WorldWideScience

Sample records for ground water budget

  1. Water budget for SRP burial ground area

    International Nuclear Information System (INIS)

    Hubbard, J.E.; Emslie, R.H.

    1984-01-01

    Radionuclide migration from the SRP burial ground for solid low-level waste has been studied extensively. Most of the buried radionuclides are fixed on the soil and show negligible movement. The major exception is tritium, which when leached from the waste by percolating rainfall, forms tritiated water and moves with the groundwater. The presence of tritium has been useful in tracing groundwater flow paths to outcrop. A subsurface tritium plume moving from the southwest corner of the burial ground toward an outcrop near Four Mile Creek has been defined. Groundwater movement is so slow that much of the tritium decays before reaching the outcrop. The burial ground tritium plume defined to date is virtually all in the uppermost sediment layer, the Barnwell Formation. The purpose of the study reported in this memorandum was to investigate the hypothesis that deeper flow paths, capable of carrying substantial amounts of tritium, may exist in the vicinity of the burial ground. As a first step in seeking deeper flow paths, a water budget was constructed for the burial ground site. The water budget, a materials balance used by hydrologists, is expressed in annual area inches of rainfall. Components of the water budget for the burial ground area were analyzed to determine whether significant flow paths may exist below the tan clay. Mean annual precipitation was estimated as 47 inches, with evapotranspiration, run-off, and groundwater recharge estimated as 30, 2, and 15 inches, respectively. These estimates, when combined with groundwater discharge data, suggest that 5 inches of the groundwater recharge flow above the tan clay and that 10 inches flow below the tan clay. Therefore, two-thirds of the groundwater recharge appears to follow flow paths that are deeper than those previously found. 13 references, 10 figures, 5 tables

  2. Evaluation of ground-water flow and hydrologic budget for Lake Five-O, a seepage lake in northwestern Florida

    Science.gov (United States)

    Grubbs, J.W.

    1995-01-01

    Temporal and spatial distributions of ground-water inflow to, and leakage from Lake Five-O, a softwater, seepage lake in northwestern Florida, were evaluated using hydrologic data and simulation models of the shallow ground-water system adjacent to the lake. The simulation models indicate that ground-water inflow to the lake and leakage from the lake to the ground-water system are the dominant components in the total inflow (precipitation plus ground-water inflow) and total outflow (evaporation plus leakage) budgets of Lake Five-O. Simlulated ground-water inflow and leakage were approximately 4 and 5 times larger than precipitation inputs and evaporative losses, respectively, during calendar years 1989-90. Exchanges of water between Lake Five-O and the ground-water system were consistently larger than atmospheric-lake exchanges. A consistent pattern of shallow ground-water inflow and deep leakage was also evident throughout the study period. The mean time of travel from ground-water that discharges at Lake Five-O (time from recharge at the water table to discharge at the lake) was estimated to be within a range of 3 to 6 years. Flow-path evaluations indicated that the intermediate confining unit probably has a negligible influence on the geochemistry of ground-water inflow to Lake Five-O. The hydrologic budgets and flow-path evaluations provide critical information for developing geochemical budgets for Lake Five-O and for improving the understanding of the relative importance of various processes that regulate the acid-neutralizing capacity of softwater seepage lakes in Florida.

  3. Ground-Water Budgets for the Wood River Valley Aquifer System, South-Central Idaho, 1995-2004

    Science.gov (United States)

    Bartolino, James R.

    2009-01-01

    The Wood River Valley contains most of the population of Blaine County and the cities of Sun Valley, Ketchum, Haley, and Bellevue. This mountain valley is underlain by the alluvial Wood River Valley aquifer system which consists of a single unconfined aquifer that underlies the entire valley, an underlying confined aquifer that is present only in the southernmost valley, and the confining unit that separates them. The entire population of the area depends on ground water for domestic supply, either from domestic or municipal-supply wells, and rapid population growth since the 1970s has caused concern about the long-term sustainability of the ground-water resource. To help address these concerns this report describes a ground-water budget developed for the Wood River Valley aquifer system for three selected time periods: average conditions for the 10-year period 1995-2004, and the single years of 1995 and 2001. The 10-year period 1995-2004 represents a range of conditions in the recent past for which measured data exist. Water years 1995 and 2001 represent the wettest and driest years, respectively, within the 10-year period based on precipitation at the Ketchum Ranger Station. Recharge or inflow to the Wood River Valley aquifer system occurs through seven main sources (from largest to smallest): infiltration from tributary canyons, streamflow loss from the Big Wood River, areal recharge from precipitation and applied irrigation water, seepage from canals and recharge pits, leakage from municipal pipes, percolation from septic systems, and subsurface inflow beneath the Big Wood River in the northern end of the valley. Total estimated mean annual inflow or recharge to the aquifer system for 1995-2004 is 270,000 acre-ft/yr (370 ft3/s). Total recharge for the wet year 1995 and the dry year 2001 is estimated to be 270,000 acre-ft/yr (370 ft3/s) and 220,000 acre-ft/yr (300 ft3/s), respectively. Discharge or outflow from the Wood River Valley aquifer system occurs through

  4. Ground observations and remote sensing data for integrated modelisation of water budget in the Merguellil catchment, Tunisia

    Science.gov (United States)

    Mougenot, Bernard

    2016-04-01

    The Mediterranean region is affected by water scarcity. Some countries as Tunisia reached the limit of 550 m3/year/capita due overexploitation of low water resources for irrigation, domestic uses and industry. A lot of programs aim to evaluate strategies to improve water consumption at regional level. In central Tunisia, on the Merguellil catchment, we develop integrated water resources modelisations based on social investigations, ground observations and remote sensing data. The main objective is to close the water budget at regional level and to estimate irrigation and water pumping to test scenarios with endusers. Our works benefit from French, bilateral and European projects (ANR, MISTRALS/SICMed, FP6, FP7…), GMES/GEOLAND-ESA) and also network projects as JECAM and AERONET, where the Merguellil site is a reference. This site has specific characteristics associating irrigated and rainfed crops mixing cereals, market gardening and orchards and will be proposed as a new environmental observing system connected to the OMERE, TENSIFT and OSR systems respectively in Tunisia, Morocco and France. We show here an original and large set of ground and remote sensing data mainly acquired from 2008 to present to be used for calibration/validation of water budget processes and integrated models for present and scenarios: - Ground data: meteorological stations, water budget at local scale: fluxes tower, soil fluxes, soil and surface temperature, soil moisture, drainage, flow, water level in lakes, aquifer, vegetation parameters on selected fieds/month (LAI, height, biomass, yield), land cover: 3 times/year, bare soil roughness, irrigation and pumping estimations, soil texture. - Remote sensing data: remote sensing products from multi-platform (MODIS, SPOT, LANDSAT, ASTER, PLEIADES, ASAR, COSMO-SkyMed, TerraSAR X…), multi-wavelength (solar, micro-wave and thermal) and multi-resolution (0.5 meters to 1 km). Ground observations are used (1) to calibrate soil

  5. Hydrogeologic setting, water budget, and preliminary analysis of ground-water exchange at Lake Starr, a seepage lake in Polk County, Florida

    Science.gov (United States)

    Swancar, Amy; Lee, T.M.; O'Hare, T. M.

    2000-01-01

    Lake Starr, a 134-acre seepage lake of multiple-sinkhole origin on the Lake Wales Ridge of central Florida, was the subject of a detailed water-budget study from August 1996 through July 1998. The study monitored the effects of hydrogeologic setting, climate, and ground-water pumping on the water budget and lake stage. The hydrogeologic setting of the Lake Starr basin differs markedly on the two sides of the lake. Ground water from the surficial aquifer system flows into the lake from the northwest side of the basin, and lake water leaks out to the surficial aquifer system on the southeast side of the basin. Lake Starr and the surrounding surficial aquifer system recharge the underlying Upper Floridan aquifer. The rate of recharge to the Upper Floridan aquifer is determined by the integrity of the intermediate confining unit and by the downward head gradient between the two aquifers. On the inflow side of the lake, the intermediate confining unit is more continuous, allowing ground water from the surficial aquifer system to flow laterally into the lake. Beneath the lake and on the southeast side of the basin, breaches in the intermediate confining unit enhance downward flow to the Upper Floridan aquifer, so that water flows both downward and laterally away from the lake through the ground-water flow system in these areas. An accurate water budget, including evaporation measured by the energy-budget method, was used to calculate net ground-water flow to the lake, and to do a preliminary analysis of the relation of net ground-water fluxes to other variables. Water budgets constructed over different timeframes provided insight on processes that affect ground-water interactions with Lake Starr. Weekly estimates of net ground-water flow provided evidence for the occurrence of transient inflows from the nearshore basin, as well as the short-term effects of head in the Upper Floridan aquifer on ground-water exchange with the lake. Monthly water budgets showed the effects

  6. Water Budget Tool

    Science.gov (United States)

    If you're designing a new landscape or rethinking your current one, the WaterSense Water Budget Tool will tell you if you have designed a landscape that will use an appropriate amount of water for your climate.

  7. Ground water

    International Nuclear Information System (INIS)

    Osmond, J.K.; Cowart, J.B.

    1982-01-01

    The subject is discussed under the headings: background and theory (introduction; fractionation in the hydrosphere; mobility factors; radioisotope evolution and aquifer classification; aquifer disequilibria and geochemical fronts); case studies (introduction; (a) conservative, and (b) non-conservative, behaviour); ground water dating applications (general requirements; radon and helium; radium isotopes; uranium isotopes). (U.K.)

  8. Ground water

    International Nuclear Information System (INIS)

    Osmond, J.K.; Cowart, J.B.

    1992-01-01

    The great variations in concentrations and activity ratios of 234 U/ 238 U in ground waters and the features causing elemental and isotopic mobility in the hydrosphere are discussed. Fractionation processes and their application to hydrology and other environmental problems such as earthquake, groundwater and aquifer dating are described. (UK)

  9. Ground water '89

    International Nuclear Information System (INIS)

    1989-01-01

    The proceedings of the 5th biennial symposium of the Ground Water Division of the Geological Society of South Africa are presented. The theme of the symposium was ground water and mining. Papers were presented on the following topics: ground water resources; ground water contamination; chemical analyses of ground water and mining and its influece on ground water. Separate abstracts were prepared for 5 of the papers presented. The remaining papers were considered outside the subject scope of INIS

  10. HCMM energy budget data as a model input for assessing regions of high potential ground-water pollution

    Science.gov (United States)

    Moore, D. G. (Principal Investigator); Heilman, J.; Tunheim, J.

    1978-01-01

    The author has identified the following significant results. Analysis of soil temperature and water table data indicated that shallow aquifers appear to produce a heat sink effect when the depth to water table is approximately four meters or less.

  11. Ground water and energy

    Energy Technology Data Exchange (ETDEWEB)

    1980-11-01

    This national workshop on ground water and energy was conceived by the US Department of Energy's Office of Environmental Assessments. Generally, OEA needed to know what data are available on ground water, what information is still needed, and how DOE can best utilize what has already been learned. The workshop focussed on three areas: (1) ground water supply; (2) conflicts and barriers to ground water use; and (3) alternatives or solutions to the various issues relating to ground water. (ACR)

  12. Pesticides in Ground Water

    DEFF Research Database (Denmark)

    Bjerg, Poul Løgstrup

    1996-01-01

    Review af: Jack E. Barbash & Elizabeth A. Resek (1996). Pesticides in Ground Water. Distribution trends and governing factors. Ann Arbor Press, Inc. Chelsea, Michigan. pp 588.......Review af: Jack E. Barbash & Elizabeth A. Resek (1996). Pesticides in Ground Water. Distribution trends and governing factors. Ann Arbor Press, Inc. Chelsea, Michigan. pp 588....

  13. Move of ground water

    International Nuclear Information System (INIS)

    Kimura, Shigehiko

    1983-01-01

    As a ground water flow which is difficult to explain by Darcy's theory, there is stagnant water in strata, which moves by pumping and leads to land subsidence. This is now a major problem in Japan. Such move on an extensive scale has been investigated in detail by means of 3 H such as from rainfall in addition to ordinary measurement. The move of ground water is divided broadly into that in an unsaturated stratum from ground surface to water-table and that in a saturated stratum below the water-table. The course of the analyses made so far by 3 H contained in water, and the future trend of its usage are described. A flow model of regarding water as plastic fluid and its flow as channel assembly may be available for some flow mechanism which is not possible to explain with Darcy's theory. (Mori, K.)

  14. Ground water and earthquakes

    Energy Technology Data Exchange (ETDEWEB)

    Ts' ai, T H

    1977-11-01

    Chinese folk wisdom has long seen a relationship between ground water and earthquakes. Before an earthquake there is often an unusual change in the ground water level and volume of flow. Changes in the amount of particulate matter in ground water as well as changes in color, bubbling, gas emission, and noises and geysers are also often observed before earthquakes. Analysis of these features can help predict earthquakes. Other factors unrelated to earthquakes can cause some of these changes, too. As a first step it is necessary to find sites which are sensitive to changes in ground stress to be used as sensor points for predicting earthquakes. The necessary features are described. Recording of seismic waves of earthquake aftershocks is also an important part of earthquake predictions.

  15. Toward an Improved Understanding of the Global Fresh Water Budget

    Science.gov (United States)

    Hildebrand, Peter H.

    2005-01-01

    The major components of the global fresh water cycle include the evaporation from the land and ocean surfaces, precipitation onto the Ocean and land surfaces, the net atmospheric transport of water from oceanic areas over land, and the return flow of water from the land back into the ocean. The additional components of oceanic water transport are few, principally, the mixing of fresh water through the oceanic boundary layer, transport by ocean currents, and sea ice processes. On land the situation is considerably more complex, and includes the deposition of rain and snow on land; water flow in runoff; infiltration of water into the soil and groundwater; storage of water in soil, lakes and streams, and groundwater; polar and glacial ice; and use of water in vegetation and human activities. Knowledge of the key terms in the fresh water flux budget is poor. Some components of the budget, e.g. precipitation, runoff, storage, are measured with variable accuracy across the globe. We are just now obtaining precise measurements of the major components of global fresh water storage in global ice and ground water. The easily accessible fresh water sources in rivers, lakes and snow runoff are only adequately measured in the more affluent portions of the world. presents proposals are suggesting methods of making global measurements of these quantities from space. At the same time, knowledge of the global fresh water resources under the effects of climate change is of increasing importance and the human population grows. This paper provides an overview of the state of knowledge of the global fresh water budget, evaluating the accuracy of various global water budget measuring and modeling techniques. We review the measurement capabilities of satellite instruments as compared with field validation studies and modeling approaches. Based on these analyses, and on the goal of improved knowledge of the global fresh water budget under the effects of climate change, we suggest

  16. A note on India's water budget and evapotranspiration

    Indian Academy of Sciences (India)

    An examination of the budget components indicates that they imply an evapo- transpiration estimate ... India; water budget; evapotranspiration; water policy; water management. J. Earth Syst. Sci. 117 ... L'Environment (2004). California. 0.41.

  17. GCIP water and energy budget synthesis (WEBS)

    Science.gov (United States)

    Roads, J.; Lawford, R.; Bainto, E.; Berbery, E.; Chen, S.; Fekete, B.; Gallo, K.; Grundstein, A.; Higgins, W.; Kanamitsu, M.; Krajewski, W.; Lakshmi, V.; Leathers, D.; Lettenmaier, D.; Luo, L.; Maurer, E.; Meyers, T.; Miller, D.; Mitchell, Ken; Mote, T.; Pinker, R.; Reichler, T.; Robinson, D.; Robock, A.; Smith, J.; Srinivasan, G.; Verdin, K.; Vinnikov, K.; Vonder, Haar T.; Vorosmarty, C.; Williams, S.; Yarosh, E.

    2003-01-01

    As part of the World Climate Research Program's (WCRPs) Global Energy and Water-Cycle Experiment (GEWEX) Continental-scale International Project (GCIP), a preliminary water and energy budget synthesis (WEBS) was developed for the period 1996-1999 fromthe "best available" observations and models. Besides this summary paper, a companion CD-ROM with more extensive discussion, figures, tables, and raw data is available to the interested researcher from the GEWEX project office, the GAPP project office, or the first author. An updated online version of the CD-ROM is also available at http://ecpc.ucsd.edu/gcip/webs.htm/. Observations cannot adequately characterize or "close" budgets since too many fundamental processes are missing. Models that properly represent the many complicated atmospheric and near-surface interactions are also required. This preliminary synthesis therefore included a representative global general circulation model, regional climate model, and a macroscale hydrologic model as well as a global reanalysis and a regional analysis. By the qualitative agreement among the models and available observations, it did appear that we now qualitatively understand water and energy budgets of the Mississippi River Basin. However, there is still much quantitative uncertainty. In that regard, there did appear to be a clear advantage to using a regional analysis over a global analysis or a regional simulation over a global simulation to describe the Mississippi River Basin water and energy budgets. There also appeared to be some advantage to using a macroscale hydrologic model for at least the surface water budgets. Copyright 2003 by the American Geophysical Union.

  18. Ground-water travel time

    International Nuclear Information System (INIS)

    Bentley, H.; Grisak, G.

    1985-01-01

    The Containment and Isolation Working Group considered issues related to the postclosure behavior of repositories in crystalline rock. This working group was further divided into subgroups to consider the progress since the 1978 GAIN Symposium and identify research needs in the individual areas of regional ground-water flow, ground-water travel time, fractional release, and cumulative release. The analysis and findings of the Ground-Water Travel Time Subgroup are presented

  19. Regional ground-water system

    International Nuclear Information System (INIS)

    Long, J.

    1985-01-01

    The Containment and Isolation Working Group considered issues related to the postclosure behavior of repositories in crystalline rock. This working group was further divided into subgroups to consider the progress since the 1978 GAIN Symposium and identify research needs in the individual areas of regional ground-water flow, ground-water travel time, fractional release, and cumulative release. The analysis and findings of the Ground-Water Regime Subgroup are presented

  20. Alternatives for ground water cleanup

    National Research Council Canada - National Science Library

    National Research Council Staff; Commission on Geosciences, Environment and Resources; Division on Earth and Life Studies; National Research Council; National Academy of Sciences

    .... Yet recent studies question whether existing technologies can restore contaminated ground water to drinking water standards, which is the goal for most sites and the result expected by the public...

  1. Estimating Evapotranspiration Using an Observation Based Terrestrial Water Budget

    Science.gov (United States)

    Rodell, Matthew; McWilliams, Eric B.; Famiglietti, James S.; Beaudoing, Hiroko K.; Nigro, Joseph

    2011-01-01

    Evapotranspiration (ET) is difficult to measure at the scales of climate models and climate variability. While satellite retrieval algorithms do exist, their accuracy is limited by the sparseness of in situ observations available for calibration and validation, which themselves may be unrepresentative of 500m and larger scale satellite footprints and grid pixels. Here, we use a combination of satellite and ground-based observations to close the water budgets of seven continental scale river basins (Mackenzie, Fraser, Nelson, Mississippi, Tocantins, Danube, and Ubangi), estimating mean ET as a residual. For any river basin, ET must equal total precipitation minus net runoff minus the change in total terrestrial water storage (TWS), in order for mass to be conserved. We make use of precipitation from two global observation-based products, archived runoff data, and TWS changes from the Gravity Recovery and Climate Experiment satellite mission. We demonstrate that while uncertainty in the water budget-based estimates of monthly ET is often too large for those estimates to be useful, the uncertainty in the mean annual cycle is small enough that it is practical for evaluating other ET products. Here, we evaluate five land surface model simulations, two operational atmospheric analyses, and a recent global reanalysis product based on our results. An important outcome is that the water budget-based ET time series in two tropical river basins, one in Brazil and the other in central Africa, exhibit a weak annual cycle, which may help to resolve debate about the strength of the annual cycle of ET in such regions and how ET is constrained throughout the year. The methods described will be useful for water and energy budget studies, weather and climate model assessments, and satellite-based ET retrieval optimization.

  2. Ground Water and Climate Change

    Science.gov (United States)

    Taylor, Richard G.; Scanlon, Bridget; Doell, Petra; Rodell, Matt; van Beek, Rens; Wada, Yoshihide; Longuevergne, Laurent; Leblanc, Marc; Famiglietti, James S.; Edmunds, Mike; hide

    2013-01-01

    As the world's largest distributed store of fresh water, ground water plays a central part in sustaining ecosystems and enabling human adaptation to climate variability and change. The strategic importance of ground water for global water and food security will probably intensify under climate change as more frequent and intense climate extremes (droughts and floods) increase variability in precipitation, soil moisture and surface water. Here we critically review recent research assessing the impacts of climate on ground water through natural and human-induced processes as well as through groundwater-driven feedbacks on the climate system. Furthermore, we examine the possible opportunities and challenges of using and sustaining groundwater resources in climate adaptation strategies, and highlight the lack of groundwater observations, which, at present, limits our understanding of the dynamic relationship between ground water and climate.

  3. Nambe Pueblo Water Budget and Forecasting model.

    Energy Technology Data Exchange (ETDEWEB)

    Brainard, James Robert

    2009-10-01

    This report documents The Nambe Pueblo Water Budget and Water Forecasting model. The model has been constructed using Powersim Studio (PS), a software package designed to investigate complex systems where flows and accumulations are central to the system. Here PS has been used as a platform for modeling various aspects of Nambe Pueblo's current and future water use. The model contains three major components, the Water Forecast Component, Irrigation Scheduling Component, and the Reservoir Model Component. In each of the components, the user can change variables to investigate the impacts of water management scenarios on future water use. The Water Forecast Component includes forecasting for industrial, commercial, and livestock use. Domestic demand is also forecasted based on user specified current population, population growth rates, and per capita water consumption. Irrigation efficiencies are quantified in the Irrigated Agriculture component using critical information concerning diversion rates, acreages, ditch dimensions and seepage rates. Results from this section are used in the Water Demand Forecast, Irrigation Scheduling, and the Reservoir Model components. The Reservoir Component contains two sections, (1) Storage and Inflow Accumulations by Categories and (2) Release, Diversion and Shortages. Results from both sections are derived from the calibrated Nambe Reservoir model where historic, pre-dam or above dam USGS stream flow data is fed into the model and releases are calculated.

  4. Humic substances in ground waters

    International Nuclear Information System (INIS)

    Paxeus, N.; Allard, B.; Olofsson, U.; Bengtsson, M.

    1986-01-01

    The presence of naturally occurring complexing agents that may enhance the migration of disposed radionuclikes and thus facilitate their uptake by plantsis a problem associated with the underground disposal of radioactive wastes in bedrock. The main purpose of this work is to characterized humic substances from ground water and compare them with humic substances from surface water. The humic materials isolated from ground waters of a borehole in Fjaellveden (Sweden) were characterized by elemental and functional group analyses. Spectroscopic properties, molecular weight distributions as well as acid-base properties of the fulvic and humic fractions were also studied. The ground water humic substances were found to be quite similar in many respects (but not identical) to the Swedish surface water humics concentrated from the Goeta River but appeared to be quite different from the American ground water humics from Biscayne Florida Aquifer or Laramie Fox-Hills in Colorado. The physico-chemical properties of the isolated humic materials are discussed

  5. Evaluating data worth for ground-water management under uncertainty

    Science.gov (United States)

    Wagner, B.J.

    1999-01-01

    A decision framework is presented for assessing the value of ground-water sampling within the context of ground-water management under uncertainty. The framework couples two optimization models-a chance-constrained ground-water management model and an integer-programing sampling network design model-to identify optimal pumping and sampling strategies. The methodology consists of four steps: (1) The optimal ground-water management strategy for the present level of model uncertainty is determined using the chance-constrained management model; (2) for a specified data collection budget, the monitoring network design model identifies, prior to data collection, the sampling strategy that will minimize model uncertainty; (3) the optimal ground-water management strategy is recalculated on the basis of the projected model uncertainty after sampling; and (4) the worth of the monitoring strategy is assessed by comparing the value of the sample information-i.e., the projected reduction in management costs-with the cost of data collection. Steps 2-4 are repeated for a series of data collection budgets, producing a suite of management/monitoring alternatives, from which the best alternative can be selected. A hypothetical example demonstrates the methodology's ability to identify the ground-water sampling strategy with greatest net economic benefit for ground-water management.A decision framework is presented for assessing the value of ground-water sampling within the context of ground-water management under uncertainty. The framework couples two optimization models - a chance-constrained ground-water management model and an integer-programming sampling network design model - to identify optimal pumping and sampling strategies. The methodology consists of four steps: (1) The optimal ground-water management strategy for the present level of model uncertainty is determined using the chance-constrained management model; (2) for a specified data collection budget, the monitoring

  6. How processing digital elevation models can affect simulated water budgets

    Science.gov (United States)

    Kuniansky, E.L.; Lowery, M.A.; Campbell, B.G.

    2009-01-01

    For regional models, the shallow water table surface is often used as a source/sink boundary condition, as model grid scale precludes simulation of the water table aquifer. This approach is appropriate when the water table surface is relatively stationary. Since water table surface maps are not readily available, the elevation of the water table used in model cells is estimated via a two-step process. First, a regression equation is developed using existing land and water table elevations from wells in the area. This equation is then used to predict the water table surface for each model cell using land surface elevation available from digital elevation models (DEM). Two methods of processing DEM for estimating the land surface for each cell are commonly used (value nearest the cell centroid or mean value in the cell). This article demonstrates how these two methods of DEM processing can affect the simulated water budget. For the example presented, approximately 20% more total flow through the aquifer system is simulated if the centroid value rather than the mean value is used. This is due to the one-third greater average ground water gradients associated with the centroid value than the mean value. The results will vary depending on the particular model area topography and cell size. The use of the mean DEM value in each model cell will result in a more conservative water budget and is more appropriate because the model cell water table value should be representative of the entire cell area, not the centroid of the model cell.

  7. Ground Water Awareness

    Centers for Disease Control (CDC) Podcasts

    2008-03-06

    Protecting our water resources from contamination is a major concern. This podcast emphasizes the importance of private well maintenance and water testing.  Created: 3/6/2008 by National Center for Environmental Health (NCEH); ATSDR; Division of Parasitic Diseases; Division of Foodborne, Bacterial and Mycotic Diseases; and the Office of Global Health.   Date Released: 3/10/2008.

  8. Modeled ground water age distributions

    Science.gov (United States)

    Woolfenden, Linda R.; Ginn, Timothy R.

    2009-01-01

    The age of ground water in any given sample is a distributed quantity representing distributed provenance (in space and time) of the water. Conventional analysis of tracers such as unstable isotopes or anthropogenic chemical species gives discrete or binary measures of the presence of water of a given age. Modeled ground water age distributions provide a continuous measure of contributions from different recharge sources to aquifers. A numerical solution of the ground water age equation of Ginn (1999) was tested both on a hypothetical simplified one-dimensional flow system and under real world conditions. Results from these simulations yield the first continuous distributions of ground water age using this model. Complete age distributions as a function of one and two space dimensions were obtained from both numerical experiments. Simulations in the test problem produced mean ages that were consistent with the expected value at the end of the model domain for all dispersivity values tested, although the mean ages for the two highest dispersivity values deviated slightly from the expected value. Mean ages in the dispersionless case also were consistent with the expected mean ages throughout the physical model domain. Simulations under real world conditions for three dispersivity values resulted in decreasing mean age with increasing dispersivity. This likely is a consequence of an edge effect. However, simulations for all three dispersivity values tested were mass balanced and stable demonstrating that the solution of the ground water age equation can provide estimates of water mass density distributions over age under real world conditions.

  9. Ground Water Quality

    African Journals Online (AJOL)

    The results showed that Na and K were the most abundant dissolved cations in the groundwater. The. + .... concentration of phosphate (PO ) in the water. 4 samples was ...... The Effect of Copper on Some Laboratory Indices of Clarias.

  10. Bark beetle-induced tree mortality alters stand energy budgets due to water budget changes

    Science.gov (United States)

    Reed, David E.; Ewers, Brent E.; Pendall, Elise; Frank, John; Kelly, Robert

    2018-01-01

    Insect outbreaks are major disturbances that affect a land area similar to that of forest fires across North America. The recent mountain pine bark beetle ( D endroctonus ponderosae) outbreak and its associated blue stain fungi ( Grosmannia clavigera) are impacting water partitioning processes of forests in the Rocky Mountain region as the spatially heterogeneous disturbance spreads across the landscape. Water cycling may dramatically change due to increasing spatial heterogeneity from uneven mortality. Water and energy storage within trees and soils may also decrease, due to hydraulic failure and mortality caused by blue stain fungi followed by shifts in the water budget. This forest disturbance was unique in comparison to fire or timber harvesting because water fluxes were altered before significant structural change occurred to the canopy. We investigated the impacts of bark beetles on lodgepole pine ( Pinus contorta) stand and ecosystem level hydrologic processes and the resulting vertical and horizontal spatial variability in energy storage. Bark beetle-impacted stands had on average 57 % higher soil moisture, 1.5 °C higher soil temperature, and 0.8 °C higher tree bole temperature over four growing seasons compared to unimpacted stands. Seasonal latent heat flux was highly correlated with soil moisture. Thus, high mortality levels led to an increase in ecosystem level Bowen ratio as sensible heat fluxes increased yearly and latent heat fluxes varied with soil moisture levels. Decline in canopy biomass (leaf, stem, and branch) was not seen, but ground-to-atmosphere longwave radiation flux increased, as the ground surface was a larger component of the longwave radiation. Variability in soil, latent, and sensible heat flux and radiation measurements increased during the disturbance. Accounting for stand level variability in water and energy fluxes will provide a method to quantify potential drivers of ecosystem processes and services as well as lead to greater

  11. Hydrologic budgets for the Madison and Minnelusa aquifers, Black Hills of South Dakota and Wyoming, water years 1987-96

    Science.gov (United States)

    Carter, Janet M.; Driscoll, Daniel G.; Hamade, Ghaith R.; Jarrell, Gregory J.

    2001-01-01

    The Madison and Minnelusa aquifers are two of the most important aquifers in the Black Hills area of South Dakota and Wyoming. Quantification and evaluation of various hydrologic budget components are important for managing and understanding these aquifers. Hydrologic budgets are developed for two scenarios, including an overall budget for the entire study area and more detailed budgets for subareas. Budgets generally are combined for the Madison and Minnelusa aquifers because most budget components cannot be quantified individually for the aquifers. An average hydrologic budget for the entire study area is computed for water years 1987-96, for which change in storage is approximately equal to zero. Annual estimates of budget components are included in detailed budgets for nine subareas, which consider periods of decreasing storage (1987-92) and increasing storage (1993-96). Inflow components include recharge, leakage from adjacent aquifers, and ground-water inflows across the study area boundary. Outflows include springflow (headwater and artesian), well withdrawals, leakage to adjacent aquifers, and ground-water outflow across the study area boundary. Leakage, ground-water inflows, and ground-water outflows are difficult to quantify and cannot be distinguished from one another. Thus, net ground-water flow, which includes these components, is calculated as a residual, using estimates for the other budget components. For the overall budget for water years 1987-96, net ground-water outflow from the study area is computed as 100 ft3/s (cubic feet per second). Estimates of average combined budget components for the Madison and Minnelusa aquifers are: 395 ft3/s for recharge, 78 ft3/s for headwater springflow, 189 ft3/s for artesian springflow, and 28 ft3/s for well withdrawals. Hydrologic budgets also are quantified for nine subareas for periods of decreasing storage (1987-92) and increasing storage (1993-96), with changes in storage assumed equal but opposite. Common

  12. A note on India's water budget and evapotranspiration

    Indian Academy of Sciences (India)

    Some recent analyses of India 's water budget are based on information attributed to the Ministry of Water Resources.An examination of the budget components indicates that they imply an evapotranspiration estimate that is significantly lower than what one may expect based on information from other sources.If such is the ...

  13. Water budget analysis of Agulu Lake in Anambra State, Nigeria ...

    African Journals Online (AJOL)

    The elements of water budget equation were analyzed for the Agulu lake area and underlying aquifers. The water budget implications for soil and gully erosion were evaluated in relation to the geological formations and hydrogeotechnics. Results show that rainfall constitutes the main source of precipitation. It ranges from ...

  14. A water budget approach to instream flow maintenance

    International Nuclear Information System (INIS)

    Waddle, T.

    1991-01-01

    Storage reallocation is a current issue at many Federal water storage facilities that have hydroelectric generation. Allocation of storage to support instream flows is one of the changes being considered. In this paper, a portion of storage is dedicated to supplying instream flows. The author defines this storage account as a water budget and operate it to provide instream habitat below the reservoir. The author uses a limiting event model, the effective habitat time series, to determine when water budget releases will produce habitat benefits. The effective habitat time series acts as a surrogate for fish population and reflects the mid to long term influence of water management decisions on the life cycle of a fish species. The author develops an operation rule for the water budget that considers water rights and habitat events. The paper concludes by contrasting the habitat benefits of water budget operation with fixed minimum flow requirements

  15. Quantifying the Global Fresh Water Budget: Capabilities from Current and Future Satellite Sensors

    Science.gov (United States)

    Hildebrand, Peter; Zaitchik, Benjamin

    2007-01-01

    The global water cycle is complex and its components are difficult to measure, particularly at the global scales and with the precision needed for assessing climate impacts. Recent advances in satellite observational capabilities, however, are greatly improving our knowledge of the key terms in the fresh water flux budget. Many components of the of the global water budget, e.g. precipitation, atmospheric moisture profiles, soil moisture, snow cover, sea ice are now routinely measured globally using instruments on satellites such as TRMM, AQUA, TERRA, GRACE, and ICESat, as well as on operational satellites. New techniques, many using data assimilation approaches, are providing pathways toward measuring snow water equivalent, evapotranspiration, ground water, ice mass, as well as improving the measurement quality for other components of the global water budget. This paper evaluates these current and developing satellite capabilities to observe the global fresh water budget, then looks forward to evaluate the potential for improvements that may result from future space missions as detailed by the US Decadal Survey, and operational plans. Based on these analyses, and on the goal of improved knowledge of the global fresh water budget under the effects of climate change, we suggest some priorities for the future, based on new approaches that may provide the improved measurements and the analyses needed to understand and observe the potential speed-up of the global water cycle under the effects of climate change.

  16. Salt balance, fresh water residence time and budget for non ...

    African Journals Online (AJOL)

    Water and salt budgets suggest that in order to balance the inflow and outflow of water at Makoba bay, there is net flux of water from the bay to the open ocean during wet season. Residual salt fluxes between the bay and the open ocean indicate advective salt export. Exchange of water between the bay with the open ocean ...

  17. Radon determination in ground water

    Energy Technology Data Exchange (ETDEWEB)

    Segovia A, N.; Bulbulian G, S

    1991-08-15

    Studies on natural radioactivity in ground water were started in Mexico in San Luis Potosi state followed by samplings from deep wells and springs in the states of Mexico and Michoacan. The samples were analyzed for solubilized and {sup 226} Ra- supported {sup 222} Rn. Some of them were also studied for {sup 234} U/ {sup 238} U activity ratio. In this paper we discuss the activities obtained and their relationship with the geologic characteristics of the studied zones. (Author)

  18. Radon determination in ground water

    International Nuclear Information System (INIS)

    Segovia A, N.; Bulbulian G, S.

    1991-08-01

    Studies on natural radioactivity in ground water were started in Mexico in San Luis Potosi state followed by samplings from deep wells and springs in the states of Mexico and Michoacan. The samples were analyzed for solubilized and 226 Ra- supported 222 Rn. Some of them were also studied for 234 U/ 238 U activity ratio. In this paper we discuss the activities obtained and their relationship with the geologic characteristics of the studied zones. (Author)

  19. The hydrological characterisation and water budget of a South ...

    African Journals Online (AJOL)

    The hydrological characterisation and water budget of a South African rehabilitated ... Hydrograph separation, based on stable isotopes (18O), revealed that the ... during the summer rains when the wetlands soil moisture deficit is close to 0, ...

  20. Water budget formulation for Ahmadu Bello University, main campus ...

    African Journals Online (AJOL)

    This study provides a water resources management option through formulation of water budget for the main campus of the Ahmadu Bello University, Zaria using secondary data obtained from various sources. The data revealed that, water consumption in the campus in the year 2005 was 3,101 m3/d and 3,125 m3/d in year ...

  1. Ground water pollution through air pollutants

    International Nuclear Information System (INIS)

    Cichorowski, G.; Michel, B.; Versteegen, D.; Wettmann, R.

    1989-01-01

    The aim of the investigation is to determine the significance of air pollutants for ground water quality and ground water use. The report summarizes present knowledge and assesses statements with a view to potential ground water pollution from the air. In this context pollution paths, the spreading behaviour of pollutants, and 'cross points' with burden potentials from other pollutant sources are presented. (orig.) [de

  2. Uncertainty in Analyzed Water and Energy Budgets at Continental Scales

    Science.gov (United States)

    Bosilovich, Michael G.; Robertson, F. R.; Mocko, D.; Chen, J.

    2011-01-01

    Operational analyses and retrospective-analyses provide all the physical terms of mater and energy budgets, guided by the assimilation of atmospheric observations. However, there is significant reliance on the numerical models, and so, uncertainty in the budget terms is always present. Here, we use a recently developed data set consisting of a mix of 10 analyses (both operational and retrospective) to quantify the uncertainty of analyzed water and energy budget terms for GEWEX continental-scale regions, following the evaluation of Dr. John Roads using individual reanalyses data sets.

  3. Atmospheric water budget over the South Asian summer monsoon region

    Science.gov (United States)

    Unnikrishnan, C. K.; Rajeevan, M.

    2018-04-01

    High resolution hybrid atmospheric water budget over the South Asian monsoon region is examined. The regional characteristics, variability, regional controlling factors and the interrelations of the atmospheric water budget components are investigated. The surface evapotranspiration was created using the High Resolution Land Data Assimilation System (HRLDAS) with the satellite-observed rainfall and vegetation fraction. HRLDAS evapotranspiration shows significant similarity with in situ observations and MODIS satellite-observed evapotranspiration. Result highlights the fundamental importance of evapotranspiration over northwest and southeast India on atmospheric water balance. The investigation shows that the surface net radiation controls the annual evapotranspiration over those regions, where the surface evapotranspiration is lower than 550 mm. The rainfall and evapotranspiration show a linear relation over the low-rainfall regions (forcing (like surface net radiation). The lead and lag correlation of water budget components show that the water budget anomalies are interrelated in the monsoon season even up to 4 months lead. These results show the important regional interrelation of water budget anomalies on south Asian monsoon.

  4. Management of ground water using isotope techniques

    International Nuclear Information System (INIS)

    Romani, Saleem

    2004-01-01

    Ground water play a major role in national economy and sustenance of life and environment. Prevalent water crisis in India includes falling water table, water quality deterioration, water logging and salinity. Keeping in view the increasing thrust on groundwater resources and the present scenario of availability vis-a vis demand there is a need to reorient our approach to ground water management. The various ground water management options require proper understanding of ground water flow system. Isotopes are increasingly being applied in hydrogeological investigations as a supplementary tool for assessment of aquifer flow and transport characteristics. Isotope techniques coupled with conventional hydrogeological and hydrochemical methods can bring in greater accuracy in the conceptualization of hydrogeological control mechanism. The use of isotope techniques in following areas can certainly be of immense help in implementing various ground water management options in an efficient manner. viz.Interaction between the surface water - groundwater systems to plan conjunctive use of surface and ground water. Establishing hydraulic interconnections between the aquifers in a multi aquifer system. Depth of circulation of water and dating of ground water. Demarcating ground water recharge and discharge areas. Plan ground water development in coastal aquifers to avoid sea water ingress. Development of flood plain aquifer. (author)

  5. Tundra water budget and implications of precipitation underestimation.

    Science.gov (United States)

    Liljedahl, Anna K; Hinzman, Larry D; Kane, Douglas L; Oechel, Walter C; Tweedie, Craig E; Zona, Donatella

    2017-08-01

    Difficulties in obtaining accurate precipitation measurements have limited meaningful hydrologic assessment for over a century due to performance challenges of conventional snowfall and rainfall gauges in windy environments. Here, we compare snowfall observations and bias adjusted snowfall to end-of-winter snow accumulation measurements on the ground for 16 years (1999-2014) and assess the implication of precipitation underestimation on the water balance for a low-gradient tundra wetland near Utqiagvik (formerly Barrow), Alaska (2007-2009). In agreement with other studies, and not accounting for sublimation, conventional snowfall gauges captured 23-56% of end-of-winter snow accumulation. Once snowfall and rainfall are bias adjusted, long-term annual precipitation estimates more than double (from 123 to 274 mm), highlighting the risk of studies using conventional or unadjusted precipitation that dramatically under-represent water balance components. Applying conventional precipitation information to the water balance analysis produced consistent storage deficits (79 to 152 mm) that were all larger than the largest actual deficit (75 mm), which was observed in the unusually low rainfall summer of 2007. Year-to-year variability in adjusted rainfall (±33 mm) was larger than evapotranspiration (±13 mm). Measured interannual variability in partitioning of snow into runoff (29% in 2008 to 68% in 2009) in years with similar end-of-winter snow accumulation (180 and 164 mm, respectively) highlights the importance of the previous summer's rainfall (25 and 60 mm, respectively) on spring runoff production. Incorrect representation of precipitation can therefore have major implications for Arctic water budget descriptions that in turn can alter estimates of carbon and energy fluxes.

  6. Transitions in midwestern ground water law

    International Nuclear Information System (INIS)

    Bowman, J.A.; Clark, G.R.

    1989-01-01

    The evolution of ground-water law in eight states in the Midwest (Illinois, Indiana, Iowa, Michigan, Minnesota, Missouri, Ohio, and Wisconsin) is examined, and a review of transitions in ground-water doctrines is presented. Two underlying themes in changing ground-water management are communicated. First, ground-water law is evolving from private property rules of capture based on the absolute ownership doctrines to rules requiring conservation and sharing of ground water as a public resource. Second, in both courts and state legislatures, a proactive role of ground-water management is emerging, again, with an emphasis on sharing. Both of these trends are apparent in the Midwest. In the last decade midwestern states have (1) seen significant shifts in court decisions on ground-water use with greater recognition of the reciprocal or mutually dependent nature of ground-water rights, and (2) seen increased legislative development of comprehensive ground-water management statutes that emphasize the reciprocal liabilities of ground-water use. These trends are examined and ground-water management programs discussed for eight states in the Midwest

  7. Water Budget formulation for Ahmadu Bello University, main ...

    African Journals Online (AJOL)

    PROF HORSFALL

    .info and www.bioline.org.br/ja. Water Budget formulation for Ahmadu Bello University, main Campus as a Water. Resources ... fine/coarse Member, Older Alluvial aquifer .... calculated as rainfall recharge, at the depth of rainfall of 1,100 mm/a, ...

  8. Losing ground - scenarios of land loss as consequence of shifting sediment budgets in the Mekong Delta

    Science.gov (United States)

    Schmitt, R. J. P.; Rubin, Z.; Kondolf, G. M.

    2017-10-01

    With changing climate and rising seas, proliferation of hydroelectric dams, instream sand mining, dyking of floodplains, accelerated subsidence from groundwater pumping, accelerated sea-level rise, and other anthropic impacts, it is certain that the Mekong Delta will undergo large changes in the coming decades. These changes will threaten the very existence of the landform itself. The multiplicity of compounding drivers and lack of reliable data lead to large uncertainties in forecasting changes in the sediment budget of the Mekong Delta, its morphology, and the ecosystems and human livelihoods it supports. We compile information on key drivers affecting the sediment budget of the Mekong Delta and compare them to quantify the magnitude of effects from different drivers. We develop a set of likely scenarios for the future development of these drivers and quantify implications for the future of the Mekong Delta using a simplified model of the delta's geometry. If sediment supply to the delta is nearly completely cut off, as would be the case with full buildout of planned dams and current rates of sediment mining, and with continued groundwater pumping at current rates, our model forecasts that the delta will almost completely disappear by the end of this century due to increased rates of delta subsidence and rising sea levels. While local management cannot prevent global sea level rise, model results suggest that there are important management steps that could prolong the persistence of the delta ecosystem and the livelihoods it supports, including a reduction in ground water pumping and maintaining sediment connectivity between the basin and the delta.

  9. Identification of Error Terms in Regional Water Budgets

    Science.gov (United States)

    Saxe, S.; Farmer, W. H.; Hay, L.

    2017-12-01

    A water balance requires that storage increase in a watershed or some specified domain whenever the inputs exceed the outputs. A simple model will assign the change in groundwater storage to the change in storage (𝚫S), inputs will consider only precipitation (P), and outputs will consider only actual evapotranspiration (AET) and runoff (Q). However, for each component— 𝚫S, P, AET, and Q—there are errors in measurements and uncertainty in the conceptual and numerical models used to extrapolate these measurements to a wide range of temporal and spatial scales. This talk will present our attempt to close the water budget for all regions of the nation using moderate resolution estimates of 𝚫S, P, AET, and Q. For each component, a variety of gridded products were compiled and aggregated at the Hydrologic Unit Code (HUC)-2 (hundreds of thousands of square kilometers) through HUC-8 (hundreds of square kilometers) levels. For each region, a water balance was computed to estimate changes in storage and assign levels of confidence to these estimates. For a simple baseline budget calculated for regions across the continental United States, using estimates of 𝚫S, P, AET, and Q over a 13 year period from 2002 to 2015, the storage of water is increasing in the southwestern United States, at the same time that it is decreasing in the Pacific Northwest, the northern Rockies, the Midwest, and most of the east coast. Whereas 𝚫S shows statistically significant increasing/decreasing trends (depending on region) over the 13 year period, the trends are not always supported by corresponding estimates of P, AET, and Q. This simple water budget excludes several potentially important components, including soil moisture, recharge, snow-water equivalence, etc. that may account for the discrepancy. This research finds that there are substantial volumes of water missing from a simple, baseline water budget and that inclusion of more components may

  10. Ground Water in the Anchorage Area, Alaska--Meeting the Challenges of Ground-Water Sustainability

    Science.gov (United States)

    Moran, Edward H.; Galloway, Devin L.

    2006-01-01

    Ground water is an important component of Anchorage's water supply. During the 1970s and early 80s when ground water extracted from aquifers near Ship Creek was the principal source of supply, area-wide declines in ground-water levels resulted in near record low streamflows in Ship Creek. Since the importation of Eklutna Lake water in the late 1980s, ground-water use has been reduced and ground water has contributed 14-30 percent of the annual supply. As Anchorage grows, given the current constraints on the Eklutna Lake water availability, the increasing demand for water could place an increasing reliance on local ground-water resources. The sustainability of Anchorage's ground-water resources challenges stakeholders to develop a comprehensive water-resources management strategy.

  11. Death Valley regional ground-water flow system, Nevada and California -- hydrogeologic framework and transient ground-water flow model

    Science.gov (United States)

    Belcher, Wayne R.

    2004-01-01

    A numerical three-dimensional (3D) transient ground-water flow model of the Death Valley region was developed by the U.S. Geological Survey for the U.S. Department of Energy programs at the Nevada Test Site and at Yucca Mountain, Nevada. Decades of study of aspects of the ground-water flow system and previous less extensive ground-water flow models were incorporated and reevaluated together with new data to provide greater detail for the complex, digital model. A 3D digital hydrogeologic framework model (HFM) was developed from digital elevation models, geologic maps, borehole information, geologic and hydrogeologic cross sections, and other 3D models to represent the geometry of the hydrogeologic units (HGUs). Structural features, such as faults and fractures, that affect ground-water flow also were added. The HFM represents Precambrian and Paleozoic crystalline and sedimentary rocks, Mesozoic sedimentary rocks, Mesozoic to Cenozoic intrusive rocks, Cenozoic volcanic tuffs and lavas, and late Cenozoic sedimentary deposits of the Death Valley Regional Ground-Water Flow System (DVRFS) region in 27 HGUs. Information from a series of investigations was compiled to conceptualize and quantify hydrologic components of the ground-water flow system within the DVRFS model domain and to provide hydraulic-property and head-observation data used in the calibration of the transient-flow model. These studies reevaluated natural ground-water discharge occurring through evapotranspiration and spring flow; the history of ground-water pumping from 1913 through 1998; ground-water recharge simulated as net infiltration; model boundary inflows and outflows based on regional hydraulic gradients and water budgets of surrounding areas; hydraulic conductivity and its relation to depth; and water levels appropriate for regional simulation of prepumped and pumped conditions within the DVRFS model domain. Simulation results appropriate for the regional extent and scale of the model were

  12. Ground-water availability from surficial aquifers in the Red River of the North Basin, Minnesota

    Science.gov (United States)

    Reppe, Thomas H.C.

    2005-01-01

    Population growth and commercial and industrial development in the Red River of the North Basin in Minnesota, North Dakota, and South Dakota have prompted the Bureau of Reclamation, U.S. Department of the Interior, to evaluate sources of water to sustain this growth. Nine surficial-glacial (surficial) aquifers (Buffalo, Middle River, Two Rivers, Beach Ridges, Pelican River, Otter Tail, Wadena, Pineland Sands, and Bemidji-Bagley) within the Minnesota part of the basin were identified and evaluated for their ground-water resources. Information was compiled and summarized from published studies to evaluate the availability of ground water. Published information reviewed for each of the aquifers included location and extent, physical characteristics, hydraulic properties, ground-water and surface-water interactions, estimates of water budgets (sources of recharge and discharge) and aquifer storage, theoretical well yields and actual ground-water pumping data, recent (2003) ground-water use data, and baseline ground-water-quality data.

  13. Atmospheric water budget over the western Himalayas in a regional ...

    Indian Academy of Sciences (India)

    influences the water budget over mountainous regions. This winter ... Moisture feedback; western Himalayas; regional climate. J. Earth Syst. Sci. ... and role of soil moisture in determining regional flood or ... Grell (1993), the resolvable-scale cloud and preci- ..... RegCNET: Regional climate modeling for the developing world ...

  14. Water budgets of two forested watersheds in South Carolina

    Science.gov (United States)

    Ge Sun; Jianbiao Lu; David L. Gartner; Masato Miwa; Carl C. Trettin

    2000-01-01

    Wetland protection, restoration and management require detail information of the water budgets for a particular system. Relatively undisturbed systems with long-term hydrologic records are extremely valuable for developing reference wetlands and detecting effects of management. Two forested flatwoods watersheds in the lower coastal plain of South Carolina have been...

  15. Lake Victoria's Water Budget and the Potential Effects of Climate ...

    African Journals Online (AJOL)

    This paper presents the Lake Victoria water budget for the period 1950-2004 and findings of a study on potential climate change impact on the lake's Hydrology through the 21st Century. The mass balance components are computed from measured and simulated data. A2 and B2 emission scenarios of the Special Report ...

  16. Evaluating Observation Influence on Regional Water Budgets in Reanalyses

    Science.gov (United States)

    Bosilovich, Michael G.; Chern, Jiun-Dar; Mocko, David; Robertson, Franklin R.; daSilva, Arlindo M.

    2014-01-01

    The assimilation of observations in reanalyses incurs the potential for the physical terms of budgets to be balanced by a term relating the fit of the observations relative to a forecast first guess analysis. This may indicate a limitation in the physical processes of the background model, or perhaps inconsistencies in the observing system and its assimilation. In the MERRA reanalysis, an area of long term moisture flux divergence over land has been identified over the Central United States. Here, we evaluate the water vapor budget in this region, taking advantage of two unique features of the MERRA diagnostic output; 1) a closed water budget that includes the analysis increment and 2) a gridded diagnostic output data set of the assimilated observations and their innovations (e.g. forecast departures). In the Central United States, an anomaly occurs where the analysis adds water to the region, while precipitation decreases and moisture flux divergence increases. This is related more to a change in the observing system than to a deficiency in the model physical processes. MERRAs Gridded Innovations and Observations (GIO) data narrow the observations that influence this feature to the ATOVS and Aqua satellites during the 06Z and 18Z analysis cycles. Observing system experiments further narrow the instruments that affect the anomalous feature to AMSUA (mainly window channels) and AIRS. This effort also shows the complexities of the observing system, and the reactions of the regional water budgets in reanalyses to the assimilated observations.

  17. Composite liners protect ground water

    Energy Technology Data Exchange (ETDEWEB)

    Tatzky, R; August, H

    1987-12-01

    For about 10 years flexible membrane liners (FMLs) have been used as bottom liners to protect ground water in the vicinity of waste sites. But a permeation (absorption, diffusion, desorption) of chemical liquids, e.g. hydrocarbons (HC) and chlorinated hydrocarbons (CHC) will generally occur. The rates of permeation depend, first of all, on the chemical affinity, the thickness of the FML and the boundary conditions. In order to improve the barrier quality of polymeric membranes, it is necessary to study the transport processes of HC and CHC through the polymeric materials. Long-term tests with composite liners are additionally carried out. These are liners which consist of two components, flexible membrane and natural soil liner (recompacted clay, bentonite-soil mixtures). Laboratory studies show that with composite liners a perfect sealing of waste sites may be possible. Test methods for measuring permeation rates of HC and CHC through polymeric membranes and methods of testing for the development of composite liner systems are presented. (orig.)

  18. Pollutant infiltration and ground water management

    International Nuclear Information System (INIS)

    1993-01-01

    Following a short overview of hazard potentials for ground water in Germany, this book, which was compiled by the technical committee of DVWK on ground water use, discusses the natural scientific bases of pollutant movement to and in ground water. It points out whether and to what extent soil/ground water systems can be protected from harmful influences, and indicates relative strategies. Two zones are distinguished: the unsaturated zone, where local defence and remedial measures are frequently possible, and the saturated zone. From the protective function of geological systems, which is always pollutant-specific, criteria are derived for judging the systems generally, or at least regarding entire classes of pollutants. Finally, the impact of the infiltration of pollutants into ground water on its use as drinking water is pointed out and an estimate of the cost of remedial measures is given. (orig.) [de

  19. The assessment of a water budget of North Cyprus

    International Nuclear Information System (INIS)

    Elkiran, G.; Ergil, M.

    2006-01-01

    Water scarcity in North Cyprus (NC) began in the 1960s and is still tremendously increasing. Thus far no serious measurements have been taken to address this problem. Increased water demands led to extraction of water from unrestricted groundwater resources. Extreme water extractions caused the salinization of coastal aquifers up to brackish waters and the consequent depletion of interior aquifers. Such a situation requires precise control of water resources through an integrated water resources management (IWRM). Although the situation has reached an alarming state, no detailed research has been performed to establish the present demands of water in order to anticipate the future demands. Hence, this study, based on the IWRM approach, examines water budget of the country. (author)

  20. Procedures for ground-water investigations

    International Nuclear Information System (INIS)

    1992-12-01

    This manual was developed by the Pacific Northwest Laboratory (PNL) to document the procedures used to carry out and control the technical aspects of ground-water investigations at the PNL. Ground-water monitoring procedures are developed and used in accordance with the PNL Quality Assurance Program

  1. Hanford site ground water protection management plan

    International Nuclear Information System (INIS)

    1994-10-01

    Ground water protection at the Hanford Site consists of preventative and remedial measures that are implemented in compliance with a variety of environmental regulations at local, state, and federal levels. These measures seek to ensure that the resource can sustain a broad range of beneficial uses. To effectively coordinate and ensure compliance with applicable regulations, the U.S. Department of Energy has issued DOE Order 5400.1 (DOE 1988a). This order requires all U.S. Department of Energy facilities to prepare separate ground water protection program descriptions and plans. This document describes the Ground Water Protection Management Plan (GPMP) for the Hanford Site located in the state of Washington. DOE Order 5400.1 specifies that the GPMP covers the following general topical areas: (1) documentation of the ground water regime; (2) design and implementation of a ground water monitoring program to support resource management and comply with applicable laws and regulations; (3) a management program for ground water protection and remediation; (4) a summary and identification of areas that may be contaminated with hazardous waste; (5) strategies for controlling hazardous waste sources; (6) a remedial action program; and (7) decontamination, decommissioning, and related remedial action requirements. Many of the above elements are currently covered by existing programs at the Hanford Site; thus, one of the primary purposes of this document is to provide a framework for coordination of existing ground water protection activities. The GPMP provides the ground water protection policy and strategies for ground water protection/management at the Hanford Site, as well as an implementation plan to improve coordination of site ground water activities

  2. The Carbon Budget of Coastal Waters of Eastern North America

    Science.gov (United States)

    Najjar, R.; Boyer, E. W.; Burdige, D.; Butman, D. E.; Cai, W. J.; Canuel, E. A.; Chen, R. F.; Friedrichs, M. A.; Griffith, P. C.; Herrmann, M.; Kemp, W. M.; Kroeger, K. D.; Mannino, A.; McCallister, S. L.; McGillis, W. R.; Mulholland, M. R.; Salisbury, J.; Signorini, S. R.; Tian, H.; Tzortziou, M.; Vlahos, P.; Wang, A. Z.; Zimmerman, R. C.; Pilskaln, C. H.

    2015-12-01

    Observations and the output of numerical and statistical models are synthesized to construct a carbon budget of the coastal waters of eastern North America. The domain extends from the head of tide to (roughly) the continental shelf break and from southern Florida to southern Nova Scotia. The domain area is 2% tidal wetlands, 19% estuarine open water, and 78% shelf water. Separate budgets are constructed for inorganic and organic carbon; for tidal wetlands, estuaries, and shelf waters; and for three main subregions: the Gulf of Maine, the Mid-Atlantic Bight, and the South Atlantic Bight. Net primary production for the study region is about 150 Tg C yr-1, with 12% occurring in tidal wetlands and 7% in estuaries. Though respiration and photosynthesis are nearly balanced in most systems and regions, tidal wetlands and shelf waters are each found to be net autotrophic whereas estuaries are net heterotrophic. The domain as a whole is a sink of 5 Tg C yr-1 of atmospheric CO2, with tidal wetlands and shelf waters taking up 10 Tg C yr-1 (split roughly equally) and estuaries releasing 5 Tg C yr-1 to the atmosphere. Carbon burial is about 3 Tg C yr-1, split roughly equally among tidal wetlands, estuaries, and shelf waters. Rivers supply 6-7 Tg C yr-1 to estuaries, about 2/3 of which is organic. Tidal wetlands supply an additional 4 Tg C yr-1 to estuaries, about half of which is organic. Carbon in organic and inorganic forms is exported from estuaries to shelf waters and from shelf waters to the open ocean. In summary, tidal wetlands and estuaries, though small in area, contribute substantially to the overall carbon budget of the region.

  3. Responses of Cloud Type Distributions to the Large-Scale Dynamical Circulation: Water Budget-Related Dynamical Phase Space and Dynamical Regimes

    Science.gov (United States)

    Wong, Sun; Del Genio, Anthony; Wang, Tao; Kahn, Brian; Fetzer, Eric J.; L'Ecuyer, Tristan S.

    2015-01-01

    Goals: Water budget-related dynamical phase space; Connect large-scale dynamical conditions to atmospheric water budget (including precipitation); Connect atmospheric water budget to cloud type distributions.

  4. Reassessment of Ground-Water Recharge and Simulated Ground-Water Availability for the Hawi Area of North Kohala, Hawaii

    Science.gov (United States)

    Oki, Delwyn S.

    2002-01-01

    An estimate of ground-water availability in the Hawi area of north Kohala, Hawaii, is needed to determine whether ground-water resources are adequate to meet future demand within the area and other areas to the south. For the Hawi area, estimated average annual recharge from infiltration of rainfall, fog drip, and irrigation is 37.5 million gallons per day from a daily water budget. Low and high annual recharge estimates for the Hawi area that incorporate estimated uncertainty are 19.9 and 55.4 million gallons per day, respectively. The recharge estimates from this study are lower than the recharge of 68.4 million gallons per day previously estimated from a monthly water budget. Three ground-water models, using the low, intermediate, and high recharge estimates (19.9, 37.5, and 55.4 million gallons per day, respectively), were developed for the Hawi area to simulate ground-water levels and discharges for the 1990?s. To assess potential ground-water availability, the numerical ground-water flow models were used to simulate the response of the freshwater-lens system to withdrawals at rates in excess of the average 1990?s withdrawal rates. Because of uncertainty in the recharge estimate, estimates of ground-water availability also are uncertain. Results from numerical simulations indicate that for appropriate well sites, depths, and withdrawal rates (1) for the low recharge estimate (19.9 million gallons per day) it may be possible to develop an additional 10 million gallons per day of fresh ground water from the Hawi area and maintain a freshwater-lens thickness of 160 feet near the withdrawal sites, (2) for the intermediate recharge estimate (37.5 million gallons per day) it may be possible to develop an additional 15 million gallons per day of fresh ground water from the Hawi area and maintain a freshwater-lens thickness of 190 feet near the withdrawal sites, and (3) for the high recharge estimate (55.4 million gallons per day) it may be possible to develop at

  5. Ground-Water Protection and Monitoring Program

    International Nuclear Information System (INIS)

    Dresel, P.E.

    1995-01-01

    This section of the 1994 Hanford Site Environmental Report summarizes the ground-water protection and monitoring program strategy for the Hanford Site in 1994. Two of the key elements of this strategy are to (1) protect the unconfined aquifer from further contamination, and (2) conduct a monitoring program to provide early warning when contamination of ground water does occur. The monitoring program at Hanford is designed to document the distribution and movement of existing ground-water contamination and provides a historical baseline for evaluating current and future risk from exposure to the contamination and for deciding on remedial action options

  6. Ground-Water Protection and Monitoring Program

    Energy Technology Data Exchange (ETDEWEB)

    Dresel, P.E.

    1995-06-01

    This section of the 1994 Hanford Site Environmental Report summarizes the ground-water protection and monitoring program strategy for the Hanford Site in 1994. Two of the key elements of this strategy are to (1) protect the unconfined aquifer from further contamination, and (2) conduct a monitoring program to provide early warning when contamination of ground water does occur. The monitoring program at Hanford is designed to document the distribution and movement of existing ground-water contamination and provides a historical baseline for evaluating current and future risk from exposure to the contamination and for deciding on remedial action options.

  7. Strategies for estimating the water budget at different scales using the JGrass-NewAGE system

    Science.gov (United States)

    Bancheri, M.; Rigon, R.; Serafin, F.; Abera, W.; Bottazzi, M.

    2017-12-01

    Recently we presented two papers one dedicated to the estimation of the water budget components in a small, basin, the Posina catchment [Abera et al., 2017], and the other in a large basin, the Blue Nile [Abera et al., 2017b]. At the smallest scale the ground measurements available do not guarantee the closure of the budget without making additional hypothesis. The large scale case, instead, was largely supported by remote sensing data either for calibration and/or validation. This contribution explains how we actually did it, clarifies some aspects of the informatics and openly discusses the issues risen in our work. We also consider varying configuration of the water budget schemes at the subbasin level, and how this affects the estimates.Finally we analyse the problem of travel times [Rigon et al., 2016a, Rigon et al, 2016b] as it comes out from considering the multiple fluxes and storages. All considerations and simulations are based on the JGrass-NewAGE system [Formetta et al., 2014] and its evolution (Bancheri [2017]).ReferencesAbera, W., Formetta, G., Borga, M., & Rigon, R. (2017a). Estimating the water budget components and their variability in a pre-alpine basin with JGrass-NewAGE. Advances in Water Resources, http://doi.org/10.1016/j.advwatres.2017.03.010Abera, W., Formetta, G., Brocca, L., & Rigon, R. (2017b). Modeling the water budget of the Upper Blue Nile basin using the JGrass-NewAge model system and satellite data. Hydrology and Earth System Sciences. http://doi.org/10.5194/hess-21-3145-2017Bancheri, M., A travel time model for water budget of complex catchments, ph.D Thesis, 2017Formetta, G., Antonello, A., Franceschi, S., David, O., & Rigon, R. (2014). Hydrological modelling with components: A GIS-based open-source framework. Environmental Modelling and Software,. http://doi.org/10.1016/j.envsoft.2014.01.019Rigon, R., Bancheri, M., Formetta, G., & de Lavenne, A. (2016). The geomorphological unit hydrograph from a historical-critical perspective

  8. Ground-water monitoring under RCRA

    International Nuclear Information System (INIS)

    Coalgate, J.

    1993-11-01

    In developing a regulatory strategy for the disposal of hazardous waste under the Resource Conservation and Recovery Act (RCRA), protection of ground-water resources was the primary goal of the Environmental Protection Agency (EPA). EPA's ground-water protection strategy seeks to minimize the potential for hazardous wastes and hazardous constituents in waste placed in land disposel units to migrate into the environment. This is achieved through liquids management (limiting the placement of liquid wastes in or on the land, requiring the use of liners beneath waste, installing leachate collection systems and run-on and run-off controls, and covering wastes at closure). Ground-water monitoring serves to detect any failure in EPA's liquids management strategy so that ground-water contamination can be detected and addressed as soon as possible

  9. Section 10: Ground Water - Waste Characteristics & Targets

    Science.gov (United States)

    HRS Training. The waste characteristics factor category in the ground water pathway is made up of two components: the toxicity/mobility of the most hazardous substance associated with the site and the hazardous waste quantity at the site.

