WorldWideScience

Sample records for ground water aquifer

  1. Movement of coliform bacteria and nutrients in ground water flowing through basalt and sand aquifers.

    Science.gov (United States)

    Entry, J A; Farmer, N

    2001-01-01

    Large-scale deposition of animal manure can result in contamination of surface and ground water and in potential transfer of disease-causing enteric bacteria to animals or humans. We measured total coliform bacteria (TC), fecal coliform bacteria (FC), NO3, NH4, total P, and PO4 in ground water flowing from basalt and sand aquifers, in wells into basalt and sand aquifers, in irrigation water, and in river water. Samples were collected monthly for 1 yr. Total coliform and FC numbers were always higher in irrigation water than in ground water, indicating that soil and sediment filtered most of these bacteria before they entered the aquifers. Total coliform and FC numbers in ground water were generally higher in the faster flowing basalt aquifer than in the sand aquifer, indicating that the slower flow and finer grain size may filter more TC and FC bacteria from water. At least one coliform bacterium/100 mL of water was found in ground water from both basalt and sand aquifers, indicating that ground water pumped from these aquifers is not necessarily safe for human consumption according to the American Public Health Association and the USEPA. The NO3 concentrations were usually higher in water flowing from the sand aquifer than in water flowing from the basalt aquifer or in perched water tables in the basalt aquifer. The PO4 concentrations were usually higher in water flowing from the basalt aquifer than in water flowing from the sand aquifer. The main concern is fecal contamination of these aquifers and health consequences that may arise from human consumption.

  2. Ground-water flow and quality in Wisconsin's shallow aquifer system

    Science.gov (United States)

    Kammerer, P.A.

    1995-01-01

    The areal concentration distribution of commonmineral constituents and properties of ground water in Wisconsin's shallow aquifer system are described in this report. Maps depicting the water quality and the altitude of the water table are included. The shallow aquifer system in Wisconsin, composed of unconsolidated sand and gravel and shallow bedrock, is the source of most potable ground-water supplies in the State. Most ground water in the shallow aquifer system moves in local flow systems, but it interacts with regional flow systems in some areas.

  3. Shallow Alluvial Aquifer Ground Water System and Surface Water/Ground Water Interaction, Boulder Creek, Boulder, Colorado

    Science.gov (United States)

    Babcock, K. P.; Ge, S.; Crifasi, R. R.

    2006-12-01

    Water chemistry in Boulder Creek, Colorado, shows significant variation as the Creek flows through the City of Boulder [Barber et al., 2006]. This variation is partially due to ground water inputs, which are not quantitatively understood. The purpose of this study is (1) to understand ground water movement in a shallow alluvial aquifer system and (2) to assess surface water/ground water interaction. The study area, encompassing an area of 1 mi2, is located at the Sawhill and Walden Ponds area in Boulder. This area was reclaimed by the City of Boulder and Boulder County after gravel mining operations ceased in the 1970's. Consequently, ground water has filled in the numerous gravel pits allowing riparian vegetation regrowth and replanting. An integrated approach is used to examine the shallow ground water and surface water of the study area through field measurements, water table mapping, graphical data analysis, and numerical modeling. Collected field data suggest that lateral heterogeneity exists throughout the unconsolidated sediment. Alluvial hydraulic conductivities range from 1 to 24 ft/day and flow rates range from 0.01 to 2 ft/day. Preliminary data analysis suggests that ground water movement parallels surface topography and does not noticeably vary with season. Recharge via infiltrating precipitation is dependent on evapotranspiration (ET) demands and is influenced by preferential flow paths. During the growing season when ET demand exceeds precipitation rates, there is little recharge; however recharge occurs during cooler months when ET demand is insignificant. Preliminary data suggest that the Boulder Creek is gaining ground water as it traverses the study area. Stream flow influences the water table for distances up to 400 feet. The influence of stream flow is reflected in the zones relatively low total dissolved solids concentration. A modeling study is being conducted to synthesize aquifer test data, ground water levels, and stream flow data. The

  4. Seepage laws in aquifer near a partially penetrating river with an intensive extraction of ground water

    Institute of Scientific and Technical Information of China (English)

    刘国东; 李俊亭

    1997-01-01

    The intensive extraction of ground water from aquifers near a river is an efficient way to exploit ground water resources. A lot of problems, however, have arisen because the mechanism of ground water flow in this way has not been clear. A sand-box model and a numerical model are respectively used to simulate the extraction of ground water near a partially penetrating river physically and theoretically. The results show that the ground water will lose saturated hydraulic connection with the river water as the pumping intensity increases. The broken point of hydraulic connection is located in the interior of aquifers rather than on the riverbed. After hydraulic disconnection occurs, two saturated zones, a suspended saturated zone linked with river and an unconfined aquifer, are formed.

  5. Hydrogeology, ground-water movement, and subsurface storage in the Floridan aquifer system in southern Florida

    Science.gov (United States)

    Meyer, Frederick W.

    1989-01-01

    The Floridan aquifer system of southern Florida is composed chiefly of carbonate rocks that range in age from early Miocene to Paleocene. The top of the aquifer system in southern Florida generally is at depths ranging from 500 to 1,000 feet, and the average thickness is about 3,000 feet. It is divided into three general hydrogeologic units: (1) the Upper Floridan aquifer, (2) the middle confining unit, and (3) the Lower Floridan aquifer. The Upper Floridan aquifer contains brackish ground water, and the Lower Floridan aquifer contains salty ground water that compares chemically to modern seawater. Zones of high permeability are present in the Upper and Lower Floridan aquifers. A thick, cavernous dolostone in the Lower Floridan aquifer, called the Boulder Zone, is one of the most permeable carbonate units in the world (transmissivity of about 2.5 x 107 feet squared per day). Ground-water movement in the Upper Floridan aquifer is generally southward from the area of highest head in central Florida, eastward to the Straits of Florida, and westward to the Gulf of Mexico. Distributions of natural isotopes of carbon and uranium generally confirm hydraulic gradients in the Lower Floridan aquifer. Groundwater movement in the Lower Floridan aquifer is inland from the Straits of Florida. The concentration gradients of the carbon and uranium isotopes indicate that the source of cold saltwater in the Lower Floridan aquifer is seawater that has entered through the karat features on the submarine Miami Terrace near Fort Lauderdale. The relative ages of the saltwater suggest that the rate of inland movement is related in part to rising sea level during the Holocene transgression. Isotope, temperature, and salinity anomalies in waters from the Upper Floridan aquifer of southern Florida suggest upwelling of saltwater from the Lower Floridan aquifer. The results of the study support the hypothesis of circulating relatively modern seawater and cast doubt on the theory that the

  6. Identification of Naegleria fowleri in warm ground water aquifers.

    Science.gov (United States)

    Laseke, Ian; Korte, Jill; Lamendella, Regina; Kaneshiro, Edna S; Marciano-Cabral, Francine; Oerther, Daniel B

    2010-01-01

    The free-living amoeba Naegleria fowleri was identified as the etiological agent of primary amoebic meningoencephalitis that caused the deaths of two children in Peoria, Arizona, in autumn of 2002. It was suspected that the source of N. fowleri was the domestic water supply, which originates from ground water sources. In this study, ground water from the greater Phoenix Metropolitan area was tested for the presence of N. fowleri using a nested polymerase chain reaction approach. Phylogenetic analyses of 16S rRNA sequences of bacterial populations in the ground water were performed to examine the potential link between the presence of N. fowleri and bacterial groups inhabiting water wells. The results showed the presence of N. fowleri in five out of six wells sampled and in 26.6% of all ground water samples tested. Phylogenetic analyses showed that beta- and gamma-proteobacteria were the dominant bacterial populations present in the ground water. Bacterial community analyses revealed a very diverse community structure in ground water samples testing positive for N. fowleri.

  7. Geochemical characterization of shallow ground water in the Eutaw aquifer, Montgomery, Alabama

    Science.gov (United States)

    Robinson, J.L.; Journey, C.A.

    2004-01-01

    Ground water samples were collected from 30 wells located in, or directly down gradient from, recharge areas of the Eutaw aquifer in Montgomery, Alabama. The major ion content of the water evolves from calcium-sodium-chloride- dominated type in the recharge area to calcium-bicarbonate-dominated type in the confined portion of the aquifer. Ground water in the recharge area was undersaturated with respect to aluminosilicate and carbonate minerals. Ground water in the confined portion of the aquifer was at equilibrium levels for calcite and potassium feldspar. Dissolved oxygen and nitrite-plus-nitrate concentrations decreased as ground water age increased; pH, iron, and sulfate concentrations increased as ground water age increased. Aluminum, copper, and zinc concentrations decreased as ground water age and pH increased. These relations indicate that nitrate, aluminum, copper, and zinc are removed from solution as water moves from recharge areas to the confined areas of the Eutaw aquifer. The natural evolution of ground water quality, which typically increases the pH and decreases the dissolved oxygen content, may be an important limiting factor to the migration of nitrogen based compounds and metals.

  8. Monitoring of ground water aquifer by electrical prospecting; Denki tansaho ni yoru chikasui monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Ushijima, K. [Kyushu University, Fukuoka (Japan)] [Faculty of Engineering (Japan)

    1997-12-01

    This paper describes three case studies for monitoring ground water aquifers by electrical prospecting. An example in the Hofu plain, Yamaguchi Prefecture is presented, where the ground water environment has been monitored for more than 30 years from the viewpoint of hydrology. Then, transition from the fresh ground water to sea water is evaluated by a sharp boundary as salt-water wedges through the field survey in a coastal area of a large city for a short term using vertical electrical prospecting. Moreover, streaming potential measurements are described to grasp the real-time behavior of ground water flow. From the long-term monitoring of ground water aquifer, it was found that the variation of ground water streaming can be evaluated by monitoring the long-term successive change in the resistivity of ground water aquifer. From the vertical electrical prospecting, water quality can be immediately judged through data analysis. From the results of streaming potential measurements and vertical electrical prospecting using Schlumberger method, streaming behavior of ground water in the area of spring water source can be estimated by determining three-dimensional resistivity structure. 17 refs., 15 figs.

  9. Ground-water quality assessment of the central Oklahoma Aquifer, Oklahoma; project description

    Science.gov (United States)

    Christenson, S.C.; Parkhurst, D.L.

    1987-01-01

    In April 1986, the U.S. Geological Survey began a pilot program to assess the quality of the Nation's surface-water and ground-water resources. The program, known as the National Water-Quality Assessment (NAWQA) program, is designed to acquire and interpret information about a variety of water-quality issues. The Central Oklahoma aquifer project is one of three ground-water pilot projects that have been started. The NAWQA program also incudes four surface-water pilot projects. The Central Oklahoma aquifer project, as part of the pilot NAWQA program, will develop and test methods for performing assessments of ground-water quality. The objectives of the Central Oklahoma aquifer assessment are: (1) To investigate regional ground-water quality throughout the aquifer in the manner consistent with the other pilot ground-water projects, emphasizing the occurrence and distribution of potentially toxic substances in ground water, including trace elements, organic compounds, and radioactive constituents; (2) to describe relations between ground-water quality, land use, hydrogeology, and other pertinent factors; and (3) to provide a general description of the location, nature, and possible causes of selected prevalent water-quality problems within the study unit; and (4) to describe the potential for water-quality degradation of ground-water zones within the study unit. The Central Oklahoma aquifer, which includes in descending order the Garber Sandstone and Wellington Formation, the Chase Group, the Council Grove Group, the Admire Group, and overlying alluvium and terrace deposits, underlies about 3,000 square miles of central Oklahoma and is used extensively for municipal, industrial, commercial, and domestic water supplies. The aquifer was selected for study by the NAWQA program because it is a major source for water supplies in central Oklahoma and because it has several known or suspected water-quality problems. Known problems include concentrations of arsenic, chromium

  10. Ground-water-quality assessment of the Central Oklahoma Aquifer, Oklahoma; geochemical and geohydrologic investigations

    Science.gov (United States)

    Parkhurst, D.L.; Christenson, S.C.; Breit, G.N.

    1993-01-01

    The National Water-Quality Assessment pilot project for the Central Oklahoma aquifer examined the chemical and isotopic composition of ground water, the abundances and textures of minerals in core samples, and water levels and hydraulic properties in the flow system to identify geochemical reactions occurring in the aquifer and rates and directions of ground-water flow. The aquifer underlies 3,000\\x11square miles of central Oklahoma and consists of Permian red beds, including parts of the Permian Garber Sandstone, Wellington Formation, and Chase, Council Grove, and Admire Groups, and Quaternary alluvium and terrace deposits. In the part of the Garber Sandstone and Wellington Formation that is not confined by the Permian Hennessey Group, calcium, magnesium, and bicarbonate are the dominant ions in ground water; in the confined part of the Garber Sandstone and Wellington Formation and in the Chase, Council Grove, and Admire Groups, sodium and bicarbonate are the dominant ions in ground water. Nearly all of the Central Oklahoma aquifer has an oxic or post-oxic environment as indicated by the large dissolved concentrations of oxygen, nitrate, arsenic (V), chromium (VI), selenium (VI), vanadium, and uranium. Sulfidic and methanic environments are virtually absent. Petrographic textures indicate dolomite, calcite, sodic plagioclase, potassium feldspars, chlorite, rock fragments, and micas are dissolving, and iron oxides, manganese oxides, kaolinite, and quartz are precipitating. Variations in the quantity of exchangeable sodium in clays indicate that cation exchange is occurring within the aquifer. Gypsum may dissolve locally within the aquifer, as indicated by ground water with large concentrations of sulfate, but gypsum was not observed in core samples. Rainwater is not a major source for most elements in ground water, but evapotranspiration could cause rainwater to be a significant source of potassium, sulfate, phosphate and nitrogen species. Brines derived from

  11. Geochemical and isotopic composition of ground water with emphasis on sources of sulfate in the upper Floridan Aquifer and intermediate aquifer system in southwest Florida

    Science.gov (United States)

    Sacks, Laura A.; Tihansky, Ann B.

    1996-01-01

    In southwest Florida, sulfate concentrations in water from the Upper Floridan aquifer and overlying intermediate aquifer system are commonly above 250 milligrams per liter (the drinking water standard), particularly in coastal areas. Possible sources of sulfate include dissolution of gypsum from the deeper part of the Upper Floridan aquifer or the middle confining unit, saltwater in the aquifer, and saline waters from the middle confining unit and Lower Floridan aquifer. The sources of sulfate and geochemical processes controlling ground-water composition were evaluated for the Peace and Myakka River Basins and adjacent coastal areas of southwest Florida. Samples were collected from 63 wells and a saline spring, including wells finished at different depth intervals of the Upper Floridan aquifer and intermediate aquifer system at about 25 locations. Sampling focused along three ground-water flow paths (selected based on a predevelopment potentiometric-surface map). Ground water was analyzed for major ions, selected trace constituents, dissolved organic carbon, and stable isotopes (delta deuterium, oxygen-18, carbon-13 of inorganic carbon, and sulfur-34 of sulfate and sulfide); the ratio of strontium-87 to strontium-86 was analyzed for waters along one of the flow paths. Chemical and isotopic data indicate that dedolomitization reactions (gypsum and dolomite dissolution and calcite precipitation) control the chemical composition of water in the Upper Floridan aquifer in inland areas. This is confirmed by mass-balance modeling between wells in the shallowest interval in the aquifer along the flow paths. However, gypsum occurs deeper in the aquifer than these wells. Upwelling of sulfate-rich water that previously dissolved gypsum in deeper parts of the aquifer is a more likely source of sulfate than gypsum dissolution in shallow parts of the aquifer. This deep ground water moves to shallower zones in the aquifer discharge area. Saltwater from the Upper Floridan aquifer

  12. Estimating ground water recharge using flow models of perched karstic aquifers.

    Science.gov (United States)

    Weiss, Menachem; Gvirtzman, Haim

    2007-01-01

    The fraction of rain that is annually recharged to ground water is a function of the transient quantities of precipitation (wet vs. dry years) as well as other meteorological and geologic factors, and thus it is very difficult to estimate. In this study, we have used long records (20 to 30 years) of precipitation and spring discharge to reconstruct the transient character of yearly recharge. These data sets were used to calibrate numerical ground water flow models on the less than 3 km(2) scale for four separate perched karstic aquifers in the Judean and Samarian Mountains of Israel. The stratification and karstic character of the local carbonate rock aquifers cause ground water to flow through discrete dissolution channels and to discharge at isolated springs. An innovative, dual-porosity approach was used where a finite-difference solution simulates flow in the rock matrix, while the karstic channels are simulated using computationally simple drains. Perched conditions are also simulated innovatively using MODFLOW by treating the bottom unsaturated layer as if it is saturated, but by assuming zero pressure head throughout the "unsaturated" layer. Best fitting between measured and computed spring hydrograph data has allowed us to develop a set of empirical functions relating measured precipitation to recharge to the aquifer. The generic methodology presented gives insight into the suspected changes in aquifer recharge rates between particularly wet or dry years.

  13. Ground-Water Availability Assessment for the Columbia Plateau Regional Aquifer System, Washington, Oregon, and Idaho

    Science.gov (United States)

    ,

    2008-01-01

    The U.S. Geological Survey (USGS) is assessing the availability and use of the Nation's water resources to gain a clearer understanding of the status of our water resources and the land-use, water-use, and climatic trends that affect them. The goal of the National assessment is to improve our ability to forecast water availability for future economic and environmental uses. Assessments will be completed for regional aquifer systems across the Nation to help characterize how much water we have now, how water availability is changing, and how much water we can expect to have in the future (Reilly and others, 2008). Water availability is a function of many factors, including the quantity and quality of water, and the laws, regulations, economics, and environmental factors that control its use. The focus of the Columbia Plateau regional ground-water availability assessment is to improve fundamental knowledge of the ground-water balance of the region, including the flows, storage, and ground-water use by humans. An improved quantitative understanding of the region's water balance not only provides key information about water quantity, but also can serve as a fundamental basis for many analyses of water quality and ecosystem health.

  14. An assessment of aquifer storage recovery using ground water flow models.

    Science.gov (United States)

    Lowry, Christopher S; Anderson, Mary P

    2006-01-01

    Owing to increased demands on ground water accompanied by increased drawdowns, technologies that use recharge options, such as aquifer storage recovery (ASR), are being used to optimize available water resources and reduce adverse effects of pumping. In this paper, three representative ground water flow models were created to assess the impact of hydrogeologic and operational parameters/factors on recovery efficiency of ASR systems. Flow/particle tracking and solute transport models were used to track the movement of water during injection, storage, and recovery. Results from particle tracking models consistently produced higher recovery efficiency than the solute transport models for the parameters/properties examined because the particle tracking models neglected mixing of the injected and ambient water. Mixing between injected and ambient water affected recovery efficiency. Results from this study demonstrate the interactions between hydrogeologic and operational parameters on predictions of recovery efficiency. These interactions are best simulated using coupled numerical ground water flow and transport models that include the effects of mixing of injected water and ambient ground water.

  15. Effects of highway-deicer application on ground-water quality in a part of the Calumet Aquifer, northwestern Indiana

    Science.gov (United States)

    Watson, Lee R.; Bayless, E. Randall; Buszka, Paul M.; Wilson, John T.

    2002-01-01

    The effects of highway-deicer application on ground-water quality were studied at a site in northwestern Indiana using a variety of geochemical indicators. Site characteristics such as high snowfall rates; large quantities of applied deicers; presence of a high-traffic highway; a homogeneous, permeable, and unconfined aquifer; a shallow water table; a known ground-water-flow direction; and minimal potential for other sources of chloride and sodium to complicate source interpretation were used to select a study area where ground water was likely to be affected by deicer application. Forty-three monitoring wells were installed in an unconfined sand aquifer (the Calumet aquifer) near Beverly Shores in northwestern Indiana. Wells were installed along two transects that approximately paralleled groundwater flow in the Calumet aquifer and crossed US?12. US?12 is a highway that receives Indiana?s highest level of maintenance to maintain safe driving conditions. Ground-water quality and water-level data were collected from the monitoring wells, and precipitation and salt-application data were compiled from 1994 through 1997. The water-quality data indicated that chloride was the most easily traced indicator of highway deicers in ground water. Concentration ratios of chloride to iodide and chloride to bromide and Stiff diagrams of major element concentrations indicated that the principal source of chloride and sodium in ground water from the uppermost one-third to one-half of the Calumet relative electromagnetic conductivity defined a distinct plume of deicer-affected water in the uppermost 8 feet of aquifer at about 9 feet horizontally from the paved roadway edge and a zone of higher conductivity than background in the lower one-third of the aquifer. Chloride and sodium in the deep parts of the aquifer originated from natural sources. Chloride and sodium from highway deicers were present in the aquifer throughout the year. The highest concentrations of chloride and sodium

  16. Aquifer-scale controls on the distribution of nitrate and ammonium in ground water near La Pine, Oregon, USA

    Science.gov (United States)

    Hinkle, Stephen R.; Böhlke, J. K.; Duff, John H.; Morgan, David S.; Weick, Rodney J.

    2007-02-01

    SummaryGeochemical and isotopic tools were applied at aquifer, transect, and subtransect scales to provide a framework for understanding sources, transport, and fate of dissolved inorganic N in a sandy aquifer near La Pine, Oregon. NO 3 is a common contaminant in shallow ground water in this area, whereas high concentrations of NH 4-N (up to 39 mg/L) are present in deep ground water. N concentrations, N/Cl ratios, tracer-based apparent ground-water ages, N isotope data, and hydraulic gradients indicate that septic tank effluent is the primary source of NO 3. N isotope data, N/Cl and N/C relations, 3H data, and hydraulic considerations point to a natural, sedimentary organic matter source for the high concentrations of NH 4, and are inconsistent with an origin as septic tank N. Low recharge rates and flow velocities have largely restricted anthropogenic NO 3 to isolated plumes within several meters of the water table. A variety of geochemical and isotopic data indicate that denitrification also affects NO 3 gradients in the aquifer. Ground water in the La Pine aquifer evolves from oxic to increasingly reduced conditions. Suboxic conditions are achieved after about 15-30 y of transport below the water table. NO 3 is denitrified near the oxic/suboxic boundary. Denitrification in the La Pine aquifer is characterized well at the aquifer scale with a redox boundary approach that inherently captures spatial variability in the distribution of electron donors.

  17. Surface Nuclear Magnetic Resonance (SNMR - A new method for exploration of ground water and aquifer properties

    Directory of Open Access Journals (Sweden)

    U. Yaramanci

    2000-06-01

    Full Text Available The Surface Nuclear Magnetic Resonance (SNMR method is a fairly new technique in geophysics to assess ground water, i.e. existence, amount and productibility by measurements at the surface. The NMR technique used in medicine, physics and lately in borehole geophysics was adopted for surface measurements in the early eighties, and commercial equipment for measurements has been available since the mid nineties. The SNMR method has been tested at sites in Northern Germany with Quaternary sand and clay layers, to examine the suitability of this new method for groundwater exploration and environmental investigations. More information is obtained by SNMR, particularly with respect to aquifer parameters, than with other geophysical techniques. SNMR measurements were carried out at three borehole locations, together with 2D and 1D direct current geoelectrics and well logging (induction log, gamma-ray log and pulsed neutron-gamma log. Permeabilities were calculated from the grain-size distributions of core material determined in the laboratory. It is demonstrated that the SNMR method is able to detect groundwater and the results are in good agreement with other geophysical and hydrogeological data. Using the SNMR method, the water content of the unsaturated and saturated zones (i.e. porosity of an aquifer can be reliably determined. This information and resistivity data permit in-situ determination of other aquifer parameters. Comparison of the SNMR results with borehole data clearly shows that the water content determined by SNMR is the free or mobile water in the pores. The permeabilities estimated from the SNMR decay times are similar to those derived from sieve analysis of core material. Thus, the combination of SNMR with geoelectric methods promises to be a powerful tool for studying aquifer properties.

  18. Seasonal Influences on Ground-Surface Water Interactions in an Arsenic-Affected Aquifer in Cambodia

    Science.gov (United States)

    Richards, L. A.; Magnone, D.; Van Dongen, B.; Bryant, C.; Boyce, A.; Ballentine, C. J.; Polya, D. A.

    2015-12-01

    Millions of people in South and Southeast Asia consume drinking water daily which contains dangerous levels of arsenic exceeding health-based recommendations [1]. A key control on arsenic mobilization in aquifers in these areas has been controversially identified as the interaction of 'labile' organic matter contained in surface waters with groundwaters and sediments at depth [2-4], which may trigger the release of arsenic from the solid- to aqueous-phase via reductive dissolution of iron-(hyr)oxide minerals [5]. In a field site in Kandal Province, Cambodia, which is an arsenic-affected area typical to others in the region, there are strong seasonal patterns in groundwater flow direction, which are closely related to monsoonal rains [6] and may contribute to arsenic release in this aquifer. The aim of this study is to explore the implications of the high susceptibility of this aquifer system to seasonal changes on potential ground-surface water interactions. The main objectives are to (i) identify key zones where there are likely ground-surface water interactions, (ii) assess the seasonal impact of such interactions and (iii) quantify the influence of interactions using geochemical parameters (such as As, Fe, NO3, NH4, 14C, 3T/3He, δ18O, δ2H). Identifying the zones, magnitude and seasonal influence of ground-surface water interactions elucidates new information regarding potential locations/pathways of arsenic mobilization and/or transport in affected aquifers and may be important for water management strategies in affected areas. This research is supported by NERC (NE/J023833/1) to DP, BvD and CJB and a NERC PhD studentship (NE/L501591/1) to DM. References: [1] World Health Organization, 2008. [2] Charlet & Polya (2006), Elements, 2, 91-96. [3] Harvey et al. (2002), Science, 298, 1602-1606. [4] Lawson et al. (2013), Env. Sci. Technol. 47, 7085 - 7094. [5] Islam et al. (2004), Nature, 430, 68-71. [6] Benner et al. (2008) Appl. Geochem. 23(11), 3072 - 3087.

  19. Water-quality assessment of the Trinity River basin, Texas : ground-water quality of the Trinity, Carrizo-Wilcox, and Gulf Coast aquifers, February-August 1994

    Science.gov (United States)

    Reutter, David C.; Dunn, David D.

    2000-01-01

    Ground-water samples were collected from wells in the outcrops of the Trinity, Carrizo-Wilcox, and Gulf Coast aquifers during February-August 1994 to determine the quality of ground water in the three major aquifers in the Trinity River Basin study unit, Texas. These samples were collected and analyzed for selected properties, nutrients, major inorganic constituents, trace elements, pesticides, dissolved organic carbon, total phenols, methylene blue active substances, and volatile organic compounds as part of the U.S. Geological Survey National Water-Quality Assessment Program. Quality-control practices included the collection and analysis of blank, duplicate, and spiked samples. Samples were collected from 12 shallow wells (150 feet or less) and from 12 deep wells (greater than 150 feet) in the Trinity aquifer, 11 shallow wells and 12 deep wells in the Carrizo-Wilcox aquifer, and 14 shallow wells and 10 deep wells in the Gulf Coast aquifer. The three aquifers had similar water chemistries-calcium was the dominant cation and bicarbonate the dominant anion. Statistical tests relating well depths to concentrations of nutrients and major inorganic constituents indicated correlations between well depth and concentrations of ammonia nitrogen, nitrite plus nitrate nitrogen, bicarbonate, sodium, and dissolved solids in the Carrizo-Wilcox aquifer and between well depth and concentrations of sulfate in the Gulf Coast aquifer. The tests indicated no significant correlations for the Trinity aquifer. Concentrations of dissolved solids were larger than the secondary maximum contaminant level of 500 milligrams per liter established for drinking water by the U.S. Environmental Protection Agency in 12 wells in the Trinity aquifer, 4 wells in the Carrizo-Wilcox aquifer, and 6 wells in the Gulf Coast aquifer. Iron concentrations were larger than the secondary maximum contaminant level of 300 micrograms per liter in at least 3 samples from each aquifer, and manganese concentrations

  20. Ground Water Redox Zonation near La Pine, Oregon: Relation to River Position within the Aquifer-Riparian Zone Continuum

    Science.gov (United States)

    Hinkle, Stephen R.; Morgan, David S.; Orzol, Leonard L.; Polette, Danial J.

    2007-01-01

    Increasing residential development since in the 1960s has lead to increases in nitrate concentrations in shallow ground water in parts of the 247 square mile study area near La Pine, Oregon. Denitrification is the dominant nitrate-removal process that occurs in suboxic ground water, and suboxic ground water serves as a barrier to transport of most nitrate in the aquifer. Oxic ground water, on the other hand, represents a potential pathway for nitrate transport from terrestrial recharge areas to the Deschutes and Little Deschutes Rivers. The effects of present and potential future discharge of ground-water nitrate into the nitrogen-limited Deschutes and Little Deschutes Rivers are not known. However, additions of nitrogen to nitrogen-limited rivers can lead to increases in primary productivity which, in turn, can increase the magnitudes of dissolved oxygen and pH swings in river water. An understanding of the distribution of oxic ground water in the near-river environment could facilitate understanding the vulnerability of these rivers and could be a useful tool for management of these rivers. In this study, transects of temporary wells were installed in sub-river sediments beneath the Deschutes and Little Deschutes Rivers near La Pine to characterize near-river reduction/oxidation (redox) conditions near the ends of ground-water flow paths. Samples from transects installed near the center of the riparian zone or flood plain were consistently suboxic. Where transects were near edges of riparian zones, most ground-water samples also were suboxic. Oxic ground water (other than hyporheic water) was uncommon, and was only detected near the outside edge of some meander bends. This pattern of occurrence likely reflects geochemical controls throughout the aquifer as well as geochemical processes in the microbiologically active riparian zone near the end of ground-water flow paths. Younger, typically less reduced ground water generally enters near-river environments through

  1. Ground Water Redox Zonation near La Pine, Oregon: Relation to River Position within the Aquifer-Riparian Zone Continuum

    Science.gov (United States)

    Hinkle, Stephen R.; Morgan, David S.; Orzol, Leonard L.; Polette, Danial J.

    2007-01-01

    Increasing residential development since in the 1960s has lead to increases in nitrate concentrations in shallow ground water in parts of the 247 square mile study area near La Pine, Oregon. Denitrification is the dominant nitrate-removal process that occurs in suboxic ground water, and suboxic ground water serves as a barrier to transport of most nitrate in the aquifer. Oxic ground water, on the other hand, represents a potential pathway for nitrate transport from terrestrial recharge areas to the Deschutes and Little Deschutes Rivers. The effects of present and potential future discharge of ground-water nitrate into the nitrogen-limited Deschutes and Little Deschutes Rivers are not known. However, additions of nitrogen to nitrogen-limited rivers can lead to increases in primary productivity which, in turn, can increase the magnitudes of dissolved oxygen and pH swings in river water. An understanding of the distribution of oxic ground water in the near-river environment could facilitate understanding the vulnerability of these rivers and could be a useful tool for management of these rivers. In this study, transects of temporary wells were installed in sub-river sediments beneath the Deschutes and Little Deschutes Rivers near La Pine to characterize near-river reduction/oxidation (redox) conditions near the ends of ground-water flow paths. Samples from transects installed near the center of the riparian zone or flood plain were consistently suboxic. Where transects were near edges of riparian zones, most ground-water samples also were suboxic. Oxic ground water (other than hyporheic water) was uncommon, and was only detected near the outside edge of some meander bends. This pattern of occurrence likely reflects geochemical controls throughout the aquifer as well as geochemical processes in the microbiologically active riparian zone near the end of ground-water flow paths. Younger, typically less reduced ground water generally enters near-river environments through

  2. Hydrochemistry of the Mahomet Bedrock Valley Aquifer, East-Central Illinois: indicators of recharge and ground-water flow

    Science.gov (United States)

    Panno, S.V.; Hackley, Keith C.; Cartwright, K.; Liu, Chao-Li

    1994-01-01

    A conceptual model of the ground-water flow and recharge to the Mahomet Bedrock Valley Aquifer (MVA), east-central Illinois, was developed using major ion chemistry and isotope geochemistry. The MVA is a 'basal' fill in the east-west trending buried bedrock valley composed of clean, permeable sand and gravel to thicknesses of up to 61 m. It is covered by a thick sequence of glacial till containing thinner bodies of interbedded sand and gravel. Ground water from the MVA was found to be characterized by clearly defined geochemical regions with three distinct ground-water types. A fourth ground-water type was found at the confluence of the MVA and the Mackinaw Bedrock Valley Aquifer (MAK) to the west. Ground water in the Onarga Valley, a northeastern tributary of the MVA, is of two types, a mixed cation-SO42- type and a mixed cation-HCO3- type. The ground water is enriched in Na+, Ca2+, Mg2+, and SO42- which appears to be the result of an upward hydraulic gradient and interaction of deeper ground water with oxidized pyritic coals and shale. We suggest that recharge to the Onarga Valley and overlying aquifers is 100% from bedrock (leakage) and lateral flow from the MVA to the south. The central MVA (south of the Onarga Valley) is composed of relatively dilute ground water of a mixed cation-HCO3- type, with low total dissolved solids, and very low concentrations of Cl- and SO42-. Stratigraphic relationships of overlying aquifers and ground-water chemistry of these and the MVA suggest recharge to this region of the MVA (predominantly in Champaign County) is relatively rapid and primarily from the surface. Midway along the westerly flow path of the MVA (western MVA), ground water is a mixed cation-HCO3- type with relatively high Cl-, where Cl- increases abruptly by one to ??? two orders of magnitude. Data suggest that the increase in Cl- is the result of leakage of saline ground water from bedrock into the MVA. Mass-balance calculations indicate that approximately 9.5% of

  3. Ground-water system, estimation of aquifer hydraulic properties, and effects of pumping on ground-water flow in Triassic sedimentary rocks in and near Lansdale, Pennsylvania

    Science.gov (United States)

    Senior, Lisa A.; Goode, Daniel J.

    1999-01-01

    Ground water in Triassic-age sedimentary fractured-rock aquifers in the area of Lansdale, Pa., is used as drinking water and for industrial supply. In 1979, ground water in the Lansdale area was found to be contaminated with trichloroethylene, tetrachloroethylene, and other man-made organic compounds, and in 1989, the area was placed on the U.S. Environmental Protection Agency's (USEPA) National Priority List as the North Penn Area 6 site. To assist the USEPA in the hydrogeological assessment of the site, the U.S. Geological Survey began a study in 1995 to describe the ground-water system and to determine the effects of changes in the well pumping patterns on the direction of ground-water flow in the Lansdale area. This determination is based on hydrologic and geophysical data collected from 1995-98 and on results of the simulation of the regional ground-water-flow system by use of a numerical model.Correlation of natural-gamma logs indicate that the sedimentary rock beds strike generally northeast and dip at angles less than 30 degrees to the northwest. The ground-water system is confined or semi-confined, even at shallow depths; depth to bedrock commonly is less than 20 feet (6 meters); and depth to water commonly is about 15 to 60 feet (5 to 18 meters) below land surface. Single-well, aquifer-interval-isolation (packer) tests indicate that vertical permeability of the sedimentary rocks is low. Multiple-well aquifer tests indicate that the system is heterogeneous and that flow appears primarily in discrete zones parallel to bedding. Preferred horizontal flow along strike was not observed in the aquifer tests for wells open to the pumped interval. Water levels in wells that are open to the pumped interval, as projected along the dipping stratigraphy, are drawn down more than water levels in wells that do not intersect the pumped interval. A regional potentiometric map based on measured water levels indicates that ground water flows from Lansdale towards discharge

  4. A strategy for delineating the area of ground-water contribution to wells completed in fractured bedrock aquifers in Pennsylvania

    Science.gov (United States)

    Risser, D.W.; Barton, G.J.

    1995-01-01

    Delineating a contributing area to a well completed in a fractured bedrock aquifer in Pennsylvania is difficult because the hydrogeologic characteristics of fractured rocks are extremely complex. Because of this complexity, a single method or technique to delineate a contributing area will not be applicable for all wells completed in fractured-bedrock aquifers. Therefore, a strategy for refining the understanding of boundary conditions and major heterogeneities that control ground-water flow and sources of water to a supply well is suggested. The strategy is based on developing and refining a conceptual model for the sources of water to the well. Specifically, the strategy begins with an initial conceptual model of the ground-water-flow system, then requires the collection of hydrogeologic information to refine the conceptual model in a stepwise manner from one or more of sic categories: (1) hydrogeologic mapping, (2) water-level and streamflow measurements, (3) geochemistry, (4) geophysics and borehole flowmetering, (5) aquifer testing, and (6) tracer testing. During the refinement process, the applicability of treating the fratured-rock aquifer as a hydrologic continuum is evaluated, and the contributing area is delineated. Choice of the method used to delineate the contributing area is less important than insuring that the method is consistent with the refined conceptual model. By use of such a strategy, the improved understanding of the ground-water-flow system will lead to a technically defensible delineation of the contributing area.

  5. Ground-water quality assessment of the central Oklahoma aquifer, Oklahoma; analysis of available water-quality data through 1987

    Science.gov (United States)

    Parkhurst, D.L.; Christenson, S.C.; Schlottmann, J.L.

    1989-01-01

    Beginning in 1986, the Congress annually has appropriated funds for the U.S. Geological Survey to test and refine concepts for a National Water-Quality Assessment (NAWQA) Program. The long-term goals of a full-scale program would be to: (1) Provide a nationally consistent description of current water-quality conditions for a large part of the Nation's surface- and ground-water resources; (2) Define long-term trends (or lack of trends) in water quality; and (3) Identify, describe, and explain, as possible, the major factors that affect the observed water-quality conditions and trends. The results of the NAWQA Program will be made available to water managers, policy makers, and the public, and will provide an improved scientific basis for evaluating the effectiveness of water-quality management programs. At present (1988), the assessment program is in a pilot phase in seven project areas throughout the country that represent diverse hydrologic environments and water-quality conditions. The Central Oklahoma aquifer project is one of three pilot ground-water projects. One of the initial activities performed by each pilot project was to compile, screen, and interpret the large amount of water-quality data available within each study area. The purpose of this report is to assess the water quality of the Central Oklahoma aquifer using the information available through 1987. The scope of the work includes compiling data from Federal, State, and local agencies; evaluating the suitability of the information for conducting a regional water-quality assessment; mapping regional variations in major-ion chemistry; calculating summary statistics of the available water-quality data; producing maps to show the location and number of samples that exceeded water-quality standards; and performing contingency-table analyses to determine the relation of geologic unit and depth to the occurrence of chemical constituents that exceed water-quality standards. This report provides an initial

  6. Ground-water quality in the carbonate-rock aquifer of the Great Basin, Nevada and Utah, 2003

    Science.gov (United States)

    Schaefer, Donald H.; Thiros, Susan A.; Rosen, Michael R.

    2005-01-01

    The carbonate-rock aquifer of the Great Basin is named for the thick sequence of Paleozoic limestone and dolomite with lesser amounts of shale, sandstone, and quartzite. It lies primarily in the eastern half of the Great Basin and includes areas of eastern Nevada and western Utah as well as the Death Valley area of California and small parts of Arizona and Idaho. The carbonate-rock aquifer is contained within the Basin and Range Principal Aquifer, one of 16 principal aquifers selected for study by the U.S. Geological Survey’s National Water- Quality Assessment Program.Water samples from 30 ground-water sites (20 in Nevada and 10 in Utah) were collected in the summer of 2003 and analyzed for major anions and cations, nutrients, trace elements, dissolved organic carbon, volatile organic compounds (VOCs), pesticides, radon, and microbiology. Water samples from selected sites also were analyzed for the isotopes oxygen-18, deuterium, and tritium to determine recharge sources and the occurrence of water recharged since the early 1950s.Primary drinking-water standards were exceeded for several inorganic constituents in 30 water samples from the carbonate-rock aquifer. The maximum contaminant level was exceeded for concentrations of dissolved antimony (6 μg/L) in one sample, arsenic (10 μg/L) in eleven samples, and thallium (2 μg/L) in one sample. Secondary drinking-water regulations were exceeded for several inorganic constituents in water samples: chloride (250 mg/L) in five samples, fluoride (2 mg/L) in two samples, iron (0.3 mg/L) in four samples, manganese (0.05 mg/L) in one sample, sulfate (250 mg/L) in three samples, and total dissolved solids (500 mg/L) in seven samples.Six different pesticides or metabolites were detected at very low concentrations in the 30 water samples. The lack of VOC detections in water sampled from most of the sites is evidence thatVOCs are not common in the carbonate-rock aquifer. Arsenic values for water range from 0.7 to 45.7

  7. Ground-water quality of the Upper Floridan Aquifer near an abandoned manufactured gas plant in Albany, Georgia

    Science.gov (United States)

    Chapman, M.J.

    1993-01-01

    Manufactured gas plants produced gas for heating and lighting in the United States from as early as 1816 into the 1960's. By-products including, but not limited to, oil residues and tar, were generated during the gas-manufacturing process. Organic compounds (hydrocarbons) were detected in water in the upper water-bearing zone of the Upper Floridan aquifer near an abandoned manufactured gas plant (MGP) in Albany, Georgia, during an earlier investigation in 1990. Chemical analyses of ground-water samples collected from five existing monitoring wells in 1991 verify the presence of hydrocarbons and metals in the upper water-beating zone of the Upper Floridan aquifer. One well was drilled into the lower water-beating zone of the Upper Floridan aquifer in 1991 for water-quality sampling and water-level monitoring. Analyses of ground water sampled from this well did not show evidence of benzene, toluene, xylene, napthalene, acenaphthlene, or other related compounds detected in the upper water-bearing zone in the study area. Low concentrations of tetrachloroethane, trichloromethane, and l,2-cisdichloroethene were detected in a water sample from the deeper well; however, these compounds were not detected in the upper water-bearing zone in the study area. Inorganic constituent concentrations also were substantially lower in the deeper well. Overall, ground water sampled from the lower water-bearing zone had lower specific conductance and alkalinity; and lower concentrations of dissolved solids, iron, and manganese compared to ground water sampled from the upper water-bearing zone. Water levels for the upper and lower water-bearing zones were similar throughout the study period.

  8. Hydrogeology and ground-water quality of glacial-drift aquifers, Leech Lake Indian Reservation, north-central Minnesota

    Science.gov (United States)

    Lindgren, R.J.

    1996-01-01

    Among the duties of the water managers of the Leech Lake Indian Reservation in north-central Minnesota are the development and protection of the water resources of the Reservation. The U.S. Geological Survey, in cooperation with the Leech Lake Indian Reservation Business Committee, conducted a three and one half-year study (1988-91) of the ground-water resources of the Leech Lake Indian Reservation. The objectives of this study were to describe the availability and quality of ground water contained in glacial-drift aquifers underlying the Reservation.

  9. Apparent chlorofluorocarbon age of ground water of the shallow aquifer system, Naval Weapons Station Yorktown, Yorktown, Virginia

    Science.gov (United States)

    Nelms, David L.; Harlow, George E.; Brockman, Allen R.

    2001-01-01

    Apparent ages of ground water are useful in the analysis of various components of flow systems, and results of this analysis can be incorporated into investigations of potential pathways of contaminant transport. This report presents the results of a study in 1997 by the U.S. Geological Survey (USGS), in cooperation with the Naval Weapons Station Yorktown, Base Civil Engineer, Environmental Directorate, to describe the apparent age of ground water of the shallow aquifer system at the Station. Chlorofluorocarbons (CFCs), tritium (3H), dissolved gases, stable isotopes, and water-quality field properties were measured in samples from 14 wells and 16 springs on the Station in March 1997.Nitrogen-argon recharge temperatures range from 5.9°C to 17.3°C with a median temperature of 10.9°C, which indicates that ground-water recharge predominantly occurs in the cold months of the year. Concentrations of excess air vary depending upon geohydrologic setting (recharge and discharge areas). Apparent ground-water ages using a CFC-based dating technique range from 1 to 48 years with a median age of 10 years. The oldest apparent CFC ages occur in the upper parts of the Yorktown-Eastover aquifer, whereas the youngest apparent ages occur in the Columbia aquifer and the upper parts of the discharge area setting, especially springs. The vertical distribution of apparent CFC ages indicates that groundwater movement between aquifers is somewhat retarded by the leaky confining units, but the elapsed time is relatively short (generally less than 35 years), as evidenced by the presence of CFCs at depth. The identification of binary mixtures by CFC-based dating indicates that convergence of flow lines occurs not only at the actual point of discharge, but also in the subsurface.The CFC-based recharge dates are consistent with expected 3H concentrations measured in the water samples from the Station. The concentration of 3H in ground water ranges from below the USGS laboratory minimum

  10. Simulation of ground-water flow and solute transport in the Glen Canyon aquifer, East-Central Utah

    Science.gov (United States)

    Freethey, Geoffrey W.; Stolp, Bernard J.

    2010-01-01

    The extraction of methane from coal beds in the Ferron coal trend in central Utah started in the mid-1980s. Beginning in 1994, water from the extraction process was pressure injected into the Glen Canyon aquifer. The lateral extent of the aquifer that could be affected by injection is about 7,600 square miles. To address regional-scale effects of injection over a decadal time frame, a conceptual model of ground-water movement and transport of dissolved solids was formulated. A numerical model that incorporates aquifer concepts was then constructed and used to simulate injection. The Glen Canyon aquifer within the study area is conceptualized in two parts-an active area of ground-water flow and solute transport that exists between recharge areas in the San Rafael Swell and Desert, Waterpocket Fold, and Henry Mountains and discharge locations along the Muddy, Dirty Devil, San Rafael, and Green Rivers. An area of little or negligible ground-water flow exists north of Price, Utah, and beneath the Wasatch Plateau. Pressurized injection of coal-bed methane production water occurs in this area where dissolved-solids concentrations can be more than 100,000 milligrams per liter. Injection has the potential to increase hydrologic interaction with the active flow area, where dissolved-solids concentrations are generally less than 3,000 milligrams per liter. Pressurized injection of coal-bed methane production water in 1994 initiated a net addition of flow and mass of solutes into the Glen Canyon aquifer. To better understand the regional scale hydrologic interaction between the two areas of the Glen Canyon aquifer, pressurized injection was numerically simulated. Data constraints precluded development of a fully calibrated simulation; instead, an uncalibrated model was constructed that is a plausible representation of the conceptual flow and solute-transport processes. The amount of injected water over the 36-year simulation period is about 25,000 acre-feet. As a result

  11. Use of environmental tracers to evaluate ground-water age and water-quality trends in a buried-valley aquifer, Dayton area, southwestern, Ohio

    Science.gov (United States)

    Rowe, Gary L.; Shapiro, Stephanie Dunkle; Schlosser, Peter

    1999-01-01

    Chlorofluorocarbons (CFC method) and tritium and helium isotopes (3H-3He method) were used as environmental tracers to estimate ground-water age in conjunction with efforts to develop a regional ground-water flow model of the buried-valley aquifer in the Dayton area, southwestern Ohio. This report describes results of CFC and water-quality sampling, summarizes relevant aspects of previously published work, and describes the use of 3H-3He ages to characterize temporal trends in ground-water quality of the buried-valley aquifer near Dayton, Ohio. Results of CFC sampling indicate that approximately 25 percent of the 137 sampled wells were contaminated with excess CFC's that rendered the ground water unsuitable for age dating. Evaluation of CFC ages obtained for the remaining samples indicated that the CFC compounds used for dating were being affected by microbial degradation. The degradation occurred under anoxic conditions that are found in most parts of the buried-valley aquifer. As a result, ground-water ages derived by the CFC method were too old and were inconsistent with measured tritium concentrations and independently derived 3H-3He ages. Limited data indicate that dissolved methane may play an important role in the degradation of the CFC's. In contrast, the 3H-3He technique was found to yield ground-water ages that were chemically and hydrologically reasonable. Ground-water ages derived by the 3H-3He technique were compared to values for selected water- quality characteristics to evaluate temporal trends in ground-water quality in the buried- valley aquifer. Distinct temporal trends were not identified for pH, alkalinity, or calcium and magnesium because of rapid equilibration of ground-water with calcite and dolomite in aquifer sediments. Temporal trends in which the amount of scatter and the number of outlier concentrations increased as ground-water age decreased were noted for sodium, potassium, boron, bromide, chloride, ammonia, nitrate, phosphate

  12. Simulation of Ground-Water Flow in the Irwin Basin Aquifer System, Fort Irwin National Training Center, California

    Science.gov (United States)

    Densmore, Jill N.

    2003-01-01

    Ground-water pumping in the Irwin Basin at Fort Irwin National Training Center, California resulted in water-level declines of about 30 feet from 1941 to 1996. Since 1992, artificial recharge from wastewater-effluent infiltration and irrigation-return flow has stabilized water levels, but there is concern that future water demands associated with expansion of the base may cause a resumption of water-level declines. To address these concerns, a ground-water flow model of the Irwin Basin was developed to help better understand the aquifer system, assess the long-term availability and quality of ground water, and evaluate ground-water conditions owing to current pumping and to plan for future water needs at the base. Historical data show that ground-water-level declines in the Irwin Basin between 1941 and 1996, caused the formation of a pumping depression near the pumped wells, and that recharge from the wastewater-treatment facility and disposal area caused the formation of a recharge mound. There have been two periods of water-level recovery in the Irwin Basin since the development of ground water in this basin; these periods coincide with a period of decreased pumpage from the basin and a period of increased recharge of water imported from the Bicycle Basin beginning in 1967 and from the Langford Basin beginning in 1992. Since 1992, artificial recharge has exceeded pumpage in the Irwin Basin and has stabilized water-level declines. A two-layer ground-water flow model was developed to help better understand the aquifer system, assess the long-term availability and quality of ground water, and evaluate ground-water conditions owing to current pumping and to plan for future water needs at the base. Boundary conditions, hydraulic conductivity, altitude of the bottom of the layers, vertical conductance, storage coefficient, recharge, and discharge were determined using existing geohydrologic data. Rates and distribution of recharge and discharge were determined from

  13. Age and quality of ground water and sources of nitrogen in the aquifers in Pumpkin Creek Valley, western Nebraska, 2000

    Science.gov (United States)

    Steele, G.V.; Cannia, J.C.; Sibray, S.S.; McGuire, V.L.

    2005-01-01

    Ground water is the source of drinking water for the residents of Pumpkin Creek Valley, western Nebraska. In this largely agricultural area, shallow aquifers potentially are susceptible to nitrate contamination. During the last 10 years, ground-water levels in the North Platte Natural Resources District have declined and contamination has become a major problem for the district. In 2000, the U.S. Geological Survey and the North Platte Natural Resources District began a cooperative study to determine the age and quality of the ground water and the sources of nitrogen in the aquifers in Pumpkin Creek Valley. Water samples were collected from 8 surface-water sites, 2 springs, and 88 ground-water sites during May, July, and August 2000. These samples were analyzed for physical properties, nutrients or nitrate, and hydrogen and oxygen isotopes. In addition, a subset of samples was analyzed for any combination of chlorofluorocarbons, tritium, tritium/helium, sulfur-hexafluoride, carbon-14, and nitrogen-15. The apparent age of ground water in the alluvial aquifer typically varied from about 1980 to modern, whereas ground water in the fractured Brule Formation had a median value in the 1970s. The Brule Formation typically contained ground water that ranged from the 1940s to the 1990s, but low-yield wells had apparent ages of 5,000 to 10,000 years before present. Data for oxygen-18 and deuterium indicated that lake-water samples showed the greatest effects from evaporation. Ground-water data showed no substantial evaporative effects and some ground water became isotopically heavier as the water moved downgradient. In addition, the physical and chemical ground-water data indicate that Pumpkin Creek is a gaining stream because little, if any, of its water is lost to the ground-water system. The water-quality type changed from a sodium calcium bicarbonate type near Pumpkin Creek's headwaters to a calcium sodium bicarbonate type near its mouth. Nitrate concentrations were

  14. Assessment of ground water quality in a fractured aquifer under continue wastewater injection

    Energy Technology Data Exchange (ETDEWEB)

    Carrieri, C.; Masciopinto, C. [National Research Center, Water Research Institute, Bari (Italy)

    2000-12-01

    Experimental studies have been carried out in a fractured coastal aquifer of the Salento Region (Nardo' (Le) Italy), subject since 1991 to injection of 12000 m{sup 3}/d of treated municipal wastewater in a natural sink. The analytical parameters of ground water sampled in monitoring wells, have been compared before and after the injection started. The mound of water table (1.5 m), the reduction of seawater extent of 2 km and the spreading of pollutants injected were evaluated by means of mathematical model results. After ten years operation, the volume of the available resource for agricultural and drinking use has been increased, without notable decrease of the pre existent ground water quality. Moreover for preserving such resource from pollution, the mathematical model allowed the standards of wastewater quality for recharge to be identified. Around the sink, a restricted area was also defined with prohibition of withdrawals, to avoid infection and other risks on human health. [Italian] E' stato condotto uno studio sperimentale in una falda fratturata costiera del Salento (Puglia), interessata da fenomeni di intrusione marina, per valutare gli effetti di un'immissione prolungata di circa 12000 m{sup 3}/d provenienti da impianti di trattamento di scarichi urbani. I valori dei parametri analitici rilevati nei pozzi interessati, in periodi anche precedenti l'avvio dell'immissione (1991), sono stati confrontati con le concentrazioni calcolate con un modello matematico per sistemi fratturati. Dopo circa 10 anni d'immissione, l'acqua sotterranea e' risultata, rispetto a quella preesistente, sicuramente piu' utilizzabile per scopi irrigui e, mediamente, d'uguali potenzialita' per scopi potabili. Il calcolo ha evidenziato un innalzamento medio del livello piezometrico di 1.5 m e un arretramento dell'intrusione marina di circa 2 km. Esso ha, inoltre, permesso di individuare la zona di vietato emungimento nell

  15. Selected aquifer-test and specific-capacity data for wells in the Lost Creek Designated Ground Water Basin, Weld, Adams, and Arapahoe Counties, Colorado

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This point dataset contains estimates of aquifer transmissivity and hydraulic conductivity at selected well locations in the Lost Creek Designated Ground Water...

  16. Changes in ground-water quality in the Canal Creek Aquifer between 1995 and 2000-2001, West Branch Canal Creek area, Aberdeen Proving Ground, Maryland

    Science.gov (United States)

    Phelan, Daniel J.; Fleck, William B.; Lorah, Michelle M.; Olsen, Lisa D.

    2002-01-01

    Since 1917, Aberdeen Proving Ground, Maryland has been the primary chemical-warfare research and development center for the U.S. Army. Ground-water contamination has been documented in the Canal Creek aquifer because of past disposal of chemical and ordnance manufacturing waste. Comprehensive sampling for volatile organic compounds in ground water by the U.S. Geological Survey in the West Branch Canal Creek area was done in June?October 1995 and June?August 2000. The purpose of this report is (1) to compare volatile organic compound concentrations and determine changes in the ground-water contaminant plumes along two cross sections between 1995 and 2000, and (2) to incorporate data from new piezometers sampled in spring 2001 into the plume descriptions. Along the southern cross section, total concentrations of volatile organic compounds in 1995 were determined to be highest in the landfill area east of the wetland (5,200 micrograms per liter), and concentrations were next highest deep in the aquifer near the center of the wetland (3,300 micrograms per liter at 35 feet below land surface). When new piezometers were sampled in 2001, higher carbon tetrachloride and chloroform concentrations (2,000 and 2,900 micrograms per liter) were detected deep in the aquifer 38 feet below land surface, west of the 1995 sampling. A deep area in the aquifer close to the eastern edge of the wetland and a shallow area just east of the creek channel showed declines in total volatile organic compound concentrations of more than 25 percent, whereas between those two areas, con-centrations generally showed an increase of greater than 25 percent between 1995 and 2000. Along the northern cross section, total concentrations of volatile organic compounds in ground water in both 1995 and 2000 were determined to be highest (greater than 2,000 micrograms per liter) in piezometers located on the east side of the section, farthest from the creek channel, and concentrations were progressively lower

  17. Investigating the Spatial and Temporal Variability of Water Saturation Within the Greenland Firn Aquifer Using Ground Penetrating Radar

    Science.gov (United States)

    Brautigam, N.

    2015-12-01

    Ground Penetrating Radar (GPR) is used to investigate the spatial and temporal saturation of the Greenland firn aquifer, using a method recently developed on a Svalbard icesheet (Christianson et. al., 2015). Currently, saturation of the firn is assumed to be 100% (Koenig et. al., 2014; Forster et. al., 2014), and using a firn density correction this saturation level drives the present liquid water volume estimate (140±20 Gt) of the Greenland firn aquifer (Koenig et. al., 2014). Based on earlier studies on mountain glacier firn aquifers, we suspect that saturation levels vary with depth, annual precipitation patterns, and local topography (Fountain, 1989; Christianson et. al., 2015). Refining the liquid water volume estimation is an important parameter as it allows for a better determination of the amount of water potentially available for release and consequent sea level rise, as well as to better model glacial processes such as englacial flow, crevasse fracture, and basal lubrication. GPR and GPS data collected along a 2.6 km transect in 2011, 2013, and 2014 in southeastern Greenland is used to measure the spatial and temporal variability of saturation levels within the aquifer. A bright reflector seen in the GPR at the water table depth responds to local topography. At surface lows, the reflector rises, intersecting annual density change layers visible in the GPR data. At these intersections, the annual layers deflect down beneath the water table before being lost due to signal attenuation. We assume that this deflection is due to a change in dielectric permittivity, and that by measuring the angle of deflection, and implementing a mixing model and density correction from nearby firn cores, we can determine the saturation level at each point along a deflection. This allows us to investigate the spatial and temporal variability of saturation within the firn aquifer.

  18. Ground-Water Age and Quality in the High Plains Aquifer near Seward, Nebraska, 2003-04

    Science.gov (United States)

    Stanton, Jennifer S.; Landon, Matthew K.; Turco, Michael J.

    2007-01-01

    The U.S. Geological Survey, in cooperation with the City of Seward, Nebraska, conducted a study of ground-water age and quality to improve understanding of: (1) traveltimes from recharge areas to public-supply wells, (2) the effects of geochemical reactions in the aquifer on water quality, and (3) how water quality has changed historically in response to land-use practices. Samples were collected from four supply wells in the Seward west well field and from nine monitoring wells along two approximate ground-water flow paths leading to the well field. Concentrations of three different chlorofluorocarbons (CFC-12, CFC-11, and CFC-113), sulfur hexafluoride (SF6), and ratios of tritium (3H) to helium-3 (3He) isotope derived from radioactive decay of 3H were used to determine the apparent recharge age of ground-water samples. Age interpretations were based primarily on 3H/3He and CFC-12 data. Estimates of apparent ground-water age from tracer data were complicated by mixing of water of different ages in 10 of the 13 ground-water samples collected. Apparent recharge dates of unmixed ground-water samples or mean recharge dates of young fractions of mixed water in samples collected from monitoring wells ranged from 1985 to 2002. For monitoring-well samples containing mixed water, the fraction of the sample composed of young water ranged from 26 to 77 percent of the sample. Apparent mean recharge dates of young fractions in samples collected from four supply wells in the Seward west well field ranged from about 1980 to 1990. Estimated fractions of the samples composed of young water ranged from 39 to 54 percent. It is implicit in the mixing calculations that the remainder of the sample that is not young water is composed of water that is more than 60 years old and contains no detectable quantities of modern atmospheric tracers. Estimated fractions of the mixed samples composed of 'old' water ranged from 23 to 74 percent. Although alternative mixing models can be used to

  19. Water quality and chemical evolution of ground water within the north coast limestone aquifers of Puerto Rico

    Science.gov (United States)

    Roman-Mas, Angel J.; Lee, Roger W.

    1985-01-01

    Waters within the north coastal limestoneaquifers are suitable for public supply, industrial and agricultural uses. For the artesian aquifer and the updip parts of the watertable aquifer, calcium and bicarbonate are the dominant ionic species with total dissolved solids and chloride concentrations below 500 and 250 mg/L, respectively. In coastal areas of thewater table aquifer, where a freshwater-saltwater mixing zone occurs, the calcium bicarbonate facie grade to a sodium-chloride facie. Within this zone, concentrations of total dissolved solids and chloride are greater than 250 and 500 mg/L respectively, affecting the suitability of the water for some uses. Geochemical models were constructed to determine the physical and chemicalreasons for the prevailing water quality patterns of the north coastlimestone aquifers. Models indicate that calcite and carbon dioxide dissolution, precipitation or degassing are the primary processes. The mixing of recharge water or saltwater with aquifer waters is an important feature within the water table aquifer. The models provide further evidence that support the circulation of groundwater within the north coast limestone.

  20. Ground-Water Budgets for the Wood River Valley Aquifer System, South-Central Idaho, 1995-2004

    Science.gov (United States)

    Bartolino, James R.

    2009-01-01

    The Wood River Valley contains most of the population of Blaine County and the cities of Sun Valley, Ketchum, Haley, and Bellevue. This mountain valley is underlain by the alluvial Wood River Valley aquifer system which consists of a single unconfined aquifer that underlies the entire valley, an underlying confined aquifer that is present only in the southernmost valley, and the confining unit that separates them. The entire population of the area depends on ground water for domestic supply, either from domestic or municipal-supply wells, and rapid population growth since the 1970s has caused concern about the long-term sustainability of the ground-water resource. To help address these concerns this report describes a ground-water budget developed for the Wood River Valley aquifer system for three selected time periods: average conditions for the 10-year period 1995-2004, and the single years of 1995 and 2001. The 10-year period 1995-2004 represents a range of conditions in the recent past for which measured data exist. Water years 1995 and 2001 represent the wettest and driest years, respectively, within the 10-year period based on precipitation at the Ketchum Ranger Station. Recharge or inflow to the Wood River Valley aquifer system occurs through seven main sources (from largest to smallest): infiltration from tributary canyons, streamflow loss from the Big Wood River, areal recharge from precipitation and applied irrigation water, seepage from canals and recharge pits, leakage from municipal pipes, percolation from septic systems, and subsurface inflow beneath the Big Wood River in the northern end of the valley. Total estimated mean annual inflow or recharge to the aquifer system for 1995-2004 is 270,000 acre-ft/yr (370 ft3/s). Total recharge for the wet year 1995 and the dry year 2001 is estimated to be 270,000 acre-ft/yr (370 ft3/s) and 220,000 acre-ft/yr (300 ft3/s), respectively. Discharge or outflow from the Wood River Valley aquifer system occurs through

  1. Ground-water hydraulics, regional flow, and ground-water development of the Floridan aquifer system in Florida and in parts of Georgia, South Carolina, and Alabama

    Science.gov (United States)

    Bush, Peter W.; Johnston, Richard H.

    1988-01-01

    The Floridan aquifer system is one of the major sources of groundwater supplies in the United States. This productive aquifer system underlies all of Florida, southeast Georgia, and small parts of adjoining Alabama and South Carolina, for a total area of about 100,000 square miles. About 3 billion gallons of water per day were withdrawn from the aquifer system in 1980, and in many areas the Floridan is the sole source of freshwater.

  2. Characterization of ground-water flow between the Canisteo Mine Pit and surrounding aquifers, Mesabi Iron Range, Minnesota

    Science.gov (United States)

    Jones, Perry M.

    2002-01-01

    The U.S. Geological Survey, in cooperation with the Minnesota Department of Natural Resources, conducted a study to characterize ground-water flow conditions between the Canisteo Mine Pit, Bovey, Minnesota, and surrounding aquifers following mine abandonment. The objective of the study was to estimate the amount of steady-state, ground-water flow between the Canisteo Mine Pit and surrounding aquifers at pit water-level altitudes below the level at which surface-water discharge from the pit may occur. Single-well hydraulic tests and stream-hydrograph analyses were conducted to estimate horizontal hydraulic conductivities and ground-water recharge rates, respectively, for glacial aquifers surrounding the mine pit. Average hydraulic conductivity values ranged from 0.05 to 5.0 ft/day for sands and clays and from 0.01 to 121 ft/day for coarse sands, gravels, and boulders. The 15-year averages for the estimated annual recharge using the winter records and the entire years of record for defining baseflow recession rates were 7.07 and 7.58 in., respectively. These recharge estimates accounted for 25 and 27 percent, respectively, of the average annual precipitation for the 1968-82 streamflow monitoring period. Ground-water flow rates into and out of the mine pit were estimated using a calibrated steady-state, ground-water flow model simulating an area of approximately 75 mi2 surrounding the mine pit. The model residuals, or difference between simulated and measured water levels, for 15 monitoring wells adjacent to the mine pit varied between +28.65 and –3.78 ft. The best-match simulated water levels were within 4 ft of measured water levels for 9 of the 15 wells, and within 2 ft for 4 of the wells. The simulated net ground-water flow into the Canisteo Mine Pit was +1.34 ft3/s, and the net ground-water flow calculated from pit water levels measured between July 5, 1999 and February 25, 2001 was +5.4 ft3/s. Simulated water levels and ground-water flow to and from the mine

  3. Aquifer tests and simulation of ground-water flow in Triassic sedimentary rocks near Colmar, Bucks and Montgomery Counties, Pennsylvania

    Science.gov (United States)

    Risser, Dennis W.; Bird, Philip H.

    2003-01-01

    This report presents the results of a study by the U.S. Geological Survey in cooperation with the U.S. Environmental Protection Agency to evaluate ground-water flow in Triassic sedimentary rocks near Colmar, in Bucks and Montgomery Counties, Pa. The study was conducted to help the U.S. Environmental Protection Agency evaluate remediation alternatives at the North Penn Area 5 Superfund Site near Colmar, where ground water has been contaminated by volatile organic solvents (primarily trichloroethene). The investigation focused on determining the (1) drawdown caused by separately pumping North PennWater Authority wells NP?21 and NP?87, (2) probable paths of groundwater movement under present-day (2000) conditions (with NP?21 discontinued), and (3) areas contributing recharge to wells if pumping from wells NP-21 or NP?87 were restarted and new recovery wells were installed. Drawdown was calculated from water levels measured in observation wells during aquifer tests of NP?21 and NP?87. The direction of ground-water flow was estimated by use of a three-dimensional ground-water-flow model. Aquifer tests were conducted by pumping NP?21 for about 7 days at 257 gallons per minute in June 2000 and NP?87 for 3 days at 402 gallons per minute in May 2002. Drawdown was measured in 45 observation wells during the NP?21 test and 35 observation wells during the NP?87 test. Drawdown in observation wells ranged from 0 to 6.8 feet at the end of the NP?21 test and 0.5 to 12 feet at the end of the NP?87 test. The aquifer tests showed that ground-water levels declined mostly in observation wells that were completed in the geologic units penetrated by the pumped wells. Because the geologic units dip about 27 degrees to the northwest, shallow wells up dip to the southeast of the pumped well showed a good hydraulic connection to the geologic units stressed by pumping. Most observation wells down dip from the pumping well penetrated units higher in the stratigraphic section that were not well

  4. Simulation of ground-water flow and the movement of saline water in the Hueco Bolson aquifer, El Paso, Texas, and adjacent areas

    Science.gov (United States)

    Groschen, George E.

    1994-01-01

    The Hueco bolson aquifer is being pumped at increasing rates to supply water for El Paso, Texas, and Ciudad Juarez, Mexico. Water-use projections for 1984-2000 indicate that the upward trend in pumping rates probably will continue, which will put an increasing burden on the limited freshwater resources of the aquifer. Near El Paso, saline water in the Rio Grande alluvium overlies freshwater in bolson deposits. Withdrawal of ground water has created a large cone of depression in the water table that is centered approximately under the El Paso-Ciudad Juarez urban area. The maximum depth of this cone in January 1984 was about 140 feet below the pre-development (before 1903) water table.

  5. Hydrogeology, water quality, and potential for contamination of the Upper Floridan aquifer in the Silver Springs ground-water basin, central Marion County, Florida

    Science.gov (United States)

    Phelps, G.G.

