environmental problem are arising due to industrial hazard wastage, global climate change, ground water contamination and etc., gives an attention to protect environment.one of the major source of contamination of ground water is improper discharge of industrial effluents these effluents contains so many heavy metals which…

  10. Combined ion exchange/biological denitrification for nitrate removal from ground water.

    NARCIS (Netherlands)

    Hoek, van der J.P.

    1988-01-01

    This thesis deals with the development of a new process for nitrate removal from ground water. High nitrate concentrations in ground water are a result of fertilization in agriculture. According to a directive of the European Community the maximum admissible concentration of nitrate in drinking wate

  11. 1:750,000-scale static ground-water levels of Nevada

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This data set consists of static ground-water levels for the State of Nevada based on a 1974 ground-water map (Rush, 1974) published by the Nevada Department of...

  12. Natural Attenuation of Chlorinated Solvent Ground-Water Plumes Discharging into Wetlands

    Science.gov (United States)

    2003-09-01

    ground water in highly saline wetlands (Swanson et al., 1984), and the distribution of marsh marigold (Caltha palustris L.) has been used to map...seeps and springs next to a lake and in wetlands in Minnesota (Rosenberry et al., 2000). Marsh marigold favors ground-water discharge areas across the

  13. Hydrogeology, ground-water movement, and subsurface storage in the Floridan aquifer system in southern Florida

    Science.gov (United States)

    Meyer, Frederick W.

    1989-01-01

    The Floridan aquifer system of southern Florida is composed chiefly of carbonate rocks that range in age from early Miocene to Paleocene. The top of the aquifer system in southern Florida generally is at depths ranging from 500 to 1,000 feet, and the average thickness is about 3,000 feet. It is divided into three general hydrogeologic units: (1) the Upper Floridan aquifer, (2) the middle confining unit, and (3) the Lower Floridan aquifer. The Upper Floridan aquifer contains brackish ground water, and the Lower Floridan aquifer contains salty ground water that compares chemically to modern seawater. Zones of high permeability are present in the Upper and Lower Floridan aquifers. A thick, cavernous dolostone in the Lower Floridan aquifer, called the Boulder Zone, is one of the most permeable carbonate units in the world (transmissivity of about 2.5 x 107 feet squared per day). Ground-water movement in the Upper Floridan aquifer is generally southward from the area of highest head in central Florida, eastward to the Straits of Florida, and westward to the Gulf of Mexico. Distributions of natural isotopes of carbon and uranium generally confirm hydraulic gradients in the Lower Floridan aquifer. Groundwater movement in the Lower Floridan aquifer is inland from the Straits of Florida. The concentration gradients of the carbon and uranium isotopes indicate that the source of cold saltwater in the Lower Floridan aquifer is seawater that has entered through the karat features on the submarine Miami Terrace near Fort Lauderdale. The relative ages of the saltwater suggest that the rate of inland movement is related in part to rising sea level during the Holocene transgression. Isotope, temperature, and salinity anomalies in waters from the Upper Floridan aquifer of southern Florida suggest upwelling of saltwater from the Lower Floridan aquifer. The results of the study support the hypothesis of circulating relatively modern seawater and cast doubt on the theory that the

  14. Summary of the Ground-Water-Level Hydrologic Conditions in New Jersey 2006

    Science.gov (United States)

    Jones, Walter; Pope, Daryll

    2007-01-01

    Ground water is one of the Nation's most important natural resources. It provides about 40 percent of our Nation's public water supply. Currently, nearly one-half of New Jersey's drinking-water is supplied by over 300,000 wells that serve more than 4.3 million people (John P. Nawyn, U.S. Geological Survey, written commun., 2007). New Jersey's population is projected to grow by more than a million people by 2030 (U.S. Census Bureau, accessed March 2, 2006, at http://www.census.gov). As demand for water increases, managing the development and use of the ground-water resource so that the supply can be maintained for an indefinite time without causing unacceptable environmental, economic, or social consequences is of paramount importance. This report describes the U.S. Geological Survey (USGS) New Jersey Water Science Center Observation Well Networks. Record low ground-water levels during water year 2006 (October 1, 2005 to September 30, 2006) are listed, and water levels in six selected water-table observation wells and three selected confined wells are shown in hydrographs. The report describes the trends in water levels in various confined aquifers in southern New Jersey and in water-table and fracture rock aquifers throughout the State. Web site addresses to access the data also are included. The USGS has operated a network of observation wells in New Jersey since 1923 for the purpose of monitoring ground-water-level changes throughout the State. Long-term systematic measurement of water levels in observation wells provides the data needed to evaluate changes in the ground-water resource over time. Records of ground-water levels are used to evaluate the effects of climate changes and water-supply development, to develop ground-water models, and to forecast trends.

  15. Radium and radon in ground water in the Chickies Quartzite, southeastern Pennsylvania

    Science.gov (United States)

    Senior, L.A.; Vogel, K.L.

    1995-01-01

    The Chickies Quartzite, a Lower Cambrian-age formation compromised of quartzite and slate overlying a basal conglomerate, forms a narrow ridges and crops out discontinuously over 112 square miles in the Piedmont physiographic province of southeastern Pennsylvania. The formation is a low-yielding, fractured- rock, water-table aquifer recharged primarily by local precipitation. It is the sole source of water supply for thousands of domestic users. Ground water in the Chickies Quartzite generally is soft and acidic. During 1986-88, the U.S. Geological Survey sampled water from 160 wells that penetrate the Chickies Quartzite to determine the magnitude and distribution of radium-226 (Ra-226), radium-228 (Ra-228), and radon-222 (Rn-222) activities in ground water in the formation and to characterize the geochemical environmental associated with elevated activities of radium (Ra). In addition, 28 wells penetrating adjacent geologic units and 1 well in the Hardyston Quartzite were sampled to determine relative background Ra and RN-222 activities in ground water. Analyses included determination of activities of dissolved Ra-226, Ra-228, and RN-222, and concentrations of dissolved uranium (U), dissolved organic carbon (DOC), and major and minor dissolved inorganic ions. Rock samples were analyzed for U and thorium (Th) and geophysical logs were run to determine sources of Ra and RN-222 in the Chickies Quartzite. Activities of up to 41 pCi/L (picocuries per liter) for Ra-226, 160 pCi/L for Ra-228, and 32,300 pCi/L for RN-222 were measured in ground water in the Chickies Quartzite. Forty-seven percent of the samples contained Ra-226 and Ra-228 activities greater than 5 pCi/L. Median activities measured were 1.2 pCi/L for Ra-226, 2.6 pCi/L for Ra-228, 4.2 pCi/L for combined Ra-226 and Ra-228, and 2,400 pCi/L for RN-222 Ra-228 activity exceeded Ra-226 activity in about 92 percent of 100 water samples; the median Ra-228/Ra226 activity ratio was 2.4. Ra-228/Ra-226 activity ratios

  16. Annual summary of ground-water conditions in Arizona, spring 1979 to spring 1980

    Science.gov (United States)

    ,

    1981-01-01

    Withdrawal of ground water, about 4.0 million acre-feet in Arizona in 1979, is about 200,000 acre-feet less than the amount withdrawn in 1978. The withdrawals in 1978 and 1979 are the smallest since the mid-1950 's except in 1966. Nearly all the decrease was in the amount of ground water used for irrigation in the Basin and Range lowlands province. The large amount of water in storage in the surface-water reservoirs, release of water from the reservoirs, floods, and conservation practices contributed to the decrease in ground-water use and caused water-level rises in the Salt River Valley, Gila Bend basin, and Gila River drainage from Painted Rock Dam to Texas Hill. Two small-scale maps show ground-water pumpage by areas and the status of the ground-water inventory in the State. The main map, which is at a scale of 1:500,000, shows potential well production, depth to water in selected wells in spring 1980, and change in water level in selected wells from 1975 to 1980. A brief text summarizes the current ground-water conditions in the State. (USGS)

  17. General survey and conclusions with regard to the connection of water quantity and water quality studies of surface waters

    NARCIS (Netherlands)

    Rijtema, P.E.

    1979-01-01

    Publikatie die bestaat uit twee delen: 1. General survey of the relation between water quantity and water quality; 2. Conclusions with regard to the connection of water quantity and water quality studies of surface waters

  18. Ground water discharge and the related nutrient and trace metal fluxes into Quincy Bay, Massachusetts

    Science.gov (United States)

    Poppe, L.J.; Moffett, A.M.

    1993-01-01

    Measurement of the rate and direction of ground water flow beneath Wollaston Beach, Quincy, Massachusetts by use of a heat-pulsing flowmeter shows a mean velocity in the bulk sediment of 40 cm d-1. The estimated total discharge of ground water into Quincy Bay during October 1990 was 1324-2177 m3 d-1, a relatively low ground Water discharge rate. The tides have only a moderate effect on the rate and direction of this flow. Other important controls on the rate and volume of ground water flow are the limited thickness, geographic extent, and permeability of the aquifer. Comparisons of published streamflow data and estimates of ground water discharge indicate that ground water makes up between 7.4-12.1% of the gaged freshwater input into Quincy Bay. The data from this study suggest the ground water discharge is a less important recharge component to Quincy Bay than predicted by National Urban Runoff Program (NURP) models. The high nitrate and low nitrite and ammonia concentrations in the ground water at the backshore we]l sites and low nitrate and high nitrite and ammonia concentrations in the water flowing from the foreshore suggests that denitrification is active in the sediments. The low ground water flow rates and low nitrate concentrations in the foreshore samples suggest that little or no nitrate is surviving the denitrification process to affect the planktonic community. Similarly, oxidizing conditions in the aquifer and low trace metal concentrations in the ground water samples suggest that the metals may be precipitating and binding to sedimentary phases before impacting the bay.

  19. Chemical reactions of uranium in ground water at a mill tailings site

    Science.gov (United States)

    Abdelouas, A.; Lutze, W.; Nuttall, E.

    1998-11-01

    We studied soil and ground water samples from the tailings disposal site near Tuba City, AZ, located on Navajo sandstone, in terms of uranium adsorption and precipitation. The uranium concentration is up to 1 mg/l, 20 times the maximum concentration for ground water protection in the United States. The concentration of bicarbonate (HCO 3-) in the ground water increased from ≤7×10 -4 M, the background concentration, to 7×10 -3 M. Negatively charged uranium carbonate complexes prevail at high carbonate concentrations and uranium is not adsorbed on the negatively charged mineral surfaces. Leaching experiments using contaminated and uncontaminated sandstone and 1 N HCl show that adsorption of uranium from the ground water is negligible. Batch adsorption experiments with the sandstone and ground water at 16°C, the in situ ground water temperature, show that uranium is not adsorbed, in agreement with the results of the leaching experiments. Adsorption of uranium at 16°C is observed when the contaminated ground water is diluted with carbonate-free water. The observed increase in pH from 6.7 to 7.3 after dilution is too small to affect adsorption of uranium on the sandstone. Storage of undiluted ground water to 24°C, the temperature in the laboratory, causes coprecipitation of uranium with aragonite and calcite. Our study provides knowledge of the on-site uranium chemistry that can be used to select the optimum ground water remediation strategy. We discuss our results in terms of ground water remediation strategies such as pump and treat, in situ bioremediation, steam injection, and natural flushing.

  20. Radionuclides in ground water of the Carson River Basin, western Nevada and eastern California, U.S.A.

    Science.gov (United States)

    Thomas, J.M.; Welch, A.H.; Lico, M.S.; Hughes, J.L.; Whitney, R.