  10. Nitrate Removal from Ground Water: A Review

    Directory of Open Access Journals (Sweden)

    Archna

    2012-01-01

    Full Text Available Nitrate contamination of ground water resources has increased in Asia, Europe, United States, and various other parts of the world. This trend has raised concern as nitrates cause methemoglobinemia and cancer. Several treatment processes can remove nitrates from water with varying degrees of efficiency, cost, and ease of operation. Available technical data, experience, and economics indicate that biological denitrification is more acceptable for nitrate removal than reverse osmosis and ion exchange. This paper reviews the developments in the field of nitrate removal processes which can be effectively used for denitrifying ground water as well as industrial water.

  11. Noble Gases in Lakes and Ground Waters

    OpenAIRE

    Kipfer, Rolf; Aeschbach-Hertig, Werner; Peeters, Frank; Stute, Marvin

    2002-01-01

    In contrast to most other fields of noble gas geochemistry that mostly regard atmospheric noble gases as 'contamination,' air-derived noble gases make up the far largest and hence most important contribution to the noble gas abundance in meteoric waters, such as lakes and ground waters. Atmospheric noble gases enter the meteoric water cycle by gas partitioning during air / water exchange with the atmosphere. In lakes and oceans noble gases are exchanged with the free atmosphere at the surface...

  12. Water budget analysis and management for Bangkok Metropolis, Thailand.

    Science.gov (United States)

    Singkran, Nuanchan

    2017-09-01

    The water budget of the Bangkok Metropolis system was analyzed using a material flow analysis model. Total imported flows into the system were 80,080 million m 3 per year (Mm 3 y -1 ) including inflows from the Chao Phraya and Mae Klong rivers and rainwater. Total exported flows out of the system were 78,528 Mm 3 y -1 including outflow into the lower Chao Phraya River and tap water (TW) distributed to suburbs. Total rates of stock exchange (1,552 Mm 3 y -1 ) were found in the processes of water recycling, TW distribution, domestic use, swine farming, aquaculture, and paddy fields. Only 21% of the total amount of wastewater (1,255 Mm 3 y -1 ) was collected, with insufficient treatment capacity of about 415 Mm 3 y -1 . Domestic and business (industrial and commercial sectors) areas were major point sources, whereas paddy fields were a major non-point source of wastewater. To manage Bangkok's water budget, critical measures have to be considered. Wastewater treatment capacity and efficiency of wastewater collection should be improved. On-site wastewater treatment plants for residential areas should be installed. Urban planning and land use zoning are suggested to control land use activities. Green technology should be supported to reduce wastewater from farming.

  13. Modeling the effects of longwall mining on the ground water system

    International Nuclear Information System (INIS)

    Matetic, R.J.; Liu, J.; Elsworth, D.

    1995-01-01

    The effects of longwall mining on the local ground water regime are determined through field monitoring and numerical modeling. Field displacement data were obtained from multiple-position borehole extensometer (MPBX's) and survey monuments, combined with hydraulic drawdown and recovery tests completed both pre- and post-mining. Despite the development of significant mining induced displacements, the resulting effect on long-term water budgets was surprisingly small. Coupled flow-deformation modeling of the site was able to adequately define the post-mining mechanical and hydraulic response, including resulting conductivity magnitudes and water budgets. 6 refs., 5 figs., 2 tabs

  14. Phosphorus and water budgets in an agricultural basin.

    Science.gov (United States)

    Faridmarandi, Sayena; Naja, Ghinwa M

    2014-01-01

    Water and phosphorus (P) budgets of a large agricultural basin located in South Florida (Everglades Agricultural Area, EAA) were computed from 2005 to 2012. The annual surface outflow P loading from the EAA averaged 157.2 mtons originating from Lake Okeechobee (16.4 mtons, 10.4%), farms (131.0 mtons, 83.4%), and surrounding basins (9.8 mtons, 6.2%) after attenuation. Farms, urban areas, and the adjacent C-139 basin contributed 186.1, 15.6, and 3.8 mtons/yr P to the canals, respectively. The average annual soil P retention was estimated at 412.5 mtons. Water and P budgets showed seasonal variations with high correlation between rainfall and P load in drainage and surface outflows. Moreover, results indicated that the canals acted as a P sink storing 64.8 mtons/yr. To assess the P loading impact of farm drainage on the canals and on the outflow, dimensionless impact factors were developed. Sixty-two farms were identified with a high and a medium impact factor I1 level contributing 44.5% of the total drainage P load to the canals, while their collective area represented less than 23% of the EAA area (172 farms). Optimizing the best management practice (BMP) strategies on these farms could minimize the environmental impacts on the downstream sensitive wetlands areas.

  15. Soil and ground-water remediation techniques

    International Nuclear Information System (INIS)

    Beck, P.

    1996-01-01

    Urban areas typically contain numerous sites underlain by soils or ground waters which are contaminated to levels that exceed clean-up guidelines and are hazardous to public health. Contamination most commonly results from the disposal, careless use and spillage of chemicals, or the historic importation of contaminated fill onto properties undergoing redevelopment. Contaminants of concern in soil and ground water include: inorganic chemicals such as heavy metals; radioactive metals; salt and inorganic pesticides, and a range of organic chemicals included within petroleum fuels, coal tar products, PCB oils, chlorinated solvents, and pesticides. Dealing with contaminated sites is a major problem affecting all urban areas and a wide range of different remedial technologies are available. This chapter reviews the more commonly used methods for ground-water and soil remediation, paying particular regard to efficiency and applicability of specific treatments to different site conditions. (author). 43 refs., 1 tab., 27 figs

  16. FEBEX bentonite colloid stability in ground water

    Energy Technology Data Exchange (ETDEWEB)

    Seher, H.; Schaefer, T.; Geckeis, H. [Inst. fuer Nukleare Entsorgung (INE), Forschungszentrum Karlsruhe, 76021 Karlsruhe (Germany)]. e-mail: holger.seher@ine.fzk .de; Fanghaenel, T. [Ruprecht-Karls-Univ. Heidelberg, Physikalisch-Chemisches In st., D-69120 Heidelberg (Germany)

    2007-06-15

    Coagulation experiments are accomplished to identify the geochemical conditions for the stability of Febex bentonite colloids in granite ground water. The experiments are carried out by varying pH, ionic strength and type of electrolyte. The dynamic light scattering technique (photon correlation spectroscopy) is used to measure the size evolution of the colloids with time. Agglomeration rates are higher in MgCl{sub 2} and CaCl{sub 2} than in NaCl solution. Relative agglomeration rates follow approximately the Schulze-Hardy rule. Increasing agglomeration rates at pH>8 are observed in experiments with MgCl{sub 2} and CaCl{sub 2} which are, however, caused by coprecipitation phenomena. Bentonite colloid stability fields derived from the colloid agglomeration experiments predict low colloid stabilization in granite ground water taken from Aespoe, Sweden, and relatively high colloid stability in Grimsel ground water (Switzerland)

  17. Geotechnics - the key to ground water protection

    DEFF Research Database (Denmark)

    Baumann, Jens; Foged, Niels; Jørgensen, Peter

    2000-01-01

    During the past 5 to 10 years research into ground water protection has proved that fractures in clay till may increase the hydraulic conductivity and herby the vulnerability of the ground water considerably. However, research has not identified a non-expensive and efficient method to map...... the fracture conditions of the various clay tills. Tests performed at the Danish Geotechnical Institute with large undisturbed columns of clay till show that there is a relation between the strength of the clay till and the hydraulic conductivity. Geotechnical methods may therefore be the key to determine...

  18. Estimating the Mediterranean Sea Water Budget: impact of RCM design

    Science.gov (United States)

    Somot, S.; Elguindi, N.; Sanchez-Gomez, E.; Herrmann, M.; Déqué, M.

    2009-09-01

    The Mediterranean Sea can be considered as a thermodynamic machine that exchanges water and heat with the Atlantic Ocean through the Strait of Gibraltar and with the atmosphere through its surface. Considering the Mediterranean Sea Water Budget (MSWB) multi-year mean, the Mediterranean basin looses water at the surface due to an excess of evaporation over freshwater input (precipitation, river runoff, Black Sea input). Moreover the MSWB largely drives the Mediterranean Sea water mass formation and therefore a large part of its thermohaline circulation. This could even have an impact on the characteristics of the Atlantic thermohaline circulation through the Mediterranean Outflow Waters that flow into the Atlantic at a depth of about 1000 m. From a climate point of view, the MSWB acts as a water source for the Mediterranean countries and therefore plays an important role on the water resources of the region. The regional physical characteristics of the Mediterranean basin (complex orography, strong land-sea contrast, land-atmosphere coupling, air-sea coupling, river inflow, Gibraltar Strait constraint and complex ocean bathymetry) strongly influence the various components of the MSWB. Moreover extreme precipitation events over land and strong evaporation events over the sea due to local winds can play a non-negligible role on the mean MSWB despite their small spatial and temporal scales. Therefore, modelling the mean behaviour, the interannual variability and the trends of the MSWB is a challenging task of the Regional Climate Model community in the context of climate change. It is actually one of the highlighted issues of the HyMex project planned for the 2010-2020 period. We propose here to start investigating some key scientific issues of the regional modelling of the Mediterranean Sea Water Budget using a wide range of regional climate simulations performed at Météo-France or in the framework of FP6 European projects (ENSEMBLES, CIRCE). The addressed

  19. Case study on ground water flow (8)

    International Nuclear Information System (INIS)

    1999-02-01

    The report comprises research activities made in fiscal year 1997 under the contract of Japan Nuclear Fuel Cycle Development Center and the main items are: (1) Evaluation of water permeability through discontinuous hard bedrock in deep strata in relevant with underground disposal of radioactive wastes, (2) Three dimensional analysis of permeated water in bedrock, including flow analysis in T ono district using neuro-network and modification of Evaporation Logging System, (3) Development of hydraulic tests and necessary equipment applicable to measurements of complex dielectric constants of contaminated soils using FUDR-V method, this giving information on soil component materials, (4) Investigation methods and modeling of hydraulics in deep strata, (5) Geological study of ground water using environmental isotopes such as 14 C, 36 Cl and 4 He, particularly measurement of ages of ground water using an accelerator-mass spectrometer, and (6) Re-submerging phenomena affecting the long-term geological stability. (S. Ohno)

  20. Case study on ground water flow (8)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-02-01

    The report comprises research activities made in fiscal year 1997 under the contract of Japan Nuclear Fuel Cycle Development Center and the main items are: (1) Evaluation of water permeability through discontinuous hard bedrock in deep strata in relevant with underground disposal of radioactive wastes, (2) Three dimensional analysis of permeated water in bedrock, including flow analysis in T ono district using neuro-network and modification of Evaporation Logging System, (3) Development of hydraulic tests and necessary equipment applicable to measurements of complex dielectric constants of contaminated soils using FUDR-V method, this giving information on soil component materials, (4) Investigation methods and modeling of hydraulics in deep strata, (5) Geological study of ground water using environmental isotopes such as {sup 14}C, {sup 36}Cl and {sup 4}He, particularly measurement of ages of ground water using an accelerator-mass spectrometer, and (6) Re-submerging phenomena affecting the long-term geological stability. (S. Ohno)

  1. Nitrate Removal from Ground Water: A Review

    OpenAIRE

    Archna; Sharma, Surinder K.; Sobti, Ranbir Chander

    2012-01-01

    Nitrate contamination of ground water resources has increased in Asia, Europe, United States, and various other parts of the world. This trend has raised concern as nitrates cause methemoglobinemia and cancer. Several treatment processes can remove nitrates from water with varying degrees of efficiency, cost, and ease of operation. Available technical data, experience, and economics indicate that biological denitrification is more acceptable for nitrate removal than reverse osmosis and ion ex...

  2. Polyfluorinated chemicals in European surface waters, ground- and drinking waters

    NARCIS (Netherlands)

    Eschauzier, C.; de Voogt, P.; Brauch, H.-J.; Lange, F.T.; Knepper, T.P.; Lange, F.T.

    2012-01-01

    Polyfluorinated chemicals (PFCs), especially short chain fluorinated alkyl sulfonates and carboxylates, are ubiquitously found in the environment. This chapter aims at giving an overview of PFC concentrations found in European surface, ground- and drinking waters and their behavior during

  3. NITRATE CONTAMINATION OF GROUND WATER (GW-761)

    Science.gov (United States)

    The occurrence of nitrate and related compounds in ground water is discussed from the perspectives of its natural as well as anthropogenic origins. A brief explanation of the nitrogen cycle touches on the production as well as utilization of ammonia, nitrite, nitrate, and nitrog...

  4. Ground water work breakdown structure dictionary

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-04-01

    This report contains the activities that are necessary to assess in ground water remediation as specified in the UMTRA Project. These activities include the following: site characterization; remedial action compliance and design documentation; environment, health, and safety program; technology assessment; property access and acquisition activities; site remedial actions; long term surveillance and licensing; and technical and management support.

  5. Ground water work breakdown structure dictionary

    International Nuclear Information System (INIS)

    1995-04-01

    This report contains the activities that are necessary to assess in ground water remediation as specified in the UMTRA Project. These activities include the following: site characterization; remedial action compliance and design documentation; environment, health, and safety program; technology assessment; property access and acquisition activities; site remedial actions; long term surveillance and licensing; and technical and management support

  6. Simulation of carbon and water budgets of a Douglas-fir forest

    NARCIS (Netherlands)

    Wijk, van M.T.; Dekker, S.C.; Bouten, W.; Kohsiek, W.; Mohren, G.M.J.

    2001-01-01

    The forest growth/hydrology model FORGRO–SWIF, consisting of a forest growth and a soil water model, was applied to quantify the inter-annual variability of the carbon and water budgets of a Douglas-fir forest (Pseudotsuga menziessii (Mirb.) Franco) in The Netherlands. With these budgets, the water

  7. Ground-water sample collection and analysis plan for the ground-water surveillance project

    International Nuclear Information System (INIS)

    Bryce, R.W.; Evans, J.C.; Olsen, K.B.

    1991-12-01

    The Pacific Northwest Laboratory performs ground-water sampling activities at the US Department of Energy's (DOE's) Hanford Site in support of DOE's environmental surveillance responsibilities. The purpose of this document is to translate DOE's General Environmental Protection Program (DOE Order 5400.1) into a comprehensive ground-water sample collection and analysis plan for the Hanford Site. This sample collection and analysis plan sets forth the environmental surveillance objectives applicable to ground water, identifies the strategy for selecting sample collection locations, and lists the analyses to be performed to meet those objectives

  8. Reading Ground Water Levels with a Smartphone

    Science.gov (United States)

    van Overloop, Peter-Jules

    2015-04-01

    Most ground water levels in the world are measured manually. It requires employees of water management organizations to visit sites in the field and execute a measurement procedure that requires special tools and training. Once the measurement is done, the value is jotted down in a notebook and later, at the office, entered in a computer system. This procedure is slow and prone to human errors. A new development is the introduction of modern Information and Communication Technology to support this task and make it more efficient. Two innovations are introduced to measure and immediately store ground water levels. The first method is a measuring tape that gives a sound and light when it just touches the water in combination with an app on a smartphone with which a picture needs to be taken from the measuring tape. Using dedicated pattern recognition algorithms, the depth is read on the tape and it is verified if the light is on. The second method estimates the depth using a sound from the smartphone that is sent into the borehole and records the reflecting waves in the pipe. Both methods use gps-localization of the smartphone to store the depths in the right location in the central database, making the monitoring of ground water levels a real-time process that eliminates human errors.

  9. Ground-water reconnaissance of American Samoa

    Science.gov (United States)

    Davis, Daniel Arthur

    1963-01-01

    The principal islands of American Samoa are Tutuila, Aunuu, Ofu, Olosega, and Ta'u, which have a total area of about 72 square miles and a population of about 20,000. The mean annual rainfall is 150 to 200 inches. The islands are volcanic in origin and are composed of lava flows, dikes, tuff. and breccia, and minor amounts of talus, alluvium, and calcareous sand and gravel. Tutuila is a complex island formed of rocks erupted from five volcanoes. Aunuu is a tuff cone. Ofu, Olosega, and Ta'u are composed largely of thin-bedded lava flows. Much of the rock of Tutuila has low permeability, and most of the ground water is in high-level reservoirs that discharge at numerous small springs and seeps. The flow from a few springs and seeps is collected in short tunnels or in basins for village supply, but most villages obtain their water from streams. A large supply of basal ground water may underlie the Tafuna-Leone plain at about sea level in permeable lava flows. Small basal supplies may be in alluvial fill at the mouths of large valleys. Aunuu has small quantities of basal water in beach deposits of calcareous sand and gravel. Minor amounts of high-level ground-water flow from springs and seeps on Ofu, Olosega, and Ta'u. The generally permeable lava flows in the three islands contain substantial amounts of basal ground water that can be developed in coastal areas in wells dug to about sea level.

  10. Ground water currents: Developments in innovative ground water treatment, March 1994

    Energy Technology Data Exchange (ETDEWEB)

    Eilers, R.

    1994-03-01

    ;Contents: Hydrodynamic cavitation oxidation destroys organics; Biosparging documented in fuel remediation study; Surfactant flushing research to remove organic liquids from aquifers; and Compilation of Ground-Water Models (a book review).

  11. Water management, agriculture, and ground-water supplies

    Science.gov (United States)

    Nace, Raymond L.

    1960-01-01

    Encyclopedic data on world geography strikingly illustrate the drastic inequity in the distribution of the world's water supply. About 97 percent of the total volume of water is in the world's oceans. The area of continents and islands not under icecaps, glaciers, lakes, and inland seas is about 57.5 million square miles, of which 18 million (36 percent) is arid to semiarid. The total world supply of water is about 326.5 million cubic miles, of which about 317 million is in the oceans and about 9.4 million is in the land areas. Atmospheric moisture is equivalent to only about 3,100 cubic miles of water. The available and accessible supply of ground water in the United States is somewhat more than 53,000 cubic miles (about 180 billion acre ft). The amount of fresh water on the land areas of the world at any one time is roughly 30,300 cubic miles and more than a fourth of this is in large fresh-water lakes on the North American Continent. Annual recharge of ground water in the United States may average somewhat more than 1 billion acre-feet yearly, but the total volume of ground water in storage is equivalent to all the recharge in about the last 160 years. This accumulation of ground water is the nation's only reserve water resource, but already it is being withdrawn or mined on a large scale in a few areas. The principal withdrawals of water in the United States are for agriculture and industry. Only 7.4 percent of agricultural land is irrigated, however; so natural soil moisture is the principal source of agricultural water, and on that basis agriculture is incomparably the largest water user. In view of current forecasts of population and industrial expansion, new commitments of water for agriculture should be scrutinized very closely, and thorough justification should be required. The 17 Western States no longer contain all the large irrigation developments. Nearly 10 percent of the irrigated area is in States east of the western bloc, chiefly in several

  12. Estimating ground water recharge from topography, hydrogeology, and land cover.

    Science.gov (United States)

    Cherkauer, Douglas S; Ansari, Sajjad A

    2005-01-01

    Proper management of ground water resources requires knowledge of the rates and spatial distribution of recharge to aquifers. This information is needed at scales ranging from that of individual communities to regional. This paper presents a methodology to calculate recharge from readily available ground surface information without long-term monitoring. The method is viewed as providing a reasonable, but conservative, first approximation of recharge, which can then be fine-tuned with other methods as time permits. Stream baseflow was measured as a surrogate for recharge in small watersheds in southeastern Wisconsin. It is equated to recharge (R) and then normalized to observed annual precipitation (P). Regression analysis was constrained by requiring that the independent and dependent variables be dimensionally consistent. It shows that R/P is controlled by three dimensionless ratios: (1) infiltrating to overland water flux, (2) vertical to lateral distance water must travel, and (3) percentage of land cover in the natural state. The individual watershed properties that comprise these ratios are now commonly available in GIS data bases. The empirical relationship for predicting R/P developed for the study watersheds is shown to be statistically viable and is then tested outside the study area and against other methods of calculating recharge. The method produces values that agree with baseflow separation from streamflow hydrographs (to within 15% to 20%), ground water budget analysis (4%), well hydrograph analysis (12%), and a distributed-parameter watershed model calibrated to total streamflow (18%). It has also reproduced the temporal variation over 5 yr observed at a well site with an average error < 12%.

  13. Dynamic fracture network around faults: implications for earthquake ruptures, ground motion and energy budget

    Science.gov (United States)

    Okubo, K.; Bhat, H. S.; Rougier, E.; Lei, Z.; Knight, E. E.; Klinger, Y.

    2017-12-01

    Numerous studies have suggested that spontaneous earthquake ruptures can dynamically induce failure in secondary fracture network, regarded as damage zone around faults. The feedbacks of such fracture network play a crucial role in earthquake rupture, its radiated wave field and the total energy budget. A novel numerical modeling tool based on the combined finite-discrete element method (FDEM), which accounts for the main rupture propagation and nucleation/propagation of secondary cracks, was used to quantify the evolution of the fracture network and evaluate its effects on the main rupture and its associated radiation. The simulations were performed with the FDEM-based software tool, Hybrid Optimization Software Suite (HOSSedu) developed by Los Alamos National Laboratory. We first modeled an earthquake rupture on a planar strike-slip fault surrounded by a brittle medium where secondary cracks can be nucleated/activated by the earthquake rupture. We show that the secondary cracks are dynamically generated dominantly on the extensional side of the fault, mainly behind the rupture front, and it forms an intricate network of fractures in the damage zone. The rupture velocity thereby significantly decreases, by 10 to 20 percent, while the supershear transition length increases in comparison to the one with purely elastic medium. It is also observed that the high-frequency component (10 to 100 Hz) of the near-field ground acceleration is enhanced by the dynamically activated fracture network, consistent with field observations. We then conducted the case study in depth with various sets of initial stress state, and friction properties, to investigate the evolution of damage zone. We show that the width of damage zone decreases in depth, forming "flower-like" structure as the characteristic slip distance in linear slip-weakening law, or the fracture energy on the fault, is kept constant with depth. Finally, we compared the fracture energy on the fault to the energy

  14. Procedures for ground-water investigations

    International Nuclear Information System (INIS)

    1989-09-01

    This manual was developed by the Pacific Northwest Laboratory (PNL) to document the procedures used to carry out and control the technical aspects of ground-water investigations at the PNL. Ground-water investigations are carried out to fulfill the requirements for the US Department of Energy (DOE) to meet the requirements of DOE Orders. Investigations are also performed for various clients to meet the requirements of the Resource Conservation and Recovery Act of 1976 (RCRA) and the Comprehensive Environmental Response, Compensation and Liability Act of 1980 (CERCLA). National standards including procedures published by the American Society for Testing and Materials (ASTM) and the US Geological Survey were utilized in developing the procedures contained in this manual

  15. Water and nutrient budgets at field and regional scale : travel times of drainage water and nutrient loads to surface water

    NARCIS (Netherlands)

    Eertwegh, van den G.A.P.H.

    2002-01-01

    Keywords : water and nutrient budget, travel time of drainage water, dual-porosity concept, agricultural nutrient losses, loads to surface water, field-scale experiments, regional-scale

  16. The water budget of heterogeneous areas : impact of soil and rainfall variability

    NARCIS (Netherlands)

    Kim, C.P.

    1995-01-01

    In this thesis the heterogeneity of the soil water budget components is investigated. Heterogeneity of soil hydraulic properties and rainfall rate are taken into account by using stochastic methods. The importance of lateral groundwater flow in causing heterogeneity of the water budget

  17. Activation analysis of ground water of Chandigarh

    International Nuclear Information System (INIS)

    Mittal, V.K.

    1997-01-01

    Ground water samples from Chandigarh were analysed for 22 trace elements using neutron activation analysis (NAA) technique. These samples were drawn from shallow aquifers using hand pumps. It was found that for most of the elements the concentrations were well within the ISI/WHO recommended values. However, samples collected from the industrial belt of the city showed higher concentrations of trace elements, particularly some toxic ones. (author). 6 refs., 1 tab

  18. Environmental isotope observations on Sishen ground waters

    International Nuclear Information System (INIS)

    Verhagen, B. Th.

    1982-01-01

    Environmental isotope measurements have been conducted on the outputs of some of the main dewatering points in both north and south mining areas as well as on numerous other observation points in the Sishen compartment. The effect of the dykes bounding the compartment could be observed from the behaviour of the isotopic composition of ground waters in the conduit zone. Measurements were done on radiocarbon, tritium oxygen-18 and carbon-13

  19. Ground Water movement in crystalline rock aquifers

    International Nuclear Information System (INIS)

    Serejo, A.N.C.; Freire, C.; Siqueira, H.B. de; Frischkorn, H.; Torquato, J.R.F.; Santiago, M.M.F.; Barbosa, P.C.

    1984-01-01

    Ground water movement studies were performed in crystalline rock aquifers from the upper Acarau River hydrographic basin, state of Ceara, Brazil. The studies included carbon-14, 18 O/ 16 O and tritium measurements as well as chemical analysis. A total of 35 wells were surveyed during drought seasons. Carbon-14 values displayed little variation which implied that the water use was adequate despite of the slower recharge conditions. Fairly constant isotopic 18 O/ 16 O ratio values in the wells and their similarity with rainwater values indicated that the recharge is done exclusively by pluvial waters. A decreasing tendency within the tritium concentration values were interpreted as a periodic rainwater renewal for these aquifers. The chemical analysis demonstrated that there is in fact no correlation between salinity and the time the water remains in the aquifer itself. (D.J.M.) [pt

  20. Isotopes in hydrology of ground water

    International Nuclear Information System (INIS)

    Rodriguez, N.; C, O.

    1996-01-01

    Fundamental concepts on Radioactivity, Isotopes, Radioisotopes, Law of Nuclear Decay (Middle Life concept), Radioactivity units, Types of radiation, Absorption and dispersion of both Alfa and Beta particles and both gamma and X-rays attenuation are presented. A description on Environmental Isotopes (those that are presented in natural form in the environment and those that can't be controlled by the humans), both stables and unstable (radioisotopes) isotopes is made. Isotope hydrology applications in surface water investigations as: Stream flow measurements and Atmosphere - surface waters interrelationship is described. With relation to the groundwater investigations, different applications of the isotope hydrology, its theoretical base and its methodology are presented to each one of the substrates as: Unsaturated zone (soil cape), Saturated zone (aquifer cape), Surface waters - ground waters interrelationship (infiltration and recharge) and to hydrologic balance

  1. Surface energy budget and thermal inertia at Gale Crater: Calculations from ground-based measurements.

    Science.gov (United States)

    Martínez, G M; Rennó, N; Fischer, E; Borlina, C S; Hallet, B; de la Torre Juárez, M; Vasavada, A R; Ramos, M; Hamilton, V; Gomez-Elvira, J; Haberle, R M

    2014-08-01

    The analysis of the surface energy budget (SEB) yields insights into soil-atmosphere interactions and local climates, while the analysis of the thermal inertia ( I ) of shallow subsurfaces provides context for evaluating geological features. Mars orbital data have been used to determine thermal inertias at horizontal scales of ∼10 4  m 2 to ∼10 7  m 2 . Here we use measurements of ground temperature and atmospheric variables by Curiosity to calculate thermal inertias at Gale Crater at horizontal scales of ∼10 2  m 2 . We analyze three sols representing distinct environmental conditions and soil properties, sol 82 at Rocknest (RCK), sol 112 at Point Lake (PL), and sol 139 at Yellowknife Bay (YKB). Our results indicate that the largest thermal inertia I  = 452 J m -2  K -1  s -1/2 (SI units used throughout this article) is found at YKB followed by PL with I  = 306 and RCK with I  = 295. These values are consistent with the expected thermal inertias for the types of terrain imaged by Mastcam and with previous satellite estimations at Gale Crater. We also calculate the SEB using data from measurements by Curiosity's Rover Environmental Monitoring Station and dust opacity values derived from measurements by Mastcam. The knowledge of the SEB and thermal inertia has the potential to enhance our understanding of the climate, the geology, and the habitability of Mars.

  2. Ground water in Creek County, Oklahoma

    Science.gov (United States)

    Cady, Richard Carlysle

    1937-01-01

    Creek County has been designated as a problem area by the Land Use Planning Section of the Resettlement Administration. Some of the earliest oil fields to brought into production were situated in and near this county, and new fields have been opened from time to time during the ensuing years. The production of the newer fields, however, has not kept pace with the exhaustion of the older fields, and the county now presents an excellent picture of the problems involved in adjusting a population to lands that are nearly depleted of their mineral wealth. Values of land have been greatly depressed; tax collection is far in arrears; tenancy is widespread; and in addition more people will apparently be forced to depend on the income from agriculture than the land seems capable of supporting. The county as a whole is at best indifferently suitable for general farming. The Land Use planning Section proposes to study the present and seemingly immanent maladjustments of population to the resources of the land, and make recommendations for their correction. The writer was detailed to the Land Use Planning Section of Region VIII for the purposes of making studies of ground water problems in the region. In Creek County two investigations were made. In September, 1936, the writer spent about ten days investigating the availability of ground water for the irrigation of garden crops during drouths. If it proved feasible to do this generally throughout the county, the Land Use Planning Section might be able to encourage this practice. The second investigation made by the writer was in regard to the extent to which ground water supplies have been damaged by oil well brines. He was in county for four days late in January 1937, and again in March, 1937. During part of the second field trip he was accompanied by R.M. Dixon, sanitary engineer of the Water Utilization Unit of the Resettlement Administration. (available as photostat copy only)

  3. SURFACE WATER AND GROUND WATER QUALITY MONITORING FOR RESTORATION OF URBAN LAKES IN GREATER HYDERABAD, INDIA

    Science.gov (United States)

    Mohanty, A. K.

    2009-12-01

    SURFACE WATER AND GROUND WATER QUALITY MONITORING FOR RESTORATION OF URBAN LAKES IN GREATER HYDERABAD, INDIA A.K. Mohanty, K. Mahesh Kumar, B. A. Prakash and V.V.S. Gurunadha Rao Ecology and Environment Group National Geophysical Research Institute, (CSIR) Hyderabad - 500 606, India E-mail:atulyakumarmohanty@yahoo.com Abstract: Hyderabad Metropolitan Development Authority has taken up restoration of urban lakes around Hyderabad city under Green Hyderabad Environment Program. Restoration of Mir Alam Tank, Durgamcheruvu, Patel cheruvu, Pedda Cheruvu and Nallacheruvu lakes have been taken up under the second phase. There are of six lakes viz., RKPuramcheruvu, Nadimicheruvu (Safilguda), Bandacheruvu Patelcheruvu, Peddacheruvu, Nallacheruvu, in North East Musi Basin covering 38 sq km. Bimonthly monitoring of lake water quality for BOD, COD, Total Nitrogen, Total phosphorous has been carried out for two hydrological cycles during October 2002- October 2004 in all the five lakes at inlet channels and outlets. The sediments in the lake have been also assessed for nutrient status. The nutrient parameters have been used to assess eutrophic condition through computation of Trophic Status Index, which has indicated that all the above lakes under study are under hyper-eutrophic condition. The hydrogeological, geophysical, water quality and groundwater data base collected in two watersheds covering 4 lakes has been used to construct groundwater flow and mass transport models. The interaction of lake-water with groundwater has been computed for assessing the lake water budget combining with inflow and outflow measurements on streams entering and leaving the lakes. Individual lake water budget has been used for design of appropriate capacity of Sewage Treatment Plants (STPs) on the inlet channels of the lakes for maintaining Full Tank Level (FTL) in each lake. STPs are designed for tertiary treatment i.e. removal of nutrient load viz., Phosphates and Nitrates. Phosphates are

  4. Surface-Water and Ground-Water Interactions in the Central Everglades, Florida

    Science.gov (United States)

    Harvey, Judson W.; Newlin, Jessica T.; Krest, James M.; Choi, Jungyill; Nemeth, Eric A.; Krupa, Steven L.

    2004-01-01

    Recharge and discharge are hydrological processes that cause Everglades surface water to be exchanged for subsurface water in the peat soil and the underlying sand and limestone aquifer. These interactions are thought to be important to water budgets, water quality, and ecology in the Everglades. Nonetheless, relatively few studies of surface water and ground water interactions have been conducted in the Everglades, especially in its vast interior areas. This report is a product of a cooperative investigation conducted by the USGS and the South Florida Water Management District (SFWMD) aimed at developing and testing techniques that would provide reliable estimates of recharge and discharge in interior areas of WCA-2A (Water Conservation Area 2A) and several other sites in the central Everglades. The new techniques quantified flow from surface water to the subsurface (recharge) and the opposite (discharge) using (1) Darcy-flux calculations based on measured vertical gradients in hydraulic head and hydraulic conductivity of peat; (2) modeling transport through peat and decay of the naturally occurring isotopes 224Ra and 223Ra (with half-lives of 4 and 11 days, respectively); and (3) modeling transport and decay of naturally occurring and 'bomb-pulse' tritium (half-life of 12.4 years) in ground water. Advantages and disadvantages of each method for quantifying recharge and discharge were compared. In addition, spatial and temporal variability of recharge and discharge were evaluated and controlling factors identified. A final goal was to develop appropriately simplified (that is, time averaged) expressions of the results that will be useful in addressing a broad range of hydrological and ecological problems in the Everglades. Results were compared with existing information about water budgets from the South Florida Water Management Model (SFWMM), a principal tool used by the South Florida Water Management District to plan many of the hydrological aspects of the

  5. Ground-water resources of Cambodia

    Science.gov (United States)

    Rasmussen, William Charles; Bradford, Gary M.

    1977-01-01

    available information is on the central lowlands and contiguous low plateaus, as the mountainous areas on the west and the high plateaus on the east are relatively unexplored with respect to their ground-water availability. No persistent artesian aquifer has been identified nor have any large potential ground-water sources been found .although much of the country yet remains to be explored by test drilling. Well irrigation for garden produce is feasible on a modest scale in many localities throughout Cambodia. It does not seem likely, however, that large-scale irrigation from wells will come about in the future. Ground water may be regarded as a widely available supplemental source to surface water for domestic, small-scale industrial, and irrigation use.

  6. Contamination of ground water, surface water, and soil, and evaluation of selected ground-water pumping alternatives in the Canal Creek area of Aberdeen Proving Ground, Maryland

    Science.gov (United States)

    Lorah, Michelle M.; Clark, Jeffrey S.

    1996-01-01

    Chemical manufacturing, munitions filling, and other military-support activities have resulted in the contamination of ground water, surface water, and soil in the Canal Creek area of Aberdeen Proving Ground, Maryland. Chlorinated volatile organic compounds, including 1,1,2,2-tetrachloroethane and trichloroethylene, are widespread ground-water contaminants in two aquifers that are composed of unconsolidated sand and gravel. Distribution and fate of chlorinated organic compounds in the ground water has been affected by the movement and dissolution of solvents in their dense immiscible phase and by microbial degradation under anaerobic conditions. Detection of volatile organic contaminants in adjacent surface water indicates that shallow contaminated ground water discharges to surface water. Semivolatile organic compounds, especially polycyclic aromatic hydrocarbons, are the most prevalent organic contaminants in soils. Various trace elements, such as arsenic, cadmium, lead, and zinc, were found in elevated concentrations in ground water, surface water, and soil. Simulations with a ground-water-flow model and particle tracker postprocessor show that, without remedial pumpage, the contaminants will eventually migrate to Canal Creek and Gunpowder River. Simulations indicate that remedial pumpage of 2.0 million gallons per day from existing wells is needed to capture all particles originating in the contaminant plumes. Simulated pumpage from offsite wells screened in a lower confined aquifer does not affect the flow of contaminated ground water in the Canal Creek area.

  7. Ground-water models: Validate or invalidate

    Science.gov (United States)

    Bredehoeft, J.D.; Konikow, Leonard F.

    1993-01-01

    The word validation has a clear meaning to both the scientific community and the general public. Within the scientific community the validation of scientific theory has been the subject of philosophical debate. The philosopher of science, Karl Popper, argued that scientific theory cannot be validated, only invalidated. Popper’s view is not the only opinion in this debate; however, many scientists today agree with Popper (including the authors). To the general public, proclaiming that a ground-water model is validated carries with it an aura of correctness that we do not believe many of us who model would claim. We can place all the caveats we wish, but the public has its own understanding of what the word implies. Using the word valid with respect to models misleads the public; verification carries with it similar connotations as far as the public is concerned. Our point is this: using the terms validation and verification are misleading, at best. These terms should be abandoned by the ground-water community.

  8. Hanford Site ground-water surveillance for 1989

    International Nuclear Information System (INIS)

    Evans, J.C.; Bryce, R.W.; Bates, D.J.; Kemner, M.L.

    1990-06-01

    This annual report of ground-water surveillance activities provides discussions and listings of results for ground-water monitoring at the Hanford Site during 1989. The Pacific Northwest Laboratory (PNL) assesses the impacts of Hanford operations on the environment for the US Department of Energy (DOE). The impact Hanford operations has on ground water is evaluated through the Hanford Site Ground-Water Surveillance program. Five hundred and sixty-seven wells were sampled during 1989 for Hanford ground-water monitoring activities. This report contains a listing of analytical results for calendar year (CY) 1989 for species of importance as potential contaminants. 30 refs., 29 figs,. 4 tabs

  9. Ground-water monitoring and modeling at the Hanford Site

    International Nuclear Information System (INIS)

    Mitchell, P.J.; Freshley, M.D.

    1987-01-01

    The ground-water monitoring program at the Hanford Site in southeastern Washington State is continually evolving in response to changing operations at the site, changes in the ground-water flow system, movement of the constituents in the aquifers, and regulatory requirements. Sampling and analysis of ground water, along with ground-water flow and solute transport modeling are used to evaluate the movement and resulting distributions of radionuclides and hazardous chemical constituents in the unconfined aquifer. Evaluation of monitoring results, modeling, and information on waste management practices are being combined to continually improve the network of ground-water monitoring wells at the site

  10. Ground-water monitoring and modeling at the Hanford Site

    International Nuclear Information System (INIS)

    Mitchell, P.J.; Freshley, M.D.

    1987-01-01

    The ground-water monitoring program at the Hanford Site in southeastern Washington State is continually evolving in response to changing operations at the site, changes in the ground-water flow system, movement of the constituents in the aquifers, and regulatory requirements. Sampling and analysis of ground water, along with ground-water flow and solute transport modeling are used ito evaluate the movement and resulting distributions of radionuclides and hazardous chemical constituents in the unconfined aquifer. Evaluation of monitoring results, modeling, and information on waste management practices are being combined to continually improve the network of ground-water monitoring wells at the site

  11. Ground water hydrology report: Revision 1, Attachment 3. Final

    International Nuclear Information System (INIS)

    1996-12-01

    This report presents ground water hydrogeologic activities for the Maybell, Colorado, Uranium Mill Tailings Remedial Action Project site. The Department of Energy has characterized the hydrogeology, water quality, and water resources at the site and determined that the proposed remedial action would comply with the requirements of the EPA ground water protection standards

  12. GSFLOW - Coupled Ground-Water and Surface-Water Flow Model Based on the Integration of the Precipitation-Runoff Modeling System (PRMS) and the Modular Ground-Water Flow Model (MODFLOW-2005)

    Science.gov (United States)

    Markstrom, Steven L.; Niswonger, Richard G.; Regan, R. Steven; Prudic, David E.; Barlow, Paul M.

    2008-01-01

    The need to assess the effects of variability in climate, biota, geology, and human activities on water availability and flow requires the development of models that couple two or more components of the hydrologic cycle. An integrated hydrologic model called GSFLOW (Ground-water and Surface-water FLOW) was developed to simulate coupled ground-water and surface-water resources. The new model is based on the integration of the U.S. Geological Survey Precipitation-Runoff Modeling System (PRMS) and the U.S. Geological Survey Modular Ground-Water Flow Model (MODFLOW). Additional model components were developed, and existing components were modified, to facilitate integration of the models. Methods were developed to route flow among the PRMS Hydrologic Response Units (HRUs) and between the HRUs and the MODFLOW finite-difference cells. This report describes the organization, concepts, design, and mathematical formulation of all GSFLOW model components. An important aspect of the integrated model design is its ability to conserve water mass and to provide comprehensive water budgets for a location of interest. This report includes descriptions of how water budgets are calculated for the integrated model and for individual model components. GSFLOW provides a robust modeling system for simulating flow through the hydrologic cycle, while allowing for future enhancements to incorporate other simulation techniques.

  13. Modeling the effects of longwall mining on the ground water system

    International Nuclear Information System (INIS)

    Matetic, R.J.; Liu, J.; Elsworth, D.

    1995-01-01

    The objective of this US Bureau of Mines hydrologic-subsidence investigation was to evaluate the effects of longwall mining on the local ground water regime through field monitoring and numerical modeling. Field data were obtained from multiple-position borehole extensometers (MPBXs) that were used to measure subsurface displacements. Survey monuments were installed to measure mining-induced surface deformations. Numerous drawdown and recovery tests were performed to characterized hydrologic properties of the overburden strata. Coreholes were drilled above the study area to determine lithologic and strength characteristics of the overburden strata using the rock samples collected. Electronic recorders were installed on all monitoring wells to continuously monitor ground water levels in coordination with mining of the longwall panels. A combined finite element model of the deformation of overlying strata, and its influence on ground water flow was used to define the change in local and regional water budgets. The predicted effects of the postmining ground water system determined by the model correlated well with field data collected from the fieldsite. Without an infiltration rate added to the model, a static decrease of 3.0 m (10 ft) in water level would occur due to mining of both longwall panels and if an infiltration rate was inputted in the model, no predicted long-term effects would occur to the ground water system

  14. Ground-Water Availability in the United States

    Science.gov (United States)

    Reilly, Thomas E.; Dennehy, Kevin F.; Alley, William M.; Cunningham, William L.

    2008-01-01

    Ground water is among the Nation's most important natural resources. It provides half our drinking water and is essential to the vitality of agriculture and industry, as well as to the health of rivers, wetlands, and estuaries throughout the country. Large-scale development of ground-water resources with accompanying declines in ground-water levels and other effects of pumping has led to concerns about the future availability of ground water to meet domestic, agricultural, industrial, and environmental needs. The challenges in determining ground-water availability are many. This report examines what is known about the Nation's ground-water availability and outlines a program of study by the U.S. Geological Survey Ground-Water Resources Program to improve our understanding of ground-water availability in major aquifers across the Nation. The approach is designed to provide useful regional information for State and local agencies who manage ground-water resources, while providing the building blocks for a national assessment. The report is written for a wide audience interested or involved in the management, protection, and sustainable use of the Nation's water resources.

  15. Ground water quality evaluation in Beed city, Maharashtra, India ...

    African Journals Online (AJOL)

    A survey was undertaken to assess the quality of ground water in Beed district of Maharashtra taking both physico-chemical and bacteriological parameters into consideration. The present investigation is aimed to calculate Water Quality Index (WQI) of ground water and to assess the impact of pollutants due to agriculture ...

  16. 40 CFR 258.51 - Ground-water monitoring systems.

    Science.gov (United States)

    2010-07-01

    ... water that has not been affected by leakage from a unit. A determination of background quality may... that ensures detection of ground-water contamination in the uppermost aquifer. When physical obstacles... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Ground-water monitoring systems. 258...

  17. 40 CFR 257.3-4 - Ground water.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Ground water. 257.3-4 Section 257.3-4... and Practices § 257.3-4 Ground water. (a) A facility or practice shall not contaminate an underground drinking water source beyond the solid waste boundary or beyond an alternative boundary specified in...

  18. Water and nutrient budgets for Vancouver Lake, Vancouver, Washington, October 2010-October 2012

    Science.gov (United States)

    Sheibley, Rich W.; Foreman, James R.; Marshall, Cameron A.; Welch, Wendy B.

    2014-01-01

    Vancouver Lake, a large shallow lake in Clark County, near Vancouver, Washington, has been undergoing water-quality problems for decades. Recently, the biggest concern for the lake are the almost annual harmful cyanobacteria blooms that cause the lake to close for recreation for several weeks each summer. Despite decades of interest in improving the water quality of the lake, fundamental information on the timing and amount of water and nutrients entering and exiting the lake is lacking. In 2010, the U.S. Geological Survey conducted a 2-year field study to quantify water flows and nutrient loads in order to develop water and nutrient budgets for the lake. This report presents monthly and annual water and nutrient budgets from October 2010–October 2012 to identify major sources and sinks of nutrients. Lake River, a tidally influenced tributary to the lake, flows into and out of the lake almost daily and composed the greatest proportion of both the water and nutrient budgets for the lake, often at orders of magnitude greater than any other source. From the water budget, we identified precipitation, evaporation and groundwater inflow as minor components of the lake hydrologic cycle, each contributing 1 percent or less to the total water budget. Nutrient budgets were compiled monthly and annually for total nitrogen, total phosphorus, and orthophosphate; and, nitrogen loads were generally an order of magnitude greater than phosphorus loads across all sources. For total nitrogen, flow from Lake River at Felida, Washington, made up 88 percent of all inputs into the lake. For total phosphorus and orthophosphate, Lake River at Felida flowing into the lake was 91 and 76 percent of total inputs, respectively. Nutrient loads from precipitation and groundwater inflow were 1 percent or less of the total budgets. Nutrient inputs from Burnt Bridge Creek and Flushing Channel composed 12 percent of the total nitrogen budget, 8 percent of the total phosphorus budget, and 21 percent

  19. Water resources data for Virginia, water year 1991. Volume 2. Ground-water-level and ground-water-quality records. Water-data report (Annual), 1 October 1991-30 September 1992

    International Nuclear Information System (INIS)

    Prugh, B.J.; Powell, E.D.

    1993-01-01

    Water-resources data for the 1992 water year for Virginia consist of records of water levels and water quality of ground-water wells. The report (Volume 2. Ground-Water-Level and Ground-Water-Quality Records) contains water levels at 356 observation wells and water quality at 2 wells. Locations of these wells are given in the report

  20. Guide to North Dakota's ground-water resources

    Science.gov (United States)

    Paulson, Q.F.

    1983-01-01

    Ground water, the water we pump from the Earth through wells or that which flows naturally from springs, is one of North Dakota's most valuable resources. More than 60 percent of the people living in the State use ground water for one purpose of another. It is the only source of water for thousands of farm families and their livestock. Almost all smaller cities and villages depend solely on groudn water as a source of supply. Increasingly, ground water is being used to irrigate crops and grasslands (fig. 1) during protracted dry spells so common in North Dakota. During recent years there has been a rapid development of rural water ditribution systems in which thousands of farms and rurals residences are connected via underground pipeline to a single water source, usually wells pumping ground water.

  1. Hanford Site ground-water monitoring for 1994

    Energy Technology Data Exchange (ETDEWEB)

    Dresel, P.E.; Thorne, P.D.; Luttrell, S.P. [and others

    1995-08-01

    This report presents the results of the Ground-Water Surveillance Project monitoring for calendar year 1994 on the Hanford Site, Washington. Hanford Site operations from 1943 onward produced large quantities of radiologic and chemical waste that have impacted ground-water quality on the Site. Monitoring of water levels and ground-water chemistry is performed to track the extent of contamination and trends in contaminant concentrations. The 1994 monitoring was also designed to identify emerging ground-water quality problems. The information obtained is used to verify compliance with applicable environmental regulations and to evaluate remedial actions. Data from other monitoring and characterization programs were incorporated to provide an integrated assessment of Site ground-water quality. Additional characterization of the Site`s geologic setting and hydrology was performed to support the interpretation of contaminant distributions. Numerical modeling of sitewide ground-water flow also supported the overall project goals. Water-level monitoring was performed to evaluate ground-water flow directions, to track changes in water levels, and to relate such changes to changes in site disposal practices. Water levels over most of the Hanford Site continued to decline between June 1993 and June 1994. These declines are part of the continued response to the cessation of discharge to U Pond and other disposal facilities. The low permeability in this area which enhanced mounding of waste-water discharge has also slowed the response to the reduction of disposal.

  2. Hanford Site ground-water monitoring for 1994

    International Nuclear Information System (INIS)

    Dresel, P.E.; Thorne, P.D.; Luttrell, S.P.

    1995-08-01

    This report presents the results of the Ground-Water Surveillance Project monitoring for calendar year 1994 on the Hanford Site, Washington. Hanford Site operations from 1943 onward produced large quantities of radiologic and chemical waste that have impacted ground-water quality on the Site. Monitoring of water levels and ground-water chemistry is performed to track the extent of contamination and trends in contaminant concentrations. The 1994 monitoring was also designed to identify emerging ground-water quality problems. The information obtained is used to verify compliance with applicable environmental regulations and to evaluate remedial actions. Data from other monitoring and characterization programs were incorporated to provide an integrated assessment of Site ground-water quality. Additional characterization of the Site's geologic setting and hydrology was performed to support the interpretation of contaminant distributions. Numerical modeling of sitewide ground-water flow also supported the overall project goals. Water-level monitoring was performed to evaluate ground-water flow directions, to track changes in water levels, and to relate such changes to changes in site disposal practices. Water levels over most of the Hanford Site continued to decline between June 1993 and June 1994. These declines are part of the continued response to the cessation of discharge to U Pond and other disposal facilities. The low permeability in this area which enhanced mounding of waste-water discharge has also slowed the response to the reduction of disposal

  3. ground water quality evaluation in beed city, maharashtra, india

    African Journals Online (AJOL)

    Khatib Afsar

    2013-12-18

    Dec 18, 2013 ... to assess the quality of ground water in Beed district of Maharashtra taking both physico-chemical .... All ideal value s (Vio) are taken as zero for the drinking water ..... Conference: Ustron, Poland, 2004, Routledge, New York.

  4. Short-time variations of the ground water level

    International Nuclear Information System (INIS)

    Nilsson, Lars Y.

    1977-09-01

    Investigations have demonstrated that the ground water level of aquifers in the Swedish bedrock shows shorttime variations without changing their water content. The ground water level is among other things affected by regular tidal movements occuring in the ''solid'' crust of the earth variations in the atmospheric pressure strong earthquakes occuring in different parts of the world These effects proves that the system of fissures in the bedrock are not stable and that the ground water flow is influenced by both water- and airfilled fissures

  5. Theoretical aspects on the phenomenon of contamination of ground waters

    International Nuclear Information System (INIS)

    Echeverri, G.E.

    1998-01-01

    The phenomenon of contamination of ground waters and the destination of certain constituents of the water keep in mind diverse mechanisms of physical nature, chemistry and biological; in this work it is consigned in a concise way, the theoretical aspects of these topics, that is to say, the basic principles of the ground water hydraulics, the fundamental concepts of the physics of the movement and the chemistry of the ground water, as well as the equations that govern the phenomenon of contamination of the mass of water contained in the interstices of the floors and the rocks, broadly used in the mathematical modeling of the phenomenon

  6. Hydrology and water budget for a forested atlantic coastal plain watershed, South Carolina

    Science.gov (United States)

    Scott V. Harder; Devendra M Amatya; Callahan Timothy J.; Carl C. Trettin; Hakkila Jon

    2007-01-01

    Increases in timber demand and urban development in the Atlantic Coastal Plain over the past decade have motivated studies on the hydrology, water quality, and sustainable management of coastal plain watersheds. However, studies on baseline water budgets are limited for the low-lying, forested watersheds of the Atlantic Coastal Plain. The purpose of this study was to...

  7. Hyrdology and water budget for a forested atlantic coastal plain watershed, South Carolina

    Science.gov (United States)

    Scott V. Harder; Devendra M. Amatya; Timothy J. Callahan; Carl C. Trettin; Jon Hakkila

    2007-01-01

    Increases in timber demand and urban development in the Atlantic Coastal Plain over the past decade have motivated studies on the hydrology, water quality, and sustainable management of coastal plain watersheds. However, studies on baseline water budgets are limited for the low-lying, forested watersheds of the Atlantic Coastal Plain. The purpose of this study was to...

  8. Evaluation of ground-water quality in the Santa Maria Valley, California

    Science.gov (United States)

    Hughes, Jerry L.

    1977-01-01

    The quality and quantity of recharge to the Santa Maria Valley, Calif., ground-water basin from natural sources, point sources, and agriculture are expressed in terms of a hydrologic budget, a solute balance, and maps showing the distribution of select chemical constituents. Point sources includes a sugar-beet refinery, oil refineries, stockyards, golf courses, poultry farms, solid-waste landfills, and municipal and industrial wastewater-treatment facilities. Pumpage has exceeded recharge by about 10,000 acre-feet per year. The result is a declining potentiometric surface with an accumulation of solutes and an increase in nitrogen in ground water. Nitrogen concentrations have reached as much as 50 milligrams per liter. In comparison to the solutes from irrigation return, natural recharge, and rain, discharge of wastewater from municipal and industrial wastewater-treatment facilities contributes less than 10 percent. The quality of treated wastewater is often lower in select chemical constituents than the receiving water. (Woodard-USGS)

  9. Contamination of Ground Water Samples from Well Installations

    DEFF Research Database (Denmark)

    Grøn, Christian; Madsen, Jørgen Øgaard; Simonsen, Y.

    1996-01-01

    Leaching of a plasticizer, N-butylbenzenesulfonamide, from ground water multilevel sampling installations in nylon has been demonstrated. The leaching resulted in concentrations of DOC and apparent AOX, both comparable with those observed in landfill contaminated ground waters. It is concluded...... that nylon should not be used in studies of contamination with organic compounds....

  10. IN-SITU BIOREMEDIATION OF CONTAMINATED GROUND WATER

    Science.gov (United States)

    This document is one in a series of Ground Water Issue papers which have been prepared in response to needs expressed by the Ground Water Forum. It is based on findings from the research community in concert with experience gained at sites undergoing remediation. the intent of th...

  11. Monitoring and sampling perched ground water in a basaltic terrain

    International Nuclear Information System (INIS)

    Hubbell, J.M.

    1990-01-01

    Perched ground water zones can provide significant information on water and contaminant movement. This paper presents information about perched ground water obtained from drilling and monitoring at a hazardous and radioactive waste disposal site at the Idaho National Engineering Laboratory. Six of forty-five wells drilled at the Radioactive Waste Management Complex have detected perched water in basalts above sedimentary interbeds. This paper describes the distribution and characteristics of perched ground water. It discusses perched water below the surficial sediments in wells at the RWMC, the characteristics of chemical constituents found in perched water, the implications for contaminant transport in the unsaturated zone of water, and the lateral extent of perched water. Recommendations are made to increase the probability of detecting and sampling low yield perched water zones. 6 refs., 6 figs., 2 tabs

  12. Estimation of ground water hydraulic parameters

    Energy Technology Data Exchange (ETDEWEB)

    Hvilshoej, Soeren

    1998-11-01

    The main objective was to assess field methods to determine ground water hydraulic parameters and to develop and apply new analysis methods to selected field techniques. A field site in Vejen, Denmark, which previously has been intensively investigated on the basis of a large amount of mini slug tests and tracer tests, was chosen for experimental application and evaluation. Particular interest was in analysing partially penetrating pumping tests and a recently proposed single-well dipole test. Three wells were constructed in which partially penetrating pumping tests and multi-level single-well dipole tests were performed. In addition, multi-level slug tests, flow meter tests, gamma-logs, and geologic characterisation of soil samples were carried out. In addition to the three Vejen analyses, data from previously published partially penetrating pumping tests were analysed assuming homogeneous anisotropic aquifer conditions. In the present study methods were developed to analyse partially penetrating pumping tests and multi-level single-well dipole tests based on an inverse numerical model. The obtained horizontal hydraulic conductivities from the partially penetrating pumping tests were in accordance with measurements obtained from multi-level slug tests and mini slug tests. Accordance was also achieved between the anisotropy ratios determined from partially penetrating pumping tests and multi-level single-well dipole tests. It was demonstrated that the partially penetrating pumping test analysed by and inverse numerical model is a very valuable technique that may provide hydraulic information on the storage terms and the vertical distribution of the horizontal and vertical hydraulic conductivity under both confined and unconfined aquifer conditions. (EG) 138 refs.

  13. A Climate Data Record (CDR) for the global terrestrial water budget: 1984-2010

    Science.gov (United States)

    Zhang, Yu; Pan, Ming; Sheffield, Justin; Siemann, Amanda L.; Fisher, Colby K.; Liang, Miaoling; Beck, Hylke E.; Wanders, Niko; MacCracken, Rosalyn F.; Houser, Paul R.; Zhou, Tian; Lettenmaier, Dennis P.; Pinker, Rachel T.; Bytheway, Janice; Kummerow, Christian D.; Wood, Eric F.

    2018-01-01

    Closing the terrestrial water budget is necessary to provide consistent estimates of budget components for understanding water resources and changes over time. Given the lack of in situ observations of budget components at anything but local scale, merging information from multiple data sources (e.g., in situ observation, satellite remote sensing, land surface model, and reanalysis) through data assimilation techniques that optimize the estimation of fluxes is a promising approach. Conditioned on the current limited data availability, a systematic method is developed to optimally combine multiple available data sources for precipitation (P), evapotranspiration (ET), runoff (R), and the total water storage change (TWSC) at 0.5° spatial resolution globally and to obtain water budget closure (i.e., to enforce P - ET - R - TWSC = 0) through a constrained Kalman filter (CKF) data assimilation technique under the assumption that the deviation from the ensemble mean of all data sources for the same budget variable is used as a proxy of the uncertainty in individual water budget variables. The resulting long-term (1984-2010), monthly 0.5° resolution global terrestrial water cycle Climate Data Record (CDR) data set is developed under the auspices of the National Aeronautics and Space Administration (NASA) Earth System Data Records (ESDRs) program. This data set serves to bridge the gap between sparsely gauged regions and the regions with sufficient in situ observations in investigating the temporal and spatial variability in the terrestrial hydrology at multiple scales. The CDR created in this study is validated against in situ measurements like river discharge from the Global Runoff Data Centre (GRDC) and the United States Geological Survey (USGS), and ET from FLUXNET. The data set is shown to be reliable and can serve the scientific community in understanding historical climate variability in water cycle fluxes and stores, benchmarking the current climate, and

  14. Water Power Technologies FY 2017 Budget At-A-Glance

    Energy Technology Data Exchange (ETDEWEB)

    None

    2016-03-01

    The Water Power Program is committed to developing and deploying a portfolio of innovative technologies and market solutions for clean, domestic power generation from water resources across the U.S. (hydropower, marine and hydrokinetics).

  15. Technology Transfer Opportunities: Automated Ground-Water Monitoring

    Science.gov (United States)

    Smith, Kirk P.; Granato, Gregory E.

    1997-01-01

    Introduction A new automated ground-water monitoring system developed by the U.S. Geological Survey (USGS) measures and records values of selected water-quality properties and constituents using protocols approved for manual sampling. Prototypes using the automated process have demonstrated the ability to increase the quantity and quality of data collected and have shown the potential for reducing labor and material costs for ground-water quality data collection. Automation of water-quality monitoring systems in the field, in laboratories, and in industry have increased data density and utility while reducing operating costs. Uses for an automated ground-water monitoring system include, (but are not limited to) monitoring ground-water quality for research, monitoring known or potential contaminant sites, such as near landfills, underground storage tanks, or other facilities where potential contaminants are stored, and as an early warning system monitoring groundwater quality near public water-supply wells.

  16. Basin scale management of surface and ground water

    International Nuclear Information System (INIS)

    Tracy, J.C.; Al-Sharif, M.

    1993-01-01

    An important element in the economic development of many regions of the Great Plains is the availability of a reliable water supply. Due to the highly variable nature of the climate through out much of the Great Plains region, non-controlled stream flow rates tend to be highly variable from year to year. Thus, the primary water supply has tended towards developing ground water aquifers. However, in regions where shallow ground water is extracted for use, there exists the potential for over drafting aquifers to the point of depleting hydraulically connected stream flows, which could adversely affect the water supply of downstream users. To prevent the potential conflict that can arise when a basin's water supply is being developed or to control the water extractions within a developed basin requires the ability to predict the effect that water extractions in one region will have on water extractions from either surface or ground water supplies else where in the basin. This requires the ability to simulate ground water levels and stream flows on a basin scale as affected by changes in water use, land use practices and climatic changes within the basin. The outline for such a basin scale surface water-ground water model has been presented in Tracy (1991) and Tracy and Koelliker (1992), and the outline for the mathematical programming statement to aid in determining the optimal allocation of water on a basin scale has been presented in Tracy and Al-Sharif (1992). This previous work has been combined into a computer based model with graphical output referred to as the LINOSA model and was developed as a decision support system for basin managers. This paper will present the application of the LINOSA surface-ground water management model to the Rattlesnake watershed basin that resides within Ground Water Management District Number 5 in south central Kansas

  17. Ground water in the Piedmont upland of central Maryland

    Science.gov (United States)

    Richardson, Claire A.

    1982-01-01

    This report, describing ground-water occurrence in a 130-square-mile area of the central Maryland Piedmont, was originally designed for use by the U.S. Environmental Protection Agency in replying to a request for designation of the aquifers to be the sole or principal source of ground water. However, the information contained in the report is pertinent to other crystalline-rock areas as well. The study area is underlain chiefly by crystalline rocks and partly by unaltered sandstones and siltstones. The ground water is derived from local precipitation and generally occurs under water-table conditions. Its movement is restricted by the lack of interconnected openings, and most ground water occurs within 300 feet of the land surface. Hydrographs indicate no long-term change in ground-water storage. A few wells yield more than 100 gallons per minute, but about 70 percent of 286 inventoried wells yield 10 gallons per minute or less; most specific capacities are less than 1.0 gallon per minute per foot. The ground-water quality is generally satisfactory without treatment, and there are no known widespread pollution problems. Estimated daily figures on ground-water use are as follows: 780,000 gallons for domestic purposes; 55,000, for commercial purposes; and 160,000, for public supply. Although part of the area is served by an existing surface-water supply and could be served by possible extension of it and of other public-supply water mains, much of the rural population is dependent on the ground water available from private wells tapping the single aquifer that underlies any given location. Neither the ground-water conditions nor this dependence on individual wells is unique to the study area, but, rather, applies to the entire Piedmont province.

  18. Handling the decline of ground water using artificial recharge areas

    Science.gov (United States)

    Hidayatullah, Muhammad Shofi; Yoga, Kuncaraningrat Edi; Muslim, Dicky

    2017-11-01

    Jatinagor, a region with rapid growth cause increasing in water demand. The ground water surface in the observation area shows a decrease based on its potential. This deflation is mainly caused by the inequality between inputs and outputs of the ground water itself. The decrease of this ground water surface is also caused by the number of catchment areas that keeps decreasing. According to the data analysis of geology and hydrology, the condition of ground water in Jatinangor on 2015 had indicated a decrease compared to 2010. Nowadays, the longlivity of clean water can be ensure by the hydrogeology engineering, which is to construct an artificial recharge for ground water in use. The numerical method is aims to determine the number of ground water supply in Jatinangor. According to the research, the most suitable artificial recharge is in the form of a small dam located in the internment river. With the area of 209.000 m2, this dam will be able to contain 525 m3 runoff water with the intensity of maximum rainfall effectively 59,44 mm/hour. The increase of water volume generate by this artificial recharge, fulfilled the demand of clean water.

  19. Isotope hydrology of ground waters of the Kalahari, Gordonia

    International Nuclear Information System (INIS)

    Verhagen, B.Th.

    1985-01-01

    Environmental isotope observations were conducted on ground waters from approximately 50 boreholes covering a substantial part of Gordonia. The quality of these waters ranges from fresh to saline. The observed isotope ratios cover a wide range of values, indicating varied hydrological conditions. The most important conclusions arrived at by this study are: 1. no important regional movement of ground water occurs at present; 2. there is widespread evidence of diffuse rainfall recharge; and 3. an important part of ground-water salinity is derived from the unsaturated zone, during such recharge

  20. Geohydrological and environmental isotope observation of Sishen ground waters

    International Nuclear Information System (INIS)

    Verhagen, B.Th.; Dziembowski, Z.M.

    1985-01-01

    The dewatering of Sishen Mine in the northern Cape Province supplies good quality water for the mine and surrounding areas. Using various approaches, attempts are made to quantify the remaining storage of ground water. Geohydrological observations provide an estimate based on extrapolating the thickness of dewatered rock. Environmental isotope observations on various borehole outputs show contrasts between different ground-water bodies and their mixtures and allows for some extrapolations of observed trends. Indications are that previous estimates of storage, based on ground-water level changes, are conservative

  1. Ground-water contribution to dose from past Hanford Operations

    International Nuclear Information System (INIS)

    Freshley, M.D.; Thorne, P.D.

    1992-08-01

    The Hanford Environmental Dose Reconstruction (HEDR) Project is being conducted to estimate radiation doses that populations and individuals could have received from Hanford Site operations from 1944 to the present. Four possible pathways by which radionuclides migrating in ground water on the Hanford Site could have reached the public have been identified: (1) through contaminated ground water migrating to the Columbia River; (2) through wells on or adjacent to the Hanford Site; (3) through wells next to the Columbia River downstream of Hanford that draw some or all of their water from the river (riparian wells); and (4) through atmospheric deposition resulting in contamination of a small watershed that, in turn, results in contamination of a shallow well or spring by transport in the ground water. These four pathways make up the ''ground-water pathway,'' which is the subject of this study. Assessment of the ground-water pathway was performed by (1) reviewing the existing extensive literature on ground water and ground-water monitoring at Hanford and (2) performing calculations to estimate radionuclide concentrations where no monitoring data were collected. Radiation doses that would result from exposure to these radionuclides were calculated

  2. Uranium isotopes in ground water as a prospecting technique

    International Nuclear Information System (INIS)

    Cowart, J.B.; Osmond, J.K.