    1994-01-01

    The Upper Floridan aquifer, composed of a thick sequence of very porous limestone and dolomite, is the principal source of water supply in the Silver Springs ground-water basin of central Marion County, Florida. The karstic nature of the local geology makes the aquifer susceptible to contaminants from the land surface. Contaminants can enter the aquifer by seepage through surficial deposits and through sinkholes and drainage wells. Potential contaminants include agricultural chemicals, landfill leachates and petroleum products from leaking storage tanks and accidental spills. More than 560 sites of potential contamination sources were identified in the basin in 1990. Detailed investigation of four sites were used to define hydrologic conditions at representative sites. Ground-water flow velocities determined from dye trace studies ranged from about 1 foot per hour under natural flow conditions to about 10 feet per hour under pumping conditions, which is considerably higher than velocities estimated using Darcy's equation for steady-state flow in a porous medium. Water entering the aquifer through drainage wells contained bacteria, elevated concentrations of nutrients, manganese and zinc, and in places, low concentrations of organic compounds. On the basis of results from the sampling of 34 wells in 1989 and 1990, and from the sampling of water entering the Upper Floridan aquifer through drainage wells, there has been no widespread degradation of water quality in the study area. In an area of karst, particularly one in which fracture flow is significant, evaluating the effects from contaminants is difficult and special care is required when interpolating hydrogeologic data from regional studies to a specific. (USGS)

  6. Ground-water-level monitoring, basin boundaries, and potentiometric surfaces of the aquifer system at Edwards Air Force Base, California, 1992

    Science.gov (United States)

    Rewis, D.L.

    1995-01-01

    A ground-water-level monitoring program was implemented at Edwards Air Force Base, California, from January through December 1992 to monitor spatial and temporal changes in poten-tiometric surfaces that largely are affected by ground-water pumping. Potentiometric-surface maps are needed to determine the correlation between declining ground- water levels and the distribution of land subsidence. The monitoring program focused on areas of the base where pumping has occurred, especially near Rogers Lake, and involved three phases of data collection: (1) well canvassing and selection, (2) geodetic surveys, and (3) monthly ground-water-level measurements. Construction and historical water- level data were compiled for 118 wells and pi-ezometers on or near the base, and monthly ground-water-level measurements were made in 82 wells and piezometers on the base. The compiled water-level data were used in conjunction with previously collected geologic data to identify three types of no-flow boundaries in the aquifer system: structural boundaries, a principal-aquifer boundary, and ground-water divides. Heads were computed from ground-water-level measurements and land-surface altitudes and then were used to map seasonal potentiometric surfaces for the principal and deep aquifers underlying the base. Pumping has created a regional depression in the potentiometric surface of the deep aquifer in the South Track, South Base, and Branch Park well-field area. A 15-foot decline in the potentiometric surface from April to September 1992 and 20- to 30-foot drawdowns in the three production wells in the South Track well field caused locally unconfined conditions in the deep aquifer.

  7. Geochemistry of shallow ground water in coastal plain environments in the southeastern United States: Implications for aquifer susceptibility

    Science.gov (United States)

    Tesoriero, A.J.; Spruill, T.B.; Eimers, J.L.

    2004-01-01

    Ground-water chemistry data from coastal plain environments have been examined to determine the geochemical conditions and processes that occur in these areas and assess their implications for aquifer susceptibility. Two distinct geochemical environments were studied to represent a range of conditions: an inner coastal plain setting having more well-drained soils and lower organic carbon (C) content and an outer coastal plain environment that has more poorly drained soils and high organic C content. Higher concentrations of most major ions and dissolved inorganic and organic C in the outer coastal plain setting indicate a greater degree of mineral dissolution and organic matter oxidation. Accordingly, outer coastal plain waters are more reducing than inner coastal plain waters. Low dissolved oxygen (O2) and nitrate (NO 3-) concentrations and high iron (Fe) concentrations indicate that ferric iron (Fe (III)) is an important electron acceptor in this setting, while dissolved O2 is the most common terminal electron acceptor in the inner coastal plain setting. The presence of a wide range of redox conditions in the shallow aquifer system examined here underscores the importance of providing a detailed geochemical characterization of ground water when assessing the intrinsic susceptibility of coastal plain settings. The greater prevalence of aerobic conditions in the inner coastal plain setting makes this region more susceptible to contamination by constituents that are more stable under these conditions and is consistent with the significantly (psampled), however concentrations were typically low (water table depths often found in coastal plain settings may result in an increased risk of the detection of pesticides (e.g., alachlor) that degrade rapidly in the unsaturated zone.

  8. Recalibration of a ground-water flow model of the Mississippi River Valley alluvial aquifer of northeastern Arkansas, 1918-1998, with simulations of water levels caused by projected ground-water withdrawals through 2049

    Science.gov (United States)

    Reed, Thomas B.

    2003-01-01

    A digital model of the Mississippi River Valley alluvial aquifer in eastern Arkansas was used to simulate ground-water flow for the period from 1918 to 2049. The model results were used to evaluate effects on water levels caused by demand for ground water from the alluvial aquifer, which has increased steadily for the last 40 years. The model results showed that water currently (1998) is being withdrawn from the aquifer at rates greater than what can be sustained for the long term. The saturated thickness of the alluvial aquifer has been reduced in some areas resulting in dry wells, degraded water quality, decreased water availability, increased pumping costs, and lower well yields. The model simulated the aquifer from a line just north of the Arkansas-Missouri border to south of the Arkansas River and on the east from the Mississippi River westward to the less permeable geologic units of Paleozoic age. The model consists of 2 layers, a grid of 184 rows by 156 columns, and comprises 14,118 active cells each measuring 1 mile on a side. It simulates time periods from 1918 to 1998 along with further time periods to 2049 testing different pumping scenarios. Model flux boundary conditions were specified for rivers, general head boundaries along parts of the western side of the model and parts of Crowleys Ridge, and a specified head boundary across the aquifer further north in Missouri. Model calibration was conducted for observed water levels for the years 1972, 1982, 1992, and 1998. The average absolute residual was 4.69 feet and the root-mean square error was 6.04 feet for the hydraulic head observations for 1998. Hydraulic-conductivity values obtained during the calibration process were 230 feet per day for the upper layer and ranged from 230 to 730 feet per day for the lower layer with the maximum mean for the combined aquifer of 480 feet per day. Specific yield values were 0.30 throughout the model and specific storage values were 0.000001 inverse-feet throughout

  9. Time-series ground-water-level and aquifer-system compaction data, Edwards Air Force Base, Antelope Valley, California, January 1991 through September 1993

    Science.gov (United States)

    Freeman, L.A.

    1996-01-01

    As part of a study by the U.S. Geological Survey, a monitoring program was implemented to collect time-series ground-water-level and aquifer-system compaction data at Edwards Air Force Base, California. The data presented in this report were collected from 18 piezometers, 3 extensometers, 1 barometer, and 1 rain gage from January 1991 through September 1993. The piezometers and extensometers are at eight sites in the study area. This report discusses the ground-water-level and aquifer-system compaction monitoring networks, and presents the recorded data in graphs. The data reported are available in the data base of the U.S. Geological Survey.

  10. Surface-water/ground-water interaction of the Spokane River and the Spokane Valley/Rathdrum Prairie aquifer, Idaho and Washington

    Science.gov (United States)

    Caldwell, Rodney R.; Bowers, Craig L.

    2003-01-01

    Historical mining in the Coeur d’Alene River Basin of northern Idaho has resulted in elevated concentrations of some trace metals (particularly cadmium, lead, and zinc) in water and sediment of Coeur d’Alene Lake and downstream in the Spokane River in Idaho and Washington. These elevated trace-metal concentrations in the Spokane River have raised concerns about potential contamination of ground water in the underlying Spokane Valley/Rathdrum Prairie aquifer, the primary source of drinking water for the city of Spokane and surrounding areas. A study conducted as part of the U.S. Geological Survey’s National Water-Quality Assessment Program examined the interaction of the river and aquifer using hydrologic and chemical data along a losing reach of the Spokane River. The river and ground water were extensively monitored over a range of hydrologic conditions at a streamflow-gaging station and 25 monitoring wells situated from 40 to 3,500 feet from the river. River stage, ground-water levels, water temperature, and specific conductance were measured hourly to biweekly. Water samples were collected on nearly a monthly basis between 1999 and 2001 from the Spokane River and were collected up to nine times between June 2000 and August 2001 from the monitoring wells.

  11. Ground-water quality and geochemistry of aquifers associated with coal in the Allegheny and Monongahela formations, southeastern Ohio

    Science.gov (United States)

    Razem, A.C.; Sedam, A.C.

    1985-01-01

    Ground water from aquifers associated with coal beds in the Allegheny and Monongahela Formations in southeastern Ohio is predominantly a calcium magnesium bicarbonate type. Sodium bicarbonate type water is less common. Isolated areas of sodium chloride and calcium sulfate types also are present. The water is predominantly very hard, and has a median hardness concentration of 258 milligrams per liter as calcium carbonate and a median dissolved-solids concentration of 436 milligrams per liter. Few wells contain water with dissolved-solids concentrations in excess of 1,000 milligrams per liter. Bicarbonate concentration in ground water was found to be significantly different among coals, whereas concentrations of bicarbonate, hardness, calcium, magnesium, sodium, iron, manganese, and strontium were significantly different between ground water in the Allegheny and Monongahela Formations. Many constituents are significantly correlated, but few correlation coefficients are high. The presence of sulfate or iron is attributed to the kinetic mechanism operating during the oxidation of pyrite. The position along the sulfide or ferrous-iron oxidation pathways controls the reaction products of pyrite found in solution, and the formation of either the sulfate of iron constituents. The availability and rate of diffusion of oxygen in the formations exerts control on the water quality. Discriminant-function analysis correctly classifies 89 percent of the observations into the Allegheny or Monongahela Formations. As a verifications, 39 of 41 observations from another study were correctly classified by formation. The differences in water chemistry between the Allegheny and the Monongahela Formations are gradational and are attributed the oxidation of iron sulfide. The diffusion and availability of oxygen, which controls the chemical reaction, is regulated by the porosity and permeability of the rock with respect to oxygen and the presence or absence of carbonates, which controls the

  12. Compilation of geologic, hydrologic, and ground-water flow modeling information for the Spokane Valley-Rathdrum Prairie aquifer, Spokane County, Washington, and Bonner and Kootenai Counties, Idaho

    Science.gov (United States)

    Kahle, Sue C.; Caldwell, Rodney R.; Bartolino, James R.

    2005-01-01

    The U.S. Geological Survey, in cooperation with the Idaho Department of Water Resources and Washington Department of Ecology compiled and described geologic, hydrologic, and ground-water flow modeling information about the Spokane Valley-Rathdrum Prairie (SVRP) aquifer in northern Idaho and northeastern Washington. Descriptions of the hydrogeologic framework, water-budget components, ground- and surface-water interactions, computer flow models, and further data needs are provided. The SVRP aquifer, which covers about 370 square miles including the Rathdrum Prairie, Idaho and the Spokane valley and Hillyard Trough, Washington, was designated a Sole Source Aquifer by the U.S. Environmental Protection Agency in 1978. Continued growth, water management issues, and potential effects on water availability and water quality in the aquifer and in the Spokane and Little Spokane Rivers have illustrated the need to better understand and manage the region's water resources. The SVRP aquifer is composed of sand, gravel, cobbles, and boulders primarily deposited by a series of catastrophic glacial outburst floods from ancient Glacial Lake Missoula. The material deposited in this high-energy environment is coarser-grained than is typical for most basin-fill deposits, resulting in an unusually productive aquifer with well yields as high as 40,000 gallons per minute. In most places, the aquifer is bounded laterally by bedrock composed of granite, metasedimentary rocks, or basalt. The lower boundary of the aquifer is largely unknown except along the margins or in shallower parts of the aquifer where wells have penetrated its entire thickness and reached bedrock or silt and clay deposits. Based on surface geophysics, the thickness of the aquifer is about 500 ft near the Washington-Idaho state line, but more than 600 feet within the Rathdrum Prairie and more than 700 feet in the Hillyard trough based on drilling records. Depth to water in the aquifer is greatest in the northern

  13. Geochemical and isotopic composition of ground water with emphasis on sources of sulfate in the upper Floridan Aquifer in parts of Marion, Sumter, and Citrus counties, Florida

    Science.gov (United States)

    Sacks, Laura A.

    1996-01-01

    In inland areas of northwest central Florida, sulfate concentrations in the Upper Floridan aquifer are extremely variable and sometimes exceed drinking water standards (250 milligrams per liter). This is unusual because the aquifer is unconfined and near the surface, allowing for active recharge. The sources of sulfate and geochemical processes controlling ground-water composition were evaluated in this area. Water was sampled from thirty-three wells in parts of Marion, Sumter, and Citrus Counties, within the Southwest Florida Water Management District; these included at least a shallow and a deep well at fifteen separate locations. Ground water was analyzed for major ions, selected trace constituents, dissolved organic carbon, and stable isotopes (sulfur-34 of sulfate and sulfide, carbon-13 of inorganic carbon, deuterium, and oxygen-18). Sulfate concentrations ranged from less than 0.2 to 1,400 milligrams per liter, with higher sulfate concentrations usually in water from deeper wells. The samples can be categorized into a low sulfate group (less than 30 milligrams per liter) and a high sulfate group (greater than 30 milligrams per liter). For the high sulfate water, concentrations of calcium and magnesium increased concurrently with sulfate. Chemical and isotopic data and mass-balance modeling indicate that the composition of high sulfate waters is controlled by dedolomitization reactions (dolomite dissolution and calcite precipitation, driven by dissolution of gypsum). Gypsum occurs deeper in the aquifer than open intervals of sampled wells. Upward flow has been documented in deeper parts of the aquifer in the study area, which may be driven by localized discharge areas or rapid flow in shallow parts of the aquifer. Mixing between shallow ground water and sulfate-rich water that dissolved gypsum at the base of the aquifer is probably responsible for the range of concentrations observed in the study area. Other solutes that increased with sulfate apparently

  14. Quality Characteristics of Ground Water in the Ozark Aquifer of Northwestern Arkansas, Southeastern Kansas, Southwestern Missouri, and Northeastern Oklahoma, 2006-07

    Science.gov (United States)

    Pope, L.M.; Mehl, H.E.; Coiner, R.L.

    2009-01-01

    Because of water quantity and quality concerns within the Ozark aquifer, the State of Kansas in 2004 issued a moratorium on most new appropriations from the aquifer until results were made available from a cooperative study between the U.S. Geological Survey and the Kansas Water Office. The purposes of the study were to develop a regional ground-water flow model and a water-quality assessment of the Ozark aquifer in northwestern Arkansas, southeastern Kansas, southwestern Missouri, and northeastern Oklahoma (study area). In 2006 and 2007, water-quality samples were collected from 40 water-supply wells completed in the Ozark aquifer and spatially distributed throughout the study area. Samples were analyzed for physical properties, dissolved solids and major ions, nutrients, trace elements, and selected isotopes. This report presents the results of the water-quality assessment part of the cooperative study. Water-quality characteristics were evaluated relative to U.S. Environmental Protection Agency drinking-water standards. Secondary Drinking-Water Regulations were exceeded for dissolved solids (11 wells), sulfate and chloride (2 wells each), fluoride (3 wells), iron (4 wells), and manganese (2 wells). Maximum Contaminant Levels were exceeded for turbidity (3 wells) and fluoride (1 well). The Maximum Contaminant Level Goal for lead (0 milligrams per liter) was exceeded in water from 12 wells. Analyses of isotopes in water from wells along two 60-mile long ground-water flow paths indicated that water in the Ozark aquifer was at least 60 years old but the upper age limit is uncertain. The source of recharge water for the wells along the flow paths appeared to be of meteoric origin because of isotopic similarity to the established Global Meteoric Water Line and a global precipitation relation. Additionally, analysis of hydrogen-3 (3H) and carbon-14 (14C) indicated that there was possible leakage of younger ground water into the lower part of the Ozark aquifer. This may

  15. Simulated effects of projected withdrawals from the Wenonah-Mount Laurel Aquifer on ground-water levels in the Camden, New Jersey, area and vicinity

    Science.gov (United States)

    Navoy, A.S.

    1994-01-01

    The Wenonah-Mount Laurel aquifer is being considered as a potential source of future water supply for the Camden, New Jersey, area. The deeper Potomac- Raritan-Magothy aquifer system is currently the major major source of water supply for the area, but its use may be curtailed or reduced by 35 percent of 1983 withdrawals through its designation by the New Jersey Department of Environmental Protection and Energy as "Water Supply Critical Area#2." Withdrawals from the Wenonah-Mount Laurel aquifer currently (1989) total about 7 million gallons per day. The anticipated use of this aquifer by communities with access to it, as an alternative supply, could increase to more than 14 million gallons per day by 2020. If the communities of Clayton and Glassboro decrease their withdrawals from the Potomac-Raritan-Magothy aquifer system by 50 percent or cease them entirely because of their proximity to saline water, the use of Wenonah-Mount Laurel aquifer could increase to greater than 15 million gallons per day by 2020. Simulation of the ground-water system indicates that the projected increase in withdrawals will cause cones of depression in the potentiometric surface of the Wenonah-Mount Laurel aquifer in the Camden metro- politan area by 2020 that extend to depths ranging from 10 feet above sea level to 60 feet below sea level. This represents a secline of about 40 to 100 feet thr 1990 conditions. Withdrawals in northeastern Burlington County will cause a large cone of depression that, by 2020, will extend to depths of about 220 feet below sea level, represent- ing a decline of about 140 feet from 1990 conditions. Simulation results indicate that water levels in the Wenonah-Mount Laurel aquifer near the Salem Nuclear Power Plant are somewhat insensitive to withdrawals elsewhere in the aquifer. In some areas, especially in Burlington County, the cones of depression have developed in proximity to the aquifer-outcrop area and could induce infiltration from streams crossing the

  16. Current (2004-07) Conditions and Changes in Ground-Water Levels from Predevelopment to 2007, Southern High Plains Aquifer, East-Central New Mexico-Curry County, Portales, and Causey Lingo Underground Water Basins

    Science.gov (United States)

    Tillery, Anne

    2008-01-01

    The Southern High Plains aquifer is the principal aquifer in Curry and Roosevelt Counties, N. Mex., and primary source of water in southeastern New Mexico. Successful water-supply planning for New Mexico's Southern High Plains requires knowledge of the current aquifer conditions and a context to estimate future trends given current aquifer-management policy. This report provides a summary of the current (2007) water-level status of the Southern High Plains aquifer in New Mexico, including a basis for estimating future trends by comparison with historical conditions. This report includes estimates of the extent of ground-water level declines in the Curry County, Portales, and Causey-Lingo Ground-water Management Area parts of the High Plains Aquifer in eastern New Mexico since predevelopment. Maps representing 2007 water levels, water-level declines, aquifer saturated thickness, and depth to water accompanied by hydrographs from representative wells for the Southern High Plains aquifer in the Curry County, Portales, and Causey Lingo Underground Water Basins were prepared in cooperation with the New Mexico Office of the State Engineer. The results of this mapping show the water level declined as much as 175 feet in the study area at rates as high as 1.76 feet per year.

  17. Hydrology of the Poverty Bay flats aquifers, New Zealand: recharge mechanisms, evolution of the isotopic composition of dissolved inorganic carbon, and ground-water ages

    Science.gov (United States)

    Taylor, C. B.

    1994-06-01

    With the exception of water-bearing remnants of earlier fluvial gravels overlying basement, the sediments of the Poverty Bay flats have accumulated during the postglacial period of the past 14 000 years, and have been tilted and deformed by recent tectonism. A sequence of gravel aquifers, separated by poorly permeable silt layers, lies between surface and basement, which is at depths varying between 50 and 200 m. A shallow sand/silt aquifer is situated near the coast. This study applies evidence of chemical and isotopic properties of river and ground water to clarify the recharge mechanisms, chemical evolution and age of the ground water in the aquifers. Particular attention is paid to the evolution of dissolved inorganic carbon content, applying carbon-14 data measured by accelerator mass spectrometry. Most of the ground water is recharged from the Waipaoa River, which flows across the flats and discharges into Poverty Bay. The two deepest aquifers (Matokitoki and Makauri) are both tritium-free; the deeper Matokitoki Gravels yield water of age about 4300 years since recharge (possibly up to 1300 years greater), but the Makauri water is no older than 100-200 years, discharging slowly through overlying aquitards near the limit of closest approach to the present coast.

  18. Ground-water quality in Quaternary deposits of the central High Plains aquifer, south-central Kansas, 1999

    Science.gov (United States)

    Pope, Larry M.; Bruce, Breton W.; Hansen, Cristi V.

    2001-01-01

    Water samples from 20 randomly selected domestic water-supply wells completed in the Quaternary deposits of south-central Kansas were collected as part of the High Plains Regional Ground-Water Study conducted by the U.S. Geological Survey's National Water-Quality Assessment Program. The samples were analyzed for about 170 water-quality constituents that included physical properties, dissolved solids and major ions, nutrients and dissolved organic carbon, trace elements, pesticides, volatile organic compounds, and radon. The purpose of this study was to provide a broad overview of ground-water quality in a major geologic subunit of the High Plains aquifer. Water from five wells (25 percent) exceeded the 500-milligrams-per-liter of dissolved solids Secondary Maximum Contaminant Level for drinking water. The Secondary Maximum Contaminant Levels of 250 milligrams per liter for chloride and sulfate were exceeded in water from one well each. The source of these dissolved solids was probably natural processes. Concentrations of most nutrients in water from the sampled wells were small, with the exception of nitrate. Water from 15 percent of the sampled wells had concentrations of nitrate greater than the 10-milligram-per-liter Maximum Contaminant Level for drinking water. Water from 80 percent of the sampled wells showed nitrate enrichment (concentrations greater than 2.0 milligrams per liter), which is more than what might be expected for natural background concentrations. This enrichment may be the result of synthetic fertilizer applications, the addition of soil amendment (manure) on cropland, or livestock production. Most trace elements in water from the sampled wells were detected only in small concentrations, and few exceeded respective water-quality standards. Only arsenic was detected in one well sample at a concentration (240 micrograms per liter) that exceeded its proposed Maximum Contaminant Level (5.0 micrograms per liter). Additionally, one concentration of

  19. Hydrogeology of, and ground-water flow in, a valley-fill and carbonate-rock aquifer system near Long Valley in the New Jersey Highlands

    Science.gov (United States)

    Nicholson, R.S.; McAuley, S.D.; Barringer, J.L.; Gordon, A.D.

    1996-01-01

    The hydrogeology of and ground-water flow in a valley-fill and carbonate-rock aquifer system were evaluated by using numerical-modeling techniques and geochemical interpretations to address concerns about the adequacy of the aquifer system to meet increasing demand for water. The study was conducted during 1987-90 by the U.S. Geological Survey, in cooperation with the New Jersey Department of Environmental Protection and Energy. The effects of recent and anticipated ground-water withdrawals on water levels, stream base flows, and water budgets were estimated. Simulation results indicate that recent withdrawals of 4.7 million gallons per day have resulted in water-level declines of up to 35 feet. Under conditions of increases in withdrawals of 121 percent, water levels would decline up to an additional 28 feet. The magnitude of predicted average base-flow depletion, when compared with historic low flows, indicates that projected increases in withdrawals may substantially deplete seasonal low flow of Drakes Brook and South Branch Raritan River. Results of a water-budget analysis indicate that the sources of water to additional supply wells would include leakage from the overlying valley-fill aquifer and induced leakage of surface water into the aquifer system. Results of water-quality analyses indicate that human activities are affecting the quality of the ground water. With the exception of an elevated iron concentration in water from one well, concentrations of inorganic constituents in water from 75 wells did not exceed New Jersey primary or secondary drinking-water regulations. Volatile organic compounds were detected in water from several wells; in two samples, concentrations of specific compounds exceeded drinking-water regulations.

  20. Questa Baseline and Pre-Mining Ground-Water Quality Investigation. 17. Geomorphology of the Red River Valley, Taos County, New Mexico, and Influence on Ground-Water Flow in the Shallow Alluvial Aquifer

    Science.gov (United States)

    Vincent, Kirk R.

    2008-01-01

    In April 2001, the U.S. Geological Survey (USGS) and the New Mexico Environment Department (NMED) began a cooperative study to infer the pre-mining ground-water chemistry at the Molycorp molybdenum mine site in the Red River Valley of north-central New Mexico. This report is one in a series of reports that can be used to determine pre-mining ground-water conditions at the mine site. Molycorp?s Questa molybdenum mine in the Red River Valley, northern New Mexico, is located near the margin of the Questa caldera in a highly mineralized region. The bedrock of the Taos Range surrounding the Red River is composed of Proterozoic rocks of various types, which are intruded and overlain by Oligocene volcanic rocks associated with the Questa caldera. Locally, these rocks were altered by hydrothermal activity. The alteration zones that contain sulfide minerals are particularly important because they constitute the commercial ore bodies of the region and, where exposed to weathering, form sites of rapid erosion referred to as alteration scars. Over the past thousand years, if not over the entire Holocene, erosion rates were spatially variable. Forested hillslopes eroded at about 0.04 millimeter per year, whereas alteration scars eroded at about 2.7 millimeters per year. The erosion rate of the alteration scars is unusually rapid for naturally occurring sites that have not been disturbed by humans. Watersheds containing large alteration scars delivered more sediment to the Red River Valley than the Red River could remove. Consequently, large debris fans, as much as 80 meters thick, developed within the valley. The geomorphology of the Red River Valley has had several large influences on the hydrology of the shallow alluvial aquifer, and those influences were in effect before the onset of mining within the watershed. Several reaches where alluvial ground water emerges to become Red River streamflow were observed by a tracer dilution study conducted in 2001. The aquifer narrows

  1. Effects of Aquifer Development and Changes in Irrigation Practices on Ground-Water Availability in the Santa Isabel Area, Puerto Rico

    Science.gov (United States)

    Kuniansky, Eve L.; Gómez-Gómez, Fernando; Torres-Gonzalez, Sigfredo

    2003-01-01

    The alluvial aquifer in the area of Santa Isabel is located within the South Coastal Plain aquifer of Puerto Rico. Variations in precipitation, changes in irrigation practices, and increasing public-supply water demand have been the primary factors controlling water-level fluctuations within the aquifer. Until the late 1970s, much of the land in the study area was irrigated using inefficient furrow flooding methods that required large volumes of both surface and ground water. A gradual shift in irrigation practices from furrow systems to more efficient micro-drip irrigation systems occurred between the late 1970s and the late 1980s. Irrigation return flow from the furrow-irrigation systems was a major component of recharge to the aquifer. By the early 1990s, furrow-type systems had been replaced by the micro-drip irrigation systems. Water levels declined about 20 feet in the aquifer from 1985 until present (February 2003). The main effect of the changes in agricultural practices is the reduction in recharge to the aquifer and total irrigation withdrawals. Increases in ground-water withdrawals for public supply offset the reduction in ground-water withdrawals for irrigation such that the total estimated pumping rate in 2003 was only 8 percent less than in 1987. Micro-drip irrigation resulted in the loss of irrigation return flow to the aquifer. These changes resulted in lowering the water table below sea level over most of the Santa Isabel area. By 2002, lowering of the water table reversed the natural discharge along the coast and resulted in the inland movement of seawater, which may result in increased salinity of the aquifer, as had occurred in other parts of the South Coastal Plain. Management alternatives for the South Coastal Plain aquifer in the vicinity of Santa Isabel include limiting groundwater withdrawals or implementing artificial recharge measures. Another alternative for the prevention of saltwater intrusion is to inject freshwater or treated sewage

  2. Water-level changes and directions of ground-water flow in the shallow aquifer, Fallon area, Churchill County, Nevada

    Science.gov (United States)

    Seiler, R.L.; Allander, K.K.

    1993-01-01

    The Truckee-Carson-Pyramid Lake Water Rights Settlement Act of 1990 directed the U.S. Fish and Wildlife Service to acquire water rights for wetland areas in the Carson Desert, Nevada. The public is concerned that htis acquisition of water rights and delivery of the water directly to wildlife areas would result in less recharge to the shallow ground water in the Fallon area and cause domestic wells to go dry. In January 1992, the U.S. Geological Survey, in cooperation with U.S. Fish and Wildlife Service, began a study of the shallow ground-water system in the Fallon area in Churchill County, Nevada. A network of 126 wells in the study area was monitored. Between January and November 1992, water levels in most wells declined, usually less than 2 feet. The maximum measured decline over this period was 2.68 feet in a well near Stillwater Marsh. Between April and July, however, water levels rose in irrigated areas, typically 1 to 2 feet. Newlands Project water deliveries to the study area began soon after the turn of the century. Since then, water levels have risen more than 15 feet across much of the study area. Water lost from unlined irrigtiaon canals caused the stage in Big Soda Lake to rise nearly 60 feet; ground-water levels near the lake have risen 30 to 40 feet. The depth to water in most irrigated areas is now less than 10 feet. The altitude of the water table ranges from 4.025 feet above sea level 11 miles west of Fallon to 3,865 feet in the Stillwater Marsh area. Ground water flows eastward and divides; some flow goes to the northeast toward the Carson Sink and Stillwater areas, and some goes southeastward to Carson Lake.

  3. Characterization of Preferential Ground-Water Seepage From a Chlorinated Hydrocarbon-Contaminated Aquifer to West Branch Canal Creek, Aberdeen Proving Ground, Maryland, 2002-04

    Science.gov (United States)

    Majcher, Emily H.; Phelan, Daniel J.; Lorah, Michelle M.; McGinty, Angela L.

    2007-01-01

    Wetlands act as natural transition zones between ground water and surface water, characterized by the complex interdependency of hydrology, chemical and physical properties, and biotic effects. Although field and laboratory demonstrations have shown efficient natural attenuation processes in the non-seep wetland areas and stream bottom sediments of West Branch Canal Creek, chlorinated volatile organic compounds are present in a freshwater tidal creek at Aberdeen Proving Ground, Maryland. Volatile organic compound concentrations in surface water indicate that in some areas of the wetland, preferential flow paths or seeps allow transport of organic compounds from the contaminated sand aquifer to the overlying surface water without undergoing natural attenuation. From 2002 through 2004, the U.S. Geological Survey, in cooperation with the Environmental Conservation and Restoration Division of the U.S. Army Garrison, Aberdeen Proving Ground, characterized preferential ground-water seepage as part of an ongoing investigation of contaminant distribution and natural attenuation processes in wetlands at this site. Seep areas were discrete and spatially consistent during thermal infrared surveys in 2002, 2003, and 2004 throughout West Branch Canal Creek wetlands. In these seep areas, temperature measurements in shallow pore water and sediment more closely resembled those in ground water than those in nearby surface water. Generally, pore water in seep areas contaminated with chlorinated volatile organic compounds had lower methane and greater volatile organic compound concentrations than pore water in non-seep wetland sediments. The volatile organic compounds detected in shallow pore water in seeps were spatially similar to the dominant volatile organic compounds in the underlying Canal Creek aquifer, with both parent and anaerobic daughter compounds detected. Seep locations characterized as focused seeps contained the highest concentrations of chlorinated parent compounds

  4. Hydrogeologic Framework and Ground-Water Budget of the Spokane Valley-Rathdrum Prairie Aquifer, Spokane County, Washington, and Bonner and Kootenai Counties, Idaho

    Science.gov (United States)

    Kahle, Sue C.; Bartolino, James R.

    2007-01-01

    The U.S. Geological Survey, in cooperation with the Idaho Department of Water Resources and Washington State Department of Ecology, investigated the hydrogeologic framework and ground-water budget of the Spokane Valley-Rathdrum Prairie (SVRP) aquifer located in northern Idaho and northeastern Washington. Descriptions of the hydrogeologic framework, water-budget components, and further data needs are provided. The SVRP aquifer, which covers about 370 square miles including the Rathdrum Prairie, Idaho, and the Spokane Valley and Hillyard Trough, Washington, is the sole source of drinking water for more than 500,000 residents. Continued growth, water-management issues, and potential effects on water availability and water quality in the aquifer and in the Spokane and Little Spokane Rivers have illustrated the need to better understand and manage the region's water resources. The SVRP aquifer consists mostly of gravels, cobbles, and boulders - deposited during a series of outburst floods resulting from repeated collapse of the ice dam that impounded ancient Glacial Lake Missoula. In most places, the SVRP aquifer is bounded by bedrock of pre-Tertiary granite or metasedimentary rocks, or Miocene basalt and associated sedimentary deposits. Discontinuous fine-grained layers are scattered throughout the SVRP aquifer at considerably different altitudes and with considerably different thicknesses. In the Hillyard Trough and the Little Spokane River Arm of the aquifer, a massive fine-grained layer with a top altitude ranging from about 1,500 to 1,700 feet and thickness ranging from about 100 to 200 feet separates the aquifer into upper and lower units. Most of the Spokane Valley part of the aquifer is devoid of fine-grained layers except near the margins of the valley and near the mouths of lakes. In the Rathdrum Prairie, multiple fine-grained layers are scattered throughout the aquifer with top altitudes ranging from about 1,700 to 2,400 feet with thicknesses ranging from 1

  5. Aquifer geochemistry and effects of pumping on ground-water quality at the Green Belt Parkway Well Field, Holbrook, Long Island, New York

    Science.gov (United States)

    Brown, Craig J.; Colabufo, Steven; Coates, John D.

    2002-01-01

    Geochemistry, microbiology, and water quality of the Magothy aquifer at a new supply well in Holbrook were studied to help identify factors that contribute to iron-related biofouling of public-supply wells. The organic carbon content of borehole sediments from the screen zone, and the dominant terminal electron-accepting processes (TEAPs), varied by depth. TEAP assays of core sediments indicated that iron reduction, sulfate reduction, and undetermined (possibly oxic) reactions and microbial activity are correlated with organic carbon (lignite) content. The quality of water from this well, therefore, reflects the wide range of aquifer microenvironments at this site. High concentrations of dissolved iron (3.6 to 6.4 micromoles per liter) in water samples from this well indicate that some water is derived from Fe(III)-reducing sediments within the aquifer, but traces of dissolved oxygen indicate inflow of shallow, oxygenated water from shallow units that overlie the local confining units. Water-quality monitoring before and during a 2-day pumping test indicates that continuous pumping from the Magothy aquifer at this site can induce downward flow of shallow, oxygenated water despite the locally confined conditions. Average concentrations of dissolved oxygen are high (5.2 milligrams per liter, or mg/L) in the overlying upper glacial aquifer and at the top of the Magothy aquifer (4.3 mg/L), and low (<0.1 mg/L) in the deeper, anaerobic part of the Magothy; average concentrations of phosphate are high (0.4 mg/L) in the upper glacial aquifer and lower (0.008 mg/L) at the top of the Magothy aquifer and in the deeper part of the Magothy (0.013 mg/L). Concentrations of both constituents increased during the 2 days of pumping. The d34S of sulfate in shallow ground water from observation wells (3.8 to 6.4 per mil) was much heavier than that in the supplywell water (-0.1 per mil) and was used to help identify sources of water entering the supply well. The d34S of sulfate in a

  6. Ground-Water-Flow Modeling of a Freshwater and Brine-Filled Aquifer in the Onondaga Trough, Onondaga County, New York - A Summary of Findings

    Science.gov (United States)

    Kappel, William M.; Yager, Richard M.

    2008-01-01

    In 2007, the U.S. Geological Survey (USGS) completed a hydrogeologic study that included the development of a groundwater-flow model of the glacial-drift aquifer in the Onondaga Trough near Syracuse, N.Y., which extends from the Valley Heads Moraine near Tully, N.Y., to Onondaga Lake (fig. 1). Glacial sediments within the Onondaga Trough contain freshwater, saline water, and brine, which has historically supported several chemical industries in Syracuse. The ground-water-flow model was developed as a means to assist the members of the Onondaga Lake Partnership (local, State, and Federal governmental agencies) to assess remediation plans for Onondaga Lake and the Onondaga Creek watershed. Prior to this study, in the late 1990s, very little information was known about the physical nature of the valley-fill aquifer or the quality of water within it. Acquisition of this information would help local agencies understand the interactions of fresh and saline water within the aquifer and Onondaga Lake, and would facilitate the design of proposed and ongoing remediation work in and near the lake. The USGS study characterized the geology and geochemistry of the aquifer system, estimated the rate and direction of ground-water movement, and estimated mass loadings of chloride to Onondaga Lake and its tributaries from natural and anthropogenic sources. The study required analysis of existing hydrogeologic data and drilling of new test wells to collect additional hydrogeologic data to supplement this database. A three-dimensional geologic model of the unconsolidated deposits that fill the Onondaga Trough was developed from this information. Water-quality samples were collected, and hydraulic head (water-level) measurements were made in the test wells. The water samples were analyzed for a variety of chemical constituents to determine the composition and age of saline waters within the aquifer. The geologic model, together with the water-quality and hydraulic-head data, supported

  7. Occurrence and Distribution of Iron, Manganese, and Selected Trace Elements in Ground Water in the Glacial Aquifer System of the Northern United States

    Science.gov (United States)

    Groschen, George E.; Arnold, Terri L.; Morrow, William S.; Warner, Kelly L.

    2009-01-01

    Dissolved trace elements, including iron and manganese, are often an important factor in use of ground water for drinking-water supplies in the glacial aquifer system of the United States. The glacial aquifer system underlies most of New England, extends through the Midwest, and underlies portions of the Pacific Northwest and Alaska. Concentrations of dissolved trace elements in ground water can vary over several orders of magnitude across local well networks as well as across regions of the United States. Characterization of this variability is a step toward a regional screening-level assessment of potential human-health implications. Ground-water sampling, from 1991 through 2003, of the National Water-Quality Assessment (NAWQA) Program of the U.S. Geological Survey determined trace element concentrations in water from 847 wells in the glacial aquifer system. Dissolved iron and manganese concentrations were analyzed in those well samples and in water from an additional 743 NAWQA land-use and major-aquifer survey wells. The samples are from monitoring and water-supply wells. Concentrations of antimony, barium, beryllium, cadmium, chromium, cobalt, copper, iron, lead, manganese, molybdenum, nickel, selenium, strontium, thallium, uranium, and zinc vary as much within NAWQA study units (local scale; ranging in size from a few thousand to tens of thousands of square miles) as over the entire glacial aquifer system. Patterns of trace element concentrations in glacial aquifer system ground water were examined by using techniques suitable for a dataset with zero to 80 percent of analytical results reported as below detection. During the period of sampling, the analytical techniques changed, which generally improved the analytical sensitivity. Multiple reporting limits complicated the comparison of detections and concentrations. Regression on Order Statistics was used to model probability distributions and estimate the medians and other quantiles of the trace element

  8. In Situ Production of Chlorine-36 in the Eastern Snake River Plain Aquifer, Idaho: Implications for Describing Ground-Water Contamination Near a Nuclear Facility

    Energy Technology Data Exchange (ETDEWEB)

    L. D. Cecil; L. L. Knobel; J. R. Green (USGS); S. K. Frape (University of Waterloo)

    2000-06-01

    The purpose of this report is to describe the calculated contribution to ground water of natural, in situ produced 36Cl in the eastern Snake River Plain aquifer and to compare these concentrations in ground water with measured concentrations near a nuclear facility in southeastern Idaho. The scope focused on isotopic and chemical analyses and associated 36Cl in situ production calculations on 25 whole-rock samples from 6 major water-bearing rock types present in the eastern Snake River Plain. The rock types investigated were basalt, rhyolite, limestone, dolomite, shale, and quartzite. Determining the contribution of in situ production to 36Cl inventories in ground water facilitated the identification of the source for this radionuclide in environmental samples. On the basis of calculations reported here, in situ production of 36Cl was determined to be insignificant compared to concentrations measured in ground water near buried and injected nuclear waste at the INEEL. Maximum estimated 36Cl concentrations in ground water from in situ production are on the same order of magnitude as natural concentrations in meteoric water.

  9. Aquifer composition and the tendency toward scale-deposit formation during reverse osmosis desalination - Examples from saline ground water in New Mexico, USA

    Science.gov (United States)

    Huff, G.F.

    2006-01-01

    Desalination is expected to make a substantial contribution to water supply in the United States by 2020. Currently, reverse osmosis is one of the most cost effective and widely used desalination technologies. The tendency to form scale deposits during reverse osmosis is an important factor in determining the suitability of input waters for use in desalination. The tendency toward scale formation of samples of saline ground water from selected geologic units in New Mexico was assessed using simulated evaporation. All saline water samples showed a strong tendency to form CaCO3 scale deposits. Saline ground water samples from the Yeso Formation and the San Andres Limestone showed relatively stronger tendencies to form CaSO4 2H2O scale deposits and relatively weaker tendencies to form SiO2(a) scale deposits than saline ground water samples from the Rio Grande alluvium. Tendencies toward scale formation in saline ground water samples from the Dockum Group were highly variable. The tendencies toward scale formation of saline waters from the Yeso Formation, San Andres Limestone, and Rio Grande alluvium appear to correlate with the mineralogical composition of the geologic units, suggesting that scale-forming tendencies are governed by aquifer composition and water-rock interaction. ?? 2006 Elsevier B.V. All rights reserved.

  10. Transport and fate of nitrate in a glacial outwash aquifer in relation to ground water age, land use practices, and redox processes

    Science.gov (United States)

    Puckett, L.J.; Cowdery, T.K.

    2002-01-01

    A combination of ground water modeling, chemical and dissolved gas analyses, and chlorofluorocarbon age dating of water was used to determine the relation between changes in agricultural practices, and NO3- concentrations in ground water of a glacial outwash aquifer in west-central Minnesota. The results revealed a redox zonation throughout the saturated zone with oxygen reduction occurring near the water table, NO3- reduction immediately below it, and then a large zone of ferric iron reduction, with a small area of sulfate (SO42-) reduction and methanogenesis (CH4) near the end of the transect. Analytical and NETPATH modeling results supported the hypothesis that organic carbon served as the electron donor for the redox reactions. Denitrification rates were quite small, 0.005 to 0.047 mmol NO3- yr-1, and were limited by the small amounts of organic carbon, 0.01 to 1.45%. In spite of the organic carbon limitation, denitrification was virtually complete because residence time is sufficient to allow even slow processes to reach completion. Ground water sample ages showed that maximum residence times were on the order of 50 to 70 yr. Reconstructed NO3- concentrations, estimated from measured NO3- and dissolved N gas showed that NO3- concentrations have been increasing in the aquifer since the 1940s, and have been above the 714 ??mol L-1 maximum contaminant level at most sites since the mid- to late-1960s. This increase in NO3- has been accompanied by a corresponding increase in agricultural use of fertilizer, identified as the major source of NO3- to the aquifer.

  11. Geochemical characterization of ground-water flow in the Santa Fe Group aquifer system, Middle Rio Grande Basin, New Mexico

    Science.gov (United States)

    Plummer, L. Niel; Bexfield, Laura M.; Anderholm, Scott K.; Sanford, Ward E.; Busenberg, Eurybiades

    2004-01-01

    Chemical and isotopic data were obtained from ground water and surface water throughout the Middle Rio Grande Basin (MRGB), New Mexico, and supplemented with selected data from the U.S. Geological Survey (USGS) National Water Information System (NWIS) and City of Albuquerque water-quality database in an effort to refine the conceptual model of ground-water flow in the basin. The ground-water data collected as part of this study include major- and minor-element chemistry (30 elements), oxygen-18 and deuterium content of water, carbon-13 content and carbon-14 activity of dissolved inorganic carbon, sulfur-34 content of dissolved sulfate, tritium, and dissolved atmospheric gases including nitrogen, argon, helium, chlorofluorocarbons,

  12. Status of Ground-Water Levels and Storage Volume in the Equus Beds Aquifer Near Wichita, Kansas, July 2008

    Science.gov (United States)

    Hansen, Cristi V.

    2009-01-01

    The Equus Beds aquifer in southwestern Harvey County and northwestern Sedgwick County was developed to supply water to the city of Wichita and for irrigation in south-central Kansas. Water-level and storage-volume decreases that began with the development of the aquifer in the 1940s reached record to near-record lows in January 1993. Since 1993, the aquifer has been experiencing higher water levels and a partial recovery of storage volume previously lost during August 1940 to January 1993. Measured water-level changes for August 1940 to July 2008 ranged from a decline of 23.41 feet to a rise of 3.58 feet. The change in storage volume in the study area from August 1940 to July 2008 was a decrease of about 134,000 acre-feet. This represents a recovery of about 121,000 acre-feet, or about 47 percent of the storage volume previously lost between August 1940 and January 1993. The change in storage volume from August 1940 to July 2008 in the central part of the study area, where city pumpage occurs, was a decrease of about 71,200 acre-feet. This represents a recovery of about 82,800 acre-feet, or about 54 percent of the storage volume previously lost between August 1940 and January 1993 in the central part of the study area. The recovery in the central part of the study area probably was greater and more consistently maintained than in the study area as a whole because city pumpage has remained less than pre-1993 levels, whereas agricultural irrigation pumpage has been as much or more than pre-1993 levels in some years.

  13. Ground water in Oklahoma

    Science.gov (United States)

    Leonard, A.R.

    1960-01-01

    estimated that about one-third of the water used in the State in 1956, or 400,000 acre-feet, came from ground-water sources. In 1957, 71 percent of the irrigation water used in the State came from underground sources, and ground water was used for irrigation in 57 of the State's 77 counties. More than 300 of the towns and cities of the State obtain all their municipal water supplies from ground water. The major ground-water reservoirs, or aquifers, of Oklahoma may be classed in four general groups: (1) semiconsolidated sand and gravel underlying the High Plains, (2) unconsolidated alluvial deposits of sand and gravel along streams and adjacent to valleys, (3) sandstone aquifers, and (4) limestone aquifers, including, for the purpose of this generalized breakdown, dolomite and gypsum. The locations of these major aquifers are shown on figure 1. Areas on that map do not correspond exactly to outcrops, but are the areas where the formations contain significant quantities of potable water. Near their edges rock formations may be cut through by streams or they may be too thin to contain much water. On the other hand, some formations contain fresh ground water for many miles downdip from their outcrop areas, where wells must first penetrate overlying rocks to reach them. (available as photostat copy only)

  14. Ground-water hydrology of Ogden Valley and surrounding area, eastern Weber County, UT, and simulation of ground-water flow in the Valley-fill aquifer system

    Science.gov (United States)

    Avery, Charles

    1994-01-01

    The ground-water resources in Ogden Valley, eastern Weber County, Utah, were the subject of a study to provide a better understanding of the hydrologic system in the valley and to estimate the hydrologic effects of future ground-water development. The study area included the drainage basin of the Ogden River upstream from Pineview Reservoir dam and the drainage basin of Wheeler Creek. Ogden Valley and the surrounding area are underlain by rocks that range in age from Precambrian to Quaternary.The consolidated rocks that transmit and yield the most water in the area surrounding Ogden Valley are the Paleozoic carbonate rocks and the Wasatch Formation of Tertiary age. Much of the recharge to the consolidated rocks is from snowmelt that infiltrates the Wasatch Formation, which underlies a large part of the study area. Discharge from the consolidated rocks is by streams, evapotranspiration, springs, subsurface outflow, and pumping from wells. Water in the consolidated rocks is a calcium bicarbonate type and has a dissolved-solids concentration of less than 250 milligrams per liter.

  15. Documentation of a computer program to simulate lake-aquifer interaction using the MODFLOW ground water flow model and the MOC3D solute-transport model

    Science.gov (United States)

    Merritt, Michael L.; Konikow, Leonard F.

    2000-01-01

    Heads and flow patterns in surficial aquifers can be strongly influenced by the presence of stationary surface-water bodies (lakes) that are in direct contact, vertically and laterally, with the aquifer. Conversely, lake stages can be significantly affected by the volume of water that seeps through the lakebed that separates the lake from the aquifer. For these reasons, a set of computer subroutines called the Lake Package (LAK3) was developed to represent lake/aquifer interaction in numerical simulations using the U.S. Geological Survey three-dimensional, finite-difference, modular ground-water flow model MODFLOW and the U.S. Geological Survey three-dimensional method-of-characteristics solute-transport model MOC3D. In the Lake Package described in this report, a lake is represented as a volume of space within the model grid which consists of inactive cells extending downward from the upper surface of the grid. Active model grid cells bordering this space, representing the adjacent aquifer, exchange water with the lake at a rate determined by the relative heads and by conductances that are based on grid cell dimensions, hydraulic conductivities of the aquifer material, and user-specified leakance distributions that represent the resistance to flow through the material of the lakebed. Parts of the lake may become ?dry? as upper layers of the model are dewatered, with a concomitant reduction in lake surface area, and may subsequently rewet when aquifer heads rise. An empirical approximation has been encoded to simulate the rewetting of a lake that becomes completely dry. The variations of lake stages are determined by independent water budgets computed for each lake in the model grid. This lake budget process makes the package a simulator of the response of lake stage to hydraulic stresses applied to the aquifer. Implementation of a lake water budget requires input of parameters including those representing the rate of lake atmospheric recharge and evaporation

  16. Cold water aquifer storage. [air conditioning

    Science.gov (United States)

    Reddell, D. L.; Davison, R. R.; Harris, W. B.

    1980-01-01

    A working prototype system is described in which water is pumped from an aquifer at 70 F in the winter time, chilled to a temperature of less than 50 F, injected into a ground-water aquifer, stored for a period of several months, pumped back to the surface in the summer time. A total of 8.1 million gallons of chilled water at an average temperature of 48 F were injected. This was followed by a storage period of 100 days. The recovery cycle was completed a year later with a total of 8.1 million gallons recovered. Approximately 20 percent of the chill energy was recovered.

  17. Simulated three-dimensional ground-water flow in the Lockport Group, a fractured-dolomite aquifer near Niagara Falls, New York

    Science.gov (United States)

    Yager, Richard M.

    1996-01-01

    A three-dimensional model was developed through a parameter-estimation method based on nonlinear regression to simulate ground-water flow in the Lockport Group, a fractured dolomite aquifer near Niagara Falls, N.Y. Horizontal fracture zones within the Lockport Group were represented by model layers, and connections between the zones were represented by vertical leakage between the layers. Results of steady-state simulations were compared with (1) the observed potentiometric surface of the weathered bedrock surface, (2) average heads measured by piezometers in underlying fracture zones, (3) low-flow measurements of springs and streams, and (4) measurements of discharge from tunnels and excavations. Results indicated that (1) measured flow into the Falls Street tunnel, an unlined storm sewer excavated in bedrock, exceeds the amount that can be sustained by the aquifer, and, therefore, a connection between the tunnel and the Niagara River can be assumed; (2) recharge within the urban parts of the modeled area is greater than in rural areas, possibly because of losses from the municipal water supply or infiltration from unlined storm sewers that intersect the bedrock; and (3) lowlands near the Niagara River might contain widespread areas of upward flow that discharge ground water through evapotranspiration and surface drainage.

  18. Iowa ground-water quality

    Science.gov (United States)

    Buchmiller, R.C.; Squillace, P.J.; Drustrup, R.D.

    1987-01-01

    The population served by ground-water supplies in Iowa (fig. L4) is estimated to be about 2,392,000, or 82 percent of the total population (U.S. Geological Survey, 1985, p. 211). The population of Iowa is distributed fairly uniformly throughout the State (fig. IB), with 59 percent residing in rural areas or towns of less than 10,000 (U.S. Bureau of the Census, 1982). Surficial aquifers, the Jordan aquifer, and aquifers that form the uppermost bedrock aquifer in a particular area are most commonly used for drinking-water supplies and usually provide ample amounts of good quality water. However, naturally occurring properties or substances such as hardness, dissolved solids, and radioactivity limit the use of water for drinking purposes in some areas of each of the five principal aquifers (fig. 2/4). Median concentrations of nitrate in all aquifers and radium-226 in all aquifers except the Jordan are within the primary drinking-water standards established by the U.S. Environmental Protection Agency (1986a). Median concentrations for dissolved solids in the surficial, Dakota, and Jordan aquifers exceed secondary drinking-water standards established by the U.S. Environmental Protection Agency (1986b).

  19. Hydrogeology and simulation of ground-water flow in the thick regolith-fractured crystalline rock aquifer system of Indian Creek basin, North Carolina

    Science.gov (United States)

    Daniel, Charles C.; Smith, Douglas G.; Eimers, Jo Leslie

    1997-01-01

    The Indian Creek Basin in the southwestern Piedmont of North Carolina is one of five type areas studied as part of the Appalachian Valleys-Piedmont Regional Aquifer-System analysis. Detailed studies of selected type areas were used to quantify ground-water flow characteristics in various conceptual hydrogeologic terranes. The conceptual hydrogeologic terranes are considered representative of ground-water conditions beneath large areas of the three physiographic provinces--Valley and Ridge, Blue Ridge, and Piedmont--that compose the Appalachian Valleys-Piedmont Regional Aquifer-System Analysis area. The Appalachian Valleys-Piedmont Regional Aquifer-System Analysis study area extends over approximately 142,000 square miles in 11 states and the District of Columbia in the Appalachian highlands of the Eastern United States. The Indian Creek type area is typical of ground-water conditions in a single hydrogeologic terrane that underlies perhaps as much as 40 percent of the Piedmont physiographic province. The hydrogeologic terrane of the Indian Creek model area is one of massive and foliated crystalline rocks mantled by thick regolith. The area lies almost entirely within the Inner Piedmont geologic belt. Five hydrogeologic units occupy major portions of the model area, but statistical tests on well yields, specific capacities, and other hydrologic characteristics show that the five hydrogeologic units can be treated as one unit for purposes of modeling ground-water flow. The 146-square-mile Indian Creek model area includes the Indian Creek Basin, which has a surface drainage area of about 69 square miles. The Indian Creek Basin lies in parts of Catawba, Lincoln, and Gaston Counties, North Carolina. The larger model area is based on boundary conditions established for digital simulation of ground-water flow within the smaller Indian Creek Basin. The ground-water flow model of the Indian Creek Basin is based on the U.S. Geological Survey?s modular finite

  20. Guide to Louisiana's ground-water resources

    Science.gov (United States)

    Stuart, C.G.; Knochenmus, D.D.; McGee, B.D.

    1994-01-01

    Ground water is one of the most valuable and abundant natural resources of Louisiana. Of the 4-.4 million people who live in the State, 61 percent use ground water as a source for drinking water. Most industrial and rural users and half of the irrigation users in the State rely on ground water. Quantity, however, is not the only aspect that makes ground water so valuable; quality also is important for its use. In most areas, little or no water treatment is required for drinking water and industrial purposes. Knowledge of Louisiana's ground-water resources is needed to ensure proper development and protection of this valuable resource. This report is designed to inform citizens about the availability and quality of ground water in Louisiana. It is not intended as a technical reference; rather, it is a guide to ground water and the significant role this resource plays in the state. Most of the ground water that is used in the State is withdrawn from 13 aquifers and aquifer systems: the Cockfield, Sparta, and Carrizo-Wilcox aquifersin northern Louisiana; Chicot aquifer system, Evangeline aquifer, Jasper aquifer system, and Catahoula aquifer in central and southwestern Louisiana; the Chicot equivalent, Evangeline equivalent, and Jasper equivalent aquifer systems in southeastern Louisiana; and the MississippiRiver alluvial, Red River alluvial, and upland terrace aquifers that are statewide. Ground water is affected by man's activities on the land surface, and the major ground-water concerns in Louisiana are: (1) contamination from surface disposal of hazardous waste, agricultural chemicals, and petroleum products; (2) contamination from surface wastes and saltwater through abandoned wells; (3) saltwater encroachment; and (4) local overdevelopment. Information about ground water in Louisiana is extensive and available to the public. Several State and Federal agencies provide published and unpublished material upon request.

  1. Characterizing Hydraulic Properties and Ground-Water Chemistry in Fractured-Rock Aquifers: A User's Manual for the Multifunction Bedrock-Aquifer Transportable Testing Tool (BAT3)

    Science.gov (United States)

    Shapiro, Allen M.

    2007-01-01

    A borehole testing apparatus has been designed to isolate discrete intervals of a bedrock borehole and conduct hydraulic tests or collect water samples for geochemical analyses. This borehole testing apparatus, referred to as the Multifunction Bedrock-Aquifer Transportable Testing Tool (BAT3), includes two borehole packers, which when inflated can form a pressure-tight seal against smooth borehole walls; a pump apparatus to withdraw water from between the two packers; a fluid-injection apparatus to inject water between the two packers; pressure transducers to monitor fluid pressure between the two packers, as well as above and below the packers; flowmeters to monitor rates of fluid withdrawal or fluid injection; and data-acquisition equipment to record and store digital records from the pressure transducers and flowmeters. The generic design of this apparatus was originally discussed in United States Patent Number 6,761,062 (Shapiro, 2004). The prototype of the apparatus discussed in this report is designed for boreholes that are approximately 6 inches in diameter and can be used to depths of approximately 300 feet below land surface. The apparatus is designed to fit in five hard plastic boxes that can be shipped by overnight freight car-riers. The equipment can be assembled rapidly once it is removed from the shipping boxes, and the length of the test interval (the distance between the two packers) can be adjusted to account for different borehole conditions without reconfiguring the downhole components. The downhole components of the Multifunction BAT3 can be lowered in a borehole using steel pipe or a cable; a truck mounted winch or a winch and tripod can be used for this purpose. The equipment used to raise and lower the downhole components of the Multifunction BAT3 must be supplied on site, along with electrical power, a compressor or cylinders of compressed gas to inflate the packers and operate downhole valves, and the proper length of tubing to connect the

  2. Comparative review and synthesis of ground-water recharge estimates for the Great Bend Prairie aquifer of Kansas

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — In this report I briefly outline the importance of and difficulties involved in estimating aquifer recharge and compare reported recharge estimates for the Great...

  3. Aquifer Storage Recovery (ASR) of chlorinated municipal drinking water in a confined aquifer

    Science.gov (United States)

    Izbicki, John A.; Petersen, Christen E.; Glotzbach, Kenneth J.; Metzger, Loren F.; Christensen, Allen H.; Smith, Gregory A.; O'Leary, David R.; Fram, Miranda S.; Joseph, Trevor; Shannon, Heather

    2010-01-01

    About 1.02 x 106 m3 of chlorinated municipal drinking water was injected into a confined aquifer, 94-137 m below Roseville, California, between December 2005 and April 2006. The water was stored in the aquifer for 438 days, and 2.64 x 106 m3 of water were extracted between July 2007 and February 2008. On the basis of Cl data, 35% of the injected water was recovered and 65% of the injected water and associated disinfection by-products (DBPs) remained in the aquifer at the end of extraction. About 46.3 kg of total trihalomethanes (TTHM) entered the aquifer with the injected water and 37.6 kg of TTHM were extracted. As much as 44 kg of TTHMs remained in the aquifer at the end of extraction because of incomplete recovery of injected water and formation of THMs within the aquifer by reactions with freechlorine in the injected water. Well-bore velocity log data collected from the Aquifer Storage Recovery (ASR) well show as much as 60% of the injected water entered the aquifer through a 9 m thick, high-permeability layer within the confined aquifer near the top of the screened interval. Model simulations of ground-water flow near the ASR well indicate that (1) aquifer heterogeneity allowed injected water to move rapidly through the aquifer to nearby monitoring wells, (2) aquifer heterogeneity caused injected water to move further than expected assuming uniform aquifer properties, and (3) physical clogging of high-permeability layers is the probable cause for the observed change in the distribution of borehole flow. Aquifer heterogeneity also enhanced mixing of native anoxic ground water with oxic injected water, promoting removal of THMs primarily through sorption. A 3 to 4-fold reduction in TTHM concentrations was observed in the furthest monitoring well 427 m downgradient from the ASR well, and similar magnitude reductions were observed in depth-dependent water samples collected from the upper part of the screened interval in the ASR well near the end of the extraction

  4. Induced infiltration from the Rockaway River and water chemistry in a stratified-drift aquifer at Dover, New Jersey, with a section on modeling ground-water flow in the Rockaway River Valley

    Science.gov (United States)

    Dysart, Joel E.; Rheaume, Stephen J.; Kontis, Angelo L.

    1999-01-01

    The vertical hydraulic conductivity per unit thickness (streambed leakance) of unconsolidated sediment immediately beneath the channel of the Rockaway River near a municipal well field at Dover, N.J., is between 0.2 and 0.6 feet per day per foot and is probably near the low end of this range. This estimate is based on evaluation of three lines of evidence: (1) Streamflow measurements, which indicated that induced infiltration of river water near the well field averaged 0.67 cubic feet per second; (2) measurements of the rate of downward propagation of diurnal fluctuations in dissolved oxygen and water temperature at three piezometers, which indicated vertical Darcian flow velocities of 0.6 and 1.5 feet per day, respectively; and (3) chemical mixing models based on stable isotopes of oxygen and hydrogen, which indicated that 30 percent of the water reaching a well near the center of the well field was derived from the river. The estimated streambed-leakance values are compatible with other aquifer properties and with hydraulic stresses observed over a 2-year period, as demonstrated by a set of six alternative groundwater flow models of the Rockaway River valley. Simulated water levels rose 0.5 to 1.7 feet near the well field when simulated streambed leakance was changed from 0.2 to 0.6 feet per day per foot, or when a former reach of the Rockaway River valley that is now blocked by glacial drift was simulated as containing a continuous sand aquifer (rather than impermeable till). Model recalibration to observed water levels could accommodate either of these changes, however, by plausible adjustments in hydraulic conductivity of 35 percent or less.The ground-water flow models incorporate a new procedure for simulating areal recharge, in which water available for recharge in any time interval is accepted as recharge only where the water level in the uppermost model layer is below land surface. Water rejected as recharge on upland hillsides is allowed to recharge

  5. AQMAN; linear and quadratic programming matrix generator using two-dimensional ground-water flow simulation for aquifer management modeling

    Science.gov (United States)

    Lefkoff, L.J.; Gorelick, S.M.

    1987-01-01

    A FORTRAN-77 computer program code that helps solve a variety of aquifer management problems involving the control of groundwater hydraulics. It is intended for use with any standard mathematical programming package that uses Mathematical Programming System input format. The computer program creates the input files to be used by the optimization program. These files contain all the hydrologic information and management objectives needed to solve the management problem. Used in conjunction with a mathematical programming code, the computer program identifies the pumping or recharge strategy that achieves a user 's management objective while maintaining groundwater hydraulic conditions within desired limits. The objective may be linear or quadratic, and may involve the minimization of pumping and recharge rates or of variable pumping costs. The problem may contain constraints on groundwater heads, gradients, and velocities for a complex, transient hydrologic system. Linear superposition of solutions to the transient, two-dimensional groundwater flow equation is used by the computer program in conjunction with the response matrix optimization method. A unit stress is applied at each decision well and transient responses at all control locations are computed using a modified version of the U.S. Geological Survey two dimensional aquifer simulation model. The program also computes discounted cost coefficients for the objective function and accounts for transient aquifer conditions. (Author 's abstract)

  6. Section 9: Ground Water - Likelihood of Release

    Science.gov (United States)

    HRS training. the ground water pathway likelihood of release factor category reflects the likelihood that there has been, or will be, a release of hazardous substances in any of the aquifers underlying the site.

  7. Ground-water quality atlas of Wisconsin

    Science.gov (United States)

    Kammerer, Phil A.

    1981-01-01

    This report summarizes data on ground-water quality stored in the U.S. Geological Survey's computer system (WATSTORE). The summary includes water quality data for 2,443 single-aquifer wells, which tap one of the State's three major aquifers (sand and gravel, Silurian dolomite, and sandstone). Data for dissolved solids, hardness, alkalinity, calcium, magnesium, sodium, potassium, iron, manganese, sulfate, chloride, fluoride, and nitrate are summarized by aquifer and by county, and locations of wells for which data are available 1 are shown for each aquifer. Calcium, magnesium, and bicarbonate (the principal component of alkalinity) are the major dissolved constituents in Wisconsin's ground water. High iron concentrations and hardness cause ground-water quality problems in much of the State. Statewide ,summaries of trace constituent (selected trace metals; arsenic, boron, and organic carbon) concentrations show that these constituents impair water quality in only a few isolated wells.

  8. Ground-water quality in quaternary deposits of the central high plains aquifer, south-central Kansas, 1999

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Water samples from 20 randomly selected domestic water-supply wells completed in the Quaternary deposits of south-central Kansas were collected as part of the High...

  9. Investigations of Liquid Water Retention in the Greenland Firn Aquifer

    Science.gov (United States)

    Forster, R. R.; Miège, C.; Solomon, D. K.; Koenig, L.; Miller, O. L.; Schmerr, N. C.; Montgomery, L. N.

    2015-12-01

    Liquid water is retained year-round within the Greenland firn aquifer in the subsurface pore space predominantly in the southeast region of the ice sheet where accumulation and melt rates are high. Our group uses a combination of remote sensing methods and field-based measurements to investigate the aquifer near Helheim Glacier. We map the current spatial extent of the aquifer system from airborne radar measurements on board NASA's Operation IceBridge (OIB) developed at the University of Kansas's Center for Remote Sensing of the Ice Sheets (CReSIS). Ground-based measurements from five field campaigns (2011, 2013, 2014, and two in 2015) are used to investigate the depth, thickness, and volume of water, hydraulic properties of the aquifer system, water saturation concentrations, residence time of the water, and the flow within the aquifer. Techniques include ground penetrating radar, seismic refraction, nuclear magnetic resonance sounding, pumping tests, and environmental tracer measurements. We also model the potential of aquifer discharge into a crevasse to initiate a fracture to the bed of the ice sheet. These types of investigations are needed to understand the aquifers influence on the ice sheet's mass balance.

  10. Use of Tracer Dye Techniques Is Assessing Ground Water Availabilty and Quality in a Karst Aquifer System (Project Overview)

    Science.gov (United States)

    Problem: The Leetown Science Center and ~ 500 acre research facility operated by the U.S. Geological Survey (USGS) Biological Resources Division (BRD) In West Virginia investigates the health and habitats of aquatic species. Large quantities of good quality cold water are needed ...

  11. Ground water and energy

    Energy Technology Data Exchange (ETDEWEB)

    1980-11-01

    This national workshop on ground water and energy was conceived by the US Department of Energy's Office of Environmental Assessments. Generally, OEA needed to know what data are available on ground water, what information is still needed, and how DOE can best utilize what has already been learned. The workshop focussed on three areas: (1) ground water supply; (2) conflicts and barriers to ground water use; and (3) alternatives or solutions to the various issues relating to ground water. (ACR)

  12. Shallow ground-water conditions, Tom Green County, Texas

    Science.gov (United States)

    Lee, J.N.

    1986-01-01

    Most of the water needs of Tom Green County, Texas, are supplied by ground water; however, the city of San Angelo is supplied by surface water. Groundwater withdrawals during 1980 (latest year for which data are available) in Tom Green County totaled about 15,300 acre-feet, all derived from shallow aquifers. Shallow aquifers in this report refer to the ground-water system generally less than 400 feet deep that contains water with less than a 10,000 milligrams per liter concentration of dissolved solids; aquifers comprising this system include: The Leona, Comanche Peak, Trinity, Blaine, San Angelo, Choza, Bullwagon, Vale, Standpipe, and Arroyo aquifers.

  13. Analysis of Ground-Water Flow in the Madison Aquifer using Fluorescent Dyes Injected in Spring Creek and Rapid Creek near Rapid City, South Dakota, 2003-04

    Science.gov (United States)

    Putnam, Larry D.; Long, Andrew J.

    2007-01-01

    The Madison aquifer, which contains fractures and solution openings in the Madison Limestone, is used extensively for water supplies for the city of Rapid City and other suburban communities in the Rapid City, S. Dak., area. The 48 square-mile study area includes the west-central and southwest parts of Rapid City and the outcrops of the Madison Limestone extending from south of Spring Creek to north of Rapid Creek. Recharge to the Madison Limestone occurs when streams lose flow as they cross the outcrop. The maximum net loss rate for Spring and Rapid Creek loss zones are 21 and 10 cubic feet per second (ft3/s), respectively. During 2003 and 2004, fluorescent dyes were injected in the Spring and Rapid Creek loss zones to estimate approximate locations of preferential flow paths in the Madison aquifer and to measure the response and transit times at wells and springs. Four injections of about 2 kilograms of fluorescein dye were made in the Spring Creek loss zone during 2003 (sites S1, S2, and S3) and 2004 (site S4). Injection at site S1 was made in streamflow just upstream from the loss zone over a 12-hour period when streamflow was about equal to the maximum loss rate. Injections at sites S2, S3, and S4 were made in specific swallow holes located in the Spring Creek loss zone. Injection at site R1 in 2004 of 3.5 kilograms of Rhodamine WT dye was made in streamflow just upstream from the Rapid Creek loss zone over about a 28-hour period. Selected combinations of 27 wells, 6 springs, and 3 stream sites were monitored with discrete samples following the injections. For injections at sites S1-S3, when Spring Creek streamflow was greater than or equal to 20 ft3/s, fluorescein was detected in samples from five wells that were located as much as about 2 miles from the loss zone. Time to first arrival (injection at site S1) ranged from less than 1 to less than 10 days. The maximum fluorescein concentration (injection at site S1) of 120 micrograms per liter (ug/L) at well CO

  14. Modeled ground water age distributions

    Science.gov (United States)

    Woolfenden, Linda R.; Ginn, Timothy R.

