WorldWideScience

Sample records for ground velocity peak

  1. Peak Ground Velocities for Seismic Events at Yucca Mountain, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    K. Coppersmith; R. Quittmeyer

    2005-02-16

    This report describes a scientific analysis to bound credible horizontal peak ground velocities (PGV) for the repository waste emplacement level at Yucca Mountain. Results are presented as a probability distribution for horizontal PGV to represent uncertainties in the analysis. The analysis also combines the bound to horizontal PGV with results of ground motion site-response modeling (BSC 2004 [DIRS 170027]) to develop a composite hazard curve for horizontal PGV at the waste emplacement level. This result provides input to an abstraction of seismic consequences (BSC 2004 [DIRS 169183]). The seismic consequence abstraction, in turn, defines the input data and computational algorithms for the seismic scenario class of the total system performance assessment (TSPA). Planning for the analysis is documented in Technical Work Plan TWP-MGR-GS-000001 (BSC 2004 [DIRS 171850]). The bound on horizontal PGV at the repository waste emplacement level developed in this analysis complements ground motions developed on the basis of PSHA results. In the PSHA, ground motion experts characterized the epistemic uncertainty and aleatory variability in their ground motion interpretations. To characterize the aleatory variability they used unbounded lognormal distributions. As a consequence of these characterizations, as seismic hazard calculations are extended to lower and lower annual frequencies of being exceeded, the ground motion level increases without bound, eventually reaching levels that are not credible (Corradini 2003 [DIRS 171191]). To provide credible seismic inputs for TSPA, in accordance with 10 Code of Federal Regulations (CFR) 63.102(j) [DIRS 156605], this complementary analysis is carried out to determine reasonable bounding values of horizontal PGV at the waste emplacement level for annual frequencies of exceedance as low as 10{sup -8}. For each realization of the TSPA seismic scenario, the results of this analysis provide a constraint on the values sampled from the

  2. Artificial ground motion compatible with specified peak velocity and target spectrum

    Institute of Scientific and Technical Information of China (English)

    ZHAO Feng-xin; ZHANG Yu-shan

    2006-01-01

    In this paper, a method, which synthesizes the artificial ground motion compatible with the specified peak velocity as well as the target acceleration response spectrum, was proposed. In this method, firstly, an initial acceleration time history a(0)g (t), which satisfies the prescribed peak ground acceleration, the target spectral acceleration ST(ω,ζ ), and the specified intensity envelope, is generated by the traditional method that generates the response-spectrum-compatible artificial ground motion by modifying the Fourier amplitude spectrum in the frequency domain; secondly, a(0)g (t) is further modulated by superimposing narrow-band time histories upon it in the time domain to make its peak velocity, approach the target peak ground velocity, and at the same time to improve its fitting precision to the target spectrum. Numerical examples show that this algorithm boasts high calculation precisions.

  3. Next Generation Attenuation of Ground Motions in Ilan, Taiwan: Establishment and Analysis of Attenuation Relations for Peak Ground Acceleration (PGA) and Peak Ground Velocity (PGV)

    Science.gov (United States)

    Liu, K.

    2009-12-01

    An evaluation of seismic hazards requires an estimate of the expected ground motion at the site of interest. The most common means of estimating this ground motion in engineering practice is the use of an attenuation relation. A number of developments have arisen recently to suggest that a new generation of attenuation relationships is warranted. The project named Next Generation Attenuation of Ground Motions (NGA) Project was developed by Pacific Earthquake Engineering Research Center (PEER) in response to a core objective: reducing uncertainty in earthquake ground motion estimation. This objective reflects recognition from industry sponsors that improvements in earthquake ground motion estimation will result in significant cost savings and will result in improved system performance in the event of a large earthquake. The Central Weather Bureau has implemented the Taiwan Strong Motion Instrumentation Program (TSMIP) to collect high-quality instrumental recordings of strong earthquake shaking.It is necessary for us to study the strong ground motion characteristics at the Ilan area of northeastern Taiwan. Further analyses using a good quality data base that includes 486 events and 4172 recordings of magnitude greater than 4.0 are required to derive the next generation attenuation of ground motion in Ilan area. In addition, Liu and Tsai (2007) used a catalog of more than 1840 shallow earthquakes with homogenized Mw magnitude ranging from 5.0 to 8.2 in 1900-2007 to estimate the seismic hazard potential in Taiwan. As a result, the PGA and PGV contour patterns of maximum ground motion show that Ilan Plain has high values of 0.2g and 80cm/sec with respect to MMI intensity VII and IX, respectively. Furthermore, from the mean ground motion and the seismic intensity rate analyses, they show that a high annul probability of MMI > VI greater than 35 percents are located at the Chianan area of western Taiwan and Ilan Plain in northeastern Taiwan. However, these results was

  4. Exceptional Ground Accelerations and Velocities Caused by Earthquakes

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, John

    2008-01-17

    This project aims to understand the characteristics of the free-field strong-motion records that have yielded the 100 largest peak accelerations and the 100 largest peak velocities recorded to date. The peak is defined as the maximum magnitude of the acceleration or velocity vector during the strong shaking. This compilation includes 35 records with peak acceleration greater than gravity, and 41 records with peak velocities greater than 100 cm/s. The results represent an estimated 150,000 instrument-years of strong-motion recordings. The mean horizontal acceleration or velocity, as used for the NGA ground motion models, is typically 0.76 times the magnitude of this vector peak. Accelerations in the top 100 come from earthquakes as small as magnitude 5, while velocities in the top 100 all come from earthquakes with magnitude 6 or larger. Records are dominated by crustal earthquakes with thrust, oblique-thrust, or strike-slip mechanisms. Normal faulting mechanisms in crustal earthquakes constitute under 5% of the records in the databases searched, and an even smaller percentage of the exceptional records. All NEHRP site categories have contributed exceptional records, in proportions similar to the extent that they are represented in the larger database.

  5. Sustained fixation induced changes in phoria and convergence peak velocity.

    Directory of Open Access Journals (Sweden)

    Eun H Kim

    Full Text Available PURPOSE: This study sought to investigate the influence of phoria adaptation on convergence peak velocity from responses located at different initial vergence positions. METHODS: Symmetrical 4° convergence step responses and near dissociated phoria (measured at 40 cm from the subject's midline were recorded from six subjects with normal binocular vision using an infrared limbus tracking system with a haploscope. Two different sustained fixations (1° and 16° convergent rotation along the subject's midline were used to study whether phoria had an influence on the peak velocity of convergence responses located at two initial vergence positions (1° or 'far' steps and 12° or 'near' steps. RESULTS: Phoria was significantly adapted after a sustained fixation task at near (16° and far (1° (p<0.002. A repeated measures ANOVA showed that convergence far steps were significantly faster than the near steps (p<0.03. When comparing convergence steps with the same initial vergence position, steps measured after near phoria adaptation were faster than responses after far adaptation (p<0.02. A regression analysis demonstrated that the change in phoria and the change in convergence peak velocity were significantly correlated for the far convergence steps (r = 0.97, p = 0.001. A weaker correlation was observed for the near convergence steps (r = 0.59, p = 0.20. CONCLUSION: As a result of sustained fixation, phoria was adapted and the peak velocity of the near and far convergence steps was modified. This study has clinical considerations since prisms, which evoke phoria adaptation, can be prescribed to help alleviate visual discomfort. Future investigations should include a systematic study of how prisms may influence convergence and divergence eye movements for those prescribed with prisms within their spectacles.

  6. Peak Ground Acceleration on Bedrock of Natanz, Iran

    Directory of Open Access Journals (Sweden)

    Bakouchi .emad

    2016-12-01

    Full Text Available The present paper was done under the title of peak ground acceleration(PGA on bedrock for natanz city. A set of seismic sources, historical and instrumental seismicity data within the radius of 150 kilometers from the city center since the year 1700 until now has been collected and used. Kijko[2000] method has been applied for estimating the seismic parameters considering lack of suitable seismic data, inaccuracy of the available information and uncertainty of magnitude in different periods. The calculations were performed by using the logic tree method, three weighted attenuation relationships were used; including Ghodrati et al (2007, 0.4; Ambraseys et al (1996, 0.3 ; Campbellbozorgnia (2000, 0.3 . The SEISRISKIII (1987 software was used to calculate the earthquake hazard. The results of this analysis were submitted for 10% and 2% probability of event in 50 years.

  7. Sport injuries aligned to peak height velocity in talented pubertal soccer players.

    Science.gov (United States)

    van der Sluis, A; Elferink-Gemser, M T; Coelho-e-Silva, M J; Nijboer, J A; Brink, M S; Visscher, C

    2014-04-01

    In young athletes, demands of sports are superimposed on normal growth and maturation. It has been suggested that this causes a temporarily increased vulnerability for injuries. We followed 26 talented soccer players (mean age 11.9±0.84 years) longitudinally for 3 years around their adolescent growth spurt, called Peak Height Velocity, to identify differences in number of traumatic and overuse injuries and days missed due to injuries. Peak Height Velocity was calculated according to the Maturity Offset Protocol. The number of injuries was calculated for each player per year. A repeated measurement analysis showed that athletes had significantly more traumatic injuries in the year of Peak Height Velocity (1.41) than in the year before Peak Height Velocity (0.81). A moderate effect size of 0.42 was found for the difference in number of overuse injuries per player per year before (0.81) and after Peak Height Velocity (1.41), respectively. Finally, a moderate effect size of 0.55 was found for difference between days missed due to injuries before (7.27 days per player per year) and during Peak Height Velocity (15.69 days per player per year). Adolescent growth spurt seems to result in increased vulnerability for traumatic injuries. Afterwards athletes seem to be susceptible to overuse injuries.

  8. Torque/velocity properties of human knee muscles: peak and angle-specific estimates.

    Science.gov (United States)

    Caldwell, G E; Adams, W B; Whetstone, M R

    1993-09-01

    Angle-specific (AS) torque/velocity data have been used to avoid angle related variation in peak torque capacity. However, series elastic structures cause the contractile velocity of active force-producing tissue to differ from external joint velocity except at peak torque. Alternatively, angle related variation may be removed by normalizing peak torque to the isometric maximum at that angular position. The AS, peak (P), and normalized peak (NP) methods were compared in isovelocity knee flexion and extension at velocities between 50 and 250 degrees s-1 for 8 male subjects. The P and NP methods gave more similar torque/velocity relations than the AS method. Further, very little variation in peak torque was attributed to differences in joint angle. Both the P and AS methods illustrate that relative quadriceps/hamstrings torque capability (flexor/extensor ratio) increases slightly with velocity. It is proposed that antagonist muscle torque capabilities should be compared at different angular positions to assess muscular imbalance.

  9. Hamstrings to quadriceps peak torque ratios diverge between sexes with increasing isokinetic angular velocity.

    Science.gov (United States)

    Hewett, Timothy E; Myer, Gregory D; Zazulak, Bohdanna T

    2008-09-01

    Our purpose was to determine if females demonstrate decreased hamstrings to quadriceps peak torque (H/Q) ratios compared to males and if H/Q ratios increase with increased isokinetic velocity in both sexes. Maturation disproportionately increases hamstrings peak torque at high velocity in males, but not females. Therefore, we hypothesised that mature females would demonstrate decreased H/Q ratios compared to males and the difference in H/Q ratio between sexes would increase as isokinetic velocity increased. Studies that analysed the H/Q ratio with gravity corrected isokinetic strength testing reported between 1967 and 2004 were included in our review and analysis. Keywords were hamstrings/quadriceps, isokinetics, peak torque and gravity corrected. Medline and Smart databases were searched combined with cross-checked bibliographic reference lists of the publications to determine studies to be included. Twenty-two studies were included with a total of 1568 subjects (1145 male, 423 female). Males demonstrated a significant correlation between H/Q ratio and isokinetic velocity (R=0.634, pratio at the lowest angular velocity (47.8+/-2.2% at 30 degrees /s) compared to the highest velocity (81.4+/-1.1% at 360 degrees /s, pratio and isokinetic velocity (R=0.065, p=0.77) or a change in relative hamstrings strength as the speed increased (49.5+/-8.8% at 30 degrees /s; 51.0+/-5.7% at 360 degrees /s, p=0.84). Gender differences in isokinetic H/Q ratios were not observed at slower angular velocities. However, at high knee flexion/extension angular velocities, approaching those that occur during sports activities, significant gender differences were observed in the H/Q ratio. Females, unlike males, do not increase hamstrings to quadriceps torque ratios at velocities that approach those of functional activities.

  10. Peak treadmill running velocity during the VO2 max test predicts running performance.

    Science.gov (United States)

    Noakes, T D; Myburgh, K H; Schall, R

    1990-01-01

    Twenty specialist marathon runners and 23 specialist ultra-marathon runners underwent maximal exercise testing to determine the relative value of maximum oxygen consumption (VO2max), peak treadmill running velocity, running velocity at the lactate turnpoint, VO2 at 16 km h-1, % VO2max at 16 km h-1, and running time in other races, for predicting performance in races of 10-90 km. Race time at 10 or 21.1 km was the best predictor of performance at 42.2 km in specialist marathon runners and at 42.2 and 90 km in specialist ultra-marathon runners (r = 0.91-0.97). Peak treadmill running velocity was the best laboratory-measured predictor of performance (r = -0.88(-)-0.94) at all distances in ultra-marathon specialists and at all distances except 42.2 km in marathon specialists. Other predictive variables were running velocity at the lactate turnpoint (r = -0.80(-)-0.92); % VO2max at 16 km h-1 (r = 0.76-0.90) and VO2max (r = 0.55(-)-0.86). Peak blood lactate concentrations (r = 0.68-0.71) and VO2 at 16 km h-1 (r = 0.10-0.61) were less good predictors. These data indicate: (i) that in groups of trained long distance runners, the physiological factors that determine success in races of 10-90 km are the same; thus there may not be variables that predict success uniquely in either 10 km, marathon or ultra-marathon runners, and (ii) that peak treadmill running velocity is at least as good a predictor of running performance as is the lactate turnpoint. Factors that determine the peak treadmill running velocity are not known but are not likely to be related to maximum rates of muscle oxygen utilization.

  11. Improved shear wave group velocity estimation method based on spatiotemporal peak and thresholding motion search.

    Science.gov (United States)

    Amador Carrascal, Carolina; Chen, Shigao; Manduca, Armando; Greenleaf, James F; Urban, Matthew

    2017-01-11

    Quantitative ultrasound elastography is increasingly being used in the assessment of chronic liver disease. Many studies have reported ranges of liver shear wave velocities values for healthy individuals and patients with different stages of liver fibrosis. Nonetheless, ongoing efforts exist to stabilize quantitative ultrasound elastography measurements by assessing factors that influence tissue shear wave velocity values, such as food intake, body mass index (BMI), ultrasound scanners, scanning protocols, ultrasound image quality, etc. Time-to-peak (TTP) methods have been routinely used to measure the shear wave velocity. However, there is still a need for methods that can provide robust shear wave velocity estimation in the presence of noisy motion data. The conventional TTP algorithm is limited to searching for the maximum motion in time profiles at different spatial locations. In this study, two modified shear wave speed estimation algorithms are proposed. The first method searches for the maximum motion in both space and time (spatiotemporal peak, STP); the second method applies an amplitude filter (spatiotemporal thresholding, STTH) to select points with motion amplitude higher than a threshold for shear wave group velocity estimation. The two proposed methods (STP and STTH) showed higher precision in shear wave velocity estimates compared to TTP in phantom. Moreover, in a cohort of 14 healthy subjects STP and STTH methods improved both the shear wave velocity measurement precision and the.

  12. Saccadic peak velocity and EEG as end-points for a serotonergic challenge test.

    NARCIS (Netherlands)

    Gijsman, H.J.; Gerven, J.M.A. van; Verkes, R.J.; Schoemaker, R.C.; Pieters, M.; Pennings, E.J.; Hessing, T.J.; Cohen, A.

    2002-01-01

    We previously reported that a single dose of the serotonin receptor agonist meta-chlorophenylpiperazine increased the peak velocity of saccadic eye movements and decreased low-frequency electroencephalographic activity. METHODS: We administered a single dose of the serotonin releaser dexfenfluramine

  13. Vertical peak ground force in human infant crawling.

    Science.gov (United States)

    Yozu, Arito; Haga, Nobuhiko; Tojima, Michio; Zhang, Yasu; Sumitani, Masahiko; Otake, Yuko

    2013-02-01

    Quadrupedalism is a common mode of locomotion in land animals. The load distribution between the forelimbs (FL) and hindlimbs (HL) in quadrupedalism has been of great interest to researchers, and a database of the vertical peak force (Vpk) for FL and HL has been created for various species. However, Vpk in human infant crawling, a natural form of human quadrupedalism, has not been evaluated. We aimed to study Vpk in human infant crawling. Eight healthy infants who used a typical crawling style (i.e., crawling on the hands and knees) were included. The infants were encouraged to crawl over pressure mats placed on the floor, and Vpk of FL and HL were calculated. FL Vpk was 0.631±0.087 (per BW), and HL Vpk was 0.638±0.089 (per BW). No significant difference was observed between FL and HL Vpk. The mean FL/HL Vpk ratio was -0.011 on a natural logarithmic scale. These data could be added to the current database on Vpk for quadrupedalism.

  14. Study on equivalent velocity pulse of nearfault ground motions

    Institute of Scientific and Technical Information of China (English)

    李新乐; 朱晞

    2004-01-01

    Near-fault strong ground motions that resulted in serious structural damage are characterized by directivity effect and pulse-type motion. Large-amplitude and long-period pulses are contained in the velocity time-history traces of near-fault pulse-type records. A reasonable model of equivalent velocity pulse is proposed on the basis of the existed models in this paper to simplify the calculation and analysis. Based on the large amount of collected near-fault strong earthquakes records, the parameters describing equivalent velocity pulse model such as pulse period, pulse intensity and number of predominant pulses are studied, and comparison is made with the results obtained by others models. The proposed model is contributive to the seismic design for structures in near-fault areas.

  15. Prediction of peak ground acceleration of Iran's tectonic regions using a hybrid soft computing technique

    Directory of Open Access Journals (Sweden)

    Mostafa Gandomi

    2016-01-01

    Full Text Available A new model is derived to predict the peak ground acceleration (PGA utilizing a hybrid method coupling artificial neural network (ANN and simulated annealing (SA, called SA-ANN. The proposed model relates PGA to earthquake source to site distance, earthquake magnitude, average shear-wave velocity, faulting mechanisms, and focal depth. A database of strong ground-motion recordings of 36 earthquakes, which happened in Iran's tectonic regions, is used to establish the model. For more validity verification, the SA-ANN model is employed to predict the PGA of a part of the database beyond the training data domain. The proposed SA-ANN model is compared with the simple ANN in addition to 10 well-known models proposed in the literature. The proposed model performance is superior to the single ANN and other existing attenuation models. The SA-ANN model is highly correlated to the actual records (R = 0.835 and ρ = 0.0908 and it is subsequently converted into a tractable design equation.

  16. Characteristics of near-fault ground motion containing velocity pulses

    Institute of Scientific and Technical Information of China (English)

    WEI Tao; ZHAO Feng-xin; ZHANG Yu-shan

    2006-01-01

    There are many reports about the research on near-fault velocity pulses, which focus on the generation of velocity pulse and simplify the velocity pulse so as to be used in the seismic design of structure. However few researches have put emphasis on the characteristics of near-fault ground motions containing velocity pulses, especially the characteristics relevant with the design response spectrum prescribed by the code. Through collection of a large number of near-fault records containing velocity pulses, the response spectra and the characteristic periods of records containing no pulses are compared with those of records containing pulses. Response spectra of near-fault records are compared with standard spectra given by code; furthermore, the response spectra and the characteristic periods of each earthquake are compared with that given by code. The result shows that at long periods (longer than 1.5 s), the response spectrum of pulse-containing records is bigger than the response spectrum of no-pulse-containing records; when the characteristic period of near-fault records is calculated, the method that does not fix frequency is more reasonable because the T1 and T2 have a lagging tendency; regardless of the site Ⅰ and site Ⅱ, the characteristic period of pulse-containing records is over twice bigger than the characteristic period given by the code.

  17. Historic Seismicity, Computed Peak Ground Accelerations, and Seismic Site Conditions for Northeast Mexico

    Science.gov (United States)

    Montalvo-Arriet, J. C.; Galván-Ramírez, I. N.; Ramos-Zuñiga, L. G.; Navarro de León, I.; Ramírez-Fernández, J. A.; Quintanilla-López, Y.; Cavazos-Tovar, N. P.

    2007-05-01

    In this study we present the historic seismicity, computed peak ground accelerations, and mapping of seismic site conditions for northeast Mexico. We start with a compilation of the regional seismicity in northeast Mexico (24- 31°N, 87-106°W) for the 1787-2006 period. Our study area lies within three morphotectonic provinces: Basin and Range and Rio Grande rift, Sierra Madre Oriental and Gulf Coastal Plain. Peak ground acceleration (PGA) maps were computed for three different scenarios: 1928 Parral, Chihuahua (MW = 6.5); 1931 Valentine, Texas (MW = 6.4); and a hypothetical earthquake located in central Coahuila (MW = 6.5). Ground acceleration values were computed using attenuation relations developed for central and eastern North America and the Basin and Range province. The hypothetical earthquake in central Coahuila is considered a critical scenario for the main cities of northeast Mexico. The damage associated with this hypothetical earthquake could be severe because the majority of the buildings were constructed without allowance for seismic accelerations. The expected PGA values in Monterrey, Saltillo and Monclova range from 30 to 70 cm/s2 (0.03 to 0.07g). This earthquake might also produce or trigger significant landslides and rock falls in the Sierra Madre Oriental, where several cities are located (e.g. suburbs of Monterrey). Additionally, the Vs30 distribution for the state of Nuevo Leon and the cities of Linares and Monterrey are presented. The Vs30 data was obtained using seismic refraction profiling correlated with borehole information. According to NEHRP soil classification, sites classes A, B and C are dominant. Sites with class D occupy minor areas in both cities. Due to the semi-arid conditions in northeast Mexico, we obtained the highest values of Vs30 in Quaternary deposits (alluvium) cemented by caliche. Similar values of Vs30 were obtained in Reno and Las Vegas, Nevada. This work constitutes the first attempt at understanding and

  18. Peak ground acceleration produced by local earthquakes in volcanic areas of Campi Flegrei and Mt. Vesuvius

    Directory of Open Access Journals (Sweden)

    S. Petrosino

    2004-06-01

    Full Text Available The scaling law of the seismic spectrum experimentally calculated at Mt. Vesuvius and Campi Flegrei is used to constrain the estimate of the maximum expected peak acceleration of ground motion.

  19. Impact of temperature-velocity distribution on fusion neutron peak shape

    Science.gov (United States)

    Munro, D. H.; Field, J. E.; Hatarik, R.; Peterson, J. L.; Hartouni, E. P.; Spears, B. K.; Kilkenny, J. D.

    2017-05-01

    Doppler broadening of the 14 MeV DT and 2.45 MeV DD fusion neutron lines has long been our best measure of temperature in a burning plasma. At the National Ignition Facility (NIF), yields are high enough and our neutron spectrometers accurate enough that we see finer details of the peak shape. For example, we can measure the shift of the peak due to the bulk motion of the plasma, and we see indications of non-thermal broadening, skew, and kurtosis of the peak caused by the variations of temperature and fluid velocity during burn. We can also distinguish spectral differences among several lines of sight. This paper will review the theory of fusion neutron line shape, show examples of non-Gaussian line shapes and directional variations in NIF data, and describe detailed spectral shapes we see in radiation-hydrodynamics simulations of implosions.

  20. Peak Stress Intensity Factor Governs Crack Propagation Velocity In Crosslinked UHMWPE

    Science.gov (United States)

    Sirimamilla, P. Abhiram; Furmanski, Jevan; Rimnac, Clare

    2013-01-01

    Ultra high molecular weight polyethylene (UHMWPE) has been successfully used as a bearing material in total joint replacement components. However, these bearing materials can fail as a result of in vivo static and cyclic loads. Crack propagation behavior in this material has been considered using the Paris relationship which relates fatigue crack growth rate, da/dN (mm/cycle) versus the stress intensity factor range, ΔK (Kmax-Kmin, MPa√m). However, recent work suggests that the crack propagation velocity of conventional UHMWPE is driven by the peak stress intensity (Kmax), not ΔK. The hypothesis of this study is that the crack propagation velocity of highly crosslinked and remelted UHMWPE is also driven by the peak stress intensity, Kmax, during cyclic loading, rather than by ΔK. To test this hypothesis, two highly crosslinked (65 kGy and 100 kGy) and remelted UHMWPE materials were examined. Frequency, waveform and R-ratio were varied between test conditions to determine the governing factor for fatigue crack propagation. It was found that the crack propagation velocity in crosslinked UHMWPE is also driven by Kmax and not ΔK, and is dependent on loading waveform and frequency in a predictable quasi-static manner. The current study supports that crack growth in crosslinked UHMWPE materials, even under cyclic loading conditions, can be described by a relationship between the velocity of crack growth, da/dt and the peak stress intensity, Kmax. The findings suggest that stable crack propagation can occur as a result of static loading only and this should be taken into consideration in design of UHMWPE total joint replacement components. PMID:23165898

  1. Peak stress intensity factor governs crack propagation velocity in crosslinked ultrahigh-molecular-weight polyethylene.

    Science.gov (United States)

    Sirimamilla, Abhiram; Furmanski, Jevan; Rimnac, Clare

    2013-04-01

    Ultrahigh-molecular-weight polyethylene (UHMWPE) has been successfully used as a bearing material in total joint replacement components. However, these bearing materials can fail as a result of in vivo static and cyclic loads. Crack propagation behavior in this material has been considered using the Paris relationship which relates fatigue crack growth rate, da/dN (mm/cycle) versus the stress intensity factor range, ΔK (Kmax - Kmin , MPa√m). However, recent work suggests that the crack propagation velocity of conventional UHMWPE is driven by the peak stress intensity (Kmax ), not ΔK. The hypothesis of this study is that the crack propagation velocity of highly crosslinked and remelted UHMWPE is also driven by the peak stress intensity, Kmax , during cyclic loading. To test this hypothesis, two highly crosslinked (65 kGy and 100 kGy) and remelted UHMWPE materials were examined. Frequency, waveform, and R-ratio were varied between test conditions to determine the governing factor for fatigue crack propagation. It was found that the crack propagation velocity in crosslinked UHMWPE is also driven by Kmax and not ΔK, and is dependent on loading waveform and frequency in a predictable quasistatic manner. This study supports that crack growth in crosslinked UHMWPE materials, even under cyclic loading conditions, can be described by a relationship between the velocity of crack growth, da/dt and the peak stress intensity, Kmax . The findings suggest that stable crack propagation can occur as a result of static loading only and this should be taken into consideration in design of UHMWPE total joint replacement components.

  2. Control of Local Hillsope Velocity and Runoff Productivity on the Shape and Peak of Catchment Response

    Science.gov (United States)

    Di Lazzaro, M.; Zarlenga, A.; Volpi, E.

    2015-12-01

    We propose a geomorphologically-based statistical framework where the distribution of travel times in a basin following an instantaneous rainfall is derived from the pdf of hillslope and channel lengths. Based on previous works, marginal distributions for hillslope and channel length pdfs are assumed to be Gamma and Beta with variation coefficients 0,4 and 0,9 respectively, while the bivariate probability model is obtained assuming a Gaussian copula function. We consider different scenarios involving both deterministic and random hillslope velocity (while a reference, constant channel velocity is kept); this allows to explore the role of the kinematic component of basin response across different scales. Further, we employ drainage density as a proxy measure to explore the effects of the variability of runoff yield. This conceptual framework is used as a virtual laboratory to understand what controls the scatter of arrival times of water drops and the peak flow of the hydrologic response. Numerical simulations are performed varying the following contolling factors (i) the ratio between streamflow velocity and average hillslope velocity (ii) the geomorphological characteristics and the scale of the basin and (iii) the correlation coefficient r' between hillslope and channel lengths. The approach is suitable to investigate how the relative roles of dispersion mechanisms change due to upscaling effects, up to very large scales (where channels completely dominates), and how this affects the hypothesis of simple scaling of peak floods. We find that the hillslope kinematic dispersion alters the scatter of arrival times in a wide range of basin scales: it abridges the pdf of travel times for basin with negative r' (which involves higher peak flows), while increases the dispersion of travel times when r' is positive. Nonetheless, when random hillslope velocity with increasing variation coefficients are considered, the contribution of kinematic dispersion becomes invariantly

  3. Emergence of high peaks in the axial velocity for an ideal magnetohydrodynamic disk configuration.

    Science.gov (United States)

    Montani, Giovanni; Carlevaro, Nakia

    2010-08-01

    We study the profile of a thin disk configuration as described by an axisymmetric ideal magnetohydrodynamics steady equilibrium. We consider the disk like a differentially rotating system dominated by the Keplerian term, but allowing for a nonzero radial and vertical matter flux. As a result, the steady state allows for the existence of local peaks for the vertical velocity of the plasma particles, though it prevents the radial matter accretion rate. This ideal magnetohydrodynamics scheme is therefore unable to solve the angular momentum-transport problem, but we suggest that it provides a mechanism for the generation of matter-jet seeds.

  4. Determination of pedestrian displacement velocity for ground exploration programs

    Directory of Open Access Journals (Sweden)

    Luis Hernán Ochoa Gutierrez

    2017-05-01

    Full Text Available In Engineering and Geophysics field exploration, uncertainty for determination of the velocity of ground data acquisition due to extreme topographic conditions has been underestimated in the calculation of the displacement time between stations or sampling points. This lack of reliable models, negatively affects the determination of costs and planning of fieldwork activities. Known models of times and routes of displacement determination such as the “Smaller Cost Routes” are based on the effect of the type of land and the slope. However, these models consider the effect of the slope by means of subjective impedance values which has no a clear physical meaning. Furthermore, the upslope or downslope displacement is not considered to affect the reliability of velocity estimation. In this paper, a model of displacement velocity is proposed taking into account the upslope/downslope factor. The model was determined using real data from a topographical survey along a pipeline of 880 Km extended along terrains with changing climatic and topographic conditions. As a result, the proposed model improves the selection of optimal routes for a reliable time and cost estimation.

  5. The influence of cricket fast bowlers' front leg technique on peak ground reaction forces.

    Science.gov (United States)

    Worthington, Peter; King, Mark; Ranson, Craig

    2013-01-01

    High ground reaction forces during the front foot contact phase of the bowling action are believed to be a major contributor to the high prevalence of lumbar stress fractures in fast bowlers. This study aimed to investigate the influence of front leg technique on peak ground reaction forces during the delivery stride. Three-dimensional kinematic data and ground reaction forces during the front foot contact phase were captured for 20 elite male fast bowlers. Eight kinematic parameters were determined for each performance, describing run-up speed and front leg technique, in addition to peak force and time to peak force in the vertical and horizontal directions. There were substantial variations between bowlers in both peak forces (vertical 6.7 ± 1.4 body weights; horizontal (braking) 4.5 ± 0.8 body weights) and times to peak force (vertical 0.03 ± 0.01 s; horizontal 0.03 ± 0.01 s). These differences were found to be linked to the orientation of the front leg at the instant of front foot contact. In particular, a larger plant angle and a heel strike technique were associated with lower peak forces and longer times to peak force during the front foot contact phase, which may help reduce the likelihood of lower back injuries.

  6. Impact of temperature-velocity distribution on fusion neutron peak shape

    Science.gov (United States)

    Munro, David

    2016-10-01

    Doppler broadening of the 14 MeV DT and 2.45 MeV DD fusion neutron lines has long been our best measure of temperature in a burning plasma. At the National Ignition Facility yields are high enough and our neutron spectrometers accurate enough that we see finer details of the peak shape. For example, we can measure the shift of the peak due to bulk motion of the plasma, and we see indications of non-thermal broadening, skew, and kurtosis of the peak caused by the variations of temperature and fluid velocity during burn. We can also distinguish spectral differences among several lines of sight. This talk will review the theory of fusion neutron line shape, show examples of non-Gaussian line shapes and directional variations in NIF data, and describe detailed spectral shapes we see in radhydro implosion simulations. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  7. Measurement of inflight shell areal density perturbations in NIF capsule implosions near peak velocity

    Science.gov (United States)

    Hammel, B. A.; Pickworth, L.; Smalyuk, V.; Macphee, A.; Scott, H. A.; Robey, H.; Barrios, M.; Regan, S. P.

    2015-11-01

    Quantitative measurements of shell-RhoR perturbations in capsules near peak implosion velocity (PV) are challenging. An external backlighter samples both sides of the shell, unless a re-entrant cone is used (potentially perturbing implosion). Emission from the hot core, after shock-stagnation and prior to PV, has been used as a self-backlighter, providing a means to sample one side of the capsule. Adding high-Z gas (~ 1% Ar) to the capsule fill in Symcaps (4He), has produced a continuum backlighter with significant increase in emission at photon energies ~ 8 keV over nominal fills. From images of the transmitted self-emission, above and below the K-edge of an internally doped Cu layer, we infer the growth at PV of imposed perturbations (100 nm amplitude, mode 40). Prepared by LLNL under Contract DE-AC52-07NA27344.

  8. Ultrasonic 3-D vector flow method for quantitative in vivo peak velocity and flow rate estimation

    DEFF Research Database (Denmark)

    Holbek, Simon; Ewertsen, Caroline; Bouzari, Hamed;

    2017-01-01

    Current clinical ultrasound systems are limited to show blood flow movement in either 1-D or 2-D. In this paper, a method for estimating 3-D vector velocities in a plane using the Transverse Oscillation (TO) method, a 32 x 32 element matrix array, and the experimental ultrasound scanner SARUS...... is presented. The aim of this paper is to estimate precise flow rates and peak velocities derived from 3-D vector flow estimates. The emission sequence provides 3-D vector flow estimates at up to 1.145 frames per second in a plane, and was used to estimate 3-D vector flow in a cross sectional image plane....... The method is validated in two phantom studies, where flow rates are measured in a flow-rig, providing a constant parabolic flow, and in a straight-vessel phantom (ø = 8 mm) connected to a flow pump capable of generating time varying waveforms. Flow rates are estimated to be 82.1 ± 2.8 L/min in the flow...

  9. Scaling of Peak Flows with Constant Flow Velocity in Random Self-Similar Networks

    Science.gov (United States)

    Mantilla, R.; Gupta, V. K.; Troutman, B. M.

    2010-12-01

    We present a methodology to understand the role of the statistical self-similar topology of real river networks on flow hydrographs for rainfall-runoff events. Monte Carlo generated ensembles of 1000 Random Self-similar Networks (RSNs) with geometrically distributed interior and exterior generators are created. We show how these networks emulate the statistical self-similarity present in real networks by presenting results for 30 river networks in the continental USA. Hydrographs for every link in each of these networks are obtained by numerically solving the link-based mass and momentum conservation equation under the assumption of constant flow velocity. From these simulated hydrographs for an ensemble of RSNs, the scaling parameters for the peak of the width function (β) and the hydrograph peak flow (φ) are estimated. It was found that φ > β, which supports a similar finding first reported for the Walnut Gulch basin, Arizona, and that is qualitatively different from previous results on idealized river networks (e.g. Peano Network, Mandelbrot- Viscek Network). Scaling of peak flows for individual rainfall runoff events is a new area of research that offers a path to physically understand regional scaling of flood quantiles. It addresses an important open problem in river network hydrology through studying the statistics of ensembles of multiple events in RSNs. In addition, our methodology provides a reference framework to study scaling exponents and intercepts under more complex scenarios of flow dynamics and runoff generation processes using ensembles of RSNs. Preliminary examples of such scenarios will also be given.

  10. Behavior of peak values and spectral ordinates of near-source strong ground motion over the smart 1 array

    Energy Technology Data Exchange (ETDEWEB)

    Niazi, M.

    1990-06-01

    The array recordings are used to investigate several important properties of the seismic ground motions themselves. The results reported here address the question of the variability of the peak vertical and horizontal accelerations, velocities and displacements. Statistical treatment of the variability is feasible when ground motions are recorded, as in SMART 1, at a group of stations within a limited distance. The three rings of the SMART 1 array have radii of 200 m, 1 km and 2 km. Since it became operational in September 1980, it has recorded accelerations up to 0.33g and 0.34g on the horizontal and vertical components, respectively. At present there are over 3,000 accelerograms from 53 local earthquakes available. From the set of observations, 12 earthquakes have been selected providing more than 700 accelerograms for analysis and statistical treatment. Nonlinear regression procedure are used to fit the peak values to an attenuation form which has as parameters, earthquake magnitude and source-to-site distance. Spectral information on ground motion is included; correlations are made between spectral ordinate values at 23 discrete frequencies in the range of engineering interest. Among the notable results is the finding that the ratio of the vertical to horizontal response spectral ordinates is less than the often used value of 2/3 for periods longer than about 0.2 second, and also for all frequencies at distances greater than 30 km from the source.

  11. Scaling of peak flows with constant flow velocity in random self-similar networks

    Science.gov (United States)

    Mantilla, R.; Gupta, V. K.; Troutman, B. M.

    2011-07-01

    A methodology is presented to understand the role of the statistical self-similar topology of real river networks on scaling, or power law, in peak flows for rainfall-runoff events. We created Monte Carlo generated sets of ensembles of 1000 random self-similar networks (RSNs) with geometrically distributed interior and exterior generators having parameters pi and pe, respectively. The parameter values were chosen to replicate the observed topology of real river networks. We calculated flow hydrographs in each of these networks by numerically solving the link-based mass and momentum conservation equation under the assumption of constant flow velocity. From these simulated RSNs and hydrographs, the scaling exponents β and φ characterizing power laws with respect to drainage area, and corresponding to the width functions and flow hydrographs respectively, were estimated. We found that, in general, φ > β, which supports a similar finding first reported for simulations in the river network of the Walnut Gulch basin, Arizona. Theoretical estimation of β and φ in RSNs is a complex open problem. Therefore, using results for a simpler problem associated with the expected width function and expected hydrograph for an ensemble of RSNs, we give heuristic arguments for theoretical derivations of the scaling exponents β(E) and φ(E) that depend on the Horton ratios for stream lengths and areas. These ratios in turn have a known dependence on the parameters of the geometric distributions of RSN generators. Good agreement was found between the analytically conjectured values of β(E) and φ(E) and the values estimated by the simulated ensembles of RSNs and hydrographs. The independence of the scaling exponents φ(E) and φ with respect to the value of flow velocity and runoff intensity implies an interesting connection between unit hydrograph theory and flow dynamics. Our results provide a reference framework to study scaling exponents under more complex scenarios of flow

  12. Visualizing density perturbations in the capsule shell in NIF implosions near peak velocity

    Science.gov (United States)

    Pickworth, L. A.; Hammel, B. A.; Smalyuk, V. A.; Macphee, A.; Scott, H. A.; Robey, H. F.; Field, J.; Barrios, M.; Regan, S. P.

    2016-10-01

    Engineering features on the capsule (surface roughness, support structures, etc.) can introduce outer surface perturbations that are ultimately detrimental to the performance of the capsule. Recent experiments have assessed minimal support structures and alternate pulse shapes using a re-entrant cone and back lighter that is perturbing to the implosion below radii of 500 μ m. Emission from the hot core, after shock-stagnation and prior to peak velocity (PV), has been used as a self-backlighter, providing a means to sample one side of the capsule at smaller radii. Adding high-Z gas ( 1 % Ar) to the capsule fill in Symcaps (4He), has produced a continuum backlighter with significant increase in emission at hv 8 keV over nominal fills. High-resolution imaging diagnostics with photon energy selectivity form 2D images of the transmitted self-emission, above and below the K-edge of an internally doped Cu layer. We can infer from these images the growth at PV of outer surface perturbations. Prepared by LLNL under Contract DE-AC52-07NA27344. LLNL-ABS-697620.

  13. Waveform patterns and peak reversed velocity in vertebral arteries predict severe subclavian artery stenosis and occlusion.

    Science.gov (United States)

    Chen, Shun-Ping; Hu, Yuan-Ping

    2015-05-01

    This study investigated the value of analyzing spectral Doppler waveform patterns and measuring the peak reversed velocity (PRV) of the vertebral artery (VA) in predicting proximal severe subclavian artery (SA) stenosis and occlusion. Fifty-one patients with proximal SA stenosis were studied retrospectively. Based on the depth of the mid-systolic notch, the Doppler waveforms of the ipsilateral VA were divided into five subtypes (type I, n = 8; type II, n = 8; type III, n = 6; type IV, n = 13; and type V, n = 16). PRV was also measured. PRV receiver operating characteristic curves were constructed to obtain the best cutoff value for predicting severe SA stenosis or complete SA occlusion. The results indicated that both VA Doppler waveform and PRV were associated with the degree of SA stenosis (p waveform in the VA had similar accuracy in predicting SA occlusion (84.3%, 43/51). PRV was more accurate than VA waveforms in predicting severe SA stenosis (98%, 50/51 vs. 94.1%, 48/51). However, no significant differences between the two methods in predicting severe SA stenosis were observed (p = 0.84). Thus, with severe obstruction of the SA, typical Doppler waveform patterns of the VA could be observed. PRV is a helpful criterion in predicting severe stenosis and occlusion of the SA.

  14. Scaling of peak flows with constant flow velocity in random self-similar networks

    Directory of Open Access Journals (Sweden)

    R. Mantilla

    2011-07-01

    Full Text Available A methodology is presented to understand the role of the statistical self-similar topology of real river networks on scaling, or power law, in peak flows for rainfall-runoff events. We created Monte Carlo generated sets of ensembles of 1000 random self-similar networks (RSNs with geometrically distributed interior and exterior generators having parameters pi and pe, respectively. The parameter values were chosen to replicate the observed topology of real river networks. We calculated flow hydrographs in each of these networks by numerically solving the link-based mass and momentum conservation equation under the assumption of constant flow velocity. From these simulated RSNs and hydrographs, the scaling exponents β and φ characterizing power laws with respect to drainage area, and corresponding to the width functions and flow hydrographs respectively, were estimated. We found that, in general, φ > β, which supports a similar finding first reported for simulations in the river network of the Walnut Gulch basin, Arizona. Theoretical estimation of β and φ in RSNs is a complex open problem. Therefore, using results for a simpler problem associated with the expected width function and expected hydrograph for an ensemble of RSNs, we give heuristic arguments for theoretical derivations of the scaling exponents β(E and φ(E that depend on the Horton ratios for stream lengths and areas. These ratios in turn have a known dependence on the parameters of the geometric distributions of RSN generators. Good agreement was found between the analytically conjectured values of β(E and φ(E and the values estimated by the simulated ensembles of RSNs and hydrographs. The independence of the scaling exponents φ(E and φ with respect to the value of flow velocity and runoff intensity implies an interesting connection between unit

  15. Amplification Effect of Peak Ground Motion Acceleration in Class Ⅱ and Ⅲ Sites over Shandong Province

    Institute of Scientific and Technical Information of China (English)

    Diao Ting; Chen Shijun; Jiang Zaofeng

    2011-01-01

    In this paper, the amplification factor (ks ) of peek ground motion with different exceedance probability in class Ⅱ and Ⅲ sites over Shandong Province was estimated by analyzing the seismic response data of soil layers collected from 358 boreholes of class Ⅱ sites and 140 boreholes of class Ⅲ site. From the results, one can conclude that: (1) The scatter plot of ks generally obeys a normal distribution ; (2) ks decreases with the increase of the strength of input ground motion, which is more apparent in Class Ⅲ site than in class lI site; (3) for class Ⅱ site, with the increase of depth of the bedrock interface where ground motion inputs, ks increases gradually until to a stable value when the depth reaches up to approximately 20 meters or larger. Yet, for class Ⅲ site, ks is insensitive to the depth; (4) the average of ks for class Ⅱ site is 1.47, slightly larger than that used in the Seismic Ground Motion Parameters Zonation Map of China ( GB 18306-2001 ). Also, ks in class Ⅱ and Ⅲ sites at different levels of peak ground acceleration over Shandong Province is preliminarily discussed in the paper.

  16. Effects of 3D random correlated velocity perturbations on predicted ground motions

    Science.gov (United States)

    Hartzell, S.; Harmsen, S.; Frankel, A.

    2010-01-01

    Three-dimensional, finite-difference simulations of a realistic finite-fault rupture on the southern Hayward fault are used to evaluate the effects of random, correlated velocity perturbations on predicted ground motions. Velocity perturbations are added to a three-dimensional (3D) regional seismic velocity model of the San Francisco Bay Area using a 3D von Karman random medium. Velocity correlation lengths of 5 and 10 km and standard deviations in the velocity of 5% and 10% are considered. The results show that significant deviations in predicted ground velocities are seen in the calculated frequency range (≤1 Hz) for standard deviations in velocity of 5% to 10%. These results have implications for the practical limits on the accuracy of scenario ground-motion calculations and on retrieval of source parameters using higher-frequency, strong-motion data.

  17. Attenuation relations for horizontal peak ground acceleration and response spectrum in northeastern Tibetan Plateau region

    Institute of Scientific and Technical Information of China (English)

    俞言祥; 汪素云

    2004-01-01

    The seismic intensity attenuation relations in northeastern Tibetan Plateau region are established by a regression analysis on isoseismal data. Then the attenuation relations for horizontal peak ground acceleration and short-period response spectrum for western North America are derived based on the database of HUO Jun-rong and strong motion data from recent earthquakes. The attenuation relations of long-period response spectrum for western North America are developed by analyzing the broadband digital seismic recordings of southern California. By integrating the short-period and long-period attenuation relationships, the attenuation relations for horizontal acceleration response spectrum in the period range of 0.04~6 s for western North America are established. The attenuation equation that accounts for the magnitude saturation and near-field saturation of high frequency ground motion is used. Finally the attenuation relations for horizontal peak ground acceleration and response spectrum for the region of northeastern Tibetan Plateau are developed by using the transforming method.

  18. Fixed region of nondistensibility after coarctation repair : In vitro validation of its influence on Doppler peak velocities

    NARCIS (Netherlands)

    Verhaaren, H; De Mey, S; Coomans, [No Value; Segers, P; De Wolf, D; Matthys, D; Verdonck, P

    2001-01-01

    After coarctectomy, local loss of distensibility is noted in addition to mild anatomic narrowing. We hypothesize that the increased Doppler peak velocities measured at the aortic isthmus in these patients partly reflect obstruction secondary to the stiff surgical scar. The hypothesis was studied in

  19. Isokinetic hamstrings-to-quadriceps peak torque ratio: the influence of sport modality, gender, and angular velocity.

    Science.gov (United States)

    Andrade, Marilia Dos Santos; De Lira, Claudio Andre Barbosa; Koffes, Fabiana De Carvalho; Mascarin, Naryana Cristina; Benedito-Silva, Ana Amélia; Da Silva, Antonio Carlos

    2012-01-01

    The purpose of this study was to determine differences in hamstrings-to-quadriceps (H/Q) peak torque ratios evaluated at different angular velocities between men and women who participate in judo, handball or soccer. A total of 166 athletes, including 58 judokas (26 females and 32 males), 39 handball players (22 females and 17 males), and 69 soccer players (17 females and 52 males), were evaluated using an isokinetic dynamometer. The H/Q isokinetic peak torque ratios were calculated at angular velocities of 1.05 rad · s⁻¹ and 5.23 rad · s⁻¹. In the analysis by gender, female soccer players produced lower H/Q peak torque ratios at 1.05 rad · s⁻¹ than males involved in the same sport. However, when H/Q peak torque ratio was assessed at 5.23 rad · s⁻¹, there were no significant differences between the sexes. In the analysis by sport, there were no differences among females at 1.05 rad · s⁻¹. In contrast, male soccer players had significantly higher H/Q peak torque ratios than judokas (66 ± 12% vs. 57 ± 14%, respectively). Female handball players produced significantly lower peak torque ratios at 5.23 rad · s⁻¹ than judokas or soccer players, whereas males presented no ratio differences among sports At 5.23 rad · s⁻¹. In the analysis by velocity, women's muscular ratios assessed at 1.05 rad · s⁻¹ were significantly lower than at 5.23 rad · s⁻¹ for all sports; among men, only judokas presented lower ratios at 1.05 rad · s⁻¹ than at 5.23 rad · s⁻¹. The present results suggest that sport modality and angular velocity influence the isokinetic strength profiles of men and women.

  20. Estimations of One Repetition Maximum and Isometric Peak Torque in Knee Extension Based on the Relationship Between Force and Velocity.

    Science.gov (United States)

    Sugiura, Yoshito; Hatanaka, Yasuhiko; Arai, Tomoaki; Sakurai, Hiroaki; Kanada, Yoshikiyo

    2016-04-01

    We aimed to investigate whether a linear regression formula based on the relationship between joint torque and angular velocity measured using a high-speed video camera and image measurement software is effective for estimating 1 repetition maximum (1RM) and isometric peak torque in knee extension. Subjects comprised 20 healthy men (mean ± SD; age, 27.4 ± 4.9 years; height, 170.3 ± 4.4 cm; and body weight, 66.1 ± 10.9 kg). The exercise load ranged from 40% to 150% 1RM. Peak angular velocity (PAV) and peak torque were used to estimate 1RM and isometric peak torque. To elucidate the relationship between force and velocity in knee extension, the relationship between the relative proportion of 1RM (% 1RM) and PAV was examined using simple regression analysis. The concordance rate between the estimated value and actual measurement of 1RM and isometric peak torque was examined using intraclass correlation coefficients (ICCs). Reliability of the regression line of PAV and % 1RM was 0.95. The concordance rate between the actual measurement and estimated value of 1RM resulted in an ICC(2,1) of 0.93 and that of isometric peak torque had an ICC(2,1) of 0.87 and 0.86 for 6 and 3 levels of load, respectively. Our method for estimating 1RM was effective for decreasing the measurement time and reducing patients' burden. Additionally, isometric peak torque can be estimated using 3 levels of load, as we obtained the same results as those reported previously. We plan to expand the range of subjects and examine the generalizability of our results.

  1. Prediction of peak ground acceleration of Iran’s tectonic regions using a hybrid soft computing technique

    Institute of Scientific and Technical Information of China (English)

    Mostafa Gandomi; Mohsen Soltanpour; Mohammad R. Zolfaghari; Amir H. Gandomi

    2016-01-01

    A new model is derived to predict the peak ground acceleration (PGA) utilizing a hybrid method coupling artificial neural network (ANN) and simulated annealing (SA), called SA-ANN. The proposed model re-lates PGA to earthquake source to site distance, earthquake magnitude, average shear-wave velocity, faulting mechanisms, and focal depth. A database of strong ground-motion recordings of 36 earthquakes, which happened in Iran’s tectonic regions, is used to establish the model. For more validity verification, the SA-ANN model is employed to predict the PGA of a part of the database beyond the training data domain. The proposed SA-ANN model is compared with the simple ANN in addition to 10 well-known models proposed in the literature. The proposed model performance is superior to the single ANN and other existing attenuation models. The SA-ANN model is highly correlated to the actual records (R ¼ 0.835 and r ¼ 0.0908) and it is subsequently converted into a tractable design equation.

  2. Long-Period Ground Motion Prediction Equations for Relative, Pseudo-Relative and Absolute Velocity Response Spectra in Japan

    Science.gov (United States)

    Dhakal, Y. P.; Kunugi, T.; Suzuki, W.; Aoi, S.

    2014-12-01

    Many of the empirical ground motion prediction equations (GMPE) also known as attenuation relations have been developed for absolute acceleration or pseudo relative velocity response spectra. For a small damping, pseudo and absolute acceleration response spectra are nearly identical and hence interchangeable. It is generally known that the relative and pseudo relative velocity response spectra differ considerably at very short or very long periods, and the two are often considered similar at intermediate periods. However, observations show that the period range at which the two spectra become comparable is different from site to site. Also, the relationship of the above two types of velocity response spectra with absolute velocity response spectra are not discussed well in literature. The absolute velocity response spectra are the peak values of time histories obtained by adding the ground velocities to relative velocity response time histories at individual natural periods. There exists many tall buildings on huge and deep sedimentary basins such as the Kanto basin, and the number of such buildings is growing. Recently, Japan Meteorological Agency (JMA) has proposed four classes of long-period ground motion intensity (http://www.data.jma.go.jp/svd/eew/data/ltpgm/) based on absolute velocity response spectra, which correlate to the difficulty of movement of people in tall buildings. As the researchers are using various types of response spectra for long-period ground motions, it is important to understand the relationships between them to take appropriate measures for disaster prevention applications. In this paper, we, therefore, obtain and discuss the empirical attenuation relationships using the same functional forms for the three types of velocity response spectra computed from observed strong motion records from moderate to large earthquakes in relation to JMA magnitude, hypocentral distance, sediment depths, and AVS30 as predictor variables at periods between

  3. Development of Neural Network Model for Predicting Peak Ground Acceleration Based on Microtremor Measurement and Soil Boring Test Data

    National Research Council Canada - National Science Library

    Kerh, T; Lin, J. S; Gunaratnam, D

    2012-01-01

    .... This paper is therefore aimed at developing a neural network model, based on available microtremor measurement and on-site soil boring test data, for predicting peak ground acceleration at a site...

  4. Age-related decline in mitral peak diastolic velocities is unaffected in well-trained runners

    DEFF Research Database (Denmark)

    Olsen, Rasmus Huan; Couppé, Christian; Dall, Christian Have;

    2015-01-01

    (a') diastolic and systolic (s') annular longitudinal tissue Doppler velocities were measured by echocardiography during four stages (rest, supine bike exercise at 30% and 60% of maximal workload, and recovery). RESULTS: The athletes had marked cardiac remodeling, while overall differences in mitral...

  5. Significance of peak height velocity as a predictive factor for curve progression in patients with idiopathic scoliosis

    OpenAIRE

    Chazono, Masaaki; Tanaka, Takaaki; Marumo, Keishi; Kono, Katsuki; Suzuki, Nobumasa

    2015-01-01

    Background Much attention has been paid to peak height velocity (PHV) as a possible predictor of curve progression in patients with idiopathic scoliosis (IS). The aim of this study was to analyze the relationship between the magnitude of the Cobb angle at PHV and scoliosis progression, defined as having surgery prior to skeletal maturity in female patients with IS. Methods A retrospective review identified 56 skeletally immature female IS patients who were followed until maturity. The mean ag...

  6. Interaction-powered supernovae: rise-time versus peak-luminosity correlation and the shock-breakout velocity

    Energy Technology Data Exchange (ETDEWEB)

    Ofek, Eran O.; Arcavi, Iair; Tal, David; Gal-Yam, Avishay; Ben-Ami, Sagi; De Cia, Annalisa; Yaron, Ofer [Benoziyo Center for Astrophysics, Weizmann Institute of Science, 76100 Rehovot (Israel); Sullivan, Mark [School of Physics and Astronomy, University of Southampton, Southampton SO17 1BJ (United Kingdom); Kulkarni, Shrinivas R.; Cao, Yi [Cahill Center for Astronomy and Astrophysics, California Institute of Technology, Pasadena, CA 91125 (United States); Nugent, Peter E. [Computational Cosmology Center, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States); Bersier, David [Astrophysics Research Institute, Liverpool John Moores University, Liverpool L3 5RF (United Kingdom); Cenko, S. Bradley [Astrophysics Science Division, NASA Goddard Space Flight Center, Mail Code 661, Greenbelt, MD 20771 (United States); Filippenko, Alexei V. [Department of Astronomy, University of California, Berkeley, CA 94720-3411 (United States); Fransson, Claes [Department of Astronomy, The Oskar Klein Centre, Stockholm University, AlbaNova University Centre, SE-106 91 Stockholm (Sweden); Kasliwal, Mansi M. [Observatories of the Carnegie Institution for Science, 813 Santa Barbara St, Pasadena, CA 91101 (United States); Laher, Russ; Surace, Jason [Spitzer Science Center, MS 314-6, California Institute of Technology, Pasadena, CA 91125 (United States); Quimby, Robert [Kavli IPMU (WPI), The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa-shi, Chiba 277-8583 (Japan)

    2014-06-20

    Interaction of supernova (SN) ejecta with the optically thick circumstellar medium (CSM) of a progenitor star can result in a bright, long-lived shock-breakout event. Candidates for such SNe include Type IIn and superluminous SNe. If some of these SNe are powered by interaction, then there should be a specific relation between their peak luminosity, bolometric light-curve rise time, and shock-breakout velocity. Given that the shock velocity during shock breakout is not measured, we expect a correlation, with a significant spread, between the rise time and the peak luminosity of these SNe. Here, we present a sample of 15 SNe IIn for which we have good constraints on their rise time and peak luminosity from observations obtained using the Palomar Transient Factory. We report on a possible correlation between the R-band rise time and peak luminosity of these SNe, with a false-alarm probability of 3%. Assuming that these SNe are powered by interaction, combining these observables and theory allows us to deduce lower limits on the shock-breakout velocity. The lower limits on the shock velocity we find are consistent with what is expected for SNe (i.e., ∼10{sup 4} km s{sup –1}). This supports the suggestion that the early-time light curves of SNe IIn are caused by shock breakout in a dense CSM. We note that such a correlation can arise from other physical mechanisms. Performing such a test on other classes of SNe (e.g., superluminous SNe) can be used to rule out the interaction model for a class of events.

  7. Are there any left-right asymmetries in saccade parameters? Examination of latency, gain, and peak velocity.

    Science.gov (United States)

    Vergilino-Perez, Dorine; Fayel, Alexandra; Lemoine, Christelle; Senot, Patrice; Vergne, Judith; Doré-Mazars, Karine

    2012-06-05

    Hemispheric specialization in saccadic control is still under debate. Here we examine the latency, gain, and peak velocity of reactive and voluntary leftward and rightward saccades to assess the respective roles of eye and hand dominance. Participants with contrasting hand and eye dominance were asked to make saccades toward a target displayed at 5°, 10°, or 15° left or right of the central fixation point. In separate sessions, reactive and voluntary saccades were elicited by Gap-200, Gap-0, Overlap-600, and Antisaccade procedures. Left-right asymmetries were not found in saccade latencies but appeared in saccade gain and peak velocity. Regardless of the dominant hand, saccades directed to the ipsilateral side relative to the dominant eye had larger amplitudes and faster peak velocities. Left-right asymmetries can be explained by naso-temporal differences for some subjects and by eye dominance for others. Further investigations are needed to examine saccadic parameters more systematically in relation to eye dominance. Indeed, any method that allows one to determine ocular dominance from objective measures based on saccade parameters should greatly benefit clinical applications, such as monovision surgery.

  8. Importance of Peak Height Velocity Timing in Terms of Injuries in Talented Soccer Players

    NARCIS (Netherlands)

    van der Sluis, A.; Elferink-Gemser, M. T.; Brink, M. S.; Visscher, C.

    2015-01-01

    The purpose of this study was to identify differences in traumatic and overuse injury incidence between talented soccer players who differ in the timing of their adolescent growth spurt. 26 soccer players (mean age 11.9 +/- 0.84 years) were followed longitudinally for 3 years around Peak Height Velo

  9. Importance of Peak Height Velocity Timing in Terms of Injuries in Talented Soccer Players

    NARCIS (Netherlands)

    van der Sluis, A.; Elferink-Gemser, M. T.; Brink, M. S.; Visscher, C.

    2015-01-01

    The purpose of this study was to identify differences in traumatic and overuse injury incidence between talented soccer players who differ in the timing of their adolescent growth spurt. 26 soccer players (mean age 11.9 +/- 0.84 years) were followed longitudinally for 3 years around Peak Height Velo

  10. Peak Ground Acceleration Prediction by Artificial Neural Networks for Northwestern Turkey

    Directory of Open Access Journals (Sweden)

    Kemal Günaydın

    2008-01-01

    Full Text Available Three different artificial neural network (ANN methods, namely, feed-forward back-propagation (FFBP, radial basis function (RBF, and generalized regression neural networks (GRNNs were applied to predict peak ground acceleration (PGA. Ninety five three-component records from 15 ground motions that occurred in Northwestern Turkey between 1999 and 2001 were used during the applications. The earthquake moment magnitude, hypocentral distance, focal depth, and site conditions were used as inputs to estimate PGA for vertical (U-D, east-west (E-W, and north-south (N-S directions. The direction of the maximum PGA of the three components was also added to the input layer to obtain the maximum PGA. Testing stage results of three ANN methods indicated that the FFBPs were superior to the GRNN and the RBF for all directions. The PGA values obtained from the FFBP were modified by linear regression analysis. The results showed that these modifications increased the prediction performances.

  11. Interaction-powered supernovae: Rise-time vs. peak-luminosity correlation and the shock-breakout velocity

    CERN Document Server

    Ofek, E O; Tal, D; Sullivan, M; Gal-Yam, A; Kulkarni, S R; Nugent, P E; Ben-Ami, S; Bersier, D; Cao, Y; Cenko, S B; De Cia, A; Filippenko, A V; Fransson, C; Kasliwal, M M; Laher, R; Surace, J; Quimby, R; Yaron, O

    2014-01-01

    Interaction of supernova (SN) ejecta with the optically thick circumstellar medium (CSM) of a progenitor star can result in a bright, long-lived shock breakout event. Candidates for such SNe include Type IIn and superluminous SNe. If some of these SNe are powered by interaction, then there should be a relation between their peak luminosity, bolometric light-curve rise time, and shock-breakout velocity. Given that the shock velocity during shock breakout is not measured, we expect a correlation, with a significant spread, between the rise time and the peak luminosity of these SNe. Here, we present a sample of 15 SNe IIn for which we have good constraints on their rise time and peak luminosity from observations obtained using the Palomar Transient Factory. We report on a possible correlation between the R-band rise time and peak luminosity of these SNe, with a false-alarm probability of 3%. Assuming that these SNe are powered by interaction, combining these observables and theory allows us to deduce lower limit...

  12. [Predict value of time to peak of systolic velocity derived from velocity vector imaging on cardiac resynchronization therapy response in refractory heart failure patients].

    Science.gov (United States)

    Guo, Jianping; Wang, Yutang; Zhi, Guang; Zhang, Xiaojuan; Shan, Zhaoliang; Shi, Xiangmin; Lin, Kun

    2015-09-01

    To investigate the impact of cardiac resynchronization therapy (CRT) on left ventricular systolic function evaluated by velocity vector imaging (VVI) in refractory heart failure patients and the predictive value of VVI on CRT responses. This study included 38 patients with medically refractory heart failure (HF) patients underwent CRT in our department from May 2007 to April 2011. Left ventricular long axis dyssynchrony indexes including time to peak of systolic velocity (Ts max-min), standard deviation of the time to peak of systolic velocity (Ts-SD) before and at 3-6 months post CRT. CRT response was defined as 15% decrease in left ventricular end-systolic volume. ROC curve and the area under the curve (AUC) were calculated. Twenty-four patients were defined as responder. No significant difference was observed between responders and non-responders in medical therapy. When using Ts max-min to predict response, the AUC of ROC curves was 0.76 ± 0.07. The sensitivity and specifity was 70.8% and 77.8% respectively with Ts max-min ≥ 124.0 ms. When using Ts-SD to predict response, the AUC of ROC curves was 0.82 ± 0.07. The sensitivity and specifity was 79.2% and 71.2% respectively with Ts-SD ≥ 40.5. Ts-SD is a useful index to predict CRT response in refractory HF patients.

  13. Anaerobic and aerobic peak power output and the force-velocity relationship in endurance-trained athletes: effects of aging.

    Science.gov (United States)

    Chamari, K; Ahmaidi, S; Fabre, C; Massé-Biron, J; Préfaut, C

    1995-01-01

    The aim of this investigation was to test the hypothesis that the anaerobic peak power output (Pan, peak) declines more than the peak aerobic power (Paer, peak) with increasing age. In addition, the force-velocity (F-v) relationship was studied to determine which of these two factors is primarily responsible for the expected alterations in anaerobic power. The Pan, peak, the maximal F when v is equal to zero (F0) and the maximal v when F is equal to zero (v0) were assessed by F-v test i.e. a brief intense intermittent exercise test using incremental braking forces. The Paer, peak was measured by a maximal increment exercise test. A group of 12 young athletes (YA) and 12 master athletes (MA) mean age 24.8 (SEM 1.3) and 65.1 (SEM 1.2) years, respectively, participated in this study. The YA and MA had similar body masses, heights and endurance training schedules. The results showed that Pan, peak was 42.7% lower in the older subjects, corresponding to mean values of 1089 (SEM 40) compared to 624 (SEM 33) W (t = 8.9, P Paer, peak was 35% lower with mean values of 323 (SEM 12) W for YA compared to 210 (SEM 6) W for MA (t = 8.3, P < 0.001). The mean maximal oxygen uptake was 34.7% lower with 4240 (SEM 160) ml.min-1 for YA compared to 2770 (SEM 120) ml.min-1 for MA (t = 7.2, P < 0.001).(ABSTRACT TRUNCATED AT 250 WORDS)

  14. Ratio of left ventricular peak E-wave velocity to flow propagation velocity assessed by color M-mode Doppler echocardiography in first myocardial infarction

    DEFF Research Database (Denmark)

    Møller, J E; Søndergaard, E; Seward, J B;

    2000-01-01

    OBJECTIVES: To determine the ability of the ratio of peak E-wave velocity to flow propagation velocity (E/Vp) measured with color M-mode Doppler echocardiography to predict in-hospital heart failure and cardiac mortality in an unselected consecutive population with first myocardial infarction (MI......). BACKGROUND: Several experimental studies indicate color M-mode echocardiography to be a valuable tool in the evaluation of diastolic function, but data regarding the clinical value are lacking. METHODS: Echocardiography was performed within 24 h of arrival at the coronary care unit in 110 consecutive...... or =1.5 measured with color M-mode echocardiography is a strong predictor of in-hospital heart failure. Furthermore, E/Vp is superior to systolic measurements in predicting 35 day survival although Dt

  15. Relationship Between Selected Strength and Power Assessments to Peak and Average Velocity of the Drive Block in Offensive Line Play.

    Science.gov (United States)

    Jacobson, Bert H; Conchola, Eric C; Smith, Doug B; Akehi, Kazuma; Glass, Rob G

    2016-08-01

    Jacobson, BH, Conchola, EC, Smith, DB, Akehi, K, and Glass, RG. Relationship between selected strength and power assessments to peak and average velocity of the drive block in offensive line play. J Strength Cond Res 30(8): 2202-2205, 2016-Typical strength training for football includes the squat and power clean (PC) and routinely measured variables include 1 repetition maximum (1RM) squat and 1RM PC along with the vertical jump (VJ) for power. However, little research exists regarding the association between the strength exercises and velocity of an actual on-the-field performance. The purpose of this study was to investigate the relationship of peak velocity (PV) and average velocity (AV) of the offensive line drive block to 1RM squat, 1RM PC, the VJ, body mass (BM), and body composition. One repetition maximum assessments for the squat and PC were recorded along with VJ height, BM, and percent body fat. These data were correlated with PV and AV while performing the drive block. Peal velocity and AV were assessed using a Tendo Power and Speed Analyzer as the linemen fired, from a 3-point stance into a stationary blocking dummy. Pearson product analysis yielded significant (p ≤ 0.05) correlations between PV and AV and the VJ, the squat, and the PC. A significant inverse association was found for both PV and AV and body fat. These data help to confirm that the typical exercises recommended for American football linemen is positively associated with both PV and AV needed for the drive block effectiveness. It is recommended that these exercises remain the focus of a weight room protocol and that ancillary exercises be built around these exercises. Additionally, efforts to reduce body fat are recommended.