    1980-02-01

    The isotopic concentrations of dissolved uranium were determined for 300 ground water samples near eight known uranium accumulations to see if new approaches to prospecting could be developed. It is concluded that a plot of 234 U/ 238 U activity ratio (A.R.) versus uranium concentration (C) can be used to identify redox fronts, to locate uranium accumulations, and to determine whether such accumulations are being augmented or depleted by contemporary aquifer/ground water conditions. In aquifers exhibiting flow-through hydrologic systems, up-dip ground water samples are characterized by high uranium concentration values (> 1 to 4 ppB) and down-dip samples by low uranium concentration values (less than 1 ppB). The boundary between these two regimes can usually be identified as a redox front on the basis of regional water chemistry and known uranium accumulations. Close proximity to uranium accumulations is usually indicated either by very high uranium concentrations in the ground water or by a combination of high concentration and high activity ratio values. Ground waters down-dip from such accumulations often exhibit low uranium concentration values but retain their high A.R. values. This serves as a regional indicator of possible uranium accumulations where conditions favor the continued augmentation of the deposit by precipitation from ground water. Where the accumulation is being dispersed and depleted by the ground water system, low A.R. values are observed. Results from the Gulf Coast District of Texas and the Wyoming districts are presented

  3. Ground-water conditions in Utah, spring of 1994

    Science.gov (United States)

    Allen, D.V.; Garrett, R.B.; Sory, J.D.; Burden, Carole B.; Danner, M.R.; Herbert, L.R.; Steiger, J.I.; ReMillard, M.D.; Slaugh, B.A.; Swenson, R.L.; Howells, J.H.; Christiansen, H.K.; Bagley, A.D.

    1994-01-01

    This is the thirty-first in a series of annual reports that describe ground-water conditions in Utah. Reports in this series, published cooperatively by the U.S. Geological Survey and the Utah Division of Water Resources, provide data to enable interested parties to keep abreast of changing ground-water conditions.This report, like the others in the series, contains information on well construction, ground-water withdrawal from wells, water-level changes, related changes in precipitation and streamflow, and chemical quality of water. Supplementary data, such as maps showing water-level contours, are included in reports of this series only for those years or areas for which applicable data are available and are important to a discussion of changing ground-water conditions.This report includes individual discussions of selected significant areas of ground-water development in the State for calendar year 1993. Water-level fluctuations and selected related data, however, are described from the spring of 1989 to the spring of 1994. Much of the data used in this report were collected by the U.S. Geological Survey in cooperation with the Divisions of Water Rights and Water Resources, Utah Department of Natural Resources.

  4. The Virginia Beach shallow ground-water study

    Science.gov (United States)

    Johnson, Henry M.

    1999-01-01

    IntroductionVirginia Beach is a rapidly growing city of more than 425,000 people. Sources of fresh water within the city, however, are limited. Prior to 1998, the Virginia Beach Public Utilities Department met the city's water needs by purchasing treated drinking water from the City of Norfolk. Because Norfolk had to meet its own requirements, the amount of water available to Virginia Beach was limited to about 30 million gallons per day (mgd) and even less during droughts. This water supply was supplemented with ground water from city-owned, community, and private wells. In many parts of the city, however, ground water cannot be used because of high concentrations of chloride, iron, and (or) sulfur, which give the water an unpleasant taste.In early 1998, a pipeline came on-line that can carry up to 45 mgd of water from Lake Gaston to Virginia Beach. The Gaston pipeline has alleviated concerns about water supply and quality for most residents living north of the "Green Line." These residents primarily use ground water only for small-scale domestic activities such as watering lawns, filling ponds and pools, and washing cars. City water and sewer services have been extended beyond the Green Line into the "Transition Area." Residents and businesses south of the Transition Area, however, continue to rely on ground water to meet most of their needs for potable and non-potable water. To help assure a continued, reliable supply of ground water, the U.S. Geological Survey (USGS), in cooperation with the City of Virginia Beach Public Utilities Department, has begun an assessment of the shallow ground-water resources underlying the City of Virginia Beach.

  5. Evaluating regional water scarcity: Irrigated crop water budgets for groundwater management in the Wisconsin Central Sands

    Science.gov (United States)

    Nocco, M. A.; Kucharik, C. J.; Kraft, G.

    2013-12-01

    Regional water scarcity dilemmas between agricultural and aquatic land users pervade the humid northern lake states of Wisconsin, Minnesota, and Michigan, where agricultural irrigation relies on groundwater drawn from shallow aquifers. As these aquifers have strong connectivity to surface waters, irrigation lowers water levels in lakes and wetlands and reduces stream discharges. Irrigation expansion has cultivated a 60-year water scarcity dilemma in The Wisconsin Central Sands, the largest irrigated region in the humid northern lake states, dedicated to potato, maize, and processing vegetable production. Irrigation has depleted Wisconsin Central Sands surface waters, lowering levels in some lakes by over 2 m and drying some coldwater trout streams. Aquatic ecosystems, property values, and recreational uses in some surface waters have been devastated. While the causal link between pumping and surface water stress is established, understanding crop-mediated processes, such as the timing and magnitude of groundwater consumption by evapotranspiration (ET) and groundwater recharge, will be useful in management of groundwater, irrigated cropping systems, and surface water health. Previous modeling and field efforts have compared irrigated crop water use to a natural reference condition on a net annual basis. As a result, we presently understand that for irrigated potatoes and maize, the average annual ET is greater and therefore, the average annual recharge is less than rainfed row crops, grasslands, and both coniferous and deciduous forests. However, we have a limited understanding of the magnitude and timing of ET and recharge from irrigated cropping systems on shorter time scales that proceed with the annual cropping cycle (i.e. planting, full canopy, harvest, residue cover). We seek to understand the spatiotemporal variability of crop water budgets and associated water scarcity in the Wisconsin Central Sands through detailed measurements of drainage (potential

  6. Water budget of the Calera Aquifer in Zacatecas, Mexico

    Science.gov (United States)

    In the Calera Aquifer Region of the State of Zacatecas, Mexico, limited rainfall and low agricultural water use efficiency in combination with fast growing industrial and urban water demand are contributing to groundwater depletion at an unsustainable rate. Limited data and planning tools were avail...

  7. Hanford Site ground-water monitoring for 1993

    Energy Technology Data Exchange (ETDEWEB)

    Dresel, P.E.; Luttrell, S.P.; Evans, J.C. [and others

    1994-09-01

    This report presents the results of the Ground-Water Surveillance Project monitoring for calendar year 1993 on the Hanford Site, Washington. Hanford Site operations from 1943 onward produced large quantities of radiological and chemical waste that have impacted ground-water quality on the Site. Monitoring of water levels and ground-water chemistry is performed to track the extent of contamination and trends in contaminant concentrations. The 1993 monitoring was also designed to identify emerging ground-water quality problems. The information obtained is used to verify compliance with applicable environmental regulations and to evaluate remedial actions. Data from other monitoring and characterization programs were incorporated to provide an integrated assessment of Site ground-water quality. Additional characterization of the Site`s geologic setting and hydrology was performed to support the interpretation of contaminant distributions. Numerical modeling of sitewide ground-water flow also supported the overall project goals. Water-level monitoring was performed to evaluate ground-water flow directions, to track changes in water levels, and to relate such changes to changes in site disposal practices. Water levels over most of the Hanford Site continued to decline between June 1992 and June 1993. The greatest declines occurred in the 200-West Area. These declines are part of the continued response to the cessation of discharge to U Pond and other disposal facilities. The low permeability in this area which enhanced mounding of waste-water discharge has also slowed the response to the reduction of disposal. Water levels remained nearly constant in the vicinity of B Pond, as a result of continued disposal to the pond. Water levels measured from wells in the unconfined aquifer north and east of the Columbia River indicate that the primary source of recharge is irrigation practices.

  8. Hanford Site ground-water monitoring for 1993

    International Nuclear Information System (INIS)

    Dresel, P.E.; Luttrell, S.P.; Evans, J.C.

    1994-09-01

    This report presents the results of the Ground-Water Surveillance Project monitoring for calendar year 1993 on the Hanford Site, Washington. Hanford Site operations from 1943 onward produced large quantities of radiological and chemical waste that have impacted ground-water quality on the Site. Monitoring of water levels and ground-water chemistry is performed to track the extent of contamination and trends in contaminant concentrations. The 1993 monitoring was also designed to identify emerging ground-water quality problems. The information obtained is used to verify compliance with applicable environmental regulations and to evaluate remedial actions. Data from other monitoring and characterization programs were incorporated to provide an integrated assessment of Site ground-water quality. Additional characterization of the Site's geologic setting and hydrology was performed to support the interpretation of contaminant distributions. Numerical modeling of sitewide ground-water flow also supported the overall project goals. Water-level monitoring was performed to evaluate ground-water flow directions, to track changes in water levels, and to relate such changes to changes in site disposal practices. Water levels over most of the Hanford Site continued to decline between June 1992 and June 1993. The greatest declines occurred in the 200-West Area. These declines are part of the continued response to the cessation of discharge to U Pond and other disposal facilities. The low permeability in this area which enhanced mounding of waste-water discharge has also slowed the response to the reduction of disposal. Water levels remained nearly constant in the vicinity of B Pond, as a result of continued disposal to the pond. Water levels measured from wells in the unconfined aquifer north and east of the Columbia River indicate that the primary source of recharge is irrigation practices

  9. Geology and ground-water resources of Goshen County, Wyoming; Chemical quality of the ground water

    Science.gov (United States)

    Rapp, J.R.; Visher, F.N.; Littleton, R.T.; Durum, W.H.

    1957-01-01

    Goshen County, which has an area of 2,186 square miles, lies in southeastern Wyoming. The purpose of this study was to evaluate the ground-water resources of the county by determining the character, thickness, and extent of the waterbearing materials; the source, occurrence, movement, quantity, and quality of the ground water; and the possibility of developing additional ground water. The rocks exposed in the area are sedimentary and range in age from Precambrian to Recent. A map that shows the areas of outcrop and a generalized section that summarizes the age, thickness, physical character, and water supply of these formations are included in the report. Owing to the great depths at which they lie beneath most of the county, the formations older than the Lance formation of Late Cretaceous age are not discussed in detail. The Lance formation, of Late Cretaceous age, which consists mainly of beds of fine-grained sandstone and shale, has a maximum thickness of about 1,400 feet. It yields water, which usually is under artesian pressure, to a large number of domestic and stock wells in the south-central part of the county. Tertiary rocks in the area include the Chadron and Brule formations of Oligocene age, the Arikaree formation of Miocene age, and channel deposits of Pliocene age. The Chadron formation is made up of two distinct units: a lower unit of highly variegated fluviatile deposits that has been found only in the report area; and an upper unit that is typical of the formation as it occurs in adjacent areas. The lower unit, which ranges in thickness from a knife edge to about 95 feet, is not known to yield water to wells, but its coarse-grained channel deposits probably would yield small quantities of water to wells. The upper unit, which ranges in thickness from a knife edge to about 150 feet, yields sufficient quantities of water for domestic and stock uses from channel deposits of sandstone under artesian pressure. The Brule formation, which is mainly a

  10. MINTEQ, Geochemical Equilibria in Ground Water

    International Nuclear Information System (INIS)

    Krupka, K.M.

    1990-01-01

    1 - Description of program or function: MINTEQ is a geochemical program to model aqueous solutions and the interactions of aqueous solutions with hypothesized assemblages of solid phases. It was developed for the Environmental Protection Agency to perform the calculations necessary to simulate the contact of waste solutions with heterogeneous sediments or the interaction of ground water with solidified wastes. MINTEQ can calculate ion speciation/solubility, adsorption, oxidation-reduction, gas phase equilibria, and precipitation/dissolution of solid phases. MINTEQ can accept a finite mass for any solid considered for dissolution and will dissolve the specified solid phase only until its initial mass is exhausted. This ability enables MINTEQ to model flow-through systems. In these systems the masses of solid phases that precipitate at earlier pore volumes can be dissolved at later pore volumes according to thermodynamic constraints imposed by the solution composition and solid phases present. The ability to model these systems permits evaluation of the geochemistry of dissolved traced metals, such as low-level waste in shallow land burial sites. MINTEQ was designed to solve geochemical equilibria for systems composed of one kilogram of water, various amounts of material dissolved in solution, and any solid materials that are present. Systems modeled using MINTEQ can exchange energy and material (open systems) or just energy (closed systems) with the surrounding environment. Each system is composed of a number of phases. Every phase is a region with distinct composition and physically definable boundaries. All of the material in the aqueous solution forms one phase. The gas phase is composed of any gaseous material present, and structurally distinct solid forms a separate phase. 2 - Method of solution: MINTEQ applies the fundamental principles of thermodynamics to solve geochemical equilibria from a set of mass balance equations, one for each component. Because the

  11. Effects of recharge, Upper Floridan aquifer heads, and time scale on simulated ground-water exchange with Lake Starr, a seepage lake in central Florida

    Science.gov (United States)

    Swancar, Amy; Lee, Terrie Mackin

    2003-01-01

    Lake Starr and other lakes in the mantled karst terrain of Florida's Central Lake District are surrounded by a conductive surficial aquifer system that receives highly variable recharge from rainfall. In addition, downward leakage from these lakes varies as heads in the underlying Upper Floridan aquifer change seasonally and with pumpage. A saturated three-dimensional finite-difference ground-water flow model was used to simulate the effects of recharge, Upper Floridan aquifer heads, and model time scale on ground-water exchange with Lake Starr. The lake was simulated as an active part of the model using high hydraulic conductivity cells. Simulated ground-water flow was compared to net ground-water flow estimated from a rigorously derived water budget for the 2-year period August 1996-July 1998. Calibrating saturated ground-water flow models with monthly stress periods to a monthly lake water budget will result in underpredicting gross inflow to, and leakage from, ridge lakes in Florida. Underprediction of ground-water inflow occurs because recharge stresses and ground-water flow responses during rainy periods are averaged over too long a time period using monthly stress periods. When inflow is underestimated during calibration, leakage also is underestimated because inflow and leakage are correlated if lake stage is maintained over the long term. Underpredicted leakage reduces the implied effect of ground-water withdrawals from the Upper Floridan aquifer on the lake. Calibrating the weekly simulation required accounting for transient responses in the water table near the lake that generated the greater range of net ground-water flow values seen in the weekly water budget. Calibrating to the weekly lake water budget also required increasing the value of annual recharge in the nearshore region well above the initial estimate of 35 percent of the rainfall, and increasing the hydraulic conductivity of the deposits around and beneath the lake. To simulate the total

  12. Ground-water resources data for Baldwin County, Alabama

    Science.gov (United States)

    Robinson, James L.; Moreland, Richard S.; Clark, Amy E.

    1996-01-01

    Geologic and hydrologic data for 237 wells were collected, and water-levels in 223 wells in Baldwin and Escambia Counties were measured. Long-term water water-level data, available for many wells, indicate that ground-water levels in most of Baldwin County show no significant trends for the period of record. However, ground-water levels have declined in the general vicinity of Spanish Fort and Daphne, and ground-water levels in the Gulf Shores and Orange Beach areas are less than 5 feet above sea level in places. The quality of ground water generally is good, but problems with iron, sulfur, turbidity, and color occur. The water from most private wells in Baldwin County is used without treatment or filtration. Alabama public- health law requires that water from public-supply wells be chlorinated. Beyond that, the most common treatment of ground water by public-water suppliers in Baldwin County consists of pH adjustment, iron removal, and aeration. The transmissivity of the Miocene-Pliocene aquifer was determined at 10 locations in Baldwin County. Estimates of transmissivity ranged from 700 to 5,400 feet squared per day. In general, aquifer transmissivity was greatest in the southeastern part of the county, and least in the western part of the county near Mobile Bay. A storage coefficient of 1.5 x 10-3 was determined for the Miocene-Pliocene aquifer near Loxley.

  13. Ground-water conditions in Utah, spring of 1995

    Science.gov (United States)

    Allen, D.V.; Steiger, J.I.; Sory, J.D.; Garrett, R.B.; Burden, Carole B.; Danner, M.R.; Herbert, L.R.; Gerner, S.J.; Slaugh, B.A.; Swenson, R.L.; Howells, J.H.; Christiansen, H.K.; Bagley, A.D.

    1995-01-01

    This is the thirty-second in a series of annual reports that describe ground-water conditions in Utah. Reports in this series, published cooperatively by the U.S. Geological Survey and the Utah Department of Natural Resources, Division of Water Resources, provide data to enable interested parties to keep abreast of changing ground-water conditions.This report, like the others in the series, contains information on well construction, ground-water withdrawal from wells, water-level changes, related changes in precipitation and streamflow, and chemical quality of water. Supplementary data, such as maps showing water-level contours, are included in reports of this series only for those years or areas for which applicable data are available and are important to a discussion of changing ground-water conditions.This report includes individual discussions of selected significant areas of ground-water development in the State for calendar year 1994. Much of the reported data were collected by the U.S. Geological Survey in cooperation with the Utah Department of Natural Resources, Divisions of Water Rights and Water Resources.

  14. Identification of technical guidance related to ground water monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Vogelsberger, R.R.; Smith, E.D.; Broz, M.; Wright, J.C. Jr.

    1987-05-01

    Monitoring of ground water quality is a key element of ground water protection and is mandated by several federal and state laws concerned with water quality or waste management. Numerous regulatory guidance documents and technical reports discuss various aspects of ground water monitoring, but at present there is no single source of guidance on procedures and practices for ground water monitoring. This report is intended to assist US Department of Energy (DOE) officials and facility operating personnel in identifying sources of guidance for developing and implementing ground water monitoring programs that are technically sound and that comply with applicable regulations. Federal statutes and associated regulations were reviewed to identify requirements related to ground water monitoring, and over 160 documents on topics related to ground water monitoring were evaluated for their technical merit, their utility as guidance for regulatory compliance, and their relevance to DOE's needs. For each of 15 technical topics involved in ground water monitoring, the report presents (1) a review of federal regulatory requirements and representative state requirements, (2) brief descriptions of the contents and merits of available guidance documents and technical references, and (3) recommendations of the guidance documents or other technical resources that appear to be most appropriate for use in DOE's monitoring activities. The contents of the report are applicable to monitoring activities involving both radioactive and nonradioactive substances. The main sources of regulatory requirements considered in the report are the Atomic Energy Act (including the Uranium Mill Tailings Radiation Control Act), Resource Conservation and Recovery Act, Comprehensive Environmental Response, Compensation and Liability Act, Safe Drinking Water Act, Toxic Substances Control Act, and Federal Water Pollution Control Act.

  15. Identification of technical guidance related to ground water monitoring

    International Nuclear Information System (INIS)

    Vogelsberger, R.R.; Smith, E.D.; Broz, M.; Wright, J.C. Jr.

    1987-05-01

    Monitoring of ground water quality is a key element of ground water protection and is mandated by several federal and state laws concerned with water quality or waste management. Numerous regulatory guidance documents and technical reports discuss various aspects of ground water monitoring, but at present there is no single source of guidance on procedures and practices for ground water monitoring. This report is intended to assist US Department of Energy (DOE) officials and facility operating personnel in identifying sources of guidance for developing and implementing ground water monitoring programs that are technically sound and that comply with applicable regulations. Federal statutes and associated regulations were reviewed to identify requirements related to ground water monitoring, and over 160 documents on topics related to ground water monitoring were evaluated for their technical merit, their utility as guidance for regulatory compliance, and their relevance to DOE's needs. For each of 15 technical topics involved in ground water monitoring, the report presents (1) a review of federal regulatory requirements and representative state requirements, (2) brief descriptions of the contents and merits of available guidance documents and technical references, and (3) recommendations of the guidance documents or other technical resources that appear to be most appropriate for use in DOE's monitoring activities. The contents of the report are applicable to monitoring activities involving both radioactive and nonradioactive substances. The main sources of regulatory requirements considered in the report are the Atomic Energy Act (including the Uranium Mill Tailings Radiation Control Act), Resource Conservation and Recovery Act, Comprehensive Environmental Response, Compensation and Liability Act, Safe Drinking Water Act, Toxic Substances Control Act, and Federal Water Pollution Control Act

  16. An improved water budget for the El Yunque National Forest, Puerto Rico, as determined by the Water Supply Stress Index Model

    Science.gov (United States)

    Liangxia Zhang; Ge Sun; Erika Cohen; Steven McNulty; Peter Caldwell; Suzanne Krieger; Jason Christian; Decheng Zhou; Kai Duan; Keren J. Cepero-Pérez

    2018-01-01

    Quantifying the forest water budget is fundamental to making science-based forest management decisions. This study aimed at developing an improved water budget for the El Yunque National Forest (ENF) in Puerto Rico, one of the wettest forests in the United States. We modified an existing monthly scale water balance model, Water Supply Stress Index (WaSSI), to reflect...

  17. Developing and implementing institutional controls for ground water remediation

    International Nuclear Information System (INIS)

    Ulland, L.M.; Cooper, M.G.

    1995-01-01

    The US DOE has initiated its Ground Water Project as the second phase of the Uranium Mill Tailings Remedial Action (UMTRA) Project authorized under the Uranium Mill Tailings Radiation Control Act (UMTRCA). In the Ground Water Project, the DOE must reduce risk from ground water contaminated by uranium mill processing activities at 24 inactive processing sites by meeting the US EPA standards. The UMTRCA also requires consistency with federal statutes such as the Resource Conservation and Recovery Act (RCRA). The use of institutional controls to reduce risk from contaminated ground water is one element of compliance with standards and the protection of public health and the environment. Institutional controls are active or passive measures that reduce exposure to risks by preventing intrusion or restricting direct access to an area, or restricting access to the contamination through secondary means. Because of inconsistent regulations and multi-party authorities for ground water management, the key to selecting and implementing effective institutional controls lies with developing a consensus between the parties responsible for ground water remediation; those with authority to implement, monitor, and maintain institutional controls; and those facing the risks from contaminated ground water. These parties must develop a consensus for an institutional control program that meets minimum regulatory requirements and protects public health and the environment. Developing consensus and implementing a successful institutional controls program was achieved by the DOE during the cleanup of uranium mill tailings. An effective institutional controls program can also be developed to protect against risks from contaminated ground water. Consensus building and information transmission are the critical elements of an institutional control program that protects human health and the environment from risks associated with ground water contamination

  18. Ground-water resources of Kansas

    Science.gov (United States)

    Moore, R.C.; Lohman, S.W.; Frye, J.C.; Waite, H.A.; McLaughlin, Thad G.; Latta, Bruce

    1940-01-01

    Introduction: Water is a necessity of life. Accordingly, every person is deeply interested in the subject of water supply. He knows that he must have water to drink. He depends indirectly on water for all his food and clothing. He may want water in which to wash. Civilized man has learned also that water serves admirably for a large and ever enlarging list of uses that depend on its easy convertibility from a liquid to a solid or gaseous state and its adaptability as a chemical solvent, a medium for transfer of matter or energy, and a regulator of temperature. 

  19. Hydrology of the coastal springs ground-water basin and adjacent parts of Pasco, Hernando, and Citrus Counties, Florida

    Science.gov (United States)

    Knochenmus, Lari A.; Yobbi, Dann K.

    2001-01-01

    The coastal springs in Pasco, Hernando, and Citrus Counties, Florida consist of three first-order magnitude springs and numerous smaller springs, which are points of substantial ground-water discharge from the Upper Floridan aquifer. Spring flow is proportional to the water-level altitude in the aquifer and is affected primarily by the magnitude and timing of rainfall. Ground-water levels in 206 Upper Floridan aquifer wells, and surface-water stage, flow, and specific conductance of water from springs at 10 gaging stations were measured to define the hydrologic variability (temporally and spatially) in the Coastal Springs Ground-Water Basin and adjacent parts of Pasco, Hernando, and Citrus Counties. Rainfall at 46 stations and ground-water withdrawals for three counties, were used to calculate water budgets, to evaluate long-term changes in hydrologic conditions, and to evaluate relations among the hydrologic components. Predictive equations to estimate daily spring flow were developed for eight gaging stations using regression techniques. Regression techniques included ordinary least squares and multiple linear regression techniques. The predictive equations indicate that ground-water levels in the Upper Floridan aquifer are directly related to spring flow. At tidally affected gaging stations, spring flow is inversely related to spring-pool altitude. The springs have similar seasonal flow patterns throughout the area. Water-budget analysis provided insight into the relative importance of the hydrologic components expected to influence spring flow. Four water budgets were constructed for small ground-water basins that form the Coastal Springs Ground-Water Basin. Rainfall averaged 55 inches per year and was the only source of inflow to the Basin. The pathways for outflow were evapotranspiration (34 inches per year), runoff by spring flow (8 inches per year), ground-water outflow from upward leakage (11 inches per year), and ground-water withdrawal (2 inches per year

  20. Isotope Methods in Determining The Water Budget Elements; Su Buetcesi Elemanlarinin Bulunmasinda Izotop Yoentemi

    Energy Technology Data Exchange (ETDEWEB)

    Oezaydin, V [DSI, Technical Research and Quality Control Department, Ankara (Turkey)

    2002-07-01

    One of the main aims of the water engineers is the determination of the inflows to and outflows from a natural or artificial lake. According to the classical water balance equation inflows (precipitation on the lake surface, surface and subsurface inflows) mines the outflows (evaporation from lake surface, surface and subsurface outflows) should be equal to the volume change in a specified time interval. With the classical water budget equation it is possible to determine the total absolute subsurface inflow mines outflow but it is not possible to determine them separately. The two unknowns could be determined with one more equation. The isotopes, oxygen-18, deuterium or tritium, which are naturally present in water, could provide the extra equation by writing the isotopic mass balance equation. In this study, the theoretical background of isotope technique and application to Mogan Lake, will be presented which is used in determining the water budget of lakes.

  1. Interactions between cement grouts and sulphate bearing ground water

    International Nuclear Information System (INIS)

    Walton, P.L.; Duerden, S.L.; Atkins, K.M.; Majumdar, A.J.

    1989-01-01

    The physical, chemical and mineralogical properties of mixtures of Ordinary Portland cement and blastfurnace slag or pulverized fuel ash, exposed to a sulphate-bearing ground water at different temperatures and pressures, were investigated in order to assess the long term durability of cements for encapsulating radioactive waste and backfilling a repository. The effect of the ground water on the chemical and mineralogical characteristics of the cements is minimal. Calcite and C-S-H are present in all the samples and are durable throughout the test. Dimensional changes in the cements during setting and curing may cause weaknesses in the materials which may increase the effects of a percolating ground water. (author)

  2. Uranium mineralization by ground water in sedimentary rocks, Japan

    International Nuclear Information System (INIS)

    Doi, K.; Hirono, S.; Sakamaki, Y.

    1975-01-01

    To solve the mechanism of uranium concentration in stratabound uranium deposits occurring in the basal part of Neogene sediments overlying granite basement, attention was paid to uranium leaching from weathered granite by circulating carbonated fissure waters, to effective adsorbents for fixing uranium from uraniferous ground waters, to structural features controlling the ground-water circulation, and other relevant factors. The evidence for uranium transportation by hydothermal solutions, including hot spring waters, is hard to observe. Conclusions are summarized as follows: Uranium in the deposits is supplied from surrounding source rocks, mostly from granite. Uranium is transported by circulating ground-water solutions. The uranium dissolved in ground water is fixed in minerals in various ways, the most important being adsorption by carbonaceous matter. Ore-grade uranium concentrated from very dilute solutions occurs by multiple repetition of a leaching-and-fixation cycle between minerals or adsorbents and circulating uraniferous ground water. Important factors for uranium mineralization are sufficient uranium, supplied mostly from granite, the existence of effective adsorbents such as carbonaceous matter in the host rocks, and favorable geological, geochemical, and geophysical environments. The last seem to require not only physical and chemical conditions but also correct flow and volume of ground water. (U.S.)

  3. An imminent human resource crisis in ground water hydrology?

    Science.gov (United States)

    Stephens, Daniel B

    2009-01-01

    Anecdotal evidence, mostly from the United States, suggests that it has become increasingly difficult to find well-trained, entry-level ground water hydrologists to fill open positions in consulting firms and regulatory agencies. The future prospects for filling positions that require training in ground water hydrology are assessed by considering three factors: the market, the numbers of qualified students entering colleges and universities, and the aging of the existing workforce. The environmental and water resources consulting industry has seen continuous albeit variable growth, and demand for environmental scientists and hydrologists is expected to increase significantly. Conversely, students' interest and their enrollment in hydrology and water resources programs have waned in recent years, and the interests of students within these departments have shifted away from ground water hydrology in some schools. This decrease in the numbers of U.S. students graduating in hydrology or emphasizing ground water hydrology is coinciding with the aging of and pending retirement of ground water scientists and engineers in the baby boomer generation. We need to both trigger the imagination of students at the elementary school level so that they later want to apply science and math and communicate the career opportunities in ground water hydrology to those high school and college graduates who have acquired the appropriate technical background. Because the success of a consulting firm, research organization, or regulatory agency is derived from the skills and judgment of the employees, human resources will be an increasingly more critical strategic issue for many years.

  4. Radioactivity monitoring of fallout, water and ground

    International Nuclear Information System (INIS)

    Radosavljevic, R.

    1961-01-01

    During 1961, the radioactivity monitoring of the Boris Kidric Institute site covered monitoring of the total β activity of the fallout and water on the site. Activity of the fallout was monitored by measuring the activity of the rain and collected sedimented dust form the atmosphere. Water monitored was the water from Danube and river Mlaka, technical and drinking water. Plants and soil activity were not measured although sample were taken and the total β activity will be measured and analysed later

  5. Ground-Water Hydrology and Projected Effects of Ground-Water Withdrawals in the Sevier Desert, Utah

    OpenAIRE

    United States Geological Survey

    1983-01-01

    The principal ground-water reservoir in the Sevier Desert is the unconsolidated basin fill. The fill has been divided generally into aquifers and confining beds, although there are no clearcut boundaries between these units--the primary aquifers are the shallow and deep artesian aquifers. Recharge to the ground-water reservoir is by infiltration of precipitation; seepage from streams, canals, reservoirs, and unconsumed irrigation water; and subsurface inflow from consolidated rocks in mount...

  6. Temporal variation of uranium in ground water with conductivity

    International Nuclear Information System (INIS)

    Pulhani, Vandana; Chaudhury, Moushumi D.; Jha, S.K.; Tripathi, R.M.

    2015-01-01

    The concentration of uranium in drinking water sources is a matter of health concern since it has been proved to be chemo-toxic to humans. Uranium being a more soluble actinide is also very mobile in the environment. The effect of water quality parameters and their co-relation to uranium content in the water is an interesting study to understand and predict its behavior in ground water and subsequently to judge the hazard posed. Hence studies on spatial and temporal variation of uranium concentration with electrical conductivity, pH, total dissolved solids and salinity in ground water was carried out. (author)

  7. Shallow ground-water conditions, Tom Green County, Texas

    Science.gov (United States)

    Lee, J.N.

    1986-01-01

    Most of the water needs of Tom Green County, Texas, are supplied by ground water; however, the city of San Angelo is supplied by surface water. Groundwater withdrawals during 1980 (latest year for which data are available) in Tom Green County totaled about 15,300 acre-feet, all derived from shallow aquifers. Shallow aquifers in this report refer to the ground-water system generally less than 400 feet deep that contains water with less than a 10,000 milligrams per liter concentration of dissolved solids; aquifers comprising this system include: The Leona, Comanche Peak, Trinity, Blaine, San Angelo, Choza, Bullwagon, Vale, Standpipe, and Arroyo aquifers.

  8. VISUAL INSPECTION OF WATER LEAKAGE FROM GROUND PENETRATING RADAR RADARGRAM

    OpenAIRE

    N. N. Halimshah; A. Yusup; Z. Mat Amin; M. D. Ghazalli

    2015-01-01

    Water loss in town and suburban is currently a significant issue which reflect the performance of water supply management in Malaysia. Consequently, water supply distribution system has to be maintained in order to prevent shortage of water supply in an area. Various techniques for detecting a mains water leaks are available but mostly are time-consuming, disruptive and expensive. In this paper, the potential of Ground Penetrating Radar (GPR) as a non-destructive method to correctly and effic...

  9. Developing an Earth system Inverse model for the Earth's energy and water budgets.

    Science.gov (United States)

    Haines, K.; Thomas, C.; Liu, C.; Allan, R. P.; Carneiro, D. M.

    2017-12-01

    The CONCEPT-Heat project aims at developing a consistent energy budget for the Earth system in order to better understand and quantify global change. We advocate a variational "Earth system inverse" solution as the best methodology to bring the necessary expertise from different disciplines together. L'Ecuyer et al (2015) and Rodell et al (2015) first used a variational approach to adjust multiple satellite data products for air-sea-land vertical fluxes of heat and freshwater, achieving closed budgets on a regional and global scale. However their treatment of horizontal energy and water redistribution and its uncertainties was limited. Following the recent work of Liu et al (2015, 2017) which used atmospheric reanalysis convergences to derive a new total surface heat flux product from top of atmosphere fluxes, we have revisited the variational budget approach introducing a more extensive analysis of the role of horizontal transports of heat and freshwater, using multiple atmospheric and ocean reanalysis products. We find considerable improvements in fluxes in regions such as the North Atlantic and Arctic, for example requiring higher atmospheric heat and water convergences over the Arctic than given by ERA-Interim, thereby allowing lower and more realistic oceanic transports. We explore using the variational uncertainty analysis to produce lower resolution corrections to higher resolution flux products and test these against in situ flux data. We also explore the covariance errors implied between component fluxes that are imposed by the regional budget constraints. Finally we propose this as a valuable methodology for developing consistent observational constraints on the energy and water budgets in climate models. We take a first look at the same regional budget quantities in CMIP5 models and consider the implications of the differences for the processes and biases active in the models. Many further avenues of investigation are possible focused on better valuing

  10. Water Budget Model for a Remnant of the Historic Northern Everglades

    Science.gov (United States)

    Arceneaux, J. C.; Meselhe, E. A.; Habib, E.; Waldon, M. G.

    2006-12-01

    The Arthur R. Marshall Loxahatchee National Wildlife Refuge overlays an area termed Water Conservation Area 1 (WCA-1, a 143,000 acre (58,000 ha) freshwater wetland. It is a remnant of the northern Everglades in Palm Beach County, Florida, USA. Sheetflow that naturally would flow across the Refuge wetlands was disrupted in the 1950s and early 1960s by construction of stormwater pumps, and levees with associated borrow canals which hydraulically isolated the Refuge from its watershed. The U.S. Fish and Wildlife Services (USFWS) concludes that changes in the water quantity, timing, and quality have caused negative impacts to the Refuge ecosystem. It is a top priority of the Refuge to ensure appropriate management that will produce maximum benefits for fish and wildlife, while meeting flood control and water supply needs. Models can improve our understanding and support improvement in these management decisions. The development of a water budget for the Loxahatchee Refuge will provide one useful modeling tool in support of Refuge water management decisions. The water budget model reported here was developed as a double- box (2-compartment) model with a daily time step that predicts temporal variations of water level in the Refuge rim canal and interior marsh based on observed inflows, outflows, precipitation, and evapotranspiration. The water budget model was implemented using Microsoft EXCEL. The model calibration period was from January 1, 1995 to December 31, 1999; the validation period extended from January 1, 2000 to December 31, 2004. Statistical analyses demonstrate the utility of this simple water budget model to predict the temporal variation of water levels in both the Refuge marsh and rim canal. The Refuge water budget model is currently being applied to evaluate various water management scenarios for the Refuge. Preliminary results modeling the mass balance of water quality constituents, including chloride, total phosphorus are encouraging. Success of this

  11. Hanford Site ground-water monitoring for 1990

    International Nuclear Information System (INIS)

    Evans, J.C.; Bryce, R.W.; Bates, D.J.

    1992-06-01

    The Pacific Northwest Laboratory monitors ground-water quality across the Hanford Site for the US Department of Energy (DOE) to assess the impact of Site operations on the environment. Monitoring activities were conducted to determine the distribution of mobile radionuclides and identify chemicals present in ground water as a result of Site operations and whenever possible, relate the distribution of these constituents to Site operations. To comply with the Resource Conservation and Recovery Act, additional monitoring was conducted at individual waste sites by the Site Operating Contractor, Westinghouse Hanford Company (WHC), to assess the impact that specific facilities have had on ground-water quality. Six hundred and twenty-nine wells were sampled during 1990 by all Hanford ground-water monitoring activities

  12. Bacteriological investigation of ground water sources in selected ...

    African Journals Online (AJOL)

    cml

    2012-06-16

    Jun 16, 2012 ... Microbial contamination of ground water sources is a common problem in all the big cities, which endangers ... include leakage of pipes, pollution from sewerage pipes ..... and Quality Control Authority, Karachi, Pakistan.

  13. Ground-water flow and ground- and surface-water interaction at the Weldon Spring quarry, St. Charles County, Missouri

    International Nuclear Information System (INIS)

    Imes, J.L.; Kleeschulte, M.J.

    1997-01-01

    Ground-water-level measurements to support remedial actions were made in 37 piezometers and 19 monitoring wells during a 19-month period to assess the potential for ground-water flow from an abandoned quarry to the nearby St. Charles County well field, which withdraws water from the base of the alluvial aquifer. From 1957 to 1966, low-level radioactive waste products from the Weldon Spring chemical plant were placed in the quarry a few hundred feet north of the Missouri River alluvial plain. Uranium-based contaminants subsequently were detected in alluvial ground water south of the quarry. During all but flood conditions, lateral ground-water flow in the bedrock from the quarry, as interpreted from water-table maps, generally is southwest toward Little Femme Osage Creek or south into the alluvial aquifer. After entering the alluvial aquifer, the ground water flows southeast to east toward a ground-water depression presumably produced by pumping at the St. Charles County well field. The depression position varies depending on the Missouri River stage and probably the number and location of active wells in the St. Charles County well field

  14. Modelling of the evolution of ground waters in a granite system at low temperature: the Stripa ground waters, Sweden

    International Nuclear Information System (INIS)

    Grimaud, D.; Michard, G.; Beaucaire, C.

    1990-01-01

    From chemical data on the Stripa ground waters we have tried to model the evolution of the chemical composition of a ground water in a granitic system at low temperature. The existence of two end-member ground water compositions made it possible first, to test the conventional model of a geothermal system according to which an overall equilibrium between the waters and a given mineral assemblage can be defined, and then to show that such a model could be extended to low temperatures (10 o C). Conversely, if we know the mineral assemblage, the equilibration temperature and the charge of the mobile ions (in this case, Cl), the composition of the solution is entirely fixed. In our model of the Stripa ground waters, the existence of two end-member ground water compositions can be explained by an evolution from a ''kaolinite-albite-laumontite'' equilibrium to a ''prehnite-albite-laumontite'' equilibrium, the latter requiring less Al than the former. We have also emphasized the importance of the Cl ion concentrations of the ground waters, because they can be considered as indicators of the degree of reaction progress between rock and water, thus determining the degree of equilibration of the system. (author)

  15. Simulation of the Regional Ground-Water-Flow System and Ground-Water/Surface-Water Interaction in the Rock River Basin, Wisconsin

    Science.gov (United States)

    Juckem, Paul F.

    2009-01-01

    A regional, two-dimensional, areal ground-water-flow model was developed to simulate the ground-water-flow system and ground-water/surface-water interaction in the Rock River Basin. The model was developed by the U.S. Geological Survey (USGS), in cooperation with the Rock River Coalition. The objectives of the regional model were to improve understanding of the ground-water-flow system and to develop a tool suitable for evaluating the effects of potential regional water-management programs. The computer code GFLOW was used because of the ease with which the model can simulate ground-water/surface-water interactions, provide a framework for simulating regional ground-water-flow systems, and be refined in a stepwise fashion to incorporate new data and simulate ground-water-flow patterns at multiple scales. The ground-water-flow model described in this report simulates the major hydrogeologic features of the modeled area, including bedrock and surficial aquifers, ground-water/surface-water interactions, and ground-water withdrawals from high-capacity wells. The steady-state model treats the ground-water-flow system as a single layer with hydraulic conductivity and base elevation zones that reflect the distribution of lithologic groups above the Precambrian bedrock and a regionally significant confining unit, the Maquoketa Formation. In the eastern part of the Basin where the shale-rich Maquoketa Formation is present, deep ground-water flow in the sandstone aquifer below the Maquoketa Formation was not simulated directly, but flow into this aquifer was incorporated into the GFLOW model from previous work in southeastern Wisconsin. Recharge was constrained primarily by stream base-flow estimates and was applied uniformly within zones guided by regional infiltration estimates for soils. The model includes average ground-water withdrawals from 1997 to 2006 for municipal wells and from 1997 to 2005 for high-capacity irrigation, industrial, and commercial wells. In addition

  16. Lithium content in potable water, surface water, ground water, and mineral water on the territory of Republic of Macedonia

    OpenAIRE

    Kostik, Vesna; Bauer, Biljana; Kavrakovski, Zoran

    2014-01-01

    The aim of this study was to determine lithium concentration in potable water, surface water, ground, and mineral water on the territory of the Republic of Macedonia. Water samples were collected from water bodies such as multiple public water supply systems located in 13 cities, wells boreholes located in 12 areas, lakes and rivers located in three different areas. Determination of lithium concentration in potable water, surface water was performed by the technique of inductively coupl...

  17. Contamination of Ground Water Due To Landfill Leachate

    OpenAIRE

    M. V. S. Raju

    2012-01-01

    The present site under investigation at Ajitsingh Nagar in Vijayawada of Andhra Pradesh is initially a low lying area and used for disposing the urban solid waste for the last few years, through open dumping with out taking any measures to protect the Ground water against pollution. The present study has been taken up to measure the degree of pollution of ground water due to leachate produced in the landfill site. Bore holes were made at eight random locations ...

  18. Ground-water contamination and legal controls in Michigan

    Science.gov (United States)

    Deutsch, Morris

    1963-01-01

    The great importance of the fresh ground-water resources of Michigan is evident because 90 percent of the rural and about 70 percent of the total population of the State exclusive of the Detroit metropolitan area are supplied from underground sources. The water-supply and public-health problems that have been caused by some cases of ground-water contamination in the State illustrate the necessity of protecting this vital resource.Manmade and natural contaminants, including many types of chemical and organic matter, have entered many of the numerous aquifers of the State. Aquifers have been contaminated by waste-laden liquids percolating from the surface or from the zone of aeration and by direct injection to the aquifer itself. Industrial and domestic wastes, septic tanks, leaking sewers, flood waters or other poor quality surface waters, mine waters, solids stored or spread at the surface, and even airborne wastes all have been sources of ground-water contamination in Michigan. In addition, naturally occurring saline waters have been induced into other aquifers by overpumping or unrestricted flow from artesian wells, possibly by dewatering operations, and by the deepening of surface stream channels. Vertical migration of saline waters through open holes from formations underlying various important aquifers also has spoiled some of the fresh ground waters in the State. In spite of the contamination that has occurred, however, the total amount of ground water that has been spoiled is only a small part of the total resource. Neither is the contamination so widespread as that of the surface streams of Michigan.Overall legal authority to control most types of ground-water contamination in the State has been assigned by the Michigan Legislature to the Water Resources Commission, although the Department of Conservation and the Health Department also exercise important water-pollution control functions. The Michigan Supreme Court, in an important case upholding the power

  19. Hydrogeology, simulated ground-water flow, and ground-water quality, Wright-Patterson Air Force Base, Ohio

    Science.gov (United States)

    Dumouchelle, D.H.; Schalk, C.W.; Rowe, G.L.; De Roche, J.T.

    1993-01-01

    Ground water is the primary source of water in the Wright-Patterson Air Force Base area. The aquifer consists of glacial sands and gravels that fill a buried bedrock-valley system. Consolidated rocks in the area consist of poorly permeable Ordovician shale of the Richmondian stage, in the upland areas, the Brassfield Limestone of Silurian age. The valleys are filled with glacial sediments of Wisconsinan age consisting of clay-rich tills and coarse-grained outwash deposits. Estimates of hydraulic conductivity of the shales based on results of displacement/recovery tests range from 0.0016 to 12 feet per day; estimates for the glacial sediments range from less than 1 foot per day to more than 1,000 feet per day. Ground water flow from the uplands towards the valleys and the major rivers in the region, the Great Miami and the Mad Rivers. Hydraulic-head data indicate that ground water flows between the bedrock and unconsolidated deposits. Data from a gain/loss study of the Mad River System and hydrographs from nearby wells reveal that the reach of the river next to Wright-Patterson Air Force Base is a ground-water discharge area. A steady-state, three-dimensional ground-water-flow model was developed to simulate ground-water flow in the region. The model contains three layers and encompasses about 100 square miles centered on Wright-Patterson Air Force Base. Ground water enters the modeled area primarily by river leakage and underflow at the model boundary. Ground water exits the modeled area primarily by flow through the valleys at the model boundaries and through production wells. A model sensitivity analysis involving systematic changes in values of hydrologic parameters in the model indicates that the model is most sensitive to decreases in riverbed conductance and vertical conductance between the upper two layers. The analysis also indicates that the contribution of water to the buried-valley aquifer from the bedrock that forms the valley walls is about 2 to 4

  20. Satellite Retrieval of Atmospheric Water Budget over Gulf of Mexico- Caribbean Basin: Seasonal Variability

    Science.gov (United States)

    Smith, Eric A.; Santos, Pablo; Einaudi, Franco (Technical Monitor)

    2001-01-01

    This study presents results from a multi-satellite/multi-sensor retrieval system designed to obtain the atmospheric water budget over the open ocean. A combination of hourly-sampled monthly datasets derived from the GOES-8 5 Imager and the DMSP 7-channel passive microwave radiometer (SSM/I) have been acquired for the Gulf of Mexico-Caribbean Sea basin. Whereas the methodology is being tested over this basin, the retrieval system is designed for portability to any open-ocean region. Algorithm modules using the different datasets to retrieve individual geophysical parameters needed in the water budget equation are designed in a manner that takes advantage of the high temporal resolution of the GOES-8 measurements, as well as the physical relationships inherent to the SSM/I passive microwave signals in conjunction with water vapor, cloud liquid water, and rainfall. The methodology consists of retrieving the precipitation, surface evaporation, and vapor-cloud water storage terms in the atmospheric water balance equation from satellite techniques, with the water vapor advection term being obtained as the residue needed for balance. Thus, we have sought to develop a purely satellite-based method for obtaining the full set of terms in the atmospheric water budget equation without requiring in situ sounding information on the wind profile. The algorithm is partly validated by first cross-checking all the algorithm components through multiple-algorithm retrieval intercomparisons. More fundamental validation is obtained by directly comparing water vapor transports into the targeted basin diagnosed from the satellite algorithm to those obtained observationally from a network of land-based upper air stations that nearly uniformly surround the basin. Total columnar atmospheric water budget results will be presented for an extended annual cycle consisting of the months of October-97, January-98, April-98, July-98, October-98, and January-1999. These results are used to emphasize

  1. Report of analyses for light hydrocarbons in ground water

    International Nuclear Information System (INIS)

    Dromgoole, E.L.

    1982-04-01

    This report contains on microfiche the results of analyses for methane, ethane, propane, and butane in 11,659 ground water samples collected in 47 western and three eastern 1 0 x 2 0 quadrangles of the National Topographic Map Series (Figures 1 and 2), along with a brief description of the analytical technique used and some simple, descriptive statistics. The ground water samples were collected as part of the National Uranium Resource Evaluation (NURE) hydrogeochemical and stream sediment reconnaissance. Further information on the ground water samples can be obtained by consulting the NURE data reports for the individual quadrangles. This information includes (1) measurements characterizing water samples (pH, conductivity, and alkalinity), (2) physical measurements, where applicable (water temperature, well description, and other measurements), and (3) elemental analyses

  2. Detection of Leaks in Water Mains Using Ground Penetrating Radar

    OpenAIRE

    Alaa Al Hawari; Mohammad Khader; Tarek Zayed; Osama Moselhi

    2016-01-01

    Ground Penetrating Radar (GPR) is one of the most effective electromagnetic techniques for non-destructive non-invasive subsurface features investigation. Water leak from pipelines is the most common undesirable reason of potable water losses. Rapid detection of such losses is going to enhance the use of the Water Distribution Networks (WDN) and decrease threatens associated with water mains leaks. In this study, GPR approach was developed to detect leaks by implementing an appropriate imagin...

  3. Analytic game—theoretic approach to ground-water extraction

    Science.gov (United States)

    Loáiciga, Hugo A.

    2004-09-01

    The roles of cooperation and non-cooperation in the sustainable exploitation of a jointly used groundwater resource have been quantified mathematically using an analytical game-theoretic formulation. Cooperative equilibrium arises when ground-water users respect water-level constraints and consider mutual impacts, which allows them to derive economic benefits from ground-water indefinitely, that is, to achieve sustainability. This work shows that cooperative equilibrium can be obtained from the solution of a quadratic programming problem. For cooperative equilibrium to hold, however, enforcement must be effective. Otherwise, according to the commonized costs-privatized profits paradox, there is a natural tendency towards non-cooperation and non-sustainable aquifer mining, of which overdraft is a typical symptom. Non-cooperative behavior arises when at least one ground-water user neglects the externalities of his adopted ground-water pumping strategy. In this instance, water-level constraints may be violated in a relatively short time and the economic benefits from ground-water extraction fall below those obtained with cooperative aquifer use. One example illustrates the game theoretic approach of this work.

  4. A magma ocean and the Earth's internal water budget

    Science.gov (United States)

    Ahrens, Thomas J.

    1992-01-01

    There are lines of evidence which relate bounds on the primordial water content of the Earth's mantle to a magma ocean and the accompanying Earth accretion process. We assume initially (before a magma ocean could form) that as the Earth accreted, it grew from volatile- (H2O, CO2, NH3, CH4, SO2, plus noble) gas-rich planetesimals, which accreted to form an initial 'primitive accretion core' (PAC). The PAC retained the initial complement of planetesimal gaseous components. Shock wave experiments in which both solid, and more recently, the gaseous components of materials such as serpentine and the Murchison meteorite have demonstrated that planetesimal infall velocities of less than 0.5 km/sec, induce shock pressures of less than 0.5 GPa and result in virtually complete retention of planetary gases.

  5. Appraisal of ground-water resources in the San Antonio Creek Valley, Santa Barbara County, California

    Science.gov (United States)

    Hutchinson, C.B.

    1980-01-01

    A nearly threefold increase in demand for water in the 154-square-mile San Antonio Creek valley in California during the period 1958-77 has increased the potential for overdraft on the ground-water basin. The hydrologic budget for this period showed a perennial yield of about 9,800 acre-feet per year and an annual ground-water discharge of about 11,400 acre-feet per year, comprising net pumpage of 7,100 acre-feet, phreatophyte evapotranspiration of 3,000 acre-feet, and base streamflow of 1 ,300 acre-feet. The base flow in San Antonio Creek could diminish to zero when net pumpage reaches 13,500 acre-feet per year. The environmentally sensitive marshland area of Barka Slough may then become stressed as water normally lost through evapotranspiration is captured by pumpage. The aquifer consists of alluvial valley fill that ranges in thickness from 0 to 3,500 feet. Ground water moves seaward from recharge areas along mountain fronts to a consolidated rock barrier about 5 miles east of the Pacific coast. Upwelling of ground water just east of the barrier has resulted in the 550-acre Barka Slough. Transmissivity of the aquifer ranges from 2,600 to 34,000 feet squared per day, with the lowest values occurring in the central part of the valley where the aquifer is thickest but probably finer grained. The salinity problems are increasing in the agricultural parts of the valley, which is east of the barrier. West of the barrier, stream and ground-water quality is poor, owing to seepage of saline water from the marine shale that underlies the area at shallow depths. A proposed basinwide monitoring program includes 17 water-level sites, 12 water-quality sampling sites, 3 streamflow measuring sites, and periodic infrared aerial photography of Barka Slough. A computer model of the ground-water flow system could be developed to assess the impact of various water-management alternatives. (USGS)

  6. A strategy for improving pump and treat ground water remediation

    International Nuclear Information System (INIS)

    Hoffman, F.

    1992-07-01

    Established pump and treat ground water remediation has a reputation for being too expensive and time consuming, especially when cleanup standards are set at very low levels, e.g., 50 ft below ground surface) widespread ground water contamination. The perceived shortcomings of pump and treat result from the (1) tendency of most contaminants to sorb to formation materials, thus retarding contaminant removal; (2) geologic complexity, which requires detailed characterization for the design of optimal extraction systems within available resources; and (3) failure to apply dynamic well field management techniques. An alternative strategy for improving pump and treat ground water remediation consists of (1) detailed characterization of the geology, hydrology, and chemistry; (2) use of computer-aided data interpretation, data display, and decision support systems; (3) removal of sources, if possible; (4) initial design for plume containment and source remediation; (5) phased installation of the well field; (6) detailed monitoring of the remediation; (7) active ongoing re-evaluation of the operating well field, including redesign as appropriate (dynamic management); (8) re-injection of treated ground water to speed the flushing of contaminants; and (9) setting of appropriate cleanup levels or goals. Use of some or all of these techniques can dramatically reduce the time required to achieve cleanup goals and thus the cost of ground water remediation

  7. Hydrogeology and water quality of the shallow ground-water system in eastern York County, Virginia. Water resources investigation

    International Nuclear Information System (INIS)

    1993-01-01

    The report describes the hydrogeology and water quality of the shallow ground-water system in the eastern part of York County, Va. The report includes a discussion of (1) the aquifers and confining units, (2) the flow of ground water, and (3) the quality of ground water. The report is an evaluation of the shallow ground-water system and focuses on the first 200 ft of sediments below land surface. Historical water-level and water-quality data were not available for the study area; therefore, a network of observation wells was constructed for the study. Water levels were measured to provide an understanding of the flow of ground water through the multiaquifer system. Water samples were collected and analyzed for major inorganic constituents, nutrients, and metals. The report presents maps that show the regional distribution of chloride and iron concentrations. Summary statistics and graphical summaries of selected chemical constituents provide a general assessment of the ground-water quality

  8. Effects of changing irrigation practices on the ground-water hydrology of the Santa Isabel-Juana Diaz area, south central Puerto Rico

    Science.gov (United States)

    Ramos-Gines, Orlando

    1994-01-01

    Prior to 1930, the principal source of water for irrigation in the Santa Isabel-Juana Diaz area was surface water from outside the study area, which was delivered by a complex channel-pond system. Recharge from water applied to the fields, estimated to be 18.7 million of gallons per day, and discharge by ground-water flow to sea, estimated to be 17 million of gallons per day, were the major water- budget components prior to intensive development of the ground-water resources. Development of the ground-water resources after 1930 resulted in a substantial increase in irrigation, primarily furrow irrigation. The surface water supplied by the complex channel-pond system continued to be used and ground-water withdrawals increased sub- stantially. By 1966-68, ground-water recharge from irrigation water applied to the fields, estimated to be 37 million of gallons per day, and discharge by pumpage for irrigation, estimated to be 77 million of gallons per day, were the two major components of the ground-water budget. By 1987, drip irrigation had become the principal method of irrigation in the study area, and surface-water irrigation had, for the most part, been discontinued. The estimated aquifer recharge from irrigation water in 1987 was about 6.6 million of gallons per day, which occurred primarily in the remaining fields where furrow irrigation was still practiced. Although aquifer recharge had been reduced as a result of the conversion from furrow to drip irrigation, water levels in the aquifer were higher in 1987 than in 1968 because of the large reduction in ground-water withdrawals and subsequent recovery of ground-water levels.

  9. Simulation of ground-water flow and land subsidence in the Antelope Valley ground-water basin, California

    Science.gov (United States)

    Leighton, David A.; Phillips, Steven P.

    2003-01-01

    Antelope Valley, California, is a topographically closed basin in the western part of the Mojave Desert, about 50 miles northeast of Los Angeles. The Antelope Valley ground-water basin is about 940 square miles and is separated from the northern part of Antelope Valley by faults and low-lying hills. Prior to 1972, ground water provided more than 90 percent of the total water supply in the valley; since 1972, it has provided between 50 and 90 percent. Most ground-water pumping in the valley occurs in the Antelope Valley ground-water basin, which includes the rapidly growing cities of Lancaster and Palmdale. Ground-water-level declines of more than 200 feet in some parts of the ground-water basin have resulted in an increase in pumping lifts, reduced well efficiency, and land subsidence of more than 6 feet in some areas. Future urban growth and limits on the supply of imported water may continue to increase reliance on ground water. To better understand the ground-water flow system and to develop a tool to aid in effectively managing the water resources, a numerical model of ground-water flow and land subsidence in the Antelope Valley ground-water basin was developed using old and new geohydrologic information. The ground-water flow system consists of three aquifers: the upper, middle, and lower aquifers. The aquifers, which were identified on the basis of the hydrologic properties, age, and depth of the unconsolidated deposits, consist of gravel, sand, silt, and clay alluvial deposits and clay and silty clay lacustrine deposits. Prior to ground-water development in the valley, recharge was primarily the infiltration of runoff from the surrounding mountains. Ground water flowed from the recharge areas to discharge areas around the playas where it discharged either from the aquifer system as evapotranspiration or from springs. Partial barriers to horizontal ground-water flow, such as faults, have been identified in the ground-water basin. Water-level declines owing to

  10. Speciation and transport of radionuclides in ground water

    International Nuclear Information System (INIS)

    Robertson, D.E.; Toste, A.P.; Abel, K.H.; Cowan, C.E.; Jenne, E.A.; Thomas, C.W.

    1984-01-01

    Studies of the chemical speciation of a number of radionuclides migrating in a slightly contaminated ground water plume are identifying the most mobile species and providing an opportunity to test and/or validate geochemical models of radionuclide transport in ground waters. Results to date have shown that most of the migrating radionuclides are present in anionic or nonionic forms. These include anionic forms of 55 Fe, 60 Co, /sup 99m/Tc, 106 Ru, 131 I, and nonionic forms of 63 Ni and 125 Sb. Strontium-70 and a small fraction of the mobile 60 Co are the only cationic radionuclides which have been detected moving in the ground water plume beyond 30 meters from the source. A comparison of the observed chemical forms with the predicted species calculated from modeling thermodynamic data and ground water chemical parameters has indicated a good agreement for most of the radioelements in the system, including Tc, Np, Cs, Sr, Ce, Ru, Sb, Zn, and Mn. The discrepancies between observed and calculated solutions species were noted for Fe, Co, Ni and I. Traces of Fe, Co, and Ni were observed to migrate in anionic or nonionic forms which the calculations failed to predict. These anionic/nonionic species may be organic complexes having enhanced mobility in ground waters. The radioiodine, for example, was shown to behave totally as an anion but further investigation revealed that 49-57% of this anionic iodine was organically bound. The ground water and aqueous extracts of trench sediments contain a wide variety of organic compounds, some of which could serve as complexing agents for the radionuclides. These results indicate the need for further research at a variety of field sites in defining precisely the chemical forms of the mobile radionuclide species, and in better understanding the role of dissolved organic materials in ground water transport of radionuclides

  11. Apparatus for ground water chemistry investigations in field caissons

    International Nuclear Information System (INIS)

    Cokal, E.J.; Stallings, E.; Walker, R.; Nyhan, J.W.; Polzer, W.L.; Essington, E.H.

    1985-01-01

    Los Alamos is currently in its second season of ground water chemistry and hydrology experimentation in a field facility that incorporates clusters of six, 3-meter-diameter by 6-meter-deep, soil-filled caissons and required ancillaries. Initial experience gained during the 1983 field season indicated the need for further development of the technology of this type of experimentation supporting hydrologic waste management research. Uniform field application of water/matrix solutions to the caisson, matrix and tracer solution blending/storage, and devices for ground water sampling are discussed

  12. A source of ground water 222Rn around Tachikawa fault

    International Nuclear Information System (INIS)

    Saito, Masaaki; Takata, Sigeru

    1994-01-01

    Radon ( 222 Rn) concentration in ground water was characteristically high on the south-western zone divided by the Tachikawa fault, Tokyo. (1) The concentration did not increase with depth, and alluvium is thick on the zone. The source of radon was not considered as the updraft from base rock through the fault. Comparing the south-western zone with its surrounding zone, the followings were found. (2) The distribution of tritium concentration was supported that water had easily permeated into ground on the zone. (3) As the zone is located beside the Tama River and its alluvial fan center, the river water had likely affected. The source of radon on the zone would be 226 Ra in the aquifer soil. It can be presumed that the water of the Tama River had permeated into ground on the zone and had accumulated 226 Ra. (author)

  13. Impacts of Green Infrastructure on the Water Budget and Other Ecosystem Services in Subhumid Urban Areas

    Science.gov (United States)

    Feng, Y.; Burian, S. J.; Pardyjak, E.; Pomeroy, C. A.

    2014-12-01

    Green infrastructure (GI) measures have been well established as part of low-impact development approaches for stormwater (SW) management. The origin of the concepts, practices and the preponderance of research have taken place in humid climates. Recent work has begun to explore and adapt GI to subhumid and semi-arid climates, which experience warmer and drier periods. But much remains unknown about effects of GI on the water cycle and how to effectively implement to maximize ecosystem benefits. This research synthesizes observation and modeling to address questions related to changes in evapotranspiration (ET), SW runoff volume, and other water cycle processes from GI introduction in Salt Lake City, Utah, USA. First, the water budget of green roofs is being studied via weighing lysimeter systems on two rooftop gardens on the University of Utah campus. ET, outflow, and soil moisture have been measured for approximately one year. Up to this early summer, average ET rates for lysimeters of pure medium, Sedums, and Bluegrass are 1.85±1.01, 1.97±0.94, and 2.31±0.91 mm/d respectively; the maximum ET rate could reach 6.11 mm/d from Sedums. Over 2/3 of total rainfall and irrigation were slowly consumed via ET from green roof. Second, the observation studies are leading to new ET modeling techniques that are being incorporated into the U.S. EPA Storm Water Management Model (SWMM). The modified SWMM has been used to simulate ET, SW runoff volume, and overall water budget changes from GI implementation. Preliminary result shows that ET could account for 10% of the total inflows into bioretentions, and 25% of the inflows into landscapes; potential ET rates could vary up to 0.95 mm/hr across 53 subcatchments in the 29 acres catchment. The influence of various design factors for GI on SW runoff reduction and the water budget is also to be estimated. The application of the research is to analyze the water budget of the Red Butte Creek Watershed in Salt Lake City and to

  14. Field Evaluation Of Arsenic Transport Across The Ground-Water/Surface Water Interface: Ground-Water Discharge And Iron Oxide Precipitation

    Science.gov (United States)

    A field investigation was conducted to examine the distribution of arsenic in ground water, surface water, and sediments at a Superfund Site in the northeastern United States (see companion presentation by K. G. Scheckel et al). Ground-water discharge into the study area was cha...

  15. Trace organic chemicals contamination in ground water recharge.

    Science.gov (United States)

    Díaz-Cruz, M Silvia; Barceló, Damià

    2008-06-01

    Population growth and unpredictable climate changes will pose high demands on water resources in the future. Even at present, surface water is certainly not enough to cope with the water requirement for agricultural, industrial, recreational and drinking purposes. In this context, the usage of ground water has become essential, therefore, their quality and quantity has to be carefully managed. Regarding quantity, artificial recharge can guarantee a sustainable level of ground water, whilst the strict quality control of the waters intended for recharge will minimize contamination of both the ground water and aquifer area. However, all water resources in the planet are threatened by multiple sources of contamination coming from the extended use of chemicals worldwide. In this respect, the environmental occurrence of organic micropollutants such as pesticides, pharmaceuticals, industrial chemicals and their metabolites has experienced fast growing interest. In this paper an overview of the priority and emerging organic micropollutants in the different source waters used for artificial aquifer recharge purposes and in the recovered water is presented. Besides, some considerations regarding fate and removal of such compounds are also addressed.

  16. Toward implementation of a national ground water monitoring network

    Science.gov (United States)

    Schreiber, Robert P.; Cunningham, William L.; Copeland, Rick; Frederick, Kevin D.

    2008-01-01

    The Federal Advisory Committee on Water Information's (ACWI) Subcommittee on Ground Water (SOGW) has been working steadily to develop and encourage implementation of a nationwide, long-term ground-water quantity and quality monitoring framework. Significant progress includes the planned submission this fall of a draft framework document to the full committee. The document will include recommendations for implementation of the network and continued acknowledgment at the federal and state level of ACWI's potential role in national monitoring toward an improved assessment of the nation's water reserves. The SOGW mission includes addressing several issues regarding network design, as well as developing plans for concept testing, evaluation of costs and benefits, and encouraging the movement from pilot-test results to full-scale implementation within a reasonable time period. With the recent attention to water resource sustainability driven by severe droughts, concerns over global warming effects, and persistent water supply problems, the SOGW mission is now even more critical.