    2009-01-01

    The age of ground water in any given sample is a distributed quantity representing distributed provenance (in space and time) of the water. Conventional analysis of tracers such as unstable isotopes or anthropogenic chemical species gives discrete or binary measures of the presence of water of a given age. Modeled ground water age distributions provide a continuous measure of contributions from different recharge sources to aquifers. A numerical solution of the ground water age equation of Ginn (1999) was tested both on a hypothetical simplified one-dimensional flow system and under real world conditions. Results from these simulations yield the first continuous distributions of ground water age using this model. Complete age distributions as a function of one and two space dimensions were obtained from both numerical experiments. Simulations in the test problem produced mean ages that were consistent with the expected value at the end of the model domain for all dispersivity values tested, although the mean ages for the two highest dispersivity values deviated slightly from the expected value. Mean ages in the dispersionless case also were consistent with the expected mean ages throughout the physical model domain. Simulations under real world conditions for three dispersivity values resulted in decreasing mean age with increasing dispersivity. This likely is a consequence of an edge effect. However, simulations for all three dispersivity values tested were mass balanced and stable demonstrating that the solution of the ground water age equation can provide estimates of water mass density distributions over age under real world conditions.

  15. Radium and radon isotope investigations as tool for aquifer diagnostics considering the geochemical and hydrochemical conditions in the ground water aquifer; Radium- und Radon-Isotopen-Untersuchungen als Hilfsmittel fuer die Aquiferdiagnose unter besonderer Beruecksichtigung der geochemischen und hydrochemischen Verhaeltnisse im Grundwasserleiter

    Energy Technology Data Exchange (ETDEWEB)

    Hurst, Stephanie

    2014-12-12

    The thesis was aimed to the development of methods for enhanced interpretation of the hydraulic conditions in a groundwater aquifer based on the determination of the Rn-222/Ra-226 ration. Further investigations concerned rocks and rock surfaces (secondary minerals) with respect to the solubility and the mobility of radium in the ground water. The samples were withdrawn in the region of the continental deep borehole (KTB Oberpfalz) and the Czech Republic (Egergraben).

  16. Ground-water conditions and studies in Georgia, 2001

    Science.gov (United States)

    Leeth, David C.; Clarke, John S.; Craigg, Steven D.; Wipperfurth, Caryl J.

    2003-01-01

    The U.S. Geological Survey (USGS) collects ground-water data and conducts studies to monitor hydrologic conditions, to better define ground-water resources, and address problems related to water supply and water quality. Data collected as part of ground-water studies include geologic, geophysical, hydraulic property, water level, and water quality. A ground-water-level network has been established throughout most of the State of Georgia, and ground-water-quality networks have been established in the cities of Albany, Savannah, and Brunswick and in Camden County, Georgia. Ground-water levels are monitored continuously in a network of wells completed in major aquifers of the State. This network includes 17 wells in the surficial aquifer, 12 wells in the upper and lower Brunswick aquifers, 73 wells in the Upper Floridan aquifer, 10 wells in the Lower Floridan aquifer and underlying units, 12 wells in the Claiborne aquifer, 1 well in the Gordon aquifer, 11 wells in the Clayton aquifer, 11 wells in the Cretaceous aquifer system, 2 wells in Paleozoic-rock aquifers, and 7 wells in crystalline-rock aquifers. In this report, data from these 156 wells were evaluated to determine whether mean-annual ground-water levels were within, below, or above the normal range during 2001, based on summary statistics for the period of record. Information from these summaries indicates that water levels during 2001 were below normal in almost all aquifers monitored, largely reflecting climatic effects from drought and pumping. In addition, water-level hydrographs for selected wells indicate that water levels have declined during the past 5 years (since 1997) in almost all aquifers monitored, with water levels in some wells falling below historical lows. In addition to continuous water-level data, periodic measurements taken in 52 wells in the Camden County-Charlton County area, and 65 wells in the city of Albany-Dougherty County area were used to construct potentiometric-surface maps for

  17. Spatial extent and temporal variability of Greenland firn aquifers detected by ground and airborne radars

    Science.gov (United States)

    Miège, Clément; Forster, Richard R.; Brucker, Ludovic; Koenig, Lora S.; Solomon, D. Kip; Paden, John D.; Box, Jason E.; Burgess, Evan W.; Miller, Julie Z.; McNerney, Laura; Brautigam, Noah; Fausto, Robert S.; Gogineni, Sivaprasad

    2016-12-01

    We document the existence of widespread firn aquifers in an elevation range of 1200-2000 m, in the high snow-accumulation regions of the Greenland ice sheet. We use NASA Operation IceBridge accumulation radar data from five campaigns (2010-2014) to estimate a firn-aquifer total extent of 21,900 km2. We investigate two locations in Southeast Greenland, where repeated radar profiles allow mapping of aquifer-extent and water table variations. In the upper part of Helheim Glacier the water table rises in spring following above-average summer melt, showing the direct firn-aquifer response to surface meltwater production changes. After spring 2012, a drainage of the firn-aquifer lower margin (5 km) is inferred from both 750 MHz accumulation radar and 195 MHz multicoherent radar depth sounder data. For 2011-2014, we use a ground-penetrating radar profile located at our Ridgeline field site and find a spatially stable aquifer with a water table fluctuating less than 2.5 m vertically. When combining radar data with surface topography, we find that the upper elevation edge of firn aquifers is located directly downstream of locally high surface slopes. Using a steady state 2-D groundwater flow model, water is simulated to flow laterally in an unconfined aquifer, topographically driven by ice sheet surface undulations until the water encounters crevasses. Simulations suggest that local flow cells form within the Helheim aquifer, allowing water to discharge in the firn at the steep-to-flat transitions of surface topography. Supported by visible imagery, we infer that water drains into crevasses, but its volume and rate remain unconstrained.

  18. Difference between the 2006 and partial-development ground-water conditions for the unconfined aquifer in the Wood River Valley, south-central Idaho.

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The entire population of the Wood River Valley depends on ground water for domestic supply, either from domestic or municipal-supply wells, rapid population growth...

  19. Ground-water level contours for the unconfined aquifer in the Wood River Valley, south-central Idaho, representing conditions during October 2006.

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The entire population of the Wood River Valley depends on ground water for domestic supply, either from domestic or municipal-supply wells, rapid population growth...

  20. Ground-water level contours for the confined aquifer in the Wood River Valley, south-central Idaho, representing the partial-development conditions.

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The entire population of the Wood River Valley depends on ground water for domestic supply, either from domestic or municipal-supply wells, rapid population growth...

  1. Potential areas of ground-water discharge in the Basin and Range carbonate-rock aquifer system, White Pine County, Nevada, and adjacent parts of Nevada and Utah

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — These data represent potential areas of ground-water discharge for selected hydrographic areas in eastern Nevada and western Utah. The data are based on phreatophyte...

  2. Difference between the 2006 and partial-development ground-water conditions for the confined aquifer in the Wood River Valley, south-central Idaho.

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The entire population of the Wood River Valley depends on ground water for domestic supply, either from domestic or municipal-supply wells, rapid population growth...

  3. Ground-water level contours for the confined aquifer in the Wood River Valley, south-central Idaho, representing conditions during October 2006.

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The entire population of the Wood River Valley depends on ground water for domestic supply, either from domestic or municipal-supply wells, rapid population growth...

  4. Ground-water level contours for the unconfined aquifer in the Wood River Valley, south-central Idaho, representing partial-development conditions.

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The entire population of the Wood River Valley depends on ground water for domestic supply, either from domestic or municipal-supply wells, rapid population growth...

  5. Isotope constraints on the hydraulic relationship of ground-waters between Quaternary and Tertiary aquifer in Xi’an area, Shaanxi province

    Institute of Scientific and Technical Information of China (English)

    秦大军; 陶书华

    2001-01-01

    Isotope techniques are increasingly used in evaluating the hydraulic connections between groundwaters in different aquifers, and can improve the geological and hydrogeological database. In the Xi’an area, the upper Quaternary aquifer may have hydraulic connection with the lower aquifer, the Tertiary aquifer, based on geological analyses. δ2H, δ18O, 3H, and 14C data of groundwater samples provide further evidence for the existence of the hydraulic connection between both aquifers.

  6. Temporal and vertical variation of hydraulic head in aquifers in the Edgewood area, Aberdeen Proving Ground, Maryland

    Science.gov (United States)

    Donnelly, Colleen A.; Tenbus, Fredrick J.

    1998-01-01

    Water-level data and interpretations from previous hydrogeological studies conducted by the U.S. Geological Survey in the Edgewood Area of Aberdeen Proving Ground (APG), Maryland, were compared to determine similarities and differences among the aquifers. Because the sediments that comprise the shallow aquifers are discontinuous, the shallow ground-water-flow systems are local rather than extensive across the Edgewood Area. Hydrogeologic cross sections, hydrographs of water levels, and vertical gradients calculated from previous studies in the Canal Creek area, Graces Quarters, the O-Field area, Carroll Island, and the J-Field area, over periods of record ranging from 1 to 10 years during 1986-97, were used to determine recharge and discharge areas, connections between aquifers, and hydrologic responses of aquifers to natural and anthropogenic stress. Each of the aquifers in the study areas exhibited variation of hydraulic head that was attributed to seasonal changes in recharge. Upward hydraulic gradients and seasonal reversals of vertical hydraulic gradients between aquifers indicate the potential for local ground-water discharge from most of the aquifers that were studied in the Edgewood Area. Hydraulic head in individual aquifers in Graces Quarters and Carroll Island responded to offsite pumping during part of the period of record. Hydraulic head in most of the confined aquifers responded to tidal loading effects from nearby estuaries.

  7. Artificial recharge of humic ground water.

    Science.gov (United States)

    Alborzfar, M; Villumsen, A; Grøn, C

    2001-01-01

    The purpose of this study was to investigate the efficiency of soil in removing natural organic matter from humic ground waters using artificial recharge. The study site, in western Denmark, was a 10,000 ml football field of which 2,000 m2 served as an infiltration field. The impact of the artificial recharge was studied by monitoring the water level and the quality of the underlying shallow aquifer. The humic ground water contained mainly humic adds with an organic carbon (OC) concentration of 100 to 200 mg C L(-1). A total of 5,000 mS of humic ground water were sprinkled onto the infiltration field at an average rate of 4.25 mm h(-1). This resulted in a rise in the water table of the shallow aquifer. The organic matter concentration of the water in the shallow aquifer, however, remained below 2.7 mg C L(-1). The organic matter concentration of the pore water in the unsaturated zone was measured at the end of the experiment. The organic matter concentration of the pore water decreased from 105 mg C L(-1) at 0.5 m to 20 mg C L(-1) at 2.5 m under the infiltration field indicating that the soil removed the organic matter from the humic ground water. From these results we conclude that artificial recharge is a possible method for humic ground water treatment.

  8. A progress report on results of test drilling and ground-water investigations of the Snake Plain aquifer, southeastern Idaho: Part 1: Mud Lake Region, 1969-70 and Part 2: Observation Wells South of Arco and West of Aberdeen

    Science.gov (United States)

    Crosthwaite, E.G.

    1973-01-01

    The results of drilling test holes to depths of approximately 1,000 feet in the Mud Lake region show that a large part of the region is underlain by both sedimentary deposits and basalt flows. At some locations, predominantly sedimentary deposits were penetrated; at others, basalt flows predominated. The so-called Mud Lake-Market Lake barrier denotes a change in geology. From the vicinity of the barrier area, as described by Stearns, Crandall, and Steward (1938, p. 111), up the water-table gradient for at least a few tens of miles, the saturated geologic section consists predominantly of beds of sediments that are intercalated with numerous basalt flows. Downgradient from the barrier, sedimentary deposits are not common and practically all the water-bearing formations are basalt, at least to the depths explored so far. Thus, the barrier is a transition zone from a sedimentary-basaltic sequence to a basaltic sequence. The sedimentary-basaltic sequence forms a complex hydrologic system in which water occurs under water-table conditions in the upper few tens of feet of saturated material and under artesian conditions in the deeper material in the southwest part of the region. The well data indicate that southwest of the barrier, artesian pressures are not significant. Southwest of the barrier, few sedimentary deposits occur in the basalt section and, as described by Mundorff, Crosthwaite, and Kilburn (1964). ground water occurs in a manner typical of the Snake Plain aquifer. In several wells, artesian pressures are higher in the deeper formations than in the shallower ones, but the reverse was found in a few wells. The available data are not adequate to describe the water-bearing characteristics of the artesian aquifer nor the effects that pumping in one zone would have on adjacent zones. The water-table aquifer yields large quantities of water to irrigation wells.

  9. Determination of hydrologic properties needed to calculate average linear velocity and travel time of ground water in the principal aquifer underlying the southeastern part of Salt Lake Valley, Utah

    Science.gov (United States)

    Freethey, G.W.; Spangler, L.E.; Monheiser, W.J.

    1994-01-01

    A 48-square-mile area in the southeastern part of the Salt Lake Valley, Utah, was studied to determine if generalized information obtained from geologic maps, water-level maps, and drillers' logs could be used to estimate hydraulic conduc- tivity, porosity, and slope of the potentiometric surface: the three properties needed to calculate average linear velocity of ground water. Estimated values of these properties could be used by water- management and regulatory agencies to compute values of average linear velocity, which could be further used to estimate travel time of ground water along selected flow lines, and thus to determine wellhead protection areas around public- supply wells. The methods used to estimate the three properties are based on assumptions about the drillers' descriptions, the depositional history of the sediments, and the boundary con- ditions of the hydrologic system. These assump- tions were based on geologic and hydrologic infor- mation determined from previous investigations. The reliability of the estimated values for hydro- logic properties and average linear velocity depends on the accuracy of these assumptions. Hydraulic conductivity of the principal aquifer was estimated by calculating the thickness- weighted average of values assigned to different drillers' descriptions of material penetrated during the construction of 98 wells. Using these 98 control points, the study area was divided into zones representing approximate hydraulic- conductivity values of 20, 60, 100, 140, 180, 220, and 250 feet per day. This range of values is about the same range of values used in developing a ground-water flow model of the principal aquifer in the early 1980s. Porosity of the principal aquifer was estimated by compiling the range of porosity values determined or estimated during previous investigations of basin-fill sediments, and then using five different values ranging from 15 to 35 percent to delineate zones in the study area that were assumed to

  10. SUPERFUND GROUND WATER ISSUE - ACCURACY OF DEPTH TO WATER MEASUREMENTS

    Science.gov (United States)

    Accuracy of depth to water measurements is an issue identified by the Forum as a concern of Superfund decision-makers as they attempt to determine directions of ground-water flow, areas of recharge of discharge, the hydraulic characteristics of aquifers, or the effects of manmade...

  11. Ground-Water Protection and Monitoring Program

    Energy Technology Data Exchange (ETDEWEB)

    Dresel, P.E.

    1995-06-01

    This section of the 1994 Hanford Site Environmental Report summarizes the ground-water protection and monitoring program strategy for the Hanford Site in 1994. Two of the key elements of this strategy are to (1) protect the unconfined aquifer from further contamination, and (2) conduct a monitoring program to provide early warning when contamination of ground water does occur. The monitoring program at Hanford is designed to document the distribution and movement of existing ground-water contamination and provides a historical baseline for evaluating current and future risk from exposure to the contamination and for deciding on remedial action options.

  12. Pesticides in Ground Water

    DEFF Research Database (Denmark)

    Bjerg, Poul Løgstrup

    1996-01-01

    Review af: Jack E. Barbash & Elizabeth A. Resek (1996). Pesticides in Ground Water. Distribution trends and governing factors. Ann Arbor Press, Inc. Chelsea, Michigan. pp 588.......Review af: Jack E. Barbash & Elizabeth A. Resek (1996). Pesticides in Ground Water. Distribution trends and governing factors. Ann Arbor Press, Inc. Chelsea, Michigan. pp 588....

  13. Pesticides in Ground Water

    DEFF Research Database (Denmark)

    Bjerg, Poul Løgstrup

    1996-01-01

    Review af: Jack E. Barbash & Elizabeth A. Resek (1996). Pesticides in Ground Water. Distribution trends and governing factors. Ann Arbor Press, Inc. Chelsea, Michigan. pp 588.......Review af: Jack E. Barbash & Elizabeth A. Resek (1996). Pesticides in Ground Water. Distribution trends and governing factors. Ann Arbor Press, Inc. Chelsea, Michigan. pp 588....

  14. Strontium isotopic identification of water-rock interaction and ground water mixing.

    Science.gov (United States)

    Frost, Carol D; Toner, Rachel N

    2004-01-01

    87Sr/86Sr ratios of ground waters in the Bighorn and Laramie basins' carbonate and carbonate-cemented aquifer systems, Wyoming, United States, reflect the distinctive strontium isotope signatures of the minerals in their respective aquifers. Well water samples from the Madison Aquifer (Bighorn Basin) have strontium isotopic ratios that match their carbonate host rocks. Casper Aquifer ground waters (Laramie Basin) have strontium isotopic ratios that differ from the bulk host rock; however, stepwise leaching of Casper Sandstone indicates that most of the strontium in Casper Aquifer ground waters is acquired from preferential dissolution of carbonate cement. Strontium isotope data from both Bighorn and Laramie basins, along with dye tracing experiments in the Bighorn Basin and tritium data from the Laramie Basin, suggest that waters in carbonate or carbonate-cemented aquifers acquire their strontium isotope composition very quickly--on the order of decades. Strontium isotopes were also used successfully to verify previously identified mixed Redbeds-Casper ground waters in the Laramie Basin. The strontium isotopic compositions of ground waters near Precambrian outcrops also suggest previously unrecognized mixing between Casper and Precambrian aquifers. These results demonstrate the utility of strontium isotopic ratio data in identifying ground water sources and aquifer interactions.

  15. Temporal and spatial variability of the Greenland firn aquifer revealed by ground and airborne radar data

    Science.gov (United States)

    Miège, C.; Forster, R. R.; Koenig, L.; Brucker, L.; Box, J. E.; Burgess, E. W.; Solomon, D. K.

    2014-12-01

    During the last two decades, the Greenland ice sheet has been losing mass, significantly contributing to sea level rise (0.33±0.08 mm yr-1). In the meantime, summer surface melt has been increasing in both duration and extent, and subsequent runoff represents about half of the total mass lost. However, small-scale heterogeneous physical processes and residence times associated with meltwater formation, infiltration in the firn, refreezing and/or runoff remain unconstrained in coarser resolution numerical models, leading to significant error bars while estimating total runoff. In Southeast and South Greenland, widespread aquifers have been observed in relative high accumulation and melt regions, persisting throughout the year, storing a significant mass of water within the firn. The presence of a persistent water table within the firn aquifer is observed using a 400 MHz ground-penetrating radar and the 750 MHz airborne Accumulation Radar over the same location. In both radar echograms, a strong reflection is present, illustrating the important dielectric contrast between dry firn and water-saturated firn. Since 2011, NASA's Operation IceBridge mission allows us to produce an ice-sheet-wide map of the location and depth of the firn aquifer using the Accumulation Radar echograms. Over the last four years, from one spring to the next, repeated flight lines demonstrate a relatively steady short-term behavior of water in the aquifer with constant lateral boundaries (with a few exceptions) and water table surface. An earlier radar survey (1993) implies the aquifer presence by lack of bed return, but the study area was limited to the Helheim Glacier region. Within the aquifer, a relatively slow flow of water is inferred from 2-D hydrological flow modeling, while assuming a constant hydraulic conductivity in the aquifer. On the aquifer low-elevation lateral boundary, connection with crevasses are observed in the airborne radar echograms and documented in this study. More

  16. Selected Well Data Used in Determining Ground-Water Availability in the North and South Carolina Atlantic Coastal Plain Aquifer Systems

    Science.gov (United States)

    2006-01-01

    lesser amounts of marine limestone that range in age from Jurassic to post-Miocene (Winner and Coble, 1996). The Fall Line marks the approximate...near Aiken; Cahill (1982) described the hydrology of the low-level radioactive solid-waste burial site near Barnwell; Park (1985) described the...aquifers in the Grand Strand; Dale and Park (1999) studied the irrigation-supply potential of the shallow aquifer beneath Hilton Head Island; and

  17. Movement and Age of Ground Water in the Western Part of the Mojave Desert, Southern California, USA

    Science.gov (United States)

    Izbicki, John A.; Michel, Robert L.

    2004-01-01

    Tritium and carbon-14 data in water from wells in the Mojave River and the Morongo ground-water basins in the western part of the Mojave Desert show recent recharge focused in the floodplain aquifer along the Mojave River. Older ground water was present in parts of the regional aquifer that surround and underlie the floodplain aquifer. Movement of water between the floodplain and the regional aquifers occurs near on the upgradient side of faults as water from the regional aquifer discharges to the floodplain aquifer and on the downgradient side of the faults where water from the floodplain aquifer recharges the regional aquifer. On the basis of carbon-14 ages, corrected for mineralogic reactions with aquifer materials, water from some wells was recharged more than 20,000 years ago. Geochemical data show ground-water recharge has gradually decreased as the climate changed since that time.

  18. Water supply from the karst aquifers in the Republic of Macedonia

    OpenAIRE

    Mircovski, Vojo; Spasovski, Orce

    2005-01-01

    The paper presents data on the most important kast aquifers in the Republic of Macedonia whose water is used for the water supply in several municipalities. Ground waters from karst aquifers are important for the water supply of a number of large cites such as Skopje, Dojran, Kavadarci, Negotino, Gostivar, Ohrid, Kruševo, Prilep, Kićevo, Valandovo, Oslomej, Makedonski Brod etc. Investigations carried out so far indicate that the waters of karst aquifers have the most promising potential for w...

  19. Hydrogeology, ground-water use, and ground-water levels in the Mill Creek Valley near Evendale, Ohio

    Science.gov (United States)

    Schalk, Charles; Schumann, Thomas

    2002-01-01

    Withdrawals of ground water in the central Mill Creek Valley near Evendale, Ohio, caused water-level declines of more than 100 feet by the 1950s. Since the 1950s, management practices have changed to reduce the withdrawals of ground water, and recovery of water levels in long-term monitoring wells in the valley has been documented. Changing conditions such as these prompted a survey of water use, streamflow conditions, and water levels in several aquifers in the central Mill Creek Valley, Hamilton and Butler Counties, Ohio. Geohydrologic information, water use, and water levels were compiled from historical records and collected during the regional survey. Data collected during the survey are presented in terms of updated geohydrologic information, water use in the study area, water levels in the aquifers, and interactions between ground water and surface water. Some of the data are concentrated at former Air Force Plant 36 (AFP36), which is collocated with the General Electric Aircraft Engines (GEAE) plant, and these data are used to describe geohydrology and water levels on a more local scale at and near the plant. A comparison of past and current ground-water use and levels indicates that the demand for ground water is decreasing and water levels are rising. Before 1955, most of the major industrial ground-water users had their own wells, ground water was mined from a confined surficial (lower) aquifer, and water levels were more than 100 feet below their predevelopment level. Since 1955, however, these users have been purchasing their water from the city of Cincinnati or a private water purveyor. The cities of Reading and Lockland, both producers of municipal ground-water supplies in the area, shut down their well fields within their city limits. Because the demand for ground-water supplies in the valley has lessened greatly since the 1950s, withdrawals have decreased, and, consequently, water levels in the lower aquifer are 65 to 105 feet higher than they were

  20. Relationship of regional water quality to aquifer thermal energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Allen, R.D.

    1983-11-01

    Ground-water quality and associated geologic characteristics may affect the feasibility of aquifer thermal energy storage (ATES) system development in any hydrologic region. This study sought to determine the relationship between ground-water quality parameters and the regional potential for ATES system development. Information was collected from available literature to identify chemical and physical mechanisms that could adversely affect an ATES system. Appropriate beneficiation techniques to counter these potential geochemical and lithologic problems were also identified through the literature search. Regional hydrology summaries and other sources were used in reviewing aquifers of 19 drainage regions in the US to determine generic geochemical characteristics for analysis. Numerical modeling techniques were used to perform geochemical analyses of water quality from 67 selected aquifers. Candidate water resources regions were then identified for exploration and development of ATES. This study identified six principal mechanisms by which ATES reservoir permeability may be impaired: (1) particulate plugging, (2) chemical precipitation, (3) liquid-solid reactions, (4) formation disaggregation, (5) oxidation reactions, and (6) biological activity. Specific proven countermeasures to reduce or eliminate these effects were found. Of the hydrologic regions reviewed, 10 were identified as having the characteristics necessary for ATES development: (1) Mid-Atlantic, (2) South-Atlantic Gulf, (3) Ohio, (4) Upper Mississippi, (5) Lower Mississippi, (6) Souris-Red-Rainy, (7) Missouri Basin, (8) Arkansas-White-Red, (9) Texas-Gulf, and (10) California.

  1. Hydrogeology of the Helena Valley-fill aquifer system, west-central Montana. Water resources investigation

    Energy Technology Data Exchange (ETDEWEB)

    Briar, D.W.; Madison, J.P.

    1992-01-01

    The report, which presents the study results, describes the hydrogeology of the valley-fill aquifer system. Specific objectives were to: describe the geometry and the hydraulic characteristics of the aquifer system; define the potentiometric surface and the direction of ground-water flow; locate and quantify sources of ground-water recharge and discharge including surface- and ground-water interactions; and characterize the water quality in terms of susceptibility of the aquifer system to contamination and in terms of concentrations, distribution, and sources of major ions, trace elements, and organic compounds. The results of the study will be useful to the development of a comprehensive management program for the use and protection of the ground-water resources of the Helena Valley.

  2. Ground Surface Deformations Near a Fault-Bounded Groundwater Aquifer

    Science.gov (United States)

    Lipovsky, B.; Funning, G. J.; Ferretti, A.

    2011-12-01

    Geodetic data often reveal the presence of groundwater aquifers that are bounded by faults (Schmidt and Bürgmann, 2003; Galloway and Hoffmann, 2007; Bell et al., 2008). Whereas unrestricted groundwater aquifers exhibit a radially symmetric pattern of uplift with diffuse boundaries, aquifers that are bounded by faults have one or more sharp, linear boundaries. Interferometric synthetic aperture (InSAR) data, due to their high spatial density, are particularly well suited to observe fault bounded aquifers, and the Santa Clara Aquifer in the San Francisco Bay Area, California, constitutes an excellent example. The largest ground surface displacements in the Bay Area are due to the inflation of the Santa Clara aquifer, and InSAR data plainly show that the Santa Clara aquifer is partitioned by the Silver Creek fault. This study first develops a general model of the displacements at the surface of the Earth due to fluid diffusion through a buried permeable boundary such as a fault zone. This model is compared to InSAR data from the Silver Creek fault and we find that we are able to infer fault zone poromechanical properties from InSAR data that are comparable to in situ measurements. Our theoretical model is constrained by several geological and hydrological observations concerning the structure of fault zones. Analytical solutions are presented for the ground surface displacements due to a perfectly impermeable fault zone. This end-member family of models, however, does not fit the available data. We therefore make allowance for an arbitrarily layered, variably permeable, one-dimensional fault zone. Time-dependent ground surface deformations are calculated in the Laplace domain using an efficient semi-analytic method. This general model is applicable to other poroelastic regimes including geothermal and hydrocarbon systems. We are able to estimate fault zone hydraulic conductivity by comparing theoretical ground surface displacements in a permeable fault zone to

  3. Changes in Water Levels and Storage in the High Plains Aquifer, Predevelopment to 2007

    Science.gov (United States)

    McGuire, V.L.

    2009-01-01

    The High Plains aquifer underlies 111.6 million acres (174,000 square miles) in parts of eight States - Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming. The area overlying the High Plains aquifer is one of the primary agricultural regions in the Nation. Water-level declines began in parts of the High Plains aquifer soon after the beginning of substantial irrigation with ground water in the aquifer area. By 1980, water levels in the High Plains aquifer in parts of Texas, Oklahoma, and southwestern Kansas had declined more than 100 feet (Luckey and others, 1981). In response to these water-level declines, the U.S. Geological Survey (USGS), in collaboration with numerous Federal, State, and local water-resources agencies, began monitoring more than 7,000 wells in 1988 to assess annual water-level changes in the aquifer. This fact sheet summarizes changes in water levels and drainable water in storage in the High Plains aquifer from predevelopment (before about 1950) to 2007 and serves as a companion product to a USGS report that presents more detailed and technical information about water-level and storage changes in the High Plains aquifer during this period (McGuire, 2009).

  4. Simulation of solute transport of tetrachloroethylene in ground water of the glacial-drift aquifer at the Savage Municipal Well Superfund Site, Milford, New Hampshire, 1960-2000

    Science.gov (United States)

    Harte, Philip T.

    2004-01-01

    The Savage Municipal Well Superfund site, named after the former municipal water-supply well for the town of Milford, is underlain by a 0.5-square mile plume of volatile organic compounds (VOCs), primarily tetrachloroethylene (PCE). The plume occurs mostly within a highly transmissive sand-and-gravel unit, but also extends to an underlying till and bedrock unit. The plume logistically is divided into two areas termed Operable Unit No. 1 (OU1), which contains the primary source area, and Operable Unit No. 2 (OU2), which is the extended plume area. PCE concentrations in excess of 100,000 parts per billion (ppb) had been detected in the OU1 area in 1995, indicating a likely Dense Non-Aqueous Phase Liquid (DNAPL) source. In the fall of 1998, the New Hampshire Department of Environmental Services (NHDES) and the U.S. Environmental Protection Agency (USEPA) installed a remedial system in OU1. The OU1 remedial system includes a low-permeability barrier that encircles the highest detected concentrations of PCE, and a series of injection and extraction wells. The barrier primarily sits atop bedrock and penetrates the full thickness of the sand and gravel; and in some places, the full thickness of the underlying basal till. The sand and gravel unit and the till comprise the aquifer termed the Milford-Souhegan glacial-drift aquifer (MSGD). Two-dimensional and three-dimensional finite-difference solute-transport models of the unconsolidated sediments (MSGD aquifer) were constructed to help evaluate solute-transport processes, assess the effectiveness of remedial activities in OU1, and to help design remedial strategies in OU2. The solute-transport models simulate PCE concentrations, and model results were compared to observed concentrations of PCE. Simulations were grouped into the following three time periods: an historical calibration of the distribution of PCE from the initial input (circa 1960) of PCE into the subsurface to the 1990s, a pre-remedial calibration from 1995

  5. Precipitation and Runoff Simulations of the Carson Range and Pine Nut Mountains, and Updated Estimates of Ground-Water Inflow and the Ground-Water Budgets for Basin-Fill Aquifers of Carson Valley, Douglas County, Nevada, and Alpine County, California

    Science.gov (United States)

    Jeton, Anne E.; Maurer, Douglas K.

    2007-01-01

    Recent estimates of ground-water inflow to the basin-fill aquifers of Carson Valley, Nevada, and California, from the adjacent Carson Range and Pine Nut Mountains ranged from 22,000 to 40,000 acre-feet per year using water-yield and chloride-balance methods. In this study, watershed models were developed for watersheds with perennial streams and for watersheds with ephemeral streams in the Carson Range and Pine Nut Mountains to provide an independent estimate of ground-water inflow. This report documents the development and calibration of the watershed models, presents model results, compares the results with recent estimates of ground-water inflow to the basin-fill aquifers of Carson Valley, and presents updated estimates of the ground-water budget for basin-fill aquifers of Carson Valley. The model used for the study was the Precipitation-Runoff Modeling System, a physically based, distributed-parameter model designed to simulate precipitation and snowmelt runoff as well as snowpack accumulation and snowmelt processes. Geographic Information System software was used to manage spatial data, characterize model drainages, and to develop Hydrologic Response Units. Models were developed for * Two watersheds with gaged perennial streams in the Carson Range and two watersheds with gaged perennial streams in the Pine Nut Mountains using measured daily mean runoff, * Ten watersheds with ungaged perennial streams using estimated daily mean runoff, * Ten watershed with ungaged ephemeral streams in the Carson Range, and * A large area of ephemeral runoff near the Pine Nut Mountains. Models developed for the gaged watersheds were used as index models to guide the calibration of models for ungaged watersheds. Model calibration was constrained by daily mean runoff for 4 gaged watersheds and for 10 ungaged watersheds in the Carson Range estimated in a previous study. The models were further constrained by annual precipitation volumes estimated in a previous study to provide

  6. Ground-water basic data for Griggs and Steele Counties, North Dakota

    Science.gov (United States)

    Downey, Joe S.

    1973-01-01

    The objectives of the hydrologic investigation in Griggs and Steele Counties, N. Dak. (fig. 1) were to: (1) determine the location, extent, and nature of the major aquifers; (2) evaluate the occurrence and movement of ground water, including recharge and discharge; (3) estimate the quantities of water stored in the aquifers; (4) estimate the potential yields of wells tapping the major aquifers; and (5) determine the chemical quality of the ground water.

  7. Analysis of the ground water level change of aquifer-protective mining in longwall coalface for shallow seam%浅埋煤层长壁工作面保水开采地表水位变化分析

    Institute of Scientific and Technical Information of China (English)

    马立强; 孙海; 王飞; 李嘉明; 金志远; 张炜

    2014-01-01

    为了解决保水与采煤这一矛盾,在论证了保水开采机理及其可行性后,神东矿区补连塔煤矿32202长壁工作面在正常回采过程中,根据浅埋煤层保水开采适用条件的初步分类研究成果,确定采高为5.3 m以下,并选用高强度液压支架和大功率高可靠性配套设备,保证工作面推进速度大于15 m/d。工作面回采后,地面水井水位观测显示,工作面中部10号水井水位,在采后25 d左右就渐趋稳定;靠近回风平巷的18号水井水位,在近1个月后才能够稳定。工作面回采稳定后,10号水井水位相对于地面升高0.66 m,18号水井水位相对于地面下降0.87 m,对第四系松散含水层影响较小,地表主要植被能够正常生长。工业性试验表明,以工作面快速推进为核心的长壁工作面保水开采技术在适宜地质条件下能够取得成功,为我国西部浅埋煤层矿区的生态环境建设和提高煤炭资源回收率提供了借鉴。%In order to solve the contradiction between the protection of water resources and mining, according to the classified research result of aquifer-protective mining (APM) conditions in shallow coal seam during normal mining process of 32202 longwall coalface of Bulianta mine in Shendong mining area, the mining height is determined to be below 5.3 m and large power of hydraulic support and large power and high reliability equipment are selected to ensure that advance rate of coalface is greater than 15 m/d after demonstrating APM mechanism and feasibility. After coalface mined, the water level ob-servation of ground well shows that the water level of No.10 observation well located in the middle of the coalface stabilizes gradually after about 25 days and relatively increases 0.66 m compared to the ground while the water level of No.18 observation well near the tail entry stabilizes after about a month and relatively reduces 0.87 m compared to the ground. The

  8. Water-level change, High Plains aquifer, 1980 to 1995

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This raster data set represents water-level change in the High Plains aquifer of the United States from 1980 to 1995, in feet. The High Plains aquifer underlies...

  9. Water-level change, High Plains aquifer, 1995 to 2000

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This raster data set represents water-level change in the High Plains aquifer of the United States from 1995 to 2000, in feet. The High Plains aquifer underlies...

  10. Water-level change, High Plains aquifer, 2005 to 2009

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This raster data set represents water-level change in the High Plains aquifer of the United States from 2005 to 2009, in feet. The High Plains aquifer underlies...

  11. Water-level change, High Plains aquifer, 2000 to 2005

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This raster data set represents water-level change in the High Plains aquifer of the United States from 2000 to 2005, in feet. The High Plains aquifer underlies...

  12. Ground water recharge and flow characterization using multiple isotopes.

    Science.gov (United States)

    Chowdhury, Ali H; Uliana, Matthew; Wade, Shirley

    2008-01-01

    Stable isotopes of delta(18)O, delta(2)H, and (13)C, radiogenic isotopes of (14)C and (3)H, and ground water chemical compositions were used to distinguish ground water, recharge areas, and possible recharge processes in an arid zone, fault-bounded alluvial aquifer. Recharge mainly occurs through exposed stream channel beds as opposed to subsurface inflow along mountain fronts. This recharge distribution pattern may also occur in other fault-bounded aquifers, with important implications for conceptualization of ground water flow systems, development of ground water models, and ground water resource management. Ground water along the mountain front near the basin margins contains low delta(18)O, (14)C (percent modern carbon [pmC]), and (3)H (tritium units [TU]), suggesting older recharge. In addition, water levels lie at greater depths, and basin-bounding faults that locally act as a flow barrier may further reduce subsurface inflow into the aquifer along the mountain front. Chemical differences in ground water composition, attributed to varying aquifer mineralogy and recharge processes, further discriminate the basin-margin and the basin-center water. Direct recharge through the indurated sandstones and mudstones in the basin center is minimal. Modern recharge in the aquifer is mainly through the broad, exposed stream channel beds containing coarse sand and gravel where ground water contains higher delta(18)O, (14)C (pmC), and (3)H (TU). Spatial differences in delta(18)O, (14)C (pmC), and (3)H (TU) and occurrences of extensive mudstones in the basin center suggest sluggish ground water movement, including local compartmentalization of the flow system.

  13. Laboratory investigations on the role of sediment surface and ground water chemistry in transport of bacteria through a contaminated Sandy Aquifer

    Science.gov (United States)

    Scholl, M.A.; Harvey, R.W.

    1992-01-01

    The effects of pH and sediment surface characteristics on sorption of indigenous groundwater bacteria were determined using contaminated and uncontaminated aquifer material from Cape Cod, MA. Over the pH range of the aquifer (5-7), the extent of bacterial sorption onto sediment in uncontaminated groundwater was strongly pH-dependent, but relatively pH-insensitive in contaminated groundwater from the site. Bacterial sorption was also affected by the presence of oxyhydroxide coatings (iron, aluminum, and manganese). Surface coating effects were most pronounced in uncontaminated groundwater (pH 6.4 at 10??C). Desorption of attached bacteria (up to 14% of the total number of labeled cells added) occurred in both field and laboratory experiments upon adjustment of groundwater to pH 8. The dependence of bacterial sorption upon environmental conditions suggests that bacterial immobilization could change substantially over relatively short distances in contaminated, sandy aquifers and that effects caused by changes in groundwater geochemistry can be significant.

  14. Vertical Gradients in Water Chemistry and Age in the Northern High Plains Aquifer, Nebraska, 2003

    Science.gov (United States)

    McMahon, P.B.; Böhlke, J.K.; Carney, C.P.

    2007-01-01

    The northern High Plains aquifer is the primary source of water used for domestic, industrial, and irrigation purposes in parts of Colorado, Kansas, Nebraska, South Dakota, and Wyoming. Despite the aquifer's importance to the regional economy, fundamental ground-water characteristics, such as vertical gradients in water chemistry and age, remain poorly defined. As part of the U.S. Geological Survey's National Water-Quality Assessment Program, water samples from nested, short-screen monitoring wells installed in the northern High Plains aquifer were analyzed for major ions, nutrients, trace elements, dissolved organic carbon, pesticides, stable and radioactive isotopes, dissolved gases, and other parameters to evaluate vertical gradients in water chemistry and age in the aquifer. Chemical data and tritium and radiocarbon ages show that water in the aquifer was chemically and temporally stratified in the study area, with a relatively thin zone of recently recharged water (less than 50 years) near the water table overlying a thicker zone of older water (1,800 to 15,600 radiocarbon years). In areas where irrigated agriculture was an important land use, the recently recharged ground water was characterized by elevated concentrations of major ions and nitrate and the detection of pesticide compounds. Below the zone of agricultural influence, major-ion concentrations exhibited small increases with depth and distance along flow paths because of rock/water interactions. The concentration increases were accounted for primarily by dissolved calcium, sodium, bicarbonate, sulfate, and silica. In general, the chemistry of ground water throughout the aquifer was of high quality. None of the approximately 90 chemical constituents analyzed in each sample exceeded primary drinking-water standards. Mass-balance models indicate that changes in ground-water chemistry along flow paths in the aquifer can be accounted for by small amounts of feldspar and calcite dissolution; goethite and

  15. Ground-water flow simulation and chemical and isotopic mixing equation analysis to determine source contributions to the Missouri River alluvial aquifer in the vicinity of the Independence, Missouri, well field

    Science.gov (United States)

    Kelly, Brian P.

    2002-01-01

    The city of Independence, Missouri, operates a well field in the Missouri River alluvial aquifer. Steady-state ground-water flow simulation, particle tracking, and the use of chemical and isotopic composition of river water, ground water, and well-field pumpage in a two-component mixing equation were used to determine the source contributions of induced inflow from the Missouri River and recharge to ground water from precipitation in well-field pumpage. Steady-state flow-budget analysis for the simulation-defined zone of contribution to the Independence well field indicates that 86.7 percent of well-field pumpage is from induced inflow from the river, and 6.7 percent is from ground-water recharge from precipitation. The 6.6 percent of flow from outside the simulation-defined zone of contribution is a measure of the uncertainty of the estimation, and occurs because model cells are too large to uniquely define the actual zone of contribution. Flow-budget calculations indicate that the largest source of water to most wells is the Missouri River. Particle-tracking techniques indicate that the Missouri River supplies 82.3 percent of the water to the Independence well field, ground-water recharge from precipitation supplies 9.7 percent, and flow from outside defined zones of contribution supplies 8.0 percent. Particle tracking was used to determine the relative amounts of source water to total well-field pumpage as a function of traveltime from the source. Well-field pumpage that traveled 1 year or less from the source was 8.8 percent, with 0.6 percent from the Missouri River, none from precipitation, and 8.2 percent between starting cells. Well-field pumpage that traveled 2 years or less from the source was 10.3 percent, with 1.8 percent from the Missouri River, 0.2 percent from precipitation, and 8.3 percent between starting cells. Well-field pumpage that traveled 5 years or less from the source was 36.5 percent, with 27.1 percent from the Missouri River, 1.1 percent

  16. Geohydrology and water quality of the North Platte River alluvial aquifer, Garden County, Western Nebraska

    Science.gov (United States)

    Steele, Gregory V.; Cannia, James C.

    1995-01-01

    In 1993, a 3-year study was begun to describe the geohydrology and water quality of the North Platte River alluvial aquifer near Oshkosh, Garden County, Nebraska. The study's objectives are to evaluate the geohydrologic characteristics of the alluvial aquifer and to establish a network of observation wells for long-term monitoring of temporal variations and spatial distributions of nitrate and major-ion concentrations. Monitor wells were installed at 11 sites near Oshkosh. The geohydrology of the aquifer was characterized based on water-level measurements and two short-term aquifer tests. Bimonthly water samples were collected and analyzed for pH, specific conductivity, water temperature, dissolved oxygen, and nutrients that included dissolved nitrate. Concentrations of major ions were defined from analyses of semiannual water samples. Analyses of the geohydrologic and water-quality data indicate that the aquifer is vulnerable to nitrate contamination. These data also show that nitrate concentrations in ground water flowing into and out of the study area are less than the U.S. Environmental Protection Agency's Maximum Concentration Level of 10 milligrams per liter for drinking water. Ground water from Lost Creek Valley may be mixing with ground water in the North Platte River Valley, somewhat moderating nitrate concentrations near Oshkosh.

  17. Hydrogeology, ground-water quality, and source of ground water causing water-quality changes in the Davis well field at Memphis, Tennessee

    Science.gov (United States)

    Parks, William S.; Mirecki, June E.; Kingsbury, James A.

    1995-01-01

    An investigation was conducted by the U.S. Geological Survey from 1992 to 1994 to collect and interpret hydrogeologic and water-quality data to determine the source of ground water causing water-quality changes in water from wells screened in the Memphis aquifer in the Davis well field at Memphis, Tennessee. Water-quality changes in aquifers used for water supply are of concern because these changes can indicate a potential for contamination of the aquifers by downward leakage from near-surface sources.

  18. Contamination of ground water, surface water, and soil, and evaluation of selected ground-water pumping alternatives in the Canal Creek area of Aberdeen Proving Ground, Maryland

    Science.gov (United States)

    Lorah, Michelle M.; Clark, Jeffrey S.

    1996-01-01

    Chemical manufacturing, munitions filling, and other military-support activities have resulted in the contamination of ground water, surface water, and soil in the Canal Creek area of Aberdeen Proving Ground, Maryland. Chlorinated volatile organic compounds, including 1,1,2,2-tetrachloroethane and trichloroethylene, are widespread ground-water contaminants in two aquifers that are composed of unconsolidated sand and gravel. Distribution and fate of chlorinated organic compounds in the ground water has been affected by the movement and dissolution of solvents in their dense immiscible phase and by microbial degradation under anaerobic conditions. Detection of volatile organic contaminants in adjacent surface water indicates that shallow contaminated ground water discharges to surface water. Semivolatile organic compounds, especially polycyclic aromatic hydrocarbons, are the most prevalent organic contaminants in soils. Various trace elements, such as arsenic, cadmium, lead, and zinc, were found in elevated concentrations in ground water, surface water, and soil. Simulations with a ground-water-flow model and particle tracker postprocessor show that, without remedial pumpage, the contaminants will eventually migrate to Canal Creek and Gunpowder River. Simulations indicate that remedial pumpage of 2.0 million gallons per day from existing wells is needed to capture all particles originating in the contaminant plumes. Simulated pumpage from offsite wells screened in a lower confined aquifer does not affect the flow of contaminated ground water in the Canal Creek area.

  19. Bacteriophages as surface and ground water tracers

    Directory of Open Access Journals (Sweden)

    P. Rossi

    1998-01-01

    Full Text Available Bacteriophages are increasingly used as tracers for quantitative analysis in both hydrology and hydrogeology. The biological particles are neither toxic nor pathogenic for other living organisms as they penetrate only a specific bacterial host. They have many advantages over classical fluorescent tracers and offer the additional possibility of multi-point injection for tracer tests. Several years of research make them suitable for quantitative transport analysis and flow boundary delineation in both surface and ground waters, including karst, fractured and porous media aquifers. This article presents the effective application of bacteriophages based on their use in differing Swiss hydrological environments and compares their behaviour to conventional coloured dye or salt-type tracers. In surface water and karst aquifers, bacteriophages travel at about the same speed as the typically referenced fluorescent tracers (uranine, sulphurhodamine G extra. In aquifers of interstitial porosity, however, they appear to migrate more rapidly than fluorescent tracers, albeit with a significant reduction in their numbers within the porous media. This faster travel time implies that a modified rationale is needed for defining some ground water protection area boundaries. Further developments of other bacteriophages and their documentation as tracer methods should result in an accurate and efficient tracer tool that will be a proven alternative to conventional fluorescent dyes.

  20. Bacteriophages as surface and ground water tracers

    Science.gov (United States)

    Rossi, P.; Dörfliger, N.; Kennedy, K.; Müller, I.; Aragno, M.

    Bacteriophages are increasingly used as tracers for quantitative analysis in both hydrology and hydrogeology. The biological particles are neither toxic nor pathogenic for other living organisms as they penetrate only a specific bacterial host. They have many advantages over classical fluorescent tracers and offer the additional possibility of multi-point injection for tracer tests. Several years of research make them suitable for quantitative transport analysis and flow boundary delineation in both surface and ground waters, including karst, fractured and porous media aquifers. This article presents the effective application of bacteriophages based on their use in differing Swiss hydrological environments and compares their behaviour to conventional coloured dye or salt-type tracers. In surface water and karst aquifers, bacteriophages travel at about the same speed as the typically referenced fluorescent tracers (uranine, sulphurhodamine G extra). In aquifers of interstitial porosity, however, they appear to migrate more rapidly than fluorescent tracers, albeit with a significant reduction in their numbers within the porous media. This faster travel time implies that a modified rationale is needed for defining some ground water protection area boundaries. Further developments of other bacteriophages and their documentation as tracer methods should result in an accurate and efficient tracer tool that will be a proven alternative to conventional fluorescent dyes.

  1. Ground-water provinces of southern Rhodesia

    Science.gov (United States)

    Dennis, Philip Eldon; Hindson, L.L.

    1964-01-01

    Ground-water development, utilization, and occurrence in nine ground-water provinces of Southern Rhodesia are summarized in this report. Water obtained from drilled wells for domestic and stock use has played an important part in the social and economic development of Southern Rhodesia from the beginnings of European settlement to the present. Most of the wells obtain water from fractures and weathered zones in crystalline rocks, before recently, there has been an interest in the possibility of obtaining water for irrigation from wells. Studies of the authors indicate that quantities of water sufficient for irrigation can be obtained from alluvial sediments in the S'abi Valley, from Kalahari sands in the western part of the country, are perhaps from aquifers in other areas. The ground-water provinces fall into two groups--those in the crystalline rocks and those in the noncrystalline rocks. Historically, the wells in crystalline rocks, especially the Gold belts province and the Intrusive granites province, have played a major role in supplying water for the needs of man. These provinces, together with two other less important crystalline rock provinces, form the broad arch which constitutes the central core of the country. The noncrystalline rocks overlie and flank the crystalline rocks to the southeast, northwest, and north. The noncrystalline rock provinces, especially the Alluvium-Kalahari province, contain the most productive or potentially productive ground-water reservoirs in Southern Rhodesia and offer promise of supplying water for irrigation and for other purposes.

  2. Ground Subsidence in Areas of Loose Porous Aquifers

    Institute of Scientific and Technical Information of China (English)

    LI Yixiang; GAO Guanhua

    2004-01-01

    Groundwater is one of the important water resources in northern China's plain areas. Many severe geological hazards have occurred in these areas due to ground subsidence which is caused by over exploitation of groundwater. This paper introduces and analyses the ground subsidence caused by groundwater exploitation and its mechanism in the northern China's plains. A ground subsidence prediction model has been developed based on the consolidation theory. The authors have tested this model in a case study of Fuyang City, Anhui Province, where ground subsidence is a severe environmental problem. In the case study, the model results match very well with those of the actual measurement. Two schemes of groundwater exploitation are assessed. The conclusion from the study could be used in the long-term water and economical management planning. The strategies for the control of ground subsidence are discussed.

  3. Formation of Martian flood features by release of water from confined aquifers

    Science.gov (United States)

    Carr, M. H.

    1979-01-01

    It is proposed that the rapid release of water under great pressure from deeply buried aquifers is responsible for the formation of the Martian channels suggestive of catastrophic flooding (outflow channels). Fine channels in the Martian surface suggest the presence of surface water early in the history of the planet, which would have entered the ground water system through the porous near-surface rocks. Subsequent global cooling would have trapped the ground water under a thick permafrost layer and formed a system of confined aquifers. High pore pressures within the aquifers are considered to have triggered the breakout of water from the aquifers at rates of from 10 to the 5th to 10 to the 7th cu m/sec, which would be prevented from reentering the ground water system by the layer of permafrost. Outflow from the aquifer is also considered to have caused the undermining of adjacent areas and the collapse of the surface to form areas of chaos, often associated with channels.

  4. Formation of Martian flood features by release of water from confined aquifers

    Science.gov (United States)

    Carr, M. H.

    1979-01-01

    It is proposed that the rapid release of water under great pressure from deeply buried aquifers is responsible for the formation of the Martian channels suggestive of catastrophic flooding (outflow channels). Fine channels in the Martian surface suggest the presence of surface water early in the history of the planet, which would have entered the ground water system through the porous near-surface rocks. Subsequent global cooling would have trapped the ground water under a thick permafrost layer and formed a system of confined aquifers. High pore pressures within the aquifers are considered to have triggered the breakout of water from the aquifers at rates of from 10 to the 5th to 10 to the 7th cu m/sec, which would be prevented from reentering the ground water system by the layer of permafrost. Outflow from the aquifer is also considered to have caused the undermining of adjacent areas and the collapse of the surface to form areas of chaos, often associated with channels.

  5. Hydrogeology, simulated ground-water flow, and ground-water quality, Wright-Patterson Air Force Base, Ohio

    Science.gov (United States)

    Dumouchelle, D.H.; Schalk, C.W.; Rowe, G.L.; De Roche, J.T.

    1993-01-01

    Ground water is the primary source of water in the Wright-Patterson Air Force Base area. The aquifer consists of glacial sands and gravels that fill a buried bedrock-valley system. Consolidated rocks in the area consist of poorly permeable Ordovician shale of the Richmondian stage, in the upland areas, the Brassfield Limestone of Silurian age. The valleys are filled with glacial sediments of Wisconsinan age consisting of clay-rich tills and coarse-grained outwash deposits. Estimates of hydraulic conductivity of the shales based on results of displacement/recovery tests range from 0.0016 to 12 feet per day; estimates for the glacial sediments range from less than 1 foot per day to more than 1,000 feet per day. Ground water flow from the uplands towards the valleys and the major rivers in the region, the Great Miami and the Mad Rivers. Hydraulic-head data indicate that ground water flows between the bedrock and unconsolidated deposits. Data from a gain/loss study of the Mad River System and hydrographs from nearby wells reveal that the reach of the river next to Wright-Patterson Air Force Base is a ground-water discharge area. A steady-state, three-dimensional ground-water-flow model was developed to simulate ground-water flow in the region. The model contains three layers and encompasses about 100 square miles centered on Wright-Patterson Air Force Base. Ground water enters the modeled area primarily by river leakage and underflow at the model boundary. Ground water exits the modeled area primarily by flow through the valleys at the model boundaries and through production wells. A model sensitivity analysis involving systematic changes in values of hydrologic parameters in the model indicates that the model is most sensitive to decreases in riverbed conductance and vertical conductance between the upper two layers. The analysis also indicates that the contribution of water to the buried-valley aquifer from the bedrock that forms the valley walls is about 2 to 4

  6. Water Quality in the Nation's Streams and Aquifers Overview of Selected Findings, 1991-2001

    Science.gov (United States)

    Hamilton, Pixie A.; Miller, Timothy L.; Myers, Donna N.

    2004-01-01

    This report accompanies the publication of the last 15 of 51 river basin and aquifer assessments by the USGS National Water-Quality Assessment (NAWQA) Program during 1991?2001. It highlights selected water-quality findings of regional and national interest through examples from river basins and aquifer systems across the Nation. Forthcoming reports in the USGS series ?The Quality of Our Nation?s Waters? will present comprehensive national syntheses of information collected in the 51 study units on pesticides in water, sediment, and fish; volatile organic compounds in major aquifers used for domestic and public supply; nutrients and trace elements in streams and ground water; and aquatic ecology. This report, summaries of the 51 water-quality assessments, and a 1999 national synthesis of information on nutrients and pesticides, are available free of charge as USGS Circulars and on the World Wide Web at http://water.usgs.gov/nawqa/nawqa_sumr.html.

  7. Ground water and climate change

    NARCIS (Netherlands)

    Taylor, R.G.; Scanlon, B.; Döll, P.; Rodell, M.; Beek, R. van; Wada, Y.; Longuevergne, L.; Leblanc, M.; Famiglietti, J.S.; Edmunds, M.; Konikow, L.; Green, T.R.; Chen, J.; Taniguchi, M.; Bierkens, M.F.P.; MacDonald, A.; Fan, Y.; Maxwell, R.M.; Yechieli, Y.; Gurdak, J.J.; Allen, D.M.; Shamsudduha, M.; Hiscock, K.; Yeh, Pat J.-F.; Holman, Ian; Treidel, Holger

    2012-01-01

    As the world’s largest distributed store of fresh water, ground water plays a central part in sustaining ecosystems and enabling human adaptation to climate variability and change. The strategic importance of ground water for global water and food security will probably intensify under climate chang

  8. Ground water and climate change

    NARCIS (Netherlands)

    Taylor, R.G.; Scanlon, B.; Döll, P.; Rodell, M.; Beek, R. van; Wada, Y.; Longuevergne, L.; Leblanc, M.; Famiglietti, J.S.; Edmunds, M.; Konikow, L.; Green, T.R.; Chen, J.; Taniguchi, M.; Bierkens, M.F.P.; MacDonald, A.; Fan, Y.; Maxwell, R.M.; Yechieli, Y.; Gurdak, J.J.; Allen, D.M.; Shamsudduha, M.; Hiscock, K.; Yeh, Pat J.-F.; Holman, Ian; Treidel, Holger

    2012-01-01

    As the world’s largest distributed store of fresh water, ground water plays a central part in sustaining ecosystems and enabling human adaptation to climate variability and change. The strategic importance of ground water for global water and food security will probably intensify under climate

  9. Restoration of Wadi Aquifers by Artificial Recharge with Treated Waste Water

    KAUST Repository

    Missimer, Thomas M.

    2012-04-26

    Fresh water resources within the Kingdom of Saudi Arabia are a rare and precious commodity that must be managed within a context of integrated water management. Wadi aquifers contain a high percentage of the naturally occurring fresh groundwater in the Kingdom. This resource is currently overused and has become depleted or contaminated at many locations. One resource that could be used to restore or enhance the fresh water resources within wadi aquifers is treated municipal waste water (reclaimed water). Each year about 80 percent of the country\\'s treated municipal waste water is discharged to waste without any beneficial use. These discharges not only represent a lost water resource, but also create a number of adverse environmental impacts, such as damage to sensitive nearshore marine environments and creation of high-salinity interior surface water areas. An investigation of the hydrogeology of wadi aquifers in Saudi Arabia revealed that these aquifers can be used to develop aquifer recharge and recovery (ARR) systems that will be able to treat the impaired-quality water, store it until needed, and allow recovery of the water for transmittal to areas in demand. Full-engineered ARR systems can be designed at high capacities within wadi aquifer systems that can operate in concert with the natural role of wadis, while providing the required functions of additional treatment, storage and recovery of reclaimed water, while reducing the need to develop additional, energy-intensive desalination to meet new water supply demands. © 2012, The Author(s). Ground Water © 2012, National Ground Water Association.

  10. Summary of Ground-Water Data for Brunswick County, North Carolina, Water Year 2006

    Science.gov (United States)

    McSwain, Kristen Bukowski

    2008-01-01

    Ground-water availability in Brunswick County, North Carolina, has been monitored continuously since 2000 through the operation and maintenance of ground-water-level observation wells in the surficial, Castle Hayne, Peedee, and Black Creek aquifers of the North Atlantic Coastal Plain aquifer system. Ground-water-resource conditions for the Brunswick County area were determined by relating the period-of-record normal (25th to 75th percentile) monthly mean ground-water-level and precipitation data to median monthly mean ground-water levels and monthly sum of daily precipitation for water year 2006. Summaries of precipitation and ground-water conditions for the Brunswick County area and hydrographs and statistics of continuous ground-water levels collected during the 2006 water year are presented in this report. Ground-water resource conditions varied by aquifer and geographic location within Brunswick County. Water levels were normal in 3 of the 11 observation wells, above normal in 5, and below normal in the remaining 3 wells.

  11. Sole Source Aquifer Program | Drinking Water in New ...

    Science.gov (United States)

    2017-07-06

    The Safe Drinking Water Act gives EPA the authority to designate aquifers which are the sole or principal drinking water source for an area, and which, if contaminated, would create a significant hazard to public health.

  12. Methods and Indicators for Assessment of Regional Ground-Water Conditions in the Southwestern United States

    Science.gov (United States)

    Tillman, Fred D; Leake, Stanley A.; Flynn, Marilyn E.; Cordova, Jeffrey T.; Schonauer, Kurt T.; Dickinson, Jesse E.

    2008-01-01

    Monitoring the status and trends in the availability of the Nation's ground-water supplies is important to scientists, planners, water managers, and the general public. This is especially true in the semiarid to arid southwestern United States where rapid population growth and limited surface-water resources have led to increased use of ground-water supplies and water-level declines of several hundred feet in many aquifers. Individual well observations may only represent aquifer conditions in a limited area, and wells may be screened over single or multiple aquifers, further complicating single-well interpretations. Additionally, changes in ground-water conditions may involve time scales ranging from days to many decades, depending on the timing of recharge, soil and aquifer properties, and depth to the water table. The lack of an easily identifiable ground-water property indicative of current conditions, combined with differing time scales of water-level changes, makes the presentation of ground-water conditions a difficult task, particularly on a regional basis. One approach is to spatially present several indicators of ground-water conditions that address different time scales and attributes of the aquifer systems. This report describes several methods and indicators for presenting differing aspects of ground-water conditions using water-level observations in existing data-sets. The indicators of ground-water conditions developed in this study include areas experiencing water-level decline and water-level rise, recent trends in ground-water levels, and current depth to ground water. The computer programs written to create these indicators of ground-water conditions and display them in an interactive geographic information systems (GIS) format are explained and results illustrated through analyses of ground-water conditions for selected alluvial basins in the Lower Colorado River Basin in Arizona.

  13. Effects of storm-water runoff on water quality of the Edwards Aquifer near Austin, Texas

    Science.gov (United States)

    Andrews, Freeman L.; Schertz, Terry L.; Slade, Raymond M.; Rawson, Jack

    1984-01-01

    Analyses of samples collected from Barton Springs at approximately weekly Intervals and from Barton Creek and five wells in the Austin area during selected storm-runoff periods generally show that recharge during storm runoff resulted in significant temporal and area! variations in the quality of ground water in the recharge zone of the Edwards aquifer. Recharge during storm runoff resulted in significant increases of bacterial densities in the ground water. Densities of fecal coliform bacteria in samples collected from Barton Springs, the major point of ground-water discharge, ranged from less than 1 colony per 100 milliliters during dry weather in November 1981 and January and August 1982 to 6,100 colonies per 100 milliliters during a storm in May 1982. Densities of fecal streptococcal bacteria ranged from 1 colony per 100 miniliters during dry weather in December 1981 to 11,000 colonies per 100 miniliters during a storm in May 1982.

  14. Summary of Ground-Water Data for Brunswick County, North Carolina, Water Year 2007

    Science.gov (United States)

    McSwain, Kristen Bukowski

    2008-01-01

    Ground-water availability in Brunswick County, North Carolina, has been monitored continuously since 2000 through the operation and maintenance of ground-water-level observation wells in the surficial, Castle Hayne, Peedee, and Black Creek aquifers of the North Atlantic Coastal Plain aquifer system. Ground-water-resource conditions for the Brunswick County area were determined by relating the period-of-record normal (25th to 75th percentile) monthly mean groundwater- level and precipitation data to median monthly mean ground-water levels and monthly sum of daily precipitation for water year 2007. Summaries of precipitation and ground-water conditions for the Brunswick County area and hydrographs and statistics of continuous ground-water levels collected during the 2007 water year are presented in this report. Ground-water resource conditions varied by aquifer and geographic location within Brunswick County. Water levels were normal in 6 of the 11 observation wells, above normal in 1 well, and below normal in the remaining 4 wells.

  15. Evaluation of availability of water from drift aquifers near the Pomme de Terre and Chippewa rivers, western Minnesota

    Science.gov (United States)

    Delin, G.N.

    1987-01-01

    Ground-water flow in the confined- and unconfined-drift aquifers near Appleton and Benson, Minnesota, was simulated with a three-dimensional finite-difference ground-water-flow model. Model results indicate that 98 percent of the total inflow to the modeled area is from precipitation. Of the total outflow, 38 percent is ground-water discharge to the Pom me de Terre and Chippewa Rivers, 36 percent is evapotranspiration, 17 percent is ground-water pumpage, and 8 percent is ground-water discharge to the Minnesota River.

  16. Delineating ground water recharge from leaking irrigation canals using water chemistry and isotopes.

    Science.gov (United States)

    Harvey, F E; Sibray, S S

    2001-01-01

    Across the Great Plains irrigation canals are used to transport water to cropland. Many of these canals are unlined, and leakage from them has been the focus of an ongoing legal, economic, and philosophical debate as to whether this lost water should be considered waste or be viewed as a beneficial and reasonable use since it contributes to regional ground water recharge. While historically there has been much speculation about the impact of canal leakage on local ground water, actual data are scarce. This study was launched to investigate the impact of leakage from the Interstate Canal, in the western panhandle of Nebraska, on the hydrology and water quality of the local aquifer using water chemistry and environmental isotopes. Numerous monitoring wells were installed in and around a small wetland area adjacent to the canal, and ground water levels were monitored from June 1992 until January 1995. Using the water level data, the seepage loss from the canal was estimated. In addition, the canal, the monitoring wells, and several nearby stock and irrigation wells were sampled for inorganic and environmental isotope analysis to assess water quality changes, and to determine the extent of recharge resulting from canal leakage. The results of water level monitoring within study wells indicates a rise in local ground water levels occurs seasonally as a result of leakage during periods when the canal is filled. This rise redirects local ground water flow and provides water to nearby wetland ecosystems during the summer months. Chemical and isotopic results were used to delineate canal, surface, and ground water and indicate that leaking canal water recharges both the surface alluvial aquifer and upper portions of the underlying Brule Aquifer. The results of this study indicate that lining the Interstate Canal could lower ground water levels adjacent to the canal, and could adversely impact the local aquifer.

  17. Temporal vairations in water quality of the Ogallala Aquifer on the Texas High Plains

    Science.gov (United States)

    Goebel, T.; Lascano, R. J.; Stout, J. E.

    2016-12-01

    The Ogallala Aquifer, under eight States of the Great Plains of US, from Texas to South Dakota, is among the largest aquifers in the world. In some regions, extraction of water for urban and agricultural uses far exceeds recharge resulting in a decline of the water table. In the southern region of the Texas High Plains (THP) this decline prompted restrictions set by a local water conservation agency in 2009 stating that in 50 years about 50% of the saturated thickness of the Ogallala Aquifer should be preserved. However, this restriction only addressed quantity and not the quality of the remaining water. In general, the quality of water being mined from an aquifer tends to change over time, leading us to measure changes in water quality over the length of a crop's growing season in the THP. We measured water quality including: EC, pH, and ion analysis, at several locations covering 5 counties in the THP. Preliminary results show that when wells are actively pumped water quality can change in complex and unpredictable ways. In some cases, water quality declines and in others water quality improves. This result encouraged us to expand and continue to measure changes in ground water quality and develop a model to quantify changes in water quality.

  18. Ground water investigations in Lower Kelantan River's Basin, Malaysia, using environmental isotope, Pt. 1

    Energy Technology Data Exchange (ETDEWEB)

    Mohamad, D.; Ali, R.M. (PUSPATI, Bangi (Malaysia))

    1983-03-01

    Variation in the stable isotopes and tritium compositions of water were used to define the mechanism of recharge to the ground water system in the Lower Kelantan River Basin, Malaysia. The isotopic data demonstrate that the first aquifer is recharged either by precipitation and/or river water and in some places by the second and third aquifers. Recharged of the second aquifer seems to be from the first and third aquifers. Whilst the recharge mechanism of the third aquifer is still unable to establish with the present data, a more detailed investigation is needed. Tritium data confirm that all ground water samples of the third aquifer are older than 25 years and most waters from the first and second aquifers are recent (<25 years).

  19. Ground water and climate change

    Science.gov (United States)

    Taylor, Richard G.; Scanlon, Bridget; Döll, Petra; Rodell, Matt; van Beek, Rens; Wada, Yoshihide; Longuevergne, Laurent; Leblanc, Marc; Famiglietti, James S.; Edmunds, Mike; Konikow, Leonard; Green, Timothy R.; Chen, Jianyao; Taniguchi, Makoto; Bierkens, Marc F.P.; MacDonald, Alan; Fan, Ying; Maxwell, Reed M.; Yechieli, Yossi; Gurdak, Jason J.; Allen, Diana M.; Shamsudduha, Mohammad; Hiscock, Kevin; Yeh, Pat J.-F.; Holman, Ian; Treidel, Holger

    2012-01-01

    As the world's largest distributed store of fresh water, ground water plays a central part in sustaining ecosystems and enabling human adaptation to climate variability and change. The strategic importance of ground water for global water and food security will probably intensify under climate change as more frequent and intense climate extremes (droughts and floods) increase variability in precipitation, soil moisture and surface water. Here we critically review recent research assessing the impacts of climate on ground water through natural and human-induced processes as well as through groundwater-driven feedbacks on the climate system. Furthermore, we examine the possible opportunities and challenges of using and sustaining groundwater resources in climate adaptation strategies, and highlight the lack of groundwater observations, which, at present, limits our understanding of the dynamic relationship between ground water and climate.