    1993-01-01

    Ground water is the main source of domestic and public supply in the Carson River Basin. Ground water originates as precipitation primarily in the Sierra Nevada in the western part of Carson and Eagle Valleys, and flows down gradient in the direction of the Carson River through Dayton and Churchill Valleys to a terminal sink in the Carson Desert. Because radionuclides dissolved in ground water can pose a threat to human health, the distribution and sources of several naturally occurring radionuclides that contribute to gross-alpha and gross-beta activities in the study area were investigated. Generally, alpha and beta activities and U concentration increase from the up-gradient to down-gradient hydrographic areas of the Carson River Basin, whereas 222Rn concentration decreases. Both 226Ra and 228Ra concentrations are similar throughout the study area. Alpha and beta activities and U concentration commonly exceed 100 pCi/l in the Carson Desert at the distal end of the flow system. Radon-222 commonly exceeds 2,000 pCi/l in the western part of Carson and Eagle Valleys adjacent to the Sierra Nevada. Radium-226 and 228Ra concentrations are oxide coatings on fracture surfaces and fine-grained sediment, by adsorption on organic matter, and by coprecipitation with Fe and Mn oxides. These coated sediments are transported throughout the basin by fluvial processes. Thus, U is transported as dissolved and adsorbed species. A rise in the water table in the Carson Desert because of irrigation has resulted in the oxidation of U-rich organic matter and dissolution of U-bearing coatings on sediments, producing unusually high U concentration in the ground water. Alpha activity in the ground water is almost entirely from the decay of U dissolved in the water. Beta activity in ground water samples is primarily from the decay of 40K dissolved in the water and ingrowth of 238U progeny in the sample before analysis. Approximately one-half of the measured beta activity may not be present

  1. Surface-Water, Water-Quality, and Ground-Water Assessment of the Municipio of Mayaguez, Puerto Rico, 1999-2002

    Science.gov (United States)

    Rodríguez-Martínez, Jesús; Santiago-Rivera, Luis; Guzman-Rios, Senen; Gómez-Gómez, Fernando; Oliveras-Feliciano, Mario L.

    2004-01-01

    five hydrogeologic terranes. This integrated database then was used to evaluate the ground-water potential of each hydrogeologic terrane. Lineament-trace analysis was used to help assess the ground-water development potential in the hydrogeologic terranes containing igneous rocks. Analyses suggest that areas with slopes greater than 15 degrees have relatively low ground-water development potential. The presence of fractures, independent of the topographic slope, may locally enhance the water-bearing properties in the hydrogeologic terranes containing igneous rocks. The results of this study indicate that induced streamflow generally is needed to sustain low to moderate ground-water withdrawal rates in the five hydrogeologic terranes. The ground-water flow systems in the hydrogeologic terranes are only able to sustain small withdrawal rates that rarely exceed 50 gallons per minute. Areas with a high density of fractures, as could be the case at the intersection of lineament traces in the upper parts of the Rio Ca?as and Rio Yaguez watersheds, are worthy of exploratory drilling for ground-water development.

  2. Generalized isotropic Lipkin-Meshkov-Glick models: ground state entanglement and quantum entropies

    Science.gov (United States)

    Carrasco, José A.; Finkel, Federico; González-López, Artemio; Rodríguez, Miguel A.; Tempesta, Piergiulio

    2016-03-01

    We introduce a new class of generalized isotropic Lipkin-Meshkov-Glick models with \\text{su}(m+1) spin and long-range non-constant interactions, whose non-degenerate ground state is a Dicke state of \\text{su}(m+1) type. We evaluate in closed form the reduced density matrix of a block of L spins when the whole system is in its ground state, and study the corresponding von Neumann and Rényi entanglement entropies in the thermodynamic limit. We show that both of these entropies scale as alog L when L tends to infinity, where the coefficient a is equal to (m  -  k)/2 in the ground state phase with k vanishing \\text{su}(m+1) magnon densities. In particular, our results show that none of these generalized Lipkin-Meshkov-Glick models are critical, since when L\\to ∞ their Rényi entropy R q becomes independent of the parameter q. We have also computed the Tsallis entanglement entropy of the ground state of these generalized \\text{su}(m+1) Lipkin-Meshkov-Glick models, finding that it can be made extensive by an appropriate choice of its parameter only when m-k≥slant 3 . Finally, in the \\text{su}(3) case we construct in detail the phase diagram of the ground state in parameter space, showing that it is determined in a simple way by the weights of the fundamental representation of \\text{su}(3) . This is also true in the \\text{su}(m+1) case; for instance, we prove that the region for which all the magnon densities are non-vanishing is an (m  +  1)-simplex in {{{R}}m} whose vertices are the weights of the fundamental representation of \\text{su}(m+1) .

  3. Optimization of ground-water withdrawal at the old O-Field area, Aberdeen Proving Ground, Maryland

    Science.gov (United States)

    Banks, William S.L.; Dillow, Jonathan J.A.

    2001-01-01

    The U.S. Army disposed of chemical agents, laboratory materials, and unexploded ordnance at the Old O-Field landfill at Aberdeen Proving Ground, Maryland, beginning prior to World War II and continuing until at least the 1950?s. Soil, ground water, surface water, and wetland sediments in the Old O-Field area were contaminated by the disposal of these materials. The site is in the Atlantic Coastal Plain, and is characterized by a complex series of Pleistocene and Holocene sediments formed in various fluvial, estuarine, and marine-marginal hydrogeologic environments. A previously constructed transient finite-difference ground-water-flow model was used to simulate ground-water flow and the effects of a pump-and-treat remediation system designed to prevent contaminated ground water from flowing into Watson Creek (a tidal estuary and a tributary to the Gunpowder River). The remediation system consists of 14 extraction wells located between the Old O-Field landfill and Watson Creek.Linear programming techniques were applied to the results of the flow-model simulations to identify optimal pumping strategies for the remediation system. The optimal management objective is to minimize total withdrawal from the water-table aquifer, while adhering to the following constraints: (1) ground-water flow from the landfill should be prevented from reaching Watson Creek, (2) no extraction pump should be operated at a rate that exceeds its capacity, and (3) no extraction pump should be operated at a rate below its minimum capacity, the minimum rate at which an Old O-Field pump can function. Water withdrawal is minimized by varying the rate and frequency of pumping at each of the 14 extraction wells over time. This minimizes the costs of both pumping and water treatment, thus providing the least-cost remediation alternative while simultaneously meeting all operating constraints.The optimal strategy identified using this objective and constraint set involved operating 13 of the 14

  4. Apparent chlorofluorocarbon age of ground water of the shallow aquifer system, Naval Weapons Station Yorktown, Yorktown, Virginia

    Science.gov (United States)

    Nelms, David L.; Harlow, George E.; Brockman, Allen R.

    2001-01-01

    Apparent ages of ground water are useful in the analysis of various components of flow systems, and results of this analysis can be incorporated into investigations of potential pathways of contaminant transport. This report presents the results of a study in 1997 by the U.S. Geological Survey (USGS), in cooperation with the Naval Weapons Station Yorktown, Base Civil Engineer, Environmental Directorate, to describe the apparent age of ground water of the shallow aquifer system at the Station. Chlorofluorocarbons (CFCs), tritium (3H), dissolved gases, stable isotopes, and water-quality field properties were measured in samples from 14 wells and 16 springs on the Station in March 1997.Nitrogen-argon recharge temperatures range from 5.9°C to 17.3°C with a median temperature of 10.9°C, which indicates that ground-water recharge predominantly occurs in the cold months of the year. Concentrations of excess air vary depending upon geohydrologic setting (recharge and discharge areas). Apparent ground-water ages using a CFC-based dating technique range from 1 to 48 years with a median age of 10 years. The oldest apparent CFC ages occur in the upper parts of the Yorktown-Eastover aquifer, whereas the youngest apparent ages occur in the Columbia aquifer and the upper parts of the discharge area setting, especially springs. The vertical distribution of apparent CFC ages indicates that groundwater movement between aquifers is somewhat retarded by the leaky confining units, but the elapsed time is relatively short (generally less than 35 years), as evidenced by the presence of CFCs at depth. The identification of binary mixtures by CFC-based dating indicates that convergence of flow lines occurs not only at the actual point of discharge, but also in the subsurface.The CFC-based recharge dates are consistent with expected 3H concentrations measured in the water samples from the Station. The concentration of 3H in ground water ranges from below the USGS laboratory minimum

  5. Integrated water vapor from IGS ground-based GPS observations. Initial results from a global 5-min data set

    Energy Technology Data Exchange (ETDEWEB)

    Heise, S.; Dick, G.; Gendt, G.; Schmidt, T.; Wickert, J. [GFZ German Research Centre for Geosciences, Potsdam (Germany). Dept. 1 Geodesy and Remote Sensing

    2009-07-01

    Ground based GPS zenith path delay (ZPD) measurements are well established as a powerful tool for integrated water vapor (IWV) observation. The International GNSS Service (IGS) provides ZPD data of currently more than 300 globally distributed GPS stations. To derive IWV from these data, meteorological information (ground pressure and mean temperature above the station) are needed. Only a limited number of IGS stations is equipped with meteorological ground sensors up to now. Thus, meteorological data for IWV conversion are usually derived from nearby ground meteorological observations (ground pressure) and meteorological analyses (mean temperature). In this paper we demonstrate for the first time the applicability of ground pressure data from ECMWF meteorological analysis fields in this context. Beside simplified data handling (no single station data and quality control) this approach allows for IWV derivation if nearby meteorological stations are not available. Using ECMWF ground pressure and mean temperature data the new IGS 5-min ZPD data set has been converted to IWV for the first time. We present initial results from selected stations with ground meteorological sensors including pressure and temperature comparisons between ECMWF and local measurements. The GPS IWV is generally validated by comparison with ECMWF IWV. The ECMWF derived station meteorological data are compared with local measurements at all accordingly equipped stations. Based on this comparison, the mean error (in terms of standard deviation) introduced by time interpolation of the 6-hourly ECMWF data is estimated below 0.2 mm IWV. (orig.)

  6. A ground-water reconnaissance of the Republic of Ghana, with a description of geohydrologic provinces

    Science.gov (United States)

    Gill, H.E.

    1969-01-01

    This report gives a general summary of the availability and use of ground water and describes the occurrence of ground water in five major geohydrologic provinces lying in the eight administrative regions of Ghana. The identification and delineation of the geohydrologic provinces are based on their distinctive characteristics with respect to the occurrence and availability of ground water. The Precambrian province occupies the southern, western, and northern parts of Ghana and is underlain largely by intrusive crystalline and metasedimentary rocks. The Voltaian province includes that part of the Voltaian sedimentary basin in central Ghana and is underlain chiefly by consolidated sandstone, mudstone, and shale. Narrow discontinuous bands of consolidated Devonian and Jurassic sedimentary rocks near the coast constitute the Coastal Block Fault province. The Coastal Plain province includes semiconsolidated to unconsolidated sediments of Cretaceous to Holocene age that underlie coastal plain areas in southwestern and southeastern Ghana. The Alluvial province includes the Quaternary alluvial deposits in the principal river valleys and on the delta of the Volta River. Because of the widespread distribution of crystalline and consolidated sedimentary rocks of low permeability in the Precambrian, Voltaian, and Coastal Block Fault provinces, it is difficult to develop large or event adequate groundwater supplies in much of Ghana. On the other hand, small (1 to 50 gallons per minute) supplies of water of usable quality are available from carefully sited boreholes in most parts of the country. Also, moderate (50 to 200 gpm) supplies of water are currently (1964) obtained from small-diameter screened boreholes tapping sand and limestone aquifers in the Coastal Plain province in southwestern and southeastern Ghana, but larger supplies could be obtained through properly constructed boreholes. In the Alluvial province, unconsolidated deposits in the larger stream valleys that are

  7. Cleaning of polluted water using biological techniques. [Ground water]. Rensning af forurenet vand ved biologisk teknik

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, M. (Hedeselskabet (Denmark))

    1992-01-01

    Ground-water at many Danish locations has been polluted by organic substances. This pollution has taken place in relation to leaks or spills of, for example, petrol from leaky tanks or oil separators. The article describes a new biological technique for the purification of ground-water polluted by petrol and diesel oils leaked at a petrol station. The technique involves decompostion by bacteria. During decompostion the biomass in the filter increases and carbon dioxide and water is produced, so there is no waste product from this process. The two units consist of an oil-separator which separates the diesel oil and petrol from the water, and a bio-filter which is constructed as an aired-through inverted filter to which nutrient salts are continually added. The filter-material used is in the form of plastic rings on which the oil-decomposing bacteria grow and reproduce themselves. The system is further described. It is claimed that the bio-filter can decompose 7 kg of petrol and diesel oil in one week, larger ones decompose more. The servicelife of the system is expected to be 4-6 years. Current installation costs are 20.000 - 100.000 Danish kroner, according to size. (AB).