  17. 'Galileo Galilei-GG': design, requirements, error budget and significance of the ground prototype

    International Nuclear Information System (INIS)

    Nobili, A.M.; Bramanti, D.; Comandi, G.L.; Toncelli, R.; Polacco, E.; Chiofalo, M.L.

    2003-01-01

    'Galileo Galilei-GG' is a proposed experiment in low orbit around the Earth aiming to test the equivalence principle to the level of 1 part in 10 17 at room temperature. A unique feature of GG, which is pivotal to achieve high accuracy at room temperature, is fast rotation in supercritical regime around the symmetry axis of the test cylinders, with very weak coupling in the plane perpendicular to it. Another unique feature of GG is the possibility to fly 2 concentric pairs of test cylinders, the outer pair being made of the same material for detection of spurious effects. GG was originally designed for an equatorial orbit. The much lower launching cost for higher inclinations has made it worth redesigning the experiment for a sun-synchronous orbit. We report the main conclusions of this study, which confirms the feasibility of the original goal of the mission also at high inclination, and conclude by stressing the significance of the ground based prototype of the apparatus proposed for space

  18. Remediation of ground water containing volatile organic compounds and tritium

    International Nuclear Information System (INIS)

    Shukla, S.N.; Folsom, E.N.

    1994-03-01

    The Trailer 5475 (T-5475) East Taxi Strip Area at Lawrence Livermore National Laboratory (LLNL), Livermore, California was used as a taxi strip by the US Navy to taxi airplanes to the runway from 1942 to 1947. Solvents were used in some unpaved areas adjacent to the East Taxi Strip for cleaning airplanes. From 1953 through 1976, the area was used to store and treat liquid waste. From 1962 to 1976 ponds were constructed and used for evaporation of liquid waste. As a result, the ground water in this area contains volatile organic compounds (VOCs) and tritium. The ground water in this area is also known to contain hexavalent chromium that is probably naturally occurring. Therefore, LLNL has proposed ''pump-and-treat'' technology above grade in a completely closed loop system. The facility will be designed to remove the VOCs and hexavalent chromium, if any, from the ground water, and the treated ground water containing tritium will be reinjected where it will decay naturally in the subsurface. Ground water containing tritium will be reinjected into areas with equal or higher tritium concentrations to comply with California regulations

  19. Practical aspects of tritium measurement in ground and surface waters

    Energy Technology Data Exchange (ETDEWEB)

    Nitzsche, O [Technische Univ. Bergakademie Freiberg (Germany). Inst. fuer Angewandte Physik; Hebert, D [Technische Univ. Bergakademie Freiberg (Germany). Inst. fuer Angewandte Physik

    1997-03-01

    Tritium measurements are a powerful tool in hydrological and hydrogeological investigations for detecting mean residence times of several water reservoirs. Due to the low tritium activities in precipitation, ground and surface waters a low level measurement is necessary. Therefore often the liquid scintillation counting after an electrolytic enrichment of water is used. In this paper some practical aspects and problems of measurement are discussed and the problem of contamination in low level laboratories is shown. (orig.)

  20. Monitoring and sampling perched ground water in a basaltic terrain

    International Nuclear Information System (INIS)

    Hubbell, J.M.

    1990-01-01

    Perched ground water zones are often overlooked in monitoring plans, but they can provide significant information on water and contaminant movement. This paper presents information about perched ground water obtained from drilling and monitoring at a hazardous and radioactive waste disposal site at the Idaho National Engineering Laboratory. Six of forty-five wells drilled at the Radioactive Waste Management Complex have detected perched water in basalts above sedimentary interbeds. Perched water has been detected at depths of 90 and 210 ft below land surface, approximately 370 ft above the regional water table. Eighteen years of water level measurements from one well at a depth of 210 ft indicate a consistent source of water. Water level data indicate a seasonal fluctuation. The maximum water level in this well varies within a 0.5 ft interval, suggesting the water level reaches equilibrium with the inflow to the well at this height. Volatile organic constituents have been detected in concentrations from 1.2 to 1.4 mg/L of carbon tetrachloride. Eight other volatile organics have been detected. The concentrations of organics are consistent with the prevailing theory of movement by diffusion in the gaseous phase. Results of tritium analyses indicate water has moved to a depth of 86 ft in 17 yr. Results of well sampling analyses indicate monitoring and sampling of perched water can be a valuable resource for understanding the hydrogeologic environment of the vadose zone at disposal sites

  1. Resources sustainable management of ground water

    International Nuclear Information System (INIS)

    2001-01-01

    Evaluation executive interinstitutional of the state of knowledge of the Raigon aquifer in the mark of the Project RLA/8/031 (sustainable Administration of Resources of groundwaters), elaborate of an I diagnose and definition of the necessities with a view to the formulation of the plan of activities of the project to develop. In the development of this work shop they were the following topics: Geology and hidrogeology, numeric modelation of the Aquifer and letter of vulnerability of the Aquifer Raigon. soils, quality and water demand, juridical and institutionals aspects

  2. Ground-water quality for Grainger County, Tennessee

    Science.gov (United States)

    Weaver, J.D.; Patel, A.R.; Hickey, A.C.

    1994-01-01

    The residents of Grainger County depend on ground water for many of their daily needs including personal consumption and crop irrigation. To address concerns associated with ground-water quality related to domestic use, the U.S. Geological Survey collected water samples from 35 wells throughout the county during the summer 1992. The water samples were analyzed to determine if pesticides, nutrients, bacteria, and other selected constituents were present in the ground water. Wells selected for the study were between 100 and 250 feet deep and yielded 10 to 50 gallons of water per minute. Laboratory analyses of the water found no organic pesticides at concentrations exceeding the primary maximum contaminant levels established by the State of Tennessee for wells used for public supply. However, fecal coliform bacteria were detected at concentrations exceeding the State's maximum contaminant level in water from 15 of the 35 wells sampled. Analyses also indicated several inorganic compounds were present in the water samples at concentrations exceeding the secondary maximum contaminant level.

  3. Standardized Water Budget Index and Validation in Drought Estimation of Haihe River Basin, North China

    Directory of Open Access Journals (Sweden)

    Shaohua Liu

    2016-01-01

    Full Text Available The physical-based drought indices such as the self-calibrated Palmer Drought Severity Index (sc-PDSI with the fixed time scale is inadequate for the multiscalar drought assessment, and the multiscalar drought indices including Standardized Precipitation Index (SPI, Reconnaissance Drought Index (RDI, and Standardized Precipitation Evapotranspiration Index (SPEI based on the meteorological factors are lack of physical mechanism and cannot depict the actual water budget. To fill this gap, the Standardized Water Budget Index (SWBI is constructed based on the difference between areal precipitation and actual evapotranspiration (AET, which can describe the actual water budget but also assess the drought at multiple time scales. Then, sc-PDSI was taken as the reference drought index to compare with multiscalar drought indices at different time scale in Haihe River basin. The result shows that SWBI correlates better with sc-PDSI and the RMSE of SWBI is less than other multiscalar drought indices. In addition, all of drought indices show a decreasing trend in Haihe River Basin, possibly due to the decreasing precipitation from 1961 to 2010. The decreasing trends of SWBI were significant and consistent at all the time scales, while the decreasing trends of other multiscalar drought indices are insignificant at time scale less than 3 months.

  4. Ground rubber: Sorption media for ground water containing benzene and O-xylene

    International Nuclear Information System (INIS)

    Kershaw, D.S.; Pamukcu, S.

    1997-01-01

    The purpose of the current study is to examine the ability of ground rubber to sorb benzene and O-xylene from water contained with aromatic hydrocarbons. The study consisted of running both batch and packed bed column tests to determine the sorption capacity, the required sorption equilibration time, and the flow through utilization efficiency of ground rubber under various contact times when exposed to water contaminated with various amounts of benzene or O-xylene. Initial batch test results indicate that ground rubber can attain equilibrium sorption capacities up to 1.3 or 8.2 mg of benzene or O-xylene, respectively, per gram of tire rubber at solution equilibrium concentrations of 10 mg/L. Packed bed column tests indicate that ground tire rubber has on the average a 40% utilization rate when a hydraulic residence time of 15 min is used. Possible future uses of round rubber as a sorption media could include, but are not limited to, the use of ground rubber as an aggregate in slurry cutoff walls that are in contact with petroleum products. Ground rubber could also be used as a sorption media in pump-and-treat methodologies or as a sorption media in in-situ reactive permeable barriers

  5. Identification of contaminants of concern in Hanford ground waters

    International Nuclear Information System (INIS)

    Sherwood, D.R.; Evans, J.C.; Bryce, R.W.

    1990-01-01

    More than 1,500 waste-disposal sites have been identified at the U.S. Department of Energy Hanford Site. At the request of the U.S. Environmental Protection Agency, these sites were aggregated into four administrative areas for listing on the National Priority List. Within the four aggregate areas, 646 inactive sites were selected for further evaluation using the Hazard Ranking System (HRS). Evaluation of inactive waste sites by HRS provided valuable insight to design a focused radiological- and hazardous-substance monitoring network. Hanford Site-wide ground-water monitoring was expanded to address not only radioactive constituents but also hazardous chemicals. The HRS scoring process considers the likelihood of ground-water contamination from past disposal practices at inactive waste sites. The network designed to monitor ground water at those facilities identified 129 I, 99 Tc, 90 Sr, uranium, chromium, carbon tetrachloride, and cyanide

  6. The effect of the earth's rotation on ground water motion.

    Science.gov (United States)

    Loáiciga, Hugo A

    2007-01-01

    The average pore velocity of ground water according to Darcy's law is a function of the fluid pressure gradient and the gravitational force (per unit volume of ground water) and of aquifer properties. There is also an acceleration exerted on ground water that arises from the Earth's rotation. The magnitude and direction of this rotation-induced force are determined in exact mathematical form in this article. It is calculated that the gravitational force is at least 300 times larger than the largest rotation-induced force anywhere on Earth, the latter force being maximal along the equator and approximately equal to 34 N/m(3) there. This compares with a gravitational force of approximately 10(4) N/m(3).

  7. Ground-water quality and geochemistry, Carson Desert, western Nevada

    Science.gov (United States)

    Lico, Michael S.; Seiler, R.L.

    1994-01-01

    Aquifers in the Carson Desert are the primary source of drinking water, which is highly variable in chemical composition. In the shallow basin-fill aquifers, water chemistyr varies from a dilute calcium bicarbonate-dominated water beneath the irrigated areas to a saline sodium chloride- dominated water beneath unirrigated areas. Water samples from the shallow aquifers commonly have dissolved solids, chloride, magnesium, sulfate, arsenic, and manganese concentrations that exceed State of Nevada drinking-water standards. Water in the intermediante basin-fill aquifers is a dilute sodium bicarbonate type in the Fallon area and a distinctly more saline sodium chloride type in the Soda Lake-Upsal Hogback area. Dissolved solids, chloride, arsenic, fluoride, and manganese concen- trations commonly exceed drinking-water standards. The basalt aquifer contains a dilute sodium bicarbonate chloride water. Arsenic concentrations exceed standards in all sampled wells. The concen- trations of major constituents in ground water beneath the southern Carson Desert are the result of evapotranspiration and natural geochemical reactions with minerals derived mostly from igneous rocks. Water with higher concentrations of iron and manganese is near thermodynamic equilibrium with siderite and rhodochrosite and indicates that these elements may be limited by the solubility of their respective carbonate minerals. Naturally occurring radionuclides (uranium and radon-222) are present in ground water from the Carson Desert in concen- tratons higher than proposed drinking-water standards. High uranium concentrations in the shallow aquifers may be caused by evaporative concentration and the release of uranium during dissolution of iron and manganese oxides or the oxidation of sedimentary organic matter that typically has elevated uranium concentrations. Ground water in the Carson Desert does not appear to have be contaminated by synthetic organic chemicals.

  8. Ground water in Dale Valley, New York

    Science.gov (United States)

    Randall, Allan D.

    1979-01-01

    Dale Valley is a broad valley segment, enlarged by glacial erosion, at the headwaters of Little Tonawanda Creek near Warsaw , New York. A thin, shallow alluvial aquifer immediately underlies the valley floor but is little used. A deeper gravel aquifer, buried beneath many feet of lake deposits, is tapped by several industrial wells. A finite-difference digital model treated the deep aquifer as two-dimensional with recharge and discharge through a confining layer. It was calibrated by simulating (1) natural conditions, (2) an 18-day aquifer test, and (3) 91 days of well-field operation. Streamflow records and model simulations suggest that in moderately wet years such as 1974, a demand of 750 gallons per minute could be met by withdrawal from the creek and from the aquifer without excessive drawdown at production wells or existing domestic wells. With reasonable but unverified model adjustments to simulate an unusually dry year, the model predicts that a demand of 600 gallons per minute could be met from the same sources. Water high in chloride has migrated from bedrock into parts of the deep aquifer. Industrial pumpage, faults in the bedrock, and the natural flow system may be responsible. (Woodard-USGS)

  9. The Hydrolysis of Di-Isopropyl Methylphosphonate in Ground Water

    Energy Technology Data Exchange (ETDEWEB)

    Sega, G.A., Tomkins, B.A., Griest, W.H., Bayne, C.K.

    1997-12-31

    Di-isopropyl methylphosphonate (DIMP) is a byproduct from the manufacture of the nerve agent Sarin. The persistence of DIMP in the ground water is an important question in evaluating the potential environmental impacts of DIMP contamination. The half-life of DIMP in ground water at 10 deg C was estimated to be 500 years with a 95% confidence interval of 447 to 559 years from measurements of the hydrolysis rates at temperatures between 70 to 98 deg C.Extrapolation of the kinetics to 10 deg C used the Arrhenius equation, and calculation of the half-life assumed first-order kinetics. Inorganic phosphate was not detected.

  10. Emission to air, water and ground: legislation in Norway

    International Nuclear Information System (INIS)

    Hansen, Dag Horsberg

    2001-01-01

    The article discusses Norwegian legislation on emission to air, water and ground. Pollution in the sense of the law is defined as ''the addition of solid matter, gas or liquid to air, water or ground''. The concept of pollution is, however, more far-reaching as even noise, light and radiation may be regarded as pollution although these are not discussed. Any pollution is prohibited. But there are two exceptions: commonly accepted pollutions such as arising from wood burning and agriculture, and emissions allowed by special permission from the National State Pollution Control Authority. The article also discusses liability issues

  11. Valuation of potential hazards to ground water from abandoned sites

    International Nuclear Information System (INIS)

    Kerndorff, H.; Schleyer, R.; Dieter, H.H.

    1993-01-01

    With a view to obtaining, for the large number of abandoned sites suspected of pollution, necessary information regarding the type and extent of possible ground water contamination with a minimum of effort and cost, a hierarchical investigation strategy was developed and successfully tested in more than 100 cases in Germany. As a decisive advantage, already the well-defined and simple investigation steps ''preliminary prospecting'' and ''screening'' permit to recognize polluted sites posing a hazard to ground water. The more specific and demanding investigation steps ''pollutant analysis'' and ''detailed investigations'' may be carried through if necessary. (orig./BBR). 27 figs., 36 tabs [de

  12. Investigating water budget dynamics in 18 river basins across the Tibetan Plateau through multiple datasets

    Science.gov (United States)

    Liu, Wenbin; Sun, Fubao; Li, Yanzhong; Zhang, Guoqing; Sang, Yan-Fang; Lim, Wee Ho; Liu, Jiahong; Wang, Hong; Bai, Peng

    2018-01-01

    The dynamics of basin-scale water budgets over the Tibetan Plateau (TP) are not well understood nowadays due to the lack of in situ hydro-climatic observations. In this study, we investigate the seasonal cycles and trends of water budget components (e.g. precipitation P, evapotranspiration ET and runoff Q) in 18 TP river basins during the period 1982-2011 through the use of multi-source datasets (e.g. in situ observations, satellite retrievals, reanalysis outputs and land surface model simulations). A water balance-based two-step procedure, which considers the changes in basin-scale water storage on the annual scale, is also adopted to calculate actual ET. The results indicated that precipitation (mainly snowfall from mid-autumn to next spring), which are mainly concentrated during June-October (varied among different monsoons-impacted basins), was the major contributor to the runoff in TP basins. The P, ET and Q were found to marginally increase in most TP basins during the past 30 years except for the upper Yellow River basin and some sub-basins of Yalong River, which were mainly affected by the weakening east Asian monsoon. Moreover, the aridity index (PET/P) and runoff coefficient (Q/P) decreased slightly in most basins, which were in agreement with the warming and moistening climate in the Tibetan Plateau. The results obtained demonstrated the usefulness of integrating multi-source datasets to hydrological applications in the data-sparse regions. More generally, such an approach might offer helpful insights into understanding the water and energy budgets and sustainability of water resource management practices of data-sparse regions in a changing environment.

  13. Detection of Ground Water Availability at Buhias Island, Sitaro Regency

    Directory of Open Access Journals (Sweden)

    Zetly E Tamod

    2016-08-01

    Full Text Available The study aims to detect ground water availability at Buhias Island, Siau Timur Selatan District, Sitaro Regency. The research method used the survey method by geoelectrical instrument based on subsurface rock resistivity as a geophysical exploration results with geoelectrical method of Wenner-Schlumberger configuration. Resistivity geoelectrical method is done by injecting a flow into the earth surface, then it is measured the potential difference. This study consists of 4 tracks in which each track is made the stretch model of soil layer on subsurface of ground.  Then, the exploration results were processed using software RES2DINV to look at the data of soil layer based on the value of resistivity (2D. Interpretation result of the track 1 to 4 concluded that there is a layer of ground water. State of dominant ground water contains the saline (brackish. Location of trajectory in the basin to the lowland areas is mostly mangrove swamp vegetation. That location is the junction between the results of the runoff of rainfall water that falls down from the hills with sea water. Bedrock as a constituent of rock layer formed from marine sediments that carry minerals salts.

  14. Ground-water contamination at Wurtsmith Air Force Base, Michigan

    Science.gov (United States)

    Stark, J.R.; Cummings, T.R.; Twenter, F.R.

    1983-01-01

    A sand and gravel aquifer of glacial origin underlies Wurtsmith Air Force Base in northeastern lower Michigan. The aquifer overlies a thick clay layer at an average depth of 65 feet. The water table is about 10 feet below land surface in the western part of the Base and about 25 feet below land surface in the eastern part. A ground-water divide cuts diagonally across the Base from northwest to southeast. South of the divide, ground water flows to the Au Sable River; north of the divide, it flows to Van Etten Creek and Van Etten Lake. Mathematical models were used to aid in calculating rates of groundwater flow. Rates range from about 0.8 feet per day in the eastern part of the Base to about 0.3 feet per day in the western part. Models also were used as an aid in making decisions regarding purging of contaminated water from the aquifer. In 1977, trichloroethylene was detected in the Air Force Base water-supply system. It had leaked from a buried storage tank near Building 43 in the southeastern part of the Base and moved northeastward under the influence of the natural ground-water gradient and the pumping of Base water-supply wells. In the most highly contaminated part of the plume, concentrations are greater than 1,000 micrograms per liter. Current purge pumping is removing some of the trichloroethylene, and seems to have arrested its eastward movement. Pumping of additional purge wells could increase the rate of removal. Trichloroethylene has also been detected in ground water in the vicinity of the Base alert apron, where a plume from an unknown source extends northeastward off Base. A smaller, less well-defined area of contamination also occurs just north of the larger plume. Trichloroethylene, identified near the waste-treatment plant, seepage lagoons, and the northern landfill area, is related to activities and operations in these areas. Dichloroethylene and trichloroethylene occur in significant quantities westward of Building 43, upgradient from the major

  15. Ground-water temperature of the Wyoming quadrangle in central Delaware : with application to ground-water-source heat pumps

    Science.gov (United States)

    Hodges, Arthur L.

    1982-01-01

    Ground-water temperature was measured during a one-year period (1980-81) in 20 wells in the Wyoming Quadrangle in central Delaware. Data from thermistors set at fixed depths in two wells were collected twice each week, and vertical temperature profiles of the remaining 18 wells were made monthly. Ground-water temperature at 8 feet below land surface in well Jc55-1 ranged from 45.0 degrees F in February to 70.1 degrees F in September. Temperature at 35 feet below land surface in the same well reached a minimum of 56.0 degrees F in August, and a maximum of 57.8 degrees F in February. Average annual temperature of ground water at 25 feet below land surface in all wells ranged from 54.6 degrees F to 57.8 degrees F. Variations of average temperature probably reflect the presence or absence of forestation in the recharge areas of the wells. Ground-water-source heat pumps supplied with water from wells 30 or more feet below land surface will operate more efficiently in both heating and cooling modes than those supplied with water from shallower depths. (USGS)

  16. Ground water heat pumps and cooling with ground water basins as seasonal storage; Grundvandsvarmepumper og -koeling med grundvandsmagasiner som saesonlager

    Energy Technology Data Exchange (ETDEWEB)

    2008-04-15

    Ground water temperature is constant all the year round, in Denmark approximately 9 deg. C, which is ideal for a number of cooling purposes including cooling of buildings. The structures in which the ground water flows (sand, gravel and chalk) are efficient for storing coldness and heat over longer periods. By using seasonal storage of low-temperature heat and coldness in ground water layers close to the terrain it is feasible to reach profitable energy savings of up to 90% for cooling and heating of e.g. hotels, airports, shopping malls, office buildings and other larger buildings. At the same time the large energy savings means major reduction of CO{sub 2} emissions. (BA)

  17. Effect of precipitation bias correction on water budget calculation in Upper Yellow River, China

    International Nuclear Information System (INIS)

    Ye Baisheng; Yang Daqing; Ma Lijuan

    2012-01-01

    This study quantifies the effect of precipitation bias corrections on basin water balance calculations for the Yellow River Source region (YRS). We analyse long-term (1959–2001) monthly and yearly data of precipitation, runoff, and ERA-40 water budget variables and define a water balance regime. Basin precipitation, evapotranspiration and runoff are high in summer and low in winter. The basin water storage change is positive in summer and negative in winter. Monthly precipitation bias corrections, ranging from 2 to 16 mm, do not significantly alter the pattern of the seasonal water budget. The annual bias correction of precipitation is about 98 mm (19%); this increase leads to the same amount of evapotranspiration increase, since yearly runoff remains unchanged and the long-term storage change is assumed to be zero. Annual runoff and evapotranspiration coefficients change, due to precipitation bias corrections, from 0.33 and 0.67 to 0.28 and 0.72, respectively. These changes will impact the parameterization and calibration of land surface and hydrological models. The bias corrections of precipitation data also improve the relationship between annual precipitation and runoff. (letter)

  18. Satellite observations make it possible to estimate Poyang Lake’s water budget

    International Nuclear Information System (INIS)

    Feng Lian; Chen Xiaoling; Hu, Chuanmin; Li Rongfang

    2011-01-01

    Using moderate resolution imaging spectroradiometer (MODIS) satellite imagery with hydrologic and meteorological data, we developed a box model to estimate the water exchange between Poyang Lake (the largest freshwater lake of China) and the Changjiang (Yangtze) River from 2000 to 2009. Significant intra- and inter-annual variability of the water budget was found, with an annual mean outflow of Poyang Lake of 120.2 ± 31.2 billion m 3 during 2000–2009 and a declining trend of 5.7 billion m 3 yr −1 (p = 0.09). The impoundment of the Three Gorges Dam (TGD) on the Changjiang River in June 2003 led to a rapid lake–river outflow of 760.6 million m 3 day −1 , resulting in a loss of 7864.5 million m 3 of water from the lake in a short period. Shortly thereafter, a statistically significant decrease in the drainage basin’s runoff coefficient was discovered. These findings provide large-scale evidence on how local precipitation and the TGD control the lake’s water budget, where continuous monitoring using the established approach and satellite data may provide critical information to help make water management decisions.

  19. Exploring soil water budget of a pristine oak wood in peri-urban Rome, central Italy

    Directory of Open Access Journals (Sweden)

    Valerio Moretti

    2014-06-01

    Full Text Available 72 544x376 Normal 0 14 false false false IT X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Tabella normale"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin:0cm; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:10.0pt; font-family:"Calibri","sans-serif";} Exploring soil water budget of a pristine oak wood in peri-urban Rome, central Italy. The water budget in bounded and fenced areas was assessed by analyzing pedo-climatic conditions and the soil moisture content. Water content in the soil was measured using a Theta Probe Soil Moisture sensor (ML2x by Delta-T-Devices with a direct read-out device that provides soil moisture estimates as percent volume. The correlation between the experimental values obtained by the gravimetricmethod and thevalues directly measured by Theta Probe was found significant. Soil moisture at 100 cm depth indicates soil water as permanently available for plants through the year except during exceptionally dry summer periods. Therefore, oaks experienced no water deficiency with normal rainfall rates, possibly suffering root asphyxia during rainy years. Results are collected in fenced areas, sheltered by the action of the local fauna.

  20. Cerenkov radiation simulation in the Auger water ground detector

    International Nuclear Information System (INIS)

    Le Van Ngoc; Vo Van Thuan; Dang Quang Thieu

    2003-01-01

    The simulation of response of the Auger water Cerenkov ground detector to atmospheric shower muons in practically needed for the experimental research of cosmic rays at extreme energies. We consider here a simulation model for the process of emission and diffusion of Cerenkov photons concerned with muons moving through the detector volume with the velocity greater than the phase velocity of light in the water on purpose to define photons producing signal in the detector. (author)

  1. Florida's ground water quality monitoring program: background hydrogeochemistry

    OpenAIRE

    Maddox, Gary; Upchurch, Sam; Lloyd, Jacqueline; Scott, Tom

    1992-01-01

    The purpose of this report is to present the results of the initial quantification of background water quality in each of the state's major potable aquifer systems. Results are presented and interpreted in light of the influencing factors which locally and regionally affect ambient ground-water quality. This initial data will serve as a baseline from which future sampling results can be compared. Future sampling of the Network will indicate the extent to which Flori...

  2. The isotope hydrology of ground waters of the Kalahari, Gordonia

    International Nuclear Information System (INIS)

    Verhagen, B. Th.

    1982-01-01

    An intensive hydrological and geophysical survey of fresh water occurance in the Gordonia area, promoted a parallel study of the isotope hydrology and hydrochemistry of both the fresh and saline ground waters of the area. Measurements of 14 C, 3 H, 13 C and 18 O as well of major element hydrochemistry were conducted on numerous samples. Radiocarbon concentrations range from 6 pmc to 111 pmc. Significant tritium is only observed in cases where 14 C concentrations are significantly higher than 90 pmc

  3. DETERMINING HOW VAPOR PHASE MTBE REACHES GROUND WATER

    Science.gov (United States)

    EPA Region 2 and ORD have funded a RARE project for FY 2005/2006 to evaluate the prospects that MTBE (and other fuel components) in vapors that escape from an underground storage tank (UST) can find its way to ground water produced by monitoring wells at a gasoline filling statio...

  4. Hanford Site ground-water monitoring for 1991

    International Nuclear Information System (INIS)

    Evans, J.C.; Bryce, R.W.; Bates, D.J.

    1992-10-01

    The Pacific Northwest Laboratory (PNL) monitors the distribution of radionuclides and other hazardous materials in ground water at the Hanford Site for the US Department of Energy (DOE). This work is performed through the Ground-Water Surveillance Project and is designed to meet the requirements of DOE Order 5400.1 that apply to environmental surveillance and ground-water monitoring (DOE 1988). This annual report discusses results of ground-water monitoring at the Hanford Site during 1991. In addition to the general discussion, the following topics are discussed in detail: (1) carbon tetrachloride in the 200-West Area; (2) cyanide in and north of the 200-East and the 200-West areas; (3) hexavalent chromium contamination in the 100, 200, and 600 areas; (4) trichloroethylene in the vicinity of the Solid Waste Landfill, 100-F Area, and 300 Area; (5) nitrate across the Site; (6) tritium across the Site; and (7) other radionuclide contamination throughout the Site, including gross alpha, gross beta, cobalt-60, strontium-90, technetium-99, iodine-129, cesium-137, uranium, and plutonium

  5. Uranium in US surface, ground, and domestic waters

    International Nuclear Information System (INIS)

    Drury, J.S.; Reynolds, S.; Owen, P.T.; Ross, R.H.; Ensminger, J.T.

    1981-04-01

    The report Uranium in US Surface, Ground, and Domestic Waters comprises four volumes. Volumes 2, 3, and 4 contain data characterizing the location, sampling date, type, use, and uranium concentrations of 89,994 individual samples presented in tabular form. The tabular data in volumes 2, 3, and 4 are summarized in volume 1 in narrative form and with maps and histograms

  6. Development and evaluation of an ultrasonic ground water seepage meter.

    Science.gov (United States)

    Paulsen, R J; Smith, C F; O'Rourke, D; Wong, T F

    2001-01-01

    Submarine ground water discharge can influence significantly the near-shore transport and flux of chemicals into the oceans. Quantification of the sources and rates of such discharge requires a ground water seepage meter that provides continuous measurements at high resolution over an extended period of time. An ultrasonic flowmeter has been adapted for such measurements in the submarine environment. Connected to a steel collection funnel, the meter houses two piezoelectric transducers mounted at opposite ends of a cylindrical flow tube. By monitoring the perturbations of fluid flow on the propagation of sound waves inside the flow tube, the ultrasonic meter can measure both forward and reverse fluid flows in real time. Laboratory and field calibrations show that the ultrasonic meter can resolve ground water discharges on the order of 0.1 microm/sec, and it is sufficiently robust for deployment in the field for several days. Data from West Neck Bay, Shelter Island, New York, elucidate the temporal and spatial heterogeneity of submarine ground water discharge and its interplay with tidal loading. A negative correlation between the discharge and tidal elevation was generally observed. A methodology was also developed whereby data for the sound velocity as a function of temperature can be used to infer the salinity and source of the submarine discharge. Independent measurements of electrical conductance were performed to validate this methodology.

  7. Distinguishing natural hydrocarbons from anthropogenic contamination in ground water

    International Nuclear Information System (INIS)

    Lesage, S.; Xu, H.; Novakowski, K.S.

    1997-01-01

    Differentiation between natural and anthropogenic sources of ground-water contamination by petroleum hydrocarbons is necessary in areas where natural hydrocarbons may be present in the subsurface. Because of the similarity in composition between natural and refined petroleum, the use of statistical techniques to discern trends is required. In this study, both multivariate plotting techniques and principal component analysis were used to investigate the origin of hydrocarbons from a variety of study sites. Ground-water and gas samples were collected from the Niagara Falls area and from three gasoline stations where leaking underground storage tanks had been found. Although soil gas surveys are used to indicate the presence of hydrocarbons, they were not useful in differentiating between natural and anthropogenic sources of contamination in ground water. Propane and pentene were found to be the most useful chemical parameters in discriminating between the natural and anthropogenic sources. These chemicals are not usually measured in investigations of ground-water contamination, yet analysis can be conducted by most environmental laboratories using conventional methods

  8. TBA IN GROUND WATER FROM THE NATURAL BIODEGRADATION OF MTBE

    Science.gov (United States)

    At many UST spills, the concentrations of TBA in ground water are much higher than would be expected from the presence of TBA in the gasoline originally spilled. The ratio of concentrations of TBA to concentrations of MTBE in monitoring wells at gasoline spill sites was compared ...

  9. Geophysical techniques for the study of ground water pollution: A ...

    African Journals Online (AJOL)

    Geophysical techniques for the study of ground water pollution: A review. IB Osazuwa, NK Abdulahi. Abstract. No Abstract. Nigerian Journal of Physics Vol. 20 (1) 2008: pp.163-174. Full Text: EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT · DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT.

  10. Uranium in US surface, ground, and domestic waters. Volume 2

    International Nuclear Information System (INIS)

    Drury, J.S.; Reynolds, S.; Owen, P.T.; Ross, R.H.; Ensminger, J.T.

    1981-04-01

    The report Uranium in US Surface, Ground, and Domestic Waters comprises four volumes. Volumes 2, 3, and 4 contain data characterizing the location, sampling date, type, use, and uranium conentrations of 89,994 individual samples presented in tabular form. The tabular data in volumes 2, 3, and 4 are summarized in volume 1 in narrative form and with maps and histograms

  11. Uranium in US surface, ground, and domestic waters

    International Nuclear Information System (INIS)

    Drury, J.S.; Reynolds, S.; Owen, P.T.; Ross, R.H.; Ensminger, J.T.

    1981-04-01

    The report Uranium in US Surface, Ground, and Domestic Waters, comprises four volumes. Volumes 2, 3, and 4 contain data characterizing the location, sampling date, type, use, and uranium concentrations of 89,994 individual samples presented in tabular form. The tabular data in volumes 2, 3, and 4 are summarized in volume 1 in narrative form and with maps and histograms

  12. Ground water arsenic contamination: A local survey in India

    Directory of Open Access Journals (Sweden)

    Arun Kumar

    2016-01-01

    Conclusions: The present study concludes that in Simri village there is high contamination of arsenic in ground water in all the strips. Such a huge population is at very high risk leading the village on the verge of causing health hazards among them. Therefore, an immediate strategy is required to combat the present problem.

  13. Ground-water conditions in the vicinity of Enid, Oklahoma

    Science.gov (United States)

    Schoff, Stuart L.

    1948-01-01

    This memorandum summaries matter discussed at a meeting of the City Commission of Enid, Oklahoma, on Thursday, January 15, 1948, at which the write presented a brief analysis of the ground-water resources available to the City of Enid and answered questions brought up by the commissioners.

  14. A meso-network of eddy covariance towers across the Northwest Territories to assess high-latitude carbon and water budgets under increasing pressure

    Science.gov (United States)

    Hurkuck, M.; Marsh, P.; Quinton, W. L.; Humphreys, E.; Lafleur, P.; Helbig, M.; Hould Gosselin, G.; Sonnentag, O.

    2017-12-01

    Given their large areal coverage, high carbon densities, unique land surface properties, and disturbance regimes, Canada's diverse high-latitude ecosystems across its multiple Arctic, subarctic and boreal ecozones are integral components of the global and regional climate systems. In northwestern Canada, large portions of these ecozones contain permafrost, i.e., perennially cryotic ground. Here, we describe efforts towards a meso-network of nine eddy covariance towers to measure carbon, water and energy fluxes across the Northwest Territories to shed light on high-latitude carbon and water budgets and their rapidly changing biotic and abiotic controls in response to increasing natural and anthropogenic pressures. Distributed across six research sites (Trail Valley Creek, 68.7°N, 133.3°W; Havikpak Creek, 68.3°N, 133.3°W; Daring Lake, 64.8°N, 111.5°W; Smith Creek, 63.1°N, 123.2°W; Scotty Creek, 63.1°N, 123.2°W; Yellowknife, 62.5°N, 114.4°W), the meso-network spans the central portion of the extended ABoVE Study Domain, covering two ecozones (Taiga Plains, Southern Arctic) with differing permafrost regimes (sporadic, discontinuous, continuous), climatic settings (coastal, interior), and seven high-latitude ecosystem types: forested permafrost peat plateau, permafrost-free collapse-scar bog, subarctic woodland, mixed and dwarf-shrub tundra, and sedge fen. With our contribution, we report on the current status of the meso-network development and present results from various synthesis activities examining the role of climatic setting and resulting tundra carbon and water budgets, quantifying the impact of permafrost thaw and associated wetland expansion on boreal forest carbon and water budgets, and determining the relative importance of treeline advance compared to shrub proliferation on tundra carbon and water budgets.

  15. Simulated effects of impoundment of lake seminole on ground-water flow in the upper Floridan Aquifer in southwestern Georgia and adjacent parts of Alabama and Florida

    Science.gov (United States)

    Jones, L. Elliott; Torak, Lynn J.

    2004-01-01

    Hydrologic implications of the impoundment of Lake Seminole in southwest Georgia and its effect on components of the surface- and ground-water flow systems of the lower Apalachicola?Chattahoochee?Flint (ACF) River Basin were investigated using a ground-water model. Comparison of simulation results of postimpoundment drought conditions (October 1986) with results of hypothetical preimpoundment conditions (a similar drought prior to 1955) provides a qualitative measure of the changes in hydraulic head and ground-water flow to and from streams and Lake Seminole, and across State lines caused by the impoundment. Based on the simulation results, the impoundment of Lake Seminole changed ground-water flow directions within about 20?30 miles of the lake, reducing the amount of ground water flowing from Florida to Georgia southeast of the lake. Ground-water storage was increased by the impoundment, as indicated by a simulated increase of as much as 26 feet in the water level in the Upper Floridan aquifer. The impoundment of Lake Seminole caused changes to simulated components of the ground-water budget, including reduced discharge from the Upper Floridan aquifer to streams (315 million gallons per day); reduced recharge from or increased discharge to regional ground-water flow at external model boundaries (totaling 183 million gallons per day); and reduced recharge from or increased discharge to the undifferentiated overburden (totaling 129 million gallons per day).

  16. Ground-water pollution determined by boron isotope systematics

    International Nuclear Information System (INIS)

    Vengosh, A.; Kolodny, Y.; Spivack, A.J.

    1998-01-01

    Boron isotopic systematics as related to ground-water pollution is reviewed. We report isotopic results of contaminated ground water from the coastal aquifers of the Mediterranean in Israel, Cornia River in north-western Italy, and Salinas Valley, California. In addition, the B isotopic composition of synthetic B compounds used for detergents and fertilizers was investigated. Isotopic analyses were carried out by negative thermal ionization mass spectrometry. The investigated ground water revealed different contamination sources; underlying saline water of a marine origin in saline plumes in the Mediterranean coastal aquifer of Israel (δ 11 B=31.7 per mille to 49.9 per mille, B/Cl ratio ∼1.5x10 -3 ), mixing of fresh and sea water (25 per mille to 38 per mille, B/Cl∼7x10 -3 ) in saline water associated with salt-water intrusion to Salinas Valley, California, and a hydrothermal contribution (high B/Cl of ∼0.03, δ 11 B=2.4 per mille to 9.3 per mille) in ground water from Cornia River, Italy. The δ 11 B values of synthetic Na-borate products (-0.4 per mille to 7.5 per mille) overlap with those of natural Na-borate minerals (-0.9 per mille to 10.2 per mille). In contrast, the δ 11 B values of synthetic Ca-borate and Na/Ca borate products are significantly lower (-15 per mille to -12.1 per mille) and overlap with those of the natural Ca-borate minerals. We suggest that the original isotopic signature of the natural borate minerals is not modified during the manufacturing process of the synthetic products, and it is controlled by the crystal chemistry of borate minerals. The B concentrations in pristine ground-waters are generally low ( 11 B=39 per mille), salt-water intrusion and marine-derived brines (40 per mille to 60 per mille) are sharply different from hydrothermal fluids (δ 11 B=10 per mille to 10 per mille) and anthropogenic sources (sewage effluent: δ 11 B=0 per mille to 10 per mille; boron-fertilizer: δ 11 B=-15 per mille to 7 per mille). some

  17. Water and chemical budgets in an urbanized river system under various hydrological conditions

    Science.gov (United States)

    Brion, Natacha; Carbonnel, Vincent; Elskens, Marc; Claeys, Philippe; Verbanck, Michel A.

    2017-04-01

    Since historical times, riversides are preferential settlement places for human life and activities, ultimately leading to the development of Cities. Available water resources are not only essential to ensure human's vital functions, they are also used for the production of food, goods, and energy, as transport routes and as evacuation ways for domestic and industrial waste products. All these activities profoundly modify natural water circulation as well as water quality, with increased hydrological risks (floods, droughts,…) and chemical hazards (untreated sewage releases, industrial pollution,…) as consequence. An extreme example of strongly modified river system is the river Zenne crossing the city of Brussels. In and around the city, the river together with its connected navigation canal, determine a small vertical urbanized area (800 km2) combining extreme land-use landscapes. While the southern upstream part of this area lies in a region of intensive agricultural activities, the central part is occupied by a dense cityscape including a forested area, and the downstream part is mainly under industrial influence. In this context, we established a box-model representation of water and selected polluting chemicals (N and P, biological oxygen demand, and a selection of metals, pesticides and PAHs) budgets for the studied area under variable hydrological conditions. We first have identified the general distribution of water and pollutant tracers in the various background sources of the system: waters in streams located in the very upstream parts of the catchment, and untreated and treated sewage. Secondly we have assessed the distribution of water flows, and pollutant tracer concentrations at the boundaries of the studied water systems for different stable hydrological conditions and during flood events. Finally we will discuss water budgets and pollution tracer budgets for a yearly average hydrological situation and for dry and wet weather conditions in order

  18. Exploratory Water Budget Analysis of A Transitional Premontane Cloud Forest in Costa Rica Through Undergraduate Research

    Science.gov (United States)

    Washington-Allen, R. A.; Buckwalter, E. H.; Moore, G. W.; Burns, J. N.; Dennis, A. R.; Dodge, O.; Guffin, E. C.; Morris, E. R.; Oien, R. P.; Orozco, G.; Peterson, A.; Teale, N. G.; Shibley, N. C.; Tourtellotte, N.; Houser, C.; Brooks, S. D.; Brumbelow, J. K.; Cahill, A. T.; Frauenfeld, O. W.; Gonzalez, E.; Hallmark, C. T.; McInnes, K. J.; Miller, G. R.; Morgan, C.; Quiring, S. M.; Rapp, A. D.; Roark, E.; Delgado, A.; Ackerson, J. P.; Arnott, R.

    2012-12-01

    The ecohydrology of transitional premontane cloud forests is not well understood. This problem is being addressed by a NSF Research Experience for Undergraduates (REU) study at the Texas A&M University Soltis Center for Research & Education in Costa Rica. Exploratory analysis of the water budget within a 20-ha watershed was used to connect three faculty-mentored research areas in ecohydrology, climate, and soil sciences and highlight the roles of 12 undergraduate researchers from 12 different universities. The water budget model is Q = Pn - E - T + ΔG + ΔS where Q = runoff, Pn = net precipitation, E = evaporation, T = transpiration, and ΔG and ΔS are change in groundwater soil water storage, respectively. Additionally, Pn = Pg - I = Tf + Sf + D, where Pg = gross precipitation, I/ΔI = canopy interception or storage, Tf = throughfall, Sf = stemflow, and D = canopy drip. The following terms were well understood Pg (satellite = 34-mm and tower = 38.1-mm) and Q from a recently constructed v-notch weir. We moderately understand Tf + D (30.9-mm from an array of forest rain gages), ΔI (7.2-mm) related to Sf, and T (10.4-mm measured with sapflow sensors). We found that soils were clay loam to silty loam textured Andisols on saprolitic tuft with a mean potential ΔS of 398 mm H2O under laboratory conditions, but in the field the following terms are almost completely unknown and require further field studies including E, ΔG, and ΔS. Recent installation of piezometers will address ΔG. Temporal scaling of measurements to a 1-week period was a challenge as well as the construction, deployment and calibration of instruments. However, this exploration allowed us to determine measurement uncertainties in the water budget, e.g., E, and to set future areas of research to address these uncertainties.

  19. Use of environmental isotopes in the quantification of the water budget of the nile delta Egypt

    International Nuclear Information System (INIS)

    Aly, A.I.M.; Simpson, H.J.; Hamza, M.S.; White, J.W.C.; Nada, A.; Awad, M.A.

    1991-01-01

    Expanded reuse of drainage waters for irrigation in Egypt is a central component of future agricultural planning for the country. Sources of the salinity of the drainage water discharge are often difficult to quantify with confidence. Variations of the stable environ mental isotope composition of water molecules within the irrigation network, which are quite sensitive to evaporation (but not transpiration ) and to mixing with water components other than Nile water, can provide new useful information for quantifying water budget of the Nile Delta. During the spring time of 1985, the drainage water of the Delta was enriched with deuterium and oxygen-18, only moderately above the average of the Nile. The magnitude of this enrichment for deuterium, when calibrated against heavy isotope enrichment trends for two evaporation pan experiments near Cairo at the southern apex of the Delta and Saha in the middle portion, indicates that about 6% of the original irrigation water volume was lost to evaporation through the system between Cairo and the discharge to the drainage network, compared to about 19 times that percentage lost through transpiration. Thus, the efficiency of water use by mature crops during early to mid spring time of 1965 appeared to be quite high. Drainage from the extreme edges of the Delta contained a substantial component of light isotope water suggesting significant contribution from Nile River since the completion of the High Dam. This particular remark necessitates, however, further study for quantifying these sources.1 tab., 7 fig

  20. INVESTIGATIONS ON BIOCHEMICAL PURIFICATION OF GROUND WATER FROM HYDROGEN SULFIDE

    Directory of Open Access Journals (Sweden)

    Yu. P. Sedlukho

    2015-01-01

    Full Text Available The paper considers problems and features of biochemical removal of hydrogen sulfide from ground water. The analysis of existing methods for purification of ground water from hydrogen sulfide has been given in the paper. The paper has established shortcomings of physical and chemical purification of ground water. While using aeration methods for removal of hydrogen sulfide formation of colloidal sulfur that gives muddiness and opalescence to water occurs due to partial chemical air oxidation. In addition to this violation of sulfide-carbonate equilibrium taking place in the process of aeration due to desorption of H2S and CO2, often leads to clogging of degasifier nozzles with formed CaCO3 that causes serious operational problems. Chemical methods require relatively large flow of complex reagent facilities, storage facilities and transportation costs.In terms of hydrogen sulfide ground water purification the greatest interest is given to the biochemical method. Factors deterring widespread application of the biochemical method is its insufficient previous investigation and necessity to execute special research in order to determine optimal process parameters while purifying groundwater of a particular water supply source. Biochemical methods for oxidation of sulfur compounds are based on natural biological processes that ensure natural sulfur cycle. S. Vinogradsky has established a two-stage mechanism for oxidation of hydrogen sulfide with sulfur bacteria (Beggiatoa. The first stage presupposes oxidation of hydrogen sulphide to elemental sulfur which is accumulating in the cytoplasm in the form of globules. During the second stage sulfur bacteria begin to oxidize intracellular sulfur to sulfuric acid due to shortage of hydrogen sulfide.The paper provides the results of technological tests of large-scale pilot plants for biochemical purification of groundwater from hydrogen sulfide in semi-industrial conditions. Dependences of water quality

  1. Modeling decadal timescale interactions between surface water and ground water in the central Everglades, Florida, USA

    Science.gov (United States)

    Harvey, Judson W.; Newlin, Jessica T.; Krupa, Steven L.

    2006-04-01

    Surface-water and ground-water flow are coupled in the central Everglades, although the remoteness of this system has hindered many previous attempts to quantify interactions between surface water and ground water. We modeled flow through a 43,000 ha basin in the central Everglades called Water Conservation Area 2A. The purpose of the model was to quantify recharge and discharge in the basin's vast interior areas. The presence and distribution of tritium in ground water was the principal constraint on the modeling, based on measurements in 25 research wells ranging in depth from 2 to 37 m. In addition to average characteristics of surface-water flow, the model parameters included depth of the layer of 'interactive' ground water that is actively exchanged with surface water, average residence time of interactive ground water, and the associated recharge and discharge fluxes across the wetland ground surface. Results indicated that only a relatively thin (8 m) layer of the 60 m deep surfical aquifer actively exchanges surface water and ground water on a decadal timescale. The calculated storage depth of interactive ground water was 3.1 m after adjustment for the porosity of peat and sandy limestone. Modeling of the tritium data yielded an average residence time of 90 years in interactive ground water, with associated recharge and discharge fluxes equal to 0.01 cm d -1. 3H/ 3He isotopic ratio measurements (which correct for effects of vertical mixing in the aquifer with deeper, tritium-dead water) were available from several wells, and these indicated an average residence time of 25 years, suggesting that residence time was overestimated using tritium measurements alone. Indeed, both residence time and storage depth would be expected to be overestimated due to vertical mixing. The estimate of recharge and discharge (0.01 cm d -1) that resulted from tritium modeling therefore is still considered reliable, because the ratio of residence time and storage depth (used to

  2. Estimating the Ground Water Resources of Atoll Islands

    Directory of Open Access Journals (Sweden)

    Arne E. Olsen

    2010-01-01

    Full Text Available Ground water resources of atolls, already minimal due to the small surface area and low elevation of the islands, are also subject to recurring, and sometimes devastating, droughts. As ground water resources become the sole fresh water source when rain catchment supplies are exhausted, it is critical to assess current groundwater resources and predict their depletion during drought conditions. Several published models, both analytical and empirical, are available to estimate the steady-state freshwater lens thickness of small oceanic islands. None fully incorporates unique shallow geologic characteristics of atoll islands, and none incorporates time-dependent processes. In this paper, we provide a review of these models, and then present a simple algebraic model, derived from results of a comprehensive numerical modeling study of steady-state atoll island aquifer dynamics, to predict the ground water response to changes in recharge on atoll islands. The model provides an estimate thickness of the freshwater lens as a function of annual rainfall rate, island width, Thurber Discontinuity depth, upper aquifer hydraulic conductivity, presence or absence of a confining reef flat plate, and in the case of drought, time. Results compare favorably with published atoll island lens thickness observations. The algebraic model is incorporated into a spreadsheet interface for use by island water resources managers.

  3. Practical Guidelines for Water Percolation Capacity Determination of the Ground

    Directory of Open Access Journals (Sweden)

    Mihael Brenčič

    2011-06-01

    Full Text Available Determination of water infiltration capacity of ground soils and rocks represents important part of design and construction procedures of the facilities for the infiltration of clean precipitation water. With their help percolation capacity of ground as well as response of the infiltration facilities to the inflowing precipitation water is estimated.Comparing to other in situ hydrogeological tests they can be understood as simple. However, in every day’s practiceseveral problems during their on site application and desk interpretation can arise. Paper represents review of existingpractical engineering procedures during the performance of percolation tests. Procedures are described for the borehole and shaft percolation tests execution and calculation theory for stationary and non‑stationary percolation tests are given. Theory is illustrated with practical exercises. Interpretations of typical departures from theoretical presumptions according to Hvorslev test of non-stationary test are illustrated.

  4. 40 CFR 141.403 - Treatment technique requirements for ground water systems.

    Science.gov (United States)

    2010-07-01

    ... ground water systems. 141.403 Section 141.403 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Ground Water Rule § 141... customer as follows: (i) Chemical disinfection—(A) Ground water systems serving greater than 3,300 people...

  5. Precipitation recycling in West Africa - regional modeling, evaporation tagging and atmospheric water budget analysis

    Science.gov (United States)

    Arnault, Joel; Kunstmann, Harald; Knoche, Hans-Richard

    2015-04-01

    Many numerical studies have shown that the West African monsoon is highly sensitive to the state of the land surface. It is however questionable to which extend a local change of land surface properties would affect the local climate, especially with respect to precipitation. This issue is traditionally addressed with the concept of precipitation recycling, defined as the contribution of local surface evaporation to local precipitation. For this study the West African monsoon has been simulated with the Weather Research and Forecasting (WRF) model using explicit convection, for the domain (1°S-21°N, 18°W-14°E) at a spatial resolution of 10 km, for the period January-October 2013, and using ERA-Interim reanalyses as driving data. This WRF configuration has been selected for its ability to simulate monthly precipitation amounts and daily histograms close to TRMM (Tropical Rainfall Measuring Mission) data. In order to investigate precipitation recycling in this WRF simulation, surface evaporation tagging has been implemented in the WRF source code as well as the budget of total and tagged atmospheric water. Surface evaporation tagging consists in duplicating all water species and the respective prognostic equations in the source code. Then, tagged water species are set to zero at the lateral boundaries of the simulated domain (no inflow of tagged water vapor), and tagged surface evaporation is considered only in a specified region. All the source terms of the prognostic equations of total and tagged water species are finally saved in the outputs for the budget analysis. This allows quantifying the respective contribution of total and tagged atmospheric water to atmospheric precipitation processes. The WRF simulation with surface evaporation tagging and budgets has been conducted two times, first with a 100 km2 tagged region (11-12°N, 1-2°W), and second with a 1000 km2 tagged region (7-16°N, 6°W -3°E). In this presentation we will investigate hydro

  6. A Guide for Using the Transient Ground-Water Flow Model of the Death Valley Regional Ground-Water Flow System, Nevada and California

    Energy Technology Data Exchange (ETDEWEB)

    Joan B. Blainey; Claudia C. Faunt, and Mary C. Hill

    2006-05-16

    This report is a guide for executing numerical simulations with the transient ground-water flow model of the Death Valley regional ground-water flow system, Nevada and California using the U.S. Geological Survey modular finite-difference ground-water flow model, MODFLOW-2000. Model inputs, including observations of hydraulic head, discharge, and boundary flows, are summarized. Modification of the DVRFS transient ground-water model is discussed for two common uses of the Death Valley regional ground-water flow system model: predictive pumping scenarios that extend beyond the end of the model simulation period (1998), and model simulations with only steady-state conditions.

  7. Water resources data, Iowa, water year 2001, Volume 2. surface water--Missouri River basin, and ground water

    Science.gov (United States)

    Nalley, G.M.; Gorman, J.G.; Goodrich, R.D.; Miller, V.E.; Turco, M.J.; Linhart, S.M.

    2002-01-01

    The Water Resources Division of the U.S. Geological Survey, in cooperation with State, county, municipal, and other Federal agencies, obtains a large amount of data pertaining to the water resources of Iowa each water year. These data, accumulated during many water years, constitute a valuable data base for developing an improved understanding of the water resources of the State. To make this data readily available to interested parties outside of the Geological Survey, the data is published annually in this report series entitled “Water Resources Data - Iowa” as part of the National Water Data System. Water resources data for water year 2001 for Iowa consists of records of stage, discharge, and water quality of streams; stage and contents of lakes and reservoirs; and water levels and water quality of ground water. This report, in two volumes, contains stage or discharge records for 132 gaging stations; stage records for 9 lakes and reservoirs; water-quality records for 4 gaging stations; sediment records for 13 gaging stations; and water levels for 163 ground-water observation wells. Also included are peak-flow data for 92 crest-stage partial-record stations, water-quality data from 86 municipal wells, and precipitation data collected at 6 gaging stations and 2 precipitation sites. Additional water data were collected at various sites not included in the systematic data-collection program, and are published here as miscellaneous measurements and analyses. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating local, State, and Federal agencies in Iowa.Records of discharge or stage of streams, and contents or stage of lakes and reservoirs were first published in a series of U.S. Geological Survey water-supply papers entitled “Surface Water Supply of the United States.” Through September 30, 1960, these water-supply papers were published in an annual series; during 1961-65 and 1966-70, they

  8. Plutonium radionuclides in the ground waters at Enewetak Atoll

    International Nuclear Information System (INIS)

    Noshkin, V.E.; Wong, K.M.; Marsh, K.; Eagle, R.; Holladay, G.; Buddemeier, R.W.

    1975-01-01

    In 1974 a groundwater program was initiated at Eniwetok Atoll to study systematically the hydrology and the ground water geochemistry on selected islands of the Atoll. The program provides chemical and radiochemical data for assessment of water quality on those islands designated for rehabilitation. These and other data are used to interpret the mechanisms by which radionuclides are cycled in the soil-groundwater system. Because of the international concern over the long-term buildup, availability, and transport of plutonium in the environment, this program emphasizes analysis of the element. The results of the study show that on all islands sampled, small quantities of plutonium radionuclides have migrated through the soil columns and are redistributed throughout the groundwater reservoirs. The observed maximum surface concentrations are less than 0.02 percent of the maximal recommended concentration for drinking water. Concentrations of 137 Cs are found to correlate with water freshness, but those of 239 , 240 Pu show no such relationship. The mechanisms moving 239 , 240 Pu through the ground water reservoirs are independent of the processes controlling the cycling of 137 Cs and fresh water. A reasonable linear correlation is found between mean surface-water concentrations and soil burdens. This indicates that the quantities of 239 , 240 Pu migrating to the groundwater surface layers are, to a first approximation, independent of the physical, chemical or biological characteristics of the islands. (auth)

  9. Use of Atmospheric Budget to Reduce Uncertainty in Estimated Water Availability over South Asia from Different Reanalyses

    Science.gov (United States)

    Sebastian, Dawn Emil; Pathak, Amey; Ghosh, Subimal

    2016-07-01

    Disagreements across different reanalyses over South Asia result into uncertainty in assessment of water availability, which is computed as the difference between Precipitation and Evapotranspiration (P-E). Here, we compute P-E directly from atmospheric budget with divergence of moisture flux for different reanalyses and find improved correlation with observed values of P-E, acquired from station and satellite data. We also find reduced closure terms for water cycle computed with atmospheric budget, analysed over South Asian landmass, when compared to that obtained with individual values of P and E. The P-E value derived with atmospheric budget is more consistent with energy budget, when we use top-of-atmosphere radiation for the same. For analysing water cycle, we use runoff from Global Land Data Assimilation System, and water storage from Gravity Recovery and Climate Experiment. We find improvements in agreements across different reanalyses, in terms of inter-annual cross correlation when atmospheric budget is used to estimate P-E and hence, emphasize to use the same for estimations of water availability in South Asia to reduce uncertainty. Our results on water availability with reduced uncertainty over highly populated monsoon driven South Asia will be useful for water management and agricultural decision making.

  10. Use of Atmospheric Budget to Reduce Uncertainty in Estimated Water Availability over South Asia from Different Reanalyses.

    Science.gov (United States)

    Sebastian, Dawn Emil; Pathak, Amey; Ghosh, Subimal

    2016-07-08

    Disagreements across different reanalyses over South Asia result into uncertainty in assessment of water availability, which is computed as the difference between Precipitation and Evapotranspiration (P-E). Here, we compute P-E directly from atmospheric budget with divergence of moisture flux for different reanalyses and find improved correlation with observed values of P-E, acquired from station and satellite data. We also find reduced closure terms for water cycle computed with atmospheric budget, analysed over South Asian landmass, when compared to that obtained with individual values of P and E. The P-E value derived with atmospheric budget is more consistent with energy budget, when we use top-of-atmosphere radiation for the same. For analysing water cycle, we use runoff from Global Land Data Assimilation System, and water storage from Gravity Recovery and Climate Experiment. We find improvements in agreements across different reanalyses, in terms of inter-annual cross correlation when atmospheric budget is used to estimate P-E and hence, emphasize to use the same for estimations of water availability in South Asia to reduce uncertainty. Our results on water availability with reduced uncertainty over highly populated monsoon driven South Asia will be useful for water management and agricultural decision making.

  11. A FIXED BED SORPTION SYSTEM FOR DEFLUORIDATION OF GROUND WATER

    Directory of Open Access Journals (Sweden)

    Ayoob Sulaiman

    2009-06-01

    Full Text Available The presence of excess fluoride in ground water has become a global threat with as many as 200 million people affected in more than 35 countries in all the continents. Of late, there have been significant advances in the knowledge base regarding the effects of excess fluoride on human health. As a result, defluoridation of ground water is regarded as one of the key areas of attention among the universal water community triggering global research. This study describes the sorptive responses of a newly developed adsorbent, alumina cement granules (ALC, in its real-life application in fixed beds, for removing fluoride from the ground waters of a rural Indian village. ALC exhibited almost consistent scavenging capacity at various bed depths in column studies with an enhanced adsorption potential of 0.818 mg/g at a flow rate of 4 ml/min. The Thomas model was examined to describe the sorption process. The process design parameters of the column were obtained by linear regression of the model. In all the conditions examined, the Thomas model could consistently predict its characteristic parameters and describe the breakthrough sorption profiles in the whole range of sorption process.

  12. Ground water share in supplying domestic water in Khartoum state

    International Nuclear Information System (INIS)

    Mohammed, M. E. A.

    2010-10-01

    In this research study of the sources of groundwater from wells and stations that rely on the national authority for urban water in the state of Khartoum, this study includes three areas, namely the Khartoum area, North Khartoum and Omdurman area. This research evaluate and identify the sources of groundwater from wells and stations and find out the productivity of wells and underground stations. The study period were identified from 2004 to 2008 during this commoners were Alabaralgeoffip Knowledge Production and stations from the water. The methods used in this study was to determine the sources of groundwater from wells and stations in the three areas with the knowledge of the percentage in each year and the total amount of water produced from wells and stations in Khartoum, North Khartoum and Omdurman it is clear from this study that the percentage of productivity in the annual increase to varying degrees in floater from 2004 to 2008 and also clear that the Omdurman area depends on groundwater wells over a maritime area of stations based on stations with more and more consumption of Khartoum and the sea. Also been identified on the tank top and bottom of the tank where the chemical properties and physical properties after the identification of these qualities and characteristics have been identified the quantity and quality of water produced from wells and stations. (Author)

  13. Ground water chemistry and water-rock interaction at Olkiluoto

    International Nuclear Information System (INIS)

    Pitkaenen, P.; Front, K.

    1992-02-01

    Bedrock investigations for the final repository for low- and intermediate level wastes (VLJ repository) generated at the Olkiluoto (TVO-I and TVO-II) nuclear power plant, stareted in 1980. Since 1988 the area has been investigated for the final disposal of spent nuclear fuel. In the report the geochemistry at the nuclear waste investigation site, Olkiluoto, is evaluated. The hydrogeological data are collected from boreholes drilled down to 1000-m depth into Proterozoic crystalline bedrock. The interpretation is based on groundwater chemistry and isotope data, mineralogical data, and the structure and hydrology of the bedrock, using correlation diagrams and thermodynamic calculations (PHREEQE). The hydrogeochemistry and major processes controlling the groundwater chemistry are discussed. The groundwater types are characterized by water-rock interaction but they also show features of other origins. The fresh and brackish waters are contaminated by varying amounts of young meteoric water and brackish seawater. The saline water contains residues of possibly ancient hydrothermal waters, imprints of which are occasionally seen in the rock itself. Different mixing phenomenas are indicated by the isotope contents (O-l8/H-2, H-3) and the Ca/Cl, Na/Cl, HCO 3 /Cl, SO 4 /Cl, Br/Cl, SI(calcite)/SI(dolomite) ratios. The interaction between bedrock and groundwater is reflected by the behaviour of pH, Eh, Ca, Mg, Na, K, Fe, HCO 3 and S0 4 . Dissolution and precipitation of calcite and pyrite, and aluminosilicate hydrolysis play the major role in defining the groundwater composition of the above components

  14. Ground-water levels and quality data for Georgia

    Science.gov (United States)

    ,

    1979-01-01

    This report begins a publication format that will present annually both water-level and water-quality data in Georgia. In this format the information is presented in two-page units: the left page includes text which summarizes the information for an area or subject and the right page consists of one or more illustrations. Daily mean water-level fluctuations and trends are shown in hydrographs for the previous year and fluctuations for the monthly mean water level the previous 10 years for selected observation wells. The well data best illustrate the effects of changes in recharge and discharge in the various ground-water reservoirs in the State. A short narrative explains fluctuations and trends in each hydrograph. (Woodard-USGS)

  15. Visual Inspection of Water Leakage from Ground Penetrating Radar Radargram

    Science.gov (United States)

    Halimshah, N. N.; Yusup, A.; Mat Amin, Z.; Ghazalli, M. D.

    2015-10-01

    Water loss in town and suburban is currently a significant issue which reflect the performance of water supply management in Malaysia. Consequently, water supply distribution system has to be maintained in order to prevent shortage of water supply in an area. Various techniques for detecting a mains water leaks are available but mostly are time-consuming, disruptive and expensive. In this paper, the potential of Ground Penetrating Radar (GPR) as a non-destructive method to correctly and efficiently detect mains water leaks has been examined. Several experiments were designed and conducted to prove that GPR can be used as tool for water leakage detection. These include instrument validation test and soil compaction test to clarify the maximum dry density (MDD) of soil and simulation studies on water leakage at a test bed consisting of PVC pipe burying in sand to a depth of 40 cm. Data from GPR detection are processed using the Reflex 2D software. Identification of water leakage was visually inspected from the anomalies in the radargram based on GPR reflection coefficients. The results have ascertained the capability and effectiveness of the GPR in detecting water leakage which could help avoiding difficulties with other leak detection methods.

  16. VISUAL INSPECTION OF WATER LEAKAGE FROM GROUND PENETRATING RADAR RADARGRAM

    Directory of Open Access Journals (Sweden)

    N. N. Halimshah

    2015-10-01

    Full Text Available Water loss in town and suburban is currently a significant issue which reflect the performance of water supply management in Malaysia. Consequently, water supply distribution system has to be maintained in order to prevent shortage of water supply in an area. Various techniques for detecting a mains water leaks are available but mostly are time-consuming, disruptive and expensive. In this paper, the potential of Ground Penetrating Radar (GPR as a non-destructive method to correctly and efficiently detect mains water leaks has been examined. Several experiments were designed and conducted to prove that GPR can be used as tool for water leakage detection. These include instrument validation test and soil compaction test to clarify the maximum dry density (MDD of soil and simulation studies on water leakage at a test bed consisting of PVC pipe burying in sand to a depth of 40 cm. Data from GPR detection are processed using the Reflex 2D software. Identification of water leakage was visually inspected from the anomalies in the radargram based on GPR reflection coefficients. The results have ascertained the capability and effectiveness of the GPR in detecting water leakage which could help avoiding difficulties with other leak detection methods.