  20. Ground water and climate change

    Science.gov (United States)

    Taylor, Richard G.; Scanlon, Bridget; Döll, Petra; Rodell, Matt; van Beek, Rens; Wada, Yoshihide; Longuevergne, Laurent; Leblanc, Marc; Famiglietti, James S.; Edmunds, Mike; Konikow, Leonard; Green, Timothy R.; Chen, Jianyao; Taniguchi, Makoto; Bierkens, Marc F. P.; MacDonald, Alan; Fan, Ying; Maxwell, Reed M.; Yechieli, Yossi; Gurdak, Jason J.; Allen, Diana M.; Shamsudduha, Mohammad; Hiscock, Kevin; Yeh, Pat J.-F.; Holman, Ian; Treidel, Holger

    2013-04-01

    As the world's largest distributed store of fresh water, ground water plays a central part in sustaining ecosystems and enabling human adaptation to climate variability and change. The strategic importance of ground water for global water and food security will probably intensify under climate change as more frequent and intense climate extremes (droughts and floods) increase variability in precipitation, soil moisture and surface water. Here we critically review recent research assessing the impacts of climate on ground water through natural and human-induced processes as well as through groundwater-driven feedbacks on the climate system. Furthermore, we examine the possible opportunities and challenges of using and sustaining groundwater resources in climate adaptation strategies, and highlight the lack of groundwater observations, which, at present, limits our understanding of the dynamic relationship between ground water and climate.

  1. Ground Water and Climate Change

    Science.gov (United States)

    Taylor, Richard G.; Scanlon, Bridget; Doell, Petra; Rodell, Matt; van Beek, Rens; Wada, Yoshihide; Longuevergne, Laurent; Leblanc, Marc; Famiglietti, James S.; Edmunds, Mike; Konikow, Leonard; Green, Timothy R.; Chen, Jianyao; Taniguchi, Makoto; Bierkens, Marc F. P.; MacDonald, Alan; Fan, Ying; Maxwell, Reed M.; Yechieli, Yossi; Gurdak, Jason J.; Allen, Diana M.; Shamsudduha, Mohammad; Hiscock, Kevin; Yeh, Pat J. -F; Holman, Ian; Treidel, Holger

    2013-01-01

    As the world's largest distributed store of fresh water, ground water plays a central part in sustaining ecosystems and enabling human adaptation to climate variability and change. The strategic importance of ground water for global water and food security will probably intensify under climate change as more frequent and intense climate extremes (droughts and floods) increase variability in precipitation, soil moisture and surface water. Here we critically review recent research assessing the impacts of climate on ground water through natural and human-induced processes as well as through groundwater-driven feedbacks on the climate system. Furthermore, we examine the possible opportunities and challenges of using and sustaining groundwater resources in climate adaptation strategies, and highlight the lack of groundwater observations, which, at present, limits our understanding of the dynamic relationship between ground water and climate.

  2. Origin and residence time of water in the Lima Aquifer

    CERN Document Server

    Montoya, Modesto

    2014-01-01

    The 8 million inhabitants of the coast Lima City are supplied with water from Rimac and Chillons rivers and water wells in the Lima aquifer. Historics of Rimac River flow and static level of water level in wells are correlated in order to calculate residence time of water since the aquifer is recharged by Rimac River until water reaches a well located 12 km farther, in Miraflores district near sea. Relative abundances of 2H and 18O are used to identify origins of waters from those wells. 3H and 14C contents, respectively, are used to estimate ages of waters.

  3. Isotopic evidence of complex ground-water flow at Yucca mountain, Nevada, USA

    Science.gov (United States)

    Peterman, Zell E.; Stuckless, John S.

    1993-01-01

    Strontium isotopes (expressed as per mill deviation from mean sea water, ??87Sr) reflect interaction between ground water and the aquifer through which it is flowing. In the Cenozoic aquifer of the Yucca Mountain region, ??87Sr values increase from north to south downgradient in the flow system. The largest ??87Sr values occur in the Amargosa Desert where ground water probably encounters alluvial basin fill derived from Precambrian rocks in the Funeral Range. Similarly, large ??87Sr values for ground water in the Paleozoic aquifer at the western end of the Spring Mountains also probably reflect an encounter with Precambrian rocks. In several wells into the volcanic rocks, apparent isotopic disequilibrium between ground water and the producing units suggests that the ground water probably integrates over a substantial part of the saturated section in attaining its strontium isotope signature.

  4. A neural network model for predicting aquifer water level elevations.

    Science.gov (United States)

    Coppola, Emery A; Rana, Anthony J; Poulton, Mary M; Szidarovszky, Ferenc; Uhl, Vincent W

    2005-01-01

    Artificial neural networks (ANNs) were developed for accurately predicting potentiometric surface elevations (monitoring well water level elevations) in a semiconfined glacial sand and gravel aquifer under variable state, pumping extraction, and climate conditions. ANNs "learn" the system behavior of interest by processing representative data patterns through a mathematical structure analogous to the human brain. In this study, the ANNs used the initial water level measurements, production well extractions, and climate conditions to predict the final water level elevations 30 d into the future at two monitoring wells. A sensitivity analysis was conducted with the ANNs that quantified the importance of the various input predictor variables on final water level elevations. Unlike traditional physical-based models, ANNs do not require explicit characterization of the physical system and related physical data. Accordingly, ANN predictions were made on the basis of more easily quantifiable, measured variables, rather than physical model input parameters and conditions. This study demonstrates that ANNs can provide both excellent prediction capability and valuable sensitivity analyses, which can result in more appropriate ground water management strategies.

  5. Hydrogeologic setting, hydraulic properties, and ground-water flow at the O-Field area of Aberdeen Proving Ground, Maryland

    Science.gov (United States)

    Banks, W.S.; Smith, B.S.; Donnelly, C.A.

    1996-01-01

    The U.S. Army disposed chemical agents, laboratory materials, and unexploded ordnance at O-Field in the Edgewood area of Aberdeen Proving Ground, Maryland, from before World War II until at least the 1950's. Soil, ground water, surface water,and wetland sediments in the O-Field area were contaminated from the disposal activity. A ground-water-flow model of the O-Field area was constructed by the U.S. Geological Survey (USGS) in 1989 to simulate flow in the central and southern part of the Gunpowder Neck. The USGS began an additional study of the contamination in the O-Field area in cooperation with the U.S. Army in 1990 to (1) further define the hydrogeologic framework of the O-Field area, (2) characterize the hydraulic properties of the aquifers and confining units, and (3) define ground-water flow paths at O-Field based on the current data and simulations of ground-water flow. A water-table aquifer, an upper confining unit, and an upper confined aquifer comprise the shallow ground-water aquifer system of the O-Field area. A lower confining unit, through which ground-water movement is negligible, is considered a lower boundary to the shallow aquifer system. These units are all part of the Pleistocene Talbot Formation. The model developed in the previous study was redesigned using the data collected during this study and emphasized New O-Field. The current steady-state model was calibrated to water levels of June 1993. The rate of ground-water flow calculated by the model was approximately 0.48 feet per day (ft/d) and the rate determined from chlorofluorocarbon dates was approximately 0.39 ft/d.

  6. Vulnerability of ground water to contamination, northern Bexar County, Texas

    Science.gov (United States)

    Clark, Amy R.

    2003-01-01

    The Trinity aquifer, composed of Lower Cretaceous carbonate rocks, largely controls the ground-water hydrology in the study area of northern Bexar County, Texas. Discharge from the Trinity aquifer recharges the downgradient, hydraulically connected Edwards aquifer one of the most permeable and productive aquifers in the Nation and the sole source of water for more than a million people in south-central Texas. The unconfined, karstic outcrop of the Edwards aquifer makes it particularly vulnerable to contamination resulting from urbanization that is spreading rapidly northward across an "environmentally sensitive" recharge zone of the Edwards aquifer and its upgradient "catchment area," composed mostly of the less permeable Trinity aquifer.A better understanding of the Trinity aquifer is needed to evaluate water-management decisions affecting the quality of water in both the Trinity and Edwards aquifers. A study was made, therefore, in cooperation with the San Antonio Water System to assess northern Bexar County's vulnerability to ground-water contamination. The vulnerability of ground water to contamination in this area varies with the effects of five categories of natural features (hydrogeologic units, faults, caves and (or) sinkholes, slopes, and soils) that occur on the outcrop and in the shallow subcrop of the Glen Rose Limestone.Where faults affect the rates of recharge or discharge or the patterns of ground-water flow in the Glen Rose Limestone, they likewise affect the risk of water-quality degradation. Caves and sinkholes generally increase the vulnerability of ground water to contamination, especially where their occurrences are concentrated. The slope of land surface can affect the vulnerability of ground water by controlling where and how long a potential contaminant remains on the surface. Disregarding the exception of steep slopes which are assumed to have no soil cover the greater the slope, the less the risk of ground-water contamination. Because most

  7. Ground water in the southeastern Uinta Basin, Utah and Colorado

    Science.gov (United States)

    Holmes, Walter F.; Kimball, Briant A.

    1987-01-01

    The potential for developing oil-shale resources in the southeastern Uinta Basin of Utah and Colorado has created the need for information on the quantity and quality of water available in the area. This report describes the availability and chemical quality of ground water, which might provide a source or supplement of water supply for an oil-shale industry. Ground water in the southeastern Uinta Basin occurs in three major aquifers. Alluvial aquifers of small areal extent are present in valley-fill deposits of six major drainages. Consolidated-rock aquifers include the bird?s-nest aquifer in the Parachute Creek Member of the Green River Formation, which is limited to the central part of the study area; and the Douglas Creek aquifer, which includes parts of the Douglas Creek Member of the Green River Formation and parts of the intertonguing Renegade Tongue of the Wasatch Formation; this aquifer underlies most of the study area. The alluvial aquifers are recharged by infiltration of streamflow and leakage from consolidated-rock aquifers. Recharge is estimated to average about 32,000 acre-feet per year. Discharge from alluvial aquifers, primarily by evapotranspiration, also averages about 32,000 acre-feet per year. The estimated volume of recoverable water in storage in alluvial aquifers is about 200,000 acre-feet. Maximum yields to individual wells are less than 1,000 gallons per minute. Recharge to the bird's-nest aquifer, primarily from stream infiltration and downward leakage from the overlying Uinta Formation, is estimated to average 670 acre-feet per year. Discharge from the bird's-nest aquifer, which is primarily by seepage to Bitter Creek and the White River, is estimated to be at 670 acre-feet per year. The estimated volume of recoverable water in storage in the bird's-nest aquifer is 1.9 million acre-feet. Maximum yields to individual wells in some areas may be as much as 5,000 gallons per minute. A digital-computer model of the flow system was used to

  8. Submarine ground-water discharge: nutrient loading and nitrogen transformations

    Science.gov (United States)

    Kroeger, Kevin D.; Swarzenski, Peter W.; Crusius, John; Bratton, John F.; Charette, Matthew A.

    2006-01-01

    Eutrophication of coastal waters due to nonpoint source land-derived nitrogen (N) loads is a worldwide phenomenon and perhaps the greatest agent of change altering coastal ecology (National Research Council, 2000; Howarth and others, 2000). Within the United States, a majority of estuaries have been determined to be moderately to severely impaired by eutrophication associated with increasing nutrient loads (Bricker and others, 1999).In coastal watersheds with soils of high hydraulic conductivity and permeable coastal sediments, ground water is a major route of transport of freshwater and its solutes from land to sea. Freshwater flowing downgradient from aquifers may either discharge from a seepage face near the intertidal zone, or flow directly into the sea as submarine ground-water discharge (SGD) (fig. 1). In the coastal aquifer, entrainment of saline pore water occurs prior to discharge, producing a gradient in ground-water salinity from land to sea, referred to as a subterranean estuary (Moore, 1999). In addition, processes including density-driven flow and tidal pumping create brackish and saline ground-water circulation. Hence, submarine ground-water discharge often consists of a substantial amount of recirculating seawater. Mixing of fresh and saline ground waters in the context of coastal sediments may alter the chemical composition of the discharging fluid. Depending on the biogeochemical setting, removal of fixed N due to processes leading to N2 (dinitrogen gas) production in the nearshore aquifer and subterranean estuary may significantly attenuate land-derived N loads; or, processes such as ion exchange and tidal pumping in the subterranean estuary may substantially accelerate the transport of both land-derived and sediment re-mineralized N to estuarine water columns.As emphasized by Burnett and others (2001, 2002), a fundamental problem in evaluating the importance of ground-water discharge in marine geochemical budgets is the difficulty of collecting

  9. Ground-Water Conditions and Studies in the Brunswick-Glynn County Area, Georgia, 2007

    Science.gov (United States)

    Cherry, Gregory S.; Clarke, John S.

    2008-01-01

    The Upper Floridan aquifer is contaminated with saltwater in a 2-square-mile area of downtown Brunswick, Georgia. This contamination has limited the development of the ground-water supply in the Glynn County area. Hydrologic, geologic, and water-quality data are needed to effectively manage water resources. Since 1959, the U.S. Geological Survey has conducted a cooperative water-resources program with the City of Brunswick to monitor and assess the effect of ground-water development on saltwater contamination of the Floridan aquifer system. The potential development of alternative sources of water in the Brunswick and surficial aquifer systems also is an important consideration in coastal areas. During calendar year 2007, the cooperative water-resources monitoring program included continuous water-level recording of 13 wells completed in the Floridan, Brunswick, and surficial aquifer systems; collecting water levels from 22 wells to map the potentiometric surface of the Upper Floridan aquifer during July and August 2007; and collecting and analyzing water samples from 76 wells to map chloride concentrations in the Upper Floridan aquifer during July and August 2007. In addition, work was initiated to refine an existing ground-water flow model for evaluation of water-management scenarios.

  10. Relation of water chemistry of the Edwards aquifer to hydrogeology and land use, San Antonio Region, Texas

    Science.gov (United States)

    Buszka, Paul M.

    1987-01-01

    Water-chemistry data from the Edwards aquifer for 1976-85, consisting of nearly 1,500 chemical analyses from 280 wells and 3 springs, were used to statistically evaluate relations among ground-water chemistry, hydrogeology, and land use. Five land uses associated with sampled wells were classified on the basis of published information and field surveys. Four major subareas of the aquifer were defined to reflect the relative susceptibility of ground water to contamination originating from human activities using hydrogeologic and tritium data.

  11. Water quality management of aquifer recharge using advanced tools.

    Science.gov (United States)

    Lazarova, Valentina; Emsellem, Yves; Paille, Julie; Glucina, Karl; Gislette, Philippe

    2011-01-01

    Managed aquifer recharge (MAR) with recycled water or other alternative resources is one of the most rapidly growing techniques that is viewed as a necessity in water-short areas. In order to better control health and environmental effects of MAR, this paper presents two case studies demonstrating how to improve water quality, enable reliable tracing of injected water and better control and manage MAR operation in the case of indirect and direct aquifer recharge. Two water quality management strategies are illustrated on two full-scale case studies, including the results of the combination of non conventional and advanced technologies for water quality improvement, comprehensive sampling and monitoring programs including emerging pollutants, tracer studies using boron isotopes and integrative aquifer 3D GIS hydraulic and hydrodispersive modelling.

  12. Factors affecting ground-water exchange and catchment size for Florida lakes in mantled karst terrain

    Science.gov (United States)

    Lee, Terrie Mackin

    2002-01-01

    In the mantled karst terrain of Florida, the size of the catchment delivering ground-water inflow to lakes is often considerably smaller than the topographically defined drainage basin. The size is determined by a balance of factors that act individually to enhance or diminish the hydraulic connection between the lake and the adjacent surficial aquifer, as well as the hydraulic connection between the surficial aquifer and the deeper limestone aquifer. Factors affecting ground-water exchange and the size of the ground-water catchment for lakes in mantled karst terrain were examined by: (1) reviewing the physical and hydrogeological characteristics of 14 Florida lake basins with available ground-water inflow estimates, and (2) simulating ground-water flow in hypothetical lake basins. Variably-saturated flow modeling was used to simulate a range of physical and hydrogeologic factors observed at the 14 lake basins. These factors included: recharge rate to the surficial aquifer, thickness of the unsaturated zone, size of the topographically defined basin, depth of the lake, thickness of the surficial aquifer, hydraulic conductivity of the geologic units, the location and size of karst subsidence features beneath and onshore of the lake, and the head in the Upper Floridan aquifer. Catchment size and the magnitude of ground-water inflow increased with increases in recharge rate to the surficial aquifer, the size of the topographically defined basin, hydraulic conductivity in the surficial aquifer, the degree of confinement of the deeper Upper Floridan aquifer, and the head in the Upper Floridan aquifer. The catchment size and magnitude of ground-water inflow increased with decreases in the number and size of karst subsidence features in the basin, and the thickness of the unsaturated zone near the lake. Model results, although qualitative, provided insights into: (1) the types of lake basins in mantled karst terrain that have the potential to generate small and large

  13. Ground Water Awareness

    Centers for Disease Control (CDC) Podcasts

    2008-03-06

    Protecting our water resources from contamination is a major concern. This podcast emphasizes the importance of private well maintenance and water testing.  Created: 3/6/2008 by National Center for Environmental Health (NCEH); ATSDR; Division of Parasitic Diseases; Division of Foodborne, Bacterial and Mycotic Diseases; and the Office of Global Health.   Date Released: 3/10/2008.

  14. Geophysical Monitoring of Ground Surface Deformation Associated with a Confined Aquifer Storage and Recovery Operation

    Science.gov (United States)

    Bonneville, Alain; Heggy, Essam; Strickland, Christopher; Normand, Jonathan; Dermond, Jeffrey; Fang, Yilin; Sullivan, Charlotte

    2015-08-01

    One important issue in the storage of large volumes of fluids, mainly water and CO2, in the deep subsurface is to determine the resulting field-scale-induced displacements and consequences of overpressures on the mechanical integrity of the storage reservoir and surroundings. A quantifiable estimation of displacement can be made by combining the robust, cost-effective, and repeatable geophysical techniques of micro-gravimetry, differential global positioning system (DGPS), and differential synthetic aperture radar interferometry (DInSAR). These techniques were field tested and evaluated for the first time on an active large-volume aquifer storage and recovery (ASR) project in Pendleton, Oregon, USA, where three ASR wells are injecting up to 1.9 million m3 year-1 into basalt aquifers to a depth of about 150 m. Injection and recovery of water at the wells are accompanied by significant gravity anomalies and vertical deformation of the ground surface localized to the immediate surroundings of the injection wells as evidenced by DGPS and gravity measurements collected in 2011. At a larger scale, and between 2011 and 2013, DInSAR monitoring of the Pendleton area shows sub- centimetric deformation in the western part of the city and close to the injection locations associated with ASR cycle. Deformations are found to be temporally out phased with the injection and recovery events due to complex groundwater flow. A numerical simulation of the effect of the water injection gives results in good agreement with the observations and confirms the validity of the approach, which could be deployed in similar geological contexts to look at the mechanical effects of water and gas injections.

  15. U.S. Geological Survey ground-water studies in Illinois

    Science.gov (United States)

    Avery, Charles F.

    1994-01-01

    Ground water is an important source of water supply in Illinois. The largest amount of ground*water withdrawal is in the northern one-third of the State where aquifers to a depth of about 1,500 feet below land surface contain large quantities of potable water. Approximately 74 percent of the public water-supply systems in Illinois use ground water to supply potable water to more than 5.5 million people. Ground-water withdrawals account for almost 25 percent of the total water withdrawn for public water supplies in Illinois. Many public water-supply systems in the Chicago area have recently changed from using ground water pumped from wells to using water delivered from Lake Michigan. The major issues related to ground water in Illinois are: Water- quality degradation or contamination from point and nonpoint sources, and Water availability, because of the lowering of ground-water levels in the bedrock aquifers in northeastern Illinois and elsewhere in the State where pumpage has exceeded aquifer recharge and the susceptibility of the limited surface-water supplies in central and southern Illinois to drought.

  16. Artificial Ground Water Recharge with Surface Water

    Science.gov (United States)

    Heviánková, Silvie; Marschalko, Marian; Chromíková, Jitka; Kyncl, Miroslav; Korabík, Michal

    2016-10-01

    With regard to the adverse manifestations of the recent climatic conditions, Europe as well as the world have been facing the problem of dry periods that reduce the possibility of drawing drinking water from the underground sources. The paper aims to describe artificial ground water recharge (infiltration) that may be used to restock underground sources with surface water from natural streams. Among many conditions, it aims to specify the boundary and operational conditions of the individual aspects of the artificial ground water recharge technology. The principle of artificial infiltration lies in the design of a technical system, by means of which it is possible to conduct surplus water from one place (in this case a natural stream) into another place (an infiltration basin in this case). This way, the water begins to infiltrate into the underground resources of drinking water, while the mixed water composition corresponds to the water parameters required for drinking water.

  17. Simulation of the Regional Ground-Water-Flow System and Ground-Water/Surface-Water Interaction in the Rock River Basin, Wisconsin

    Science.gov (United States)

    Juckem, Paul F.

    2009-01-01

    A regional, two-dimensional, areal ground-water-flow model was developed to simulate the ground-water-flow system and ground-water/surface-water interaction in the Rock River Basin. The model was developed by the U.S. Geological Survey (USGS), in cooperation with the Rock River Coalition. The objectives of the regional model were to improve understanding of the ground-water-flow system and to develop a tool suitable for evaluating the effects of potential regional water-management programs. The computer code GFLOW was used because of the ease with which the model can simulate ground-water/surface-water interactions, provide a framework for simulating regional ground-water-flow systems, and be refined in a stepwise fashion to incorporate new data and simulate ground-water-flow patterns at multiple scales. The ground-water-flow model described in this report simulates the major hydrogeologic features of the modeled area, including bedrock and surficial aquifers, ground-water/surface-water interactions, and ground-water withdrawals from high-capacity wells. The steady-state model treats the ground-water-flow system as a single layer with hydraulic conductivity and base elevation zones that reflect the distribution of lithologic groups above the Precambrian bedrock and a regionally significant confining unit, the Maquoketa Formation. In the eastern part of the Basin where the shale-rich Maquoketa Formation is present, deep ground-water flow in the sandstone aquifer below the Maquoketa Formation was not simulated directly, but flow into this aquifer was incorporated into the GFLOW model from previous work in southeastern Wisconsin. Recharge was constrained primarily by stream base-flow estimates and was applied uniformly within zones guided by regional infiltration estimates for soils. The model includes average ground-water withdrawals from 1997 to 2006 for municipal wells and from 1997 to 2005 for high-capacity irrigation, industrial, and commercial wells. In addition

  18. Redox processes and water quality of selected principal aquifer systems

    Science.gov (United States)

    McMahon, P.B.; Chapelle, F.H.

    2008-01-01

    Reduction/oxidation (redox) conditions in 15 principal aquifer (PA) systems of the United States, and their impact on several water quality issues, were assessed from a large data base collected by the National Water-Quality Assessment Program of the USGS. The logic of these assessments was based on the observed ecological succession of electron acceptors such as dissolved oxygen, nitrate, and sulfate and threshold concentrations of these substrates needed to support active microbial metabolism. Similarly, the utilization of solid-phase electron acceptors such as Mn(IV) and Fe(III) is indicated by the production of dissolved manganese and iron. An internally consistent set of threshold concentration criteria was developed and applied to a large data set of 1692 water samples from the PAs to assess ambient redox conditions. The indicated redox conditions then were related to the occurrence of selected natural (arsenic) and anthropogenic (nitrate and volatile organic compounds) contaminants in ground water. For the natural and anthropogenic contaminants assessed in this study, considering redox conditions as defined by this framework of redox indicator species and threshold concentrations explained many water quality trends observed at a regional scale. An important finding of this study was that samples indicating mixed redox processes provide information on redox heterogeneity that is useful for assessing common water quality issues. Given the interpretive power of the redox framework and given that it is relatively inexpensive and easy to measure the chemical parameters included in the framework, those parameters should be included in routine water quality monitoring programs whenever possible.

  19. Investigating a newly discovered firn aquifer on Disko Ice Cap, west Greenland: Insights from ground observations, remote sensing, and modeling

    Science.gov (United States)

    Trusel, L. D.; Das, S. B.; Smith, B.; Kuipers Munneke, P.; Evans, M. J.; Frey, K. E.; Osman, M.; York, A.

    2015-12-01

    Expanding and intensifying surface melt have accelerated contributions from Greenland to global sea level rise in recent decades. Yet, important questions remain regarding the evolution and eventual fate of this meltwater over time and space, a fact underscored by recent observations of expansive aquifers within the Greenland Ice Sheet firn. In April 2015 we observed liquid water retained at depth in an ice cap on Disko Island, central west Greenland. Two adjacent ~20 m firn/ice cores were collected before intercepting a layer saturated with liquid water as evident by water drainage from our cores. Borehole temperature profiling confirms increasing temperature with depth, revealing 0°C isothermal firn below ~10 m depth. Detailed physical stratigraphic analyses conducted on these cores allow us to assess firn properties and their small scale (1 m) and likely impermeable refrozen melt horizons exist above the inferred aquifer surface, raising questions about processes of aquifer formation. To discern the spatial character of the observed firn liquid water and melt stratigraphy, we utilize ground penetrating radar collected in 2014, as well as airborne radar data collected through NASA Operation IceBridge in 2012 and 12 days prior to our field observations in 2015. Glaciochemical analyses on our ice cores reveal preservation of an annual signal allowing derivation of net snow accumulation rates. Combined with surface mass balance modeled by RACMO2.3 and melt assessed via microwave remote sensing, we investigate the recently prevailing climatic and glaciological conditions on Disko. This work will provide new insights into mechanisms of firn aquifer formation and sustenance more broadly, as well as the representation of aquifers in existing radar observations and firn models.

  20. Evaluation of methods for delineating areas that contribute water to wells completed in valley-fill aquifers in Pennsylvania

    Science.gov (United States)

    Risser, Dennis W.; Madden, Thomas M.

    1994-01-01

    Valley-fill aquifers in Pennsylvania are the source of drinking water for many wells in the glaciated parts of the State and along major river valleys. These aquifers area subject to contamination because of their shallow water-table depth and highly transmissive sediments. The possibility for contamination of water-supply wells in valley-fill aquifers can be minimized by excluding activities that could contaminate areas that contribute water to supply wells. An area that contributes water to a well is identified in this report as either an area of diversion, time-of-travel area, or contributing area. The area of diversion is a projection to land surface of the valley-fill aquifer volume through which water is diverted to a well and the time-of travel area is that fraction of the area of diversion through which water moves to the well in a specified time. The contributing area, the largest of three areas, includes the area of diversion but also incorporates bedrock uplands and other area that contribute water. Methods for delineating areas of diversion and contributing areas in valley-fill aquifers, described and compared in order of increasing complexity, include fixed radius, uniform flow, analytical, semianalytical, and numerical modeling. Delineated areas are considered approximations because the hydraulic properties and boundary conditions of the real ground-water system are simplified even in the most complex numerical methods. Successful application of any of these methods depends on the investigator's understanding of the hydrologic system in and near the well field, and the limitations of the method. The hydrologic system includes not only the valley-fill aquifer but also the regional surface-water and ground-water flow systems within which the valley is situated. As shown by numerical flow simulations of a well field in the valley-fill aquifer along Marsh Creek Valley near Asaph, Pa., water from upland bedrock sources can provide nearly all the water

  1. Mapping a Pristine Glaciofluvial Aquifer on the Canadian Shield Using Ground-Penetrating Radar and Electrical Resistivity Tomography

    Science.gov (United States)

    Graves, L. W.; Shirokova, V.; Bank, C.

    2013-12-01

    Our study aims to construct a 3D structural model of an unconfined pristine aquifer in Laurentian Hills, Ontario, Canada. The stratigraphy of the study site, which covers about 5400 square meters, features reworked glaciofluvial sands and glacial till on top of Canadian Shield bedrock. A network of 25 existing piezometers provides ground-truth. We used two types of geophysical surveys to map the water table and the aquifer basin. Ground-penetrating radar (GPR) collected 40 profiles over distances up to 140 meters using 200MHz and 400MHz antennas with a survey wheel. The collected radargrams show a distinct reflective layer, which can be mapped to outcrops of glacial till within the area. This impermeable interface forms the aquitard. Depths of the subsurface features were calculated using hyperbolic fits on the radargrams in Matlab by determining wave velocity then converting measured two-way-time to depth. Electrical resistivity was used to determine the water table elevations because the unconfined water table did not reflect the radar waves. 20 resistivity profiles were collected in the same area using Wenner-Alpha and dipole-dipole arrays with both 24 and 48 electrodes and for 0.5, 0.75, 1.0 and 2.0 meter spacing. The inverted resistivity models show low resistivity values (resistivity values (2000-6000 Ohm.m) above 1 to 2 meter depths. These contrasting resistivity values correspond to saturated and wet sand (lower resistivity) to dry sand (higher resistivity); a correlation we could verify with several bore-hole logs. The water table is marked on the resistivity profiles as a steep resistivity gradient, and the depth can be added to the comprehensive 3D model. This model also incorporates hydrogeological characteristics and geochemical anomalies found within the aquifer. Ongoing seasonal and annual monitoring of the aquifer using geophysical methods will bring a fourth dimension to our understanding of this dynamic system. GPR Profile with Glacial Till

  2. Trace organic chemicals contamination in ground water recharge.

    Science.gov (United States)

    Díaz-Cruz, M Silvia; Barceló, Damià

    2008-06-01

    Population growth and unpredictable climate changes will pose high demands on water resources in the future. Even at present, surface water is certainly not enough to cope with the water requirement for agricultural, industrial, recreational and drinking purposes. In this context, the usage of ground water has become essential, therefore, their quality and quantity has to be carefully managed. Regarding quantity, artificial recharge can guarantee a sustainable level of ground water, whilst the strict quality control of the waters intended for recharge will minimize contamination of both the ground water and aquifer area. However, all water resources in the planet are threatened by multiple sources of contamination coming from the extended use of chemicals worldwide. In this respect, the environmental occurrence of organic micropollutants such as pesticides, pharmaceuticals, industrial chemicals and their metabolites has experienced fast growing interest. In this paper an overview of the priority and emerging organic micropollutants in the different source waters used for artificial aquifer recharge purposes and in the recovered water is presented. Besides, some considerations regarding fate and removal of such compounds are also addressed.

  3. Use of chemical and isotopic tracers to characterize the interactions between ground water and surface water in mantled karst

    Science.gov (United States)

    Katz, B.G.; Coplen, T.B.; Bullen, T.D.; Hal, Davis J.

    1997-01-01

    In the mantled karst terrane of northern Florida, the water quality of the Upper Floridan aquifer is influenced by the degree of connectivity between the aquifer and the surface. Chemical and isotopic analyses [18O/16O (??18O), 2H/1H (??D), 13C/12C (??13C), tritium(3H), and strontium-87/strontium-86(87Sr/86Sr)]along with geochemical mass-balance modeling were used to identify the dominant hydrochemical processes that control the composition of ground water as it evolves downgradient in two systems. In one system, surface water enters the Upper Floridan aquifer through a sinkhole located in the Northern Highlands physiographic unit. In the other system, surface water enters the aquifer through a sinkhole lake (Lake Bradford) in the Woodville Karst Plain. Differences in the composition of water isotopes (??18O and ??D) in rainfall, ground water, and surface water were used to develop mixing models of surface water (leakage of water to the Upper Floridan aquifer from a sinkhole lake and a sinkhole) and ground water. Using mass-balance calculations, based on differences in ??18O and ??D, the proportion of lake water that mixed with meteoric water ranged from 7 to 86% in water from wells located in close proximity to Lake Bradford. In deeper parts of the Upper Floridan aquifer, water enriched in 18O and D from five of 12 sampled municipal wells indicated that recharge from a sinkhole (1 to 24%) and surface water with an evaporated isotopic signature (2 to 32%) was mixing with ground water. The solute isotopes, ??13C and 87Sr/86Sr, were used to test the sensitivity of binary and ternary mixing models, and to estimate the amount of mass transfer of carbon and other dissolved species in geochemical reactions. In ground water downgradient from Lake Bradford, the dominant processes controlling carbon cycling in ground water were dissolution of carbonate minerals, aerobic degradation of organic matter, and hydrolysis of silicate minerals. In the deeper parts of the Upper

  4. An Aquifer Reflections on Deep Clay Conditions for Water Quantity Assessments

    Directory of Open Access Journals (Sweden)

    Sabariah Musa

    2014-09-01

    Full Text Available This study aims to evaluate the on-site testing of deep clay area through the well response and aquifer reflection analysis. The analysis was conducted using AQTESOLV software on pumping and recovery data to determine the well responses and aquifer characteristics of deep clay area. A simple experimental model was installed at the site using deep well of REWES (Recharge Well System model assists with four monitoring wells around the model. The monitoring wells were located at 4m, 10m, 20m and 35m from the model. The site has been identified identified to have the unconfined aquifer with deep compacted clay. Due to flatten and low flow, pumping analysis and ground water response were used to evaluate water quantity and potential prospective of circulate water cycle for urban stormwater management. As reflection on water cycle, almost 20% from withdrawal capacity able to refill the ground system with limited space. It was found that the available storage, S and hydraulic conductivity, K  of the clayey area are 0.001 and 32 m/day respectively. Therefore, the response on water cycle indicate some potential space to restore and withdrawal at peak time and thus, the  water can be used in safely conditions.

  5. Ground-water resources of Pavant Valley, Utah

    Science.gov (United States)

    Mower, R.W.

    1965-01-01

    Pavant Valley, in eastern Millard County in west-central Utah, is in the Great Basin section of the Basin and Range province. The area of investigation is 34 miles long from north to south and 9 miles wide from east to west and comprises about 300 square miles. Agriculture, tourist trade, and mining are the principal industries. The population of the valley is about 3,500, of which about half live in Fillmore, the county seat of Millard County. The climate is semiarid and temperatures are moderate. Average normal annual precipitation in the lowlands is estimated to range from 10 to 14 inches. Precipitation is heaviest during the late winter and spring, January through May. The average monthly temperature at Fillmore ranges from 29?F in January to 76?F in July; the average annual temperature is 52?F. Because of the aridity, most crops cannot be grown successfully without irrigation. Irrigation requirements were satisfied for about 60 years after the valley was settled by diverting streams tributary to the valley. Artesian water was discovered near Flowell in 1915. By 1920 flowing artesian wells supplied about 10 percent of the irrigation water used in the valley, not including water from the Central Utah Canal. The Central Utah Canal was constructed in 1916 to convey water to the Pavant Valley from the Sevier River. Especially since 1916, the quantity of surface water available each year for irrigation has changed with the vagaries of nature. The total percentage of irrigation water contributed by ground water, on the other hand, gradually increased to about 15 percent in 1945 and then increased rapidly to 45 percent in 1960; it will probably stabilize at about 50 percent. Sand and gravel deposits of Recent and Pleistocene age are the principal aquifers in Pavant Valley. These deposits are coarser, more extensive, and more permeable near the mountains and become progressively finer .and less .permeable westward away from the mountains. As ground water moves westward

  6. Simulation of ground-water/surface-water flow in the Santa Clara-Calleguas ground-water basin, Ventura County, California

    Science.gov (United States)

    Hanson, Randall T.; Martin, Peter; Koczot, Kathryn M.

    2003-01-01

    Ground water is the main source of water in the Santa Clara-Calleguas ground-water basin that covers about 310 square miles in Ventura County, California. A steady increase in the demand for surface- and ground-water resources since the late 1800s has resulted in streamflow depletion and ground-water overdraft. This steady increase in water use has resulted in seawater intrusion, inter-aquifer flow, land subsidence, and ground-water contamination. The Santa Clara-Calleguas Basin consists of multiple aquifers that are grouped into upper- and lower-aquifer systems. The upper-aquifer system includes the Shallow, Oxnard, and Mugu aquifers. The lower-aquifer system includes the upper and lower Hueneme, Fox Canyon, and Grimes Canyon aquifers. The layered aquifer systems are each bounded below by regional unconformities that are overlain by extensive basal coarse-grained layers that are the major pathways for ground-water production from wells and related seawater intrusion. The aquifer systems are bounded below and along mountain fronts by consolidated bedrock that forms a relatively impermeable boundary to ground-water flow. Numerous faults act as additional exterior and interior boundaries to ground-water flow. The aquifer systems extend offshore where they crop out along the edge of the submarine shelf and within the coastal submarine canyons. Submarine canyons have dissected these regional aquifers, providing a hydraulic connection to the ocean through the submarine outcrops of the aquifer systems. Coastal landward flow (seawater intrusion) occurs within both the upper- and lower-aquifer systems. A numerical ground-water flow model of the Santa Clara-Calleguas Basin was developed by the U.S. Geological Survey to better define the geohydrologic framework of the regional ground-water flow system and to help analyze the major problems affecting water-resources management of a typical coastal aquifer system. Construction of the Santa Clara-Calleguas Basin model required

  7. Vulnerability of shallow ground water and drinking-water wells to nitrate in the United States: Model of predicted nitrate concentration in U.S. ground water used for drinking (simulation depth 50 meters) -- Input data set for semiconsolidated sand aquifers (gwava-dw_semc)

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This data set represents the presence or absence of semiconsolidated sand aquifers in the conterminous United States. The data set was used as an input data layer...

  8. Potentiometric surface and water quality in the Principal Aquifer, Mississippian Plateaus region, Kentucky

    Science.gov (United States)

    Plebuch, R.O.; Faust, R.J.; Townsend, M.A.

    1985-01-01

    The Mississippian Plateaus region is the outcrop area of rocks of Mississippian age which extends as a broad arcuate band around the Western Coal Field in westcentral Kentucky. Much of the area is characterized by plains of low relief containing numerous sinkholes, subsurface drainage, and a low density of surface streams. The principal aquifer consists of a thick sequence of limestones extending downward stratigraphically from the base of the Chesterian Series to the black shales at the top of the Devonian rocks. Well yields range from several gallons per minute to as much as 500 gallons per minute in some karst areas where secondary openings are well developed. The potentiometric map indicates that ground-water movement generally conforms to the surface drainage pattern. The actual direction of movement varies from river basin to river basin. Most water from the principal aquifer is a calcium magnesium bicarbonate type and is generally good relative to current drinking water standards. The lower St Louis Limestone, in places, yields a calcium magnesium sulfate water that is corrosive and has a strong hydrogen sulfide odor. The karst areas of the principal aquifer are vulnerable to contamination because of the well-developed subsurface drainage. Urban areas, industries, and agriculture are sources of contaminants that can be easily flushed into the ground-water system. (USGS)

  9. FEWA: a Finite Element model of Water flow through Aquifers

    Energy Technology Data Exchange (ETDEWEB)

    Yeh, G.T.; Huff, D.D.

    1983-11-01

    This report documents the implementation and demonstration of a Finite Element model of Water flow through Aquifers (FEWA). The particular features of FEWA are its versatility and flexibility to deal with as many real-world problems as possible. Point as well as distributed sources/sinks are included to represent recharges/pumpings and rainfall infiltrations. All sources/sinks can be transient or steady state. Prescribed hydraulic head on the Dirichlet boundaries and fluxes on Neumann or Cauchy boundaries can be time-dependent or constant. Source/sink strength over each element and node, hydraulic head at each Dirichlet boundary node, and flux at each boundary segment can vary independently of each other. Either completely confined or completely unconfined aquifers, or partially confined and partially unconfined aquifers can be dealt with effectively. Discretization of a compound region with very irregular curved boundaries is made easy by including both quadrilateral and triangular elements in the formulation. Large-field problems can be solved efficiently by including a pointwise iterative solution strategy as an optional alternative to the direct elimination solution method for the matrix equation approximating the partial differential equation of groundwater flow. FEWA also includes transient flow through confining leaky aquifers lying above and/or below the aquifer of interest. The model is verified against three simple cases to which analytical solutions are available. It is then demonstrated by two examples of how the model can be applied to heterogeneous and anisotropic aquifers with transient boundary conditions, time-dependent sources/sinks, and confining aquitards for a confined aquifer of variable thickness and for a free surface problem in an unconfined aquifer, respectively. 20 references, 25 figures, 8 tables.

  10. Comparison between agricultural and urban ground-water quality in the Mobile River Basin

    Science.gov (United States)

    Robinson, James L.

    2003-01-01

    The Black Warrior River aquifer is a major source of public water supply in the Mobile River Basin. The aquifer outcrop trends northwest - southeast across Mississippi and Alabama. A relatively thin shallow aquifer overlies and recharges the Black Warrior River aquifer in the flood plains and terraces of the Alabama, Coosa, Black Warrior, and Tallapoosa Rivers. Ground water in the shallow aquifer and the Black Warrior River aquifer is susceptible to contamination due to the effects of land use. Ground-water quality in the shallow aquifer and the shallow subcrop of the Black Warrior River aquifer, underlying an agricultural and an urban area, is described and compared. The agricultural and urban areas are located in central Alabama in Autauga, Elmore, Lowndes, Macon, Montgomery, and Tuscaloosa Counties. Row cropping in the Mobile River Basin is concentrated within the flood plains of major rivers and their tributaries, and has been practiced in some of the fields for nearly 100 years. Major crops are cotton, corn, and beans. Crop rotation and no-till planting are practiced, and a variety of crops are grown on about one-third of the farms. Row cropping is interspersed with pasture and forested areas. In 1997, the average farm size in the agricultural area ranged from 196 to 524 acres. The urban area is located in eastern Montgomery, Alabama, where residential and commercial development overlies the shallow aquifer and subcrop of the Black Warrior River aquifer. Development of the urban area began about 1965 and continued in some areas through 1995. The average home is built on a 1/8 - to 1/4 - acre lot. Ground-water samples were collected from 29 wells in the agricultural area, 30 wells in the urban area, and a reference well located in a predominately forested area. The median depth to the screens of the agricultural and urban wells was 22.5 and 29 feet, respectively. Ground-water samples were analyzed for physical properties, major ions, nutrients, and pesticides

  11. Shallow ground-water quality beneath cropland in the Red River of the North Basin, Minnesota and North Dakota, 1993-95

    Science.gov (United States)

    Cowdery, Timothy K.

    1997-01-01

    During 1993-95, the agriculture on two sandy, surficial aquifers in the Red River of the North Basin affected the quality of shallow ground water in each aquifer differently. The Sheyenne Delta aquifer, in the western part of the basin, had land-use, hydrogeological, and rainfall characteristics that allowed few agricultural chemicals to reach or remain in the shallow ground water. The Otter Tail outwash aquifer, in the eastern part of the basin, had characteristics that caused significant amounts of nutrients and pesticides to reach and remain in the shallow ground water. Shallow ground water from both aquifers is dominated by calcium, magnesium, and bicarbonate ions. During the respective sampling periods, water from the Sheyenne Delta aquifer was mostly anoxic and water from the Otter Tail outwash aquifer had a median dissolved oxygen concentration of 3.6 mg/L (milligrams per liter). The median nitrate concentration was 0.03 mg/L as nitrogen (mg/L-N) in shallow ground water from the Sheyenne Delta aquifer and 6.1 mg/L-N in that from the Otter Tail outwash aquifer. Of 18 herbicides and 4 insecticides commonly used in the aquifer areas and for which analyses were done, 5 herbicides and 1 herbicide metabolite were detected in the shallow ground water from the Sheyenne Delta aquifer and 8 herbicides and 2 metabolites were detected in that from the Otter Tail outwash aquifer. The total herbicide concentration median was less than the detection limit in shallow ground water from the Sheyenne Delta aquifer and 0.023 μg/L (micorgrams per liter) in that from the Otter Tail outwash aquifer. Triazine herbicides were the most commonly detected herbicides and were detected at the highest concentrations in the shallow ground water from both study areas. One sample from the Sheyenne Delta aquifer contained a high concentration of picloram. Agricultural chemicals in both aquifers were stratified vertically and their concentration correlated inversely with ground-water age. The

  12. Hydrogeologic controls on ground-water and contaminant discharge to the Columbia River near the Hanford Townsite

    Energy Technology Data Exchange (ETDEWEB)

    Luttrell, S.P.; Newcomer, D.R.; Teel, S.S.; Vermeul, V.R.

    1992-11-01

    The purpose of this study is to quantify ground-water and contaminant discharge to the Columbia River in the Hanford Townsite vicinity. The primary objectives of the work are to: describe the hydrogeologic setting and controls on ground-water movement and contaminant discharge to the Columbia River; understand the river/aquifer relationship and its effects on contaminant discharge to the Columbia River; quantify the ground-water and contaminant mass discharge to the Columbia River; and provide data that may be useful for a three-dimensional model of ground-water flow and contaminant transport in the Hanford Townsite study area. The majority of ground-water contamination occurs within the unconfined aquifer; therefore, ground-water and contaminant discharge from the unconfined aquifer is the emphasis of this study. The period of study is primarily from June 1990 through March 1992.

  13. Geohydrology and water quality of stratified-drift aquifers in the lower Merrimack and coastal river basins, southeastern New Hampshire

    Science.gov (United States)

    Stekl, Peter J.; Flanagan, Sarah M.

    1992-01-01

    Communities in the lower Merrimack River basin and coastal river basins of southeastern New Hampshire are experiencing increased demands for water because of a rapid increase in population. The population in 1987 was 225,495 and is expected to increase by 30 percent during the next decade. As of 1987, five towns used the stratified-drift aquifers for municipal supply and withdrew an estimated 6 million gallons per day. Four towns used the bedrock aquifer for municipal supply and withdrew an average of 1 .6 million gallons per day. Stratified-drift deposits cover 78 of the 327 square miles of the study area. These deposits are generally less than 10 square miles in areal extent, and their saturated thickness ranges front less than 20 feet to as much as 100 feet . Transinissivity exceeds 4,000 square feet per day in several locations. Stratified-drift aquifers in the eastern part are predominantly small ice-contact deposits surrounded by marine sediments or till of low hydraulic conductivity. Stratified-drift aquifers in the western part consist of ice-contact and proglacial deposits that are large in areal extent and are commonly in contact with surface-water bodies. Five stratified-drift aquifers, in the towns of Derry, Windham, Kingston, North Hampton, and Greenland, have the greatest potential to supply additional amounts of water. Potential yields and contributing areas of hypothetical supply wells were estimated for an aquifer in Windham near Cobbetts Pond and for an aquifer in Kingston along the Powwow River by use of a method analogous to superposition in conjunction with a numerical ground-waterflow model. The potential yield is estimated to be 0 .6 million gallons per day for the Windham-Cobbetts Pond aquifer and 4 .0 million gallons per day for the Kingston-Powwow River aquifer. Contributing recharge area for supply wells is estimated to be 1.6 square miles in the Windham-Cobbetts Pond aquifer and 4.9 square miles in the Kingston-Powwow River aquifer

  14. Hydrogeology and chemical quality of water and soil at Carroll Island, Aberdeen Proving Ground, Maryland

    Science.gov (United States)

    Tenbus, F.J.; Phillips, S.W.

    1996-01-01

    Carroll Island was used for open-air testing of chemical warfare agents from the late 1940's until 1971. Testing and disposal activities weresuspected of causing environmental contamination at 16 sites on the island. The hydrogeology and chemical quality of ground water, surface water, and soil at these sites were investigated with borehole logs, environmental samples, water-level measurements, and hydrologic tests. A surficial aquifer, upper confining unit, and upper confined aquifer were defined. Ground water in the surficial aquifer generally flows from the east-central part of the island toward the surface-water bodies, butgradient reversals caused by evapotranspiration can occur during dry seasons. In the confined aquifer, hydraulic gradients are low, and hydraulic head is affected by tidal loading and by seasonal pumpage from the west. Inorganic chemistry in the aquifers is affected by brackish-water intrusion from gradient reversals and by dissolution ofcarboniferous shell material in the confining unit.The concentrations of most inorganic constituents probably resulted from natural processes, but some concentrations exceeded Federal water-quality regulations and criteria. Organic compounds were detected in water and soil samples at maximum concentrations of 138 micrograms per liter (thiodiglycol in surface water) and 12 micrograms per gram (octadecanoic acid in soil).Concentrations of organic compounds in ground water exceeded Federal drinking-water regulations at two sites. The organic compounds that weredetected in environmental samples were variously attributed to natural processes, laboratory or field- sampling contamination, fallout from industrial air pollution, and historical military activities.

  15. Ground-water hydraulics - A summary of lectures presented by John G. Ferris at short courses conducted by the Ground Water Branch, part 1, Theory

    Science.gov (United States)

    Knowles, D.B.

    1955-01-01

    The objective of the Ground Water Branch is to evaluate the occurrence, availability, and quality of ground water.  The science of ground-water hydrology is applied toward attaining that goal.  Although many ground-water investigations are of a qualitative nature, quantitative studies are necessarily an integral component of the complete evaluation of occurrence and availability.  The worth of an aquifer as a fully developed source of water depends largely on two inherent characteristics: its ability to store, and its ability to transmit water.  Furthermore, quantitative knowledge of these characteristics facilitates measurement of hydrologic entities such as recharge, leakage, evapotranspiration, etc.  It is recognized that these two characteristics, referred to as the coefficients of storage and transmissibility, generally provide the very foundation on which quantitative studies are constructed.  Within the science of ground-water hydrology, ground-water hydraulics methods are applied to determine these constats from field data.

  16. Ground-water resources of Cambodia

    Science.gov (United States)

    Rasmussen, William Charles; Bradford, Gary M.

    1977-01-01

    available information is on the central lowlands and contiguous low plateaus, as the mountainous areas on the west and the high plateaus on the east are relatively unexplored with respect to their ground-water availability. No persistent artesian aquifer has been identified nor have any large potential ground-water sources been found .although much of the country yet remains to be explored by test drilling. Well irrigation for garden produce is feasible on a modest scale in many localities throughout Cambodia. It does not seem likely, however, that large-scale irrigation from wells will come about in the future. Ground water may be regarded as a widely available supplemental source to surface water for domestic, small-scale industrial, and irrigation use.

  17. The role of hand calculations in ground water flow modeling.

    Science.gov (United States)

    Haitjema, Henk

    2006-01-01

    Most ground water modeling courses focus on the use of computer models and pay little or no attention to traditional analytic solutions to ground water flow problems. This shift in education seems logical. Why waste time to learn about the method of images, or why study analytic solutions to one-dimensional or radial flow problems? Computer models solve much more realistic problems and offer sophisticated graphical output, such as contour plots of potentiometric levels and ground water path lines. However, analytic solutions to elementary ground water flow problems do have something to offer over computer models: insight. For instance, an analytic one-dimensional or radial flow solution, in terms of a mathematical expression, may reveal which parameters affect the success of calibrating a computer model and what to expect when changing parameter values. Similarly, solutions for periodic forcing of one-dimensional or radial flow systems have resulted in a simple decision criterion to assess whether or not transient flow modeling is needed. Basic water balance calculations may offer a useful check on computer-generated capture zones for wellhead protection or aquifer remediation. An easily calculated "characteristic leakage length" provides critical insight into surface water and ground water interactions and flow in multi-aquifer systems. The list goes on. Familiarity with elementary analytic solutions and the capability of performing some simple hand calculations can promote appropriate (computer) modeling techniques, avoids unnecessary complexity, improves reliability, and is likely to save time and money. Training in basic hand calculations should be an important part of the curriculum of ground water modeling courses.

  18. Geographic information system datasets of regolith-thickness data, regolith-thickness contours, raster-based regolith thickness, and aquifer-test and specific-capacity data for the Lost Creek Designated Ground Water Basin, Weld, Adams, and Arapahoe Counties, Colorado

    Science.gov (United States)

    Arnold, L. Rick

    2010-01-01

    These datasets were compiled in support of U.S. Geological Survey Scientific-Investigations Report 2010-5082-Hydrogeology and Steady-State Numerical Simulation of Groundwater Flow in the Lost Creek Designated Ground Water Basin, Weld, Adams, and Arapahoe Counties, Colorado. The datasets were developed by the U.S. Geological Survey in cooperation with the Lost Creek Ground Water Management District and the Colorado Geological Survey. The four datasets are described as follows and methods used to develop the datasets are further described in Scientific-Investigations Report 2010-5082: (1) ds507_regolith_data: This point dataset contains geologic information concerning regolith (unconsolidated sediment) thickness and top-of-bedrock altitude at selected well and test-hole locations in and near the Lost Creek Designated Ground Water Basin, Weld, Adams, and Arapahoe Counties, Colorado. Data were compiled from published reports, consultant reports, and from lithologic logs of wells and test holes on file with the U.S. Geological Survey Colorado Water Science Center and the Colorado Division of Water Resources. (2) ds507_regthick_contours: This dataset consists of contours showing generalized lines of equal regolith thickness overlying bedrock in the Lost Creek Designated Ground Water Basin, Weld, Adams, and Arapahoe Counties, Colorado. Regolith thickness was contoured manually on the basis of information provided in the dataset ds507_regolith_data. (3) ds507_regthick_grid: This dataset consists of raster-based generalized thickness of regolith overlying bedrock in the Lost Creek Designated Ground Water Basin, Weld, Adams, and Arapahoe Counties, Colorado. Regolith thickness in this dataset was derived from contours presented in the dataset ds507_regthick_contours. (4) ds507_welltest_data: This point dataset contains estimates of aquifer transmissivity and hydraulic conductivity at selected well locations in the Lost Creek Designated Ground Water Basin, Weld, Adams, and

  19. Ground-water status report, Pearl Harbor area, Hawaii, 1978

    Science.gov (United States)

    Soroos, Ronald L.; Ewart, Charles J.

    1979-01-01

    Increasing demand for freshwater in Hawaii has placed heavy stress on many of the State 's basal aquifer systems. The most heavily stressed of these systems is the Pearl Harbor on Oahu. The Pearl Harbor basal aquifer supplies as much as 277 million gallons per day. Since early in this century, spring discharge has been declining while pumpage has been increasing. Total ground-water discharge has remained steady despite short-term fluctuations. Some wells show general increases in chloride concentration while others remain steady. Chloride concentrations throughout the area show no apparent increase since 1970. Basal water head maps of the Pearl Harbor area clearly reflect the natural discharge points, which are the springs located along the shore near the center of Pearl Harbor. Basal-water hydrographs show a general decline of about 0.09 foot per year. This implies depletion of storage at a rate of about 25 million gallons per day. (USGS).

  20. AUTOMATED WATER LEVEL MEASUREMENTS IN SMALL-DIAMETER AQUIFER TUBES

    Energy Technology Data Exchange (ETDEWEB)

    PETERSEN SW; EDRINGTON RS; MAHOOD RO; VANMIDDLESWORTH PE

    2011-01-14

    Groundwater contaminated with hexavalent chromium, strontium-90, and uranium discharges into the Columbia River along approximately 16 km (10 mi) of the shoreline. Various treatment systems have and will continue to be implemented to eliminate the impact of Hanford Site contamination to the river. To optimize the various remediation strategies, it is important to understand interactions between groundwater and the surface water of the Columbia River. An automated system to record water levels in aquifer sampling tubes installed in the hyporheic zone was designed and tested to (1) gain a more complete understanding of groundwater/river water interactions based on gaining and losing conditions ofthe Columbia River, (2) record and interpret data for consistent and defensible groundwater/surface water conceptual models that may be used to better predict subsurface contaminant fate and transport, and (3) evaluate the hydrodynamic influence of extraction wells in an expanded pump-and-treat system to optimize the treatment system. A system to measure water levels in small-diameter aquifer tubes was designed and tested in the laboratory and field. The system was configured to allow manual measurements to periodically calibrate the instrument and to permit aquifer tube sampling without removing the transducer tube. Manual measurements were collected with an e-tape designed and fabricated especially for this test. Results indicate that the transducer system accurately records groundwater levels in aquifer tubes. These data are being used to refine the conceptual and numeric models to better understand interactions in the hyporheic zone of the Columbia River and the adjacent river water and groundwater, and changes in hydrochemistry relative to groundwater flux as river water recharges the aquifer and then drains back out in response to changes in the river level.

  1. Long-term ground-water monitoring program and performance-evaluation plan for the extraction system at the former Nike Missile Battery Site, Aberdeen Proving Ground, Maryland

    Science.gov (United States)

    Senus, Michael P.; Tenbus, Frederick J.

    2000-01-01

    This report presents lithologic and ground-water-quality data collected during April and May 2000 in the remote areas of the tidal wetland of West Branch Canal Creek, Aberdeen Proving Ground, Maryland. Contamination of the Canal Creek aquifer with volatile organic compounds has been documented in previous investigations of the area. This study was conducted to investigate areas that were previously inaccessible because of deep mud and shallow water, and to support ongoing investigations of the fate and transport of volatile organic compounds in the Canal Creek aquifer. A unique vibracore drill rig mounted on a hovercraft was used for drilling and ground-water sampling. Continuous cores of the wetland sediment and of the Canal Creek aquifer were collected at five sites. Attempts to sample ground water were made by use of a continuous profiler at 12 sites, without well installation, at a total of 81 depths within the aquifer. Of those 81 attempts, only 34 sampling depths produced enough water to collect samples. Ground-water samples from two sites had the highest concentrations of volatile organic compounds?with total volatile organic compound concentrations in the upper part of the aquifer ranging from about 15,000 to 50,000 micrograms per liter. Ground-water samples from five sites had much lower total volatile organic compound concentrations (95 to 2,100 micrograms per liter), whereas two sites were essentially not contaminated, with total volatile organic compound concentrations less than or equal to 5 micrograms per liter.

  2. Quality of water from bedrock aquifers in the South Carolina Piedmont

    Science.gov (United States)

    Patterson, G.G.; Padgett, G.C.

    1984-01-01

    The geographic distributions of 12 common water-quality parameters of ground water from bedrock aquifers in the Piedmont physiographic province of South Carolina are presented in a series of maps. The maps are based on analyses by the South Carolina Department of Health and Environmental Control of water samples taken during the period 1972 to 1982 from 442 public and private wells developed in the Piedmont. In general, alkalinity, hardness, and concentrations of sodium, magnesium, and chloride were higher in the Carolina Slate Belt than they were in the other geologic belts of the Piedmont. (USGS)

  3. Ground-water and geohydrologic conditions in Queens County, Long Island, New York

    Science.gov (United States)

    Soren, Julian

    1971-01-01

    Queens County is a heavily populated borough of New York City, at the western end of Long Island, N. Y., in which large amounts of ground water are used, mostly for public supply. Ground water, pumped from local aquifers, by privately owned water-supply companies, supplied the water needs of about 750,000 of the nearly 2 million residents of the county in 1967; the balance was supplied by New York City from surface sources outside the county in upstate New York. The county's aquifers consist of sand and gravel of Late Cretaceous and of Pleistocene ages, and the aquifers comprise a wedge-shaped ground-water reservoir lying on a southeastward-sloping floor of Precambrian(?) bedrock. Beds of clay and silt generally confine water in the deeper parts of the reservoir; water in the deeper aquifers ranges from poorly confined to well confined. Wisconsin-age glacial deposits in the uppermost part of the reservoir contain ground water under water-table conditions. Ground water pumpage averaged about 60 mgd (million gallons per day) in Queens County from about 1900 to 1967. Much of the water was used in adjacent Kings County, another borough of New York City, prior to 1950. The large ground-water withdrawal has resulted in a wide-spread and still-growing cone of depression in the water table, reflecting a loss of about 61 billion gallons of fresh water from storage. Significant drawdown of the water table probably began with rapid urbanization of Queens County in the 1920's. The county has been extensively paved, and storm and sanitary sewers divert water, which formerly entered the ground, to tidewater north and south of the county. Natural recharge to the aquifers has been reduced to about one half of the preurban rate and is below the withdrawal rate. Ground-water levels have declined more than 40. feet from the earliest-known levels, in 1903, to 1967, and the water table is below sea level in much of the county. The aquifers are being contaminated by the movement of

  4. Salmonella pollution in ground and surface waters. (Latest citations from Pollution abstracts). Published Search

    Energy Technology Data Exchange (ETDEWEB)

    1993-04-01

    The bibliography contains citations concerning the contamination of ground waters and surface waters by Salmonella bacteria. Articles discuss the occurence, survival, origin, and control of these bacteria in water sources including rivers, reservoirs, swimming pools, wastewater, aquifers, and ground water. Citations also address the use of Salmonella populations as biological indicators of pollution in aquatic systems. (Contains a minimum of 102 citations and includes a subject term index and title list.)

  5. Quality of water in the fractured-bedrock aquifer of New Hampshire

    Science.gov (United States)

    Moore, Richard Bridge

    2004-01-01

    Over the past few decades, New Hampshire has experienced considerable population growth, which is forcing some communities to look for alternative public and private water supplies in the bedrock aquifer. Because the quality of water from the aquifer can vary, the U.S. Geological Survey statistically analyzed well data from 1,353 domestic and 360 public-supply bedrock wells to characterize the ground water. The domestic-well data were from homeowner-collected samples analyzed by the New Hampshire Department of Environmental Services (NHDES) Environmental Laboratory from 1984 to 1994. Bedrock water in New Hampshire often contains high concentrations of iron, manganese, arsenic, and radon gas. Water samples from 21 percent of the domestic bedrock wells contained arsenic above the U.S. Environmental Protection Agency (USEPA) 10 micrograms per liter (?g/L) drinking-water standard for public-water supplies, and 96 percent had radon concentrations greater than the USEPA-proposed 300 picocurie per liter (pCi/L) standard for public-water supplies. Some elevated fluoride concentrations (2 percent of samples) were above the 4 milligrams per liter (mg/L) USEPA drinking-water standard for public-water supplies. Water from the bedrock aquifer also typically is soft to moderately hard, and has a pH greater than 7.0. Variations in bedrock water quality were discernable when the data were compared to lithochemical groupings of the bedrock, indicating that the type of bedrock has an effect on the quality of water in the bedrock aquifer of New Hampshire. Ground-water samples from the metasedimentary lithochemical group have greater concentrations of total iron and total manganese than do the felsic and mafic igneous lithochemical groups. Ground-water samples from the felsic igneous group have higher concentrations of total fluoride than do those from the other lithochemical groups. For arsenic, the calcareous metasedimentary group was identified, using the public-supply database, as

  6. Hanford Site ground-water monitoring for 1993

    Energy Technology Data Exchange (ETDEWEB)

    Dresel, P.E.; Luttrell, S.P.; Evans, J.C. [and others

    1994-09-01

    This report presents the results of the Ground-Water Surveillance Project monitoring for calendar year 1993 on the Hanford Site, Washington. Hanford Site operations from 1943 onward produced large quantities of radiological and chemical waste that have impacted ground-water quality on the Site. Monitoring of water levels and ground-water chemistry is performed to track the extent of contamination and trends in contaminant concentrations. The 1993 monitoring was also designed to identify emerging ground-water quality problems. The information obtained is used to verify compliance with applicable environmental regulations and to evaluate remedial actions. Data from other monitoring and characterization programs were incorporated to provide an integrated assessment of Site ground-water quality. Additional characterization of the Site`s geologic setting and hydrology was performed to support the interpretation of contaminant distributions. Numerical modeling of sitewide ground-water flow also supported the overall project goals. Water-level monitoring was performed to evaluate ground-water flow directions, to track changes in water levels, and to relate such changes to changes in site disposal practices. Water levels over most of the Hanford Site continued to decline between June 1992 and June 1993. The greatest declines occurred in the 200-West Area. These declines are part of the continued response to the cessation of discharge to U Pond and other disposal facilities. The low permeability in this area which enhanced mounding of waste-water discharge has also slowed the response to the reduction of disposal. Water levels remained nearly constant in the vicinity of B Pond, as a result of continued disposal to the pond. Water levels measured from wells in the unconfined aquifer north and east of the Columbia River indicate that the primary source of recharge is irrigation practices.

  7. Availability and quality of ground water, southern Ute Indian Reservation, southwestern Colorado

    Science.gov (United States)

    Brogden, Robert E.; Hutchinson, E. Carter; Hillier, Donald E.

    1979-01-01

    Population growth and the potential development of subsurface mineral resources have increased the need for information on the availability and quality of ground water on the Southern Ute Indian Reservation. The U.S. Geological Survey, in cooperation with the Southern Ute Tribal Council, the Four Corners Regional Planning Commission, and the U.S. Bureau of Indian Affairs, conducted a study during 1974-76 to assess the ground-water resources of the reservation. Water occurs in aquifers in the Dakota Sandstone, Mancos Shale, Mesaverde Group, Lewis Shale, Pictured Cliffs Sandstone, Fruitland Formation, Kirtland Shale, Animas and San Jose Formations, and terrace and flood-plain deposits. Well yields from sandstone and shale aquifers are small, generally in the range from 1 to 10 gallons per minute with maximum reported yields of 75 gallons per minute. Well yields from terrace deposits generally range from 5 to 10 gallons per minute with maximum yields of 50 gallons per minute. Well yields from flood-plain deposits are as much as 25 gallons per minute but average 10 gallons per minute. Water quality in aquifers depends in part on rock type. Water from sandstone, terrace, and flood-plain aquifers is predominantly a calcium bicarbonate type, whereas water from shale aquifers is predominantly a sodium bicarbonate type. Water from rocks containing interbeds of coal or carbonaceous shales may be either a calcium or sodium sulfate type. Dissolved-solids concentrations of ground water ranged from 115 to 7,130 milligrams per liter. Water from bedrock aquifers is the most mineralized, while water from terrace and flood-plain aquifers is the least mineralized. In many water samples collected from bedrock, terrace, and flood-plain aquifers, the concentrations of arsenic, chloride, dissolved solids, fluoride, iron, manganese, nitrate, selenium, and sulfate exceeded U.S. Public Health Service (1962) recommended limits for drinking water. Selenium in the ground water in excess of U

  8. Selected techniques for monitoring water movement through unsaturated alluvium during managed aquifer recharge

    Science.gov (United States)

    Nawikas, Joseph M.; O'Leary, David R.; Izbicki, John A.; Burgess, Matthew K.

    2016-10-21

    Managed aquifer recharge is used to augment natural recharge to aquifers. It can be used to replenish aquifers depleted by pumping or to store water during wetter years for withdrawal during drier years. Infiltration from ponds is a commonly used, inexpensive approach for managed aquifer recharge.At some managed aquifer-recharge sites, the time when infiltrated water arrives at the water table is not always clearly shown by water-level data. As part of site characterization and operation, it can be desirable to track downward movement of infiltrated water through the unsaturated zone to identify when it arrives at the water table.

  9. Aquifers

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — This map layer contains the shallowest principal aquifers of the conterminous United States, Hawaii, Puerto Rico, and the U.S. Virgin Islands, portrayed as polygons....

  10. Aquifers

    Data.gov (United States)

    Department of Homeland Security — This map layer contains the shallowest principal aquifers of the conterminous United States, Hawaii, Puerto Rico, and the U.S. Virgin Islands, portrayed as polygons....

  11. Radon-222 in the ground water of Chester County, Pennsylvania

    Science.gov (United States)

    Senior, Lisa A.

    1998-01-01

    Radon-222 concentrations in ground water in 31 geologic units in Chester County, Pa., were measured in 665 samples collected from 534 wells from 1986 to 1997. Chester County is underlain by schists, gneisses, quartzites, carbonates, sandstones, shales, and other rocks of the Piedmont Physiographic Province. On average, radon concentration was measured in water from one well per 1.4 square miles, throughout the 759 square-mile county, although the distribution of wells was not even areally or among geologic units. The median concentration of radon-222 in ground water from the 534 wells was 1,400 pCi/L (picocuries per liter). About 89 percent of the wells sampled contained radon-222 at concentrations greater than 300 pCi/L, and about 11 percent of the wells sampled contained radon-222 at concentrations greater than 5,000 pCi/L. The highest concentration measured was 53,000 pCi/L. Of the geologic units sampled, the median radon-222 concentration in ground water was greatest (4,400 pCi/L) in the Peters Creek Schist, the second most areally extensive formation in the county. Signifi- cant differences in the radon-222 concentrations in ground water among geologic units were observed. Generally, concentrations in ground water in schists, quartzites, and gneisses were greater than in ground water in anorthosite, carbonates, and ultramafic rocks. The distribution of radon-222 in ground water is related to the distribution of uranium in aquifer materials of the various rock types. Temporal variability in radon-222 concentrations in ground water does not appear to be greater than about a factor of two for most (75 percent) of wells sampled more than once but was observed to range up to almost a factor of three in water from one well. In water samples from this well, seasonal variations were observed; the maximum concentrations were measured in the fall and the minimum in the spring.