  16. Why do oceanic negative cloud-to-ground lightning exhibit larger peak current values?

    Science.gov (United States)

    Chronis, T.; Koshak, W.; McCaul, E.

    2016-04-01

    This study examines the temporal (monthly) and spatial climatology (2004-2010) of the first return stroke of the cloud-to-ground (CG) lightning flash peak current (Ip) across various land/water boundaries over the contiguous United States. Four regions are examined: the Gulf of Mexico (region 1), the Florida peninsula (region 2), Lake Michigan (region 3), and part of the U.S. Mid-Atlantic (region 4). The crosss across the coastlines of regions 1, 2, and 4 show a gradual oceanward increase in the mean negative polarity CG peak current values (-Ip). This transition along the respective land/ocean boundaries is not sharp but gradual. In direct contrast with ocean, there is no consistent behavior in -Ip values as we move from land out across the fresh water of Lake Michigan (region 3). Meanwhile, the positive CG flash peak current (+Ip) values do not exhibit a consistent variation across any coastal boundary. For region 1, the -Ip values increase as we move toward the coast (southwards) especially during the wet season (June-October). This finding is in direct contrast with studies that documented winter as the season of maximum -Ip values. The zonal and seasonal variations of -Ip values across region 4 are not quite as pronounced, but the oceanic -Ip values are still larger than over the adjoining landmass. We explore in turn which up to date hypotheses pertinent to the oceanic -Ip enhancement are supported or refuted by our findings. It is concluded that the oceanic -Ip enhancement is not an artifact related to CG detection or Ip retrieval methods, nor is it likely related to the cloud top heights or CG activity. The study cannot refute the role of electrical conductivity and its contribution to CG leader attachment processes. However, given the observed "blurred transition" of the Ip values across the coastlines this paper suggests that likely the main physical mechanism is acting on the thundercloud potential. The recently suggested role of sodium chloride (Na

  17. [THE FETAL MIDDLE CEREBRAL ARTERY PEAK SYSTOLIC VELOCITY AS A PEDICTOR OF FETAL ANEMIA IN RH-ALLOIMMUNIZED PREGNANCY].

    Science.gov (United States)

    Markov, D; Pavlova, E; Atanassova, D; Diavolov, V; Hitrova, S; Vakrilova, L; Pramatarova, T; Slancheva, B; Ivanov, St

    2015-01-01

    Rh-isoimmunization is a pathological condition in which the fetal red blood cells of a Rh (+) fetus are destroyed by the isoantibodies of a Rh (-) woman sensitized in a previous event. Despite of the wide spread implementation of anti D-gammaglobolin prophylaxis this is still the most common cause for fetal anemia. Recently, sonographic measurement of the fetal middle cerebral artery peak systolic velocity (MCA-PSV) has been shown to be an accurate non-invasive test to predict low fetal hemoglobin levels. We present a case report of Rh-alloimmunized pregnancy with moderate fetal anemia, followed-up by weekly MCA-PSV measurements. A 37-year-old Rh (-) negative gravida 3, para 1, without anti-D gammaglobolin prophylaxis in her previous pregnancies, presented at 27+0 weeks of gestation (w.g.) for a routine third trimester scan. Subsequent ultrasound measurements of MCA-PSV confirmed a progressive increase of the peak systolic velocities from 40 to 80 cm/sec, as well as a gradual rise in the anti-D titers. The evidence of developing fetal anemia necessitated elective Caesarean section performed at 35 wg. The neonate was admitted in the intensive care unit and required resuscitation, one exchange blood transfusion and several courses of phototherapy. The patient was discharged two weeks post partum. There is a strong correlation between the high peak systolic velocities in the middle cerebral artery (MCA-PSV) and the low levels of fetal hemoglobin. The high sensitivity and positive predictive value concerning the development of fetal anemia, as well as its good repeatability, makes this non-invasive test a valuable asset in the management of all pregnancies complicated by severe Rh-alloimmunization.

  18. Peak Vertical Ground Reaction Force during Two-Leg Landing: A Systematic Review and Mathematical Modeling

    Directory of Open Access Journals (Sweden)

    Wenxin Niu

    2014-01-01

    Full Text Available Objectives. (1 To systematically review peak vertical ground reaction force (PvGRF during two-leg drop landing from specific drop height (DH, (2 to construct a mathematical model describing correlations between PvGRF and DH, and (3 to analyze the effects of some factors on the pooled PvGRF regardless of DH. Methods. A computerized bibliographical search was conducted to extract PvGRF data on a single foot when participants landed with both feet from various DHs. An innovative mathematical model was constructed to analyze effects of gender, landing type, shoes, ankle stabilizers, surface stiffness and sample frequency on PvGRF based on the pooled data. Results. Pooled PvGRF and DH data of 26 articles showed that the square root function fits their relationship well. An experimental validation was also done on the regression equation for the medicum frequency. The PvGRF was not significantly affected by surface stiffness, but was significantly higher in men than women, the platform than suspended landing, the barefoot than shod condition, and ankle stabilizer than control condition, and higher than lower frequencies. Conclusions. The PvGRF and root DH showed a linear relationship. The mathematical modeling method with systematic review is helpful to analyze the influence factors during landing movement without considering DH.

  19. Estimation of Peak Ground Acceleration (PGA) for Peninsular Malaysia using geospatial approach

    Science.gov (United States)

    Nouri Manafizad, Amir; Pradhan, Biswajeet; Abdullahi, Saleh

    2016-06-01

    Among the various types of natural disasters, earthquake is considered as one of the most destructive events which impose a great amount of human fatalities and economic losses. Visualization of earthquake events and estimation of peak ground motions provides a strong tool for scientists and authorities to predict and mitigate the aftereffects of earthquakes. In addition it is useful for some businesses like insurance companies to evaluate the amount of investing risk. Although Peninsular Malaysian is situated in the stable part of Sunda plate, it is seismically influenced by very active earthquake sources of Sumatra's fault and subduction zones. This study modelled the seismic zones and estimates maximum credible earthquake (MCE) based on classified data for period 1900 to 2014. The deterministic approach was implemented for the analysis. Attenuation equations were used for two zones. Results show that, the PGA produced from subduction zone is from 2-64 (gal) and from the fault zone varies from 1-191(gal). In addition, the PGA generated from fault zone is more critical than subduction zone for selected seismic model.

  20. Meaningful use of peak particle velocities at excavation surfaces for the optimisation of the rockburst criteria for tunnels and stopes.

    CSIR Research Space (South Africa)

    Milev, AM

    2002-03-01

    Full Text Available Final Project Report The meaningful use of peak particle velocities at excavation surfaces for the optimisation of the rockburst criteria for tunnels and stopes A.M. Milev, S.M. Spottiswoode, B.R. Noble, L.M. Linzer, M. van Zyl, A. Daehnke & E... and Ventersdorp Contact Reef sites were carried out. A total number of 41 sites were monitored: • TauTona gold mine: a total number of 15 139 seismic events with a maximum PPV of 3 m/s was recorded during 2 437 site days; • Kloof gold mine: a total number of 6...

  1. Characteristics of Spatial Distribution for Peak Ground Acceleration in 3 Aug 2014 Ms6.5 Ludian Earthquake, Yuanan, China

    Science.gov (United States)

    kun, Chen; YanXiang, Yu

    2016-04-01

    Considering the geological context, focal mechanism solutions, aftershock distribution and attenuation characteristics of the ground motion in western China, shakemaps of PGA (Peak Ground Acceleration) for The Ludian Ms6.5 earthquake on 3 Aug 2014 was acquired, in which the Mothed of rapid generation ShakeMaps considering site effects was used, and the peak ground acceleration of 62 stations for this earthquake was used as interpolation. Then, distribution of PGA was amended by using PGA observations to correct system bias of theoretical estimates in the area without PGA observations. The results show that the attenuation of ground motion with distance for this earthquake was faster than that of Wang Su-Yun in 2000; the result of bias-corrected was more consistent with attenuation law of this earthquake. After adjusting, for the area with PGA greater than 40 cm / s2 was nearly 8000 km2, which was is reduced by about 40%.

  2. Estimation of peak ground accelerations for Mexican subduction zone earthquakes using neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, Silvia R; Romo, Miguel P; Mayoral, Juan M [Instituto de Ingenieria, Universidad Nacional Autonoma de Mexico, Mexico D.F. (Mexico)

    2007-01-15

    An extensive analysis of the strong ground motion Mexican data base was conducted using Soft Computing (SC) techniques. A Neural Network NN is used to estimate both orthogonal components of the horizontal (PGAh) and vertical (PGAv) peak ground accelerations measured at rock sites during Mexican subduction zone earthquakes. The work discusses the development, training, and testing of this neural model. Attenuation phenomenon was characterized in terms of magnitude, epicentral distance and focal depth. Neural approximators were used instead of traditional regression techniques due to their flexibility to deal with uncertainty and noise. NN predictions follow closely measured responses exhibiting forecasting capabilities better than those of most established attenuation relations for the Mexican subduction zone. Assessment of the NN, was also applied to subduction zones in Japan and North America. For the database used in this paper the NN and the-better-fitted- regression approach residuals are compared. [Spanish] Un analisis exhaustivo de la base de datos mexicana de sismos fuertes se llevo a cabo utilizando tecnicas de computo aproximado, SC (soft computing). En particular, una red neuronal, NN, es utilizada para estimar ambos componentes ortogonales de la maxima aceleracion horizontal del terreno, PGAh, y la vertical, PGAv, medidas en sitios en roca durante terremotos generados en la zona de subduccion de la Republica Mexicana. El trabajo discute el desarrollo, entrenamiento, y prueba de este modelo neuronal. El fenomeno de atenuacion fue caracterizado en terminos de la magnitud, la distancia epicentral y la profundidad focal. Aproximaciones neuronales fueron utilizadas en lugar de tecnicas de regresion tradicionales por su flexibilidad para tratar con incertidumbre y ruido en los datos. La NN sigue de cerca la respuesta medida exhibiendo capacidades predictivas mejores que las mostradas por muchas de las relaciones de atenuacion establecidas para la zona de

  3. The effects of structural setting on the azimuthal velocities of blast induced ground motion in perlite

    Energy Technology Data Exchange (ETDEWEB)

    Beattie, S.G. [New Mexico Inst. of Mining and Technology, Socorro, NM (United States)

    1995-02-01

    A series of small scale explosive tests were performed during the spring of 1994 at a perlite mine located near Socorro, NM. The tests were designed to investigate the azimuthal or directional relationship between small scale geologic structures such as joints and the propagation of explosively induced ground motion. Three shots were initiated within a single borehole located at ground zero (gz) at depths varying from the deepest at 83 m (272 ft) to the shallowest at 10 m (32 ft). The intermediate shot was initiated at a depth of 63 m (208 ft). An array of three component velocity and acceleration transducers were placed in two concentric rings entirely surrounding the single shot hole at 150 and 300 azimuths as measured from ground zero. Data from the transducers was then used to determine the average propagation velocity of the blast vibration through the rock mass at the various azimuths. The rock mass was mapped to determine the prominent joint orientations (strike and dip) and the average propagation velocities were correlated with this geologic information. The data from these experiments shows that there is a correlation between the orientation of prominent joints and the average velocity of ground motion. It is theorized that this relationship is due to the relative path the ground wave follows when encountering a joint or structure within the rock mass. The more prominent structures allow the wave to follow along their strike thereby forming a sort of channel or path of least resistance and in turn increasing the propagation velocity. Secondary joints or structures may act in concert with more prominent features to form a network of channels along which the wave moves more freely than it may travel against the structure. The amplitudes of the ground motion was also shown to vary azimuthally with the direction of the most prominent structures.

  4. A New Ground Motion Intensity Measure, Peak Filtered Acceleration (PFA), to Estimate Collapse Vulnerability of Buildings in Earthquakes

    Science.gov (United States)

    Song, Shiyan

    In this thesis, we develop an efficient collapse prediction model, the PFA (Peak Filtered Acceleration) model, for buildings subjected to different types of ground motions. For the structural system, the PFA model covers modern steel and reinforced concrete moment-resisting frame buildings (potentially reinforced concrete shear wall buildings). For ground motions, the PFA model covers ramp-pulse-like ground motions, long-period ground motions, and short-period ground motions. To predict whether a building will collapse in response to a given ground motion, we first extract long-period components from the ground motion using a Butterworth low-pass filter with suggested order and cutoff frequency. The order depends on the type of ground motion, and the cutoff frequency depends on the building's natural frequency and ductility. We then compare the filtered acceleration time history with the capacity of the building. The capacity of the building is a constant for 2-dimentional buildings and a limit domain for 3-dimentional buildings. If the filtered acceleration exceeds the building's capacity, the building is predicted to collapse. Otherwise, it is expected to survive the ground motion. The parameters used in PFA model, which include fundamental period, global ductility and lateral capacity, can be obtained either from numerical analysis or interpolation based on the reference building system proposed in this thesis. The PFA collapse prediction model greatly reduces computational complexity while archiving good accuracy. It is verified by FEM simulations of 13 frame building models and 150 ground motion records. Based on the developed collapse prediction model, we propose to use PFA (Peak Filtered Acceleration) as a new ground motion intensity measure for collapse prediction. We compare PFA with traditional intensity measures PGA, PGV, PGD, and Sa in collapse prediction and find that PFA has the best performance among all the intensity measures. We also provide a

  5. Shear wave velocity-based evaluation and design of stone column improved ground for liquefaction mitigation

    Institute of Scientific and Technical Information of China (English)

    Zhou Yanguo; Sun Zhengbo; Chen Jie; Chen Yunmin; Chen Renpeng

    2017-01-01

    The evaluation and design of stone column improvement ground for liquefaction mitigation is a challenging issue for the state of practice.In this paper,a shear wave velocity-based approach is proposed based on the well-defined correlations of liquefaction resistance (CRR)-shear wave velocity (Vs)-void ratio (e) of sandy soils,and the values of parameters in this approach are recommended for preliminary design purpose when site specific values are not available.The detailed procedures of pre-and post-improvement liquefaction evaluations and stone column design are given.According to this approach,the required level of ground improvement will be met once the target Vs of soil is raised high enough (i.e.,no less than the critical velocity) to resist the given earthquake loading according to the CRR-Vs relationship,and then this requirement is transferred to the control of target void ratio (i.e.,the critical e) according to the Vs-e relationship.As this approach relies on the densification of the surrounding soil instead of the whole improved ground and is conservative by nature,specific considerations of the densification mechanism and effect are given,and the effects of drainage and reinforcement of stone columns are also discussed.A case study of a thermal power plant in Indonesia is introduced,where the effectiveness of stone column improved ground was evaluated by the proposed Vs-based method and compared with the SPT-based evaluation.This improved ground performed well and experienced no liquefaction during subsequent strong earthquakes.

  6. Shear wave velocity-based evaluation and design of stone column improved ground for liquefaction mitigation

    Science.gov (United States)

    Zhou, Yanguo; Sun, Zhengbo; Chen, Jie; Chen, Yunmin; Chen, Renpeng

    2017-04-01

    The evaluation and design of stone column improvement ground for liquefaction mitigation is a challenging issue for the state of practice. In this paper, a shear wave velocity-based approach is proposed based on the well-defined correlations of liquefaction resistance (CRR)-shear wave velocity ( V s)-void ratio ( e) of sandy soils, and the values of parameters in this approach are recommended for preliminary design purpose when site specific values are not available. The detailed procedures of pre- and post-improvement liquefaction evaluations and stone column design are given. According to this approach, the required level of ground improvement will be met once the target V s of soil is raised high enough (i.e., no less than the critical velocity) to resist the given earthquake loading according to the CRR- V s relationship, and then this requirement is transferred to the control of target void ratio (i.e., the critical e) according to the V s- e relationship. As this approach relies on the densification of the surrounding soil instead of the whole improved ground and is conservative by nature, specific considerations of the densification mechanism and effect are given, and the effects of drainage and reinforcement of stone columns are also discussed. A case study of a thermal power plant in Indonesia is introduced, where the effectiveness of stone column improved ground was evaluated by the proposed V s-based method and compared with the SPT-based evaluation. This improved ground performed well and experienced no liquefaction during subsequent strong earthquakes.

  7. Significance of peak height velocity as a predictive factor for curve progression in patients with idiopathic scoliosis

    Science.gov (United States)

    2015-01-01

    Background Much attention has been paid to peak height velocity (PHV) as a possible predictor of curve progression in patients with idiopathic scoliosis (IS). The aim of this study was to analyze the relationship between the magnitude of the Cobb angle at PHV and scoliosis progression, defined as having surgery prior to skeletal maturity in female patients with IS. Methods A retrospective review identified 56 skeletally immature female IS patients who were followed until maturity. The mean age and the mean pubertal status at the initial visit were 10 years and 24 months before menarche respectively, with a follow-up period of 5 years. They were divided into two groups: non-surgery group (NS) and surgery group (S), depending on their treatment method in use at the final follow-up visit. Surgery group was defined as an ultimately having surgery due to Cobb angle greater than 45 degrees prior to skeletal maturity regardless of conservative management. Height measurements were recorded at each visit; height velocity was calculated as the height change, in cm, divided by the time interval, in years. The PHV, chronological age at PHV (APHV), height at PHV (HPHV), and final height (FH) were determined for each group. In patients with Cobb angle greater than 30 degrees, the corrected height was calculated by Kono formula and corrected height velocity values were provided. The sensitivity, specificity, and area under the curve (AUC) of the receiver-operating -characteristic (ROC) analysis were calculated to predict spinal curve progression for various Cobb-angle cutoff values at PHV. Results The corrected PHV had a mean value of 8.5 and 8.9 cm/year in the NS-group and S-group, respectively. The APHV was 11.9 and 11 years, the corrected HPHV was 152.9, and 149.3 cm, and the corrected FH was 159.9 and 159.3 cm, respectively. When a Cobb angle of 31.5 degrees was at PHV, ROC analysis revealed 78% sensitivity, 82% specificity, and an AUC of 0.93, acceptable values for curve

  8. A study of different scenarios of fetal middle cerebral artery peak systolic velocity in an Indian population

    Directory of Open Access Journals (Sweden)

    Sushil G Kachewar

    2012-07-01

    Full Text Available Fetal Middle Cerebral Artery Peak Systolic Velocity (MCA-PSV is being increasingly used for non-invasively diagnosing fetal anemias irrespective of their cause. A study was therefore undertaken to find out what different scenarios can be encountered in the local obstetric population. Doppler ultrasound measurements of fetal MCA-PSV were done in 1200 pregnant women who were referred for antenatal ultrasound between 12 - 40 weeks of gestation. Statistical analysis was done using Microsoft Excel 2007 and SPSS software version 12. The different scenarios encountered in this study were then compiled and are presented here. With increasing gestational age, the value of MCA-PSV was seen to increase correspondingly in all normal fetuses. This correlation between the two was thus positive and was found to be statistically significant (p < 0.05. Abnormally raised values of MCA-PSV were seen in fetuses with severe anemia due to ABO-Rh Iso-immunization which left untreated, ultimately resulted in fetal hydrops. Almost similar and normal values were seen in separate as well as conjoint healthy twins. Abnormally elevated values were seen in twins with discordant growths. Fetal MCA-PSV is very useful to confirm the presence or absence of fetal anemia irrespective of underlying cause in singleton as well as twin pregnancies. For complete assessment, it is essential that the specialist is thoroughly aware of the different scenarios that can be encountered while using this non-invasive method.

  9. Displacement response analysis of base-isolated buildings subjected to near-fault ground motions with velocity pulse

    Science.gov (United States)

    He, Qiumei; Li, Xiaojun; Yang, Yu; Liu, Aiwen; Li, Yaqi

    2016-04-01

    In order to study the influence of the velocity pulse to seismic displacement response of base-isolated buildings and the differences of the influent of the two types of near-fault ground motions with velocity pulse to seismic response of base-isolated buildings, the seismic responses are analyzed by three dimensional finite element models for three base-isolated buildings, 4 stories, 9 stories and 14 stories. In this study, comparative analyses were done for the seismic displacement responses of the base-isolated structures under 6 near-fault ground motion records with velocity pulse and no velocity pulse, in which, 6 artificial ground motion time histories with same elastic response spectrum as the 6 near-fault ground motion records are used as the ground motion with no velocity pulse. This study indicates that under the ground motions with velocity pulse the seismic displacement response of base-isolated buildings is significantly increased than the ground motions with no velocity pulse. To the median-low base-isolated buildings, the impact of forward directivity pulses is bigger than fling-step pulses. To the high base-isolated buildings, the impact of fling-step pulses is bigger than forward directivity pulses. The fling-step pulses lead to large displacement response in the lower stories. This work has been supported by the National Natural Science Foundation of China (Grant No.51408560)

  10. Development of Neural Network Model for Predicting Peak Ground Acceleration Based on Microtremor Measurement and Soil Boring Test Data

    Directory of Open Access Journals (Sweden)

    T. Kerh

    2012-01-01

    Full Text Available It may not be possible to collect adequate records of strong ground motions in a short period of time; hence microtremor survey is frequently conducted to reveal the stratum structure and earthquake characteristics at a specified construction site. This paper is therefore aimed at developing a neural network model, based on available microtremor measurement and on-site soil boring test data, for predicting peak ground acceleration at a site, in a science park of Taiwan. The four key parameters used as inputs for the model are soil values of the standard penetration test, the medium grain size, the safety factor against liquefaction, and the distance between soil depth and measuring station. The results show that a neural network model with four neurons in the hidden layer can achieve better performance than other models presently available. Also, a weight-based neural network model is developed to provide reliable prediction of peak ground acceleration at an unmeasured site based on data at three nearby measuring stations. The method employed in this paper provides a new way to treat this type of seismic-related problem, and it may be applicable to other areas of interest around the world.

  11. Variables that affect the middle cerebral artery peak systolic velocity in fetuses with anemia and intrauterine growth restriction.

    Science.gov (United States)

    Hanif, Farhan; Drennan, Kathrin; Mari, Giancarlo

    2007-09-01

    We have previously reported that the fetal middle cerebral artery (MCA) peak systolic velocity (PSV) increases in anemic fetuses and in fetuses with intrauterine growth restriction (IUGR). We hypothesized that the pathophysiology for the increased MCA PSV is different in anemic and IUGR fetuses. Thus the aim of this study was to determine the factor(s) among fetal umbilical vein blood pH, Po2, Pco2, and hemoglobin that might affect the MCA PSV in fetuses with anemia and IUGR. This study included two groups of fetuses. The first group included fetuses at risk for anemia because of red cell alloimmunization, whereas the second group included IUGR fetuses. For both groups of fetuses, we determined hemoglobin, umbilical vein blood gases -- at cordocentesis in anemic fetuses and immediately after cesarean delivery in IUGR fetuses -- and MCA PSV before cordocentesis, or before delivery. The relationship between MCA PSV and the hemoglobin, Po2, Pco2, and pH values for the anemic and the IUGR fetuses were assessed by regression analysis using multiples of the mean. There were 14 fetuses in the first group and 22 fetuses in the second group. In the first group, the only parameter that was related to MCA PSV was the fetal hemoglobin (R2 = 0.34; p < 0.05); in fetuses with IUGR, the Pco2 (R2 = 0.36; p < 0.01) and the PO2 (R2 = 0.30; p < 0.01) correlated well with the MCA PSV, whereas no relationship was found between the MCA PSV and the hemoglobin. The data indicate that the mechanism of high MCA PSV is different in anemic and nonanemic IUGR fetuses, and suggest that the process of cerebral autoregulation is present in the preterm IUGR fetus.

  12. Flow and peak velocity measurements in patients with aortic valve stenosis using phase contrast MR accelerated with k-t BLAST

    Energy Technology Data Exchange (ETDEWEB)

    Thunberg, Per, E-mail: per.thunberg@orebroll.se [Department of Medical Physics, Örebro University Hospital, S-70185 Örebro (Sweden); Emilsson, Kent; Rask, Peter [Department of Clinical Physiology, Örebro University Hospital (Sweden); Kähäri, Anders [Department of Radiology, Örebro University Hospital (Sweden)

    2012-09-15

    Objective: To investigate the accuracy of velocity measurements in patients with aortic valve stenosis using phase contrast (PC) imaging accelerated with SENSE (Sensitivity Encoding) and k-t BLAST (Broad-use Linear Acquisition Speed-up Technique). Methods: Accelerated quantitative breath hold PC measurements, using SENSE and k-t BLAST, were performed in twelve patients whose aortic valve stenosis had been initially diagnosed using echocardiography. Stroke volume (SV) and peak velocity measurements were performed on each subject in three adjacent slices using both accelerating methods. Results: The peak velocities measured with PC MRI using SENSE were −8.0 ± 9.5% lower (p < 0.01) compared to the peak velocities measured with k-t BLAST and the correlation was r = 0.83. The stroke volumes when using SENSE were slightly higher 0.4 ± 17.1 ml compared to the SV obtained using k-t BLAST but the difference was not significant (p > 0.05). Conclusions: In this study higher peak velocities were measured in patients with aortic stenosis when combining k-t BLAST with PC MRI compared to PC MRI using SENSE. A probable explanation of this difference is the higher temporal resolution achieved in the k-t BLAST measurement. There was, however, no significant difference between calculated SV based on PC MRI using SENSE and k-t BLAST, respectively.

  13. Nonsearching Doppler parameter and velocity estimation method for synthetic aperture radar ground moving target imaging

    Science.gov (United States)

    Li, Zhongyu; Wu, Junjie; Huang, Yunlin; Yang, Haiguang; Yang, Jianyu

    2016-07-01

    For synthetic aperture radar (SAR), ground moving target (GMT) imaging necessitates the compensation of the additional azimuth modulation contributed by the unknown movement of the GMT. That is to say, it is necessary to estimate the Doppler parameters of the GMT without a priori knowledge of the GMT's motion parameters. This paper presents a Doppler parameter and velocity estimation method to refocus the GMT from its smeared response in SAR image. The main idea of this method is that an azimuth reference function is constructed to do the correlation integral with the azimuth signal of the GMT. And in general, the Doppler parameters of the presumed azimuth reference function are different from those of the GMT's azimuth signal since the velocity parameters of the GMT are unknown. Therefore, the correlation operation referred to here is actually mismatched, and the processing result of is shifted and defocused. The shifted and defocused result is utilized to get the real Doppler parameters and the velocity parameters of the GMT. One advantage of this method is that it is a nonsearching method. Another advantage is that both the Doppler centroid and the Doppler frequency rate of the GMT can be simultaneously estimated according to the relationships between the Doppler parameters and the smeared response of the GMT. In addition, the velocity of the GMT can also be obtained based on the estimated Doppler parameters. Numerical simulations and experimental data processing verify the validity of the method proposed.

  14. A RADIAL VELOCITY TEST FOR SUPERMASSIVE BLACK HOLE BINARIES AS AN EXPLANATION FOR BROAD, DOUBLE-PEAKED EMISSION LINES IN ACTIVE GALACTIC NUCLEI

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jia; Halpern, Jules P. [Astronomy Department, Columbia University, 550 West 120th Street, New York, NY 10027 (United States); Eracleous, Michael [Department of Astronomy and Institute for Gravitation and The Cosmos, The Pennsylvania State University, 525 Davey Lab, University Park, PA 16802 (United States)

    2016-01-20

    One of the proposed explanations for the broad, double-peaked Balmer emission lines observed in the spectra of some active galactic nuclei (AGNs) is that they are associated with sub-parsec supermassive black hole (SMBH) binaries. Here, we test the binary broad-line region hypothesis through several decades of monitoring of the velocity structure of double-peaked Hα emission lines in 13 low-redshift, mostly radio-loud AGNs. This is a much larger set of objects compared to an earlier test by Eracleous et al. and we use much longer time series for the three objects studied in that paper. Although systematic changes in radial velocity can be traced in many of their lines, they are demonstrably not like those of a spectroscopic binary in a circular orbit. Any spectroscopic binary period must therefore be much longer than the span of the monitoring (assuming a circular orbit), which in turn would require black hole masses that exceed by 1–2 orders of magnitude the values obtained for these objects using techniques such as reverberation mapping and stellar velocity dispersion. Moreover, the response of the double-peaked Balmer line profiles to fluctuations of the ionizing continuum and the shape of the Lyα profiles are incompatible with an SMBH binary. The binary broad-line region hypothesis is therefore disfavored. Other processes evidently shape these line profiles and cause the long-term velocity variations of the double peaks.

  15. The growth of different body length dimensions is not predictive for the peak growth velocity of sitting height in the individual child

    NARCIS (Netherlands)

    Busscher, Iris; Gerver, W. J. M.; Kingma, Idsart; Wapstra, Frits Hein; Verkerke, Gijsvertus J.; Veldhuizen, Albert G.

    2011-01-01

    The aim of this study was to determine whether the differences in timing of the peak growth velocity (PGV) between sitting height, total body height, subischial leg length, and foot length can be used to predict whether the individual patient with adolescent idiopathic scoliosis is before or past hi

  16. Comparisons of peak ground reaction force and rate of force development during variations of the power clean.

    Science.gov (United States)

    Comfort, Paul; Allen, Mark; Graham-Smith, Phillip

    2011-05-01

    The aim of this investigation was to determine the differences in vertical ground reaction forces and rate of force development (RFD) during variations of the power clean. Elite rugby league players (n = 11; age 21 ± 1.63 years; height 181.56 ± 2.61 cm; body mass 93.65 ± 6.84 kg) performed 1 set of 3 repetitions of the power clean, hang-power clean, midthigh power clean, or midthigh clean pull, using 60% of 1-repetition maximum power clean, in a randomized order, while standing on a force platform. Differences in peak vertical ground reaction forces (F(z)) and instantaneous RFD between lifts were analyzed via 1-way analysis of variance and Bonferroni post hoc analysis. Statistical analysis revealed a significantly (p < 0.001) greater peak F(z) during the midthigh power clean (2,801.7 ± 195.4 N) and the midthigh clean pull (2,880.2 ± 236.2 N) compared to both the power clean (2,306.24 ± 240.47 N) and the hang-power clean (2,442.9 ± 293.2 N). The midthigh power clean (14,655.8 ± 4,535.1 N·s⁻¹) and the midthigh clean pull (15,320.6 ± 3,533.3 N·s⁻¹) also demonstrated significantly (p < 0.001) greater instantaneous RFD when compared to both the power clean (8,839.7 ± 2,940.4 N·s⁻¹) and the hang-power clean (9,768.9 ± 4,012.4 N·s⁻¹). From the findings of this study, when training to maximize peak F(z) and RFD the midthigh power clean and midthigh clean pull appear to be the most advantageous variations of the power clean to perform.

  17. The spatial and velocity bias of linear density peaks and proto-haloes in the LCDM cosmology

    CERN Document Server

    Elia, Anna; Porciani, Cristiano

    2011-01-01

    We use high resolution N-body simulations to investigate the Lagrangian bias of cold dark matter haloes within the LCDM cosmology. Our analysis focuses on "proto-haloes", which we identify in the simulation initial conditions with the subsets of particles belonging to individual redshift-zero haloes. We then calculate the number-density and velocity-divergence fields of proto-haloes and estimate their auto spectral densities. We also measure the corresponding cross spectral densities with the linear matter distribution. We use our results to test a Lagrangian-bias model presented by Desjacques and Sheth which is based on the assumption that haloes form out of local density maxima of a specific height. Our comparison validates the predicted functional form for the scale-dependence of the bias for both the density and velocity fields. We also show that the bias coefficients are accurately predicted for the velocity divergence. On the contrary, the theoretical values for the density bias parameters do not accura...

  18. On the variations of acoustic absorption peak with particle velocity in micro-perforated panels at high level of excitation.

    Science.gov (United States)

    Tayong, Rostand; Dupont, Thomas; Leclaire, Philippe

    2010-05-01

    The acoustic behavior of micro-perforated panels (MPP) is studied theoretically and experimentally at high level of pressure excitation. A model based on Forchheimer's regime of flow velocity in the perforations is proposed. This model is valid at relatively high Reynolds numbers and low Mach numbers. The experimental method consists in measuring the acoustical pressure at three different positions in an impedance tube, the two measurement positions usually considered in an impedance tube and one measurement in the vicinity of the rear surface of the MPP. The impedance tube is equipped with a pressure driver instead of the usual loudspeaker and capable of delivering a high sound pressure level up to 160 dB. MPP specimens made out of steel, dural and polypropylene were tested. Measurements using random noise or sinusoidal excitation in a frequency range between 200 and 1600 Hz were carried out on MPPs backed by air cavities. It was observed that the maximum of absorption can be a positive or a negative function of the flow velocity in the perforations. This suggests the existence of a maximum of absorption as a function of flow velocity. This behavior was predicted by the model and confirmed experimentally.

  19. Assessment of MTI Water Temperature Retrievals with Ground Truth from the Comanche Peak Steam Electric Station Cooling Lake

    Energy Technology Data Exchange (ETDEWEB)

    Kurzeja, R.J.

    2002-12-09

    Surface water temperatures calculated from Multispectral Thermal Imager (MTI) brightness temperatures and the robust retrieval algorithm, developed by the Los Alamos National Laboratory (LANL), are compared with ground truth measurements at the Squaw Creek reservoir at the Comanche Peak Steam Electric Station near Granbury Texas. Temperatures calculated for thirty-four images covering the period May 2000 to March 2002 are compared with water temperatures measured at 10 instrumented buoy locations supplied by the Savannah River Technology Center. The data set was used to examine the effect of image quality on temperature retrieval as well as to document any bias between the sensor chip arrays (SCA's). A portion of the data set was used to evaluate the influence of proximity to shoreline on the water temperature retrievals. This study found errors in daytime water temperature retrievals of 1.8 C for SCA 2 and 4.0 C for SCA 1. The errors in nighttime water temperature retrievals were 3.8 C for SCA 1. Water temperature retrievals for nighttime appear to be related to image quality with the largest positive bias for the highest quality images and the largest negative bias for the lowest quality images. The daytime data show no apparent relationship between water temperature retrieval error and image quality. The average temperature retrieval error near open water buoys was less than corresponding values for the near-shore buoys. After subtraction of the estimated error in the ground truth data, the water temperature retrieval error was 1.2 C for the open-water buoys compared to 1.8 C for the near-shore buoys. The open-water error is comparable to that found at Nauru.

  20. Quantitative analysis of peak torque and power-velocity characteristics of shoulder rotator muscles after arthroscopic labral repair.

    Science.gov (United States)

    Szuba, Łukasz; Markowska, Iga; Czamara, Andrzej; Noga, Henryk

    2016-10-01

    We aimed to use biomechanical testing to assess differences in the power and strength of patients who participated in a short-term, home-based rehabilitation program following arthroscopic labral repair compared with a healthy control group. The functional outcomes of patients who underwent arthroscopic labral repair followed by self-directed short-term rehabilitation at home were compared with age- and body mass index (BMI)-matched healthy controls. Group I included 20 male patients who had undergone arthroscopic labral repair after being diagnosed with recurrent anterior glenohumeral joint instability without bony lesions of the humeral head or glenoid. Postoperatively, they participated in physical therapy for 17±4 appointments, followed by self-guided home-based exercises. Group II included 25 males without injuries. The two groups were matched for age and BMI. The orthopaedic examination, functional tests, and biomechanical measurements were performed under isokinetic conditions at an average of 16±3 months postoperatively. Significant differences were observed in range of shoulder rotation on the operative shoulder compared with the unaffected side and in the dominant arms of the control group. The patients were also found to have significant deficits in biomechanical parameters such as power and peak torque angle. Significant deficits in peak torque, power, and peak torque angle during external and internal shoulder rotation remained up to 16 months after arthroscopic labral repair. Further research is needed to understand the changes in shoulder power assessment after labral repair. Copyright © 2016 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  1. Passive synthetic aperture hitchhiker imaging of ground moving targets--Part 1: image formation and velocity estimation.

    Science.gov (United States)

    Wacks, Steven; Yazici, Birsen

    2014-06-01

    In the Part 1 of this two-part study, we present a method of imaging and velocity estimation of ground moving targets using passive synthetic aperture radar. Such a system uses a network of small, mobile receivers that collect scattered waves due to transmitters of opportunity, such as commercial television, radio, and cell phone towers. Therefore, passive imaging systems have significant cost, manufacturing, and stealth advantages over active systems. We describe a novel generalized Radon transform-type forward model and a corresponding filtered-backprojection-type image formation and velocity estimation method. We form a stack of position images over a range of hypothesized velocities, and show that the targets can be reconstructed at the correct position whenever the hypothesized velocity is equal to the true velocity of targets. We then use entropy to determine the most accurate velocity and image pair for each moving target. We present extensive numerical simulations to verify the reconstruction method. Our method does not require a priori knowledge of transmitter locations and transmitted waveforms. It can determine the location and velocity of multiple targets moving at different velocities. Furthermore, it can accommodate arbitrary imaging geometries. In Part 2, we present the resolution analysis and analysis of positioning errors in passive SAR images due to erroneous velocity estimation.

  2. Exergy and Exergoeconomic Model of a Ground-Based CAES Plant for Peak-Load Energy Production

    Directory of Open Access Journals (Sweden)

    Giampaolo Manfrida

    2013-02-01

    Full Text Available Compressed Air Energy Storage is recognized as a promising technology for applying energy storage to grids which are more and more challenged by the increasing contribution of renewable such as solar or wind energy. The paper proposes a medium-size ground-based CAES system, based on pressurized vessels and on a multiple-stage arrangement of compression and expansion machinery; the system includes recovery of heat from the intercoolers, and its storage as sensible heat in two separate (hot/cold water reservoirs, and regenerative reheat of the expansions. The CAES plant parameters were adapted to the requirements of existing equipment (compressors, expanders and heat exchangers. A complete exergy analysis of the plant was performed. Most component cost data were procured from the market, asking specific quotations to the industrial providers. It is thus possible to calculate the final cost of the electricity unit (kWh produced under peak-load mode, and to identify the relative contribution between the two relevant groups of capital and component inefficiencies costs.

  3. A Comparative Study of the Least Squares Method and the Genetic Algorithm in Deducing Peak Ground Acceleration Attenuation Relationships

    Directory of Open Access Journals (Sweden)

    Ching-Yun Kao

    2010-01-01

    Full Text Available In engineering applications, the development of attenuation relationships in a seismic hazard analysis is a useful way to plan for earthquake hazard mitigation. However, finding an optimal solution is difficult using traditional mathematical methods because of the nonlinearity of many relationships. Furthermore, using unweighted regression analysis in which each recording carries an equal weight is often problematic because of the non-uniform distribution of the data with respect to distance. In this study, the least squares method (LSM and a genetic algorithm (GA were employed as optimization methods for an attenuation model to compare the robustness and prediction accuracy of the two methods. Different (equal and unequal weights of each recording were used to compare the adaptability of the weighting for practical application. The unequal weights of each recording were defined as functions of the hypocentral distance or the shortest distance from a station to the fault on the _ surface. Finally, regression analysis of horizontal peak ground acceleration (PGA attenuation model in southwest Taiwan was shown.

  4. Satellite and ground observations of the June 2009 eruption of Sarychev Peak volcano, Matua Island, Central Kuriles

    Science.gov (United States)

    Rybin, A.; Chibisova, M.; Webley, P.; Steensen, T.; Izbekov, P.; Neal, C.; Realmuto, V.

    2011-01-01

    After 33 years of repose, one of the most active volcanoes of the Kurile island arc-Sarychev Peak on Matua Island in the Central Kuriles-erupted violently on June 11, 2009. The eruption lasted 9 days and stands among the largest of recent historical eruptions in the Kurile Island chain. Satellite monitoring of the eruption, using Moderate Resolution Imaging Spectroradiometer, Meteorological Agency Multifunctional Transport Satellite, and Advanced Very High Resolution Radiometer data, indicated at least 23 separate explosions between 11 and 16 June 2009. Eruptive clouds reached altitudes of generally 8-16 km above sea level (ASL) and in some cases up to 21 km asl. Clouds of volcanic ash and gas stretched to the north and northwest up to 1,500 km and to the southeast for more than 3,000 km. For the first time in recorded history, ash fall occurred on Sakhalin Island and in the northeast sector of the Khabarovsky Region, Russia. Based on satellite image analysis and reconnaissance field studies in the summer of 2009, the eruption produced explosive tephra deposits with an estimated bulk volume of 0. 4 km3. The eruption is considered to have a Volcanic Explosivity Index of 4. Because the volcano is remote, there was minimal risk to people or infrastructure on the ground. Aviation transport, however, was significantly disrupted because of the proximity of air routes to the volcano. ?? 2011 Springer-Verlag.

  5. Site specific prediction equations for peak acceleration of ground motion due to earthquakes induced by underground mining in Legnica-Głogów Copper District in Poland

    Science.gov (United States)

    Lasocki, Stanisław

    2013-10-01

    Ground motion database from the region of Żelazny Most tailings pond, the largest in Europe ore-flotation waste repository, is used to identify ground motion prediction equations (GMPE-s) for peak horizontal and peak vertical acceleration. A GMPE model including both geometrical spreading and anelastic damping terms cannot be correctly identified and the model with only spreading term is accepted. The analysis of variance of this model's residuals with station location as grouping variable indicates that station locations contribute significantly to the observed ground motion variability. Therefore, a site specific GMPE model with relative site amplifications is assessed. Despite short distances among stations, the amplification considerably vary from point to point, up to 1.8 times for the horizontal and 3.5 times for the vertical peak amplitude. The model including site effects enhances GMPE-s fit to observations, explains more than 60% dependent variables variability and correctly accounts for site effects.

  6. On the variations of acoustic absorption peak with flow velocity in Micro-Perforated Panels at high level of excitation

    CERN Document Server

    Tayong, Rostand; Leclaire, Philippe

    2009-01-01

    The acoustic behavior of micro-perforated panels (MPP) is studied theoretically and experimentally at high level of pressure excitation. A model based on Forcheimer's regime of flow velocity in the perforations is proposed. This model is valid at relatively high Reynolds numbers and low Mach numbers. The experimental method consists in measuring the acoustical pressure at three different positions in an impedance tube, the two measurement positions usually considered in an impedance tube and one measurement in the vicinity of the rear surface of the MPP. The impedance tube is equipped with a pressure driver instead of the usual loudspeaker and capable of delivering a high sound pressure level up to 160 dB. Several MPP specimens made out of steel and polypropylene were tested. Measurements using random noise or sinusoidal excitation in a frequency range between 200 and 1600 Hz were carried out on MPPs backed by air cavities. It was observed that the maximum of absorption can be a positive or a negative functio...

  7. The role of topography and lateral velocity heterogeneities on near-source scattering and ground-motion variability

    KAUST Repository

    Imperatori, W.

    2015-07-28

    The scattering of seismic waves travelling in the Earth is not only caused by random velocity heterogeneity but also by surface topography. Both factors are known to strongly affect ground-motion complexity even at relatively short distance from the source. In this study, we simulate ground motion with a 3-D finite-difference wave propagation solver in the 0–5 Hz frequency band using three topography models representative of the Swiss alpine region and realistic heterogeneous media characterized by the Von Karman correlation functions. Subsequently, we analyse and quantify the characteristics of the scattered wavefield in the near-source region. Our study shows that both topography and velocity heterogeneity scattering may excite large coda waves of comparable relative amplitude, especially at around 1 Hz, although large variability in space may occur. Using the single scattering model, we estimate average QC values in the range 20–30 at 1 Hz, 36–54 at 1.5 Hz and 62–109 at 3 Hz for constant background velocity models with no intrinsic attenuation. In principle, envelopes of topography-scattered seismic waves can be qualitatively predicted by theoretical back-scattering models, while forward- or hybrid-scattering models better reproduce the effects of random velocity heterogeneity on the wavefield. This is because continuous multiple scattering caused by small-scale velocity perturbations leads to more gentle coda decay and envelope broadening, while topography abruptly scatters the wavefield once it impinges the free surface. The large impedance contrast also results in more efficient mode mixing. However, the introduction of realistic low-velocity layers near the free surface increases the complexity of ground motion dramatically and indicates that the role of topography in elastic waves scattering can be relevant especially in proximity of the source. Long-period surface waves can form most of the late coda, especially when intrinsic attenuation is taken

  8. Regression relationships of landing height with ground reaction forces, knee flexion angles, angular velocities and joint powers during double-leg landing.

    Science.gov (United States)

    Yeow, C H; Lee, Peter V S; Goh, James C H

    2009-10-01

    Ground reaction forces (GRF), knee flexion angles, angular velocities and joint powers are unknown at large landing heights, which are infeasible for laboratory testing. However, this information is important for understanding lower extremity injury mechanisms. We sought to determine regression relationships of landing height with these parameters during landing so as to facilitate estimation of these parameters at large landing heights. Five healthy male subjects performed landing tasks from heights of 0.15-1.05 m onto a force-plate. Motion capture system was used to obtain knee flexion angles during landing via passive markers placed on the lower body. An iterative regression model, involving simple linear/exponential/natural logarithmic functions, was used to fit regression equations to experimental data. Peak GRF followed an exponential regression relationship (R(2)=0.90-0.99, p<0.001; power=0.987-0.998). Peak GRF slope and impulse also had an exponential relationship (R(2)=0.90-0.96, p<0.001; power=0.980-0.997 and R(2)=0.90-0.99, p<0.001; power=0.990-1.000 respectively) with landing height. Knee flexion angle at initial contact and at peak GRF had an inverse-exponential regression relationship (R(2)=0.81-0.99, p<0.001-p=0.006; power=0.834-0.978 and R(2)=0.84-0.97, p<0.001-p=0.004; power=0.873-0.999 respectively). There was also an inverse-exponential relationship between peak knee flexion angular velocity and landing height (R(2)=0.86-0.96, p<0.001; power=0.935-0.994). Peak knee joint power demonstrated a substantial linear relationship (R(2)=0.98-1.00, p<0.001; power=0.990-1.000). The parameters analyzed in this study are highly dependent on landing height. The exponential increase in peak GRF parameters and the relatively slower increase in knee flexion angles, angular velocities and joint power may synergistically lead to an exacerbated lower extremity injury risk at large landing heights.

  9. Robot-assisted gait training improves brachial–ankle pulse wave velocity and peak aerobic capacity in subacute stroke patients with totally dependent ambulation

    Science.gov (United States)

    Han, Eun Young; Im, Sang Hee; Kim, Bo Ryun; Seo, Min Ji; Kim, Myeong Ok

    2016-01-01

    Abstract Objective: Brachial–ankle pulse wave velocity (baPWV) evaluates arterial stiffness and also predicts early outcome in stroke patients. The objectives of this study were to investigate arterial stiffness of subacute nonfunctional ambulatory stroke patients and to compare the effects of robot-assisted gait therapy (RAGT) combined with rehabilitation therapy (RT) on arterial stiffness and functional recovery with those of RT alone. Method: The RAGT group (N = 30) received 30 minutes of robot-assisted gait therapy and 30 minutes of conventional RT, and the control group (N = 26) received 60 minutes of RT, 5 times a week for 4 weeks. baPWV was measured and calculated using an automated device. The patients also performed a symptom-limited graded exercise stress test using a bicycle ergometer, and parameters of cardiopulmonary fitness were recorded. Clinical outcome measures were categorized into 4 categories: activities of daily living, balance, ambulatory function, and paretic leg motor function and were evaluated before and after the 4-week intervention. Results: Both groups exhibited significant functional recovery in all clinical outcome measures after the 4-week intervention. However, peak aerobic capacity, peak heart rate, exercise tolerance test duration, and baPWV improved only in the RAGT group, and the improvements in baPWV and peak aerobic capacity were more noticeable in the RAGT group than in the control group. Conclusion: Robot-assisted gait therapy combined with conventional rehabilitation therapy represents an effective method for reversing arterial stiffness and improving peak aerobic capacity in subacute stroke patients with totally dependent ambulation. However, further large-scale studies with longer term follow-up periods are warranted to measure the effects of RAGT on secondary prevention after stroke. PMID:27741123

  10. Robot-assisted gait training improves brachial-ankle pulse wave velocity and peak aerobic capacity in subacute stroke patients with totally dependent ambulation: Randomized controlled trial.

    Science.gov (United States)

    Han, Eun Young; Im, Sang Hee; Kim, Bo Ryun; Seo, Min Ji; Kim, Myeong Ok

    2016-10-01

    Brachial-ankle pulse wave velocity (baPWV) evaluates arterial stiffness and also predicts early outcome in stroke patients. The objectives of this study were to investigate arterial stiffness of subacute nonfunctional ambulatory stroke patients and to compare the effects of robot-assisted gait therapy (RAGT) combined with rehabilitation therapy (RT) on arterial stiffness and functional recovery with those of RT alone. The RAGT group (N = 30) received 30 minutes of robot-assisted gait therapy and 30 minutes of conventional RT, and the control group (N = 26) received 60 minutes of RT, 5 times a week for 4 weeks. baPWV was measured and calculated using an automated device. The patients also performed a symptom-limited graded exercise stress test using a bicycle ergometer, and parameters of cardiopulmonary fitness were recorded. Clinical outcome measures were categorized into 4 categories: activities of daily living, balance, ambulatory function, and paretic leg motor function and were evaluated before and after the 4-week intervention. Both groups exhibited significant functional recovery in all clinical outcome measures after the 4-week intervention. However, peak aerobic capacity, peak heart rate, exercise tolerance test duration, and baPWV improved only in the RAGT group, and the improvements in baPWV and peak aerobic capacity were more noticeable in the RAGT group than in the control group. Robot-assisted gait therapy combined with conventional rehabilitation therapy represents an effective method for reversing arterial stiffness and improving peak aerobic capacity in subacute stroke patients with totally dependent ambulation. However, further large-scale studies with longer term follow-up periods are warranted to measure the effects of RAGT on secondary prevention after stroke.

  11. Sensitivity of ground motion parameters to local site effects for areas characterised by a thick buried low-velocity layer.

    Science.gov (United States)

    Farrugia, Daniela; Galea, Pauline; D'Amico, Sebastiano; Paolucci, Enrico

    2016-04-01

    It is well known that earthquake damage at a particular site depends on the source, the path that the waves travel through and the local geology. The latter is capable of amplifying and changing the frequency content of the incoming seismic waves. In regions of sparse or no strong ground motion records, like Malta (Central Mediterranean), ground motion simulations are used to obtain parameters for purposes of seismic design and analysis. As an input to ground motion simulations, amplification functions related to the shallow subsurface are required. Shear-wave velocity profiles of several sites on the Maltese islands were obtained using the Horizontal-to-Vertical Spectral Ratio (H/V), the Extended Spatial Auto-Correlation (ESAC) technique and the Genetic Algorithm. The sites chosen were all characterised by a layer of Blue Clay, which can be up to 75 m thick, underlying the Upper Coralline Limestone, a fossiliferous coarse grained limestone. This situation gives rise to a velocity inversion. Available borehole data generally extends down till the top of the Blue Clay layer therefore the only way to check the validity of the modelled shear-wave velocity profile is through the thickness of the topmost layer. Surface wave methods are characterised by uncertainties related to the measurements and the model used for interpretation. Moreover the inversion procedure is also highly non-unique. Such uncertainties are not commonly included in site response analysis. Yet, the propagation of uncertainties from the extracted dispersion curves to inversion solutions can lead to significant differences in the simulations (Boaga et al., 2011). In this study, a series of sensitivity analyses will be presented with the aim of better identifying those stratigraphic properties which can perturb the ground motion simulation results. The stochastic one-dimensional site response analysis algorithm, Extended Source Simulation (EXSIM; Motazedian and Atkinson, 2005), was used to perform

  12. Changes in Sprint and Jump Performances After Traditional, Plyometric, and Combined Resistance Training in Male Youth Pre- and Post-Peak Height Velocity.

    Science.gov (United States)

    Lloyd, Rhodri S; Radnor, John M; De Ste Croix, Mark B A; Cronin, John B; Oliver, Jon L

    2016-05-01

    The purpose of this study was to compare the effectiveness of 6-week training interventions using different modes of resistance (traditional strength, plyometric, and combined training) on sprinting and jumping performances in boys before and after peak height velocity (PHV). Eighty school-aged boys were categorized into 2 maturity groups (pre- or post-PHV) and then randomly assigned to (a) plyometric training, (b) traditional strength training, (c) combined training, or (d) a control group. Experimental groups participated in twice-weekly training programs for 6 weeks. Acceleration, maximal running velocity, squat jump height, and reactive strength index data were collected pre- and postintervention. All training groups made significant gains in measures of sprinting and jumping irrespective of the mode of resistance training and maturity. Plyometric training elicited the greatest gains across all performance variables in pre-PHV children, whereas combined training was the most effective in eliciting change in all performance variables for the post-PHV cohort. Statistical analysis indicated that plyometric training produced greater changes in squat jump and acceleration performances in the pre-PHV group compared with the post-PHV cohort. All other training responses between pre- and post-PHV cohorts were not significant and not clinically meaningful. The study indicates that plyometric training might be more effective in eliciting short-term gains in jumping and sprinting in boys who are pre-PHV, whereas those who are post-PHV may benefit from the additive stimulus of combined training.

  13. Inferring hydroxyl layer peak heights from ground-based measurements of OH(6-2 band integrated emission rate at Longyearbyen (78° N, 16° E

    Directory of Open Access Journals (Sweden)

    F. Sigernes

    2009-11-01

    Full Text Available Measurements of hydroxyl nightglow emissions over Longyearbyen (78° N, 16° E recorded simultaneously by the SABER instrument onboard the TIMED satellite and a ground-based Ebert-Fastie spectrometer have been used to derive an empirical formula for the height of the OH layer as a function of the integrated emission rate (IER. Altitude profiles of the OH volume emission rate (VER derived from SABER observations over a period of more than six years provided a relation between the height of the OH layer peak and the integrated emission rate following the procedure described by Liu and Shepherd (2006. An extended period of overlap of SABER and ground-based spectrometer measurements of OH(6-2 IER during the 2003–2004 winter season allowed us to express ground-based IER values in terms of their satellite equivalents. The combination of these two formulae provided a method for inferring an altitude of the OH emission layer over Longyearbyen from ground-based measurements alone. Such a method is required when SABER is in a southward looking yaw cycle. In the SABER data for the period 2002–2008, the peak altitude of the OH layer ranged from a minimum near 76 km to a maximum near 90 km. The uncertainty in the inferred altitude of the peak emission, which includes a contribution for atmospheric extinction, was estimated to be ±2.7 km and is comparable with the ±2.6 km value quoted for the nominal altitude (87 km of the OH layer. Longer periods of overlap of satellite and ground-based measurements together with simultaneous on-site measurements of atmospheric extinction could reduce the uncertainty to approximately 2 km.

  14. Estimation of the Current Peak Value Distribution of All Lightning to the Ground by Electro-Geometric Model

    Science.gov (United States)

    Sakata, Tadashi; Yamamoto, Kazuo; Sekioka, Shozo; Yokoyama, Shigeru

    When we examine the lightning frequency and the lightning shielding effect by EGM (electro-geometric model), we need the current distribution of all lightning to the ground. The lightning current distribution to structures is different from this distribution, but it has been used in EGM conventionally. We assumed the lightning striking distance coefficient related to height of structures for getting the result which corresponds to observed lightning frequency to structures, and estimated the current distribution of all lightning to the ground from data listed in IEC 62305 series by EGM. The estimated distribution adjusted by detection efficiency of LLS almost corresponded to observed distribution by LLS.

  15. Integrated Multidimensional Maturity Assessments Predicting the High-risk Occurrence of Peak Angle Velocity During Puberty in Progressive Female Idiopathic Scoliosis.

    Science.gov (United States)

    Shi, Benlong; Mao, Saihu; Xu, Leilei; Sun, Xu; Zhu, Zezhang; Qian, Bangping; Liu, Zhen; Cheng, Jack Chun Yiu; Qiu, Yong

    2017-05-01

    A consecutive and prospective longitudinal study. To propose an integrated multidimensional maturity assessment that was designated as forming a reliable system precisely predicting the high-risk occurrence of peak angle velocity (PAV) in a group of progressive braced female idiopathic scoliosis (IS). Scoliosis deterioration is believed to keep pace with the evolution of skeletal maturity during puberty. There is, however, a paucity of data in the literature regarding which unidimensional or multidimensional maturity assessment was most informational, and could be employed to predict the likelihood of significant curve progression. In this prospective study, braced IS girls with open triradiate cartilage were recruited and followed up at 6-month regular intervals. At each visit, the following data were collected: chronologic age, stage of menses, standing height, Cobb angle of the main curve, spine length, status of triradiate cartilage, Risser sign, and digital skeletal age (DSA) scores. The height velocity (HV) and spine length velocity (SLV), as well as the angle velocity (AV) of each visit were calculated. Finally, those with main curve progression of ≥5 degrees during brace treatment and with a minimum of 2-year follow-up covering the closure of the triradiate cartilage were recruited in this analysis, and their PAV was defined as the peak of AV curves during the whole follow-up period in puberty. Logistic regression analysis was used to evaluate the contribution of each measurement to the risk of PAV onset. Thirty-six IS girls were finally recruited in the study, with an average age of 10.8 years at initial visit and 11.8 years at PAV. The average DSA score, spine length, standing height, and Cobb angle of main curve at PAV were 479.5, 326.7 mm, 150.8 cm, and 26.5 degrees, respectively. The average HV, AV, and SLV at PAV were 8.3 cm, 7.8 degrees, and 28.2 mm/y, respectively. The PAV occurred with Risser 0, 1, and 2 in 80.6%, 11.1%, and 8.3% of the IS girls

  16. 场地条件对地表峰值加速度的放大效应分析%Amplification effects of site conditions on ground peak accelerations

    Institute of Scientific and Technical Information of China (English)

    陈党民; 段蕊

    2013-01-01

    Based on abundant drilling data of the Xi' an avea, 44 typical section planes were built according to the equivalent shear wave velocities and thickness of overlaying layer, and the peak accelerations of ground motion were calculated by the method of one-dimensional equivalent linearized earthquake response analysis corresponding to seismic ground motion with different intensites. In addition, the characteristics of ground peak acceleration amplification coefficient ks variating with site classification, equivalent shear wave velocity Vse and thickness of overlaying layer H and intensity of seismic ground motion a, were analyzed, and the conclusion that the peak acceleration adjusted according to site classification in the past should be defective is acquired. The results show that ks is decreasing when the values of Vse, H and ar are increasing. The results also show that ks is dominated by Vse more than by H, the effects of H increase gradually with the increasing of ar and reduce gradually with the increasing of Vse. Furthermore , ks should be expressed as a function depending on H and Vse,. In the end, certain new methods of adjusting ground peak earthquake acceleration by controlling equivalent shear wave velocity and thickness of overlaying layer are suggested, and the problems needed to be researched more in the future are pointed out.%在研究西安地区大量钻孔资料的基础上,构造了44个不同等效剪切波速和覆盖层厚度场地条件下的典型场地剖面,利用一维等效线性化地震反应分析方法,计算了不同场地在3种不同强度的地震动输入下的地面峰值加速度,分析了地震动峰值加速度放大系数κs随场地类别、等效剪切波速Vse、覆盖层厚度H和输入地震动强度αr的变化特征,指出了按场地类别对地震动峰值加速度调整存在的问题.分析结果表明,加速度放大系数随等效剪切波速、覆盖层厚度及基岩输入地震动强度的增大而减小

  17. Should optimal timing between two intrauterine transfusions be based on estimated daily decrease of hemoglobin or on measurement of fetal middle cerebral artery peak systolic velocity?

    Science.gov (United States)

    Ghesquière, Louise; Houfflin-Debarge, Véronique; Behal, Hélène; Coulon, Capucine; Subtil, Damien; Vaast, Pascal; Garabedian, Charles

    2017-04-01

    To best predict the recurrence of fetal anemia after intrauterine transfusion (IUT), the measurement of middle cerebral artery peak systolic velocity (PSV) and the estimation of hemoglobin (Hb) daily decrease are compared. A retrospective study including 38 patients who had at least two IUTs in a context of red blood cell alloimmunization was conducted. PSV values before first, second, and third IUTs were collected and expected Hb level was calculated according to various Hb daily decrease formulas as proposed in the literature. Comparison of PSV receiver operating characteristic curves with the various Hb levels did not find any significant difference between first and second IUTs. On the other hand, we found a significant difference between the second and third IUTs, with better prediction of fetal anemia through Hb decrease calculation, whatever the formula. Between the second and third IUTs, no formula was significantly better than the others. The timing of a second transfusion can be difficult to determine with certainty, but PSV can give an accurate assessment of when to resample the fetus with probably a higher recommended threshold for the diagnosis of fetal anemia. Subsequent to a second transfusion, the intertransfusion interval should be based on estimated Hb decrease rather than PSV thresholds, whatever the chosen formula proposed in the literature. Larger numbers are needed to definitely make this recommendation and it will be interesting to evaluate correlation between different antibodies. © 2017 AABB.

  18. Reference values of tricuspid annular peak systolic velocity in healthy pediatric patients, calculation of z score, and comparison to tricuspid annular plane systolic excursion.

    Science.gov (United States)

    Koestenberger, Martin; Nagel, Bert; Ravekes, William; Avian, Alexander; Heinzl, Bernd; Cvirn, Gerhard; Fritsch, Peter; Fandl, Andrea; Rehak, Thomas; Gamillscheg, Andreas

    2012-01-01

    The tricuspid annular peak systolic velocity (TAPSV) is an echocardiographic measurement assessing right ventricular systolic function in children and adults. We determined the growth-related changes of the TAPSV to establish the references values for the entire pediatric age group. A prospective study was conducted of a group of 860 healthy pediatric patients (age 1 day to 18 years; body surface area [BSA] 0.14 to 2.30 m(2)). We determined the effects of age, gender, and BSA on the TAPSV values. Stepwise linear multiple regression analysis was used to estimate the TAPSV from the age, BSA, and gender. A correlation of normal TAPSV with normal tricuspid annular plane systolic excursion values was performed. The TAPSV ranged from a mean of 7.2 cm/s (z score ± 2: 4.8 to 9.5 cm/s) in the newborn to 14.3 cm/s (z score ± 2: 10.6 to 18.6 cm/s) in the 18-year-old adolescent. The TAPSV values showed a positive correlation with age and BSA, with a nonlinear course. No significant difference was found in the TAPSV values according to gender. A significant correlation was found between the TAPSV and tricuspid annular plane systolic excursion values in our pediatric population. In conclusion, the z scores of the TAPSV values were calculated, and percentile charts were established to serve as reference data for patients with congenital heart disease.

  19. Peak flow velocities in the ascending aorta-real-time phase-contrast magnetic resonance imaging vs. cine magnetic resonance imaging and echocardiography.

    Science.gov (United States)

    Sohns, Jan M; Kowallick, Johannes T; Joseph, Arun A; Merboldt, K Dietmar; Voit, Dirk; Fasshauer, Martin; Staab, Wieland; Frahm, Jens; Lotz, Joachim; Unterberg-Buchwald, Christina

    2015-10-01

    This prospective study of eight healthy volunteers evaluates peak flow velocities (PFV) in the ascending aorta using real-time phase-contrast magnetic resonance imaging (MRI) in comparison to cine phase-contrast MRI and echocardiography. Flow measurements by echocardiography and cine phase-contrast MRI with breath-holding were performed according to clinical standards. Real-time phase-contrast MRI at 40 ms temporal resolution and 1.3 mm in-plane resolution was based on highly undersampled radial fast low-angle shot (FLASH) sequences with image reconstruction by regularized nonlinear inversion (NLINV). Evaluations focused on the determination of PFV. Linear regressions and Bland-Altman plots were used for comparisons of methods. When averaged across subjects, real-time phase-contrast MRI resulted in PFV of 120±20 cm s(-1) (mean ± SD) in comparison to 122±16 cm s(-1) for cine MRI and 124±20 cm s(-1) for echocardiography. The maximum deviations between real-time phase-contrast MRI and echocardiography ranged from -20 to +14 cm s(-1) (cine MRI: -10 to +12 cm s(-1)). Thus, in general, real-time phase-contrast MRI of cardiac outflow revealed quantitative agreement with cine MRI and echocardiography. The advantages of real-time MRI are measurements during free breathing and access to individual cardiac cycles.

  20. FrFT-CSWSF: Estimating cross-range velocities of ground moving targets using multistatic synthetic aperture radar

    Directory of Open Access Journals (Sweden)

    Li Chenlei

    2014-10-01

    Full Text Available Estimating cross-range velocity is a challenging task for space-borne synthetic aperture radar (SAR, which is important for ground moving target indication (GMTI. Because the velocity of a target is very small compared with that of the satellite, it is difficult to correctly estimate it using a conventional monostatic platform algorithm. To overcome this problem, a novel method employing multistatic SAR is presented in this letter. The proposed hybrid method, which is based on an extended space-time model (ESTIM of the azimuth signal, has two steps: first, a set of finite impulse response (FIR filter banks based on a fractional Fourier transform (FrFT is used to separate multiple targets within a range gate; second, a cross-correlation spectrum weighted subspace fitting (CSWSF algorithm is applied to each of the separated signals in order to estimate their respective parameters. As verified through computer simulation with the constellations of Cartwheel, Pendulum and Helix, this proposed time-frequency-subspace method effectively improves the estimation precision of the cross-range velocities of multiple targets.

  1. Low velocity target detection based on time-frequency image for high frequency ground wave radar

    Institute of Scientific and Technical Information of China (English)

    YAN Songhua; WU Shicai; WEN Biyang

    2007-01-01

    The Doppler spectral broadening resulted from non-stationary movement of target and radio-frequency interference will decrease the veracity of target detection by high frequency ground wave(HEGW)radar.By displaying the change of signal energy on two dimensional time-frequency images based on time-frequency analysis,a new mathematical morphology method to distinguish target from nonlinear time-frequency curves is presented.The analyzed results from the measured data verify that with this new method the target can be detected correctly from wide Doppler spectrum.

  2. Ghost peaks observed after atmospheric pressure matrix-assisted laser desorption/ionization experiments may disclose new ionization mechanism of matrix-assisted hypersonic velocity impact ionization.

    Science.gov (United States)

    Moskovets, Eugene

    2015-08-30

    Understanding the mechanisms of matrix-assisted laser desorption/ionization (MALDI) promises improvements in the sensitivity and specificity of many established applications in the field of mass spectrometry. This paper reports a serendipitous observation of a significant ion yield in a post-ionization experiment conducted after the sample had been removed from a standard atmospheric pressure (AP)-MALDI source. This post-ionization is interpreted in terms of collisions of microparticles moving with a hypersonic velocity into a solid surface. Calculations show that the thermal energy released during such collisions is close to that absorbed by the top matrix layer in traditional MALDI. The microparticles, containing both the matrix and analytes, could be detached from a film produced inside the inlet capillary during the sample ablation and accelerated by the flow rushing through the capillary. These observations contribute some new perspective to ion formation in both laser and laser-less matrix-assisted ionization. An AP-MALDI ion source hyphenated with a three-stage high-pressure ion funnel system was utilized for peptide mass analysis. After the laser had been turned off and the MALDI sample removed, ions were detected during a gradual reduction of the background pressure in the first funnel. The constant-rate pressure reduction led to the reproducible appearance of different singly and doubly charged peptide peaks in mass spectra taken a few seconds after the end of the MALDI analysis of a dried-droplet spot. The ion yield as well as the mass range of ions observed with a significant delay after a completion of the primary MALDI analysis depended primarily on the background pressure inside the first funnel. The production of ions in this post-ionization step was exclusively observed during the pressure drop. A lower matrix background and significant increase in relative yield of double-protonated ions are reported. The observations were partially consistent

  3. Testing long-period ground-motion simulations of scenario earthquakes using the Mw 7.2 El Mayor-Cucapah mainshock: Evaluation of finite-fault rupture characterization and 3D seismic velocity models

    Science.gov (United States)

    Graves, Robert W.; Aagaard, Brad T.