  8. Chemistry of ground water in the Silver Springs basin, Florida, with an emphasis on nitrate

    Science.gov (United States)

    Phelps, G.G.

    2004-01-01

    1.15 mg/L. Because fewer wells were in rangeland or forested areas, those categories were grouped together. The median concentration for that group was 0.09 mg/L. The ratio of 15N/14N in ground-water samples ranged from -0.5 to 11.5 per mil. The median value for ground-water samples from 35 wells, 4.9 per mil, is near the top of the range that indicates inorganic nitrogen sources. In agricultural areas, the median 15N/14N was 4.8 per mil, indicating mostly inorganic (fertilizer) sources. In urban areas, the median 15N/14N was 5.4 per mil, indicating more influence of organic nitrogen (N) sources. Thus, in both agricultural and urban areas, fertilizer is an important inorganic source of N in ground water (and, therefore, in spring water as well). The influence of organic N is more apparent in urban areas than in agricultural areas. Two distinct 15N/14N values were observed in water from the Main Spring, one indicating an inorganic nitrogen source and the other indicating a mixture of sources with a strong influence of organic nitrogen. Thirty-five wells and three springs of the Silver Springs group (the Main Spring, the Abyss, and the Blue Grotto) were sampled for a suite of 63 compounds common in wastewater. A total of 38 compounds was detected, nearly all in very low concentrations. The most frequently detected compound was the insecticide N,N-diethyl-meta-toluamide (DEET), which was detected in water from 27 wells and all three springs. The presence or absence of DEET in ground-water samples did not seem to be related to land use; however, hydrogeologic conditions at the well sites (confined or unconfined) generally did affect the presence or absence of DEET in the ground water. DEET also appears to be a useful tracer for the presence of reused water. Water samples were collected from the Main Spring and two other springs of the Silver Springs group and analyzed for concentrations of dissolved gasses and for chlorofluorocarbons (CFCs), sulfur hexaflu

  9. Ground water security and drought in Africa: linking availability, access, and demand.

    Science.gov (United States)

    Calow, Roger C; Macdonald, Alan M; Nicol, Alan L; Robins, Nick S

    2010-01-01

    Drought in Africa has been extensively researched, particularly from meteorological, agricultural, and food security perspectives. However, the impact of drought on water security, particularly ground water dependent rural water supplies, has received much less attention. Policy responses have concentrated on food needs, and it has often been difficult to mobilize resources for water interventions, despite evidence that access to safe water is a serious and interrelated concern. Studies carried out in Ghana, Malawi, South Africa, and Ethiopia highlight how rural livelihoods are affected by seasonal stress and longer-term drought. Declining access to food and water is a common and interrelated problem. Although ground water plays a vital role in buffering the effects of rainfall variability, water shortages and difficulties in accessing water that is available can affect domestic and productive water uses, with knock-on effects on food consumption and production. Total depletion of available ground water resources is rarely the main concern. A more common scenario is a spiral of water insecurity as shallow water sources fail, additional demands are put on remaining sources, and mechanical failures increase. These problems can be planned for within normal development programs. Water security mapping can help identify vulnerable areas, and changes to monitoring systems can ensure early detection of problems. Above all, increasing the coverage of ground water-based rural water supplies, and ensuring that the design and siting of water points is informed by an understanding of hydrogeological conditions and user demand, can significantly increase the resilience of rural communities to climate variability.

  10. Using MODFLOW 2000 to model ET and recharge for shallow ground water problems.

    Science.gov (United States)

    Doble, Rebecca C; Simmons, Craig T; Walker, Glen R

    2009-01-01

    In environments with shallow ground water elevation, small changes in the water table can cause significant variations in recharge and evapotranspiration fluxes. Particularly, where ground water is close to the soil surface, both recharge and evapotranspiration are regulated by a thin unsaturated zone and, for accuracy, must be represented using nonconstant and often nonlinear relationships. The most commonly used ground water flow model today, MODFLOW, was originally designed with a modular structure with independent packages representing recharge and evaporation processes. Systems with shallow ground water, however, may be better represented using either a recharge function that varies with ground water depth or a continuous recharge and evapotranspiration function that is dependent on depth to water table. In situations where the boundaries between recharging and nonrecharging cells change with time, such as near a seepage zone, a continuous ground water flux relationship allows recharge rates to change with depth rather than having to calculate them at each stress period. This research article describes the modification of the MODFLOW 2000 recharge and segmented evapotranspiration packages into a continuous recharge-discharge function that allows ground water flux to be represented as a continuous process, dependent on head. The modifications were then used to model long-term recharge and evapotranspiration processes on a saline, semiarid floodplain in order to understand spatial patterns of salinization, and an overview of this process is given.

  11. Geochemical characterization of shallow ground water in the Eutaw aquifer, Montgomery, Alabama

    Science.gov (United States)

    Robinson, J.L.; Journey, C.A.

    2004-01-01

    Ground water samples were collected from 30 wells located in, or directly down gradient from, recharge areas of the Eutaw aquifer in Montgomery, Alabama. The major ion content of the water evolves from calcium-sodium-chloride- dominated type in the recharge area to calcium-bicarbonate-dominated type in the confined portion of the aquifer. Ground water in the recharge area was undersaturated with respect to aluminosilicate and carbonate minerals. Ground water in the confined portion of the aquifer was at equilibrium levels for calcite and potassium feldspar. Dissolved oxygen and nitrite-plus-nitrate concentrations decreased as ground water age increased; pH, iron, and sulfate concentrations increased as ground water age increased. Aluminum, copper, and zinc concentrations decreased as ground water age and pH increased. These relations indicate that nitrate, aluminum, copper, and zinc are removed from solution as water moves from recharge areas to the confined areas of the Eutaw aquifer. The natural evolution of ground water quality, which typically increases the pH and decreases the dissolved oxygen content, may be an important limiting factor to the migration of nitrogen based compounds and metals.

  12. Ground-water geology and pump irrigation in Frenchman Creek Basin above Palisade, Nebraska

    Science.gov (United States)

    Cardwell, W.D.E.; Jenkins, Edward D.

    1963-01-01

    This report describes the geography, geology, and ground-water resources of that part of the Frenchman Creek basin upstream from Palisade, Nebr., an area of about 4,900 square miles. The basin includes all of Phillips County, Colo., and Chase County, Nebr., and parts of Logan, Sedgwick, Washington, and Yuma Counties, Colo., and Dundy, Hayes, Hitchcock, and Perkins Counties, Nebr. The land surface ranges from nearly flat to rolling; choppy hills and interdune saddles are common in the areas of dune sand, and steep bluffs and gullies cut the edges of the relatively flat loess plateaus. Most of the basin is drained by tributaries of Frenchman Creek, but parts of the sandhills are undrained. Farming and livestock raising are the principal industries. Irrigation with ground water has expanded rapidly since 1934. The rocks exposed in the basin are largely unconsolidated and range in age from Pliocene to Recent. They comprise the Ogallala formation (Pliocene), the Sanborn formation (Pleistocene and Recent?), dune sand (Pleistocene and Recent), and alluvium (Recent). The rocks underlying the Ogallala are the Pierre shale (Late Cretaceous) and the White River group (Oligocene). The Pierre shale is relatively impermeable and yields little or no water to wells. The White River group also is relatively impermeable and yields little or no water to wells; however, small to moderate quantities of water possibly may be obtained from wells that penetrate fractured or 'porous' zones in the upper part of the White River group or permeable channel deposits within the group. The Ogallala formation is the main aquifer in the basin and yields moderate to large quantities of water to wells. The Sanborn formation and the dune sand generally lie above the water table, but in areas of high water table the dune sand yields small quantities of water to wells for domestic and stock supplies. The alluvium, which includes the low terrace deposits bordering the major streams, yields small to large

  13. Ground-water exploration in Al Marj area, Cyrenaica, United Kingdom of Libya

    Science.gov (United States)

    Newport, T.G.; Haddor, Yousef

    1963-01-01

    The present report, based largely on fieldwork during 1959-61, describes the results of reconnaissance hydrogeologic studies and exploratory drilling to evaluate the general water-bearing properties of the rocks and the availability of groundwater supplies for irrigation, stock, and village uses in Al Marj area. These studies and the drilling were conducted under the auspices of the U.S. Operations Mission of the International Cooperation Administration. Al Marj area, located in the Province of Cyrenaica on the southern coast of the Mediterranean Sea, contains a land area of about 6,770 square kilometers. Along the Mediterranean shore is a narrow coastal plain that rises evenly to the base of an escarpment that forms the seaward front of an undulating plateau known as. Al Jabal al Akhgiar. The climate is semiarid; seasonal rainfall occurs during the winter months. Owing to orographic effects, the rainfall is somewhat higher in the Jabal than in the coastal plain. The average annual rainfall ranges from about 250 millimeters in the coastal plain to 450 millimeters on the Jabal. All the streams (wadis) of the area are ephemeral and flow only in response to heavy rains of the winter season. From a drainage divide on the Jabal some streams flow north and northwest toward the sea and the others, south and southeast to the interior desert. Solution features, such as limestone sink holes, are common in the coastal plain and a large solution depression occurs near Al Marj. The rocks of A1 Marj area consist predominantly of limestone and some sandstone and shale; they range from Cretaceous to Miocene age. On the coastal plain Miocene limestone is locally mantled by Quaternary alluvial, beach and lagoonal deposits. The Miocene and older beds have a regional southerly dip. These rocks are broken by northeast-trending normal faults in the coastal and inland escarpments. The ground-water reservoir is contained chiefly in fractures, bedding planes, and solution openings in the

  14. GENERAL ACTIVITY AND PROTECTIVE BEHAVIOUR OF THE EUROPEAN GROUND SQUIRREL (SPERMOPHILUS CITELLUS IN CAPTIVITY

    Directory of Open Access Journals (Sweden)

    Sandra Franova

    2013-09-01

    Full Text Available We decided to focus our research on two of the basic forms of ground squirrel s behaviour in the semi natural conditions of zoological gardens general activity and protective behavior. Our main goal was to perform a complex analysis of the ground squirrel s behaviour living in captivity and to compare the various categories of behaviour on a set timeline. We performed our research throughout the span of two years 2011 2012, during which we observed two separate ground squirrel colonies A, B. We took our compiled information and subjected these to a thorough statistical analysis and main tools of comparison. Based on a long term observation and analysis of the results, we were able to gather very detailed information about the two categories of the ground squirrel s behavior as well as the various periods on the timeline, which were worked into the ethogram of the ground squirrels living in captivity. The results from 2011 confirmed that the behavior of the ground squirrel bred in captivity both observed categories in the same way as was observed in the wild reaches two peaks with raised frequencies in manifestation of given behavior, mostly in the daily time periods, the first from 9am to 11am and the second from 2.30pm to 5pm. We also noted a change in 2012, when there was a reconstruction nearby the aviaries. These reconstructive activities influenced the behavior significant decrease of activity of the ground squirrels in the presence of the assigned workers approximately until 3pm, from which time also in connection with the lessening of the worker s presence the ground squirrels activity in their aviaries begun to rapidly rise, which held on until 5pm. The peak of protective behavior in 2012 has reached higher levels than the peak in 2011, which we attribute to their vigilance after the previous presence of people. Our results may serve as a basis for improvement of the life conditions of the ground squirrels bred in captivity as well as

  15. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site near Naturita, Colorado

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-08-01

    The Uranium Mill Tailings Remedial Action (UMTRA) Project consists of the Surface Project (phase I), and the Ground Water Project (phase II). For the UMTRA Project site located near Naturita, Colorado (the Naturita site), phase I involves the removal of radioactively contaminated soils and materials and their transportation to a disposal site at Union Carbide Corporation`s Upper Burbank Repository at Uravan, Colorado, about 13 road miles (mi) (21 kilometers [km]) to the northwest. No uranium mill tailings are involved because the tailings were removed from the Naturita site and placed at Coke Oven, Colorado, during 1977 to 1979. Phase II of the project will evaluate the nature and extent of ground water contamination resulting from uranium processing and its effect on human health or the environment; and will determine site-specific ground water compliance strategies in accordance with the US Environmental Protection Agency (EPA) ground water standards established for the UMTRA Project. Human health risks could occur from drinking water pumped from a hypothetical well drilled in the contaminated ground water area. Environmental risks may result if plants or animals are exposed to contaminated ground water, or surface water that has received contaminated ground water. Therefore, a risk assessment is conducted for the Naturita site. This risk assessment report is the first site-specific document prepared for the Ground Water Project at the Naturita site. What follows is an evaluation of current and possible future impacts to the public and the environment from exposure to contaminated ground water. The results of this evaluation and further site characterization will be used to determine whether any action is needed to protect human health or the environment.