  17. Ground-water discharge determined from measurements of evapotranspiration, other available hydrologic components, and shallow water-level changes, Oasis Valley, Nye County, Nevada

    International Nuclear Information System (INIS)

    Reiner, S.R.; Laczniak, R.J.; DeMeo, G.A.; Smith LaRue, J.; Elliott, P.E.; Nylund, W.E.; Fridrich, C.J.

    2002-01-01

    Oasis Valley is an area of natural ground-water discharge within the Death Valley regional ground-water flow system of southern Nevada and adjacent California. Ground water discharging at Oasis Valley is replenished from inflow derived from an extensive recharge area that includes the northwestern part of the Nevada Test Site (NTS). Because nuclear testing has introduced radionuclides into the subsurface of the NTS, the U.S. Department of Energy currently is investigating the potential transport of these radionuclides by ground water flow. To better evaluate any potential risk associated with these test-generated contaminants, a number of studies were undertaken to accurately quantify discharge from areas downgradient in the regional ground-water flow system from the NTS. This report refines the estimate of ground-water discharge from Oasis Valley. Ground-water discharge from Oasis Valley was estimated by quantifying evapotranspiration (ET), estimating subsurface outflow, and compiling ground-water withdrawal data. ET was quantified by identifying areas of ongoing ground-water ET, delineating areas of ET defined on the basis of similarities in vegetation and soil-moisture conditions and computing ET rates for each of the delineated areas. A classification technique using spectral-reflectance characteristics determined from satellite imagery acquired in 1992 identified eight unique areas of ground-water ET. These areas encompass about 3,426 acres of sparsely to densely vegetated grassland, shrubland, wetland, and open water. Annual ET rates in Oasis Valley were computed with energy-budget methods using micrometeorological data collected at five sites. ET rates range from 0.6 foot per year in a sparse, dry saltgrass environment to 3.1 feet per year in dense meadow vegetation. Mean annual ET from Oasis Valley is estimated to be about 7,800 acre-feet. Mean annual ground-water discharge by ET from Oasis Valley, determined by removing the annual local precipitation

  18. An Excel Workbook for Identifying Redox Processes in Ground Water

    Science.gov (United States)

    Jurgens, Bryant C.; McMahon, Peter B.; Chapelle, Francis H.; Eberts, Sandra M.

    2009-01-01

    The reduction/oxidation (redox) condition of ground water affects the concentration, transport, and fate of many anthropogenic and natural contaminants. The redox state of a ground-water sample is defined by the dominant type of reduction/oxidation reaction, or redox process, occurring in the sample, as inferred from water-quality data. However, because of the difficulty in defining and applying a systematic redox framework to samples from diverse hydrogeologic settings, many regional water-quality investigations do not attempt to determine the predominant redox process in ground water. Recently, McMahon and Chapelle (2008) devised a redox framework that was applied to a large number of samples from 15 principal aquifer systems in the United States to examine the effect of redox processes on water quality. This framework was expanded by Chapelle and others (in press) to use measured sulfide data to differentiate between iron(III)- and sulfate-reducing conditions. These investigations showed that a systematic approach to characterize redox conditions in ground water could be applied to datasets from diverse hydrogeologic settings using water-quality data routinely collected in regional water-quality investigations. This report describes the Microsoft Excel workbook, RedoxAssignment_McMahon&Chapelle.xls, that assigns the predominant redox process to samples using the framework created by McMahon and Chapelle (2008) and expanded by Chapelle and others (in press). Assignment of redox conditions is based on concentrations of dissolved oxygen (O2), nitrate (NO3-), manganese (Mn2+), iron (Fe2+), sulfate (SO42-), and sulfide (sum of dihydrogen sulfide [aqueous H2S], hydrogen sulfide [HS-], and sulfide [S2-]). The logical arguments for assigning the predominant redox process to each sample are performed by a program written in Microsoft Visual Basic for Applications (VBA). The program is called from buttons on the main worksheet. The number of samples that can be analyzed

  19. A dual model approach to ground water recovery trench design

    International Nuclear Information System (INIS)

    Clodfelter, C.L.; Crouch, M.S.

    1992-01-01

    The design of trenches for contaminated ground water recovery must consider several variables. This paper presents a dual-model approach for effectively recovering contaminated ground water migrating toward a trench by advection. The approach involves an analytical model to determine the vertical influence of the trench and a numerical flow model to determine the capture zone within the trench and the surrounding aquifer. The analytical model is utilized by varying trench dimensions and head values to design a trench which meets the remediation criteria. The numerical flow model is utilized to select the type of backfill and location of sumps within the trench. The dual-model approach can be used to design a recovery trench which effectively captures advective migration of contaminants in the vertical and horizontal planes

  20. Hanford Ground-Water Data Base management guide

    International Nuclear Information System (INIS)

    Rieger, J.T.; Mitchell, P.J.; Muffett, D.M.; Fruland, R.M.; Moore, S.B.; Marshall, S.M.

    1990-02-01

    This guide describes the Hanford Ground-Water Data Base (HGWDB), a computerized data base used to store hydraulic head, sample analytical, temperature, geologic, and well-structure information for ground-water monitoring wells on the Hanford Site. These data are stored for the purpose of data retrieval for report generation and also for historical purposes. This guide is intended as an aid to the data base manager and the various staff authorized to enter and verify data, maintain the data base, and maintain the supporting software. This guide focuses on the structure of the HGWDB, providing a fairly detailed description of the programs, files, and parameters. Data-retrieval instructions for the general user of the HGWDB will be found in the HGWDB User's Manual. 6 figs

  1. Ground-water hydraulics - A summary of lectures presented by John G. Ferris at short courses conducted by the Ground Water Branch, part 1, Theory

    Science.gov (United States)

    Knowles, D.B.

    1955-01-01

    The objective of the Ground Water Branch is to evaluate the occurrence, availability, and quality of ground water.  The science of ground-water hydrology is applied toward attaining that goal.  Although many ground-water investigations are of a qualitative nature, quantitative studies are necessarily an integral component of the complete evaluation of occurrence and availability.  The worth of an aquifer as a fully developed source of water depends largely on two inherent characteristics: its ability to store, and its ability to transmit water.  Furthermore, quantitative knowledge of these characteristics facilitates measurement of hydrologic entities such as recharge, leakage, evapotranspiration, etc.  It is recognized that these two characteristics, referred to as the coefficients of storage and transmissibility, generally provide the very foundation on which quantitative studies are constructed.  Within the science of ground-water hydrology, ground-water hydraulics methods are applied to determine these constats from field data.

  2. National water summary 1986; Hydrologic events and ground-water quality

    Science.gov (United States)

    Moody, David W.; Carr, Jerry E.; Chase, Edith B.; Paulson, Richard W.

    1988-01-01

    Ground water is one of the most important natural resources of the United States and degradation of its quality could have a major effect on the welfare of the Nation. Currently (1985), ground water is the source of drinking water for 53 percent of the Nation's population and for more than 97 percent of its rural population. It is the source of about 40 percent of the Nation's public water supply, 33 percent of water for irrigation, and 17 percent of freshwater for selfsupplied industries.Ground water also is the source of about 40 percent of the average annual streamflow in the United States, although during long periods of little or no precipitation, ground-water discharges provide nearly all of the base streamflow. This hydraulic connection between aquifers and streams implies that if a persistent pollutant gets into an aquifer, it eventually could discharge into a stream.Information presented in the 1986 National Water Summary clearly shows that the United States has very large amounts of potable ground water available for use. Although naturally occurring constituents, such as nitrate, and human-induced substances, such as synthetic organic chemicals, frequently are detected in ground water, their concentrations usually do not exceed existing Federal or State standards or guidelines for maximum concentrations in drinking water.Troublesome contamination of ground water falls into two basic categories related to the source or sources of the contamination. Locally, high concentrations of a variety of toxic metals, organic chemicals, and petroleum products have been detected in ground water associated with point sources such as wastedisposal sites, storage-tank leaks, and hazardous chemical spills. These types of local problems commonly occur in densely populated urban areas and industrialized areas. Larger, multicounty areas also have been identified where contamination frequently is found in shallow wells. These areas generally are associated with broad

  3. Development of Turbulent Diffusion Transfer Algorithms to Estimate Lake Tahoe Water Budget

    Science.gov (United States)

    Sahoo, G. B.; Schladow, S. G.; Reuter, J. E.

    2012-12-01

    The evaporative loss is a dominant component in the Lake Tahoe hydrologic budget because watershed area (813km2) is very small compared to the lake surface area (501 km2). The 5.5 m high dam built at the lake's only outlet, the Truckee River at Tahoe City can increase the lake's capacity by approximately 0.9185 km3. The lake serves as a flood protection for downstream areas and source of water supply for downstream cities, irrigation, hydropower, and instream environmental requirements. When the lake water level falls below the natural rim, cessation of flows from the lake cause problems for water supply, irrigation, and fishing. Therefore, it is important to develop algorithms to correctly estimate the lake hydrologic budget. We developed a turbulent diffusion transfer model and coupled to the dynamic lake model (DLM-WQ). We generated the stream flows and pollutants loadings of the streams using the US Environmental Protection Agency (USEPA) supported watershed model, Loading Simulation Program in C++ (LSPC). The bulk transfer coefficients were calibrated using correlation coefficient (R2) as the objective function. Sensitivity analysis was conducted for the meteorological inputs and model parameters. The DLM-WQ estimated lake water level and water temperatures were in agreement to those of measured records with R2 equal to 0.96 and 0.99, respectively for the period 1994 to 2008. The estimated average evaporation from the lake, stream inflow, precipitation over the lake, groundwater fluxes, and outflow from the lake during 1994 to 2008 were found to be 32.0%, 25.0%, 19.0%, 0.3%, and 11.7%, respectively.

  4. Upper Blue Nile basin water budget from a multi-model perspective

    Science.gov (United States)

    Jung, Hahn Chul; Getirana, Augusto; Policelli, Frederick; McNally, Amy; Arsenault, Kristi R.; Kumar, Sujay; Tadesse, Tsegaye; Peters-Lidard, Christa D.

    2017-12-01

    Improved understanding of the water balance in the Blue Nile is of critical importance because of increasingly frequent hydroclimatic extremes under a changing climate. The intercomparison and evaluation of multiple land surface models (LSMs) associated with different meteorological forcing and precipitation datasets can offer a moderate range of water budget variable estimates. In this context, two LSMs, Noah version 3.3 (Noah3.3) and Catchment LSM version Fortuna 2.5 (CLSMF2.5) coupled with the Hydrological Modeling and Analysis Platform (HyMAP) river routing scheme are used to produce hydrological estimates over the region. The two LSMs were forced with different combinations of two reanalysis-based meteorological datasets from the Modern-Era Retrospective analysis for Research and Applications datasets (i.e., MERRA-Land and MERRA-2) and three observation-based precipitation datasets, generating a total of 16 experiments. Modeled evapotranspiration (ET), streamflow, and terrestrial water storage estimates were evaluated against the Atmosphere-Land Exchange Inverse (ALEXI) ET, in-situ streamflow observations, and NASA Gravity Recovery and Climate Experiment (GRACE) products, respectively. Results show that CLSMF2.5 provided better representation of the water budget variables than Noah3.3 in terms of Nash-Sutcliffe coefficient when considering all meteorological forcing datasets and precipitation datasets. The model experiments forced with observation-based products, the Climate Hazards group Infrared Precipitation with Stations (CHIRPS) and the Tropical Rainfall Measuring Mission (TRMM) Multi-Satellite Precipitation Analysis (TMPA), outperform those run with MERRA-Land and MERRA-2 precipitation. The results presented in this paper would suggest that the Famine Early Warning Systems Network (FEWS NET) Land Data Assimilation System incorporate CLSMF2.5 and HyMAP routing scheme to better represent the water balance in this region.

  5. Environmental and ground-water surveillance at Hanford

    International Nuclear Information System (INIS)

    Dirkes, R.L.; Luttrell, S.P.

    1995-01-01

    Environmental and ground-water surveillance of the Hanford Site and surrounding region is conducted to demonstrate compliance with environmental regulations, confirm adherence to DOE environmental protection policies, support DOE environmental management decisions, and provide information to the public. Environmental surveillance encompasses sampling and analyzing for potential radiological and nonradiological chemical contaminants on and off the Hanford Site. Emphasis is placed on surveillance of exposure pathways and chemical constituents that pose the greatest risk to human health and the environment

  6. Environmental and ground-water surveillance at Hanford

    Energy Technology Data Exchange (ETDEWEB)

    Dirkes, R.L.; Luttrell, S.P.

    1995-06-01

    Environmental and ground-water surveillance of the Hanford Site and surrounding region is conducted to demonstrate compliance with environmental regulations, confirm adherence to DOE environmental protection policies, support DOE environmental management decisions, and provide information to the public. Environmental surveillance encompasses sampling and analyzing for potential radiological and nonradiological chemical contaminants on and off the Hanford Site. Emphasis is placed on surveillance of exposure pathways and chemical constituents that pose the greatest risk to human health and the environment.

  7. Ground-water development and problems in Idaho

    Science.gov (United States)

    Crosthwaite, E.G.

    1954-01-01

    The development of groundwater for irrigation in Idaho, as most of you know, has proceeded at phenomenal rate since the Second World War. In the period 1907 to 1944 inclusive only about 328 valid permits and licenses to appropriate ground water were issued by the state. thereafter 28 permits became valid in 1945, 83 in 1946, and 121 in 1947. Sine 1947 permits and licenses have been issued at the rate of more than 400 a year.  

  8. Purification of arsenic contaminated ground water using hydrated manganese dioxide

    International Nuclear Information System (INIS)

    Raje, N.; Swain, K.K.

    2002-01-01

    An analytical methodology has been developed for the separation of arsenic from ground water using inorganic material in neutral medium. The separation procedure involves the quantitative retention of arsenic on hydrated manganese dioxide, in neutral medium. The validity of the separation procedure has been checked by a standard addition method and radiotracer studies. Neutron activation analysis (NAA), a powerful measurement technique, has been used for the quantitative determination of arsenic. (author)

  9. A contribution on the problem of ground water pollution

    International Nuclear Information System (INIS)

    Zilliox, L.; Muntzer, P.; Kresser, W.

    1982-01-01

    The authors present the underlying physics of processes relevant to the problem of ground water pollution. A series of models are discussed which include two-dimensional diffusion from a point source of pollution in a uniform homogeneous medium and the modifying effect of inhomogeneities, together with displacement processes for miscible liquids in saturated porous media. In conclusion an account of laboratory and theoretical investigations of these diffusion processes in layered media of different permeabilities is given. (J.R.B.)

  10. UMTRA Ground Water Project management action process document

    International Nuclear Information System (INIS)

    1996-03-01

    A critical U.S. Department of Energy (DOE) mission is to plan, implement, and complete DOE Environmental Restoration (ER) programs at facilities that were operated by or in support of the former Atomic Energy Commission (AEC). These facilities include the 24 inactive processing sites the Uranium Mill Tailings Radiation Control Act (UMTRCA) (42 USC Section 7901 et seq.) identified as Title I sites, which had operated from the late 1940s through the 1970s. In UMTRCA, Congress acknowledged the potentially harmful health effects associated with uranium mill tailings and directed the DOE to stabilize, dispose of, and control the tailings in a safe and environmentally sound manner. The UMTRA Surface Project deals with buildings, tailings, and contaminated soils at the processing sites and any associated vicinity properties (VP). Surface remediation at the processing sites will be completed in 1997 when the Naturita, Colorado, site is scheduled to be finished. The UMTRA Ground Water Project was authorized in an amendment to the UMTRCA (42 USC Section 7922(a)), when Congress directed DOE to comply with U.S. Environmental Protection Agency (EPA) ground water standards. The UMTRA Ground Water Project addresses any contamination derived from the milling operation that is determined to be present at levels above the EPA standards

  11. GROUND WATER SAMPLING OF VOCS IN THE WATER/CAPILLARY FRINGE AREA FOR VAPOR INTRUSION ASSESSMENT

    Science.gov (United States)

    Vapor intrusion has recently been considered a major pathway for increased indoor air contamination from certain volatile organic contaminants (VOCs). The recent Draft EPA Subsurface Vapor Intrusion Guidance Document states that ground water samples should be obtained from the u...

  12. Sampling art for ground-water monitoring wells in nuclide migration

    International Nuclear Information System (INIS)

    Liu Wenyuan; Tu Guorong; Dang Haijun; Wang Xuhui; Ke Changfeng

    2010-01-01

    Ground-Water sampling is one of the key parts in field nuclide migration. The objective of ground-water sampling program is to obtain samples that are representative of formation-quality water. In this paper, the ground-water sampling standards and the developments of sampling devices are reviewed. We also designed the sampling study projects which include the sampling methods, sampling parameters and the elementary devise of two types of ground-Water sampling devices. (authors)

  13. Questa Baseline and Pre-Mining Ground-Water Quality Investigation. 25. Summary of Results and Baseline and Pre-Mining Ground-Water Geochemistry, Red River Valley, Taos County, New Mexico, 2001-2005

    Science.gov (United States)

    Nordstrom, D. Kirk

    2008-01-01

    -sediment chemistry; geomorphology and its effect on ground-water flow; geophysical studies on depth to ground-water table and depth to bedrock; bedrock fractures and their potential influence on ground-water flow; leaching studies of scars and waste-rock piles; mineralogy and mineral chemistry and their effect on ground-water quality; debris-flow hazards; hydrology and water balance for the Red River Valley; ground-water geochemistry of selected wells undisturbed by mining in the Red River Valley; and quality assurance and quality control of water analyses. Studies aimed specifically at the Straight Creek natural-analog site include electrical surveys; high-resolution seismic survey; age-dating with tritium/helium; water budget; ground-water hydrology and geochemistry; and comparison of mineralogy and lithology to that of the mine site. The highly mineralized and hydrothermally altered volcanic rocks of the Red River Valley contain several percent pyrite in the quartz-sericite-pyrite (QSP) alteration zone, which weather naturally to acid-sulfate surface and ground waters that discharge to the Red River. Weathering of waste-rock piles containing pyrite also contributes acid water that eventually discharges into the Red River. These acid discharges are neutralized by circumneutral-pH, carbonate-buffered surface and ground waters of the Red River. The buffering capacity of the Red River, however, decreases from the town of Red River to the U.S. Geological Survey (USGS) gaging station near Questa. During short, but intense, storm events, the buffering capacity is exceeded and the river becomes acid from the rapid flushing of acidic materials from natural scar areas. The lithology, mineralogy, elevation, and hydrology of the Straight Creek proximal analog site were found to closely approximate those of the mine site with the exception of the mine site?s Sulphur Gulch catchment. Sulphur Gulch contains three subcatchments?upper Sulphur Gulch, Blind Gulch, and Spring Gulc

  14. Availability, Sustainability, and Suitability of Ground Water, Rogers Mesa, Delta County, Colorado - Types of Analyses and Data for Use in Subdivision Water-Supply Reports

    Science.gov (United States)

    Watts, Kenneth R.

    2008-01-01

    Mesa consists of alluvial-fan deposits that overlie shale and, locally, sandstone. Maps of the base of the aquifer, the water table, and the saturated thickness of the aquifer were prepared from data from the well files of the Colorado Division of Water Resources. The base of the aquifer generally is topographically higher than the valleys of the North Fork Gunnison River and Leroux Creek, and direct hydraulic connection of the aquifer to North Fork Gunnison River and Leroux Creek is limited. The aquifer is recharged primarily by infiltration of surface water diverted for irrigation. Ground water discharges to seeps and springs and through slope deposits at the boundaries of the aquifer. Data from the well files also were used to estimate the specific capacity of wells and to estimate the transmissivity and hydraulic conductivity of the aquifer. A water budget was used to estimate recharge to and discharge from the aquifer. Although storage within the aquifer likely varies seasonally and from year to year, it was assumed that there were no long-term changes in ground-water storage. Estimated average annual recharge to and discharge from the aquifer during November 1998 through October 2006 were about 30,767 acre-feet per year. Although sufficient ground water is available on Rogers Mesa for additional domestic water supplies, conversion of irrigated land to residential land use likely would reduce recharge to the aquifer, affecting the sustainability of ground-water supplies on Rogers Mesa. Stream-depletion analyses indicate that the ground water in the aquifer likely would be considered tributary ground water and additional uses of ground water to supply new subdivisions likely would require implementation of augmentation plans. Although sufficient ground water is available on Rogers Mesa for additional domestic water supplies, conversion of irrigated land to residential land use likely would reduce recharge to the aquifer, affecting the sustainability

  15. Analysis of Water and Energy Budgets and Trends Using the NLDAS Monthly Data Sets

    Science.gov (United States)

    Vollmer, Bruce E.; Rui, Hualan; Mocko, David M.; Teng, William L.; Lei, Guang-Dih

    2012-01-01

    The North American Land Data Assimilation System (NLDAS) is a collaborative project between NASA GSFC, NOAA, Princeton University, and the University of Washington. NLDAS has created surface meteorological forcing data sets using the best-available observations and reanalyses. The forcing data sets are used to drive four separate land-surface models (LSMs), Mosaic, Noah, VIC, and SAC, to produce data sets of soil moisture, snow, runoff, and surface fluxes. NLDAS hourly data, accessible from the NASA GES DISC Hydrology Data Holdings Portal, http://disc.sci.gsfc.nasa.gov/hydrology/data-holdings, are widely used by various user communities in modeling, research, and applications, such as drought and flood monitoring, watershed and water quality management, and case studies of extreme events. More information is available at http://ldas.gsfc.nasa.gov/. To further facilitate analysis of water and energy budgets and trends, NLDAS monthly data sets have been recently released by NASA GES DISC.

  16. Ground-water recharge in the arid and semiarid southwestern United States

    Science.gov (United States)

    Stonestrom, David A.; Constantz, Jim; Ferré, Ty P.A.; Leake, Stanley A.

    2007-01-01

    fostered new types of recharge assessments. Chemical and isotopic techniques include an increasing variety of environmental tracers that are useful and robust. Physically based techniques include the use of heat as a tracer and computationally intensive geophysical imaging tools for characterizing hydrologic conditions in the unsaturated zone. Modeling-based techniques include spatially distributed water-budget computations using high-resolution remotely sensed and ground-based geographic data. Application of these techniques to arid and semiarid settings in the southwestern United States reveals distinct patterns of recharge corresponding to geologic setting, climatic and vegetative history, and land use. Analysis of recharge patterns shows that large expanses of alluvial basin floors are drying out under current climatic conditions, with little to no recharge to underlying ground water. Ground-water recharge occurs mainly beneath upland catchments in which thin soils overlie permeable bedrock, ephemeral channels in which flow may average only several hours per year, and active agricultural areas. The chapters in this professional paper represent a coordinated attempt to develop a better understanding of one of the Nation's most critical yet difficult-to-quantify renewable resources.

  17. Application of isotopic techniques for study of ground water from karstic areas. 1. Origin of waters

    International Nuclear Information System (INIS)

    Feurdean, Victor; Feurdean, Lucia

    2000-01-01

    Environmental stable isotope method was used for study of ground water from karst of NE Dobrogea. Study area is in the vicinity of Danube Delta (declared in 1990 by UNESCO the Reserve of Biosphere) and presents scientific and ecological interest. Measurements of deuterium content of ground water show that waters are meteoric in origin, but at the same time the results showed that the water from two sampling points could not originate from local ground water and have their recharge area at high altitude and a considerable distance. According to the δD values the following categories of waters were established: - waters depleted in deuterium (δD 0 / 00 ) relative to δD values of surface and ground water in the geographic area from which they were collected. They represent most probably the intrusion of isotopically light water from high altitude sites (higher than 1000 m) through network of highly permeable karst channels. The discharge of this component of aquifer occurs both by conduct flow and by diffuse flow; - Waters tributaries to the Danube River (δD > -75 0 / 00 ) that have a small time variability of δD values; - Local infiltration waters, situated in the West side of the investigated area towards the continental platform of the Dobrogea (δD > -70 0 / 00 ). They present high time variability of δD values, due to distinct seasonal effects; - Waters originated in mixing processes between the waters with different isotopic content. The endmember one is heavier isotopic water that belongs to local recharged waters (local infiltration waters and waters tributary to Danube river) while the other endmember is the isotopically light water. (authors)

  18. Ground-water resources of the Alma area, Michigan

    Science.gov (United States)

    Vanlier, Kenneth E.

    1963-01-01

    The Alma area consists of 30 square miles in the northwestern part of Gratiot County, Mich. It is an area of slight relief gently rolling hills and level plains and is an important agricultural center in the State.The Saginaw formation, which forms the bedrock surface in part of the area, is of relatively low permeability and yields water containing objectionable amounts of chloride. Formations below the Saginaw are tapped for brine in and near the Alma area.The consolidated rocks of the Alma area are mantled by Pleistocene glacial deposits, which are as much as 550 feet thick where preglacial valleys were eroded into the bedrock. The glacial deposits consist of till, glacial-lake deposits, and outwash. Till deposits are at the surface along the south-trending moraines that cross the area, and they underlie other types of glacial deposits at depth throughout the area. The till deposits are of low permeability and are not a source of water to wells, though locally they include small lenses of permeable sand and gravel.In the western part of the area, including much of the city of Alma, the glacial-lake deposits consist primarily of sand and are a source of small supplies of water. In the northeastern part of the area the lake deposits are predominantly clayey and of low permeability.Sand and gravel outwash yields moderate and large supplies of water within the area. Outwash is present at the surface along the West Branch of the Pine River. A more extensive deposit of outwash buried by the lake deposits is the source of most of the ground water pumped at Alma. The presence of an additional deposit of buried outwash west and southwest of the city is inferred from the glacial history of the area. Additional water supplies that may be developed from these deposits are probably adequate for anticipated population and industrial growth.Water levels have declined generally in the vicinity of the city of Alma since 1920 in response to pumping for municipal and industrial

  19. Lambert-Beer law in ocean waters: optical properties of water and of dissolved/suspended material, optical energy budgets.

    Science.gov (United States)

    Stavn, R H

    1988-01-15

    The role of the Lambert-Beer law in ocean optics is critically examined. The Lambert-Beer law and the three-parameter model of the submarine light field are used to construct an optical energy budget for any hydrosol. It is further applied to the analytical exponential decay coefficient of the light field and used to estimate the optical properties and effects of the dissolved/suspended component in upper ocean layers. The concepts of the empirical exponential decay coefficient (diffuse attenuation coefficient) of the light field and a constant exponential decay coefficient for molecular water are analyzed quantitatively. A constant exponential decay coefficient for water is rejected. The analytical exponential decay coefficient is used to analyze optical gradients in ocean waters.

  20. Long-term variability in the water budget and its controls in an oak-dominated temperate forest

    Science.gov (United States)

    Jing Xie; Ge Sun; Hou-Sen Chu; Junguo Liu; Steven G. McNulty; Asko Noormets; Ranjeet John; Zutao Ouyang; Tianshan Zha; Haitao Li; Wenbin Guan; Jiquan Chen

    2014-01-01

    Water availability is one of the key environmental factors that control ecosystem functions in temperate forests. Changing climate is likely to alter the ecohydrology and other ecosystem processes, which affect forest structures and functions. We constructed a multi-year water budget (2004–2010) and quantified environmental controls on an evapotranspiration (ET) in a...

  1. Comparisons of the error budgets associated with ground-based FTIR measurements of atmospheric CH4 profiles at Île de la Réunion and Jungfraujoch.

    Science.gov (United States)

    Vanhaelewyn, Gauthier; Duchatelet, Pierre; Vigouroux, Corinne; Dils, Bart; Kumps, Nicolas; Hermans, Christian; Demoulin, Philippe; Mahieu, Emmanuel; Sussmann, Ralf; de Mazière, Martine

    2010-05-01

    The Fourier Transform Infra Red (FTIR) remote measurements of atmospheric constituents at the observatories at Saint-Denis (20.90°S, 55.48°E, 50 m a.s.l., Île de la Réunion) and Jungfraujoch (46.55°N, 7.98°E, 3580 m a.s.l., Switzerland) are affiliated to the Network for the Detection of Atmospheric Composition Change (NDACC). The European NDACC FTIR data for CH4 were improved and homogenized among the stations in the EU project HYMN. One important application of these data is their use for the validation of satellite products, like the validation of SCIAMACHY or IASI CH4 columns. Therefore, it is very important that errors and uncertainties associated to the ground-based FTIR CH4 data are well characterized. In this poster we present a comparison of errors on retrieved vertical concentration profiles of CH4 between Saint-Denis and Jungfraujoch. At both stations, we have used the same retrieval algorithm, namely SFIT2 v3.92 developed jointly at the NASA Langley Research Center, the National Center for Atmospheric Research (NCAR) and the National Institute of Water and Atmosphere Research (NIWA) at Lauder, New Zealand, and error evaluation tools developed at the Belgian Institute for Space Aeronomy (BIRA-IASB). The error components investigated in this study are: smoothing, noise, temperature, instrumental line shape (ILS) (in particular the modulation amplitude and phase), spectroscopy (in particular the pressure broadening and intensity), interfering species and solar zenith angle (SZA) error. We will determine if the characteristics of the sites in terms of altitude, geographic locations and atmospheric conditions produce significant differences in the error budgets for the retrieved CH4 vertical profiles

  2. Surface-water, water-quality, and ground-water assessment of the Municipio of Carolina, Puerto Rico, 1997-99

    Science.gov (United States)

    Rodríguez-Martínez, Jesús; Gómez-Gómez, Fernando; Santiago-Rivera, Luis; Oliveras-Feliciano, M. L.

    2001-01-01

    To meet the increasing need for a safe and adequate supply of water in the municipio of Carolina, an integrated surface-water, water-quality, and ground-water assessment of the area was conducted. The major results of this study and other important hydrologic and water-quality features were compiled in a Geographic Information System and are presented in two 1:30,000-scale map plates to facilitate interpretation and use of the diverse water-resources data. Because the supply of safe drinking water was a critical issue during recent dry periods, the surface-water assessment portion of this study focused on analysis of low-flow characteristics in local streams and rivers. Low-flow characteristics were evaluated for one continuous-record gaging station, based on graphical curve-fitting techniques and log-Pearson Type III frequency analysis. Estimates of low-flow characteristics for seven partial-record stations were generated using graphical-correlation techniques. Flow-duration characteristics were computed for the one continuous-record gaging station and were estimated for the partial-record stations using the relation curves developed from the low-flow study. Stream low-flow statistics document the general hydrology under current land and water use. Low-flow statistics may substantially change as a result of streamflow diversions for public supply, and an increase in ground-water development, waste-water discharges, and flood-control measures; the current analysis provides baseline information to evaluate these impacts and develop water budgets. A sanitary quality survey of streams utilized 29 sampling stations to evaluate the sanitary quality of about 87 miles of stream channels. River and stream samples were collected on two occasions during base-flow conditions and were analyzed for fecal coliform and fecal streptococcus. Bacteriological analyses indicate that a significant portion of the stream reaches within the municipio of Carolina may have fecal coliform

  3. Distributed modeling of landsurface water and energy budgets in the inland Heihe river basin of China

    Directory of Open Access Journals (Sweden)

    Y. Jia

    2009-10-01

    Full Text Available A distributed model for simulating the land surface hydrological processes in the Heihe river basin was developed and validated on the basis of considering the physical mechanism of hydrological cycle and the artificial system of water utilization in the basin. Modeling approach of every component process was introduced from 2 aspects, i.e., water cycle and energy cycle. The hydrological processes include evapotranspiration, infiltration, runoff, groundwater flow, interaction between groundwater and river water, overland flow, river flow and artificial cycle processes of water utilization. A simulation of 21 years from 1982 to 2002 was carried out after obtaining various input data and model parameters. The model was validated for both the simulation of monthly discharge process and that of daily discharge process. Water budgets and spatial and temporal variations of hydrological cycle components as well as energy cycle components in the upper and middle reach Heihe basin (36 728 km2 were studied by using the distributed hydrological model. In addition, the model was further used to predict the water budgets under the future land surface change scenarios in the basin. The modeling results show: (1 in the upper reach watershed, the annual average evapotranspiration and runoff account for 63% and 37% of the annual precipitation, respectively, the snow melting runoff accounts for 19% of the total runoff and 41% of the direct runoff, and the groundwater storage has no obvious change; (2 in the middle reach basin, the annual average evapotranspiration is 52 mm more than the local annual precipitation, and the groundwater storage is of an obvious declining trend because of irrigation water consumption; (3 for the scenario of conservation forest construction in the upper reach basin, although the evapotranspiration from interception may increase, the soil evaporation may reduce at the same time, therefore the total evapotranspiration may not

  4. Water, energy, and biogeochemical budgets investigation at Panola Mountain research watershed, Stockbridge, Georgia; a research plan

    Science.gov (United States)

    Huntington, T.G.; Hooper, R.P.; Peters, N.E.; Bullen, T.D.; Kendall, Carol

    1993-01-01

    The Panola Mountain Research Watershed (PMRW), located in the Panola Mountain State Conservation Park near Stockbridge, Georgia has been selected as a core research watershed under the Water, Energy and Biogeochemical Budgets (WEBB) research initiative of the U.S. Geological Survey (USGS) Global Climate Change Program. This research plan describes ongoing and planned research activities at PMRW from 1984 to 1994. Since 1984, PMRW has been studied as a geochemical process research site under the U.S. Acid Precipitation Thrust Program. Research conducted under this Thrust Program focused on the estimation of dry atmospheric deposition, short-term temporal variability of streamwater chemistry, sulfate adsorption characteristics of the soils, groundwater chemistry, throughfall chemistry, and streamwater quality. The Acid Precipitation Thrust Program continues (1993) to support data collection and a water-quality laboratory. Proposed research to be supported by the WEBB program is organized in 3 interrelated categories: streamflow generation and water-quality evolution, weathering and geochemical evolution, and regulation of soil-water chemistry. Proposed research on streamflow generation and water-quality evolution will focus on subsurface water movement, its influence in streamflow generation, and the associated chemical changes of the water that take place along its flowpath. Proposed research on weathering and geochemical evolution will identify the sources of cations observed in the streamwater at Panola Mountain and quantify the changes in cation source during storms. Proposed research on regulation of soil-water chemistry will focus on the poorly understood processes that regulate soil-water and groundwater chemistry. (USGS)

  5. Ground water for public water supply at Windigo, Isle Royale National Park, Michigan

    Science.gov (United States)

    Grannemann, N.G.; Twenter, F.R.

    1982-01-01

    Three test holes drilled at Windigo in Isle Royale National Park in 1981 indicate that the ophitic basaltic lava flows underlying the area contain little water and cannot be considered a source for public water supply. The holes were 135, 175, and 71 feet deep. One hole yielded about 1 gallon of water perminute; the other two yielded less. Glacial deposits seem to offer the best opportunity for developing a ground-water supply of 5 to 10 gallons per minute.

  6. Radionuclide transfer onto ground surface in surface water flow, 1

    International Nuclear Information System (INIS)

    Mukai, Masayuki; Takebe, Shinichi; Komiya, Tomokazu; Kamiyama, Hideo

    1991-07-01

    Radionuclides migration in ground surface water flow is considered to be one of the important path way in the scenario for environmental migration of radionuclides leaked from low level radioactive waste repository. Simulating the slightly sloped surface on which contaminated solution is flowing downward, testing for radionuclide migration on ground surface had been started. As it's first step, an experiment was carried out under the condition of restricted infiltration in order to elucidate the adsorption behavior of radionuclides onto the loamy soil surface in related with hydraulic conditions. Radionuclides concentration change in effluent solution with time and a concentration distribution of radionuclides adsorbed on the ground surface were obtained from several experimental conditions combining the rate and the duration time of the water flow. The radionuclides concentration in the effluent solution was nearly constant during each experimental period, and was reduced under the condition of lower flow rate. The surface distribution of radionuclides concentration showed two distinctive regions. The one was near the inlet vessel where the concentration was promptly reducing, and the other was following the former where the concentration was nearly constant. The characteristic surface distribution of radionuclides concentration can be explained by a two dimensional diffusion model with a first order adsorption reaction, based on the advection of flow rate distribution in perpendicular direction. (author)

  7. Water Budgets of the Walker River Basin and Walker Lake, California and Nevada

    Science.gov (United States)

    Lopes, Thomas J.; Allander, Kip K.

    2009-01-01

    The Walker River is the main source of inflow to Walker Lake, a closed-basin lake in west-central Nevada. The only outflow from Walker Lake is evaporation from the lake surface. Between 1882 and 2008, upstream agricultural diversions resulted in a lake-level decline of more than 150 feet and storage loss of 7,400,000 acre-feet. Evaporative concentration increased dissolved solids from 2,500 to 17,000 milligrams per liter. The increase in salinity threatens the survival of the Lahontan cutthroat trout, a native species listed as threatened under the Endangered Species Act. This report describes streamflow in the Walker River basin and an updated water budget of Walker Lake with emphasis on the lower Walker River basin downstream from Wabuska, Nevada. Water budgets are based on average annual flows for a 30-year period (1971-2000). Total surface-water inflow to the upper Walker River basin upstream from Wabuska was estimated to be 387,000 acre-feet per year (acre-ft/yr). About 223,000 acre-ft/yr (58 percent) is from the West Fork of the Walker River; 145,000 acre-ft/yr (37 percent) is from the East Fork of the Walker River; 17,000 acre-ft/yr (4 percent) is from the Sweetwater Range; and 2,000 acre-ft/yr (less than 1 percent) is from the Bodie Mountains, Pine Grove Hills, and western Wassuk Range. Outflow from the upper Walker River basin is 138,000 acre-ft/yr at Wabuska. About 249,000 acre-ft/yr (64 percent) of inflow is diverted for irrigation, transpired by riparian vegetation, evaporates from lakes and reservoirs, and recharges alluvial aquifers. Stream losses in Antelope, Smith, and Bridgeport Valleys are due to evaporation from reservoirs and agricultural diversions with negligible stream infiltration or riparian evapotranspiration. Diversion rates in Antelope and Smith Valleys were estimated to be 3.0 feet per year (ft/yr) in each valley. Irrigated fields receive an additional 0.8 ft of precipitation, groundwater pumpage, or both for a total applied-water rate

  8. Ground-water resources of Kings and Queens Counties, Long Island, New York

    Science.gov (United States)

    Buxton, Herbert T.; Shernoff, Peter K.

    1995-01-01

    The aquifers beneath Kings and Queens Counties supplied an average of more than 120 Mgal/d (million gallons per day) for industrial and public water supply during 1904-47, but this pumping caused saltwater intrusion and a deterioration of water quality that led to the cessation of pumping for public supply in Kings County in 1947 and in western Queens County in 1974. Since the cessation of pumping in Kings and western Queens Counties, ground-water levels have recovered steadily, and the saltwater has partly dispersed and become diluted. In eastern Queens County, where pumpage for public supply averages 60 Mgal/d, all three major aquifers contain a large cone of depression. The saltwater-freshwater interface in the Jameco-Magothy aquifer already extends inland in southeastern Queens County and is moving toward this cone of depression. The pumping centers' proximity to the north shore also warrants monitoring for saltwater intrusion in the Flushing Bay area. Urbanization and development on western Long Island since before the tum of this century have caused significant changes in the ground-water budget (total inflow and outflow) and patterns of movement. Some of the major causes are: ( 1) intensive pumping for industrial and public supply; (2) paving of large land-surface areas; (3) installation of a vast network of combined (stonn and sanitary) sewers; (4) leakage from a water-supply-line network that carries more than 750 Mgal/d; and (5) burial of stream channels and extensive wetland areas near the shore.Elevated nitrate and chloride concentrations throughout the upper glacial (water-table) aquifer indicate widespread contamination from land surface. Localized contamination in the underlying Jameco-Magothy aquifer is attributed to downward migration in areas of hydraulic connection between aquifers where the Gardiners Clay is absent A channel eroded through the Raritan confining unit provides a pathway for migration of surface contaminants to the Lloyd aquifer

  9. Ground water geochemistry in the vicinity of the Jabiluka deposits

    International Nuclear Information System (INIS)

    Deutscher, R.L.; Mann, A.W.; Giblin, A.

    1980-01-01

    Seventeen exploration drill holes in the vicinity of the Jabiluka One and Jabiluka Two deposits were logged for Eh-pH and conductivity at 5 metre intervals to depths of up to 195 metres below ground surface. Forty-seven water samples from exploration drill holes, augered holes on the Magela flood plain and from two billabongs in the vicinity of the deposits were collected and analyzed. Analyses for pH and Fe were conducted in the field, and further analyses for major ions Ca 2+ , Mg 2+ , Na + , K + , SO 4 2- , Cl - , HCO 3 - and Si and minorelements Zn, Cd, Pb, Cu and U were conducted in the laboratory. The in situ Eh-pH and conductivity measurements, and analyses for major and minor elements of ground waters suggest that deep-lying chlorite-graphite schists containing the uranium mineralization are well protected from, or do not react rapidly with, ground water under present-day conditions, i.e. the schists of the Cahill Formation are a stable host for uranium mineralization at depth. In the vicinity of the Magela flood plain where the Cahill Formation and the permanent water table are close to the surface, some samples were found to contain high concentrations of sulphate, zinc, lead and iron. These same samples were characterized by low pH's in the pH range 3.0-4.0. The anomalies suggest weathering of sulphides associated with the mineralized Cahill Formation, where the schists are at shallow depths and in an oxidizing environment. The anomalies are not, however, necessarily indicative of zones of uranium enrichment in this formation. (author)

  10. Ground-Based Global Positioning System (GPS) Meteorology Integrated Precipitable Water Vapor (IPW)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Ground-Based Global Positioning System (GPS) Meteorology Integrated Precipitable Water Vapor (IPW) data set measures atmospheric water vapor using ground-based...

  11. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site in Lakeview, Oregon

    International Nuclear Information System (INIS)

    1994-10-01

    This Baseline Risk Assessment of Ground Water Contamination at the Uranium Mill Tailings Site in Lake view, Oregon evaluates potential impacts to public health or the environment resulting from ground water contamination at the former uranium mill processing site

  12. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site in Lakeview, Oregon

    Energy Technology Data Exchange (ETDEWEB)

    1994-10-01

    This Baseline Risk Assessment of Ground Water Contamination at the Uranium Mill Tailings Site in Lake view, Oregon evaluates potential impacts to public health or the environment resulting from ground water contamination at the former uranium mill processing site.

  13. Influence of ground water on soil-structure interaction

    International Nuclear Information System (INIS)

    Costantino, C.J.; Graves, H.L.

    1987-01-01

    The basic problem consists of a liner flexible structure situated at or near the surface of a soil half-space. In keeping with typical small strain seismic analyses, the soil skeleton is represented as a linear medium in which all potential nonlinearities are at most lumped together into an equivalent hysteretic damping modulus. In addition, the ground water level is located at some depth relatively close to the structure, and in a position to impact on the seismic response of the facility. In order to estimate the response of this oil-water system, the two-phased medium formulation of Biot was used to treat the response of the solids and water as two separate linear media, coupled together through soil permeability and volume effects. (orig./HP)

  14. Ground-water problems in highway construction and maintenance

    Science.gov (United States)

    Rasmussen, W.C.; Haigler, L.B.

    1953-01-01

    This report discusses the occurrence of ground water in relation to certain problems in highway construction and maintenance. These problems are: the subdrainage of roads; quicksand; the arrest of soil creep in road cuts; the construction of lower and larger culverts necessitated by the farm-drainage program; the prevention of failure of bridge abutments and retaining walls; and the water-cement ratio of sub-water-table concrete. Although the highway problems and suggested solutions are of general interest, they are considered with special reference to the State of Delaware, in relation to the geology of that State. The new technique of soil stabilization by electroosmosis is reviewed in the hope that it might find application here in road work and pile setting, field application by the Germans and Russians is reviewed.

  15. Ground-water status report, Pearl Harbor area, Hawaii, 1978

    Science.gov (United States)

    Soroos, Ronald L.; Ewart, Charles J.

    1979-01-01

    Increasing demand for freshwater in Hawaii has placed heavy stress on many of the State 's basal aquifer systems. The most heavily stressed of these systems is the Pearl Harbor on Oahu. The Pearl Harbor basal aquifer supplies as much as 277 million gallons per day. Since early in this century, spring discharge has been declining while pumpage has been increasing. Total ground-water discharge has remained steady despite short-term fluctuations. Some wells show general increases in chloride concentration while others remain steady. Chloride concentrations throughout the area show no apparent increase since 1970. Basal water head maps of the Pearl Harbor area clearly reflect the natural discharge points, which are the springs located along the shore near the center of Pearl Harbor. Basal-water hydrographs show a general decline of about 0.09 foot per year. This implies depletion of storage at a rate of about 25 million gallons per day. (USGS).

  16. Ground-water geology of Kordofan Province, Sudan

    Science.gov (United States)

    Rodis, Harry G.; Hassan, Abdulla; Wahadan, Lutfi

    1968-01-01

    For much of Kordofan Province, surface-water supplies collected and stored in hafirs, fulas, and tebeldi trees are almost completely appropriated for present needs, and water from wells must serve as the base for future economic and cultural development. This report describes the results of a reconnaissance hydrogeologic investigation of the Province and the nature and distribution of the ground-water resources with respect to their availability for development. Kordofan Province, in central Sudan, lies within the White Nile-Nile River drainage basin. The land surface is largely a plain of low relief; jebels (hills) occur sporadically, and sandy soils are common in most areas except in the south where clayey soils predominate. Seasonal rainfall, ranging from less than 100 millimeters in the north to about 800 millimeters in the south, occurs almost entirely during the summer months, but little runoff ever reaches the Nile or White Nile Rivers. The rocks beneath the surficial depsits (Pleistocene to Recent) in the Province comprise the basement complex (Precambrian), Nawa Series (upper Paleozoic), Nubian Series (Mesozoic), laterite (lower to middle Tertiary), and the Umm Ruwaba Series (Pliocene to Pleistocene). Perennial ground-water supplies in the Province are found chiefly in five hydrologic units, each having distinct geologic or hydrologic characteristics. These units occur in Nubian or Umm Ruwaba strata or both, and the sandstone and conglomerate beds form the :principal aquifers. The water is generally under slight artesian head, and the upper surface of the zone of saturation ranges from about 50 meters to 160 meters below land surface. The surficial deposits and basement rocks are generally poor sources of ground water in most of the Province. Supplies from such sources are commonly temporary and may dissipate entirely during the dry season. Locally, however, perennial supplies are obtained from the surficial deposits and from the basement rocks. Generally

  17. Sixth national outdoor action conference on aquifer restoration, ground water monitoring and geophysical methods

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    The 1992 Outdoor Action Conference was comprised of three days of technical presentations, workshops, demonstrations, and an exhibition. The sessions were devoted to the following topics: Vadose Zone Monitoring Technology; Ground Water Monitoring Technology; Ground Water Sampling Technology; Soil and Ground Water Remediation; and Surface and Borehole Geophysics. The meeting was sponsored by the National Ground Water Association. These papers were published exactly as submitted, without technical and grammatical editing or peer review

  18. Estimates of Nutrient Loading by Ground-Water Discharge into the Lynch Cove Area of Hood Canal, Washington

    Science.gov (United States)

    Simonds, F. William; Swarzenski, Peter W.; Rosenberry, Donald O.; Reich, Christopher D.; Paulson, Anthony J.

    2008-01-01

    Low dissolved oxygen concentrations in the waters of Hood Canal threaten marine life in late summer and early autumn. Oxygen depletion in the deep layers and landward reaches of the canal is caused by decomposition of excess phytoplankton biomass, which feeds on nutrients (primarily nitrogen compounds) that enter the canal from various sources, along with stratification of the water column that prevents mixing and replenishment of oxygen. Although seawater entering the canal is the largest source of nitrogen, ground-water discharge to the canal also contributes significant quantities, particularly during summer months when phytoplankton growth is most sensitive to nutrient availability. Quantifying ground-water derived nutrient loads entering an ecologically sensitive system such as Hood Canal is a critical component of constraining the total nutrient budget and ultimately implementing effective management strategies to reduce impacts of eutrophication. The amount of nutrients entering Hood Canal from ground water was estimated using traditional and indirect measurements of ground-water discharge, and analysis of nutrient concentrations. Ground-water discharge to Hood Canal is variable in space and time because of local geology, variable hydraulic gradients in the ground-water system adjacent to the shoreline, and a large tidal range of 3 to 5 meters. Intensive studies of ground-water seepage and hydraulic-head gradients in the shallow, nearshore areas were used to quantify the freshwater component of submarine ground-water discharge (SGD), whereas indirect methods using radon and radium geochemical tracers helped quantify total SGD and recirculated seawater. In areas with confirmed ground-water discharge, shore-perpendicular electrical resistivity profiles, continuous electromagnetic seepage-meter measurements, and continuous radon measurements were used to visualize temporal variations in ground-water discharge over several tidal cycles. The results of these

  19. Effects of Land Use Change for Crops on Water and Carbon Budgets in the Midwest USA

    Directory of Open Access Journals (Sweden)

    Jian Sun

    2017-02-01

    Full Text Available Increasing demand for food and bioenergy has altered the global landscape dramatically in recent years. Land use and land cover change affects the environmental system in many ways through biophysical and biogeochemical mechanisms. In this study, we evaluate the impacts of land use and land cover change driven by recent crop expansion and conversion on the water budget, carbon exchange, and carbon storage in the Midwest USA. A dynamic global vegetation model was used to simulate and examine the impacts of landscape change in a historical case based on crop distribution data from the United States Department of Agriculture National Agricultural Statistics Services. The simulation results indicate that recent crop expansion not only decreased soil carbon sequestration (60 Tg less of soil organic carbon and net carbon flux into ecosystems (3.7 Tg·year−1 less of net biome productivity, but also lessened water consumption through evapotranspiration (1.04 × 1010 m3·year−1 less over 12 states in the Midwest. More water yield at the land surface does not necessarily make more water available for vegetation. Crop residue removal might also exacerbate the soil carbon loss.

  20. Isotopic discontinuities in ground water beneath Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Stuckless, J.S.; Whelan, J.F.; Steinkampf, W.C.

    1991-01-01

    Analytical data for stable isotopes in ground water from beneath Yucca Mountain, when examined in map view, show areal patterns of heterogeneity that can be interpreted in terms of mixing of at least three end members. One end member must be isotopically heavy in terms of hydrogen and oxygen and have a young apparent 14 C age such as water found at the north end of Yucca Mountain beneath Fortymile Wash. A second end member must contain isotopically heavy carbon and have an old apparent 14 C age such as water from the Paleozoic aquifer. The third end member cannot be tightly defined. It must be isotopically lighter than the first with respect of hydrogen and oxygen and be intermediate to the first and second end members with respect to both apparent 14 C age and δ 13 C. The variable isotopic compositions of hydrogen and oxygen indicate that two of the end members are waters, but the variable carbon isotopic composition could represent either a third water end member or reaction of water with a carbon-bearing solids such as calcite. 15 refs., 4 figs., 1 tab

  1. Hydrogeology, water resources, and water budget of the upper Rio Hondo Basin, Lincoln County, New Mexico, 2010

    Science.gov (United States)

    Darr, Michael J.; McCoy, Kurt J.; Rattray, Gordon W.; Durall, Roger A.

    2014-01-01

    The upper Rio Hondo Basin occupies a drainage area of 585 square miles in south-central New Mexico and comprises three general hydrogeologic terranes: the higher elevation “Mountain Block,” the “Central Basin” piedmont area, and the lower elevation “Hondo Slope.” As many as 12 hydrostratigraphic units serve as aquifers locally and form a continuous aquifer on the regional scale. Streams and aquifers in the basin are closely interconnected, with numerous gaining and losing stream reaches across the study area. In general, the aquifers are characterized by low storage capacity and respond to short-term and long-term variations in recharge with marked water-level fluctuations on short (days to months) and long (decadal) time scales. Droughts and local groundwater withdrawals have caused marked water-table declines in some areas, whereas periodically heavy monsoons and snowmelt events have rapidly recharged aquifers in some areas. A regional-scale conceptual water budget was developed for the study area in order to gain a basic understanding of the magnitude of the various components of input, output, and change in storage. The primary input is watershed yield from the Mountain Block terrane, supplying about 38,200 to 42,300 acre-feet per year (acre-ft/yr) to the basin, as estimated by comparing the residual of precipitation and evapotranspiration with local streamgage data. Streamflow from the basin averaged about 21,200 acre-ft/yr, and groundwater output left the basin at an estimated 2,300 to 5,700 acre-ft/yr. The other major output (about 13,500 acre-ft/yr) was by public water supply, private water supply, livestock, commercial and industrial uses, and the Bonito Pipeline. The residual in the water budget, the difference between the totals of the input and output terms or the potential change in storage, ranged from -2,200 acre-ft/yr to +5,300 acre-ft/yr. There is a high degree of variability in precipitation and consequently in the water supply; small

  2. 40 CFR 264.97 - General ground-water monitoring requirements.

    Science.gov (United States)

    2010-07-01

    ... has not been affected by leakage from a regulated unit; (i) A determination of background ground-water...) Represent the quality of ground water passing the point of compliance. (3) Allow for the detection of... elevation each time ground water is sampled. (g) In detection monitoring or where appropriate in compliance...

  3. Water Balance of the Eğirdir Lake and the Influence of Budget Components, Isparta,Turkey

    Directory of Open Access Journals (Sweden)

    Ayşen DAVRAZ

    2014-09-01

    Full Text Available Water budget of lakes must be determined regarding to their sustainable usage as for all water resources. One of the major problems in the management of lakes is the estimation of water budget components. The lack of regularly measured data is the biggest problem in calculation of hydrological balance of a lake. A lake water budget is computed by measuring or estimating all of the lake’s water gains and losses and measuring the corresponding changes in the lake volume over the same time period. Eğirdir Lake is one of the most important freshwater lakes in Turkey and is the most important surface water resources in the region due to different usages. Recharge of the Eğirdir Lake is supplied from especially precipitation, surface and subsurface water inflow. The discharge components of the lake are evaporation and water intake for irrigation, drinking and energy purposes. The difference between recharge and discharge of the lake was calculated as 7.78 hm3 for 1970-2010 period. According to rainfall, evaporation and the lake water level relations, rainfall is dominantly effective on the lake water level such as direct recharge to the lake and indirect recharge with groundwater flow

  4. Simplified estimation technique for organic contaminant transport in ground water

    Energy Technology Data Exchange (ETDEWEB)

    Piver, W T; Lindstrom, F T

    1984-05-01

    The analytical solution for one-dimensional dispersive-advective transport of a single solute in a saturated soil accompanied by adsorption onto soil surfaces and first-order reaction rate kinetics for degradation can be used to evaluate the suitability of potential sites for burial of organic chemicals. The technique can be used to the greatest advantage with organic chemicals that are present in ground waters in small amounts. The steady-state solution provides a rapid method for chemical landfill site evaluation because it contains the important variables that describe interactions between hydrodynamics and chemical transformation. With this solution, solute concentration, at a specified distance from the landfill site, is a function of the initial concentration and two dimensionless groups. In the first group, the relative weights of advective and dispersive variables are compared, and in the second group the relative weights of hydrodynamic and degradation variables are compared. The ratio of hydrodynamic to degradation variables can be rearranged and written as (a/sub L lambda)/(q/epsilon), where a/sub L/ is the dispersivity of the soil, lambda is the reaction rate constant, q is ground water flow velocity, and epsilon is the soil porosity. When this term has a value less than 0.01, the degradation process is occurring at such a slow rate relative to the hydrodynamics that it can be neglected. Under these conditions the site is unsuitable because the chemicals are unreactive, and concentrations in ground waters will change very slowly with distance away from the landfill site.

  5. Environmentally assisted cracking behaviour of copper in simulated ground water

    International Nuclear Information System (INIS)

    Hietanen, S.; Ehrnsten, U.; Saario, T.

    1996-05-01

    Environmentally assisted cracking (EAC) behaviour of pure oxygen free copper in simulated ground water with additions of sodium nitrite was studied. Low frequency corrosion fatigue tests with high positive load ratio values under crosshead speed control were performed using precracked diskshaped compact specimens C(T). The load ratio values were about 0.9 and the frequencies were between 0.0008 and 0.0017 Hz. Tests were performed under electrochemical potential control in an autoclave at room temperature and at 80 deg C. The aim of the study was to investigate the effects of repository environment on environmentally assisted cracking susceptibility of pure copper. (5 refs., 31 figs., 5 tabs.)

  6. Characteristics and chemical composition of ground water in Bara basin

    International Nuclear Information System (INIS)

    Gibla, O.A.M.

    2007-01-01

    In this study analysis was carried for forty five ground water samples from different areas within Bara basin, fifteen solid samples, three locally produced salt samples and one mixed rocks sample. The rocks were brought from the underground during hand digging of wells. The study include areas Um-Galgie, Bara, Saatah Shambool, Um-Sadoun El-Shareef, EI-Dair, EI-Murra, Taybah, Um-sadoun EI-Nazir, EI-Hodied Shareef, Um-Nabeg, Um-Gazira, Magror, Ma'afa, El-Kheiran, Dameerat Abdu, Sharshar East, Sharshar West, El-Gaa'a Um-Safari, and El-Gaa'a Um EL-Gora. Physical characteristics of ground water samples were determined including pH, electrical conductivity, turbidity, and total dissolved solids, using pH-meter, conductivity-meter, and ultra- meter. Many other analytical techniques were used. Spectrophotometric analysis was used for determination of nitrate(NO 3 ''-''-), nitrite (No 2 ''-), ammonia-nitrogen (NH 3 -N), fluoride(F), sulphide(S''-''-) and sulphate(SO 4 ''-''-) ions. Chloride (Cl''-) and total alkalinity(OH''-,CO 3 ''-''-,HCO 3 ''-) were determined titrametrically. X-ray diffraction technique was used for determination of chemical composition of solid samples (soils,salts and rocks). X-ray fluorescence technique was used to measure the concentration of some metals in the solid samples. Radioactivity was measured using gamma-spectrometry. Atomic absorption spectrometry was used for the measurement of cations concentration in ground water samples as well as soil samples, this include macro-cations: sodium (Na), potassium (K), calcium (Ca), magnesium (Mg) and micro cations (trace): Iron (Fe), manganese (Mn), chromium (Cr), cobalt (Co), nickel (Ni), copper (Cu), zinc (Zn), cadmium (Cd), silver (Ag), lead (Pb) and barium (Ba). The results obtained were statistically treated, using SPSS program, discussed and further future research was suggested. The analysis show general suitability of fresh ground water at section A and C samples from physical and chemical

  7. Electrochemistry of lead in simulated ground water environments

    International Nuclear Information System (INIS)

    Joerg, E.A.; Devereux, O.F.

    1996-01-01

    Lead and lead alloys are used commonly as moisture barriers for underground cables. Lead exhibits excellent corrosion resistance in a variety of environments, but areas of localized attack have been found. These can result in able failures. The susceptibility of lead to pitting in several simulated ground water (SGW) environments was assessed using cyclic potentiodynamic pitting scans (PPS) and microscopy. Although general corrosion was observed, PPS demonstrated pitting did not occur in the same sense as in alloys known to be susceptible to pitting (i.e., very localized pit formation without general corrosion). However, areas of nonuniform general attack did occur, resulting in pitted surface morphologies

  8. Characteristics and chemical composition of ground water in Bara basin

    Energy Technology Data Exchange (ETDEWEB)

    Gibla, O A.M. [Sudan University of Science and Technology, College of Graduate Studies, Khartoum (Sudan)

    2007-01-15

    In this study analysis was carried for forty five ground water samples from different areas within Bara basin, fifteen solid samples, three locally produced salt samples and one mixed rocks sample. The rocks were brought from the underground during hand digging of wells. The study include areas Um-Galgie, Bara, Saatah Shambool, Um-Sadoun El-Shareef, EI-Dair, EI-Murra, Taybah, Um-sadoun EI-Nazir, EI-Hodied Shareef, Um-Nabeg, Um-Gazira, Magror, Ma'afa, El-Kheiran, Dameerat Abdu, Sharshar East, Sharshar West, El-Gaa'a Um-Safari, and El-Gaa'a Um EL-Gora. Physical characteristics of ground water samples were determined including pH, electrical conductivity, turbidity, and total dissolved solids, using pH-meter, conductivity-meter, and ultra- meter. Many other analytical techniques were used. Spectrophotometric analysis was used for determination of nitrate(NO{sub 3}''-''-), nitrite (No{sub 2}''-), ammonia-nitrogen (NH{sub 3}-N), fluoride(F), sulphide(S''-''-) and sulphate(SO{sub 4}''-''-) ions. Chloride (Cl''-) and total alkalinity(OH''-,CO{sub 3}''-''-,HCO{sub 3}''-) were determined titrametrically. X-ray diffraction technique was used for determination of chemical composition of solid samples (soils,salts and rocks). X-ray fluorescence technique was used to measure the concentration of some metals in the solid samples. Radioactivity was measured using gamma-spectrometry. Atomic absorption spectrometry was used for the measurement of cations concentration in ground water samples as well as soil samples, this include macro-cations: sodium (Na), potassium (K), calcium (Ca), magnesium (Mg) and micro cations (trace): Iron (Fe), manganese (Mn), chromium (Cr), cobalt (Co), nickel (Ni), copper (Cu), zinc (Zn), cadmium (Cd), silver (Ag), lead (Pb) and barium (Ba). The results obtained were statistically treated, using SPSS program, discussed and further future research was suggested. The analysis show general suitability of fresh ground water at section A and C samples from

  9. Ground-water flow and quality in the Atlantic City 800-foot sand, New Jersey

    Science.gov (United States)

    McAuley, Steven D.; Barringer, Julia L.; Paulachok, Gary N.; Clark, Jeffrey S.; Zapecza, Otto S.

    2001-01-01

    reported for water in a former supply well in southern Cape May County. These data indicate that salty water has moved inland in Cape May County. Analysis of the chloride-concentration data indicates that ground water with a chloride concentration of 250 mg/L is within 4 miles of supply wells in Stone Harbor, Cape May County, and is about 10 miles offshore of supply wells near Atlantic City. Results of numerical simulations of ground-water flow were analyzed to determine the effects of four water-supply alternatives on water levels, the flow budget, and potential saltwater movement toward pumping centers during 1986-2040. In the supply alternatives, pumpage is (1) held constant at 1986 rates of pumpage; (2) increased by 35 percent at 1986 locations; (3) increased by 35 percent, but with relocation of some supply wells further inland; and (4) increased by 35 percent but with some of the increase derived from inland wells tapping the Kirkwood-Cohansey aquifer system rather than the Atlantic City 800-foot sand. Inland relocation of supply wells closer to the updip limit of the overlying confining unit results in the smallest decline in water levels and the smallest rate of ground-water flow between the offshore location of salty water and coastal supply wells. Increased pumpage from coastal supply wells results in the greatest water-level declines and the greatest increase in the rate of ground-water flow from offshore to coastal wells. Flow of undesirable salty ground water from offshore locations remains nearly the same as for current (1986) conditions when pumping rates do not change, and the flow-rate increase is smallest for the relocated pumpage (fourth) alternative. In comparing the two conditions of a 35-percent increase in pumpage, the flow from undesirable salty water positions is lessened and flow from the unconfined aquifer is increased when some of the pumping centers are relocated farther inland. Ground water from the 250-mg/L isochlor position does not reach

  10. Water Mass Classification on a Highly Variable Arctic Shelf Region: Origin of Laptev Sea Water Masses and Implications for the Nutrient Budget

    Science.gov (United States)

    Bauch, D.; Cherniavskaia, E.

    2018-03-01

    Large gradients and inter annual variations on the Laptev Sea shelf prevent the use of uniform property ranges for a classification of major water masses. The central Laptev Sea is dominated by predominantly marine waters, locally formed polynya waters and riverine summer surface waters. Marine waters enter the central Laptev Sea from the northwestern Laptev Sea shelf and originate from the Kara Sea or the Arctic Ocean halocline. Local polynya waters are formed in the Laptev Sea coastal polynyas. Riverine summer surface waters are formed from Lena river discharge and local melt. We use a principal component analysis (PCA) in order to assess the distribution and importance of water masses within the Laptev Sea. This mathematical method is applied to hydro-chemical summer data sets from the Laptev Sea from five years and allows to define water types based on objective and statistically significant criteria. We argue that the PCA-derived water types are consistent with the Laptev Sea hydrography and indeed represent the major water masses on the central Laptev Sea shelf. Budgets estimated for the thus defined major Laptev Sea water masses indicate that freshwater inflow from the western Laptev Sea is about half or in the same order of magnitude as freshwater stored in locally formed polynya waters. Imported water dominates the nutrient budget in the central Laptev Sea; and only in years with enhanced local polynya activity is the nutrient budget of the locally formed water in the same order as imported nutrients.

  11. Hydrology and water law: what is their future common ground?

    Science.gov (United States)

    Piper, Arthur M.; Thomas, Harold E.