    2011-01-01

    Using a suite of five hypothetical finite-fault rupture models, we test the ability of long-period (T>2.0 s) ground-motion simulations of scenario earthquakes to produce waveforms throughout southern California consistent with those recorded during the 4 April 2010 Mw 7.2 El Mayor-Cucapah earthquake. The hypothetical ruptures are generated using the methodology proposed by Graves and Pitarka (2010) and require, as inputs, only a general description of the fault location and geometry, event magnitude, and hypocenter, as would be done for a scenario event. For each rupture model, two Southern California Earthquake Center three-dimensional community seismic velocity models (CVM-4m and CVM-H62) are used, resulting in a total of 10 ground-motion simulations, which we compare with recorded ground motions. While the details of the motions vary across the simulations, the median levels match the observed peak ground velocities reasonably well, with the standard deviation of the residuals generally within 50% of the median. Simulations with the CVM-4m model yield somewhat lower variance than those with the CVM-H62 model. Both models tend to overpredict motions in the San Diego region and underpredict motions in the Mojave desert. Within the greater Los Angeles basin, the CVM-4m model generally matches the level of observed motions, whereas the CVM-H62 model tends to overpredict the motions, particularly in the southern portion of the basin. The variance in the peak velocity residuals is lowest for a rupture that has significant shallow slip (models may need improvement.

  4. Respiratory variation in aortic flow peak velocity and inferior vena cava distensibility as indices of fluid responsiveness in anaesthetised and mechanically ventilated children

    Science.gov (United States)

    Achar, Shreepathi Krishna; Sagar, Maddani Shanmukhappa; Shetty, Ranjan; Kini, Gurudas; Samanth, Jyothi; Nayak, Chaitra; Madhu, Vidya; Shetty, Thara

    2016-01-01

    Background and Aims: Dynamic parameters such as the respiratory variation in aortic flow peak velocity (ΔVpeak) and inferior vena cava distensibility index (dIVC) are accurate indices of fluid responsiveness in adults. Little is known about their utility in children. We studied the ability of these indices to predict fluid responsiveness in anaesthetised and mechanically ventilated children. Methods: This prospective study was conducted in 42 children aged between one to 14 years scheduled for elective surgery under general endotracheal anaesthesia. Mechanical ventilation was initiated with a tidal volume of 10 ml/kg. ΔVpeak, dIVC and stroke volume index (SVI) were measured before and after volume expansion (VE) with 10 ml/kg of crystalloid using transthoracic echocardiography. Patients were considered to be responders (R) and non-responders (NR) when SVI increased to either ≥15% or <15% after VE. ΔVpeak and dIVC were analysed between R and NR. Results: The best cut-off value for ΔVpeak as defined by the receiver operator characteristics (ROC) curve analysis was 12.2%, for which sensitivity, specificity, positive predictive value and negative predictive value were 100%, 94%, 96% and 100%, respectively, the area under the curve was 0.975. The best cut-off value for dIVC as defined by the ROC curve analysis was 23.5%, for which sensitivity, specificity, positive predictive value and negative predictive value were 91%, 89%, 91% and 89%, respectively, the area under the curve was 0.95. Conclusion: ΔVpeak and dIVC are reliable indices of fluid responsiveness in children. PMID:27013751

  5. Sagittal standing posture and its association with spinal pain: a school-based epidemiological study of 1196 Flemish adolescents before age at peak height velocity.

    Science.gov (United States)

    Dolphens, Mieke; Cagnie, Barbara; Coorevits, Pascal; Vanderstraeten, Guy; Cardon, Greet; Dʼhooge, Roseline; Danneels, Lieven

    2012-09-01

    Cross-sectional baseline data set on the sagittal standing posture of 1196 adolescents. To describe and quantify common variations in the sagittal standing alignment in boys and girls who are in the same phase of growth and to explore the association between habitual standing posture and measures for spinal pain. Data on postural characteristics and spinal pain measures in adolescence are sparse, especially when somatic and biological maturity status is to be considered. Our understanding of the relationship between standing posture in the sagittal plane and spinal pain is also deficient. A total of 639 boys (age [mean ± SD], 12.6 ± 0.54 yr) and 557 girls (10.6 ± 0.47 yr), with predicted years from peak height velocity (PHV) being 1.2 ± 0.71 and 1.2 ± 0.59 pre-PHV, respectively, were studied. Postural examination included the assessment of global alignment and local spinopelvic characteristics, using post hoc analyses of digital images and direct body measurements (palpation, digital inclinometry, and wheeled accelerometry). Spinal pain experience was assessed by questionnaire. A wide interindividual variation in sagittal posture characteristics was observed. Logistic regression analyses yielded global alignment parameters to be associated with low back pain (lifetime prevalence), neck pain (lifetime prevalence, 1-mo prevalence, and doctor visit), and thoracic spine pain (doctor visit) outcome measures. None of the included local spinopelvic parameters could be identified as an associated factor with measures of spinal pain. The orientation of gross body segments with respect to the gravity line seems superior to local spinopelvic features in terms of clinical importance, at least in the current pre-PHV cohort. Opportunities may exist for postural subgrouping strategies to begin with global alignment parameters in order to gain further insight into the relationship between sagittal alignment and the relative risk of developing spinal pain/seeking medical

  6. A Spatial Correlation Model of Peak Ground Acceleration and Response Spectra Based on Data of the Istanbul Earthquake Rapid Response and Early Warning System

    Science.gov (United States)

    Wagener, Thomas; Goda, Katsuichiro; Erdik, Mustafa; Daniell, James; Wenzel, Friedemann

    2016-04-01

    Ground motion intensity measures such as the peak ground acceleration (PGA) and the pseudo spectral acceleration (PSA) at two sites due to the same seismic event are correlated. The spatial correlation needs to be considered when modelling ground-motion fields for seismic loss assessments, since it can have a significant influence on the statistical moments and probability distribution of aggregated seismic loss of a building portfolio. Empirical models of spatial correlation of ground motion intensity measures exist only for a few seismic regions in the world such as Japan, Taiwan and California, since for this purpose a dense observation network of earthquake ground motion is required. The Istanbul Earthquake Rapid Response and Early Warning System (IERREWS) provides one such dense array with station spacing of typically 2 km in the urban area of Istanbul. Based on the records of eight small to moderate (Mw3.5 - Mw5.1) events, which occurred since 2003 in the Marmara region, we establish a model of intra-event spatial correlation for PGA and PSA up to the natural period of 1.0 s. The results indicate that the correlation coefficients of PGA and short-period PSA decay rapidly with increasing interstation distance, resulting in correlation lengths of approximately 2-3 km, while correlation lengths at longer natural periods (above 0.5 s) exceed 5 km. Finally, we implement the correlation model in a Monte Carlo simulation to evaluate economic loss in Istanbul's district Zeytinburnu due to an Mw7.2 scenario earthquake.

  7. 影响胎儿大脑中动脉血流峰速的临床相关因素%Related clinical effect factors of peak velocity of blood flow of fetal middle cerebral artery

    Institute of Scientific and Technical Information of China (English)

    凌奕; 金松; 南瑞霞; 华少萍; 张宏玉; 胡春霞; 莫秀兰

    2011-01-01

    Objective: To analyze the related clinical effect factors of peak velocity of blood flow of fetal middle cerebral artery ( MCA) , provide a basis for predicting fetal anemia by peak velocity of blood flow of MCA. Methods; 140 fetuses from the hospital were analyzed and divided into normal control group (85 fetuses), uncomplicated twin group (22 fetuses) , thalassemia group (IS fetuses) and fetal anomaly group (18 fetuses) , all the fetuses received color Doppler examination of peak velocity of blood flow of MCA and hemoglobin detection. MOM value was used as the unit, the differences of peak velocities of blood flow of MCA and fetal hemoglobin contents among the four groups were analyzed. Results; There was no significant difference in peak velocity of blood flow of MCA and fetal hemoglobin content between uncomplicated twin group and single pregnancy group. In thalassemia group, the peak velocity of blood flow of MCA increased significantly , while fetal hemoglobin content decreased. Compared with normal single pregnancy group, the peak velocity of blood flow of MCA in fetal anomaly group increased significantly (P < 0. 05 ) , but after exclusing anemia fetuses, there is no significant difference in the peak velocity of blood flow of MCA between fetal anomaly non - anemia group and normal single pregnancy group. Conclusion: The peak velocity of blood flow of MCA is significantly related to fetal anemia, but there was no correlation between peak velocity of blood now of MCA and un-complicated twin pregnancy; the study shows that there is no significant difference in the peak velocity of blood flow of MCAbetween fetal anomaly non - anemia group and normal single pregnancy group after exclusing anemia fetuses, a further study with large samples is needed.%目的:分析影响胎儿大脑中动脉血流峰速(MCA-PSV)的临床相关因素,为应用MCA-PSV预测胎儿贫血提供依据.方法:对海南医学院附属医院140例胎儿进行临

  8. Mapping refuse profile in Singapore old dumping ground through electrical resistivity, S-wave velocity and geotechnical monitoring.

    Science.gov (United States)

    Yin, Ke; Tong, Huan Huan; Noh, Omar; Wang, Jing-Yuan; Giannis, Apostolos

    2015-03-01

    The purpose of this study was to track the refuse profile in Lorong Halus Dumping Ground, the largest landfill in Singapore, by electrical resistivity and surface wave velocity after 25 years of closure. Data were analyzed using an orthogonal set of plots by spreading 24 lines in two perpendicular geophone-orientation directions. Both geophysical techniques determined that refuse boundary depth was 13 ± 2 m. The refuse boundary revealed a certain degree of variance, mainly ascribed to the different principle of measurements, as well as the high heterogeneity of the subsurface. Discrepancy was higher in spots with greater heterogeneity. 3D analysis was further conducted detecting refuse pockets, leachate mounding and gas channels. Geotechnical monitoring (borehole) confirmed geophysical outcomes tracing different layers such as soil capping, decomposed refuse materials and inorganic wastes. Combining the geophysical methods with borehole monitoring, a comprehensive layout of the dumping site was presented showing the hot spots of interests.

  9. Decay of ground motion peak values is faster for smaller magnitude events: investigation of the role played by the attenuation and the scattering effects

    Science.gov (United States)

    Dujardin, A.; Courboulex, F.; Causse, M.; Traversa, P.

    2013-12-01

    The decay of ground motion peak values (PGA, PGV ...) with distance is a parameter of great importance in the prediction of ground motion for seismic hazard assessment. This decay appears to be dependent on the size of the earthquakes: faster for small than for large earthquakes. This has been observed many times in real databases and is now included in most of the Ground Motion Prediction Equations (GMPEs). Nevertheless, the physical causes of these differences have never been clearly identified. In order to understand and quantify this effect we explore the influence two of major processes: the anelastic attenuation and the scattering effects. We first performed synthetic tests using the stochastic simulation program SMSIM (Boore 2003) and we generate temporal series at different distances and different magnitudes for different values of the quality factor (Q(f)) which describe the anelastic attenuation. We observe that the decay of ground motion peak values (especially PGA and PGV) is strongly dependent on the spectral shape of the Fourier spectrum. Due to the fact that the small earthquakes have higher frequency content, they are more affected by attenuation than larger earthquakes, and therefore the decay of PGA with distance is faster. We propose an analytical formulation that predicts this effect with a given stress drop and a Q factor value and assuming an omega square spectrum for the source. We then test the influence of the combination of source and path effects (i.e. interactions between Green and source functions) and the generation of constructive and destructive interferences in complex medium. We realized simulations by means of the discrete wave number technique in a 1D layered medium. If the medium is complex enough, interactions between Green's and source function lead to constructive interferences. This effect is more important when the source duration is longer (i.e. the magnitude is important), and we show that even without anelastic

  10. Inferring Peak Ground Acceleration (PGA) from observed building damage and EO-derived exposure development to develop rapid loss estimates following the April 2015 Nepal earthquake.

    Science.gov (United States)

    Huyck, C. K.

    2016-12-01

    The April 25th 7.8 Gorkha earthquake in Nepal occurred in an area with very few seismic stations. Ground motions were estimated primarily by Ground Motion Prediction Equations (GMPEs) over a very large region, with a very high degree of uncertainty. Accordingly, initial fatality estimates and their distribution was highly uncertain, with a 65% chance of fatalities ranging from 1,000 to 100,000. With an aim to developing estimates of: 1) the number of buildings damaged by category (slight, moderate, extensive, complete), 2) fatalities and their distribution, and 3) rebuilding costs, researchers at ImageCat have developed a preliminary inferred Peak Ground Acceleration product in %g (PGA). The inferred PGA is determined by using observations of building collapse from the National Geospatial Agency and building exposure estimates derived from EO data to determine the percentage of buildings collapsed in key locations. The percentage of building collapse is adjusted for accuracy and cross referenced with composite building damage functions for 4 development patterns in Nepal: 1) sparsely populated, 2) rural, 3) dense development, and 4) urban development to yield an inferred PGA. Composite damage functions are derived from USGS Pager collapse fragility functions (Jaiswal et al., 2011) and are weighted by building type frequencies developed by ImageCat. The PGA is interpolated to yield a surface. An initial estimate of the fatalities based on ATC 13 (Rojan and Sharpe, 1985) using these PGA yields an estimate of: Extensively damaged or destroyed buildings: 225,000 to 450,000 Fatalities: 8,700 to 22,000, with a mean estimate of 15,700. The total number of displaced persons is estimated between 1 and 2 million. Rebuilding costs for building damage only are estimated to be between 2 and 3 billion USD. The inferred PGA product is recommended for use solely in loss estimation processes.

  11. Estimation the upper limit of prehistoric peak ground acceleration using the parameters of intact stalagmite in Plavecka Priepast, PP2 Slovakia-Seismic Hazard of Vienna and Bratislava

    Science.gov (United States)

    Gribovszki, Katalin; Kovács, Károly; Mónus, Péter; Konecny, Pavel; Bokelmann, Goetz; Brimich, Ladislav

    2014-05-01

    A specially shaped (high, slim and more or less cylindrical), vulnerable, intact stalagmite (STM) in Plavecka Priepast PP2 has been examined last year. This STM is suitable for estimating the upper limit for horizontal peak ground acceleration generated by paleoearthquake. The method of our investigation is the same as before: --- the density, Young's modulus and tensile failure stress of broken STM samples (lying at the same hall of PP2, as the investigated stalagmite) have been measured in mechanical laboratory; --- the height and diameters of the intact STMs, as well as its natural frequency have been determined in situ; --- theoretical calculations based on these measurements then produce the value of horizontal ground acceleration resulting in failure, as well as the theoretical natural frequency of the STM; --- core samples were taken from a column dripstone standing in the same hall as the investigated stalagmite to obtain the age of the stalagmite, by Multi Collector - Inductively Coupled Plasma Mass Spectrometry analysis (MC-ICPMS). This technique can yield important new constraints on seismic hazard, as geological structures close to Plavecka Priepast PP2 cave did not generate strong paleoearthquakes in the last few thousand years which would have produced horizontal ground acceleration larger than the upper acceleration threshold that we determine from the STM. These results have to be taken into account, when calculating the seismic potential of faults near to PP2 cave as well as in Vienna basin Markgrafneusiedler fault. A particular important of this study results from the seismic hazard of two close-by capitals: Vienna and Bratislava.

  12. Velocity spectrum for the Iranian plateau

    Science.gov (United States)

    Bastami, Morteza; Soghrat, M. R.

    2017-09-01

    Peak ground acceleration (PGA) and spectral acceleration values have been proposed in most building codes/guidelines, unlike spectral velocity (SV) and peak ground velocity (PGV). Recent studies have demonstrated the importance of spectral velocity and peak ground velocity in the design of long period structures (e.g., pipelines, tunnels, tanks, and high-rise buildings) and evaluation of seismic vulnerability in underground structures. The current study was undertaken to develop a velocity spectrum and for estimation of PGV. In order to determine these parameters, 398 three-component accelerograms recorded by the Building and Housing Research Center (BHRC) were used. The moment magnitude (Mw) in the selected database was 4.1 to 7.3, and the events occurred after 1977. In the database, the average shear-wave velocity at 0 to 30 m in depth (Vs30) was available for only 217 records; thus, the site class for the remaining was estimated using empirical methods. Because of the importance of the velocity spectrum at low frequencies, the signal-to-noise ratio of 2 was chosen for determination of the low and high frequency to include a wider range of frequency content. This value can produce conservative results. After estimation of the shape of the velocity design spectrum, the PGV was also estimated for the region under study by finding the correlation between PGV and spectral acceleration at the period of 1 s.

  13. Material Property Estimation for Direct Detections of DNAPL using Integrated Ground-Penetrating Radar Velocity, Imaging and Attribute Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Bradford, John; Smithson, Scott B.; Holbrook, W. Stephen

    2004-06-14

    The focus of our work is direct detection of DNAPLs, specifically chlorinated solvents, via material property estimation from surface ground-penetrating radar (GPR) data. We combine sophisticated GPR processing methodology with quantitative attribute analysis and material property estimation to determine the location and extent of residual and/or pooled DNAPL in both the vadose and saturated zones. An important byproduct of our research is state-of-the-art imaging which allows us to pinpoint attribute anomalies, characterize stratigraphy, identify fracture zones, and locate buried objects. Implementation and verification of these methodologies will be a significant advance in GPR research and in meeting DOE's need for reliable in-situ characterization of DNAPL contamination. Chlorinated solvents have much lower electric permittivity and conductivity than water. An electrical property contrast is induced when solvents displace water in the sediment column resulting in an anomalous GPR signature. To directly identify zones of DNAPL contamination, we focus on three aspects of reflected wave behavior--propagation velocity, frequency dependent attenuation, and amplitude variation with offset (AVO). Velocity analysis provides a direct estimate of electric permittivity, attenuation analysis provides a measure of conductivity, and AVO behavior is used to estimate the permittivity ratio at a reflecting boundary. Areas of anomalously low electric permittivity and conductivity are identified as potential DNAPL rich zones. Preliminary work illustrated significant potential for quantitative direct detection methodologies in identifying shallow DNAPL source zones. It is now necessary to verify these methodologies in a field setting. To this end, the project is field oriented and has three primary objectives: (1) Develop a suite of methodologies for direct detection of DNAPLs from surface GPR data (2) Controlled field verification at well characterized, contaminated sites (3

  14. Material Property Estimation for Direct Detection of DNAPL using Integrated Ground-Penetrating Radar Velocity, Imaging and Attribute Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Bradford, John; Smithson, Scott B.; Holbrook, W. Stephen

    2003-06-01

    The focus of our work is direct detection of DNAPLs, specifically chlorinated solvents, via material property estimation from surface ground-penetrating radar (GPR) data. We combine sophisticated GPR processing methodology with quantitative attribute analysis and material property estimation to determine the location and extent of residual and/or pooled DNAPL in both the vadose and saturated zones. An important byproduct of our research is state-of-the-art imaging which allows us to pinpoint attribute anomalies, characterize stratigraphy, identify fracture zones, and locate buried objects. Implementation and verification of these methodologies will be a significant advance in GPR research and in meeting DOE's need for reliable in-situ characterization of DNAPL contamination. Chlorinated solvents have much lower electric permittivity and conductivity than water. An electrical property contrast is induced when solvents displace water in the sediment column resulting in an anomalous GPR signature. To directly identify zones of DNAPL contamination, we focus on three aspects of reflected wave behavior--propagation velocity, frequency dependent attenuation, and amplitude variation with offset (AVO). Velocity analysis provides a direct estimate of electric permittivity, attenuation analysis provides a measure of conductivity, and AVO behavior is used to estimate the permittivity ratio at a reflecting boundary. Areas of anomalously low electric permittivity and conductivity are identified as potential DNAPL rich zones. Preliminary work illustrated significant potential for quantitative direct detection methodologies in identifying shallow DNAPL source zones. It is now necessary to verify these methodologies in a field setting. To this end, the project is field oriented and has three primary objectives: (1) Develop a suite of methodologies for direct detection of DNAPLs from surface GPR data (2) Controlled field verification at well characterized, contaminated sites (3

  15. Material Property Estimation for Direct Detection of DNAPL using Integrated Ground-Penetrating Radar Velocity, Imaging and Attribute Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Bradford, John; Smithson, Scott B.; Holbrook, Stephen

    2001-06-01

    The focus of our work is direct detection of DNAPLs, specifically chlorinated solvents, via material property estimation from surface ground-penetrating radar (GPR) data. We combine sophisticated GPR processing methodology with quantitative attribute analysis and material property estimation to determine the location and extent of residual and/or pooled DNAPL in both the vadose and saturated zones. An important byproduct of our research is state-of-the-art imaging which allows us to pinpoint attribute anomalies, characterize stratigraphy, identify fracture zones, and locate buried objects. Implementation and verification of these methodologies will be a significant advance in GPR research and in meeting DOE's need for reliable in-situ characterization of DNAPL contamination. Chlorinated solvents have much lower electric permittivity and conductivity than water. An electrical property contrast is induced when solvents displace water in the sediment column resulting in an anomalous GPR signature. To directly identify zones of DNAPL contamination, we focus on three aspects of reflected wave behavior--propagation velocity, frequency dependent attenuation, and amplitude variation with offset (AVO). Velocity analysis provides a direct estimate of electric permittivity, attenuation analysis provides a measure of conductivity, and AVO behavior is used to estimate the permittivity ratio at a reflecting boundary. Areas of anomalously low electric permittivity and conductivity are identified as potential DNAPL rich zones. Preliminary work illustrated significant potential for quantitative direct detection methodologies in identifying shallow DNAPL source zones. It is now necessary to verify these methodologies in a field setting. To this end, the project is field oriented and has three primary objectives: (1) Develop a suite of methodologies for direct detection of DNAPLs from surface GPR data (2) Controlled field verification at well characterized, contaminated sites (3

  16. Characterization of wind velocities in the wake of a full scale wind turbine using three ground-based synchronized WindScanners

    DEFF Research Database (Denmark)

    Yazicioglu, Hasan; Angelou, Nikolas; Mikkelsen, Torben Krogh;

    2016-01-01

    , installed at Risoe test field, has been measured from 0 to 2 diameters downstream. For this, three ground-based synchronised short-range WindScanners and a spinner lidar have been used. The 3D wind velocity field has been reconstructed in horizontal and vertical planes crossing the hub. The 10-min mean...... deficit is calculated both in a Nacelle and Moving Frame of Reference. The results can be used in quantitative validation of numerical wake models....

  17. Comparison of midlatitude ionospheric F region peak parameters and topside Ne profiles from IRI2012 model prediction with ground-based ionosonde and Alouette II observations

    Science.gov (United States)

    Gordiyenko, G. I.; Yakovets, A. F.

    2017-07-01

    The ionospheric F2 peak parameters recorded by a ground-based ionosonde at the midlatitude station Alma-Ata [43.25N, 76.92E] were compared with those obtained using the latest version of the IRI model (http://omniweb.gsfc.nasa.gov/vitmo/iri2012_vitmo.html). It was found that for the Alma-Ata (Kazakhstan) location, the IRI2012 model describes well the morphology of seasonal and diurnal variations of the ionospheric critical frequency (foF2) and peak density height (hmF2) monthly medians. The model errors in the median foF2 prediction (percentage deviations between the median foF2 values and their model predictions) were found to vary approximately in the range from about -20% to 34% and showed a stable overestimation in the median foF2 values for daytime in January and July and underestimation for day- and nighttime hours in the equinoctial months. The comparison between the ionosonde hmF2 and IRI results clearly showed that the IRI overestimates the nighttime hmF2 values for March and September months, and the difference is up to 30 km. The daytime Alma-Ata hmF2 data were found to be close to the IRI predictions (deviations are approximately ±10-15 km) in winter and equinoctial months, except in July when the observed hmF2 values were much more (from approximately 50-200 km). The comparison between the Alouette foF2 data and IRI predictions showed mixed results. In particular, the Alouette foF2 data showed a tendency to be overestimated for daytime in winter months similar to the ionosonde data; however, the overestimated foF2 values for nighttime in the autumn equinox were in disagreement with the ionosonde observations. There were large deviations between the observed hmF2 values and their model predictions. The largest deviations were found during winter and summer (up to -90 km). The comparison of the Alouette II electron density profiles with those predicted by the adapted IRI2012 model in the altitude range hmF2 of the satellite position showed a great

  18. Daytime, low latitude, vertical ExB drift velocities, inferred from ground-based magnetometer observations in the Peruvian, Philippine and Indian longitude sectors under quiet and disturbed conditions

    CERN Document Server

    Anderson, D; Chau, J; Yumoto, K; Bhattacharya, A; Alex, S

    2006-01-01

    Daytime, low latitude, vertical ExB drift velocities, inferred from ground-based magnetometer observations in the Peruvian, Philippine and Indian longitude sectors under quiet and disturbed conditions

  19. Functional activity within the frontal eye fields, posterior parietal cortex and cerebellar vermis significantly correlates to symmetrical vergence peak velocity: An ROI-based, fMRI study of vergence training

    Directory of Open Access Journals (Sweden)

    Tara L Alvarez

    2014-06-01

    Full Text Available Convergence insufficiency (CI is a prevalent binocular vision disorder with symptoms that include double/blurred vision, eyestrain, and headaches when engaged in reading or other near work. Randomized clinical trials support that Office-Based Vergence and Accommodative Therapy with home reinforcement leads to a sustained reduction in patient symptoms. However, the underlying neurophysiological basis for treatment is unknown. Functional activity and vergence eye movements were quantified from seven binocularly normal controls (BNC and four CI patients before and after 18 hours of vergence training. An fMRI conventional block design of sustained fixation versus vergence eye movements stimulated activity in the frontal eye fields (FEF, the posterior parietal cortex (PPC and the cerebellar vermis (CV. Comparing the CI patients’ baseline measurements to the post vergence training data sets with a paired t-test revealed the following: 1 the percent change in the BOLD signal in the FEF, PPC and CV significantly increased (p<0.02, 2 the peak velocity from 4° symmetrical convergence step responses increased (p<0.01 and 3 patient symptoms assessed using the CI Symptom Survey (CISS improved (p<0.05. CI patient measurements after vergence training were more similar to levels observed within BNC. A regression analysis revealed the peak velocity from BNC and CI subjects before and after vergence training was significantly correlated to the percent BOLD signal change within the FEF, PPC and CV (r=0.6;p<0.05. Results have clinical implications for understanding the behavioral and neurophysiological changes after vergence training in patients with CI, which may lead to the sustained reduction in visual symptoms.

  20. Earthquake Ground Motion Measures for Seismic Response Evaluation of Structures

    Energy Technology Data Exchange (ETDEWEB)

    Cho, In-Kil; Ahn, Seong-Moon; Choun, Young-Sun; Seo, Jeong-Moon

    2007-03-15

    This study used the assessment results of failure criteria - base shear, story drift, top acceleration and top displacement - for a PSC containment building subjected to 30 sets of near-fault ground motions to evaluate the earthquake ground motion intensity measures. Seven intensity measures, peak ground acceleration(PGA), peak ground velocity(PGV), spectral acceleration(Sa), velocity(Sv), spectrum intensity for acceleration(SIa), velocity(SIv) and displacement(SId), were used to represent alternative ground motion. The regression analyses of the failure criteria for a PSC containment building were carried out to evaluate a proper intensity measure by using two regression models and seven ground motion parameters. The regression analysis results demonstrate the correlation coefficients of the failure criteria in terms of the candidate IM. From the results, spectral acceleration(Sa) is estimated as the best parameter for a evaluation of the structural safety for a seismic PSA.

  1. Evidence for thermospheric gravity waves in the southern polar cap from ground-based vertical velocity and photometric observations

    Directory of Open Access Journals (Sweden)

    J. L. Innis

    Full Text Available Zenith-directed Fabry-Perot Spectrometer (FPS and 3-Field Photometer (3FP observations of the λ630 nm emission (~240 km altitude were obtained at Davis station, Antarctica, during the austral winter of 1999. Eleven nights of suitable data were searched for significant periodicities common to vertical winds from the FPS and photo-metric variations from the 3FP. Three wave-like events were found, each of around one or more hours in duration, with periods around 15 minutes, vertical velocity amplitudes near 60 ms–1 , horizontal phase velocities around 300 ms–1 , and horizontal wavelengths from 240 to 400 km. These characteristics appear consistent with polar cap gravity waves seen by other workers, and we conclude this is a likely interpretation of our data. Assuming a source height near 125 km altitude, we determine the approximate source location by calculating back along the wave trajectory using the gravity wave property relating angle of ascent and frequency. The wave sources appear to be in the vicinity of the poleward border of the auroral oval, at magnetic local times up to 5 hours before local magnetic midnight.

    Key words. Meteorology and atmospheric dynamics (thermospheric dynamics; waves and tides

  2. Material Property Estimation for Direct Detection of DNAPL using Integrated Ground-Penetrating Radar Velocity, Imaging and Attribute Analysis

    Energy Technology Data Exchange (ETDEWEB)

    John H. Bradford; Stephen Holbrook; Scott B. Smithson

    2004-12-09

    The focus of this project is direct detection of DNAPL's specifically chlorinated solvents, via material property estimation from multi-fold surface ground-penetrating radar (GPR) data. We combine state-of-the-art GPR processing methodology with quantitative attribute analysis and material property estimation to determine the location and extent of residual and/or pooled DNAPL in both the vadose and saturated zones. An important byproduct of our research is state-of-the-art imaging which allows us to pinpoint attribute anomalies, characterize stratigraphy, identify fracture zones, and locate buried objects.

  3. Relative effects of elevated background ozone concentrations and peak episodes on senescence and above-ground growth in four populations of Anthoxanthum odoratum L

    Energy Technology Data Exchange (ETDEWEB)

    Dawnay, Louise [Centre for Ecology and Hydrology, Environment Centre Wales, Deiniol Road, Bangor, Gwynedd, LL57 2UW (United Kingdom); School of Biological Sciences, Bangor University, Bangor, Gwynedd, LL57 2UW (United Kingdom); Mills, Gina [Centre for Ecology and Hydrology, Environment Centre Wales, Deiniol Road, Bangor, Gwynedd, LL57 2UW (United Kingdom)], E-mail: gmi@ceh.ac.uk

    2009-02-15

    Four populations of Anthoxanthum odoratum from North Wales, UK, were exposed to the following combinations of mean background and peak concentrations of ozone for 12 weeks in solardomes: LL (14.3 ppb, 18.9 ppb, respectively), LH (14.8 ppb, 52.3 ppb), HL (28.9 ppb, 35.7 ppb) and HH (30.5 ppb, 72.1 ppb). Elevated ozone rapidly induced premature senescence, with effect increasing in the order: LL < LH < HL < HH. By week 11, the LH and HL treatments had induced similar amounts of whole plant senescence even though the AOT40{sub 12} values (accumulated between 8am and 8pm) were very different at 10.6 ppm h and 4.1 ppm h, respectively. Overall, linear correlations between whole plant senescence were stronger for AOT0 than for AOT40. Intraspecific variation in the senescence response to the different profiles was observed after 11 weeks of exposure. Effects on growth and tillering were less pronounced than effects on senescence. - Elevated background ozone concentrations induce premature senescence to a greater extent than peak episodes.

  4. Analysis of Terminal Velocity and VHF Backscatter of Precipitation Particles Using Chung-Li VHF Radar Combined with Ground-Based Disdrometer

    Directory of Open Access Journals (Sweden)

    Ching-Lun Su and Yen-Hsyang Chu

    2007-01-01

    Full Text Available The backscatter from precipitation particles observed by the vertically pointed antenna beam of the Chung-Li VHF radar and the drop size distributions measured by a ground-based disdrometer co-located at the radar site are analyzed and studied in this article. We find that the disdrometermeasured drop size distribution can be well approximated to a Gamma distribution. On the basis of this property and a power law approximation to the fallspeed-diameter relation VD = ADB, we derive the theoretical relation between terminal velocity VD and range-corrected VHF backscatter P of the precipitation particles. We find that the VD - P relation follows a power law in the form of VD = _ where _ _ both the functions of the precipitation parameters. Chu et al. (1999 first found that the relation between _ _ be empirically approximated to an exponential form of _ _ where _ a function of B and _ a factor associated with precipitation. In this article, under the assumptions of the Gamma distribution of the drop size distribution and the power-law relation between VD and D, we theoretically show that the analytical relation between _ _ follows an exponential form of _ _ where _ a function of the drop size distribution. The experimental results obtained by the Chung-Li VHF radar combined with the ground-based disdrometer measurements validate the exponential approximation to the _ _ The uses of the _ _ for the investigations of the rainfall rate and properties of drop size distribution are presented and discussed.

  5. Probabilistic seismic hazard assessment in Greece – Part 1: Engineering ground motion parameters

    Directory of Open Access Journals (Sweden)

    G-A. Tselentis

    2010-01-01

    Full Text Available Seismic hazard assessment represents a basic tool for rational planning and designing in seismic prone areas. In the present study, a probabilistic seismic hazard assessment in terms of peak ground acceleration, peak ground velocity, Arias intensity and cumulative absolute velocity computed with a 0.05 g acceleration threshold, has been carried out for Greece. The output of the hazard computation produced probabilistic hazard maps for all the above parameters estimated for a fixed return period of 475 years. From these maps the estimated values are reported for 52 Greek municipalities. Additionally, we have obtained a set of probabilistic maps of engineering significance: a probabilistic macroseismic intensity map, depicting the Modified Mercalli Intensity scale obtained from the estimated peak ground velocity and a probabilistic seismic-landslide map based on a simplified conversion of the estimated Arias intensity and peak ground acceleration into Newmark's displacement.

  6. Thumb Ossification Composite Index (TOCI) for Predicting Peripubertal Skeletal Maturity and Peak Height Velocity in Idiopathic Scoliosis: A Validation Study of Premenarchal Girls with Adolescent Idiopathic Scoliosis Followed Longitudinally Until Skeletal Maturity.

    Science.gov (United States)

    Hung, Alec L H; Chau, W W; Shi, B; Chow, Simon K; Yu, Fiona Y P; Lam, T P; Ng, Bobby K W; Qiu, Y; Cheng, Jack C Y

    2017-09-06

    Accurate skeletal maturity assessment is important to guide clinical evaluation of idiopathic scoliosis, but commonly used methods are inadequate or too complex for rapid clinical use. The objective of the study was to propose a new simplified staging method, called the thumb ossification composite index (TOCI), based on the ossification pattern of the 2 thumb epiphyses and the adductor sesamoid bone; to determine its accuracy in predicting skeletal maturation when compared with the Sanders simplified skeletal maturity system (SSMS); and to validate its interrater and intrarater reliability. Hand radiographs of 125 girls, acquired when they were newly diagnosed with idiopathic scoliosis prior to menarche and during longitudinal follow-up until skeletal maturity (a minimum of 4 years), were scored with the TOCI and SSMS. These scores were compared with digital skeletal age (DSA) and radius, ulna, and small hand bones (RUS) scores; anthropometric data; peak height velocity; and growth-remaining profiles. Correlations were analyzed with the chi-square test, Spearman and Cramer V correlation methods, and receiver operating characteristic curve analysis. Reliability analysis using the intraclass correlation (ICC) was conducted. Six hundred and forty-five hand radiographs (average, 5 of each girl) were scored. The TOCI staging system was highly correlated with the DSA and RUS scores (r = 0.93 and 0.92, p 0.97. The new proposed TOCI could provide a simplified staging system for the assessment of skeletal maturity of subjects with idiopathic scoliosis. The index needs to be subjected to further multicenter validation in different ethnic groups.

  7. Ground and space based cloud-top wind velocities using CFHT/ESPaDOnS (Doppler velocimetry) and VEx/VIRTIS (cloud tracking) coordinated measurements

    Science.gov (United States)

    Machado, Pedro; Widemann, Thomas; Peralta, Javier; Gonçalves, Rúben; Donati, Jean-François; Luz, David

    2016-04-01

    We will present wind velocity results based in the measurements of the horizontal wind field at the cloud top level of the atmosphere of Venus, near 70 km altitude. Our aim is contribute to the characterisation of the zonal and meridional wind latitudinal profiles on hour and day-timescales. This will be done by tracking Doppler shift of solar and CO2 lines over the dayside hemisphere in coordination with ESA's Venus Express orbiter. Our observations measured winds at cloud tops at latitudes 60°S-60°N, while Vex/VIRTIS privileged southern latitudes poleward of 45°S. This coordination effort intended to provide a combined monitoring of short-term changes of wind amplitude and directions with extensive spatial coverage. We present results based on inter comparison of ground-based Doppler velocimetry of cloud-top winds and cloud tracking measurements from the Venus Express spacecraft. Doppler wind velocimetry obtained with the 3.60 m Canada-France-Hawaii telescope (CFHT) and the Visible Spectrograph ESPaDOnS in April 2014 consisted of high-resolution spectra of Fraunhofer lines in the visible range (0.37-1.05 μm) to measure the wind velocity using the Doppler shift of solar radiation scattered by cloud top particles in the observer's direction. The complete optical spectrum was collected at a phase angle Φ = (76 ± 0.3)°, at a resolution of about 80000. Both ground-based and Venus Express measurements show considerable day-to-day variability revealing wave propagation and angular momentum transport in latitude which needs to be carefully assessed. ESPaDOnS and the sequential technique of visible Doppler velocimetry has proven a reference technique to measure instantaneous winds. These measurements are necessary to help validating Global Circulation Models (GCMs), to extend the temporal coverage of available datasets. The ground-based observations in the base of this project are critical in their complementarity with Venus Express, which was recently

  8. Mapping the Tidewater Submarine and Ice-Marginal Environment Using Interferometric Bathymetry, Ground-Based LiDAR and Current Velocities; Hubbard Glacier, Alaska

    Science.gov (United States)

    Finnegan, D. C.; Lawson, D. E.; Butler, W.; Waller, T.; Pratt, T.

    2009-12-01

    The seasonal advance and retreat of tidewater glaciers is a relatively well-documented phenomenon. But our understanding of the processes and conditions within the ice-marginal submarine environment that drive or result from this activity is limited. Capturing holistic information within this environment such as bathymetric topography, hydrographic measurements and geospatial information about the terminus itself is often limited to discrete measurements far from the terminus grounding line or lack the detail and scale necessary to identify features that may be indicative of process. To understand these processes, it is essential to accurately obtain data at resolutions that are sufficient to understand the geologic and marine environment. This paper describes the results of a first-of-its-kind survey of the submarine and ice-marginal terrestrial environment of the Hubbard Glacier tidewater terminus. Hubbard Glacier is the largest non-polar tidewater glacier in the world. It encompasses an area of 3500 sq km and flows 120 km from the flanks of Mt Logan (5959 m) in the Wrangell St. Elias Mountains (Canada) to sea level where its terminus widens to ~13 km. In contrast to most glaciers in Southeast Alaska, Hubbard Glacier continues to advance and thicken and is predicted to continue for the foreseeable future. We utilize a multi-sensor fusion approach that integrates high-resolution interferometric (swath-based) multibeam bathymetry with high-resolution ground-based LiDAR topography and current velocity profiles to provide a detailed look at the section of the glacier where significant ice advance and potential ice-damming occurs. Through simultaneous collection of these data we are able to precisely map the topography of the sea floor adjacent to and at the grounding line of the ice terminus while simultaneously mapping the ice terminus and surrounding terrain to create a complete 3D topographic model of the aerial and submarine environment. These data allow for

  9. Characterization of wind velocities in the wake of a full scale wind turbine using three ground-based synchronized WindScanners

    Science.gov (United States)

    Yazicioglu, Hasan; Angelou, Nikolas; Mikkelsen, Torben; José Trujillo, Juan

    2016-09-01

    The wind energy community is in need of detailed full-field measurements in the wake of wind turbines. Here, three dimensional(3D) wind vector field measurements obtained in the near-wake region behind a full-scale test turbine are presented. Specifically, the wake of a NEG Nordtank turbine, installed at Risoe test field, has been measured from 0 to 2 diameters downstream. For this, three ground-based synchronised short-range WindScanners and a spinner lidar have been used. The 3D wind velocity field has been reconstructed in horizontal and vertical planes crossing the hub. The 10-min mean values of the three wind components reveal detailed information regarding the wake properties while propagating downwind over flat terrain. Furthermore, the wake centre is tracked from the measurements and its meander is investigated as function of yaw misalignment of the turbine. The centre-line wake deficit is calculated both in a Nacelle and Moving Frame of Reference. The results can be used in quantitative validation of numerical wake models.

  10. 青春期男性乳房发育与生长速率关系研究%Corretation study of gynecomastia and peak height velocity for males at puberty

    Institute of Scientific and Technical Information of China (English)

    王伟; 罗瑞恺; 崔志瑞; 蔡丽霞

    2015-01-01

    Objective To describe the characteristics for males at puberty in order to elucidate the corretation between pubertal gynecomastia and peak height velocity(PHV).Methods Data about physical growth and sexual development of 136 males at age 8 to 11 years were obtained from pediatric endocrinology center from March 2008 to March 2009 in the third affiliated hospital of Zhengzhou university.General characteristics of height velocity,bone age,insulin-like growth factor-1 (IGF-1)and serum estrogen/serum testosterone were compared and analyze based on different ages,respectively.Results ①When 52 gynecomastia were first observed in the 136 boys in (14.2 ± 1.2)years old,the bone age was (12.9 ± 0.6) years and testicular volume was (9.6 ± 1.8) ml.Their mean age at PHV was (14.6 ± 0.9) years old.PHV was strongly correlated with the age at which gynecomastia was first observed (r =0.902,P < 0.05).②Serum estrogen/serum testosterone level was significantly higher in gynecomastia group than that in none gynecomastia group (P < 0.05).Conclusions Part of the boys may have gynecomastia during the peak height velocity of growth,its mechanism maybe related to the elevation of levels of estrogen/testosterone.%目的 研究136例患儿乳房发育发生率、骨龄、生长速率、睾丸容积以及血清中胰岛素样生长因子(IGF-1)、雌二醇/睾酮含量等,探讨青春期男性乳房发育与生长速率的关系及其可能机制.方法 回顾性研究2008年3月至2009年3月因矮小等原因在郑州大学第三附属医院儿童内分泌诊治中心就诊的136例男孩,年龄8~11(9.4±1.1)岁,睾丸容积≤3 ml,无第二性征发育,每3个月测定身高,观察生长速率、睾丸容积及乳房发育情况;每半年应用TW3方法评定骨龄.结果 ①136例患儿最大生长速率(PHV)年龄为(14.6±0.9)岁,骨龄为(12.9±0.9)岁,其中发现有青春期男性乳房发育52例(38.2%),乳房开始发育年龄为(14.2±1.2)岁,骨龄为(12.9±0.6)

  11. First Ground-Based Infrared Solar Absorption Measurements of Free Tropospheric Methanol (CH3OH): Multidecade Infrared Time Series from Kitt Peak (31.9 deg N 111.6 deg W): Trend, Seasonal Cycle, and Comparison with Previous Measurements

    Science.gov (United States)

    Rinsland, Curtis P.; Mahieu, Emmanuel; Chiou, Linda; Herbin, Herve

    2009-01-01

    Atmospheric CH3OH (methanol) free tropospheric (2.09-14-km altitude) time series spanning 22 years has been analyzed on the basis of high-spectral resolution infrared solar absorption spectra of the strong vs band recorded from the U.S. National Solar Observatory on Kitt Peak (latitude 31.9degN, 111.6degW, 2.09-km altitude) with a 1-m Fourier transform spectrometer (FTS). The measurements span October 1981 to December 2003 and are the first long time series of CH3OH measurements obtained from the ground. The results were analyzed with SFIT2 version 3.93 and show a factor of three variations with season, a maximum at the beginning of July, a winter minimum, and no statistically significant long-term trend over the measurement time span.

  12. Evaluation on changes on splenic artery peak systolic velocity of hydrops fetalis by ultrasound%超声检测水肿胎脾动脉收缩期血流峰值的变化

    Institute of Scientific and Technical Information of China (English)

    樊绮云; 伍颖恒; 马小燕

    2013-01-01

    目的:分析重型α-地中海贫血、心源性因素及感染性因素引起胎儿水肿的脾动脉收缩期血流峰值(SpA-PSV)的改变。方法超声监测正常胎儿的SpA-PSV 457例,水肿胎SpA-PSV 90例,根据病因分为心源性水肿胎组和重型α-地中海贫血水肿胎组、感染性水肿胎组,与对照组之间比较采用 t 检验进行参数分析。结果与正常对照组比较,心源性水肿胎组 SpA-PSV 降低(P<0.01);重型α-地中海贫血水肿胎组SpA-PSV明显升高(P<0.01);感染性组水肿胎SpA-PSV多位于第50~95个百分位数之间,19周、22周、26周、27周SpA-PSV高于对照组(P<0.01);23周、24周SpA-PSV与对照组比较变化不大(P>0.01)。结论三组水肿胎儿SpA-PSV有着不同的改变,胎儿脾动脉血流检测有助于鉴别水肿胎病因及指导临床进一步诊疗提供一项实用、方便、无创的筛查新指标。%Objective To investigate the different changes of splenic artery peak systolic velocity(SpA-PSV) in the three groups of hydrops fetuses: fetuses with homozygous α-thalassemia, fetuses with heart disease and fetuses with infection. Methods 457 cases of normal fetuses and 90 cases of hydropic fetuses were recruited, splenic artery (SpA) blood flow was measured. The hydropic fetuses were divided into three groups(with homozygous α-thalassemia, with cardiogenic anomalies, and with infection). Results Compared to normal fetuses, most fetuses in cardiogenic group, had lower velocity of SpA-PSV (P0.01. Conclusion We found different changes in the SpA-PSV of three groups (P<0.01). It's important to check and measure SpA-PSV, which can effectively distinguish the causes of hydrops fetalis and instruct the clinical treatment. This reference range may be a useful non-invasive tool in risk assessment for fetal anemia.

  13. Ground-motion site effects from multimethod shear-wave velocity characterization at 16 seismograph stations deployed for aftershocks of the August 2011 Mineral, Virginia earthquake

    Science.gov (United States)

    Stephenson, William J.; Odum, Jackson K.; McNamara, Daniel E.; Williams, Robert A.; Angster, Stephen J

    2014-01-01

    We characterize shear-wave velocity versus depth (Vs profile) at 16 portable seismograph sites through the epicentral region of the 2011 Mw 5.8 Mineral (Virginia, USA) earthquake to investigate ground-motion site effects in the area. We used a multimethod acquisition and analysis approach, where active-source horizontal shear (SH) wave reflection and refraction as well as active-source multichannel analysis of surface waves (MASW) and passive-source refraction microtremor (ReMi) Rayleigh wave dispersion were interpreted separately. The time-averaged shear-wave velocity to a depth of 30 m (Vs30), interpreted bedrock depth, and site resonant frequency were estimated from the best-fit Vs profile of each method at each location for analysis. Using the median Vs30 value (270–715 m/s) as representative of a given site, we estimate that all 16 sites are National Earthquake Hazards Reduction Program (NEHRP) site class C or D. Based on a comparison of simplified mapped surface geology to median Vs30 at our sites, we do not see clear evidence for using surface geologic units as a proxy for Vs30 in the epicentral region, although this may primarily be because the units are similar in age (Paleozoic) and may have similar bulk seismic properties. We compare resonant frequencies calculated from ambient noise horizontal:vertical spectral ratios (HVSR) at available sites to predicted site frequencies (generally between 1.9 and 7.6 Hz) derived from the median bedrock depth and average Vs to bedrock. Robust linear regression of HVSR to both site frequency and Vs30 demonstrate moderate correlation to each, and thus both appear to be generally representative of site response in this region. Based on Kendall tau rank correlation testing, we find that Vs30 and the site frequency calculated from average Vs to median interpreted bedrock depth can both be considered reliable predictors of weak-motion site effects in the epicentral region.

  14. Velocity selective optical pumping

    OpenAIRE

    Aminoff, C. G.; Pinard, M.

    1982-01-01

    We consider optical pumping with a quasi monochromatic tunable light beam, in the low intensity limit where a rate equation regime is obtained The velocity selective optical pumping (V.S.O.P.) introduces a correlation between atomic velocity and internal variables in the ground (or metastable) state. The aim of this article is to evaluate these atomic observables (orientation, alignment, population) as a function of velocity, using a phenomenological description of the relaxation effect of co...

  15. 甘油溶液声速、核磁共振信号峰面积变化规律的微观机理研究%The Microscopic Explanation of the Regularity of Glycerin Solution' s Velocity and Signal Peak Area

    Institute of Scientific and Technical Information of China (English)

    郭启凯; 李超; 张亚萍

    2012-01-01

    利用超声光栅法和核磁共振法测量了不同浓度甘油溶液的声速和核磁共振信号峰面积,对其实验原理和实验现象进行了解释,将声速与氢键含量、核磁共振信号峰面积与能级跃迁相联系.结果表明:随着甘油溶液浓度的升高,声速随氢键含量的增加而增大,信号峰面积则随氢核数目的减少而减少.%Velocity and signal peak area of different concentration of glycerin solution were measured by ultrasonic grating method and nuclear resonance method, and the explanation of regularity and phenomenon was given. That the velocity was connected with the number of hydrogen bond and the signal peak area was connected with the energy level transition. The result show that with the increase of glycerin solution' s concentration, the velocity is in-cresed ularity with the number of hydrogen and the signal peak area is decreased with the number of proton increased.

  16. Determination of hydrologic properties needed to calculate average linear velocity and travel time of ground water in the principal aquifer underlying the southeastern part of Salt Lake Valley, Utah

    Science.gov (United States)

    Freethey, G.W.; Spangler, L.E.; Monheiser, W.J.

    1994-01-01

    A 48-square-mile area in the southeastern part of the Salt Lake Valley, Utah, was studied to determine if generalized information obtained from geologic maps, water-level maps, and drillers' logs could be used to estimate hydraulic conduc- tivity, porosity, and slope of the potentiometric surface: the three properties needed to calculate average linear velocity of ground water. Estimated values of these properties could be used by water- management and regulatory agencies to compute values of average linear velocity, which could be further used to estimate travel time of ground water along selected flow lines, and thus to determine wellhead protection areas around public- supply wells. The methods used to estimate the three properties are based on assumptions about the drillers' descriptions, the depositional history of the sediments, and the boundary con- ditions of the hydrologic system. These assump- tions were based on geologic and hydrologic infor- mation determined from previous investigations. The reliability of the estimated values for hydro- logic properties and average linear velocity depends on the accuracy of these assumptions. Hydraulic conductivity of the principal aquifer was estimated by calculating the thickness- weighted average of values assigned to different drillers' descriptions of material penetrated during the construction of 98 wells. Using these 98 control points, the study area was divided into zones representing approximate hydraulic- conductivity values of 20, 60, 100, 140, 180, 220, and 250 feet per day. This range of values is about the same range of values used in developing a ground-water flow model of the principal aquifer in the early 1980s. Porosity of the principal aquifer was estimated by compiling the range of porosity values determined or estimated during previous investigations of basin-fill sediments, and then using five different values ranging from 15 to 35 percent to delineate zones in the study area that were assumed to

  17. Diagnóstico não invasivo da anemia fetal pela medida do pico de velocidade sistólica na dopplervelocimetria da artéria cerebral média Noninvasive fetal anemia diagnosis by middle cerebral artery peak systolic velocity waveform measurement

    Directory of Open Access Journals (Sweden)

    Marcos Roberto Taveira

    2004-09-01

    Full Text Available OBJETIVO: avaliar se existe associação entre a medida do pico de velocidade sistólica (PVS na dopplervelocimetria da artéria cerebral média (ACM e a concentração de hemoglobina fetal e determinar a sua capacidade diagnóstica. MÉTODOS: entre janeiro de 2000 e maio de 2003, 44 gestantes isoimunizadas foram submetidas a transfusão intra-uterina. Realizou-se estudo dopplervelocimétrico da ACM antes de cada transfusão fetal, sempre com intervalo inferior a 3 horas, antecedendo o procedimento. O PVS da ACM foi considerado alterado quando seu valor era superior a 1,5 múltiplo da mediana para a respectiva idade gestacional. A concentração de hemoglobina do cordão foi aferida antes de se iniciar a infusão de sangue, realizada no Hemocue® (B-Hemoglobin Photometer Hemocue AB; Angelholm, Sweden. O estudo estatístico foi feito pelo teste do chi2 e também foram calculados os valores de sensibilidade, especificidade, valores preditivos positivo e negativo. RESULTADOS: foram realizados 83 procedimentos, sendo que em 33 a hemoglobina fetal era inferior a 10,0 g/dL. Houve associação significativa entre as variáveis estudadas, pPURPOSE: to assess the correlation between middle cerebral artery peak systolic velocity and umbilical cord blood hemoglobin concentration and to determine its diagnostic value. PATIENTS AND METHODS: a cross-sectional prospective study was performed from January 2000 to May 2003. Forty-four isoimmunized pregnant women underwent a protocol for the identification of fetal hemolysis. When intrauterine transfusions were indicated, the umbilical cord blood hemoglobin concentration was measured at the beginning of the procedure. Each intrauterine transfusion preceded by Doppler velocimetry of the middle cerebral artery was regarded as one case, summing up eighty-three procedures. In all cases, the middle cerebral artery Doppler examinations were performed within the three hours preceding fetal blood sample collection. The

  18. PeakWorks

    Energy Technology Data Exchange (ETDEWEB)

    2016-11-30

    The PeakWorks software is designed to assist in the quantitative analysis of atom probe tomography (APT) generated mass spectra. Specifically, through an interactive user interface, mass peaks can be identified automatically (defined by a threshold) and/or identified manually. The software then provides a means to assign specific elemental isotopes (including more than one) to each peak. The software also provides a means for the user to choose background subtraction of each peak based on background fitting functions, the choice of which is left to the users discretion. Peak ranging (the mass range over which peaks are integrated) is also automated allowing the user to chose a quantitative range (e.g. full-widthhalf- maximum). The software then integrates all identified peaks, providing a background-subtracted composition, which also includes the deconvolution of peaks (i.e. those peaks that happen to have overlapping isotopic masses). The software is also able to output a 'range file' that can be used in other software packages, such as within IVAS. A range file lists the peak identities, the mass range of each identified peak, and a color code for the peak. The software is also able to generate 'dummy' peak ranges within an outputted range file that can be used within IVAS to provide a means for background subtracted proximity histogram analysis.

  19. Energy velocity and group velocity

    Institute of Scientific and Technical Information of China (English)

    陈宇

    1995-01-01

    A new Lagrangian method for studying the relationship between the energy velocity and the group velocity is described. It is proved that under the usual quasistatic electric field, the energy velocity is identical to the group velocity for acoustic waves in anisotropic piezoelectric (or non-piezoelectric) media.

  20. GROUND VIBRATIONS LEVEL CHARACTERIZATION THROUGH THE GEOLOGICAL STRENGTH INDEX (GSI

    Directory of Open Access Journals (Sweden)

    Josip Mesec

    2017-01-01

    Full Text Available This paper analyses the results of trial, construction and quarry blasting, carried out in sediment rock deposits, mainly limestone and dolomite, at diff erent locations in the Republic of Croatia. The division of the three test groups was based on the lithology changes and GSI values of the rock units at these locations. The peak particle velocity measurements with 246 recorded events, was conducted during a long period of six years. Based on the results of seismic measurements, the empirical relationships between peak particle velocity and scaled distance were established for each group. In order to establish a useful relationship between peak particle velocity and scaled distance, simple regression analysis was conducted with the Blastware software program from Instantel. The results of this study can be used to characterize ground vibration levels to the environment, through the geological strength index (GSI.

  1. Paniek over Peak Food

    NARCIS (Netherlands)

    Koning, N.B.J.

    2015-01-01

    Het kon niet uitblijven. De groei van de voedselproductie stagneert en na Peak Oil dreigt nu Peak Food. Onzin, vindt Niek Koning, die zogenaamde peak is een van de toppen in een langjarige golfbeweging op de landbouwmarkten. Toch zijn er genoeg redenen om je zorgen te maken over de wereldvoedselvoor

  2. SENSITIVITY OF STRUCTURAL RESPONSE TO GROUND MOTION SOURCE AND SITE PARAMETERS.

    Science.gov (United States)

    Safak, Erdal; Brebbia, C.A.; Cakmak, A.S.; Abdel Ghaffar, A.M.

    1985-01-01

    Designing structures to withstand earthquakes requires an accurate estimation of the expected ground motion. While engineers use the peak ground acceleration (PGA) to model the strong ground motion, seismologists use physical characteristics of the source and the rupture mechanism, such as fault length, stress drop, shear wave velocity, seismic moment, distance, and attenuation. This study presents a method for calculating response spectra from seismological models using random vibration theory. It then investigates the effect of various source and site parameters on peak response. Calculations are based on a nonstationary stochastic ground motion model, which can incorporate all the parameters both in frequency and time domains. The estimation of the peak response accounts for the effects of the non-stationarity, bandwidth and peak correlations of the response.

  3. Detection of hydrocarbons in sandy sediments analyzing velocity and amplitude of electromagnetic pulses (GPR-Ground Penetrating Radar); Deteccao de hidrocarbonetos em sedimentos arenosos analisando velocidade e amplitude dos pulsos eletromagneticos (GPR)

    Energy Technology Data Exchange (ETDEWEB)

    Dourado, Tiago C.; Botelho, Marco A.B. [Universidade Federal da Bahia (UFBA), Salvador, BA (Brazil). Centro de Pesquisa em Geofisica e Geologia; Machado, Sandro L.; Amparo, Nelson S. [Universidade Federal da Bahia (UFBA), Salvador, BA (Brazil). Lab. de Geotecnia Ambiental - GeoAmb

    2004-07-01

    We estimate a hydrocarbon saturation of sandy soils on the basis of the velocity and amplitude of GPR (Ground Penetrating Radar) electromagnetic signals. We acquire CMP (Common Mid Point) data on a tank filled with clean sand. The tank, which has dimensions 1,0 m x 0,7 m x 0,7 m, has filled with water and diesel oil. The velocity decreases from 15 cm/ns for 3% water saturation to 5 cm/ns for 24% water saturation. The presence of hydrocarbon only causes small velocity variations, from 13 cm/ns to 15 cm/ns in the first case. We also investigate the AVO (amplitude variations with offset) of a dry sand/water-saturated sand interface and compare the results to those of the oil-saturated sand/water-saturated sand interface. These results are further compared to the Fresnel equations after the estimation of the reflection coefficient from the reflection hyperbole. The agreement is excellent, and the methodology can be usual to evaluate the type of saturating fluid and the corresponding saturating level. Future experiments will involve the detection and modeling of the critical and Brewster angles to obtain additional information. (author)

  4. SPE-5 Ground-Motion Prediction at Far-Field Geophone and Accelerometer Array Sites and SPE-5 Moment and Corner-Frequency Prediction

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Xiaoning [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Patton, Howard John [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Chen, Ting [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-03-25

    This report offers predictions for the SPE-5 ground-motion and accelerometer array sites. These predictions pertain to the waveform and spectral amplitude at certain geophone sites using Denny&Johnson source model and a source model derived from SPE data; waveform, peak velocity and peak acceleration at accelerometer sites using the SPE source model and the finite-difference simulation with LLNL 3D velocity model; and the SPE-5 moment and corner frequency.

  5. SPE-5 Ground-Motion Prediction at Far-Field Geophone and Accelerometer Array Sites and SPE-5 Moment and Corner-Frequency Prediction

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Xiaoning [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Patton, Howard John [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Chen, Ting [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-03-25

    This report offers predictions for the SPE-5 ground-motion and accelerometer array sites. These predictions pertain to the waveform and spectral amplitude at certain geophone sites using Denny&Johnson source model and a source model derived from SPE data; waveform, peak velocity and peak acceleration at accelerometer sites using the SPE source model and the finite-difference simulation with LLNL 3D velocity model; and the SPE-5 moment and corner frequency.

  6. Are Bragg Peaks Gaussian?

    Science.gov (United States)

    Hammouda, Boualem

    2014-01-01

    It is common practice to assume that Bragg scattering peaks have Gaussian shape. The Gaussian shape function is used to perform most instrumental smearing corrections. Using Monte Carlo ray tracing simulation, the resolution of a realistic small-angle neutron scattering (SANS) instrument is generated reliably. Including a single-crystal sample with large d-spacing, Bragg peaks are produced. Bragg peaks contain contributions from the resolution function and from spread in the sample structure. Results show that Bragg peaks are Gaussian in the resolution-limited condition (with negligible sample spread) while this is not the case when spread in the sample structure is non-negligible. When sample spread contributes, the exponentially modified Gaussian function is a better account of the Bragg peak shape. This function is characterized by a non-zero third moment (skewness) which makes Bragg peaks asymmetric for broad neutron wavelength spreads. PMID:26601025

  7. Cosmic Microwave Background Acoustic Peak Locations

    CERN Document Server

    Pan, Zhen; Mulroe, Brigid; Narimani, Ali

    2016-01-01

    The Planck collaboration has measured the temperature and polarization of the cosmic microwave background well enough to determine the locations of eight peaks in the temperature (TT) power spectrum, five peaks in the polarization (EE) power spectrum and twelve extrema in the cross (TE) power spectrum. The relative locations of these extrema give a striking, and beautiful, demonstration of what we expect from acoustic oscillations in the plasma; e.g., that EE peaks fall half way between TT peaks. We expect this because the temperature map is predominantly sourced by temperature variations in the last scattering surface, while the polarization map is predominantly sourced by gradients in the velocity field, and the harmonic oscillations have temperature and velocity 90 degrees out of phase. However, there are large differences in expectations for extrema locations from simple analytic models vs. numerical calculations. Here we quantitatively explore the origin of these differences in gravitational potential tr...

  8. An Analysis of Thrust Normalization of Ground Flowfield Pressures, Temperatures, and Velocities, for an AV-8B -408 Harrier During Hover

    Science.gov (United States)

    Naumowicz, Tim; Hange, Craig; Olson, Lawrence E. (Technical Monitor)

    1998-01-01

    An external environment test for an AV-8B Harrier during hover and vertical operations was conducted at NAWCAD at Patuxent River, Maryland in July 1997. Four boundary layer rakes were instrumented with static and total pressures, and thermocouples for measuring temperatures. These rakes were installed at 30, 50, 75, and 100 foot from the hover center. The 50 ft and 100 ft rakes were offset 20 deg from the other two to minimize interference effects. In order to measure a complete flowfield footprint, it was necessary to have the Harrier change its heading relative to the rakes from 0 to 180 deg. A 20 deg increment in azimuth was used. This permitted the four rakes to measure the flowfield at 72 locations relative to the aircraft. However, as the Harrier burns fuel, the hover thrust must be reduced by the pilot in order to maintain a constant height above ground. The typical test procedure employed was: (1) vertical takeoff at an initial heading; (2) 20 second hover dwell at that heading; (3) pedal turn to a second heading, followed by a 20 second dwell hover; (4) pedal turn to a third heading, followed by a 20 second dwell hover; and (5) vertical landing at the third heading. Additional information is contained in the original extended abstract.

  9. Peak Experience Project

    Science.gov (United States)

    Scott, Daniel G.; Evans, Jessica

    2010-01-01

    This paper emerges from the continued analysis of data collected in a series of international studies concerning Childhood Peak Experiences (CPEs) based on developments in understanding peak experiences in Maslow's hierarchy of needs initiated by Dr Edward Hoffman. Bridging from the series of studies, Canadian researchers explore collected…

  10. Peak Experience Project

    Science.gov (United States)

    Scott, Daniel G.; Evans, Jessica

    2010-01-01

    This paper emerges from the continued analysis of data collected in a series of international studies concerning Childhood Peak Experiences (CPEs) based on developments in understanding peak experiences in Maslow's hierarchy of needs initiated by Dr Edward Hoffman. Bridging from the series of studies, Canadian researchers explore collected…

  11. Strong ground movement induced by mining activities and its effect on power transmission structures

    Institute of Scientific and Technical Information of China (English)

    DAI Kao-shan; CHEN Shen-en

    2009-01-01

    Surface mining activities may introduce damages to nearby infrastructure. Concerns are put forward by the power company about structural integrity of electric power transmission structures in areas where coal mining activities cause strong ground vibrations. Common practice in the power industry is to limit ground motion by specifying maximum Peak Particle Velocity. So far, there is a lack of industry-wide recognized guidelines on how ground vibration limits should be set for the transmission structures. In order to develop a defense strategy to protect power transmission lines against strong ground motions in mining areas, a systematic research work was conducted to establish strong ground vibration characteristics and to study impacts of ground excitations on transmission pole structures. Ground movements were recorded using geophones and wireless tri-axial sensing units. The process of generating ground motion response spectra via analyzing actual ground motion measurements is described in the paper. These spectra developed based on peak particle velocities were used as a basis for spectral analysis performed using validated Finite Element models to obtain structural displacements, reactions and stress states of the transmission pole structures in the mining sites. A quantitative ground motion limit was established by comparing structural responses with the corresponding design requirements.

  12. The central peak revisited

    Energy Technology Data Exchange (ETDEWEB)

    Shirane, G.

    1995-10-27

    The central peak in SrTiO{sub 3} was first observed by Riste and his collaborators in 1971. This was one of the key discoveries leading to an understanding of the dynamics of phase transitions. The most recent discovery of two length scales in SrTiO{sub 3} motivated a reinvestigation of the soft phonon and associated central peak by neutron scattering. These recent experiments shed new light on the nature of the central peak. It is now well established to be strongly sample dependent and it originates from defects in bulk crystals.

  13. Pikes Peak, Colorado

    Science.gov (United States)

    Brunstein, Craig; Quesenberry, Carol; Davis, John; Jackson, Gene; Scott, Glenn R.; D'Erchia, Terry D.; Swibas, Ed; Carter, Lorna; McKinney, Kevin; Cole, Jim

    2006-01-01

    For 200 years, Pikes Peak has been a symbol of America's Western Frontier--a beacon that drew prospectors during the great 1859-60 Gold Rush to the 'Pikes Peak country,' the scenic destination for hundreds of thousands of visitors each year, and an enduring source of pride for cities in the region, the State of Colorado, and the Nation. November 2006 marks the 200th anniversary of the Zebulon M. Pike expedition's first sighting of what has become one of the world's most famous mountains--Pikes Peak. In the decades following that sighting, Pikes Peak became symbolic of America's Western Frontier, embodying the spirit of Native Americans, early explorers, trappers, and traders who traversed the vast uncharted wilderness of the Western Great Plains and the Southern Rocky Mountains. High-quality printed paper copies of this poster are available at no cost from Information Services, U.S. Geological Survey (1-888-ASK-USGS).

  14. Peak Oil, Peak Coal and Climate Change

    Science.gov (United States)

    Murray, J. W.