  16. Occurrence of selected radionuclides in ground water used for drinking water in the United States; a reconnaissance survey, 1998

    Science.gov (United States)

    Focazio, Michael J.; Szabo, Zoltan; Kraemer, Thomas F.; Mullin, Ann H.; Barringer, Thomas H.; dePaul, Vincent T.

    2001-01-01

    The U.S. Geological Survey, in collaboration with the U.S. Environmental Protection Agency, the American Water Works Association, and the American Water Works Service Company, completed a targeted national reconnaissance survey of selected radionuclides in public ground-water supplies. Radionuclides analyzed included radium-224 (Ra-224), radium-226 (Ra-226), radium-228 (Ra-228), polonium-210 (Po-210) and lead-210 (Pb-210).This U.S. Geological Survey reconnaissance survey focused intentionally on areas with known or suspected elevated concentrations of radium in ground water to determine if Ra-224 was also present in the areas where other isotopes of radium had previously been detected and to determine the co-occurrence characteristics of the three radium isotopes (Ra-224, Ra-226, and Ra-228) in those areas. Ninety-nine raw-water samples (before water treatment) were collected once over a 6-month period in 1998 and 1999 from wells (94 of which are used for public drinking water) in 27 States and 8 physiographic provinces. Twenty-one of the 99 samples exceeded the current U.S. Environmental Protection Agency drinking-water maximum contaminant level of 5 picocuries per liter (pCi/L) for combined radium (Ra-226 + Ra-228). Concentrations of Ra-224 were reported to exceed 1 pCi/L in 30 percent of the samples collected, with a maximum concentration of 73.6 pCi/L measured in water from a nontransient, noncommunity, public-supply well in Maryland. Radium-224 concentrations generally were higher than those of the other isotopes of radium. About 5 percent of the samples contained concentrations of Ra-224 greater than 10 pCi/L, whereas only 2 percent exceeded 10 pCi/L for either Ra-226 or Ra-228. Concentrations of Ra-226 greater than 1 pCi/L were reported in 33 percent of the samples, with a maximum concentration of 16.9 pCi/L measured in water from a public-supply well in Iowa. Concentrations of Ra-228 greater than 1 pCi/L were reported in 22 samples, with a maximum

  17. A Rule-Based Local Search Algorithm for General Shift Design Problems in Airport Ground Handling

    DEFF Research Database (Denmark)

    Clausen, Tommy

    We consider a generalized version of the shift design problem where shifts are created to cover a multiskilled demand and fit the parameters of the workforce. We present a collection of constraints and objectives for the generalized shift design problem. A local search solution framework with mul...... with multiple neighborhoods and a loosely coupled rule engine based on simulated annealing is presented. Computational experiments on real-life data from various airport ground handling organization show the performance and flexibility of the proposed algorithm....

  18. Ground-water contribution to dose from past Hanford Operations. Hanford Environmental Dose Reconstruction Project

    Energy Technology Data Exchange (ETDEWEB)

    Freshley, M.D.; Thorne, P.D.

    1992-08-01

    The Hanford Environmental Dose Reconstruction (HEDR) Project is being conducted to estimate radiation doses that populations and individuals could have received from Hanford Site operations from 1944 to the present. Four possible pathways by which radionuclides migrating in ground water on the Hanford Site could have reached the public have been identified: (1) through contaminated ground water migrating to the Columbia River; (2) through wells on or adjacent to the Hanford Site; (3) through wells next to the Columbia River downstream of Hanford that draw some or all of their water from the river (riparian wells); and (4) through atmospheric deposition resulting in contamination of a small watershed that, in turn, results in contamination of a shallow well or spring by transport in the ground water. These four pathways make up the ``ground-water pathway,`` which is the subject of this study. Assessment of the ground-water pathway was performed by (1) reviewing the existing extensive literature on ground water and ground-water monitoring at Hanford and (2) performing calculations to estimate radionuclide concentrations where no monitoring data were collected. Radiation doses that would result from exposure to these radionuclides were calculated.

  19. Ground-water flow and the potential effects of remediation at Graces Quarters, Aberdeen Proving Ground, Maryland

    Science.gov (United States)

    Tenbus, F.J.; Fleck, W.B.

    1996-01-01

    Ground water in the east-central part of Graces Quarters, a former open-air chemical-agent test facility at Aberdeen Proving Ground, Maryland, is contaminated with chlorinated volatile organic compounds. The U.S. Geological Survey's finite- difference model was used to help understand ground-water flow and simulate the effects of alternative remedial actions to clean up the ground water. Scenarios to simulate unstressed conditions and three extraction well con- figurations were used to compare alternative remedial actions on the contaminant plume. The scenarios indicate that contaminants could migrate from their present location to wetland areas within 10 years under unstressed conditions. Pumping 7 gal/min (gallons per minute) from one well upgradient of the plume will not result in containment or removal of the highest contaminant concentrations. Pumping 7 gal/min from three wells along the central axis of the plume should result in containment and removal of dissolved contami- nants, as should pumping 7 gal/min from three wells at the leading edge of the plume while injecting 7 gal/min back into an upgradient well.

  20. Ground water in the Sirte area, Tripolitania, United Kingdom of Libya

    Science.gov (United States)

    Ogilbee, William

    1964-01-01

    The present study of the ground-water conditions in the Sirte area was made during December 1961 and March-April 1962 at the request of officials of the Government of Libya. Particular attention was given to the potential of the fresh-water aquifer near Qasr Bu Itadi as a source of water for Sirte. The Sirte area lies on the southern coast of the Mediterranean Sea about 450 kilometers east-southeast of Tripoli, cocapital of Libya. Although the area receives some winter precipitation, the climate is arid. The surface rocks of the area are chiefly Miocene limestone containing marl, clay, and some sandstone, though Quaternary deposits occur along the wadis and mantle the Miocene rocks in the coastal plain. Fresh ground water occurs locally in Recent sand dunes near Zaafran and in Miocene limestone near Qasr Bu Hadi, south of a probable fault. Elsewhere in the Sirte area, ground water occurs generally in Tertiary rocks but contains 3,000 or more parts per million of dissolved solids. To establish the hydraulic characteristics of the fresh-water aquifer in the Qasr Bu Itadi area, two test wells were drilled and a controlled pumping test was made. The coefficient of transmissibility was found to be about 25,000 gallons per day per foot (13.68 cubic meters per hour per meter), and the coefficient of storage, about 0.00055. The pumping test also established the presence of two barrier-type hydraulic boundaries for the aquifer, one about 250 meters westward and another about 535 meters northward from well 9a. The first boundary is probably the small anticline on which stands the fort of Qasr Bu Itadi; the second boundary is probably a northwest trending fault. Using the transmissibility and storage coefficients derived from the pumping test, the writer concludes that (1) the total draft from the fresh-water aquifer should not exceed 13.5 cubic meters per hour and (2) production wells should be at least 3 kilometers south of well 9a.

  1. Hydrogeologic Setting and Ground-Water Flow in the Leetown Area, West Virginia

    Science.gov (United States)

    Kozar, Mark D.; Weary, David J.; Paybins, Katherine S.; Pierce, Herbert A.

    2007-01-01

    The Leetown Science Center is a research facility operated by the U.S. Geological Survey that occupies approximately 455-acres near Kearneysville, Jefferson County, West Virginia. Aquatic and fish research conducted at the Center requires adequate supplies of high-quality, cold ground water. Three large springs and three production wells currently (in 2006) supply water to the Center. The recent construction of a second research facility (National Center for Cool and Cold Water Aquaculture) operated by the U.S. Department of Agriculture and co-located on Center property has placed additional demands on available water resources in the area. A three-dimensional steady-state finite-difference ground-water flow model was developed to simulate ground-water flow in the Leetown area and was used to assess the availability of ground water to sustain current and anticipated future demands. The model also was developed to test a conceptual model of ground-water flow in the complex karst aquifer system in the Leetown area. Due to the complexity of the karst aquifer system, a multidisciplinary research study was required to define the hydrogeologic setting. Geologic mapping, surface- and borehole-geophysical surveys, stream base-flow surveys, and aquifer tests were conducted to provide the hydrogeologic data necessary to develop and calibrate the model. It would not have been possible to develop a numerical model of the study area without the intensive data collection and methods developments components of the larger, more comprehensive hydrogeologic investigation. Results of geologic mapping and surface-geophysical surveys verified the presence of several prominent thrust faults and identified additional faults and other complex geologic structures (including overturned anticlines and synclines) in the area. These geologic structures are known to control ground-water flow in the region. Results of this study indicate that cross-strike faults and fracture zones are major

  2. Application of nonlinear-regression methods to a ground-water flow model of the Albuquerque Basin, New Mexico

    Science.gov (United States)

    Tiedeman, C.R.; Kernodle, J.M.; McAda, D.P.

    1998-01-01

    flow from adjacent regions; irrigation and septic field seepage; and leakage through the Rio Grande, canal, and Cochiti Reservoir beds. Ground water is discharged from the basin by withdrawal; evapotranspiration; subsurface flow; and flow to the Rio Grande, canals, and drains. The transient, three-dimensional numerical model of ground-water flow to which nonlinear-regression methods were applied simulates flow in the Albuquerque Basin from 1900 to March 1995. Six different basin subsurface configurations are considered in the model. These configurations are designed to test the effects of (1) varying the simulated basin thickness, (2) including a hypothesized hydrogeologic unit with large hydraulic conductivity in the western part of the basin (the west basin high-K zone), and (3) substantially lowering the simulated hydraulic conductivity of a fault in the western part of the basin (the low-K fault zone). The model with each of the subsurface configurations was calibrated using a nonlinear least- squares regression technique. The calibration data set includes 802 hydraulic-head measurements that provide broad spatial and temporal coverage of basin conditions, and one measurement of net flow from the Rio Grande and drains to the ground-water system in the Albuquerque area. Data are weighted on the basis of estimates of the standard deviations of measurement errors. The 10 to 12 parameters to which the calibration data as a whole are generally most sensitive were estimated by nonlinear regression, whereas the remaining model parameter values were specified. Results of model calibration indicate that the optimal parameter estimates as a whole are most reasonable in calibrations of the model with with configurations 3 (which contains 1,600-ft-thick basin deposits and the west basin high-K zone), 4 (which contains 5,000-ft-thick basin de

  3. Linking ground-water age and chemistry data along flow paths: Implications for trends and transformations of nitrate and pesticides

    Science.gov (United States)

    Tesoriero, Anthony J.; Saad, David A.; Burow, Karen R.; Frick, Elizabeth A.; Puckett, Larry J.; Barbash, Jack E.