  12. Water balance of global aquifers revealed by groundwater footprint.

    Science.gov (United States)

    Gleeson, Tom; Wada, Yoshihide; Bierkens, Marc F P; van Beek, Ludovicus P H

    2012-08-09

    Groundwater is a life-sustaining resource that supplies water to billions of people, plays a central part in irrigated agriculture and influences the health of many ecosystems. Most assessments of global water resources have focused on surface water, but unsustainable depletion of groundwater has recently been documented on both regional and global scales. It remains unclear how the rate of global groundwater depletion compares to the rate of natural renewal and the supply needed to support ecosystems. Here we define the groundwater footprint (the area required to sustain groundwater use and groundwater-dependent ecosystem services) and show that humans are overexploiting groundwater in many large aquifers that are critical to agriculture, especially in Asia and North America. We estimate that the size of the global groundwater footprint is currently about 3.5 times the actual area of aquifers and that about 1.7 billion people live in areas where groundwater resources and/or groundwater-dependent ecosystems are under threat. That said, 80 per cent of aquifers have a groundwater footprint that is less than their area, meaning that the net global value is driven by a few heavily overexploited aquifers. The groundwater footprint is the first tool suitable for consistently evaluating the use, renewal and ecosystem requirements of groundwater at an aquifer scale. It can be combined with the water footprint and virtual water calculations, and be used to assess the potential for increasing agricultural yields with renewable groundwaterref. The method could be modified to evaluate other resources with renewal rates that are slow and spatially heterogeneous, such as fisheries, forestry or soil.

  13. Estimation of ground water hydraulic parameters

    Energy Technology Data Exchange (ETDEWEB)

    Hvilshoej, Soeren

    1998-11-01

    The main objective was to assess field methods to determine ground water hydraulic parameters and to develop and apply new analysis methods to selected field techniques. A field site in Vejen, Denmark, which previously has been intensively investigated on the basis of a large amount of mini slug tests and tracer tests, was chosen for experimental application and evaluation. Particular interest was in analysing partially penetrating pumping tests and a recently proposed single-well dipole test. Three wells were constructed in which partially penetrating pumping tests and multi-level single-well dipole tests were performed. In addition, multi-level slug tests, flow meter tests, gamma-logs, and geologic characterisation of soil samples were carried out. In addition to the three Vejen analyses, data from previously published partially penetrating pumping tests were analysed assuming homogeneous anisotropic aquifer conditions. In the present study methods were developed to analyse partially penetrating pumping tests and multi-level single-well dipole tests based on an inverse numerical model. The obtained horizontal hydraulic conductivities from the partially penetrating pumping tests were in accordance with measurements obtained from multi-level slug tests and mini slug tests. Accordance was also achieved between the anisotropy ratios determined from partially penetrating pumping tests and multi-level single-well dipole tests. It was demonstrated that the partially penetrating pumping test analysed by and inverse numerical model is a very valuable technique that may provide hydraulic information on the storage terms and the vertical distribution of the horizontal and vertical hydraulic conductivity under both confined and unconfined aquifer conditions. (EG) 138 refs.

  14. Recovery of energetically overexploited urban aquifers using surface water

    Science.gov (United States)

    García-Gil, Alejandro; Vázquez-Suñé, Enric; Sánchez-Navarro, José Ángel; Mateo Lázaro, Jesús

    2015-12-01

    Shallow aquifers have an important role in reducing greenhouse gases through helping manage the temperature of urban environments. Nevertheless, the uncontrolled rapid use of shallow groundwater resources to heat or cool urban environments can cause thermal pollution that will limit the long term sustainability of the resource. Therefore, there is a need for appropriate mitigation/remediation strategies capable of recovering energetically overexploited aquifers. In this work, a novel remediation strategy based on surface water recharge into aquifers is presented. To evaluate the capabilities of such measures for effective remediation, this strategy is optimized for a management problem raised in the overheated "Urban Alluvial Aquifer of Zaragoza" (Spain). The application of a transient groundwater flow and heat transport model under 512 different mitigation scenarios has enabled to quantify and discuss the magnitude of the remediation effect as a respond to injection rates of surface water, seasonal schedule of the injection and location of injection. The quantification of the relationship between these variables together with the evaluation of the amount of surface water injected per year in each scenario proposed have provided a better understanding of the system processes and an optimal management alternative. This work also makes awareness of the magnitude of the remediation procedure which is in an order of magnitude of tenths of years.

  15. Ground water dependence of endangered ecosystems: Nebraska's eastern saline wetlands.

    Science.gov (United States)

    Harvey, F Edwin; Ayers, Jerry F; Gosselin, David C

    2007-01-01

    Many endangered or threatened ecosystems depend on ground water for their survival. Nebraska's saline wetlands, home to a number of endangered species, are ecosystems whose development, sustenance, and survival depend on saline ground water discharge at the surface. This study demonstrates that the saline conditions present within the eastern Nebraska saline wetlands result from the upwelling of saline ground water from within the underlying Dakota Aquifer and deeper underlying formations of Pennsylvanian age. Over thousands to tens of thousands of years, saline ground water has migrated over regional scale flowpaths from recharge zones in the west to the present-day discharge zones along the saline streams of Rock, Little Salt, and Salt Creeks in Lancaster and Saunders counties. An endangered endemic species of tiger beetle living within the wetlands has evolved under a unique set of hydrologic conditions, is intolerant to recent anthropogenic changes in hydrology and salinity, and is therefore on the brink of extinction. As a result, the fragility of such systems demands an even greater understanding of the interrelationships among geology, hydrology, water chemistry, and biology than in less imperiled systems where adaptation is more likely. Results further indicate that when dealing with ground water discharge-dependent ecosystems, and particularly those dependent on dissolved constituents as well as the water, wetland management must be expanded outside of the immediate surface location of the visible ecosystem to include areas where recharge and lateral water movement might play a vital role in wetland hydrologic and chemical mixing dynamics.

  16. Radon determination in ground water

    Energy Technology Data Exchange (ETDEWEB)

    Segovia A, N.; Bulbulian G, S

    1991-08-15

    Studies on natural radioactivity in ground water were started in Mexico in San Luis Potosi state followed by samplings from deep wells and springs in the states of Mexico and Michoacan. The samples were analyzed for solubilized and {sup 226} Ra- supported {sup 222} Rn. Some of them were also studied for {sup 234} U/ {sup 238} U activity ratio. In this paper we discuss the activities obtained and their relationship with the geologic characteristics of the studied zones. (Author)

  17. Water security and services in the ocean-aquifer system

    Science.gov (United States)

    Taniguchi, M.

    2011-12-01

    Coastal vulnerability and water security are both important research subjects on global environmental problems under the pressures of changing climate and societies. A six years research project by RIHN on the coastal subsurface environments in seven Asia cities revealed that subsurface environmental problems including saltwater intrusion, groundwater contamination and subsurface thermal anomalies occurred one after another depending on the development stage of the cities during the last 100 years. Exchanges of water between ocean and aquifer in the coastal cities depend on driving force from land of natural resources capacities such as groundwater recharge rate, and social changes such as excessive groundwater pumping due to industrialization. Risk assessments and managements for aquifers which are parts of water security have been made for seven Asian coastal cities. On the other hand, submarine groundwater discharge (SGD) into the ocean provides water services directly to the coastal ecosystem through nutrient transports from land to the ocean. Constant geophysical and geochemical conditions served by SGD provide sustainable services to the coastal environment. Flora and fauna which prefer brackish water in the coastal zone depend on not only river water discharge but also SGD. Ocean -aquifer interaction can be found in the coastal ecosystem including sea shell, sea grass and fishes in the coastal zone though SGD. In order to evaluate a coastal security and sustainable environment, not only risk assessments due to disasters but also water services are important, and the both are evaluated in Asian coastal zones.

  18. Estimating the Ground Water Resources of Atoll Islands

    Directory of Open Access Journals (Sweden)

    Arne E. Olsen

    2010-01-01

    Full Text Available Ground water resources of atolls, already minimal due to the small surface area and low elevation of the islands, are also subject to recurring, and sometimes devastating, droughts. As ground water resources become the sole fresh water source when rain catchment supplies are exhausted, it is critical to assess current groundwater resources and predict their depletion during drought conditions. Several published models, both analytical and empirical, are available to estimate the steady-state freshwater lens thickness of small oceanic islands. None fully incorporates unique shallow geologic characteristics of atoll islands, and none incorporates time-dependent processes. In this paper, we provide a review of these models, and then present a simple algebraic model, derived from results of a comprehensive numerical modeling study of steady-state atoll island aquifer dynamics, to predict the ground water response to changes in recharge on atoll islands. The model provides an estimate thickness of the freshwater lens as a function of annual rainfall rate, island width, Thurber Discontinuity depth, upper aquifer hydraulic conductivity, presence or absence of a confining reef flat plate, and in the case of drought, time. Results compare favorably with published atoll island lens thickness observations. The algebraic model is incorporated into a spreadsheet interface for use by island water resources managers.

  19. Ground-penetrating radar insight into a coastal aquifer: the freshwater lens of Borkum Island

    Directory of Open Access Journals (Sweden)

    J. Igel

    2013-02-01

    Full Text Available Freshwater lenses, as important resource for drinking water, are sensitive to climate changes and sea level rise. To simulate this impact on the groundwater systems, hydraulic subsurface models have to be designed. Geophysical techniques can provide information for generating realistic models. The aim of our work is to show how ground-penetrating radar (GPR investigations can contribute to such hydrological simulations. In the pilot area, Borkum island, GPR was used to map the shape of the groundwater table (GWT and to characterise the aquifer.

    In total, 20 km of constant offset (CO profiles were measured with centre frequencies of 80 and 200 MHz. Wave velocities were determined by common midpoint (CMP measurements and vertical radar profiling (VRP in a monitoring well. The 80 MHz CO data show a clear reflection at the groundwater table, whereas the reflection is weaker for the 200 MHz data. After correcting the GPR water tables for the capillary rise, they are in good accordance with the pressure heads of the observation wells in the area. In the centre of the island, the groundwater table is found up to 3.5 m above sea level, however it is lower towards the coastline and marshland. Some local depressions are observed in the region of dune valleys and around pumping stations of the local water supplier. GPR also reveals details within the sediments and highly-permeable aeolian sands can be distinguished from less-permeable marine sediments. Further, a silt loam layer below the water table could be mapped on a large area. The reflection characteristics indicates scattered erosion channels in this layer that cause it to be an aquitard with some leakage.

    GPR provides a high resolution map of the groundwater table and insight into the stratigraphy of the sediments and their hydraulic properties. This is valuable complementary information to the observation of sparsely distributed monitoring wells as input to hydraulic simulation.

  20. U and sr isotopes in ground water and calcite, yucca mountain, nevada: evidence against upwelling water.

    Science.gov (United States)

    Stuckless, J S; Peterman, Z E; Muhs, D R

    1991-10-25

    Hydrogenic calcite and opaline silica deposits in fault zones at Yucca Mountain, Nevada, have created considerable public and scientific controversy because of the possible development of a high-level nuclear waste repository at this location. Strontium and uranium isotopic compositions of hydrogenic materials were used to test whether the veins could have formed by upwelling of deep-seated waters. The vein deposits are isotopically distinct from ground water in the two aquifers that underlie Yucca Mountain, indicating that the calcite could not have precipitated from ground water. The data are consistent with a surficial origin for the hydrogenic deposits.

  1. Hydrogeology and simulation of ground-water flow at Arnold Air Force Base, Coffee and Franklin counties, Tennessee

    Science.gov (United States)

    Haugh, C.J.; Mahoney, E.N.

    1994-01-01

    The U.S. Air Force at Arnold Air Force Base (AAFB), in Coffee and Franklin Counties, Tennessee, is investigating ground-water contamination in selected areas of the base. This report documents the results of a comprehensive investigation of the regional hydrogeology of the AAFB area. Three aquifers within the Highland Rim aquifer system, the shallow aquifer, the Manchester aquifer, and the Fort Payne aquifer, have been identified in the study area. Of these, the Manchester aquifer is the primary source of water for domestic use. Drilling and water- quality data indicate that the Chattanooga Shale is an effective confining unit, isolating the Highland Rim aquifer system from the deeper, upper Central Basin aquifer system. A regional ground-water divide, approximately coinciding with the Duck River-Elk River drainage divide, underlies AAFB and runs from southwest to northeast. The general direction of most ground-water flow is to the north- west or to the northwest or to the southeast from the divide towards tributary streams that drain the area. Recharge estimates range from 4 to 11 inches per year. Digital computer modeling was used to simulate and provide a better understanding of the ground-water flow system. The model indicates that most of the ground-water flow occurs in the shallow and Manchester aquifers. The model was most sensitive to increases in hydraulic conductivity and changes in recharge rates. Particle-tracking analysis from selected sites of ground-water contamination indicates a potential for contami- nants to be transported beyond the boundary of AAFB.

  2. Ground-water geology of Kordofan Province, Sudan

    Science.gov (United States)

    Rodis, Harry G.; Hassan, Abdulla; Wahadan, Lutfi

    1968-01-01

    For much of Kordofan Province, surface-water supplies collected and stored in hafirs, fulas, and tebeldi trees are almost completely appropriated for present needs, and water from wells must serve as the base for future economic and cultural development. This report describes the results of a reconnaissance hydrogeologic investigation of the Province and the nature and distribution of the ground-water resources with respect to their availability for development. Kordofan Province, in central Sudan, lies within the White Nile-Nile River drainage basin. The land surface is largely a plain of low relief; jebels (hills) occur sporadically, and sandy soils are common in most areas except in the south where clayey soils predominate. Seasonal rainfall, ranging from less than 100 millimeters in the north to about 800 millimeters in the south, occurs almost entirely during the summer months, but little runoff ever reaches the Nile or White Nile Rivers. The rocks beneath the surficial depsits (Pleistocene to Recent) in the Province comprise the basement complex (Precambrian), Nawa Series (upper Paleozoic), Nubian Series (Mesozoic), laterite (lower to middle Tertiary), and the Umm Ruwaba Series (Pliocene to Pleistocene). Perennial ground-water supplies in the Province are found chiefly in five hydrologic units, each having distinct geologic or hydrologic characteristics. These units occur in Nubian or Umm Ruwaba strata or both, and the sandstone and conglomerate beds form the :principal aquifers. The water is generally under slight artesian head, and the upper surface of the zone of saturation ranges from about 50 meters to 160 meters below land surface. The surficial deposits and basement rocks are generally poor sources of ground water in most of the Province. Supplies from such sources are commonly temporary and may dissipate entirely during the dry season. Locally, however, perennial supplies are obtained from the surficial deposits and from the basement rocks. Generally

  3. Ground-water flow and the possible effects of remedial actions at J-Field, Aberdeen Proving Ground, Maryland

    Science.gov (United States)

    Hughes, W.B.

    1995-01-01

    J-Field, located in the Edgewood Area of Aberdeen Proving Ground, Md, has been used since World War II to test and dispose of explosives, chemical warfare agents, and industrial chemicals resulting in ground-water, surface-water, and soil contami- nation. The U.S. Geological Survey finite-difference model was used to better understand ground-water flow at the site and to simulate the effects of remedial actions. A surficial aquifer and a confined aquifer were simulated with the model. A confining unit separates these units and is represented by leakance between the layers. The area modeled is 3.65 mi2; the model was constructed with a variably spaced 40 X 38 grid. The horizontal and lower boundaries of the model are all no-flow boundaries. Steady-state conditions were used. Ground water at the areas under investigation flows from disposal pit areas toward discharge areas in adjacent estuaries or wetlands. Simulations indicate that capping disposal areas with an impermeable cover effectively slows advective ground water flow by 0.7 to 0.5 times. Barriers to lateral ground-water flow were simulated and effectively prevented the movement of ground water toward discharge areas. Extraction wells were simulated as a way to contain ground-water contamination and to extract ground water for treatment. Two wells pumping 5 gallons per minute each at the toxic-materials disposal area and a single well pumping 2.5 gallons per minute at the riot-control-agent disposal area effectively contained contamination at these sites. A combi- nation of barriers to horizontal flow east and south of the toxic-materials disposal area, and a single extraction well pumping at 5 gallons per minute can extract contaminated ground water and prevent pumpage of marsh water.

  4. Ground-water resources of Riverton irrigation project area, Wyoming

    Science.gov (United States)

    Morris, Donald Arthur; Hackett, O.M.; Vanlier, K.E.; Moulder, E.A.; Durum, W.H.

    1959-01-01

    of the project, water from domestic use is obtained chiefly from the sandstone beds of the Wind River formation although some is obtained from the alluvium underlying the bottom land and from the unconsolidated deposits underlying the lower terraces along the Wind River. Although adequate quantities if water for domestic use are available from the Wind River formation, there quantities are not considered to be large enough to warrant pumping of ground water for irrigation. Only a few wells are in the nonirrigated part of the area. When this new land is irrigated, a body of ground water will gradually form in the terrace deposits and the alluvial and colluvial-alluvial deposits. Eventually, the terrace deposits may yield adequate quantities of water for domestic and stock use, but only locally are the alluvial and colluvial-alluvial deposits likely to become suitable aquifers. In the Riverton irrigation project area, ground water occurs under water-table conditions near the surface and under artesian conditions in certain strata at both shallow and greater depths. Irrigation is the principal source of recharge to the shallow aquifers; the water level in wells that tap these aquifers fluctuates with irrigation. The depth to water in the shallow wells ranges from less than 1 foot to about 30 feet below the land surface, depending on the season of the year and on the length of time the land has been irrigated. The water level in the wells that tap the deep confined aquifers , which receive recharge indirectly from surface sources, fluctuates only slightly because the recharge and discharge are more constant. In most places the depth to water in wells penetrating the deep confined aquifers is mush greater than that in shallow wells. but in certain low areas water from the deep aquifers flows at the surface from wells. Ground water moves from the area of recharge in the direction of the hydraulic gradient and is discharges either by evapotranspiration; by inflow into

  5. Hydrochemical Regions of the Glacial Aquifer System, Northern United States, and Their Environmental and Water-Quality Characteristics

    Science.gov (United States)

    Arnold, Terri L.; Warner, Kelly L.; Groschen, George E.; Caldwell, James P.; Kalkhoff, Stephen J.

    2008-01-01

    The glacial aquifer system in the United States is a large (953,000 square miles) regional aquifer system of heterogeneous composition. As described in this report, the glacial aquifer system includes all unconsolidated geologic material above bedrock that lies on or north of the line of maximum glacial advance within the United States. Examining ground-water quality on a regional scale indicates that variations in the concentrations of major and minor ions and some trace elements most likely are the result of natural variations in the geologic and physical environment. Study of the glacial aquifer system was designed around a regional framework based on the assumption that two primary characteristics of the aquifer system can affect water quality: intrinsic susceptibility (hydraulic properties) and vulnerability (geochemical properties). The hydrochemical regions described in this report were developed to identify and explain regional spatial variations in ground-water quality in the glacial aquifer system within the hypothetical framework context. Data analyzed for this study were collected from 1991 to 2003 at 1,716 wells open to the glacial aquifer system. Cluster analysis was used to group wells with similar ground-water concentrations of calcium, chloride, fluoride, magnesium, potassium, sodium, sulfate, and bicarbonate into five unique groups. Maximum Likelihood Classification was used to make the extrapolation from clustered groups of wells, defined by points, to areas of similar water quality (hydrochemical regions) defined in a geospatial model. Spatial data that represented average annual precipitation, average annual temperature, land use, land-surface slope, vertical soil permeability, average soil clay content, texture of surficial deposits, type of surficial deposit, and potential for ground-water recharge were used in the Maximum Likelihood Classification to classify the areas so the characteristics of the hydrochemical regions would resemble the

  6. Documentation of the Santa Clara Valley regional ground-water/surface-water flow model, Santa Clara Valley, California

    Science.gov (United States)

    Hanson, R.T.; Li, Zhen; Faunt, C.C.

    2004-01-01

    The Santa Clara Valley is a long, narrow trough extending about 35 miles southeast from the southern end of San Francisco Bay where the regional alluvial-aquifer system has been a major source of water. Intensive agricultural and urban development throughout the 20th century and related ground-water development resulted in ground-water-level declines of more than 200 feet and land subsidence of as much as 12.7 feet between the early 1900s and the mid-1960s. Since the 1960s, Santa Clara Valley Water District has imported surface water to meet growing demands and reduce dependence on ground-water supplies. This importation of water has resulted in a sustained recovery of the ground-water flow system. To help support effective management of the ground-water resources, a regional ground-water/surface-water flow model was developed. This model simulates the flow of ground water and surface water, changes in ground-water storage, and related effects such as land subsidence. A numerical ground-water/surface-water flow model of the Santa Clara Valley subbasin of the Santa Clara Valley was developed as part of a cooperative investigation with the Santa Clara Valley Water District. The model better defines the geohydrologic framework of the regional flow system and better delineates the supply and demand components that affect the inflows to and outflows from the regional ground-water flow system. Development of the model includes revisions to the previous ground-water flow model that upgraded the temporal and spatial discretization, added source-specific inflows and outflows, simulated additional flow features such as land subsidence and multi-aquifer wellbore flow, and extended the period of simulation through September 1999. The transient-state model was calibrated to historical surface-water and ground-water data for the period 197099 and to historical subsidence for the period 198399. The regional ground-water flow system consists of multiple aquifers that are grouped

  7. Vadose zone-attenuated artificial recharge for input to a ground water model.

    Science.gov (United States)

    Nichols, William E; Wurstner, Signe K; Eslinger, Paul W

    2007-01-01

    Accurate representation of artificial recharge is requisite to calibration of a ground water model of an unconfined aquifer for a semiarid or arid site with a vadose zone that imparts significant attenuation of liquid transmission and substantial anthropogenic liquid discharges. Under such circumstances, artificial recharge occurs in response to liquid disposal to the vadose zone in areas that are small relative to the ground water model domain. Natural recharge, in contrast, is spatially variable and occurs over the entire upper boundary of a typical unconfined ground water model. An improved technique for partitioning artificial recharge from simulated total recharge for inclusion in a ground water model is presented. The improved technique is applied using data from the semiarid Hanford Site. From 1944 until the late 1980s, when Hanford's mission was the production of nuclear materials, the quantities of liquid discharged from production facilities to the ground vastly exceeded natural recharge. Nearly all hydraulic head data available for use in calibrating a ground water model at this site were collected during this period or later, when the aquifer was under the diminishing influence of the massive water disposals. The vadose zone is typically 80 to 90 m thick at the Central Plateau where most production facilities were located at this semiarid site, and its attenuation of liquid transmission to the aquifer can be significant. The new technique is shown to improve the representation of artificial recharge and thereby contribute to improvement in the calibration of a site-wide ground water model.

  8. Prediction of Water-level Changes and Water Use in the High Plains Aquifer from Radar Precipitation

    Science.gov (United States)

    Whittemore, D. O.; Butler, J. J., Jr.; Wilson, B. B.

    2015-12-01

    Meteorological conditions are the primary driver of variations in the annual volume of groundwater pumped for irrigation from the High Plains aquifer (HPA), one of the largest aquifers of the world. Correlations between climatic indices (such as the Standardized Precipitation Index [SPI]) and mean annual water-level changes and water use have been shown to be valuable tools for assessing the aquifer's response to various climatic scenarios in the semi-arid Kansas HPA (Whittemore et al., 2015). The correlations are generally better for a relatively large area (region) of the aquifer (such as that encompassed by a climatic division) because of the number of weather stations from which the climatic indices are computed. Correlations can be poor for county-sized and smaller areas (less than a few to several hundred km2) because of the low density of weather stations. Since 2005, radar precipitation data have been served online by the National Weather Service. The radar data are adjusted based on ground observations and are available at a spatial resolution of ~4x4 km. Correlations between radar precipitation and mean annual water-level changes and water use are comparable to those using SPI for the same region. Correlations using radar precipitation data are generally higher than with SPI computed for smaller areas, such as for counties and areas around individual monitoring wells. The optimum correlations for radar precipitation are determined using sums of different spans of monthly mean precipitation that include the irrigation season for the area of interest. Coefficients of determination, R2, for radar precipitation versus annual water-level change and water use can exceed 0.8 for counties and monitoring well areas in the Kansas HPA. These correlations are being used to assess the impact of drought and water-use management on HPA sustainability. These correlations can also be used to assess the quality of the reported water-use data.

  9. General database for ground water site information.

    Science.gov (United States)

    de Dreuzy, Jean-Raynald; Bodin, Jacques; Le Grand, Hervé; Davy, Philippe; Boulanger, Damien; Battais, Annick; Bour, Olivier; Gouze, Philippe; Porel, Gilles

    2006-01-01

    In most cases, analysis and modeling of flow and transport dynamics in ground water systems require long-term, high-quality, and multisource data sets. This paper discusses the structure of a multisite database (the H+ database) developed within the scope of the ERO program (French Environmental Research Observatory, http://www.ore.fr). The database provides an interface between field experimentalists and modelers, which can be used on a daily basis. The database structure enables the storage of a large number of data and data types collected from a given site or multiple-site network. The database is well suited to the integration, backup, and retrieval of data for flow and transport modeling in heterogeneous aquifers. It relies on the definition of standards and uses a templated structure, such that any type of geolocalized data obtained from wells, hydrological stations, and meteorological stations can be handled. New types of platforms other than wells, hydrological stations, and meteorological stations, and new types of experiments and/or parameters could easily be added without modifying the database structure. Thus, we propose that the database structure could be used as a template for designing databases for complex sites. An example application is the H+ database, which gathers data collected from a network of hydrogeological sites associated with the French Environmental Research Observatory.

  10. An appraisal of ground water for irrigation in the Appleton area, west-central Minnesota

    Science.gov (United States)

    Larson, Steven P.

    1976-01-01

    Supplemental irrigation of well-drained sandy soils has prompted an evaluation of ground water in the Appleton area. Glacial drift aquifers are the largest source of ground water. The surficial outwash sand and gravel is the most readily available and the most areally extensive drift aquifer, and it underlies much of the sandy soil area. Saturated thickness of the outwash is more than 80 feet (24 m) in places, and potential well yields may exceed 1,200 gal/min (76 1/s) in some areas. In about 17 percent of the area, yields of more than 300 gal/min (19 1/s) are obtainable.

  11. An overview of experiences of basin artificial recharge of ground water in Japan

    Science.gov (United States)

    Hida, Noboru

    In this paper, the author reviews the present situation of basin artificial recharge of ground water (MAR: managed aquifer recharge) as of 2007 in Japan. Most of the artificial recharge of basin method is carried out using alluvial fans. The enhancing groundwater resources in the Rokugo alluvial aquifer has resulted in sustainability for the groundwater environment, especially in the distal fan. As a general judgment, the basin artificial recharge contributes to sustainable aquifer management in alluvium. As a result of this review, the basin artificial recharge will be utilized more in the future, not only in Japan, but in monsoon Asian countries as well.

  12. Results of ground-water, surface-water, and water-chemistry monitoring, Black Mesa area, northeastern Arizona, 1994

    Science.gov (United States)

    Littin, G.R.; Monroe, S.A.

    1995-01-01

    The Black Mesa monitoring program is designed to document long-term effects of ground-water pumping from the N aquifer by industrial and municipal users. The N aquifer is the major source of water in the 5,400-square-mile Black Mesa area, and the ground water occurs under confined and unconfined conditions. Monitoring activities include continuous and periodic measurements of (1) ground-water pumpage from the confined and unconfined areas of the aquifer, (2) ground-water levels in the confined and unconfined areas of the aquifer, (3) surface-water discharge, and (4) chemistry of the ground water and surface water. In 1994, ground-water withdrawals for industrial and municipal use totaled about 7,000 acre-feet, which is an 8-percent increase from the previous year. Pumpage from the confined part of the aquifer increased by about 9 percent to 5,400 acre-feet, and pumpage from the unconfined part of the aquifer increased by about 2 percent to 1,600 acre-feet. Water-level declines in the confined area during 1994 were recorded in 10 of 16 wells, and the median change was a decline of about 2.3 feet as opposed to a decline of 3.3 feet for the previous year. The median change in water levels in the unconfined area was a rise of 0.1 foot in 1994 as opposed to a decline of 0.5 foot in 1993. Measured low-flow discharge along Moenkopi Wash decreased from 3.0 cubic feet per second in 1993 to 2.9 cubic feet per second in 1994. Eleven low-flow measurements were made along Laguna Creek between Tsegi, Arizona, and Chinle Wash to determine the amount of discharge that would occur as seepage from the N aquifer under optimal base-flow conditions. Discharge was 5.6 cubic feet per second near Tsegi and 1.5 cubic feet per second above the confluence with Chinle Wash. Maximum discharge was 5.9 cubic feet per second about 4 miles upstream from Dennehotso. Discharge was measured at three springs. The changes in discharge at Burro and Whisky Springs were small and within the uncertainty of

  13. Availability, Sustainability, and Suitability of Ground Water, Rogers Mesa, Delta County, Colorado - Types of Analyses and Data for Use in Subdivision Water-Supply Reports

    Science.gov (United States)

    Watts, Kenneth R.

    2008-01-01

    The population of Delta County, Colorado, like that in much of the Western United States, is forecast to increase substantially in the next few decades. A substantial portion of the increased population likely will reside in rural subdivisions and use residential wells for domestic water supplies. In Colorado, a subdivision developer is required to submit a water-supply plan through the county for approval by the Colorado Division of Water Resources. If the water supply is to be provided by wells, the water-supply plan must include a water-supply report. The water-supply report demonstrates the availability, sustainability, and suitability of the water supply for the proposed subdivision. During 2006, the U.S. Geological Survey, in cooperation with Delta County, Colorado, began a study to develop criteria that the Delta County Land Use Department can use to evaluate water-supply reports for proposed subdivisions. A table was prepared that lists the types of analyses and data that may be needed in a water-supply report for a water-supply plan that proposes the use of ground water. A preliminary analysis of the availability, sustainability, and suitability of the ground-water resources of Rogers Mesa, Delta County, Colorado, was prepared for a hypothetical subdivision to demonstrate hydrologic analyses and data that may be needed for water-supply reports for proposed subdivisions. Rogers Mesa is a 12-square-mile upland mesa located along the north side of the North Fork Gunnison River about 15 miles east of Delta, Colorado. The principal land use on Rogers Mesa is irrigated agriculture, with about 5,651 acres of irrigated cropland, grass pasture, and orchards. The principal source of irrigation water is surface water diverted from the North Fork Gunnison River and Leroux Creek. The estimated area of platted subdivisions on or partially on Rogers Mesa in 2007 was about 4,792 acres of which about 2,756 acres was irrigated land in 2000. The principal aquifer on Rogers

  14. Review: Thermal water resources in carbonate rock aquifers

    Science.gov (United States)

    Goldscheider, Nico; Mádl-Szőnyi, Judit; Erőss, Anita; Schill, Eva

    2010-09-01

    The current knowledge on thermal water resources in carbonate rock aquifers is presented in this review, which also discusses geochemical processes that create reservoir porosity and different types of utilisations of these resources such as thermal baths, geothermal energy and carbon dioxide (CO2) sequestration. Carbonate aquifers probably constitute the most important thermal water resources outside of volcanic areas. Several processes contribute to the creation of porosity, summarised under the term hypogenic (or hypogene) speleogenesis, including retrograde calcite solubility, mixing corrosion induced by cross-formational flow, and dissolution by geogenic acids from deep sources. Thermal and mineral waters from karst aquifers supply spas all over the world such as the famous bath in Budapest, Hungary. Geothermal installations use these resources for electricity production, district heating or other purposes, with low CO2 emissions and land consumption, e.g. Germany’s largest geothermal power plant at Unterhaching near Munich. Regional fault and fracture zones are often the most productive zones, but are sometimes difficult to locate, resulting in a relatively high exploration uncertainty. Geothermal installations in deep carbonate rocks could also be used for CO2 sequestration (carbonate dissolution would partly neutralise this gas and increase reservoir porosity). The use of geothermal installations to this end should be further investigated.

  15. Predevelopment Water-Level Contours for Aquifers in the Rainier Mesa and Shoshone Mountain area of the Nevada Test Site, Nye County, Nevada

    Science.gov (United States)

    Fenelon, Joseph M.; Laczniak, Randell J.; Halford, Keith J.

    2008-01-01

    Contaminants introduced into the subsurface of the Nevada Test Site at Rainier Mesa and Shoshone Mountain by underground nuclear testing are of concern to the U.S. Department of Energy and regulators responsible for protecting human health and safety. Although contaminants were introduced into low-permeability rocks above the regional flow system, the potential for contaminant movement away from the underground test areas and into the accessible environment is greatest by ground-water transport. The primary hydrologic control on this transport is evaluated and examined through a series of contour maps developed to represent the water-level distribution within each of the major aquifers underlying the area. Aquifers were identified and their extents delineated by merging and analyzing multiple hydrostratigraphic framework models developed by other investigators from existing geologic information. The contoured water-level distribution in each major aquifer was developed from a detailed evaluation and assessment of available water-level measurements. Multiple spreadsheets that accompany this report provide pertinent water-level and geologic data by well or drill hole. Aquifers are mapped, presented, and discussed in general terms as being one of three aquifer types?volcanic aquifer, upper carbonate aquifer, or lower carbonate aquifer. Each of these aquifer types was subdivided and mapped as independent continuous and isolated aquifers, based on the continuity of its component rock. Ground-water flow directions, as related to the transport of test-generated contaminants, were developed from water-level contours and are presented and discussed for each of the continuous aquifers. Contoured water-level altitudes vary across the study area and range from more than 5,000 feet in the volcanic aquifer beneath a recharge area in the northern part of the study area to less than 2,450 feet in the lower carbonate aquifer in the southern part of the study area. Variations in

  16. Predevelopment Water-Level Contours for Aquifers in the Rainier Mesa and Shoshone Mountain area of the Nevada Test Site, Nye County, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Joseph M. Fenelon; Randell J. Laczniak; and Keith J. Halford

    2008-06-24

    Contaminants introduced into the subsurface of the Nevada Test Site at Rainier Mesa and Shoshone Mountain by underground nuclear testing are of concern to the U.S. Department of Energy and regulators responsible for protecting human health and safety. Although contaminants were introduced into low-permeability rocks above the regional flow system, the potential for contaminant movement away from the underground test areas and into the accessible environment is greatest by ground-water transport. The primary hydrologic control on this transport is evaluated and examined through a series of contour maps developed to represent the water-level distribution within each of the major aquifers underlying the area. Aquifers were identified and their extents delineated by merging and analyzing multiple hydrostratigraphic framework models developed by other investigators from existing geologic information. The contoured water-level distribution in each major aquifer was developed from a detailed evaluation and assessment of available water-level measurements. Multiple spreadsheets that accompany this report provide pertinent water-level and geologic data by well or drill hole. Aquifers are mapped, presented, and discussed in general terms as being one of three aquifer types—volcanic aquifer, upper carbonate aquifer, or lower carbonate aquifer. Each of these aquifer types was subdivided and mapped as independent continuous and isolated aquifers, based on the continuity of its component rock. Ground-water flow directions, as related to the transport of test-generated contaminants, were developed from water-level contours and are presented and discussed for each of the continuous aquifers. Contoured water-level altitudes vary across the study area and range from more than 5,000 feet in the volcanic aquifer beneath a recharge area in the northern part of the study area to less than 2,450 feet in the lower carbonate aquifer in the southern part of the study area. Variations in

  17. Artificial sweeteners as waste water markers in a shallow unconfined aquifer

    Science.gov (United States)

    Bichler, Andrea; Muellegger, Christian; Hofmann, Thilo

    2013-04-01

    One key factor in groundwater quality management is the knowledge of flow paths and recharge. In coupled ground- and surface water systems the understanding of infiltration processes is therefore of paramount importance. Recent studies show that artificial sweeteners - which are used as sugar substitutes in food and beverages - are suitable tracers for domestic wastewater in the aquatic environment. As most rivers receive sewage discharges, artificial sweeteners might be used for tracking surface waters in groundwater. In this study artificial sweeteners are used in combination with conventional tracers (inert anions Cl-, SO42-, stable water isotopes δ18O, δ2H) to identify river water infiltration and the influence of waste water on a shallow unconfined aquifer used for drinking water production. The investigation area is situated in a mesoscale alpine head water catchment. The alluvial aquifer consists of quaternary gravel deposits and is characterized by high hydraulic permeability (kfmax 5 x 10-2 ms-1), high flow velocities (vmax 250 md-1) and a considerable productivity (2,5 m3s-1). A losing stream follows the aquifer in close proximity and is susceptible to infiltrate substantial volumes of water into the alluvial sediments. Water sampling campaigns in March and July 2012 confirmed the occurrence of artificial sweeteners (Acesulfam ACE, Sucralose SUC, Saccharin SAC and Cyclamat CYC) at the investigated site. The local sewage treatment plant was identified as point source of artificial sweeteners in the river water, with ACE concentrations up to 0,6 μgL-1. ACE concentrations in groundwater where approximately of one order of magnitude lower: ACE was present in 33 out of 40 sampled groundwater wells with concentrations up to 0,07 μgL-1, thus indicating considerable influence of sewage water loaded surface water throughout the aquifer. Elevated concentrations of ACE and SAC in single observation wells denote other sources of locally limited contamination

  18. Ground-water quality and geochemistry in Dayton, Stagecoach, and Churchill Valleys, western Nevada

    Science.gov (United States)

    Thomas, James M.; Lawrence, Stephen J.

    1994-01-01

    The U.S. Geological Survey investigated the quality of ground water in the Dayton, Stagecoach, and Churchill Valleys as part of the Carson River Basin National Water-Quality Assessment (NAWQA) pilot study. Four aquifer systems have been de- lineated in the study area. Principal aquifers are unconsolidated deposits at altitudes of less than 4,900 feet above sea level and more than 50 feet below land surface. Shallow aquifers are at altitudes of less than 4,900 feet and less than 50 feet below land surface. Upland aquifers are above 4,900 feet and provide recharge to the principal aquifers. Thermal aquifers, defined as those having a water temperature greater than 30 degrees Celsius, are also present. Ground water used in Dayton, Stagecoach, and Churchill Valleys is pumped from principal aquifers in unconsolidated basin-fill deposits. Ground water in these aquifers originates as precipitation in the adjacent mountains and is recharged by the Carson River and by underflow from adjacent upstream valleys. Ground-water flow is generally parallel to the direction of surface-water flow in the Carson River. Ground water is discharged by pumping, evapo- transpiration, and underflow into the Carson River. The results of geochemical modeling indicate that as ground water moves from upland aquifers in mountainous recharge areas to principal aquifers in basin-fill deposits, the following processes probably occur: (1) plagioclase feldspar, sodium chloride, gypsum (or pyrite), potassium feldspar, and biotite dissolve; (2) calcite precipitates; (3) kaolinite forms; (4) small amounts of calcium and magnesium in the water exchange for potassium on aquifer minerals; and (5) carbon dioxide is gained or lost. The geochemical models are consistent with (1) phases identified in basin- fill sediments; (2) chemical activity of major cations and silica; (3) saturation indices of calcite and amorphous silica; (4) phase relations for aluminosilicate minerals indicated by activity diagrams; and

  19. Prediction of ground water pollution in karst aquifer with conduit based on GMS simulation in Chongzuo of Guangxi%利用GMS模拟预测崇左市拟建稀土分离项目影响区岩溶水污染

    Institute of Scientific and Technical Information of China (English)

    洪淑娜; 蓝俊康; 陈丽娜; 夏源

    2014-01-01

    In order to predict the karst ground water polluted by a REE separation project in Chongzuo,GMS software was used to simulate the migration of contaminants in various kinds of sewage leaking emergencies. The simulation results showed that as the migration of contaminants in the aquifer was very slow,there was a certain distance from the seepage point to the pipes of north side,and the pollution plume was roughly round. The analysis shows that the the migration of contaminants can be classified as molecular diffusion.The slow mi-gration of polluted ground water was caused by the slow flow of the ground water in rock matrix on the leaking site and the polluted ground water could not immediately flow into karst conduits.The untreated sewage can form a high concentration of the pollution plume and pollute the karst ground water seriously.%为了预测稀土分离项目在生产过程中可能对当地地下水环境造成的污染状况,运用GMS软件模拟在各类污水泄漏突发事件时污染物在岩溶含水系统中的运移。模拟结果表明:影响区域内地下水在以裂隙-孔隙控制的岩体介质内的运动速度十分缓慢,污水渗漏点离北侧的岩溶管道还有一定的距离,污水从入渗点下渗后因未能很快流入岩溶管道,污染物在岩体介质中的运移主要以分子扩散为主,其污染晕大致呈圆形向四周扩散;未经处理的污水若发生泄露下渗,将会在含水层内形成浓度较高的污染晕,引起地下水严重污染。

  20. Ground-water resources of Catron County, New Mexico

    Science.gov (United States)

    Basabilvazo, G.T.

    1997-01-01

    This report describes the occurrence, availability, and quality of ground-water and related surface-water resources in Catron County, the largest county in New Mexico. The county is located in the Lower Colorado River Basin and the Rio Grande Basin, and the Continental Divide is the boundary between the two river basins. Increases in water used for mining activities (coal, mineral, and geothermal), irrigated agriculture, reservoir construction, or domestic purposes could affect the quantity or quality of ground- water and surface-water resources in the county. Parts of seven major drainage basins are within the two regional river basins in the county--Carrizo Wash, North Plains, Rio Salado, San Agustin, Alamosa Creek, Gila, and San Francisco Basins. The San Francisco, Gila, and Tularosa Rivers typically flow perennially. During periods of low flow, most streamflow is derived from baseflow. The stream channels of the Rio Salado and Carrizo Wash Basins are commonly perennial in their upper reaches and ephemeral in their lower reaches. Largo Creek in the Carrizo Wash Basin is perennial downstream from Quemado Lake and ephemeral in the lower reaches. Aquifers in Catron County include Quaternary alluvium and bolson fill; Quaternary to Tertiary Gila Conglomerate; Tertiary Bearwallow Mountain Andesite, Datil Group, and Baca Formation; Cretaceous Mesaverde Group, Crevasse Canyon Formation, Gallup Sandstone, Mancos Shale, and Dakota Sandstone; Triassic Chinle Formation; and undifferentiated rocks of Permian age. Water in the aquifers in the county generally is unconfined; however, confined conditions may exist where the aquifers are overlain by other units of lower permeability. Yields of ground water from the Quaternary alluvium in the county range from 1 to 375 gallons per minute. Yields of ground water from the alluvium in the Carrizo Wash Basin are as much as 250 gallons per minute for short time periods. North of the Plains of San Agustin, ground-water yields from the

  1. Identifying of ground water level by using geoelectric method in Karanganyar, Central Java, Indonesia

    Science.gov (United States)

    Koesuma, S.; Sulastoro

    2016-11-01

    This study aims to determine ground water level in Karanganyar regency, Central Java Province, Indonesia. Karanganyar regency is located in west flank of Lawu volcano, the third highest volcano in Central Java Province. Karanganyar lays from the top submit of Lawu volcano to down town of city with altitude 3265 m to 88 m. Same as other mountain area, Karanganyar has a lot of ground water potential. We use geoelectric method to finds out how deep of ground water level. The survey locations are distributed surround Karanganyar regency which contain 22 sites, in period survey of 2013 - 2015. Schlumberger configuration is used for acqusition data with lenght of current electrode distance varies from 1 m to 700 m. The result shows that ground water level are located in depth from 50 meter to 150 meter with lithology of tuff and sand. In Munggur and Kedung Jeruk sites, we found two potential aquifers, which are shallow and deep aquifers.

  2. Death Valley regional ground-water flow system, Nevada and California -- hydrogeologic framework and transient ground-water flow model

    Science.gov (United States)

    : Belcher, Wayne R.

    2004-01-01

    provided by acquiring additional data, by reevaluating existing data using current technology and concepts, and by refining earlier interpretations to reflect the current understanding of the regional ground-water flow system. Ground-water flow in the Death Valley region is composed of several interconnected, complex ground-water flow systems. Ground-water flow occurs in three subregions in relatively shallow and localized flow paths that are superimposed on deeper, regional flow paths. Regional ground-water flow is predominantly through a thick Paleozoic carbonate rock sequence affected by complex geologic structures from regional faulting and fracturing that can enhance or impede flow. Spring flow and evapotranspiration (ET) are the dominant natural ground-water discharge processes. Ground water also is withdrawn for agricultural, commercial, and domestic uses. Ground-water flow in the DVRFS was simulated using MODFLOW-2000, a 3D finite-difference modular ground-water flow modeling code that incorporates a nonlinear least-squares regression technique to estimate aquifer parameters. The DVRFS model has 16 layers of defined thickness, a finite-difference grid consisting of 194 rows and 160 columns, and uniform cells 1,500 m on each side. Prepumping conditions (before 1913) were used as the initial conditions for the transient-state calibration. The model uses annual stress periods with discrete recharge and discharge components. Recharge occurs mostly from infiltration of precipitation and runoff on high mountain ranges and from a small amount of underflow from adjacent basins. Discharge occurs primarily through ET and spring discharge (both simulated as drains) and water withdrawal by pumping and, to a lesser amount, by underflow to adjacent basins, also simulated by drains. All parameter values estimated by the regression are reasonable and within the range of expected values. The simulated hydraulic heads of the final calibrated transient model gener

  3. Vertical Gradients in Water Chemistry and Age in the Southern High Plains Aquifer, Texas, 2002

    Science.gov (United States)

    McMahon, P.B.; Böhlke, J.K.; Lehman, T.M.

    2004-01-01

    The southern High Plains aquifer is the primary source of water used for domestic, industrial, and irrigation purposes in parts of New Mexico and Texas. Despite the aquifer's importance to the overall economy of the southern High Plains, fundamental ground-water characteristics, such as vertical gradients in water chemistry and age, remain poorly defined. As part of the U.S. Geological Survey's National Water-Quality Assessment Program, water samples from nested, short-screen monitoring wells installed in the southern High Plains aquifer at two locations (Castro and Hale Counties, Texas) were analyzed for field parameters, major ions, nutrients, trace elements, dissolved organic carbon, pesticides, stable and radioactive isotopes, and dissolved gases to evaluate vertical gradients in water chemistry and age in the aquifer. Tritium measurements indicate that recent (post-1953) recharge was present near the water table and that deeper water was recharged before 1953. Concentrations of dissolved oxygen were largest (2.6 to 5.6 milligrams per liter) at the water table and decreased with depth below the water table. The smallest concentrations were less than 0.5 milligram per liter. The largest major-ion concentrations generally were detected at the water table because of the effects of overlying agricultural activities, as indicated by postbomb tritium concentrations and elevated nitrate and pesticide concentrations at the water table. Below the zone of agricultural influence, major-ion concentrations exhibited small increases with depth and distance along flow paths because of rock/water interactions and mixing with water from the underlying aquifer in rocks of Cretaceous age. The concentration increases primarily were accounted for by dissolved sodium, bicarbonate, chloride, and sulfate. Nitrite plus nitrate concentrations at the water table were 2.0 to 6.1 milligrams per liter as nitrogen, and concentrations substantially decreased with depth in the aquifer to a

  4. Use of a ground-water flow model with particle tracking to evaluate ground-water vulnerability, Clark County, Washington

    Science.gov (United States)

    Snyder, D.T.; Wilkinson, J.M.; Orzol, L.L.

    1996-01-01

    A ground-water flow model was used in conjunction with particle tracking to evaluate ground-water vulnerability in Clark County, Washington. Using the particle-tracking program, particles were placed in every cell of the flow model (about 60,000 particles) and tracked backwards in time and space upgradient along flow paths to their recharge points. A new computer program was developed that interfaces the results from a particle-tracking program with a geographic information system (GIS). The GIS was used to display and analyze the particle-tracking results. Ground-water vulnerability was evaluated by selecting parts of the ground-water flow system and combining the results with ancillary information stored in the GIS to determine recharge areas, characteristics of recharge areas, downgradient impact of land use at recharge areas, and age of ground water. Maps of the recharge areas for each hydrogeologic unit illustrate the presence of local, intermediate, or regional ground-water flow systems and emphasize the three-dimensional nature of the ground-water flow system in Clark County. Maps of the recharge points for each hydrogeologic unit were overlaid with maps depicting aquifer sensitivity as determined by DRASTIC (a measure of the pollution potential of ground water, based on the intrinsic characteristics of the near-surface unsaturated and saturated zones) and recharge from on-site waste-disposal systems. A large number of recharge areas were identified, particularly in southern Clark County, that have a high aquifer sensitivity, coincide with areas of recharge from on-site waste-disposal systems, or both. Using the GIS, the characteristics of the recharge areas were related to the downgradient parts of the ground-water system that will eventually receive flow that has recharged through these areas. The aquifer sensitivity, as indicated by DRASTIC, of the recharge areas for downgradient parts of the flow system was mapped for each hydrogeologic unit. A number of

  5. Dynamics of flood water infiltration and ground water recharge in hyperarid desert.

    Science.gov (United States)

    Dahan, Ofer; Tatarsky, Boaz; Enzel, Yehouda; Kulls, Christoph; Seely, Mary; Benito, Gererdo

    2008-01-01

    A study on flood water infiltration and ground water recharge of a shallow alluvial aquifer was conducted in the hyperarid section of the Kuiseb River, Namibia. The study site was selected to represent a typical desert ephemeral river. An instrumental setup allowed, for the first time, continuous monitoring of infiltration during a flood event through the channel bed and the entire vadose zone. The monitoring system included flexible time domain reflectometry probes that were designed to measure the temporal variation in vadose zone water content and instruments to concurrently measure the levels of flood and ground water. A sequence of five individual floods was monitored during the rainy season in early summer 2006. These newly generated data served to elucidate the dynamics of flood water infiltration. Each flood initiated an infiltration event which was expressed in wetting of the vadose zone followed by a measurable rise in the water table. The data enabled a direct calculation of the infiltration fluxes by various independent methods. The floods varied in their stages, peaks, and initial water contents. However, all floods produced very similar flux rates, suggesting that the recharge rates are less affected by the flood stages but rather controlled by flow duration and available aquifer storage under it. Large floods flood the stream channel terraces and promote the larger transmission losses. These, however, make only a negligible contribution to the recharge of the ground water. It is the flood duration within the active streambed, which may increase with flood magnitude that is important to the recharge process.

  6. Impacts of Irrigation and Drought on Salem Ground Water

    Directory of Open Access Journals (Sweden)

    T. Subramani

    2014-06-01

    Full Text Available This investigation is the first of three phases of a ground-water management study. In this report, effects of irrigation and drought on the ground-water resources of Salem are examined. Irrigation water use for five soil types is estimated from a monthly water budget model on the basis of precipitation and temperature data from the last 30 years at selected weather stations across Salem. Moisture deficits are computed for each soil type on the basis of the water requirements of a corn crop. It is assumed that irrigation is used to make up the moisture deficit in those places where irrigation systems already exist. Irrigation water use from each township with irrigated acreage is added to municipal and industrial ground-water use data and then compared to aquifer potential yields. The spatial analysis is accomplished with a statewide geographic information system. An important distinction is made between the seasonal effects of irrigation water use and the annual or long-term effects.

  7. A Microbiological Water Quality Evaluation of Ganges River Deltaic Aquifers

    Science.gov (United States)

    Yerby, C. J.; Gragg, S. E.; Page, J.; Leavens, J.; Bhattacharya, P.; Harrington, J.; Datta, S.

    2014-12-01

    Substantial natural contamination from trace elements (like arsenic) and pathogens make Ganges Deltaic aquifers an area of utmost concern. Following millions of cases of chronic arsenic poisoning from the groundwaters of the region, numerous residents are still knowingly ingesting water from shallow to intermediate accessible depth drinking water wells. Added to the calamity of arsenic is the prevalence of pathogenic bacteria in these waters. The increasing frequency of gastroenteritis signifies the need to quantify the magnitude and extensiveness of health degrading agents--bacterial pathogens (i.e. Salmonella) and non-pathogens (i.e. Enterobacteriaceae) --within the water supply in accessible Gangetic aquifers. To assess the dissolved microbiological quality in the region, present study sampling locations are along defined piezometer nests in an area in SE Asia (Bangladesh). Every nest contains samples from wells at varying depths covering shallow to deep aquifers. To date, 17 of the 76 water samples were analyzed for Salmonella, generic Escherichia coli (E. coli) and coliforms. Briefly, samples were plated in duplicate onto E. coli/Coliform petrifilm and incubated at 370C for 48 hours. Next, each sample was enriched in buffered peptone water and incubated at 370C for 18 hours. Bacterial DNA was extracted and amplified using a qPCR machine. Amplification plots were analyzed to determine presence/absence of microorganisms. All water samples (n=~76) are analyzed for Salmonella, Escherichia coli O157:H7, Listeria spp. and Shigella. Pathogen populations of PCR-positive water samples are enumerated using the agar direct plate method. Non-pathogenic bacterial indicator organisms (i.e. Enterobacteriaceae) will also be enumerated. Over the course of the experiment, we hypothesize that shallower wells will 1)have a higher pathogen prevalence and 2)harbor pathogens and nonpathogens at higher concentrations. While the 17 samples analyzed to date were negative for Salmonella

  8. Water-quality assessment of part of the Upper Mississippi River Basin, Minnesota and Wisconsin - Ground-water quality in an agricultural area of Sherburne County, Minnesota, 1998

    Science.gov (United States)

    Ruhl, James F.; Fong, Alison L.; Hanson, Paul E.; Andrews, William J.

    2000-01-01

    The quality of shallow ground water in a 75-mi2 agricultural area of the Anoka Sand Plain aquifer in central Minnesota is described as part of the National Water Quality Assessment (NAWQA) Program - a national-scale assessment of the quality of water resources within large study units in various hydrologic settings. Data were collected during 1998 from 29 wells completed in the aquifer, which predominantly consists of surficial glacial sand and gravel sediments.

  9. Lithologic and ground-water-quality data collected using Hoverprobe drilling techniques at the West Branch Canal Creek wetland, Aberdeen Proving Ground, Maryland, April-May 2000

    Science.gov (United States)

    Phelan, Daniel J.; Senus, Michael P.; Olsen, Lisa D.

    2001-01-01

    This report presents lithologic and groundwater- quality data collected during April and May 2000 in the remote areas of the tidal wetland of West Branch Canal Creek, Aberdeen Proving Ground, Maryland. Contamination of the Canal Creek aquifer with volatile organic compounds has been documented in previous investigations of the area. This study was conducted to investigate areas that were previously inaccessible because of deep mud and shallow water, and to support ongoing investigations of the fate and transport of volatile organic compounds in the Canal Creek aquifer. A unique vibracore drill rig mounted on a hovercraft was used for drilling and groundwater sampling. Continuous cores of the wetland sediment and of the Canal Creek aquifer were collected at five sites. Attempts to sample ground water were made by use of a continuous profiler at 12 sites, without well installation, at a total of 81 depths within the aquifer. Of those 81 attempts, only 34 sampling depths produced enough water to collect samples. Ground-water samples from two sites had the highest concentrations of volatile organic compounds?with total volatile organic compound concentrations in the upper part of the aquifer ranging from about 15,000 to 50,000 micrograms per liter. Ground-water samples from five sites had much lower total volatile organic compound concentrations (95 to 2,100 micrograms per liter), whereas two sites were essentially not contaminated, with total volatile organic compound concentrations less than or equal to 5 micrograms per liter.

  10. Ground-water resources in the Hood Basin, Oregon

    Science.gov (United States)

    Grady, Stephen J.

    1983-01-01

    The Hood Basin, an area of 1,035 square miles in north-central Oregon, includes the drainage basins of all tributaries of the Columbia River between Eagle Creek and Fifteenmile Creek. The physical characteristics and climate of the basin are diverse. The Wasco subarea, in the eastern half of the basin, has moderate relief, mostly intermittent streams, and semiarid climate. The Hood subarea, in the western half, has rugged topography, numerous perennial streams, and a humid climate.Water-bearing geologic units that underlie the basin include volcanic, volcaniclastic, and sedimentary rocks of Miocene to Holocene age, and unconsolidated surficial deposits of Pleistocene and Holocene age. The most important water-bearing unit, the Columbia River Basalt Group, underlies almost the entire basin. Total thickness probably exceeds 2,000 feet, but by 1980 only the upper 1,000 feet or less had been developed by wells. Wells in this unit generally yield from 15 to 1,000 gallons per minute and a few yield as much as 3,300 gallons per minute.The most productive aquifer in the Columbia River Basalt Group is The Dalles Ground Water Reservoir, a permeable zone of fractured basalt about 25 to 30 square miles in extent that underlies the city of The Dalles. During the late 1950's and mid-1960's, withdrawals of 15,000 acre-feet per year or more caused water levels in the aquifer to decline sharply. Pumpage had diminished to about 5,000 acre-feet per year in 1979 and water levels have stabilized, indicating that ground water recharge and discharge, including the pumping, are in balance.The other principal geologic units in the basin have more limited areal distribution and less saturated thickness than the Columbia River Basalt Group. Generally, these units are capable of yielding from a few to a hundred gallons per minute to wells.Most of the ground water in the basin is chemically suitable for domestic, irrigation, or other uses. Some ground water has objectionable concentrations of

  11. Managed Aquifer Recharge Using Treated Wastewater: An Option to Manage a Coastal Aquifer In Oman For Better Domestic Water Supply

    Science.gov (United States)

    Al-Maktoumi, Ali; Zekri, Slim; ElRawy, Mustafa

    2016-04-01

    Arid countries, such as the Sultanate of Oman, are facing challenges of water shortages threatening economic development and social stability. Most of those countries are vulnerable to the potential adverse impacts of climate change, the most significant of which are increased average temperatures, less and more erratic precipitation, sea level rise, and desertification. The combined effect of existing adverse conditions and likely impacts of future climate change will make water management even more difficult than what it is today. Tremendous efforts have been devoted to augment the water resources. Managed Aquifer Recharge (MAR) is practiced widely to store water during periods of surpluses and withdraw during deficits from an aquifer. In Muscat, there will be a surplus of >100,000 m3/day of TWW during winter months in the coming few years. The aquifer along the northern coast of Oman (Al-Khawd Aquifer) is conducive for MAR. Data show that TWW volumes will increase from 7.6 Mm3 in 2003 to 70.9 Mm3 in 2035 in Muscat city only. This study assesses, using MODFLOW 2005 numerical code, the impact of MAR using TWW on better management of the Al-Khawd unconfined coastal aquifer for better urban water supply. Specifically, aiming to maximize withdrawals from the domestic wells with minimize adverse effect of seawater intrusion. The model operates under a number of constrains that minimize the loss to the sea and the injected TWW must not migrates upstream (due to developed mound) and reach the wellfields used for domestic supply. The hypothetical injection wells are located downstream the domestic wellfield zone. The results of different managerial scenarios show that MAR produces a hydraulic barrier that decelerates the seawater intrusion which allows higher abstraction of pristine water from the upstream part of the aquifer. MAR along with redistribution/relocation of public wells allows abstraction of 2 times the current abstraction rate (around 6 Mm3/year to 12 Mm3

  12. Ground-water appraisal of the Fishkill-Beacon area, Dutchess County, New York

    Science.gov (United States)

    Snavely, Deborah S.

    1980-01-01

    The most productive aquifers in the Fishkill-Beacon area, Dutchess County, N.Y., are the sand and gravel beds in the northeast corner of the area and along the valleys of Fishkill and Clove Creeks. The average yield of these aquifers to wells is 190 gal/min (gallons per minute). The most productive bedrock aquifer is limestone, which yields an average of about 150 gal/min. Shale and granite each yield an average of less than 35 gal/min. About 4 billion gallons of available ground water is estimated to be in storage in the sand and gravel aquifers in the area. The area withdraws an average of 3.3 Mgal/d (million gallons per day) of water in June, July, and August and 2 Mgal/d during the remainder of the year. (USGS)

  13. Exchanges of Water between the Upper Floridan Aquifer and the Lower Suwannee and Lower Santa Fe Rivers, Florida

    Science.gov (United States)

    Grubbs, J.W.; Crandall, C.A.

    2007-01-01

    Exchanges of water between the Upper Floridan aquifer and the Lower Suwannee River were evaluated using historic and current hydrologic data from the Lower Suwannee River Basin and adjacent areas that contribute ground-water flow to the lowest 76 miles of the Suwannee River and the lowest 28 miles of the Santa Fe River. These and other data were also used to develop a computer model that simulated the movement of water in the aquifer and river, and surface- and ground-water exchanges between these systems over a range of hydrologic conditions and a set of hypothetical water-use scenarios. Long-term data indicate that at least 15 percent of the average annual flow in the Suwannee River near Wilcox (at river mile 36) is derived from ground-water discharge to the Lower Suwannee and Lower Santa Fe Rivers. Model simulations of ground-water flow to this reach during water years 1998 and 1999 were similar to these model-independent estimates and indicated that ground-water discharge accounted for about 12 percent of the flow in the Lower Suwannee River during this time period. The simulated average ground-water discharge to the Lower Suwannee River downstream from the mouth of the Santa Fe River was about 2,000 cubic feet per second during water years 1998 and 1999. Simulated monthly average ground-water discharge rates to this reach ranged from about 1,500 to 3,200 cubic feet per second. These temporal variations in ground-water discharge were associated with climatic phenomena, including periods of strong influence by El Ni?o-associated flooding, and La Ni?a-associated drought. These variations showed a relatively consistent pattern in which the lowest rates of ground-water inflow occurred during periods of peak flood levels (when river levels rose faster than ground-water levels) and after periods of extended droughts (when ground-water storage was depleted). Conversely, the highest rates of ground-water inflow typically occurred during periods of receding levels that

  14. Pesticides in Ground Water of the Maryland Coastal Plain

    Science.gov (United States)

    Denver, Judith M.; Ator, Scott W.

    2006-01-01

    Shore, where urban land is more common. Use of dieldrin was suspended in 1987, but this compound is relatively persistent in the environment, and several decades are typically required for ground water to move completely through the surficial aquifer. U.S. Department of the Interior U.S. Geological Survey USGS Fact Sheet FS 2006-3119 2006 Location of the Maryland Coastal Plain.

  15. The quality of our Nation's waters: water quality in the Upper Floridan aquifer and overlying surficial aquifers, southeastern United States, 1993-2010

    Science.gov (United States)

    Berndt, Marian P.; Katz, Brian G.; Kingsbury, James A.; Crandall, Christy A.

    2015-01-01

    About 10 million people rely on groundwater from the Upper Floridan and surficial aquifers for drinking water. The Upper Floridan aquifer also is of primary importance to the region as a source of water for irrigation and as a source of crystal clear water that discharges to springs and streams providing recreational and tourist destinations and unique aquatic habitats. The reliance of the region on the Upper Floridan aquifer for drinking water and for the tourism and agricultural economies highlights the importance of long-term management to sustain the availability and quality of these resources.

  16. Preliminary hydrogeologic assessment of a ground-water contamination area in Wolcott, Connecticut

    Science.gov (United States)

    Stone, J.R.; Casey, G.D.; Mondazzi, R.A.; Frick, T.W.

    1997-01-01

    Contamination of ground water by volatile organic compounds and inorganic constituents has been identified at a number of industrial sites in the Town of Wolcott, Connecticut. Contamination is also present at a municipal landfill in the City of Waterbury that is upgradient from the industrial sites in the local ground-water-flow system. The study area, which lies in the Western Highlands of Connecticut, is in the Mad River Valley, a tributary to the Naugatuck River. Geohydrologic units (aquifer materials) include unconsolidated glacial sediments (surficial materials) and fractured crystalline (metamorphic) bedrock. Surficial materials include glacial till, coarse-grained andfine-grained glacial stratified deposits, and postglacial floodplain alluvium and swamp deposits. The ground-water-flow system in the surficial aquifer is complex because the hydraulic properties of the surficial materials are highly variable. In the bedrock aquifer, ground water moves exclusively through fractures. Hydrologic characteristics of the crystalline bedrock-degree of confinement, hydraulic conductivity, storativity, and porosity-are poorly defined in the study area. Further study is needed to adequately assess ground-water flow and contaminant migration under current or past hydrologic conditions. All known water-supply wells in the study area obtain water from the bedrock aquifer. Twenty households in a hillside residential area on Tosun Road currently obtain drinking water from private wells tapping the bedrock aquifer. The extent of contamination in the bedrock aquifer and the potential for future contamination from known sources of contamination in the surficial aquifer is of concern to regulatory agencies. Previous investigations have identified ground-water contamination by volatile organic compounds at the Nutmeg Valley Road site area. Contamination has been associated with on-site disposal of heavy metals, chlorinated and non-chlorinated volatile organic compounds, and

  17. Regional nitrate and pesticide trends in ground water in the eastern San Joaquin Valley, California.

    Science.gov (United States)

    Burow, Karen R; Shelton, Jennifer L; Dubrovsky, Neil M

    2008-01-01

    Protection of ground water for present and future use requires monitoring and understanding of the mechanisms controlling long-term quality of ground water. In this study, spatial and temporal trends in concentrations of nitrate and pesticides in ground water in the eastern San Joaquin Valley, California, were evaluated to determine the long-term effects of agricultural and urban development on regional ground-water quality. Trends in concentrations of nitrate, the nematocide 1,2-dibromo-3-chloropropane, and the herbicide simazine during the last two decades are generally consistent with known nitrogen fertilizer and pesticide use and with the position of the well networks in the regional ground-water flow system. Concentrations of nitrate and pesticides are higher in the shallow part of the aquifer system where domestic wells are typically screened, whereas concentrations are lower in the deep part of the aquifer system where public-supply wells are typically screened. Attenuation processes do not seem to significantly affect concentrations. Historical data indicate that concentrations of nitrate have increased since the 1950s in the shallow and deep parts of the aquifer system. Concentrations of nitrate and detection of pesticides in the deep part of the aquifer system will likely increase as the proportion of highly affected water contributed to these wells increases with time. Because of the time of travel between the water table and the deep part of the aquifer system, current concentrations in public-supply wells likely reflect the effects of 40- to 50-yr-old management practices.

  18. Regional nitrate and pesticide trends in ground water in the eastern San Joaquin Valley, California

    Science.gov (United States)

    Burow, K.R.; Shelton, James L.; Dubrovsky, N.M.

    2008-01-01

    Protection of ground water for present and future use requires monitoring and understanding of the mechanisms controlling long-term quality of ground water. In this study, spatial and temporal trends in concentrations of nitrate and pesticides in ground water in the eastern San Joaquin Valley, California, were evaluated to determine the long-term effects of agricultural and urban development on regional ground-water quality. Trends in concentrations of nitrate, the nematocide 1,2-dibromo-3-chloropropane, and the herbicide simazine during the last two decades are generally consistent with known nitrogen fertilizer and pesticide use and with the position of the well networks in the regional ground-water flow system. Concentrations of nitrate and pesticides are higher in the shallow part of the aquifer system where domestic wells are typically screened, whereas concentrations are lower in the deep part of the aquifer system where public-supply wells are typically screened. Attenuation processes do not seem to significantly affect concentrations. Historical data indicate that concentrations of nitrate have increased since the 1950s in the shallow and deep parts of the aquifer system. Concentrations of nitrate and detection of pesticides in the deep part of the aquifer system will likely increase as the proportion of highly affected water contributed to these wells increases with time. Because of the time of travel between the water table and the deep part of the aquifer system, current concentrations in public-supply wells likely reflect the effects of 40- to 50-yr-old management practices. Copyright ?? 2008 by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America. All rights reserved.