    2009-05-01

    Research on future climate change is driven by the family of scenarios developed for the IPCC assessment reports. These scenarios create projections of future energy demand using different story lines consisting of government policies, population projections, and economic models. None of these scenarios consider resources to be limiting. In many of these scenarios oil production is still increasing to 2100. Resource limitation (in a geological sense) is a real possibility that needs more serious consideration. The concept of 'Peak Oil' has been discussed since M. King Hubbert proposed in 1956 that US oil production would peak in 1970. His prediction was accurate. This concept is about production rate not reserves. For many oil producing countries (and all OPEC countries) reserves are closely guarded state secrets and appear to be overstated. Claims that the reserves are 'proven' cannot be independently verified. Hubbert's Linearization Model can be used to predict when half the ultimate oil will be produced and what the ultimate total cumulative production (Qt) will be. US oil production can be used as an example. This conceptual model shows that 90% of the ultimate US oil production (Qt = 225 billion barrels) will have occurred by 2011. This approach can then be used to suggest that total global production will be about 2200 billion barrels and that the half way point will be reached by about 2010. This amount is about 5 to 7 times less than assumed by the IPCC scenarios. The decline of Non-OPEC oil production appears to have started in 2004. Of the OPEC countries, only Saudi Arabia may have spare capacity, but even that is uncertain, because of lack of data transparency. The concept of 'Peak Coal' is more controversial, but even the US National Academy Report in 2007 concluded only a small fraction of previously estimated reserves in the US are actually minable reserves and that US reserves should be reassessed using modern methods. British coal production can be

  15. Peak of Achievement

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    China’s first inland research station on the highest peak of Antarctic progresses smoothly China will complete the construction of its first inland Antarctic research station at Dome A,the highest polar icecap peak at 4,093 meters above sea level,next year,according to a south pole scientist involved in the project. "The preparatory work for the new sta-

  16. Correlation study between ground motion intensity measure parameters and deformation demands for bilinear SDOF systems

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The correlation between ground motion intensity measures (IM) and single-degree-of-freedom (SDOF) deformation demands is described in this study. Peak ground acceleration (APG), peak ground velocity (VPG), peak ground displacement (DPG), spectral acceleration at the first-mode period of vibration [As(T1)] and ratio of VPG to APG are used as IM parameters, and the correlation is characterized by correlation coefficients ρ. The numerical results obtained by nonlinear dynamic analyses have shown good correlation between As(T1) or VPG and deformation demands. Furthermore, the effect of As(T1) and VPG as IM on the dispersion of the mean value of deformation demands is also investigated for SDOF systems with three different periods T=0.3 s, 1.0 s, 3.0 s respectively.

  17. The geomorphic structure of the runoff peak

    Directory of Open Access Journals (Sweden)

    R. Rigon

    2011-06-01

    Full Text Available This paper develops a theoretical framework to investigate the core dependence of peak flows on the geomorphic properties of river basins. Based on the theory of transport by travel times, and simple hydrodynamic characterization of floods, this new framework invokes the linearity and invariance of the hydrologic response to provide analytical and semi-analytical expressions for peak flow, time to peak, and area contributing to the peak runoff. These results are obtained for the case of constant-intensity hyetograph using the Intensity-Duration-Frequency (IDF curves to estimate extreme flow values as a function of the rainfall return period. Results show that, with constant-intensity hyetographs, the time-to-peak is greater than rainfall duration and usually shorter than the basin concentration time. Moreover, the critical storm duration is shown to be independent of rainfall return period as well as the area contributing to the flow peak. The same results are found when the effects of hydrodynamic dispersion are accounted for. Further, it is shown that, when the effects of hydrodynamic dispersion are negligible, the basin area contributing to the peak discharge does not depend on the channel velocity, but is a geomorphic propriety of the basin. As an example this framework is applied to three watersheds. In particular, the runoff peak, the critical rainfall durations and the time to peak are calculated for all links within a network to assess how they increase with basin area.

  18. Analysis of strong ground motions to evaluate regional attenuation relationships

    Directory of Open Access Journals (Sweden)

    V. Montaldo

    2002-06-01

    Full Text Available Italian attenuation relationships at regional scale have been refined using a data set of 322 horizontal components of strong ground motions recorded mainly during the 1997-1998 Umbria-Marche, Central Italy, earthquake sequence. The data set includes records generated by events with local magnitude (M L ranging between 4.5 and 5.9, recorded at rock or soil sites and epicentral distance smaller than 100 km. Through a multiple step regression analysis, we calculated empirical equations for the peak ground acceleration and velocity, the Arias Intensity and for the horizontal components of the 5% damped velocity pseudo response spectra, corresponding to 14 frequencies ranging from 0.25 to 25 Hz. We compared our results with well known predictive equations, widely used on the national territory for Probabilistic Seismic Hazard Analysis. The results obtained in this study show smaller values for all the analyzed ground motion indicators compared to other predictive equations.

  19. Correlation-Peak Imaging

    Science.gov (United States)

    Ziegler, A.; Metzler, A.; Köckenberger, W.; Izquierdo, M.; Komor, E.; Haase, A.; Décorps, M.; von Kienlin, M.

    1996-08-01

    Identification and quantitation in conventional1H spectroscopic imagingin vivois often hampered by the small chemical-shift range. To improve the spectral resolution of spectroscopic imaging, homonuclear two-dimensional correlation spectroscopy has been combined with phase encoding of the spatial dimensions. From the theoretical description of the coherence-transfer signal in the Fourier-transform domain, a comprehensive acquisition and processing strategy is presented that includes optimization of the width and the position of the acquisition windows, matched filtering of the signal envelope, and graphical presentation of the cross peak of interest. The procedure has been applied to image the spatial distribution of the correlation peaks from specific spin systems in the hypocotyl of castor bean (Ricinus communis) seedlings. Despite the overlap of many resonances, correlation-peak imaging made it possible to observe a number of proton resonances, such as those of sucrose, β-glucose, glutamine/glutamate, lysine, and arginine.

  20. Establishment of a Box-Jenkins multivariate time-series model to simulate ground-level peak daily one-hour ozone concentrations at Ta-Liao in Taiwan.

    Science.gov (United States)

    Liu, Pao-Wen Grace

    2007-09-01

    Box-Jenkins univariate autoregressive integrated moving average (ARIMA) and regression with time-series error (RTSE) models were established to simulate historical peak daily 1-hr ozone concentrations at Ta-Liao, Taiwan, 1997-2001. During 1995-2003, the 600 days of Pollution Standard Index (PSI) more than 100 (peak daily 1-hr ozone concentrations detected by greater than 120 ppm) at Tao-Liao showed the highest ozone exceedances among the six monitoring stations in Kaohsiung County. To improve the predictability of extremely high ozone, two different principal components, PC1 and PC(1 + 2), were introduced in the RTSE model. Four typical predictors (particular matter with an aerodynamic diameter less than or equal to 10 microm, temperature, wind speed, and wind direction) plus a PC trigger remained significant in the RTSE model. The model performance statistics concluded that the RTSE model with PC1 was optimal, compared with the univariate ARIMA, the RTSE model without PC, and RTSE model with PC(1 + 2). The contingency table shows that the successful predictions of the univariate model were only 12.9% of that of the RTSE model with PC1. Also, the POD value was improved approximately 5-fold when the univariate model was replaced by the RTSE model, and almost 8-fold when it was replaced by the RTSE model with PC1. Moreover, introducing the PC trigger indeed enhanced the ozone predictability. After the PC trigger was introduced in the RTSE model, the POD was increased 69.9%, and the FAR was reduced 8.3%. The overall correlation between the observed and simulated ozone was improved 9.6%. Also, the first principal component was more useful than the first two components in playing the "trigger" role, though it counted only for 58.62% of the environmental variance during the high ozone days.

  1. Peak-interviewet

    DEFF Research Database (Denmark)

    Raalskov, Jesper; Warming-Rasmussen, Bent

    Peak-interviewet er en særlig effektiv metode til at gøre ubevidste menneskelige ressourcer bevidste. Fokuspersonen (den interviewede) interviewes om en selvvalgt, personlig succesoplevelse. Terapeuten/coachen (intervieweren) spørger ind til processen, som ledte hen til denne succes. Herved afdæk...

  2. Peak-interviewet

    DEFF Research Database (Denmark)

    Raalskov, Jesper; Warming-Rasmussen, Bent

    Peak-interviewet er en særlig effektiv metode til at gøre ubevidste menneskelige ressourcer bevidste. Fokuspersonen (den interviewede) interviewes om en selvvalgt, personlig succesoplevelse. Terapeuten/coachen (intervieweren) spørger ind til processen, som ledte hen til denne succes. Herved afdæk...

  3. Using Doppler measurement of fetal middle cerebral artery peak systolic velocity on prediction of fetal anemia%彩超大脑中动脉血流峰值速度检测胎儿宫内贫血的研究

    Institute of Scientific and Technical Information of China (English)

    凌奕; 金松; 张越青; 南瑞霞; 华少萍; 莫秀兰; 胡春霞; 黄元华

    2011-01-01

    目的:通过对胎儿大脑中动脉血流峰值速度(middle cerebral artery peak systolic velocity MCA-PSV)和胎儿血红蛋白关系的研究,评估胎儿MCA-PSV在预测胎儿贫血中的临床应用价值,为l临床提供一种无创伤的检测胎儿贫血的新方法.方法:采用前瞻性对照研究,正常单胎组85例,正常双胎22例,胎儿贫血高危组50例,所有病例均查脐血血常规测血红蛋白含量.脐穿前1周内做MCA-PSV检测,分析胎儿MCA-PSV和胎儿血红蛋白的关系.评估胎儿MCA-PSV预测胎儿贫血的准确性.结果:①以相应孕周正常值的中位数的倍数MOM值为单位,胎儿MCA-PSV与Hh浓度呈负相关(P<0.001).②MCA-PSV预测轻度贫血灵敏度25%,特异度98%,预测重度贫血的敏感性及特异性均为100%.③重度贫血胎儿MCA-PSV升高早于二维超声异常表现.④正常双胎与单胎MCA-PSV与Hb浓度无显著差异.结论:胎儿大脑中动脉血流峰值速度预测胎儿贫血无创伤,发现早,准确性高,可作为临床胎儿贫血尤其是重度贫血的预测指标.%Objective: To investigate the relationship between fetal haemoglobin (Hb) concentration and fetal middle cerebral artery peak systolic velocity ( MCA - PSV) in fetuses at high risk for anemia, and to establish a noninvasive method to predict fetal anemia. Methods: 85 normal fetuses in control group , 22 twin fetus and 50 high risk fetus in research group were analyzed. Fetal middle cerebral artery peak systolic velocity ( MCA - PSV) were measured within 1 week of blood sampling. Fetal Hb values were obtained by cordocentesis during prenatal diagnosis, before termination of pregnancy or after delivery. For the high risk group monthly Doppler ultrasound commenced at 16 weeks, and continued until blood sampling. Marl - G's data was used as the normal value of Hb and MCA - PSV at each gestafional age. Both MCA- PSV and Hemoglobin concentration were expressed as multiples of the median (MOM) . Results: ① There

  4. Impact Crater with Peak

    Science.gov (United States)

    2002-01-01

    (Released 14 June 2002) The Science This THEMIS visible image shows a classic example of a martian impact crater with a central peak. Central peaks are common in large, fresh craters on both Mars and the Moon. This peak formed during the extremely high-energy impact cratering event. In many martian craters the central peak has been either eroded or buried by later sedimentary processes, so the presence of a peak in this crater indicates that the crater is relatively young and has experienced little degradation. Observations of large craters on the Earth and the Moon, as well as computer modeling of the impact process, show that the central peak contains material brought from deep beneath the surface. The material exposed in these peaks will provide an excellent opportunity to study the composition of the martian interior using THEMIS multi-spectral infrared observations. The ejecta material around the crater can is well preserved, again indicating relatively little modification of this landform since its initial creation. The inner walls of this approximately 18 km diameter crater show complex slumping that likely occurred during the impact event. Since that time there has been some downslope movement of material to form the small chutes and gullies that can be seen on the inner crater wall. Small (50-100 m) mega-ripples composed of mobile material can be seen on the floor of the crater. Much of this material may have come from the walls of the crater itself, or may have been blown into the crater by the wind. The Story When a meteor smacked into the surface of Mars with extremely high energy, pow! Not only did it punch an 11-mile-wide crater in the smoother terrain, it created a central peak in the middle of the crater. This peak forms kind of on the 'rebound.' You can see this same effect if you drop a single drop of milk into a glass of milk. With craters, in the heat and fury of the impact, some of the land material can even liquefy. Central peaks like the one

  5. Preliminary results of ground-motion characteristics

    Directory of Open Access Journals (Sweden)

    Francesca Bozzoni

    2012-10-01

    Full Text Available The preliminary results are presented herein for the engineering applications of the characteristics of the ground motion induced by the May 20, 2012, Emilia earthquake. Shake maps are computed to provide estimates of the spatial distribution of the induced ground motion. The signals recorded at the Mirandola (MRN station, the closest to the epicenter, have been processed to obtain acceleration, velocity and displacement response spectra. Ground-motion parameters from the MRN recordings are compared with the corresponding estimates from recent ground-motion prediction equations, and with the spectra prescribed by the current Italian Building Code for different return periods. The records from the MRN station are used to plot the particle orbit (hodogram described by the waveform. The availability of results from geotechnical field tests that were performed at a few sites in the Municipality of Mirandola prior to this earthquake of May 2012 has allowed preliminary assessment of the ground response. The amplification effects at Mirandola are estimated using fully stochastic site-response analyses. The seismic input comprises seven actual records that are compatible with the Italian code-based spectrum that refers to a 475-year return period. The computed acceleration response spectrum and the associated dispersion are compared to the spectra calculated from the recordings of the MRN station. Good agreement is obtained for periods up to 1 s, especially for the peak ground acceleration. For the other periods, the spectral acceleration of the MRN recordings exceeds that of the computed spectra.

  6. Assessment of potential strong ground motions in the city of Rome

    Directory of Open Access Journals (Sweden)

    L. Malagnini

    1994-06-01

    Full Text Available A methodology is used which combines stochastic generation of random series with a finite-difference technique to estimate the expected horizontal ground motion for the city of Rome as induced by a large earthquake in the Central Apennines. In this approach, source properties and long-path propagation are modelled through observed spectra of ground motion in the region, while the effects of the near-surface geology in the city are simulated by means of a finite-difference technique applied to 2-D models including elastic and anelastic properties of geologic materials and topographic variations. The parameters commonly used for earthquake engineering purposes are estimated from the simulated time histories of horizontal ground motion. We focus our attention on peak ground acceleration and velocity, and on the integral of the squared acceleration and velocity (that are proportional to the Arias intensity and seismic energy flux, respectively. Response spectra are analyzed as well. Parameter variations along 2-D profiles visualize the effects of the small-scale geological heterogeneities and topography irregularities on ground motion in the case of a strong earthquake. Interestingly, the largest amplification of peak ground acceleration and Arias intensity does not necessarily occur at the same sites where peak ground velocity and flux of seismic energy reach their highest values, depending on the frequency band of amplification. A magnitude 7 earthquake at a distance of 100 km results in peak ground accelerations ranging from 30 to 70 gals while peak ground velocities are estimated to vary from 5 to 7 cm/s; moreover, simulated time histories of horizontal ground motion yield amplitudes of 5% damped pseudovelocity response spectra as large as 15-20 cm/s for frequencies from 1to 3 Hz. In this frequency band, the mean value is 7 cm/s for firm sites and ranges from 10 to 13 cm/s for soil sites. All these results are in good agreement with predictions

  7. Predictions of experimentally observed stochastic ground vibrations induced by blasting.

    Science.gov (United States)

    Kostić, Srđan; Perc, Matjaž; Vasović, Nebojša; Trajković, Slobodan

    2013-01-01

    In the present paper, we investigate the blast induced ground motion recorded at the limestone quarry "Suva Vrela" near Kosjerić, which is located in the western part of Serbia. We examine the recorded signals by means of surrogate data methods and a determinism test, in order to determine whether the recorded ground velocity is stochastic or deterministic in nature. Longitudinal, transversal and the vertical ground motion component are analyzed at three monitoring points that are located at different distances from the blasting source. The analysis reveals that the recordings belong to a class of stationary linear stochastic processes with Gaussian inputs, which could be distorted by a monotonic, instantaneous, time-independent nonlinear function. Low determinism factors obtained with the determinism test further confirm the stochastic nature of the recordings. Guided by the outcome of time series analysis, we propose an improved prediction model for the peak particle velocity based on a neural network. We show that, while conventional predictors fail to provide acceptable prediction accuracy, the neural network model with four main blast parameters as input, namely total charge, maximum charge per delay, distance from the blasting source to the measuring point, and hole depth, delivers significantly more accurate predictions that may be applicable on site. We also perform a sensitivity analysis, which reveals that the distance from the blasting source has the strongest influence on the final value of the peak particle velocity. This is in full agreement with previous observations and theory, thus additionally validating our methodology and main conclusions.

  8. Ground-motion modeling of Hayward fault scenario earthquakes, part II: Simulation of long-period and broadband ground motions

    Science.gov (United States)

    Aagaard, Brad T.; Graves, Robert W.; Rodgers, Arthur; Brocher, Thomas M.; Simpson, Robert W.; Dreger, Douglas; Petersson, N. Anders; Larsen, Shawn C.; Ma, Shuo; Jachens, Robert C.

    2010-01-01

    We simulate long-period (T>1.0–2.0 s) and broadband (T>0.1 s) ground motions for 39 scenario earthquakes (Mw 6.7–7.2) involving the Hayward, Calaveras, and Rodgers Creek faults. For rupture on the Hayward fault, we consider the effects of creep on coseismic slip using two different approaches, both of which reduce the ground motions, compared with neglecting the influence of creep. Nevertheless, the scenario earthquakes generate strong shaking throughout the San Francisco Bay area, with about 50% of the urban area experiencing modified Mercalli intensity VII or greater for the magnitude 7.0 scenario events. Long-period simulations of the 2007 Mw 4.18 Oakland earthquake and the 2007 Mw 5.45 Alum Rock earthquake show that the U.S. Geological Survey’s Bay Area Velocity Model version 08.3.0 permits simulation of the amplitude and duration of shaking throughout the San Francisco Bay area for Hayward fault earthquakes, with the greatest accuracy in the Santa Clara Valley (San Jose area). The ground motions for the suite of scenarios exhibit a strong sensitivity to the rupture length (or magnitude), hypocenter (or rupture directivity), and slip distribution. The ground motions display a much weaker sensitivity to the rise time and rupture speed. Peak velocities, peak accelerations, and spectral accelerations from the synthetic broadband ground motions are, on average, slightly higher than the Next Generation Attenuation (NGA) ground-motion prediction equations. We attribute much of this difference to the seismic velocity structure in the San Francisco Bay area and how the NGA models account for basin amplification; the NGA relations may underpredict amplification in shallow sedimentary basins. The simulations also suggest that the Spudich and Chiou (2008) directivity corrections to the NGA relations could be improved by increasing the areal extent of rupture directivity with period.

  9. Effects of soil amplification ratio and multiple wave interference for ground motion due to earthquake

    Institute of Scientific and Technical Information of China (English)

    ZHAO Zhixin; XU Jiren; Ryuji Kubota

    2004-01-01

    Influences on the ground motion simulations by soil amplification effects and multiple seismic wave interferences in the heterogeneous medium are investigated. Detailed velocity structure obtained from the microtremor array survey is adopted in the ground motion simulation. Analyses for amplification ratios of core samples of ten drill holes with 40 m deep in the sedimentary layers show that the soil amplification ratio influences nonlinearly the seismic ground motion. Based on the above analysis results, the ground motion in the heavily damaged zone in the Japanese Kobe earthquake of 1995 is simulated in a digital SH seismic wave model by using the pseudospectral method with the staggered grid RFFT differentiation (SGRFFTD). The simulated results suggest that the heterogeneous velocity structure results in a complicated distribution of the maximum amplitudes of acceleration waveforms with multiple peaks at the surface. Spatial distribution of the maximum amplitudes coincides well with that of collapse ratios of buildings in Kobe. The dual peaks of the collapse ratios away from the earthquake fault coincide well with the double peak amplitudes of simulated seismic acceleration waves also. The cause for the first peak amplitude of the ground motion is attributable to the interference of the secondary surface wave from the bedrock propagating horizontally along the surface sedimentary layer and the body wave from the basin bottom according to analyses of wave snapshots propagating in inhomogeneous structure of the Osaka group layers. The second peak amplitude of the ground motion may be attributive to the interference of the secondary surface wave from the tunneling waves in the shallow sediments and the body wave. It is important for the study on complicated distributions of earthquake damages to investigate influences on the ground motion by soil amplification effects and multiple seismic wave interferences due to the structure. Explorations of the structure to the

  10. The values of multiple dimensional indicators for the prediction of peak angle velocity in idiopathic scoliosis girls%多维度评估对特发性脊柱侧凸进展高峰期的预测价值

    Institute of Scientific and Technical Information of China (English)

    毛赛虎; 史本龙; 孙旭; 刘臻; 朱泽章; 朱锋; 钱邦平; 邱勇

    2015-01-01

    目的:通过多维度评估特发性脊柱侧凸(idiopathic scoliosis,IS)患儿侧凸进展高峰期(peak angle velocity,PAV)的相应成熟度指标,探讨其对PAV的预测价值.方法:选取初诊时月经未至、Risser征0级,Y三角软骨未闭、以半年为周期随访至少5次且进展超过5°的女性IS患儿30例,初诊年龄为10.8±1.5岁(7.8~12.1岁).随访时收集及测量的指标包括实足年龄、Y三角软骨闭合状态、Risser征、身高、主弯Cobb角和骨龄(dig-ital skeletal age,DSA)评分.计算每个随访周期内的身高增长速度(height velocity,HV)和Cobb角增长速度(angle velocity,AV).采用逻辑回归分析各维度指标对PAV的预测价值.结果:30例患儿的PAV年龄为11.8±1.3岁(10~15岁),PAV时的身高为150.7:±4.8cm,DSA评分为479.4±56.5,主弯Cobb角为26.5°±7.2°,HV为8.3±3.7cm/年,AV为7.8°±5.2°/年.PAV主要发生于Risser征0级(80.0%)和1级(20.0%).逻辑回归分析结果显示PAV的发生与实足年龄介于11~13岁之间(OR=3.166,P=0.032)、Y软骨闭合(OR=6.365,P<0.01)、Risser征0级(OR=12.963,P<0.01)、DSA评分介于400~500之间(OR=10.758,P=0.011)、HV>6cm/年(OR=4.346,P=0.025)、Cobb角>30°(OR=9.535,P=0.013)呈显著相关.结论:年龄介于11~13岁之间、Risser征0级伴Y软骨闭合、DSA评分介于400~500之间、HV>6cm/年和Cobb角>30°为女性IS患儿侧凸PAV的高危因素,可用于预测PAV的发生,评估侧凸进展风险.

  11. Geyser Peak Cabernet Sauvignon

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    <正>年份:2000产地:美国加州Sonoma County售价:$196 Geyser Peak(盖世峰)成立于1880年,是美国军有的过百岁葡萄酒庄。可惜美国酿制葡萄酒的技术在近三四十年才有突破,历史再悠久也没有太多帮助近二十年Geyser Peak就努力改进,希望迎头赶上其它加州新秀的水平,1989年,他们就聘请了澳洲Penfolds酒庄的酿酒师Daryl Groom,让旗下出品多了一份澳洲式的"霎眼娇"风格。2003年,Geyser Peak更在International Wine & Spirit Competition赢得"最佳美国葡萄酒生产商"大奖。

  12. Physical limits on ground motion at Yucca Mountain

    Science.gov (United States)

    Andrews, D.J.; Hanks, T.C.; Whitney, J.W.

    2007-01-01

    Physical limits on possible maximum ground motion at Yucca Mountain, Nevada, the designated site of a high-level radioactive waste repository, are set by the shear stress available in the seismogenic depth of the crust and by limits on stress change that can propagate through the medium. We find in dynamic deterministic 2D calculations that maximum possible horizontal peak ground velocity (PGV) at the underground repository site is 3.6 m/sec, which is smaller than the mean PGV predicted by the probabilistic seismic hazard analysis (PSHA) at annual exceedance probabilities less than 10-6 per year. The physical limit on vertical PGV, 5.7 m/sec, arises from supershear rupture and is larger than that from the PSHA down to 10-8 per year. In addition to these physical limits, we also calculate the maximum ground motion subject to the constraint of known fault slip at the surface, as inferred from paleoseismic studies. Using a published probabilistic fault displacement hazard curve, these calculations provide a probabilistic hazard curve for horizontal PGV that is lower than that from the PSHA. In all cases the maximum ground motion at the repository site is found by maximizing constructive interference of signals from the rupture front, for physically realizable rupture velocity, from all parts of the fault. Vertical PGV is maximized for ruptures propagating near the P-wave speed, and horizontal PGV is maximized for ruptures propagating near the Rayleigh-wave speed. Yielding in shear with a Mohr-Coulomb yield condition reduces ground motion only a modest amount in events with supershear rupture velocity, because ground motion consists primarily of P waves in that case. The possibility of compaction of the porous unsaturated tuffs at the higher ground-motion levels is another attenuating mechanism that needs to be investigated.

  13. Optimal ground motion intensity measure for long-period structures

    Science.gov (United States)

    Guan, Minsheng; Du, Hongbiao; Cui, Jie; Zeng, Qingli; Jiang, Haibo

    2015-10-01

    This paper aims to select the most appropriate ground motion intensity measure (IM) that is used in selecting earthquake records for the dynamic time history analysis of long-period structures. For this purpose, six reinforced concrete frame-core wall structures, designed according to modern seismic codes, are studied through dynamic time history analyses with a set of twelve selected earthquake records. Twelve IMs and two types of seismic damage indices, namely, the maximum seismic response-based and energy-based parameters, are chosen as the examined indices. Selection criteria such as correlation, efficiency, and proficiency are considered in the selection process. The optimal IM is identified by means of a comprehensive evaluation using a large number of data of correlation, efficiency, and proficiency coefficients. Numerical results illustrate that peak ground velocity is the optimal one for long-period structures and peak ground displacement is also a close contender. As compared to previous reports, the spectral-correlated parameters can only be taken as moderate IMs. Moreover, the widely used peak ground acceleration in the current seismic codes is considered inappropriate for long-period structures.

  14. Sodium Velocity Maps on Mercury

    Science.gov (United States)

    Potter, A. E.; Killen, R. M.

    2011-01-01

    The objective of the current work was to measure two-dimensional maps of sodium velocities on the Mercury surface and examine the maps for evidence of sources or sinks of sodium on the surface. The McMath-Pierce Solar Telescope and the Stellar Spectrograph were used to measure Mercury spectra that were sampled at 7 milliAngstrom intervals. Observations were made each day during the period October 5-9, 2010. The dawn terminator was in view during that time. The velocity shift of the centroid of the Mercury emission line was measured relative to the solar sodium Fraunhofer line corrected for radial velocity of the Earth. The difference between the observed and calculated velocity shift was taken to be the velocity vector of the sodium relative to Earth. For each position of the spectrograph slit, a line of velocities across the planet was measured. Then, the spectrograph slit was stepped over the surface of Mercury at 1 arc second intervals. The position of Mercury was stabilized by an adaptive optics system. The collection of lines were assembled into an images of surface reflection, sodium emission intensities, and Earthward velocities over the surface of Mercury. The velocity map shows patches of higher velocity in the southern hemisphere, suggesting the existence of sodium sources there. The peak earthward velocity occurs in the equatorial region, and extends to the terminator. Since this was a dawn terminator, this might be an indication of dawn evaporation of sodium. Leblanc et al. (2008) have published a velocity map that is similar.

  15. The formation of peak rings in large impact craters.

    Science.gov (United States)

    Morgan, Joanna V; Gulick, Sean P S; Bralower, Timothy; Chenot, Elise; Christeson, Gail; Claeys, Philippe; Cockell, Charles; Collins, Gareth S; Coolen, Marco J L; Ferrière, Ludovic; Gebhardt, Catalina; Goto, Kazuhisa; Jones, Heather; Kring, David A; Le Ber, Erwan; Lofi, Johanna; Long, Xiao; Lowery, Christopher; Mellett, Claire; Ocampo-Torres, Rubén; Osinski, Gordon R; Perez-Cruz, Ligia; Pickersgill, Annemarie; Poelchau, Michael; Rae, Auriol; Rasmussen, Cornelia; Rebolledo-Vieyra, Mario; Riller, Ulrich; Sato, Honami; Schmitt, Douglas R; Smit, Jan; Tikoo, Sonia; Tomioka, Naotaka; Urrutia-Fucugauchi, Jaime; Whalen, Michael; Wittmann, Axel; Yamaguchi, Kosei E; Zylberman, William

    2016-11-18

    Large impacts provide a mechanism for resurfacing planets through mixing near-surface rocks with deeper material. Central peaks are formed from the dynamic uplift of rocks during crater formation. As crater size increases, central peaks transition to peak rings. Without samples, debate surrounds the mechanics of peak-ring formation and their depth of origin. Chicxulub is the only known impact structure on Earth with an unequivocal peak ring, but it is buried and only accessible through drilling. Expedition 364 sampled the Chicxulub peak ring, which we found was formed from uplifted, fractured, shocked, felsic basement rocks. The peak-ring rocks are cross-cut by dikes and shear zones and have an unusually low density and seismic velocity. Large impacts therefore generate vertical fluxes and increase porosity in planetary crust. Copyright © 2016, American Association for the Advancement of Science.

  16. The formation of peak rings in large impact craters

    Science.gov (United States)

    Morgan, Joanna V.; Gulick, Sean P. S.; Bralower, Timothy; Chenot, Elise; Christeson, Gail; Claeys, Philippe; Cockell, Charles; Collins, Gareth S.; Coolen, Marco J. L.; Ferrière, Ludovic; Gebhardt, Catalina; Goto, Kazuhisa; Jones, Heather; Kring, David A.; Le Ber, Erwan; Lofi, Johanna; Long, Xiao; Lowery, Christopher; Mellett, Claire; Ocampo-Torres, Rubén; Osinski, Gordon R.; Perez-Cruz, Ligia; Pickersgill, Annemarie; Poelchau, Michael; Rae, Auriol; Rasmussen, Cornelia; Rebolledo-Vieyra, Mario; Riller, Ulrich; Sato, Honami; Schmitt, Douglas R.; Smit, Jan; Tikoo, Sonia; Tomioka, Naotaka; Urrutia-Fucugauchi, Jaime; Whalen, Michael; Wittmann, Axel; Yamaguchi, Kosei E.; Zylberman, William

    2016-11-01

    Large impacts provide a mechanism for resurfacing planets through mixing near-surface rocks with deeper material. Central peaks are formed from the dynamic uplift of rocks during crater formation. As crater size increases, central peaks transition to peak rings. Without samples, debate surrounds the mechanics of peak-ring formation and their depth of origin. Chicxulub is the only known impact structure on Earth with an unequivocal peak ring, but it is buried and only accessible through drilling. Expedition 364 sampled the Chicxulub peak ring, which we found was formed from uplifted, fractured, shocked, felsic basement rocks. The peak-ring rocks are cross-cut by dikes and shear zones and have an unusually low density and seismic velocity. Large impacts therefore generate vertical fluxes and increase porosity in planetary crust.

  17. Application of neural network model with partial least-square regression in prediction of peak velocity of blasting vibration%偏最小二乘回归神经网络模型在爆破振动峰值速度预测中的应用

    Institute of Scientific and Technical Information of China (English)

    史秀志; 武永猛; 唐礼忠; 黄宣东

    2013-01-01

    神经网络方法是处理非线性问题的有力工具,但当输入变量较多,输入变量间存在的多重共线性性会使得网络的建模效率下降.偏最小二乘回归方法通过提取对因变量解释性较强的成分,能较好地克服变量间的多重共线性.将两种方法相结合,建立了爆破振动峰值速度的偏最小二乘回归BP神经网络预测模型.利用偏最小二乘法对影响爆破振动的因素进行分析,提取出3个新综合变量,使BP网络的输入层节点数目由9个减少到3个,简化了网络结构,提高了计算速度,增强了网络稳定性.分析结果表明,耦合模型的平均预测误差为7.62%,相较于传统的萨氏公式及标准的BP神经网络模型其预测精度有了明显提高.%The neural network method is a powerful tool to deal with problems of nonlinearity,but when input variables are so many,the multicollinearity among variables can lead to a lower modeling efficiency.The partial leastsquare regression (PLSR) method can extract components with better interpretation to the dependent variables,thus it can overcome the multicollinearity among variables.Here,by combining the two methods,a BP neural network prediction model for peak velocity of blasting vibration based on PLSR was established.The affecting factors on blasting vibration were analyzed by means of PLSR,and three new synthesis variables were extracted.Since the input layer nodes of the BP neural network decreased from nine to three,the network structure was simplified and the netweork became,more efficient and more stable.The results showed that the average prediction error of the combined model is 7.62%,the new model is more accurate than Sadaovsk formula and a normal BP neural network modelbe.

  18. Peak mass and dynamical friction

    CERN Document Server

    Del Popolo, A

    1995-01-01

    We show how the results given by several authors relatively to the mass of a density peak are changed when small scale substructure induced by dynamical friction are taken into account. The peak mass obtained is compared to the result of Peacock \\& Heavens (1990) and to the peak mass when dynamical friction is absent to show how these effects conspire to reduce the mass accreted by the peak.

  19. Peak capacity in unidimensional chromatography.

    Science.gov (United States)

    Neue, Uwe Dieter

    2008-03-14

    The currently existing knowledge about peak capacity in unidimensional separations is reviewed. The majority of the paper is dedicated to reversed-phase gradient chromatography, covering specific techniques as well as the subject of peak compression. Other sections deal with peak capacity in isocratic chromatography, size-exclusion chromatography and ion-exchange chromatography. An important topic is the limitation of the separation power and the meaning of the concept of peak capacity for real applications.

  20. Blind shear-wave velocity comparison of ReMi and MASW results with boreholes to 200 m in Santa Clara Valley: Implications for earthquake ground-motion assessment

    Science.gov (United States)

    Stephenson, W.J.; Louie, J.N.; Pullammanappallil, S.; Williams, R.A.; Odum, J.K.

    2005-01-01

    Multichannel analysis of surface waves (MASW) and refraction microtremor (ReMi) are two of the most recently developed surface acquisition techniques for determining shallow shear-wave velocity. We conducted a blind comparison of MASW and ReMi results with four boreholes logged to at least 260 m for shear velocity in Santa Clara Valley, California, to determine how closely these surface methods match the downhole measurements. Average shear-wave velocity estimates to depths of 30, 50, and 100 m demonstrate that the surface methods as implemented in this study can generally match borehole results to within 15% to these depths. At two of the boreholes, the average to 100 m depth was within 3%. Spectral amplifications predicted from the respective borehole velocity profiles similarly compare to within 15 % or better from 1 to 10 Hz with both the MASW and ReMi surface-method velocity profiles. Overall, neither surface method was consistently better at matching the borehole velocity profiles or amplifications. Our results suggest MASW and ReMi surface acquisition methods can both be appropriate choices for estimating shearwave velocity and can be complementary to each other in urban settings for hazards assessment.

  1. Experimental Investigation of Rotorcraft Outwash in Ground Effect

    Science.gov (United States)

    Tanner, Philip E.; Overmeyer, Austin D.; Jenkins, Luther N.; Yao, Chung-Sheng; Bartram, Scott M.

    2015-01-01

    The wake characteristics of a rotorcraft are affected by the proximity of a rotor to the ground surface, especially during hover. Ground effect is encountered when the rotor disk is within a distance of a few rotor radii above the ground surface and results in an increase in thrust for a given power relative to that same power condition with the rotor out of ground effect. Although this phenomenon has been highly documented and observed since the beginning of the helicopter age, there is still a relatively little amount of flow-field data existing to help understand its features. Joint Army and NASA testing was conducted at NASA Langley Research Center using a powered rotorcraft model in hover at various rotor heights and thrust conditions in order to contribute to the complete outwash data set. The measured data included outwash velocities and directions, rotor loads, fuselage loads, and ground pressures. The researchers observed a linear relationship between rotor height and percent download on the fuselage, peak mean outwash velocities occurring at radial stations between 1.7 and 1.8 r/R regardless of rotor height, and the measurement azimuthal dependence of the outwash profile for a model incorporating a fuselage. Comparisons to phase-locked PIV data showed similar contours but a more contracted wake boundary for the PIV data. This paper describes the test setup and presents some of the averaged results.

  2. Near-surface seismic velocity changes in a salt-dominated environment due to shaking and thermal stressing

    Science.gov (United States)

    Richter, Tom; Sens-Schönfelder, Christoph; Kind, Rainer; Asch, Günter

    2014-05-01

    We report on results from a seismic station of the Integrated Plate Boundary Observatory Chile (IPOC) showing a superior sensitivity of seismic velocity changes in the surrounding medium to shaking and temperature. 5 years of daily autocorrelations of the IPOC network are analyzed with passive image interferometry. Due to the particular geological conditions we observe a high sensitivity of the medium around the station near Patache (PATCX) resulting in annual periodic velocity variations and temporary velocity reductions induced by ground shaking. We observe a linear relationship between the amplitude of the velocity reductions and the peak ground acceleration (PGA) of nearby earthquakes at station PATCX. Although velocity reductions are also observed at other stations of the IPOC array for the Mw 7.7 Tocopilla earthquake a clear relationship between the PGA of this earthquake and the induced velocity reductions at the different stations is not visible. Furthermore, we observe velocity variations with an annual and daily period. We present different arguments that these periodic changes are caused by variations of the atmospheric temperature. In this context we construct a model that starts at observed temperature variations and evaluates thermal stresses induced by the temperature gradients. Using radiative transfer based sensitivity kernels and third order elastic constants we relate the distribution of thermal stress in the subsurface to observable time shifts of coda waves. The model is able to reproduce the major features confirming that stress changes in the subsurface can be detected with noise based monitoring.

  3. Measuring isovolumic contraction peak velocity at the tricuspid annulus by Doppler tissue imaging to ;assess right heart function in patients with pulmonary hypertension%组织多普勒成像测量三尖瓣环等容收缩期峰值速度在评价肺高压患者右心功能中的应用

    Institute of Scientific and Technical Information of China (English)

    魏丽群; 李越; 王广义; 朱航; 王娟; 翟亚楠

    2014-01-01

    目的:探讨组织多普勒成像(TDI)技术测量三尖瓣环等容收缩期峰值速度(IVCv)评价肺动脉高压(PH)患者右心功能的可行性和临床价值。方法对41例疑诊PH患者采用组织多普勒测量IVCv,同时超声检测右心收缩功能常用参数:右心室侧壁三尖瓣环平面位移(TAPSE)、右心室侧壁三尖瓣环收缩期峰值运动速度(PSv)、右心室面积变化率(RVFCA)。另外,右心导管(RHC)检测肺动脉压力。根据肺动脉收缩压(PASP)将患者分为无PH组,轻度PH组,中度PH组,重度PH组4组,比较各组之间IVCv是否存在差异,受试者操作特性(ROC)曲线分析IVCv对右心功能评价的敏感度和特异度,以及IVCv与常用右心收缩功能参数和肺动脉压力的相关性。结果 IVCv与TAPSE、PSv、RVFAC呈正相关,r值分别为0.341、0.714、0.557,P值均<0.001。IVCv与PASP呈负相关,r值为-0.739,P<0.05。无PH组、轻度PH组、中度PH组、重度PH组的IVCv分别为(13.83±3.56)cm/s、(10.11±1.36)cm/s、(8.70±2.21)cm/s、(5.80±1.03)cm/s。重度PH组IVCv显著低于中度、轻度及无PH组(P值均<0.05),无PH组IVCv显著高于轻度、中度PH组(P值均<0.01);轻度PH组与中度PH组IVCv差异无统计学意义(P>0.05)。以常用的超声心动图评估右心室收缩功能参数的低限(TAPSE<16 mm,PSv<10 cm/s,RVFA<35%)为标准,选用IVCv<6.5 cm/s作为阈值,诊断右心室收缩功能减低的敏感度分别是91%、96%、87%,特异度分别是70%、53%、77%。结论组织多普勒测量三尖瓣环等容收缩期峰值速度是一项较新、能客观反映右心室收缩功能的参数,值得进一步研究应用。%Objective To evaluate the feasibility and accuracy of the isovolumic contraction peak velocity (IVCv) of right heart function in patients with pulmonary hypertension (PH) by echocardiography and Doppler tissue

  4. Solar Cycle 24: is the peak coming?

    CERN Document Server

    Sello, Stefano

    2012-01-01

    Solar cycle activity forecasting, mainly its magnitude and timing, is an essential issue for numerous scientific and technological applications: in fact, during an active solar period, many strong eruptions occur on the Sun with increasing frequency, such as flares, coronal mass ejections, high velocity solar wind photons and particles, which can severely affect the Earth's ionosphere and the geomagnetic field, with impacts on the low atmosphere. Thus it is very important to develop reliable solar cycle prediction methods for the incoming solar activity. The current solar cycle 24 appeared unusual from many points of view: an unusually extended minimum period, and a global low activity compared to those of the previous three or four cycles. Currently, there are many different evidences that the peak in the northern hemisphere already occurred at 2011.6 but not yet in the southern hemisphere. In this brief note we update the peak prediction and its timing, based on the most recent observations.

  5. Ground motion modeling of Hayward fault scenario earthquakes II:Simulation of long-period and broadband ground motions

    Energy Technology Data Exchange (ETDEWEB)

    Aagaard, B T; Graves, R W; Rodgers, A; Brocher, T M; Simpson, R W; Dreger, D; Petersson, N A; Larsen, S C; Ma, S; Jachens, R C

    2009-11-04

    We simulate long-period (T > 1.0-2.0 s) and broadband (T > 0.1 s) ground motions for 39 scenarios earthquakes (Mw 6.7-7.2) involving the Hayward, Calaveras, and Rodgers Creek faults. For rupture on the Hayward fault we consider the effects of creep on coseismic slip using two different approaches, both of which reduce the ground motions compared with neglecting the influence of creep. Nevertheless, the scenario earthquakes generate strong shaking throughout the San Francisco Bay area with about 50% of the urban area experiencing MMI VII or greater for the magnitude 7.0 scenario events. Long-period simulations of the 2007 Mw 4.18 Oakland and 2007 Mw 4.5 Alum Rock earthquakes show that the USGS Bay Area Velocity Model version 08.3.0 permits simulation of the amplitude and duration of shaking throughout the San Francisco Bay area, with the greatest accuracy in the Santa Clara Valley (San Jose area). The ground motions exhibit a strong sensitivity to the rupture length (or magnitude), hypocenter (or rupture directivity), and slip distribution. The ground motions display a much weaker sensitivity to the rise time and rupture speed. Peak velocities, peak accelerations, and spectral accelerations from the synthetic broadband ground motions are, on average, slightly higher than the Next Generation Attenuation (NGA) ground-motion prediction equations. We attribute at least some of this difference to the relatively narrow width of the Hayward fault ruptures. The simulations suggest that the Spudich and Chiou (2008) directivity corrections to the NGA relations could be improved by including a dependence on the rupture speed and increasing the areal extent of rupture directivity with period. The simulations also indicate that the NGA relations may under-predict amplification in shallow sedimentary basins.

  6. Site response zones and short-period earthquake ground motion projections for the Las Vegas Basin

    Indian Academy of Sciences (India)

    Barbara Luke; Ying Liu

    2008-11-01

    A deterministic seismic hazard analysis was conducted to address the effect of local soil conditions on earthquake-induced strong ground motion in the Las Vegas Basin, Nevada (US). Using a large geological and geotechnical database, two response units were defined: a fine-grained unit, predominantly clay; and a coarse-grained unit, predominantly gravel. A moderate number of high-quality shallow shear wave velocity measurements were collected from which characteristic shear wave velocity profiles were developed for each response unit. An equivalent-linear one-dimensional site response model was used. The model was calibrated using a basin-wide, small-strain ground motion database. Calibration tests showed that ground motion projections become increasingly conservative with increasing ground-motion amplitude. Projections were overconservative for the coarsegrained response unit, likely due to the sparseness of the velocity database. For the earthquake response analyses, historical ground motions were used to model characteristic ‘bedrock’ motion for earthquakes on 10 faults judged to be critical. Response spectral envelopes were generated for each unit through Monte-Carlo simulations. For the fine-grained response unit, 95th percentile peak ground acceleration, peak spectral acceleration and predominant period were 310 cm/s2, 1100cm/s2, and 0.29 s, respectively. With respect to codified design spectra, projections are lower at short periods and higher at long periods. Projections of peak spectral accelerations for the coarsegrained response unit, were more than double that of codified spectra; however, they are believed to be overconservative. Near-fault effects and basin-edge effects, though potentially important, were not considered in these analyses.

  7. Doppler flow velocity waveforms in the fetal cardiac outflow tract: Reproducibility of waveform recording and analysis

    NARCIS (Netherlands)

    I.A.L. Groenenberg (Irene); W.C.J. Hop (Wim); J.W. Wladimiroff (Juriy)

    1991-01-01

    markdownabstract__Abstract__ Reproducibility of flow velocity waveform recording and analysis was studied at fetal cardiac level (ductus arteriosus, pulmonary artery and ascending aorta) in 42 normal pregnancies. The flow velocity parameters studied were the peak systolic velocity (PSV),

  8. Characteristics of the strong ground motion from the 24th August 2016 Amatrice earthquake

    Directory of Open Access Journals (Sweden)

    Marta Pischiutta

    2016-12-01

    Full Text Available The 2016 August 24 Amatrice earthquake occurred at 03:36 local time in central Apennines Italy with an epicentre at 43.36°E, 38.76°N, Istituto Nazionale di Geofisica e Vulcanologia (INGV, few kilometers north of the city of Amatrice. The earthquake ruptured a North-West (NW–South-East (SE oriented normal fault dipping toward the South-West (SW (Scognamiglio et al., 2016. High values of peak ground acceleration (~0.45 g were observed close to Amatrice (3 stations being few kilometer distances from the fault. The present study presents an overview of the main features of the seismic ground shaking during the Amatrice earthquake. We analyze the ground motion characteristics of the main shock in terms of peak ground acceleration (PGA, peak ground velocity (PGV and spectral accelerations (SA, 5 per cent of critical damping. In order to understand the characteristics of the ground motions induced by Amatrice earthquake, we also study the source-related effects relative to the fault rupture directivity.

  9. Comprehensive observation and modeling of earthquake and temperature-related seismic velocity changes in northern Chile with passive image interferometry

    Science.gov (United States)

    Richter, Tom; Sens-Schönfelder, Christoph; Kind, Rainer; Asch, Günter

    2014-06-01

    We report on earthquake and temperature-related velocity changes in high-frequency autocorrelations of ambient noise data from seismic stations of the Integrated Plate Boundary Observatory Chile project in northern Chile. Daily autocorrelation functions are analyzed over a period of 5 years with passive image interferometry. A short-term velocity drop recovering after several days to weeks is observed for the Mw 7.7 Tocopilla earthquake at most stations. At the two stations PB05 and PATCX, we observe a long-term velocity decrease recovering over the course of around 2 years. While station PB05 is located in the rupture area of the Tocopilla earthquake, this is not the case for station PATCX. Station PATCX is situated in an area influenced by salt sediment in the vicinity of Salar Grande and presents a superior sensitivity to ground acceleration and periodic surface-induced changes. Due to this high sensitivity, we observe a velocity response of several regional earthquakes at PATCX, and we can show for the first time a linear relationship between the amplitude of velocity drops and peak ground acceleration for data from a single station. This relationship does not hold true when comparing different stations due to the different sensitivity of the station environments. Furthermore, we observe periodic annual velocity changes at PATCX. Analyzing data at a temporal resolution below 1 day, we are able to identify changes with a period of 24 h, too. The characteristics of the seismic velocity with annual and daily periods indicate an atmospheric origin of the velocity changes that we confirm with a model based on thermally induced stress. This comprehensive model explains the lag time dependence of the temperature-related seismic velocity changes involving the distribution of temperature fluctuations, the relationship between temperature, stress and velocity change, plus autocorrelation sensitivity kernels.

  10. PEAK SHAVING CONSIDERING STREAMFLOW UNCERTAINTIES

    African Journals Online (AJOL)

    user

    The main thrust of this paper is peak shaving with a Stochastic hydro model. In peak sharing, the amount of ... Fuel cost at a conventional hydro plant is nil. On the other hand, the ... s(k) = spill at the hydro plant in period k. I(k) = loss due to ...

  11. Rupture complexity of the M6.0 Amatrice Earthquake probed by 1D and 3D velocity models

    Science.gov (United States)

    Tinti, E.; Scognamiglio, L.; Casarotti, E.; Magnoni, F.; Quintiliani, M.; Michelini, A.; Cocco, M.

    2016-12-01

    On 24th August 2016 a ML 6.0 earthquake occurred in the Central Apennines (Italy) between Amatrice and Norcia causing heavy damages and nearly 300 fatalities. The main shock and most of the aftershocks show NNW-SSE striking focal mechanisms in agreement with the current NE-SW extensional tectonic setting of Central Apennines. To image the rupture history of the Amatrice earthquake, we invert the ground velocity time histories obtained from 26 three components strong motion accelerometers located within 45 km from the fault, filtered between 0.02 and 0.5 Hz. The inferred slip distribution is heterogeneous and characterized by two shallow slip patches located up-dip and NW from the hypocenter. The rupture history shows a bilateral propagation and a relatively high rupture velocity (3.1 km/s), producing evident directivity effects both N-NW and SE of the hypocenter and characterizing the recorded near-source peak ground motions. The retrieved rupture model provides a good fit to observed ground velocities up to 1 Hz, corroborating the contribution of rupture directivity and slip heterogeneity to ground shaking and damage pattern. We highlight that fault dimensions and peak slip values are relatively large for a moderate-magnitude earthquake. Finally, we have performed a forward modeling of seismic wave propagation in a 3D crustal model, using the imaged rupture history as the source model, to verify the effects of topography and velocity model on the calculated ground motions, and interpret the inferred source heterogeneity.

  12. How to use your peak flow meter

    Science.gov (United States)

    Peak flow meter - how to use; Asthma - peak flow meter; Reactive airway disease - peak flow meter; Bronchial asthma - peak flow meter ... If your airways are narrowed and blocked due to asthma, your peak flow values drop. You can ...

  13. Aerobic power and peak power of elite America's Cup sailors.

    Science.gov (United States)

    Neville, Vernon; Pain, Matthew T G; Folland, Jonathan P

    2009-05-01

    Big-boat yacht racing is one of the only able bodied sporting activities where standing arm-cranking ('grinding') is the primary physical activity. However, the physiological capabilities of elite sailors for standing arm-cranking have been largely unreported. The purpose of the study was to assess aerobic parameters, VO(2peak) and onset of blood lactate (OBLA), and anaerobic performance, torque-crank velocity and power-crank velocity relationships and therefore peak power (P (max)) and optimum crank-velocity (omega(opt)), of America's Cup sailors during standing arm-cranking. Thirty-three elite professional sailors performed a step test to exhaustion, and a subset of ten grinders performed maximal 7 s isokinetic sprints at different crank velocities, using a standing arm-crank ergometer. VO(2peak) was 4.7 +/- 0.5 L/min (range 3.6-5.5 L/min) at a power output of 332 +/- 44 W (range 235-425 W). OBLA occurred at a power output of 202 +/- 31 W (61% of W(max)) and VO(2) of 3.3 +/- 0.4 L/min (71% of VO(2peak)). The torque-crank velocity relationship was linear for all participants (r = 0.9 +/- 0.1). P (max) was 1,420 +/- 37 W (range 1,192-1,617 W), and omega(opt) was 125 +/- 6 rpm. These data are among the highest upper-body anaerobic and aerobic power values reported. The unique nature of these athletes, with their high fat-free mass and specific selection and training for standing arm cranking, likely accounts for the high values. The influence of crank velocity on peak power implies that power production during on-board 'grinding' may be optimised through the use of appropriate gear-ratios and the development of efficient gear change mechanisms.

  14. Ground Attenuation of Railroad Noise

    DEFF Research Database (Denmark)

    Makarewicz, R.; Rasmussen, Karsten Bo; Kokowski, P.

    1996-01-01

    The influence of ground effect on railroad noise is described using the concept of the peak A-weighted sound exposure level, and A-weighted sound exposure level. The train is modelled by a continuous line of incoherent point sources that have a cosine directivity. The ground effect is included by...

  15. Lightning return stroke velocities in the thunderstorm research international program (TRIP)

    Science.gov (United States)

    Idone, Vincent P.; Orville, Richard E.

    1982-06-01

    We have used high-speed streaking photographic techniques to time-resolve the luminous components of cloud-to-ground lightning flashes. Two-dimensional return stroke velocities have been measured for 63 strokes representing, we believe, the largest set of return stroke velocity measurements obtained to date. All recordings were made during our participation in the Thunderstorm Reseach International Program conducted at the Kennedy Space Center, Florida, during the summers of 1977 and 1978 and at the Langmuir Laboratory near Socorro, New Mexico, during the summer of 1979. The mean return stroke velocity, near ground (channel length ≤1.3 km), was found to be 11×107 m/s, with a maximum relative error estimate in most cases of 35% or less. The distribution of velocities peaks strongly at approximately 9×107 m/s. Thirty-two of the 63 values (51%) fall within the interval of 8-12 × 107 m/s. The range of observed velocities spans the interval of 2.9-24×107 m/s. Based on the presence of branches in the time-resolved recordings, 17 strokes are considered to be first return strokes, with a mean velocity, near ground, of 9.6×107 m/s. The mean velocity for subsequent strokes is 12×107 m/s. A further breakdown of the results for Florida and New Mexico, respectively, reveals mean first return stroke velocities of 6.6×107 m/s and 15 × 107 m/s as well as mean subsequent stroke velocities of 11×107 m/s and 13 × 107 m/s. Velocity variations for 17 of the best events are presented, with the return stroke velocity observed to decrease with height in every case except one. The velocity reduction can be substantial; velocities in upper channel lengths were often reduced by 25% or more relative to velocities near ground, even for subsequent strokes. The variation of velocity between strokes in multistroke flashes was found to be significant in some cases and minor in others. The results of this study are compared with the earlier major works of Schonland and of Mc

  16. Development of intermediate scale structure near the peak of the F region within an equatorial plasma bubble

    Science.gov (United States)

    Bhattacharyya, A.; Kakad, B.; Sripathi, S.; Jeeva, K.; Nair, K. U.

    2014-04-01

    Scintillation observations are used to study the evolution of intermediate scale (~100 m-few kilometers) irregularities through growth of the Rayleigh-Taylor (R-T) instability on the bottom side of the post-sunset equatorial F region during magnetically quiet periods. Amplitude scintillations on a VHF signal from a geostationary satellite, recorded by spaced receivers at an equatorial station, are used to compute as a function of local time: (1) the coherence scale length for spatial variations of intensity in the ground scintillation pattern, which is linked with the spectrum of the intermediate scale irregularities near the peak of the equatorial F region that contribute the most to the observed scintillations; and (2) the "random velocity", which accounts for the de-correlation of the spaced receiver signals. The relationship between the coherence scale length and the random velocity for saturated scintillations at different local times suggests that (1) the random velocity is linked with fluctuations in the drift velocity of the irregularities caused by the perturbation electric fields associated with the R-T instability rather than structural changes in the intermediate scale irregularities, (2) the spectrum of intermediate scale irregularities in the equatorial F peak region tends to be shallowest after the decay of the perturbation electric fields associated with the R-T instability, and (3) evolution of intermediate-scale irregularity spectrum in the equatorial plasma bubble near the equatorial F region peak depends on season and solar flux. These have implications for observation of low-latitude L-band scintillations.

  17. Doppler peaks from active perturbations

    CERN Document Server

    Magueijo, J; Coulson, D; Ferreira, P; Magueijo, Joao; Albrecht, Andreas; Coulson, David; Ferreira, Pedro

    1995-01-01

    We examine how the qualitative structure of the Doppler peaks in the angular power spectrum of the cosmic microwave anisotropy depends on the fundamental nature of the perturbations which produced them. The formalism of Hu and Sugiyama is extended to treat models with cosmic defects. We discuss how perturbations can be ``active'' or ``passive'' and ``incoherent'' or ``coherent'', and show how causality and scale invariance play rather different roles in these various cases. We find that the existence of secondary Doppler peaks and the rough placing of the primary peak unambiguously reflect these basic properties.

  18. Soft Soil Site Characterization on the Coast of Yantai and Its Effect on Ground Motion Parameters

    Institute of Scientific and Technical Information of China (English)

    Lü Yuejun; Tang Rongyu; Peng Yanju

    2005-01-01

    According to the Chinese GB50011-2001 code and the recommended provisions of FEMANEHRP and EUROCODE 8, by using shear wave velocity and borehole data, the site classification is evaluated for a typical soft soil site on the Yantai seacoast. The site seismic ground motion effect is analyzed and the influence of the coastal soil on design ground motion parameters is discussed. The results show that the brief site classification can not represent the real conditions of a soft soil site; the soft soil on the coast has a remarkable impact on the magnitude and spectrum of ground motion acceleration. The magnification on peak acceleration is bigger, however, due to the nonlinear deformation of the soil. The magnification is reduced nonlinearly with the increase of input ground motion; the spectrum is broadened and the characteristic period elongated on the soft soil site.

  19. Ground motion parameters of Shillong plateau: One of the most seismically active zones of northeastern India

    Institute of Scientific and Technical Information of China (English)

    Saurabh Baruah; Santanu Baruah; Naba Kumar Gogoi; Olga Erteleva; Felix Aptikaev; J.R.Kayal

    2009-01-01

    Strong ground motion parameters for Shillong plateau of northeastern India are examined. Empirical relations are obtained for main parameters of ground motions as a function of earthquake magnitude, fault type, source depth, velocity characterization of medium and distance. Correlation between ground motion parameters and characteristics of seismogenic zones are established. A new attenuation relation for peak ground acceleration is developed, which predicts higher expected PGA in the region. Parameters of strong motions, particularly the predominant periods and duration of vibrations, depend on the morphology of the studied area. The study measures low estimates of logarithmic width in Shillong plateau. The attenuation relation estimated for pulse width critically indicates increased pulse width dependence on the logarithmic distance which accounts for geometrical spreading and anelastic attenuation.

  20. Experimental investigation of transverse velocity estimation using cross-correlation

    DEFF Research Database (Denmark)

    Bjerngaard, Rasmus; Jensen, Jørgen Arendt

    2001-01-01

    A technique for estimating the full flow velocity vector has previously been presented by our group. Unlike conventional estimators, that only detect the axial component of the flow, this new method is capable of estimating the transverse velocity component. The method uses focusing along the flow....... A mean parabolic velocity profile was obtained for purely transverse flow with a mean bias to the true profile of -2.5% relative to the peak velocity and a standard deviation of 13.3% relative to the peak velocity. Twenty pulse-echo lines were used for each estimate and 18 profiles were obtained...

  1. Make peak flow a habit!

    Science.gov (United States)

    ... asthma - peak flow References Durrani SR, Busse WW. Management of asthma in adolescents and adults. In: Adkinson NF Jr, Bochner BS, Burks AW, et al, eds. Middleton's Allergy Principles and Practice . 8th ed. Philadelphia, PA: Elsevier Saunders; 2014:chap ...

  2. Arrival Times of Gravitational Radiation Peaks for Binary Inspiral

    CERN Document Server

    Price, Richard H

    2016-01-01

    Modeling of gravitational waves (GWs) from binary black hole inspiral brings together early post-Newtonian waveforms and late quasinormal ringing waveforms. Attempts to bridge the two limits without recourse to numerical relativity involve predicting the time of the peak GW amplitude. This prediction will require solving the question of why the peak of the "source," i.e., the peak of the binary angular velocity, does not correspond to the peak of the GW amplitude. We show here that this offset can be understood as due to the existence two distinct components of the radiation: the "direct" radiation analogous to that in flat spacetime, and "scattered" radiation associated with curved spacetime. The time dependence of these two components, and of their relative phases determines the location of the peak amplitude. We use a highly simplified model to clarify the twocomponent nature of the source, then demonstrate that the explanation is valid also for an extreme mass ratio binary inspiral.

  3. Velocidade sistólica máxima e índice de resistência de artérias fetais durante a segunda metade da gestação Peak systolic velocity and resistance index of fetal arteries during the second half of pregnancy

    Directory of Open Access Journals (Sweden)

    Antonio Gadelha da Costa

    2005-07-01

    Full Text Available OBJETIVO: avaliar a velocidade sistólica máxima (VSM e o índice de resistência (IR nas artérias fetais cerebral média (ACM, aorta supra-renal (ASR, aorta infra-renal (AIR e artéria umbilical (AU, entre a 22ª e a 38ª semana de gestação. MÉTODOS: estudo prospectivo no qual foram avaliados os parâmetros de 33 fetos normais na 22ª, 26ª, 30ª, 34ª e 38ª semana de gestação. Foram incluídas gestações únicas, sem doenças e complicações e as que concordaram em participar do estudo. Os critérios de exclusão foram malformações fetais, descontinuidade do seguimento aos exames e mães usuárias de fumo, álcool e drogas ilícitas. Os exames ultra-sonográficos foram realizados por único observador. Para a aquisição do traçado dopplervelocimétrico na ACM, ASR, AIR e AU, o volume de amostra foi de 1 a 2 mm, colocado no centro das artérias. O ângulo de insonação foi de 5º a 19º, na ACM, inferior a 45º na ASR e AIR e inferior a 60ºna AU. Utilizamos filtro de parede de 50-100 Hz. O cálculo dos parâmetros foi realizado automaticamente, com a imagem congelada, tendo sido acionadas três medidas. O resultado final foi obtido pela média aritmética dos três valores. A análise estatística foi realizada pela análise de variância (ANOVA, teste post hoc de Bonferroni, coeficiente de correlação de Pearson e análise de regressão. O nível de significância foi p0,05. Na AU, o IR diminuiu de 0,69 para 0,56, entre a 22ª e a 38ªsemana gestacional (pPURPOSE: to assess peak systolic velocity (PSV and the resistance index (RI in the middle cerebral artery (MCA, suprarenal aorta (SRA and infrarenal aorta (IRA of the fetus and in the umbilical artery (UA between the 22nd and 38th week of gestation. METHODS: a prospective study which evaluated the parameters of 33 normal fetuses in the 22nd, 26th, 30th, and 38th week of gestation. Pregnant women with a singleton fetus with no diseases or complications and who agreed to

  4. Peak compression technique in high-performance liquid chromatography

    Institute of Scientific and Technical Information of China (English)

    WEI YuXia; WANG Lin; XlAO ShengYuan; QING Hong; ZHU Yong; HU GaoFei; DENG YuLin

    2009-01-01

    Peak compression technique based on the difference of the solute migration velocity in two different mobile phases was described theoretically and confirmed using benzaldehyde and 4-hydroxyquinoline (4-HQ) as model compounds.After peak compression,the peak compression factors (the ratio of peak width at half-height under non-compression and that under compression condition) of benzaldehyde and 4-HQ were 0.19 and 0.13,respectively.By this application of the peak compression technique to the mixture,both enhanced peak height and good separation were obtained in one run cycle.This peak compression technique was introduced to determine benzaldehyde from semicarbazide-sensitive amine oxidase-catalyzed enzymetic reaction in order to illustrate the applicability of this technique to the real sample.As a result,the peak was compressed effectively,and 4.94-fold,19.3-fold and 5.74-fold enhancement in peak height,plate number and signal to noise ratio were also achieved,respectively.

  5. Peak Oil and other threatening peaks-Chimeras without substance

    Energy Technology Data Exchange (ETDEWEB)

    Radetzki, Marian, E-mail: marian@radetzki.bi [Lulea University of Technology (Sweden)

    2010-11-15

    The Peak Oil movement has widely spread its message about an impending peak in global oil production, caused by an inadequate resource base. On closer scrutiny, the underlying analysis is inconsistent, void of a theoretical foundation and without support in empirical observations. Global oil resources are huge and expanding, and pose no threat to continuing output growth within an extended time horizon. In contrast, temporary or prolonged supply crunches are indeed plausible, even likely, on account of growing resource nationalism denying access to efficient exploitation of the existing resource wealth.

  6. Peak Oil and other threatening peaks. Chimeras without substance

    Energy Technology Data Exchange (ETDEWEB)

    Radetzki, Marian [Luleaa University of Technology (Sweden)

    2010-11-15

    The Peak Oil movement has widely spread its message about an impending peak in global oil production, caused by an inadequate resource base. On closer scrutiny, the underlying analysis is inconsistent, void of a theoretical foundation and without support in empirical observations. Global oil resources are huge and expanding, and pose no threat to continuing output growth within an extended time horizon. In contrast, temporary or prolonged supply crunches are indeed plausible, even likely, on account of growing resource nationalism denying access to efficient exploitation of the existing resource wealth. (author)

  7. Ultrasonic Transducer Peak-to-Peak Optical Measurement

    Directory of Open Access Journals (Sweden)

    Pavel Skarvada

    2012-01-01

    Full Text Available Possible optical setups for measurement of the peak-to-peak value of an ultrasonic transducer are described in this work. The Michelson interferometer with the calibrated nanopositioner in reference path and laser Doppler vibrometer were used for the basic measurement of vibration displacement. Langevin type of ultrasonic transducer is used for the purposes of Electro-Ultrasonic Nonlinear Spectroscopy (EUNS. Parameters of produced mechanical vibration have to been well known for EUNS. Moreover, a monitoring of mechanical vibration frequency shift with a mass load and sample-transducer coupling is important for EUNS measurement.

  8. Velocity anticipation in the optimal velocity model

    Institute of Scientific and Technical Information of China (English)

    DONG Li-yun; WENG Xu-dan; LI Qing-ding

    2009-01-01

    In this paper,the velocity anticipation in the optimal velocity model (OVM) is investigated.The driver adjusts the velocity of his vehicle by the desired headway,which depends on both instantaneous headway and relative velocity.The effect of relative velocity is measured by a sensitivity function.A specific form of the sensitivity function is supposed and the involved parameters are determined by the both numerical simulation and empirical data.It is shown that inclusion of velocity anticipation enhances the stability of traffic flow.Numerical simulations show a good agreement with empirical data.This model provides a better description of real traffic,including the acceleration process from standing states and the deceleration process approaching a stopped car.

  9. SM-ROM-GL (Strong Motion Romania Ground Level Database

    Directory of Open Access Journals (Sweden)

    Ioan Sorin BORCIA

    2015-07-01

    Full Text Available The SM-ROM-GL database includes data obtained by the processing of records performed at ground level by the Romanian seismic networks, namely INCERC, NIEP, NCSRR and ISPH-GEOTEC, during recent seismic events with moment magnitude Mw ≥ 5 and epicenters located in Romania. All the available seismic records were re-processed using the same basic software and the same procedures and options (filtering and baseline correction, in order to obtain a consistent dataset. The database stores computed parameters of seismic motions, i.e. peak values: PGA, PGV, PGD, effective peak values: EPA, EPV, EPD, control periods, spectral values of absolute acceleration, relative velocity and relative displacement, as well as of instrumental intensity (as defined bz Sandi and Borcia in 2011. The fields in the database include: coding of seismic events, stations and records, a number of associated fields (seismic event source parameters, geographical coordinates of seismic stations, links to the corresponding ground motion records, charts of the response spectra of absolute acceleration, relative velocity, relative displacement and instrumental intensity, as well as some other representative parameters of seismic motions. The conception of the SM-ROM-GL database allows for an easy maintenance; such that elementary knowledge of Microsoft Access 2000 is sufficient for its operation.