    2007-10-01

    Tracer-based ground-water ages, along with the concentrations of pesticides, nitrogen species, and other redox-active constituents, were used to evaluate the trends and transformations of agricultural chemicals along flow paths in diverse hydrogeologic settings. A range of conditions affecting the transformation of nitrate and pesticides (e.g., thickness of unsaturated zone, redox conditions) was examined at study sites in Georgia, North Carolina, Wisconsin, and California. Deethylatrazine (DEA), a transformation product of atrazine, was typically present at concentrations higher than those of atrazine at study sites with thick unsaturated zones but not at sites with thin unsaturated zones. Furthermore, the fraction of atrazine plus DEA that was present as DEA did not increase as a function of ground-water age. These findings suggest that atrazine degradation occurs primarily in the unsaturated zone with little or no degradation in the saturated zone. Similar observations were also made for metolachlor and alachlor. The fraction of the initial nitrate concentration found as excess N 2 (N 2 derived from denitrification) increased with ground-water age only at the North Carolina site, where oxic conditions were generally limited to the top 5 m of saturated thickness. Historical trends in fluxes to ground water were evaluated by relating the times of recharge of ground-water samples, estimated using chlorofluorocarbon concentrations, with concentrations of the parent compound at the time of recharge, estimated by summing the molar concentrations of the parent compound and its transformation products in the age-dated sample. Using this approach, nitrate concentrations were estimated to have increased markedly from 1960 to the present at all study sites. Trends in concentrations of atrazine, metolachlor, alachlor, and their degradates were related to the timing of introduction and use of these compounds. Degradates, and to a lesser extent parent compounds, were detected

  4. Ground water flow analysis of a mid-Atlantic outer coastal plain watershed, Virginia, U.S.A.

    Science.gov (United States)

    Robinson, Michael A; Reay, William G

    2002-01-01

    Models for ground water flow (MODFLOW) and particle tracking (MODPATH) were used to determine ground water flow patterns, principal ground water discharge and recharge zones, and estimates of ground water travel times in an unconfined ground water system of an outer coastal plain watershed on the Delmarva Peninsula, Virginia. By coupling recharge and discharge zones within the watershed, flowpath analysis can provide a method to locate and implement specific management strategies within a watershed to reduce ground water nitrogen loading to surface water. A monitoring well network was installed in Eyreville Creek watershed, a first-order creek, to determine hydraulic conductivities and spatial and temporal variations in hydraulic heads for use in model calibration. Ground water flow patterns indicated the convergence of flow along the four surface water features of the watershed; primary discharge areas were in the nontidal portions of the watershed. Ground water recharge zones corresponded to the surface water features with minimal development of a regional ground water system. Predicted ground water velocities varied between water features. Some ground water residence times exceeded 100 years, although average residence times ranged between 16 and 21 years; approximately 95% of the ground water resource would reflect land use activities within the last 50 years.

  5. Monitoring of the antioxidant BHT and its metabolite BHT-CHO in German river water and ground water.

    Science.gov (United States)

    Fries, Elke; Püttmann, Wilhelm

    2004-02-05

    The behavior of anthropogenic polar organic compounds in ground water during infiltration of river water to ground water was studied at the Oderbruch area on the eastern border of Germany. Additionally, waste water sewage treatment works (STWs) discharging their treated waste water into the Oder River and rain water precipitation from the Oderbruch area were investigated. The study was carried out from March 2000 to July 2001 to investigate seasonal variations of the target analytes. Samples were collected from four sites along the Oder River, from 24 ground water monitoring wells located close to the Oder, from one rain water collection station, from two roof runoffs, and from four STWs upstream of the Oderbruch. Results of the investigations of the antioxidant 3,5-di-tert-butyl-4-hydroxy-toluene (BHT) and its degradation product 3,5-di-tert-butyl-4-hydroxy-benzaldehyde (BHT-CHO) are presented. BHT and BHT-CHO were detected in all samples of the Oder River with mean concentrations of 178 and 102 ngl(-1), respectively. BHT and BHT-CHO were also detected in effluent waste water samples from municipal STWs at mean concentrations of 132 and 70 ngl(-1), respectively. Both compounds are discharged into river water directly via treated waste water. In the rain water sample, 308 ngl(-1) of BHT and 155 ngl(-1) of BHT-CHO were measured. Both compounds were detected in roof runoff with mean concentrations of 92 ngl(-1) for BHT and 138 ngl(-1) for BHT-CHO. The median values of BHT and BHT-CHO in ground water samples were 132 and 84 ngl(-1), respectively. The chemical composition of ground water from parts of the aquifer located less than 4.5 m distant from the river are greatly influenced by bank filtration. However, wet deposition followed by seepage of rain water into the aquifer is also a source of BHT and BHT-CHO in ground water.

  6. Modeling surface and ground water mixing in the hyporheic zone using MODFLOW and MT3D

    Science.gov (United States)

    Lautz, Laura K.; Siegel, Donald I.

    2006-11-01

    We used a three-dimensional MODFLOW model, paired with MT3D, to simulate hyporheic zones around debris dams and meanders along a semi-arid stream. MT3D simulates both advective transport and sink/source mixing of solutes, in contrast to particle tracking (e.g. MODPATH), which only considers advection. We delineated the hydrochemically active hyporheic zone based on a new definition, specifically as near-stream subsurface zones receiving a minimum of 10% surface water within a 10-day travel time. Modeling results indicate that movement of surface water into the hyporheic zone is predominantly an advective process. We show that debris dams are a key driver of surface water into the subsurface along the experimental reach, causing the largest flux rates of water across the streambed and creating hyporheic zones with up to twice the cross-sectional area of other hyporheic zones. Hyporheic exchange was also found in highly sinuous segments of the experimental reach, but flux rates are lower and the cross-sectional areas of these zones are generally smaller. Our modeling approach simulated surface and ground water mixing in the hyporheic zone, and thus provides numerical approximations that are more comparable to field-based observations of surface-groundwater exchange than standard particle-tracking simulations.

  7. Results of ground-water, surface-water, and water-chemistry monitoring, Black Mesa area, northeastern Arizona, 1994

    Science.gov (United States)

    Littin, G.R.; Monroe, S.A.

    1995-01-01

    The Black Mesa monitoring program is designed to document long-term effects of ground-water pumping from the N aquifer by industrial and municipal users. The N aquifer is the major source of water in the 5,400-square-mile Black Mesa area, and the ground water occurs under confined and unconfined conditions. Monitoring activities include continuous and periodic measurements of (1) ground-water pumpage from the confined and unconfined areas of the aquifer, (2) ground-water levels in the confined and unconfined areas of the aquifer, (3) surface-water discharge, and (4) chemistry of the ground water and surface water. In 1994, ground-water withdrawals for industrial and municipal use totaled about 7,000 acre-feet, which is an 8-percent increase from the previous year. Pumpage from the confined part of the aquifer increased by about 9 percent to 5,400 acre-feet, and pumpage from the unconfined part of the aquifer increased by about 2 percent to 1,600 acre-feet. Water-level declines in the confined area during 1994 were recorded in 10 of 16 wells, and the median change was a decline of about 2.3 feet as opposed to a decline of 3.3 feet for the previous year. The median change in water levels in the unconfined area was a rise of 0.1 foot in 1994 as opposed to a decline of 0.5 foot in 1993. Measured low-flow discharge along Moenkopi Wash decreased from 3.0 cubic feet per second in 1993 to 2.9 cubic feet per second in 1994. Eleven low-flow measurements were made along Laguna Creek between Tsegi, Arizona, and Chinle Wash to determine the amount of discharge that would occur as seepage from the N aquifer under optimal base-flow conditions. Discharge was 5.6 cubic feet per second near Tsegi and 1.5 cubic feet per second above the confluence with Chinle Wash. Maximum discharge was 5.9 cubic feet per second about 4 miles upstream from Dennehotso. Discharge was measured at three springs. The changes in discharge at Burro and Whisky Springs were small and within the uncertainty of

  8. Ground-water basic data for Griggs and Steele Counties, North Dakota

    Science.gov (United States)

    Downey, Joe S.

    1973-01-01

    The objectives of the hydrologic investigation in Griggs and Steele Counties, N. Dak. (fig. 1) were to: (1) determine the location, extent, and nature of the major aquifers; (2) evaluate the occurrence and movement of ground water, including recharge and discharge; (3) estimate the quantities of water stored in the aquifers; (4) estimate the potential yields of wells tapping the major aquifers; and (5) determine the chemical quality of the ground water.

  9. Nutrient Enrichment in Estuaries from Discharge of Shallow Ground Water, Mt. Desert Island, Maine

    Science.gov (United States)

    Culbertson, Charles W.; Huntington, Thomas G.; Caldwell, James M.

    2007-01-01

    Nutrient enrichment from atmospheric deposition, agricultural activities, wildlife, and domestic sources is a concern at Acadia National Park because of the potential problem of water-quality degradation and eutrophication in its estuaries. Water-quality degradation has been observed at the Park?s Bass Harbor Marsh estuary but not in Northeast Creek estuary. Previous studies at Acadia National Park have estimated nutrient inputs to estuaries from atmospheric deposition and surface-water runoff, but the importance of shallow ground water that may contain nutrients derived from domestic or other sources is unknown. Northeast Creek and Bass Harbor Marsh estuaries were studied to (1) identify shallow ground-water seeps, (2) assess the chemistry of the water discharged from selected seeps, and (3) assess the chemistry of ground water in shallow ground-water hyporheic zones. The hyporheic zone is defined here as the region beneath and lateral to a stream bed, where there is mixing of shallow ground water and surface water. This study also provides baseline chemical data for ground water in selected bedrock monitoring wells and domestic wells on Mt. Desert Island. Water samples were analyzed for concentrations of nutrients, wastewater compounds, dissolved organic carbon, pH, dissolved oxygen, temperature and specific conductance. Samples from bedrock monitoring wells also were analyzed for alkalinity, major cations and anions, and trace metals. Shallow ground-water seeps to Northeast Creek and Bass Harbor Marsh estuaries at Acadia National Park were identified and georeferenced using aerial infrared digital imagery. Monitoring included the deployment of continuously recording temperature and specific conductance sensors in the seep discharge zone to access marine or freshwater signatures related to tidal flooding, gradient-driven shallow ground-water flow, or shallow subsurface flow related to precipitation events. Many potential shallow ground-water discharge zones were

  10. A feasibility study to estimate minimum surface-casing depths of oil and gas wells to prevent ground-water contamination in four areas of western Pennsylvania

    Science.gov (United States)

    Buckwalter, T.F.; Squillace, P.J.

    1995-01-01

    base of readily observed fresh ground water. Casing depths are selected generally to maximize drilling efficiency and to stop freshwater from entering the well and subsequently interfering with hydrocarbon recovery. The depths of surface casing generally are not selected with ground-water protection in mind. However, on the basis of existing hydrologic data, most freshwater aquifers generally are protected with current casing depths. Minimum surface-casing depths for deep gas wells are prescribed by Pennsylvania Department of Environmental Resources regulations and appear to be adequate to prevent ground-water contamination, in most respects, for the only study area with deep gas fields examined in Crawford County.

  11. Nitrate reduction during ground-water recharge, Southern High Plains, Texas

    Science.gov (United States)

    Fryar, Alan E.; Macko, Stephen A.; Mullican, William F., III; Romanak, Katherine D.; Bennett, Philip C.

    2000-01-01

    In arid and semi-arid environments, artificial recharge or reuse of wastewater may be desirable for water conservation, but NO 3- contamination of underlying aquifers can result. On the semi-arid Southern High Plains (USA), industrial wastewater, sewage, and feedlot runoff have been retained in dozens of playas, depressions that focus recharge to the regionally important High Plains (Ogallala) aquifer. Analyses of ground water, playa-basin core extracts, and soil gas in an 860-km 2 area of Texas suggest that reduction during recharge limits NO 3- loading to ground water. Tritium and Cl - concentrations in ground water corroborate prior findings of focused recharge through playas and ditches. Typical δ15N values in ground water (>12.5‰) and correlations between δ15N and ln CNO -3-N suggest denitrification, but O 2 concentrations ≥3.24 mg l -1 indicate that NO 3- reduction in ground water is unlikely. The presence of denitrifying and NO 3--respiring bacteria in cores, typical soil-gas δ15N values water can still exceed drinking-water standards, as observed in the vicinity of one playa that received wastewater. Therefore, continued ground-water monitoring in the vicinity of other such basins is warranted.

  12. Changes in ground-water quality in the Canal Creek Aquifer between 1995 and 2000-2001, West Branch Canal Creek area, Aberdeen Proving Ground, Maryland

    Science.gov (United States)

    Phelan, Daniel J.; Fleck, William B.; Lorah, Michelle M.; Olsen, Lisa D.