  19. Evaluation of geohydrologic framework, recharge estimates and ground-water flow of the Joshua Tree area, San Bernardino County, California

    Science.gov (United States)

    Nishikawa, Tracy; Izbicki, John A.; Hevesi, Joseph A.; Stamos, Christina L.; Martin, Peter

    2005-01-01

    Ground water historically has been the sole source of water supply for the community of Joshua Tree in the Joshua Tree ground-water subbasin of the Morongo ground-water basin in the southern Mojave Desert. The Joshua Basin Water District (JBWD) supplies water to the community from the underlying Joshua Tree ground-water subbasin. The JBWD is concerned with the long-term sustainability of the underlying aquifer. To help meet future demands, the JBWD plans to construct production wells in the adjacent Copper Mountain ground-water subbasin. As growth continues in the desert, there may be a need to import water to supplement the available ground-water resources. In order to manage the ground-water resources and to identify future mitigating measures, a thorough understanding of the ground-water system is needed. The purpose of this study was threefold: (1) improve the understanding of the geohydrologic framework of the Joshua Tree and Copper Mountain ground-water subbasins, (2) determine the distribution and quantity of recharge using field and numerical techniques, and (3) develop a ground-water flow model that can be used to help manage the water resources of the region. The geohydrologic framework was refined by collecting and interpreting water-level and water-quality data, geologic and electric logs, and gravity data. The water-bearing deposits in the Joshua Tree and Copper Mountain ground-water subbasins are Quarternary alluvial deposits and Tertiary sedimentary and volcanic deposits. The Quarternary alluvial deposits were divided into two aquifers (referred to as the 'upper' and the 'middle' alluvial aquifers), which are about 600 feet (ft) thick, and the Tertiary sedimentary and volcanic deposits were assigned to a single aquifer (referred to as the 'lower' aquifer), which is as thick as 1,500 ft. The ground-water quality of the Joshua Tree and Copper Mountain ground-water subbasins was defined by collecting 53 ground-water samples from 15 wells (10 in the

  20. ANALYSIS OF DISSOLVED METHANE, ETHANE, AND ETHYLENE IN GROUND WATER BY A STANDARD GAS CHROMATOGRAPHIC TECHNIQUE

    Science.gov (United States)

    The measurement of dissolved gases such as methane, ethane, and ethylene in ground water is important in determining whether intrinsic bioremediation is occurring in a fuel- or solvent-contaminated aquifer. A simple procedure is described for the collection and subsequent analys...

  1. ANALYSIS OF DISSOLVED METHANE, ETHANE, AND ETHYLENE IN GROUND WATER BY A STANDARD GAS CHROMATOGRAPHIC TECHNIQUE

    Science.gov (United States)

    The measurement of dissolved gases such as methane, ethane, and ethylene in ground water is important in determining whether intrinsic bioremediation is occurring in a fuel- or solvent-contaminated aquifer. A simple procedure is described for the collection and subsequent analys...

  2. Water-table contours, directions of ground-water movement, and measurements of inflow to American Falls Reservoir, Southeastern Idaho, April 1984

    Science.gov (United States)

    Young, H.W.

    1984-01-01

    In 1978 the U.S. Geological Survey began a 5-year study of the High Plains regional aquifer system to provide hydrologic information for evaluating the effects of long-term development of the aquifer and to develop a capability for predicting aquifer response to alternative changes in ground-water management. By use of a digital model, this report presents a quantitative description of the High Plains aquifer in Oklahoma. The High Plains aquifer consists predominantly of the Tertiary Ogallala Formation and overlying Quaternary alluvium and terrace deposits which are hydraulically connected to the High Plains aquifer. Much of the aquifer is underlain by formations of Permian through Cretaceous age, which generally have very small hydraulic conductivities. In some areas parts of underlying Triassic, Jurassic, or Cretaceous rocks are hydraulically connected with the aquifer. The High Plains aquifer is a water-table aquifer in which water moves generally to the east-southeast. Before the beginning of extensive irrigation of the 1960's, the aquifer was essentially in dynamic equilibrium with recharge from precipitation balanced by natural discharge from the aquifer. Ground-water discharge appeared in streams leaving the area or was returned to the atmosphere through evapotranspiration. Accurate records of irrigation pumpage are not available from the High Plains. In order to estimate irrigation pumpage, published records of crop distribution were used and a consumptive use was assigned to each principal irrigated crop. This method gave an estimated irrigation demand. Pumpage was taken as a percentage of the total irrigation demand. Irrigation has decreased ground-water discharge from the High Plains aquifer. Ground-water discharge was estimated as approximately 118 cubic feet per second in 1980. A finite-difference digital model was used to simulate flow in the High Plains aquifer. The recharge was adjusted so that 1980 ground-water discharge was 118 cubic feet per

  3. A Study of the Connection Among Basin-Fill Aquifers, Carbonate-Rock Aquifers, and Surface-Water Resources in Southern Snake Valley, Nevada

    Science.gov (United States)

    ,

    2008-01-01

    The Secretary of the Interior through the Southern Nevada Public Lands Management Act approved funding for research to improve understanding of hydrologic systems that sustain numerous water-dependent ecosystems on Federal lands in Snake Valley, Nevada. Some of the streams and spring-discharge areas in and adjacent to Great Basin National Park have been identified as susceptible to ground-water withdrawals (Elliott and others, 2006) and research has shown a high potential for ground-water flow from southern Spring Valley into southern Snake Valley through carbonate rocks that outcrop along a low topographic divide known as the Limestone Hills (Welch and others, 2007). Comprehensive geologic, hydrologic, and chemical information will be collected and analyzed to assess the hydraulic connection between basin-fill aquifers and surface-water resources, water-dependent ecological features, and the regional carbonate-rock aquifer, the known source of many high-discharge springs. Understanding these connections is important because proposed projects to pump and export ground water from Spring and Snake Valleys in Nevada may result in unintended capture of water currently supplying springs, streams, wetlands, limestone caves, and other biologically sensitive areas (fig. 1). The methods that will be used in this study may be transferable to other areas in the Great Basin. The National Park Service, Bureau of Land Management, U.S. Fish and Wildlife Service, and U.S. Forest Service submitted the proposal for funding this research to facilitate science-based land management. Scientists from the U.S. Geological Survey (USGS) Water Resources and Geologic Disciplines, and the University of Nevada, Reno, will accomplish four research elements through comprehensive data collection and analysis that are concentrated in two distinct areas on the eastern and southern flanks of the Snake Range (fig. 2). The projected time line for this research is from July 2008 through September 2011.

  4. 78 FR 19261 - Safe Drinking Water Act Sole Source Aquifer Program; Designation of Bainbridge Island, Washington...

    Science.gov (United States)

    2013-03-29

    ... AGENCY Safe Drinking Water Act Sole Source Aquifer Program; Designation of Bainbridge Island, Washington.... SUMMARY: Notice is hereby given that pursuant to Section 1424(e) of the Safe Drinking Water Act, the... Aquifer System located in Kitsap County, Washington is the sole or principle source of drinking water...

  5. Water-level conditions in the confined aquifers of the New Jersey Coastal Plain, 2008

    Science.gov (United States)

    Depaul, Vincent T.; Rosman, Robert

    2015-01-01

    Groundwater-level altitudes in 10 confined aquifers of the New Jersey Coastal Plain were measured and evaluated to provide an overview of regional groundwater conditions during fall 2008. Water levels were measured in more than 900 wells in New Jersey, eastern Pennsylvania, and northern Delaware and potentiometric surface maps prepared for the confined Cohansey aquifer of Cape May County, the Rio Grande water-bearing zone, the Atlantic City 800-foot sand, the Piney Point, Vincentown, and the Wenonah-Mount Laurel aquifers, the Englishtown aquifer system, and the Upper, Middle, and Lower aquifers of the Potomac-Raritan-Magothy aquifer system. In 2008, the highest water-level altitudes were observed in the Vincentown aquifer (median, 78 ft) and the lowest in the Atlantic City 800-foot sand (median, -45 ft). Persistent, regionally extensive cones of depression were present within the potentiometric surfaces of the Englishtown aquifer system in east-central New Jersey, the Wenonah-Mount Laurel aquifer in east-central and southern New Jersey, the Upper, Middle, and Lower Potomac-Raritan-Magothy aquifers in southern New Jersey, and the Atlantic City 800-foot sand in the southeastern part of the State. Cones of depression in the potentiometric surfaces of the Upper Potomac-Raritan-Magothy and the Piney Point aquifers in east-central and southwestern New Jersey had broadened and deepened since 2003.

  6. Geology and ground-water resources of Richardson County, Nebraska

    Science.gov (United States)

    Emery, Philip A.

    1964-01-01

    Richardson County is in the extreme southeast corner of Nebraska. It has an area of 545 square miles, and in 1960 it had a population of 13,903. The county is in the physiographic region referred to as the Dissected Loess-covered Till Prairies. Major drainage consists of the Big Nemaha River, including its North and South Forks, and Muddy Creek. These streams flow southeastward and empty into the Missouri River, which forms the eastern boundary of the county. The climate of Richardson County is subhumid; the normal annual precipitation is about 35 inches. Agriculture is the chief industry, and corn is the principal crop. Pleistocene glacial drift, loess, and alluvial deposits mantle the bedrock except in the southern and southwestern parts of the county where the bedrock is at the surface. Ground water is obtained from glacial till, fluvioglacial material, terrace deposits, and coarse alluvial deposits, all of Pleistocene age--and some is obtained from bedrock aquifers of Pennsylvanian and Permian age. Adequate supplies of ground water are in many places difficult to locate because the water-bearing sands and gravels of Pleistocene age vary in composition and lack lateral persistence. Perched water tables are common in the upland areas and provide limited amounts of water to many of the shallow wells, Very few wells in bedrock yield adequate supplies, as the permeability of the rock is low and water that is more than a few tens of feet below the bedrock surface is highly mineralized. Recharge is primarily from local precipitation, and water levels in many wells respond rapidly to increased or decreased precipitation. The quality of the ground water is generally satisfactory for most uses, although all the water is hard, and iron and manganese concentrations, in some areas, are relatively high. Ground water is used mainly for domestic and stock purposes.

  7. Ground water stratification and delivery of nitrate to an incised stream under varying flow conditions.

    Science.gov (United States)

    Böhlke, J K; O'Connell, Michael E; Prestegaard, Karen L

    2007-01-01

    Ground water processes affecting seasonal variations of surface water nitrate concentrations were investigated in an incised first-order stream in an agricultural watershed with a riparian forest in the coastal plain of Maryland. Aquifer characteristics including sediment stratigraphy, geochemistry, and hydraulic properties were examined in combination with chemical and isotopic analyses of ground water, macropore discharge, and stream water. The ground water flow system exhibits vertical stratification of hydraulic properties and redox conditions, with sub-horizontal boundaries that extend beneath the field and adjacent riparian forest. Below the minimum water table position, ground water age gradients indicate low recharge rates (2-5 cm yr(-1)) and long residence times (years to decades), whereas the transient ground water wedge between the maximum and minimum water table positions has a relatively short residence time (months to years), partly because of an upward increase in hydraulic conductivity. Oxygen reduction and denitrification in recharging ground waters are coupled with pyrite oxidation near the minimum water table elevation in a mottled weathering zone in Tertiary marine glauconitic sediments. The incised stream had high nitrate concentrations during high flow conditions when much of the ground water was transmitted rapidly across the riparian zone in a shallow oxic aquifer wedge with abundant outflow macropores, and low nitrate concentrations during low flow conditions when the oxic wedge was smaller and stream discharge was dominated by upwelling from the deeper denitrified parts of the aquifer. Results from this and similar studies illustrate the importance of near-stream geomorphology and subsurface geology as controls of riparian zone function and delivery of nitrate to streams in agricultural watersheds.

  8. Groundwater, surface-water, and water-chemistry data from C-aquifer monitoring program, northeastern Arizona, 2005-11

    Science.gov (United States)

    Brown, Christopher R.; Macy, Jamie P.

    2012-01-01

    The C aquifer is a regionally extensive multiple-aquifer system supplying water for municipal, agricultural, and industrial use in northeastern Arizona, northwestern New Mexico, and southeastern Utah. An increase in groundwater withdrawals from the C aquifer coupled with ongoing drought conditions in the study area increase the potential for drawdown within the aquifer. A decrease in the water table and potentiometric surface of C aquifer is illustrated locally by the drying up of Obed Meadows, a natural peat deposit, and Hugo Meadows, a natural wetland, both south of Joseph City, Arizona. Continual increase in water use from the C aquifer, including a planned increase in pumpage by the City of Flagstaff, is justification for continued monitoring of the C-aquifer system in order to quantify physical and chemical responses to pumping stresses.

  9. Fracture control of ground water flow and water chemistry in a rock aquitard.

    Science.gov (United States)

    Eaton, Timothy T; Anderson, Mary P; Bradbury, Kenneth R

    2007-01-01

    There are few studies on the hydrogeology of sedimentary rock aquitards although they are important controls in regional ground water flow systems. We formulate and test a three-dimensional (3D) conceptual model of ground water flow and hydrochemistry in a fractured sedimentary rock aquitard to show that flow dynamics within the aquitard are more complex than previously believed. Similar conceptual models, based on regional observations and recently emerging principles of mechanical stratigraphy in heterogeneous sedimentary rocks, have previously been applied only to aquifers, but we show that they are potentially applicable to aquitards. The major elements of this conceptual model, which is based on detailed information from two sites in the Maquoketa Formation in southeastern Wisconsin, include orders of magnitude contrast between hydraulic diffusivity (K/S(s)) of fractured zones and relatively intact aquitard rock matrix, laterally extensive bedding-plane fracture zones extending over distances of over 10 km, very low vertical hydraulic conductivity of thick shale-rich intervals of the aquitard, and a vertical hydraulic head profile controlled by a lateral boundary at the aquitard subcrop, where numerous surface water bodies dominate the shallow aquifer system. Results from a 3D numerical flow model based on this conceptual model are consistent with field observations, which did not fit the typical conceptual model of strictly vertical flow through an aquitard. The 3D flow through an aquitard has implications for predicting ground water flow and for planning and protecting water supplies.

  10. GROUND WATER CONTAMINATION POTENTIAL FROM STORMWATER INFILTRATION

    Science.gov (United States)

    Prior to urbanization, ground water recharge resulted from infiltration of precipitation through pervious surfaces, including grasslands and woods. This infiltration water was relatively uncontaminated. With urbanization, the permeable soil surface area through which recharge by...

  11. Policy and Economics of Managed Aquifer Recharge and Water Banking

    Directory of Open Access Journals (Sweden)

    Sharon B. Megdal

    2015-02-01

    Full Text Available Managed Aquifer Recharge (MAR and water banking are of increasing importance to water resources management. MAR can be used to buffer against drought and changing or variable climate, as well as provide water to meet demand growth, by making use of excess surface water supplies and recycled waters. Along with hydrologic and geologic considerations, economic and policy analyses are essential to a complete analysis of MAR and water banking opportunities. The papers included in this Special Issue fill a gap in the literature by revealing the range of economic and policy considerations relevant to the development and implementation of MAR programs. They illustrate novel techniques that can be used to select MAR locations and the importance and economic viability of MAR in semi-arid to arid environments. The studies explain how MAR can be utilized to meet municipal and agricultural water demands in water-scarce regions, as well as assist in the reuse of wastewater. Some papers demonstrate how stakeholder engagement, ranging from consideration of alternatives to monitoring, and multi-disciplinary analyses to support decision-making are of high value to development and implementation of MAR programs. The approaches discussed in this collection of papers, along with the complementary and necessary hydrologic and geologic analyses, provide important inputs to water resource managers.

  12. Questa baseline and pre-mining ground-water quality investigation. 5. Well installation, water-level data, and surface- and ground-water geochemistry in the Straight Creek drainage basin, Red River Valley, New Mexico, 2001-03

    Science.gov (United States)

    Naus, Cheryl A.; McCleskey, R. Blaine; Nordstrom, D. Kirk; Donohoe, Lisa C.; Hunt, Andrew G.; Paillet, Frederick L.; Morin, Roger H.; Verplanck, Philip L.

    2005-01-01

    selected samplings. One set of ground-water samples was collected for helium-3/tritium and chlorofluorocarbon (CFC) age dating. Several lines of evidence indicate that surface water is the primary input to the Straight Creek ground-water system. Straight Creek streamflow and water levels in wells closest to the apex of the Straight Creek debris fan and closest to Straight Creek itself appear to respond to the same seasonal inputs. Oxygen and hydrogen isotopic compositions in Straight Creek surface water and ground water are similar, and concentrations of most dissolved constituents in most Straight Creek surface-water and shallow (debris-flow and alluvial) aquifer ground-water samples correlate strongly with sulfate (concentrations decrease linearly with sulfate in a downgradient direction). After infiltration of surface water, dilution along the flow path is the dominant mechanism controlling ground-water chemistry. However, concentrations of some constituents can be higher in ground water than can be accounted for by concentrations in Straight Creek surface water, and additional sources of these constituents must therefore be inferred. Constituents for which concentrations in ground water can be high relative to surface water include calcium, magnesium, strontium, silica, sodium, and potassium in ground water from debris-flow and alluvial aquifers and manganese, calcium, magnesium, strontium, sodium, and potassium in ground water from the bedrock aquifer. All ground water is a calcium sulfate type, often at or near gypsum saturation because of abundant gypsum in the aquifer material developed from co-existing calcite and pyrite mineralization. Calcite dissolution, the major buffering mechanism for bedrock aquifer ground water, also contributes to relatively higher calcium concentrations in some ground water. The main source of the second most abundant cation, magnesium, is probably dissolution of magnesium-rich carbonates or silicates. Strontium may also be

  13. Areal studies aid protection of ground-water quality in Illinois, Indiana, and Wisconsin

    Science.gov (United States)

    Mills, Patrick C.; Kay, Robert T.; Brown, Timothy A.; Yeskis, Douglas J.

    1999-01-01

    In 1991, the U.S. Geological Survey, in cooperation with the U.S. Environmental Protection Agency, initiated studies designed to characterize the ground-water quality and hydrogeology in northern Illinois, and southern and eastern Wisconsin (with a focus on the north-central Illinois cities of Belvidere and Rockford, and the Calumet region of northeastern Illinois and northwestern Indiana). These areas are considered especially susceptible to ground-water contamination because of the high density of industrial and waste-disposal sites and the shallow depth to the unconsolidated sand and gravel aquifers and the fractured, carbonate bedrock aquifers that underlie the areas. The data and conceptual models of ground-water flow and contaminant distribution and movement developed as part of the studies have allowed Federal, State, and local agencies to better manage, protect, and restore the water supplies of the areas. Water-quality, hydrologic, geologic, and geophysical data collected as part of these areal studies indicate that industrial contaminants are present locally in the aquifers underlying the areas. Most of the contaminants, particularly those at concentrations that exceeded regulatory water-quality levels, were detected in the sand and gravel aquifers near industrial or waste-disposal sites. In water from water-supply wells, the contaminants that were present generally were at concentrations below regulatory levels. The organic compounds detected most frequently at concentrations near or above regulatory levels varied by area. Trichloroethene, tetrachloroethene, and 1,1,1-trichloroethane (volatile chlorinated compounds) were most prevalent in north-central Illinois; benzene (a petroleum-related compound) was most prevalent in the Calumet region. Differences in the type of organic compounds that were detected in each area likely reflect differences in the types of industrial sites that predominate in the areas. Nickel and aluminum were the trace metals

  14. Hydrogeology and simulation of regional ground-water-level declines in Monroe County, Michigan

    Science.gov (United States)

    Reeves, Howard W.; Wright, Kirsten V.; Nicholas, J.R.

    2004-01-01

    Observed ground-water-level declines from 1991 to 2003 in northern Monroe County, Michigan, are consistent with increased ground-water demands in the region. In 1991, the estimated ground-water use in the county was 20 million gallons per day, and 80 percent of this total was from quarry dewatering. In 2001, the estimated ground-water use in the county was 30 million gallons per day, and 75 percent of this total was from quarry dewatering. Prior to approximately 1990, the ground-water demands were met by capturing natural discharge from the area and by inducing leakage through glacial deposits that cover the bedrock aquifer. Increased ground-water demand after 1990 led to declines in ground-water level as the system moves toward a new steady-state. Much of the available natural discharge from the bedrock aquifer had been captured by the 1991 conditions, and the response to additional withdrawals resulted in the observed widespread decline in water levels. The causes of the observed declines were explored through the use of a regional ground-water-flow model. The model area includes portions of Lenawee, Monroe, Washtenaw, and Wayne Counties in Michigan, and portions of Fulton, Henry, and Lucas Counties in Ohio. Factors, including lowered water-table elevations because of below average precipitation during the time period (1991 - 2001) and reduction in water supply to the bedrock aquifer because of land-use changes, were found to affect the regional system, but these factors did not explain the regional decline. Potential ground-water capture for the bedrock aquifer in Monroe County is limited by the low hydraulic conductivity of the overlying glacial deposits and shales and the presence of dense saline water within the bedrock as it dips into the Michigan Basin to the west and north of the county. Hydrogeologic features of the bedrock and the overlying glacial deposits were included in the model design. An important step of characterizing the bedrock aquifer was the

  15. Nitrate reduction during ground-water recharge, Southern High Plains, Texas

    Science.gov (United States)

    Fryar, Alan E.; Macko, Stephen A.; Mullican, William F., III; Romanak, Katherine D.; Bennett, Philip C.

    2000-01-01

    In arid and semi-arid environments, artificial recharge or reuse of wastewater may be desirable for water conservation, but NO 3- contamination of underlying aquifers can result. On the semi-arid Southern High Plains (USA), industrial wastewater, sewage, and feedlot runoff have been retained in dozens of playas, depressions that focus recharge to the regionally important High Plains (Ogallala) aquifer. Analyses of ground water, playa-basin core extracts, and soil gas in an 860-km 2 area of Texas suggest that reduction during recharge limits NO 3- loading to ground water. Tritium and Cl - concentrations in ground water corroborate prior findings of focused recharge through playas and ditches. Typical δ15N values in ground water (>12.5‰) and correlations between δ15N and ln CNO -3-N suggest denitrification, but O 2 concentrations ≥3.24 mg l -1 indicate that NO 3- reduction in ground water is unlikely. The presence of denitrifying and NO 3--respiring bacteria in cores, typical soil-gas δ15N values water can still exceed drinking-water standards, as observed in the vicinity of one playa that received wastewater. Therefore, continued ground-water monitoring in the vicinity of other such basins is warranted.

  16. Geotechnics - the key to ground water protection

    DEFF Research Database (Denmark)

    Baumann, Jens; Foged, Niels; Jørgensen, Peter

    2000-01-01

    During the past 5 to 10 years research into ground water protection has proved that fractures in clay till may increase the hydraulic conductivity and herby the vulnerability of the ground water considerably. However, research has not identified a non-expensive and efficient method to map...

  17. Procedures for ground-water investigations

    Energy Technology Data Exchange (ETDEWEB)

    1992-12-01

    This manual was developed by the Pacific Northwest Laboratory (PNL) to document the procedures used to carry out and control the technical aspects of ground-water investigations at the PNL. Ground-water monitoring procedures are developed and used in accordance with the PNL Quality Assurance Program.

  18. Ground water flow in a desert basin: challenges of simulating transport of dissolved chromium.

    Science.gov (United States)

    Andrews, Charles B; Neville, Christopher J

    2003-01-01

    A large chromium plume that evolved from chromium releases in a valley near the Mojave River was studied to understand the processes controlling fate and migration of chromium in ground water and used as a tracer to study the dynamics of a basin and range ground water system. The valley that was studied is naturally arid with high evapotranspiration such that essentially no precipitation infiltrates to the water table. The dominant natural hydrogeologic processes are recharge to the ground water system from the Mojave River during the infrequent episodes when there is flow in the river, and ground water flow toward a playa lake where the ground water evaporates. Agricultural pumping in the valley from the mid-1930s to the 1970s significantly altered ground water flow conditions by decreasing water levels in the valley by more than 20 m. This pumping declined significantly as a result of dewatering of the aquifer, and water levels have since recovered modestly. The ground water system was modeled using MODFLOW, and chromium transport was simulated using MT3D. Several innovative modifications were made to these modeling programs to simulate important processes in this ground water system. Modifications to MODFLOW include developing a new well package that estimates pumping rates from irrigation wells at each time step based on available drawdown. MT3D was modified to account for mass trapped above the water table when the water table declines beneath nonirrigated areas and to redistribute mass to the system when water levels rise.

  19. Characterising Bedrock Aquifer Systems in Korea Using Paired Water-Level Monitoring Data

    Directory of Open Access Journals (Sweden)

    Jae Min Lee

    2017-06-01

    Full Text Available This study focused on characterising aquifer systems based on water-level changes observed systematically at 159 paired groundwater monitoring wells throughout Korea. Using spectral analysis, principal component analysis (PCA, and cross-correlation analysis with linear regression, aquifer conditions were identified from the comparison of water-level changes in shallow alluvial and deep bedrock monitoring wells. The spectral analysis could identify the aquifer conditions (i.e., unconfined, semi-confined and confined of 58.5% of bedrock wells and 42.8% of alluvial wells: 93 and 68 wells out of 159 wells, respectively. Even among the bedrock wells, 50 wells (53.7% exhibited characteristics of the unconfined condition, implying significant vulnerability of the aquifer to contaminants from the land surface and shallow depths. It appears to be better approach for deep bedrock aquifers than shallow alluvial aquifers. However, significant portions of the water-level changes remained unclear for categorising aquifer conditions due to disturbances in data continuity. For different aquifer conditions, PCA could show typical pattern and factor scores of principal components. Principal component 1 due to wet-and-dry seasonal changes and water-level response time was dominant covering about 55% of total variances of each aquifer conditions, implying the usefulness of supplementary method of aquifer characterisation. Cross-correlation and time-lag analysis in the water-level responses to precipitations clearly show how the water levels in shallow and deep wells correspond in time scale. No significant differences in time-lags was found between shallow and deep wells. However, clear time-lags were found to be increasing from unconfined to confined conditions: from 1.47 to 2.75 days and from 1.78 to 2.75 days for both shallow alluvial and deep bedrock wells, respectively. In combination of various statistical methods, three types of water-level fluctuation

  20. Geology and ground-water resources of Goshen County, Wyoming; Chemical quality of the ground water

    Science.gov (United States)

    Rapp, J.R.; Visher, F.N.; Littleton, R.T.; Durum, W.H.

    1957-01-01

    siltstone, ranges in thickness from a knife edge to about 450 feet and yields water to domestic and stock wells from fractures and from lenses of sandstone. The Arikaree formation ranges in thickness from a knife edge to about 1,000 feet, and yields water to several domestic and stock wells in the northwestern part of the area. The Pliocene channel deposits, which probably do not exceed 25 feet in thickness, are not a source of water for wells in Goshen County. The upland deposits, which are mainly of Pleistocene age, generally are dry and do not serve as aquifers; however, test drilling revealed several deep, buried channels occupied by deposits which probably would yield moderate quantities of water to wells if a sufficient saturated thickness were penetrate The deposits of the third terrace, which are of Pleistocene age, range in thickness from a knife edge to about 210 feet and yield water to a large number of irrigation wells in the area. The flood-plain deposits, which are of Pleistocene and Recent age, range in thickness from a knife edge to about 200 feet. Those in the valley of the North Platte River yield abundant water to many large supply wells. The flood-plain deposits along the valley of Rawhide Creek consist mainly of fine-grained materials and yield large supplies of water to well only in the lower stretches of the creek valley near its confluence with the valley of the North Platte River. The deposits along the valleys of Horse and Bear Creeks generally are relatively thin and fine grained. In the vicinity of Ls grange, however, the deposits, which are about 45 feet thick, yield moderate, supplies of water to several irrigation wells. Other Recent deposits in the area--dune sand, loesslike deposits, and slope wash--generally are fine grained and relatively thin and, hence, are not important sources of ground water. The unconsolidated sand and gravel of the flood-plain and terrace deposits are the principal aquifers in the area. In some places

  1. Water resources management in karst aquifers - concepts and modeling approaches

    Science.gov (United States)

    Sauter, M.; Schmidt, S.; Abusaada, M.; Reimann, T.; Liedl, R.; Kordilla, J.; Geyer, T.

    2011-12-01

    Water resources management schemes generally imply the availability of a spectrum of various sources of water with a variability of quantity and quality in space and time, and the availability and suitability of storage facilities to cover various demands of water consumers on quantity and quality. Aquifers are generally regarded as suitable reservoirs since large volumes of water can be stored in the subsurface, water is protected from contamination and evaporation and the underground passage assists in the removal of at least some groundwater contaminants. Favorable aquifer properties include high vertical hydraulic conductivities for infiltration, large storage coefficients and not too large hydraulic gradients / conductivities. The latter factors determine the degree of discharge, i.e. loss of groundwater. Considering the above criteria, fractured and karstified aquifers appear to not really fulfill the respective conditions for storage reservoirs. Although infiltration capacity is relatively high, due to low storativity and high hydraulic conductivities, the small quantity of water stored is rapidly discharged. However, for a number of specific conditions, even karst aquifers are suitable for groundwater management schemes. They can be subdivided into active and passive management strategies. Active management options include strategies such as overpumping, i.e. the depletion of the karst water resources below the spring outflow level, the construction of subsurface dams to prevent rapid discharge. Passive management options include the optimal use of the discharging groundwater under natural discharge conditions. System models that include the superposition of the effect of the different compartments soil zone, epikarst, vadose and phreatic zone assist in the optimal usage of the available groundwater resources, while taking into account the different water reservoirs. The elaboration and implementation of groundwater protection schemes employing well

  2. Hanford site ground water protection management plan

    Energy Technology Data Exchange (ETDEWEB)

    1994-10-01

    Ground water protection at the Hanford Site consists of preventative and remedial measures that are implemented in compliance with a variety of environmental regulations at local, state, and federal levels. These measures seek to ensure that the resource can sustain a broad range of beneficial uses. To effectively coordinate and ensure compliance with applicable regulations, the U.S. Department of Energy has issued DOE Order 5400.1 (DOE 1988a). This order requires all U.S. Department of Energy facilities to prepare separate ground water protection program descriptions and plans. This document describes the Ground Water Protection Management Plan (GPMP) for the Hanford Site located in the state of Washington. DOE Order 5400.1 specifies that the GPMP covers the following general topical areas: (1) documentation of the ground water regime; (2) design and implementation of a ground water monitoring program to support resource management and comply with applicable laws and regulations; (3) a management program for ground water protection and remediation; (4) a summary and identification of areas that may be contaminated with hazardous waste; (5) strategies for controlling hazardous waste sources; (6) a remedial action program; and (7) decontamination, decommissioning, and related remedial action requirements. Many of the above elements are currently covered by existing programs at the Hanford Site; thus, one of the primary purposes of this document is to provide a framework for coordination of existing ground water protection activities. The GPMP provides the ground water protection policy and strategies for ground water protection/management at the Hanford Site, as well as an implementation plan to improve coordination of site ground water activities.

  3. Summary of the Ground-Water-Level Hydrologic Conditions in New Jersey 2006

    Science.gov (United States)

    Jones, Walter; Pope, Daryll

    2007-01-01

    Ground water is one of the Nation's most important natural resources. It provides about 40 percent of our Nation's public water supply. Currently, nearly one-half of New Jersey's drinking-water is supplied by over 300,000 wells that serve more than 4.3 million people (John P. Nawyn, U.S. Geological Survey, written commun., 2007). New Jersey's population is projected to grow by more than a million people by 2030 (U.S. Census Bureau, accessed March 2, 2006, at http://www.census.gov). As demand for water increases, managing the development and use of the ground-water resource so that the supply can be maintained for an indefinite time without causing unacceptable environmental, economic, or social consequences is of paramount importance. This report describes the U.S. Geological Survey (USGS) New Jersey Water Science Center Observation Well Networks. Record low ground-water levels during water year 2006 (October 1, 2005 to September 30, 2006) are listed, and water levels in six selected water-table observation wells and three selected confined wells are shown in hydrographs. The report describes the trends in water levels in various confined aquifers in southern New Jersey and in water-table and fracture rock aquifers throughout the State. Web site addresses to access the data also are included. The USGS has operated a network of observation wells in New Jersey since 1923 for the purpose of monitoring ground-water-level changes throughout the State. Long-term systematic measurement of water levels in observation wells provides the data needed to evaluate changes in the ground-water resource over time. Records of ground-water levels are used to evaluate the effects of climate changes and water-supply development, to develop ground-water models, and to forecast trends.

  4. Setback distances between small biological wastewater treatment systems and drinking water wells against virus contamination in alluvial aquifers.

    Science.gov (United States)

    Blaschke, A P; Derx, J; Zessner, M; Kirnbauer, R; Kavka, G; Strelec, H; Farnleitner, A H; Pang, L

    2016-12-15

    Contamination of groundwater by pathogenic viruses from small biological wastewater treatment system discharges in remote areas is a major concern. To protect drinking water wells against virus contamination, safe setback distances are required between wastewater disposal fields and water supply wells. In this study, setback distances are calculated for alluvial sand and gravel aquifers for different vadose zone and aquifer thicknesses and horizontal groundwater gradients. This study applies to individual households and small settlements (1-20 persons) in decentralized locations without access to receiving surface waters but with the legal obligation of biological wastewater treatment. The calculations are based on Monte Carlo simulations using an analytical model that couples vertical unsaturated and horizontal saturated flow with virus transport. Hydraulic conductivities and water retention curves were selected from reported distribution functions depending on the type of subsurface media. The enteric virus concentration in effluent discharge was calculated based on reported ranges of enteric virus concentration in faeces, virus infectivity, suspension factor, and virus reduction by mechanical-biological wastewater treatment. To meet the risk target of fast-flow alluvial aquifers like coarse gravels, the calculated setback distances were too large to achieve practically. Therefore, for this category of aquifer, a high level of treatment is recommended before the effluent is discharged to the ground surface. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  5. Hydrogeology and water quality of the Floridan aquifer system and effect of Lower Floridan aquifer withdrawals on the Upper Floridan aquifer at Barbour Pointe Community, Chatham County, Georgia, 2013

    Science.gov (United States)

    Gonthier, Gerard J.; Clarke, John S.

    2016-06-02

    Two test wells were completed at the Barbour Pointe community in western Chatham County, near Savannah, Georgia, in 2013 to investigate the potential of using the Lower Floridan aquifer as a source of municipal water supply. One well was completed in the Lower Floridan aquifer at a depth of 1,080 feet (ft) below land surface; the other well was completed in the Upper Floridan aquifer at a depth of 440 ft below land surface. At the Barbour Pointe test site, the U.S. Geological Survey completed electromagnetic (EM) flowmeter surveys, collected and analyzed water samples from discrete depths, and completed a 72-hour aquifer test of the Floridan aquifer system withdrawing from the Lower Floridan aquifer.Based on drill cuttings, geophysical logs, and borehole EM flowmeter surveys collected at the Barbour Pointe test site, the Upper Floridan aquifer extends 369 to 567 ft below land surface, the middle semiconfining unit, separating the two aquifers, extends 567 to 714 ft below land surface, and the Lower Floridan aquifer extends 714 to 1,056 ft below land surface.A borehole EM flowmeter survey indicates that the Upper Floridan and Lower Floridan aquifers each contain four water-bearing zones. The EM flowmeter logs of the test hole open to the entire Floridan aquifer system indicated that the Upper Floridan aquifer contributed 91 percent of the total flow rate of 1,000 gallons per minute; the Lower Floridan aquifer contributed about 8 percent. Based on the transmissivity of the middle semiconfining unit and the Floridan aquifer system, the middle semiconfining unit probably contributed on the order of 1 percent of the total flow.Hydraulic properties of the Upper Floridan and Lower Floridan aquifers were estimated based on results of the EM flowmeter survey and a 72-hour aquifer test completed in Lower Floridan aquifer well 36Q398. The EM flowmeter data were analyzed using an AnalyzeHOLE-generated model to simulate upward borehole flow and determine the transmissivity of

  6. Water quality transformations during soil aquifer treatment at the Mesa Northwest Water Reclamation Plant, USA.

    Science.gov (United States)

    Fox, P; Narayanaswamy, K; Genz, A; Drewes, J E

    2001-01-01

    Water quality transformations during soil aquifer treatment at the Mesa Northwest Water Reclamation Plant (NWWRP) were evaluated by sampling a network of groundwater monitoring wells located within the reclaimed water plume. The Mesa Northwest Water Reclamation Plant has used soil aquifer treatment (SAT) since it began operation in 1990 and the recovery of reclaimed water from the impacted groundwater has been minimal. Groundwater samples obtained represent travel times from several days to greater than five years. Samples were analyzed for a wide range of organic and inorganic constituents. Sulfate was used as a tracer to estimate travel times and define reclaimed water plume movement. Dissolved organic carbon concentrations were reduced to approximately 1 mg/L after 12 to 24 months of soil aquifer treatment with an applied DOC concentration from the NWWRP of 5 to 7 mg/L. The specific ultraviolet absorbance (SUVA) increased during initial soil aquifer treatment on a time-scale of days and then decreased as longer term soil aquifer treatment removed UV absorbing compounds. The trihalomethane formation potential (THMFP) was a function of the dissolved organic carbon concentration and ranged from 50 to 65 micrograms THMFP/mg DOC. Analysis of trace organics revealed that the majority of trace organics were removed as DOC was removed with the exception of organic iodine. The majority of nitrogen was applied as nitrate-nitrogen and the reclaimed water plume had lower nitrate-nitrogen concentrations as compared to the background groundwater. The average dissolved organic carbon concentrations in the reclaimed water plume were less than 50% of the drinking water dissolved organic concentrations from which the reclaimed water originated.

  7. Ground water discharge and the related nutrient and trace metal fluxes into Quincy Bay, Massachusetts

    Science.gov (United States)

    Poppe, L.J.; Moffett, A.M.

    1993-01-01

    Measurement of the rate and direction of ground water flow beneath Wollaston Beach, Quincy, Massachusetts by use of a heat-pulsing flowmeter shows a mean velocity in the bulk sediment of 40 cm d-1. The estimated total discharge of ground water into Quincy Bay during October 1990 was 1324-2177 m3 d-1, a relatively low ground Water discharge rate. The tides have only a moderate effect on the rate and direction of this flow. Other important controls on the rate and volume of ground water flow are the limited thickness, geographic extent, and permeability of the aquifer. Comparisons of published streamflow data and estimates of ground water discharge indicate that ground water makes up between 7.4-12.1% of the gaged freshwater input into Quincy Bay. The data from this study suggest the ground water discharge is a less important recharge component to Quincy Bay than predicted by National Urban Runoff Program (NURP) models. The high nitrate and low nitrite and ammonia concentrations in the ground water at the backshore we]l sites and low nitrate and high nitrite and ammonia concentrations in the water flowing from the foreshore suggests that denitrification is active in the sediments. The low ground water flow rates and low nitrate concentrations in the foreshore samples suggest that little or no nitrate is surviving the denitrification process to affect the planktonic community. Similarly, oxidizing conditions in the aquifer and low trace metal concentrations in the ground water samples suggest that the metals may be precipitating and binding to sedimentary phases before impacting the bay.

  8. Fresh Water Generation from Aquifer-Pressured Carbon Storage

    Energy Technology Data Exchange (ETDEWEB)

    Aines, R D; Wolery, T J; Bourcier, W L; Wolfe, T; Haussmann, C

    2010-02-19

    Can we use the pressure associated with sequestration to make brine into fresh water? This project is establishing the potential for using brine pressurized by Carbon Capture and Storage (CCS) operations in saline formations as the feedstock for desalination and water treatment technologies including reverse osmosis (RO) and nanofiltration (NF). Possible products are: Drinking water, Cooling water, and Extra aquifer space for CO{sub 2} storage. The conclusions are: (1) Many saline formation waters appear to be amenable to largely conventional RO treatment; (2) Thermodynamic modeling indicates that osmotic pressure is more limiting on water recovery than mineral scaling; (3) The use of thermodynamic modeling with Pitzer's equations (or Extended UNIQUAC) allows accurate estimation of osmotic pressure limits; (4) A general categorization of treatment feasibility is based on TDS has been proposed, in which brines with 10,000-85,000 mg/L are the most attractive targets; (5) Brines in this TDS range appear to be abundant (geographically and with depth) and could be targeted in planning future CCS operations (including site selection and choice of injection formation); and (6) The estimated cost of treating waters in the 10,000-85,000 mg/L TDS range is about half that for conventional seawater desalination, due to the anticipated pressure recovery.

  9. Magnificent Ground Water Connection. [Sample Activities].

    Science.gov (United States)

    Environmental Protection Agency, Washington, DC.

    Water conservation and usage is an important concept in science. This document, geared specifically to New England, provides many activities for protecting and discussing ground water situations. Sample activities for grades K-6 include: (1) All the Water in the World; (2) The Case of the Disappearing Water; (3) Deep Subjects--Wells and Ground…

  10. Ground-Water, Surface-Water, and Water-Chemistry Data, Black Mesa Area, Northeastern Arizona - 2006-07

    Science.gov (United States)

    Truini, Margot; Macy, J.P.

    2008-01-01

    The N aquifer is the major source of water in the 5,400 square-mile Black Mesa area in northeastern Arizona. Availability of water is an important issue in northeastern Arizona because of continued water requirements for industrial and municipal use and the needs of a growing population. Precipitation in the Black Mesa area is typically about 6 to 14 inches per year. The water-monitoring program in the Black Mesa area began in 1971 and is designed to provide information about the long-term effects of ground-water withdrawals from the N aquifer for industrial and municipal uses. This report presents results of data collected for the monitoring program in the Black Mesa area from January 2006 to September 2007. The monitoring program includes measurements of (1) ground-water withdrawals, (2) ground-water levels, (3) spring discharge, (4) surface-water discharge, and (5) ground-water chemistry. Periodic testing of ground-water withdrawal meters is completed every 4 to 5 years. The Navajo Tribal Utility Authority (NTUA) yearly totals for the ground-water metered withdrawal data were unavailable in 2006 due to an up-grade within the NTUA computer network. Because NTUA data is often combined with Bureau of Indian Affairs data for the total withdrawals in a well system, withdrawals will not be published in this year's annual report. From 2006 to 2007, annually measured water levels in the Black Mesa area declined in 3 of 11 wells measured in the unconfined areas of the N aquifer, and the median change was 0.0 feet. Measurements indicated that water levels declined in 8 of 17 wells measured in the confined area of the aquifer. The median change for the confined area of the aquifer was 0.2 feet. From the prestress period (prior to 1965) to 2007, the median water-level change for 30 wells was -11.1 feet. Median water-level changes were 2.9 feet for 11 wells measured in the unconfined areas and -40.2 feet for 19 wells measured in the confined area. Spring flow was measured

  11. Water-Table and Potentiometric-Surface Altitudes in the Upper Glacial, Magothy, and Lloyd Aquifers beneath Long Island, New York, March-April 2006

    Science.gov (United States)

    Monti, Jack; Busciolano, Ronald J.

    2009-01-01

    The U.S. Geological Survey (USGS), in cooperation with State and local agencies, systematically collects ground-water data at varying measurement frequencies to monitor the hydrologic situation on Long Island, New York. Each year during March and April, the USGS conducts a synoptic survey of hydrologic conditions to define the spatial distribution of the water table and potentiometric surfaces within the three main water-bearing units underlying Long Island - the upper glacial, Magothy, and Lloyd aquifers. These data and the maps constructed from them are commonly used in studies of Long Island's hydrology, and by water managers and suppliers for aquifer management and planning purposes. Water-level measurements made in 502 wells across Long Island during March-April 2006, were used to prepare the maps in this report. Measurements were made by the wetted-tape method to the nearest hundredth of a foot. Water-table and potentiometric-surface altitudes in these aquifers were contoured using these measurements. The water-table contours were interpreted using water-level data collected from 341 wells screened in the upper glacial aquifer and (or) shallow Magothy aquifer; the Magothy aquifer's potentiometric-surface contours were interpreted from measurements at 102 wells screened in the middle to deep Magothy aquifer and (or) contiguous and hydraulically connected Jameco aquifer; and the Lloyd aquifer's potentiometric-surface contours were interpreted from measurements at 59 wells screened in the Lloyd aquifer or contiguous and hydraulically connected North Shore aquifer. Many of the supply wells are in continuous operation and, therefore, were turned off for a minimum of 24 hours before measurements were made so that the water levels in the wells could recover to the level of the potentiometric head in the surrounding aquifer. Full recovery time at some of these supply wells can exceed 24 hours; therefore, water levels measured at these wells are assumed to be less

  12. Temporal variations in water quality of the Ogallala Aquifer on the Texas High Plains

    Science.gov (United States)

    The Ogallala Aquifer, under eight States of the Great Plains of US, from Texas to South Dakota, is among the largest aquifers in the world. In some regions, extraction of water for urban and agricultural uses far exceeds recharge resulting in a decline of the water table. In the southern region of t...

  13. 40 CFR 144.7 - Identification of underground sources of drinking water and exempted aquifers.

    Science.gov (United States)

    2010-07-01

    ... of drinking water and exempted aquifers. 144.7 Section 144.7 Protection of Environment ENVIRONMENTAL... Provisions § 144.7 Identification of underground sources of drinking water and exempted aquifers. (a) The..., except where exempted under paragraph (b) of this section, as an underground source of drinking...

  14. Karst Aquifer Recharge: Comments on Somaratne, N. Characteristics of Point Recharge in Karst Aquifers. Water 2014, 6, 2782–2807

    Directory of Open Access Journals (Sweden)

    Adrian D. Werner

    2014-11-01

    Full Text Available The article “Characteristics of Point Recharge in Karst Aquifers, Water 6: 2782–2807” by N. Somaratne evaluates various recharge estimation techniques applied to four limestone aquifers in South Australia. Somaratne [1] concludes that methods based on watertable fluctuations, groundwater modelling and water budgets are independent of recharge processes, and are therefore superior to the chloride mass balance (CMB approach for karst aquifers. The current comment offers alternative interpretations from existing field measurements and previous literature, in particular for the Uley South aquifer, which is the focus of much of the article by Somaratne [1]. Conclusions regarding this system are revised, partly to account for the misrepresentation of previous studies. The aeolianite sediments of Uley South are mostly unconsolidated or poorly consolidated, and dissolution features in the calcrete capping provide point infiltration into a predominantly unconsolidated vadose zone, whereas Somaratne’s [1] findings require that the system comprises well-developed conduits in otherwise low-conductivity limestone. Somaratne’s [1] assertion that the basic premise of CMB is violated in Uley South is disputable, given strong evidence of relatively well-mixed groundwater arising from mostly diffuse recharge. The characterization of karst aquifer recharge should continue to rely on multiple techniques, including environmental tracers such as chloride.

  15. Bioremediation of petroleum hydrocarbon-contaminated ground water: The perspectives of history and hydrology

    Science.gov (United States)

    Chapelle, F.H.

    1999-01-01

    Bioremediation, the use of microbial degradation processes to detoxify environmental contamination, was first applied to petroleum hydrocarbon-contaminated ground water systems in the early 1970s. Since that time, these technologies have evolved in some ways that were clearly anticipated early investigators, and in other ways that were not foreseen. The expectation that adding oxidants and nutrients to contaminated aquifers would enhance biodegradation, for example, has been born out subsequent experience. Many of the technologies now in common use such as air sparging, hydrogen peroxide addition, nitrate addition, and bioslurping, are conceptually similar to the first bioremediation systems put into operation. More unexpected, however, were the considerable technical problems associated with delivering oxidants and nutrients to heterogeneous ground water systems. Experience has shown that the success of engineered bioremediation systems depends largely on how effectively directions and rates of ground water flow can be controlled, and thus how efficiently oxidants and nutrients can be delivered to contaminated aquifer sediments. The early expectation that injecting laboratory-selected or genetically engineered cultures of hydrocarbon-degrading bacteria into aquifers would be a useful bioremediation technology has not been born out subsequent experience. Rather, it appears that petroleum hydrocarbon-degrading bacteria are ubiquitous in ground water systems and that bacterial addition is usually unnecessary. Perhaps the technology that was least anticipated early investigators was the development of intrinsic bioremediation. Experience has shown that natural attenuation mechanisms - biodegradation, dilution, and sorption - limit the migration of contaminants to some degree in all ground water systems. Intrinsic bioremediation is the deliberate use of natural attenuation processes to treat contaminated ground water to specified concentration levels at predetermined

  16. Ground-water flow related to streamflow and water quality

    Science.gov (United States)

    Van Voast, W. A.; Novitzki, R.P.

    1968-01-01

    A ground-water flow system in southwestern Minnesota illustrates water movement between geologic units and between the land surface and the subsurface. The flow patterns indicate numerous zones of ground-water recharge and discharge controlled by topography, varying thicknesses of geologic units, variation in permeabilities, and the configuration of the basement rock surface. Variations in streamflow along a reach of the Yellow Medicine River agree with the subsurface flow system. Increases and decreases in runoff per square mile correspond, apparently, to ground-water discharge and recharge zones. Ground-water quality variations between calcium sulfate waters typical of the Quaternary drift and sodium chloride waters typical of the Cretaceous rocks are caused by mixing of the two water types. The zones of mixing are in agreement with ground-water flow patterns along the hydrologic section.

  17. Availability and chemical characteristics of ground water in central La Plata County, Colorado

    Science.gov (United States)

    Brogden, R.E.; Giles, T.F.

    1976-01-01

    The central part of La Plata County, Colo., has undergone rapid population growth in recent years. This growth has resulted in an increased demand for information for additional domestic, industrial, and municipal water supplies. A knowledge of the occurrence of ground water will permit a more efficient allocation of the resource. Aquifers in central La Plata County include: alluvium, Animas Formation of Quaternary and Tertiary age, Fruitland Formation, Pictured Cliffs Sandstone, three formations of the Mesa Verde Group, the Mancos Shale, Dakota Sandstone, Morrison Formation of Cretaceous and Jurassic age, and undifferentiated formations. Well yields generally are low, usually less than 25 gallons per minute. However, higher yields, 25 to 50 gallons per minute may be found locally in aquifers in the alluvium and the Animas Formation. The quality of water from the aquifers is dependent on rock type. Most of the water is a calcium bicarbonate type. However, aquifers that are predominantly fine-grained or contain interbeds of shale may contain sodium bicarbonate type water. The dissolution of minerals in the coal beds, which are present in the Mesa Verde Group and the Dakota Sandstone, can contribute high concentrations of iron, sulfate, and chloride to ground water. (Woodard-USGS)

  18. QUALITY OF WATERS OF AQUIFER WEBS OF BISKRA REGION

    Directory of Open Access Journals (Sweden)

    F. Bouchemal

    2015-07-01

    Full Text Available Controlling the quality of water distributed together with sound resource management is a factor of economic and social development. Also, the chemistry and knowledge of geological and hydrogeological aquifer, the object of this work, we identify the water quality examined through physical-chemical parameters. The study of these parameters more precisely the region of Biskra reveals a generally high mineralized whose origin is essentially the geological nature of enclosing land. However, the waters of the continental interlayer (Albian are the chemical profile weakest; however, its high temperature makes it difficult to use both to supply drinking water as well as for irrigation. After synthesis of the results for different sheets (groundwater, Miopliocene, Eocene, Albian, the limestone is most interesting at least for drinking water, part of its rate of mineralization (medium, the acceptable temperature (24°C and its relatively low salinity    (1 to 3 g/l. However, these waters are not used directly for human consumption. They requires further treatment.

  19. Exploring deep potential aquifer in water scarce crystalline rocks

    Indian Academy of Sciences (India)

    Subash Chandra; E Nagaiah; D V Reddy; V Ananda Rao; Shakeel Ahmed

    2012-12-01

    Characterization of the shear zone with pole–pole electrical resistivity tomography (ERT) was carried out to explore deep groundwater potential zone in a water scarce granitic area. As existing field conditions does not always allow to plant the remote electrodes at sufficiently far of distance, the effect of insufficient distance of remote electrodes on apparent resistivity measurement was studied and shown that the transverse pole–pole array affects less compared to the collinear pole–pole array. Correction factor have been computed for transverse pole–pole array for various positions of the remote electrodes. The above results helped in exploring deep aquifer site, where a 270 m deep well was drilled. Temporal hydro-chemical samples collected during the pumping indicated the hydraulic connectivity between the demarcated groundwater potential fractures. Incorporating all the information derived from different investigations, a subsurface model was synthetically simulated and generated 2D electrical resistivity response for different arrays and compared with the field responses to further validate the geoelectrical response of deep aquifer set-up associated with lineament.

  20. Exploring deep potential aquifer in water scarce crystalline rocks

    Science.gov (United States)

    Chandra, Subash; Nagaiah, E.; Reddy, D. V.; Rao, V. Ananda; Ahmed, Shakeel

    2012-12-01

    Characterization of the shear zone with pole-pole electrical resistivity tomography (ERT) was carried out to explore deep groundwater potential zone in a water scarce granitic area. As existing field conditions does not always allow to plant the remote electrodes at sufficiently far of distance, the effect of insufficient distance of remote electrodes on apparent resistivity measurement was studied and shown that the transverse pole-pole array affects less compared to the collinear pole-pole array. Correction factor have been computed for transverse pole-pole array for various positions of the remote electrodes. The above results helped in exploring deep aquifer site, where a 270 m deep well was drilled. Temporal hydro-chemical samples collected during the pumping indicated the hydraulic connectivity between the demarcated groundwater potential fractures. Incorporating all the information derived from different investigations, a subsurface model was synthetically simulated and generated 2D electrical resistivity response for different arrays and compared with the field responses to further validate the geoelectrical response of deep aquifer set-up associated with lineament.

  1. Ground-water resources in the vicinity of Cortland, Trumbull County, Ohio

    Science.gov (United States)

    Barton, G.J.; Wright, P.R.

    1997-01-01

    The city of Cortland lies on the southeast ern shoreline of the 12.3-square-mile Mosquito Creek Lake in Trumbull County, Ohio. Cortland relies upon public wells completed in the Cussewago Sandstone for potable water. The Cussewago Sandstone, the principal aquifer in the study area, is a subcrop of the glaciofluvial sediments in the lake; the unit dips gently towards the southeast. Thickness of the Cussewago Sandstone ranges from less than 20 feet in south-central Bazetta Township to 152 feet in Cortland. The Bedford Shale overlies and confines the Cussewago Sandstone and separates it hydraulically from the Berea Sandstone. The Bedford Shale and Berea Sandstone are not a prolific source of ground water. In places, the Bedford Shale was completely eroded away prior to deposition of the Berea Sandstone. Where the Bedford Shale is absent, such as at the City of Cortland North Well Field, the Berea Sandstone and Cussewago Sandstone are likely in hydraulic connection. Throughout most of the study area, the Cussewago Sandstone is a confined aquifer. Ground-water flow is to the east and southeast. Pumping at both Cortland well fields has created cones of depression in the potentiometric surface. These cones of depression cause a local reversal in ground-water flow immediately east of both well fields. The absence of detectable concentrations of tritium in water samples from wells completed in the Cussewago Sandstone at Cortland indicates that ground water predates the atmospheric nuclear testing of the 1950's. Ground water requires about 60 to 110 years to flow from the Cussewago Sandstone subcrop of the glaciofluvial sediments in the lake to the Cortland public-supply wells. A comparison of aquifer storage and pumpage in the study area shows that the Cussewago Sandstone receives adequate recharge to support current withdrawals by Cortland public-supply wells. In the immediate vicinity of Cortland- between Route 305 and the Bazetta-Mecca Town ship line and between the

  2. Hydrogeology and water quality in the Graces Quarters area of Aberdeen Proving Ground, Maryland

    Science.gov (United States)

    Tenbus, Frederick J.; Blomquist, Joel D.

    1995-01-01

    Graces Quarters was used for open-air testing of chemical-warfare agents from the late 1940's until 1971. Testing and disposal activities have resulted in the contamination of ground water and surface water. The hydrogeology and water quality were examined at three test areas, four disposal sites, a bunker, and a service area on Graces Quarters. Methods of investigation included surface and borehole geophysics, water-quality sampling, water- level measurement, and hydrologic testing. The hydrogeologic framework is complex and consists of a discontinuous surficial aquifer, one or more upper confining units, and a confined aquifer system. Directions of ground-water flow vary spatially and temporally, and results of site investigations show that ground-water flow is controlled by the geology of the area. The ground water and surface water at Graces Quarters generally are unmineralized; the ground water is mildly acidic (median pH is 5.38) and poorly buffered. Inorganic constituents in excess of certain Federal drinking-water regulations and ambient water-quality criteria were detected at some sites, but they probably were present naturally. Volatile and semivolatile organic com- pounds were detected in the ground water and surface water at seven of the nine sites that were investi- gated. Concentrations of organic compounds at two of the nine sites exceeded Federal drinking-water regulations. Volatile compounds in concentrations as high as 6,000 m/L (micrograms per liter) were detected in the ground water at the site known as the primary test area. Concentrations of volatile compounds detected in the other areas ranged from 0.57 to 17 m/L.

  3. Santa Clara Valley water district multi-aquifer monitoring-well site, Coyote Creek Outdoor Classroom, San Jose, California

    Science.gov (United States)

    Hanson, R.T.; Newhouse, M.W.; Wentworth, C.M.; Williams, C.F.; Noce, T.E.; Bennett, M.J.

    2002-01-01

    The U.S. Geological Survey (USGS), in cooperation with the Santa Clara Valley Water District (SCVWD), has completed the first of several multiple-aquifer monitoring-well sites in the Santa Clara Valley. This site monitors ground-water levels and chemistry in the one of the major historic subsidence regions south of San Jose, California, at the Coyote Creek Outdoor Classroom (CCOC) (fig. 1) and provides additional basic information about the geology, hydrology, geochemistry, and subsidence potential of the upper- and lower-aquifer systems that is a major source of public water supply in the Santa Clara Valley. The site also serves as a science education exhibit at the outdoor classroom operated by SCVWD.

  4. Water-table altitude of the unconfined aquifer, Wood River Valley aquifer system, south-central Idaho, October 2012.

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Water levels in 93 wells completed in the Wood River Valley aquifer system were measured during October 22–24, 2012; these wells are part of a network established...

  5. Ground-water recharge in Escambia and Santa Rosa Counties, Florida

    Science.gov (United States)

    Grubbs, J.W.

    1995-01-01

    Ground water is a major component of Florida's water resources, accounting for 90 percent of all public-supply and self-supplied domestic water withdrawals, and 58 percent of self-supplied commercial-industrial and agricultural withdrawals of freshwater (Marella, 1992). Ground-water is also an important source of water for streams, lakes, and wetlands in Florida. Because of their importance, a good understanding of these resources is essential for their sound development, use, and protection. One area in which our understanding is lacking is in characterizing the rate at which ground water in aquifers is recharged, and how recharge rates vary geographically. Ground-water recharge (recharge) is the replenishment of ground water by downward infiltration of water from rainfall, streams, and other sources (American Society of Civil Engineers, 1987, p. 222). The recharge rates in many areas of Florida are unknown, of insufficient accuracy, or mapped at scales that are too coarse to be useful. Improved maps of recharge rates will result in improved capabilities for managing Florida's ground-water resources. In 1989, the U.S. Geological Survey, in cooperation with the Florida Department of Environmental Regulation, began a study to delineate high-rate recharge areas in several regions of Florida (Vecchioli and others, 1990). This study resulted in recharge maps that delineated areas of high (greater than 10 inches per year) and low (0 to 10 inches per year) recharge in three counties--Okaloosa, Pasco, and Volusia Counties--at a scale of 1:100,000. This report describes the results of a similar recharge mapping study for Escambia and Santa Rosa Counties (fig. 1), in which areas of high- and low-rates of recharge to the sand-and-gravel aquifer and Upper Floridan aquifer are delineated. The study was conducted in 1992 and 1993 by the U.S. Geological Survey in cooperation with the Florida Department of Environmental Protection.

  6. Thermal use of ground water; Thermische Grundwassernutzung

    Energy Technology Data Exchange (ETDEWEB)

    Cathomen, N.; Stauffer, F.; Kinzelbach, W.; Osterkorn, F.

    2002-07-01

    This article discusses possible regional changes in ground water temperature caused by thermal use of the ground water in heat pump installations and by the infiltration of cooling water. The article reports on investigations made into the influence of ground water usage in the community of Altach in the Rhine Valley in Austria. The procedures used and the geology of the area investigated are described and the results of the measurements that were made are presented. The mathematical modelling of regional long-term heat transport is presented. The results of simulations are compared with long-term temperature measurements. The use of the results as a basis for the assessment of permissible thermal use of ground water is discussed.

  7. The utility of gravity and water-level monitoring at alluvial aquifer wells in southern Arizona

    Science.gov (United States)

    Pool, D.R.

    2008-01-01

    Coincident monitoring of gravity and water levels at 39 wells in southern Arizona indicate that water-level change might not be a reliable indicator of aquifer-storage change for alluvial aquifer systems. One reason is that water levels in wells that are screened across single or multiple aquifers might not represent the hydraulic head and storage change in a local unconfined aquifer. Gravity estimates of aquifer-storage change can be approximated as a one-dimensional feature except near some withdrawal wells and recharge sources. The aquifer storage coefficient is estimated by the linear regression slope of storage change (estimated using gravity methods) and water-level change. Nonaquifer storage change that does not percolate to the aquifer can be significant, greater than 3 ??Gal, when water is held in the root zone during brief periods following extreme rates of precipitation. Monitor-ing of storage change using gravity methods at wells also can improve understanding of local hydrogeologic conditions. In the study area, confined aquifer conditions are likely at three wells where large water-level variations were accompanied by little gravity change. Unconfined conditions were indicated at 15 wells where significant water-level and gravity change were positively linearly correlated. Good positive linear correlations resulted in extremely large specific-yield values, greater than 0.35, at seven wells where it is likely that significant ephemeral streamflow infiltration resulted in unsaturated storage change. Poor or negative linear correlations indicate the occurrence of confined, multiple, or perched aquifers. Monitoring of a multiple compressible aquifer system at one well resulted in negative correlation of rising water levels and subsidence-corrected gravity change, which suggests that water-level trends at the well are not a good indicatior of overall storage change. ?? 2008 Society of Exploration Geophysicists. All rights reserved.

  8. Effects of uranium-mining releases on ground-water quality in the Puerco River Basin, Arizona and New Mexico

    Science.gov (United States)

    Van Metre, Peter C.; Wirt, Laurie; Lopes, T.J.; Ferguson, S.A.

    1997-01-01

    Shallow ground water beneath the Puerco River of Arizona and New Mexico was studied to determine the effects of uranium-mining releases on water quality. Ground-water samples collected from 1989 to 1991 indicate that concentrations of dissolved uranium have decreased. Most samples from the alluvial aquifer downstream from Gallup, New Mexico, met with U.S. Environmental Protection Agency's maximum contaminant levels for gross alpha, gross beta, and radium and the proposed maximum contaminant level for uranium.

  9. 40 CFR 265.91 - Ground-water monitoring system.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Ground-water monitoring system. 265.91... DISPOSAL FACILITIES Ground-Water Monitoring § 265.91 Ground-water monitoring system. (a) A ground-water monitoring system must be capable of yielding ground-water samples for analysis and must consist of: (1...

  10. Monitoring of the antioxidant BHT and its metabolite BHT-CHO in German river water and ground water.

    Science.gov (United States)

    Fries, Elke; Püttmann, Wilhelm

    2004-02-05

    The behavior of anthropogenic polar organic compounds in ground water during infiltration of river water to ground water was studied at the Oderbruch area on the eastern border of Germany. Additionally, waste water sewage treatment works (STWs) discharging their treated waste water into the Oder River and rain water precipitation from the Oderbruch area were investigated. The study was carried out from March 2000 to July 2001 to investigate seasonal variations of the target analytes. Samples were collected from four sites along the Oder River, from 24 ground water monitoring wells located close to the Oder, from one rain water collection station, from two roof runoffs, and from four STWs upstream of the Oderbruch. Results of the investigations of the antioxidant 3,5-di-tert-butyl-4-hydroxy-toluene (BHT) and its degradation product 3,5-di-tert-butyl-4-hydroxy-benzaldehyde (BHT-CHO) are presented. BHT and BHT-CHO were detected in all samples of the Oder River with mean concentrations of 178 and 102 ngl(-1), respectively. BHT and BHT-CHO were also detected in effluent waste water samples from municipal STWs at mean concentrations of 132 and 70 ngl(-1), respectively. Both compounds are discharged into river water directly via treated waste water. In the rain water sample, 308 ngl(-1) of BHT and 155 ngl(-1) of BHT-CHO were measured. Both compounds were detected in roof runoff with mean concentrations of 92 ngl(-1) for BHT and 138 ngl(-1) for BHT-CHO. The median values of BHT and BHT-CHO in ground water samples were 132 and 84 ngl(-1), respectively. The chemical composition of ground water from parts of the aquifer located less than 4.5 m distant from the river are greatly influenced by bank filtration. However, wet deposition followed by seepage of rain water into the aquifer is also a source of BHT and BHT-CHO in ground water.

  11. Global assessment of coastal aquifer state and its vulnerability respect to Sea Water Intrusion. Application to several Mediterranean Coastal Aquifers.

    Science.gov (United States)

    Baena, Leticia; Pulido-Velazquez, David; Renau-Pruñonosa, Arianna; Morell, Ignacio

    2017-04-01

    In this research we propose a method for a global assessment of coastal aquifer state and its vulnerability to Sea Water Intrusion (SWI). It is based on two indices, the MART index, which summarize the global significance of the SWI phenomenon, and the L_GALDIT for a lumped assessment of the vulnerability to SWI. Both of them can be useful as a tool to assess coastal groundwater bodies in risk of not achieving good status in accordance with the Water Framework Directive (WFD, 2000) and to identify possible management alternative to reduce existing impacts. They can be obtained even from a reduced number of data (in the MART case only depend on the geometry and available aquifer state data) with simple calculations, which have been implemented in a general GIS tool that can be easily applied to other case studies. The MART index in an aquifer is related with the total mass of chloride in the aquifer due to sea water intrusion and can be obtained by simple linear operations of volume and concentrations that can be deduced from a schematic conceptual cross-section approach (orthogonal to the shore line) defined to summarize the intrusion volume in the aquifer. At a certain historical time, this representative aquifer cross-section can be defined in a systhematic way from the aquifer geometry, the specific yield, and the hydraulic head and chloride concentration fields that can be deduced from the available information by using appropriate interpolation methods. Following the proposed procedure we will finally obtain a summary of the historical significance of the SWI in an aquifer at different spatial resolution: 3D salinity concentration maps, 2D representative conceptual cross-section of intrusion and the MART lumped significance index. The historical evolution of the MART can be employed to perform a global assessment of the resilience and trends of global significance of the SWI in an aquifer. It can be useful to compare the significance of intrusion problems in

  12. Reagent removal of manganese from ground water

    Science.gov (United States)

    Brayalovsky, G.; Migalaty, E.; Naschetnikova, O.

    2017-06-01

    The study is aimed at the technology development of treating drinking water from ground waters with high manganese content and oxidizability. Current technologies, physical/chemical mechanisms and factors affecting in ground treatment efficiency are reviewed. Research has been conducted on manganese compound removal from ground waters with high manganese content (5 ppm) and oxidizability. The studies were carried out on granular sorbent industrial ODM-2F filters (0.7-1.5 mm fraction). It was determined that conventional reagent oxidization technologies followed by filtration do not allow us to obtain the manganese content below 0.1 ppm when treating ground waters with high oxidizability. The innovative oxidation-based manganese removal technology with continuous introduction of reaction catalytic agent is suggested. This technology is effective in alkalization up to pH 8.8-9. Potassium permanganate was used as a catalytic agent, sodium hypochlorite was an oxidizer and cauistic soda served an alkalifying agent.

  13. Section 10: Ground Water - Waste Characteristics & Targets

    Science.gov (United States)

    HRS Training. The waste characteristics factor category in the ground water pathway is made up of two components: the toxicity/mobility of the most hazardous substance associated with the site and the hazardous waste quantity at the site.