  10. The growth of railway ground vibration problems - A review.

    Science.gov (United States)

    Connolly, David P; Marecki, Grzegorz P; Kouroussis, Georges; Thalassinakis, Ioannis; Woodward, Peter K

    2016-10-15

    Ground-borne noise and vibration from railway lines can cause human distress/annoyance, and also negatively affect real estate property values. Therefore this paper analyses a collection of technical ground-borne noise and vibration reports, detailing commercial vibration assessments undertaken at 1604 railway track sections, in 9 countries across the world. A wide range of rail projects are considered including light rail, tram lines, underground/tunnelled lines, freight, conventional rail and high speed rail. It documents the rise in ground-borne vibration problems and trends in the prediction industry, with the aim of informing the current research area. Firstly, the reports are analysed chronologically and it is found that railway vibration is a growing global concern, and as such, assessments have become more prevalent. International assessment metrics are benchmarked and it is found that velocity decibels (VdB), vibration dose value (VDV) and peak particle velocity (PPV) are the most commonly used methods of assessment. Furthermore, to predict vibration levels, the physical measurement of frequency transfer functions is preferential to numerical modelling. Results from the reports show that ground vibration limits are exceeded in 44% of assessments, and that ground-borne noise limits are exceeded in 31%. Moreover, mitigation measures were required on approximately 50% of projects, revealing that ground-borne noise and vibration is a widespread railroad engineering challenge. To solve these problems, the most commonly used abatement strategy is a modification of the railtrack structure (active mitigation), rather than the implementation of a more passive solution in the far-field. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Analysis of strong ground motions and site effects at Kantipath, Kathmandu, from 2015 Mw 7.8 Gorkha, Nepal, earthquake and its aftershocks

    Science.gov (United States)

    Dhakal, Yadab P.; Kubo, Hisahiko; Suzuki, Wataru; Kunugi, Takashi; Aoi, Shin; Fujiwara, Hiroyuki

    2016-04-01

    Strong ground motions from the 2015 Mw 7.8 Gorkha, Nepal, earthquake and its eight aftershocks recorded by a strong-motion seismograph at Kantipath (KATNP), Kathmandu, were analyzed to assess the ground-motion characteristics and site effects at this location. Remarkably large elastic pseudo-velocity responses exceeding 300 cm/s at 5 % critical damping were calculated for the horizontal components of the mainshock recordings at peak periods of 4-5 s. Conversely, the short-period ground motions of the mainshock were relatively weak despite the proximity of the site to the source fault. The horizontal components of all large-magnitude (Mw ≥ 6.3) aftershock recordings showed peak pseudo-velocity responses at periods of 3-4 s. Ground-motion prediction equations (GMPEs) describing the Nepal Himalaya region have not yet been developed. A comparison of the observational data with GMPEs for Japan showed that with the exception of the peak ground acceleration (PGA) of the mainshock, the observed PGAs and peak ground velocities at the KATNP site are generally well described by the GMPEs for crustal and plate interface events. A comparison of the horizontal-to-vertical ( H/ V) spectral ratios for the S-waves of the mainshock and aftershock recordings suggested that the KATNP site experienced a considerable nonlinear site response, which resulted in the reduced amplitudes of short-period ground motions. The GMPEs were found to underestimate the response values at the peak periods (approximately 4-5 s) of the large-magnitude events. The deep subsurface velocity model of the Kathmandu basin has not been well investigated. Therefore, a one-dimensional velocity model was constructed for the deep sediments beneath the recording station based on an analysis of the H/ V spectral ratios for S-wave coda from aftershock recordings, and it was revealed that the basin sediments strongly amplified the long-period components of the ground motions of the mainshock and large

  12. Ground-based CCD astrometry with wide field imagers. II. A star catalogue for M67: WFI@2.2m MPG/ESO astrometry, FLAMES@VLT radial velocities

    CERN Document Server

    Yadav, R K S; Piotto, G; Anderson, J; Cassisi, S; Villanova, S; Platais, I; Pasquini, L; Momany, Y; Sagar, R

    2008-01-01

    The solar-age open cluster M67 (C0847+120, NGC2682) is a touchstone in studies of the old Galactic disk. Despite its outstanding role, the census of cluster membership for M67 at fainter magnitudes and their properties are not well-established. Using the proprietary and archival ESO data, we have obtained astrometric, photometric, and radial velocities of stars in a 34'x 33' field centered on the old open cluster M67. The two-epoch archival observations separated by 4 years and acquired with the Wide Field Imager at the 2.2m MPG/ESO telescope have been reduced with our new astrometric techniques, as described in the first paper of this series. The same observations served to derive calibrated BVI photometry in M67. Radial velocities were measured using the archival and new spectroscopic data obtained at VLT. We have determined relative proper motions and membership probabilities for ~2,400 stars. The precision of proper motions for optimally exposed stars is ~2 mas/yr, gradually degrading down to ~5 mas/yr at...

  13. Significance Tests for Periodogram Peaks

    CERN Document Server

    Frescura, F A M; Frank, B S

    2007-01-01

    We discuss methods currently in use for determining the significance of peaks in the periodograms of time series. We discuss some general methods for constructing significance tests, false alarm probability functions, and the role played in these by independent random variables and by empirical and theoretical cumulative distribution functions. We also discuss the concept of "independent frequencies" in periodogram analysis. We propose a practical method for estimating the significance of periodogram peaks, applicable to all time series irrespective of the spacing of the data. This method, based on Monte Carlo simulations, produces significance tests that are tailor-made for any given astronomical time series.

  14. Grounded theory.

    Science.gov (United States)

    Harris, Tina

    2015-04-29

    Grounded theory is a popular research approach in health care and the social sciences. This article provides a description of grounded theory methodology and its key components, using examples from published studies to demonstrate practical application. It aims to demystify grounded theory for novice nurse researchers, by explaining what it is, when to use it, why they would want to use it and how to use it. It should enable nurse researchers to decide if grounded theory is an appropriate approach for their research, and to determine the quality of any grounded theory research they read.

  15. Antarctica: measuring glacier velocity from satellite images.

    Science.gov (United States)

    Lucchitta, B K; Ferguson, H M

    1986-11-28

    Many Landsat images of Antarctica show distinctive flow and crevasse features in the floating part of ice streams and outlet glaciers immediately below their grounding zones. Some of the features, which move with the glacier or ice stream, remain visible over many years and thus allow time-lapse measurements of ice velocities. Measurements taken from Landsat images of features on Byrd Glacier agree well with detailed ground and aerial observations. The satellite-image technique thus offers a rapid and cost-effective method of obtaining average velocities, to a first order of accuracy, of many ice streams and outlet glaciers near their termini.

  16. Seismic fragility formulations for segmented buried pipeline systems including the impact of differential ground subsidence

    Energy Technology Data Exchange (ETDEWEB)

    Pineda Porras, Omar Andrey [Los Alamos National Laboratory; Ordaz, Mario [UNAM, MEXICO CITY

    2009-01-01

    Though Differential Ground Subsidence (DGS) impacts the seismic response of segmented buried pipelines augmenting their vulnerability, fragility formulations to estimate repair rates under such condition are not available in the literature. Physical models to estimate pipeline seismic damage considering other cases of permanent ground subsidence (e.g. faulting, tectonic uplift, liquefaction, and landslides) have been extensively reported, not being the case of DGS. The refinement of the study of two important phenomena in Mexico City - the 1985 Michoacan earthquake scenario and the sinking of the city due to ground subsidence - has contributed to the analysis of the interrelation of pipeline damage, ground motion intensity, and DGS; from the analysis of the 48-inch pipeline network of the Mexico City's Water System, fragility formulations for segmented buried pipeline systems for two DGS levels are proposed. The novel parameter PGV{sup 2}/PGA, being PGV peak ground velocity and PGA peak ground acceleration, has been used as seismic parameter in these formulations, since it has shown better correlation to pipeline damage than PGV alone according to previous studies. By comparing the proposed fragilities, it is concluded that a change in the DGS level (from Low-Medium to High) could increase the pipeline repair rates (number of repairs per kilometer) by factors ranging from 1.3 to 2.0; being the higher the seismic intensity the lower the factor.

  17. Effects of running velocity on running kinetics and kinematics.

    Science.gov (United States)

    Brughelli, Matt; Cronin, John; Chaouachi, Anis

    2011-04-01

    Sixteen semiprofessional Australian football players performed running bouts at incremental velocities of 40, 60, 80, and 100% of their maximum velocity on a Woodway nonmotorized force treadmill. As running velocity increased from 40 to 60%, peak vertical and peak horizontal forces increased by 14.3% (effect size [ES] = 1.0) and 34.4% (ES = 4.2), respectively. The changes in peak vertical and peak horizontal forces from 60 to 80% were 1.0% (ES = 0.05) and 21.0% (ES = 2.9), respectively. Finally, the changes in peak vertical and peak horizontal forces from 80% to maximum were 2.0% (ES = 0.1) and 24.3% (ES = 3.4). In addition, both stride frequency and stride length significantly increased with each incremental velocity (p velocity (p velocity (r = 0.47). For the kinematic variables, only stride length was found to have a significant positive correlation with maximum running velocity (r = 0.66). It would seem that increasing maximal sprint velocity may be more dependent on horizontal force production as opposed to vertical force production.

  18. Rupture dynamics and ground motions from earthquakes in 2-D heterogeneous media

    Science.gov (United States)

    Bydlon, Samuel A.; Dunham, Eric M.

    2015-03-01

    We perform 2-D simulations of earthquakes on rough faults in media with random heterogeneities (with von Karman distribution) to study the effects of geometric and material heterogeneity on the rupture process and resulting high-frequency ground motions in the near-fault region (out to ˜20 km). Variations in slip and rupture velocity can arise from material heterogeneity alone but are dominantly controlled by fault roughness. Scattering effects become appreciable beyond ˜3 km from the fault. Near-fault scattering extends the duration of incoherent, high-frequency ground motions and, at least in our 2-D simulations, elevates root-mean-square accelerations (i.e., Arias intensity) with negligible reduction in peak velocities. We also demonstrate that near-fault scattering typically occurs in the power law tail of the power spectral density function, quantified by the Hurst exponent and another parameter combining standard deviation and correlation length.

  19. Creating Non-Maxwellian Velocity Distributions in Ultracold Plasmas

    CERN Document Server

    Castro, J; McQuillen, P; Pohl, T; Killian, T C

    2011-01-01

    We present techniques to perturb, measure and model the ion velocity distribution in an ultracold neutral plasma produced by photoionization of strontium atoms. By optical pumping with circularly polarized light we promote ions with certain velocities to a different spin ground state, and probe the resulting perturbed velocity distribution through laser-induced fluorescence spectroscopy. We discuss various approaches to extract the velocity distribution from our measured spectra, and assess their quality through comparisons with molecular dynamic simulations

  20. Hubbert's Peak -- A Physicist's View

    Science.gov (United States)

    McDonald, Richard

    2011-04-01

    Oil, as used in agriculture and transportation, is the lifeblood of modern society. It is finite in quantity and will someday be exhausted. In 1956, Hubbert proposed a theory of resource production and applied it successfully to predict peak U.S. oil production in 1970. Bartlett extended this work in publications and lectures on the finite nature of oil and its production peak and depletion. Both Hubbert and Bartlett place peak world oil production at a similar time, essentially now. Central to these analyses are estimates of total ``oil in place'' obtained from engineering studies of oil reservoirs as this quantity determines the area under the Hubbert's Peak. Knowing the production history and the total oil in place allows us to make estimates of reserves, and therefore future oil availability. We will then examine reserves data for various countries, in particular OPEC countries, and see if these data tell us anything about the future availability of oil. Finally, we will comment on synthetic oil and the possibility of carbon-neutral synthetic oil for a sustainable future.

  1. Mechanical and biomechanical analysis of a linear piston design for angular-velocity-based orthotic control

    Directory of Open Access Journals (Sweden)

    Edward D. Lemaire, PhD

    2013-02-01

    Full Text Available A linear piston hydraulic angular-velocity-based control knee joint was designed for people with knee-extensor weakness to engage knee-flexion resistance when knee-flexion angular velocity reaches a preset threshold, such as during a stumble, but to otherwise allow free knee motion. During mechanical testing at the lowest angular-velocity threshold, the device engaged within 2 degrees knee flexion and resisted moment loads of over 150 Nm. The device completed 400,000 loading cycles without mechanical failure or wear that would affect function. Gait patterns of nondisabled participants were similar to normal at walking speeds that produced below-threshold knee angular velocities. Fast walking speeds, employed purposely to attain the angular-velocity threshold and cause knee-flexion resistance, reduced maximum knee flexion by approximately 25 degrees but did not lead to unsafe gait patterns in foot ground clearance during swing. In knee collapse tests, the device successfully engaged knee-flexion resistance and stopped knee flexion with peak knee moments of up to 235.6 Nm. The outcomes from this study support the potential for the linear piston hydraulic knee joint in knee and knee-ankle-foot orthoses for people with lower-limb weakness.

  2. The VLT-FLAMES Tarantula Survey XII. Rotational velocities of the single O-type stars

    CERN Document Server

    Ramírez-Agudelo, O H; Sana, H; de Koter, A; Sabín-Sanjulían, C; de Mink, S E; Dufton, P L; Gräfener, G; Evans, C J; Herrero, A; Langer, N; Lennon, D J; Apellániz, J Maíz; Markova, N; Najarro, F; Puls, J; Taylor, W D; Vink, J S

    2013-01-01

    Aims. Using ground based multi-object optical spectroscopy obtained in the framework of the VLT-FLAMES Tarantula Survey (VFTS), we aim to establish the (projected) rotational velocity distribution for a sample of 216 presumably single O-type stars in 30 Doradus (30 Dor). Methods. We measured projected rotational velocities, \\vrot, by means of a Fourier transform method and a profile fitting method applied on a set of isolated spectral lines. We also used an iterative deconvolution procedure to infer the probability density, $\\rm{P(\\veq)}$, of the equatorial rotational velocity, \\veq. Results. The distribution of \\vrot\\ shows a two-component structure: a peak around 80 \\kms\\ and a high-velocity tail extending up to $\\sim$600 \\kms. This structure is also present in the inferred distribution $\\rm{P(\\veq)}$ with around 80% of the sample having 0 $<$ \\veq\\, $\\leq\\, 300$ \\kms\\ and the other 20% distributed in the high-velocity region. Conclusions. Most of the stars in our sample rotate with a rate less than 20%\\...

  3. Mechanical and biomechanical analysis of a linear piston design for angular-velocity-based orthotic control.

    Science.gov (United States)

    Lemaire, Edward D; Samadi, Reza; Goudreau, Louis; Kofman, Jonathan

    2013-01-01

    A linear piston hydraulic angular-velocity-based control knee joint was designed for people with knee-extensor weakness to engage knee-flexion resistance when knee-flexion angular velocity reaches a preset threshold, such as during a stumble, but to otherwise allow free knee motion. During mechanical testing at the lowest angular-velocity threshold, the device engaged within 2 degrees knee flexion and resisted moment loads of over 150 Nm. The device completed 400,000 loading cycles without mechanical failure or wear that would affect function. Gait patterns of nondisabled participants were similar to normal at walking speeds that produced below-threshold knee angular velocities. Fast walking speeds, employed purposely to attain the angular-velocity threshold and cause knee-flexion resistance, reduced maximum knee flexion by approximately 25 degrees but did not lead to unsafe gait patterns in foot ground clearance during swing. In knee collapse tests, the device successfully engaged knee-flexion resistance and stopped knee flexion with peak knee moments of up to 235.6 Nm. The outcomes from this study support the potential for the linear piston hydraulic knee joint in knee and knee-ankle-foot orthoses for people with lower-limb weakness.

  4. Discriminate Modelling of Peak and Off-Peak Motorway Capacity

    Directory of Open Access Journals (Sweden)

    Hashim Mohammed Alhassan

    2013-02-01

    Full Text Available Traffic theory is concerned with the movement of discrete objects in real time over a finite network in 2 Dimensions. It is compatible with or dependent on fundamental diagram of traffic. Without question traffic flow is an essential quantitative parameter that is used in planning, designs and roadway improvements.  Road capacity is significant because it is an important indicator of road performance and can point road managers in the right road maintenance and traffic management direction. In this paper four direct empirical capacity measurement methods have been considered. To test the efficacy of each method, data for peak period, off-peak and transition to peak have been used. The headway and the volume methods lack predictive capability and are suitable only for current assessment of flow rates.  The product limit method is weak in its predictive capability in view of the arbitrariness in the selection of the capacity value. It is also an extreme value method; hence not all volume data can be used with this method. The fundamental diagram method has good predictive capability and furnishes capacity values consistent with the standard of the facility. Unlike other methods, it does not rely on bottleneck conditions to deliver the capacity value.  The paper concluded that each method is uniquely suited to prevailing conditions and can be so employed.

  5. Simulation of Near-Fault High-Frequency Ground Motions from the Representation Theorem

    Science.gov (United States)

    Beresnev, Igor A.

    2017-07-01

    "What is the maximum possible ground motion near an earthquake fault?" is an outstanding question of practical significance in earthquake seismology. In establishing a possible theoretical cap on extreme ground motions, the representation integral of elasticity, providing an exact, within limits of applicability, solution for fault radiation at any frequency, is an under-utilized tool. The application of a numerical procedure leading to synthetic ground displacement, velocity, and acceleration time histories to modeling of the record at the Lucerne Valley hard-rock station, uniquely located at 1.1 km from the rupture of the M w 7.2 Landers, California event, using a seismologically constrained temporal form of slip on the fault, reveals that the shape of the displacement waveform can be modeled closely, given the simplicity of the theoretical model. High precision in the double integration, as well as carefully designed smoothing and filtering, are necessary to suppress the numerical noise in the high-frequency (velocity and acceleration) synthetic motions. The precision of the integration of at least eight decimal digits ensures the numerical error in the displacement waveforms generally much lower than 0.005% and reduces the error in the peak velocities and accelerations to the levels acceptable to make the representation theorem a reliable tool in the practical evaluation of the magnitude of maximum possible ground motions in a wide-frequency range of engineering interest.

  6. Strong ground motion generated by controlled blasting experiments and mining induced seismic events recorded underground at deep level mines in South Africa

    Science.gov (United States)

    Milev, A.; Selllers, E.; Skorpen, L.; Scheepers, L.; Murphy, S.; Spottiswoode, S. M.

    2011-12-01

    A number of simulated rockbursts were conducted underground at deep level gold mines in South Africa in order to estimate the rock mass response when subjected to strong ground motion. The rockbursts were simulated by means of large blasts detonated in solid rock close to the sidewall of a tunnel. The simulated rockbursts involved the design of the seismic source, seismic observations in the near and far field, high-speed video filming, a study of rock mass conditions such as fractures, joints, rock strength etc. Knowledge of the site conditions before and after the simulated rockbursts was also gained. The numerical models used in the design of the simulated rockbursts were calibrated by small blasts taking place at each experimental site. A dense array of shock type accelerometers was installed along the blasting wall to monitor the attenuation of the strong ground motion as a function of the distance from the source. The attenuation of peak particle velocities, was found to be proportional to R^-1.7. Special investigations were carried out to evaluate the mechanism and the magnitude of damage, as well as the support behaviour under excessive dynamic loading. The strong ground motion generated by mining induced seismic events was studied, as part of this work, not only to characterize the rock mass response, but also to estimate the site effect on the surface of the underground excavations. A stand-alone instrument especially designed for recording strong ground motions was used to create a large database of peak particle velocities measured on stope hangingwalls. A total number of 58 sites located in stopes where the Carbon Leader Reef, Ventersdorp Contact Reef, Vaal Reef and Basal Reef are mined, were monitored. The peak particle velocities were measured at the surface of the excavations to identify the effect of the free surface and the fractures surrounding the underground mining. Based on these measurements the generally accepted velocity criterion of 3 m

  7. Development of Earthquake Ground Motion Input for Preclosure Seismic Design and Postclosure Performance Assessment of a Geologic Repository at Yucca Mountain, NV

    Energy Technology Data Exchange (ETDEWEB)

    I. Wong

    2004-11-05

    This report describes a site-response model and its implementation for developing earthquake ground motion input for preclosure seismic design and postclosure assessment of the proposed geologic repository at Yucca Mountain, Nevada. The model implements a random-vibration theory (RVT), one-dimensional (1D) equivalent-linear approach to calculate site response effects on ground motions. The model provides results in terms of spectral acceleration including peak ground acceleration, peak ground velocity, and dynamically-induced strains as a function of depth. In addition to documenting and validating this model for use in the Yucca Mountain Project, this report also describes the development of model inputs, implementation of the model, its results, and the development of earthquake time history inputs based on the model results. The purpose of the site-response ground motion model is to incorporate the effects on earthquake ground motions of (1) the approximately 300 m of rock above the emplacement levels beneath Yucca Mountain and (2) soil and rock beneath the site of the Surface Facilities Area. A previously performed probabilistic seismic hazard analysis (PSHA) (CRWMS M&O 1998a [DIRS 103731]) estimated ground motions at a reference rock outcrop for the Yucca Mountain site (Point A), but those results do not include these site response effects. Thus, the additional step of applying the site-response ground motion model is required to develop ground motion inputs that are used for preclosure and postclosure purposes.

  8. Grounded cognition.

    Science.gov (United States)

    Barsalou, Lawrence W

    2008-01-01

    Grounded cognition rejects traditional views that cognition is computation on amodal symbols in a modular system, independent of the brain's modal systems for perception, action, and introspection. Instead, grounded cognition proposes that modal simulations, bodily states, and situated action underlie cognition. Accumulating behavioral and neural evidence supporting this view is reviewed from research on perception, memory, knowledge, language, thought, social cognition, and development. Theories of grounded cognition are also reviewed, as are origins of the area and common misperceptions of it. Theoretical, empirical, and methodological issues are raised whose future treatment is likely to affect the growth and impact of grounded cognition.

  9. Longitudinal peak detected Schottky spectrum

    CERN Document Server

    Shaposhnikova, E

    2009-01-01

    The "peak detected Schottky" spectrum is a diagnostic used since the late seventies for beam observation in the SPS and now already applied to the LHC. This tool was always believed, however without proof, to give a good picture of the particle distribution in synchrotron frequencies similar to the longitudinal Schottky spectrum of unbunched beam for revolution frequencies.In this paper an analysis of this measurement technique is presented both in a general form and for the particular realisation in the SPS. In addition the limitations of the present experimental set-up are discussed together with possible improvements. The analysis shows that for an optimised experimental set-up the spectrum of the peak detected signal is very close to the synchrotron frequency distribution inside the bunch - much closer than that given by the traditional longitudinal bunched-beam Schottky spectrum.

  10. Ground Wood Fiber Length Distributions

    OpenAIRE

    Lauri Ilmari Salminen; Sari Liukkonen; Alava, Mikko J.

    2014-01-01

    This study considers ground wood fiber length distributions arising from pilot grindings. The empirical fiber length distributions appear to be independent of wood fiber length as well as feeding velocity. In terms of mathematics the fiber fragment distributions of ground wood pulp combine an exponential distribution for high-length fragments and a power-law distribution for smaller lengths. This implies that the fiber length distribution is influenced by the stone surface. A fragmentation-ba...

  11. Simulated ground motion in Santa Clara Valley, California, and vicinity from M≥6.7 scenario earthquakes

    Science.gov (United States)

    Harmsen, Stephen C.; Hartzell, Stephen

    2008-01-01

    Models of the Santa Clara Valley (SCV) 3D velocity structure and 3D finite-difference software are used to predict ground motions from scenario earthquakes on the San Andreas (SAF), Monte Vista/Shannon, South Hayward, and Calaveras faults. Twenty different scenario ruptures are considered that explore different source models with alternative hypocenters, fault dimensions, and rupture velocities and three different velocity models. Ground motion from the full wave field up to 1 Hz is exhibited as maps of peak horizontal velocity and pseudospectral acceleration at periods of 1, 3, and 5 sec. Basin edge effects and amplification in sedimentary basins of the SCV are observed that exhibit effects from shallow sediments with relatively low shear-wave velocity (330 m/sec). Scenario earthquakes have been simulated for events with the following magnitudes: (1) M 6.8–7.4 Calaveras sources, (2) M 6.7–6.9 South Hayward sources, (3) M 6.7 Monte Vista/Shannon sources, and (4) M 7.1–7.2 Peninsula segment of the SAF sources. Ground motions are strongly influenced by source parameters such as rupture velocity, rise time, maximum depth of rupture, hypocenter, and source directivity. Cenozoic basins also exert a strong influence on ground motion. For example, the Evergreen Basin on the northeastern side of the SCV is especially responsive to 3–5-sec energy from most scenario earthquakes. The Cupertino Basin on the southwestern edge of the SCV tends to be highly excited by many Peninsula and Monte Vista fault scenarios. Sites over the interior of the Evergreen Basin can have long-duration coda that reflect the trapping of seismic energy within this basin. Plausible scenarios produce predominantly 5-sec wave trains with greater than 30 cm/sec sustained ground-motion amplitude with greater than 30 sec duration within the Evergreen Basin.

  12. High-velocity clouds

    NARCIS (Netherlands)

    Wakker, BP; vanWoerden, H

    1997-01-01

    High-velocity clouds (HVCs) consist of neutral hydrogen (HI) at velocities incompatible with a simple model of differential galactic rotation; in practice one uses \\v(LSR)\\ greater than or equal to 90 km/s to define HVCs. This review describes the main features of the sky and velocity distributions,

  13. Transverse Spectral Velocity Estimation

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt

    2014-01-01

    A transverse oscillation (TO)-based method for calculating the velocity spectrum for fully transverse flow is described. Current methods yield the mean velocity at one position, whereas the new method reveals the transverse velocity spectrum as a function of time at one spatial location. A convex...

  14. Drivers of peak sales for pharmaceutical brands

    NARCIS (Netherlands)

    Fischer, Marc; Leeflang, Peter S. H.; Verhoef, Peter C.

    2010-01-01

    Peak sales are an important metric in the pharmaceutical industry. Specifically, managers are focused on the height-of-peak-sales and the time required achieving peak sales. We analyze how order of entry and quality affect the level of peak sales and the time-to-peak-sales of pharmaceutical brands.

  15. Analysis of ground-motion simulation big data

    Science.gov (United States)

    Maeda, T.; Fujiwara, H.

    2016-12-01

    We developed a parallel distributed processing system which applies a big data analysis to the large-scale ground motion simulation data. The system uses ground-motion index values and earthquake scenario parameters as input. We used peak ground velocity value and velocity response spectra as the ground-motion index. The ground-motion index values are calculated from our simulation data. We used simulated long-period ground motion waveforms at about 80,000 meshes calculated by a three dimensional finite difference method based on 369 earthquake scenarios of a great earthquake in the Nankai Trough. These scenarios were constructed by considering the uncertainty of source model parameters such as source area, rupture starting point, asperity location, rupture velocity, fmax and slip function. We used these parameters as the earthquake scenario parameter. The system firstly carries out the clustering of the earthquake scenario in each mesh by the k-means method. The number of clusters is determined in advance using a hierarchical clustering by the Ward's method. The scenario clustering results are converted to the 1-D feature vector. The dimension of the feature vector is the number of scenario combination. If two scenarios belong to the same cluster the component of the feature vector is 1, and otherwise the component is 0. The feature vector shows a `response' of mesh to the assumed earthquake scenario group. Next, the system performs the clustering of the mesh by k-means method using the feature vector of each mesh previously obtained. Here the number of clusters is arbitrarily given. The clustering of scenarios and meshes are performed by parallel distributed processing with Hadoop and Spark, respectively. In this study, we divided the meshes into 20 clusters. The meshes in each cluster are geometrically concentrated. Thus this system can extract regions, in which the meshes have similar `response', as clusters. For each cluster, it is possible to determine

  16. Coseismic and post-seismic velocity changes detected by Passive Image Interferometry: comparison of one great and five strong earthquakes in Japan

    Science.gov (United States)

    Hobiger, Manuel; Wegler, Ulrich; Shiomi, Katsuhiko; Nakahara, Hisashi

    2016-05-01

    explained by these models. The coseismic velocity drops at the different stations are better related with the peak ground velocities and the associated dynamic strain than with the peak ground accelerations, but the correlation is still poor. This suggests that non-linear effects caused by the strong ground motion during the earthquake can explain at least part of the coseismic velocity drops.

  17. Wind-induced ground motion

    Science.gov (United States)

    Naderyan, Vahid; Hickey, Craig J.; Raspet, Richard

    2016-02-01

    Wind noise is a problem in seismic surveys and can mask the seismic signals at low frequency. This research investigates ground motions caused by wind pressure and shear stress perturbations on the ground surface. A prediction of the ground displacement spectra using the measured ground properties and predicted pressure and shear stress at the ground surface is developed. Field measurements are conducted at a site having a flat terrain and low ambient seismic noise. Triaxial geophones are deployed at different depths to study the wind-induced ground vibrations as a function of depth and wind velocity. Comparison of the predicted to the measured wind-induced ground displacement spectra shows good agreement for the vertical component but significant underprediction for the horizontal components. To validate the theoretical model, a test experiment is designed to exert controlled normal pressure and shear stress on the ground using a vertical and a horizontal mass-spring apparatus. This experiment verifies the linear elastic rheology and the quasi-static displacements assumptions of the model. The results indicate that the existing surface shear stress models significantly underestimate the wind shear stress at the ground surface and the amplitude of the fluctuation shear stress must be of the same order of magnitude as the normal pressure. Measurement results show that mounting the geophones flush with the ground provides a significant reduction in wind noise on all three components of the geophone. Further reduction in wind noise with depth of burial is small for depths up to 40 cm.

  18. Influence of Focal Mechanism Types on the Near-field Distribution of Peak Ground Acceleration---Case Study of Tangshan and Wenchuan Earthquake Regions%震源机制类型对近场峰值加速度(PGA)分布的影响--以唐山和汶川震区为例

    Institute of Scientific and Technical Information of China (English)

    孙丽娜; 王晓山; 杨家亮; 张素欣; 刁桂苓; 冯向东

    2015-01-01

    Peak ground acceleration (PGA)in the near field is associated with earthquake damage, but practical instances of the impact of PGA distribution in the near field of different types of fo-cal mechanism is rarely reported.Using the intensive digital seismic records of the capital circle strong motion network,this paper studies two earthquakes that occurred in April 2003 with an epicenter located in Tangshan.Using data from the strong motion network and the temporary seismic network in Sichuan,Gansu,and Shanxi,it also studies two earthquakes that occurred in July and August 2008 with an epicenter located in Wenchan.By using a function of the thematic map in ArcGIS software,the distribution of both the horizontal synthesis and vertical PGA is es-tablished,obtaining the differences in earthquake PGA distribution in the near field from the faults and strike-slip faults,and the thrust and strike-slip faults.In this paper,we study the impact of different focal mechanisms in the Ninghe and the Wenchuan earthquake on PGA ;the difference in the influence of various focal mechanisms to PGA is especially striking.The results show that this difference is prominent,and that the distribution of major earthquakes PGA is complex in the near field,while that of medium-small earthquakes is also complex.The most crucial place for death and destruction is in the near field.Spectrum analysis established that there are differences in the lower frequencies of seismic waves.Now that there are more buildings and that a greater proportion are multistory and large,the self-vibration period is longer.High values in PGA of nearly vertical strike-slip earthquakes are symmetrically distributed along the fault,while normal faults and reverse faults are concentrated in the hanging wall.The distribution of PGA is complex in the near field,and it is worth noting that the phenomenon of low frequency dip-lip earthquakes is crucial to the input of power and materials in emergency rescue following

  19. Ground Motion Relations While TBM Drilling in Unconsolidated Sediments

    Science.gov (United States)

    Grund, Michael; Ritter, Joachim R. R.; Gehrig, Manuel

    2016-05-01

    The induced ground motions due to the tunnel boring machine (TBM), which has been used for the drilling of the urban metro tunnel in Karlsruhe (SW Germany), has been studied using the continuous recordings of seven seismological monitoring stations. The drilling has been undertaken in unconsolidated sediments of the Rhine River system, relatively close to the surface at 6-20 m depth and in the vicinity of many historic buildings. Compared to the reference values of DIN 4150-3 (1-80 Hz), no exceedance of the recommended peak ground velocity (PGV) limits (3-5 mm/s) was observed at the single recording site locations on building basements during the observation period between October 2014 and February 2015. Detailed analyses in the time and frequency domains helped with the detection of the sources of several specific shaking signals in the recorded time series and with the comparison of the aforementioned TBM-induced signals. The amplitude analysis allowed for the determination of a PGV attenuation relation (quality factor Q ~ 30-50) and the comparison of the TBM-induced ground motion with other artificially induced and natural ground motions of similar amplitudes.

  20. 速度向量成像对不伴心肌梗死的冠心病患者左室收缩应变的研究%Assessments of Left Ventricular Peak Systolic Strain with Velocity Vector Imaging in the Patients with Coronary Disease without Myocardial Infarction

    Institute of Scientific and Technical Information of China (English)

    李华; 陈斌; 胡元平; 田新桥; 徐峰

    2011-01-01

    目的 探讨速度向量成像技术(velocity vector imaging,VVI)对不伴心肌梗死的冠心病患者的诊断价值.方法对72例冠心病患者进行超声心动图检查,并追踪造影结果,应用VVI软件测量心肌纵向、径向、圆周左室峰值收缩期应变,根据冠脉造影结果分为3组,A组:冠造阴性及狭窄程度<50%,B组:50%≤狭窄程度<75%,C组:狭窄程度≥75%,比较组间差异.结果 C组与A、B组之间纵向峰值收缩应变差异有统计学意义(P<0.05),截断值-18.28%,诊断狭窄程度≥75%的特异度为80%,敏感度为76%;C组与A、B组之间径向峰值收缩应变差异有统计学意义(P<0.05),截断值25.88%,诊断狭窄程度≥75%的特异度为71%,敏感度为70%;而C组与A、B组之间圆周峰值收缩应变差异无统计学意义(P >0.05);A组与B组之间纵向、径向及圆周峰值收缩应变差异均无统计学意义(均P >0.05).结论 VVI能帮助检测出不伴心肌梗死而有重度冠脉狭窄患者的左室心肌收缩功能异常.%Objective To evaluate the diagnostic values by using velocity vector imaging in patients with coronary disease without myocardial infarction. Methods On conventional two- dimensional echocardiography, 72 patients were examed and underwent coronary angiography within one week. The myocardial longitudinal, radial and circumferential strain were measured. The patients were classified into three groups according to the result of coronary angiography (A:0.05). There were no significant differences in longitudinal, radial and circumferential strain between the intermediate group and the control group (P >0.05). Conclusion WI can help to identify left ventricular myocardial systolic function abnormalities in patients with severe coronary stenosis but without myocardial infarction.

  1. Influence of Soil Layer Structure on Seismic Peak Ground Acceleration Zonation Maps of Oil and Gas Pipeline Proj ect%土层结构对油气管线工程地震动峰值加速度区划图的影响研究

    Institute of Scientific and Technical Information of China (English)

    孙译; 石玉成; 卢育霞; 马林伟; 任栋

    2016-01-01

    油气管线工程是生命线工程的重要组成部分,工程跨度通常超越几十甚至几千公里,从而导致横穿地区覆盖层中土层结构存在明显差异,对地震动峰值加速度(PGA)产生较大影响,进而影响区划结果。本文采用分区拟合放大系数的方法,对华北平原地区某大型管线进行研究,给出研究区不同土层结构条件下场地放大系数KS-基岩PGA拟合函数结果,得到沿线附近10 km范围内的PGA区划图结果,并与第四代和第五代中国地震动参数区划图提出的场地系数公式的计算结果进行比较。三种计算方法的结果表明,研究区内50年超越概率10%条件下实际场地放大系数为1.30~1.45,50年超越概率5%条件下实际场地放大系数为1.15~1.30,均高于我国第四代和第五代区划图对场地系数的建议值。50年超越概率10%下的PGA区划图结果显示,局部区域在第四代和第五代地震动参数区划图场地系数的结果中位于0.15g 或0.20g 区,由于KS 的提高,其实际计算结果会提升为0.20g或0.25g分区,这说明场地系数对峰值加速度区划图结果具有较大影响。%Oil and gas pipelines are vital aspects of infrastructure proj ects and may span tens or e-ven thousands of kilometers.These spans may involve different soil structures that may become o-verburdened and thus considerably affect the seismic peak ground acceleration (PGA)and PGA zonation map.In this study,based on the site amplification coefficient,we examine a gas pipeline proj ect in the North China plain.We estimate the fitting functions of the site amplification coeffi-cient (K S )and PGA of rocks in different soil layer constructions and obtain a PGA zonation map for the adjacent 10 km area.We then compare our results with those given by the 4th and 5th seis-mic ground motion parameter zonation maps of China.The results show that the practical amplifi

  2. Ground Wars

    DEFF Research Database (Denmark)

    Nielsen, Rasmus Kleis

    Political campaigns today are won or lost in the so-called ground war--the strategic deployment of teams of staffers, volunteers, and paid part-timers who work the phones and canvass block by block, house by house, voter by voter. Ground Wars provides an in-depth ethnographic portrait of two...... infrastructures that utilize large databases with detailed individual-level information for targeting voters, and armies of dedicated volunteers and paid part-timers. Nielsen challenges the notion that political communication in America must be tightly scripted, controlled, and conducted by a select coterie...... of professionals. Yet he also quashes the romantic idea that canvassing is a purer form of grassroots politics. In today's political ground wars, Nielsen demonstrates, even the most ordinary-seeming volunteer knocking at your door is backed up by high-tech targeting technologies and party expertise. Ground Wars...

  3. Broad-band near-field ground motion simulations in 3-dimensional scattering media

    Science.gov (United States)

    Imperatori, W.; Mai, P. M.

    2013-02-01

    The heterogeneous nature of Earth's crust is manifested in the scattering of propagating seismic waves. In recent years, different techniques have been developed to include such phenomenon in broad-band ground-motion calculations, either considering scattering as a semi-stochastic or purely stochastic process. In this study, we simulate broad-band (0-10 Hz) ground motions with a 3-D finite-difference wave propagation solver using several 3-D media characterized by von Karman correlation functions with different correlation lengths and standard deviation values. Our goal is to investigate scattering characteristics and its influence on the seismic wavefield at short and intermediate distances from the source in terms of ground motion parameters. We also examine scattering phenomena, related to the loss of radiation pattern and the directivity breakdown. We first simulate broad-band ground motions for a point-source characterized by a classic ω2 spectrum model. Fault finiteness is then introduced by means of a Haskell-type source model presenting both subshear and super-shear rupture speed. Results indicate that scattering plays an important role in ground motion even at short distances from the source, where source effects are thought to be dominating. In particular, peak ground motion parameters can be affected even at relatively low frequencies, implying that earthquake ground-motion simulations should include scattering also for peak ground velocity (PGV) calculations. At the same time, we find a gradual loss of the source signature in the 2-5 Hz frequency range, together with a distortion of the Mach cones in case of super-shear rupture. For more complex source models and truly heterogeneous Earth, these effects may occur even at lower frequencies. Our simulations suggests that von Karman correlation functions with correlation length between several hundred metres and few kilometres, Hurst exponent around 0.3 and standard deviation in the 5-10 per cent range

  4. Broad-band near-field ground motion simulations in 3-dimensional scattering media

    KAUST Repository

    Imperatori, W.

    2012-12-06

    The heterogeneous nature of Earth\\'s crust is manifested in the scattering of propagating seismic waves. In recent years, different techniques have been developed to include such phenomenon in broad-band ground-motion calculations, either considering scattering as a semi-stochastic or purely stochastic process. In this study, we simulate broad-band (0–10 Hz) ground motions with a 3-D finite-difference wave propagation solver using several 3-D media characterized by von Karman correlation functions with different correlation lengths and standard deviation values. Our goal is to investigate scattering characteristics and its influence on the seismic wavefield at short and intermediate distances from the source in terms of ground motion parameters. We also examine scattering phenomena, related to the loss of radiation pattern and the directivity breakdown. We first simulate broad-band ground motions for a point-source characterized by a classic ω2 spectrum model. Fault finiteness is then introduced by means of a Haskell-type source model presenting both subshear and super-shear rupture speed. Results indicate that scattering plays an important role in ground motion even at short distances from the source, where source effects are thought to be dominating. In particular, peak ground motion parameters can be affected even at relatively low frequencies, implying that earthquake ground-motion simulations should include scattering also for peak ground velocity (PGV) calculations. At the same time, we find a gradual loss of the source signature in the 2–5 Hz frequency range, together with a distortion of the Mach cones in case of super-shear rupture. For more complex source models and truly heterogeneous Earth, these effects may occur even at lower frequencies. Our simulations suggests that von Karman correlation functions with correlation length between several hundred metres and few kilometres, Hurst exponent around 0.3 and standard deviation in the 5–10 per cent

  5. Velocity distributions of hydrogen atoms and hydroxyl radicals produced through solar photodissociation of water

    Science.gov (United States)

    Wu, C. Y. R.; Chen, F. Z.

    1993-01-01

    The velocity distributions of H and OH fragments produced through solar photodissociation of gaseous H2O molecules under collisionless conditions are presented. The calculations are carried out using: the most recently available absolute partial cross sections for the production of H and OH through photodissociation of H2O from its absorption onset at 1860 A down to 500 A; the newly available vibrational and rotational energy distributions of both the excited and ground state OH photofragments; the calculated cross sections for the total dissociation processes; and the integrated solar flux in 10 A increments from 500 to 1860 A in the continuum regions and the specific wavelength and flux at the bright solar lines. The calculated results show that the H atoms and the OH radicals produced exhibit multiple velocity groups. Since most current cometary modeling uses a single velocity of 20 km/sec associated with the photodissociation of H2O, the present results may be useful in interpreting the many peaks observed in the velocity distributions of the H Lyman alpha and H alpha of comets.

  6. Velocity distributions of hydrogen atoms and hydroxyl radicals produced through solar photodissociation of water

    Science.gov (United States)

    Wu, C. Y. R.; Chen, F. Z.

    1993-01-01

    The velocity distributions of H and OH fragments produced through solar photodissociation of gaseous H2O molecules under collisionless conditions are presented. The calculations are carried out using: the most recently available absolute partial cross sections for the production of H and OH through photodissociation of H2O from its absorption onset at 1860 A down to 500 A; the newly available vibrational and rotational energy distributions of both the excited and ground state OH photofragments; the calculated cross sections for the total dissociation processes; and the integrated solar flux in 10 A increments from 500 to 1860 A in the continuum regions and the specific wavelength and flux at the bright solar lines. The calculated results show that the H atoms and the OH radicals produced exhibit multiple velocity groups. Since most current cometary modeling uses a single velocity of 20 km/sec associated with the photodissociation of H2O, the present results may be useful in interpreting the many peaks observed in the velocity distributions of the H Lyman alpha and H alpha of comets.

  7. The effects of "grunting" on serve and forehand velocities in collegiate tennis players.

    Science.gov (United States)

    OʼConnell, Dennis G; Hinman, Martha R; Hearne, Kevin F; Michael, Zach S; Nixon, Sam L

    2014-12-01

    The aim of this study was to examine the effects of grunting on velocity and force production during dynamic and static tennis strokes in collegiate tennis players. Thirty-two (16 male and 16 female) division II and III collegiate tennis athletes with a mean age of 20.2 ± 1.89 years participated as subjects. Demographic and survey data were obtained before subjects completed a 10- to 15-minute warm-up of serves and ground strokes while grunting and not grunting. The subjects performed randomized sets (3 grunting and 3 nongrunting trials) of serves and forehand strokes both dynamically and isometrically. Stroke velocities and isometric forces were measured with a calibrated radar gun and calibrated dynamometer, respectively. Electromyographic (EMG) data from subjects' dominant pectoralis major and contralateral external oblique muscles were recorded and averaged for data analysis. A repeated measures multivariate analysis of variance (RM-MANOVA) compared dynamic stroke velocity, isometric muscle force, and peak EMG activity during each breathing condition at the 0.05 alpha level. The RM-MANOVA indicated that dynamic velocity and isometric force of both serves and forehand strokes were significantly greater when the subjects grunted (F = 46.572, p tennis serves and forehand strokes are significantly enhanced when athletes are allowed to grunt.

  8. Scaling properties of velocity and temperature spectra above the surface friction layer in a convective atmospheric boundary layer

    Directory of Open Access Journals (Sweden)

    K. G. McNaughton

    2007-06-01

    Full Text Available We report velocity and temperature spectra measured at nine levels from 1.42 meters up to 25.7 m over a smooth playa in Western Utah. Data are from highly convective conditions when the magnitude of the Obukhov length (our proxy for the depth of the surface friction layer was less than 2 m. Our results are somewhat similar to the results reported from the Minnesota experiment of Kaimal et al. (1976, but show significant differences in detail. Our velocity spectra show no evidence of buoyant production of kinetic energy at at the scale of the thermal structures. We interpret our velocity spectra to be the result of outer eddies interacting with the ground, not "local free convection".

    We observe that velocity spectra represent the spectral distribution of the kinetic energy of the turbulence, so we use energy scales based on total turbulence energy in the convective boundary layer (CBL to collapse our spectra. For the horizontal velocity spectra this scale is (zi εo2/3, where zi is inversion height and εo is the dissipation rate in the bulk CBL. This scale functionally replaces the Deardorff convective velocity scale. Vertical motions are blocked by the ground, so the outer eddies most effective in creating vertical motions come from the inertial subrange of the outer turbulence. We deduce that the appropriate scale for the peak region of the vertical velocity spectra is (z εo2/3 where z is height above ground. Deviations from perfect spectral collapse under these scalings at large and small wavenumbers are explained in terms of the energy transport and the eddy structures of the flow.

    We find that the peaks of the temperature spectra collapse when wavenumbers are scaled using (z1/2 zi1/2. That is, the lengths of the thermal structures depend on both the lengths of the

  9. Peaks in the Cosmic Microwave Background flat versus open models

    CERN Document Server

    Barreiro, R B; Martínez-González, E; Cayon, L; Silk, J; Silk, Joseph

    1996-01-01

    We present properties of the peaks (maxima) of the CMB anisotropies expected in flat and open CDM models. We obtain analytical expressions of several topological descriptors: mean number of maxima and the probability distribution of the gaussian curvature and the eccentricity of the peaks. These quantities are calculated as functions of the radiation power spectrum, assuming a gaussian distribution of temperature anisotropies. We present results for angular resolutions ranging from 5' to 20' (antenna FWHM), scales that are relevant for the MAP and COBRAS/SAMBA space missions and the ground-based interferometer experiments. Our analysis also includes the effects of noise. We find that the number of peaks can discriminate between standard CDM models, and that the gaussian curvature distribution provides a useful test for these various models, whereas the eccentricity distribution can not distinguish between them.

  10. Neurofeedback training for peak performance

    Directory of Open Access Journals (Sweden)

    Marek Graczyk

    2014-11-01

    Full Text Available [b]aim[/b]. One of the applications of the Neurofeedback methodology is peak performance in sport. The protocols of the neurofeedback are usually based on an assessment of the spectral parameters of spontaneous EEG in resting state conditions. The aim of the paper was to study whether the intensive neurofeedback training of a well-functioning Olympic athlete who has lost his performance confidence after injury in sport, could change the brain functioning reflected in changes in spontaneous EEG and event related potentials (ERPs. [b]case study[/b]. The case is presented of an Olympic athlete who has lost his performance confidence after injury in sport. He wanted to resume his activities by means of neurofeedback training. His QEEG/ERP parameters were assessed before and after 4 intensive sessions of neurotherapy. Dramatic and statistically significant changes that could not be explained by error measurement were observed in the patient. [b]conclusion[/b]. Neurofeedback training in the subject under study increased the amplitude of the monitoring component of ERPs generated in the anterior cingulate cortex, accompanied by an increase in beta activity over the medial prefrontal cortex. Taking these changes together, it can be concluded that that even a few sessions of neurofeedback in a high performance brain can significantly activate the prefrontal cortical areas associated with increasing confidence in sport performance.

  11. Peak Detection Using Wavelet Transform

    Directory of Open Access Journals (Sweden)

    Omar Daoud

    2014-07-01

    Full Text Available A new work based-wavelet transform is designed to o vercome one of the main drawbacks that found in the present new technologies. Orthogonal Frequency Divi sion Multiplexing (OFDMis proposed in the literature to enhance the multimedia resolution. Ho wever, the high peak power (PAPR values will obstr uct such achievements. Therefore, a new proposition is found in this work, making use of the wavelet transforms methods, and it is divided into three ma in stages; de-noising stage, thresholding stage and then the replacement stage. In order to check the system stages validity; a mat hematical model has been built and its checked afte r using a MATLAB simulation. A simulated bit error ra te (BER achievement will be compared with our previously published work, where an enhancement fro m 8×10 -1 to be 5×10 -1 is achieved. Moreover, these results will be compared to the work found in the l iterature, where we have accomplished around 27% PAPR extra reduction. As a result, the BER performance has been improved for the same bandwidth occupancy. Moreover and due to the de-noise stage, the verification rate ha s been improved to reach 81%. This is in addition t o the noise immunity enhancement.

  12. Strong ground motion in the Taipei basin from the 1999 Chi-Chi, Taiwan, earthquake

    Science.gov (United States)

    Fletcher, Joe B.; Wen, K.-L.

    2005-01-01

    The Taipei basin, located in northwest Taiwan about 160 km from the epicenter of the Chi-Chi earthquake, is a shallow, triangular-shaped basin filled with low-velocity fluvial deposits. There is a strong velocity contrast across the basement interface of about 600 m/sec at a depth of about 600-700 m in the deeper section of the basin, suggesting that ground motion should be amplified at sites in the basin. In this article, the ground-motion recordings are analyzed to determine the effect of the basin both in terms of amplifications expected from a 1D model of the sediments in the basin and in terms of the 3D structure of the basin. Residuals determined for peak acceleration from attenuation curves are more positive (amplified) in the basin (average of 5.3 cm/ sec2 compared to - 24.2 cm/sec2 for those stations outside the basin and between 75 and 110 km from the surface projection of the faulted area, a 40% increase in peak ground acceleration). Residuals for peak velocity are also significantly more positive at stations in the basin (31.8 cm/sec compared to 20.0 cm/sec out). The correlation of peak motion with depth to basement, while minor in peak acceleration, is stronger in the peak velocities. Record sections of ground motion from stations in and around the Taipei basin show that the largest long-period arrival, which is coherent across the region, is strongest on the vertical component and has a period of about 10-12 sec. This phase appears to be a Rayleigh wave, probably associated with rupture at the north end of the Chelungpu fault. Records of strong motion from stations in and near the basin have an additional, higher frequency signal: nearest the deepest point in the basin, the signal is characterized by frequencies of about 0.3 - 0.4 Hz. These frequencies are close to simple predictions using horizontal layers and the velocity structure of the basin. Polarizations of the S wave are mostly coherent across the array, although there are significant

  13. Estimation of vector velocity

    DEFF Research Database (Denmark)

    2000-01-01

    Using a pulsed ultrasound field, the two-dimensional velocity vector can be determined with the invention. The method uses a transversally modulated ultrasound field for probing the moving medium under investigation. A modified autocorrelation approach is used in the velocity estimation. The new...

  14. Estimation of vector velocity

    DEFF Research Database (Denmark)

    2000-01-01

    Using a pulsed ultrasound field, the two-dimensional velocity vector can be determined with the invention. The method uses a transversally modulated ultrasound field for probing the moving medium under investigation. A modified autocorrelation approach is used in the velocity estimation. The new...

  15. Human skeletal muscle fibre types and force: velocity properties.

    Science.gov (United States)

    MacIntosh, B R; Herzog, W; Suter, E; Wiley, J P; Sokolosky, J

    1993-01-01

    It has been reported that there is a relationship between power output and fibre type distribution in mixed muscle. The strength of this relationship is greater in the range of 3-8 rad.s-1 during knee extension compared to slower or faster angular knee extensor speeds. A mathematical model of the force: velocity properties of muscle with various combinations of fast- and slow-twitch fibres may provide insight into why specific velocities may give better predictions of fibre type distribution. In this paper, a mathematical model of the force:velocity relationship for mixed muscle is presented. This model demonstrates that peak power and optimal velocity should be predictive of fibre distribution and that the greatest fibre type discrimination in human knee extensor muscles should occur with measurement of power output at an angular velocity just greater than 7 rad.s-1. Measurements of torque:angular velocity relationships for knee extension on an isokinetic dynamometer and fibre type distribution in biopsies of vastus lateralis muscles were made on 31 subjects. Peak power and optimal velocity were determined in three ways: (1) direct measurement, (2) linear regression, and (3) fitting to the Hill equation. Estimation of peak power and optimal velocity using the Hill equation gave the best correlation with fibre type distribution (r < 0.5 for peak power or optimal velocity and percentage of fast-twitch fibres). The results of this study confirm that prediction of fibre type distribution is facilitated by measurement of peak power at optimal velocity and that fitting of the data to the Hill equation is a suitable method for evaluation of these parameters.

  16. Infrasonic induced ground motions

    Science.gov (United States)

    Lin, Ting-Li

    On January 28, 2004, the CERI seismic network recorded seismic signals generated by an unknown source. Our conclusion is that the acoustic waves were initiated by an explosive source near the ground surface. The meteorological temperature and effective sound speed profiles suggested existence of an efficient near-surface waveguide that allowed the acoustic disturbance to propagate to large distances. An explosion occurring in an area of forest and farms would have limited the number of eyewitnesses. Resolution of the source might be possible by experiment or by detailed analysis of the ground motion data. A seismo-acoustic array was built to investigate thunder-induced ground motions. Two thunder events with similar N-wave waveforms but different horizontal slownesses are chosen to evaluate the credibility of using thunder as a seismic source. These impulsive acoustic waves excited P and S reverberations in the near surface that depend on both the incident wave horizontal slowness and the velocity structure in the upper 30 meters. Nineteen thunder events were chosen to further investigate the seismo-acoustic coupling. The consistent incident slowness differences between acoustic pressure and ground motions suggest that ground reverberations were first initiated somewhat away from the array. Acoustic and seismic signals were used to generate the time-domain transfer function through the deconvolution technique. Possible non-linear interaction for acoustic propagation into the soil at the surface was observed. The reverse radial initial motions suggest a low Poisson's ratio for the near-surface layer. The acoustic-to-seismic transfer functions show a consistent reverberation series of the Rayleigh wave type, which has a systematic dispersion relation to incident slownesses inferred from the seismic ground velocity. Air-coupled Rayleigh wave dispersion was used to quantitatively constrain the near-surface site structure with constraints afforded by near-surface body

  17. Selective measurement of digital nerve conduction velocity.

    Science.gov (United States)

    Terai, Y; Senda, M; Hashizume, H; Nagashima, H; Inoue, H

    2001-01-01

    We developed a new method to measure the nerve conduction velocity of a single digital nerve. In 27 volunteers (27 hands), we separately stimulated each digital nerve on the radial and ulnar sides of the middle and ring fingers. A double-peaked potential was recorded above the median nerve at the wrist joint when either the radial-side nerve or the ulnar-side nerve of the middle finger was stimulated. The first peak of this potential had disappeared after the digital nerve was blocked under the stimulating electrodes, and the peak appeared again coinciding with the decrease of anesthesia. Shifting the stimulating electrodes on the digital nerve resulted in no significant difference in the peak conduction velocity. It is possible that each peak of the potential was attributable to conduction of an action potential along one of the two digital nerves. This new method allows the assessment of a single digital nerve, and may be clinically useful for assessing the rupture of a digital nerve and the sensory nerve action potentials in carpal tunnel syndrome.

  18. A Refined Vs30 Map for Taiwan Based on Ground Motion Attenuation Relationships

    Directory of Open Access Journals (Sweden)

    Kun-Sung Liu and Yi-Ben Tsai

    2015-01-01

    Full Text Available Seismic hazard evaluations require an estimate of the expected ground motion at the site of interest usually by using attenuation relationships. The mean shear-wave velocity over the top 30 m (Vs30 is incorporated in the ground motion attenuation relationships in this study. By comparing the standard deviations of the residuals between the observed and predicted values before and after incorporating the site effect term Vs30, the reduction in standard deviation for the peak ground velocity (PGV is significantly reduced by about 11%. Clearly, the refined attenuation relationships will be more useful for engineering purposes. Analyzing the site effect term using the amplification factor (relative to a site with Vs30 = 760 m s-1, has revealed that the Changhua Plain, Chianan Plain, Pingtung Valley, Ilan Plain, and Taipei Basin have high values, implying large ground motion amplification. Following a disastrous earthquake, quick assessment and timely peak ground acceleration (PGA and PGV map reporting will be critical for effective emergency response operations. After an earthquake we can combine the simple attenuation relationships, as determined from Model 1, to provide near real-time estimation and reporting of the PGA and PGV values for the Taiwan area. We can also use the relations between the intra-event site residual and the Vs30 to estimate the Vs30 for stations that have recorded strong motions, but do not yet have Vs30 information. Our approach including sites with estimated Vs30 has resulted in a refined Vs30 contour map that can be used for more realistic seismic hazard assessment for Taiwan. This approach is especially applicable to the foothill and mountain areas.

  19. Nonlinear seismic behavior of a CANDU containment building subjected to near-field ground motions

    Energy Technology Data Exchange (ETDEWEB)

    Choi, In Kil; Ahn, Seong Moon; Choun, Young Sun; Seo, Jeong Moon [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    2004-07-01

    The standard response spectrum proposed by US NRC has been used as a design earthquake for the design of Korean nuclear power plant structures. A survey on some of the Quaternary fault segments near Korean nuclear power plants is ongoing. It is likely that these faults will be identified as active ones. If the faults are confirmed as active ones, it will be necessary to reevaluate the seismic safety of the nuclear power plants located near the fault. Near-fault ground motions are the ground motions that occur near an earthquake fault. In general, the near-fault ground motion records exhibit a distinctive long period pulse like time history with very high peak velocities. These features are induced by the slip of the earthquake fault. Near-fault ground motions, which have caused much of the damage in recent major earthquakes, can be characterized by a pulse-like motion that exposes the structure to a high input energy at the beginning of the motion. In this study, nonlinear dynamic time-history analyses were performed to investigate the seismic behavior of a CANDU containment structure subjected to various earthquake ground motions including the near-field ground motions.

  20. Relation of landslides triggered by the Kiholo Bay earthquake to modeled ground motion

    Science.gov (United States)

    Harp, Edwin L.; Hartzell, Stephen H.; Jibson, Randall W.; Ramirez-Guzman, L.; Schmitt, Robert G.

    2014-01-01

    The 2006 Kiholo Bay, Hawaii, earthquake triggered high concentrations of rock falls and slides in the steep canyons of the Kohala Mountains along the north coast of Hawaii. Within these mountains and canyons a complex distribution of landslides was triggered by the earthquake shaking. In parts of the area, landslides were preferentially located on east‐facing slopes, whereas in other parts of the canyons no systematic pattern prevailed with respect to slope aspect or vertical position on the slopes. The geology within the canyons is homogeneous, so we hypothesize that the variable landslide distribution is the result of localized variation in ground shaking; therefore, we used a state‐of‐the‐art, high‐resolution ground‐motion simulation model to see if it could reproduce the landslide‐distribution patterns. We used a 3D finite‐element analysis to model earthquake shaking using a 10 m digital elevation model and slip on a finite‐fault model constructed from teleseismic records of the mainshock. Ground velocity time histories were calculated up to a frequency of 5 Hz. Dynamic shear strain also was calculated and compared with the landslide distribution. Results were mixed for the velocity simulations, with some areas showing correlation of landslide locations with peak modeled ground motions but many other areas showing no such correlation. Results were much improved for the comparison with dynamic shear strain. This suggests that (1) rock falls and slides are possibly triggered by higher frequency ground motions (velocities) than those in our simulations, (2) the ground‐motion velocity model needs more refinement, or (3) dynamic shear strain may be a more fundamental measurement of the decoupling process of slope materials during seismic shaking.

  1. Facility Location with Double-peaked Preferences

    DEFF Research Database (Denmark)

    Filos-Ratsikas, Aris; Li, Minming; Zhang, Jie

    2015-01-01

    We study the problem of locating a single facility on a real line based on the reports of self-interested agents, when agents have double-peaked preferences, with the peaks being on opposite sides of their locations. We observe that double-peaked preferences capture real-life scenarios and thus...... complement the well-studied notion of single-peaked preferences. We mainly focus on the case where peaks are equidistant from the agents’ locations and discuss how our results extend to more general settings. We show that most of the results for single-peaked preferences do not directly apply to this setting...

  2. O2 Emission toward Orion H2 Peak 1 and the Role of FUV-illuminated C-shocks

    Science.gov (United States)

    Melnick, Gary J.; Kaufman, Michael J.

    2015-06-01

    Molecular oxygen (O2) has been the target of ground-based and space-borne searches for decades. Of the thousands of lines of sight surveyed, only those toward Rho Ophiuchus and Orion H2 Peak 1 have yielded detections of any statistical significance. The detection of the O2 NJ = 33-12 and 54-34 lines at 487.249 GHz and 773.840 GHz, respectively, toward Rho Ophiuchus has been attributed to a short-lived peak in the time-dependent, cold-cloud O2 abundance, while the detection of the O2 NJ = 33-12, 54-34 lines, plus the 76-56 line at 1120.715 GHz, toward Orion has been ascribed to time-dependent preshock physical and chemical evolution and low-velocity (12 km s-1) non-dissociative C-type shocks, both of which are fully shielded from far-ultraviolet (FUV) radiation, plus a postshock region that is exposed to an FUV field. We report a re-interpretation of the Orion O2 detection based on new C-type shock models that fully incorporate the significant effects the presence of even a weak FUV field can have on the preshock gas, shock structure, and postshock chemistry. In particular, we show that a family of solutions exists, depending on the FUV intensity, that reproduces both the observed O2 intensities and O2 line ratios. The solution in closest agreement with the shock parameters inferred for H2 Peak 1 from other gas tracers assumes a 23 km s-1 shock impacting gas with a preshock density of 8 × 104 cm-3 and {G}{o} = 1, substantially different from that inferred for the fully shielded shock case. As pointed out previously, the similarity between the LSR velocity of all three O2 lines (≈ 11 km s-1) and recently measured H2O 532-441 maser emission at 620.701 GHz toward H2 Peak 1 suggests that the O2 emission arises behind the same shocks responsible for the maser emission, though the O2 emission is almost certainly more extended than the localized high-density maser spots. Since maser emission arises along lines of sight of low-velocity gradient, indicating shock motion

  3. Peak Wind Tool for General Forecasting

    Science.gov (United States)

    Barrett, Joe H., III

    2010-01-01

    The expected peak wind speed of the day is an important forecast element in the 45th Weather Squadron's (45 WS) daily 24-Hour and Weekly Planning Forecasts. The forecasts are used for ground and space launch operations at the Kennedy Space Center (KSC) and Cape Canaveral Air Force Station (CCAFS). The 45 WS also issues wind advisories for KSC/CCAFS when they expect wind gusts to meet or exceed 25 kt, 35 kt and 50 kt thresholds at any level from the surface to 300 ft. The 45 WS forecasters have indicated peak wind speeds are challenging to forecast, particularly in the cool season months of October - April. In Phase I of this task, the Applied Meteorology Unit (AMU) developed a tool to help the 45 WS forecast non-convective winds at KSC/CCAFS for the 24-hour period of 0800 to 0800 local time. The tool was delivered as a Microsoft Excel graphical user interface (GUI). The GUI displayed the forecast of peak wind speed, 5-minute average wind speed at the time of the peak wind, timing of the peak wind and probability the peak speed would meet or exceed 25 kt, 35 kt and 50 kt. For the current task (Phase II ), the 45 WS requested additional observations be used for the creation of the forecast equations by expanding the period of record (POR). Additional parameters were evaluated as predictors, including wind speeds between 500 ft and 3000 ft, static stability classification, Bulk Richardson Number, mixing depth, vertical wind shear, temperature inversion strength and depth and wind direction. Using a verification data set, the AMU compared the performance of the Phase I and II prediction methods. Just as in Phase I, the tool was delivered as a Microsoft Excel GUI. The 45 WS requested the tool also be available in the Meteorological Interactive Data Display System (MIDDS). The AMU first expanded the POR by two years by adding tower observations, surface observations and CCAFS (XMR) soundings for the cool season months of March 2007 to April 2009. The POR was expanded

  4. Block ground interaction of rockfalls

    Science.gov (United States)

    Volkwein, Axel; Gerber, Werner; Kummer, Peter

    2016-04-01

    During a rockfall the interaction of the falling block with the ground is one of the most important factors that define the evolution of a rockfall trajectory. It steers the rebound, the rotational movement, possibly brake effects, friction losses and damping effects. Therefore, if most reliable rockfall /trajectory simulation software is sought a good understanding of the block ground interaction is necessary. Today's rockfall codes enable the simulation of a fully 3D modelled block within a full 3D surface . However, the details during the contact, i.e. the contact duration, the penetration depth or the dimension of the marks in the ground are usually not part of the simulation. Recent field tests with rocks between 20 and 80 kg have been conducted on a grassy slope in 2014 [1]. A special rockfall sensor [2] within the blocks measured the rotational velocity and the acting accelerations during the tests. External video records and a so-called LocalPositioningSystem deliver information on the travel velocity. With these data not only the flight phases of the trajectories but also the contacts with the ground can be analysed. During the single jumps of a block the flight time, jump length, the velocity, and the rotation are known. During the single impacts their duration and the acting accelerations are visible. Further, the changes of rotational and translational velocity influence the next jump of the block. The change of the rotational velocity over the whole trajectory nicely visualizes the different phases of a rockfall regarding general acceleration and deceleration in respect to the inclination and the topography of the field. References: [1] Volkwein A, Krummenacher B, Gerber W, Lardon J, Gees F, Brügger L, Ott T (2015) Repeated controlled rockfall trajectory testing. [Abstract] Geophys. Res. Abstr. 17: EGU2015-9779. [2] Volkwein A, Klette J (2014) Semi-Automatic Determination of Rockfall Trajectories. Sensors 14: 18187-18210.

  5. Peak earthquake response of structures under multi-component excitations

    Institute of Scientific and Technical Information of China (English)

    Jianwei Song; Zach Liang; Yi-Lun Chu; George C.Lee

    2007-01-01

    Accurate estimation of the peak seismic responses of structures is important in earthquake resistant design.The internal force distributions and the seismic responses of structures are quite complex,since ground motions are multidirectional.One key issue is the uncertainty of the incident angle between the directions of ground motion and the reference axes of the structure.Different assumed seismic incidences can result in difierent peak values within the scope of design spectrum analysis for a given structure and earthquake ground motion record combination.Using time history analysis to determine the maximum structural responses excited by a given earthquake record requires repetitive calculations to determine the critical incident angle.This paper presents a transformation approach for relatively accurate and rapid determination of the maximum peak responses of a linear structure subjected to three-dimensional excitations within all possible seismic incident angles.The responses can be deformations,internal forces,strains and so on.An irregular building structure model is established using SAP2000 program.Several typical earthquake records and an artificial white noise are applied to the structure model to illustrate the variation of the maximum structural responses for different incident angles.Numerical results show that for many structural parameters,the variation can be greater than 100%.This method can be directly applied to time history analysis of structures using existing computer software to determine the peak responses without carrying out the analyses for all possible incident angles.It can also be used to verify and/or modify aseismic designs by using response spectrum analysis.

  6. Critical velocity for superfluid flow across the BEC-BCS crossover.

    Science.gov (United States)

    Miller, D E; Chin, J K; Stan, C A; Liu, Y; Setiawan, W; Sanner, C; Ketterle, W

    2007-08-17

    Critical velocities have been observed in an ultracold superfluid Fermi gas throughout the BEC-BCS crossover. A pronounced peak of the critical velocity at unitarity demonstrates that superfluidity is most robust for resonant atomic interactions. Critical velocities were determined from the abrupt onset of dissipation when the velocity of a moving one-dimensional optical lattice was varied. The dependence of the critical velocity on lattice depth and on the inhomogeneous density profile was studied.