    2002-01-01

    Since 1917, Aberdeen Proving Ground, Maryland has been the primary chemical-warfare research and development center for the U.S. Army. Ground-water contamination has been documented in the Canal Creek aquifer because of past disposal of chemical and ordnance manufacturing waste. Comprehensive sampling for volatile organic compounds in ground water by the U.S. Geological Survey in the West Branch Canal Creek area was done in June?October 1995 and June?August 2000. The purpose of this report is (1) to compare volatile organic compound concentrations and determine changes in the ground-water contaminant plumes along two cross sections between 1995 and 2000, and (2) to incorporate data from new piezometers sampled in spring 2001 into the plume descriptions. Along the southern cross section, total concentrations of volatile organic compounds in 1995 were determined to be highest in the landfill area east of the wetland (5,200 micrograms per liter), and concentrations were next highest deep in the aquifer near the center of the wetland (3,300 micrograms per liter at 35 feet below land surface). When new piezometers were sampled in 2001, higher carbon tetrachloride and chloroform concentrations (2,000 and 2,900 micrograms per liter) were detected deep in the aquifer 38 feet below land surface, west of the 1995 sampling. A deep area in the aquifer close to the eastern edge of the wetland and a shallow area just east of the creek channel showed declines in total volatile organic compound concentrations of more than 25 percent, whereas between those two areas, con-centrations generally showed an increase of greater than 25 percent between 1995 and 2000. Along the northern cross section, total concentrations of volatile organic compounds in ground water in both 1995 and 2000 were determined to be highest (greater than 2,000 micrograms per liter) in piezometers located on the east side of the section, farthest from the creek channel, and concentrations were progressively lower

  13. Vadose zone-attenuated artificial recharge for input to a ground water model.

    Science.gov (United States)

    Nichols, William E; Wurstner, Signe K; Eslinger, Paul W

    2007-01-01

    Accurate representation of artificial recharge is requisite to calibration of a ground water model of an unconfined aquifer for a semiarid or arid site with a vadose zone that imparts significant attenuation of liquid transmission and substantial anthropogenic liquid discharges. Under such circumstances, artificial recharge occurs in response to liquid disposal to the vadose zone in areas that are small relative to the ground water model domain. Natural recharge, in contrast, is spatially variable and occurs over the entire upper boundary of a typical unconfined ground water model. An improved technique for partitioning artificial recharge from simulated total recharge for inclusion in a ground water model is presented. The improved technique is applied using data from the semiarid Hanford Site. From 1944 until the late 1980s, when Hanford's mission was the production of nuclear materials, the quantities of liquid discharged from production facilities to the ground vastly exceeded natural recharge. Nearly all hydraulic head data available for use in calibrating a ground water model at this site were collected during this period or later, when the aquifer was under the diminishing influence of the massive water disposals. The vadose zone is typically 80 to 90 m thick at the Central Plateau where most production facilities were located at this semiarid site, and its attenuation of liquid transmission to the aquifer can be significant. The new technique is shown to improve the representation of artificial recharge and thereby contribute to improvement in the calibration of a site-wide ground water model.

  14. Heat, chloride, and specific conductance as ground water tracers near streams

    Science.gov (United States)

    Cox, M.H.; Su, G.W.; Constantz, J.

    2007-01-01

    Commonly measured water quality parameters were compared to heat as tracers of stream water exchange with ground water. Temperature, specific conductance, and chloride were sampled at various frequencies in the stream and adjacent wells over a 2-year period. Strong seasonal variations in stream water were observed for temperature and specific conductance. In observation wells where the temperature response correlated to stream water, chloride and specific conductance values were similar to stream water values as well, indicating significant stream water exchange with ground water. At sites where ground water temperature fluctuations were negligible, chloride and/or specific conductance values did not correlate to stream water values, indicating that ground water was not significantly influenced by exchange with stream water. Best-fit simulation modeling was performed at two sites to derive temperature-based estimates of hydraulic conductivities of the alluvial sediments between the stream and wells. These estimates were used in solute transport simulations for a comparison of measured and simulated values for chloride and specific conductance. Simulation results showed that hydraulic conductivities vary seasonally and annually. This variability was a result of seasonal changes in temperature-dependent hydraulic conductivity and scouring or clogging of the streambed. Specific conductance fits were good, while chloride data were difficult to fit due to the infrequent (quarterly) stream water chloride measurements during the study period. Combined analyses of temperature, chloride, and specific conductance led to improved quantification of the spatial and temporal variability of stream water exchange with shallow ground water in an alluvial system. ?? 2007 National Ground Water Association.

  15. Evaluation of chemical sensors for in situ ground-water monitoring at the Hanford Site

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, E.M.; Hostetler, D.D.

    1989-03-01

    This report documents a preliminary review and evaluation of instrument systems and sensors that may be used to detect ground-water contaminants in situ at the Hanford Site. Three topics are covered in this report: (1) identification of a group of priority contaminants at Hanford that could be monitored in situ, (2) a review of current instrument systems and sensors for environmental monitoring, and (3) an evaluation of instrument systems that could be used to monitor Hanford contaminants. Thirteen priority contaminants were identified in Hanford ground water, including carbon tetrachloride and six related chlorinated hydrocarbons, cyanide, methyl ethyl ketone, chromium (VI), fluoride, nitrate, and uranium. Based on transduction principles, chemical sensors were divided into four classes, ten specific types of instrument systems were considered: fluorescence spectroscopy, surface-enhanced Raman spectroscopy (SERS), spark excitation-fiber optic spectrochemical emission sensor (FOSES), chemical optrodes, stripping voltammetry, catalytic surface-modified ion electrode immunoassay sensors, resistance/capacitance, quartz piezobalance and surface acoustic wave devices. Because the flow of heat is difficult to control, there are currently no environmental chemical sensors based on thermal transduction. The ability of these ten instrument systems to detect the thirteen priority contaminants at the Hanford Site at the required sensitivity was evaluated. In addition, all ten instrument systems were qualitatively evaluated for general selectivity, response time, reliability, and field operability. 45 refs., 23 figs., 7 tabs.

  16. Simulated water budgets and ground-water/surface-water interactions in Bushkill and parts of Monocacy Creek watersheds, Northampton County, Pennsylvania--a preliminary study with identification of data needs

    Science.gov (United States)

    Risser, Dennis W.

    2006-01-01

    This report, prepared in cooperation with the Department of Environmental Protection, Office of Mineral Resources Management, provides a preliminary analysis of water budgets and generalized ground-water/surface-water interactions for Bushkill and parts of Monocacy Creek watersheds in Northampton County, Pa., by use of a ground-water flow model. Bushkill Creek watershed was selected for study because it has areas of rapid growth, ground-water withdrawals from a quarry, and proposed stream-channel modifications, all of which have the potential for altering ground-water budgets and the interaction between ground water and streams. Preliminary 2-dimensional, steady-state simulations of ground-water flow by the use of MODFLOW are presented to show the status of work through September 2005 and help guide ongoing data collection in Bushkill Creek watershed. Simulations were conducted for (1) predevelopment conditions, (2) a water table lowered for quarry operations, and (3) anthropogenic changes in hydraulic conductivity of the streambed and aquifer. Preliminary results indicated under predevelopment conditions, the divide between the Bushkill and Monocacy Creek ground-water basins may not have been coincident with the topographic divide and as much as 14 percent of the ground-water discharge to Bushkill Creek may have originated from recharge in the Monocacy Creek watershed. For simulated predevelopment conditions, Schoeneck Creek and parts of Monocacy Creek were dry, but Bushkill Creek was gaining throughout all reaches. Simulated lowering of the deepest quarry sump to an altitude of 147 feet for quarry operations caused ground-water recharge and streamflow leakage to be diverted to the quarry throughout about 14 square miles and caused reaches of Bushkill and Little Bushkill Creeks to change from gaining to losing streams. Lowering the deepest quarry sump to an altitude of 100 feet caused simulated ground-water discharge to the quarry to increase about 4 cubic feet

  17. INVESTIGATIONS OF PHYSICO-CHEMICAL STATUS OF GROUND WATER OF SINGRAULI DISTRICT, MADHYA PRADESH, INDIA

    Directory of Open Access Journals (Sweden)

    Rajesh Pandey et al

    2012-10-01

    Full Text Available Ground water is the most preferred water source in current scenario. Once believed to be safe from pollution as it is available many band below the surface, is now provided to be prone to pollution by research investigators. Various causes associated for the contamination of ground water. The major cause of the contamination of ground water may be due to improper disposal of industrial waste. The effort was made to assess the quality of ground water and thrash out the portability of ground water by physico-chemical temperament. Present study was carried out to assess the ground water quality of Singrauli district an energy hub station of Madhya Pradesh state of India Study was conduct in year 2012 by selecting 13 different spots, covered all the four directions of Singrauli. Ground water samples were taken from different sources such as bore well, well water, municipal supplier water etc. Investigations of Physico-chemical characteristics of groundwater quality based on Physico-chemical parameters have been taken up to evaluate its suitability for different objects. Quality analysis has been made through in terms of pH, EC, TDS, Total Hardness, Sodium, Potassium, Calcium, Magnesium, Chloride, Sulphate, Nitrate, Fluoride and Alkalinity. Comparative studies of collected samples indicated that there is no appreciable change in the different parameters during sampling season. The results were compared with standards prescribed by WHO and ICMR. The results showed that high total hardness content indicating the need of some treatment for minimization. Other investigated samples were found within the water quality standards but the quality of water is not completely favorable as per standard human requirement. Water is not completely fit for drinking purpose due to improper management of disposal of industrials, mines waste or garbage in these local energy hub environments.

  18. Characterization of Preferential Ground-Water Seepage From a Chlorinated Hydrocarbon-Contaminated Aquifer to West Branch Canal Creek, Aberdeen Proving Ground, Maryland, 2002-04

    Science.gov (United States)

    Majcher, Emily H.; Phelan, Daniel J.; Lorah, Michelle M.; McGinty, Angela L.

    2007-01-01

    Wetlands act as natural transition zones between ground water and surface water, characterized by the complex interdependency of hydrology, chemical and physical properties, and biotic effects. Although field and laboratory demonstrations have shown efficient natural attenuation processes in the non-seep wetland areas and stream bottom sediments of West Branch Canal Creek, chlorinated volatile organic compounds are present in a freshwater tidal creek at Aberdeen Proving Ground, Maryland. Volatile organic compound concentrations in surface water indicate that in some areas of the wetland, preferential flow paths or seeps allow transport of organic compounds from the contaminated sand aquifer to the overlying surface water without undergoing natural attenuation. From 2002 through 2004, the U.S. Geological Survey, in cooperation with the Environmental Conservation and Restoration Division of the U.S. Army Garrison, Aberdeen Proving Ground, characterized preferential ground-water seepage as part of an ongoing investigation of contaminant distribution and natural attenuation processes in wetlands at this site. Seep areas were discrete and spatially consistent during thermal infrared surveys in 2002, 2003, and 2004 throughout West Branch Canal Creek wetlands. In these seep areas, temperature measurements in shallow pore water and sediment more closely resembled those in ground water than those in nearby surface water. Generally, pore water in seep areas contaminated with chlorinated volatile organic compounds had lower methane and greater volatile organic compound concentrations than pore water in non-seep wetland sediments. The volatile organic compounds detected in shallow pore water in seeps were spatially similar to the dominant volatile organic compounds in the underlying Canal Creek aquifer, with both parent and anaerobic daughter compounds detected. Seep locations characterized as focused seeps contained the highest concentrations of chlorinated parent compounds

  19. Ground Water Atlas of the United States: Segment 3, Kansas, Missouri, Nebraska

    Science.gov (United States)

    Miller, James A.; Appel, Cynthia L.