  14. Chloride/bromide and chloride/fluoride ratios of domestic sewage effluents and associated contaminated ground water

    Energy Technology Data Exchange (ETDEWEB)

    Vengosh, A.; Pankratov, I. [Hydrological Service, Jerusalem (Israel)

    1998-09-01

    To establish geochemical tools for tracing the origin of ground water contamination, the authors examined the variations of Cl/Br and Cl/F (weight) ratios in (1) domestic waste water from the Dan Region Sewage Reclamation Project and from reservoirs in the central coast of Israel; (2) associated contaminated ground water; and (3) pristine ground water from the Mediterranean coastal aquifer of Israel. The data show that supply water, anthropogenic NaCl and fluoridation control the Cl/Br and Cl/F ratios of domestic waste water, and conventional sewage treatment does not affect the anthropogenic inorganic signals. The Cl/Br ratios of ground water contaminated with sewage effluent reflect conservative mixing proportions of sewage and regional ground water components. Sensitivity tests demonstrate that it is possible to detect and distinguish sewage contamination from marine ratios after a sewage contribution of 5 to 15% is mixed with regional ground water. Mixing with Br-enriched fresh water however, would reduce this sensitivity. Since the high Cl/Br signal of sewage effluents is distinguishable from other anthropogenic sources with low Cl/Br ratios and from natural contamination sources, Cl/Br ratios can therefore be a useful inorganic tracer for identification of the origin of contaminated ground water. The Cl/F ratios of sewage-contaminated ground water were higher than those in the original sewage effluent, which suggests retention of fluoride into the aquifer solid phase.

  15. Provision of Desalinated Irrigation Water by the Desalination of Groundwater within a Saline Aquifer

    Directory of Open Access Journals (Sweden)

    David D. J. Antia

    2016-12-01

    Full Text Available Irrigated land accounts for 70% of global water usage and 30% of global agricultural production. Forty percent of this water is derived from groundwater. Approximately 20%–30% of the groundwater sources are saline and 20%–50% of global irrigation water is salinized. Salinization reduces crop yields and the number of crop varieties which can be grown on an arable holding. Structured ZVI (zero valent iron, Fe0 pellets desalinate water by storing the removed ions as halite (NaCl within their porosity. This allows an “Aquifer Treatment Zone” to be created within an aquifer, (penetrated by a number of wells (containing ZVI pellets. This zone is used to supply partially desalinated water directly from a saline aquifer. A modeled reconfigured aquifer producing a continuous flow (e.g., 20 m3/day, 7300 m3/a of partially desalinated irrigation water is used to illustrate the impact of porosity, permeability, aquifer heterogeneity, abstraction rate, Aquifer Treatment Zone size, aquifer thickness, optional reinjection, leakage and flow by-pass on the product water salinity. This desalination approach has no operating costs (other than abstraction costs (and ZVI regeneration and may potentially be able to deliver a continuous flow of partially desalinated water (30%–80% NaCl reduction for $0.05–0.5/m3.

  16. Hydrochemical investigations for delineating salt-water intrusion into the coastal aquifer of Maharlou Lake, Iran

    Science.gov (United States)

    Jahanshahi, Reza; Zare, Mohammad

    2016-09-01

    Groundwater quality depends on different factors such as geology, lithology, properties of aquifer, land use, the physical condition of boundaries etc. Studying these factors can help users to manage groundwater quality. This study deals with the groundwater quality of an aquifer located in the southeastern part of Maharlou salt lake, Iran. This lake is located in the southeast of Shiraz and is the outlet of Shiraz sewages. Due to overexploitation of groundwater from the aquifer, the gradient of water table is from the lake towards the aquifer and therefore, saline water migrates to the aquifer. The phenomenon of salt water intrusion contributes to the deterioration of groundwater. In this research, groundwater types, maps of iso EC and iso ions, ion exchange in the mixing of fresh and salt water, salinity variation of the groundwater in the profile of well water column, and the salinity-time variation of the groundwater were studied. The gradual increase of the salinity of groundwater with depth from top to down in the aquifer indicates that salt water is located under fresh water. The time variation of physical and chemical parameters in the groundwater discharged from a well shows that the saline water in the bottom of the aquifer moves upward and destroys the quality of groundwater in the study area. Furthermore, Sachoun geological formation formed by evaporate deposits and evaporation from shallow groundwater are two other factors which decrease the groundwater quality.

  17. Restoration of wadi aquifers by artificial recharge with treated waste water.

    Science.gov (United States)

    Missimer, Thomas M; Drewes, Jörg E; Amy, Gary; Maliva, Robert G; Keller, Stephanie

    2012-01-01

    Fresh water resources within the Kingdom of Saudi Arabia are a rare and precious commodity that must be managed within a context of integrated water management. Wadi aquifers contain a high percentage of the naturally occurring fresh groundwater in the Kingdom. This resource is currently overused and has become depleted or contaminated at many locations. One resource that could be used to restore or enhance the fresh water resources within wadi aquifers is treated municipal waste water (reclaimed water). Each year about 80 percent of the country's treated municipal waste water is discharged to waste without any beneficial use. These discharges not only represent a lost water resource, but also create a number of adverse environmental impacts, such as damage to sensitive nearshore marine environments and creation of high-salinity interior surface water areas. An investigation of the hydrogeology of wadi aquifers in Saudi Arabia revealed that these aquifers can be used to develop aquifer recharge and recovery (ARR) systems that will be able to treat the impaired-quality water, store it until needed, and allow recovery of the water for transmittal to areas in demand. Full-engineered ARR systems can be designed at high capacities within wadi aquifer systems that can operate in concert with the natural role of wadis, while providing the required functions of additional treatment, storage and recovery of reclaimed water, while reducing the need to develop additional, energy-intensive desalination to meet new water supply demands.

  18. Radon concentrations in ground and drinking water in the state of Chihuahua, Mexico.

    Science.gov (United States)

    Villalba, L; Colmenero Sujo, L; Montero Cabrera, M E; Cano Jiménez, A; Rentería Villalobos, M; Delgado Mendoza, C J; Jurado Tenorio, L A; Dávila Rangel, I; Herrera Peraza, E F

    2005-01-01

    This paper reports (222)Rn concentrations in ground and drinking water of nine cities of Chihuahua State, Mexico. Fifty percent of the 114 sampled wells exhibited (222)Rn concentrations exceeding 11Bq/L, the maximum contaminant level (MCL) recommended by the USEPA. Furthermore, around 48% (123 samples) of the tap-water samples taken from 255 dwellings showed radon concentrations over the MCL. There is an apparent correlation between total dissolved solids and radon concentration in ground-water. The high levels of (222)Rn found may be entirely attributed to the nature of aquifer rocks.

  19. Methanogenic biodegradation of creosote contaminants in natural and simulated ground-water ecosystems

    Science.gov (United States)

    Godsy, E. Michael; Goerlitz, Donald; Grbic-Galic, Dunja

    1992-01-01

    Wastes from a wood preserving plant in Pensacola, Florida have contaminated the near-surface sand-and-gravel aquifer with creosote-derived compounds and pentachlorophenol. Contamination resulted from the discharge of plant waste waters to and subsequent seepage from unlined surface impoundments that were in direct hydraulic contact with the ground water. Two distinct phases resulted when the creosote and water mixed: a denser than water hydrocarbon phase that moved vertically downward, and an organic-rich aqueous phase that moved laterally with the ground-water flow. The aqueous phase is enriched in organic acids, phenolic compounds, single- and double-ring nitrogen, sulfur, and oxygen containing compounds, and single- and double-ring aromatic hydrocarbons. The ground water is devoid of dissolved O2, is 60-70% saturated with CH4 and contains H2S. Field analyses document a greater decrease in concentration of organic fatty acids, benzoic acid, phenol, 2-, 3-, 4-methylphenol, quinoline, isoquinoline, 1(2H)-quinolinone, and 2(1H)-isoquinolinone during downgradient movement in the aquifer than could be explained by dilution and/or dispersion. Laboratory microcosm studies have shown that within the study region, this effect can be attributed to microbial degradation to CH4 and CO2. A small but active methanogenic population was found on sediment materials taken from highly contaminated parts of the aquifer.

  20. Ground-water conditions in the Milwaukee-Waukesha area, Wisconsin

    Science.gov (United States)

    Foley, Frank Clingan; Walton, W.C.; Drescher, W.J.

    1953-01-01

    Three major aquifers underlie the Milwaukee-Waukesha area: sandstones of Cambrian and Ordovician age, Niagara dolomite of Silurian age, and sand and gravel deposits of Pleistocene age. The Maquoketa shale of Ordovician age acts as a more or less effective seal between the Pleistocene deposits and Niagara dolomite above and the sandstone aquifer below. Crystalline rocks of pre-Cambrian age form an impermeable basement complex below the Paleozoic sedimentary rocks. The Paleozoic strata dip east at 25 to 30 feet to the mile. There is no evidence that any of the faults and folds known or surmised to be present acts as a barrier to the movement of ground water.

  1. Ground Water Quality of Selected Wells

    Directory of Open Access Journals (Sweden)

    Mosher R. Ahmed

    2013-05-01

    Full Text Available In order to characterize ground water quality in Zaweta district / Dohuk governorate, eight wells are selected to represent their water quality. Monthly samples are collected from the wells for the period from October 2005 to April 2006. The samples are tested for conductivity, total dissolved solids, pH, total hardness, chloride, alkalinity and nitrate according to the standard methods. The results of statistical analysis showed significant difference among the wells water quality in the measured parameters. Ground water quality of Zaweta district has high dissolved ions due to the nature of studied area rocks. Total dissolved solids of more than 1000 mg/l made the wells Gre-Qassroka, Kora and Swaratoka need to be treated to make taste palatable. Additionally high electrical conductivity and TDS made Zaweta ground water have a slight to moderate restriction to crop growth. The high alkalinity of Zaweta ground water indicated stabilized pH. The water quality of all the wells is found excessively hard. The nitrate concentration of Zaweta ground water ranged between 0.19-42.4 mg/l below the guidelines for WHO and the maximum nitrate concentration is recorded in Kora well .

  2. Estimating ground water discharge by hydrograph separation.

    Science.gov (United States)

    Hannula, Steven R; Esposito, Kenneth J; Chermak, John A; Runnells, Donald D; Keith, David C; Hall, Larry E

    2003-01-01

    Iron Mountain is located in the West Shasta Mining District in California. An investigation of the generation of acid rock drainage and metals loading to Boulder Creek at Iron Mountain was conducted. As part of that investigation, a hydrograph separation technique was used to determine the contribution of ground water to total flow in Boulder Creek. During high-flow storm events in the winter months, peak flow in Boulder Creek can exceed 22.7 m3/sec, and comprises surface runoff, interflow, and ground water discharge. A hydrograph separation technique was used to estimate ground water discharge into Boulder Creek during high-flow conditions. Total ground water discharge to the creek approaches 0.31 m3/sec during the high-flow season. The hydrograph separation technique combined with an extensive field data set provided reasonable estimates of ground water discharge. These estimates are useful for other investigations, such as determining a corresponding metals load from the metal-rich ground water found at Iron Mountain and thus contributing to remedial alternatives.

  3. Fraction of young water as an indicator of aquifer vulnerability along two regional flow paths in the Mississippi embayment aquifer system, southeastern USA

    Science.gov (United States)

    Kingsbury, James A.; Barlow, Jeannie R. B.; Jurgens, Bryant C.; McMahon, Peter B.; Carmichael, John K.

    2017-09-01

    Wells along two regional flow paths were sampled to characterize changes in water quality and the vulnerability to contamination of the Memphis aquifer across a range of hydrologic and land-use conditions in the southeastern United States. The flow paths begin in the aquifer outcrop area and end at public supply wells in the confined parts of the aquifer at Memphis, Tennessee. Age-date tracer (e.g. SF6, 3H, 14C) data indicate that a component of young water is present in the aquifer at most locations along both flow paths, which is consistent with previous studies at Memphis that documented leakage of shallow water into the Memphis aquifer locally where the overlying confining unit is thin or absent. Mixtures of young and old water were most prevalent where long-term pumping for public supply has lowered groundwater levels and induced downward movement of young water. The occurrence of nitrate, chloride and synthetic organic compounds was correlated to the fraction of young water along the flow paths. Oxic conditions persisted for 10 km or more down dip of the confining unit, and the presence of young water in confined parts of the aquifer suggest that contaminants such as nitrate-N have the potential for transport. Long-term monitoring data for one of the flow-path wells screened in the confined part of the aquifer suggest that the vulnerability of the aquifer as indicated by the fraction of young water is increasing over time.

  4. Water law, with special reference to ground water

    Science.gov (United States)

    McGuinness, C.L.

    1951-01-01

    This report was prepared in July 1950 at the request of the President's Water Resources Policy Commission. It followed the report entitled Water facts in relation to a national water-resources policy," which, in part, has been published as Geological Survey Circular 114 under the title "The water situation in the United States, with special reference to ground water.''

  5. Hydrology and Ground-Water Quality in the Mine Workings within the Picher Mining District, Northeastern Oklahoma, 2002-03

    Science.gov (United States)

    DeHay, Kelli L.; Andrews, William J.; Sughru, Michael P.

    2004-01-01

    The Picher mining district of northeastern Ottawa County, Oklahoma, was a major site of mining for lead and zinc ores in the first half of the 20th century. The primary source of lead and zinc were sulfide minerals disseminated in the cherty limestones and dolomites of the Boone Formation of Mississippian age, which comprises the Boone aquifer. Ground water in the aquifer and seeping to surface water in the district has been contaminated by sulfate, iron, lead, zinc, and several other metals. The U.S. Geological Survey, in cooperation with the Oklahoma Department of Environmental Quality, investigated hydrology and ground-water quality in the mine workings in the mining district, as part of the process to aid water managers and planners in designing remediation measures that may restore the environmental quality of the district to pre-mining conditions. Most ground-water levels underlying the mining district had similar altitudes, indicating a large degree of hydraulic connection in the mine workings and overlying aquifer materials. Recharge-age dates derived from concentrations of chlorofluorocarbons and other dissolved gases indicated that water in the Boone aquifer may flow slowly from the northeast and southeast portions of the mining district. However, recharge-age dates may have been affected by the types of sites sampled, with more recent recharge-age dates being associated with mine-shafts, which are more prone to atmospheric interactions and surface runoff than the sampled airshafts. Water levels in streams upstream from the confluence of Tar and Lytle Creeks were several feet higher than those in adjacent portions of the Boone aquifer, perhaps due to low-permeability streambed sediments and indicating the streams may be losing water to the aquifer in this area. From just upstream to downstream from the confluence of Tar and Lytle Creeks, surface-water elevations in these streams were less than those in the surrounding Boone aquifer, indicating that

  6. Potentiometric Surfaces and Water-Level Trends in the Cockfield and Wilcox Aquifers of Southern and Northeastern Arkansas, 2006

    Science.gov (United States)

    Schrader, T.P.

    2007-01-01

    The Cockfield Formation of Claiborne Group and the Wilcox Group contain aquifers that provide sources of ground water in southern and northeastern Arkansas. In 2000, about 9.9 million gallons per day was withdrawn from the Cockfield Formation of Claiborne Group and about 22.2 million gallons per day was withdrawn from the Wilcox Group. Major withdrawals from the aquifers were for industrial and public water supplies. A study was conducted by the U.S. Geological Survey in cooperation with the Arkansas Natural Resources Commission and the Arkansas Geological Survey to determine the water level associated with the aquifers in the Cockfield Formation of Claiborne Group and the Wilcox Group in southern and northeastern Arkansas. During February and March 2006, 56 water-level measurements were made in wells completed in the Cockfield aquifer and 59 water-level measurements were made in wells completed in the Wilcox aquifer, 16 in southwestern and 43 in northeastern Arkansas. This report presents the results as potentiometric-surface maps and as long-term water-level hydrographs. The regional direction of ground-water flow in the Cockfield Formation of Claiborne Group generally is towards the east and southeast, away from the outcrop, except in areas of intense ground-water withdrawals, such as western Drew County, southeastern Lincoln County, southwestern Calhoun County, and near Crossett in Ashley County. There are three cones of depression indicated by relatively low water-level altitudes in southeastern Lincoln County, southwestern Calhoun County, and near Crossett in Ashley County. The lowest water-level altitude measured was 44 feet above the National Geodetic Vertical Datum of 1929 in Lincoln County; the highest water-level altitude measured was 346 feet above the National Geodetic Vertical Datum of 1929 in Columbia County at the outcrop area. Hydrographs from 40 wells with historical water levels from 1986 to 2006 were evaluated using linear regression to

  7. Estimating pumping time and ground-water withdrawals using energy-consumption data. Water-Resources Investigation

    Energy Technology Data Exchange (ETDEWEB)

    Hurr, R.T.; Litke, D.W.

    1989-01-01

    Evaluation of the hydrology of an aquifer requires knowledge about the volume of ground water in storage and also about the volume of ground-water withdrawals. Totalizer flow meters may be installed at pumping plants to measure withdrawals; however, it generally is impractical to equip all wells in an area with meters. A viable alternative is the use of rate-time methods to estimate withdrawals. The relation between power demand and pumping rate at a pumping plant can be described through the use of the power-consumption coefficient. Where equipment and hydrologic conditions are stable, this coefficient can be applied to total energy consumption at a site to estimate total ground-water withdrawals. Random sampling of power-consumption coefficients can be used to estimate area-wide ground-water withdrawals.

  8. Ground-water quality in the central part of the Passaic River basin, northeastern New Jersey, 1959-88

    Science.gov (United States)

    Czarnik, T.S.; Kozinski, Jane

    1994-01-01

    Ground-water samples were collected from 71 wells screened in or open to three aquifers in the central part of the Passaic River basin during 1959-88. Water samples from aquifers in glacial sediments and aquifers in sedimentary and igneous bedrock of the Newark Supergroup were analyzed for major ions. Most samples were analyzed for metals, nutrients, and tritium; 38 samples were analyzed for purgeable organic compounds. Calcium and bicarbonate were the predominant ions in ground water in the study area. Ground water was dilute (median dissolved-solids concentration 239 milligrams per liter) and slightly basic (median pH 7.89). Concentrations of inorganic constituents were within U.S. Environmental Protection Agency (USEPA) primary drinking-water regulations. Concentrations of benzene, tetrachloroethylene, and trichloroethylene, however, were greater than USEPA primary drinking-water regulations in six samples. Ground-water samples from aquifers in sedimentary bedrock were enriched in barium, calcium, magnesium, strontium,and sulfate relative to samples form the other aquifers. Such ion enrichment can be attributed either to disolution of carbonate and sulfate-containing minerals or to human activities. Ground-water samples from two wells screened in glacial sediments near swamps contained sulfate in concentrations higher than the median for the aquifer. Sulfate enrichment could result from downward leaching of water enriched in sulfur from the decay of organic matter in the swamps, from the disolution of sulfate-containing minerals, or from human activities. No regional trends in the chemical composition of the ground water in the study area were identified. Sulfate concentrations in ground- water samples from the sedimentary bedrock tended to increase with decreasing altitude of the deepest opening of the well; the correlation coefficient for the ranks of sulfate concentration and the altitude of the deepest opening of the well for 17 pairs of data is -0

  9. Ground Water Flow No Longer A Mystery

    Science.gov (United States)

    Lehr, Jay H.; Pettyjohn, Wayne A.

    1976-01-01

    Examined are the physical characteristics of ground water movement. Some potential pollution problems are identified. Models are used to explain mathematical and hydraulic principles of flow toward a pumping well and an effluent stream, flow around and through lenticular beds, and effects of pumping on the water table. (Author/MR)

  10. Depth to ground water of Nevada

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This is a raster-based, depth to ground-water data set for the State of Nevada. The source of this data set is a statewide water-table contour data set constructed...

  11. Inorganic and organic ground-water chemistry in the Canal Creek area of Aberdeen Proving Ground, Maryland

    Science.gov (United States)

    Lorah, M.M.; Vroblesky, D.A.

    1989-01-01

    Groundwater chemical data were collected from November 1986 through April 1987 in the first phase of a 5-year study to assess the possibility of groundwater contamination in the Canal Creek area of Aberdeen Proving Ground, Maryland. Water samples were collected from 87 observation wells screened in Coastal Plain sediments; 59 samples were collected from the Canal Creek aquifer, 18 from the overlying surficial aquifer, and 10 from the lower confined aquifer. Dissolved solids, chloride, iron, manganese, fluoride, mercury, and chromium are present in concentrations that exceed the Federal maximum contaminant levels for drinking water. Elevated chloride and dissolved-solids concentrations appear to be related from contaminant plumes but also could result from brackish-water intrusion. Excessive concentrations of iron and manganese were the most extensive water quality problems found among the inorganic constituents and are derived from natural dissolution of minerals and oxide coatings in the aquifer sediments. Volatile organic compounds are present in the Canal Creek and surficial aquifers, but samples from the lower confined aquifer do not show any evidence of contamination by inorganic or organic chemicals. The volatile organic contaminants detected in the groundwater and their maximum concentrations (in micrograms/L) include 1,1,2,2- tetrachloroethane (9,000); carbon tetrachloride (480); chloroform (460); 1,1,2-trichloroethane (80); 1,2-dichloroethane (990); 1,1-dichloroethane (3.1); tetrachloroethylene (100); trichloroethylene (1,800); 1,2-trans- dichloroethylene (1,200); 1,1-dichloroethylene (4.4); vinyl chloride (140); benzene (70); and chlorobenzene (39). On the basis of information on past activities in the study area, some sources of the volatile organic compounds include: (1) decontaminants and degreasers; (2) clothing-impregnating operations; (3) the manufacture of impregnite material; (4) the manufacture of tear gas; and (5) fuels used in garages and at

  12. Simulation of Regional Ground-Water Flow in the Suwannee River Basin, Northern Florida and Southern Georgia

    Science.gov (United States)

    Planert, Michael

    2007-01-01

    The Suwannee River Basin covers a total of nearly 9,950 square miles in north-central Florida and southern Georgia. In Florida, the Suwannee River Basin accounts for 4,250 square miles of north-central Florida. Evaluating the impacts of increased development in the Suwannee River Basin requires a quantitative understanding of the boundary conditions, hydrogeologic framework and hydraulic properties of the Floridan aquifer system, and the dynamics of water exchanges between the Suwannee River and its tributaries and the Floridan aquifer system. Major rivers within the Suwannee River Basin are the Suwannee, Santa Fe, Alapaha, and Withlacoochee. Four rivers west of the Suwannee River are the Aucilla, the Econfina, the Fenholloway, and the Steinhatchee; all drain to the Gulf of Mexico. Perhaps the most notable aspect of the surface-water hydrology of the study area is that large areas east of the Suwannee River are devoid of channelized, surface drainage; consequently, most of the drainage occurs through the subsurface. The ground-water flow system underlying the study area plays a critical role in the overall hydrology of this region of Florida because of the dominance of subsurface drain-age, and because ground-water flow sustains the flow of the rivers and springs. Three principal hydrogeologic units are present in the study area: the surficial aquifer system, the intermediate aquifer system, and the Floridan aquifer system. The surficial aquifer system principally consists of unconsoli-dated to poorly indurated siliciclastic deposits. The intermediate aquifer system, which contains the intermediate confining unit, lies below the surficial aquifer system (where present), and generally consists of fine-grained, uncon-solidated deposits of quartz sand, silt, and clay with interbedded limestone of Miocene age. Regionally, the intermediate aquifer system and intermediate con-fining unit act as a confining unit that restricts the exchange of water between the over

  13. Quantifying spatio-temporal stream-aquifer water exchanges along a multi-layer aquifer system using LOMOS and hydro-thermo modelling

    Science.gov (United States)

    Mouhri, Amer; flipo, Nicolas; Rejiba, Fayçal; Bodet, Ludovic; Jost, Anne; Goblet, Patrick

    2014-05-01

    The aim of this work is to understand the spatial and temporal variability of stream-aquifer water exchanges along a 6 km-stream network in a multi-layer aquifer system using both LOcal MOnitoring Stations (LOMOSs) coupled with the optimization of a hydro-thermo model per LOMOS. With an area of 45 km2, the Orgeval experimental basin is located 70 km east from Paris. It drains a multi-layer aquifer system, which is composed of two main geological formations: the Oligocene (upper aquifer unit) and the Eocene (lower aquifer unit). These two aquifer units are separated by a clayey aquitard. The connectivity status between streams and aquifer units has been evaluated using near surface geophysical investigations as well as drill cores. Five LOMOSs of the stream-aquifer exchanges have been deployed along the stream-network to monitor stream-aquifer exchanges over years, based on continuous pressure and temperature measurements (15 min-time step). Each LOMOS is composed of one or two shallow piezometers located 2 to 3 m away from the river edge; one surface water monitoring system; two hyporheic zone temperature profiles located close to each river bank. The five LOMOSs are distributed in two upstream, two intermediate, and one downstream site. The two upstream sites are connected to the upper aquifer unit, and the downstream one is connected to the lower aquifer unit. The 2012-April - 2013-december period of hydrological data are hereafter analyzed. We first focus on the spatial distribution of the stream-aquifer exchanges along the multi-layer aquifer system during the low flow period. Results display an upstream-downstream functional gradient, with upstream gaining stream and downstream losing stream. This spatial distribution is due to the multi-layer nature of the aquifer system, whose lower aquifer unit is depleted. Then it appears that the downstream losing streams temporally switch into gaining ones during extreme hydrological events, while the upstream streams

  14. Hydrogeologic Setting and Ground-Water Flow in the Leetown Area, West Virginia

    Science.gov (United States)

    Kozar, Mark D.; Weary, David J.; Paybins, Katherine S.; Pierce, Herbert A.

    2007-01-01

    The Leetown Science Center is a research facility operated by the U.S. Geological Survey that occupies approximately 455-acres near Kearneysville, Jefferson County, West Virginia. Aquatic and fish research conducted at the Center requires adequate supplies of high-quality, cold ground water. Three large springs and three production wells currently (in 2006) supply water to the Center. The recent construction of a second research facility (National Center for Cool and Cold Water Aquaculture) operated by the U.S. Department of Agriculture and co-located on Center property has placed additional demands on available water resources in the area. A three-dimensional steady-state finite-difference ground-water flow model was developed to simulate ground-water flow in the Leetown area and was used to assess the availability of ground water to sustain current and anticipated future demands. The model also was developed to test a conceptual model of ground-water flow in the complex karst aquifer system in the Leetown area. Due to the complexity of the karst aquifer system, a multidisciplinary research study was required to define the hydrogeologic setting. Geologic mapping, surface- and borehole-geophysical surveys, stream base-flow surveys, and aquifer tests were conducted to provide the hydrogeologic data necessary to develop and calibrate the model. It would not have been possible to develop a numerical model of the study area without the intensive data collection and methods developments components of the larger, more comprehensive hydrogeologic investigation. Results of geologic mapping and surface-geophysical surveys verified the presence of several prominent thrust faults and identified additional faults and other complex geologic structures (including overturned anticlines and synclines) in the area. These geologic structures are known to control ground-water flow in the region. Results of this study indicate that cross-strike faults and fracture zones are major

  15. Downhole water flow controller for aquifer storage recovery wells

    Energy Technology Data Exchange (ETDEWEB)

    Pyne, R.D.

    1987-09-08

    This patent describes a downhole flow control device for continuous automatic control of water flowing into or out of wells, aquifers and the like through pipe columns. The upper end of the first tubular member is mounted to the pipe column so as to be in fluid communication therewith. The lower end of the first tubular member is substantially closed. A second tubular member is mounted concentrically within and proximate to the first tubular member and has an open upper end and side walls and a substantially closed lower end. First openings are spaced in vertical relationship to the second openings. Third openings are through the second tubular member. The second tubular member is vertically movable with respect to the first tubular member so as to selectively align the third openings with either of the first and second openings. Biasing means are located between the lower ends of the first and second tubular members for normally urging the second tubular member vertically upward with respect to the first tubular member. The biasing means are yieldable upon the introduction of water into the pump column to permit the second tubular member to be vertically displaced relative to the first tubular member to thereby close the third openings with respect to the first or second openings. The third openings align with one of the first and second openings dependent upon the direction of fluid flow within the pipe column.

  16. Recharge estimation for transient ground water modeling.

    Science.gov (United States)

    Jyrkama, Mikko I; Sykes, Jon F; Normani, Stefano D

    2002-01-01

    Reliable ground water models require both an accurate physical representation of the system and appropriate boundary conditions. While physical attributes are generally considered static, boundary conditions, such as ground water recharge rates, can be highly variable in both space and time. A practical methodology incorporating the hydrologic model HELP3 in conjunction with a geographic information system was developed to generate a physically based and highly detailed recharge boundary condition for ground water modeling. The approach uses daily precipitation and temperature records in addition to land use/land cover and soils data. The importance of the method in transient ground water modeling is demonstrated by applying it to a MODFLOW modeling study in New Jersey. In addition to improved model calibration, the results from the study clearly indicate the importance of using a physically based and highly detailed recharge boundary condition in ground water quality modeling, where the detailed knowledge of the evolution of the ground water flowpaths is imperative. The simulated water table is within 0.5 m of the observed values using the method, while the water levels can differ by as much as 2 m using uniform recharge conditions. The results also show that the combination of temperature and precipitation plays an important role in the amount and timing of recharge in cooler climates. A sensitivity analysis further reveals that increasing the leaf area index, the evaporative zone depth, or the curve number in the model will result in decreased recharge rates over time, with the curve number having the greatest impact.

  17. Monitoring CO2 gas-phase migration in a shallow sand aquifer using cross-borehole ground penetrating radar

    DEFF Research Database (Denmark)

    Lassen, Rune Nørbæk; Sonnenborg, T.O.; Jensen, Karsten Høgh

    2015-01-01

    Understanding potential pathways of gaseous CO2 into and through the shallow subsurface from deep geological storage is one of many requirements related to risk assessment of a carbon capture and storage (CCS) site. In this study, a series of field experiments were carried out at a site located...... in Vrøgum in western Denmark. Up to 45 kg of gaseous CO2 was injected into a shallow aquifer approximately 8 m below the groundwater table. In the upper 6 m, the aquifer consisted of fine Aeolian sand underlain by coarser glacial sand. The migration of the gaseous CO2 was tracked using cross-borehole ground...... penetrating radar (GPR). A total of six GPR-boreholes were installed around the injection well and in the dominant flow direction of the groundwater. The GPR measurements were collected before, during, and after the CO2-injection. The GPR method proved to be very sensitive to desaturation of the aquifer when...

  18. GRACE-Based Analysis of Total Water Storage Trends and Groundwater Fluctuations in the North-Western Sahara Aquifer System (NWSAS) and Tindouf Aquifer in Northwest Africa

    Science.gov (United States)

    Lezzaik, K. A.; Milewski, A.

    2013-12-01

    Optimal water management practices and strategies, in arid and semi-arid environments, are often hindered by a lack of quantitative and qualitative understanding of hydrological processes. Moreover, progressive overexploitation of groundwater resources to meet agricultural, industrial, and domestic requirements is drawing concern over the sustainability of such exhaustive abstraction levels, especially in environments where groundwater is a major source of water. NASA's GRACE (gravity recovery and climate change experiment) mission, since March 2002, has advanced the understanding of hydrological events, especially groundwater depletion, through integrated measurements and modeling of terrestrial water mass. In this study, GLDAS variables (rainfall rate, evapotranspiration rate, average soil moisture), and TRMM 3B42.V7A precipitation satellite data, were used in combination with 95 GRACE-generated gravitational anomalies maps, to quantify total water storage change (TWSC) and groundwater storage change (GWSC) from January 2003 to December 2010 (excluding June 2003), in the North-Western Sahara Aquifer System (NWSAS) and Tindouf Aquifer System in northwestern Africa. Separately processed and computed GRACE products by JPL (Jet Propulsion Laboratory, NASA), CSR (Center of Space Research, UT Austin), and GFZ (German Research Centre for Geoscience, Potsdam), were used to determine which GRACE dataset(s) best reflect total water storage and ground water changes in northwest Africa. First-order estimates of annual TWSC for NWSAS (JPL: +5.297 BCM; CSR: -5.33 BCM; GFZ: -9.96 BCM) and Tindouf Aquifer System (JPL: +1.217 BCM; CSR: +0.203 BCM; GFZ: +1.019 BCM), were computed using zonal averaging over a span of eight years. Preliminary findings of annual GWSC for NWSAS (JPL: +2.45 BCM; CSR: -2.278 BCM; GFZ: -6.913 BCM) and Tindouf Aquifer System (JPL: +1.108 BCM; CSR: +0.094 BCM; GFZ: +0.910 BCM), were calculating using a water budget approach, parameterized by GLDAS

  19. Isotopic composition of ground waters from Kufra (Lybia) as indicator for ground water formation

    Energy Technology Data Exchange (ETDEWEB)

    Swailem, F.M.; Hamza, M.S.; Aly, A.I.M. (Middle Eastern Regional Radioisotope Centre for the Arab Countries, Cairo (Egypt))

    1984-02-01

    The results of the isotopic composition of shallow and deep ground waters from the Kufra region indicate the fossil origin of these waters and that they are not recharged under the present climatic conditions. The virtual absence of tritium and the radiocarbon ages of these waters show that they were formed mainly in the past pluvial periods. Deuterium and oxygen-18 data indicate that the ground waters were recharged under cooler climatic conditions. These results may explain the origin of the large amounts of ground water which existed in the region.

  20. A modelling approach to determine the origin of urban ground water.

    Science.gov (United States)

    Trowsdale, Sam A; Lerner, David N

    2007-04-01

    A simple modelling approach was developed to link patterns of urban land-use with ground water flow and chemistry in three dimensions and was applied to characterize the origin of recharge in the aquifer beneath the old industrial city of Nottingham, UK. The approach involved dividing land uses into types, and times into periods, and assigning the recharge from each an individual tracer-solute with a unit concentration. The computer code MT3DMS was used to track the multiple tracer-solutes in transient, three-dimensional simulations of the important urban aquifer. A depth-specific hydrochemical dataset collected in parallel supported the model predictions. At depth under the industrial area studied, a large component of ground water originated of older agricultural origin, with relatively low nitrate concentrations. Shallower ground water originated mainly from residential and industrial areas, with higher nitrate concentrations probably arising from leaking sewers and contaminated land. The results highlighted the spectrum of ground water from different origins that amalgamate even at short well screens in a non-pumped borehole and remind us that the non-point-source pollution of ground water from anthropogenic activities will involve more years of slow degradation of quality.

  1. Ground-water resources of coastal Citrus, Hernando, and southwestern Levy counties, Florida

    Science.gov (United States)

    Fretwell, J.D.

    1983-01-01

    Ground water in the coastal parts of Citrus, Hernando, and Levy Counties is obtained almost entirely from the Floridan aquifer. The aquifer is unconfined near the coast and semiconfined in the ridge area. Transmissivity ranges from 20,000 feet squared per day in the ridge area to greater than 2,000,000 feet squared per day near major springs. Changes in the potentiometric surface of the aquifer are small between the wet and dry seasons. Water quality within the study area is generally very good except immediately adjacent to the coast where saltwater from the Gulf of Mexico poses a threat to freshwater supply. This threat can be compensated for by placing well fields a sufficient distance away from the zone of transition from saltwater to freshwater so as not to reduce or reverse the hydraulic gradient in that zone. Computer models are presently available to help predict the extent of influence of ground-water withdrawals in an area. These may be used as management tools in planning ground-water development of the area. (USGS)

  2. Ground-Water Quality in Western New York, 2006

    Science.gov (United States)

    Eckhardt, David A.V.; Reddy, James E.; Tamulonis, Kathryn L.

    2008-01-01

    Water samples were collected from 7 production wells and 26 private residential wells in western New York from August through December 2006 and analyzed to characterize the chemical quality of ground water. Wells at 15 of the sites were screened in sand and gravel aquifers, and 18 were finished in bedrock aquifers. The wells were selected to represent areas of greatest ground-water use and to provide a geographical sampling from the 5,340-square-mile study area. Samples were analyzed for 5 physical properties and 219 constituents that included nutrients, major inorganic ions, trace elements, radionuclides, pesticides, volatile organic compounds (VOC), phenolic compounds, organic carbon, and bacteria. Results indicate that ground water used for drinking supply is generally of acceptable quality, although concentrations of some constituents or bacteria exceeded at least one drinking-water standard at 27 of the 33 wells. The cations that were detected in the highest concentrations were calcium, magnesium, and sodium; anions that were detected in the highest concentrations were bicarbonate, chloride, and sulfate. The predominant nutrients were nitrate and ammonia; nitrate concentrations were higher in samples from sand and gravel aquifers than in samples from bedrock. The trace elements barium, boron, copper, lithium, nickel, and strontium were detected in every sample; the trace elements with the highest concentrations were barium, boron, iron, lithium, manganese, and strontium. Eighteen pesticides, including 9 pesticide degradates, were detected in water from 14 of the 33 wells, but none of the concentrations exceeded State or Federal Maximum Contaminant Levels (MCLs). Fourteen volatile organic compounds were detected in water from 12 of the 33 wells, but none of the concentrations exceeded MCLs. Eight chemical analytes and three types of bacteria were detected in concentrations that exceeded Federal and State drinking-water standards, which are typically identical

  3. Effects of Barometric Fluctuations on Well Water-Level Measurements and Aquifer Test Data

    Energy Technology Data Exchange (ETDEWEB)

    FA Spane, Jr.

    1999-12-16

    The Pacific Northwest National Laboratory, as part of the Hanford Groundwater Monitoring Project, examines the potential for offsite migration of contamination within underlying aquifer systems. Well water-level elevation measurements from selected wells within these aquifer systems commonly form the basis for delineating groundwater-flow patterns (i.e., flow direction and hydraulic gradient). In addition, the analysis of water-level responses obtained in wells during hydrologic tests provides estimates of hydraulic properties that are important for evaluating groundwater-flow velocity and transport characteristics. Barometric pressure fluctuations, however, can have a discernible impact on well water-level measurements. These barometric effects may lead to erroneous indications of hydraulic head within the aquifer. Total hydraulic head (i.e., sum of the water-table elevation and the atmospheric pressure at the water-table surface) within the aquifer, not well water-level elevation, is the hydrologic parameter for determining groundwater-flow direction and hydraulic gradient conditions. Temporal variations in barometric pressure may also adversely affect well water-level responses obtained during hydrologic tests. If significant, adjustments or removal of these barometric effects from the test-response record may be required for quantitative hydraulic property determination. This report examines the effects of barometric fluctuations on well water-level measurements and evaluates adjustment and removal methods for determining areal aquifer head conditions and aquifer test analysis. Two examples of Hanford Site unconfined aquifer tests are examined that demonstrate barometric response analysis and illustrate the predictive/removal capabilities of various methods for well water-level and aquifer total head values. Good predictive/removal characteristics were demonstrated with best corrective results provided by multiple-regression deconvolution methods.

  4. Cost analysis of ground-water supplies in the North Atlantic region, 1970

    Science.gov (United States)

    Cederstrom, Dagfin John

    1973-01-01

    The cost of municipal and industrial ground water (or, more specifically, large supplies of ground water) at the wellhead in the North Atlantic Region in 1970 generally ranged from 1.5 to 5 cents per thousand gallons. Water from crystalline rocks and shale is relatively expensive. Water from sandstone is less so. Costs of water from sands and gravels in glaciated areas and from Coastal Plain sediments range from moderate to very low. In carbonate rocks costs range from low to fairly high. The cost of ground water at the wellhead is low in areas of productive aquifers, but owing to the cost of connecting pipe, costs increase significantly in multiple-well fields. In the North Atlantic Region, development of small to moderate supplies of ground water may offer favorable cost alternatives to planners, but large supplies of ground water for delivery to one point cannot generally be developed inexpensively. Well fields in the less productive aquifers may be limited by costs to 1 or 2 million gallons a day, but in the more favorable aquifers development of several tens of millions of gallons a day may be practicable and inexpensive. Cost evaluations presented cannot be applied to any one specific well or specific site because yields of wells in any one place will depend on the local geologic and hydrologic conditions; however, with such cost adjustments as may be necessary, the methodology presented should have wide applicability. Data given show the cost of water at the wellhead based on the average yield of several wells. The cost of water delivered by a well field includes costs of connecting pipe and of wells that have the yields and spacings specified. Cost of transport of water from the well field to point of consumption and possible cost of treatment are not evaluated. In the methodology employed, costs of drilling and testing, pumping equipment, engineering for the well field, amortization at 5% percent interest, maintenance, and cost of power are considered. The

  5. Geology and ground water in Door County, Wisconsin, with emphasis on contamination potential in the Silurian Dolomite

    Science.gov (United States)

    Sherrill, Marvin G.

    1978-01-01

    is thin or absent. Transmissivity values range from a low of 4.0 feet squared per day in the Niagaran aquifer near Sturgeon Bay to more than 13 000 feet squared per day for the Alexandrian aquifer near Fish Creek. Water from Silurian dolomite is a very hard calcium magnesium bicarbonate type, with objectionable concentrations of iron and nitrate in water from some wells. Sanitary quality, as indicated by tests for total coliform bacteria, has been a chronic problem in certain areas. Concentrations of indicator organisms are greatest during or immediately after rapid ground-water recharge, with concentrations rapidly decreasing after periods of recharge. Wells close to septic systems and in areas underlain by fractured near-surface bedrock have the greatest incidence of contamination. The type and thickness of unconsolidated material has a direct effect on the entry of bacteria into the ground-water system. Bacterial attenuation increases with increasing soil depth and reduction in soil permeability. After bacterial contaminants reach the water table within fractured bedrock, little attenuation occurs, and the contaminants can travel long distances in a short time. Ground water of good sanitary quality but exceeding recommended limits of the U.S. Public Health Service for sulfate and chloride is probably available from the sandstone aquifer by drilling wells 700 to 1300 feet deep. To minimize the possibility of obtaining contaminated ground water, well construction should include properly locating the wells upgradient and as far as practical from contamination sources, setting and pressure grouting well casings to an adequate depth into firm bedrock, and casing the well into the zone of saturation.

  6. Projected effects of proposed salinity-control projects on shallow ground water; preliminary results for the upper Brazos River basin, Texas

    Science.gov (United States)

    Garza, Sergio

    1982-01-01

    As part of the plan to control the natural salt pollution in the upper Brazos River basin of Texas, the U.S. Army Corps of Engineers recommended construction of three impoundment and retention reservoirs. In connection with the proposed reservoirs, the U.S. Geological Survey was requested to define the existing ground-water conditions in the shallow ground-water system of the area and to project the post-construction effects of the reservoirs on the shallow aquifer, especially in relation to aquifer-head changes but also with respect to possible changes in the chemical quality of the ground water.

  7. Arsenic mobilization and attenuation by mineral–water interactions: implications for managed aquifer recharge

    Science.gov (United States)

    Managed aquifer recharge (MAR) has a potential for addressing deficits in water supplies worldwide. It is also widely used for preventing saltwater intrusion, maintaining the groundwater table, and augmenting ecological stream flows among many beneficial environmental application...

  8. An Excel Workbook for Identifying Redox Processes in Ground Water

    Science.gov (United States)

    Jurgens, Bryant C.; McMahon, Peter B.; Chapelle, Francis H.; Eberts, Sandra M.

    2009-01-01

    The reduction/oxidation (redox) condition of ground water affects the concentration, transport, and fate of many anthropogenic and natural contaminants. The redox state of a ground-water sample is defined by the dominant type of reduction/oxidation reaction, or redox process, occurring in the sample, as inferred from water-quality data. However, because of the difficulty in defining and applying a systematic redox framework to samples from diverse hydrogeologic settings, many regional water-quality investigations do not attempt to determine the predominant redox process in ground water. Recently, McMahon and Chapelle (2008) devised a redox framework that was applied to a large number of samples from 15 principal aquifer systems in the United States to examine the effect of redox processes on water quality. This framework was expanded by Chapelle and others (in press) to use measured sulfide data to differentiate between iron(III)- and sulfate-reducing conditions. These investigations showed that a systematic approach to characterize redox conditions in ground water could be applied to datasets from diverse hydrogeologic settings using water-quality data routinely collected in regional water-quality investigations. This report describes the Microsoft Excel workbook, RedoxAssignment_McMahon&Chapelle.xls, that assigns the predominant redox process to samples using the framework created by McMahon and Chapelle (2008) and expanded by Chapelle and others (in press). Assignment of redox conditions is based on concentrations of dissolved oxygen (O2), nitrate (NO3-), manganese (Mn2+), iron (Fe2+), sulfate (SO42-), and sulfide (sum of dihydrogen sulfide [aqueous H2S], hydrogen sulfide [HS-], and sulfide [S2-]). The logical arguments for assigning the predominant redox process to each sample are performed by a program written in Microsoft Visual Basic for Applications (VBA). The program is called from buttons on the main worksheet. The number of samples that can be analyzed

  9. Water Conservation Policy Alternatives for the Ogallala Aquifer in the Texas Panhandle

    OpenAIRE

    Taylor, Robert H.; Almas, Lal K.; Lust, David G.

    2009-01-01

    The continued decline in the availability of water from the Ogallala Aquifer has led to an increased interest in conservation policies designed to extend the life of the aquifer to sustain rural economies in the Texas Panhandle. This study evaluates the effectiveness of five policies in terms of changes in the saturated thickness of the aquifer as well as the impact each policy has on crop mix, water use per acre, and the net present value of farm profits over a sixty-year planning horizon fo...

  10. Water Conservation Policy Alternatives for the Ogallala Aquifer in the Texas Panhandle

    OpenAIRE

    Taylor, Robert H.; Almas, Lal K.; Lust, David G.

    2009-01-01

    The continued decline in the availability of water from the Ogallala Aquifer has led to an increased interest in conservation policies designed to extend the life of the aquifer to sustain rural economies in the Texas Panhandle. This study evaluates the effectiveness of five policies in terms of changes in the saturated thickness of the aquifer as well as the impact each policy has on crop mix, water use per acre, and the net present value of farm profits over a sixty-year planning horizon fo...

  11. The quality of our Nation's waters: water quality in the glacial aquifer system, northern United States, 1993-2009

    Science.gov (United States)

    Warner, Kelly L.; Ayotte, Joseph D.

    2015-01-01

    The glacial aquifer system underlies much of the northern United States. About one-sixth (41 million people) of the United States population relies on the glacial aquifer system for drinking water. The primary importance of the glacial aquifer system is as a source of water for public supply to the population centers in the region, but the aquifer system also provides drinking water for domestic use to individual homes and small communities in rural areas. Withdrawals from this aquifer system for public supply are the largest in the Nation and play a key role in the economic development of parts of 26 States. Corn production has increased in the central part of the aquifer system over the last 10 years, and the increased production increases the need for water for agricultural use and the need for increased use of agrochemicals. Additionally, the steady increase in population (15 million people over the last 40 years) in urban and rural areas is resulting in an increased reliance on the glacial aquifer system for high-quality drinking water. The need to monitor, understand, and maintain the water quality of this valuable economic resource continues to grow.

  12. Estimating ground water recharge from topography, hydrogeology, and land cover.

    Science.gov (United States)

    Cherkauer, Douglas S; Ansari, Sajjad A

    2005-01-01

    Proper management of ground water resources requires knowledge of the rates and spatial distribution of recharge to aquifers. This information is needed at scales ranging from that of individual communities to regional. This paper presents a methodology to calculate recharge from readily available ground surface information without long-term monitoring. The method is viewed as providing a reasonable, but conservative, first approximation of recharge, which can then be fine-tuned with other methods as time permits. Stream baseflow was measured as a surrogate for recharge in small watersheds in southeastern Wisconsin. It is equated to recharge (R) and then normalized to observed annual precipitation (P). Regression analysis was constrained by requiring that the independent and dependent variables be dimensionally consistent. It shows that R/P is controlled by three dimensionless ratios: (1) infiltrating to overland water flux, (2) vertical to lateral distance water must travel, and (3) percentage of land cover in the natural state. The individual watershed properties that comprise these ratios are now commonly available in GIS data bases. The empirical relationship for predicting R/P developed for the study watersheds is shown to be statistically viable and is then tested outside the study area and against other methods of calculating recharge. The method produces values that agree with baseflow separation from streamflow hydrographs (to within 15% to 20%), ground water budget analysis (4%), well hydrograph analysis (12%), and a distributed-parameter watershed model calibrated to total streamflow (18%). It has also reproduced the temporal variation over 5 yr observed at a well site with an average error < 12%.

  13. Assessment of the hydraulic connection between ground water and the Peace River, west-central Florida

    Science.gov (United States)

    Lewelling, B.R.; Tihansky, A.B.; Kindinger, J.L.

    1998-01-01

    The hydraulic connection between the Peace River and the underlying aquifers along the length of the Peace River from Bartow to Arcadia was assessed to evaluate flow exchanges between these hydrologic systems. Methods included an evaluation of hydrologic and geologic records and seismic-reflection profiles, seepage investigations, and thermal infrared imagery interpretation. Along the upper Peace River, a progressive long-term decline in streamflow has occurred since 1931 due to a lowering of the potentiometric surface of the Upper Floridan aquifer by as much as 60 feet because of intensive ground-water withdrawals for phosphate mining and agriculture. Another effect from lowering the potentiometric surface has been the cessation of flow at several springs located near and within the Peace River channel, including Kissengen Spring, that once averaged a flow of about 19 million gallons a day. The lowering of ground-water head resulted in flow reversals at locations where streamflow enters sinkholes along the streambed and floodplain. Hydrogeologic conditions along the Peace River vary from Bartow to Arcadia. Three distinctive hydrogeologic areas along the Peace River were delineated: (1) the upper Peace River near Bartow, where ground-water recharge occurs; (2) the middle Peace River near Bowling Green, where reversals of hydraulic gradients occur; and (3) the lower Peace River near Arcadia, where ground-water discharge occurs. Seismic-reflection data were used to identify geologic features that could serve as potential conduits for surface-water and ground-water exchange. Depending on the hydrologic regime, this exchange could be recharge of surface water into the aquifer system or discharge of ground water into the stream channel. Geologic features that would provide pathways for water movement were identified in the seismic record; they varied from buried irregular surfaces to large-scale subsidence flexures and vertical fractures or enlarged solution conduits

  14. Water reclamation for aquifer recharge at the eight case study sites: a cross case analysis

    CSIR Research Space (South Africa)

    Le Corre, K

    2012-06-01

    Full Text Available Reclamation Technologies for Safe Managed Aquifer Recharge Water reclamation for aquifer recharge at the eight case study sites: a cross case analysis Le Corre, Kristell, Aharoni, Avi, Cauwenberghs, Johan, Chavez, Alma, Cikurel, Haim,Ayuso Gabella..., Tredoux, Gideon, Wintgens, Thomas, Cheng Xuzhou, Yu, Liang and Zhao, Xuan Abstract: Water scarcity combined with the quality deterioration of freshwater due to the rapid augmentation of population and industrial development is a major concern...

  15. Water quality requirements for sustaining aquifer storage and recovery operations in a low permeability fractured rock aquifer.

    Science.gov (United States)

    Page, Declan; Miotliński, Konrad; Dillon, Peter; Taylor, Russel; Wakelin, Steve; Levett, Kerry; Barry, Karen; Pavelic, Paul

    2011-10-01

    A changing climate and increasing urbanisation has driven interest in the use of aquifer storage and recovery (ASR) schemes as an environmental management tool to supplement conventional water resources. This study focuses on ASR with stormwater in a low permeability fractured rock aquifer and the selection of water treatment methods to prevent well clogging. In this study two different injection and recovery phases were trialed. In the first phase ~1380 m(3) of potable water was injected and recovered over four cycles. In the second phase ~3300 m(3) of treated stormwater was injected and ~2410 m(3) were subsequently recovered over three cycles. Due to the success of the potable water injection cycles, its water quality was used to set pre-treatment targets for harvested urban stormwater of ≤ 0.6 NTU turbidity, ≤ 1.7 mg/L dissolved organic carbon and ≤ 0.2 mg/L biodegradable dissolved organic carbon. A range of potential ASR pre-treatment options were subsequently evaluated resulting in the adoption of an ultrafiltration/granular activated carbon system to remove suspended solids and nutrients which cause physical and biological clogging. ASR cycle testing with potable water and treated stormwater demonstrated that urban stormwater containing variable turbidity (mean 5.5 NTU) and organic carbon (mean 8.3 mg/L) concentrations before treatment could be injected into a low transmissivity fractured rock aquifer and recovered for irrigation supplies. A small decline in permeability of the formation in the vicinity of the injection well was apparent even with high quality water that met turbidity and DOC but could not consistently achieve the BDOC criteria.

  16. Establishing and testing a catchment water footprint framework to inform sustainable irrigation water use for an aquifer under stress.

    Science.gov (United States)

    le Roux, Betsie; van der Laan, Michael; Vahrmeijer, Teunis; Bristow, Keith L; Annandale, John G

    2017-12-01

    Future water scarcities in the face of an increasing population, climate change and the unsustainable use of aquifers will present major challenges to global food production. The ability of water footprints (WFs) to inform water resource management at catchment-scale was investigated on the Steenkoppies Aquifer, South Africa. Yields based on cropping areas were multiplied with season-specific WFs for each crop to determine blue and green water consumption by agriculture. Precipitation and evapotranspiration of natural vegetation and other uses of blue water were included with the agricultural WFs to compare water availability and consumption in a catchment sustainability assessment. This information was used to derive a water balance and develop a catchment WF framework that gave important insights into the hydrology of the aquifer through a simplified method. This method, which requires the monitoring of only a few key variables, including rainfall, agricultural production, WFs of natural vegetation and other blue water flows, can be applied to inform the sustainability of catchment scale water use (as opposed to more complex hydrological studies). Results indicate that current irrigation on the Steenkoppies Aquifer is unsustainable. This is confirmed by declining groundwater levels, and suggests that there should be no further expansion of irrigated agriculture on the Steenkoppies Aquifer. Discrepancies between in- and outflows of water in the catchment indicated that further development of the WF approach is required to improve understanding of the geohydrology of the aquifer and to set and meet sustainability targets for the aquifer. It is envisaged that this 'working' framework can be applied to other water-stressed aquifers around the world. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  17. Fate of Arsenic during Red River Water Infiltration into Aquifers beneath Hanoi, Vietnam

    Science.gov (United States)

    2016-01-01

    Recharge of Red River water into arsenic-contaminated aquifers below Hanoi was investigated. The groundwater age at 40 m depth in the aquifer underlying the river was 1.3 ± 0.8 years, determined by tritium–helium dating. This corresponds to a vertical flow rate into the aquifer of 19 m/year. Electrical conductivity and partial pressure of CO2 (PCO2) indicate that water recharged from the river is present in both the sandy Holocene and gravelly Pleistocene aquifers and is also abstracted by the pumping station. Infiltrating river water becomes anoxic in the uppermost aquifer due to the oxidation of dissolved organic carbon. Further downward, sedimentary carbon oxidation causes the reduction of As-containing Fe-oxides. Because the release of arsenic by reduction of Fe-oxides is controlled by the reaction rate, arsenic entering the solution becomes highly diluted in the high water flux and contributes little to the groundwater arsenic concentration. Instead, the As concentration in the groundwater of up to 1 μM is due to equilibrium-controlled desorption of arsenic, adsorbed to the sediment before river water started to infiltrate due to municipal pumping. Calculations indicate that it will take several decades of river water infiltration to leach arsenic from the Holocene aquifer to below the World Health Organization limit of 10 μg/L. PMID:27958705

  18. Approximate solutions for Forchheimer flow during water injection and water production in an unconfined aquifer

    Science.gov (United States)

    Mathias, Simon A.; Moutsopoulos, Konstantinos N.

    2016-07-01

    Understanding the hydraulics around injection and production wells in unconfined aquifers associated with rainwater and reclaimed water aquifer storage schemes is an issue of increasing importance. Much work has been done previously to understand the mathematics associated with Darcy's law in this context. However, groundwater flow velocities around injection and production wells are likely to be sufficiently large such as to induce significant non-Darcy effects. This article presents a mathematical analysis to look at Forchheimer's equation in the context of water injection and water production in unconfined aquifers. Three different approximate solutions are derived using quasi-steady-state assumptions and the method of matched asymptotic expansion. The resulting approximate solutions are shown to be accurate for a wide range of practical scenarios by comparison with a finite difference solution to the full problem of concern. The approximate solutions have led to an improved understanding of the flow dynamics. They can also be used as verification tools for future numerical models in this context.

  19. Assessing the susceptibility to contamination of two aquifer systems used for public water supply in the Modesto and Fresno metropolitan areas, California, 2001 and 2002

    Science.gov (United States)

    Wright, Michael T.; Belitz, Kenneth; Johnson, Tyler D.

    2004-01-01

    Ground-water samples were collected from 90 active public supply wells in the Fresno and Modesto metropolitan areas as part of the California Aquifer Susceptibility (CAS) program. The CAS program was formed to examine the susceptibility to contamination of aquifers that are tapped by public supply wells to serve the citizens of California. The objectives of the program are twofold: (1) to evaluate the quality of ground water used for public supply using volatile organic compound (VOC) concentrations in ground-water samples and (2) to determine if the occurrence and distribution of low level VOCs in ground water and characteristics, such as land use, can be used to predict aquifer susceptibility to contamination from anthropogenic activities occurring at, or near, land surface. An evaluation was made of the relation between VOC occurrence and the explanatory variables: depth to the top of the uppermost well perforation, land use, relative ground-water age, high nitrate concentrations, density of leaking underground fuel tanks (LUFT), and source of recharge water. VOCs were detected in 92 percent of the wells sampled in Modesto and in 72 percent of the wells sampled in Fresno. Trihalomethanes (THM) and solvents were frequently detected in both study areas. Conversely, the gasoline components?benzene, toluene ethylbenzene, and xylenes (BTEX)?were rarely, if at all, detected, even though LUFTs were scattered throughout both study areas. The rare occurrence of BTEX compounds may be the result of their low solubility and labile nature in the subsurface environment. Samples were analyzed for 85 VOCs; 25 were detected in at least one sample. The concentrations of nearly all VOCs detected were at least an order of magnitude below action levels set by drinking water standards. Concentrations of four VOCs exceeded federal and state maximum contaminant levels (MCL): the solvent trichloroethylene (TCE) and the fumigant 1, 2-dibromo-3-chloropropane (DBCP) in Fresno, and the

  20. 40 CFR 257.22 - Ground-water monitoring systems.

    Science.gov (United States)

    2010-07-01

    ... operator. When physical obstacles preclude installation of ground-water monitoring wells at the relevant... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Ground-water monitoring systems. 257... Waste Disposal Units Ground-Water Monitoring and Corrective Action § 257.22 Ground-water......

  1. Reconnaissance of ground-water quality in the Papio-Missouri River Natural Resources District, eastern Nebraska, July through September 1992

    Science.gov (United States)

    Verstraeten, Ingrid M.; Ellis, M.J.

    1995-01-01

    A reconnaissance of ground-water quality was conducted in the Papio-Missouri River Natural Resources District of eastern Nebraska. Sixty-one irrigation, municipal, domestic, and industrial wells completed in the principal aquifers--the unconfined Elkhorn, Missouri, and Platte River Valley alluvial aquifers, the upland area alluvial aquifers, and the Dakota aquifer--were selected for water-quality sampling during July, August, and September 1992. Analyses of water samples from the wells included determination of dissolved nitrate as nitrogen and triazine and acetanilide herbicides. Waterquality analyses of a subset of 42 water samples included dissolved solids, major ions, metals, trace elements, and radionuclides. Concentrations of dissolved nitrate as nitrogen in water samples from 2 of 13 wells completed in the upland area alluvial aquifers exceeded the U.S. Environmental Protection Agency Maximum Contaminant Level for drinking water of 10 milligrams per liter. Thirty-nine percent of the dissolved nitrate-as-nitrogen concentrations were less than the detection level of 0.05 milligram per liter. The largest median dissolved nitrate-as-nitrogen concentrations were in water from the upland area alluvial aquifers and the Dakota aquifer. Water from all principal aquifers, except the Dakota aquifer, had detectable concentrations of herbicides. Herbicides detected included alachlor (1 detection), atrazine (13 detections), cyanazine (5 detections), deisopropylatrazine (6 detections), deethylatrazine (9 detections), metolachlor (6 detections), metribuzin (1 detection), prometon (6 detections), and simazine (2 detections). Herbicide concentrations did not exceed U.S. Environmental Protection Agency Maximum Contaminant Levels for drinking water. In areas where the hydraulic gradient favors loss of surface water to ground water, the detection of herbicides in water from wells along the banks of the Platte River indicates that the river could act as a line source of

  2. Geochemical processes in ground water resulting from surface mining of coal at the Big Sky and West Decker Mine areas, southeastern Montana

    Science.gov (United States)

    Clark, D.W.

    1995-01-01

    A potential hydrologic effect of surface mining of coal in southeastern Montana is a change in the quality of ground water. Dissolved-solids concen- trations in water in spoils aquifers generally are larger than concentrations in water in the coal aquifers they replaced; however, laboratory experiments have indicated that concentrations can decrease if ground water flows from coal-mine spoils to coal. This study was conducted to determine if decreases in concentrations occur onsite and, if so, which geochemical processes caused the decreases. Solid-phase core samples of spoils, unmined over- burden, and coal, and ground-water samples were collected from 16 observation wells at two mine areas. In the Big Sky Mine area, changes in ground- water chemistry along a flow path from an upgradient coal aquifer to a spoils aquifer probably were a result of dedolomitization. Dissolved-solids concentrations were unchanged as water flowed from a spoils aquifer to a downgradient coal aquifer. In the West Decker Mine area, dissolved-solids concentrations apparently decreased from about 4,100 to 2,100 milligrams per liter as water moved along an inferred flow path from a spoils aquifer to a downgradient coal aquifer. Geochemical models were used to analyze changes in water chemistry on the basis of results of solid-phase and aqueous geochemical characteristics. Geochemical processes postulated to result in the apparent decrease in dissolved-solids concentrations along this inferred flow path include bacterial reduction of sulfate, reverse cation exchange within the coal, and precipitation of carbonate and iron-sulfide minerals.

  3. Case study on ground water flow (8)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-02-01

    The report comprises research activities made in fiscal year 1997 under the contract of Japan Nuclear Fuel Cycle Development Center and the main items are: (1) Evaluation of water permeability through discontinuous hard bedrock in deep strata in relevant with underground disposal of radioactive wastes, (2) Three dimensional analysis of permeated water in bedrock, including flow analysis in T ono district using neuro-network and modification of Evaporation Logging System, (3) Development of hydraulic tests and necessary equipment applicable to measurements of complex dielectric constants of contaminated soils using FUDR-V method, this giving information on soil component materials, (4) Investigation methods and modeling of hydraulics in deep strata, (5) Geological study of ground water using environmental isotopes such as {sup 14}C, {sup 36}Cl and {sup 4}He, particularly measurement of ages of ground water using an accelerator-mass spectrometer, and (6) Re-submerging phenomena affecting the long-term geological stability. (S. Ohno)

  4. Case study on ground water flow (8)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-02-01

    The report comprises research activities made in fiscal year 1997 under the contract of Japan Nuclear Fuel Cycle Development Center and the main items are: (1) Evaluation of water permeability through discontinuous hard bedrock in deep strata in relevant with underground disposal of radioactive wastes, (2) Three dimensional analysis of permeated water in bedrock, including flow analysis in T ono district using neuro-network and modification of Evaporation Logging System, (3) Development of hydraulic tests and necessary equipment applicable to measurements of complex dielectric constants of contaminated soils using FUDR-V method, this giving information on soil component materials, (4) Investigation methods and modeling of hydraulics in deep strata, (5) Geological study of ground water using environmental isotopes such as {sup 14}C, {sup 36}Cl and {sup 4}He, particularly measurement of ages of ground water using an accelerator-mass spectrometer, and (6) Re-submerging phenomena affecting the long-term geological stability. (S. Ohno)

  5. Contaminants retention in soils as a complementary water treatment method: application in soil-aquifer treatment processes

    OpenAIRE

    Martins, Tiago André Nunes

    2016-01-01

    Tese de mestrado, Geologia Aplicada (Hidrogeologia), Universidade de Lisboa, Faculdade de Ciências, 2016 Soil-Aquifer Treatment (SAT) is a well-established Managed Aquifer Recharge (MAR) complementary method which main purpose is to increase water availability in aquifers by enhancing the quality of the injected water. SAT-MAR methods are an important way of addressing water scarcity challenges by reusing water of impaired quality, such as wastewater, converting it into a reliable resource...

  6. Water quality and possible sources of nitrate in the Cimarron Terrace Aquifer, Oklahoma, 2003

    Science.gov (United States)

    Masoner, Jason R.; Mashburn, Shana L.

    2004-01-01

    Water from the Cimarron terrace aquifer in northwest Oklahoma commonly has nitrate concentrations that exceed the maximum contaminant level of 10 milligrams per liter of nitrite plus nitrate as nitrogen (referred to as nitrate) set by the U.S. Environmental Protection Agency for public drinking water supplies. Starting in July 2003, the U.S. Geological Survey, in cooperation with the Oklahoma Department of Environmental Quality, conducted a study in the Cimarron terrace aquifer to assess the water quality and possible sources of nitrate. A qualitative and quantitative approach based on multiple lines of evidence from chemical analysis of nitrate, nitrogen isotopes in nitrate, pesticides (indicative of cropland fertilizer application), and wastewater compounds (indicative of animal or human wastewater) were used to indicate possible sources of nitrate in the Cimarron terrace aquifer. Nitrate was detected in 44 of 45 ground-water samples and had the greatest median concentration (8.03 milligrams per liter) of any nutrient analyzed. Nitrate concentrations ranged from nitrate concentrations exceeding the maximum contaminant level of 10 milligrams per liter. Nitrate concentrations in agricultural areas were significantly greater than nitrate concentrations in grassland areas. Pesticides were detected in 15 of 45 ground-water samples. Atrazine and deethylatrazine, a metabolite of atrazine, were detected most frequently. Deethylatrazine was detected in water samples from 9 wells and atrazine was detected in samples from 8 wells. Tebuthiuron was detected in water samples from 5 wells; metolachlor was detected in samples from 4 wells; prometon was detected in samples from 4 wells; and alachlor was detected in 1 well. None of the detected pesticide concentrations exceeded the maximum contaminant level or health advisory level set by the U.S. Environmental Protection Agency. Wastewater compounds were detected in 28 of 45 groundwater samples. Of the 20 wastewater compounds

  7. Polyfluorinated chemicals in European surface waters, ground- and drinking waters

    NARCIS (Netherlands)

    Eschauzier, C.; de Voogt, P.; Brauch, H.-J.; Lange, F.T.; Knepper, T.P.; Lange, F.T.

    2012-01-01

    Polyfluorinated chemicals (PFCs), especially short chain fluorinated alkyl sulfonates and carboxylates, are ubiquitously found in the environment. This chapter aims at giving an overview of PFC concentrations found in European surface, ground- and drinking waters and their behavior during convention

  8. Polyfluorinated chemicals in European surface waters, ground- and drinking waters

    NARCIS (Netherlands)

    Eschauzier, C.; de Voogt, P.; Brauch, H.-J.; Lange, F.T.; Knepper, T.P.; Lange, F.T.

    2012-01-01

    Polyfluorinated chemicals (PFCs), especially short chain fluorinated alkyl sulfonates and carboxylates, are ubiquitously found in the environment. This chapter aims at giving an overview of PFC concentrations found in European surface, ground- and drinking waters and their behavior during

  9. Geospatial compilation of historical water-level changes in the Chicot and Evangeline aquifers 1977-2013 and Jasper aquifer 2000-13, Gulf Coast aquifer system, Houston-Galveston region, Texas

    Science.gov (United States)

    Johnson, Michaela R.; Linard, Joshua I.

    2014-01-01

    The U.S. Geological Survey (USGS) in cooperation with the Harris-Galveston Subsidence District, City of Houston, Fort Bend Subsidence District, Lone Star Groundwater Conservation District, and Brazoria County Groundwater Conservation District has produced an annual series of reports that depict water-level changes in the Chicot, Evangeline, and Jasper aquifers of the Gulf Coast aquifer system in the Houston-Galveston region, Texas, from 1977 to 2013. Changes are determined from water-level measurements between December and March of each year from groundwater wells screened in one of the three aquifers. Existing published maps and unpublished geographic information system (GIS) datasets were compiled into a comprehensive geodatabase of all water-level-change maps produced as part of this multiagency effort. Annual water-level-change maps were georeferenced and digitized where existing GIS data were unavailable (1979–99). Existing GIS data available for 2000–13 were included in the geodatabase. The compilation contains 121 datasets showing water-level changes for each primary aquifer of the Gulf Coast aquifer system: 56 for the Chicot aquifer (1977; 1979–2013 and 1990; 1993–2013), 56 for the Evangeline aquifer (1977; 1979–2013 and 1990; 1993–2013), and 9 for the Jasper aquifer (2000; 2005–13).