    1957-01-01

    We live in an age of social and economic evolution--evolution so deep reaching and rapid it constitutes ad revolution in numerous fields of human concern. Long-standing concepts of what is appropriate and orderly face drastic modification if they are to survive. To this situation the principles of applied hydrology and the tenets of water law are no exceptions. Their common ground, incomplete in the past, becomes tenuous when projected into the future. To hydrologists it is common knowledge that the Nation has some trouble spots tin water supply, occasioned by burgeoning population, by standards of living that seem luxurious to other peoples if not to us, and by tremendously dynamic industry whose voracious thirst for water seems insatiable. Seldom is the "trouble" a mere lack of water in a quantity sufficient to serve all real needs; rather, water usually is available only part of the time, at greater-than-customary cost, or under competition among several potential uses. We can expect only that such spots will increase in number and in geographic reach.

  12. Karst aquifer in Galichica and possibilities for water supply to Ohrid with ground -water

    International Nuclear Information System (INIS)

    Mirchovski, Vojo; Kekich, Aleksandar; Spasovski, Orce; Mirchovski, Vlado

    2009-01-01

    In this paper are presented some hydrogeological features of the karst aquifer in Mt Galichica, which contains important quantities of ground-water that can to used for the water supply of the town Ohrid. Based on the hydrogeological data are given three solutions that be can to used for water supply of Ohrid, the first one is to drill of deep wells, combination of deep and shallow wells, as well as construction of horizontal galleries.

  13. Salt water and its relation to fresh ground water in Harris County, Texas

    Science.gov (United States)

    Winslow, Allen G.; Doyel, William Watson; Wood, L.A.

    1957-01-01

    Harris County, in the West Gulf Coastal Plain in southeastern Texas, has one of the heaviest concentrations of ground-water withdrawal in the United States. Large quantities of water are pumped to meet the requirements of the rapidly growing population, for industry, and for rice irrigation. The water is pumped from artesian wells which tap a thick series of sands ranging in age from Miocene (?) to Pleistocene.

  14. Status of ground water in the 1100 Area

    International Nuclear Information System (INIS)

    Law, A.G.

    1990-12-01

    This document contains the results of monthly sampling of 1100 Area Wells and ground water monitoring. Included is a table that presents all of the results of monthly sampling and analyses between April 1989 and May 1990, for four constituents selected to be most indicative of the potential for contamination from US Department of Energy facilities. The samples were collected from the three wells near the city of Richland well field. Also included is a table that presents a listing of the analytical results from sampling and analyses of five wells between April 1989, and May 1990 in the 1100 Area. The detection limit and drinking water standards or maximum contaminant level are also listed in the tables for each constituent

  15. Comparison of the hydrogeology and water quality of a ground-water augmented lake with two non-augmented lakes in northwest Hillsborough County, Florida

    Science.gov (United States)

    Metz, Patricia A.; Sacks, Laura A.

    2002-01-01

    The hydrologic effects associated with augmenting a lake with ground water from the Upper Floridan aquifer were examined in northwest Hillsborough County, Florida, from June 1996 through May 1999. The hydrogeology, ground-water flow patterns, water budgets, and water-quality characteristics were compared between a lake that has been augmented for more than 30 years (Round Lake) and two nearby nonaugmented lakes (Dosson Lake and Halfmoon Lake). Compared to the other study lakes, Round Lake is in a more leakage-dominated hydrogeologic setting. The intermediate confining unit is thin or highly breached, which increases the potential for vertical ground-water flow. Round Lake has the least amount of soft, organic lake-bottom sediments and the lake bottom has been dredged deeper and more extensively than the other study lakes, which could allow more leakage from the lake bottom. The area around Round Lake has experienced more sinkhole activity than the other study lakes. During this study, three sinkholes developed around the perimeter of the lake, which may have further disrupted the intermediate confining unit.Ground-water flow patterns around Round Lake were considerably different than the nonaugmented lakes. For most of the study, groundwater augmentation artificially raised the level of Round Lake to about 2 to 3 feet higher than the adjacent water table. As a result, lake water recharged the surficial aquifer around the entire lake perimeter, except during very wet periods when ground-water inflow occurred around part of the lake perimeter. The non-augmented lakes typically had areas of ground-water inflow and areas of lake leakage around their perimeter, and during wet periods, ground-water inflow occurred around the entire lake perimeter. Therefore, the area potentially contributing ground water to the non-augmented lakes is much larger than for augmented Round Lake. Vertical head loss within the surficial aquifer was greater at Round Lake than the other study

  16. Soil-structure interaction Vol.3. Influence of ground water

    Energy Technology Data Exchange (ETDEWEB)

    Costantino, C J

    1986-04-01

    This study has been performed for the Nuclear Regulatory Commission (NRC) by the Structural Analysis Division of Brookhaven National Laboratory (BNL). The study was conducted during the fiscal year 1965 on the program entitled 'Benchmarking of Structural Engineering Problems' sponsored by NRC. The program considered three separate but complementary problems, each associated with the soil-structure interaction (551) phase of the seismic response analysis of nuclear plant facilities. The reports, all entitled Soil-Structure Interaction, are presented in three separate volumes, namely: Vol. 1 Influence of Layering by AJ Philippacopoulos, Vol. 2 Influence of Lift-Off by C.A. Miller, Vol. 3 Influence of Ground Water by C.J. Costantino. The two problems presented in Volumes 2 and 3 were conducted at the City University of New York (CUNY) under subcontract to BNL. This report, Volume 3 of the report, presents a summary of the first year's effort on the subject of the influence of foundation ground water on the SSI phenomenon. A finite element computer program was developed for the two-phased formulation of the combined soil-water problem. This formulation is based on the Biot dynamic equations of motion for both the solid and fluid phases of a typical soil. Frequency dependent interaction coefficients were generated for the two-dimensional plane problem of a rigid surface footing moving against a saturated linear soil. The results indicate that interaction coefficients are significantly modified as compared to the comparable values for a dry soil, particularly for the rocking mode of response. Calculations were made to study the impact of the modified interaction coefficients on the response of a typical nuclear reactor building. The amplification factors for a stick model placed atop a dry and saturated soil were computed. It was found that pore water caused the rocking response to decrease and translational response to increase over the frequency range of interest, as

  17. Permeable reactive barrier - innovative technology for ground-water remediation

    International Nuclear Information System (INIS)

    Vidic, D.R.

    2002-01-01

    Significant advances in the application of permeable reactive barriers (PRBs) for ground-water remediation have been witnessed in the last 5 years. From only a few full-scale systems and pilot-scale demonstrations, there are currently at least 38 full-scale PRBs using zero-valent iron (ZVI) as a reactive material. Of those, 26 are continuous reactive walls, 9 are funnel-and- gate systems and 3 are in situ reactive vessels. Most of the PRB systems have used granular iron media and have been applied to address the control of contamination caused by chlorinated volatile organic compounds or heavy metals. Many regulatory agencies have expressed interest in PRB systems and are becoming more comfortable in issuing permits. The main advantage of PRB systems is that the installation costs are comparable with those of other ground-water remediation technologies, while the O and M costs are significantly lower and are mostly due to monitoring requirements, which are required for all remediation approaches. In addition, the land use can resume after the installation of the PRB systems, since there are few visible signs of the installation above grounds except for the monitoring wells. It is difficult to make any definite conclusions about the long-term performance of PRB systems because there is no more than 5 years of the record of performance that can be used for such analysis. The two main challenges still facing this technology are: (1) evaluating the longevity (geochemistry) of a PRB; and (2) ensuring/verifying hydraulic performance. A number of public/private partnerships have been established in recent years that are working together to resolve some of these problems. This organized approach by combining the efforts of several government agencies and private companies will likely result in better understanding and, hopefully, better acceptance of this technology in the future. (author)

  18. Ground-water resources of the El Paso area, Texas

    Science.gov (United States)

    Sayre, Albert Nelson; Livingston, Penn Poore

    1945-01-01

    El Paso, Tex., and Ciudad Juarez, Chihuahua, Mexico, and the industries in -that area draw their water supplies from wells, most of which are from 600 to 800 feet deep. In 1906, the estimated average pumpage there was about 1,000,000 gallons a day, and by 1935 it had increased to 15,400,000 gallons a day. The water-bearing beds, consisting of sand and gravel interbedded wire clay, tie in the deep structural trough known as the Hueco bolson, between the Organ and Franklin Mountains on the west, the Hueco, Finlay, and Malone Mountains on the east, the Tularosa Basin on the north, and the mountain ranges of Mexico on the south. From the gorge above El Paso to that beginning near Fort Quitman, about 90 miles southeast .of El Paso, the Rio Grande has eroded a flat-bottomed, steepwalled valley, 6 to 8 miles wide and 225 to 350 feet deep. No other large drainage channels have been developed on the bolson. The valley is known as the El Paso Valley, and the uneroded upland part of the bolson is called the Mesa. In the lowest parts of the El Paso Valley, the water-table is nearly at the surface. The quality of the underground water in the valley varies greatly both vertically and laterally. To a depth of about 400 to 500 feet it is in general too highly mineralized for municipal use, but between about. 500 and 900 feet good water may be obtained from several beds. In the beds between 500 and 900 feet the water level in wells is in places as. much as 20 feet lower than that in the shallow beds. Beneath the Mesa the water level .varies from about 200 feet beneath the surface, where the ground elevation is least, to about 400 feet. where it is highest. The water beneath the Mesa in general is of satisfactory quality and contains less than 500 parts per million of dissolved solids. Two cones of depression in the water table have been formed by the pumping near El Paso--one m the vicinity of the Mesa well field, the other around the Montana well field in the valley. The water

  19. Quality Assessment of Ground Water in Dhamar City, Yemen

    Directory of Open Access Journals (Sweden)

    Hefdallah Al Aizari

    2018-01-01

    Full Text Available Chemical and statistical regression analysis on groundwater at five fields (17 sampling wells located in Dhamar city, the central highlands of Yemen, was carried out. Samples were collected from the ground water supplies (tube wells during the year 2015. Physical parameters studied include (values between bracket s represents the measured mean values temperature (T, 25°, total dissolved solids (TDS, 271.47, pH (7.5, and electrical conductivity (EC, 424.18. The chemical parameters investigated include total hardness (TH, 127.45, calcium (Ca2+, 32.89, magnesium (Mg2+, 11.03, bicarbonate (HCO3̶, 143.84, sulphate (SO42-, 143.84, sodium (Na+, 35.11, potassium (K+, 6.28 and Chloride (Cl ̵, 22.69. The results were compared with drinking water quality standards issued by Yemen standards for drinking water. Except for T° and pH, all other measured parameters fall below the minimum permissible limits. The correlation between various physio-chemical parameters of the studied water wells was performed using Principal Component Analysis (PCA method. The obtained results show that all water samples are potable and can be safely used for both drinking and irrigation purposes. This comes in agreement with the public notion about groundwater of Dhamar Governorate. Sodium Absorption Ratio (SAR values were calculated and found below 3 except for one drill. The results revealed that systematic calculations of correlation coefficients between water parameters and regression analysis provide a useful means for rapid monitoring of water quality.International Journal of EnvironmentVolume-6, Issue-4, Sep-Nov 2017, page: 56-71

  20. Ground-water protection activities of the US Nuclear Regulatory Commission

    International Nuclear Information System (INIS)

    1987-02-01

    This report evaluates the internal consistency of NRC's ground-water protection programs. These programs have evolved consistently with growing public concerns about the significance of ground-water contamination and environmental impacts. Early NRC programs provided for protection of the public health and safety by minimizing releases of radionuclides. More recent programs have included provisions for minimizing releases of nonradiological constituents, mitigating environmental impacts, and correcting ground-water contamination. NRC's ground-water protection programs are categorized according to program areas, including nuclear materials and waste management (NMSS), nuclear reactor operation (NRR), confirmatory research and standards development (RES), inspection and enforcement (IE), and agreement state programs (SP). Based on analysis of existing ground-water protection programs within NRC, the interoffice Ground-water Protection Group has identified several inconsistencies between and within program areas. These inconsistencies include: (1) different definitions of the term ''ground-water,'' (2) variable regulation of nonradiological constituents in ground water, (3) different design periods for ground-water protection, and (4) different scopes and rigor of ground-water assessments. The second inconsistency stems from differences in statutory authority granted to the NRC. The third inconsistency is rationalized by recognizing differences in perceived risks associated with nuclear facilities. The Ground-water Protection Group will document its analysis of the remaining inconsistencies and make recommendations to reconcile or eliminate them in a subsequent report

  1. Gas-driven pump for ground-water samples

    Science.gov (United States)

    Signor, Donald C.

    1978-01-01

    Observation wells installed for artificial-recharge research and other wells used in different ground-water programs are frequently cased with small-diameter steel pipe. To obtain samples from these small-diameter wells in order to monitor water quality, and to calibrate solute-transport models, a small-diameter pump with unique operating characteristics is required that causes a minimum alternation of samples during field sampling. A small-diameter gas-driven pump was designed and built to obtain water samples from wells of two-inch diameter or larger. The pump is a double-piston type with the following characteristics: (1) The water sample is isolated from the operating gas, (2) no source of electricity is ncessary, (3) operation is continuous, (4) use of compressed gas is efficient, and (5) operation is reliable over extended periods of time. Principles of operation, actual operation techniques, gas-use analyses and operating experience are described. Complete working drawings and a component list are included. Recent modifications and pump construction for high-pressure applications also are described. (Woodard-USGS)

  2. Effects of energy development on ground water quality: an overview and preliminary assessment

    International Nuclear Information System (INIS)

    Parker, W.M. III; Yin, S.C.L.; Davis, M.J.; Kutz, W.J.

    1981-07-01

    A preliminary national overview of the various effects on ground water quality likely to result from energy development. Based on estimates of present and projected energy-development activities, those regions of the country are identified where ground water quality has the potential for being adversely affected. The general causes of change in ground water quality are reviewed. Specific effects on ground water quality of selected energy technologies are discussed, and some case-history material is provided. A brief overview of pertinent legislation relating to the protection and management of ground water quality is presented. Six methodologies that have some value for assessing the potential effects on ground water quality of energy development activities are reviewed. A method of identifying regions in the 48 contiguous states where there is a potential for ground water quality problems is described and then applied

  3. Ground-water recharge in Fortymile Wash near Yucca Mountain, Nevada, 1992--1993

    International Nuclear Information System (INIS)

    Savard, C.S.

    1994-01-01

    Quantification of the ground-water recharge from streamflow in the Fortymile Wash watershed will contribute to regional ground-water studies. Regional ground-water studies are an important component in the studies evaluating the ground-water flow system as a barrier to the potential migration of radionuclides from the potential underground high-level nuclear waste repository. Knowledge gained in understanding the ground-water recharge mechanisms and pathways in the Pah Canyon area, which is 10 km to the northeast of Yucca Mountain, may transfer to Yucca site specific studies. The current data collection network in Fortymile Canyon does not permit quantification of ground-water recharge, however a qualitative understanding of ground-water recharge was developed from these data

  4. Dynamics of flood water infiltration and ground water recharge in hyperarid desert.

    Science.gov (United States)

    Dahan, Ofer; Tatarsky, Boaz; Enzel, Yehouda; Kulls, Christoph; Seely, Mary; Benito, Gererdo

    2008-01-01

    A study on flood water infiltration and ground water recharge of a shallow alluvial aquifer was conducted in the hyperarid section of the Kuiseb River, Namibia. The study site was selected to represent a typical desert ephemeral river. An instrumental setup allowed, for the first time, continuous monitoring of infiltration during a flood event through the channel bed and the entire vadose zone. The monitoring system included flexible time domain reflectometry probes that were designed to measure the temporal variation in vadose zone water content and instruments to concurrently measure the levels of flood and ground water. A sequence of five individual floods was monitored during the rainy season in early summer 2006. These newly generated data served to elucidate the dynamics of flood water infiltration. Each flood initiated an infiltration event which was expressed in wetting of the vadose zone followed by a measurable rise in the water table. The data enabled a direct calculation of the infiltration fluxes by various independent methods. The floods varied in their stages, peaks, and initial water contents. However, all floods produced very similar flux rates, suggesting that the recharge rates are less affected by the flood stages but rather controlled by flow duration and available aquifer storage under it. Large floods flood the stream channel terraces and promote the larger transmission losses. These, however, make only a negligible contribution to the recharge of the ground water. It is the flood duration within the active streambed, which may increase with flood magnitude that is important to the recharge process.

  5. Water Budget Closure Based on GRACE Measurements and Reconstructed Evapotranspiration Using GLDAS and Water Use Data over the Yellow River and Changjiang River Basins

    Science.gov (United States)

    Lv, M.; Ma, Z.; Yuan, X.

    2017-12-01

    It is important to evaluate the water budget closure on the basis of the currently available data including precipitation, evapotranspiration (ET), runoff, and GRACE-derived terrestrial water storage change (TWSC) before using them to resolve water-related issues. However, it remains challenging to achieve the balance without the consideration of human water use (e.g., inter-basin water diversion and irrigation) for the estimation of other water budget terms such as the ET. In this study, the terrestrial water budget closure is tested over the Yellow River Basin (YRB) and Changjiang River Basin (CJB, Yangtze River Basin) of China. First, the actual ET is reconstructed by using the GLDAS-1 land surface models, the high quality observation-based precipitation, naturalized streamflow, and the irrigation water (hereafter, ETrecon). The ETrecon, evaluated using the mean annual water-balance equation, is of good quality with the absolute relative errors less than 1.9% over the two studied basins. The total basin discharge (Rtotal) is calculated as the residual of the water budget among the observation-based precipitation, ETrecon, and the GRACE-TWSC. The value of the Rtotal minus the observed total basin discharge is used to evaluate the budget closure, with the consideration of inter-basin water diversion. After the ET reconstruction, the mean absolute imbalance value reduced from 3.31 cm/year to 1.69 cm/year and from 15.40 cm/year to 1.96 cm/year over the YRB and CJB, respectively. The estimation-to-observation ratios of total basin discharge improved from 180.8% to 86.8% over the YRB, and from 67.0% to 101.1% over the CJB. The proposed ET reconstruction method is applicable to other human-managed river basins to provide an alternative estimation.

  6. BALTEX water and energy budgets in the NCEP/DOE reanalysis II

    Energy Technology Data Exchange (ETDEWEB)

    Roads, J. [Experimental Climate Prediction Center, Scripps Institution of Oceanography, La Jolla, CA (United States); Raschke, E. [Meteorologisches Institut der Universitaet Hamburg (Germany); Rocke, B. [Institute for Coastal Research, GKSS Research Center, Geesthacht (Germany)

    2002-07-01

    Water and energy budgets from the National Centers for Environmental Prediction/Dept. of Energy (NCEP/DOE) reanalysis II (NCEPRII) are described for the Baltic Sea catchment and sea (BALTEX). Annually, NCEPRII shows 0.7 mm d{sup -1} of atmospheric moisture converged into the land region with a corresponding runoff of 0.7 mm d{sup -1} to the Baltic Sea, consistent with observations. However, precipitation is too low; evaporation is too large; runoff does not have an appropriate winter minimum and spring maximum; the assimilation and surface nudging are too large. Important hydroclimatic characteristics can still be discerned. During summer, atmospheric water vapor, precipitation, evaporation, and surface and atmospheric radiative heating increase and the atmospheric radiative cooling, dry static energy convergence decrease. There are large contrasts between the sea and land; during winter sensible heat is transferred from the sea to the atmosphere and sea evaporation and precipitation are largest during the fall and winter; somewhat opposite behavior occurs over land. (orig.)

  7. Hydro-geochemical and isotopic composition of ground water in Helwan area

    Directory of Open Access Journals (Sweden)

    W.M. Salem

    2015-12-01

    The environmental stable isotopes oxygen and hydrogen (18O, and deuterium were studied and used to identify the sources of recharge. The studied ground waters are enriched in D and 18O and the isotopic features suggest that most of the ground water recharged indirectly after evaporation prior to infiltration from irrigation return water as well as the contribution from Nile water.

  8. 33 CFR 162.136 - Connecting waters from Lake Huron to Lake Erie; anchorage grounds.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Connecting waters from Lake Huron to Lake Erie; anchorage grounds. 162.136 Section 162.136 Navigation and Navigable Waters COAST GUARD... REGULATIONS § 162.136 Connecting waters from Lake Huron to Lake Erie; anchorage grounds. (a) In the Detroit...

  9. 18 CFR 430.19 - Ground water withdrawal metering, recording, and reporting.

    Science.gov (United States)

    2010-04-01

    ... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false Ground water withdrawal metering, recording, and reporting. 430.19 Section 430.19 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION SPECIAL REGULATIONS GROUND WATER PROTECTION AREA: PENNSYLVANIA § 430.19...

  10. Pesticide and Water management alternatives to mitigate potential ground-water contamination for selected counties in Utah

    OpenAIRE

    Ehteshami, Majid; Requena, Antonio M.; Peralta, R. C.; Deer, Howard M.; Hill, Robert W.; Ranjha, Ahmad Yar

    1990-01-01

    Production of adequate supplies of food and fiber currently requires that pesticides be used to limit crop losses from insects, pathogens, weeds and other pests. Although pesticides are necessary in today's agriculture, they can be a serious problem if they reach and contaminate ground water, especially in places where drinking water needs are supplied from ground water. The relative reduction of potential ground-water contamination due to agricultural use of pesticides was analyzed for parti...

  11. Spatiotemporal characteristics and water budget of water cycle elements in different seasons in northeast China

    Institute of Scientific and Technical Information of China (English)

    周杰; 赵俊虎; 何文平; 龚志强

    2015-01-01

    In this paper, we study the spatiotemporal characteristics of precipitable water, precipitation, evaporation, and water–vapor flux divergence in different seasons over northeast China and the water balance of that area. The data used in this paper is provided by the European Center for Medium-Range Weather Forecasts (ECMWF). The results show that the spatial distributions of precipitable water, precipitation, and evaporation feature that the values of elements above in the southeastern area are larger than those in the northwestern area;in summer, much precipitation and evaporation occur in the Changbai Mountain region as a strong moisture convergence region;in spring and autumn, moisture divergence dominates the northeast of China;in winter, the moisture divergence and convergence are weak in this area. From 1979 to 2010, the total precipitation of summer and autumn in northeast China decreased significantly; especially from 1999 to 2010, the summer precipitation always demonstrated negative anomaly. Additionally, other elements in different seasons changed in a truly imperceptible way. In spring, the evaporation exceeded the precipitation in northeast China; in summer, the precipitation was more prominent;in autumn and winter, precipitation played a more dominating role than the evaporation in the northern part of northeast China, while the evaporation exceeded the precipitation in the southern part. The Interim ECMWF Re-Analysis (ERA-Interim) data have properly described the water balance of different seasons in northeast China. Based on ERA-Interim data, the moisture sinks computed through moisture convergence and moisture local variation are quite consistent with those computed through precipitation and evaporation, which proves that ERA-Interim data can be used in the research of water balance in northeast China. On a seasonal scale, the moisture convergence has a greater influence than the local moisture variation on a moisture sink, and the latter is

  12. Spatiotemporal characteristics and water budget of water cycle elements in different seasons in northeast China

    International Nuclear Information System (INIS)

    Zhou Jie; Zhao Jun-Hu; He Wen-Ping; Zhi-Qiang Gong

    2015-01-01

    In this paper, we study the spatiotemporal characteristics of precipitable water, precipitation, evaporation, and water–vapor flux divergence in different seasons over northeast China and the water balance of that area. The data used in this paper is provided by the European Center for Medium-Range Weather Forecasts (ECMWF). The results show that the spatial distributions of precipitable water, precipitation, and evaporation feature that the values of elements above in the southeastern area are larger than those in the northwestern area; in summer, much precipitation and evaporation occur in the Changbai Mountain region as a strong moisture convergence region; in spring and autumn, moisture divergence dominates the northeast of China; in winter, the moisture divergence and convergence are weak in this area. From 1979 to 2010, the total precipitation of summer and autumn in northeast China decreased significantly; especially from 1999 to 2010, the summer precipitation always demonstrated negative anomaly. Additionally, other elements in different seasons changed in a truly imperceptible way. In spring, the evaporation exceeded the precipitation in northeast China; in summer, the precipitation was more prominent; in autumn and winter, precipitation played a more dominating role than the evaporation in the northern part of northeast China, while the evaporation exceeded the precipitation in the southern part.The Interim ECMWF Re-Analysis (ERA-Interim) data have properly described the water balance of different seasons in northeast China. Based on ERA-Interim data, the moisture sinks computed through moisture convergence and moisture local variation are quite consistent with those computed through precipitation and evaporation, which proves that ERA-Interim data can be used in the research of water balance in northeast China. On a seasonal scale, the moisture convergence has a greater influence than the local moisture variation on a moisture sink, and the latter is

  13. Identification of sources and mechanisms of salt-water pollution ground-water quality

    International Nuclear Information System (INIS)

    Richter, B.C.; Dutton, A.R.; Kreitler, C.W.

    1990-01-01

    This book reports on salinization of soils and ground water that is widespread in the Concho River watershed and other semiarid areas in Texas and the United States. Using more than 1,200 chemical analyses of water samples, the authors were able to differentiate various salinization mechanisms by mapping salinity patterns and hydrochemical facies and by analyzing isotopic compositions and ionic ratios. Results revealed that in Runnels County evaporation of irrigation water and ground water is a major salinization mechanism, whereas to the west, in Irion and Tom Green Counties, saline water appears to be a natural mixture of subsurface brine and shallowly circulating meteoric water recharged in the Concho River watershed. The authors concluded that the occurrence of poor-quality ground water is not a recent or single-source phenomenon; it has been affected by terracing of farmland, by disposal of oil-field brines into surface pits, and by upward flow of brine from the Coleman Junction Formation via insufficiently plugged abandoned boreholes

  14. Volatile organic compounds in the nation's ground water and drinking-water supply wells

    Science.gov (United States)

    Zogorski, John S.; Carter, Janet M.; Ivahnenko, Tamara; Lapham, Wayne W.; Moran, Michael J.; Rowe, Barbara L.; Squillace, Paul J.; Toccalino, Patricia L.

    2006-01-01

    This national assessment of 55 volatile organic compounds (VOCs) in ground water gives emphasis to the occurrence of VOCs in aquifers that are used as an important supply of drinking water. In contrast to the monitoring of VOC contamination of ground water at point-source release sites, such as landfills and leaking underground storage tanks (LUSTs), our investigations of aquifers are designed as large-scale resource assessments that provide a general characterization of water-quality conditions. Nearly all of the aquifers included in this assessment have been identified as regionally extensive aquifers or aquifer systems. The assessment of ground water (Chapter 3) included analyses of about 3,500 water samples collected during 1985-2001 from various types of wells, representing almost 100 different aquifer studies. This is the first national assessment of the occurrence of a large number of VOCs with different uses, and the assessment addresses key questions about VOCs in aquifers. The assessment also provides a foundation for subsequent decadal assessments of the U.S. Geological Survey (USGS) National Water-Quality Assessment (NAWQA) Program to ascertain long-term trends of VOC occurrence in these aquifers.

  15. Environmental assessment of ground-water compliance activities at the Uranium Mill Tailings Site, Spook, Wyoming

    International Nuclear Information System (INIS)

    1997-02-01

    This report assesses the environmental impacts of the Uranium Mill Tailings Site at Spook, Wyoming on ground water. DOE previously characterized the site and monitoring data were collected during the surface remediation. The ground water compliance strategy is to perform no further remediation at the site since the ground water in the aquifer is neither a current nor potential source of drinking water. Under the no-action alternative, certain regulatory requirements would not be met

  16. Application of surface geophysics to ground-water investigations

    Science.gov (United States)

    Zohdy, Adel A.R.; Eaton, Gordon P.; Mabey, Don R.

    1974-01-01

    This manual reviews the standard methods of surface geophysics applicable to ground-water investigations. It covers electrical methods, seismic and gravity methods, and magnetic methods. The general physical principles underlying each method and its capabilities and limitations are described. Possibilities for non-uniqueness of interpretation of geophysical results are noted. Examples of actual use of the methods are given to illustrate applications and interpretation in selected geohydrologic environments. The objective of the manual is to provide the hydrogeologist with a sufficient understanding of the capabilities, imitations, and relative cost of geophysical methods to make sound decisions as to when to use of these methods is desirable. The manual also provides enough information for the hydrogeologist to work with a geophysicist in designing geophysical surveys that differentiate significant hydrogeologic changes.

  17. Electrochemical reduction of hexavalent chromium in ground water

    Energy Technology Data Exchange (ETDEWEB)

    Bansal, S. [Lawrence Livermore National Lab., CA (United States)

    1994-12-01

    Electrochemical reduction of hexavalent chromium (Cr{sup +6}) to its trivalent state (Cr{sup +3}) is showing promising results in treating ground water at Lawrence Livermore National Laboratory`s (LLNL`s) Main Site. An electrolytic cell using stainless-steel and brass electrodes has been found to offer the most efficient reduction while yielding the least amount of precipitate. Trials have successfully lowered concentrations of Cr{sup +6} to below 11 parts per billion (micrograms/liter), the California state standard. We ran several trials to determine optimal voltage for running the cell; each trial consisted of applying a voltage between 6V and 48V for ten minutes through samples obtained at Treatment Facility C(TFC). No conclusive data has been obtained yet.

  18. Description and comparison of selected models for hydrologic analysis of ground-water flow, St Joseph River basin, Indiana

    Science.gov (United States)

    Peters, J.G.

    1987-01-01

    The Indiana Department of Natural Resources (IDNR) is developing water-management policies designed to assess the effects of irrigation and other water uses on water supply in the basin. In support of this effort, the USGS, in cooperation with IDNR, began a study to evaluate appropriate methods for analyzing the effects of pumping on ground-water levels and streamflow in the basin 's glacial aquifer systems. Four analytical models describe drawdown for a nonleaky, confined aquifer and fully penetrating well; a leaky, confined aquifer and fully penetrating well; a leaky, confined aquifer and partially penetrating well; and an unconfined aquifer and partially penetrating well. Analytical equations, simplifying assumptions, and methods of application are described for each model. In addition to these four models, several other analytical models were used to predict the effects of ground-water pumping on water levels in the aquifer and on streamflow in local areas with up to two pumping wells. Analytical models for a variety of other hydrogeologic conditions are cited. A digital ground-water flow model was used to describe how a numerical model can be applied to a glacial aquifer system. The numerical model was used to predict the effects of six pumping plans in 46.5 sq mi area with as many as 150 wells. Water budgets for the six pumping plans were used to estimate the effect of pumping on streamflow reduction. Results of the analytical and numerical models indicate that, in general, the glacial aquifers in the basin are highly permeable. Radial hydraulic conductivity calculated by the analytical models ranged from 280 to 600 ft/day, compared to 210 and 360 ft/day used in the numerical model. Maximum seasonal pumping for irrigation produced maximum calculated drawdown of only one-fourth of available drawdown and reduced streamflow by as much as 21%. Analytical models are useful in estimating aquifer properties and predicting local effects of pumping in areas with

  19. Ground-water resources of the Houston district, Texas

    Science.gov (United States)

    White, Walter N.; Rose, N.A.; Guyton, William F.

    1944-01-01

    This report covers the current phase of an investigation of the supply of ground water available for the Houston district and adjacent region, Texas,- that has been in progress during the past 10 years. The field operations included routine inventories of pumpage, measurements of water levels in observation wells and collection of other hydrologic data, pumping tests on 21 city-owned wells to determine coefficients of permeability and storage, and the drilling of 13 deep test wells in unexplored parts of the district. Considerable attention has been given to studies of the location of areas or beds of sand that contain salt water. The ground water occurs in beds of sand, sandstone, and gravel of Miocene, Pliocene, and Pleistocene age. These formations crop out in belts that dip southeastward from their outcrop areas and are encountered by wells at progressively greater depths toward the southeast. The beds throughout the section are lithologically similar, and there is little agreement among geologists as to their correlation. -In this investigation, however, the sediments, penetrated by the wells are separated into six zones, chiefly on the basis of electrical logs. Most of the water occurs in zone 3, which ranges in thickness from 800 to 1,200 feet. Large quantities of ground water are pumped in three areas in the Houston district, as follows: The Houston tromping area, which includes Houston and the areas immediately adjacent; the Pasadena pumping area, which includes the industrial section extending along the ship channel from the Houston city limits eastward to Deer Park; and the Katy pumping area, an irregular-shaped area of several hundred square miles, which is roughly centered around the town of Katy, 30 miles west of Houston. In 1930 the total combined withdrawal of ground water in the Houston and Pasadena pumping areas averaged about 50 million gallons a day. It declined somewhat during 1932 and 1933 and then gradually increased, until in 1935 the total

  20. A new breed of innovative ground water modeling

    International Nuclear Information System (INIS)

    Gelinas, R.J.; Doss, S.K.; Ziagos, J.; McKereghan, P.; Vogele, T.; Nelson, R.G.

    1995-07-01

    Sparse data is a critical obstacle in every ground water remediation project. Lack of data necessitates non-unique interpolations that can distort modeled distributions of contaminants and essential physical properties (e.g., permeability, porosity). These properties largely determine the rates and paths that contaminants may take in migrating from sources to receptor locations. We apply both forward and inverse model estimates to resolve this problem because coupled modeling provides the only way to obtain constitutive property distributions that simultaneously simulate the flow and transport behavior observed in borehole measurements. Innovations in multidimensional modeling are a key to achieving more effective subsurface characterizations, remedial designs, risk assessments, and compliance monitoring in efforts to accelerate cleanup and reduce costs in national environmental remediations. Fundamentally new modeling concepts and novel software have emerged recently from two decades of research on self-adaptive solvers of partial differential equations (PDEs). We have tested a revolutionary software product, PDEase, applying it to coupled forward and inverse flow problems. In the Superfund cleanup effort at Lawrence Livermore National Laboratory's (LLNL) Livermore Site, the new modeling paradigm of PDEase enables ground water professionals to simply provide the flow equations, site geometry, sources, sinks, constitutive parameters, and boundary conditions. Its symbolic processors then construct the actual numerical solution code and solve it automatically. Powerful grid refinements that conform adaptively to evolving flow features are executed dynamically with iterative finite-element solutions that minimize numerical errors to user-specified limits. Numerical solution accuracy can be tested easily with the diagnostic information and interactive graphical displays that appear as the solutions are generated

  1. Evaluation of ground water quality of Mubi town in Adamawa State ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-06-03

    Jun 3, 2008 ... ... resultant of all the processes and reactions that act on the water from the ... chemical parameters and heavy metals' levels in the boreholes and .... for drinking water. Potassium concentration in the ground water varied from.

  2. Ground-water resources of north-central Connecticut

    Science.gov (United States)

    Cushman, Robert Vittum

    1964-01-01

    The term 'north-central Connecticut' in this report refers to an area of about 640 square miles within the central lowland of the Connecticut River basin north of Middletown. The area is mostly a broad valley floor underlain by unconsolidated deposits of Pleistocene and Recent age which mantle an erosional surface formed on consolidated rocks of pre-Triassic and Triassic age. The mean annual precipitation at Hartford, near the center of the area, is 42.83 inches and is uniformly distributed throughout the year. The average annual streamflow from the area is about 22 inches or about half the precipitation. The consolidated water-bearing formations are crystalline rocks of pre-Triassic age and sedimentary and igneous rocks of the Newark group of Triassic age. The crystalline rocks include the Middletown gneiss, the Maromas granite gneiss, the Glastonbury granite-gneiss of Rice and Gregory (1906), and the Bolton schist which form the basement complex and the Eastern Upland of north-central Connecticut. Enough water for domestic, stock, and small commercial use generally can be obtained from the crystalline rocks. Recoverable ground water occurs in the interconnected joints and fracture zones and is yielded in amounts ranging from 29 to 35 gpm (gallons per minute) to wells ranging in depth from 29 to 550 feet. The sedimentary rocks of Triassic age underlie all the Connecticut River Lowland and are predominantly arkosic sandstone and shale. Water supplies sufficient for domestic, stock, and small commercial use can be obtained from shallow wells penetrating these rocks, and larger supplies sufficient for industries and smaller municipalities can probably be obtained from deeper wells. Reported yields range from ? to 578 gpm; the larger yields are generally obtained from wells between 300 and 600 feet in depth. Yields are larger where the overlying material is sand and gravel or where the rocks are well fractured. The igneous rocks of Triassic age are basalt and have

  3. A new conceptual model to understand the water budget of an Irrigated Basin with Groundwater Dependent Ecosystems

    Science.gov (United States)

    Foglia, L.; McNally, A.; Harter, T.

    2012-12-01

    The Scott River is one of four major tributaries in the Klamath River Basin that provide cold water habitat for salmonid populations. The Scott Valley is also a major agricultural growing region with extensive alfalfa and hay productions that are key to the local economy. Due to the Mediterranean climate in the area, discharge rates in the river are highly seasonal. Almost all annual discharge occurs during the winter precipitation season and spring snowmelt. During the summer months (July through September), the main-stem river becomes disconnected from its tributaries throughout much of Scott Valley and relies primarily on baseflow from the Scott Valley aquifer. Scott Valley agriculture relies on a combination of surface water and groundwater supplies for crop irrigation during April through September. Conflicts between ecosystem services needs to guarantee a sustainable water quality (mainly in-stream temperature) for the native salmon population and water demands for agricultural irrigation motivated the development of a new conceptual model for the evaluation of the soil-water budget throughout the valley, as a basis for developing alternative surface water and groundwater management practices. The model simulates daily hydrologic fluxes at the individual field scale (100 - 200 m), allocates water resources to nearby irrigation systems, and tracks soil moisture to determine groundwater recharge. The water budget model provides recharge and pumping values for each field. These values in turn are used as inputs for a valley-wide groundwater model developed with MODFLOW-2000. In a first step, separate sensitivity analysis and calibration of the groundwater model is used to provide insights on the accuracy of the recharge and pumping distribution estimated with the water budget model. In a further step, the soil water budget and groundwater flow models will be coupled and sensitivity analysis and calibration will be performed simultaneously. Field-based, local

  4. Monthly-Diurnal Water Budget Variability Over Gulf of Mexico-Caribbean Sea Basin from Satellite Observations

    Science.gov (United States)

    Smith, E. A.; Santos, P.

    2006-01-01

    This study presents results from a multi-satellite/multi-sensor retrieval system design d to obtain the atmospheric water budget over the open ocean. A combination of hourly-sampled monthly datasets derived from the GOES-8 5-channel Imager, the TRMM TMI radiometer, and the DMSP 7-channel passive microwave radiometers (SSM/I) have been acquired for the combined Gulf of Mexico-Caribbean Sea basin. Whereas the methodology has been tested over this basin, the retrieval system is designed for portability to any open-ocean region. Algorithm modules using the different datasets to retrieve individual geophysical parameters needed in the water budget equation are designed in a manner that takes advantage of the high temporal resolution of the GOES-8 measurements, as well as the physical relationships inherent to the TRMM and SSM/I passive microwave measurements in conjunction with water vapor, cloud liquid water, and rainfall. The methodology consists of retrieving the precipitation, surface evaporation, and vapor-cloud water storage terms in the atmospheric water balance equation from satellite techniques, with the water vapor advection term being obtained as the residue needed for balance. Thus, the intent is to develop a purely satellite-based method for obtaining the full set of terms in the atmospheric water budget equation without requiring in situ sounding information on the wind profile. The algorithm is validated by cross-checking all the algorithm components through multiple-algorithm retrieval intercomparisons. A further check on the validation is obtained by directly comparing water vapor transports into the targeted basin diagnosed from the satellite algorithms to those obtained observationally from a network of land-based upper air stations that nearly uniformly surround the basin, although it is fair to say that these checks are more effective in identifying problems in estimating vapor transports from a "leaky" operational radiosonde network than in

  5. Use of GOES, SSM/I, TRMM Satellite Measurements Estimating Water Budget Variations in Gulf of Mexico - Caribbean Sea Basins

    Science.gov (United States)

    Smith, Eric A.

    2004-01-01

    This study presents results from a multi-satellite/multi-sensor retrieval system designed to obtain the atmospheric water budget over the open ocean. A combination of 3ourly-sampled monthly datasets derived from the GOES-8 5-channel Imager, the TRMM TMI radiometer, and the DMSP 7-channel passive microwave radiometers (SSM/I) have been acquired for the combined Gulf of Mexico-Caribbean Sea basin. Whereas the methodology has been tested over this basin, the retrieval system is designed for portability to any open-ocean region. Algorithm modules using the different datasets to retrieve individual geophysical parameters needed in the water budget equation are designed in a manner that takes advantage of the high temporal resolution of the GOES-8 measurements, as well as the physical relationships inherent to the TRMM and SSM/I passive microwave measurements in conjunction with water vapor, cloud liquid water, and rainfall. The methodology consists of retrieving the precipitation, surface evaporation, and vapor-cloud water storage terms in the atmospheric water balance equation from satellite techniques, with the water vapor advection term being obtained as the residue needed for balance. Thus, the intent is to develop a purely satellite-based method for obtaining the full set of terms in the atmospheric water budget equation without requiring in situ sounding information on the wind profile. The algorithm is validated by cross-checking all the algorithm components through multiple- algorithm retrieval intercomparisons. A further check on the validation is obtained by directly comparing water vapor transports into the targeted basin diagnosed from the satellite algorithms to those obtained observationally from a network of land-based upper air stations that nearly uniformly surround the basin, although it is fair to say that these checks are more effective m identifying problems in estimating vapor transports from a leaky operational radiosonde network than in verifying

  6. Geophysical Methods for Investigating Ground-Water Recharge

    Science.gov (United States)

    Ferre, Ty P.A.; Binley, Andrew M.; Blasch, Kyle W.; Callegary, James B.; Crawford, Steven M.; Fink, James B.; Flint, Alan L.; Flint, Lorraine E.; Hoffmann, John P.; Izbicki, John A.; Levitt, Marc T.; Pool, Donald R.; Scanlon, Bridget R.

    2007-01-01

    While numerical modeling has revolutionized our understanding of basin-scale hydrologic processes, such models rely almost exclusively on traditional measurements?rainfall, streamflow, and water-table elevations?for calibration and testing. Model calibration provides initial estimates of ground-water recharge. Calibrated models are important yet crude tools for addressing questions about the spatial and temporal distribution of recharge. An inverse approach to recharge estimation is taken of necessity, due to inherent difficulties in making direct measurements of flow across the water table. Difficulties arise because recharging fluxes are typically small, even in humid regions, and because the location of the water table changes with time. Deep water tables in arid and semiarid regions make recharge monitoring especially difficult. Nevertheless, recharge monitoring must advance in order to improve assessments of ground-water recharge. Improved characterization of basin-scale recharge is critical for informed water-resources management. Difficulties in directly measuring recharge have prompted many efforts to develop indirect methods. The mass-balance approach of estimating recharge as the residual of generally much larger terms has persisted despite the use of increasing complex and finely gridded large-scale hydrologic models. Geophysical data pertaining to recharge rates, timing, and patterns have the potential to substantially improve modeling efforts by providing information on boundary conditions, by constraining model inputs, by testing simplifying assumptions, and by identifying the spatial and temporal resolutions needed to predict recharge to a specified tolerance in space and in time. Moreover, under certain conditions, geophysical measurements can yield direct estimates of recharge rates or changes in water storage, largely eliminating the need for indirect measures of recharge. This appendix presents an overview of physically based, geophysical methods

  7. Chester County ground-water atlas, Chester County, Pennsylvania

    Science.gov (United States)

    Ludlow, Russell A.; Loper, Connie A.

    2004-01-01

    Chester County encompasses 760 square miles in southeastern Pennsylvania. Groundwater-quality studies have been conducted in the county over several decades to address specific hydrologic issues. This report compiles and describes water-quality data collected during studies conducted mostly after 1990 and summarizes the data in a county-wide perspective.In this report, water-quality constituents are described in regard to what they are, why the constituents are important, and where constituent concentrations vary relative to geology or land use. Water-quality constituents are grouped into logical units to aid presentation: water-quality constituents measured in the field (pH, alkalinity, specific conductance, and dissolved oxygen), common ions, metals, radionuclides, bacteria, nutrients, pesticides, and volatile organic compounds. Water-quality constituents measured in the field, common ions (except chloride), metals, and radionuclides are discussed relative to geology. Bacteria, nutrients, pesticides, and volatile organic compounds are discussed relative to land use. If the U.S. Environmental Protection Agency (USEPA) or Chester County Health Department has drinking water standards for a constituent, the standards are included. Tables and maps are included to assist Chester County residents in understanding the water-quality constituents and their distribution in the county.Ground water in Chester County generally is of good quality and is mostly acidic except in the carbonate rocks and serpentinite, where it is neutral to strongly basic. Calcium carbonate and magnesium carbonate are major constituents of these rocks. Both compounds have high solubility, and, as such, both are major contributors to elevated pH, alkalinity, specific conductance, and the common ions. Elevated pH and alkalinity in carbonate rocks and serpentinite can indicate a potential for scaling in water heaters and household plumbing. Low pH and low alkalinity in the schist, quartzite, and

  8. Determination of uranium in ground water using different analytical techniques

    International Nuclear Information System (INIS)

    Sahu, S.K.; Maity, Sukanta; Bhangare, R.C.; Pandit, G.G.; Sharma, D.N.

    2014-10-01

    The concern over presence of natural radionuclides like uranium in drinking water is growing recently. The contamination of aquifers with radionuclides depends on number of factors. The geology of an area is the most important factor along with anthropogenic activities like mining, coal ash disposal from thermal power plants, use of phosphate fertilizers etc. Whatever may be the source, the presence of uranium in drinking waters is a matter of great concern for public health. Studies show that uranium is a chemo-toxic and nephrotoxic heavy metal. This chemotoxicity affects the kidneys and bones in particular. Seeing the potential health hazards from natural radionuclides in drinking water, many countries worldwide have adopted the guideline activity concentration for drinking water quality recommended by the WHO (2011). For uranium, WHO has set a limit of 30μgL-1 in drinking water. The geological distribution of uranium and its migration in environment is of interest because the element is having environmental and exposure concerns. It is of great interest to use an analytical technique for uranium analysis in water which is highly sensitive especially at trace levels, specific and precise in presence of other naturally occurring major and trace metals and needs small amount of sample. Various analytical methods based on the use of different techniques have been developed in the past for the determination of uranium in the geological samples. The determination of uranium requires high selectivity due to its strong association with other elements. Several trace level wet chemistry analytical techniques have been reported for uranium determination, but most of these involve tedious and pain staking procedures, high detection limits, interferences etc. Each analytical technique has its own merits and demerits. Comparative assessment by different techniques can provide better quality control and assurance. In present study, uranium was analysed in ground water samples

  9. Well-Construction, Water-Level, and Water-Quality Data for Ground-Water Monitoring Wells for the J4 Hydrogeologic Study, Arnold Air Force Base, Tennessee

    National Research Council Canada - National Science Library

    Haugh, Connor J

    1996-01-01

    ...) in Coffee County, Tennessee. The wells ranged from 28 to 289 feet deep and were installed to provide information on subsurface lithology, aquifer characteristics, ground-water levels, and ground-water quality...

  10. Processo Orçamentário: uma aplicação da análise substantiva com utilização da grounded theory [Budgeting: substantive analysis using grounded theory

    Directory of Open Access Journals (Sweden)

    Tânia Regina Sordi Relvas

    2011-09-01

    Full Text Available Diante da constatação de que os estudos sobre o orçamento exploram o fenômeno de forma reducionista, este artigo tem por objetivo propor uma teoria substantiva abrangente e fundamentada em dados empíricos para a análise do orçamento. Essa abordagem considera seus elementos constituintes e suas interdependências. Isso foi feito por meio da aplicação da abordagem indutiva fundamentada nos dados empíricos (grounded theory, sob o paradigma qualitativo. O foco de análise foi uma instituição financeira de grande porte e o trabalho de campo foi desenvolvido ao longo de dois anos, envolvendo vários níveis gerenciais. A contribuição do trabalho advém da disponibilização de framework para o tratamento do tema em um contexto amplo, o que permitiu entender aspectos que deixariam de ser considerados com uma abordagem de análise mais restrita e menos abrangente. Como produto da teoria substantiva, cinco proposições foram desenvolvidas com a perspectiva de serem aplicadas nas organizações. --- Budgeting: substantive analysis using grounded theory --- Abstract --- Considering the fact that studies into budgeting basically use a reductionist approach, this paper proposes a comprehensive substantive theory based on empirical data to be used in budget analysis. This approach takes into consideration its elements and interdependence by applying the inductive approach based on empirical data (grounded theory on a qualitative paradigm. The focus was an in-depth two-year study of a large Brazilian financial institution involving several management levels. The main contribution of the study is as a framework that treats all elements of the budget process in a comprehensive and coherent fashion, otherwise impossible using a reductionist approach. As products of the substantive theory, five propositions were developed to be applied in organizations.

  11. Estimated ground-water recharge from streamflow in Fortymile Wash near Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Savard, C.S.

    1998-01-01

    The two purposes of this report are to qualitatively document ground-water recharge from stream-flow in Fortymile Wash during the period 1969--95 from previously unpublished ground-water levels in boreholes in Fortymile Canyon during 1982--91 and 1995, and to quantitatively estimate the long-term ground-water recharge rate from streamflow in Fortymile Wash for four reaches of Fortymile Wash (Fortymile Canyon, upper Jackass Flats, lower Jackass Flats, and Amargosa Desert). The long-term groundwater recharge rate was estimated from estimates of the volume of water available for infiltration, the volume of infiltration losses from streamflow, the ground-water recharge volume from infiltration losses, and an analysis of the different periods of data availability. The volume of water available for infiltration and ground-water recharge in the four reaches was estimated from known streamflow in ephemeral Fortymile Wash, which was measured at several gaging station locations. The volume of infiltration losses from streamflow for the four reaches was estimated from a streamflow volume loss factor applied to the estimated streamflows. the ground-water recharge volume was estimated from a linear relation between infiltration loss volume and ground-water recharge volume for each of the four reaches. Ground-water recharge rates were estimated for three different periods of data availability (1969--95, 1983--95, and 1992--95) and a long-term ground-water recharge rate estimated for each of the four reaches

  12. Estimated ground-water recharge from streamflow in Fortymile Wash near Yucca Mountain, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Savard, C.S.

    1998-10-01

    The two purposes of this report are to qualitatively document ground-water recharge from stream-flow in Fortymile Wash during the period 1969--95 from previously unpublished ground-water levels in boreholes in Fortymile Canyon during 1982--91 and 1995, and to quantitatively estimate the long-term ground-water recharge rate from streamflow in Fortymile Wash for four reaches of Fortymile Wash (Fortymile Canyon, upper Jackass Flats, lower Jackass Flats, and Amargosa Desert). The long-term groundwater recharge rate was estimated from estimates of the volume of water available for infiltration, the volume of infiltration losses from streamflow, the ground-water recharge volume from infiltration losses, and an analysis of the different periods of data availability. The volume of water available for infiltration and ground-water recharge in the four reaches was estimated from known streamflow in ephemeral Fortymile Wash, which was measured at several gaging station locations. The volume of infiltration losses from streamflow for the four reaches was estimated from a streamflow volume loss factor applied to the estimated streamflows. the ground-water recharge volume was estimated from a linear relation between infiltration loss volume and ground-water recharge volume for each of the four reaches. Ground-water recharge rates were estimated for three different periods of data availability (1969--95, 1983--95, and 1992--95) and a long-term ground-water recharge rate estimated for each of the four reaches.

  13. Natural isotope technique for the exploration and exploitation of ground water

    International Nuclear Information System (INIS)

    Zainal Abidin; Hudi Hastowo; Aang Hanafiah

    2007-01-01

    In line with the condition of climate and hydrology, Indonesia has a fast amount of aquifers which are sources of ground water. In several areas large number of springs occurred with small to large debits which is a sign of ground water potential. Ground water is a potential reservoir to be use at maximum for several purposes such as drinking water, industry and tourism. Large cities such as Jakarta, Bandung and others depend on ground water for their industries and hotels. The exploitation of ground water use has to be controlled and monitoring of a management system have to be done. Research carried out only on the exploitation of geophysics and hydrology showed that the amount of ground water reservoirs is not enough to be used when it comes to justification to explore it. Other parameters are still be needed which are the origins and dating of the ground water, these last two factors mentioned have to be taken into consideration in the system of conversion and balance of water. An alternative technology to determine the two factors mentioned in a short time is the natural isotope technique of 18 O, 2 H and 14 C. This technique is used to determine the origin of water, and isotope 14 C is carried out to determine the age of ground water. Isotopes 18 H and 2 H are stable isotopes in the form of water and is integrated in the hydrological cycle. Their specific concentrations in rain water at several elevations are used as fingerprints to locate the area of ground water supplement and its origin. Isotope 14 C is a natural radioactive isotope with a half-life of 5.730 years and is found in the hydrology cycle and enters the ground water system through CO 2 gas which is dissolved in water. 14 C isotope could determine the age of ground water and is also able to indicate the potential/amount of ground water. Studies of exploration and exploration monitoring of ground water should be an integrated study by geohydrology, geophysics and isotope and could be a solution of

  14. Documentation of the Santa Clara Valley regional ground-water/surface-water flow model, Santa Clara Valley, California

    Science.gov (United States)

    Hanson, R.T.; Li, Zhen; Faunt, C.C.

    2004-01-01

    The Santa Clara Valley is a long, narrow trough extending about 35 miles southeast from the southern end of San Francisco Bay where the regional alluvial-aquifer system has been a major source of water. Intensive agricultural and urban development throughout the 20th century and related ground-water development resulted in ground-water-level declines of more than 200 feet and land subsidence of as much as 12.7 feet between the early 1900s and the mid-1960s. Since the 1960s, Santa Clara Valley Water District has imported surface water to meet growing demands and reduce dependence on ground-water supplies. This importation of water has resulted in a sustained recovery of the ground-water flow system. To help support effective management of the ground-water resources, a regional ground-water/surface-water flow model was developed. This model simulates the flow of ground water and surface water, changes in ground-water storage, and related effects such as land subsidence. A numerical ground-water/surface-water flow model of the Santa Clara Valley subbasin of the Santa Clara Valley was developed as part of a cooperative investigation with the Santa Clara Valley Water District. The model better defines the geohydrologic framework of the regional flow system and better delineates the supply and demand components that affect the inflows to and outflows from the regional ground-water flow system. Development of the model includes revisions to the previous ground-water flow model that upgraded the temporal and spatial discretization, added source-specific inflows and outflows, simulated additional flow features such as land subsidence and multi-aquifer wellbore flow, and extended the period of simulation through September 1999. The transient-state model was calibrated to historical surface-water and ground-water data for the period 197099 and to historical subsidence for the period 198399. The regional ground-water flow system consists of multiple aquifers that are grouped

  15. Pollution of south of Tehran ground waters with heavy metals

    International Nuclear Information System (INIS)

    Salmasi, R.; Tavassoli, A.

    2006-01-01

    The reuse of nutrients and organic matter in wastewater sludge via on agricultural lands application is a desirable goal. However, trace or heavy metals present in sludge pose the risk of human or phyto toxicity from land application. The aim of this research is possibility of ground water pollution of south of Tehran because of ten years irrigation with Ni, Cd and Pb borne waste water. For this purpose, 6 soil samples from southern parts of Tehran city and 2 ones from Zanjan city without lime and organic matter were selected. The soils differed in their texture from sandy to clayey. Each soil sample in duplicate and uniformly packed into PVC columns. Soil samples were irrigated with Cd, Pb and Ni-added wastewater. After irrigating, the columns were cut and the soils separated from sectioned pieces and their heavy metal concentrations (Pb, Cd and Ni) were measured by atomic absorption spectrophotometer y use of HNO 3 , 4N solution. Because of high sorption capacity of these elements by soils, these metals were accumulated in surface layer of the soils. Movement in the soils without lime and organic matter were as low as other samples. Ni has had the most accumulation or the least vertical movement, and Pb the opposite ones

  16. Radon concentrations of ground waters in Aichi Prefecture

    Energy Technology Data Exchange (ETDEWEB)

    Ohnuma, Shoko; Kawamura, Norihisa [Aichi Prefectural Inst. of Public Health, Nagoya (Japan)

    1997-02-01

    Aichi Prefectural Institute of Public Health has been collecting the data concerning the spacial distribution of Rn concentration of groundwater in Aichi Prefecture and its time course changes. In this report, the data was described chiefly from 1991 and the availability of newly developed polyethylene vessel was discussed. Determination of Rn concentration was performed at a total of 104 sites within the range from the horizon to the depth of 1800 m. The measurement has been repeatedly conducted for ca. 20 years. The maximum level of Rn was 896 Bq/l and the minimum was 0.3 Bq/l for the groundwater samples collected from different springs. Correlation of Rn concentration with other chemical and physical factors for ground water was investigated and a significant correlation was found only between Rn concentration and pH ({gamma}=0.304, p<0.01). No time course changes in Rn concentration was observed except for the water sample from the site affected by some newly dug wells. In addition, the newly developed extraction vessel was shown to be available for the determination and its operability in the field was superior to the conventional glass ware. (M.N.)

  17. Ground cover influence on evaporation and stable water isotopes in soil water

    Science.gov (United States)

    Magdalena Warter, Maria; Jiménez-Rodríguez, Cesar D.; Coenders-Gerrits, Miriam; Teuling, Adriaan J. Ryan

    2017-04-01

    Forest ecosystems are characterized by complex structures which influence hydrological processes such as evaporation. The vertical stratification of the forest modifies the effect of the evaporation process due to the composition and local distribution of species within the forest. The evaluation of it will improve the understanding of evaporation in forest ecosystems. To determine the influence of forest understory on the fractionation front, four ground cover types were selected from the Speulderbos forest in the Netherlands. The native species of Thamariskmoss (Thuidium thamariscinum), Rough Stalked Feathermoss (Brachythecium rutabulum), and Haircapmoss (Polytrichum commune) as well as one type of litter made up of Douglas-Fir needles (Pseudotsuga menziesii) were used to analyse the rate of evaporation and changes on the isotopic concentration of the soil water on an in-situ basis in a controlled environment. Over a period of 4 weeks soil water content and atmospheric conditions were continuously measured, while the rainfall simulations were performed with different amounts and timings. The reference water added to the boxes keeps a stable composition along the trial period with a δ ^2H value of -42.59±1.15 \\permil} and δ 18O of -6.01±0.21 \\permil}. The evaporation front in the four ground covers is located between 5 and 10 cm depth and deuterium excess values are bigger than 5 \\permil. The litter layer of Douglas-Fir needles is the cover with higher fractionation in respect to the added water at 10 cm depth (δ ^2H: -29.79 \\permil), while the Haircapmoss keeps the lower fractionation rate at 5 cm and 10 cm (δ ^2H: -33.62 and δ ^2H: -35.34 \\permil). The differences showed by the soil water beneath the different ground covers depict the influence of ground cover on fractionation rates of the soil water, underlining the importance of the spatial heterogeneity of the evaporation front in the first 15 cm of soil.

  18. Baseline risk assessment of ground water contamination at the uranium mill tailings site near Canonsburg, Pennsylvania

    International Nuclear Information System (INIS)

    1994-09-01

    This baseline risk assessment evaluates potential impacts to public health and the environment resulting from ground water contamination from past activities at the former uranium processing site in Canonsburg, Pennsylvania. The US Department of Energy Uranium Mill Tailings Remedial Action (UMTRA) Project has placed contaminated material from this site in an on-site disposal cell. Currently, the UMTRA Project is evaluating ground water contamination. This risk assessment is the first document specific to this site for the UMTRA Ground Water Project. Currently, no domestic or drinking water well tap into contaminated ground water of the two distinct ground water units: the unconsolidated materials and the bedrock. Because there is no access, no current health or environmental risks are associated with the direct use of the contaminated ground water. However, humans and ecological organisms could be exposed to contaminated ground water if a domestic well were to be installed in the unconsolidated materials in that part of the site being considered for public use (Area C). The first step is evaluating ground water data collected from monitor wells at the site. For the Canonsburg site, this evaluation showed the contaminants in ground water exceeding background in the unconsolidated materials in Area C are ammonia, boron, calcium, manganese, molybdenum, potassium, strontium, and uranium

  19. Baseline risk assessment of ground water contamination at the uranium mill tailings site near Canonsburg, Pennsylvania

    Energy Technology Data Exchange (ETDEWEB)

    1994-09-01

    This baseline risk assessment evaluates potential impacts to public health and the environment resulting from ground water contamination from past activities at the former uranium processing site in Canonsburg, Pennsylvania. The US Department of Energy Uranium Mill Tailings Remedial Action (UMTRA) Project has placed contaminated material from this site in an on-site disposal cell. Currently, the UMTRA Project is evaluating ground water contamination. This risk assessment is the first document specific to this site for the UMTRA Ground Water Project. Currently, no domestic or drinking water well tap into contaminated ground water of the two distinct ground water units: the unconsolidated materials and the bedrock. Because there is no access, no current health or environmental risks are associated with the direct use of the contaminated ground water. However, humans and ecological organisms could be exposed to contaminated ground water if a domestic well were to be installed in the unconsolidated materials in that part of the site being considered for public use (Area C). The first step is evaluating ground water data collected from monitor wells at the site. For the Canonsburg site, this evaluation showed the contaminants in ground water exceeding background in the unconsolidated materials in Area C are ammonia, boron, calcium, manganese, molybdenum, potassium, strontium, and uranium.

  20. Influence of ground water on soil-structure interaction

    International Nuclear Information System (INIS)

    Costantino, C.J.; Lung, R.H.; Graves, H.L.

    1987-01-01

    The study of structural response to seismic inputs has been extensively studied and, particularly with the advent of the growth of digital computer capability, has lead to the development of numerical methods of analysis which are used as standard tools for the design of structures. One aspect of the soil-structure interaction (SSI) process which has not been developed to the same degree of sophistication is the impact of ground water (or pure water) on the response of the soil-structure system. There are very good reasons for his state of affairs, however, not the least of which is the difficulty of incorporating the true constitutive behavior of saturated soils into the analysis. At the large strain end of the spectrum, the engineer is concerned with the potential development of failure conditions under the structure, and is typically interested in the onset of liquefaction conditions. The current state of the art in this area is to a great extent based on empirical methods of analysis which were developed from investigations of limited failure data from specific sites around the world. Since it is known that analytic solutions are available for only the simplest of configurations, a numerical finite element solution process was developed. Again, in keeping with typical SSI analyses, in order to make the finite element approach yield resonable results, a comparable transmitting boundary formulation was included in the development. The purpose of the transmitting boundary is, of course, to allow for the treatment of extended soil/water half-space problems. For the calculations presented herein, a simple one dimensional transmitting boundary model was developed and utilized

  1. Completing the ground-water model: ''We need more data''

    International Nuclear Information System (INIS)

    Rehmeyer, D.L.

    1995-01-01

    Computer modeling of geologic structures and groundwater flow has progressed from simple number crunching in the sixties to sophisticated and complex structure and flow models in the nineties (Hatheway, 1994). In the environmental field, a detailed knowledge of the subsurface geology is required and essential for successful ground-water remediation, planning, and investigations. Current options for determining shallow (0--400 ft) subsurface geology includes standard borings, cone penetrometer, ground penetrating radar (GPR), or resistivity surveys (RS). Standards borings are expensive coverage and the close spacing required for generating accurate model data. The cone penetrometer is less expensive and faster than conventional borings. However, both the cone penetrometer and borings are limited by access and are intrusive, providing additional paths for contaminant migration. While both standard GPR and RS are non-intrusive, they suffer from other limitations. A high conductivity soil (clay) will diminish the effectiveness of GPR. The signal is absorbed and dissipated in the first few inches of high conductivity soil. The depth of penetration of RS is better, but the vertical resolution for distinguishing between finely interbedded layers is much lower. An ideal system for subsurface geologic analysis would be non-intrusive, have the depth of penetration of RS, while offering the vertical resolution of GPR> Electromagnetic methods (EM) offer distinct advantages in helping to solve these problems: (a) they are non-intrusive, and (b) the technology to support EM probing-pulse generation, data collection--is well established. Quaternary Resource Investigations, Inc., (QRI) has developed such a system

  2. MODELING NITRATE CONCENTRATION IN GROUND WATER USING REGRESSION AND NEURAL NETWORKS

    OpenAIRE

    Ramasamy, Nacha; Krishnan, Palaniappa; Bernard, John C.; Ritter, William F.

    2003-01-01

    Nitrate concentration in ground water is a major problem in specific agricultural areas. Using regression and neural networks, this study models nitrate concentration in ground water as a function of iron concentration in ground water, season and distance of the well from a poultry house. Results from both techniques are comparable and show that the distance of the well from a poultry house has a significant effect on nitrate concentration in groundwater.