    1997-01-01

    The three States-Kansas, Missouri, and Nebraska-that comprise Segment 3 of this Atlas are in the central part of the United States. The major rivers that drain these States are the Niobrara, the Platte, the Kansas, the Arkansas, and the Missouri; the Mississippi River is the eastern boundary of the area. These rivers supply water for many uses but ground water is the source of slightly more than one-half of the total water withdrawn for all uses within the three-State area. The aquifers that contain the water consist of consolidated sedimentary rocks and unconsolidated deposits that range in age from Cambrian through Quaternary. This chapter describes the geology and hydrology of each of the principal aquifers throughout the three-State area. Some water enters Segment 3 as inflow from rivers and aquifers that cross the segment boundaries, but precipitation, as rain and snow, is the primary source of water within the area. Average annual precipitation (1951-80) increases from west to east and ranges from about 16 to 48 inches (fig. 1). The climate of the western one-third of Kansas and Nebraska, where the average annual precipitation generally is less than 20 inches per year, is considered to be semiarid. This area receives little precipitation chiefly because it is distant from the Gulf of Mexico, which is the principal source of moisture-laden air for the entire segment, but partly because it is located in the rain shadow of the Rocky Mountains. Average annual precipitation is greatest in southeastern Missouri. Much of the precipitation is returned to the atmosphere by evapotranspiration, which is the combination of evaporation from the land surface and surface-water bodies, and transpiration from plants. Some of the precipitation either flows directly into streams as overland runoff or percolates into the soil and then moves downward into aquifers where it is stored for a time and subsequently released as base flow to streams. Average annual runoff, which is the

  20. Simulations of Ground-Water Flow and Particle Pathline Analysis in the Zone of Contribution of a Public-Supply Well in Modesto, Eastern San Joaquin Valley, California

    Science.gov (United States)

    Burow, Karen R.; Jurgens, Bryant C.; Kauffman, Leon J.; Phillips, Steven P.; Dalgish, Barbara A.; Shelton, Jennifer L.

    2008-01-01

    Shallow ground water in the eastern San Joaquin Valley is affected by high nitrate and uranium concentrations and frequent detections of pesticides and volatile organic compounds (VOC), as a result of ground-water development and intensive agricultural and urban land use. A single public-supply well was selected for intensive study to evaluate the dominant processes affecting the vulnerability of public-supply wells in the Modesto area. A network of 23 monitoring wells was installed, and water and sediment samples were collected within the approximate zone of contribution of the public-supply well, to support a detailed analysis of physical and chemical conditions and processes affecting the water chemistry in the well. A three-dimensional, steady-state local ground-water-flow and transport model was developed to evaluate the age of ground water reaching the well and to evaluate the vulnerability of the well to nonpoint source input of nitrate and uranium. Particle tracking was used to compute pathlines and advective travel times in the ground-water flow model. The simulated ages of particles reaching the public-supply well ranged from 9 to 30,000 years, with a median of 54 years. The age of the ground water contributed to the public-supply well increased with depth below the water table. Measured nitrate concentrations, derived primarily from agricultural fertilizer, were highest (17 milligrams per liter) in shallow ground water and decreased with depth to background concentrations of less than 2 milligrams per liter in the deepest wells. Because the movement of water is predominantly downward as a result of ground-water development, and because geochemical conditions are generally oxic, high nitrate concentrations in shallow ground water are expected to continue moving downward without significant attenuation. Simulated long-term nitrate concentrations indicate that concentrations have peaked and will decrease in the public-supply well during the next 100 years

  1. Ground-water data for the Riley and Andrews Resource Areas, southeastern Oregon

    Science.gov (United States)

    Townley, Paul J.; Soja, Constance M.; Sidle, W.C.

    1980-01-01

    Appraisals of the resources of selected management areas in eastern Oregon are being made by the U.S. Bureau of Land Mangement. To provide needed hydrologic information, the Bureau of Land Management requested the U.S. Geological Survey to inventory ground-water data for the Riley and Andrews Resource Areas. The inventory included field location of selected wells and springs; measurement of ground-water levels, temperatures, specific conductance, and pH; and the collection of ground-water samples from selected sources to determine dissolved chemical constituents.

  2. Geohydrology and distribution of volatile organic compounds in ground water in the Casey Village area, Bucks County, Pennsylvania

    Science.gov (United States)

    Sloto, Ronald A.; Conger, Randall W.; Grazul, Kevin E.

    1998-01-01

    Casey Village and the adjoining part of the U.S. Naval Air Warfare Center (NAWC) are underlain by the Late Triassic-age Stockton Formation, which consists of a dipping series of siltstones and sandstones. The direction of vertical ground-water gradients in the Stockton Formation varies among well locations and sometimes with time. Vertical gradients can be substantial; the difference in water levels at one well pair (two wells screened at different depths) was 7.1 ft (feet) over a 32-ft vertical section of the aquifer. Potentiometric-surface maps show a groundwater divide that bisects the Casey Village area. For wells screened between 18 and 64 ft below land surface (bls), the general ground-water gradient is to the east and northeast on the east side of the divide and to the south and southwest on the west side of the divide. For wells screened between 48 and 106 ft bls, the general ground-water gradient is to the northeast on the east side of the divide and to the southwest and northwest on the west side of the divide. An aquifer test at one well in Casey Village caused drawdown in wells on the opposite side of the ground-water divide on the NAWC and shifted the ground-water divide in the deeper potentiometric surface to the west. Drawdowns formed an elliptical pattern, which indicates anisotropy; however, anisotropy is not aligned with strike or dip. Hydraulic stress caused by pumping crosses stratigraphic boundaries. Between 1993 and 1996, the trichloroethylene (TCE) concentration in water samples collected from wells in Casey Village decreased. The highest concentration of TCE measured in water from one well decreased from 1,200 mg/L (micrograms per liter) in 1993 when domestic wells were pumped in Casey Village to 140 mg/L in 1996, 3 years after the installation of public water and the cessation of domestic pumping. This suggests that pumping of domestic wells may have contributed to TCE migration. Between 1993 and 1996, the tetrachloroethylene (PCE

  3. Interaction of ground water with the Rock River near Byron, Illinois

    Science.gov (United States)

    Avery, C.F.

    1994-01-01

    Ground-water discharge to the Rock River in the study area, estimated by three independent methods, ranged from 16,300 to 30,900 cubic feet per day; the low value, determined by the use of the modified Darcy equation, is an estimate only of ground-water discharge from the southern side of the Rock River. The vertical distribution of trichloroethene (TCE) in ground water was determined at a test hole along the estimated centerline of the contaminant plume and as close to the river as property access would allow. The maximum concentrations of TCE of 3 micro- grams per liter were found at depths of 59 and 64 feet. The contaminant was dispersed across a verti- cal interval of about 75 feet at depths of 19 and 94 feet. All of the TCE in ground water discharges to the Rock River because no TCE was detected below a depth of 109 feet, and increasing vertical head gradients with depth indicate ground-water flow from a depth of 119 feet is to the river. The maximum possible discharge of TCE is estimated to be about 1.7 grams per day. A finite-difference numerical model was used to simulate ground-water flow along a vertical section through the ground-water system from the Byron Superfund site to the Rock River. Results of the ground-water flow simulation indicate that, if underflow in the St. Peter aquifer occurs beneath the Rock River, it would be water that was present at depth in the flow system at the Byron Superfund site rather than contaminated water that had recharged the system in the vicinity of the Byron Superfund site. (USGS)

  4. Ground state and orbital stability for the NLS equation on a general starlike graph with potentials

    Science.gov (United States)

    Cacciapuoti, Claudio; Finco, Domenico; Noja, Diego

    2017-08-01

    We consider a nonlinear Schrödinger equation (NLS) posed on a graph (or network) composed of a generic compact part to which a finite number of half-lines are attached. We call this structure a starlike graph. At the vertices of the graph interactions of δ-type can be present and an overall external potential is admitted. Under general assumptions on the potential, we prove that the NLS is globally well-posed in the energy domain. We are interested in minimizing the energy of the system on the manifold of constant mass (L 2-norm). When existing, the minimizer is called ground state and it is the profile of an orbitally stable standing wave for the NLS evolution. We prove that a ground state exists for sufficiently small masses whenever the quadratic part of the energy admits a simple isolated eigenvalue at the bottom of the spectrum (the linear ground state). This is a wide generalization of a result previously obtained for a star-graph with a single vertex. The main part of the proof is devoted to prove the concentration compactness principle for starlike structures; this is non trivial due to the lack of translation invariance of the domain. Then we show that a minimizing, bounded, H 1 sequence for the constrained NLS energy with external linear potentials is in fact convergent if its mass is small enough. Moreover we show that the ground state bifurcates from the vanishing solution at the bottom of the linear spectrum. Examples are provided with a discussion of the hypotheses on the linear part.

  5. Ground water stratification and delivery of nitrate to an incised stream under varying flow conditions.

    Science.gov (United States)

    Böhlke, J K; O'Connell, Michael E; Prestegaard, Karen L

    2007-01-01

    Ground water processes affecting seasonal variations of surface water nitrate concentrations were investigated in an incised first-order stream in an agricultural watershed with a riparian forest in the coastal plain of Maryland. Aquifer characteristics including sediment stratigraphy, geochemistry, and hydraulic properties were examined in combination with chemical and isotopic analyses of ground water, macropore discharge, and stream water. The ground water flow system exhibits vertical stratification of hydraulic properties and redox conditions, with sub-horizontal boundaries that extend beneath the field and adjacent riparian forest. Below the minimum water table position, ground water age gradients indicate low recharge rates (2-5 cm yr(-1)) and long residence times (years to decades), whereas the transient ground water wedge between the maximum and minimum water table positions has a relatively short residence time (months to years), partly because of an upward increase in hydraulic conductivity. Oxygen reduction and denitrification in recharging ground waters are coupled with pyrite oxidation near the minimum water table elevation in a mottled weathering zone in Tertiary marine glauconitic sediments. The incised stream had high nitrate concentrations during high flow conditions when much of the ground water was transmitted rapidly across the riparian zone in a shallow oxic aquifer wedge with abundant outflow macropores, and low nitrate concentrations during low flow conditions when the oxic wedge was smaller and stream discharge was dominated by upwelling from the deeper denitrified parts of the aquifer. Results from this and similar studies illustrate the importance of near-stream geomorphology and subsurface geology as controls of riparian zone function and delivery of nitrate to streams in agricultural watersheds.

  6. Questa baseline and pre-mining ground-water quality investigation. 5. Well installation, water-level data, and surface- and ground-water geochemistry in the Straight Creek drainage basin, Red River Valley, New Mexico, 2001-03

    Science.gov (United States)

    Naus, Cheryl A.; McCleskey, R. Blaine; Nordstrom, D. Kirk; Donohoe, Lisa C.; Hunt, Andrew G.; Paillet, Frederick L.; Morin, Roger H.; Verplanck, Philip L.

    2005-01-01

    The U.S. Geological Survey, in cooperation with the New Mexico Environment Department, is investigating the pre-mining ground-water chemistry at the Molycorp molybdenum mine in the Red River Valley, northern New Mexico. The primary approach is to determine the processes controlling ground-water chemistry at an unmined, off-site, proximal analog. The Straight Creek drainage basin, chosen for this purpose, consists of the same quartz-sericite-pyrite altered andesitic and rhyolitic volcanic rock of Tertiary age as the mine site. The weathered and rugged volcanic bedrock surface is overlain by heterogeneous debris-flow deposits that interfinger with alluvial deposits near the confluence of Straight Creek and the Red River. Pyritized rock in the upper part of the drainage basin is the source of acid rock drainage (pH 2.8-3.3) that infiltrates debris-flow deposits containing acidic ground water (pH 3.0-4.0) and bedrock containing water of circumneutral pH values (5.6-7.7). Eleven observation wells were installed in the Straight Creek drainage basin. The wells were completed in debris-flow deposits, bedrock, and interfingering debris-flow and Red River alluvial deposits. Chemical analyses of ground water from these wells, combined with chemical analyses of surface water, water-level data, and lithologic and geophysical logs, provided information used to develop an understanding of the processes contributing to the chemistry of ground water in the Straight Creek drainage basin. Surface- and ground-water samples were routinely collected for determination of total major cations and selected trace metals; dissolved major cations, selected trace metals, and rare-earth elements; anions and alkalinity; and dissolved-iron species. Rare-earth elements were determined on selected samples only. Samples were collected for determination of dissolved organic carbon, mercury, sulfur isotopic composition (34S and 18O of sulfate), and water isotopic composition (2H and 18O) during

  7. Boundary of the area contributing flow to the Death Valley regional ground-water flow system, Nevada and California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This digital data set defines the boundary of the area contributing ground-water flow to the Death Valley regional ground-water flow-system (DVRFS) model domain. The...