  7. Prediction of long-period ground motions from huge subduction earthquakes in Osaka, Japan

    Science.gov (United States)

    Kawabe, H.; Kamae, K.

    2008-04-01

    There is a high possibility of reoccurrence of the Tonankai and Nankai earthquakes along the Nankai Trough in Japan. It is very important to predict the long-period ground motions from the next Tonankai and Nankai earthquakes with moment magnitudes of 8.1 and 8.4, respectively, to mitigate their disastrous effects. In this study, long-period (>2.5 s) ground motions were predicted using an earthquake scenario proposed by the Headquarters for Earthquake Research Promotion in Japan. The calculations were performed using a fourth-order finite difference method with a variable spacing staggered-grid in the frequency range 0.05 0.4 Hz. The attenuation characteristics ( Q) in the finite difference simulations were assumed to be proportional to frequency ( f) and S-wave velocity ( V s) represented by Q = f · V s / 2. Such optimum attenuation characteristic for the sedimentary layers in the Osaka basin was obtained empirically by comparing the observed motions during the actual M5.5 event with the modeling results. We used the velocity structure model of the Osaka basin consisting of three sedimentary layers on bedrock. The characteristics of the predicted long-period ground motions from the next Tonankai and Nankai earthquakes depend significantly on the complex thickness distribution of the sediments inside the basin. The duration of the predicted long-period ground motions in the city of Osaka is more than 4 min, and the largest peak ground velocities (PGVs) exceed 80 cm/s. The predominant period is 5 to 6 s. These preliminary results indicate the possibility of earthquake damage because of future subduction earthquakes in large-scale constructions such as tall buildings, long-span bridges, and oil storage tanks in the Osaka area.

  8. Tidally induced velocity variations of the Beardmore Glacier, Antarctica, and their representation in satellite measurements of ice velocity

    Directory of Open Access Journals (Sweden)

    O. J. Marsh

    2013-09-01

    Full Text Available Ocean tides close to the grounding line of outlet glaciers around Antarctica have been shown to directly influence ice velocity, both linearly and non-linearly. These fluctuations can be significant and have the potential to affect satellite measurements of ice discharge, which assume displacement between satellite passes to be consistent and representative of annual means. Satellite observations of horizontal velocity variation in the grounding zone are also contaminated by vertical tidal effects, the importance of which is highlighted here in speckle tracking measurements. Eight TerraSAR-X scenes from the grounding zone of the Beardmore Glacier are analysed in conjunction with GPS measurements to determine short-term and decadal trends in ice velocity. Diurnal tides produce horizontal velocity fluctuations of >50% on the ice shelf, recorded in the GPS data 4 km downstream of the grounding line. This variability decreases rapidly to <5% only 15 km upstream of the grounding line. Daily fluctuations are smoothed to <1% in the 11-day repeat pass TerraSAR-X imagery, but fortnightly variations over this period are still visible and show that satellite-velocity measurements can be affected by tides over longer periods. The measured tidal displacement observed in radar look direction over floating ice also allows the grounding line to be identified, using differential speckle tracking where phase information cannot be easily unwrapped.

  9. Superluminal Recession Velocities

    CERN Document Server

    Davis, T M; Davis, Tamara M.; Lineweaver, Charles H.

    2000-01-01

    Hubble's Law, v=HD (recession velocity is proportional to distance), is a theoretical result derived from the Friedmann-Robertson-Walker metric. v=HD applies at least as far as the particle horizon and in principle for all distances. Thus, galaxies with distances greater than D=c/H are receding from us with velocities greater than the speed of light and superluminal recession is a fundamental part of the general relativistic description of the expanding universe. This apparent contradiction of special relativity (SR) is often mistakenly remedied by converting redshift to velocity using SR. Here we show that galaxies with recession velocities faster than the speed of light are observable and that in all viable cosmological models, galaxies above a redshift of three are receding superluminally.

  10. Wave heave spectra from radar Doppler velocities at extreme low grazing angles

    Science.gov (United States)

    Flampouris, Stylianos; Seemann, Joerg; Ziemer, Friedwart

    2013-04-01

    The ground based microwaves radar systems are used for the measurement of the sea surface phenomena for more than three decades. By calibrating the radar cross section, the extraction of the wave spectral characteristics is a well established empirical methodology (Ziemer et al. 1993) with theoretical background (Alpers et al. 1978) and commercial applications (Nieto et al. 2004), which provides comparable measurements with wave buoys. The transfer function is necessary mainly due to the imaging mechanisms, like shadowing and or tilt modulation (Seemann 1997). To avoid the obligatory use of a transfer function, instead of the radar cross section, the Doppler velocity, which is a direct measurement of the sea surface, could be used. In this poster, a methodology for the determination of heave spectra based on time series of Doppler velocity acquired under extreme low grazing angle conditions, is presented. We prove that for the determination of the peak frequency the analysis of the binary shadow mask is sufficient, but for the calculation of the spectral density, a transfer function is necessary because of the gaps of the time series due to the shadowing. The physical and technical limitations are discussed and the algorithm is tested with in situ measurements from the coastal area of German Bight. Both properties, peak frequency and significant wave height from radar, have significant correlation with buoy measurements.

  11. 27 CFR 9.140 - Atlas Peak.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Atlas Peak. 9.140 Section... THE TREASURY LIQUORS AMERICAN VITICULTURAL AREAS Approved American Viticultural Areas § 9.140 Atlas Peak. (a) Name. The name of the viticultural area described in this section is “Atlas Peak.”...

  12. Extreme Velocity Wind Sensor

    Science.gov (United States)

    Perotti, Jose; Voska, Ned (Technical Monitor)

    2002-01-01

    This presentation provides an overview of the development of new hurricane wind sensor (Extreme Velocity Wind Sensor) for the Kennedy Space Center (KSC) which is designed to withstand winds of up to three hundred miles an hour. The proposed Extreme Velocity Wind Sensor contains no moveable components that would be exposed to extreme wind conditions. Topics covered include: need for new hurricane wind sensor, conceptual design, software applications, computational fluid dynamic simulations of design concept, preliminary performance tests, and project status.

  13. Trends in peak flows of selected streams in Kansas

    Science.gov (United States)

    Rasmussen, T.J.; Perry, C.A.

    2001-01-01

    The possibility of a systematic change in flood potential led to an investigation of trends in the magnitude of annual peak flows in Kansas. Efficient design of highway bridges and other flood-plain structures depends on accurate understanding of flood characteristics. The Kendall's tau test was used to identify trends at 40 stream-gaging stations during the 40-year period 1958-97. Records from 13 (32 percent) of the stations showed significant trends at the 95-percent confidence level. Only three of the records (8 percent) analyzed had increasing trends, whereas 10 records (25 percent) had decreasing trends, all of which were for stations located in the western one-half of the State. An analysis of flow volume using mean annual discharge at 29 stations in Kansas resulted in 6 stations (21 percent) with significant trends in flow volumes. All six trends were decreasing and occurred in the western one-half of the State. The Kendall's tau test also was used to identify peak-flow trends over the entire period of record for 54 stream-gaging stations in Kansas. Of the 23 records (43 percent) showing significant trends, 16 (30 percent) were decreasing, and 7 (13 percent) were increasing. The trend test then was applied to 30-year periods moving in 5-year increments to identify time periods within each station record when trends were occurring. Systematic changes in precipitation patterns and long-term declines in ground-water levels in some stream basins may be contributing to peak-flow trends. To help explain the cause of the streamflow trends, the Kendall's tau test was applied to total annual precipitation and ground-water levels in Kansas. In western Kansas, the lack of precipitation and presence of decreasing trends in ground-water levels indicated that declining water tables are contributing to decreasing trends in peak streamflow. Declining water tables are caused by ground-water withdrawals and other factors such as construction of ponds and terraces. Peak

  14. Velocity and Magnetic Compressions in FEL Drivers

    CERN Document Server

    Serafini, L

    2005-01-01

    We will compare merits and issues of these two techniques suitable for increasing the peak current of high brightness electron beams. The typical range of applicability is low energy for the velocity bunching and middle to high energy for magnetic compression. Velocity bunching is free from CSR effects but requires very high RF stability (time jitters), as well as a dedicated additional focusing and great cure in the beam transport: it is very well understood theoretically and numerical simulations are pretty straightforward. Several experiments of velocity bunching have been performed in the past few years: none of them, nevertheless, used a photoinjector designed and optimized for that purpose. Magnetic compression is a much more consolidated technique: CSR effects and micro-bunch instabilities are its main drawbacks. There is a large operational experience with chicanes used as magnetic compressors and their theoretical understanding is quite deep, though numerical simulations of real devices are still cha...

  15. Empirical Scaling of Peak Flux Frequency in Asymmetry-Induced Transport

    Science.gov (United States)

    Eggleston, D. L.; Carrillo, B.

    2001-10-01

    One of the key ideas in the theory of asymmetry-induced transport is that the transport will be dominated by particles with velocities satisfying a resonance condition(D.L. Eggleston and T.M. O'Neil, Phys. Plasmas 6, 2699 (1999).). As a result, the particle flux will peak as this resonant velocity moves through the distribution function. Our initial transport experimentsfootnote D.L. Eggleston, in Non-Neutral Plasma Physics III, AIP Conference Proceedings 498, 1999, pp. 241-249. using a variable frequency asymmetry to adjust the resonant velocity showed such flux peaks, and we tentatively took these as support for the theory. To further test the theory, we have measured the frequency f_peak at which these flux peaks occur as a function of radius r, magnetic field B, and center-wire bias φ_cw. Our empirical scaling gives f_peak ∝ (φ_cw/rB)^0.5 ± 0.1. While this scaling is qualitatively similar to that predicted by theory (f_peak increases with φ_cw, decreases with r and B), it is not consistent with more detailed predictions. Correcting the theory would seem to require, at least, a change in the expression for the resonant velocity.

  16. Ground Wood Fiber Length Distributions

    Directory of Open Access Journals (Sweden)

    Lauri Ilmari Salminen

    2014-01-01

    Full Text Available This study considers ground wood fiber length distributions arising from pilot grindings. The empirical fiber length distributions appear to be independent of wood fiber length as well as feeding velocity. In terms of mathematics the fiber fragment distributions of ground wood pulp combine an exponential distribution for high-length fragments and a power-law distribution for smaller lengths. This implies that the fiber length distribution is influenced by the stone surface. A fragmentation-based model is presented that allows reproduction of the empirical results.

  17. Wave height, peak period, and orbital velocity for the California continental shelf

    Science.gov (United States)

    Erikson, Li H.; Storlazzi, Curt D.; Golden, Nadine E.

    2014-01-01

    Ecologists have long recognized that the structure and function of benthic marine ecosystems are closely linked to oceanographic processes. Quantifying the natural spatial and temporal variability of disturbances affecting benthic marine ecosystems is thus critical for planning and management of areas, such as marine protected areas, and for permitting offshore activities such as trawling, dredging, and the placement of sea-floor engineering structures (cables and pipelines, for example).

  18. Sport Injuries Aligned to Peak Height Velocity in Talented Pubertal Soccer Players

    NARCIS (Netherlands)

    van der Sluis, A.; Elferink-Gemser, M. T.; Coelho-e-Silva, M. J.; Nijboer, J. A.; Brink, M. S.; Visscher, C.

    2014-01-01

    In young athletes, demands of sports are superimposed on normal growth and maturation. It has been suggested that this causes a temporarily increased vulnerability for injuries. We followed 26 talented soccer players (mean age 11.9 +/- 0.84 years) longitudinally for 3 years around their adolescent g

  19. VizieR Online Data Catalog: SDSS-RM project: peak velocities of QSOs (Shen+, 2016)

    Science.gov (United States)

    Shen, Y.; Brandt, W. N.; Richards, G. T.; Denney, K. D.; Greene, J. E.; Grier, C. J.; Ho, L. C.; Peterson, B. M.; Petitjean, P.; Schneider, D. P.; Tao, C.; Trump, J. R.

    2017-01-01

    The SDSS-RM quasar sample includes 849 broad-line quasars at 0.1SDSS-RM project within the SDSS-III (Eisenstein+ 2011AJ....142...72E) Baryon Oscillation Spectroscopic Survey (BOSS, Dawson+ 2013AJ....145...10D), using the BOSS spectrograph on the 2.5m SDSS telescope. The wavelength coverage of BOSS spectroscopy is ~3650-10400Å, with a spectral resolution of R~2000. (1 data file).

  20. Sport Injuries Aligned to Peak Height Velocity in Talented Pubertal Soccer Players

    NARCIS (Netherlands)

    van der Sluis, A.; Elferink-Gemser, M. T.; Coelho-e-Silva, M. J.; Nijboer, J. A.; Brink, M. S.; Visscher, C.

    2014-01-01

    In young athletes, demands of sports are superimposed on normal growth and maturation. It has been suggested that this causes a temporarily increased vulnerability for injuries. We followed 26 talented soccer players (mean age 11.9 +/- 0.84 years) longitudinally for 3 years around their adolescent g

  1. Sport Injuries Aligned to Peak Height Velocity in Talented Pubertal Soccer Players

    NARCIS (Netherlands)

    van der Sluis, A.; Elferink-Gemser, M. T.; Coelho-e-Silva, M. J.; Nijboer, J. A.; Brink, M. S.; Visscher, C.

    In young athletes, demands of sports are superimposed on normal growth and maturation. It has been suggested that this causes a temporarily increased vulnerability for injuries. We followed 26 talented soccer players (mean age 11.9 +/- 0.84 years) longitudinally for 3 years around their adolescent

  2. Estimation of detection threshold in multiple ship target situations with HF ground wave radar

    Institute of Scientific and Technical Information of China (English)

    Li Hongbo; Shen Yiying; Liu Yongtan

    2007-01-01

    A credible method of calculating the detection threshold is presented for the multiple target situations,which appear frequently in the lower Doppler velocity region during the surveillance of sea with HF ground wave radar. This method defines a whole-peak-outlier elimination (WPOE) criterion, which is based on in-peak-samples correlation of each target echo spectra, to trim off the target signals and abnormal disturbances with great amplitude from the complex spectra. Therefore, cleaned background noise samples are obtained to improve the accuracy and reliability of noise level estimation. When the background noise is nonhomogeneous, the detection samples are limited and often occupied heavily with outliers. In this case, the problem that the detection threshold is overvalued can be solved. In applications on experimental data, it is verified that this method can reduce the miss alarm rate of signal detection effectively in multiple target situations as well as make the adaptability of the detector better.

  3. Connection between ozone concentration and atmosphere circulation at peak Moussala

    Science.gov (United States)

    Nojarov, Peter; Ivanov, Peter; Kalapov, Ivo; Penev, Ilia; Drenska, Mirolujba

    2009-09-01

    Connection between ozone concentration and atmosphere circulation is investigated based on measurements at BEO station, peak Moussala (2,925 m a.s.l.), for the period 09 August 2006 to 29 January 2008. Ozone concentration data are collected with UV-analyzer “Environnement O3 42” and meteo data with weather station “Vaisala”. There are measurements of 7Be. Data from NOAA HYSPLIT model for particle trajectories are also used. Eight wind directions and three ranges of wind velocities are employed in the analysis. A comparison of ozone concentrations in upward and downward air transport according to HYSPLIT model is made. The number of cases with ozone concentration above 63 ppb has been counted. Mann-Whitney nonparametric test is employed as a basic statistical method. Correlation between atmosphere pressure and tropospheric ozone content is made. The same is done for 7Be and ozone. The main conclusion is that there is not any local or regional pollution effect detectable at peak Moussala, but most of the ozone measured is due to emissions of hydrocarbons and NO x over a larger region. There could be some regional sources of ozone building substances in southwest direction from peak Moussala. Air transported from the north quarter has higher ozone concentrations compared to the south quarter. In vertical direction, upward transport of air masses shows higher values of ozone concentration. Higher wind velocity is associated with low ozone concentrations at peak Moussala. The annual course of ozone concentration has summer maximum and winter minimum. There is right connection between air pressure and ozone concentration. The same is valid for the correlation between 7Be and ozone. Diurnal ozone course shows daytime maximum in winter and nighttime maximum in summer.

  4. On the trail of double peak hydrographs

    Science.gov (United States)

    Martínez-Carreras, Núria; Hissler, Christophe; Gourdol, Laurent; Klaus, Julian; Juilleret, Jérôme; François Iffly, Jean; McDonnell, Jeffrey J.; Pfister, Laurent

    2016-04-01

    A double peak hydrograph features two peaks as a response to a unique rainfall pulse. The first peak occurs at the same time or shortly after the precipitation has started and it corresponds to a fast catchment response to precipitation. The delayed peak normally starts during the recession of the first peak, when the precipitation has already ceased. Double peak hydrographs may occur for various reasons. They can occur (i) in large catchments when lag times in tributary responses are large, (ii) in urban catchments where the first peak is often caused by direct surface runoff on impervious land cover, and the delayed peak to slower subsurface flow, and (iii) in non-urban catchments, where the first and the delayed discharge peaks are explained by different runoff mechanisms (e.g. overland flow, subsurface flow and/or deep groundwater flow) that have different response times. Here we focus on the third case, as a formal description of the different hydrological mechanisms explaining these complex hydrological dynamics across catchments with diverse physiographic characteristics is still needed. Based on a review of studies documenting double peak events we have established a formal classification of catchments presenting double peak events based on their regolith structure (geological substratum and/or its weathered products). We describe the different hydrological mechanisms that trigger these complex hydrological dynamics across each catchment type. We then use hydrometric time series of precipitation, runoff, soil moisture and groundwater levels collected in the Weierbach (0.46 km2) headwater catchment (Luxembourg) to better understand double peak hydrograph generation. Specifically, we aim to find out (1) if the generation of a double peak hydrograph is a threshold process, (2) if the hysteretic relationships between storage and discharge are consistent during single and double peak hydrographs, and (3) if different functional landscape units (the hillslopes

  5. A Comparative Study of Ground and Underground Vibrations Induced by Bench Blasting

    Directory of Open Access Journals (Sweden)

    Xiuzhi Shi

    2016-01-01

    Full Text Available Ground vibrations originating from bench blasting may cause damage to slopes, structures, and underground workings in close proximity to an operating open-pit mine. It is important to monitor and predict ground vibration levels induced by blasting and to take measures to reduce their hazardous effects. The aims of this paper are to determine the weaker protection objects by comparatively studying bench blasting induced vibrations obtained at surface and in an underground tunnel in an open-pit mine and thus to seek vibration control methods to protect engineering objects at the site. Vibrations arising from measurement devices at surface and in an underground tunnel at the Zijinshan Open-Pit Mine were obtained. Comparative analysis of the peak particle velocities shows that, in the greatest majority of cases, surface values are higher than underground values for the same vibration distance. The transmission laws of surface and underground vibrations were established depending on the type of rock mass, the explosive charge, and the distance. Compared with the Chinese Safety Regulations for Blasting (GB6722-2014, the bench blasting induced vibrations would not currently cause damage to the underground tunnel. According to the maximum allowable peak particle velocities for different objects, the permitted maximum charges per delay are obtained to reduce damage to these objects at different distances.

  6. Velocities in Solar Pores

    Science.gov (United States)

    Balasubramaniam, K. S.; Keil, S. L.; Smaldone, L. A.

    1996-05-01

    We investigate the three dimensional structure of solar pores and their surroundings using high spatial and spectral resolution data. We present evidence that surface velocities decrease around pores with a corresponding increase in the line-of-sight (LOS) velocities. LOS velocities in pores increase with the strength of the magnetic field. Surface velocities show convergence toward a weak downflow which appear to trace boundaries resembling meso-granular and super granular flows. The observed magnetic fields in the pores appear near these boundaries. We analyze the vertical velocity structure in pores and show that they generally have downflows decreasing exponentially with height, with a scale height of about 90 km. Evidence is also presented for the expanding nature of flux tubes. Finally we describe a phenomenological model for pores. This work was supported by AFOSR Task 2311G3. LAS was partially supported by the Progetto Nazionale Astrofisica e Fisica Cosmica of MURST and Scambi Internazionali of the Universita degli Studi di Napoli Frederico II. National Solar Observatory, NOAO, is operated for the National Science Foundation by AURA, Inc.

  7. Modeling of Strong Ground Motion in "The Geysers" Geothermal Area

    Science.gov (United States)

    Sharma, N.; Convertito, V.; Maercklin, N.; Zollo, A.

    2012-04-01

    The Geysers is a vapor-dominated geothermal field located about 120 km north of San Francisco, California. The field is actively exploited since the 1960s, and it is now perhaps the most important and most productive geothermal field in the USA. The continuous injection of fluids and the stress perturbations of this area has resulted in induced seismicity which is clearly felt in the surrounding villages. Thus, based on these considerations, in the present work Ground Motion Prediction Equations (GMPEs) are derived, as they play key role in seismic hazard analysis control and for monitoring the effects of the seismicity rate levels. The GMPEs are derived through the mixed non-linear regression technique for both Peak Ground Velocity (PGV) and Peak Ground Acceleration (PGA). This technique includes both fixed effects and random effects and allows to account for both inter-event and intra-event dependencies in the data. In order to account for site/station effects, a two steps approach has been used. In the first step, regression analysis is performed without station corrections and thus providing a reference model. In the second step, based on the residual distribution at each station and the results of a Z-test, station correction coefficients are introduced to get final correct model. The data from earthquakes recorded at 29 stations for the period September 2007 through November 2010 have been used. The magnitude range is (1.0 geothermal fields with respect to those obtained from natural seismic events. The residual analysis is performed at individual stations to check the reliability of the station corrections and for evaluating the fitting reliability of the retrieved model. The best model has been chosen on the basis of inter-event standard error and R-square test. After the introduction of the site/station correction factor, an improvement in the fit is observed, which resulted in total standard error reduction and increased R-square values.

  8. O$_2$ Emission Toward Orion H$_2$ Peak 1 and the Role of FUV-Illuminated C-Shocks

    CERN Document Server

    Melnick, Gary J

    2015-01-01

    Molecular oxygen, O_2, has been the target of ground-based and space-borne searches for decades. Of the thousands of lines of sight surveyed, only those toward Rho Oph and Orion H_2 Peak 1 have yielded detections of any statistical significance. The detection of the O_2 N_J =3_3 -1_2 and 5_4 - 3_4 lines at 487.249 GHz and 773.840 GHz, respectively, toward Rho Ophiuchus has been attributed to a short-lived peak in the time-dependent, cold-cloud O_2 abundance, while the detection of the O_2 N_J =3_3 - 1_2, 5_4 - 3_4 lines, plus the 7_6 - 5_6 line at 1120.715 GHz, toward Orion has been ascribed to time-dependent preshock physical and chemical evolution and low-velocity (12 km/s) non-dissociative C-type shocks, both of which are fully shielded from far-ultraviolet (FUV) radiation, plus a postshock region that is exposed to a FUV field. We report a re-interpretation of the Orion O_2 detection based on new C-type shock models that fully incorporate the significant effects the presence of even a weak FUV field can h...

  9. 'Grounded' Politics

    DEFF Research Database (Denmark)

    Schmidt, Garbi

    2012-01-01

    play within one particular neighbourhood: Nørrebro in the Danish capital, Copenhagen. The article introduces the concept of grounded politics to analyse how groups of Muslim immigrants in Nørrebro use the space, relationships and history of the neighbourhood for identity political statements....... The article further describes how national political debates over the Muslim presence in Denmark affect identity political manifestations within Nørrebro. By using Duncan Bell’s concept of mythscape (Bell, 2003), the article shows how some political actors idealize Nørrebro’s past to contest the present...

  10. 模拟高空跳伞着陆状态下踝关节动态角速度与垂直反作用力的测定%Measurement of the angular velocity and perpendicular ground reaction force of the ankle joint in parachute landing simulation

    Institute of Scientific and Technical Information of China (English)

    郑超; 伍骥; 黄蓉蓉; 崔松超; 文偃伍; 李毅; 吴迪

    2014-01-01

    Objective To measure the angular velocity and perpendicular ground reaction force of the ankle joint under different heights with half-squat jumping in parachute training simulation,providing a reliable experiment basis for the preventing of ankle injury.Methods A total of 18 volunteers participated in this study.The experimental group included 9 male with experience of parachute landing,while the other 9 male without experience of parachute landing were assigned to the control group.Each subject was instructed to jump off a platform with a height of 30 cm and 60 cm and land on a hard surface in a half-squat posture.The dynamic landing process was recorded with a high speed camera and the biomechanical data was collected and analyzed,including perpendicular ground reaction force,angular displacement,velocity and acting time.Results From 30 cm's height,the ankle angular displacement of the control group was significantly larger than the experimental group (25.73°± 8.13° vs 20.05°± 12.27°,P < 0.05).The perpendicular ground reaction force of the control group was significantly smaller than the experimental group (3 372.4±748.6 N vs 5 181.5±1 726.2 N,P < 0.05).The acting time of the control group was significantly longer than the ex perimental group (0.049±0.015 s vs 0.012±0.004 s,P < 0.05).The buffer time of the control group was significantly shorter than the experimental group (1.397±0.746 s vs 1.737±0.451 s,P < 0.05).From 60 cm's height,the ankle angular velocity of the control group was significantly higher than the experimental group (25.45± 15.01 °/s vs 16.51 ±4.18 °/s,P < 0.05).The perpendicular ground reaction force of the control group was significantly smaller than the experimental group (4 616.0±1 124.7 N vs 7 119.5±2 307.4 N,P < 0.05).The acting time of the control group was significantly longer than the experimental group (0.048±0.013 s vs 0.015±0.006 s,P < 0.05).The buffer time of the control group was significantly

  11. Quantitative velocity modulation spectroscopy

    Science.gov (United States)

    Hodges, James N.; McCall, Benjamin J.

    2016-05-01

    Velocity Modulation Spectroscopy (VMS) is arguably the most important development in the 20th century for spectroscopic study of molecular ions. For decades, interpretation of VMS lineshapes has presented challenges due to the intrinsic covariance of fit parameters including velocity modulation amplitude, linewidth, and intensity. This limitation has stifled the growth of this technique into the quantitative realm. In this work, we show that subtle changes in the lineshape can be used to help address this complexity. This allows for determination of the linewidth, intensity relative to other transitions, velocity modulation amplitude, and electric field strength in the positive column of a glow discharge. Additionally, we explain the large homogeneous component of the linewidth that has been previously described. Using this component, the ion mobility can be determined.

  12. Coherent Doppler Lidar for Measuring Altitude, Ground Velocity, and Air Velocity of Aircraft and Spaceborne Vehicles

    Science.gov (United States)

    Amzajerdian, Farzin (Inventor); Pierrottet, Diego F. (Inventor)

    2015-01-01

    A Doppler lidar sensor system includes a laser generator that produces a highly pure single frequency laser beam, and a frequency modulator that modulates the laser beam with a highly linear frequency waveform. A first portion of the frequency modulated laser beam is amplified, and parts thereof are transmitted through at least three separate transmit/receive lenses. A second portion of the laser beam is used as a local oscillator beam for optical heterodyne detection. Radiation from the parts of the laser beam transmitted via the transmit/receive lenses is received by the respective transmit/receive lenses that transmitted the respective part of the laser beam. The received reflected radiation is compared with the local oscillator beam to calculate the frequency difference there between to determine various navigational data.

  13. Accuracy of three-dimensional seismic ground response analysis in time domain using nonlinear numerical simulations

    Science.gov (United States)

    Liang, Fayun; Chen, Haibing; Huang, Maosong

    2017-07-01

    To provide appropriate uses of nonlinear ground response analysis for engineering practice, a three-dimensional soil column with a distributed mass system and a time domain numerical analysis were implemented on the OpenSees simulation platform. The standard mesh of a three-dimensional soil column was suggested to be satisfied with the specified maximum frequency. The layered soil column was divided into multiple sub-soils with a different viscous damping matrix according to the shear velocities as the soil properties were significantly different. It was necessary to use a combination of other one-dimensional or three-dimensional nonlinear seismic ground analysis programs to confirm the applicability of nonlinear seismic ground motion response analysis procedures in soft soil or for strong earthquakes. The accuracy of the three-dimensional soil column finite element method was verified by dynamic centrifuge model testing under different peak accelerations of the earthquake. As a result, nonlinear seismic ground motion response analysis procedures were improved in this study. The accuracy and efficiency of the three-dimensional seismic ground response analysis can be adapted to the requirements of engineering practice.

  14. The Prescribed Velocity Method

    DEFF Research Database (Denmark)

    Nielsen, Peter Vilhelm

    The- velocity level in a room ventilated by jet ventilation is strongly influenced by the supply conditions. The momentum flow in the supply jets controls the air movement in the room and, therefore, it is very important that the inlet conditions and the numerical method can generate a satisfactory...... description of this momentum flow. The Prescribed Velocity Method is a practical method for the description of an Air Terminal Device which will save grid points close to the opening and ensure the right level of the momentum flow....

  15. Cirrus Crystal Terminal Velocities.

    Science.gov (United States)

    Heymsfield, Andrew J.; Iaquinta, Jean

    2000-04-01

    Cirrus crystal terminal velocities are of primary importance in determining the rate of transport of condensate from upper- to middle-tropospheric levels and profoundly influence the earth's radiation balance through their effect on the rate of buildup or decay of cirrus clouds. In this study, laboratory and field-based cirrus crystal drag coefficient data, as well as analytical descriptions of cirrus crystal shapes, are used to derive more physically based expressions for the velocities of cirrus crystals than have been available in the past.Polycrystals-often bullet rosettes-are shown to be the dominant crystal types in synoptically generated cirrus, with columns present in varying but relatively large percentages, depending on the cloud. The two critical parameters needed to calculate terminal velocity are the drag coefficient and the ratio of mass to cross-sectional area normal to their fall direction. Using measurements and calculations, it is shown that drag coefficients from theory and laboratory studies are applicable to crystals of the types found in cirrus. The ratio of the mass to area, which is shown to be relatively independent of the number of bullets in the rosette, is derived from an analytic model that represents bullet rosettes containing one to eight bullets in 19 primary geometric configurations. The ratio is also derived for columns. Using this information, a general set of equations is developed to calculate the terminal velocities and masses in terms of the aspect ratio (width divided by length), ice density, and rosette maximum dimension. Simple expressions for terminal velocity and mass as a function of bullet rosette maximum dimension are developed by incorporating new information on bullet aspect ratios.The general terminal velocity and mass relations are then applied to a case from the First International Satellite Cloud Climatology Project (ISCCP) Research Experiment (FIRE) 2, when size spectra from a balloon-borne ice crystal

  16. Effects of Ground Motion Input on the Derived Fragility Functions: Case study of 2010 Haiti Earthquake

    Science.gov (United States)

    Hancilar, Ufuk; Harmandar, Ebru; Çakti, Eser

    2014-05-01

    Empirical fragility functions are derived by statistical processing of the data on: i) Damaged and undamaged buildings, and ii) Ground motion intensity values at the buildings' locations. This study investigates effects of different ground motion inputs on the derived fragility functions. The previously constructed fragility curves (Hancilar et al. 2013), which rely on specific shaking intensity maps published by the USGS after the 2010 Haiti Earthquake, are compared with the fragility functions computed in the present study. Building data come from field surveys of 6,347 buildings that are grouped with respect to structural material type and number of stories. For damage assessment, the European Macroseismic Scale (EMS-98) damage grades are adopted. The simplest way to account for the variability in ground motion input could have been achieved by employing different ground motion prediction equations (GMPEs) and their standard variations. However, in this work, we prefer to rely on stochastically simulated ground motions of the Haiti earthquake. We employ five different source models available in the literature and calculate the resulting strong ground motion in time domain. In our simulations we also consider the local site effects by published studies on NEHRP site classes and micro-zoning maps of the city of Port-au-Prince. We estimate the regional distributions from the waveforms simulated at the same coordinates that we have damage information from. The estimated spatial distributions of peak ground accelerations and velocities, PGA and PGV respectively, are then used as input to fragility computations. The results show that changing the ground motion input causes significant variability in the resulting fragility functions.

  17. Supersonic Relative Velocity Effect on the Baryonic Acoustic Oscillation Measurements

    CERN Document Server

    Yoo, Jaiyul; Seljak, Uros

    2011-01-01

    We investigate the effect of supersonic relative velocities between baryons and dark matter, recently shown to arise generically at high redshift, on baryonic acoustic oscillation (BAO) measurements at low redshift. The amplitude of the relative velocity effect at low redshift is model-dependent, but can be parameterized by using an unknown bias. We find that if unaccounted, the relative velocity effect can shift the BAO peak position and bias estimates of the dark energy equation-of-state due to its non-smooth, out-of-phase oscillation structure around the BAO scale. Fortunately, the relative velocity effect can be easily modeled in constraining cosmological parameters without substantially inflating the error budget. We also demonstrate that the presence of the relative velocity effect gives rise to a unique signature in the galaxy bispectrum, which can be utilized to isolate this effect. Future dark energy surveys can accurately measure the relative velocity effect and subtract it from the power spectrum a...

  18. Spin-velocity correlations of optically pumped atoms

    Science.gov (United States)

    Marsland, R., III; McGuyer, B. H.; Olsen, B. A.; Happer, W.

    2012-08-01

    We present efficient theoretical tools for describing the optical pumping of atoms by light propagating at arbitrary directions with respect to an external magnetic field, at buffer-gas pressures that are small enough for velocity-selective optical pumping (VSOP) but large enough to cause substantial collisional relaxation of the velocities and the spin. These are the conditions for the sodium atoms at an altitude of about 100 km that are used as guidestars for adaptive optics in modern ground-based telescopes to correct for aberrations due to atmospheric turbulence. We use spin and velocity relaxation modes to describe the distribution of atoms in spin space (including both populations and coherences) and velocity space. Cusp kernels are used to describe velocity-changing collisions. Optical pumping operators are represented as a sum of poles in the complex velocity plane. Signals simulated with these methods are in excellent agreement with previous experiments and with preliminary experiments in our laboratory.

  19. [A peak recognition algorithm designed for chromatographic peaks of transformer oil].

    Science.gov (United States)

    Ou, Linjun; Cao, Jian

    2014-09-01

    In the field of the chromatographic peak identification of the transformer oil, the traditional first-order derivative requires slope threshold to achieve peak identification. In terms of its shortcomings of low automation and easy distortion, the first-order derivative method was improved by applying the moving average iterative method and the normalized analysis techniques to identify the peaks. Accurate identification of the chromatographic peaks was realized through using multiple iterations of the moving average of signal curves and square wave curves to determine the optimal value of the normalized peak identification parameters, combined with the absolute peak retention times and peak window. The experimental results show that this algorithm can accurately identify the peaks and is not sensitive to the noise, the chromatographic peak width or the peak shape changes. It has strong adaptability to meet the on-site requirements of online monitoring devices of dissolved gases in transformer oil.

  20. Assessment of angle velocity in girls with adolescent idiopathic scoliosis

    Directory of Open Access Journals (Sweden)

    Tejero Marta

    2009-09-01

    Full Text Available Abstract Background Although it has been demonstrated that the peak height velocity (PHV is a predictive factor of progression in adolescent idiopathic scoliosis (AIS, little is known about the usefulness of angle progression in clinical practice. The purpose of this study was to establish a relationship between height and angle velocities, as well as to determine if peak angle velocity (PAV occurs at the same time than PHV. Methods A retrospective study of a cohort of girls with idiopathic scoliotic curves greater than 10°. Data of 132 girls who participated in a previous retrospective study about growth in AIS were used to calculate height and angle velocities. Relationship between height and angle velocities was estimated by the use of a Linear Mixed Model. Results PHV and PAV take place simultaneously 1 year before menarche in progressive curves managed with a brace in AIS. Changes in angle velocity are influenced by changes in height growth velocity, in such a way that as from 6 months post-menarche, height growth velocity in this group of girls estimates curve progression velocity (β-coefficient -0.88, p = 0.04. Conclusion As from 6 months post-menarche, there is an inverse relationship between height velocity and curve progression in the group of AIS girls with progressive curves managed with a brace. Because height velocity is decreasing from 1 year before menarche, this finding corroborates that at the end of puberty, there is still a risk of progression in this group of girls despite bracing. The assessment of both height and angle velocity might be useful in clinical practice at the time of assessing brace effectiveness and how long bracing has to be indicated.

  1. Modeling Terminal Velocity

    Science.gov (United States)

    Brand, Neal; Quintanilla, John A.

    2013-01-01

    Using a simultaneously falling softball as a stopwatch, the terminal velocity of a whiffle ball can be obtained to surprisingly high accuracy with only common household equipment. This classroom activity engages students in an apparently daunting task that nevertheless is tractable, using a simple model and mathematical techniques at their…

  2. Rupture dynamics and ground motions from earthquakes in 2-D heterogeneous media

    KAUST Repository

    Bydlon, Samuel A.

    2015-03-21

    ©2015. American Geophysical Union. All Rights Reserved. We perform 2-D simulations of earthquakes on rough faults in media with random heterogeneities (with von Karman distribution) to study the effects of geometric and material heterogeneity on the rupture process and resulting high-frequency ground motions in the near-fault region (out to ∼20km). Variations in slip and rupture velocity can arise from material heterogeneity alone but are dominantly controlled by fault roughness. Scattering effects become appreciable beyond ∼3km from the fault. Near-fault scattering extends the duration of incoherent, high-frequency ground motions and, at least in our 2-D simulations, elevates root-mean-square accelerations (i.e., Arias intensity) with negligible reduction in peak velocities. We also demonstrate that near-fault scattering typically occurs in the power law tail of the power spectral density function, quantified by the Hurst exponent and another parameter combining standard deviation and correlation length. Key Points Fault roughness, not material heterogeneity, dominates rupture process Introduce parameter that can be used to quantify near-fault scattering Scattering affects the duration and amplitude of high-frequency ground motions

  3. Peak-locking reduction for particle image velocimetry

    Science.gov (United States)

    Michaelis, Dirk; Neal, Douglas R.; Wieneke, Bernhard

    2016-10-01

    A parametric study of the factors contributing to peak-locking, a known bias error source in particle image velocimetry (PIV), is conducted using synthetic data that are processed with a state-of-the-art PIV algorithm. The investigated parameters include: particle image diameter, image interpolation techniques, the effect of asymmetric versus symmetric window deformation, number of passes and the interrogation window size. Some of these parameters are found to have a profound effect on the magnitude of the peak-locking error. The effects for specific PIV cameras are also studied experimentally using a precision turntable to generate a known rotating velocity field. Image time series recorded using this experiment show a linear range of pixel and sub-pixel shifts ranging from 0 to  ±4 pixels. Deviations in the constant vorticity field (ω z ) reveal how peak-locking can be affected systematically both by varying parameters of the detection system such as the focal distance and f-number, and also by varying the settings of the PIV analysis. A new a priori technique for reducing the bias errors associated with peak-locking in PIV is introduced using an optical diffuser to avoid undersampled particle images during the recording of the raw images. This technique is evaluated against other a priori approaches using experimental data and is shown to perform favorably. Finally, a new a posteriori anti peak-locking filter (APLF) is developed and investigated, which shows promising results for both synthetic data and real measurements for very small particle image sizes.

  4. Do dark matter halos explain lensing peaks?

    Science.gov (United States)

    Zorrilla Matilla, José Manuel; Haiman, Zoltán; Hsu, Daniel; Gupta, Arushi; Petri, Andrea

    2016-10-01

    We have investigated a recently proposed halo-based model, Camelus, for predicting weak-lensing peak counts, and compared its results over a collection of 162 cosmologies with those from N-body simulations. While counts from both models agree for peaks with S /N >1 (where S /N is the ratio of the peak height to the r.m.s. shape noise), we find ≈50 % fewer counts for peaks near S /N =0 and significantly higher counts in the negative S /N tail. Adding shape noise reduces the differences to within 20% for all cosmologies. We also found larger covariances that are more sensitive to cosmological parameters. As a result, credibility regions in the {Ωm,σ8} are ≈30 % larger. Even though the credible contours are commensurate, each model draws its predictive power from different types of peaks. Low peaks, especially those with 2 important cosmological information in N-body data, as shown in previous studies, but Camelus constrains cosmology almost exclusively from high significance peaks (S /N >3 ). Our results confirm the importance of using a cosmology-dependent covariance with at least a 14% improvement in parameter constraints. We identified the covariance estimation as the main driver behind differences in inference, and suggest possible ways to make Camelus even more useful as a highly accurate peak count emulator.

  5. Electrocapillary instability of magnetic fluid peak

    CERN Document Server

    Mkrtchyan, Levon; Dikansky, Yuri

    2013-01-01

    The paper presents an experimental study of the capillary electrostatic instability occurring under effect of a constant electric field on a magnetic fluid individual peak. The peaks under study occur at disintegration of a magnetic fluid layer applied on a flat electrode surface under effect of a perpendicular magnetic field. The electrocapillary instability shows itself as an emission of charged drops jets from the peak point in direction of the opposing electrode. The charged drops emission repeats periodically and results in the peak shape pulsations. It is shown that a magnetic field affects the electrocapillary instability occurrence regularities and can stimulate its development. The critical electric and magnetic field strengths at which the instability occurs have been measured; their dependence on the peak size is shown. The hysteresis in the system has been studied; it consists in that the charged drops emission stops at a lesser electric (or magnetic) field strength than that of the initial occurr...

  6. Specific Intensity for Peaking: Is Race Pace the Best Option?

    Directory of Open Access Journals (Sweden)

    Munoz

    2015-09-01

    Full Text Available Background The peaking period for endurance competition is characterized for a relative increase of the intensity of training, after a longer period of training relatively dominated by lower intensity and higher volume Objectives The present study was designed to compare physiological and 10 km performance effects of high intensity training (HIT versus race pace interval training (RP during peaking for competition in well-trained runners. Patients and Methods 13 athletes took part in the study, they were divided into two groups: HIT and RP. HIT performed short intervals at ~105% of the maximal aerobic velocity (MAV, while RP trained longer intervals at a speed of ~90% of the MAV (a speed approximating 10 km race pace. After 12 weeks of baseline training, the athletes trained for 6 weeks under one of the two peaking regimes. Subjects performed 10 km prior to and after the intervention period. The total load of training was matched between groups during the treatment phase. Subjects completed a graded treadmill running test until volitional exhaustion prior to each 10 km race. MAV was determined as the minimal velocity eliciting maximal oxygen consumption (VO2max. Results Both groups significantly improved their 10 km time (35 minutes 29 seconds ± 1 minutes 41 seconds vs 34 minutes 53 seconds ± 1 minutes 55 seconds, P 0.05. In contrast, running economy decreased significantly after HIT (210 ± 6 ml.Kg-1.km-1 vs 218 ± 9, P < 0.05. Conclusions A 6 week period of training at either 105% of MAV or 90% of MAV yielded similar performance gains in a 10km race performed at ~90% MAV. Therefore, the physiological impact of HIT training seems to be positive for VO2max but negative for running economy.

  7. Wave propagation and group velocity

    CERN Document Server

    Brillouin, Léon

    1960-01-01

    Wave Propagation and Group Velocity contains papers on group velocity which were published during the First World War and are missing in many libraries. It introduces three different definitions of velocities: the group velocity of Lord Rayleigh, the signal velocity of Sommerfeld, and the velocity of energy transfer, which yields the rate of energy flow through a continuous wave and is strongly related to the characteristic impedance. These three velocities are identical for nonabsorbing media, but they differ considerably in an absorption band. Some examples are discussed in the last chapter

  8. Cognitive regulation of saccadic velocity by reward prospect.

    Science.gov (United States)

    Chen, Lewis L; Hung, Leroy Y; Quinet, Julie; Kosek, Kevin

    2013-08-01

    It is known that expectation of reward speeds up saccades. Past studies have also shown the presence of a saccadic velocity bias in the orbit, resulting from a biomechanical regulation over varying eccentricities. Nevertheless, whether and how reward expectation interacts with the biomechanical regulation of saccadic velocities over varying eccentricities remains unknown. We addressed this question by conducting a visually guided double-step saccade task. The role of reward expectation was tested in monkeys performing two consecutive horizontal saccades, one associated with reward prospect and the other not. To adequately assess saccadic velocity and avoid adaptation, we systematically varied initial eye positions, saccadic directions and amplitudes. Our results confirmed the existence of a velocity bias in the orbit, i.e., saccadic peak velocity decreased linearly as the initial eye position deviated in the direction of the saccade. The slope of this bias increased as saccadic amplitudes increased. Nevertheless, reward prospect facilitated velocity to a greater extent for saccades away from than for saccades toward the orbital centre, rendering an overall reduction in the velocity bias. The rate (slope) and magnitude (intercept) of reward modulation over this velocity bias were linearly correlated with amplitudes, similar to the amplitude-modulated velocity bias without reward prospect, which presumably resulted from a biomechanical regulation. Small-amplitude (≤ 5°) saccades received little modulation. These findings together suggest that reward expectation modulated saccadic velocity not as an additive signal but as a facilitating mechanism that interacted with the biomechanical regulation.

  9. Projectile remnants in central peaks of lunar impact craters

    Science.gov (United States)

    Yue, Z.; Johnson, B. C.; Minton, D. A.; Melosh, H. J.; di, K.; Hu, W.; Liu, Y.

    2013-06-01

    The projectiles responsible for the formation of large impact craters are often assumed to melt or vaporize during the impact, so that only geochemical traces or small fragments remain in the final crater. In high-speed oblique impacts, some projectile material may survive, but this material is scattered far down-range from the impact site. Unusual minerals, such as magnesium-rich spinel and olivine, observed in the central peaks of many lunar craters are therefore attributed to the excavation of layers below the lunar surface. Yet these minerals are abundant in many asteroids, meteorites and chondrules. Here we use a numerical model to simulate the formation of impact craters and to trace the fate of the projectile material. We find that for vertical impact velocities below about 12kms-1, the projectile may both survive the impact and be swept back into the central peak of the final crater as it collapses, although it would be fragmented and strongly deformed. We conclude that some unusual minerals observed in the central peaks of many lunar impact craters could be exogenic in origin and may not be indigenous to the Moon.

  10. Procedure of evaluating parameters of inland earthquakes caused by long strike-slip faults for ground motion prediction

    Science.gov (United States)

    Ju, Dianshu; Dan, Kazuo; Fujiwara, Hiroyuki; Morikawa, Nobuyuki

    2016-04-01

    We proposed a procedure of evaluating fault parameters of asperity models for predicting strong ground motions from inland earthquakes caused by long strike-slip faults. In order to obtain averaged dynamic stress drops, we adopted the formula obtained by dynamic fault rupturing simulations for surface faults of the length from 15 to 100 km, because the formula of the averaged static stress drops for circular cracks, commonly adopted in existing procedures, cannot be applied to surface faults or long faults. The averaged dynamic stress drops were estimated to be 3.4 MPa over the entire fault and 12.2 MPa on the asperities, from the data of 10 earthquakes in Japan and 13 earthquakes in other countries. The procedure has a significant feature that the average slip on the seismic faults longer than about 80 km is constant, about 300 cm. In order to validate our proposed procedure, we made a model for a 141 km long strike-slip fault by our proposed procedure for strike-slip faults, predicted ground motions, and showed that the resultant motions agreed well with the records of the 1999 Kocaeli, Turkey, earthquake (Mw 7.6) and with the peak ground accelerations and peak ground velocities by the GMPE of Si and Midorikawa (1999).

  11. Radial Velocities with PARAS

    Science.gov (United States)

    Roy, Arpita; Mahadevan, S.; Chakraborty, A.; Pathan, F. M.; Anandarao, B. G.

    2010-01-01

    The Physical Research Laboratory Advanced Radial-velocity All-sky Search (PARAS) is an efficient fiber-fed cross-dispersed high-resolution echelle spectrograph that will see first light in early 2010. This instrument is being built at the Physical Research laboratory (PRL) and will be attached to the 1.2m telescope at Gurushikhar Observatory at Mt. Abu, India. PARAS has a single-shot wavelength coverage of 370nm to 850nm at a spectral resolution of R 70000 and will be housed in a vacuum chamber (at 1x10-2 mbar pressure) in a highly temperature controlled environment. This renders the spectrograph extremely suitable for exoplanet searches with high velocity precision using the simultaneous Thorium-Argon wavelength calibration method. We are in the process of developing an automated data analysis pipeline for echelle data reduction and precise radial velocity extraction based on the REDUCE package of Piskunov & Valenti (2002), which is especially careful in dealing with CCD defects, extraneous noise, and cosmic ray spikes. Here we discuss the current status of the PARAS project and details and tests of the data analysis procedure, as well as results from ongoing PARAS commissioning activities.

  12. The Origin of Weak Lensing Convergence Peaks

    CERN Document Server

    Liu, Jia

    2016-01-01

    Weak lensing convergence peaks are a promising tool to probe nonlinear structure evolution at late times, providing additional cosmological information beyond second-order statistics. Previous theoretical and observational studies have shown that the cosmological constraints on $\\Omega_m$ and $\\sigma_8$ are improved by a factor of up to ~ 2 when peak counts and second-order statistics are combined, compared to using the latter alone. We study the origin of lensing peaks using observational data from the 154 deg$^2$ Canada-France-Hawaii Telescope Lensing Survey. We found that while high peaks (with height $\\kappa$ >3.5 $\\sigma_\\kappa$, where $\\sigma_\\kappa$ is the r.m.s. of the convergence $\\kappa$) are typically due to one single massive halo of ~$10^{15}M_\\odot$, low peaks ($\\kappa$ ~ their virial radii), compared with ~0.25 virial radii for halos linked with high peaks, hinting that low peaks are more immune to baryonic processes whose impact is confined to the inner regions of the dark matter halos. Our fi...

  13. Velocity Change in the Zone of a Moderate Mw 5.0 Earthquake Revealed by Autocorrelations of Ambient Noise and by Event Spectra

    Science.gov (United States)

    von Seggern, David H.; Anderson, John G.

    2017-03-01

    A moderate Mw 5.0 earthquake occurred near Mogul, Nevada (just west of Reno, Nevada), on 26 April 2008. This mainshock was surrounded by notable foreshock and aftershock sequences. Due to the long foreshock sequence, the area was well instrumented at the time of the mainshock. We investigated the foreshock and aftershock sequences for evidence of velocity changes in the structure immediate to the hypocenter and above it in the area of observed strong ground motion. Using autocorrelations of the time periods with nearly continuous foreshocks and aftershocks, we detected a nearly 1% negative change in velocity on recordings of station MOGL which was approximately over the hypocenter of the mainshock. We also observed from these recordings a shift in the spectral peaks to lower frequency following the mainshock, again indicative of a velocity decrease. Due to the different spatial sampling of the two methods, the effects could not be attributed to the same subsurface volume. However, both results are strong evidence for coseismic velocity changes accompanying an earthquake which is very much smaller than those for which previous velocity changes have been reported. We hypothesize that these changes can be observed for even smaller earthquakes, given a fortuitous placement of observing stations.

  14. Peak load arrangements : Assessment of Nordel guidelines

    Energy Technology Data Exchange (ETDEWEB)

    2009-07-01

    Two Nordic countries, Sweden and Finland, have legislation that empowers the TSO to acquire designated peak load resources to mitigate the risk for shortage situations during the winter. In Denmark, the system operator procures resources to maintain a satisfactory level of security of supply. In Norway the TSO has set up a Regulation Power Option Market (RKOM) to secure a satisfactory level of operational reserves at all times, also in winter with high load demand. Only the arrangements in Finland and Sweden fall under the heading of Peak Load Arrangements defined in Nordel Guidelines. NordREG has been invited by the Electricity Market Group (EMG) to evaluate Nordel's proposal for 'Guidelines for transitional Peak Load Arrangements'. The EMG has also financed a study made by EC Group to support NordREG in the evaluation of the proposal. The study has been taken into account in NordREG's evaluation. In parallel to the EMG task, the Swedish regulator, the Energy Markets Inspectorate, has been given the task by the Swedish government to investigate a long term solution of the peak load issue. The Swedish and Finnish TSOs have together with Nord Pool Spot worked on finding a harmonized solution for activation of the peak load reserves in the market. An agreement accepted by the relevant authorities was reached in early January 2009, and the arrangement has been implemented since 19th January 2009. NordREG views that the proposed Nordel guidelines have served as a starting point for the presently agreed procedure. However, NordREG does not see any need to further develop the Nordel guidelines for peak load arrangements. NordREG agrees with Nordel that the market should be designed to solve peak load problems through proper incentives to market players. NordREG presumes that the relevant authorities in each country will take decisions on the need for any peak load arrangement to ensure security of supply. NordREG proposes that such decisions should be

  15. Representation of near-fault pulse-type ground motions

    Institute of Scientific and Technical Information of China (English)

    Xie Lili; Xu Longjun; Adrian Rodriguez-Marek

    2005-01-01

    Near-fault ground motions with long-period pulses have been identified as critical in the design of structures.To aid in the representation of this special type of motion, eight simple pulses that characterize the effects of either the flingstep or forward-directivity are considered. Relationships between pulse amplitudes and velocity pulse period for different pulses are discussed. Representative ratios and peak acceleration amplification can exhibit distinctive features depending on variations in pulse duration, amplitude and the selected acceleration pulse shape. Additionally, response spectral characteristics for the equivalent pulses are identified and compared in terms of fixed PGA and PGV, respectively. Response spectra are strongly affected by the duration of pulses and the shape of the basic pulses. Finally, dynamic time history response features of a damped SDOF system subjected to pulse excitations are examined. These special aspects of pulse waveforms and their response spectra should be taken into account in the estimation of ground motions for a project site close to a fault.

  16. Measuring Oscillatory Velocity Fields Due to Swimming Algae

    CERN Document Server

    Guasto, Jeffrey S; Gollub, J P

    2010-01-01

    In this fluid dynamics video, we present the first time-resolved measurements of the oscillatory velocity field induced by swimming unicellular microorganisms. Confinement of the green alga C. reinhardtii in stabilized thin liquid films allows simultaneous tracking of cells and tracer particles. The measured velocity field reveals complex time-dependent flow structures, and scales inversely with distance. The instantaneous mechanical power generated by the cells is measured from the velocity fields and peaks at 15 fW. The dissipation per cycle is more than four times what steady swimming would require.

  17. Ground motion observations of the South Napa earthquake (M6.0 August 24, 2014)

    Science.gov (United States)

    Baltay, A.

    2014-12-01

    The South Napa earthquake generated peak ground motions in excess of 50%g and 50 cm/s in Napa Valley and also along strike to the south, and was recorded at 17 stations within 20 km rupture distance (Rrup) of the finite fault plane, 115 stations within 50 km, and 246 within 100 km. We compare the densely recorded ground motions to existing ground motion prediction equations (GMPEs) to understand both the spatial distribution of ground-motion amplitudes and also the relative excitation and attenuation terms from the earthquake. Using the ground-motion data as reported by ShakeMap, we examine the peak ground acceleration (PGA) and velocity, as well as the pseudo-spectral acceleration (PSA) at 0.3, 1.0 and 3.0 seconds, adjusted empirically to a single site condition of 760 m/s. Overall, the ground motions on the north-south components are larger than those on the east-west, consistent with both the generally north-south strike of the fault and the rupture directivity. At the higher frequencies (PGA and PSA of 0.3 s), the close data are very consistent with the GMPEs, implying a median stress drop near 5 MPa. For the longer period data, the GMPEs underpredict the data at close stations. At all frequencies, the distance attenuation seems to be stronger than the GMPEs would predict, which could either be a station coverage bias, given that most of the stations are to the south of the epicenter, or may indicate that the attenuation structure in the Napa and delta region is stronger than the average attenuation in California, on which the GMPEs were built. The spatial plot of the ground motion residuals is positive to the north, in both Napa and Sonoma Valley, consistent with both the directivity and basin effect. More interestingly, perhaps, is that there is strong ground motion to the south, as well, in the along-strike direction, particularly for PSA at 1.0s. These strongly positive residuals align along an older, Quaternary fault structure associated with the Franklin

  18. Analysis of ground vibrations produced by an 80 in3 water gun in the Chicago Sanitary and Ship Canal, Lemont, Illinois

    Science.gov (United States)

    Koebel, Carolyn Michelle

    Since its completion in 1910, the Chicago Sanitary and Ship Canal (CSSC) has become a pathway for invasive species (and potentially Asian carp) to reach the Great Lakes. Currently, an electric barrier is used to prevent Asian carp migration through the canal, but the need for a secondary method is necessary, especially when the electric barrier undergoes maintenance. The underwater Asian carp "cannon" (water gun) provides such a method. Analysis of the ground movement produced by an 80 in3 water gun in the CSSC was performed in order to establish any potential for damage to the either the canal or structures built along the canal. Ground movement was collected using 3-component geophones on both the land surface and in boreholes. The peak particle velocities (PPVs) were analyzed to determine if damage would be caused to structures located along the canal. Vector sum velocity ground movement along the canal wall was as high as 0.28 in/s (7.11 mm/s), which is much lower than the United States Bureau of Mines (USBM) ground vibration damage threshold of 0.75 in/s (19.1 mm/s), causing no potential for damage to structures along the canal wall. The dominant frequency of ground motion produced by the water gun is primarily above 40 Hz, so the wave energy should attenuate fairly quickly away from the canal wall, with little disturbance to structures further from the wall.

  19. Ground Motion Prediction Models for Caucasus Region

    Science.gov (United States)

    Jorjiashvili, Nato; Godoladze, Tea; Tvaradze, Nino; Tumanova, Nino

    2016-04-01

    Ground motion prediction models (GMPMs) relate ground motion intensity measures to variables describing earthquake source, path, and site effects. Estimation of expected ground motion is a fundamental earthquake hazard assessment. The most commonly used parameter for attenuation relation is peak ground acceleration or spectral acceleration because this parameter gives useful information for Seismic Hazard Assessment. Since 2003 development of Georgian Digital Seismic Network has started. In this study new GMP models are obtained based on new data from Georgian seismic network and also from neighboring countries. Estimation of models is obtained by classical, statistical way, regression analysis. In this study site ground conditions are additionally considered because the same earthquake recorded at the same distance may cause different damage according to ground conditions. Empirical ground-motion prediction models (GMPMs) require adjustment to make them appropriate for site-specific scenarios. However, the process of making such adjustments remains a challenge. This work presents a holistic framework for the development of a peak ground acceleration (PGA) or spectral acceleration (SA) GMPE that is easily adjustable to different seismological conditions and does not suffer from the practical problems associated with adjustments in the response spectral domain.

  20. Bayesian peak picking for NMR spectra.

    Science.gov (United States)

    Cheng, Yichen; Gao, Xin; Liang, Faming

    2014-02-01

    Protein structure determination is a very important topic in structural genomics, which helps people to understand varieties of biological functions such as protein-protein interactions, protein-DNA interactions and so on. Nowadays, nuclear magnetic resonance (NMR) has often been used to determine the three-dimensional structures of protein in vivo. This study aims to automate the peak picking step, the most important and tricky step in NMR structure determination. We propose to model the NMR spectrum by a mixture of bivariate Gaussian densities and use the stochastic approximation Monte Carlo algorithm as the computational tool to solve the problem. Under the Bayesian framework, the peak picking problem is casted as a variable selection problem. The proposed method can automatically distinguish true peaks from false ones without preprocessing the data. To the best of our knowledge, this is the first effort in the literature that tackles the peak picking problem for NMR spectrum data using Bayesian method.

  1. Osteoporosis: Peak Bone Mass in Women

    Science.gov (United States)

    ... not supported by your browser. Home Osteoporosis Women Osteoporosis: Peak Bone Mass in Women Publication available in: ... drug products. NIH Pub. No. 15-7891 NIH Osteoporosis and Related Bone Diseases ~ National Resource Center 2 ...

  2. Bayesian Peak Picking for NMR Spectra

    KAUST Repository

    Cheng, Yichen

    2014-02-01

    Protein structure determination is a very important topic in structural genomics, which helps people to understand varieties of biological functions such as protein-protein interactions, protein–DNA interactions and so on. Nowadays, nuclear magnetic resonance (NMR) has often been used to determine the three-dimensional structures of protein in vivo. This study aims to automate the peak picking step, the most important and tricky step in NMR structure determination. We propose to model the NMR spectrum by a mixture of bivariate Gaussian densities and use the stochastic approximation Monte Carlo algorithm as the computational tool to solve the problem. Under the Bayesian framework, the peak picking problem is casted as a variable selection problem. The proposed method can automatically distinguish true peaks from false ones without preprocessing the data. To the best of our knowledge, this is the first effort in the literature that tackles the peak picking problem for NMR spectrum data using Bayesian method.

  3. Amplification of postwildfire peak flow by debris

    Science.gov (United States)

    Kean, J. W.; McGuire, L. A.; Rengers, F. K.; Smith, J. B.; Staley, D. M.

    2016-08-01

    In burned steeplands, the peak depth and discharge of postwildfire runoff can substantially increase from the addition of debris. Yet methods to estimate the increase over water flow are lacking. We quantified the potential amplification of peak stage and discharge using video observations of postwildfire runoff, compiled data on postwildfire peak flow (Qp), and a physically based model. Comparison of flood and debris flow data with similar distributions in drainage area (A) and rainfall intensity (I) showed that the median runoff coefficient (C = Qp/AI) of debris flows is 50 times greater than that of floods. The striking increase in Qp can be explained using a fully predictive model that describes the additional flow resistance caused by the emergence of coarse-grained surge fronts. The model provides estimates of the amplification of peak depth, discharge, and shear stress needed for assessing postwildfire hazards and constraining models of bedrock incision.

  4. Peak Vegetation Growth 2000 - Direct Download

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This map layer is a grid map of 2000 peak vegetation growth for Alaska and the conterminous United States. The nominal spatial resolution is 1 kilometer and the map...

  5. Peak Vegetation Growth 2004 - Direct Download

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This map layer is a grid map of 2004 peak vegetation growth for Alaska and the conterminous United States. The nominal spatial resolution is 1 kilometer and the map...

  6. Peak Vegetation Growth 1999 - Direct Download

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This map layer is a grid map of 1999 peak vegetation growth for Alaska and the conterminous United States. The nominal spatial resolution is 1 kilometer and the map...

  7. Peak Vegetation Growth 1993 - Direct Download

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This map layer is a grid map of 1993 peak vegetation growth for Alaska and the conterminous United States. The nominal spatial resolution is 1 kilometer and the map...

  8. Peak Vegetation Growth 1994 - Direct Download

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This map layer is a grid map of 1994 peak vegetation growth for Alaska and the conterminous United States. The nominal spatial resolution is 1 kilometer and the map...

  9. Peak Vegetation Growth 1995 - Direct Download

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This map layer is a grid map of 1995 peak vegetation growth for Alaska and the conterminous United States. The nominal spatial resolution is 1 kilometer and the map...

  10. Peak Vegetation Growth 1998 - Direct Download

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This map layer is a grid map of 1998 peak vegetation growth for Alaska and the conterminous United States. The nominal spatial resolution is 1 kilometer and the map...

  11. Peak Vegetation Growth 2001 - Direct Download

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This map layer is a grid map of 2001 peak vegetation growth for Alaska and the conterminous United States. The nominal spatial resolution is 1 kilometer and the map...

  12. Peak Vegetation Growth 2003 - Direct Download

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This map layer is a grid map of 2003 peak vegetation growth for Alaska and the conterminous United States. The nominal spatial resolution is 1 kilometer and the map...

  13. Peak Vegetation Growth 1997 - Direct Download

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This map layer is a grid map of 1997 peak vegetation growth for Alaska and the conterminous United States. The nominal spatial resolution is 1 kilometer and the map...

  14. Peak Vegetation Growth 1990 - Direct Download

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This map layer is a grid map of 1990 peak vegetation growth for Alaska and the conterminous United States. The nominal spatial resolution is 1 kilometer and the map...

  15. Peak Vegetation Growth 1996 - Direct Download

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This map layer is a grid map of 1996 peak vegetation growth for Alaska and the conterminous United States. The nominal spatial resolution is 1 kilometer and the map...

  16. Peak Vegetation Growth 2005 - Direct Download

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This map layer is a grid map of 2005 peak vegetation growth for Alaska and the conterminous United States. The nominal spatial resolution is 1 kilometer and the map...

  17. Tectonics, Climate and Earth's highest peaks

    Science.gov (United States)

    Robl, Jörg; Prasicek, Günther; Hergarten, Stefan

    2016-04-01

    Prominent peaks characterized by high relief and steep slopes are among the most spectacular morphological features on Earth. In collisional orogens they result from the interplay of tectonically driven crustal thickening and climatically induced destruction of overthickened crust by erosional surface processes. The glacial buzz-saw hypothesis proposes a superior status of climate in limiting mountain relief and peak altitude due to glacial erosion. It implies that peak altitude declines with duration of glacial occupation, i.e., towards high latitudes. This is in strong contrast with high peaks existing in high latitude mountain ranges (e.g. Mt. St. Elias range) and the idea of peak uplift due to isostatic compensation of spatially variable erosional unloading an over-thickened orogenic crust. In this study we investigate landscape dissection, crustal thickness and vertical strain rates in tectonically active mountain ranges to evaluate the influence of erosion on (latitudinal) variations in peak altitude. We analyze the spatial distribution of serval thousand prominent peaks on Earth extracted from the global ETOPO1 digital elevation model with a novel numerical tool. We compare this dataset to crustal thickness, thickening rate (vertical strain rate) and mean elevation. We use the ratios of mean elevation to peak elevation (landscape dissection) and peak elevation to crustal thickness (long-term impact of erosion on crustal thickness) as indicators for the influence of erosional surface processes on peak uplift and the vertical strain rate as a proxy for the mechanical state of the orogen. Our analysis reveals that crustal thickness and peak elevation correlate well in orogens that have reached a mechanically limited state (vertical strain rate near zero) where plate convergence is already balanced by lateral extrusion and gravitational collapse and plateaus are formed. On the Tibetan Plateau crustal thickness serves to predict peak elevation up to an altitude

  18. Boundary layer heights derived from velocity spectra

    Energy Technology Data Exchange (ETDEWEB)

    Hoejstrup, J.; Barthelmie, R.J. [Risoe National Lab., Roskilde (Denmark); Kaellstrand, B. [Univ. of Uppsala, Uppsala (Sweden)

    1997-10-01

    It is a well-known fact that the height of the mixed layer determines the size of the largest and most energetic eddies that can be observed in the unstable boundary layer, and consequently a peak can be observed in the power spectra of the along-wind velocity component at scales comparable to the mixed layer depth. We will now show how the mixed layer depth can be derived from the u-specta and the results will be compared with direct measurements using pibal and tethersonde measurements. (au)

  19. Numerical simulation of strong ground motion for the Ms8.0 Wenchuan earthquake of 12 May 2008

    Institute of Scientific and Technical Information of China (English)

    ZHANG Wei; SHEN Yang; CHEN XiaoFei

    2008-01-01

    The Wenchuan earthquake of 12 May 2008 is the most destructive earthquake in China in the past 30 years in terms of property damage and human losses. In order to understand the earthquake process and the geo-morphological factors affecting the seismic hazard, we simulated the strong ground motion caused by the earthquake, incorporating three-dimensional (3D) earth structure, finite-fault rupture,and realistic surface topography. The simulated ground motions reveal that the fault rupture and basin structure control the overall pattern of the peak ground shaking. Large peak ground velocity (PGV) is distributed in two narrow areas: one with the largest PGV values is above the hanging wall of the fault and attributed to the locations of fault asperities and rupture directivity; the other is along the northwestern margin of the Sichuan Basin and caused by both the directivity of fault rupture and the amplification in the thick sediment basin. Rough topography above the rupture fault causes wave scattering,resulting in significantly larger peak ground motion on the apex of topographic relief than in the valley.Topography and scattering also reduce the wave energy in the forward direction of fault rupture but increase the PGV in other parts of the basin. These results suggest the need for a localized hazard assessment in places of rough topography that takes the topographic effects into account. Finally, had the earthquake started at the northeast end of the fault zone and ruptured to the southwest, Chengdu would have suffered a much stronger shaking than it experienced on 12 May, 2008.