  10. Characterisation of hydraulic head changes and aquifer properties in the London Basin using Persistent Scatterer Interferometry ground motion data

    Science.gov (United States)

    Bonì, R.; Cigna, F.; Bricker, S.; Meisina, C.; McCormack, H.

    2016-09-01

    In this paper, Persistent Scatterer Interferometry was applied to ERS-1/2 and ENVISAT satellite data covering 1992-2000 and 2002-2010 respectively, to analyse the relationship between ground motion and hydraulic head changes in the London Basin, United Kingdom. The integration of observed groundwater levels provided by the Environment Agency and satellite-derived displacement time series allowed the estimation of the spatio-temporal variations of the Chalk aquifer storage coefficient and compressibility over an area of ∼1360 km2. The average storage coefficient of the aquifer reaches values of 1 × 10-3 and the estimated average aquifer compressibility is 7.7 × 10-10 Pa-1 and 1.2 × 10-9 Pa-1 for the periods 1992-2000 and 2002-2010, respectively. Derived storage coefficient values appear to be correlated with the hydrogeological setting, where confined by the London Clay the storage coefficient is typically an order of magnitude lower than where the chalk is overlain by the Lambeth Group. PSI-derived storage coefficient estimates agree with the values obtained from pumping tests in the same area. A simplified one-dimensional model is applied to simulate the ground motion response to hydraulic heads changes at nine piezometers. The comparison between simulated and satellite-observed ground motion changes reveals good agreement, with errors ranging between 1.4 and 6.9 mm, and being 3.2 mm on average.

  11. Ground-water flow and contaminant transport at a radioactive-materials processing site, Wood River Junction, Rhode Island

    Science.gov (United States)

    Ryan, Barbara J.; Kipp, Kenneth L.

    1997-01-01

    Liquid wastes from an enriched-uranium cold-scrap recovery plant at Wood River Junction, Rhode Island, were discharged to the environment through evaporation ponds and trenches from 1966 through 1980. Leakage from the ponds and trenches resulted in a plume of contaminated ground water extending northwestward to the Pawcatuck River through a highly permeable sand and gravel aquifer of glacial origin.

  12. Nitrate Removal from Ground Water: A Review

    OpenAIRE

    Archna *; Surinder K. Sharma; Ranbir Chander Sobti

    2012-01-01

    Nitrate contamination of ground water resources has increased in Asia, Europe, United States, and various other parts of the world. This trend has raised concern as nitrates cause methemoglobinemia and cancer. Several treatment processes can remove nitrates from water with varying degrees of efficiency, cost, and ease of operation. Available technical data, experience, and economics indicate that biological denitrification is more acceptable for nitrate removal than reverse osmosis and ion ex...

  13. Overview of investigations into mercury in ground water, soils, and septage, New Jersey coastal plain

    Science.gov (United States)

    Barringer, J.L.; Szabo, Z.

    2006-01-01

    Since the early 1980s, investigations by health departments of eight counties in southern New Jersey, by the NJ Department of Environmental Protection (NJDEP), and subsequently by the US Geological Survey (USGS), have shown that Hg concentrations in water tapped by about 600 domestic wells exceed the maximum contaminant level (MCL) of 2 ??g/L. The wells are finished in the areally extensive unconfined Kirkwood-Cohansey aquifer system of New Jersey's Coastal Plain; background concentrations of Hg in water from this system are point sources of Hg, such as landfills or commercial and industrial hazardous-waste sites, is lacking. During 1996-2003, the USGS collected water samples from 203 domestic, irrigation, observation, and production wells using ultraclean techniques; septage, leach-field effluent, soils, and aquifer sediments also were sampled. Elevated concentrations of NH4, B, Cl, NO3, and Na and presence of surfactants in domestic-well water indicate that septic-system effluent can affect water quality in unsewered residential areas, but neither septage nor effluent appears to be a major Hg source. Detections of hydrogen sulfide in ground water at a residential area indicate localized reducing conditions; undetectable SO4 concentrations in water from other residential areas indicate that reducing conditions, which could be conducive to Hg methylation, may be common locally. Volatile organic compounds (VOCs), mostly chlorinated solvents, also are found in ground water at the affected areas, but statistically significant associations between presence of Hg and VOCs were absent for most areas evaluated. Hg concentrations are lower in some filtered water samples than in paired unfiltered samples, likely indicating that some Hg is associated with particles or colloids. The source of colloids may be soils, which, when undisturbed, contain higher concentrations of Hg than do disturbed soils and aquifer sediments. Soil disturbance during residential development and

  14. Geohydrology and numerical simulation of ground-water flow in the central Virgin River basin of Iron and Washington Countries, Utah

    Science.gov (United States)

    Heilweil, V.M.; Freethey, G.W.; Wilkowske, C.D.; Stolp, B.J.; Wilberg, D.E.

    2000-01-01

    Because rapid growth of communities in Washington and Iron Counties, Utah, is expected to cause an increase in the future demand for water resources, a hydrologic investigation was done to better understand ground-water resources within the central Virgin River basin. This study focused on two of the principal ground-water reservoirs within the basin: the upper Ash Creek basin ground-water system and the Navajo and Kayenta aquifer system. The ground-water system of the upper Ash Creek drainage basin consists of three aquifers: the uppermost Quaternary basin-fill aquifer, the Tertiary alluvial-fan aquifer, and the Tertiary Pine Valley monzonite aquifer. These aquifers are naturally bounded by the Hurricane Fault and by drainage divides. On the basis of measurements, estimates, and numerical simulations of reasonable values for all inflow and outflow components, total water moving through the upper Ash Creek drainage basin ground-water system is estimated to be about 14,000 acre-feet per year. Recharge to the upper Ash Creek drainage basin ground-water system is mostly from infiltration of precipitation and seepage from ephemeral and perennial streams. The primary source of discharge is assumed to be evapotranspiration; however, subsurface discharge near Ash Creek Reservoir also may be important. The character of two of the hydrologic boundaries of the upper Ash Creek drainage basin ground-water system is speculative. The eastern boundary provided by the Hurricane Fault is assumed to be a no-flow boundary, and a substantial part of the ground-water discharge from the system is assumed to be subsurface outflow beneath Ash Creek Reservoir along the southern boundary. However, these assumptions might be incorrect because alternative numerical simulations that used different boundary conditions also proved to be feasible. The hydrogeologic character of the aquifers is uncertain because of limited data. Difference in well yield indicate that there is considerable

  15. CHEMICAL QUALITY CHARACTERISTICS OF TEHRAN GROUND WATER

    Directory of Open Access Journals (Sweden)

    K. Imandel

    1994-06-01

    Full Text Available For better understanding of Tehran ground water, samples were taken randomly from 340 out of 655 deep & semi deep wells in 1993, which dug by Tehran Water Supply and Sewage Engineering Company. 260 Water specimens were examined chemically and physically and compared with the 1993 World Health Organization (WHO and Food and Agriculture Organization (FAO criteria and analyzed statistically. Logarithmic diagram of arithmetic mean of 53 deep wells which are now connected to Tehran water supply system showed Sodium- Sulphate category. Main chemical components of water are closely adjusted to the international standards and no overdoses were observed in any cases. Logarithmic diagram of arithmetic mean of 72 deep wells, which were rsed for the Tehran’s orbital town's drinking water, showed that chemical components of the water were Calcic-Chloride category and there were not observed any increases within the other compounds.

  16. Potentiometric-surface map of water in the Fox Hills-Lower Hell Creek aquifer in the Northern Great Plains area of Montana

    Science.gov (United States)

    Levings, Gary W.

    1982-01-01

    The potentiometric surface of water in the Upper Cretaceous Fox Hills-lower Hell Creek aquifer is shown on a base map at a scale of 1:1,000,000. The map is one of a series produced as part of regional study of aquifers of Cenozoic and Mesozoic age in the northern Great Plains of Montana. The contour interval is 100 feet. The map shows that the direction of regional ground-water movement is toward the northeast. Recharge occurs on the flanks of the Black Hills uplift, the Cedar Creek anticline, the southwest part of the Bull Mountains basin, and on the out-crop areas. Discharge from the aquifer occurs along a short reach of the Yellowstone River. The average discharge from 335 wells is about 16 gallons per minute and the specific capacity of 185 wells averages 0.49 gallon per minute per foot of drawdown. (USGS)

  17. Relative Recovery of Thermal Energy and Fresh Water in Aquifer Storage and Recovery Systems.

    Science.gov (United States)

    Miotliński, K; Dillon, P J

    2015-01-01

    This paper explores the relationship between thermal energy and fresh water recoveries from an aquifer storage recovery (ASR) well in a brackish confined aquifer. It reveals the spatial and temporal distributions of temperature and conservative solutes between injected and recovered water. The evaluation is based on a review of processes affecting heat and solute transport in a homogeneous aquifer. In this simplified analysis, it is assumed that the aquifer is sufficiently anisotropic to inhibit density-affected flow, flow is axisymmetric, and the analysis is limited to a single ASR cycle. Results show that the radial extent of fresh water at the end of injection is greater than that of the temperature change due to the heating or cooling of the geological matrix as well as the interstitial water. While solutes progress only marginally into low permeability aquitards by diffusion, conduction of heat into aquitards above and below is more substantial. Consequently, the heat recovery is less than the solute recovery when the volume of the recovered water is lower than the injection volume. When the full volume of injected water is recovered the temperature mixing ratio divided by the solute mixing ratio for recovered water ranges from 0.95 to 0.6 for ratios of maximum plume radius to aquifer thickness of 0.6 to 4.6. This work is intended to assist conceptual design for dual use of ASR for conjunctive storage of water and thermal energy to maximize the potential benefits.

  18. Test holes drilled in support of ground-water investigations, Project Gnome, Eddy County, New Mexico

    Science.gov (United States)

    Cooper, J.B.

    1962-01-01

    Project Gnome is a proposed underground nuclear shot to be detonated within a massive salt bed in Eddy County, N. Mex. Potable and neat potable ground water is present in rocks above the salt and is being studied in relation to this nuclear event. This report presents details of two test holes which were drilled to determine ground-water conditions in the near vicinity of the shot point. A well-defined aquifer is present at the site of USGS test hole 1, about 1,000 feet south of the access shaft to the underground shot point. Water with 75 feet of artesian pressure head is contained in the Culebra dolomite member of the Rustler formation. The dolomite aquifer is 32 feet thick and its top lies at a depth of 517 feet below land surface. The aquifer yielded 100 gpm (gallons per minute) with a drawdown of 40 feet during a pumping period of 24 hours. Water was not found in rocks above or below the Culebra dolomite. At the site of USGS test hole 2, about 2 miles southwest of the access shaft no distinctive aquifer exists. About one-half gpm was yielded to the well from the rocks between the Culebra dolomite and the top of the salt. Water could not be detected in the Culebra dolomite or overlying rocks. The report contains drawdown and recovery curves of yield tests, drilling-time charts, and electric logs. The data are given in tables; they include summaries of hole construction, sample description logs, water measurements, drilling-time logs, and water analyses.

  19. Impacts of soil-aquifer heat and water fluxes on simulated global climate

    Directory of Open Access Journals (Sweden)

    N. Y. Krakauer

    2013-01-01

    Full Text Available Climate models have traditionally only represented heat and water fluxes within relatively shallow soil layers, but there is increasing interest in the possible role of heat and water exchanges with the deeper subsurface. Here, we integrate an idealized 50 m deep aquifer into the land surface module of the GISS ModelE general circulation model to test the influence of aquifer-soil moisture and heat exchanges on climate variables. We evaluate the impact on the modeled climate of aquifer-soil heat and water fluxes separately, as well as in combination. The addition of the aquifer to ModelE has limited impact on annual-mean climate, with little change in global mean land temperature, precipitation, or evaporation. The seasonal amplitude of deep soil temperature is strongly damped by the soil-aquifer heat flux. This not only improves the model representation of permafrost area but propagates to the surface, resulting in an increase in the seasonal amplitude of surface air temperature of >1 K in the Arctic. The soil-aquifer water and heat fluxes both slightly decrease interannual variability in soil moisture and land-surface temperature, and decrease the soil moisture memory of the land surface on annual timescales. The results of this experiment suggest that deepening the modeled land surface, compared to modeling only a shallower soil column with a no-flux bottom boundary condition, has limited impact on mean climate but does affect seasonality and interannual persistence.

  20. Simulated ground-water flow and water quality of the Mississippi River alluvium near Burlington, Iowa, 1999

    Science.gov (United States)

    Boyd, Robert A.

    2001-01-01

    The City of Burlington, Iowa, obtains some of its public water supply by withdrawing ground water from the Mississippi River alluvium, an alluvial aquifer adjacent to the Mississippi River. The U.S. Geological Survey, in cooperation with the City of Burlington, conducted a hydrologic study of the Mississippi River alluvium near Burlington in 1999 to improve understanding of the flow system, evaluate the effects of hypothetical pumping scenarios on the flow system, and evaluate selected water-quality constituents in parts of the alluvium.

  1. Application of environmental tracers to mixing, evolution, and nitrate contamination of ground water in Jeju Island, Korea

    Science.gov (United States)

    Koh, D.-C.; Niel, Plummer L.; Kip, Solomon D.; Busenberg, E.; Kim, Y.-J.; Chang, H.-W.

    2006-01-01

    Tritium/helium-3 (3H/3He) and chlorofluorocarbons (CFCs) were investigated as environmental tracers in ground water from Jeju Island (Republic of Korea), a basaltic volcanic island. Ground-water mixing was evaluated by comparing 3H and CFC-12 concentrations with lumped-parameter dispersion models, which distinguished old water recharged before the 1950s with negligible 3H and CFC-12 from younger water. Low 3H levels in a considerable number of samples cannot be explained by the mixing models, and were interpreted as binary mixing of old and younger water; a process also identified in alkalinity and pH of ground water. The ground-water CFC-12 age is much older in water from wells completed in confined zones of the hydro-volcanic Seogwipo Formation in coastal areas than in water from the basaltic aquifer. Major cation concentrations are much higher in young water with high nitrate than those in uncontaminated old water. Chemical evolution of ground water resulting from silicate weathering in basaltic rocks reaches the zeolite-smectite phase boundary. The calcite saturation state of ground water increases with the CFC-12 apparent (piston flow) age. In agricultural areas, the temporal trend of nitrate concentration in ground water is consistent with the known history of chemical fertilizer use on the island, but increase of nitrate concentration in ground water is more abrupt after the late 1970s compared with the exponential growth of nitrogen inputs. ?? 2005 Elsevier B.V. All rights reserved.

  2. Geochemical Effects of Induced Stream-Water and Artificial Recharge on the Equus Beds Aquifer, South-Central Kansas, 1995-2004

    Science.gov (United States)

    Schmidt, Heather C. Ross; Ziegler, Andrew C.; Parkhurst, David L.

    2007-01-01

    Artificial recharge of the Equus Beds aquifer is part of a strategy implemented by the city of Wichita, Kansas, to preserve future water supply and address declining water levels in the aquifer of as much as 30 feet caused by withdrawals for water supply and irrigation since the 1940s. Water-level declines represent a diminished water supply and also may accelerate migration of saltwater from the Burrton oil field to the northwest and the Arkansas River to the southwest into the freshwater of the Equus Beds aquifer. Artificial recharge, as a part of the Equus Beds Ground-Water Recharge Project, involves capturing flows larger than base flow from the Little Arkansas River and recharging the water to the Equus Beds aquifer by means of infiltration or injection. The geochemical effects on the Equus Beds aquifer of induced stream-water and artificial recharge at the Halstead and Sedgwick sites were determined through collection and analysis of hydrologic and water-quality data and the application of statistical, mixing, flow and solute-transport, and geochemical model simulations. Chloride and atrazine concentrations in the Little Arkansas River and arsenic concentrations in ground water at the Halstead recharge site frequently exceeded regulatory criteria. During 30 percent of the time from 1999 through 2004, continuous estimated chloride concentrations in the Little Arkansas River at Highway 50 near Halstead exceeded the Secondary Drinking-Water Regulation of 250 milligrams per liter established by the U.S. Environmental Protection Agency. Chloride concentrations in shallow monitoring wells located adjacent to the stream exceeded the drinking-water criterion five times from 1995 through 2004. Atrazine concentrations in water sampled from the Little Arkansas River had large variability and were at or near the drinking-water Maximum Contaminant Level of 3.0 micrograms per liter as an annual average established by the U.S. Environmental Protection Agency. Atrazine

  3. Resource conservation and recovery act ground-water monitoring projects for Hanford facilities: Progress report, January 1--March 31, 1989

    Energy Technology Data Exchange (ETDEWEB)

    Smith, R.M.; Bates, D.J.; Lundgren, R.E.

    1989-06-01

    This document describes the progress of 13 Hanford Site ground-water monitoring projects for the period January 1 to March 31, 1989. The work described in this document is conducted by the Pacific Northwest Laboratory under the management of Westinghouse Hanford Company for the US Department of Energy. Concentrations of ground-water constituents are compared to federal drinking water standards throughout this document for reference purposes. All drinking water supplied from the sampled aquifer meets regulatory standards for drinking water quality. 32 refs., 30 figs., 103 tabs.

  4. Ground water and the rural homeowner

    Science.gov (United States)

    Waller, Roger M.

    1994-01-01

    As the salesmen sang in the musical The Music Man, "You gotta know the territory." This saying is also true when planning to buy or build a house. Learn as much as possible about the land, the water supply, and the septic system of the house before buying or building. Do not just look at the construction aspects or the beauty of the home and surroundings. Be sure to consider the environmental conditions around and beneath the site as well. Try to visit the site under adverse conditions, such as during heavy rain or meltwater runoff, to observe the drainage characteristics, particularly the condition of the basement. Many of the conditions discussed in this book, such as lowered well-water levels, flooded basements, and contamination from septic systems, are so common that rural families often have to deal with one or more of them. The purpose of this book is to awaken an interest in ground water and an awareness of where it is available, how it moves, how people can adjust to its patterns to avoid problems, and how it can be protected and used wisely. This booklet provides both present and prospective rural homeowners, particularly those in the glaciated northern parts of the United States, with a basic but comprehensive description of ground water. It also presents problems one may expect to encounter with ground water and some solutions or suggestions for help with these problems.

  5. Ground-water quality in Bannock, Bear Lake, Caribou, and part of Power counties, southeastern Idaho

    Science.gov (United States)

    Seitz, H.R.; Norvitch, R.F.

    1979-01-01

    The 103 wells sampled during the study establish a quasi-network that could be resampled in the future to document and analyze changes in ground-water quality in the southeastern Idaho study area. The main aquifers are categorized as alluvium of Quaternary age, basalt of Quaternary and (or) Tertiary age, rocks of the Salt Lake Formation of Tertiary age, and undifferentiated bedrock of pre-Tertiary age. Dissolved solids, hardness, nitrite plus nitrate as nitrogen, and chloride concentrations in the ground waters ranged from 165 to 1,690; 78 to 1,700; 0 to 29; and 1.9 to 360 milligrams per liter, respectively. The areal distributions of these constituents are shown on maps. The range and median values of these same constituents are tabulated by aquifer occurrence. Some of the most mineralized and hardest waters occur in the basalt aquifer near travertine deposits (or terraces), which are composed of calcium carbonate precipitates from mineral springs. For irrigation purposes, all the waters are classified as having low-sodium hazard. Most have medium- to high-salinity hazard. (Woodard-USGS)

  6. The Edwards Aquifer Water Resource Conflict: USDA Farm Program resource-use incentives?

    Science.gov (United States)

    Schaible, Glenn D.; McCarl, Bruce A.; Lacewell, Ronald D.

    1999-10-01

    This paper summarizes economic and hydrological analyses of the impacts of the 1990 and 1996 U.S. Department of Agriculture (USDA) farm programs on irrigation water withdrawals from the Edwards Aquifer in south central Texas and on aquifer-dependent spring flows that support threatened and endangered species. Economic modeling, a regional producer behavioral survey, as well as institutional and farm characteristic analyses are used to examine likely irrigation water-use impacts. Hydrologie modeling is used to examine spring flow effects. Study results show that 1990 USDA commodity programs caused producers to require less irrigation water, in turn increasing rather than decreasing aquifer spring flows. Market economic factors are the dominant criteria influencing producer irrigation decisions. Farm-tenure arrangements and aquifer management responsibilities of the Edwards Aquifer Authority indicate that the 1996 Farm Act's PFC payment program will not cause an increase in irrigation withdrawals. Broader actions such as long-term water supply enhancement/conservation programs, dry-year water-use reduction incentives and water markets all provide tools for Edwards water-use conflict resolution. USDA farm programs do not apparently play a material part in the total debate.

  7. Hydrogeology and simulation of ground-water flow, Picatinny Arsenal and vicinity, Morris County, New Jersey

    Science.gov (United States)

    Voronin, L.M.; Rice, D.E.

    1996-01-01

    Ground-water flow in glacial sediments and bedrock at Picatinny Arsenal, N.J., was simulated by use of a three-dimensional finite-difference ground- water-flow model. The modeled area includes a 4.3-square-mile area that extends from Picatinny Lake to the Rockaway River. Most of the study area is bounded by the natural hydrologic boundaries of the ground-water system. eophysical logs, lithologic logs, particle-size data, and core data from selected wells and surface geophysical data were analyzed to define the hydrogeologic framework. Hydrogeologic sections and thickness maps define six permeable and three low-permeability layers that are represented in the model as aquifers and confining units, respectively. Hydrologic data incorporated in the model include a rate of recharge from precipitation of 22 inches per year, estimated from long-term precipitation records and estimates of evapotranspiration. Additional recharge from infiltration along valleys was estimated from measured discharge of springs along the adjacent valley walls and from estimates of runoff from upland drainage that flows to the valley floor. Horizontal and vertical hydraulic conductivities of permeable and low-permeability layers were estimated from examination of aquifer-test data, gamma-ray logs, borehole cuttings, and previously published data. Horizontal hydraulic conductivities in glacial sediments range from 10 to 380 feet per day. Vertical hydraulic conductivities of the low-permeability layers range from 0.01 to 0.7 feet per day. The model was calibrated by simulating steady-state conditions during 1989-93 and by closely matching simulated and measured ground-water levels, vertical ground-water-head differences, and streamflow gain and loss. Simulated steady-state potentiometric- surface maps produced for the six permeable layers indicate that ground water in the unconfined material within Picatinny Arsenal flows predominantly toward the center of the valley, where it discharges to Green

  8. The quality of our Nation's waters: water quality in the Mississippi embayment-Texas coastal uplands aquifer system and Mississippi River Valley alluvial aquifer, south-central United States, 1994-2008

    Science.gov (United States)

    Kingsbury, James A.; Barlow, Jeannie R.; Katz, Brian G.; Welch, Heather L.; Tollett, Roland W.; Fahlquist, Lynne S.

    2015-01-01

    About 8 million people rely on groundwater from the Mississippi embayment—Texas coastal uplands aquifer system for drinking water. The Mississippi River Valley alluvial aquifer also provides drinking water for domestic use in rural areas but is of primary importance to the region as a source of water for irrigation. Irrigation withdrawals from this aquifer are among the largest in the Nation and play a key role in the economy of the area, where annual crop sales total more than $7 billion. The reliance of the region on both aquifers for drinking water and irrigation highlights the importance of long-term management to sustain the availability and quality of these resources.

  9. Study on Volume Strain Inversion from Water Level Change of Well-aquifer Systems

    Institute of Scientific and Technical Information of China (English)

    Yan Rui; Gao Fuwang; Chen Yong

    2008-01-01

    Based on linear poroelastic and hydrogcology theory, a mathematical expression describing the relationship between water level change and aquifer volume strain is put forward. Combined with earth tidal theory, we analyze the response characteristics from well-aquifer water level change to earth tide of volume strain and present a method of volume strain inversion from water level change. Comparing the results of inversion with real observed data, we found that there is a good consistency. This suggcsts that the method of volume strain inversion from water level change is proper. It will offer a reference for learning about hydrogeology characteristics, volume strain and searching for precursor anomalies.

  10. Thermal Methods for Investigating Ground-Water Recharge

    Science.gov (United States)

    Blasch, Kyle W.; Constantz, Jim; Stonestrom, David A.

    2007-01-01

    Recharge of aquifers within arid and semiarid environments is defined as the downward flux of water across the regional water table. The introduction of recharging water at the land surface can occur at discreet locations, such as in stream channels, or be distributed over the landscape, such as across broad interarroyo areas within an alluvial ground-water basin. The occurrence of recharge at discreet locations is referred to as focused recharge, whereas the occurrence of recharge over broad regions is referred to as diffuse recharge. The primary interest of this appendix is focused recharge, but regardless of the type of recharge, estimation of downward fluxes is essential to its quantification. Like chemical tracers, heat can come from natural sources or be intentionally introduced to infer transport properties and aquifer recharge. The admission and redistribution of heat from natural processes such as insolation, infiltration, and geothermal activity can be used to quantify subsurface flow regimes. Heat is well suited as a ground-water tracer because it provides a naturally present dynamic signal and is relatively harmless over a useful range of induced perturbations. Thermal methods have proven valuable for recharge investigations for several reasons. First, theoretical descriptions of coupled water-and-heat transport are available for the hydrologic processes most often encountered in practice. These include land-surface mechanisms such as radiant heating from the sun, radiant cooling into space, and evapotranspiration, in addition to the advective and conductive mechanisms that usually dominate at depth. Second, temperature is theoretically well defined and readily measured. Third, thermal methods for depths ranging from the land surface to depths of hundreds of meters are based on similar physical principles. Fourth, numerical codes for simulating heat and water transport have become increasingly reliable and widely available. Direct measurement of water

  11. Impact of global change on ground subsidence related to aquifer exploitation. The case of the Vega de Granada aquifer (SE Spain)

    Science.gov (United States)

    Pulido-Velazquez, David; María Mateos, Rosa; Rueda, Ramon; Pegalajar-Cuellar, Manuel; Ezquerro, Pablo; Béjar, Marta; Herrera, Gerardo; Collados-Lara, Antonio-Juan

    2017-04-01

    In this research, we intend to develop a methodology to assess the impact of potential global change scenarios on land subsidence. Subsidence rates in wide areas could be estimated by using remote sensing techniques, such as DInSAR and specifically the new radar information obtained by the Sentinel set of satellites from the European Space Agency (ESA). A symbolic regression method will be developed to obtain an explicit quantitative relationship between subsidence, hydraulic head changes and other physical variables (e.g. percentage of clay and silt in the ground, load of buildings and constructions, fill-in works etc.). Different ensemble and downscaling techniques will be used to define potential future global change scenarios for the test-regions based on the data coming from simulations with different Regional Circulation Models (RCMs). Future drawdowns can be estimated from these global change scenarios under different management options. The regression approach will be employed to simulate the impacts of these drawdowns, in terms of land-subsidence, taking into account the estimated hydraulic head changes. It will allow to assess sustainable management of detrital aquifers taking into account subsidence issues. Classic regression analysis attempts to postulate a hypothesis function f, and the regression is reduced to the problem of finding the optimal parameters w of the hypothesis y=f(x, w), to explain a set of dependent variables y from the values of independent variables x, where x and y are known input/output data. Symbolic regression generalizes this process by assuming that f is also unknown in advance, so that the problem is formulated as finding the optimal analytical expression and its parameters that best approximate the data y considering the data in x. To achieve that purpose, in this work Straight Line Programs (SLP) will be used to represent analytical expressions, and a genetic programming approach will be used to find an optimal SLP that

  12. Assessment of ground-water contamination by coal-tar derivatives, St. Louis Park area, Minnesota

    Science.gov (United States)

    Hult, M.F.

    1984-01-01

    Operation of a coal-tar distillation and wood-preserving facility in St. Louis Park, Minnesota, during 1918-72 contaminated ground water with coal-tar derivatives and inorganic chemicals. Coal-tar derivatives entered the groundwater system through three major paths: (1) Spills and drippings that percolated to the water table, (2) surface runoff and plant process water that was discharged to wetlands south of the former plant site, and (3) movement of coal tar directly into bedrock aquifers through a multiaquifer well on the site.

  13. Characterization of Climax granite ground water

    Energy Technology Data Exchange (ETDEWEB)

    Isherwood, D.; Harrar, J.; Raber, E.

    1982-08-01

    The Climax ground water fails to match the commonly held views regarding the nature of deep granitic ground waters. It is neither dilute nor in equilibrium with the granite. Ground-water samples were taken for chemical analysis from five sites in the fractured Climax granite at the Nevada Test Site. The waters are high in total dissolved solids (1200 to 2160 mg/L) and rich in sodium (56 to 250 mg/L), calcium (114 to 283 mg/L) and sulfate (325 to 1060 mg/L). Two of the samples contained relatively high amounts of uranium (1.8 and 18.5 mg/L), whereas the other three contained uranium below the level of detection (< 0.1 mg/L). The pH is in the neutral range (7.3 to 8.2). The differences in composition between samples (as seen in the wide range of values for the major constituents and total dissolved solids) suggest the samples came from different, independent fracture systems. However, the apparent trend of increasing sodium with depth at the expense of calcium and magnesium suggests a common evolutionary chemical process, if not an interconnected system. The waters appear to be less oxidizing with depth (+ 410 mV at 420 m below the surface vs + 86 mV at 565 m). However, with Eh measurements on only two samples, this correlation is questionable. Isotopic analyses show that the waters are of meteoric origin and that the source of the sulfate is probably the pyrite in the fracture-fill material. Analysis of the measured water characteristics using the chemical equilibrium computer program EQ3 indicates that the waters are not in equilibrium with the local mineral assemblage. The solutions appear to be supersaturated with respect to the mineral calcite, quartz, kaolinite, muscovite, k-feldspar, and many others.

  14. Use of Ground-water Temperature Patterns to Determine the Hydraulic Conductance of the Streambed Along the Middle Reaches of the Russian River, CA

    Science.gov (United States)

    Su, G. W.; Constantz, J.; Jasperse, J.; Seymour, D.

    2002-12-01

    Along the Russian River in Sonoma County, the alluvial aquifer is the preferred source of drinking water because sediments and other constituents in the river water would require additional treatment. From late spring to early winter, an inflatable dam is erected to raise the river stage and passively recharge the alluvial aquifer. The raised stage also permits diversion of river water to a series of recharge ponds located near the dam along the river. Improved understanding of stream exchanges with ground water is needed to better manage available water resources. Heat is used as a tracer of shallow ground-water movement for detailed hydraulic parameter estimation along the middle reaches of the river. Water-levels and ground-water temperatures were measured in a series of observations wells and compared to the river stage and surface-water temperatures. Hydraulic conductivities were predicted by optimizing simulated ground-water temperatures using VS2DHI, a heat and water transport model, to observed temperatures in the aquifer. These conductivity values will be used in a stream/ground-water model of this region being developed using MODFLOW. Temperature-based estimates of streambed conductance will be inserted in the STREAM package of the model to constrain this parameter. Although temperature-based predictions of hydraulic conductivity vary significantly along the reach, the results generally suggest that an anisotropy of 5 to 1 (horizontal to vertical) provides the best hydraulic conductivity matches for predicted versus observed ground-water temperatures.

  15. Water-level altitudes 2008 and water-level changes in the Chicot, Evangeline, and Jasper Aquifers and compaction 1973-2007 in the Chicot and Evangeline Aquifers, Houston-Galveston Region, Texas

    Science.gov (United States)

    Kasmarek, Mark C.; Houston, Natalie A.

    2008-01-01

    This report, done in cooperation with the Harris-Galveston Subsidence District, the City of Houston, the Fort Bend Subsidence District, and the Lone Star Groundwater Conservation District, is one in an annual series of reports that depicts water-level altitudes and water-level changes in the Chicot, Evangeline, and Jasper aquifers, and compaction in the Chicot and Evangeline aquifers in the Houston-Galveston region, Texas. The report contains 17 sheets and 16 tables: 3 sheets are maps showing current-year (2008) water-level altitudes for each aquifer, respectively; 3 sheets are maps showing 1-year (2007-08) water-level changes for each aquifer, respectively; 3 sheets are maps showing 5-year (2003-08) water-level changes for each aquifer, respectively; 4 sheets are maps showing long-term (1990-2008 and 1977-2008) water-level changes for the Chicot and Evangeline aquifers, respectively; 1 sheet is a map showing long-term (2000-2008) water-level change for the Jasper aquifer; 1 sheet is a revision of a previously published water-level-altitude map for the Jasper aquifer for 2003; 1 sheet is a map showing site locations of borehole extensometers; and 1 sheet comprises graphs showing measured compaction of subsurface material at the sites from 1973 or later through 2007, respectively. Tables listing the data used to construct the aquifer-data maps and the compaction graphs are included.

  16. Water-level altitudes 2007 and water-level changes in the Chicot, Evangeline, and Jasper Aquifers and compaction 1973-2006 in the Chicot and Evangeline Aquifers, Houston-Galveston Region, Texas

    Science.gov (United States)

    Kasmarek, Mark C.; Houston, Natalie A.

    2007-01-01

    This report, done in cooperation with the Harris-Galveston Subsidence District, the City of Houston, the Fort Bend Subsidence District, and the Lone Star Groundwater Conservation District, is one in an annual series of reports that depicts water-level altitudes and water-level changes in the Chicot, Evangeline, and Jasper aquifers, and compaction in the Chicot and Evangeline aquifers in the Houston-Galveston, Texas, region. The report contains 18 sheets and 17 tables: 3 sheets are maps showing current-year (2007) water-level altitudes for each aquifer, respectively; 3 sheets are maps showing 1-year (2006-07) water-level changes for each aquifer, respectively; 3 sheets are maps showing 5-year (2002-07) water-level changes for each aquifer, respectively; 4 sheets are maps showing long-term (1990-2007 and 1977-2007) water-level changes for the Chicot and Evangeline aquifers, respectively; 1 sheet is a map showing long-term (2000-2007) water-level change for the Jasper aquifer; 2 sheets are revisions of previously published water-level-altitude maps for the Jasper aquifer for 2000 and 2002, respectively; 1 sheet is a map showing site locations of borehole extensometers; and 1 sheet comprises graphs showing measured compaction of subsurface material at the sites from 1973 or later through 2006, respectively. Tables listing the data used to construct the aquifer-data maps and the compaction graphs also are included.

  17. Water management, agriculture, and ground-water supplies

    Science.gov (United States)

    Nace, Raymond L.

    1960-01-01

    Encyclopedic data on world geography strikingly illustrate the drastic inequity in the distribution of the world's water supply. About 97 percent of the total volume of water is in the world's oceans. The area of continents and islands not under icecaps, glaciers, lakes, and inland seas is about 57.5 million square miles, of which 18 million (36 percent) is arid to semiarid. The total world supply of water is about 326.5 million cubic miles, of which about 317 million is in the oceans and about 9.4 million is in the land areas. Atmospheric moisture is equivalent to only about 3,100 cubic miles of water. The available and accessible supply of ground water in the United States is somewhat more than 53,000 cubic miles (about 180 billion acre ft). The amount of fresh water on the land areas of the world at any one time is roughly 30,300 cubic miles and more than a fourth of this is in large fresh-water lakes on the North American Continent. Annual recharge of ground water in the United States may average somewhat more than 1 billion acre-feet yearly, but the total volume of ground water in storage is equivalent to all the recharge in about the last 160 years. This accumulation of ground water is the nation's only reserve water resource, but already it is being withdrawn or mined on a large scale in a few areas. The principal withdrawals of water in the United States are for agriculture and industry. Only 7.4 percent of agricultural land is irrigated, however; so natural soil moisture is the principal source of agricultural water, and on that basis agriculture is incomparably the largest water user. In view of current forecasts of population and industrial expansion, new commitments of water for agriculture should be scrutinized very closely, and thorough justification should be required. The 17 Western States no longer contain all the large irrigation developments. Nearly 10 percent of the irrigated area is in States east of the western bloc, chiefly in several

  18. Water management, agriculture, and ground-water supplies

    Science.gov (United States)

    Nace, Raymond L.

    1960-01-01

    Encyclopedic data on world geography strikingly illustrate the drastic inequity in the distribution of the world's water supply. About 97 percent of the total volume of water is in the world's oceans. The area of continents and islands not under icecaps, glaciers, lakes, and inland seas is about 57.5 million square miles, of which 18 million (36 percent) is arid to semiarid. The total world supply of water is about 326.5 million cubic miles, of which about 317 million is in the oceans and about 9.4 million is in the land areas. Atmospheric moisture is equivalent to only about 3,100 cubic miles of water. The available and accessible supply of ground water in the United States is somewhat more than 53,000 cubic miles (about 180 billion acre ft). The amount of fresh water on the land areas of the world at any one time is roughly 30,300 cubic miles and more than a fourth of this is in large fresh-water lakes on the North American Continent. Annual recharge of ground water in the United States may average somewhat more than 1 billion acre-feet yearly, but the total volume of ground water in storage is equivalent to all the recharge in about the last 160 years. This accumulation of ground water is the nation's only reserve water resource, but already it is being withdrawn or mined on a large scale in a few areas. The principal withdrawals of water in the United States are for agriculture and industry. Only 7.4 percent of agricultural land is irrigated, however; so natural soil moisture is the principal source of agricultural water, and on that basis agriculture is incomparably the largest water user. In view of current forecasts of population and industrial expansion, new commitments of water for agriculture should be scrutinized very closely, and thorough justification should be required. The 17 Western States no longer contain all the large irrigation developments. Nearly 10 percent of the irrigated area is in States east of the western bloc, chiefly in several

  19. Hydrogeochemical contrast between brown and grey sand aquifers in shallow depth of Bengal Basin: consequences for sustainable drinking water supply.

    Science.gov (United States)

    Biswas, Ashis; Nath, Bibhash; Bhattacharya, Prosun; Halder, Dipti; Kundu, Amit K; Mandal, Ujjal; Mukherjee, Abhijit; Chatterjee, Debashis; Mörth, Carl-Magnus; Jacks, Gunnar

    2012-08-01

    Delineation of safe aquifer(s) that can be targeted by cheap drilling technology for tubewell (TW) installation becomes highly imperative to ensure access to safe and sustainable drinking water sources for the arsenic (As) affected population in Bengal Basin. This study investigates the potentiality of brown sand aquifers (BSA) as a safe drinking water source by characterizing its hydrogeochemical contrast to grey sand aquifers (GSA) within shallow depth (water guidelines, which warrants rigorous assessment of attendant health risk for Mn prior to considering mass scale exploitation of the BSA for possible sustainable drinking water supply.

  20. Recharge to extensive aquifers by means of atmospheric chloride deposition and ground temperature; Recarga a los acuiferos extensos a partir de la deposicion atmosferica de cloruros y de la temperatura del terreno

    Energy Technology Data Exchange (ETDEWEB)

    Custodio, E.

    2009-07-01

    One of the most uncertain and at the same time essential values for groundwater knowledge and management is aquifer recharge, especially in large areas with scarce data. Under steady state circumstances the atmospheric chloride deposition balance is an effective method to estimate average diffuse recharge and its possible error. Progress in the application are reported to some aquifers, in some of which the water mixtures in groundwater sampling from the aquifer due to recharge spatial variability are considered. Also, recharge affects in ground temperature distribution is considered as an indicator of recharge. Spanish examples from the Iberian Peninsula: Donana, Anoia, the Llobregat delta, and the whole territory are considered, and also from the archipelagos The Canaries: Gran Canaria, Fuerteventura and La Gomera, and the Balearic Islands: Mallorca. (Author) 19 refs.

  1. Hydrologic connections and dynamics of water movement in the classical Karst (Kras) Aquifer: evidence from frequent chemical and stable isotope sampling

    Science.gov (United States)

    Doctor, Daniel H.

    2008-01-01

    A review of past research on the hydrogeology of the Classical Karst (Kras) region and new information obtained from a two- year study using environmental tracers are presented in this paper. The main problems addressed are 1) the sources of water to the Kras aquifer resurgence zone-including the famous Timavo springs-under changing flow regimes; 2) a quantification of the storage volumes of the karst massif corresponding to flow regimes defined by hydrograph recessions of the Timavo springs; and 3) changing dynamics between deep phreatic conduit flow and shallow phreatic and epiphreatic storage within the aquifer resurgence zone as determined through changes in chemical and isotopic composition at springs and wells. Particular focus was placed on addressing the long-standing question of the influence of the Soca River on the ground waters of the aquifer resurgence zone. The results indicate that the alluvial aquifer supplied by the sinking of the Soca River on the northwestern edge of the massif contributes approximately 75% of the mean annual outflow to the smaller springs of the aquifer resurgence zone, and as much as 53% to the mean annual outflow of the Timavo springs. As a whole, the Soca River is estimated to contribute 56% of the average outflow of the Kras aquifer resurgence. The proportions of Soca River water increase under drier conditions, and decrease under wetter conditions. Time series analysis of oxygen stable isotope records indicate that the transit time of Soca River water to the Timavo springs, Sardos spring, and well B-4 is on the order of 1-2 months, depending on hydrological conditions. The total baseflow storage of the Timavo springs is estimated to be 518 million m3, and represents 88.5% of the storage capacity estimated for all flow regimes of the springs. The ratio of baseflow storage volume to the average annual volume discharged at the Timavo springs is 0.54. The Reka River sinking in Slovenia supplies substantial allogenic recharge to

  2. Solute changes during aquifer storage recovery testing in a limestone/clastic aquifer

    Science.gov (United States)

    Mirecki, J.E.; Campbell, B.G.; Conlon, K.J.; Petkewich, M.D.

    1998-01-01

    Aquifer storage recovery (ASR) was tested in the Santee Limestone/Black Mingo Aquifer near Charleston, South Carolina, to assess the feasibility for subsurface storage of treated drinking water. Water quality data obtained during two representative ASR tests were interpreted to show three things: (1) recovery efficiency of ASR in this geological setting; (2) possible changes in physical characteristics of the aquifer during ASR testing; and (3) water quality changes and potability of recovered water during short (one- and six-day) storage durations in the predominantly carbonate aquifer. Recovery efficiency for both ASR tests reported here was 54%. Successive ASR tests increased aquifer permeability of the Santee Limestone/Black Mingo Aquifer. It is likely that aquifer permeability increased during short storage periods due to dissolution of carbonate minerals and amorphous silica in aquifer material by treated drinking water. Dissolution resulted in an estimated 0.3% increase in pore volume of the permeable zones. Ground water composition generally evolved from a sodium-calcium bicarbonate water to a sodium chloride water during storage and recovery. After short duration, stored water can exceed the U.S. Environmental Protection Agency maximum contaminant level (MCL) for chloride (250 mg/L). However, sulfate, fluoride, and trihalomethane concentrations remained below MCLs during storage and recovery.Aquifer storage recovery (ASR) was tested in the Santee Limestone/Black Mingo Aquifer near Charleston, South Carolina, to assess the feasibility for subsurface storage of treated drinking water. Water quality data obtained during two representative ASR tests were interpreted to show three things: (1) recovery efficiency of ASR in this geological setting; (2) possible changes in physical characteristics of the aquifer during ASR testing; and (3) water quality changes and potability of recovered water during short (one- and six-day) storage durations in the predominantly

  3. Water-level changes and change in water in storage in the High Plains aquifer, predevelopment to 2013 and 2011-13

    Science.gov (United States)

    McGuire, Virginia L.

    2014-01-01

    The High Plains aquifer underlies 111.8 million acres (about 175,000 square miles) in parts of eight States—Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming. Water-level declines began in parts of the High Plains aquifer soon after the beginning of substantial irrigation with groundwater in the aquifer area (about 1950). This report presents water-level changes in the High Plains aquifer from predevelopment (generally before 1950) to 2013 and from 2011 to 2013. The report also presents change in water in storage in the High Plains aquifer from predevelopment to 2013 and from 2011 to 2013.

  4. Digital data sets that describe aquifer characteristics of the Elk City Aquifer in western Oklahoma

    Science.gov (United States)

    Becker, C.J.; Runkle, D.L.; Rea, Alan

    1997-01-01

    ARC/INFO export and nonproprietary format files This diskette contains digitized aquifer boundaries and maps of hydraulic conductivity, recharge, and ground-water level elevation contours for the Elk City aquifer in western Oklahoma. The aquifer covers an area of approximately 193,000 acres and supplies ground water for irrigation, domestic, and industrial purposes in Beckham, Custer, Roger Mills, and Washita Counties along the divide between the Washita and Red River basins. The Elk City aquifer consists of the Elk City Sandstone and overlying terrace deposits, made up of clay, silt, sand and gravel, and dune sands in the eastern part and sand and gravel of the Ogallala Formation (or High Plains aquifer) in the western part of the aquifer. The Elk City aquifer is unconfined and composed of very friable sandstone, lightly cemented with clay, calcite, gypsum, or iron oxide. Most of the grains are fine-sized quartz but the grain size ranges from clay to cobble in the aquifer. The Doxey Shale underlies the Elk City aquifer and acts as a confining unit, restricting the downward movement of ground water. All of the data sets were digitized and created from information and maps in a ground-water modeling thesis and report of the Elk City aquifer. The maps digitized were published at a scale of 1:63,360. Ground-water flow models are numerical representations that simplify and aggregate natural systems. Models are not unique; different combinations of aquifer characteristics may produce similar results. Therefore, values of hydraulic conductivity and recharge used in the model and presented in this data set are not precise, but are within a reasonable range when compared to independently collected data.

  5. Assessment of nitrification potential in ground water using short term, single-well injection experiments.

    Science.gov (United States)

    Smith, R L; Baumgartner, L K; Miller, D N; Repert, D A; Böhlke, J K

    2006-01-01

    Nitrification was measured within a sand and gravel aquifer on Cape Cod, MA, using a series of single-well injection tests. The aquifer contained a wastewater-derived contaminant plume, the core of which was anoxic and contained ammonium. The study was conducted near the downgradient end of the ammonium zone, which was characterized by inversely trending vertical gradients of oxygen (270 to 0 microM) and ammonium (19 to 625 microM) and appeared to be a potentially active zone for nitrification. The tests were conducted by injecting a tracer solution (ambient ground water + added constituents) into selected locations within the gradients using multilevel samplers. After injection, the tracers moved by natural ground water flow and were sampled with time from the injection port. Rates of nitrification were determined from changes in nitrate and nitrite concentration relative to bromide. Initial tests were conducted with (15)N-enriched ammonium; subsequent tests examined the effect of adding ammonium, nitrite, or oxygen above background concentrations and of adding difluoromethane, a nitrification inhibitor. In situ net nitrate production exceeded net nitrite production by 3- to 6- fold and production rates of both decreased in the presence of difluoromethane. Nitrification rates were 0.02-0.28 mumol (L aquifer)(-1) h(-1) with in situ oxygen concentrations and up to 0.81 mumol (L aquifer)(-1) h(-1) with non-limiting substrate concentrations. Geochemical considerations indicate that the rates derived from single-well injection tests yielded overestimates of in situ rates, possibly because the injections promoted small-scale mixing within a transport-limited reaction zone. Nonetheless, these tests were useful for characterizing ground water nitrification in situ and for comparing potential rates of activity when the tracer cloud included non-limiting ammonium and oxygen concentrations.

  6. Digital data sets that describe aquifer characteristics of the Enid isolated terrace aquifer in northwestern Oklahoma

    Science.gov (United States)

    Becker, C.J.; Runkle, D.L.; Rea, Alan

    1997-01-01

    ARC/INFO export and nonproprietary format files The data sets in this report include digitized aquifer boundaries and maps of hydraulic conductivity, recharge, and ground-water level elevation contours for the Enid isolated terrace aquifer in northwestern Oklahoma. The Enid isolated terrace aquifer covers approximately 82 square miles and supplies water for irrigation, domestic, municipal, and industrial use for the City of Enid and western Garfield County. The Quaternary-age Enid isolated terrace aquifer is composed of terrace deposits that consist of discontinuous layers of clay, sandy clay, sand, and gravel. The aquifer is unconfined and is bounded by the underlying Permian-age Hennessey Group on the east and the Cedar Hills Sandstone Formation of the Permian-age El Reno Group on the west. The Cedar Hills Sandstone Formation fills a channel beneath the thickest section of the Enid isolated terrace aquifer in the midwestern part of the aquifer. All of the data sets were digitized and created from information and maps in a ground-water modeling thesis and report of the Enid isolated terrace aquifer. The maps digitized were published at a scale of 1:62,500. Ground-water flow models are numerical representations that simplify and aggregate natural systems. Models are not unique; different combinations of aquifer characteristics may produce similar results. Therefore, values of hydraulic conductivity and recharge used in the model and presented in this data set are not precise, but are within a reasonable range when compared to independently collected data.

  7. Procedures for ground-water investigations

    Energy Technology Data Exchange (ETDEWEB)

    1989-09-01

    This manual was developed by the Pacific Northwest Laboratory (PNL) to document the procedures used to carry out and control the technical aspects of ground-water investigations at the PNL. Ground-water investigations are carried out to fulfill the requirements for the US Department of Energy (DOE) to meet the requirements of DOE Orders. Investigations are also performed for various clients to meet the requirements of the Resource Conservation and Recovery Act of 1976 (RCRA) and the Comprehensive Environmental Response, Compensation and Liability Act of 1980 (CERCLA). National standards including procedures published by the American Society for Testing and Materials (ASTM) and the US Geological Survey were utilized in developing the procedures contained in this manual.

  8. Focus on CSIR research in water resource: Aquifer dependent ecosystems.

    CSIR Research Space (South Africa)

    Colvin, C

    2007-08-01

    Full Text Available of rivers. In terrestrial and riparian ecosystems, groundwater is not seen at the surface but is tapped by plants and used as ‘cryptic’ discharge. ADEs are important indicators of aquifer health and flow regimes. An oasis is a classic ADE, and like many...

  9. Geohydrology, Geochemistry, and Ground-Water Simulation-Optimization of the Central and West Coast Basins, Los Angeles County, California

    Science.gov (United States)

    Reichard, Eric G.; Land, Michael; Crawford, Steven M.; Johnson, Tyler D.; Everett, Rhett; Kulshan, Trayle V.; Ponti, Daniel J.; Halford, Keith L.; Johnson, Theodore A.; Paybins, Katherine S.; Nishikawa, Tracy

    2003-01-01

    Historical ground-water development of the Central and West Coast Basins in Los Angeles County, California through the first half of the 20th century caused large water-level declines and induced seawater intrusion. Because of this, the basins were adjudicated and numerous ground-water management activities were implemented, including increased water spreading, construction of injection barriers, increased delivery of imported water, and increased use of reclaimed water. In order to improve the scientific basis for these water management activities, an extensive data collection program was undertaken, geohydrological and geochemical analyses were conducted, and ground-water flow simulation and optimization models were developed. In this project, extensive hydraulic, geologic, and chemical data were collected from new multiple-well monitoring sites. On the basis of these data and data compiled and collected from existing wells, the regional geohydrologic framework was characterized. For the purposes of modeling, the three-dimensional aquifer system was divided into four aquifer systems?the Recent, Lakewood, Upper San Pedro, and Lower San Pedro aquifer systems. Most pumpage in the two basins is from the Upper San Pedro aquifer system. Assessment of the three-dimensional geochemical data provides insight into the sources of recharge and the movement and age of ground water in the study area. Major-ion data indicate the chemical character of water containing less than 500 mg/L dissolved solids generally grades from calcium-bicarbonate/sulfate to sodium bicarbonate. Sodium-chloride water, high in dissolved solids, is present in wells near the coast. Stable isotopes of oxygen and hydrogen provide information on sources of recharge to the basin, including imported water and water originating in the San Fernando Valley, San Gabriel Valley, and the coastal plain and surrounding hills. Tritium and carbon-14 data provide information on relative ground-water ages. Water with

  10. Biochemical indicators for the bioavailability of organic carbon in ground water

    Science.gov (United States)

    Chapelle, F.H.; Bradley, P.M.; Goode, D.J.; Tiedeman, C.; Lacombe, P.J.; Kaiser, K.; Benner, R.

    2009-01-01

    The bioavailability of total organic carbon (TOC) was examined in ground water from two hydrologically distinct aquifers using biochemical indicators widely employed in chemical oceanography. Concentrations of total hydrolyzable neutral sugars (THNS), total hydrolyzable amino acids (THAA), and carbon-normalized percentages of TOC present as THNS and THAA (referred to as "yields") were assessed as indicators of bioavailability. A shallow coastal plain aquifer in Kings Bay, Georgia, was characterized by relatively high concentrations (425 to 1492 ??M; 5.1 to 17.9 mg/L) of TOC but relatively low THNS and THAA yields (???0.2%-1.0%). These low yields are consistent with the highly biodegraded nature of TOC mobilized from relatively ancient (Pleistocene) sediments overlying the aquifer. In contrast, a shallow fractured rock aquifer in West Trenton, New Jersey, exhibited lower TOC concentrations (47 to 325 ??M; 0.6 to 3.9 mg/L) but higher THNS and THAA yields (???1% to 4%). These higher yields were consistent with the younger, and thus more bioavailable, TOC being mobilized from modern soils overlying the aquifer. Consistent with these apparent differences in TOC bioavailability, no significant correlation between TOC and dissolved inorganic carbon (DIC), a product of organic carbon mineralization, was observed at Kings Bay, whereas a strong correlation was observed at West Trenton. In contrast to TOC, THNS and THAA concentrations were observed to correlate with DIC at the Kings Bay site. These observations suggest that biochemical indicators such as THNS and THAA may provide information concerning the bioavailability of organic carbon present in ground water that is not available from TOC measurements alone.

  11. Evaluation of long-term water-level declines in basalt aquifers near Mosier, Oregon

    Science.gov (United States)

    Burns, Erick R.; Morgan, David S.; Lee, Karl K.; Haynes, Jonathan V.; Conlon, Terrence D.

    2012-01-01

    The Mosier area lies along the Columbia River in northwestern Wasco County between the cities of Hood River and The Dalles, Oregon. Major water uses in the area are irrigation, municipal supply for the city of Mosier, and domestic supply for rural residents. The primary source of water is groundwater from the Columbia River Basalt Group (CRBG) aquifers that underlie the area. Concerns regarding this supply of water arose in the mid-1970s, when groundwater levels in the orchard tract area began to steadily decline. In the 1980s, the Oregon Water Resources Department (OWRD) conducted a study of the aquifer system, which resulted in delineation of an administrative area where parts of the Pomona and Priest Rapids aquifers were withdrawn from further appropriations for any use other than domestic supply. Despite this action, water levels continued to drop at approximately the same, nearly constant annual rate of about 4 feet per year, resulting in a current total decline of between 150 and 200 feet in many wells with continued downward trends. In 2005, the Mosier Watershed Council and the Wasco Soil and Water Conservation District began a cooperative investigation of the groundwater system with the U.S. Geological Survey. The objectives of the study were to advance the scientific understanding of the hydrology of the basin, to assess the sustainability of the water supply, to evaluate the causes of persistent groundwater-level declines, and to evaluate potential management strategies. An additional U.S. Geological Survey objective was to advance the understanding of CRBG aquifers, which are the primary source of water across a large part of Oregon, Washington, and Idaho. In many areas, significant groundwater level declines have resulted as these aquifers were heavily developed for agricultural, municipal, and domestic water supplies. Three major factors were identified as possible contributors to the water-level declines in the study area: (1) pumping at rates that

  12. Hydrology of the coastal springs ground-water basin and adjacent parts of Pasco, Hernando, and Citrus Counties, Florida

    Science.gov (United States)

    Knochenmus, Lari A.; Yobbi, Dann K.

    2001-01-01

    The coastal springs in Pasco, Hernando, and Citrus Counties, Florida consist of three first-order magnitude springs and numerous smaller springs, which are points of substantial ground-water discharge from the Upper Floridan aquifer. Spring flow is proportional to the water-level altitude in the aquifer and is affected primarily by the magnitude and timing of rainfall. Ground-water levels in 206 Upper Floridan aquifer wells, and surface-water stage, flow, and specific conductance of water from springs at 10 gaging stations were measured to define the hydrologic variability (temporally and spatially) in the Coastal Springs Ground-Water Basin and adjacent parts of Pasco, Hernando, and Citrus Counties. Rainfall at 46 stations and ground-water withdrawals for three counties, were used to calculate water budgets, to evaluate long-term changes in hydrologic conditions, and to evaluate relations among the hydrologic components. Predictive equations to estimate daily spring flow were developed for eight gaging stations using regression techniques. Regression techniques included ordinary least squares and multiple linear regression techniques. The predictive equations indicate that ground-water levels in the Upper Floridan aquifer are directly related to spring flow. At tidally affected gaging stations, spring flow is inversely related to spring-pool altitude. The springs have similar seasonal flow patterns throughout the area. Water-budget analysis provided insight into the relative importance of the hydrologic components expected to influence spring flow. Four water budgets were constructed for small ground-water basins that form the Coastal Springs Ground-Water Basin. Rainfall averaged 55 inches per year and was the only source of inflow to the Basin. The pathways for outflow were evapotranspiration (34 inches per year), runoff by spring flow (8 inches per year), ground-water outflow from upward leakage (11 inches per year), and ground-water withdrawal (2 inches per year

  13. Can the water in two communicating wells in an unconfined aquifer oscillate?

    Science.gov (United States)

    Rehbinder, G.

    2015-12-01

    The water levels in two wells in a confined rigid aquifer with impervious bottom can exhibit damped oscillations according to a linear 1D oscillator. The oscillations can be under-damped, critical or over-damped. The present analysis shows that the water levels in two wells in an unconfined rigid aquifer with infinite lateral extent is not characterized by the classical equation of a 1D linear oscillator. Instead the motion of the water levels in the wells is characterized by a nonlinear Duffing hardening spring equation. According to Bendixson's theorem its solution cannot oscillate.

  14. Hydrogeology and water quality of the Nanticoke Creek stratified-drift aquifer, near Endicott, New York

    Science.gov (United States)

    Kreitinger, Elizabeth A.; Kappel, William M.

    2014-01-01

    The Village of Endicott, New York, is seeking an alternate source of public drinking water with the potential to supplement their current supply, which requires treatment due to legacy contamination. The southerly-draining Nanticoke Creek valley, located north of the village, was identified as a potential water source and the local stratified-drift (valley fill) aquifer was investigated to determine its hydrogeologic and water-quality characteristics. Nanticoke Creek and its aquifer extend from the hamlet of Glen Aubrey, N.Y., to the village of Endicott, a distance of about 15 miles, where it joins the Susquehanna River and its aquifer. The glacial sediments that comprise the stratified-drift aquifer vary in thickness and are generally underlain by glacial till over Devonian-aged shale and siltstone. Groundwater is more plentiful in the northern part of the aquifer where sand and gravel deposits are generally more permeable than in the southern part of the aquifer where less-permeable unconsolidated deposits are found. Generally there is enough groundwater to supply most homeowner wells and in some cases, supply small public-water systems such as schools, mobile-home parks, and small commercial/industrial facilities. The aquifer is recharged by precipitation, runoff, and tributary streams. Most tributary streams flowing across alluvial deposits lose water to the aquifer as they flow off of their bedrock-lined channels and into the more permeable alluvial deposits at the edges of the valley. The quality of both surface water and groundwater is generally good. Some water wells do have water-quality issues related to natural constituents (manganese and iron) and several homeowners noted either the smell and (or) taste of hydrogen sulfide in their drinking water. Dissolved methane concentrations from five drinking-water wells were well below the potentially explosive value of 28 milligrams per liter. Samples from surface and groundwater met nearly all State and Federal

  15. Projected effects of proposed chloride-control projects on shallow ground water; preliminary results for the Wichita River basin, Texas

    Science.gov (United States)

    Garza, Sergio

    1983-01-01

    The U.S. Army Corps of Engineers' plan to control the natural chloride pollution in the Wichita River basin includes the construction of Truscott Brine Lake on a tributary of the North Wichita River. In connection with the proposed brine lake, the U.S. Geological Survey was requested to: (1) Define the existing ground-water conditions in the shallow fresh-water system of the project area; and (2) project the post-construction effects of the proposed lake on the fresh-water aquifer, especially in relation to hydraulic-head changes but also with respect to possible changes in the chemical quality of the ground water.

  16. Groundwater modeling of Saq Aquifer Buraydah Al Qassim for better water management strategies.

    Science.gov (United States)

    Al-Salamah, Ibrahim S; Ghazaw, Yousry M; Ghumman, Abdul Razzaq

    2011-02-01

    Saudi Arabia is an arid country. It has limited water supplies. About 80-90% of water supplies come from groundwater, which is depleting day by day. It needs appropriate management. This paper has investigated groundwater modeling of Saq Aquifer in Buraydah Al Qassim to estimate the impact of its excessive use on depletion of Saq Aquifer. MODFLOW model has been used in this study. Data regarding the aquifer parameters was measured by pumping tests. Groundwater levels and discharge of wells in the area for the year 2008 and previous record of year 1999 have been collected from Municipal Authority of Buraydah. Location of wells was determined by Garmin. The model has been run for different sets of pumping rates to recommend an optimal use of groundwater resources and get prolonged life of aquifer. Simulations have been made for a long future period of 27 years (2008-2035). Model results concluded that pumping from the Saq Aquifer in Buraydah area will result into significant cones of depression if the existing excessive pumping rates prevail. A drawdown up to 28 m was encountered for model run for 27 years for existing rates of pumping. Aquifer withdrawals and drawdowns will be optimal with the conservation alternative. The management scheme has been recommended to be adopted for the future protection of groundwater resources in Kingdom of Saudi Arabia.

  17. Ground Water Atlas of the United States: Segment 1, California, Nevada

    Science.gov (United States)

    Planert, Michael; Williams, John S.

    1995-01-01

    California and Nevada compose Segment 1 of the Ground Water Atlas of the United States. Segment 1 is a region of pronounced physiographic and climatic contrasts. From the Cascade Mountains and the Sierra Nevada of northern California, where precipitation is abundant, to the Great Basin in Nevada and the deserts of southern California, which have the most arid environments in the United States, few regions exhibit such a diversity of topography or environment. Since the discovery of gold in the mid-1800's, California has experienced a population, industrial, and agricultural boom unrivaled by that of any other State. Water needs in California are very large, and the State leads the United States in agricultural and municipal water use. The demand for water exceeds the natural water supply in many agricultural and nearly all urban areas. As a result, water is impounded by reservoirs in areas of surplus and transported to areas of scarcity by an extensive network of aqueducts. Unlike California, which has a relative abundance of water, development in Nevada has been limited by a scarcity of recoverable freshwater. The Truckee, the Carson, the Walker, the Humboldt, and the Colorado Rivers are the only perennial streams of significance in the State. The individual basin-fill aquifers, which together compose the largest known ground-water reserves, receive little annual recharge and are easily depleted. Nevada is sparsely populated, except for the Las Vegas, the Reno-Sparks, and the Carson City areas, which rely heavily on imported water for public supplies. Although important to the economy of Nevada, agriculture has not been developed to the same degree as in California due, in large part, to a scarcity of water. Some additional ground-water development might be possible in Nevada through prudent management of the basin-fill aquifers and increased utilization of ground water in the little-developed carbonate-rock aquifers that underlie the eastern one-half of the State

  18. Hydrogeology and water quality of the Floridan aquifer system and effects of Lower Floridan aquifer pumping on the Upper Floridan aquifer at Fort Stewart, Georgia

    Science.gov (United States)

    Clarke, John S.; Cherry, Gregory C.; Gonthier, Gerard J.

    2011-01-01

    Test drilling, field investigations, and digital modeling were completed at Fort Stewart, GA, during 2009?2010, to assess the geologic, hydraulic, and water-quality characteristics of the Floridan aquifer system and evaluate the effect of Lower Floridan aquifer (LFA) pumping on the Upper Floridan aquifer (UFA). This work was performed pursuant to the Georgia Environmental Protection Division interim permitting strategy for new wells completed in the LFA that requires simulation to (1) quantify pumping-induced aquifer leakage from the UFA to LFA, and (2) identify the equivalent rate of UFA pumping that would produce the same maximum drawdown in the UFA that anticipated pumping from LFA well would induce. Field investigation activities included (1) constructing a 1,300-foot (ft) test boring and well completed in the LFA (well 33P028), (2) constructing an observation well in the UFA (well 33P029), (3) collecting drill cuttings and borehole geophysical logs, (4) collecting core samples for analysis of vertical hydraulic conductivity and porosity, (5) conducting flowmeter and packer tests in the open borehole within the UFA and LFA, (6) collecting depth-integrated water samples to assess basic ionic chemistry of various water-bearing zones, and (7) conducting aquifer tests in new LFA and UFA wells to determine hydraulic properties and assess interaquifer leakage. Using data collected at the site and in nearby areas, model simulation was used to assess the effects of LFA pumping on the UFA. Borehole-geophysical and flowmeter data indicate the LFA at Fort Stewart consists of limestone and dolomitic limestone between depths of 912 and 1,250 ft. Flowmeter data indicate the presence of three permeable zones at depth intervals of 912-947, 1,090-1,139, and 1,211?1,250 ft. LFA well 33P028 received 50 percent of the pumped volume from the uppermost permeable zone, and about 18 and 32 percent of the pumped volume from the middle and lowest permeable zones, respectively. Chemical

  19. Reconnaissance of ground-water quality, eastern Snake River basin, Idaho

    Science.gov (United States)

    Parliman, D.J.

    1982-01-01

    Water-quality, geologic, and hydrologic data were collected for 165 wells in the eastern Snake River basin, Idaho. Water-quality characteristics analyzed include specific conductance, pH, water temperature, major dissolved cations and anions, and coliform bacteria. Ground water from aquifers in all rock units is generally composed of calcium, magnesium, and bicarbonate type and contains carbonate ions. Changes in area trends of ground-water composition probably are most directly related to variability in aquifer composition and proximity to varying sources of recharge, especially those related to man 's land- and water-use activities. In the uplands subareas, median values for selected ground-water characteristics from current analyses are 2000 mg/l hardness; 7.6, pH; 200 mg/l alkalinity; 13C; 0.2 mg/l fluoride; 15 mg/l silica; 0.51 mg/l nitrite (as nitrogen); less than 1 colony per 100 milliliters of water coliform bacteria; 0.02 mg/l phosphorus (total); and 25 mg/l hardness; 7.7, pH; 180 mg/l alkalinity; 11C; 0.4 mg/l fluoride; 26 mg/l silica; 1.2 mg/l nitrite plus nitrate; less than 1 colony per 100 milliliters of water coliform bacteria; 0.01 amg/l phosphorus; and 283 mg/l dissolved solids. Ground-water quality in most of the study area meets recommended standards or criteria for most uses. (USGS)

  20. Interaction of ground water with the Rock River near Byron, Illinois

    Science.gov (United States)

    Avery, C.F.

    1994-01-01

    Ground-water discharge to the Rock River in the study area, estimated by three independent methods, ranged from 16,300 to 30,900 cubic feet per day; the low value, determined by the use of the modified Darcy equation, is an estimate only of ground-water discharge from the southern side of the Rock River. The vertical distribution of trichloroethene (TCE) in ground water was determined at a test hole along the estimated centerline of the contaminant plume and as close to the river as property access would allow. The maximum concentrations of TCE of 3 micro- grams per liter were found at depths of 59 and 64 feet. The contaminant was dispersed across a verti- cal interval of about 75 feet at depths of 19 and 94 feet. All of the TCE in ground water discharges to the Rock River because no TCE was detected below a depth of 109 feet, and increasing vertical head gradients with depth indicate ground-water flow from a depth of 119 feet is to the river. The maximum possible discharge of TCE is estimated to be about 1.7 grams per day. A finite-difference numerical model was used to simulate ground-water flow along a vertical section through the ground-water system from the Byron Superfund site to the Rock River. Results of the ground-water flow simulation indicate that, if underflow in the St. Peter aquifer occurs beneath the Rock River, it would be water that was present at depth in the flow system at the Byron Superfund site rather than contaminated water that had recharged the system in the vicinity of the Byron Superfund site. (USGS)