  3. Geochemistry and the understanding of ground-water systems

    Science.gov (United States)

    Glynn, Pierre D.; Plummer, L. Niel

    2005-03-01

    Geochemistry has contributed significantly to the understanding of ground-water systems over the last 50 years. Historic advances include development of the hydrochemical facies concept, application of equilibrium theory, investigation of redox processes, and radiocarbon dating. Other hydrochemical concepts, tools, and techniques have helped elucidate mechanisms of flow and transport in ground-water systems, and have helped unlock an archive of paleoenvironmental information. Hydrochemical and isotopic information can be used to interpret the origin and mode of ground-water recharge, refine estimates of time scales of recharge and ground-water flow, decipher reactive processes, provide paleohydrological information, and calibrate ground-water flow models. Progress needs to be made in obtaining representative samples. Improvements are needed in the interpretation of the information obtained, and in the construction and interpretation of numerical models utilizing hydrochemical data. The best approach will ensure an optimized iterative process between field data collection and analysis, interpretation, and the application of forward, inverse, and statistical modeling tools. Advances are anticipated from microbiological investigations, the characterization of natural organics, isotopic fingerprinting, applications of dissolved gas measurements, and the fields of reaction kinetics and coupled processes. A thermodynamic perspective is offered that could facilitate the comparison and understanding of the multiple physical, chemical, and biological processes affecting ground-water systems. La géochimie a contribué de façon importante à la compréhension des systèmes d'eaux souterraines pendant les 50 dernières années. Les avancées ont portées sur le développement du concept des faciès hydrochimiques, sur l'application de la théorie des équilibres, l'étude des processus d'oxydoréduction, et sur la datation au radiocarbone. D'autres concepts, outils et

  4. Work plan for ground water elevation data recorder/monitor well installation at Gunnison, Colorado

    International Nuclear Information System (INIS)

    1994-01-01

    The purpose of this document is to describe the work that will be performed and the procedures that will be followed during installation of ground water monitor wells and ground water elevation data recorders (data loggers) at the Gunnison, Colorado, Uranium Mill Tailings Remedial Action (UMTRA) Project site. The monitor wells and data loggers will be used to gather required time-dependent data to investigate the interaction between ground water and surface water in the area. Data collection objectives (DCO) identify reasons for collecting data. The following are DCOs for the Gunnison ground water elevation data recorder/monitor well installation project: long-term continuous ground water level data and periodic ground water samples will be collected to better understand the relationship between surface and ground water at the site; water level and water quality data will eventually be used in future ground water modeling to more firmly establish boundary conditions in the vicinity of the Gunnison processing site; and modeling results will be used to demonstrate and document the potential remedial alternative of natural flushing

  5. Estimating Natural Recharge in a Desert Environment Facing Increasing Ground-Water Demands

    Science.gov (United States)

    Nishikawa, T.; Izbicki, J. A.; Hevesi, J. A.; Martin, P.

    2004-12-01

    Ground water historically has been the sole source of water supply for the community of Joshua Tree in the Joshua Tree ground-water subbasin of the Morongo ground-water basin in the southern Mojave Desert. Joshua Basin Water District (JBWD) supplies water to the community from the underlying Joshua Tree ground-water subbasin, and ground-water withdrawals averaging about 960 acre-ft/yr have resulted in as much as 35 ft of drawdown. As growth continues in the desert, ground-water resources may need to be supplemented using imported water. To help meet future demands, JBWD plans to construct production wells in the adjacent Copper Mountain ground-water subbasin. To manage the ground-water resources and to identify future mitigating measures, a thorough understanding of the ground-water system is needed. To this end, field and numerical techniques were applied to determine the distribution and quantity of natural recharge. Field techniques included the installation of instrumented boreholes in selected washes and at a nearby control site. Numerical techniques included the use of a distributed-parameter watershed model and a ground-water flow model. The results from the field techniques indicated that as much as 70 acre-ft/yr of water infiltrated downward through the two principal washes during the study period (2001-3). The results from the watershed model indicated that the average annual recharge in the ground-water subbasins is about 160 acre-ft/yr. The results from the calibrated ground-water flow model indicated that the average annual recharge for the same area is about 125 acre-ft/yr. Although the field and numerical techniques were applied to different scales (local vs. large), all indicate that natural recharge in the Joshua Tree area is very limited; therefore, careful management of the limited ground-water resources is needed. Moreover, the calibrated model can now be used to estimate the effects of different water-management strategies on the ground-water

  6. Evaluation of Ground Water Near Sidney, Western Nebraska, 2004-05

    Science.gov (United States)

    Steele, G.V.; Sibray, S.S.; Quandt, K.A.

    2007-01-01

    During times of drought, ground water in the Lodgepole Creek area around Sidney, western Nebraska, may be insufficient to yield adequate supplies to private and municipal wells. Alternate sources of water exist in the Cheyenne Tablelands north of the city, but these sources are limited in extent. In 2003, the U.S. Geological Survey and the South Platte Natural Resources District began a cooperative study to evaluate the ground water near Sidney. The 122-square-mile study area lies in the south-central part of Cheyenne County, with Lodgepole Creek and Sidney Draw occupying the southern and western parts of the study area and the Cheyenne Tablelands occupying most of the northern part of the study area. Twenty-nine monitoring wells were installed and then sampled in 2004 and 2005 for physical characteristics, nutrients, major ions, and stable isotopes. Some of the 29 sites also were sampled for ground-water age dating. Ground water is limited in extent in the tableland areas. Spring 2005 depths to ground water in the tableland areas ranged from 95 to 188 feet. Ground-water flow in the tableland areas primarily is northeasterly. South of a ground-water divide, ground-water flows southeasterly toward Lodgepole Creek Valley. Water samples from monitoring wells in the Ogallala Group were predominantly a calcium bicarbonate type, and those from monitoring wells in the Brule Formation were a sodium bicarbonate type. Water samples from monitoring wells open to the Brule sand were primarily a calcium bicarbonate type at shallow depths and a sodium bicarbonate type at deeper depths. Ground water in Lodgepole Creek Valley had a strong sodium signature, which likely results from most of the wells being open to the Brule. Concentrations of sodium and nitrate in ground-water samples from the Ogallala were significantly different than in water samples from the Brule and Brule sand. In addition, significant differences were seen in concentrations of calcium between water samples

  7. Summary appraisals of the Nation's ground-water resources; Texas Gulf region

    Science.gov (United States)

    Baker, E.T.; Wall, James Ray

    1974-01-01

    Ground water in the Texas-Gulf Region is a large and important resource that can provide a more significant percentage of the total water supply of the region. Total water requirements within the region are projected to rise sharply from 14 million acre-feet (17 cubic kilometres) in 1970 to nearly 26 million acre-feet (32.cubic kilometres) in 2020. About half of the water used in 1970 was ground water.

  8. Development of a Ground Water Data Portal for Interoperable Data Exchange within the U.S. National Ground Water Monitoring Network and Beyond

    Science.gov (United States)

    Booth, N. L.; Brodaric, B.; Lucido, J. M.; Kuo, I.; Boisvert, E.; Cunningham, W. L.

    2011-12-01

    The need for a national groundwater monitoring network within the United States is profound and has been recognized by organizations outside government as a major data gap for managing ground-water resources. Our country's communities, industries, agriculture, energy production and critical ecosystems rely on water being available in adequate quantity and suitable quality. To meet this need the Subcommittee on Ground Water, established by the Federal Advisory Committee on Water Information, created a National Ground Water Monitoring Network (NGWMN) envisioned as a voluntary, integrated system of data collection, management and reporting that will provide the data needed to address present and future ground-water management questions raised by Congress, Federal, State and Tribal agencies and the public. The NGWMN Data Portal is the means by which policy makers, academics and the public will be able to access ground water data through one seamless web-based application from disparate data sources. Data systems in the United States exist at many organizational and geographic levels and differing vocabulary and data structures have prevented data sharing and reuse. The data portal will facilitate the retrieval of and access to groundwater data on an as-needed basis from multiple, dispersed data repositories allowing the data to continue to be housed and managed by the data provider while being accessible for the purposes of the national monitoring network. This work leverages Open Geospatial Consortium (OGC) data exchange standards and information models. To advance these standards for supporting the exchange of ground water information, an OGC Interoperability Experiment was organized among international participants from government, academia and the private sector. The experiment focused on ground water data exchange across the U.S. / Canadian border. WaterML2.0, an evolving international standard for water observations, encodes ground water levels and is exchanged

  9. Evaluating a novel tiered scarcity adjusted water budget and pricing structure using a holistic systems modelling approach.

    Science.gov (United States)

    Sahin, Oz; Bertone, Edoardo; Beal, Cara; Stewart, Rodney A

    2018-06-01

    Population growth, coupled with declining water availability and changes in climatic conditions underline the need for sustainable and responsive water management instruments. Supply augmentation and demand management are the two main strategies used by water utilities. Water demand management has long been acknowledged as a least-cost strategy to maintain water security. This can be achieved in a variety of ways, including: i) educating consumers to limit their water use; ii) imposing restrictions/penalties; iii) using smart and/or efficient technologies; and iv) pricing mechanisms. Changing water consumption behaviours through pricing or restrictions is challenging as it introduces more social and political issues into the already complex water resources management process. This paper employs a participatory systems modelling approach for: (1) evaluating various forms of a proposed tiered scarcity adjusted water budget and pricing structure, and (2) comparing scenario outcomes against the traditional restriction policy regime. System dynamics modelling was applied since it can explicitly account for the feedbacks, interdependencies, and non-linear relations that inherently characterise the water tariff (price)-demand-revenue system. A combination of empirical water use data, billing data and customer feedback on future projected water bills facilitated the assessment of the suitability and likelihood of the adoption of scarcity-driven tariff options for a medium-sized city within Queensland, Australia. Results showed that the tiered scarcity adjusted water budget and pricing structure presented was preferable to restrictions since it could maintain water security more equitably with the lowest overall long-run marginal cost. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Draft programmatic environmental impact statement for the Uranium Mill Tailings Remedial Action Ground Water Project

    International Nuclear Information System (INIS)

    1994-04-01

    The purpose of the UMTRA Ground Water Project is to protect human health and the environment by meeting the proposed EPA standards in areas where ground water has been contaminated. The first step in the UMTRA Ground Water Project is the preparation of this programmatic environmental impact statement (PEIS). This document analyzes potential impacts of four programmatic alternatives, including the proposed action. The alternatives do not address site-specific ground water compliance. Rather, the PEIS is a planning document that provides a framework for conducting the Ground Water Project; assesses the potential programmatic impacts of conducting the Ground Water Project; provides a method for determining the site-specific ground water compliance strategies; and provides data and information that can be used to prepare site-specific environmental impacts analyses more efficiently. This PEIS differs substantially from a site-specific environmental impact statement because multiple ground water compliance strategies, each with its own unique set of potential impacts, could be used to implement all the alternatives except the no action alternative. Implementing a PEIS alternative means applying a ground water compliance strategy or strategies at a specific site. It is the use of a strategy or a combination of strategies that would result in site-specific impacts

  11. Ground-water quality beneath solid-waste disposal sites at anchorage, Alaska

    Science.gov (United States)

    Zenone, Chester; Donaldson, D.E.; Grunwaldt, J.J.

    1975-01-01

    Studies at three solid-waste disposal sites in the Anchorage area suggest that differences in local geohydrologic conditions influence ground-water quality. A leachate was detected in ground water within and beneath two sites where the water table is very near land surface and refuse is deposited either at or below the water table in some parts of the filled areas. No leachate was detected in ground water beneath a third site where waste disposal is well above the local water table.

  12. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Sites near Rifle, Colorado

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-05-01

    The ground water project evaluates the nature and extent of ground water contamination resulting from the uranium ore processing activities. This report is a site specific document that will be used to evaluate current and future impacts to the public and the environment from exposure to contaminated ground water. Currently, no one is using the ground water and therefore, no one is at risk. However, the land will probably be developed in the future and so the possibility of people using the ground water does exist. This report examines the future possibility of health hazards resulting from the ingestion of contaminated drinking water, skin contact, fish ingestion, or contact with surface waters and sediments.

  13. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Sites near Rifle, Colorado

    International Nuclear Information System (INIS)

    1995-05-01

    The ground water project evaluates the nature and extent of ground water contamination resulting from the uranium ore processing activities. This report is a site specific document that will be used to evaluate current and future impacts to the public and the environment from exposure to contaminated ground water. Currently, no one is using the ground water and therefore, no one is at risk. However, the land will probably be developed in the future and so the possibility of people using the ground water does exist. This report examines the future possibility of health hazards resulting from the ingestion of contaminated drinking water, skin contact, fish ingestion, or contact with surface waters and sediments

  14. MODFLOW-2000, The U.S. Geological Survey Modular Ground-Water Model - User Guide to Modularization Concepts and the Ground-Water Flow Process

    Science.gov (United States)

    Harbaugh, Arlen W.; Banta, Edward R.; Hill, Mary C.; McDonald, Michael G.

    2000-01-01

    MODFLOW is a computer program that numerically solves the three-dimensional ground-water flow equation for a porous medium by using a finite-difference method. Although MODFLOW was designed to be easily enhanced, the design was oriented toward additions to the ground-water flow equation. Frequently there is a need to solve additional equations; for example, transport equations and equations for estimating parameter values that produce the closest match between model-calculated heads and flows and measured values. This report documents a new version of MODFLOW, called MODFLOW-2000, which is designed to accommodate the solution of equations in addition to the ground-water flow equation. This report is a user's manual. It contains an overview of the old and added design concepts, documents one new package, and contains input instructions for using the model to solve the ground-water flow equation.

  15. Geohydrology and ground-water quality beneath the 300 Area, Hanford Site, Washington

    International Nuclear Information System (INIS)

    Lindberg, J.W.; Bond, F.W.

    1979-06-01

    Ground water enters the 300 Area from the northwest, west, and southwest. However, throughout most of the 300 Area, the flow is to the east and southeast. Ground water flows to the northeast only in the southern portion of the 300 Area. Variations in level of the Columbia River affected the ground-water system by altering the level and shape of the 300 Area watertable. Large quantities of process waste water, when warmed during summer months by solar radiation or cooled during winter months by ambient air temperature, influenced the temperature of the ground water. Leaking pipes and the intentional discharge of waste water (or withdrawal of ground water) affected the ground-water system in the 300 Area. Water quality tests of Hanford ground water in and adjacent to the 300 Area showed that in the area of the Process Water Trenches and Sanitary Leaching Trenches, calcium, magnesium, sodium, bicarbonate, and sulfate ions are more dilute, and nitrate and chloride ions are more concentrated than in surrounding areas. Fluoride, uranium, and beta emitters are more concentrated in ground water along the bank of the Columbia River in the central and southern portions of the 300 Area and near the 340 Building. Test wells and routine ground-water sampling are adequate to point out contamination. The variable Thickness Transient (VTT) Model of ground-water flow in the unconfined aquifer underlying the 300 Area has been set up, calibrated, and verified. The Multicomponent Mass Transfer (MMT) Model of distribution of contaminants in the saturated regime under the 300 Area has been set up, calibrated, and tested

  16. Effect of sewage sludge on formation of acidic ground water at a reclaimed coal mine

    Science.gov (United States)

    Cravotta, C.A.

    1998-01-01

    Data on rock, ground water, vadose water, and vadose gas chemistry were collected for two years after sewage sludge was applied at a reclaimed surface coal mine in Pennsylvania to determine if surface-applied sludge is an effective barrier to oxygen influx, contributes metals and nutrients to ground water, and promotes the acidification of ground water. Acidity, sulfate, and metals concentrations were elevated in the ground water (6- to 21-m depth) from spoil relative to unmined rock because of active oxidation of pyrite and dissolution of aluminosilicate, carbonate, and Mn-Fe-oxide minerals in the spoil. Concentrations of acidity, sulfate, metals (Fe, Mn, Al, Cd, Cu, Cr, Ni, Zn), and nitrate, and abundances of iron-oxidizing bacteria were elevated in the ground water from sludge-treated spoil relative to untreated spoil having a similar mineral composition; however, gaseous and dissolved oxygen concentrations did not differ between the treatments. Abundances of iron-oxidizing bacteria in the ground water samples were positively correlated with concentrations of ammonia, nitrate, acidity, metals, and sulfate. Concentrations of metals in vadose water samples (oxidation of pyrite by nitrate. Thus, sewage sludge added to pyritic spoil can increase the growth of iron-oxidizing bacteria, the oxidation of pyrite, and the acidification of ground water. Nevertheless, the overall effects on ground water chemistry from the sludge were small and probably short-lived relative to the effects from mining only.

  17. Geocongress 84: 20. Geological congress of the Geological Society of South Africa. Abstracts: Pt. 2. Ground water

    International Nuclear Information System (INIS)

    1984-01-01

    Only one article in the publication is relevant to INIS: Environmental isotopes and hydrochemistry in ground water studies. A very short review is given on the ground water resources of the Kalahari in Gordonia. Ground water in mining exploration and the geophysics of ground water and the methods used in the geophysics are discussed. The dolomitic aquifers, especially in the southern and western Transvaal and ground water models are also reviewed

  18. Regulations of irrigation on regional climate in the Heihe watershed, China, and its implications to water budget

    Science.gov (United States)

    Zhang, X.

    2015-12-01

    In the arid area, such as the Heihe watershed in Northwest China, agriculture is heavily dependent on the irrigation. Irrigation suggests human-induced hydro process, which modifies the local climate and water budget. In this study, we simulated the irrigation-induced changes in surface energy/moisture budgets and modifications on regional climate, using the WRF-NoahMP modle with an irrigation scheme. The irrigation scheme was implemented following the roles that soil moisture is assigned a saturated value once the mean soil moisture of all root layers is lower than 70% of fileld capacity. Across the growth season refering from May to September, the simulated mean irrigation amount of the 1181 cropland gridcells is ~900 mm, wihch is close to the field measurments of around 1000 mm. Such an irrigation largely modified the surface energy budget. Due to irrigation, the surface net solar radiation increased by ~76.7 MJ (~11 Wm-2) accouting for ~2.3%, surface latent and senbile heat flux increased by 97.7 Wm-2 and decreased by ~79.7 Wm-2 respectively; and local daily mean surface air temperature was thereby cooling by ~1.1°C. Corresponding to the surface energy changes, wind and circulation were also modified and regional water budget is therefore regulated. The total rainfall in the irrigation area increased due to more moisture from surface. However, the increased rainfall is only ~6.5mm (accounting for ~5% of background rainfall) which is much less than the increased evaporation of ~521.5mm from surface. The ~515mm of water accounting for 57% of total irrigation was transported outward by wind. The other ~385 mm accounting for 43% of total irrigation was transformed to be runoff and soil water. These results suggest that in the Heihe watershed irrigation largely modify local energy budget and cooling surface. This study also implicate that the existing irrigation may waste a large number of water. It is thereby valuable to develope effective irrigation scheme to

  19. Hydrogeologic setting and ground water flow beneath a section of Indian River Bay, Delaware

    Science.gov (United States)

    Krantz, David E.; Manheim, Frank T.; Bratton, John F.; Phelan, Daniel J.

    2004-01-01

    The small bays along the Atlantic coast of the Delmarva Peninsula (Delaware, Maryland, and Virginia) are a valuable natural resource, and an asset for commerce and recreation. These coastal bays also are vulnerable to eutrophication from the input of excess nutrients derived from agriculture and other human activities in the watersheds. Ground water discharge may be an appreciable source of fresh water and a transport pathway for nutrients entering the bays. This paper presents results from an investigation of the physical properties of the surficial aquifer and the processes associated with ground water flow beneath Indian River Bay, Delaware. A key aspect of the project was the deployment of a new technology, streaming horizontal resistivity, to map the subsurface distribution of fresh and saline ground water beneath the bay. The resistivity profiles showed complex patterns of ground water flow, modes of mixing, and submarine ground water discharge. Cores, gamma and electromagnetic-induction logs, and in situ ground water samples collected during a coring operation in Indian River Bay verified the interpretation of the resistivity profiles. The shore-parallel resistivity lines show subsurface zones of fresh ground water alternating with zones dominated by the flow of salt water from the estuary down into the aquifer. Advective flow produces plumes of fresh ground water 400 to 600 m wide and 20 m thick that may extend more than 1 km beneath the estuary. Zones of dispersive mixing between fresh and saline ground water develop on the upper, lower, and lateral boundaries of the the plume. the plumes generally underlie small incised valleys that can be traced landward to stream draining the upland. The incised valleys are filled with 1 to 2 m of silt and peat that act as a semiconfining layer to restrict the downward flow of salt water from the estuary. Active circulation of both the fresh and saline ground water masses beneath the bay is inferred from the geophysical

  20. Implications of ground water chemistry and flow patterns for earthquake studies.

    Science.gov (United States)

    Guangcai, Wang; Zuochen, Zhang; Min, Wang; Cravotta, Charles A; Chenglong, Liu

    2005-01-01

    Ground water can facilitate earthquake development and respond physically and chemically to tectonism. Thus, an understanding of ground water circulation in seismically active regions is important for earthquake prediction. To investigate the roles of ground water in the development and prediction of earthquakes, geological and hydrogeological monitoring was conducted in a seismogenic area in the Yanhuai Basin, China. This study used isotopic and hydrogeochemical methods to characterize ground water samples from six hot springs and two cold springs. The hydrochemical data and associated geological and geophysical data were used to identify possible relations between ground water circulation and seismically active structural features. The data for delta18O, deltaD, tritium, and 14C indicate ground water from hot springs is of meteoric origin with subsurface residence times of 50 to 30,320 years. The reservoir temperature and circulation depths of the hot ground water are 57 degrees C to 160 degrees C and 1600 to 5000 m, respectively, as estimated by quartz and chalcedony geothermometers and the geothermal gradient. Various possible origins of noble gases dissolved in the ground water also were evaluated, indicating mantle and deep crust sources consistent with tectonically active segments. A hard intercalated stratum, where small to moderate earthquakes frequently originate, is present between a deep (10 to 20 km), high-electrical conductivity layer and the zone of active ground water circulation. The ground water anomalies are closely related to the structural peculiarity of each monitoring point. These results could have implications for ground water and seismic studies in other seismogenic areas.

  1. Draft programmatic environmental impact statement for the Uranium Mill Tailings Remedial Action Ground Water Project

    International Nuclear Information System (INIS)

    1995-04-01

    The US Department of Energy (DOE) is responsible for performing remedial action to bring surface and ground water contaminant levels at 24 inactive uranium processing sites into compliance with the US Environmental Protection Agency (EPA) standards. DOE is accomplishing this through the Uranium Mill Tailings Remedial Action (UMTRA) Surface and Ground Water Projects. Remedial action will be conducted with the concurrence of the US Nuclear Regulatory Commission (NRC) and the full participation of affected states and Indian tribes. Uranium processing activities at most of 24 the inactive mill sites resulted in the contamination of ground water beneath and, in some cases, downgradient of the sites. This contaminated ground water often has elevated levels of constituents such as uranium and nitrate. The purpose of the UMTRA Ground Water Project is to eliminate, or reduce to acceptable levels, the potential health and the environmental consequences of milling activities by meeting the EPA standards in areas where ground water has been contaminated. The first step in the UMTRA Ground Water Project is the preparation of this programmatic environmental impact statement (PEIS). This document analyzes potential impacts of four programmatic alternatives, including the proposed action. The alternatives do not address site-specific ground water compliance strategies. Rather, the PEIS is a planning document that provides a framework for conducting the Ground Water Project; assesses the potential programmatic impacts of conducting the Ground Water Project; provides a method for determining the site-specific ground water compliance strategies; and provides data and information that can be used to prepare site-specific environmental impacts analyses more efficiently

  2. Water resources data for Florida, water year 1992. Volume 1B. Northeast Florida ground water. Water-data report (Annual) October 1, 1991-September 30, 1992

    International Nuclear Information System (INIS)

    1993-01-01

    Water resources data for the 1992 for northeast Florida include continuous or daily discharge for 140 streams, periodic discharge for 10 streams, miscellaneous discharge for 14 streams, continuous or daily stage for 32 streams, continuous or daily tide stage for 3 sites, periodic stage for 23 streams, peak discharge for 3 streams, and peak stage for 11 streams; continuous or daily elevations for 36 lakes, periodic elevations for 47 lakes; continuous ground-water levels for 75 wells, periodic ground-water levels for 123 wells, and miscellaneous water-level measurements for 864 wells; and quality-of-water data for 38 surface-water sites and 66 wells

  3. Occurrence of estrogenic activities in second-grade surface water and ground water in the Yangtze River Delta, China

    International Nuclear Information System (INIS)

    Shi, Wei; Hu, Guanjiu; Chen, Sulan; Wei, Si; Cai, Xi; Chen, Bo; Feng, Jianfang; Hu, Xinxin; Wang, Xinru; Yu, Hongxia

    2013-01-01

    Second-grade surface water and ground water are considered as the commonly used cleanest water in the Yangtze River Delta, which supplies centralized drinking water and contains rare species. However, some synthetic chemicals with estrogenic disrupting activities are detectable. Estrogenic activities in the second-grade surface water and ground water were surveyed by a green monkey kidney fibroblast (CV-1) cell line based ER reporter gene assay. Qualitative and quantitative analysis were further conducted to identify the responsible compounds. Estrogen receptor (ER) agonist activities were present in 7 out of 16 surface water and all the ground water samples. Huaihe River and Yangtze River posed the highest toxicity potential. The highest equivalent (2.2 ng E 2 /L) is higher than the predicted no-effect-concentration (PNEC). Bisphenol A (BPA) contributes to greater than 50% of the total derived equivalents in surface water, and the risk potential in this region deserves more attention and further research. -- Highlights: •Estrogenic activities were present in second-grade surface water and ground water. •Most of the detected equivalents were higher than the predicted no-effect-concentration of E 2 . •ER-EQ 20–80 ranges showed that samples in Huaihe River and Yangtze River posed the highest toxicity. •Bisphenol A contributes to most of the instrumentally derived equivalents in surface water. -- Estrogenic activities were observed in second-grade surface water and ground water in Yangtze River Delta, and BPA was the responsible contaminant

  4. Trace Analysis of Heavy Metals in Ground Waters of Vijayawada Industrial Area

    Science.gov (United States)

    Tadiboyina, Ravisankar; Ptsrk, Prasada Rao

    2016-01-01

    In recent years, the new environmental problem are arising due to industrial hazard wastage, global climate change, ground water contamination and etc., gives an attention to protect environment.one of the major source of contamination of ground water is improper discharge of industrial effluents these effluents contains so many heavy metals which…

  5. Combined ion exchange / biological denitrification for nitrate removal from ground water

    NARCIS (Netherlands)

    Hoek, van der J.P.

    1988-01-01

    This thesis deals with the development of a new process for nitrate removal from ground water. High nitrate concentrations in ground water are a result of fertilization in agriculture. According to a directive of the European Community the maximum admissible concentration of nitrate in

  6. Effects of uranium mining on ground water in Ambrosia Lake area, New Mexico

    International Nuclear Information System (INIS)

    Kelly, T.E.; Link, R.L.; Schipper, M.R.

    1979-01-01

    This paper discusses the impact of mining on the principal aquifer in the Ambrosia Lake area, the Westwater Canyon Member of the Morrison Formation. Loss of potentiometric head has resulted in interformational migration of ground water. This migration has produced local deterioration in chemical quality of the ground water. 7 refs

  7. Effects Disposal Condition and Ground Water to Leaching Rate of Radionuclides from Solidification Products

    International Nuclear Information System (INIS)

    Herlan Martono; Wati

    2008-01-01

    Effects disposal condition and ground water to leaching rate of radionuclides from solidification products have been studied. The aims of leaching test at laboratory to get the best composition of solidified products for continuous process or handling. The leaching rate of radionuclides from the many kinds of matrix from smallest to bigger are glass, thermosetting plastic, urea formaldehyde, asphalt, and cement. Glass for solidification of high level waste, thermosetting plastic and urea formaldehyde for solidification of low and intermediate waste, asphalt and cement for solidification of low and intermediate level waste. In shallow land burial, ground water rate is fast, debit is high, and high permeability, so the probability contact between solidification products and ground water is occur. The pH of ground water increasing leaching rate, but cation in the ground water retard leaching rate. Effects temperature radiation and radiolysis to solidification products is not occur. In the deep repository, ground water rate is slow, debit is small, and low permeability, so the probability contact between solidification products and ground water is very small. There are effect cooling time and distance between pits to rock temperature. Alfa radiation effects can be occur, but there is no contact between solidification products and ground water, so that there is not radiolysis. (author)

  8. Environmental isotopes as early warning tools to control the abstraction of deep ground waters

    International Nuclear Information System (INIS)

    Seiler, K.P.; Maloszewski, P.; Weise, S.M.; Loosli, H.H.

    1999-01-01

    Early warning system for the exploitation of ground water from the passive zone can not be based on the measurement of pollutant concentrations itself. The environmental tracer data are suggested to be used as indicators for changes in conservative mass transport processes from shallow to deep or very deep to deep ground waters

  9. ENVIRONMENTAL RESEARCH BRIEF : ANALYTIC ELEMENT MODELING OF GROUND-WATER FLOW AND HIGH PERFORMANCE COMPUTING

    Science.gov (United States)

    Several advances in the analytic element method have been made to enhance its performance and facilitate three-dimensional ground-water flow modeling in a regional aquifer setting. First, a new public domain modular code (ModAEM) has been developed for modeling ground-water flow ...

  10. Anomalous Ground State of the Electrons in Nano-confined Water

    Science.gov (United States)

    2016-06-13

    Anomalous ground state of the electrons in nano -confined water G. F. Reiter1*, Aniruddha Deb2*, Y. Sakurai3, M. Itou3, V. G. Krishnan4, S. J...electronic ground state of nano -confined water must be responsible for these anomalies but has so far not been investigated. We show here for the first time...using x-ray Compton scattering and a computational model, that the ground state configuration of the valence electrons in a particular nano

  11. Influence of surface mining on ground water (effects and possibilities of prevention)

    Energy Technology Data Exchange (ETDEWEB)

    Libicki, J

    1977-01-01

    This article analyzes the negative impact of surface mining on ground water. The effects of water depression on water supply for households and industry, and for vegetation and agriculture are evaluated. The negative impact of lowering the ground water level under various water conditions are analyzed: (1) vegetation is supplied with water only by rainfall, (2) vegetation is supplied with water in some seasons by rainfall and in some by ground water, and (3) vegetation uses ground water only. The impact of deteriorating water supply on forests is discussed. Problems connected with storage of waste materials in abandoned surface mines are also discussed. The influence of black coal ash and waste material from coal preparation plants on ground water is analyzed: penetration of some elements and chemical compounds to the ground water and its pollution. Some preventive measures are proposed: injection of grout in the bottom and walls of storage areas to reduce their permeability (organic resins can also be used but they are more expensive). The distance between injection boreholes should be 15 to 20 m. Covering the bottom of the storage area with plastic sheets can also be applied.

  12. Average Estimates of Water-Budget Components Based on Hydrograph Separation and PRISM Precipitation for Gaged Basins in the Appalachian Plateaus Region, 1900-2011

    Data.gov (United States)

    Department of the Interior — As part of the U.S. Geological Survey’s Groundwater Resources Program study of the Appalachian Plateaus aquifers, estimates of annual water-budget components were...

  13. Annual Estimates of Water-Budget Components Based on Hydrograph Separation and PRISM Precipitation for Gaged Basins in the Appalachian Plateaus Region, 1900-2011

    Data.gov (United States)

    Department of the Interior — As part of the U.S. Geological Survey’s Groundwater Resources Program study of the Appalachian Plateaus aquifers, estimates of annual water-budget components were...

  14. Nitrogen-isotope ratios of nitrate in ground water under fertilized fields, Long Island, New York

    Science.gov (United States)

    Flipse, W.J.; Bonner, F.T.

    1985-01-01

    Ground-water samples from two heavily fertilized sites in Suffolk County, New York, were collected through the 1978 growing season and analyzed for nitrate-N concentrations and nitrogen-isotope ratios. Six wells were at a potato farm; six were on a golf course. The purpose of this study was to determine whether the 15N/14N ratios (??15N values) of fertilizer are increased during transit from land surface to ground water to an extent which would preclude use of this ratio to distinguish agricultural from animal sources of nitrate in ground water. Ground water at both sites contained a greater proportion of 15N than the fertilizers being applied. At the potato farm, the average ??15N value of the fertilizers was 0.2???; the average ??15N value of the ground-water nitrate was 6.2???. At the golf course, the average ??15N value of the fertilizers was -5.9???, and that of ground-water nitrate was 6.5???. The higher ??15N values of ground-water nitrate are probably caused by isotopic fractionation during the volatile loss of ammonia from nitrogen applied in reduced forms (NH4+ and organic-N). The ??15N values of most ground-water samples from both areas were less than 10???, the upper limit of the range characteristic of agricultural sources of nitrate; these sources include both fertilizer nitrate and nitrate derived from increased mineralization of soil nitrogen through cultivation. Previous studies have shown that the ??15N values of nitrate derived from human or animal waste generally exceed 10???. The nitrogen-isotope ratios of fertilizer-derived nitrate were not altered to an extent that would make them indistinguishable from animal-waste-derived nitrates in ground water.Ground-water samples from two heavily fertilized sites in Suffolk County, New York, were collected through the 1978 growing season and analyzed for nitrate-N concentrations and nitrogen-isotope ratios. Six wells were at a potato farm; six were on a golf course. The purpose of this study was to

  15. Budget Options

    National Research Council Canada - National Science Library

    2000-01-01

    This volume-part of the Congressional Budget Office's (CBO's) annual report to the House and Senate Committees on the Budget-is intended to help inform policymakers about options for the federal budget...

  16. Ground water security and drought in Africa: linking availability, access, and demand.

    Science.gov (United States)

    Calow, Roger C; Macdonald, Alan M; Nicol, Alan L; Robins, Nick S

    2010-01-01

    Drought in Africa has been extensively researched, particularly from meteorological, agricultural, and food security perspectives. However, the impact of drought on water security, particularly ground water dependent rural water supplies, has received much less attention. Policy responses have concentrated on food needs, and it has often been difficult to mobilize resources for water interventions, despite evidence that access to safe water is a serious and interrelated concern. Studies carried out in Ghana, Malawi, South Africa, and Ethiopia highlight how rural livelihoods are affected by seasonal stress and longer-term drought. Declining access to food and water is a common and interrelated problem. Although ground water plays a vital role in buffering the effects of rainfall variability, water shortages and difficulties in accessing water that is available can affect domestic and productive water uses, with knock-on effects on food consumption and production. Total depletion of available ground water resources is rarely the main concern. A more common scenario is a spiral of water insecurity as shallow water sources fail, additional demands are put on remaining sources, and mechanical failures increase. These problems can be planned for within normal development programs. Water security mapping can help identify vulnerable areas, and changes to monitoring systems can ensure early detection of problems. Above all, increasing the coverage of ground water-based rural water supplies, and ensuring that the design and siting of water points is informed by an understanding of hydrogeological conditions and user demand, can significantly increase the resilience of rural communities to climate variability.

  17. Technical approach for the management of UMTRA ground water investigation-derived wastes

    International Nuclear Information System (INIS)

    1994-02-01

    During characterization, remediation, or monitoring activities of the US Department of Energy's (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project, ground water samples are collected to assess the extent and amount of waterborne contamination that might have come from the mill tailings. This sampling sometimes occurs in contaminated areas where ground water quality has been degraded. Ground water sampling activities may result in field-generated wastes that must be disposed of in a manner protective of human health and the environment. During ground water sampling, appropriate measures must be taken to dispose of presampling purge water and well development water that is pumped to flush out any newly constructed wells. Additionally, pumping tests may produce thousands of gallons of potentially contaminated ground water that must be properly managed. In addition to the liquid wastes, there is the potential for bringing contaminated soils to the ground surface during the drilling and installation of water wells in areas where the subsurface soils may be contaminated. These soils must be properly managed as well. This paper addresses the general technical approach that the UMTRA Project will follow in managing field-generated wastes from well drilling, development, sampling, and testing. It will provide guidance for the preparation of Technical Assistance Contractor (TAC) Standard Operating Procedures (SOP) for the management and disposal of field-generated wastes from ground water monitoring and remediation activities

  18. Effect of sewage sludge on formation of acidic ground water at a reclaimed coal mine

    International Nuclear Information System (INIS)

    Cravotta, C.A. III

    1998-01-01

    Data on rock, ground water, vadose water, and vadose gas chemistry were collected for two years after sewage sludge was applied at a reclaimed surface coal mine in Pennsylvania to determine if surface-applied sludge is an effective barrier to oxygen influx, contributes metals and nutrients to ground water, and promotes the acidification of ground water. Acidity, sulfate, and metals concentrations were elevated in the ground water from spoil relative to unmined rock because of active oxidation of pyrite and dissolution of aluminosilicate, carbonate, and Mn-Fe-oxide minerals in the spoil. Concentrations of acidity, sulfate, metals (Fe, Mn, Al, Cd, Cu, Cr, Ni, Zn), and nitrate, and abundances of iron-oxidizing bacteria were elevated in the ground water from sludge-treated spoil relative to untreated spoil having a similar mineral composition; however, gaseous and dissolved oxygen concentrations did not differ between the treatments. Abundances of iron-oxidizing bacteria in the ground water samples were positively correlated with concentrations of ammonia, nitrate, acidity, metals, and sulfate. Concentrations of metals in vadose water samples (< 5-m depth) from sludge-treated spoil (pH 5.9) were not elevated relative to untreated spoil (pH 4.4). In contrast, concentrations of nitrate were elevated in vadose water samples from sludge-treated spoil, frequently exceeding 10 mg/L. Downgradient decreases in nitrate to less than 3 mg/L and increases in sulfate concentrations in underlying ground water could result from oxidation of pyrite by nitrate. Thus, sewage sludge added to pyritic spoil can increase the growth of iron-oxidizing bacteria, the oxidation of pyrite, and the acidification of ground water. Nevertheless, the overall effects on ground water chemistry from the sludge were small and probably short-lived relative to the effects from mining only

  19. Effect of sewage sludge on formation of acidic ground water at a reclaimed coal mine

    Science.gov (United States)

    Cravotta, C.A.

    1998-01-01

    Data on rock, ground water, vadose water, and vadose gas chemistry were collected for two years after sewage sludge was applied at a reclaimed surface coal mine in Pennsylvania to determine if surface-applied sludge is an effective barrier to oxygen influx, contributes metals and nutrients to ground water, and promotes the acidification of ground water. Acidity, sulfate, and metals concentrations were elevated in the ground water (6- to 21-m depth) from spoil relative to unmined rock because of active oxidation of pyrite and dissolution of aluminosilicate, carbonate, and Mn-Fe-oxide minerals in the spoil. Concentrations of acidity, sulfate, metals (Fe, Mn, Al, Cd, Cu, Cr, Ni, Zn), and nitrate, and abundances of iron-oxidizing bacteria were elevated in the ground water from sludge-treated spoil relative to untreated spoil having a similar mineral composition; however, gaseous and dissolved oxygen concentrations did not differ between the treatments. Abundances of iron-oxidizing bacteria in the ground water samples were positively correlated with concentrations of ammonia, nitrate, acidity, metals, and sulfate. Concentrations of metals in vadose water samples (water samples from sludge-treated spoil, frequently exceeding 10 mg/L. Downgradient decreases in nitrate to less than 3 mg/L and increases in sulfate concentrations in underlying ground water could result from oxidation of pyrite by nitrate. Thus, sewage sludge added to pyritic spoil can increase the growth of iron-oxidizing bacteria, the oxidation of pyrite, and the acidification of ground water. Nevertheless, the overall effects on ground water chemistry from the sludge were small and probably short-lived relative to the effects from mining only.

  20. Seasonal variations of ground water quality and its agglomerates by water quality index

    Directory of Open Access Journals (Sweden)

    S. Sharma

    2016-01-01

    Full Text Available Water is a unique natural resource among all sources available on earth. It plays an important role in economic development and the general well-being of the country. This study aimed at using the application of water quality index in evaluating the ground water quality innorth-east area of Jaipur in pre and post monsoon for public usage. Total eleven physico–chemical characteristics; total dissolved solids, total hardness,chloride, nitrate, electrical conductance, sodium, fluorideand potassium, pH, turbidity, temperature were analyzed and observed values were compared with standard values recommended by Indian standard and World Health Organization. Most of parameter show higher value than permissible limit in pre and post monsoon. Water quality index study showed that drinking water in Amer (221.58,277.70, Lalawas (362.74,396.67, Jaisinghpura area (286.00,273.78 were found to be highly contaminated due to high value of total dissolved solids, electrical conductance, total hardness, chloride, nitrate and sodium.Saipura (122.52, 131.00, Naila (120.25, 239.86, Galta (160.9, 204.1 were found to be moderately contaminated for both monsoons. People dependent on this water may prone to health hazard. Therefore some effective measures are urgently required to enhance the quality of water in these areas.

  1. Seasonal variations of ground water quality and its agglomerates by water quality index

    International Nuclear Information System (INIS)

    Sharma, S.; Chhipa, R.C.

    2016-01-01

    Water is a unique natural resource among all sources available on earth. It plays an important role in economic development and the general well-being of the country. This study aimed at using the application of water quality index in evaluating the ground water quality in north-east area of Jaipur in pre and post monsoon for public usage. Total eleven physico–chemical characteristics; total dissolved solids, total hardness,chloride, nitrate, electrical conductance, sodium, fluoride and potassium, p H, turbidity, temperature) were analyzed and observed values were compared with standard values recommended by Indian standard and World Health Organization. Most of parameter show higher value than permissible limit in pre and post monsoon. Water quality index study showed that drinking water in Amer (221.58,277.70), Lalawas (362.74,396.67), Jaisinghpura area (286.00, 273.78) were found to be highly contaminated due to high value of total dissolved solids, electrical conductance, total hardness, chloride, nitrate and sodium. Saipura (122.52, 131.00), Naila (120.25, 239.86), Galta (160.9, 204.1) were found to be moderately contaminated for both monsoons. People dependent on this water may prone to health hazard. Therefore some effective measures are urgently required to enhance the quality of water in these areas.

  2. Programmatic Environmental Impact Statement for the Uranium Mill Tailings Remedial Action Ground Water Project

    International Nuclear Information System (INIS)

    1993-09-01

    Public concern regarding the potential human health and environmental effects from uranium mill tailings led Congress to pass the Uranium Mill Tailings Radiation Control Act (UMTRCA) (Public Law 95-604) in 1978. In the UMTRCA, Congress acknowledged the potentially harmful health effects associated with uranium mill tailings at 24 abandoned uranium mill processing sites needing remedial action. Uranium processing activities at most of the 24 mill processing sites resulted in the formation of contaminated ground water beneath and, in some cases, downgradient of the sites. This contaminated ground water often has elevated levels of hazardous constituents such as uranium and nitrate. The purpose of the Ground Water Project is to protect human health and the environment by meeting EPA-proposed standards in areas where ground water has been contaminated with constituents from UMTRA Project sites. A major first step in the UMTRA Ground Water Project is the preparation of this Programmatic Environmental Impact Statement (PEIS). This document analyzes potential impacts of the alternatives, including the proposed action. These alternatives are programmatic in that they are plans for conducting the UMTRA Ground Water Project. The alternatives do not address site-specific ground water compliance. This PEIS is a planning document that will provide a framework for conducting the Ground Water Project; assess the potential programmatic and environmental impacts of conducting the UMTRA Ground Water Project; provide a method for determining the site-specific ground water compliance strategies; and provide data and information that can be used to prepare site-specific environmental impacts analyses documents more efficiently

  3. Ground-water hydrology of the Punjab region of West Pakistan, with emphasis on problems caused by canal irrigation

    Science.gov (United States)

    Greenman, D.W.; Swarzenski, W.V.; Bennett, G.D.

    1967-01-01

    that the scientific management of this ground-water reservoir is the key to permanent irrigation agriculture in the Punjab. The West Pakistan Water .and Power Development Authority has prepared a long-range program for reclaiming the irrigated lands of the Punjab. The essential feature of this program is a proposed network of tubewells (drilled wells) located with an .average density of about one per square mile. Groundwater withdrawals will serve the dual purpose of helping to supply irrigation requirements and of providing subsurface drainage. Despite the feasibility and inherent advantages of tubewell reclamation methods, it is inevitable that just as the superposition of the canal system on the native environment caused undesirable side effects, large-scale ground-water withdrawals again will disturb the hydrologic regimen. The distribtution of withdrawals and maintenance of a favorable salt balance are two distinct, but related aspects of the ground-water budget that present potential hazards that must be considered in the design and management of the tubewell projects. The availability of ground water for irrigation diminishes from northeast to southwest, or downgradient along the doab (an area lying between two rivers) and is negligible in the centers of the lower parts of the doabs, where the ground water is too highly mineralized for use. Ground-water supplies must be developed in areas where they are available and it might become necessary, under a program of maximum exploitation of ground-water resources, to transfer supplies from outside sources to points of use in the lower parts of the doabs. Several factors inherent in the tubewell system will tend to depreciate the quality of ground water with time. Among these are the addition of salts leached from the soils, increased concentration of salts due .to repeated cycles of recirculation, and the possible lateral and upward encroachment of saline water in response to pumping. It is reasonably ce

  4. Geodatabase compilation of hydrogeologic, remote sensing, and water-budget-component data for the High Plains aquifer, 2011

    Science.gov (United States)

    Houston, Natalie A.; Gonzales-Bradford, Sophia L.; Flynn, Amanda T.; Qi, Sharon L.; Peterson, Steven M.; Stanton, Jennifer S.; Ryter, Derek W.; Sohl, Terry L.; Senay, Gabriel B.

    2013-01-01

    The High Plains aquifer underlies almost 112 million acres in the central United States. It is one of the largest aquifers in the Nation in terms of annual groundwater withdrawals and provides drinking water for 2.3 million people. The High Plains aquifer has gained national and international attention as a highly stressed groundwater supply primarily because it has been appreciably depleted in some areas. The U.S. Geological Survey has an active program to monitor the changes in groundwater levels for the High Plains aquifer and has documented substantial water-level changes since predevelopment: the High Plains Groundwater Availability Study is part of a series of regional groundwater availability studies conducted to evaluate the availability and sustainability of major aquifers across the Nation. The goals of the regional groundwater studies are to quantify current groundwater resources in an aquifer system, evaluate how these resources have changed over time, and provide tools to better understand a systems response to future demands and environmental stresses. The purpose of this report is to present selected data developed and synthesized for the High Plains aquifer as part of the High Plains Groundwater Availability Study. The High Plains Groundwater Availability Study includes the development of a water-budget-component analysis for the High Plains completed in 2011 and development of a groundwater-flow model for the northern High Plains aquifer. Both of these tasks require large amounts of data about the High Plains aquifer. Data pertaining to the High Plains aquifer were collected, synthesized, and then organized into digital data containers called geodatabases. There are 8 geodatabases, 1 file geodatabase and 7 personal geodatabases, that have been grouped in three categories: hydrogeologic data, remote sensing data, and water-budget-component data. The hydrogeologic data pertaining to the northern High Plains aquifer is included in three separate

  5. Age of ground water and the origin of its salinity in the Leba region

    International Nuclear Information System (INIS)

    Kwaterkiewicz, A.; Sadurski, A.; Zuber, A.

    1999-01-01

    Intensive exploitation of ground waters in the Leba region caused a strong increase of salinity, which on the basis of hydrochemistry, was supposed to result from the intrusion of the Baltic Sea water. Environmental isotope data revealed that water in the tertiary sediments is of glacial origin and its salinity is related to the admixture of ascending older waters. (author)

  6. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site near Naturita, Colorado

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-08-01

    The Uranium Mill Tailings Remedial Action (UMTRA) Project consists of the Surface Project (phase I), and the Ground Water Project (phase II). For the UMTRA Project site located near Naturita, Colorado (the Naturita site), phase I involves the removal of radioactively contaminated soils and materials and their transportation to a disposal site at Union Carbide Corporation`s Upper Burbank Repository at Uravan, Colorado, about 13 road miles (mi) (21 kilometers [km]) to the northwest. No uranium mill tailings are involved because the tailings were removed from the Naturita site and placed at Coke Oven, Colorado, during 1977 to 1979. Phase II of the project will evaluate the nature and extent of ground water contamination resulting from uranium processing and its effect on human health or the environment; and will determine site-specific ground water compliance strategies in accordance with the US Environmental Protection Agency (EPA) ground water standards established for the UMTRA Project. Human health risks could occur from drinking water pumped from a hypothetical well drilled in the contaminated ground water area. Environmental risks may result if plants or animals are exposed to contaminated ground water, or surface water that has received contaminated ground water. Therefore, a risk assessment is conducted for the Naturita site. This risk assessment report is the first site-specific document prepared for the Ground Water Project at the Naturita site. What follows is an evaluation of current and possible future impacts to the public and the environment from exposure to contaminated ground water. The results of this evaluation and further site characterization will be used to determine whether any action is needed to protect human health or the environment.

  7. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site near Naturita, Colorado

    International Nuclear Information System (INIS)

    1995-08-01

    The Uranium Mill Tailings Remedial Action (UMTRA) Project consists of the Surface Project (phase I), and the Ground Water Project (phase II). For the UMTRA Project site located near Naturita, Colorado (the Naturita site), phase I involves the removal of radioactively contaminated soils and materials and their transportation to a disposal site at Union Carbide Corporation's Upper Burbank Repository at Uravan, Colorado, about 13 road miles (mi) (21 kilometers [km]) to the northwest. No uranium mill tailings are involved because the tailings were removed from the Naturita site and placed at Coke Oven, Colorado, during 1977 to 1979. Phase II of the project will evaluate the nature and extent of ground water contamination resulting from uranium processing and its effect on human health or the environment; and will determine site-specific ground water compliance strategies in accordance with the US Environmental Protection Agency (EPA) ground water standards established for the UMTRA Project. Human health risks could occur from drinking water pumped from a hypothetical well drilled in the contaminated ground water area. Environmental risks may result if plants or animals are exposed to contaminated ground water, or surface water that has received contaminated ground water. Therefore, a risk assessment is conducted for the Naturita site. This risk assessment report is the first site-specific document prepared for the Ground Water Project at the Naturita site. What follows is an evaluation of current and possible future impacts to the public and the environment from exposure to contaminated ground water. The results of this evaluation and further site characterization will be used to determine whether any action is needed to protect human health or the environment

  8. Groundwater levels, geochemistry, and water budget of the Tsala Apopka Lake system, west-central Florida, 2004–12

    Science.gov (United States)

    McBride, W. Scott; Metz, Patricia A.; Ryan, Patrick J.; Fulkerson, Mark; Downing, Harry C.

    2017-12-18

    , and the Upper Floridan aquifer; and to estimate an annual water budget for each pool and for the entire lake system for 2004–12. The hydrologic interactions were evaluated using hydraulic head and geochemical data. Geochemical data, including major ion, isotope, and age-tracer data, were used to evaluate sources of water and to distinguish flow paths. Hydrologic connection of the surficial environment (lakes, ponds, wetlands, and the surficial aquifer) was quantified on the basis of a conceptualized annual water-budget model. The model included the change in surface water and groundwater storage, precipitation, evapotranspiration, surface-water inflow and outflow, and net groundwater exchange with the underlying Upper Floridan aquifer. The control volume for each pool extended to the base of the surficial aquifer and covered an area defined to exceed the maximum inundated area for each pool during 2004–12 by 0.5 foot. Net groundwater flow was computed as a lumped value and was either positive or negative, with a negative value indicating downward or lateral leakage from the control volume and a positive value indicating upward leakage to the control volume.The annual water budget for Tsala Apopka Lake was calculated using a combination of field observations and remotely sensed data for each of three pools and for the composite three pool area. A digital elevation model at a 5-foot grid spacing and bathymetric survey data were used to define the land-surface elevation and volume of each pool and to calculate the changes in inundated area with change in lake stage. Continuous lake-stage and groundwater-level data were used to define the change in storage for each pool. The rainfall data used in the water-budget calculations were based on daily radar reflectance data and measured rainfall from weather stations. Evapotranspiration was computed as a function of reference evapotranspiration, adjusted to actual evapotranspiration using a monthly land-cover coefficient

  9. Ground-water and geohydrologic conditions in Queens County, Long Island, New York

    Science.gov (United States)

    Soren, Julian

    1971-01-01

    Queens County is a heavily populated borough of New York City, at the western end of Long Island, N. Y., in which large amounts of ground water are used, mostly for public supply. Ground water, pumped from local aquifers, by privately owned water-supply companies, supplied the water needs of about 750,000 of the nearly 2 million residents of the county in 1967; the balance was supplied by New York City from surface sources outside the county in upstate New York. The county's aquifers consist of sand and gravel of Late Cretaceous and of Pleistocene ages, and the aquifers comprise a wedge-shaped ground-water reservoir lying on a southeastward-sloping floor of Precambrian(?) bedrock. Beds of clay and silt generally confine water in the deeper parts of the reservoir; water in the deeper aquifers ranges from poorly confined to well confined. Wisconsin-age glacial deposits in the uppermost part of the reservoir contain ground water under water-table conditions. Ground water pumpage averaged about 60 mgd (million gallons per day) in Queens County from about 1900 to 1967. Much of the water was used in adjacent Kings County, another borough of New York City, prior to 1950. The large ground-water withdrawal has resulted in a wide-spread and still-growing cone of depression in the water table, reflecting a loss of about 61 billion gallons of fresh water from storage. Significant drawdown of the water table probably began with rapid urbanization of Queens County in the 1920's. The county has been extensively paved, and storm and sanitary sewers divert water, which formerly entered the ground, to tidewater north and south of the county. Natural recharge to the aquifers has been reduced to about one half of the preurban rate and is below the withdrawal rate. Ground-water levels have declined more than 40. feet from the earliest-known levels, in 1903, to 1967, and the water table is below sea level in much of the county. The aquifers are being contaminated by the movement of

  10. Hydrochemical and Isotopic Assessment of Ground Water in Eastern Desert, Egypt

    International Nuclear Information System (INIS)

    Atiti, S.Y.; Ali, M.M.; Yousef, L.A.; Dessouki, H.A.

    2011-01-01

    The recharge rate is the most critical factor to ground water resources especially in semi- arid and arid areas. Fourteen representative ground water samples were collected from South Eastern Desert of Egypt and subjected to chemical and isotopic composition. The chemical data reported that, the alkalinity (ph) ranges between 6.5 and 8.5, the salinity of water ranges between 396 and 7874 ppm, sodium is the most dominant cation and chloride is the most dominant anion. The concentration of trace elements (Fe, Pb, Cd, Ni, Cu, Zn, and Mn) was analyzed to evaluate the suitability for drinking and irrigation. Uranium and thorium concentrations were found within the safe limit. Most of ground water was found suitable for drinking water, laundry, irrigation, building, industrial, livestock and poultry. The environmental stable isotopes (D and 18 O) and the radioactive isotope 3 H were evaluated for water samples of the investigated area to focus on the origin of the ground water, sources of recharging and the water rock interaction between aquifers and water. The isotopic compositions of these ground water samples indicated that, there are three different sources of recharge; paleo-water, local precipitation and rain water

  11. Nutrient Enrichment in Estuaries from Discharge of Shallow Ground Water, Mt. Desert Island, Maine

    Science.gov (United States)

    Culbertson, Charles W.; Huntington, Thomas G.; Caldwell, James M.

    2007-01-01

    Nutrient enrichment from atmospheric deposition, agricultural activities, wildlife, and domestic sources is a concern at Acadia National Park because of the potential problem of water-quality degradation and eutrophication in its estuaries. Water-quality degradation has been observed at the Park?s Bass Harbor Marsh estuary but not in Northeast Creek estuary. Previous studies at Acadia National Park have estimated nutrient inputs to estuaries from atmospheric deposition and surface-water runoff, but the importance of shallow ground water that may contain nutrients derived from domestic or other sources is unknown. Northeast Creek and Bass Harbor Marsh estuaries were studied to (1) identify shallow ground-water seeps, (2) assess the chemistry of the water discharged from selected seeps, and (3) assess the chemistry of ground water in shallow ground-water hyporheic zones. The hyporheic zone is defined here as the region beneath and lateral to a stream bed, where there is mixing of shallow ground water and surface water. This study also provides baseline chemical data for ground water in selected bedrock monitoring wells and domestic wells on Mt. Desert Island. Water samples were analyzed for concentrations of nutrients, wastewater compounds, dissolved organic carbon, pH, dissolved oxygen, temperature and specific conductance. Samples from bedrock monitoring wells also were analyzed for alkalinity, major cations and anions, and trace metals. Shallow ground-water seeps to Northeast Creek and Bass Harbor Marsh estuaries at Acadia National Park were identified and georeferenced using aerial infrared digital imagery. Monitoring included the deployment of continuously recording temperature and specific conductance sensors in the seep discharge zone to access marine or freshwater signatures related to tidal flooding, gradient-driven shallow ground-water flow, or shallow subsurface flow related to precipitation events. Many potential shallow ground-water discharge zones were

  12. Use of tree-ring chemistry to document historical ground-water contamination events

    Science.gov (United States)

    Vroblesky, Don A.; Yanosky, Thomas M.

    1990-01-01

    The annual growth rings of tulip trees (Liriodendron tulipifera L.) appear to preserve a chemical record of ground-water contamination at a landfill in Maryland. Zones of elevated iron and chlorine concentrations in growth rings from trees immediately downgradient from the landfill are closely correlated temporally with activities in the landfill expected to generate iron and chloride contamination in the ground water. Successively later iron peaks in trees increasingly distant from the landfill along the general direction of ground-water flow imply movement of iron-contaminated ground water away from the landfill. The historical velocity of iron movement (2 to 9 m/yr) and chloride movement (at least 40 m/yr) in ground water at the site was estimated from element-concentration trends of trees at successive distances from the landfill. The tree-ring-derived chloride-transport velocity approximates the known ground-water velocity (30 to 80 m/yr). A minimum horizontal hydraulic conductivity (0.01 to .02 cm/s) calculated from chloride velocity agrees well with values derived from aquifer tests (about 0.07 cm/s) and from ground-water modeling results (0.009 to 0.04 cm/s).

  13. Colloid Detection in Natural Ground Water from Ruprechtov by Laser-Induced Breakdown Detection

    Energy Technology Data Exchange (ETDEWEB)

    Hauser, W.; Geckeis, H.; Goetz, R. [FZK - Inst. fuer Nukleare Entsorgung, Ka rlsruhe (Germany)]. e-mail: hauser@ine.fzk.de; Noseck, U. [Gesellschaft fuer Anlagen- und Reaktorsicherheit, D-38122 Braunschweig (Germany); Laciok, A. [Nuclear Research Inst. Rez plc, Waste and Environmental Management Dept., Husinec-Rez, PSC 250 68 (Czech Republic)

    2007-06-15

    A borehole ground water sampling system and a mobile laser-induced breakdown detection (LIBD) equipment for colloid detection combined with a geomonitoring unit have been applied to characterize the natural background colloid concentration in ground waters of the Ruprechtov natural analogue site (Czech Republic). Ground water has been sampled using steel cylinders. To minimize artifacts during ground water sampling the contact to atmospheric oxygen has been excluded. The ground water samples collected in this way are transported to the laboratory where they have been connected to a series of flow-through detection cells. Argon gas is used to press the ground water through these detection cells for colloid analysis (LIBD), pH, Eh, electrical conductivity and oxygen content. After the above mentioned analysis additional samples are taken for chemical analysis by ICP-AES, ICP-MS, IC- and DOC-detection. Our data obtained by in-situ- and laboratory- measurements point out that the natural colloid concentration found at the Ruprechtov site is a strong function of the ground water ionic strength. The LIBD determined natural background colloid concentrations found at Ruprechtov are compared with data of studies performed in Aespoe (Sweden) and Grimsel (Switzerland)

  14. Volcanic aquifers of Hawai‘i—Hydrogeology, water budgets, and conceptual models

    Science.gov (United States)

    Izuka, Scot K.; Engott, John A.; Rotzoll, Kolja; Bassiouni, Maoya; Johnson, Adam G.; Miller, Lisa D.; Mair, Alan

    2016-06-13

    Hawai‘i’s aquifers have limited capacity to store fresh groundwater because each island is small and surrounded by saltwater. Saltwater also underlies much of the fresh groundwater. Fresh groundwater resources are, therefore, particularly vulnerable to human activity, short-term climate cycles, and long-term climate change. Availability of fresh groundwater for human use is constrained by the degree to which the impacts of withdrawal—such as lowering of the water table, saltwater intrusion, and reduction in the natural discharge to springs, streams, wetlands, and submarine seeps—are deemed acceptable. This report describes the hydrogeologic framework, groundwater budgets (inflows and outflows), conceptual models of groundwater occurrence and movement, and the factors limiting groundwater availability for the largest and most populated of the Hawaiian Islands—Kaua‘i, O‘ahu, Maui, and Hawai‘i Island.The bulk of each of Hawai‘i’s islands is built of many thin lava flows erupted from shield volcanoes; the great piles of lava flows form highly permeable aquifers. In some areas, low-permeability dikes cutting across the lava flows, or low-permeability ash and soil horizons interlayered with the lava flows, can substantially alter groundwater flow. On some islands, sedimentary rocks form thick semiconfining coastal-plain deposits, locally known as caprock, that impede natural groundwater discharge to the ocean. In some regions, thick lava flows that ponded in preexisting depressions form aquifers that are much less permeable than aquifers formed by thin lava flows.Fresh groundwater inflow to Hawai‘i’s aquifers comes from recharge. For predevelopment conditions (1870), estimates of groundwater recharge from this study are 871, 675, 1,279, and 5,291 million gallons per day (Mgal/d) for Kaua‘i, O‘ahu, Maui, and Hawai‘i Island, respectively. Estimates of recharge for recent conditions (2010 land cover and 1978–2007 rainfall for Kaua‘i, O

  15. Simulation of Ground-Water Flow and Effects of Ground-Water Irrigation on Base Flow in the Elkhorn and Loup River Basins, Nebraska

    Science.gov (United States)

    Peterson, Steven M.; Stanton, Jennifer S.; Saunders, Amanda T.; Bradley, Jesse R.

    2008-01-01

    Irrigated agriculture is vital to the livelihood of communities in the Elkhorn and Loup River Basins in Nebraska, and ground water is used to irrigate most of the cropland. Concerns about the sustainability of ground-water and surface-water resources have prompted State and regional agencies to evaluate the cumulative effects of ground-water irrigation in this area. To facilitate understanding of the effects of ground-water irrigation, a numerical computer model was developed to simulate ground-water flow and assess the effects of ground-water irrigation (including ground-water withdrawals, hereinafter referred to as pumpage, and enhanced recharge) on stream base flow. The study area covers approximately 30,800 square miles, and includes the Elkhorn River Basin upstream from Norfolk, Nebraska, and the Loup River Basin upstream from Columbus, Nebraska. The water-table aquifer consists of Quaternary-age sands and gravels and Tertiary-age silts, sands, and gravels. The simulation was constructed using one layer with 2-mile by 2-mile cell size. Simulations were constructed to represent the ground-water system before 1940 and from 1940 through 2005, and to simulate hypothetical conditions from 2006 through 2045 or 2055. The first simulation represents steady-state conditions of the system before anthropogenic effects, and then simulates the effects of early surface-water development activities and recharge of water leaking from canals during 1895 to 1940. The first simulation ends at 1940 because before that time, very little pumpage for irrigation occurred, but after that time it became increasingly commonplace. The pre-1940 simulation was calibrated against measured water levels and estimated long-term base flow, and the 1940 through 2005 simulation was calibrated against measured water-level changes and estimated long-term base flow. The calibrated 1940 through 2005 simulation was used as the basis for analyzing hypothetical scenarios to evaluate the effects of

  16. Sampling and analysis for radon-222 dissolved in ground water and surface water

    Science.gov (United States)

    DeWayne, Cecil L.; Gesell, T.F.

    1992-01-01

    Radon-222 is a naturally occurring radioactive gas in the uranium-238 decay series that has traditionally been called, simply, radon. The lung cancer risks associated with the inhalation of radon decay products have been well documented by epidemiological studies on populations of uranium miners. The realization that radon is a public health hazard has raised the need for sampling and analytical guidelines for field personnel. Several sampling and analytical methods are being used to document radon concentrations in ground water and surface water worldwide but no convenient, single set of guidelines is available. Three different sampling and analytical methods - bubbler, liquid scintillation, and field screening - are discussed in this paper. The bubbler and liquid scintillation methods have high accuracy and precision, and small analytical method detection limits of 0.2 and 10 pCi/l (picocuries per liter), respectively. The field screening method generally is used as a qualitative reconnaissance tool.

  17. Progress toward the development of a ground-water velocity model for the radioactive waste management facility, Savannah River Plant, South Carolina: Quarterly report

    International Nuclear Information System (INIS)

    Parizek, R.R.; Root, R.W. Jr.