  20. Numerical simulation of strong ground motion for the M_s8.0 Wenchuan earthquake of 12 May 2008

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The Wenchuan earthquake of 12 May 2008 is the most destructive earthquake in China in the past 30 years in terms of property damage and human losses. In order to understand the earthquake process and the geo-morphological factors affecting the seismic hazard, we simulated the strong ground mo-tion caused by the earthquake, incorporating three-dimensional (3D) earth structure, finite-fault rupture, and realistic surface topography. The simulated ground motions reveal that the fault rupture and basin structure control the overall pattern of the peak ground shaking. Large peak ground velocity (PGV) is distributed in two narrow areas: one with the largest PGV values is above the hanging wall of the fault and attributed to the locations of fault asperities and rupture directivity; the other is along the north-western margin of the Sichuan Basin and caused by both the directivity of fault rupture and the ampli-fication in the thick sediment basin. Rough topography above the rupture fault causes wave scattering, resulting in significantly larger peak ground motion on the apex of topographic relief than in the valley. Topography and scattering also reduce the wave energy in the forward direction of fault rupture but increase the PGV in other parts of the basin. These results suggest the need for a localized hazard as-sessment in places of rough topography that takes the topographic effects into account. Finally, had the earthquake started at the northeast end of the fault zone and ruptured to the southwest, Chengdu would have suffered a much stronger shaking than it experienced on 12 May, 2008.

  1. Transverse velocity shifts in protostellar jets: rotation or velocity asymmetries?

    CERN Document Server

    De Colle, Fabio; Riera, Angels

    2016-01-01

    Observations of several protostellar jets show systematic differences in radial velocity transverse to the jet propagation direction, which have been interpreted as evidence of rotation in the jets. In this paper we discuss the origin of these velocity shifts, and show that they could be originated by rotation in the flow, or by side to side asymmetries in the shock velocity, which could be due to asymmetries in the jet ejection velocity/density or in the ambient medium. For typical poloidal jet velocities (~ 100-200 km/s), an asymmetry >~ 10% can produce velocity shifts comparable to those observed. We also present three dimensional numerical simulations of rotating, precessing and asymmetric jets, and show that, even though for a given jet there is a clear degeneracy between these effects, a statistical analysis of jets with different inclination angles can help to distinguish between the alternative origins of transverse velocity shifts. Our analysis indicate that side to side velocities asymmetries could ...

  2. Ionized gas velocity dispersion and multiple supernova explosions

    CERN Document Server

    Vasiliev, Evgenii O; Shchekinov, Yuri A

    2014-01-01

    Using 3D numerical simulations we study the evolution of the H$\\alpha$ intensity and velocity dispersion for single and multiple supenova (SN) explosions. We find that the $I_{\\rm H\\alpha}-\\sigma$ diagram obtained for simulated gas flows is similar in shape to that observed in dwarf galaxies. We conclude that colliding SN shells with significant difference in age are resposible for high velocity dispersion that reaches values high as $\\simgt 100$kms$^{-1}$. Such a high velocity dispersion could be hardly got for a single SN remnant. Peaks of velocity dispersion on the $I_{\\rm H\\alpha}-\\sigma$ diagram may correspond to several stand-alone or merged SN remnants with moderately different ages. The procedure of the spatial resolution degrading in the H$\\alpha$ intensity and velocity dispersion maps makes the simulated $I_{\\rm H\\alpha}-\\sigma$ diagrams close to those observed in dwarf galaxies not only in shape, but also quantitatively.

  3. Do dark matter halos explain lensing peaks?

    CERN Document Server

    Matilla, José Manuel Zorrilla; Hsu, Daniel; Gupta, Arushi; Petri, Andrea

    2016-01-01

    We have investigated a recently proposed halo-based model, Camelus, for predicting weak-lensing peak counts, and compared its results over a collection of 162 cosmologies with those from N-body simulations. While counts from both models agree for peaks with $\\mathcal{S/N}>1$ (where $\\mathcal{S/N}$ is the ratio of the peak height to the r.m.s. shape noise), we find $\\approx 50\\%$ fewer counts for peaks near $\\mathcal{S/N}=0$ and significantly higher counts in the negative $\\mathcal{S/N}$ tail. Adding shape noise reduces the differences to within $20\\%$ for all cosmologies. We also found larger covariances that are more sensitive to cosmological parameters. As a result, credibility regions in the $\\{\\Omega_m, \\sigma_8\\}$ are $\\approx 30\\%$ larger. Even though the credible contours are commensurate, each model draws its predictive power from different types of peaks. Low peaks, especially those with $23)$. Our results confirm the importance of using a cosmology-dependent covariance with at least a 14\\% improveme...

  4. Dark Matter Velocity Spectroscopy.

    Science.gov (United States)

    Speckhard, Eric G; Ng, Kenny C Y; Beacom, John F; Laha, Ranjan

    2016-01-22

    Dark matter decays or annihilations that produce linelike spectra may be smoking-gun signals. However, even such distinctive signatures can be mimicked by astrophysical or instrumental causes. We show that velocity spectroscopy-the measurement of energy shifts induced by relative motion of source and observer-can separate these three causes with minimal theoretical uncertainties. The principal obstacle has been energy resolution, but upcoming experiments will have the precision needed. As an example, we show that the imminent Astro-H mission can use Milky Way observations to separate possible causes of the 3.5-keV line. We discuss other applications.

  5. Minimum Length - Maximum Velocity

    CERN Document Server

    Panes, Boris

    2011-01-01

    We study a framework where the hypothesis of a minimum length in space-time is complemented with the notion of reference frame invariance. It turns out natural to interpret the action of the obtained reference frame transformations in the context of doubly special relativity. As a consequence of this formalism we find interesting connections between the minimum length properties and the modified velocity-energy relation for ultra-relativistic particles. For example we can predict the ratio between the minimum lengths in space and time using the results from OPERA about superluminal neutrinos.

  6. Dark Matter Velocity Spectroscopy

    CERN Document Server

    Speckhard, Eric G; Beacom, John F; Laha, Ranjan

    2016-01-01

    Dark matter decays or annihilations that produce line-like spectra may be smoking-gun signals. However, even such distinctive signatures can be mimicked by astrophysical or instrumental causes. We show that velocity spectroscopy-the measurement of energy shifts induced by relative motion of source and observer-can separate these three causes with minimal theoretical uncertainties. The principal obstacle has been energy resolution, but upcoming and proposed experiments will make significant improvements. As an example, we show that the imminent Astro-H mission can use Milky Way observations to separate possible causes of the 3.5-keV line. We discuss other applications.

  7. Frequency-velocity mismatch: a fundamental abnormality in parkinsonian gait.

    Science.gov (United States)

    Cho, Catherine; Kunin, Mikhail; Kudo, Koji; Osaki, Yasuhiro; Olanow, C Warren; Cohen, Bernard; Raphan, Theodore

    2010-03-01

    Gait dysfunction and falling are major sources of disability for patients with advanced Parkinson's disease (PD). It is presently thought that the fundamental defect is an inability to generate normal stride length. Our data suggest, however, that the basic problem in PD gait is an impaired ability to match step frequency to walking velocity. In this study, foot movements of PD and normal subjects were monitored with an OPTOTRAK motion-detection system while they walked on a treadmill at different velocities. PD subjects were also paced with auditory stimuli at different frequencies. PD gait was characterized by step frequencies that were faster and stride lengths that were shorter than those of normal controls. At low walking velocities, PD stepping had a reduced or absent terminal toe lift, which truncated swing phases, producing shortened steps. Auditory pacing was not able to normalize step frequency at these lower velocities. Peak forward toe velocities increased with walking velocity and PD subjects could initiate appropriate foot dynamics during initial phases of the swing. They could not control the foot appropriately in terminal phases, however. Increased treadmill velocity, which matched the natural PD step frequency, generated a second toe lift, normalizing step size. Levodopa increased the bandwidth of step frequencies, but was not as effective as increases in walking velocity in normalizing gait. We postulate that the inability to control step frequency and adjust swing phase dynamics to slower walking velocities are major causes for the gait impairment in PD.

  8. V S30, slope, H 800 and f 0: performance of various site-condition proxies in reducing ground-motion aleatory variability and predicting nonlinear site response

    Science.gov (United States)

    Derras, Boumédiène; Bard, Pierre-Yves; Cotton, Fabrice

    2017-09-01

    The aim of this paper is to investigate the ability of various site-condition proxies (SCPs) to reduce ground-motion aleatory variability and evaluate how SCPs capture nonlinearity site effects. The SCPs used here are time-averaged shear-wave velocity in the top 30 m ( V S30), the topographical slope (slope), the fundamental resonance frequency ( f 0) and the depth beyond which V s exceeds 800 m/s ( H 800). We considered first the performance of each SCP taken alone and then the combined performance of the 6 SCP pairs [ V S30- f 0], [ V S30- H 800], [ f 0-slope], [ H 800-slope], [ V S30-slope] and [ f 0- H 800]. This analysis is performed using a neural network approach including a random effect applied on a KiK-net subset for derivation of ground-motion prediction equations setting the relationship between various ground-motion parameters such as peak ground acceleration, peak ground velocity and pseudo-spectral acceleration PSA ( T), and M w, R JB, focal depth and SCPs. While the choice of SCP is found to have almost no impact on the median ground-motion prediction, it does impact the level of aleatory uncertainty. V S30 is found to perform the best of single proxies at short periods ( T < 0.6 s), while f 0 and H 800 perform better at longer periods; considering SCP pairs leads to significant improvements, with particular emphasis on [ V S30- H 800] and [ f 0-slope] pairs. The results also indicate significant nonlinearity on the site terms for soft sites and that the most relevant loading parameter for characterising nonlinear site response is the "stiff" spectral ordinate at the considered period.[Figure not available: see fulltext.

  9. Investigation of the relationship between ground and engineering bedrock at northern part of the Gulf of İzmir by borehole data supported geophysical works

    Science.gov (United States)

    Akgün, Mustafa; Gönenç, Tolga; Pamukçu, Oya; Özyalin, Şenol

    2014-04-01

    Loss of life and property that may occur as a result of a possible earthquake can be reduced by earthquake resistant building designs. In order to investigate possible ground motion amplification in earthquake resistant building design, relationship between the ground and engineering bedrock must be ensured. In order to provide this relation, structure, basic characteristics, and thickness of the ground are investigated. In this context, calculating ground transfer function, obtaining horizontal earthquake acceleration changes, calculating Vs values and defining the engineering bedrock are necessary. In this study, Menemen plain, the nothern part of Izmir metropolitan located in active earthquake zone and its immediate vicinity have been examined to define the structure, ground, engineering and bedrock relation. In this context, Menemen plain has been investigated by geophysical methods, which are supported with borehole data (microtremor, MASW - multichannel analysis of surface waves, microgravity measurements, and vertical electrical sounding-VES). Microtremor method was conducted at 377 points in average in the investigation area to define fundamental period and empirical transfer function; after that in order to create basin model and to define the shallow subsurface geometry, microgravity measurements were carried out by using Scintrex CG-5. Also, MASW measurements were carried out in approximately 277 profiles and Schlumberger VES measurements were conducted at approximately 7 points in the investigation area. The existence of a linear relation between H/V peak period values obtained by microtremor measurements and ground thickness in the investigation area is also supported by geothermal drilling logs (depth of 600 m) with microgravity survey. Also, in some parts of the investigation area, it was observed that high S velocity ( Vs) values affected H/V peak period values in sections of the ground close to the surface and there was an inversely correlated

  10. Investigation of the relationship between ground and engineering bedrock at northern part of the Gulf of İzmir by borehole data supported geophysical works

    Indian Academy of Sciences (India)

    Mustafa Akgün; Tolga Gönenc; Oya Pamukçu; Şenol Özyalin

    2014-04-01

    Loss of life and property that may occur as a result of a possible earthquake can be reduced by earthquake resistant building designs. In order to investigate possible ground motion amplification in earthquake resistant building design, relationship between the ground and engineering bedrock must be ensured. In order to provide this relation, structure, basic characteristics, and thickness of the ground are investigated. In this context, calculating ground transfer function, obtaining horizontal earthquake acceleration changes, calculating values and defining the engineering bedrock are necessary. In this study, Menemen plain, the nothern part of Izmir metropolitan located in active earthquake zone and its immediate vicinity have been examined to define the structure, ground, engineering and bedrock relation. In this context, Menemen plain has been investigated by geophysical methods, which are supported with borehole data (microtremor, MASW – multichannel analysis of surface waves, microgravity measurements, and vertical electrical sounding – VES). Microtremor method was conducted at 377 points in average in the investigation area to define fundamental period and empirical transfer function; after that in order to create basin model and to define the shallow subsurface geometry, microgravity measurements were carried out by using Scintrex CG-5. Also, MASW measurements were carried out in approximately 277 profiles and Schlumberger VES measurements were conducted at approximately 7 points in the investigation area. The existence of a linear relation between H/V peak period values obtained by microtremor measurements and ground thickness in the investigation area is also supported by geothermal drilling logs (depth of 600 m) with microgravity survey. Also, in some parts of the investigation area, it was observed that high velocity () values affected H/V peak period values in sections of the ground close to the surface and there was an inversely correlated

  11. Surface wave velocity structure of the western Himalayan syntaxis

    Science.gov (United States)

    Hanna, A. C.; Weeraratne, D. S.

    2013-09-01

    The Nanga Parbat Haramosh massif (NPHM) is located in the western syntaxis of the India-Eurasia collision zone and is subject to erosion rates that are so extreme as to impact the isostatic equilibrium of the massif. In order to investigate the interaction between large scale tectonic forces and local isostatic processes, we employ a Rayleigh wave tomography method to measure phase velocities within the massif and surrounding region at crust and mantle depths. Our inversion solves for phase velocity anomalies by representing perturbations in the wavefield as the interference of two plane waves. Our data set was obtained from a temporary seismic array deployed in 1996 and includes 53 teleseismic events with Mw ≥ 5.0, at periods from 20 to 79 s. Phase velocities at short periods are low, ranging from 3.2 km s-1 at 20 s, and increasing gradually to 3.5 km s-1 at 40 s. These velocities are 11 per cent lower than velocities observed in the Indian continental Plate at periods below 45 s. Above 50 s, phase velocities in the Nanga Parbat region are significantly higher, ranging from 3.7 km s-1 at 45 s to 4.0 km s-1 at 79 s. These high phase velocities above 60 s are consistent with average velocities measured within the Indian Plate. Comparison of these results with surface wave studies in other regions of the Tibetan plateau including the eastern syntaxis and central Tibet show a similar low velocity anomaly below 45 s. Phase velocities above 55 s, however, are significantly higher in the Nanga Parbat region compared to velocities reported for all other regions of the plateau. Shear wave inversions produce significantly low velocities in the upper crust of the NPHM but exceed average lithospheric velocities below the Moho. We suggest the combination of anomalously low velocities in the upper crust and high velocities at lithospheric depths is due to rapid exhumation of deep crustal material causing elevated geothermal gradients. Azimuthal anisotropy shows a NNW-SSE fast

  12. Site response, shallow shear-wave velocity, and damage in Los Gatos, California, from the 1989 Loma Prieta earthquake

    Science.gov (United States)

    Hartzell, S.; Carver, D.; Williams, R.A.

    2001-01-01

    Aftershock records of the 1989 Loma Prieta earthquake are used to calculate site response in the frequency band of 0.5-10 Hz at 24 locations in Los Gatos, California, on the edge of the Santa Clara Valley. Two different methods are used: spectral ratios relative to a reference site on rock and a source/site spectral inversion method. These two methods complement each other and give consistent results. Site amplification factors are compared with surficial geology, thickness of alluvium, shallow shear-wave velocity measurements, and ground deformation and structural damage resulting from the Loma Prieta earthquake. Higher values of site amplification are seen on Quaternary alluvium compared with older Miocene and Cretaceous units of Monterey and Franciscan Formation. However, other more detailed correlations with surficial geology are not evident. A complex pattern of alluvial sediment thickness, caused by crosscutting thrust faults, is interpreted as contributing to the variability in site response and the presence of spectral resonance peaks between 2 and 7 Hz at some sites. Within the range of our field measurements, there is a correlation between lower average shear-wave velocity of the top 30 m and 50% higher values of site amplification. An area of residential homes thrown from their foundations correlates with high site response. This damage may also have been aggravated by local ground deformation. Severe damage to commercial buildings in the business district, however, is attributed to poor masonry construction.

  13. Using 1 -D and 2-D modelling of ground motion for seismic zonation criteria: results for the city of Rome

    Directory of Open Access Journals (Sweden)

    A. Caserta

    1995-06-01

    Full Text Available The geological information collected in the last years by the Istituto Nazionale di Geofisica for the city of Rome is used to construct 1- and 2-D models of the nearsurface structure. These models are the basis for the numerical generation of synthetic accelerograms which can simulate the horizontal ground motion (SH waves produced in the different areas of the city by a large (M ? 7 potential earthquake 100 km away in Central Apennines. The proposed methodology yields earthquake engineering parameters (peak ground acceleration and velocity, Arias intensity, energy flux, response spectra whose spatial variations are consistent with the damage distribution caused by the strongest earthquakes felt in Rome during its long history. Based on the macroseismic inforination and the results of the numerical simulations, general criteria for seismic zonation of the city of Rome are proposed.

  14. Aconcagua peak geodynamics from GPS observations, Mendoza, Argentina: preliminary results

    Directory of Open Access Journals (Sweden)

    M. L. Mateo

    2009-12-01

    Full Text Available In 2005, the SIGMA Program (Mount Aconcagua GNSS Research System was implemented to investigate the geodynamics of the Aconcagua mountain region in the Central Andes. For this purpose, a continuously recording GPS station, ACON, was installed on the summit of Mount Aconcagua at 6.292 m a.s.l. The installation required special technology to support the equipment under extreme climatic conditions. The power supply system was optimized in 2008, so that a greater quantity of data could be recorded. This, in turn, will lead to more accurate estimates of displacement of the Aconcagua peak. Preliminary results from the ACON station indicate an average horizontal velocity of 0.023±0.0001 m/yr toward NE in 2 time windows between 2006 and 2008.

  15. Elastic-wave generation in the evolution of displacement peaks

    Energy Technology Data Exchange (ETDEWEB)

    Zhukov, V.P.; Boldin, A.A.

    1988-06-01

    This paper investigated the character of elastic shock wave generation and damping in irradiated materials along with the possibility of their long-range influence on the structure of the irradiated materials. Dispersion at the elastoplastic stage of atomic displacement peak development was taken into account. The three-dimensional nonlinear wave was described by an equation in the approximation of weak nonlinearity and weak spatial dispersion. Numerical modeling of the propagation of a plane shock wave in a crystal lattice was conducted. The distribution of the density and mass velocity of the material at the instant of complete damping of the plastic shock-wave component was determined. The appearance of solitary waves (solitons) at large amplitudes, localized in space, which propagate without distortion to arbitrary distances and retain their amplitude and form in interacting with one another, was investigated. Some physical consequences of the influence of solitary waves on the irradiated materials were considered.

  16. The Las Vegas Valley Seismic Response Project: Ground Motions in Las Vegas Valley from Nuclear Explosions at the Nevada Test Site

    Energy Technology Data Exchange (ETDEWEB)

    Rodgers, A; Tkalcic, H; McCallen, D

    2005-03-18

    Between 2001-2004 the Las Vegas Seismic Response Project has sought to understand the response of Las Vegas Valley (LVV) to seismic excitation. In this study, the author report the findings of this project with an emphasis on ground motions in LVV from nuclear explosions at the Nevada Test Site (NTS). These ground motions are used to understand building structural response and damage as well as human perception. Historical nuclear explosion observations are augmented with earthquake recordings from a temporary deployment of seismometers to improve spatial coverage of LVV. The nuclear explosions were conducted between 1968 and 1989 and were recorded at various sites within Las Vegas. The data from past nuclear tests were used to constrain ground motions in LVV and to gain a predictive capability of ground motions for possible future nuclear tests at NTS. Analysis of ground motion data includes peak ground motions (accelerations and velocities) and amplification of basin sites relative to hard rock sites (site response). Site response was measured with the Standard Spectral Ratios (SSR) technique relative to hard rock reference sites on the periphery of LVV. The site response curves indicate a strong basin amplification of up to a factor of ten at frequencies between 0.5-2 Hz. Amplifications are strongest in the central and northern portions of LVV, where the basin is deeper than 1 km based on the reported basin depths of Langenheim et al (2001a). They found a strong correlation between amplification and basin depth and shallow shear wave velocities. Amplification below 1 Hz is strongly controlled by slowness-averaged shear velocities to depths of 30 and 100 meters. Depth averaged shear velocities to 10 meters has modest control of amplifications between 1-3 Hz. Modeling reveals that low velocity material in the shallow layers (< 200 m) effectively controls amplification. They developed a method to scale nuclear explosion ground motion time series to sites around LVV

  17. Velocity Estimation of the Main Portal Vein with Transverse Oscillation

    DEFF Research Database (Denmark)

    Brandt, Andreas Hjelm; Hansen, Kristoffer Lindskov; Nielsen, Michael Bachmann

    2015-01-01

    This study evaluates if Transverse Oscillation (TO) can provide reliable and accurate peak velocity estimates of blood flow the main portal vein. TO was evaluated against the recommended and most widely used technique for portal flow estimation, Spectral Doppler Ultrasound (SDU). The main portal...

  18. Velocity Estimation of the Main Portal Vein with Transverse Oscillation

    DEFF Research Database (Denmark)

    Brandt, Andreas Hjelm; Hansen, Kristoffer Lindskov; Nielsen, Michael Bachmann;

    2015-01-01

    This study evaluates if Transverse Oscillation (TO) can provide reliable and accurate peak velocity estimates of blood flow the main portal vein. TO was evaluated against the recommended and most widely used technique for portal flow estimation, Spectral Doppler Ultrasound (SDU). The main portal ...

  19. Intended rather than actual movement velocity determines velocity-specific training response.

    Science.gov (United States)

    Behm, D G; Sale, D G

    1993-01-01

    Eight men and eight women trained 3 days/wk for 16 wk by doing attempted ballistic unilateral ankle dorsiflexions against resistance that either rendered the resultant contractions isometric (one limb) or allowed a relatively high-velocity (5.23 rad/s on an isokinetic dynamometer) movement (other limb). Training sessions consisted of five sets of 10 contractions of each type. Training produced the same high-velocity-specific training response in both limbs (P rad/s (38%) in comparison to lower velocities (0, 0.26, 0.52, 1.04, 1.55, 3.02, and 4.19 rad/s). Both limbs also showed similar increases in voluntary isometric rate of torque development (26%) and relaxation (47%) and in evoked tetanus rate of torque development (14%). A similar decrease in evoked twitch time to peak torque (6%) and half-relaxation time (11%) was also observed. Thus, all of these training responses, previously associated specifically with high-velocity resistance training, were produced by a training regimen that prevented an actual rapid movement through a range of movement. The results suggest that the principal stimuli for the high-velocity training response are the repeated attempts to perform ballistic contractions and the high rate of force development of the ensuing contraction. The type of muscle action (isometric or concentric) appears to be of lesser importance.

  20. The VLT-FLAMES Tarantula Survey. XII. Rotational velocities of the single O-type stars

    Science.gov (United States)

    Ramírez-Agudelo, O. H.; Simón-Díaz, S.; Sana, H.; de Koter, A.; Sabín-Sanjulían, C.; de Mink, S. E.; Dufton, P. L.; Gräfener, G.; Evans, C. J.; Herrero, A.; Langer, N.; Lennon, D. J.; Maíz Apellániz, J.; Markova, N.; Najarro, F.; Puls, J.; Taylor, W. D.; Vink, J. S.

    2013-12-01

    Context. The 30 Doradus (30 Dor) region of the Large Magellanic Cloud, also known as the Tarantula nebula, is the nearest starburst region. It contains the richest population of massive stars in the Local Group, and it is thus the best possible laboratory to investigate open questions on the formation and evolution of massive stars. Aims: Using ground-based multi-object optical spectroscopy obtained in the framework of the VLT-FLAMES Tarantula Survey (VFTS), we aim to establish the (projected) rotational velocity distribution for a sample of 216 presumably single O-type stars in 30 Dor. The sample is large enough to obtain statistically significant information and to search for variations among subpopulations - in terms of spectral type, luminosity class, and spatial location - in the field of view. Methods: We measured projected rotational velocities, νesini, by means of a Fourier transform method and a profile fitting method applied to a set of isolated spectral lines. We also used an iterative deconvolution procedure to infer the probability density, P(νe), of the equatorial rotational velocity, νe. Results: The distribution of νesini shows a two-component structure: a peak around 80 kms-1 and a high-velocity tail extending up to ~600 kms-1. This structure is also present in the inferred distribution P(νe) with around 80% of the sample having 0 low-velocity peak is consistent with what has been found in other studies for late O- and early B-type stars. Conclusions: Most of the stars in our sample rotate with a rate less than 20% of their break-up velocity. For the bulk of the sample, mass loss in a stellar wind and/or envelope expansion is not efficient enough to significantly spin down these stars within the first few Myr of evolution. If massive-star formation results in stars rotating at birth with a large portion of their break-up velocities, an alternative braking mechanism, possibly magnetic fields, is thus required to explain the present

  1. Velocity centroids as tracers of the turbulent velocity statistics

    CERN Document Server

    Lazarian, A E A

    2004-01-01

    We use the results of magnetohydrodynamic (MHD) simulations to emulate spectroscopic observations, and produce maps of variations of velocity centroids to study their scaling properties. We compare them with those of the underlying velocity field, and analytic predictions presented in a previous paper (Lazarian & Esquivel 2003). We tested, with success, a criteria for recovering velocity statistics from velocity centroids derived in our previous work. That is, if >> (where S is a 2D map of ``unnormalized'', v velocity, and I integrated intensity map -column density-), then the structure function of the centroids is dominated by the structure function of velocity. We show that it is possible to extract the velocity statistics using centroids for subsonic and mildly supersonic turbulence (e.g. Mach numbers ~2.5). While, towards higher Mach numbers other effects could affect significantly the statistics of centroids.

  2. Statistics of Velocity from Spectral Data Modified Velocity Centroids

    CERN Document Server

    Lazarian, A

    2003-01-01

    We address the problem of studying interstellar (ISM) turbulence using spectral line data. We construct a measure that we term modified velocity centroids (MVCs) and derive an analytical solution that relates the 2D spectra of the modified centroids with the underlying 3D velocity spectrum. We test our results using synthetic maps constructed with data obtained through simulations of compressible MHD turbulence. We prove that the MVCs are able to restore the underlying spectrum of turbulent velocity. We show that the modified velocity centroids (MVCs) are complementary to the the Velocity Channel Analysis (VCA) technique that we introduced earlier. Employed together they make determining of the velocity spectral index more reliable. At the same time we show that MVCs allow to determine velocity spectra when the underlying statistics is not a power law and/or the turbulence is subsonic.

  3. The PEAK experience in South Carolina

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-11-01

    The PEAK Institute was developed to provide a linkage for formal (schoolteachers) and nonformal educators (extension agents) with agricultural scientists of Clemson University`s South Carolina Agricultural Experiment Station System. The goal of the Institute was to enable teams of educators and researchers to develop and provide PEAK science and math learning experiences related to relevant agricultural and environmental issues of local communities for both classroom and 4-H Club experiences. The Peak Institute was conducted through a twenty day residential Institute held in June for middle school and high school teachers who were teamed with an Extension agent from their community. These educators participated in hands-on, minds-on sessions conducted by agricultural researchers and Clemson University Cooperative Extension specialists. Participants were given the opportunity to see frontier science being conducted by scientists from a variety of agricultural laboratories.

  4. Scalable and Detail-Preserving Ground Surface Reconstruction from Large 3D Point Clouds Acquired by Mobile Mapping Systems

    Science.gov (United States)

    Craciun, D.; Serna Morales, A.; Deschaud, J.-E.; Marcotegui, B.; Goulette, F.

    2014-08-01

    The currently existing mobile mapping systems equipped with active 3D sensors allow to acquire the environment with high sampling rates at high vehicle velocities. While providing an effective solution for environment sensing over large scale distances, such acquisition provides only a discrete representation of the geometry. Thus, a continuous map of the underlying surface must be built. Mobile acquisition introduces several constraints for the state-of-the-art surface reconstruction algorithms. Smoothing becomes a difficult task for recovering sharp depth features while avoiding mesh shrinkage. In addition, interpolation-based techniques are not suitable for noisy datasets acquired by Mobile Laser Scanning (MLS) systems. Furthermore, scalability is a major concern for enabling real-time rendering over large scale distances while preserving geometric details. This paper presents a fully automatic ground surface reconstruction framework capable to deal with the aforementioned constraints. The proposed method exploits the quasi-flat geometry of the ground throughout a morphological segmentation algorithm. Then, a planar Delaunay triangulation is applied in order to reconstruct the ground surface. A smoothing procedure eliminates high frequency peaks, while preserving geometric details in order to provide a regular ground surface. Finally, a decimation step is applied in order to cope with scalability constraints over large scale distances. Experimental results on real data acquired in large urban environments are presented and a performance evaluation with respect to ground truth measurements demonstrate the effectiveness of our method.

  5. Minimal information in velocity space

    CERN Document Server

    Evrard, Guillaume

    1995-01-01

    Jaynes' transformation group principle is used to derive the objective prior for the velocity of a non-zero rest-mass particle. In the case of classical mechanics, invariance under the classical law of addition of velocities, leads to an improper constant prior over the unbounded velocity space of classical mechanics. The application of the relativistic law of addition of velocities leads to a less simple prior. It can however be rewritten as a uniform volumetric distribution if the relativistic velocity space is given a non-trivial metric.

  6. A Vs30-derived Near-surface Seismic Velocity Model

    Science.gov (United States)

    Ely, G. P.; Jordan, T. H.; Small, P.; Maechling, P. J.

    2010-12-01

    Shallow material properties, S-wave velocity in particular, strongly influence ground motions, so must be accurately characterized for ground-motion simulations. Available near-surface velocity information generally exceeds that which is accommodated by crustal velocity models, such as current versions of the SCEC Community Velocity Model (CVM-S4) or the Harvard model (CVM-H6). The elevation-referenced CVM-H voxel model introduces rasterization artifacts in the near-surface due to course sample spacing, and sample depth dependence on local topographic elevation. To address these issues, we propose a method to supplement crustal velocity models, in the upper few hundred meters, with a model derived from available maps of Vs30 (the average S-wave velocity down to 30 meters). The method is universally applicable to regions without direct measures of Vs30 by using Vs30 estimates from topographic slope (Wald, et al. 2007). In our current implementation for Southern California, the geology-based Vs30 map of Wills and Clahan (2006) is used within California, and topography-estimated Vs30 is used outside of California. Various formulations for S-wave velocity depth dependence, such as linear spline and polynomial interpolation, are evaluated against the following priorities: (a) capability to represent a wide range of soil and rock velocity profile types; (b) smooth transition to the crustal velocity model; (c) ability to reasonably handle poor spatial correlation of Vs30 and crustal velocity data; (d) simplicity and minimal parameterization; and (e) computational efficiency. The favored model includes cubic and square-root depth dependence, with the model extending to a depth of 350 meters. Model parameters are fit to Boore and Joyner's (1997) generic rock profile as well as CVM-4 soil profiles for the NEHRP soil classification types. P-wave velocity and density are derived from S-wave velocity by the scaling laws of Brocher (2005). Preliminary assessment of the new model

  7. Visual control of walking velocity.

    Science.gov (United States)

    François, Matthieu; Morice, Antoine H P; Bootsma, Reinoud J; Montagne, Gilles

    2011-06-01

    Even if optical correlates of self-motion velocity have already been identified, their contribution to the control of displacement velocity remains to be established. In this study, we used a virtual reality set-up coupled to a treadmill to test the role of both Global Optic Flow Rate (GOFR) and Edge Rate (ER) in the regulation of walking velocity. Participants were required to walk at a constant velocity, corresponding to their preferred walking velocity, while eye height and texture density were manipulated. This manipulation perturbed the natural relationship between the actual walking velocity and its optical specification by GOFR and ER, respectively. Results revealed that both these sources of information are indeed used by participants to control walking speed, as demonstrated by a slowing down of actual walking velocity when the optical specification of velocity by either GOFR or ER gives rise to an overestimation of actual velocity, and vice versa. Gait analyses showed that these walking velocity adjustments result from simultaneous adaptations in both step length and step duration. The role of visual information in the control of self-motion velocity is discussed in relation with other factors.

  8. Force-velocity properties of two avian hindlimb muscles.

    Science.gov (United States)

    Nelson, Frank E; Gabaldón, Annette M; Roberts, Thomas J

    2004-04-01

    Recent work has provided measurements of power output in avian skeletal muscles during running and flying, but little is known about the contractile properties of avian skeletal muscle. We used an in situ preparation to characterize the force-velocity properties of two hind limb muscles, the lateral gastrocnemius (LG) and peroneus longus (PL), in Wild Turkeys (Meleagris gallopavo). A servomotor measured shortening velocity for at least six different loads over the plateau region of the length-tension curve. The Hill equation was fit to the data to determine maximum shortening velocity and peak instantaneous power. Maximum unloaded shortening velocity was 13.0+/-1.6 L s(-1) for the LG muscle and 14.8+/-1.0 L s(-1) for the PL muscle (mean+/-S.E.M.). These velocities are within the range of values published for reptilian and mammalian muscles. Values recorded for maximum isometric force per cross-sectional area, 271+/-28 kPa for the LG and 257+/-30.5 kPa for the PL, and peak instantaneous power output, 341.7+/-36.4 W kg(-1) for the LG and 319.4+/-42.5 W kg(-1) for the PL, were also within the range of published values for vertebrate muscle. The force-velocity properties of turkey LG and PL muscle do not reveal any extreme differences in the mechanical potential between avian and other vertebrate muscle.

  9. Velocity envelope of vector flow estimation with spatial quadrature

    Science.gov (United States)

    Kerr, Richard F.; Anderson, Martin E.

    2003-05-01

    We present the results of two studies investigating the optimal aperture configuration for maximized lateral blood flow velocity estimation using Heterodyned Spatial Quadrature. Our objective was to determine the maximum velocities that can be estimated at Doppler angles of 90 degrees and 60 degrees with a bias of less than 5% for both uniform scatterer motion in a tissue-mimicking phantom and blood-mimicking fluid circulated through a wall-less vessel flow phantom. Constant flow rates ranging from 3.0 to 18.0 ml/sec were applied in the flow phantom, producing expected peak velocities of 15.0 to 89.8 cm/sec under laminar flow conditions. Velocity estimates were obtained at each flow rate using 256 trials, with each trial consisting of an ensemble of 32 vectors. For an f/1 receive geometry with bi-lobed Hamming apodization, all peak flow velocities tested were estimated to within 5% of their expected values for both 90 degree and 60 degree Doppler angles. An f/2 receive geometry featuring bi-lobed Blackman apodization generally provided accurate lateral velocity estimates up to 71.9 cm/sec for a Doppler angle of 90 degrees, and accurate lateral component estimates up to 50.1 cm/sec for a 60 degree Doppler angle. The implications of these findings will be discussed.

  10. Investigation on low velocity impact resistance of SMA composite material

    Science.gov (United States)

    Hu, Dianyin; Zhang, Long; Wang, Rongqiao; Zhang, Xiaoyong

    2016-04-01

    A method to improve low velocity impact resistance of aeroengine composite casing using shape memory alloy's properties of shape memory(SM) and super-elasticity(SE) is proposed in this study. Firstly, a numerical modeling of SMA reinforced composite laminate under low velocity impact load with impact velocity of 10 m/s is established based on its constitutive model implemented by the VUMAT subroutine of commercial software ABAQUS. Secondly, the responses of SMA composite laminate including stress and deflection distributions were achieved through transient analysis under low velocity impact load. Numerical results show that both peak stress and deflection values of SMA composite laminate are less than that without SMA, which proves that embedding SMA into the composite structure can effectively improve the low velocity impact performance of composite structure. Finally, the influence of SM and SE on low velocity impact resistance is quantitatively investigated. The values of peak stress and deflection of SMA composite based on SM property decrease by 18.28% and 9.43% respectively, compared with those without SMA, instead of 12.87% and 5.19% based on SE. In conclusion, this proposed model described the impact damage of SMA composite structure and turned to be a more beneficial method to enhance the impact resistance by utilizing SM effect.

  11. Lightning location with variable radio wave propagation velocity

    Science.gov (United States)

    Liu, Zhongjian; Koh, Kuang Liang; Mezentsev, Andrew; Sugier, Jacqueline; Fullekrug, Martin

    2016-04-01

    Lightning discharges can be located by triangulation of their broadband electromagnetic pulses in long-baseline (~500 km) radio receiver networks. Here we apply the time of arrival difference (TOA) method to electric field recordings with a low frequency radio receiver array consisting of four stations in western Europe. The electromagnetic wave propagation velocity at low radio frequencies is an important input parameter for the TOA calculation and it is normally assumed to be equal to the speed of light. However, the radio wave propagation depends for example on the frequency, ground conductivity and the ionospheric height and small variations can cause location differences from hundreds to thousands of meters, as demonstrated in this study. The radio wave propagation from two VLF transmissions at 20.9 kHz and 23.4 kHz are compared. The results show that the apparent phase velocities are 0.6% slower and 0.5% faster than the speed of light respectively. As a result, a variable velocity is implemented in the TOA method using continuously recorded data on the 8th August 2014, when a mesoscale convective system developed over central France. The lightning locations inferred with a variable wave propagation velocity are more clustered than those using a fixed velocity. The distribution of the lightning velocities in a given geographic area fits a normal distribution that is not centred at the speed of light. As a result, representative velocities can be calculated for smaller regions to generate a velocity map over a larger area of enhanced lightning activity. These results suggest a connection with the ground elevation and/or surface conductivity that might have an impact on the observed wave propagation velocities.

  12. Some Phenomenological Aspects of the Peak Experience

    Science.gov (United States)

    Rosenblatt, Howard S.; Bartlett, Iris

    1976-01-01

    This article relates the psychological dynamics of "peak experiences" to two concepts, intentionality and paradoxical intention, within the philosophical orientation of phenomenology. A review of early philosophical theories of self (Kant and Hume) is presented and compared with the experiential emphasis found in the phenomenology of Husserl.…

  13. Some Phenomenological Aspects of the Peak Experience

    Science.gov (United States)

    Rosenblatt, Howard S.; Bartlett, Iris

    1976-01-01

    This article relates the psychological dynamics of "peak experiences" to two concepts, intentionality and paradoxical intention, within the philosophical orientation of phenomenology. A review of early philosophical theories of self (Kant and Hume) is presented and compared with the experiential emphasis found in the phenomenology of Husserl.…

  14. Real estate price peaks: a comparative overview

    CERN Document Server

    Röhner, B M

    2006-01-01

    First, we emphasize that the real estate price peaks which are currently under way in many industrialized countries (one important exception is Japan) share many of the characteristics of previous historical price peaks. In particular, we show that: (i) In the present episode real price increases are, at least for now, of the same order of magnitude as in previous episodes, typically of the order of 80 percent to 100 percent. (ii) Historically, price peaks turned out to be symmetrical with respect to the peak; soft landing, i.e. an upgoing phase followed by a plateau, has rarely (if ever) been observed. (iii) The inflated demand is mainly boosted by investors and high-income buyers. (iv) In the present as well as in previous episodes, the main engines in the upgoing phase have been the hot markets which developed in major cities such as London, Los Angeles, New York, Paris, San Francisco or Sydney. In our conclusion, we propose a prediction for real estate prices in the West of the United States over the peri...

  15. Spanish Peaks, Sangre de Cristo Range, Colorado

    Science.gov (United States)

    2002-01-01

    The Spanish Peaks, on the eastern flank of the Sangre de Cristo range, abruptly rise 7,000 feet above the western Great Plains. Settlers, treasure hunters, trappers, gold and silver miners have long sighted on these prominent landmarks along the Taos branch of the Santa Fe trail. Well before the westward migration, the mountains figured in the legends and history of the Ute, Apache, Comanche, and earlier tribes. 'Las Cumbres Espanolas' are also mentioned in chronicles of exploration by Spaniards including Ulibarri in 1706 and later by de Anza, who eventually founded San Francisco (California). This exceptional view (STS108-720-32), captured by the crew of Space Shuttle mission STS108, portrays the Spanish Peaks in the context of the southern Rocky Mountains. Uplift of the Sangre de Cristo began about 75 million years ago and produced the long north-trending ridges of faulted and folded rock to the west of the paired peaks. After uplift had ceased (26 to 22 million years ago), the large masses of igneous rock (granite, granodiorite, syenodiorite) that form the Peaks were emplaced (Penn, 1995-2001). East and West Spanish Peaks are 'stocks'-bodies of molten rock that intruded sedimentary layers, cooled and solidified, and were later exposed by erosion. East Peak (E), at 12,708 ft is almost circular and is about 5 1/2 miles long by 3 miles wide, while West Peak (W), at 13,623 ft is roughly 2 3/4 miles long by 1 3/4 miles wide. Great dikes-long stone walls-radiate outward from the mountains like spokes of a wheel, a prominent one forms a broad arc northeast of East Spanish Peak. As the molten rock rose, it forced its way into vertical cracks and joints in the sedimentary strata; the less resistant material was then eroded away, leaving walls of hard rock from 1 foot to 100 feet wide, up to 100 feet high, and as long as 14 miles. Dikes trending almost east-west are also common in the region. For more information visit: Sangres.com: The Spanish Peaks (accessed January 16

  16. FDTD simulation of LEMP propagation over lossy ground: Influence of distance, ground conductivity, and source parameters

    Science.gov (United States)

    Aoki, Masanori; Baba, Yoshihiro; Rakov, Vladimir A.

    2015-08-01

    We have computed lightning electromagnetic pulses (LEMPs), including the azimuthal magnetic field Hφ, vertical electric field Ez, and horizontal (radial) electric field Eh that propagated over 5 to 200 km of flat lossy ground, using the finite difference time domain (FDTD) method in the 2-D cylindrical coordinate system. This is the first systematic full-wave study of LEMP propagation effects based on a realistic return-stroke model and including the complete return-stroke frequency range. Influences of the return-stroke wavefront speed (ranging from c/2 to c, where c is the speed of light), current risetime (ranging from 0.5 to 5 µs), and ground conductivity (ranging from 0.1 mS/m to ∞) on Hφ, Ez, and Eh have been investigated. Also, the FDTD-computed waveforms of Eh have been compared with the corresponding ones computed using the Cooray-Rubinstein formula. Peaks of Hφ, Ez, and Eh are nearly proportional to the return-stroke wavefront speed. The peak of Eh decreases with increasing current risetime, while those of Hφ and Ez are only slightly influenced by it. The peaks of Hφ and Ez are essentially independent of the ground conductivity at a distance of 5 km. Beyond this distance, they appreciably decrease relative to the perfectly conducting ground case, and the decrease is stronger for lower ground conductivity values. The peak of Eh increases with decreasing ground conductivity. The computed Eh/Ez is consistent with measurements of Thomson et al. (1988). The observed decrease of Ez peak and increase of Ez risetime due to propagation over 200 km of Florida soil are reasonably well reproduced by the FDTD simulation with ground conductivity of 1 mS/m.

  17. Development of an optimal velocity selection method with velocity obstacle

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Min Geuk; Oh, Jun Ho [KAIST, Daejeon (Korea, Republic of)

    2015-08-15

    The Velocity obstacle (VO) method is one of the most well-known methods for local path planning, allowing consideration of dynamic obstacles and unexpected obstacles. Typical VO methods separate a velocity map into a collision area and a collision-free area. A robot can avoid collisions by selecting its velocity from within the collision-free area. However, if there are numerous obstacles near a robot, the robot will have very few velocity candidates. In this paper, a method for choosing optimal velocity components using the concept of pass-time and vertical clearance is proposed for the efficient movement of a robot. The pass-time is the time required for a robot to pass by an obstacle. By generating a latticized available velocity map for a robot, each velocity component can be evaluated using a cost function that considers the pass-time and other aspects. From the output of the cost function, even a velocity component that will cause a collision in the future can be chosen as a final velocity if the pass-time is sufficiently long enough.

  18. Effects of underwater treadmill walking training on the peak torque of the knee in hemiplegic patients.

    Science.gov (United States)

    Lee, Dong-Geol; Jeong, Seong-Kwan; Kim, Young-Dong

    2015-09-01

    [Purpose] This study investigated the effects of underwater treadmill walking training on the peak torque of the knee in hemiplegic patients. [Subjects and Methods] Thirty-two subjects, who were randomly allocated to an experimental group (n=16) and a control group (n=16), performed underwater treadmill walking training and overground treadmill walking training, respectively, for 30 minutes/session, 3 sessions/week, for 6 weeks. An isokinetic dynamometer was used to assess the peak torque. [Results] The subjects in the experimental group showed an increase in the peak knee extension torque compared to the control group. [Conclusion] The results suggested that underwater treadmill walking training has a greater effect on peak knee extension torque at velocities of 60°/sec and 120°/sec than overground treadmill walking training.

  19. Efficient focusing scheme for transverse velocity estimation using cross-correlation

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt

    2001-01-01

    The blood velocity can be estimated by cross-correlation of received RE signals, but only the velocity component along the beam direction is found. A previous paper showed that the complete velocity vector can be estimated, if received signals are focused along lines parallel to the direction...... simulations with Field II. A 64-elements, 5 MHz linear array was used. A parabolic velocity profile with a peak velocity of 0.5 m/s was considered for different angles between the flow and the ultrasound beam and for different emit foci. At 60 degrees the relative standard deviation was 0.58 % for a transmit...

  20. Velocity dependant splash behaviour

    Science.gov (United States)

    Hamlett, C. A. E.; Shirtcliffe, N. J.; McHale, G.; Ahn, S.; Doerr, S. H.; Bryant, R.; Newton, M. I.

    2012-04-01

    Extreme soil water repellency can occur in nature via condensation of volatile organic compounds released during wildfires and can lead to increased erosion rate. Such extreme water repellent soil can be classified as superhydrophobic and shares similar chemical and topographical features to specifically designed superhydrophobic surfaces. Previous studies using high speed videography to investigate single droplet impact behaviour on artificial superhydrophobic have revealed three distinct modes of splash behaviour (rebound, pinned and fragmentation) which are dependent on the impact velocity of the droplet. In our studies, using high-speed videography, we show that such splash behaviour can be replicated on fixed 'model' water repellent soils (hydrophobic glass beads/particles). We show that the type of splash behaviour is dependent on both the size and chemical nature of the fixed particles. The particle shape also influences the splash behaviour as shown by drop impact experiments on fixed sand samples. We have also studied soil samples, as collected from the field, which shows that the type of droplet splash behaviour can lead to enhanced soil particle transport.

  1. Hazard curve data for annual rate of exceedance versus peak ground acceleration

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — A one-year seismic hazard forecast for the Central and Eastern United States, based on induced and natural earthquakes, has been produced by the U.S. Geological...

  2. Chance of damage from an earthquake in 2016 based on peak ground acceleration

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — A one-year seismic hazard forecast for the Central and Eastern United States, based on induced and natural earthquakes, has been produced by the U.S. Geological...

  3. Peak ground acceleration with a 1% probability of exceedance in 1 year

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — A one-year seismic hazard forecast for the Central and Eastern United States, based on induced and natural earthquakes, has been produced by the U.S. Geological...

  4. The influence of critical Moho Reflections on strong ground motions recorded in San Francisco and Oakland during the 1989 Loma Prieta Earthquake

    Science.gov (United States)

    Somerville, Paul; Yoshimura, Joanne

    1990-07-01

    The amplitudes of strong ground motions from the Loma Prieta earthquake recorded in the San Francisco and Oakland areas exceeded the levels predicted by standard empirical attenuation relations. Preliminary analysis of accelerograms having known trigger times strongly suggests that the elevation of ground motion amplitudes in the distance range of approximately 40 to 100 km was due to critical reflections from the base of the crust. These reflections, which are identified on the basis of their arrival times and phase velocity, and by comparison with simulated accelerograms, were large and occurred at relatively close range because of the deep focal depth of the earthquake and the strong velocity gradient at the base of the crust. These motions were further amplified, presumably by impedance contrast effects, at soft soil sites in San Francisco and Oakland. The effect of the critical reflections in amplifying peak accelerations of the Loma Prieta earthquake in the San Francisco and Oakland regions was as large as the effect of soft soil site conditions. Focal depth has an important influence on strong motion attenuation at distances beyond about 40 km, and empirical attenuation relations derived from shallow crustal earthquakes may underpredict the ground motions of deeper crustal events in this distance range. Further analyses using an expanded data base that includes recordings of aftershocks are required to rigorously test the proposed explanation of the ground motions recorded in San Francisco and Oakland, and the conclusions drawn from that explanation.

  5. Magnitude Estimation for the 2011 Tohoku-Oki Earthquake Based on Ground Motion Prediction Equations

    Science.gov (United States)

    Eshaghi, Attieh; Tiampo, Kristy F.; Ghofrani, Hadi; Atkinson, Gail M.

    2015-08-01

    This study investigates whether real-time strong ground motion data from seismic stations could have been used to provide an accurate estimate of the magnitude of the 2011 Tohoku-Oki earthquake in Japan. Ultimately, such an estimate could be used as input data for a tsunami forecast and would lead to more robust earthquake and tsunami early warning. We collected the strong motion accelerograms recorded by borehole and free-field (surface) Kiban Kyoshin network stations that registered this mega-thrust earthquake in order to perform an off-line test to estimate the magnitude based on ground motion prediction equations (GMPEs). GMPEs for peak ground acceleration and peak ground velocity (PGV) from a previous study by Eshaghi et al. in the Bulletin of the Seismological Society of America 103. (2013) derived using events with moment magnitude ( M) ≥ 5.0, 1998-2010, were used to estimate the magnitude of this event. We developed new GMPEs using a more complete database (1998-2011), which added only 1 year but approximately twice as much data to the initial catalog (including important large events), to improve the determination of attenuation parameters and magnitude scaling. These new GMPEs were used to estimate the magnitude of the Tohoku-Oki event. The estimates obtained were compared with real time magnitude estimates provided by the existing earthquake early warning system in Japan. Unlike the current operational magnitude estimation methods, our method did not saturate and can provide robust estimates of moment magnitude within ~100 s after earthquake onset for both catalogs. It was found that correcting for average shear-wave velocity in the uppermost 30 m () improved the accuracy of magnitude estimates from surface recordings, particularly for magnitude estimates of PGV (Mpgv). The new GMPEs also were used to estimate the magnitude of all earthquakes in the new catalog with at least 20 records. Results show that the magnitude estimate from PGV values using

  6. Relationship between CME velocities and X-ray fluxes of associated flares

    Institute of Scientific and Technical Information of China (English)

    An-Qin Chen; Wei-Guo Zong

    2009-01-01

    Coronal mass ejection (CME) velocities have been studied over recent decades. We present a statistical analysis of the relationship between CME velocities and X-ray fluxes of the associated flares. We study two types of CMEs. One is the FL type associ- ated only with flares, while the other is the intermediate type associated with both filament eruptions and flares. It is found that the velocities of the FL type CMEs are strongly cor- related with both the peak and the time-integrated X-ray fluxes of the associated flares. However, the correlations between the intermediate type CME velocities and the corre- sponding two parameters are poor. It is also found that the correlation between the CME velocities and the peak X-ray fluxes is stronger than that between the CME velocities and the time-integrated X-ray fluxes of the associated flares.

  7. Velocity adjustable TMD and numerical simulation of seismic performance

    Institute of Scientific and Technical Information of China (English)

    Qin Li; Zhou Xiyuan; Yan Weiming

    2007-01-01

    A new type of velocity adjustable tuned mass damper (TMD) consisting of impulse generators and clutches is presented. The force impulse is generated by a joining operation of electromagnets and springs and MR dampers are used as clutches. Rules for velocity adjustment are established according to the working mechanism of TMD. The analysis program is developed on a VB platform. Seismic response of SDOF structures with both passive TMD and velocity adjustable TMD are analyzed. The results show that (1) the control effectiveness of passive TMDs is usually unstable; (2) the control effectiveness of the proposed semi-active TMDs is much better than passive TMDs under typical seismic ground motions; and (3) unlike the passive TMD system, the proposed velocity adjustable TMDs exhibit good control effectiveness even when the primary structure performance becomes inelastic during severe earthquakes.

  8. Predicting VO2peak from Submaximal- and Peak Exercise Models: The HUNT 3 Fitness Study, Norway.

    Directory of Open Access Journals (Sweden)

    Henrik Loe

    Full Text Available Peak oxygen uptake (VO2peak is seldom assessed in health care settings although being inversely linked to cardiovascular risk and all-cause mortality. The aim of this study was to develop VO2peak prediction models for men and women based on directly measured VO2peak from a large healthy population.VO2peak prediction models based on submaximal- and peak performance treadmill work were derived from multiple regression analysis. 4637 healthy men and women aged 20-90 years were included. Data splitting was used to generate validation and cross-validation samples.The accuracy for the peak performance models were 10.5% (SEE = 4.63 mL⋅kg(-1⋅min(-1 and 11.5% (SEE = 4.11 mL⋅kg(-1⋅min(-1 for men and women, respectively, with 75% and 72% of the variance explained. For the submaximal performance models accuracy were 14.1% (SEE = 6.24 mL⋅kg(-1⋅min(-1 and 14.4% (SEE = 5.17 mL⋅kg(-1⋅min(-1 for men and women, respectively, with 55% and 56% of the variance explained. The validation and cross-validation samples displayed SEE and variance explained in agreement with the total sample. Cross-classification between measured and predicted VO2peak accurately classified 91% of the participants within the correct or nearest quintile of measured VO2peak.Judicious use of the exercise prediction models presented in this study offers valuable information in providing a fairly accurate assessment of VO2peak, which may be beneficial for risk stratification in health care settings.

  9. Effect of gear ratio on peak power and time to peak power in BMX cyclists.

    Science.gov (United States)

    Rylands, Lee P; Roberts, Simon J; Hurst, Howard T

    2017-03-01

    The aim of this study was to ascertain if gear ratio selection would have an effect on peak power and time to peak power production in elite Bicycle Motocross (BMX) cyclists. Eight male elite BMX riders volunteered for the study. Each rider performed three, 10-s maximal sprints on an Olympic standard indoor BMX track. The riders' bicycles were fitted with a portable SRM power meter. Each rider performed the three sprints using gear ratios of 41/16, 43/16 and 45/16 tooth. The results from the 41/16 and 45/16 gear ratios were compared to the current standard 43/16 gear ratio. Statistically, significant differences were found between the gear ratios for peak power (F(2,14) = 6.448; p = .010) and peak torque (F(2,14) = 4.777; p = .026), but no significant difference was found for time to peak power (F(2,14) = 0.200; p = .821). When comparing gear ratios, the results showed a 45/16 gear ratio elicited the highest peak power,1658 ± 221 W, compared to 1436 ± 129 W and 1380 ± 56 W, for the 43/16 and 41/16 ratios, respectively. The time to peak power showed a 41/16 tooth gear ratio attained peak power in -0.01 s and a 45/16 in 0.22 s compared to the 43/16. The findings of this study suggest that gear ratio choice has a significant effect on peak power production, though time to peak power output is not significantly affected. Therefore, selecting a higher gear ratio results in riders attaining higher power outputs without reducing their start time.

  10. Quantitative measurement of high flow velocities by a spin echo MR technique

    Energy Technology Data Exchange (ETDEWEB)

    Lin Yigun (First Military Medical Coll., Quangzhou, FJ (China)); Kojima, Akihiro; Shinzato, Jintetsu; Sakamoto, Yuji; Ueno, Sukeyoshi; Takahashi, Mutsumasa; Higashida, Yoshiharu

    A new method of flow measurement using a spin echo (SE) technique has been developed on the basis of the flow effect that at high velocities signal intensity decreases linearly with increasing flow velocity. Flow velocity is calculated from the signal intensity ratio of the flowing material in two images with the same imaging parameters but different echo times. The linear relationship between the signal intensity and flow velocity was examined with a steady flow phantom. When assessed with steady flows in the phantom, flow velocities calculated by this method were in good agreement with velocities measured by a flow meter. This method was used with ECG gating to measure the blood flow of the right common carotid artery of a healthy volunteer. The measured peak flow velocity and the pattern of flow velocities during systole correlated well with the results obtained by Doppler ultrasound. (author).

  11. Examples of Vector Velocity Imaging

    DEFF Research Database (Denmark)

    Hansen, Peter M.; Pedersen, Mads M.; Hansen, Kristoffer L.

    2011-01-01

    To measure blood flow velocity in vessels with conventional ultrasound, the velocity is estimated along the direction of the emitted ultrasound wave. It is therefore impossible to obtain accurate information on blood flow velocity and direction, when the angle between blood flow and ultrasound wa...... with a 90° angle on the vessel. Moreover secondary flow in the abdominal aorta is illustrated by scanning on the transversal axis....

  12. Fetal atrioventricular and outflow tract flow velocity waveforms during conducted and blocked supraventricular extrasystoles

    NARCIS (Netherlands)

    K. van der Mooren (K.); J.W. Wladimiroff (Juriy); Th. Stijnen (Theo)

    1992-01-01

    textabstractMaximum flow velocity waveforms at atrioventricular and outflow tract level were studied cross‐sectionally in 19 human fetuses with conducted and/or blocked supraventricular extrasystoles ranging from 25 to 38 weeks of gestation. At outflow tract level, peak systolic velocity and acceler

  13. Adjusting central and eastern North America ground-motion intensity measures between sites with different reference-rock site conditions

    Science.gov (United States)

    Boore, David; Campbell, Kenneth W.

    2017-01-01

    Adjustment factors are provided for converting ground‐motion intensity measures between central and eastern North America (CENA) sites with different reference‐rock site conditions (VS30=760, 2000, and 3000  m/s) for moment magnitudes ranging from 2 to 8, rupture distances ranging from 2 to 1200 km, Fourier amplitude spectra (FAS) for frequencies ranging from 0.01 to 100 Hz, response spectra for periods ranging from 0.01 to 10.0 s, peak ground acceleration, and peak ground velocity. The adjustment factors are given for a wide range of the site diminution parameters (κ0) for sites with VS30=760  m/s and for a κ0 of 0.006 s for two harder rock sites. Fourteen CENA velocity profiles with VS30 values within a factor of 1.1 of 760  m/s were used to derive average FAS amplification factors as a function of frequency, which were then used in simulations of peak ground‐motion parameters and response spectra to derive the adjustment factors. The amplification function differs from that used in western North America (e.g., Campbell and Boore, 2016) in having a peak near 9 Hz, due to the resonance of motions in the relatively thin low‐velocity material over hard rock that characterizes many CENA sites with VS30 near 760  m/s. We call these B/C sites, because this velocity marks the boundary between National Earthquake Hazards Reduction Program site classes B and C (Building Seismic Safety Council, 2004). The adjustments for short‐period motions are sensitive to the value of κ0, but there are very few if any determinations of κ0 for CENA B/C sites. For this reason, we determined κ0from multiple recordings at Pinyon Flat Observatory (PFO), California, which has a velocity‐depth profile similar to those of CENA B/C sites. The PFO and other results from the literature suggest that appropriate values of κ0 for CENA B/C sites are expected to lie between 0.01 and 0.03 s.

  14. The Doppler peaks from a generic defect

    CERN Document Server

    Magueijo, J

    1996-01-01

    We investigate which of the exotic Doppler peak features found for textures and cosmic strings are generic novelties pertaining to defects. We find that the ``out of phase'' texture signature is an accident. Generic defects, when they generate a secondary peak structure similar to inflation, apply to it an additive shift. It is not necessary for this shift to be ``out of phase''. We also show which factors are responsible for the absence of secondary oscillations found for cosmic strings. Within this general analysis we finally consider the conditions under which topological defects and inflation can be confused. It is argued that only \\Omega=1 inflation and a defect with a horizon size coherence length have a chance to be confused. Any other inflationary or defect model always differ distinctly. (To appear in the proceedings of the XXXIth Moriond meeting, ``Microwave Background Anisotropies'')

  15. Peak oil, food systems, and public health.

    Science.gov (United States)

    Neff, Roni A; Parker, Cindy L; Kirschenmann, Frederick L; Tinch, Jennifer; Lawrence, Robert S

    2011-09-01

    Peak oil is the phenomenon whereby global oil supplies will peak, then decline, with extraction growing increasingly costly. Today's globalized industrial food system depends on oil for fueling farm machinery, producing pesticides, and transporting goods. Biofuels production links oil prices to food prices. We examined food system vulnerability to rising oil prices and the public health consequences. In the short term, high food prices harm food security and equity. Over time, high prices will force the entire food system to adapt. Strong preparation and advance investment may mitigate the extent of dislocation and hunger. Certain social and policy changes could smooth adaptation; public health has an essential role in promoting a proactive, smart, and equitable transition that increases resilience and enables adequate food for all.

  16. Excursion set peaks: the role of shear

    CERN Document Server

    Castorina, Emanuele; Hahn, Oliver; Sheth, Ravi K

    2016-01-01

    Recent analytical work on the modelling of dark halo abundances and clustering has demonstrated the advantages of combining the excursion set approach with peaks theory. We extend these ideas and introduce a model of excursion set peaks that incorporates the role of initial tidal effects or shear in determining the gravitational collapse of dark haloes. The model -- in which the critical density threshold for collapse depends on the tidal influences acting on protohaloes -- is well motivated from ellipsoidal collapse arguments and is also simple enough to be analytically tractable. We show that the predictions of this model are in very good agreement with measurements of the halo mass function and traditional scale dependent halo bias in N-body simulations across a wide range of masses and redshift. The presence of shear in the collapse threshold means that halo bias is naturally predicted to be nonlocal, and that protohalo densities at fixed mass are naturally predicted to have Lognormal-like distributions. ...

  17. Ground water and energy

    Energy Technology Data Exchange (ETDEWEB)

    1980-11-01

    This national workshop on ground water and energy was conceived by the US Department of Energy's Office of Environmental Assessments. Generally, OEA needed to know what data are available on ground water, what information is still needed, and how DOE can best utilize what has already been learned. The workshop focussed on three areas: (1) ground water supply; (2) conflicts and barriers to ground water use; and (3) alternatives or solutions to the various issues relating to ground water. (ACR)

  18. Reducing Peak Power in Automated Weapon Laying

    Science.gov (United States)

    2016-02-01

    The values used are determined based on a number of factors including available power, maximum motor speed , maximum safe slewing speeds , peak...METHODS, ASSUMPTIONS, AND PROCEDURES Conventions and Variable Definitions Before describing the formulas to solve the aforementioned problems, it is...These two formulas are set equal to each other in equation 9 and then solved for t2 in equation 10. Note that the negative value of α2 results in a

  19. Hanford Site peak gust wind speeds

    Energy Technology Data Exchange (ETDEWEB)

    Ramsdell, J.V.

    1998-09-29

    Peak gust wind data collected at the Hanford Site since 1945 are analyzed to estimate maximum wind speeds for use in structural design. The results are compared with design wind speeds proposed for the Hanford Site. These comparisons indicate that design wind speeds contained in a January 1998 advisory changing DOE-STD-1020-94 are excessive for the Hanford Site and that the design wind speeds in effect prior to the changes are still appropriate for the Hanford Site.

  20. Single-cycle multiterahertz transients with peak fields above 10 MV/cm.

    Science.gov (United States)

    Junginger, F; Sell, A; Schubert, O; Mayer, B; Brida, D; Marangoni, M; Cerullo, G; Leitenstorfer, A; Huber, R

    2010-08-01

    Phase-locked single-cycle transients with frequency components between 1 and 60THz and peak fields of up to 12MV/cm are generated as the idler wave of a parametric amplifier. To achieve broadband conversion in GaSe nonlinear crystals, we match the group velocities of signal and idler components. The influence of group-velocity dispersion is minimized by long-wavelength pumping at 1.18mum. Free-space electro-optic sampling monitors the multiterahertz waveforms with direct field resolution.

  1. Concurrent aerial and ground-based optical turbulence measurements along a long elevated path

    Science.gov (United States)

    Nowlin, Scott R.; Hahn, Ila L.; Hugo, Ronald J.; Bishop, Kenneth P.

    1999-08-01

    We report concurrent ground-based scintillator/airborne constant-current anemometer (CCA) measurements made along a 51.4 km-long slant path between Salinas and North Oscura peaks, NM. Simultaneous path-averaged refractive index structure parameter (Cn2) measurements from the CCA and the scintillometer show good agreement, with deviations apparently due to localized effects of underlying topography and metrology. Statistics from both data sets are presented in the form of histograms and cumulative distribution functions. CCA Cn2 point measurements are compared to underlying surface topography. We discuss possible effects of instruments anomalies, analysis methods, and atmospheric velocity fluctuation levels. We present conclusions and made recommendations for future similar experimental efforts.

  2. METing SUSY on the Z peak

    Energy Technology Data Exchange (ETDEWEB)

    Barenboim, G.; Bernabeu, J.; Vives, O. [Universitat de Valencia, Departament de Fisica Teorica, Burjassot (Spain); Universitat de Valencia-CSIC, Parc Cientific U.V., IFIC, Paterna (Spain); Mitsou, V.A.; Romero, E. [Universitat de Valencia-CSIC, Parc Cientific U.V., IFIC, Paterna (Spain)

    2016-02-15

    Recently the ATLAS experiment announced a 3 σ excess at the Z-peak consisting of 29 pairs of leptons together with two or more jets, E{sub T}{sup miss} > 225 GeV and HT > 600 GeV, to be compared with 10.6 ± 3.2 expected lepton pairs in the Standard Model. No excess outside the Z-peak was observed. By trying to explain this signal with SUSY we find that only relatively light gluinos, m{sub g} or similar 400 GeV decaying predominantly to Z-boson plus a light gravitino, such that nearly every gluino produces at least one Z-boson in its decay chain, could reproduce the excess. We construct an explicit general gauge mediation model able to reproduce the observed signal overcoming all the experimental limits. Needless to say, more sophisticated models could also reproduce the signal, however, any model would have to exhibit the following features: light gluinos, or heavy particles with a strong production cross section, producing at least one Z-boson in its decay chain. The implications of our findings for the Run II at LHC with the scaling on the Z peak, as well as for the direct search of gluinos and other SUSY particles, are pointed out. (orig.)

  3. Central Peaks and Soft Modes in Praseodymium

    DEFF Research Database (Denmark)

    Houmann, Jens Christian Gylden; Lebech, Bente; Mackintosh, A. R.

    1977-01-01

    The dhcp allotrope of Pr is a singlet ground-state system which is very close to magnetic ordering at low temperatures. We have observed quasi-elastic magnetic scattering around the q-value in the directions at which the disperion relations for the magnetic excitations have a minimum energy....... The excitations were measured along all symmetry lines in the zone, and the dependence of the energies and lifetimes on the temperature and magnetic field was investigated....