  8. Boundary of the area contributing flow to the Death Valley regional ground-water flow system, Nevada and California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This digital data set defines the boundary of the area contributing ground-water flow to the Death Valley regional ground-water flow-system (DVRFS) model domain....

  9. Assessment of ground water contamination in Erode District ...

    African Journals Online (AJOL)

    admin

    Accepted 4 June, 2013. A systematic study has been carried out to assess the water contamination and the effect of the ... were selected in and around industries. The water samples .... above the maximum permissible limit prescribed by World.

  10. Ground-water flow and contributing areas to public-supply wells in Kingsford and Iron Mountain, Michigan

    Science.gov (United States)

    Luukkonen, Carol L.; Westjohn, David B.

    2000-01-01

    The cities of Kingsford and Iron Mountain are in the southwestern part of Dickinson County in the Upper Peninsula of Michigan. Residents and businesses in these cites rely primarily on ground water from aquifers in glacial deposits. Glacial deposits generally consist of an upper terrace sand-and-gravel unit and a lower outwash sand-and-gravel unit, separated by lacustrine silt and clay and eolian silt layers. These units are not regionally continuous, and are absent in some areas. Glacial deposits overlie Precambrian bedrock units that are generally impermeable. Precambrian bedrock consists of metasedimentary (Michigamme Slate, Vulcan Iron Formation, and Randville Dolomite) and metavolcanic (Badwater Greenstone and Quinnesec Formation) rocks. Where glacial deposits are too thin to compose an aquifer usable for public or residential water supply, Precambrian bedrock is relied upon for water supply. Typically a few hundred feet of bedrock must be open to a wellbore to provide adequate water for domestic users. Ground-water flow in the glacial deposits is primarily toward the Menominee River and follows the direction of the regional topographic slope and the bedrock surface. To protect the quality of ground water, Kingsford and Iron Mountain are developing Wellhead Protection Plans to delineate areas that contribute water to public-supply wells. Because of the complexity of hydrogeology in this area and historical land-use practices, a steady-state ground-water-flow model was prepared to represent the ground-water-flow system and to delineate contributing areas to public-supply wells. Results of steady-state simulations indicate close agreement between simulated and observed water levels and between water flowing into and out of the model area. The 10-year contributing areas for Kingsford's public-supply wells encompass about 0.11 square miles and consist of elongated areas to the east of the well fields. The 10-year contributing areas for Iron Mountain's public

  11. Study on Some Physico-Chemical Characteristics of Ground Water of District Rampur - A Statistical Approach

    OpenAIRE

    Susheel Kumar Sindhu; Amit Sharma

    2007-01-01

    A systematic study has been carried out to explore the water quality index of ground water of various tehsils of Rampur district. Twenty five water samples from tube wells, open wells and hand pumps at various locations were collected and analyzed for pH, nitrate, turbidity, total dissolve solid, chlorides, total hardness, alkalinity and fluoride. In this study overall water quality of Rampur district is very poor and unsuitable for drinking purpose. Water quality of Bilaspur, Shahabad and Ra...

  12. 40 CFR 141.405 - Reporting and recordkeeping for ground water systems.

    Science.gov (United States)

    2010-07-01

    ... (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Ground Water Rule § 141..., and alternative treatment operating criteria, if operation in accordance with the criteria or... specified by the State for State-approved alternative treatment and records of the date and duration of any...

  13. Denitrification in the shallow ground water of a tile-drained, agricultural watershed

    Science.gov (United States)

    Mehnert, E.; Hwang, H.-H.; Johnson, T.M.; Sanford, R.A.; Beaumont, W.C.; Holm, T.R.

    2007-01-01

    Nonpoint-source pollution of surface water by N is considered a major cause of hypoxia. Because Corn Belt watersheds have been identified as major sources of N in the Mississippi River basin, the fate and transport of N from midwestern agricultural watersheds have received considerable interest. The fate and transport of N in the shallow ground water of these watersheds still needs additional research. Our purpose was to estimate denitrification in the shallow ground water of a tile-drained, Corn Belt watershed with fine-grained soils. Over a 3-yr period, N was monitored in the surface and ground water of an agricultural watershed in central Illinois. A significant amount of N was transported past the tile drains and into shallow ground water. The ground water nitrate was isotopically heavier than tile drain nitrate, which can be explained by denitrification in the subsurface. Denitrifying bacteria were found at depths to 10 m throughout the watershed. Laboratory and push-pull tests showed that a significant fraction of nitrate could be denitrified rapidly. We estimated that the N denitrified in shallow ground water was equivalent to 0.3 to 6.4% of the applied N or 9 to 27% of N exported via surface water. These estimates varied by water year and peaked in a year of normal precipitation after 2 yr of below average precipitation. Three years of monitoring data indicate that shallow ground water in watersheds with fine-grained soils may be a significant N sink compared with N exported via surface water. ?? ASA, CSSA, SSSA.

  14. Nitrate-nitrogen concentrations in the perched ground water under seepage-irrigated potato cropping systems.

    Science.gov (United States)

    Munoz-Arboleda, F; Mylavarapu, R; Hutchinson, C; Portier, K

    2008-01-01

    Excessive nitrogen rates for potato production in northeast Florida have been declared as a potential source of nitrate pollution in the St. Johns River watershed. This 3-yr study examined the effect of N rates (0, 168, and 280 kg ha(-1)) split between planting and 40 d after planting on the NO(3)-N concentration in the perched ground water under potato (Solanum tuberosum cv. Atlantic) in rotation with sorghum sudan grass hybrid (Sorghum vulgare x Sorghum vulgare var. sudanese, cv. SX17), cowpea (Vigna unguiculata cv. Iron Clay), and greenbean (Phaseolus vulgare cv. Espada). Soil solution from the root zone and water from the perched ground water under potato were sampled periodically using lysimeters and wells, respectively. Fertilization at planting increased the NO(3)-N concentration in the perched ground water, but no effect of the legumes in rotation with potatoes on nitrate leaching was detected. Fertilization of green bean increased NO(3)-N concentration in the perched ground water under potato planted in the following season. The NO(3)-N concentration in the soil solution within the potato root zone followed a similar pattern to that of the perched ground water but with higher initial values. The NO(3)-N concentration in the perched ground water was proportional to the rainfall magnitude after potato planting. A significant increase in NO(3)-N concentration in the perched ground water under cowpea planted in summer after potato was detected for the side-dressing of 168 kg ha(-1) N applied to potato 40 d after planting but not at the 56 kg ha(-1) N side-dress. Elevation in NO(3)-N concentration in the perched ground water under sorghum was not significant, supporting its use as an effective N catch crop.

  15. Hydrogeology and analysis of ground-water withdrawal in the Mendenhall-D'Lo area, Simpson County, Mississippi

    Science.gov (United States)

    Strom, E.W.; Oakley, W.T.

    1995-01-01

    The cities of Mendenhall and D'Lo, located in Simpson County, rely on ground water for their public supply and industrial needs. Most of the ground water comes from an aquifer of Miocene age. A study began in 1991 to describe the hydrogeology, analyze effects of ground-water withdrawal by making a drawdown map, and estimate the effects increased ground-water withdrawal might have on water levels in the Miocene age aquifer in the Mendenhall-D'Lo area. The most significant withdrawals of ground water in the study area are from 10 wells screened in the lower sand of the Catahoula Formation of Miocene age. Analysis of the effect of withdrawals from the 10 wells was made using the Theis non- equilibrium equation and applying the principle of superposition. Analysis of 1994 conditions was based on the pumpage history and aquifer properties deter- mined for each well. The drawdown surface resulting from the analysis indicates three general cones of depression. One cone is in the northwestern D'Lo area, one in the south-central Mendenhall area, and one about 1-1/2 miles east of Mendenhall. Calculated drawdown ranges from 21 to 47 feet. Potential drawdown-surface maps were made for 10 years and 20 years beyond 1994 using a constant pumpage. The map made for 10 years beyond 1994 indicates an average total increase in drawdown of about 5.3 feet. The map made for 20 years beyond 1994 indicates an average total increase in drawdown of about 7.3 feet.

  16. Ground-water surveillance at the Hanford Site for CY 1983

    Energy Technology Data Exchange (ETDEWEB)

    Prater, L.S.; Rieger, J.T.; Cline, C.S.; Jensen, E.J.; Liikala, T.L.; Oster, K.R.

    1984-07-01

    Operations at the Hanford Site have resulted in the discharge of large volumes of process cooling water and other waste waters to the ground. These effluents contain low level of radioactive and chemical substances. During 1983, 328 monitoring wells were sampled at various times for radioactive and chemical constituents. Three of these constituents, specifically tritium, nitrate, and gross beta activity, were selected for detailed discussion in this report because they are more readily transported in the ground water than some of the other constituents. Transport of these constituents in the ground water has resulted in the formation of plumes that can be mapped by contouring the analytical data obtained from the monitoring wells. This report describes recent changes in the configuration of the tritium, nitrate and gross beta plumes. Changes or trends in contaminant levels in wells located within both the main plumes (originating from the 200 Areas) and the smaller plumes are discussed in this report. Two potential pathways for radionuclide transport from the ground water to the environmental are discussed in this report, and the radiological impacts are examined. In addition to describing the present status of the ground water beneath the Hanford Site, this report contains the results of studies conducted in support of the ground-water surveillance effort during CY 1983. 21 references, 26 figures, 5 tables.

  17. Ground-Water Availability Assessment for the Columbia Plateau Regional Aquifer System, Washington, Oregon, and Idaho

    Science.gov (United States)

    ,

    2008-01-01

    The U.S. Geological Survey (USGS) is assessing the availability and use of the Nation's water resources to gain a clearer understanding of the status of our water resources and the land-use, water-use, and climatic trends that affect them. The goal of the National assessment is to improve our ability to forecast water availability for future economic and environmental uses. Assessments will be completed for regional aquifer systems across the Nation to help characterize how much water we have now, how water availability is changing, and how much water we can expect to have in the future (Reilly and others, 2008). Water availability is a function of many factors, including the quantity and quality of water, and the laws, regulations, economics, and environmental factors that control its use. The focus of the Columbia Plateau regional ground-water availability assessment is to improve fundamental knowledge of the ground-water balance of the region, including the flows, storage, and ground-water use by humans. An improved quantitative understanding of the region's water balance not only provides key information about water quantity, but also can serve as a fundamental basis for many analyses of water quality and ecosystem health.

  18. The process of patient enablement in general practice nurse consultations: a grounded theory study.

    Science.gov (United States)

    Desborough, Jane; Banfield, Michelle; Phillips, Christine; Mills, Jane

    2017-05-01

    The aim of this study was to gain insight into the process of patient enablement in general practice nursing consultations. Enhanced roles for general practice nurses may benefit patients through a range of mechanisms, one of which may be increasing patient enablement. In studies with general practitioners enhanced patient enablement has been associated with increases in self-efficacy and skill development. This study used a constructivist grounded theory design. In-depth interviews were conducted with 16 general practice nurses and 23 patients from 21 general practices between September 2013 - March 2014. Data generation and analysis were conducted concurrently using constant comparative analysis and theoretical sampling focussing on the process and outcomes of patient enablement. Use of the storyline technique supported theoretical coding and integration of the data into a theoretical model. A clearly defined social process that fostered and optimised patient enablement was constructed. The theory of 'developing enabling healthcare partnerships between nurses and patients in general practice' incorporates three stages: triggering enabling healthcare partnerships, tailoring care and the manifestation of patient enablement. Patient enablement was evidenced through: 1. Patients' understanding of their unique healthcare requirements informing their health seek