    1984-01-01

    This report presents the status and results of work performed to develop a numerical groundwater velocity model for the radioactive waste management facility at the Savannah River Plant (SRP). Work dealt with developing a hydrologic budget for the McQueen Branch drainage basin. Two hydrologic budgets were developed, covering two periods of time. The first period was from November 1, 1982 to May 19, 1984; the second period was from March 1, 1983 to March 31, 1984. Total precipitation for this period was 52.48 inches, all as rainfall. Water levels measured in wells in the basin quarterly, monthly, and continuously showed basically the same response over the period of the study. Maximum fluctuation of water levels of wells in the basin was five to seven feet during the study. Stream discharge measurements in McQueen Branch showed base flow varying between 1.5 and 5.7 cfs. Lowest base flow occurred during the summer, when evapotranspiration was greatest. Some impact of daily ground-water evapotranspiration from the Branch floodplain was seen in continuous stream records. These daily effects peaked in magnitude during the summer, disappeared during winter, and gradually returned during spring. Underflow past the Branch gauging station out of the basin was determined to be negligible. Leakage downward through the Green Clay is difficult to determine but is believed to be small, based on the overall results of the budget study

  18. Carbon budgets for two Portuguese estuaries: implications for the management and conservation of coastal waters

    Directory of Open Access Journals (Sweden)

    Ana P. Oliveira

    2014-07-01

    The results presented illustrate that Tagus and Sado estuaries represent an important land/ocean boundary for carbon transformation and emission, and confirm the anthropogenic pressure that these estuaries are subject to. Carbon budgets vary markedly within and between these two estuaries reflecting the human pressure. Anthropogenic inputs, autochthonous carbon production and primary production are indicated as the main responsible for the carbon production within the estuaries. Both estuaries export carbon to the ocean and to the atmosphere. The inorganic carbon faction has a major role in the carbon budget, enriching the ocean in carbon dioxide, contributing this for the greenhouse effect. Our understanding of organic and inorganic carbon fluxes in Tagus and Sado estuaries is vital for an efficient protection and preservation of such ecosystems being helpful in limit human-caused damage and in restoring damaged estuarine/coastal ecosystems. In addition, the economic impact of the carbon fluxes to the atmosphere, estimated as €375,000 per year, creates the appropriate incentives to reduce emissions and shift them to higher-value uses. Suggesting, therefore, a coastal management re-oriented towards a more adaptive approach through the use of carbon market-based policies. This study is a contribution to the integration of coastal and global carbon cycles. However, additional efforts are required to fully merge other components subsystems, such as salt marshes, with these budgets. Moreover, a fully comprehension of the community metabolism in these estuaries will greatly improve this integration.

  19. Projected Impact of Climate Change on the Water and Salt Budgets of the Arctic Ocean by a Global Climate Model

    Science.gov (United States)

    Miller, James R.; Russell, Gary L.

    1996-01-01

    The annual flux of freshwater into the Arctic Ocean by the atmosphere and rivers is balanced by the export of sea ice and oceanic freshwater. Two 150-year simulations of a global climate model are used to examine how this balance might change if atmospheric greenhouse gases (GHGs) increase. Relative to the control, the last 50-year period of the GHG experiment indicates that the total inflow of water from the atmosphere and rivers increases by 10% primarily due to an increase in river discharge, the annual sea-ice export decreases by about half, the oceanic liquid water export increases, salinity decreases, sea-ice cover decreases, and the total mass and sea-surface height of the Arctic Ocean increase. The closed, compact, and multi-phased nature of the hydrologic cycle in the Arctic Ocean makes it an ideal test of water budgets that could be included in model intercomparisons.

  20. Ground Water Recharge Estimation Using Water Table Fluctuation Method And By GIS Applications

    Science.gov (United States)

    Vajja, V.; Bekkam, V.; Nune, R.; M. v. S, R.

    2007-05-01

    Quite often it has become a debating point that how much recharge is occurring to the groundwater table through rainfall on one hand and through recharge structures such as percolation ponds and checkdams on the other. In the present investigations Musi basin of Andhra Pradesh, India is selected for study during the period 2005-06. Pre-monsoon and Post-monsoon groundwater levels are collected through out the Musi basin at 89 locations covering an area11, 291.69 km2. Geology of the study area and rainfall data during the study period has been collected. The contour maps of rainfall and the change in groundwater level between Pre-monsoon and Post- monsoon have been prepared. First the change in groundwater storage is estimated for each successive strips of areas enclosed between two contours of groundwater level fluctuations. In this calculation Specific yield (Sy) values are adopted based on the local Geology. Areas between the contours are estimated through Arc GIS software package. All such storages are added to compute the total storage for the entire basin. In order to find out the percent of rainfall converted into groundwater storage as well as to find out the ground water recharge due to storageponds, a contour map of rainfall for the study area is prepared and areas between successive contours have been calculated. Based on the Geology map, Infiltration values are adopted for each successive strip of the contour area. Then the amount of water infiltrated into the ground is calculated by adjusting the infiltration values for each strip, so that the total infiltrated water for the entire basin is matched with change in Ground water storage, which is 1314.37 MCM for the upper Musi basin while it is 2827.29 MCM for entire Musi basin. With this procedure on an average 29.68 and 30.66 percent of Rainfall is converted into Groundwater recharge for Upper Musi and for entire Musi basin respectively. In the total recharge, the contribution of rainfall directly to

  1. General and Localized corrosion of Austenitic and Borated Stainless Steels in Simulated Concentrated Ground Waters

    International Nuclear Information System (INIS)

    Fix, D.; Estill, J.; Wong, L.; Rebak, R.

    2004-01-01

    Boron containing stainless steels are used in the nuclear industry for applications such as spent fuel storage, control rods and shielding. It was of interest to compare the corrosion resistance of three borated stainless steels with standard austenitic alloy materials such as type 304 and 316 stainless steels. Tests were conducted in three simulated concentrated ground waters at 90 C. Results show that the borated stainless were less resistant to corrosion than the witness austenitic materials. An acidic concentrated ground water was more aggressive than an alkaline concentrated ground water

  2. Ground water monitoring strategies at the Weldon Spring Site, Weldon Spring, Missouri

    International Nuclear Information System (INIS)

    Meyer, K.A. Jr.

    1988-01-01

    This paper presents ground water monitoring strategies at the Weldon Spring Site in east-central Missouri. The Weldon Spring Site is a former ordnance works and uranium processing facility. In 1987, elevated levels of inorganic anions and nitroaromatics were detected in ground water beneath the site. Studies are currently underway to characterize the hydrogeologic regime and to define ground water contamination. The complex hydrogeology at the Weldon Spring Site requires innovative monitoring strategies. Combinations of fracture and conduit flow exist in the limestone bedrock. Perched zones are also present near surface impoundments. Losing streams and springs surround the site. Solving this complex combination of hydrogeologic conditions is especially challenging

  3. Implications of an assessment of potential organic contamination of ground water at an inactive uranium mill

    International Nuclear Information System (INIS)

    Price, J.B.

    1986-01-01

    Laws and regulations concerning remedial actions at inactive uranium mills explicitly recognize radiological and nonradiological hazards and may implicitly recognize the potential presence of hazardous wastes at these mill sites. Ground-water studies at the sites have placed an increasing emphasis on screening for priority pollutants. The Grand Junction, Colorado, mill site was deemed to have a high potential for the presence of organic compounds in ground water, and was chosen as a prototype for assessing the presence of organic compounds in ground water at inactive sites. Lessons learned from the assessment of organics at the Grand Junction site were used to develop a screening procedure for other inactive mill sites

  4. Ground Water Quality Determination of former Lake Haramaya ...

    African Journals Online (AJOL)

    Michael Horsfall

    Dawa Water Bureau laboratory and Haramaya University laboratory. ... total colifoms above the guideline value and it reveal the necessity of treatment before use. ... Harer Town Water Supply and Sewerage Authority. ..... The small TDS value.

  5. Flow and geochemistry along shallow ground-water flowpaths in an agricultural area in southeastern Wisconsin

    Science.gov (United States)

    Saad, D.A.; Thorstenson, D.C.

    1998-01-01

    Water-quality and geohydrologic data were collected from 19 monitor wells and a stream in an agricultural area in southeastern Wisconsin. These sites were located along a 2,700-ft transect from a local ground-water high to the stream. The transect is approximately parallel to the horizontal direction of ground-water flow at the water table. Most of the wells were installed in unconsolidated deposits at five locations along the transect and include an upgradient well nest, a midgradient well nest, a downgradient well nest, wells in the lowland area near the stream, and wells installed in the stream bottom. The data collected from this study site were used to describe the water quality and geohydrology of the area and to explain and model the variations in water chemistry along selected ground-water flowpaths.

  6. Grounding Water: Building Conceptual Understanding through Multimodal Assessment

    Science.gov (United States)

    Schwartz, Kerry L.; Thomas-Hilburn, Holly; Haverland, Arin

    2011-01-01

    The world's population is growing by about 80 million people a year, implying an estimated increased freshwater demand of about 64 billion cubic meters annually (World Water Assessment Programme, 2009, Water in a Changing World: United Nations World Water Development Report 3, Chap. 1, p. 3-21). Groundwater depletion, which reduces the amount of…

  7. Questa baseline and pre-mining ground-water quality investigation. 5. Well installation, water-level data, and surface- and ground-water geochemistry in the Straight Creek drainage basin, Red River Valley, New Mexico, 2001-03

    Science.gov (United States)

    Naus, Cheryl A.; McCleskey, R. Blaine; Nordstrom, D. Kirk; Donohoe, Lisa C.; Hunt, Andrew G.; Paillet, Frederick L.; Morin, Roger H.; Verplanck, Philip L.

    2005-01-01

    The U.S. Geological Survey, in cooperation with the New Mexico Environment Department, is investigating the pre-mining ground-water chemistry at the Molycorp molybdenum mine in the Red River Valley, northern New Mexico. The primary approach is to determine the processes controlling ground-water chemistry at an unmined, off-site, proximal analog. The Straight Creek drainage basin, chosen for this purpose, consists of the same quartz-sericite-pyrite altered andesitic and rhyolitic volcanic rock of Tertiary age as the mine site. The weathered and rugged volcanic bedrock surface is overlain by heterogeneous debris-flow deposits that interfinger with alluvial deposits near the confluence of Straight Creek and the Red River. Pyritized rock in the upper part of the drainage basin is the source of acid rock drainage (pH 2.8-3.3) that infiltrates debris-flow deposits containing acidic ground water (pH 3.0-4.0) and bedrock containing water of circumneutral pH values (5.6-7.7). Eleven observation wells were installed in the Straight Creek drainage basin. The wells were completed in debris-flow deposits, bedrock, and interfingering debris-flow and Red River alluvial deposits. Chemical analyses of ground water from these wells, combined with chemical analyses of surface water, water-level data, and lithologic and geophysical logs, provided information used to develop an understanding of the processes contributing to the chemistry of ground water in the Straight Creek drainage basin. Surface- and ground-water samples were routinely collected for determination of total major cations and selected trace metals; dissolved major cations, selected trace metals, and rare-earth elements; anions and alkalinity; and dissolved-iron species. Rare-earth elements were determined on selected samples only. Samples were collected for determination of dissolved organic carbon, mercury, sulfur isotopic composition (34S and 18O of sulfate), and water isotopic composition (2H and 18O) during

  8. Hydrogeology and simulation of ground-water flow near the Lantana Landfill, Palm Beach County, Florida

    Science.gov (United States)

    Russell, G.M.; Wexler, E.J.

    1993-01-01

    The Lantana landfill in Palm Beach County has a surface that is 40 to 50 feet above original ground level and consists of about 250 acres of compacted garbage and trash. Parts of the landfill are below the water table. Surface-resistivity measurements and water-quality analyses indicate that leachate-enriched ground water along the eastern perimeter of the landfill has moved about 500 feet eastward toward an adjacent lake. Concentrations of chloride and nutrients within the leachate-enriched ground water were greater than background concentrations. The surficial aquifer system in the area of the landfill consists primarily of sand of moderate permeability, from land surface to a depth of about 68 feet deep, and consists of sand interbedded with sandstone and limestone of high permeability from a depth of about 68 feet to a depth of 200 feet. The potentiometric surface in the landfill is higher than that in adjacent areas to the east, indicating ground-water movement from the landfill toward a lake to the east. Steady-state simulation of ground-water flow was made using a telescoping-grid technique where a model covering a large area is used to determine boundaries and fluxes for a finer scale model. A regional flow model encompassing a 500-square mile area in southeastern Palm Beach County was used to calculate ground-water fluxes in a 126.5-square mile subregional area. Boundary fluxes calculated by the subregional model were then used to calculate boundary fluxes for a local model of the 3.75-square mile area representing the Lantana landfill site and vicinity. Input data required for simulating ground-water flow in the study area were obtained from the regional flow models, thus, effectively coupling the models. Additional simulations were made using the local flow model to predict effects of possible remedial actions on the movement of solutes in the ground-water system. Possible remedial actions simulated included capping the landfill with an impermeable layer

  9. Preliminary report on the geology and ground-water supply of the Newark, New Jersey, area

    Science.gov (United States)

    Herpers, Henry; Barksdale, Henry C.

    1951-01-01

    In the Newark area, ground water is used chiefly for industrial cooling, air-conditioning, general processing, and for sanitary purposes. A small amount is used in the manufacture of beverages. Total ground-water pumpage in Newark is estimated at not less than 20,000,000 gallons daily. The Newark area is underlain by formations of Recent, Pleistocene and Triassic age, and the geology and hydrologic properties of these formations are discussed. Attention is called to the important influence of a buried valley in the rock floor beneath the Newark area on the yield of wells located within it. Data on the fluctuation of the water levels and the variation in pumpage are presented, and their significance discussed. The results of a pumping test made during the investigation were inconclusive. The beneficial results of artificially recharging the aquifers in one part of the area are described. The intrusion of salt water into certain parts of the ground-water body is described and graphically portrayed by a map showing the chloride concentration of the ground water in various parts of the City. Insofar as available data permit, the chemical quality of the ground water is discussed and records are given of the ground-water temperatures in various parts of the City. There has been marked lowering of the water table in the eastern part of the area, accompanied by salt water intrusion, indicating that the safe yield of the formations in this part of Newark has probably been exceeded. It is recommended that the study of the ground-water resources of this area be continued, and that artificial recharging of the aquifers be increased over as wide an area as possible.

  10. Complexity in the validation of ground-water travel time in fractured flow and transport systems

    International Nuclear Information System (INIS)

    Davies, P.B; Hunter, R.L.; Pickens, J.F.

    1991-02-01

    Ground-water travel time is a widely used concept in site assessment for radioactive waste disposal. While ground-water travel time was originally conceived to provide a simple performance measure for evaluating repository sites, its definition in many flow and transport environments is ambiguous. The US Department of Energy siting guidelines (10 CFR 960) define ground-water travel time as the time required for a unit volume of water to travel between two locations, calculated by dividing travel-path length by the quotient of average ground-water flux and effective porosity. Defining a meaningful effective porosity in a fractured porous material is a significant problem. Although the Waste Isolation Pilot Plant (WIPP) is not subject to specific requirements for ground-water travel time, travel times have been computed under a variety of model assumptions. Recently completed model analyses for WIPP illustrate the difficulties in applying a ground-water travel-time performance measure to flow and transport in fractured, fully saturated flow systems. 12 refs., 4 figs

  11. Copepod communities from surface and ground waters in the everglades, south Florida

    Science.gov (United States)

    Bruno, M.C.; Cunningham, K.J.; Perry, S.A.

    2003-01-01

    We studied species composition and individual abundance of copepods in the surficial aquifer northeast of Everglades National Park. We identified the spatial distribution of subsurface habitats by assessing the depth of the high porosity layers in the limestone along a canal system, and we used copepods to assess the exchange between surface water and ground water along canal banks, at levels in the wells where high porosity connections to the canals exist. Surface- and ground-water taxa were defined, and species composition was related to areal position, sampling depth, and time. Subsurface copepod communities were dominated by surface copepods that disperse into the aquifer following the groundwater seepage along canal L-31N. The similarities in species composition between wells along canal reaches, suggest that copepods mainly enter ground water horizontally along canals via active and passive dispersal. Thus, the copepod populations indicate continuous connections between surface- and ground waters. The most abundant species were Orthocyclops modestus, Arctodiaptomus floridanus, Mesocyclops edax, and Thermocyclops parvus, all known in literature from surface habitats; however, these species have been collected in ground water in ENP. Only two stygophiles were collected: Diacylcops nearcticus and Diacyclops crassicaudis brachycercus. Restoration of the Everglades ecosystem requires a mosaic of data to reveal a complete picture of this complex system. The use of copepods as indicators of seepage could be a tool in helping to assess the direction and the duration of surface and ground water exchange.

  12. Complexity in the validation of ground-water travel time in fractured flow and transport systems

    International Nuclear Information System (INIS)

    Davies, P.B.; Hunter, R.L.; Pickens, J.F.

    1991-01-01

    Ground-water travel time is a widely used concept in site assessment for radioactive waste disposal. While ground-water travel time was originally conceived to provide a simple performance measure for evaluating repository sites, its definition in many flow and transport environments is ambiguous. The U.S. Department of Energy siting guidelines (10 CFR 960) define ground-water travel time as the time required for a unit volume of water to travel between two locations, calculated by dividing travel-path length by the quotient of average ground-water flux and effective porosity. Defining a meaningful effective porosity in a fractured porous material is a significant problem. Although the Waste Isolation Pilot Plant (WIPP) is not subject to specific requirements for ground-water travel time, travel times have been computed under a variety of model assumptions. Recently completed model analyses for WIPP illustrate the difficulties in applying a ground-water travel-time performance measure to flow and transport in fractured, fully saturated flow systems. Computer code used: SWIFT II (flow and transport code). 4 figs., 12 refs

  13. ESTCP Cost and Performance Report. In-Situ Bioremediation of MTBE in Ground Water

    National Research Council Canada - National Science Library

    Miller, Karen

    2003-01-01

    ... (methyl-tert-butyl-ether) and other dissolved gasoline components. It was implemented at the Naval Base Ventura County, Port Hueneme, CA to prevent further contamination of ground water by MTBE leaching from gasoline contaminated soils...

  14. IMPACT OF TURBIDITY ON TCE AND DEGRADATION PRODUCTS IN GROUND WATER

    Science.gov (United States)

    Elevated particulate concentrations in ground water samples can bias contaminant concentration data. This has been particularly problematic for metal analyses where artificially increased turbidity levels can affect metals concentrations and confound interpretation of the data. H...

  15. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site near Riverton, Wyoming

    International Nuclear Information System (INIS)

    1994-09-01

    This Risk Assessment evaluated potential impacts to public health or the environment caused by ground water contamination at the former uranium mill processing site. In the first phase of the U.S. Department of Energy's Uranium Mill Tailings Remedial Action (UMTRA) Project, the tailing and other contaminated material at this site were placed in a disposal cell near the Gas Hills Plant in 1990. The second phase of the UMTRA Project is to evaluate ground water contamination. This risk assessment is the first site-specific document to evaluate potential health and environmental risks for the Riverton site under the Ground Water Project; it will help determine whether remedial actions are needed for contaminated ground water at the site

  16. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site near Riverton, Wyoming

    Energy Technology Data Exchange (ETDEWEB)

    1994-09-01

    This Risk Assessment evaluated potential impacts to public health or the environment caused by ground water contamination at the former uranium mill processing site. In the first phase of the U.S. Department of Energy`s Uranium Mill Tailings Remedial Action (UMTRA) Project, the tailing and other contaminated material at this site were placed in a disposal cell near the Gas Hills Plant in 1990. The second phase of the UMTRA Project is to evaluate ground water contamination. This risk assessment is the first site-specific document to evaluate potential health and environmental risks for the Riverton site under the Ground Water Project; it will help determine whether remedial actions are needed for contaminated ground water at the site.

  17. Ground-Water-Quality Data for Selected Wells in the Beaver Creek Watershed, West Tennessee

    National Research Council Canada - National Science Library

    Williams, Shannon D

    1996-01-01

    In 1993 the U.S. Geological Survey, in cooperation with the Tennessee Department of Environment and Conservation, began an investigation of the quality of ground water in the Beaver Creek watershed in West Tennessee...

  18. (Environmental investigation of ground water contamination at Wright-Patterson Air Force Base, Ohio)

    Energy Technology Data Exchange (ETDEWEB)

    1991-10-01

    This report presents information concerning field procedures employed during the monitoring, well construction, well purging, sampling, and well logging at the Wright-Patterson Air Force Base. Activities were conducted in an effort to evaluate ground water contamination.

  19. National Enforcement Initiative: Preventing Animal Waste from Contaminating Surface and Ground Water

    Science.gov (United States)

    This page describes EPA's goal in preventing animal waste from contaminating surface and ground Water. It is an EPA National Enforcement Initiative. Both enforcement cases, and a map of enforcement actions are provided.

  20. Further development of the methodical instruments to calculate ground water movements at repository sites

    International Nuclear Information System (INIS)

    Arens, G.; Clauser, C.; Fein, E.; Karpinski, P.; Storck, R.

    1990-06-01

    In addition to the subsequent requirements concerning the Konrad plan approval procedure, other ground water and propagation calculations were also made. All available programs were used. Simple one- and two-dimensional models were considered for which an analytical solution exists. In some cases such analytical solutions are only approximate under certain conditions. By calculating such simple problems, the programs used were tested and verified, and the use of those programs was reviewed and documented. In addition to the finite-difference program SWIFT and the finite-element program CFEST, two other ground water and propagation programs were applied: 1) Finite-difference program MOL, two-dimensional propagation program for ground water flow; 2) SUTRA, two-dimensional hybrid finite-element and integrated finite-difference model for ground water flow and radionuclide migration. (orig./HP) [de

  1. METHODOLOGY TO EVALUATE THE POTENTIAL FOR GROUND WATER CONTAMINATION FROM GEOTHERMAL FLUID RELEASES

    Science.gov (United States)

    This report provides analytical methods and graphical techniques to predict potential ground water contamination from geothermal energy development. Overflows and leaks from ponds, pipe leaks, well blowouts, leaks from well casing, and migration from injection zones can be handle...

  2. Environmental Assessment of Ground Water Compliance at the Gunnison, Colorado, UMTRA Project Site

    International Nuclear Information System (INIS)

    2002-01-01

    The U.S. Department of Energy (DOE) is in the process of selecting a ground water compliance strategy for the Gunnison, Colorado, Uranium Mill Tailings Remedial Action (UMTRA) Project site. This Environmental Assessment (EA) discusses two alternatives and the effects associated with each. The two alternatives are (1) natural flushing coupled with institutional controls and continued monitoring and (2) no action. The compliance strategy must meet U.S. Environmental Protection Agency (EPA) ground water standards defined in Title 40 ''Code of Federal Regulations'' Part 192, Subpart B, in areas where ground water beneath and around the site is contaminated as a result of past milling operations. It has been determined that contamination in the ground water at the Gunnison site consists of soluble residual radioactive material (RRM) as defined in the Uranium Mill Tailings Radiation Control Act (UMTRCA)

  3. Geologic framework of the regional ground-water flow system in the Upper Deschutes Basin, Oregon

    Science.gov (United States)

    Lite, Kenneth E.; Gannett, Marshall W.

    2002-12-10

    Ground water is increasingly relied upon to satisfy the needs of a growing population in the upper Deschutes Basin, Oregon. Hydrogeologic studies are being undertaken to aid in management of the ground-water resource. An understanding of the geologic factors influencing ground-water flow is basic to those investigations. The geology of the area has a direct effect on the occurrence and movement of ground water. The permeability and storage properties of rock material are influenced by the proportion, size, and degree of interconnection of open spaces the rocks contain. These properties are the result of primary geologic processes such as volcanism and sedimentation, as well as subsequent processes such as faulting, weathering, or hydrothermal alteration. The geologic landscape in the study area evolved during about 30 million years of volcanic activity related to a north-south trending volcanic arc, the current manifestation of which are today’s Cascade Range volcanoes.

  4. Existence of Insecticides in Tap Drinking Surface and Ground Water in Dakahlyia Governorate, Egypt in 2011

    Directory of Open Access Journals (Sweden)

    RA Mandour

    2011-12-01

    Full Text Available Background: The environmental degradation products of pesticides may enter drinking water and result in serious health problems. Objective: To evaluate the occurrence of insecticides in drinking surface and ground water in Dakahlyia Governorate, northern Egypt in 2011. Methods: We studied blood samples collected from 36 consecutive patients diagnosed with pesticides poisoning and 36 tap drinking water (surface and ground. Blood and water samples were analyzed for pesticides using gas chromatography-electron captured detector (GC-ECD. In addition, blood samples were analyzed for plasma pseudo-cholinesterase level (PChE and red blood cells acetyl cholinesterase activity (AChE. Results: The results confirmed the presence of high concentrations of insecticides, including organonitrogenous and organochlorine in tap drinking surface and ground water. Conclusion: Drinking water contaminated with insecticides constitutes an important health concern in Dakahlyia governorate, Egypt.

  5. The early summertime Saharan heat low: sensitivity of the radiation budget and atmospheric heating to water vapour and dust aerosol

    Science.gov (United States)

    Alamirew, Netsanet K.; Todd, Martin C.; Ryder, Claire L.; Marsham, John H.; Wang, Yi

    2018-01-01

    The Saharan heat low (SHL) is a key component of the west African climate system and an important driver of the west African monsoon across a range of timescales of variability. The physical mechanisms driving the variability in the SHL remain uncertain, although water vapour has been implicated as of primary importance. Here, we quantify the independent effects of variability in dust and water vapour on the radiation budget and atmospheric heating of the region using a radiative transfer model configured with observational input data from the Fennec field campaign at the location of Bordj Badji Mokhtar (BBM) in southern Algeria (21.4° N, 0.9° E), close to the SHL core for June 2011. Overall, we find dust aerosol and water vapour to be of similar importance in driving variability in the top-of-atmosphere (TOA) radiation budget and therefore the column-integrated heating over the SHL (˜ 7 W m-2 per standard deviation of dust aerosol optical depth - AOD). As such, we infer that SHL intensity is likely to be similarly enhanced by the effects of dust and water vapour surge events. However, the details of the processes differ. Dust generates substantial radiative cooling at the surface (˜ 11 W m-2 per standard deviation of dust AOD), presumably leading to reduced sensible heat flux in the boundary layer, which is more than compensated by direct radiative heating from shortwave (SW) absorption by dust in the dusty boundary layer. In contrast, water vapour invokes a radiative warming at the surface of ˜ 6 W m-2 per standard deviation of column-integrated water vapour in kg m-2. Net effects involve a pronounced net atmospheric radiative convergence with heating rates on average of 0.5 K day-1 and up to 6 K day-1 during synoptic/mesoscale dust events from monsoon surges and convective cold-pool outflows (haboobs). On this basis, we make inferences on the processes driving variability in the SHL associated with radiative and advective heating/cooling. Depending on the

  6. 40 CFR 144.87 - How does the identification of ground water protection areas and other sensitive ground water...

    Science.gov (United States)

    2010-07-01

    ... responsible for the Underground Injection Control Program. You may call the Safe Drinking Water Hotline at 1... INJECTION CONTROL PROGRAM Requirements for Owners and Operators of Class V Injection Wells § 144.87 How does... Water Source Assessment and Protection Program in your area. You may call the Safe Drinking Water...

  7. Ground water in Delhi area, problems and prospects under fast urbanisation- a nuclear aided study

    International Nuclear Information System (INIS)

    Mookerjee, P.; Datta, P.S.; Chandrasekharan, H.; Tyagi, S.K.; Singh, R.V.

    1994-01-01

    The work presented in this paper constitutes a peep into the components of urbanization in the two decades which affected the quality and availability of ground water in the Delhi territory. The recharge studies conducted in Delhi villages employing oxygen 18 and tritium tagging have been described with a view to focus attention on the sustainability of the ground water potential. 1 fig., 1 tab

  8. Ground-water monitoring at the Hanford Site, January-December 1984

    Energy Technology Data Exchange (ETDEWEB)

    Cline, C.S.; Rieger, J.T.; Raymond, J.R.

    1985-09-01

    This program is designed to evaluate existing and potential pathways of exposure to radioactivity and hazardous chemicals from site operations. This document contains an evaluation of data collected during CY 1984. During 1984, 339 monitoring wells were sampled at various times for radioactive and nonradioactive constituents. Two of these constituents, specifically, tritium and nitrate, have been selected for detailed discussion in this report. Tritium and nitrate in the primary plumes originating from the 200 Areas continue to move generally eastward toward the Columbia River in the direction of ground-water flow. The movement within these plumes is indicated by changes in trends within the analytical data from the monitoring wells. No discernible impact on ground water has yet been observed from the start-up of the PUREX plant in December 1983. The shape of the present tritium plume is similar to those described in previous ground-water monitoring reports, although slight changes on the outer edges have been noted. Radiological impacts from two potential pathways for radionuclide transport in ground water to the environment are discussed in this report. The pathways are: (1) human consumption of ground water from onsite wells, and (2) seepage of ground water into the Columbia River. Concentrations of tritium in spring samples that were collected and analyzed in 1983, and in wells sampled adjacent to the Columbia River in 1984 confirmed that constituents in the ground water are entering the river via springs and subsurface flow. The primary areas where radionuclides enter the Columbia River via ground-water flow are the 100-N and 300 Areas and the shoreline adjacent to the Hanford Townsite. 44 refs., 25 figs., 11 tabs.

  9. SITE-94. Geochemical characterization of Simpevarp ground waters near the Aespoe Hard Rock Laboratory

    International Nuclear Information System (INIS)

    Glynn, P.D.; Voss, C.I.

    1999-09-01

    The present report analyzes the geochemical data in order to evaluate collection and interpretation techniques that will be used to site the repository and to assess its safety. Ground waters near the Aespoe Hard Rock Laboratory (HRL) may be grouped into five chemically and isotopically distinct water types, on the basis of their deuterium and chloride contents: 1) recent waters, 2) 5 g/L chloride waters, 3) deep waters, 4) seawater imprint waters, and 5) glacial melt waters. The sampled ground waters show a progressive change from a predominantly NaHCO 3 composition at shallow depth to a CaCl 2 -rich composition at depth. Despite the proximity of the Baltic, relatively few of the sampled ground waters contain any evidence of a seawater component. This finding, together with the rather shallow depths at which saline waters were found, indicates that Aespoe island is presently in a regional ground-water discharge area. The chemical and isotopic composition of the sampled waters also indicates that local recharge of dilute recent waters occurs only down to shallow depths (generally less than 100 in). The Aespoe ground waters are sulfidic and do not presently contain any dissolved oxygen. Measured E H values are generally near -300 mV, and on average are only about 50 mV lower than E H values calculated from the sulfide/sulfate couple. Maintenance of reducing conditions, such as presently found at the Aespoe HRL, is an important consideration in assessing the performance of nuclear waste disposal sites. Measurements of dissolved radon and of uranium concentrations in fracture-fill materials were used to calculate an average effective flow-wetted surface area of 3.1 m 2 per liter of water for the Aespoe site. Estimation of flow-wetted surface areas is essential in determining the importance of matrix diffusion and surface sorption processes for radionuclide release calculations. The Rn calculation technique shows promise in helping narrow the possible range of values

  10. Quality of the ground water in basalt of the Columbia River group, Washington, Oregon, and Idaho

    Science.gov (United States)

    Newcomb, Reuben Clair

    1972-01-01

    The ground water within the 50,000-square-mile area of the layered basalt of the Columbia River Group is a generally uniform bicarbonate water having calcium and sodium in nearly equal amounts as the principal cations. water contains a relatively large amount of silica. The 525 chemical analyses indicate that the prevalent ground water is of two related kinds--a calcium and a sodium water. The sodium water is more common beneath the floors of the main synclinal valleys; the calcium water, elsewhere. In addition to the prevalent type, five special types form a small part of the ground water; four of these are natural and one is artificial. The four natural special types are: (1) calcium sodium chloride waters that rise from underlying sedimentary rocks west of the Cascade Range, (2) mineralized water at or near warm or hot springs, (3) water having unusual ion concentrations, especially of chloride, near sedimentary rocks intercalated at the edges of the basalt, and (4) more mineralized water near one locality of excess carbon dioxide. The one artificial kind of special ground water has resulted from unintentional artificial recharge incidental to irrigation in parts of central Washington. The solids dissolved in the ground water have been picked up on the surface, within the overburden, and from minerals and glasses within the basalt. Evidence for the removal of ions from solution is confined to calcium and magnesium, only small amounts of which are present in some of the sodium-rich water. Minor constituents, such as the heavy metals, alkali metals, and alkali earths, occur in the ground water in trace, or small, amounts. The natural radioactivity of the ground waters is very low. Except for a few of the saline calcium sodium chloride waters and a few occurrences of excessive nitrate, the ground water generally meets the common standards of water good for most ordinary uses, but some of it can be improved by treatment. The water is clear and colorless and has a

  11. sessment of ground water contamination in Erode District, Tamilnadu

    African Journals Online (AJOL)

    A systematic study has been carried out to assess the water contamination and the effect of the tanneries and dyeing industries effluents on Erode District, Tamil Nadu. Ten (10) sampling locations were selected in and around industries. The water samples were collected from the selected sampling points. The samples ...

  12. South Africa. Fertile ground for solar water heaters

    Energy Technology Data Exchange (ETDEWEB)

    Oirere, Shem

    2012-07-01

    The national solar water heating plan, launched by South Africa's state power utility Eskom, seems to be making good progress with the power generator saying at least 215,000 solar water heater (SWH) systems had been installed by February this year. (orig.)

  13. hydrogeochemistry and quality assessment of some ground water ...

    African Journals Online (AJOL)

    PROF EKWUEME

    Waters adversely affected by abnormal concentration of iron tend ... is a reflection of the tectonic and geologic events that occurred over the .... PLATE COUNT. COLONIES. REMARKS. Ninth Mile Corner. Boreholes: Untreated. 70. Positive. 4 colonies after. 24hrs at 370c. Suspicious. Udi water supply. Untreated borehole. 3.

  14. Assessment of ground water contamination in Erode District ...

    African Journals Online (AJOL)

    admin

    A systematic study has been carried out to assess the water contamination and the effect of the tanneries and dyeing industries effluents on Erode District, Tamil Nadu. Ten (10) sampling locations were selected in and around industries. The water samples were collected from the selected sampling points. The samples ...

  15. Radon 222 and Tritium in the identification and quantification of NAPL contamination in ground water. 2. 222RN, 3H and CL patterns

    International Nuclear Information System (INIS)

    Molerio Leon, LF; Fernandez Gomez, IM; Carrazana Gonzalez, J A

    2012-01-01

    This is a second and last paper on these theme and presents the typical behavior of Rn 222a nd 3H at the Northern Havana-Matanzas Heavy Oil Belt for the following cases: a) fresh ground waters (unaffected by sea water intrusion), b) fresh ground water affected by isolated advances of sea water intrusion, c) fresh ground water intruded by sea water, d) ground water affected by oil spill and e) ground water affected by produced water spill

  16. Ground-water resources of Kleberg County, Texas

    Science.gov (United States)

    Livingston, Penn Poore; Bridges, Thomas W.

    1936-01-01

    Abundant supplies of fresh water are obtained from deep artesian wells In all parts of Kleberg County. The water is derived from a stratum of sand, 10 to 150 feet thick, which usually has been referred to the Goliad sand but possibly may be at the base of the LIssie formation. The top of the sand Is reached at depths of around 400 feet In the western part of the county, 600 to 700 feet In the locality of Klngsville, and 1,250 to 1,450 feet In the eastern part of the county. Small supplies of fairly good water are obtained from shallow wells In very sandy areas in the eastern and southern parts of the county, but with this exception, so far as known, no good water has been obtained In the county either above or below the artesian fresh-water horizon.

  17. Factors affecting ground-water exchange and catchment size for Florida lakes in mantled karst terrain

    Science.gov (United States)

    Lee, Terrie Mackin

    2002-01-01

    In the mantled karst terrain of Florida, the size of the catchment delivering ground-water inflow to lakes is often considerably smaller than the topographically defined drainage basin. The size is determined by a balance of factors that act individually to enhance or diminish the hydraulic connection between the lake and the adjacent surficial aquifer, as well as the hydraulic connection between the surficial aquifer and the deeper limestone aquifer. Factors affecting ground-water exchange and the size of the ground-water catchment for lakes in mantled karst terrain were examined by: (1) reviewing the physical and hydrogeological characteristics of 14 Florida lake basins with available ground-water inflow estimates, and (2) simulating ground-water flow in hypothetical lake basins. Variably-saturated flow modeling was used to simulate a range of physical and hydrogeologic factors observed at the 14 lake basins. These factors included: recharge rate to the surficial aquifer, thickness of the unsaturated zone, size of the topographically defined basin, depth of the lake, thickness of the surficial aquifer, hydraulic conductivity of the geologic units, the location and size of karst subsidence features beneath and onshore of the lake, and the head in the Upper Floridan aquifer. Catchment size and the magnitude of ground-water inflow increased with increases in recharge rate to the surficial aquifer, the size of the topographically defined basin, hydraulic conductivity in the surficial aquifer, the degree of confinement of the deeper Upper Floridan aquifer, and the head in the Upper Floridan aquifer. The catchment size and magnitude of ground-water inflow increased with decreases in the number and size of karst subsidence features in the basin, and the thickness of the unsaturated zone near the lake. Model results, although qualitative, provided insights into: (1) the types of lake basins in mantled karst terrain that have the potential to generate small and large

  18. Ground water investigations in connection with planned energy wells in the Lena area, Melhus centre

    International Nuclear Information System (INIS)

    Storroe, Gaute

    2000-01-01

    In March 2000 the Norwegian Geologic Survey (NGU) was requested to carry out ground water investigations in the Lena area at Melhus centre by the firms E-Tek AS and Statoil. The background for the investigations was the plans of exploiting ground heat connected to a housing project lead by Selmer Bolig AS. The aim of the project was to document the possibilities for extracting ground heat from loose soil well(s) in the selected construction area. The needed amount of water is in the size of 50 m 3 /hour (14l/s). In addition the conditions of currents, ground water quality and possibilities for refiltering of the ground water was to be mapped. In conclusion it may be said that it most likely will be possible to meet the stipulated water requirements (50 m 3 /hour) by establishing a full scale production well within the construction area. The ground water currents in the Lena area run from north to south. The ground water surface is relatively flat with an incline of 0.1 - 0.2 % (1-2 mm/m). The possibilities for refiltering pumped water seem to be good. The conditions should be mapped more closely through refiltering tests. All of the collected ground water samples exceed the limiting values stipulated by the drinking water regulations as to alkalinity, sulphate, calcium, potassium and manganese. The tests from Obs2 and from the ''municipal well'' exceed the limits for chloride and sodium as well. This indicates that unwanted precipitations of both chalk and manganese may occur. Large quantities of sea salts (chloride and sodium) may also have a corrosive effect. Through calculations using the Ryznar's Stability Index (RSI) it is evident that the tests from Obs1 and Obs2 are in the limiting area between ''problem free water'' and ''corrosive water'', while the water from the municipal well must be characterised as very corrosive. According to information from the managing personnel there have not been registered problems with precipitations or corrosion in heat

  19. Radon in streams and ground waters of Pennsylvania as a guide to uranium deposits

    International Nuclear Information System (INIS)

    Korner, L.A.; Rose, A.W.

    1977-06-01

    Radon-222, a daughter in the radioactive decay of uranium, has potential as a geochemical guide to uranium ores because of its chemical inertness and its relatively easy determination. The radon contents of 59 stream and 149 ground waters have been determined with a newly designed portable radon detector in order to test the method in uranium exploration. Radon contents of stream waters do not appear useful for reconnaissance uranium exploration of areas like Pennsylvania because of relatively rapid degassing of radon from turbulent waters, and because most radon is derived from nearby influx of ground waters into the streams. Radon in streams near uranium occurrences in Carbon and Lycoming counties is lower than many background streams. Radon in ground water is recommended as a reconnaissance method of uranium exploration because most samples from near mineralized areas are anomalous in radon. In contrast, uranium in ground waters is not anomalous near mineralized areas in Carbon County. Equations are derived to show the relation of radon in ground waters to uranium contents of enclosing rocks, emanation of radon from the solids to water, and porosity or fracture width. Limonites are found to be highly enriched in radium, the parent of radon. A model for detection of a nearby uranium ore body by radon measurement on a pumping well has been developed

  20. UTMTOX, Toxic Chemical Transport in Atmosphere, Ground Water, Sediments

    International Nuclear Information System (INIS)

    1988-01-01

    A - Description of program or function: UTMTOX is a unified transport model for toxic materials. It combines hydrologic, atmospheric, and sediment transport in one computer code and extends the scope to predict the transport of not only trace metals but also many chemical compounds, including organics. UTMTOX is capable of calculating 1) the atmospheric dispersion of up to 20 chemicals from a maximum of 10 point, 10 line, and 10 area sources; 2) deposition of one chemical at a time in both wet and dry form on foliage or the surface of the earth; 3) surface flow and erosion; 4) percolation through the soil to a stream channel; and 5) flow in the stream channel to the outfall of a watershed. B - Method of solution: UTMTOX calculates rates of flux of chemicals from release to the atmosphere, through deposition on a watershed, infiltration, and runoff from the soil to flow in the stream channel and the associated sediment transport. From these values, mass balances can be established, budgets for the chemical can be made, and concentrations in many environmental compartments can be estimated. Since the coupling is established among three major submodels, they can share data

  1. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site near Shiprock, New Mexico

    International Nuclear Information System (INIS)

    1994-04-01

    This baseline risk assessment at the former uranium mill tailings site near Shiprock, New Mexico, evaluates the potential impact to public health or the environment resulting from ground water contamination at the former uranium mill processing site. The tailings and other contaminated material at this site were placed in an on-site disposal cell in 1986 through the US Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project. Currently, the UMTRA Project is evaluating ground water contamination. This risk assessment is the first document specific to this site for the Ground Water Project. There are no domestic or drinking water wells in the contaminated ground water of the two distinct ground water units: the contaminated ground water in the San Juan River floodplain alluvium below the site and the contaminated ground water in the terrace alluvium area where the disposal cell is located. Because no one is drinking the affected ground water, there are currently no health or environmental risks directly associated with the contaminated ground water. However, there is a potential for humans, domestic animals, and wildlife to the exposed to surface expressions of ground water in the seeps and pools in the area of the San Juan River floodplain below the site. For these reasons, this risk assessment evaluates potential exposure to contaminated surface water and seeps as well as potential future use of contaminated ground water

  2. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site near Shiprock, New Mexico. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    1994-04-01

    This baseline risk assessment at the former uranium mill tailings site near Shiprock, New Mexico, evaluates the potential impact to public health or the environment resulting from ground water contamination at the former uranium mill processing site. The tailings and other contaminated material at this site were placed in an on-site disposal cell in 1986 through the US Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project. Currently, the UMTRA Project is evaluating ground water contamination. This risk assessment is the first document specific to this site for the Ground Water Project. There are no domestic or drinking water wells in the contaminated ground water of the two distinct ground water units: the contaminated ground water in the San Juan River floodplain alluvium below the site and the contaminated ground water in the terrace alluvium area where the disposal cell is located. Because no one is drinking the affected ground water, there are currently no health or environmental risks directly associated with the contaminated ground water. However, there is a potential for humans, domestic animals, and wildlife to the exposed to surface expressions of ground water in the seeps and pools in the area of the San Juan River floodplain below the site. For these reasons, this risk assessment evaluates potential exposure to contaminated surface water and seeps as well as potential future use of contaminated ground water.

  3. Revised ground-water monitoring compliance plan for the 183-H Solar Evaporation Basins

    International Nuclear Information System (INIS)

    1986-09-01

    This document contains ground-water monitoring plans for a mixed waste storage facility located on the Hanford Site in southeastern Washington State. This facility has been used since 1973 for storage of mixed wastes, which contain both chemicals and radionuclides. The ground-water monitoring plans presented here represent revision and expansion of an effort in June 1985. At that time, a facility-specific monitoring program was implemented at the 183-H Basins as part of the regulatory compliance effort being conducted on the Hanford Site. This monitoring program was based on the ground-water monitoring requirements for interimstatus facilities, which are those facilities that do not yet have final permits, but are authorized to continue interim operations while engaged in the permitting process. The program initially implemented for the 183-H Basins was designed to be an alternate program, which is required instead of the standard detection program when a facility is known or suspected to have contaminated the ground water in the uppermost aquifer. This effort, named the RCRA Compliance Ground-Water Monitoring Project for the 183-H Basins, was implemented. A supporting project involving ground-water flow modeling for the area surrounding the 183-H Basins was also initiated during 1985. Those efforts and the results obtained are described in subsequent chapters of this document. 26 refs., 55 figs., 14 tabs

  4. Respiration testing for bioventing and biosparging remediation of petroleum contaminated soil and ground water

    International Nuclear Information System (INIS)

    Gray, A.L.; Brown, A.; Moore, B.J.; Payne, R.E.

    1996-01-01

    Respiration tests were performed to measure the effect of subsurface aeration on the biodegradation rates of petroleum hydrocarbon contamination in vadose zone soils (bioventing) and ground water (biosparging). The aerobic biodegradation of petroleum contamination is typically limited by the absence of oxygen in the soil and ground water. Therefore, the goal of these bioremediation technologies is to increase the oxygen concentration in the subsurface and thereby enhance the natural aerobic biodegradation of the organic contamination. One case study for biosparging bioremediation testing is presented. At this site atmospheric air was injected into the ground water to increase the dissolved oxygen concentration in the ground water surrounding a well, and to aerate the smear zone above the ground water table. Aeration flow rates of 3 to 8 cfm (0.09 to 0.23 m 3 /min) were sufficient to increase the dissolved oxygen concentration. Petroleum hydrocarbon biodegradation rates of 32 to 47 microg/l/hour were calculated based on measurements of dissolved oxygen concentration in ground water. The results of this test have demonstrated that biosparging enhances the biodegradation of petroleum hydrocarbons, but the results as they apply to remediation are not known. Two case studies for bioventing respiration testing are presented

  5. Soil organic carbon redistribution by water erosion--the role of CO2 emissions for the carbon budget.

    Science.gov (United States)

    Wang, Xiang; Cammeraat, Erik L H; Romeijn, Paul; Kalbitz, Karsten

    2014-01-01

    A better process understanding of how water erosion influences the redistribution of soil organic carbon (SOC) is sorely needed to unravel the role of soil erosion for the carbon (C) budget from local to global scales. The main objective of this study was to determine SOC redistribution and the complete C budget of a loess soil affected by water erosion. We measured fluxes of SOC, dissolved organic C (DOC) and CO2 in a pseudo-replicated rainfall-simulation experiment. We characterized different C fractions in soils and redistributed sediments using density fractionation and determined C enrichment ratios (CER) in the transported sediments. Erosion, transport and subsequent deposition resulted in significantly higher CER of the sediments exported ranging between 1.3 and 4.0. In the exported sediments, C contents (mg per g soil) of particulate organic C (POC, C not bound to soil minerals) and mineral-associated organic C (MOC) were both significantly higher than those of non-eroded soils indicating that water erosion resulted in losses of C-enriched material both in forms of POC and MOC. The averaged SOC fluxes as particles (4.7 g C m(-2) yr(-1)) were 18 times larger than DOC fluxes. Cumulative emission of soil CO2 slightly decreased at the erosion zone while increased by 56% and 27% at the transport and depositional zone, respectively, in comparison to non-eroded soil. Overall, CO2 emission is the predominant form of C loss contributing to about 90.5% of total erosion-induced C losses in our 4-month experiment, which were equal to 18 g C m(-2). Nevertheless, only 1.5% of the total redistributed C was mineralized to CO2 indicating a large stabilization after deposition. Our study also underlines the importance of C losses by particles and as DOC for understanding the effects of water erosion on the C balance at the interface of terrestrial and aquatic ecosystems.

  6. Soil Organic Carbon Redistribution by Water Erosion – The Role of CO2 Emissions for the Carbon Budget

    Science.gov (United States)

    Wang, Xiang; Cammeraat, Erik L. H.; Romeijn, Paul; Kalbitz, Karsten

    2014-01-01

    A better process understanding of how water erosion influences the redistribution of soil organic carbon (SOC) is sorely needed to unravel the role of soil erosion for the carbon (C) budget from local to global scales. The main objective of this study was to determine SOC redistribution and the complete C budget of a loess soil affected by water erosion. We measured fluxes of SOC, dissolved organic C (DOC) and CO2 in a pseudo-replicated rainfall-simulation experiment. We characterized different C fractions in soils and redistributed sediments using density fractionation and determined C enrichment ratios (CER) in the transported sediments. Erosion, transport and subsequent deposition resulted in significantly higher CER of the sediments exported ranging between 1.3 and 4.0. In the exported sediments, C contents (mg per g soil) of particulate organic C (POC, C not bound to soil minerals) and mineral-associated organic C (MOC) were both significantly higher than those of non-eroded soils indicating that water erosion resulted in losses of C-enriched material both in forms of POC and MOC. The averaged SOC fluxes as particles (4.7 g C m−2 yr−1) were 18 times larger than DOC fluxes. Cumulative emission of soil CO2 slightly decreased at the erosion zone while increased by 56% and 27% at the transport and depositional zone, respectively, in comparison to non-eroded soil. Overall, CO2 emission is the predominant form of C loss contributing to about 90.5% of total erosion-induced C losses in our 4-month experiment, which were equal to 18 g C m−2. Nevertheless, only 1.5% of the total redistributed C was mineralized to CO2 indicating a large stabilization after deposition. Our study also underlines the importance of C losses by particles and as DOC for understanding the effects of water erosion on the C balance at the interface of terrestrial and aquatic ecosystems. PMID:24802350

  7. Ground-water quality assessment of the central Oklahoma Aquifer, Oklahoma; project description

    Science.gov (United States)

    Christenson, S.C.; Parkhurst, D.L.

    1987-01-01

    In April 1986, the U.S. Geological Survey began a pilot program to assess the quality of the Nation's surface-water and ground-water resources. The program, known as the National Water-Quality Assessment (NAWQA) program, is designed to acquire and interpret information about a variety of water-quality issues. The Central Oklahoma aquifer project is one of three ground-water pilot projects that have been started. The NAWQA program also incudes four surface-water pilot projects. The Central Oklahoma aquifer project, as part of the pilot NAWQA program, will develop and test methods for performing assessments of ground-water quality. The objectives of the Central Oklahoma aquifer assessment are: (1) To investigate regional ground-water quality throughout the aquifer in the manner consistent with the other pilot ground-water projects, emphasizing the occurrence and distribution of potentially toxic substances in ground water, including trace elements, organic compounds, and radioactive constituents; (2) to describe relations between ground-water quality, land use, hydrogeology, and other pertinent factors; and (3) to provide a general description of the location, nature, and possible causes of selected prevalent water-quality problems within the study unit; and (4) to describe the potential for water-quality degradation of ground-water zones within the study unit. The Central Oklahoma aquifer, which includes in descending order the Garber Sandstone and Wellington Formation, the Chase Group, the Council Grove Group, the Admire Group, and overlying alluvium and terrace deposits, underlies about 3,000 square miles of central Oklahoma and is used extensively for municipal, industrial, commercial, and domestic water supplies. The aquifer was selected for study by the NAWQA program because it is a major source for water supplies in central Oklahoma and because it has several known or suspected water-quality problems. Known problems include concentrations of arsenic, chromium

  8. Water resources of the Park City area, Utah, with emphasis on ground water

    Science.gov (United States)

    Holmes, Walter F.; Thompson, Kendall R.; Enright, Michael

    1986-01-01

    The Park City area is a rapidly growing residential and recreational area about 30 miles east of Sal t Lake City (fig. 1). The area of study is about 140 square miles in which the principle industries are agriculture, skiing, and other recreational activities. The area once was a major lead- and silver-mining district, but no mines were active in 1984. A resumption in mining activity, however, could take place with an increase in the price of metals.The population of the Park City area is expected to increase rapidly in the near future; and the provision of an adequate water supply for the growing population, while avoiding harmful affects of development, is a major concern for local municipalities, developers, and the Utah Division of Water Rights. In addition, agricultural interests in and below the area are concerned about the effects of increased ground-water withdrawals on streamflow, which is fully appropriated by downstream users. The area also contains the proposed site for the Jordanelle dam, a part of the Bonneville unit of the central Utah Project. The damsite is near an historic mining area; and mining companies are concerned that if mining is resumed, the reservoir may create some additional dewatering problems in the mines.

  9. Purification of fuel and nitrate contaminated ground water using a free water surface constructed wetland plant

    Energy Technology Data Exchange (ETDEWEB)

    Machate, T.; Heuermann, E.; Schramm, K.W.; Kettrup, A.

    1999-10-01

    Contaminated ground water from a former coke plant site was purified in a free water surface (FWS) constructed wetland plant during a 3-mo short-term experiment. The pilot plant (total surface area 27 m{sup 2}) was filled with a 1 m thick lava-gravel substrate planted with cattail (Typha spp.) and bulrush (Scirpus lacustrls). Major contaminants were low to moderate concentrations of polycyclic aromatic hydrocarbons, BTEX, nitrate, and nitrite. The wetland was dosed at hydraulic loading rates of q{sub A} = 4.8 and 9.6 cm d{sup {minus}1} with a hydraulic residence time (HRT) of 13.7 and 6.8 d. The surface removal rates of PAH were between 98.8 and 1914 mg m{sup {minus}2} d{sup {minus}1}. Efficiency was always {gt}99%. Extraction of lava gravel showed that approx. 0.4% of the applied PAH were retained on the substratum. The ratio of {Sigma}2,3-ring PAH and {Sigma}4,5,6-ring PAH showed a shift from 1:0.11 in water to 1:2.5 in lava. The removal of BTEX was {gt}99%, but might be in part due to volatilization. The efficiency in the removal of nitrate was 91% and of nitrite was 97%. Purification performance was not influenced by hydraulic loading rates or after die-back of the macrophytes.

  10. Natural radionuclides in ground water in western Spain

    International Nuclear Information System (INIS)

    Fernandez, F.; Lozano, J.C.; Gomez, J.M.G.

    1992-01-01

    A survey of natural radioactivity in drinking water was carried out in a granitic area in western Spain covering the so-called greywacke-schist complex. This region is known to be rich in uranium ores, such that natural radionuclides should be expected in the groundwater. During 1988, 345 water samples were collected from the water supplies of 115 different villages. These samples were analysed for gross alpha U, Th and Ra. The average concentrations of radionuclides were found to be 5-30 times higher in groundwater from bedrock than in groundwater from soil. The results indicate that Ra makes the highest contribution to the effective dose equivalent. (author)

  11. Natural radionuclides in ground water in western Spain

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, F.; Lozano, J.C.; Gomez, J.M.G. (Salamanca Univ. (Spain). Lab. de Radioactividad Ambiental)

    1992-01-01

    A survey of natural radioactivity in drinking water was carried out in a granitic area in western Spain covering the so-called greywacke-schist complex. This region is known to be rich in uranium ores, such that natural radionuclides should be expected in the groundwater. During 1988, 345 water samples were collected from the water supplies of 115 different villages. These samples were analysed for gross alpha U, Th and Ra. The average concentrations of radionuclides were found to be 5-30 times higher in groundwater from bedrock than in groundwater from soil. The results indicate that Ra makes the highest contribution to the effective dose equivalent. (author).

  12. Hydrogeology and water quality of areas with persistent ground- water contamination near Blackfoot, Bingham County, Idaho

    Science.gov (United States)

    Parliman, D.J.

    1987-01-01

    The Groveland-Collins area near Blackfoot, Idaho, has a history of either periodic or persistent localized groundwater contamination. Water users in the area report offensive smell, metallic taste, rust deposits, and bacteria in water supplies. During 1984 and 1985, data were collected to define regional and local geologic, hydrologic, and groundwater quality conditions, and to identify factors that may have affected local groundwater quality. Infiltration or leakage of irrigation water is the major source of groundwater recharge, and water levels may fluctuate 15 ft or more during the irrigation season. Groundwater movement is generally northwestward. Groundwater contains predominantly calcium, magnesium, and bicarbonate ions and characteristically has more than 200 mg/L hardness. Groundwater near the Groveland-Collins area may be contaminated from one or more sources, including infiltration of sewage effluent, gasoline or liquid fertilizer spillage, or land application of food processing wastewater. Subsurface basalt ridges impede lateral movement of water in localized areas. Groundwater pools temporarily behind these ridges and anomalously high water levels result. Maximum concentrations or values of constituents that indicate contamination were 1,450 microsiemens/cm specific conductance, 630 mg/L bicarbonate (as HCO3), 11 mg/L nitrite plus nitrate (as nitrogen), 7.3 mg/L ammonia (as nitrogen), 5.9 mg/L organic nitrogen, 4.4 mg/L dissolved organic carbon, 7,000 micrograms/L dissolved iron, 5 ,100 microgram/L dissolved manganese, and 320 microgram/L dissolved zinc. Dissolved oxygen concentrations ranged from 8.9 mg/L in uncontaminated areas to 0 mg/L in areas where food processing wastewater is applied to the land surface. Stable-isotope may be useful in differentiating between contamination from potato-processing wastewater and whey in areas where both are applied to the land surface. Development of a ground-water model to evaluate effects of land applications

  13. The ground water chemical characteristics of Beishan area-the China's potential high level radioactive waste repository

    International Nuclear Information System (INIS)

    Yang Tianxiao; Guo Yonghai

    2004-01-01

    The ground water chemical characteristics have impact on nuclide migration in high level waste repository, so the study on the ground water chemical characteristics is an important aspect in site screening and characterization. The geochemical modeling of the reaction trend between ground water and solid phase, the water-rock interaction modeling of the formation and evolution of ground water chemistry, the modeling of the reaction between ground water and nuclear waste are all carried out in this paper to study the ground water chemical characteristics in Beishan area. The study illustrates that the ground water chemical characteristics in Beishan area is favorable to the disposal of high level nuclear waste and to prevent the nuclides migration. (author)

  14. Energetic Efficiency Evaluation by Using GroundWater Heat Pumps

    Directory of Open Access Journals (Sweden)

    Tokar Adriana

    2012-09-01

    Full Text Available Romania has significant energy potential from renewable sources, but the potential used is much lower due to technical and functional disadvantages, to economic efficiency, the cost elements and environmental limitations. However, efforts are being made to integrate renewable energy in the national energy system. To promote and encourage private investments for renewable energy utilization, programs have been created in order to access funds needed to implement these technologies. Assessment of such investments was carried out from technical and economical point of view, by analyzing a heat pump using as heat source the solar energy from the ground.

  15. After the water wars: The search for common ground | IDRC ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    2010-12-15

    Dec 15, 2010 ... A database of existing customary (or traditional) water rights was also developed through lot-by-lot field work and surveys. ... Research issues, methods, and results were discussed and then developed with the participation of ...

  16. Water-level changes and directions of ground-water flow in the shallow aquifer, Fallon area, Churchill County, Nevada

    Science.gov (United States)

    Seiler, R.L.; Allander, K.K.

    1993-01-01

    The Truckee-Carson-Pyramid Lake Water Rights Settlement Act of 1990 directed the U.S. Fish and Wildlife Service to acquire water rights for wetland areas in the Carson Desert, Nevada. The public is concerned that htis acquisition of water rights and delivery of the water directly to wildlife areas would result in less recharge to the shallow ground water in the Fallon area and cause domestic wells to go dry. In January 1992, the U.S. Geological Survey, in cooperation with U.S. Fish and Wildlife Service, began a study of the shallow ground-water system in the Fallon area in Churchill County, Nevada. A network of 126 wells in the study area was monitored. Between January and November 1992, water levels in most wells declined, usually less than 2 feet. The maximum measured decline over this period was 2.68 feet in a well near Stillwater Marsh. Between April and July, however, water levels rose in irrigated areas, typically 1 to 2 feet. Newlands Project water deliveries to the study area began soon after the turn of the century. Since then, water levels have risen more than 15 feet across much of the study area. Water lost from unlined irrigtiaon canals caused the stage in Big Soda Lake to rise nearly 60 feet; ground-water levels near the lake have risen 30 to 40 feet. The depth to water in most irrigated areas is now less than 10 feet. The altitude of the water table ranges from 4.025 feet above sea level 11 miles west of Fallon to 3,865 feet in the Stillwater Marsh area. Ground water flows eastward and divides; some flow goes to the northeast toward the Carson Sink and Stillwater areas, and some goes southeastward to Carson Lake.

  17. Assessment of the hydraulic connection between ground water and the Peace River, west-central Florida

    Science.gov (United States)

    Lewelling, B.R.; Tihansky, A.B.; Kindinger, J.L.

    1998-01-01

    The hydraulic connection between the Peace River and the underlying aquifers along the length of the Peace River from Bartow to Arcadia was assessed to evaluate flow exchanges between these hydrologic systems. Methods included an evaluation of hydrologic and geologic records and seismic-reflection profiles, seepage investigations, and thermal infrared imagery interpretation. Along the upper Peace River, a progressive long-term decline in streamflow has occurred since 1931 due to a lowering of the potentiometric surface of the Upper Floridan aquifer by as much as 60 feet because of intensive ground-water withdrawals for phosphate mining and agriculture. Another effect from lowering the potentiometric surface has been the cessation of flow at several springs located near and within the Peace River channel, including Kissengen Spring, that once averaged a flow of about 19 million gallons a day. The lowering of ground-water head resulted in flow reversals at locations where streamflow enters sinkholes along the streambed and floodplain. Hydrogeologic conditions along the Peace River vary from Bartow to Arcadia. Three distinctive hydrogeologic areas along the Peace River were delineated: (1) the upper Peace River near Bartow, where ground-water recharge occurs; (2) the middle Peace River near Bowling Green, where reversals of hydraulic gradients occur; and (3) the lower Peace River near Arcadia, where ground-water discharge occurs. Seismic-reflection data were used to identify geologic features that could serve as potential conduits for surface-water and ground-water exchange. Depending on the hydrologic regime, this exchange could be recharge of surface water into the aquifer system or discharge of ground water into the stream channel. Geologic features that would provide pathways for water movement were identified in the seismic record; they varied from buried irregular surfaces to large-scale subsidence flexures and vertical fractures or enlarged solution conduits

  18. Survey on ground water by gamma-ray measurement in civil engineering works

    Energy Technology Data Exchange (ETDEWEB)

    Ochiai, T [Nihon Norin Helicopter Co., Ltd., Tokyo

    1982-01-01

    In the fractured zones where ground water exists, the water permeability is generally large, so that the radioactive elements in the depths of the earth rise relatively easily. The high intensity of the gamma-ray from such elements is thus exhibited in the air. A survey on ground water made possible in this way by the aerial method using a helicopter is described. The method has various advantages including the free setting of courses of traverse, low-speed flying at low altitude, which raises the survey accuracy, communication with those on the ground by easy landing, and reduction in survey time. As actual instances, the following surveys are given: mountainous tunnel and water gushing, the permeability of a dam foundation, fractured zones such as collapse and landslide, and mountainous water sources.

  19. A survey on ground water by gamma-ray measurement in civil engineering works

    International Nuclear Information System (INIS)

    Ochiai, Toshio

    1982-01-01

    In the fractured zones where ground water exists, the water permeability is generally large, so that the radioactive elements in the depths of the earth rise relatively easily. The high intensity of the gamma-ray from such elements is thus exhibited in the air. A survey on ground water made possible in this way by the aerial method using a helicopter is described. The method has various advantages including the free setting of courses of traverse, low-speed flying at low altitude, which raises the survey accuracy, communication with those on the ground by easy landing, and reduction in survey time. As actual instances, the following surveys are given: mountainous tunnel and water gushing, the permeability of a dam foundation, fractured zones such as colapse and landslide, and mountainous water sources. (J.P.N.)

  20. Introducing non-flooded crops in rice-dominated landscapes: Impact on carbon, nitrogen and water budgets

    Science.gov (United States)

    Jauker, Frank; Wassmann, Reiner; Amelung, Wulf; Breuer, Lutz; Butterbach-Bahl, Klaus; Conrad, Ralf; Ekschmitt, Klemens; Goldbach, Heiner; He, Yao; John, Katharina; Kiese, Ralf; Kraus, David; Reinhold-Hurek, Barbara; Siemens, Jan; Weller, Sebastian; Wolters, Volkmar

    2013-04-01

    Rice production consumes about 30% of all freshwater used worldwide and 45% in Asia. Turning away from permanently flooded rice cropping systems for mitigating future water scarcity and reducing methane emissions, however, will alter a variety of ecosystem services with potential adverse effects to both the environment and agricultural production. Moreover, implementing systems that alternate between flooded and non-flooded crops increases the risk of disruptive effects. The multi-disciplinary DFG research unit ICON aims at exploring and quantifying the ecological consequences of altered water regimes (flooded vs. non-flooded), crop diversification (irrigated rice vs. aerobic rice vs. maize), and different fertilization strategies (conventional, site-specific, and zero N fertilization). ICON particularly focuses on the biogeochemical cycling of carbon and nitrogen, green-house gas (GHG) emissions, water balance, soil biotic processes and other important ecosystem services. The overarching goal is to provide the basic process understanding that is necessary for balancing the revenues and environmental impacts of high-yield rice cropping systems while maintaining their vital ecosystem services. To this aim, a large-scale field experiment has been established at the experimental farm of the International Rice Research Institute (IRRI, Philippines). Ultimately, the experimental results are analyzed in the context of management scenarios by an integrated modeling of crop development (ORYZA), carbon and nitrogen cycling (MoBiLE-DNDC), and water fluxes (CMF), providing the basis for developing pathways to a conversion of rice-based systems towards higher yield potentials under minimized environmental impacts. In our presentation, we demonstrate the set-up of the controlled large-scale field experiment for simultaneous assessment of carbon and nitrogen fluxes and water budgets. We show and discuss first results for: - Quantification and assessment of the net-fluxes of CH4