  4. Analysis and Assessment of Peak Lightning Current Probabilities at the NASA Kennedy Space Center

    Science.gov (United States)

    Johnson, D. L.; Vaughan, W. W.

    1999-01-01

    This technical memorandum presents a summary by the Electromagnetics and Aerospace Environments Branch at the Marshall Space Flight Center of lightning characteristics and lightning criteria for the protection of aerospace vehicles. Probability estimates are included for certain lightning strikes (peak currents of 200, 100, and 50 kA) applicable to the National Aeronautics and Space Administration Space Shuttle at the Kennedy Space Center, Florida, during rollout, on-pad, and boost/launch phases. Results of an extensive literature search to compile information on this subject are presented in order to answer key questions posed by the Space Shuttle Program Office at the Johnson Space Center concerning peak lightning current probabilities if a vehicle is hit by a lightning cloud-to-ground stroke. Vehicle-triggered lightning probability estimates for the aforementioned peak currents are still being worked. Section 4.5, however, does provide some insight on estimating these same peaks.

  5. Will peak oil accelerate carbon dioxide emissions?

    Science.gov (United States)

    Caldeira, K.; Davis, S. J.; Cao, L.

    2008-12-01

    The relative scarcity of oil suggests that oil production is peaking and will decline thereafter. Some have suggested that this represents an opportunity to reduce carbon dioxide emissions. However, in the absence of constraints on carbon dioxide emission, "peak oil" may drive a shift towards increased reliance on coal as a primary energy source. Because coal per unit energy, in the absence of carbon capture and disposal, releases more carbon dioxide to the atmosphere than oil, "peak oil" may lead to an acceleration of carbon dioxide emissions. We will never run out of oil. As oil becomes increasingly scarce, prices will rise and therefore consumption will diminish. As prices rise, other primary energy sources will become increasingly competitive with oil. The developed world uses oil primarily as a source of transportation fuels. The developing world uses oil primarily for heat and power, but the trend is towards increasing reliance on oil for transportation. Liquid fuels, including petroleum derivatives such as gasoline and diesel fuel, are attractive as transportation fuels because of their relative abundance of energy per unit mass and volume. Such considerations are especially important for the air transport industry. Today, there is little that can compete with petroleum-derived transportation fuels. Future CO2 emissions from the transportation sector largely depend on what replaces oil as a source of fuel. Some have suggested that biomass-derived ethanol, hydrogen, or electricity could play this role. Each of these potential substitutes has its own drawbacks (e.g., low power density per unit area in the case of biomass, low power density per unit volume in the case of hydrogen, and low power density per unit mass in the case of battery storage). Thus, it is entirely likely that liquefaction of coal could become the primary means by which transportation fuels are produced. Since the burning of coal produces more CO2 per unit energy than does the burning of

  6. Sound attenuation at terahertz frequencies and the boson peak of vitreous silica.

    Science.gov (United States)

    Baldi, G; Giordano, V M; Monaco, G; Ruta, B

    2010-05-14

    The propagation and damping of the acoustic excitations in vitreous silica is measured at terahertz frequencies using inelastic x-ray scattering. The apparent sound velocity shows a marked dispersion with frequency while the sound attenuation undergoes a crossover from a fourth to a second power law frequency dependence. This finding solves a recent controversy concerning the location of this crossover in vitreous silica, clarifying that it occurs at the position of the glass-characteristic excess of vibrational modes known as boson peak, and thus establishing a direct connection between boson peak and acoustic dispersion curves.

  7. Effect of Rainfall on Traffic Stream Characteristics during Peak and Non-Peak Periods

    Directory of Open Access Journals (Sweden)

    Hashim Mohammed Alhassan

    2012-01-01

    Full Text Available This paper examined the effect of rainfall on traffic stream behaviour during  peak and non-peak periods on a basic highway section. Data on this section which is located on the J5 was collected for four months during which 99 rainfall events occurred. The traffic consisted of 75.80% cars, 10.23% motorcycles, 3.51% trucks and 10.46%  of other vehicles. Traffic was observed for both rain and no-rain conditions and the data was analysed to see the effect of the rain. The results showed decreases in the speed as the rain intensity increased. Similarly, the traffic flow rates decreased as the rain intensity increased. This trend was observed for both peak and non-peak periods and for both directions. It is concluded that the effect of rain during peak period could have more serious consequences on the traffic flow than during non-peak periods because of the higher flow rates and the constrained nature of the flow. Consequently, capacity degradations up to 30% during peak periods would require resources to be employed to manage the traffic.

  8. The dependence of Pi2 waveforms on periodic velocity enhancements within bursty bulk flows

    Directory of Open Access Journals (Sweden)

    K. R. Murphy

    2011-03-01

    Full Text Available Pi2s are a category of Ultra Low Frequency (ULF waves associated with the onset of magnetic substorms. Recent work has suggested that the deceleration of bulk plasma flows in the central plasmasheet, known as bursty bulk flows (BBFs, are able to directly-drive Pi2 oscillations. Some of these studies have further shown evidence that there is a one-to-one correlation between Pi2 magnetic waveforms observed on the ground and periodic peaks in flow velocity within the BBF, known as flow bursts. Utilising a favourable conjunction between the Geotail spacecraft and the Canadian Array for Real-time Investigations of Magnetic Activity (CARISMA magnetometer array on 31 May 1998, we examine the causality of the link between BBF flow bursts and Pi2 waveforms. Using a series of analytical tests in both the time and frequency domains, we find that while the Pi2 and BBF waveforms are very similar, the ground response for this event occurs prior to the observed flow enhancements in the magnetotail. We conclude that during this specific case study the temporal variations of the flow bursts within the BBF are not directly-driving the observed ground-based Pi2 waveforms, despite the fact that a visual inspection of both time-series might initially suggest that there is a causal relationship. We postulate that rather than there being a direct causal relation, the similar waveforms observed in both Pi2s and BBFs may result from temporal variations in a common source for both the BBFs and the Pi2s, such as magnetic reconnection in the tail, this source modulating both the Pi2 and BBF at the same frequency.

  9. Direct Ejecta Velocity Measurements of Tycho's Supernova Remnant

    CERN Document Server

    Sato, Toshiki

    2016-01-01

    We present the first direct ejecta velocity measurements of Tycho's supernova remnant (SNR). Chandra's high angular resolution images reveal a patchy structure of radial velocities in the ejecta that can be separated into distinct redshifted, blueshifted, and low velocity ejecta clumps or blobs. The typical velocities of the redshifted and blueshifted blobs are <~ 7,800 km/s and <~ 5,000 km/s, respectively. The highest velocity blobs are located near the center, while the low velocity ones appear near the edge as expected for a generally spherical expansion. Systematic uncertainty on the velocity measurements from gain calibration was assessed by carrying out joint fits of individual blobs with both the ACIS-I and ACIS-S detectors. We identified an annular region (~3.3'-3.5'), where the surface brightness in the Si, S, and Fe K lines reaches a peak while the line width reaches a minimum value. These minimum line widths correspond to ion temperatures of ~1 MeV for each of the three species, in excellent ...

  10. Streaming Velocities and the Baryon Acoustic Oscillation Scale.

    Science.gov (United States)

    Blazek, Jonathan A; McEwen, Joseph E; Hirata, Christopher M

    2016-03-25

    At the epoch of decoupling, cosmic baryons had supersonic velocities relative to the dark matter that were coherent on large scales. These velocities subsequently slow the growth of small-scale structure and, via feedback processes, can influence the formation of larger galaxies. We examine the effect of streaming velocities on the galaxy correlation function, including all leading-order contributions for the first time. We find that the impact on the baryon acoustic oscillation (BAO) peak is dramatically enhanced (by a factor of ∼5) over the results of previous investigations, with the primary new effect due to advection: if a galaxy retains memory of the primordial streaming velocity, it does so at its Lagrangian, rather than Eulerian, position. Since correlations in the streaming velocity change rapidly at the BAO scale, this advection term can cause a significant shift in the observed BAO position. If streaming velocities impact tracer density at the 1% level, compared to the linear bias, the recovered BAO scale is shifted by approximately 0.5%. This new effect, which is required to preserve Galilean invariance, greatly increases the importance of including streaming velocities in the analysis of upcoming BAO measurements and opens a new window to the astrophysics of galaxy formation.

  11. Seismic fragility analysis of a CANDU containment structure for near-fault ground motions

    Energy Technology Data Exchange (ETDEWEB)

    Choi, In Kil; Choun, Young Sun; Seo, Jeong Moon; Ahn, Seong Moon [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    2005-07-01

    The R. G. 1.60 spectrum used for the seismic design of Korean nuclear power plants provides a generally conservative design basis due to its broadband nature. A survey on some of the Quaternary fault segments near Korean nuclear power plants is ongoing. It is likely that these faults will be identified as active ones. If the faults are confirmed as active ones, it will be necessary to reevaluate the seismic safety of the nuclear power plants located near these faults. The probability based scenario earthquakes were identified as near-field earthquakes. In general, the near-fault ground motion records exhibit a distinctive long period pulse like time history with very high peak velocities. These features are induced by the slip of the earthquake fault. Near-fault ground motions, which have caused much of the damage in recent major earthquakes, can be characterized by a pulse-like motion that exposes the structure to a high input energy at the beginning of the motion. It is necessary to estimate the near-fault ground motion effects on the nuclear power plant structures and components located near the faults. In this study, the seismic fragility analysis of a CANDU containment structure was performed based on the results of nonlinear dynamic time-history analyses.

  12. An optimal velocity for online limb-target regulation processes?

    Science.gov (United States)

    Tremblay, Luc; Crainic, Valentin A; de Grosbois, John; Bhattacharjee, Arindam; Kennedy, Andrew; Hansen, Steve; Welsh, Timothy N

    2017-01-01

    The utilization of visual information for the control of ongoing voluntary limb movements has been investigated for more than a century. Recently, online sensorimotor processes for the control of upper-limb reaches were hypothesized to include a distinct process related to the comparison of limb and target positions (i.e., limb-target regulation processes: Elliott et al. in Psychol Bull 136:1023-1044. doi: 10.1037/a0020958 , 2010). In the current study, this hypothesis was tested by presenting participants with brief windows of vision (20 ms) when the real-time velocity of the reaching limb rose above selected velocity criteria. One experiment tested the perceptual judgments of endpoint bias (i.e., under- vs. over-shoot), and another experiment tested the shifts in endpoint distributions following an imperceptible target jump. Both experiments revealed that limb-target regulation processes take place at an optimal velocity or "sweet spot" between movement onset and peak limb velocity (i.e., 1.0 m/s with the employed movement amplitude and duration). In contrast with pseudo-continuous models of online control (e.g., Elliott et al. in Hum Mov Sci 10:393-418. doi: 10.1016/0167-9457(91)90013-N , 1991), humans likely optimize online limb-target regulation processes by gathering visual information at a rather limited period of time, well in advance of peak limb velocity.

  13. Earthquake ground-motion in presence of source and medium heterogeneities

    KAUST Repository

    Vyas, Jagdish Chandra

    2017-01-01

    This dissertation work investigates the effects of earthquake rupture complexity and heterogeneities in Earth structure on near-field ground-motions. More specifically, we address two key issues in seismology: (1) near-field ground-shaking variability as function of distance and azimuth for unilateral directive ruptures, and (2) impact of rupture complexity and seismic scattering on Mach wave coherence associated with supershear rupture propagation. We examine earthquake ground-motion variability associated with unilateral ruptures based on ground-motion simulations of the MW 7.3 1992 Landers earthquake, eight simplified source models, and a MW 7.8 rupture simulation (ShakeOut) for the San Andreas fault. Our numerical modeling reveals that the ground-shaking variability in near-fault distances (< 20 km) is larger than that given by empirical ground motion prediction equations. In addition, the variability decreases with increasing distance from the source, exhibiting a power-law decay. The high near-field variability can be explained by strong directivity effects whose influence weaken as we move away from the fault. At the same time, the slope of the power-law decay is found to be dominantly controlled by slip heterogeneity. Furthermore, the ground-shaking variability is high in the rupture propagation direction whereas low in the directions perpendicular to it. However, the variability expressed as a function of azimuth is not only sensitive to slip heterogeneity, but also to rupture velocity. To study Mach wave coherence for supershear ruptures, we consider heterogeneities in rupture parameters (variations in slip, rise time and rupture speed) and 3D scattering media having small-scale random heterogeneities. The Mach wave coherence is reduced at near-fault distances (< 10 km) by the source heterogeneities. At the larger distances from the source, medium scattering plays the dominant role in reducing the Mach wave coherence. Combined effect of the source and

  14. Introduction to vector velocity imaging

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt; Udesen, Jesper; Hansen, Kristoffer Lindskov;

    Current ultrasound scanners can only estimate the velocity along the ultrasound beam and this gives rise to the cos() factor on all velocity estimates. This is a major limitation as most vessels are close to perpendicular to the beam. Also the angle varies as a function of space and time making...

  15. Instantaneous Velocity Using Photogate Timers

    Science.gov (United States)

    Wolbeck, John

    2010-01-01

    Photogate timers are commonly used in physics laboratories to determine the velocity of a passing object. In this application a card attached to a moving object breaks the beam of the photogate timer providing the time for the card to pass. The length L of the passing card can then be divided by this time to yield the average velocity (or speed)…

  16. Kriging Interpolating Cosmic Velocity Field

    CERN Document Server

    Yu, Yu; Jing, Yipeng; Zhang, Pengjie

    2015-01-01

    [abridge] Volume-weighted statistics of large scale peculiar velocity is preferred by peculiar velocity cosmology, since it is free of uncertainties of galaxy density bias entangled in mass-weighted statistics. However, measuring the volume-weighted velocity statistics from galaxy (halo/simulation particle) velocity data is challenging. For the first time, we apply the Kriging interpolation to obtain the volume-weighted velocity field. Kriging is a minimum variance estimator. It predicts the most likely velocity for each place based on the velocity at other places. We test the performance of Kriging quantified by the E-mode velocity power spectrum from simulations. Dependences on the variogram prior used in Kriging, the number $n_k$ of the nearby particles to interpolate and the density $n_P$ of the observed sample are investigated. (1) We find that Kriging induces $1\\%$ and $3\\%$ systematics at $k\\sim 0.1h{\\rm Mpc}^{-1}$ when $n_P\\sim 6\\times 10^{-2} ({\\rm Mpc}/h)^{-3}$ and $n_P\\sim 6\\times 10^{-3} ({\\rm Mpc...

  17. Tissue motion in blood velocity estimation and its simulation

    DEFF Research Database (Denmark)

    Schlaikjer, Malene; Torp-Pedersen, Søren; Jensen, Jørgen Arendt;

    1998-01-01

    to the improvement of color flow imaging. Optimization based on in-vivo data is difficult since the blood and tissue signals cannot be accurately distinguished and the correct extend of the vessel under investigation is often unknown. This study introduces a model for the simulation of blood velocity data in which...... times to cover the whole cardiac cycle and a total of 400 independent RF measurements of 950 pulse echo lines were recorded. The motion of the tissue surrounding the hepatic vein from superficial breathing had a peak velocity of 6.2±3.4 mm/s over the cardiac cycle, when averaged over the 10 volunteers...

  18. Critical velocity during continuous and intermittent exercises in children.

    Science.gov (United States)

    Berthoin, Serge; Baquet, Georges; Dupont, Gregory; Van Praagh, Emmanuel

    2006-09-01

    The purpose of this study was to apply the "critical velocity" concept to short intermittent high-intensity running exercises in prepubescent girls and boys and to compare the running performances obtained either by intermittent or continuous exercise runs. Eleven 8 to 11-year-old children underwent a maximal graded field test to determine peak oxygen uptake (peakVO2) and maximal aerobic velocity (MAV). During the six following sessions, they randomly performed three continuous runs (90, 100, and 110% of MAV) and three intermittent runs (120, 130, and 140% of MAV) until exhaustion. Intermittent exercises consisted of repeated 15 s runs each one separated by a 15 s passive recovery interval. For continuous as well as intermittent exercises, distance versus time to exhaustion (TTE) relationships were calculated to determine continuous (CVc) and intermittent (CVi) critical velocities. Values for peakVO2 and MAV were 45.8 +/- 5.3 ml x kg(-1) x min(-1) and 10.5 +/- 1.0 km h(-1), respectively. For the whole population, a significant relationship was found between the distance to exhaustion (DTE) and TTE for continuous (r2= 0.99, P < 0.05) and intermittent exercises (r2 = 0.99, P < 0.05). Significant relationships were found between peakVO2 and both CVc (r2= 0.60, P < 0.01) and CVi (r2= 0.47, P < 0.05). In conclusion, as for continuous exercises, a linear relationship was found between DTE and TTE for short high-intensity intermittent exercises. CVc was significantly related to peakVO2, while a significant lower relationship was found between peakVO2 and CVi.

  19. Seismic design technology for breeder reactor structures. Volume 1. Special topics in earthquake ground motion

    Energy Technology Data Exchange (ETDEWEB)

    Reddy, D.P.

    1983-04-01

    This report is divided into twelve chapters: seismic hazard analysis procedures, statistical and probabilistic considerations, vertical ground motion characteristics, vertical ground response spectrum shapes, effects of inclined rock strata on site response, correlation of ground response spectra with intensity, intensity attenuation relationships, peak ground acceleration in the very mean field, statistical analysis of response spectral amplitudes, contributions of body and surface waves, evaluation of ground motion characteristics, and design earthquake motions. (DLC)

  20. A reliable simultaneous representation of seismic hazard and of ground shaking recurrence

    Science.gov (United States)

    Peresan, A.; Panza, G. F.; Magrin, A.; Vaccari, F.

    2015-12-01

    Different earthquake hazard maps may be appropriate for different purposes - such as emergency management, insurance and engineering design. Accounting for the lower occurrence rate of larger sporadic earthquakes may allow to formulate cost-effective policies in some specific applications, provided that statistically sound recurrence estimates are used, which is not typically the case of PSHA (Probabilistic Seismic Hazard Assessment). We illustrate the procedure to associate the expected ground motions from Neo-deterministic Seismic Hazard Assessment (NDSHA) to an estimate of their recurrence. Neo-deterministic refers to a scenario-based approach, which allows for the construction of a broad range of earthquake scenarios via full waveforms modeling. From the synthetic seismograms the estimates of peak ground acceleration, velocity and displacement, or any other parameter relevant to seismic engineering, can be extracted. NDSHA, in its standard form, defines the hazard computed from a wide set of scenario earthquakes (including the largest deterministically or historically defined credible earthquake, MCE) and it does not supply the frequency of occurrence of the expected ground shaking. A recent enhanced variant of NDSHA that reliably accounts for recurrence has been developed and it is applied to the Italian territory. The characterization of the frequency-magnitude relation can be performed by any statistically sound method supported by data (e.g. multi-scale seismicity model), so that a recurrence estimate is associated to each of the pertinent sources. In this way a standard NDSHA map of ground shaking is obtained simultaneously with the map of the corresponding recurrences. The introduction of recurrence estimates in NDSHA naturally allows for the generation of ground shaking maps at specified return periods. This permits a straightforward comparison between NDSHA and PSHA maps.

  1. Electromechanical Peak Devices of Distributed Power Generation

    Directory of Open Access Journals (Sweden)

    S. V. Konstantinova

    2011-01-01

    Full Text Available The power world crises (1973, 1979 have demonstrated that mankind entered the expensive energy epoch. More and more attitude is given to power saving problem by including renewable power sources in energy balance of the countries. The paper analyzes a power system inBelarusand a typical chart of the active load is cited in the paper. Equalization of load chart is considered as one of measures directed on provision of higher operational efficiency of power system and power saving.  This purpose can be obtained while including electromechanical peak devices of the distributed generation in the energy balance.

  2. LARAMIE PEAK WILDERNESS STUDY AREA, WYOMING.

    Science.gov (United States)

    Segerstrom, Kenneth; Weisner, R.C.

    1984-01-01

    On the basis of a mineral survey, most of the Laramie Peak Wilderness study area in Wyoming was concluded to have little promise for the occurrence of mineral or energy resources. Only three small areas in the northern part, one extending outside the study area to Esterbrook, were found to have probable mineral-resource potential for copper and lead. The geologic setting precludes the presence of fossil-fuel resources in the study area. There are no surface indications that geothermal energy could be developed within or near the study area.

  3. Forecasting peaks of seasonal influenza epidemics.

    Science.gov (United States)

    Nsoesie, Elaine; Mararthe, Madhav; Brownstein, John

    2013-06-21

    We present a framework for near real-time forecast of influenza epidemics using a simulation optimization approach. The method combines an individual-based model and a simple root finding optimization method for parameter estimation and forecasting. In this study, retrospective forecasts were generated for seasonal influenza epidemics using web-based estimates of influenza activity from Google Flu Trends for 2004-2005, 2007-2008 and 2012-2013 flu seasons. In some cases, the peak could be forecasted 5-6 weeks ahead. This study adds to existing resources for influenza forecasting and the proposed method can be used in conjunction with other approaches in an ensemble framework.

  4. Peak oil, economic growth, and wildlife conservation

    CERN Document Server

    Gates, J Edward; Czech, Brian

    2014-01-01

    The proposed book focuses on one of the most important issues affecting humankind in this century - Peak Oil or the declining availability of abundant, cheap energy-and its effects on our industrialized economy and wildlife conservation. Energy will be one of the defining issues of the 21st Century directly affecting wildlife conservation wherever energy extraction is a primary economic activity and indirectly through deepening economic recessions. Since cheap, abundant energy has been at the core of our industrial society, and has resulted in the technological advancements we enjoy today, the

  5. Particle creation by peak electric field

    CERN Document Server

    Adorno, T C; Gitman, D M

    2016-01-01

    The particle creation by the so-called peak electric field is considered. The latter field is a combination of two exponential parts, one exponentially-increasing and another exponentially-decreasing. We find exact solutions of the Dirac equation with the field under consideration with appropriate asymptotic conditions and calculate all the characteristics of particle creation effect, in particular, differential mean numbers of created particle, total number of created particles, and the probability for a vacuum to remain a vacuum. Characteristic asymptotic regimes are discussed in detail and a comparison with the pure asymptotically decaying field is considered.

  6. Particle creation by peak electric field

    Energy Technology Data Exchange (ETDEWEB)

    Adorno, T.C. [Tomsk State University, Department of Physics, Tomsk (Russian Federation); Gavrilov, S.P. [Tomsk State University, Department of Physics, Tomsk (Russian Federation); Herzen State Pedagogical University of Russia, Department of General and Experimental Physics, St. Petersburg (Russian Federation); Gitman, D.M. [Tomsk State University, Department of Physics, Tomsk (Russian Federation); P. N. Lebedev Physical Institute, Moscow (Russian Federation); University of Sao Paulo, Institute of Physics, CP 66318, Sao Paulo, SP (Brazil)

    2016-08-15

    The particle creation by the so-called peak electric field is considered. The latter field is a combination of two exponential parts, one exponentially increasing and another exponentially decreasing. We find exact solutions of the Dirac equation with the field under consideration with appropriate asymptotic conditions and calculate all the characteristics of particle creation effect, in particular, differential mean numbers of created particle, total number of created particles, and the probability for a vacuum to remain a vacuum. Characteristic asymptotic regimes are discussed in detail and a comparison with the pure asymptotically decaying field is considered. (orig.)

  7. Calculating wave-generated bottom orbital velocities from surface-wave parameters

    Science.gov (United States)

    Wiberg, P.L.; Sherwood, C.R.

    2008-01-01

    Near-bed wave orbital velocities and shear stresses are important parameters in many sediment-transport and hydrodynamic models of the coastal ocean, estuaries, and lakes. Simple methods for estimating bottom orbital velocities from surface-wave statistics such as significant wave height and peak period often are inaccurate except in very shallow water. This paper briefly reviews approaches for estimating wave-generated bottom orbital velocities from near-bed velocity data, surface-wave spectra, and surface-wave parameters; MATLAB code for each approach is provided. Aspects of this problem have been discussed elsewhere. We add to this work by providing a method for using a general form of the parametric surface-wave spectrum to estimate bottom orbital velocity from significant wave height and peak period, investigating effects of spectral shape on bottom orbital velocity, comparing methods for calculating bottom orbital velocity against values determined from near-bed velocity measurements at two sites on the US east and west coasts, and considering the optimal representation of bottom orbital velocity for calculations of near-bed processes. Bottom orbital velocities calculated using near-bed velocity data, measured wave spectra, and parametric spectra for a site on the northern California shelf and one in the mid-Atlantic Bight compare quite well and are relatively insensitive to spectral shape except when bimodal waves are present with maximum energy at the higher-frequency peak. These conditions, which are most likely to occur at times when bottom orbital velocities are small, can be identified with our method as cases where the measured wave statistics are inconsistent with Donelan's modified form of the Joint North Sea Wave Project (JONSWAP) spectrum. We define the 'effective' forcing for wave-driven, near-bed processes as the product of the magnitude of forcing times its probability of occurrence, and conclude that different bottom orbital velocity statistics

  8. Difference in peak weight transfer and timing based on golf handicap.

    Science.gov (United States)

    Queen, Robin M; Butler, Robert J; Dai, Boyi; Barnes, C Lowry

    2013-09-01

    Weight shift during the golf swing has been a topic of discussion among golf professionals; however, it is still unclear how weight shift varies in golfers of different performance levels. The main purpose of this study was to examine the following: (a) the changes in the peak ground reaction forces (GRF) and the timing of these events between high (HHCP) and low handicap (LHCP) golfers and (b) the differences between the leading and trailing legs. Twenty-eight male golfers were recruited and divided based on having an LHCP 9. Three-dimensional GRF peaks and the timing of the peaks were recorded bilaterally during a golf swing. The golf swing was divided into different phases: (a) address to the top of the backswing, (b) top of the backswing to ball contact, and (c) ball contact to the end of follow through. Repeated measures analyses of variance (α = 0.05) were completed for each study variable: the magnitude and the timing of peak vertical GRF, peak lateral GRF, and peak medial GRF (α = 0.05). The LHCP group had a greater transfer of vertical force from the trailing foot to the leading foot in phase 2 than the HHCP group. The LHCP group also demonstrated earlier timing of peak vertical force throughout the golf swing than the HHCP group. The LHCP and HHCP groups demonstrated different magnitudes of peak lateral force. The LHCP group had an earlier timing of peak lateral GRF in phase 2 and earlier timing of peak medial GRF in phases 1 and 2 than the HHCP group. In general, LHCP golfers demonstrated greater and earlier force generation than HHCP golfers. It may be relevant to consider both the magnitude of the forces and the timing of these events during golf-specific training to improve performance. These data reveal weight shifting differences that can be addressed by teaching professionals to help their students better understand weight transfer during the golf swing to optimize performance.

  9. Clutter in the GMTI range-velocity map.

    Energy Technology Data Exchange (ETDEWEB)

    Doerry, Armin Walter

    2009-04-01

    Ground Moving Target Indicator (GMTI) radar maps echo data to range and range-rate, which is a function of a moving target's velocity and its position within the antenna beam footprint. Even stationary clutter will exhibit an apparent motion spectrum and can interfere with moving vehicle detections. Consequently it is very important for a radar to understand how stationary clutter maps into radar measurements of range and velocity. This mapping depends on a wide variety of factors, including details of the radar motion, orientation, and the 3-D topography of the clutter.

  10. Particle velocity non-uniformity and steady-wave propagation

    Science.gov (United States)

    Meshcheryakov, Yu. I.

    2017-03-01

    A constitutive equation grounded in dislocation dynamics is shown to be incapable of describing the propagation of shock fronts in solids. Shock wave experiments and theoretical investigations motivate an additional collective mechanism of stress relaxation that should be incorporated into the model through the standard deviation of the particle velocity, which is found to be proportional to the strain rate. In this case, the governing equation system results in a second-order differential equation of square non-linearity. Solution to this equation and calculations for D16 aluminum alloy show a more precise coincidence of the theoretical and experimental velocity profiles.

  11. Diffraction imaging and velocity analysis using oriented velocity continuation

    KAUST Repository

    Decker, Luke

    2014-08-05

    We perform seismic diffraction imaging and velocity analysis by separating diffractions from specular reflections and decomposing them into slope components. We image slope components using extrapolation in migration velocity in time-space-slope coordinates. The extrapolation is described by a convection-type partial differential equation and implemented efficiently in the Fourier domain. Synthetic and field data experiments show that the proposed algorithm is able to detect accurate time-migration velocities by automatically measuring the flatness of events in dip-angle gathers.

  12. Beyond the Peak - Tactile Temporal Discrimination Does Not Correlate with Individual Peak Frequencies in Somatosensory Cortex.

    Science.gov (United States)

    Baumgarten, Thomas J; Schnitzler, Alfons; Lange, Joachim

    2017-01-01

    The human sensory systems constantly receive input from different stimuli. Whether these stimuli are integrated into a coherent percept or segregated and perceived as separate events, is critically determined by the temporal distance of the stimuli. This temporal distance has prompted the concept of temporal integration windows or perceptual cycles. Although this concept has gained considerable support, the neuronal correlates are still discussed. Studies suggested that neuronal oscillations might provide a neuronal basis for such perceptual cycles, i.e., the cycle lengths of alpha oscillations in visual cortex and beta oscillations in somatosensory cortex might determine the length of perceptual cycles. Specifically, recent studies reported that the peak frequency (the frequency with the highest spectral power) of alpha oscillations in visual cortex correlates with subjects' ability to discriminate two visual stimuli. In the present study, we investigated whether peak frequencies in somatosensory cortex might serve as the correlate of perceptual cycles in tactile discrimination. Despite several different approaches, we were unable to find a significant correlation between individual peak frequencies in the alpha- and beta-band and individual discrimination abilities. In addition, analysis of Bayes factor provided evidence that peak frequencies and discrimination thresholds are unrelated. The results suggest that perceptual cycles in the somatosensory domain are not necessarily to be found in the peak frequency, but in other frequencies. We argue that studies based solely on analysis of peak frequencies might thus miss relevant information.

  13. PeakVizor: Visual Analytics of Peaks in Video Clickstreams from Massive Open Online Courses.

    Science.gov (United States)

    Chen, Qing; Chen, Yuanzhe; Liu, Dongyu; Shi, Conglei; Wu, Yingcai; Qu, Huamin

    2016-10-01

    Massive open online courses (MOOCs) aim to facilitate open-access and massive-participation education. These courses have attracted millions of learners recently. At present, most MOOC platforms record the web log data of learner interactions with course videos. Such large amounts of multivariate data pose a new challenge in terms of analyzing online learning behaviors. Previous studies have mainly focused on the aggregate behaviors of learners from a summative view; however, few attempts have been made to conduct a detailed analysis of such behaviors. To determine complex learning patterns in MOOC video interactions, this paper introduces a comprehensive visualization system called PeakVizor. This system enables course instructors and education experts to analyze the "peaks" or the video segments that generate numerous clickstreams. The system features three views at different levels: the overview with glyphs to display valuable statistics regarding the peaks detected; the flow view to present spatio-temporal information regarding the peaks; and the correlation view to show the correlation between different learner groups and the peaks. Case studies and interviews conducted with domain experts have demonstrated the usefulness and effectiveness of PeakVizor, and new findings about learning behaviors in MOOC platforms have been reported.

  14. Factors effecting hamstrings to quadriceps peak torque ratio in volleyball players

    Directory of Open Access Journals (Sweden)

    Ayşegül Yapıcı

    2016-12-01

    Full Text Available The aim of this study was to analyze of hamstring to quadriceps peak torque ratio (H:Q measured in isokinetic testing with respect to different angular velocities (60, 180, 300°/s, gender, dominant side and mode of contraction (concentric, eccentric in volleyball players. Twenty male and ten female healthy volleyball players participated in this study. An independent t-test was used to compare the differences between gender. One-way analysis of variance test was conducted to test for differences by effecting factors. There was a statistically significant difference between dominant and non-dominant side in H:Q ratio at 300°/s in males (p0.05. There was no statistically significant difference between at 60-180-300°/s velocities by Hconc:Qconc contractions and at 60°/s by Hconc:Qecc contractions for male and female’s peak torques in dominant side (p>0.05. There was a statistically significant difference between at 60°/s by Hconc:Qconc and Hconc:Qecc contractions for male and female’s peak torques in dominant side (p0.05. It was found in our study that H:Q ratio increases with increasing angular velocity. The findings of the present study indicated that angular velocity, type of contraction and leg dominance influence isokinetic strength profiles of male and female, consequently, muscular balance that is H:Q at the knee. This implies that isokinetic concentric knee strength plays more role in high intensity contractions and has more effect at high velocities of contraction in maximal performance.

  15. Peak heart rates at extreme altitudes

    DEFF Research Database (Denmark)

    Lundby, C; Van Hall, Gerrit

    2001-01-01

    We have measured maximal heart rate during a graded maximal bicycle exercise test to exhaustion in five healthy climbers before and during an expedition to Mt. Everest. Maximal heart rates at sea level were 186 (177-204) beats/min(-1) at sea level and 170 (169-182) beats/min(-1) with acute hypoxia....... After 1, 4 and 6 weeks of acclimatization to 5400 m, maximal heart rates were 155 (135-182), 158 (144-182), and 155 (140-183) beats/min(-1), respectively. Heart rates of two of the climbers were measured during their attempt to reach the summit of Mt. Everest without the use of supplemental oxygen....... The peak heart rates at 8,750 m for the two climbers were 142 and 144 beats/min(-1), which were similar to their maximal heart rates during exhaustive bicycle exercise at 5,400 m, the values being 144 and 148 beats/min(-1), respectively. The peak heart rates at 8,750 m are in agreement with other field...

  16. Equivalence Principle and the Baryon Acoustic Peak

    CERN Document Server

    Baldauf, Tobias; Simonović, Marko; Zaldarriaga, Matias

    2015-01-01

    We study the dominant effect of a long wavelength density perturbation $\\delta(\\lambda_L)$ on short distance physics. In the non-relativistic limit, the result is a uniform acceleration, fixed by the equivalence principle, and typically has no effect on statistical averages due to translational invariance. This same reasoning has been formalized to obtain a "consistency condition" on the cosmological correlation functions. In the presence of a feature, such as the acoustic peak at $l_{\\rm BAO}$, this naive expectation breaks down for $\\lambda_Lpeak, and is calculable to all orders in the long modes. This can be used to improve the result of perturbative calculations - a technique known as "infra-red resummation"- and is explicitly applied to the one-loop calculation of power spectrum. Finally, the success of BAO reconstruction schemes is argue...

  17. Microwave peak absorption frequency of liquid

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Microwave-assisted extraction is a new effective method which has practical ap-plications in many fields. Microwave heating is one of its physical mechanisms,and it also has the characteristic of selectivity. When the applied microwave fre-quency equals a certain absorption frequency of the material (or specific compo-nent),the material will intensively absorb microwave energy. This is also known as resonant absorption,and the frequency is called the peak absorption frequency which depends on the physical structure of the material. In this work,dynamic hy-drogen bond energy was included in molecular activation energy; with the liquid cell model,the expression of interaction energy between dipolar molecules was derived. The rotational relaxation time was gotten from the Eyring viscosity formula. Then based on the relationship between dielectric dissipation coefficient and re-laxation time,the expression of microwave peak absorption frequency as a func-tion of the material physical structure,rotational inertia and electrical dipole mo-ment of molecules was established. These theoretical formulas were applied to water and benzene,and the calculated results agree fairly well with the experi-mental data. This work can not only deepen the study of the interaction between microwave and material,but also provide a possible guide for the experiment of microwave-assisted extraction.

  18. Microwave peak absorption frequency of liquid

    Institute of Scientific and Technical Information of China (English)

    HAN GuangZe; CHEN MingDong

    2008-01-01

    Microwave-assisted extraction is a new effective method which has practical ap-plications in many fields. Microwave heating is one of its physical mechanisms, and it also has the characteristic of selectivity. When the applied microwave fre-quency equals a certain absorption frequency of the material (or specific compo-nent), the material will intensively absorb microwave energy. This is also known as resonant absorption, and the frequency is called the peak absorption frequency which depends on the physical structure of the material. In this work, dynamic hy-drogen bond energy was included in molecular activation energy; with the liquid cell model, the expression of interaction energy between dipolar molecules was derived. The rotational relaxation time was gotten from the Eyring viscosity formula. Then based on the relationship between dielectric dissipation coefficient and re-laxation time, the expression of microwave peak absorption frequency as a func-tion of the material physical structure, rotational inertia and electrical dipole mo-ment of molecules was established. These theoretical formulas were applied to water and benzene, and the calculated results agree fairly well with the experi-mental data. This work can not only deepen the study of the interaction between microwave and material, but also provide a possible guide for the experiment of microwave-assisted extraction.

  19. Method and apparatus for current-output peak detection

    Energy Technology Data Exchange (ETDEWEB)

    De Geronimo, Gianluigi

    2017-01-24

    A method and apparatus for a current-output peak detector. A current-output peak detector circuit is disclosed and works in two phases. The peak detector circuit includes switches to switch the peak detector circuit from the first phase to the second phase upon detection of the peak voltage of an input voltage signal. The peak detector generates a current output with a high degree of accuracy in the second phase.

  20. , Recorded at Ladron Peak, Central New Mexico

    Science.gov (United States)

    Ricketts, J. W.; Kelley, S.; Read, A. S.; Karlstrom, K. E.

    2010-12-01

    Ladron Peak, situated on the western flank of the Rio Grande rift ~30 miles NW of Socorro, NM, is composed of Precambrian granitic and metamorphic assemblages that have been faulted and uplifted during the late Tertiary formation of the rift. The area is bounded on three sides by normal faults, including the anomalously low-angle (~26°) Jeter fault to the east, which places Precambrian rocks in the footwall against Paleozoic and Mesozoic fault slivers, and mainly Cenozoic Santa Fe Group basin fill in the hanging wall. New apatite fission track (AFT) thermochronological data collected at 22 locations along the NE and SE margins of Ladron Peak give a range of ages from 10.9 ± 1.9 to 20.4 ± 8.6 Ma. Samples within the footwall include granitic and metasedimentary rocks that have mean track lengths of 13.1 to 14.1 μm; one quartzite sample has a mean track length of 12.5 μm, suggesting time in the partial annealing zone. Within the hanging wall block, new AFT ages from the Permian Bursum and Abo Formations give cooling ages of 23.1 ± 3.3 Ma. and 59.9 ± 12.4 Ma., respectively. The Bursum Formation sample, with a track length of 13.7 μm, cooled below the 110°C isotherm during the Miocene, while the Abo Formation sample, with a track length of 11.2 μm, was only partially reset prior to rift-related deformation. Mylonitized granitic and metamorphic rocks in the immediate footwall preserve dip-slip lineations that are parallel to slip on the Jeter fault. This suggests that strain associated with exhumation was recorded by both brittle and ductile deformation. Although this type of deformation is common within metamorphic core complexes in highly extended terranes, ductile normal faulting has not been recognized within the Rio Grande rift in New Mexico, though there is some suggestion of ductile deformation around Blanca Peak in the San Luis Valley in Colorado. These observations imply one or both of the following: (1) Ductile deformation at Ladron Peak was

  1. Observed and simulated ground motions in the San Bernardino basin region for the Hector Mine, California, earthquake

    Science.gov (United States)

    Graves, R.W.; Wald, D.J.

    2004-01-01

    During the MW 7.1 Hector Mine earthquake, peak ground velocities recorded at sites in the central San Bernardino basin region were up to 2 times larger and had significantly longer durations of strong shaking than sites just outside the basin. To better understand the effects of 3D structure on the long-period ground-motion response in this region, we have performed finite-difference simulations for this earthquake. The simulations are numerically accurate for periods of 2 sec and longer and incorporate the detailed spatial and temporal heterogeneity of source rupture, as well as complex 3D basin structure. Here, we analyze three models of the San Bernardino basin: model A (with structural constraints from gravity and seismic reflection data), model F (water well and seismic refraction data), and the Southern California Earthquake Center version 3 model (hydrologic and seismic refraction data). Models A and F are characterized by a gradual increase in sediment thickness toward the south with an abrupt step-up in the basement surface across the San Jacinto fault. The basin structure in the SCEC version 3 model has a nearly uniform sediment thickness of 1 km with little basement topography along the San Jacinto fault. In models A and F, we impose a layered velocity structure within the sediments based on the seismic refraction data and an assumed depth-dependent Vp/Vs ratio. Sediment velocities within the SCEC version 3 model are given by a smoothly varying rule-based function that is calibrated to the seismic refraction measurements. Due to computational limitations, the minimum shear-wave velocity is fixed at 600 m/sec in all of the models. Ground-motion simulations for both models A and F provide a reasonably good match to the amplitude and waveform characteristics of the recorded motions. In these models, surface waves are generated as energy enters the basin through the gradually sloping northern margin. Due to the basement step along the San Jacinto fault, the

  2. A Preliminary Analysis on Empirical Attenuation of Absolute Velocity Response Spectra (1 to 10s) in Japan

    Science.gov (United States)

    Dhakal, Y. P.; Kunugi, T.; Suzuki, W.; Aoi, S.

    2013-12-01

    The Mw 9.1 Tohoku-oki earthquake caused strong shakings of super high rise and high rise buildings constructed on deep sedimentary basins in Japan. Many people felt difficulty in moving inside the high rise buildings even on the Osaka basin located at distances as far as 800 km from the epicentral area. Several empirical equations are proposed to estimate the peak ground motions and absolute acceleration response spectra applicable mainly within 300 to 500km from the source area. On the other hand, Japan Meteorological Agency has recently proposed four classes of absolute velocity response spectra as suitable indices to qualitatively describe the intensity of long-period ground motions based on the observed earthquake records, human experiences, and actual damages that occurred in the high rise and super high rise buildings. The empirical prediction equations have been used in disaster mitigation planning as well as earthquake early warning. In this study, we discuss the results of our preliminary analysis on attenuation relation of absolute velocity response spectra calculated from the observed strong motion records including those from the Mw 9.1 Tohoku-oki earthquake using simple regression models with various model parameters. We used earthquakes, having Mw 6.5 or greater, and focal depths shallower than 50km, which occurred in and around Japanese archipelago. We selected those earthquakes for which the good quality records are available over 50 observation sites combined from K-NET and KiK-net. After a visual inspection on approximately 21,000 three component records from 36 earthquakes, we used about 15,000 good quality records in the period range of 1 to 10s within the hypocentral distance (R) of 800km. We performed regression analyses assuming the following five regression models. (1) log10Y (T) = c+ aMw - log10R - bR (2) log10Y (T) = c+ aMw - log10R - bR +gS (3) log10Y (T) = c+ aMw - log10R - bR + hD (4) log10Y (T) = c+ aMw - log10R - bR +gS +hD (5) log10Y

  3. Simulations of strong ground motion in SW Iberia for the 1969 February 28 (Ms = 8.0) and the 1755 November 1 (M ~ 8.5) earthquakes - II. Strong ground motion simulations

    Science.gov (United States)

    Grandin, Raphaël; Borges, José Fernando; Bezzeghoud, Mourad; Caldeira, Bento; Carrilho, Fernando

    2007-11-01

    This is the second paper of a series of two concerning strong ground motion in SW Iberia due to earthquakes originating from the adjacent Atlantic area. The aim of this paper is to use the velocity model that was proposed and validated in the companion paper for seismic intensity modelling of the 1969 (Ms = 8.0) and 1755 (M = 8.5-8.7) earthquakes. First, we propose a regression to convert simulated values of Peak Ground Velocity (PGV) into Modified Mercalli Intensity (MMI) in SW Iberia, and using this regression, we build synthetic isoseismal maps for a large (Ms = 8.0) earthquake that occurred in 1969. Based on information on the seismic source provided by various authors, we show that the velocity model effectively reproduces macroseismic observations in the whole region. We also confirm that seismic intensity distribution is very sensitive to a small number of source parameters: rupture directivity, fault strike and fault dimensions. Then, we extrapolate the method to the case of the great (M = 8.5-8.7) 1755 earthquake, for a series of hypotheses recently proposed by three authors about the location of the epicentral region. The model involving a subduction-related rupture in the Gulf of Cádiz results in excessive ground motion in northern Morocco, suggesting that the source of the 1755 earthquake should be located further west. A rupture along the western coast of Portugal, compatible with an activation of the passive western Iberian margin, would imply a relatively low average slip, which, alone, would could not account for the large tsunami observed in the whole northern Atlantic ocean. A seismic source located below the Gorringe Bank seems the most likely since it is more efficient in reproducing the distribution of high intensities in SW Iberia due to the 1755 earthquake.

  4. Multiplicity of detonation regimes in systems with a multi-peaked thermicity

    CERN Document Server

    Lau-Chapdelaine, S SM; Zhang, F; Radulescu, M I

    2015-01-01

    The study investigates detonations with multiple quasi-steady velocities that have been observed in the past in systems with multi-peaked thermicity, using Fickett's detonation analogue. A steady state analysis of the travelling wave predicts multiple states, however, all but the one with the highest velocity develop a singularity after the sonic point. Simulations show singularities are associated with a shock wave which overtakes all sonic points, establishing a detonation travelling the highest of the predicted velocities. Under a certain parameter range, the steady-state detonation can have multiple sonic points and solutions. Embedded shocks can exist behind sonic points, where they link the weak and strong solutions. Sonic points whose characteristics do not diverge are found to be unstable, and to be the source of the embedded shocks. Numerical simulations show that these shocks are only quasi stable. This is believed to be due to the reaction rates having been chosen to be independent of hydrodynamics...

  5. Influence of velocity on variability in gait kinematics: implications for recognition in forensic science.

    Science.gov (United States)

    Yang, Sylvia X M; Larsen, Peter K; Alkjaer, Tine; Lynnerup, Niels; Simonsen, Erik B

    2014-09-01

    Closed circuit television (CCTV) footage is often available from crime scenes and may be used to compare perpetrators with suspects. Usually, the footage comprises incomplete gait cycles at different velocities, making gait pattern identification from crimes difficult. This study investigated the concurrence of joint angles throughout a gait cycle at three different velocities (3.0, 4.5, 6.0 km/h). Six datasets at each velocity were collected from 16 men. A variability range VR throughout the gait cycle at each velocity for each joint angle for each person was calculated. The joint angles at each velocity were compared pairwise, and whenever this showed values within the VR of this velocity, the case was positive. By adding the positives throughout the gait cycle, phases with high and low concurrences were located; peak concurrence was observed at mid-stance phase. Striving for the same velocity for the suspect and perpetrator is recommended.

  6. Sound Velocity and Release Behaviour of Shock-Compressed LY12 Al

    Institute of Scientific and Technical Information of China (English)

    YU Yu-Ying; TAN Hua; DAI Cheng-Da; HU Jian-Bo; CHEN Da-Nian

    2005-01-01

    @@ A velocity interferometer system for any reflector (VISAR) is used to measure the sound velocity of LY12 Al shock-compressed to peak pressures of 20, 32, 55 and 71 GPa. Unloading wave velocities from these pressures are obtained from the observed particle velocity profiles at the LY12 Al/LiF window interface; and the longitudinal,bulk and shear sound velocities at the initial Hugoniot state are well determined. The histories of stress, strain,density or volume, and particle velocity along the release paths are calculated by the impedance-matching method based on the unloading sound velocity data. It is revealed that the release behaviour of shocked LY12 Al departures obviously from the elastic perfectly-plastic response.

  7. Prediction of ground motion parameters for the volcanic area of Mount Etna

    Science.gov (United States)

    Tusa, Giuseppina; Langer, Horst

    2016-01-01

    Ground motion prediction equations (GMPEs) have been derived for peak ground acceleration (PGA), velocity (PGV), and 5 % damped spectral acceleration (PSA) at frequencies between 0.1 and 10 Hz for the volcanic area of Mt. Etna. The dataset consists of 91 earthquakes with epicentral distances between 0.5 and 100 km. Given the specific characteristics of the area, we divided our data set into two groups: shallow events (SE, focal depth 5 km). The range of magnitude covered by the SE and the DE is 3.0 ≤ M L ≤ 4.3 and 3.0 ≤ M L ≤ 4.8, respectively. Signals of DE typically have more high frequencies than those of SE. These differences are clearly reflected in the empirical GMPEs of the two event groups. Empirical GMPEs were estimated considering several functional forms: Sabetta and Pugliese (Bull Seism Soc Am 77:1491-1513, 1987) (SP87), Ambraseys et al. (Earth Eng Struct Dyn 25:371-400, 1996) (AMB96), and Boore and Atkinson (Earth Spectra 24:99-138, 2008) (BA2008). From ANOVA, we learn that most of the errors in our GMPEs can be attributed to unmodeled site effects, whereas errors related to event parameters are limited. For DE, BA2008 outperforms the simpler models SP87 or AMB96. For SE, the simple SP87 is preferable considering the Bayesian Information Criterion since it proves more stable with respect to confidence and gives very similar or even lower prediction errors during cross-validation than the BA2008 model. We compared our results to relationships derived for Italy (ITA10, Bindi et al. Bull Earth Eng 99:2471-2488, 2011). For SE, the main differences are observed for distances greater than about 5 km for both horizontal and vertical PGAs. Conversely, for DE the ITA10 heavily overestimates the peak ground parameters for short distances.

  8. Advanced Ice Velocity Mapping Using Landsat 8

    Science.gov (United States)

    Klinger, M. J.; Scambos, T. A.; Fahnestock, M. A.; Haran, T. M.

    2014-12-01

    Improved image-to-image cross correlation software is applied to pairs of sequential Landsat 8 satellite imagery to accurately measure ice surface velocity over ice sheets and glaciers (±0.1 pixel displacement, 15 meter pixels). The high radiometric fidelity of Landsat 8's panchromatic band (12-bit), and exceptional geolocation accuracy (typically ±5 m) supports the generation of ice velocity fields over very short time intervals (e.g., 16-, 32-, or 48-day repeat images of the same scene location). The high radiometry supports velocity mapping in areas with very subtle topographic detail, including un-crevassed sastrugi regions on ice dome flanks or the ice sheet interior. New Python-based software presently under development (named PyCorr), takes two sequential Landsat 8 OLI scenes (or suitably processed ETM+ or TM scenes) and matches small sub-scenes ('chips') between the images based on similarity in their gray-scale value patterns, using an image correlation algorithm. Peak fitting in the region of maximum correlation for a chip pair yields sub-pixel fits to the feature offset vector. Vector editing after the image correlation runs seeks to eliminate spurious and cloud-impacted vectors, and correct residual geo-location error. This processing is based on plausible values of ice strain rates and known areas of near-zero ice flow (rock outcrops, ice dome areas, etc.). In preliminary processing, we have examined ~800 Landsat 8 image pairs having <20% cloud cover spanning the near-coastal Antarctic ice sheet during the 2013-14 summer season.

  9. Simulation of strong ground motion parameters of the 1 June 2013 Gulf of Suez earthquake, Egypt

    Science.gov (United States)

    Toni, Mostafa

    2017-06-01

    This article aims to simulate the ground motion parameters of the moderate magnitude (ML 5.1) June 1, 2013 Gulf of Suez earthquake, which represents the largest instrumental earthquake to be recorded in the middle part of the Gulf of Suez up to now. This event was felt in all cities located on both sides of the Gulf of Suez, with minor damage to property near the epicenter; however, no casualties were observed. The stochastic technique with the site-dependent spectral model is used to simulate the strong ground motion parameters of this earthquake in the cities located at the western side of the Gulf of Suez and north Red Sea namely: Suez, Ain Sokhna, Zafarana, Ras Gharib, and Hurghada. The presence of many tourist resorts and the increase in land use planning in the considered cities represent the motivation of the current study. The simulated parameters comprise the Peak Ground Acceleration (PGA), Peak Ground Velocity (PGV), and Peak Ground Displacement (PGD), in addition to Pseudo Spectral Acceleration (PSA). The model developed for ground motion simulation is validated by using the recordings of three accelerographs installed around the epicenter of the investigated earthquake. Depending on the site effect that has been determined in the investigated areas by using geotechnical data (e.g., shear wave velocities and microtremor recordings), the investigated areas are classified into two zones (A and B). Zone A is characterized by higher site amplification than Zone B. The ground motion parameters are simulated at each zone in the considered areas. The results reveal that the highest values of PGA, PGV, and PGD are observed at Ras Gharib city (epicentral distance ∼ 11 km) as 67 cm/s2, 2.53 cm/s, and 0.45 cm respectively for Zone A, and as 26.5 cm/s2, 1.0 cm/s, and 0.2 cm respectively for Zone B, while the lowest values of PGA, PGV, and PGD are observed at Suez city (epicentral distance ∼ 190 km) as 3.0 cm/s2, 0.2 cm/s, and 0.05 cm/s respectively for Zone A

  10. Peak Electric Load Relief in Northern Manhattan

    Directory of Open Access Journals (Sweden)

    Hildegaard D. Link

    2014-08-01

    Full Text Available The aphorism “Think globally, act locally,” attributed to René Dubos, reflects the vision that the solution to global environmental problems must begin with efforts within our communities. PlaNYC 2030, the New York City sustainability plan, is the starting point for this study. Results include (a a case study based on the City College of New York (CCNY energy audit, in which we model the impacts of green roofs on campus energy demand and (b a case study of energy use at the neighborhood scale. We find that reducing the urban heat island effect can reduce building cooling requirements, peak electricity loads stress on the local electricity grid and improve urban livability.

  11. Tim Peake and Britain's road to space

    CERN Document Server

    Seedhouse, Erik

    2017-01-01

    This book puts the reader in the flight suit of Britain’s first male astronaut, Tim Peake. It chronicles his life, along with the Principia mission and the down-to-the-last-bolt descriptions of life aboard the ISS, by way of the hurdles placed by the British government and the rigors of training at Russia’s Star City military base. In addition, this book discusses the learning curves required in astronaut and mission training and the complexity of the technologies required to launch an astronaut and keep them alive for months on end. This book underscores the fact that technology and training, unlike space, do not exist in a vacuum; complex technical systems, like the ISS, interact with the variables of human personality, and the cultural background of the astronauts. .

  12. Intermittent Lagrangian velocities and accelerations in three-dimensional porous medium flow.

    Science.gov (United States)

    Holzner, M; Morales, V L; Willmann, M; Dentz, M

    2015-07-01

    Intermittency of Lagrangian velocity and acceleration is a key to understanding transport in complex systems ranging from fluid turbulence to flow in porous media. High-resolution optical particle tracking in a three-dimensional (3D) porous medium provides detailed 3D information on Lagrangian velocities and accelerations. We find sharp transitions close to pore throats, and low flow variability in the pore bodies, which gives rise to stretched exponential Lagrangian velocity and acceleration distributions characterized by a sharp peak at low velocity, superlinear evolution of particle dispersion, and double-peak behavior in the propagators. The velocity distribution is quantified in terms of pore geometry and flow connectivity, which forms the basis for a continuous-time random-walk model that sheds light on the observed Lagrangian flow and transport behaviors.

  13. THE TERMINAL VELOCITY OF THE DEEP IMPACT DUST EJECTA

    Directory of Open Access Journals (Sweden)

    M. Rengel

    2009-01-01

    Full Text Available The collision of the projectile released from NASA Deep Impact spacecraft on the nucleus of comet 9P/Tempel 1 generated a hot plume. Afterwards ejecta were created, and material moved slowly in a form of a dust cloud, which dissipated during several days after the impact. Here we report a study about the distribution of terminal velocities of the particles ejected by the impact. This is performed by the development and application of an illconditioned inverse problem approach. We model the light-curves as seen by the Narrow Angle Camera (NAC of OSIRIS onboard the ESA spacecraft Rosetta, and we compare them with the OSIRIS observations. Terminal velocities are derived using a maximum likelihood estimator. The dust velocity distribution is well constrained, and peaks at around 220 m s-1, which is in good agreement with published estimates of the expansion velocities of the dust cloud. Measured and modeled velocity of the dust cloud suggests that the impact ejecta were quickly accelerated by the gas in the cometary coma. This analysis provides a more thorough understanding of the properties (velocity and mass of dust of the Deep Impact dust cloud.

  14. Neutrino Velocity and Neutrino Oscillations

    CERN Document Server

    Minakata, H

    2012-01-01

    We study distances of propagation and the group velocities of the muon neutrinos in the presence of mixing and oscillations assuming that Lorentz invariance holds. Oscillations lead to distortion of the $\

  15. Statistics of Centroids of Velocity

    CERN Document Server

    Esquivel, A

    2009-01-01

    We review the use of velocity centroids statistics to recover information of interstellar turbulence from observations. Velocity centroids have been used for a long time now to retrieve information about the scaling properties of the turbulent velocity field in the interstellar medium. We show that, while they are useful to study subsonic turbulence, they do not trace the statistics of velocity in supersonic turbulence, because they are highly influenced by fluctuations of density. We show also that for sub-Alfv\\'enic turbulence (both supersonic and subsonic) two-point statistics (e.g. correlation functions or power-spectra) are anisotropic. This anisotropy can be used to determine the direction of the mean magnetic field projected in the plane of the sky.

  16. Kriging interpolating cosmic velocity field

    Science.gov (United States)

    Yu, Yu; Zhang, Jun; Jing, Yipeng; Zhang, Pengjie

    2015-10-01

    Volume-weighted statistics of large-scale peculiar velocity is preferred by peculiar velocity cosmology, since it is free of the uncertainties of galaxy density bias entangled in observed number density-weighted statistics. However, measuring the volume-weighted velocity statistics from galaxy (halo/simulation particle) velocity data is challenging. Therefore, the exploration of velocity assignment methods with well-controlled sampling artifacts is of great importance. For the first time, we apply the Kriging interpolation to obtain the volume-weighted velocity field. Kriging is a minimum variance estimator. It predicts the most likely velocity for each place based on the velocity at other places. We test the performance of Kriging quantified by the E-mode velocity power spectrum from simulations. Dependences on the variogram prior used in Kriging, the number nk of the nearby particles to interpolate, and the density nP of the observed sample are investigated. First, we find that Kriging induces 1% and 3% systematics at k ˜0.1 h Mpc-1 when nP˜6 ×1 0-2(h-1 Mpc )-3 and nP˜6 ×1 0-3(h-1 Mpc )-3 , respectively. The deviation increases for decreasing nP and increasing k . When nP≲6 ×1 0-4(h-1 Mpc )-3 , a smoothing effect dominates small scales, causing significant underestimation of the velocity power spectrum. Second, increasing nk helps to recover small-scale power. However, for nP≲6 ×1 0-4(h-1 Mpc )-3 cases, the recovery is limited. Finally, Kriging is more sensitive to the variogram prior for a lower sample density. The most straightforward application of Kriging on the cosmic velocity field does not show obvious advantages over the nearest-particle method [Y. Zheng, P. Zhang, Y. Jing, W. Lin, and J. Pan, Phys. Rev. D 88, 103510 (2013)] and could not be directly applied to cosmology so far. However, whether potential improvements may be achieved by more delicate versions of Kriging is worth further investigation.

  17. Event Detection by Velocity Pyramid

    OpenAIRE

    2014-01-01

    In this paper, we propose velocity pyramid for multimediaevent detection. Recently, spatial pyramid matching is proposed to in-troduce coarse geometric information into Bag of Features framework,and is eective for static image recognition and detection. In video, notonly spatial information but also temporal information, which repre-sents its dynamic nature, is important. In order to fully utilize it, wepropose velocity pyramid where video frames are divided into motionalsub-regions. Our meth...

  18. An analysis of Super typhoon Rammasun's(2014) peak intensity

    Science.gov (United States)

    Cai, Qinbo; Xu, Yinglong

    2016-04-01

    Super typhoon Rammasun (2014) made landfall over Hainan Island, China, at 0730UTC 18 July 2014. Due to the damage of the anemometers, the Automatic Weather Stations (AWS) and the bouy which by Rammasun passed, failed to obtain its peak wind. Lack of the direct evident, in real-time monitoring, its peak intensities were given by 110kts (.i.e. 60m/s)/910hPa,135kts/922hPa , and 90kts/935hPa based on Dvorak technique , which were made by China Meteorological Administration (CMA),Joint Typhoon Warning Center(JTWC), and Japan Meteorological Agency (JMA) respectively. However, a minimum pressure of 881.2hPa recorded by a barometer which located at Qixhou island (19.982︒N,111.269︒E) while Rammasun approaching, indicates that its intensity was under estimated. By using observation data such as AWS, satellite, Doppler radar and wind tower near the ground, this study performs a detail evaluation to obtain its actual intensity. At 0521UTC, Qizhou Island station recorded 881.2hPa of the minimum station pressure and 899.2hPa of minimum sea level pressure (MSLP) while the anemometer had been destroyed. These are the lowest records in Chinese history and also are ones of the global lowest pressures obtained directly by barometer. It is evident that Rammasun's eyewall did not pass across Qizhou Island directly, so the actual MSLP should be lower than 899.2hPa. By applying wind-pressure relationship, it is reckoned that the reasonable MSLP and peak wind of Rammasun should be 888hPa and 70-76m/s, which makes Rammasun the strongest typhoon ever made landfall in China's history. In order to intuitively investigate the real intensity of Ramasun, eyewall structures are compared with some historical extreme typhoons (hurricanes) such as Saomai(2006), Haiyan(2013) and Katrina(2005). Satellite images show that the dense overcast convection strength of Rammasun is stronger than those when Saomai and Katrina were in their peak intensities and before landing, but weaker than Haiyan. The

  19. Peak, multi-peak and broadband absorption in graphene-based one-dimensional photonic crystal

    Science.gov (United States)

    Miloua, R.; Kebbab, Z.; Chiker, F.; Khadraoui, M.; Sahraoui, K.; Bouzidi, A.; Medles, M.; Mathieu, C.; Benramdane, N.

    2014-11-01

    We theoretically investigate the possibility of enhancing light absorption in graphene-based one dimensional photonic crystal. We demonstrate that it is possible to achieve total light absorption at technologically important wavelengths using one-dimensional graphene-based photonic crystals. By means of the transfer matrix method, we investigate the effect of refractive indices and layer numbers on the optical response of the structure. We found that it is possible to achieve one peak, multi-peak or broadband, and complete optical absorption. As a result, the proposed photonic structures enable myriad potential applications such as photodetection, shielding and optical sensing.

  20. Constraints on the original ejection velocity fields of asteroid families

    CERN Document Server

    Carruba, Valerio

    2016-01-01

    Asteroid families form as a result of large-scale collisions among main belt asteroids. The orbital distribution of fragments after a family-forming impact could inform us about their ejection velocities. Unfortunately, however, orbits dynamically evolve by a number of effects, including the Yarkovsky drift, chaotic diffusion, and gravitational encounters with massive asteroids, such that it is difficult to infer the ejection velocities eons after each family's formation. Here we analyze the inclination distribution of asteroid families, because proper inclination can remain constant over long time intervals, and could help us to understand the distribution of the component of the ejection velocity that is perpendicular to the orbital plane ($v_{W}$). From modeling the initial breakup, we find that the distribution of $v_{W}$ of the fragments, which manage to escape the parent body's gravity, should be more peaked than a Gaussian distribution (i.e., be leptokurtic) even if the initial distribution was Gaussia...

  1. In Vivo 3-D Vector Velocity Estimation with Continuous Data

    DEFF Research Database (Denmark)

    Holbek, Simon; Pihl, Michael Johannes; Ewertsen, Caroline

    2015-01-01

    In this study, a method for estimating 3-D vector velocities at very high frame rate using continuous data acquisition is presented. An emission sequence was designed to acquire real-time continuous data in one plane. The transverse oscillation (TO) method was used to estimate 3-D vector flow...... measurements, three heart cycles acquired at 2.1 kHz showed peak out-of-plane velocities of 83 cm/s, 87 cm/s and 90 cm/s in agreement with the 92 cm/s found with spectral Doppler. Mean flow rate was estimated to 257 ml/min. The results demonstrate that accurate real-time 3- D vector velocities can be obtained...... using the TO method, which can be used to improve operator-independece when examining blood flow in vivo, thereby increasing accuracy and consistency....

  2. Carbon film deposition from high velocity rarefied flow

    Energy Technology Data Exchange (ETDEWEB)

    Rebrov, A.K., E-mail: rebrov@itp.nsc.ru; Emelyanov, A.A.; Yudin, I.B.

    2015-01-30

    The presented study is based on the idea of the activation of a gas-precursor high velocity flow by hot wire. The wire forms the channel for flow before expansion to substrate. The construction allows change of the specific flow rate, velocity, composition and temperature of a gas mixture by studying the film synthesis in conditions from free molecular to continuum flow at velocities from hundreds to thousands of m/s. At a high pressure, the film has typical and unusual hexagonal incorporations for diamond tetragonal particles. Raman spectrum with the pronounced diamond peak is typical for diamond-like film. X-ray diffraction points in the presence of lonsdaleite. Conditions of deposition were simulated by Monte Carlo method. Collisions with hot surfaces and chemical transformations were taken into consideration as well.

  3. UHF RiverSonde observations of water surface velocity at Threemile Slough, California

    Science.gov (United States)

    Teague, C.C.; Barrick, D.E.; Lilleboe, P.M.; Cheng, R.T.; Ruhl, C.A.

    2005-01-01

    A UHF RiverSonde system, operating near 350 MHz, has been in operation at Threemile Slough in central California, USA since September 2004. The water in the slough is dominated by tidal effects, with flow reversals four times a day and a peak velocity of about 0.8 m/s in each direction. Water level and water velocity are continually measured by the U. S. Geological Survey at the experiment site. The velocity is measured every 15 minutes by an ultrasonic velocity meter (UVM) which determines the water velocity from two-way acoustic propagation time-difference measurements made across the channel. The RiverSonde also measures surface velocity every 15 minutes using radar resonant backscatter techniques. Velocity and water level data are retrieved through a radio data link and a wideband internet connection. Over a period of several months, the radar-derived mean surface velocity has been very highly correlated with the UVM index velocity several meters below the surface, with a coefficient of determination R2 of 0.976 and an RMS difference of less than 10 cm/s. The wind has a small but measurable effect on the velocities measured by both instruments. In addition to the mean surface velocity across the channel, the RiverSonde system provides an estimate of the cross-channel variation of the surface velocity. ?? 2005 IEEE.

  4. High-velocity gas associated ultracompact HII regions

    Institute of Scientific and Technical Information of China (English)

    XU; Ye(徐烨); JIANG; Dongrong(蒋栋荣); YANG; Chuanyi(杨传义); ZHENG; Xingwu(郑兴武); GU; Minfeng(顾敏峰); PEI; Chunchuan(裴春传)

    2002-01-01

    We present the results of a survey for high-velocity 12CO (1-0) emission associated H2O masers and ultracompact (UC) HII regions. The aim is to investigate the relationship between H2O masers, CO high-velocity gas (HVG) and their associated infrared sources. Our sample satisfies Wood & Churchwell criterion. Almost 70 % of the sources have full widths (FWs) greater than 15 km@ s?1 at T*a = 100 mK and 15 % have FWs greater than 30 km@ s?1. In most of our objects there is excess high velocity emission in the beam. There is a clear correlation between CO line FWs and far-infrared luminosities: the FW increases with the FIR luminosity. The relation suggests that more luminous sources are likely to be more energetic and able to inject more energy into their surroundings. As a result, larger FW of the CO line could be produced. In most of our sources, the velocities of peak of the H2O emission are in agreement with those of the CO cloud, but a number of them have a large blueshift with respect to the CO peak. These masers might stem from the amplifications of a background source, which may amplify some unobservable weak masers to an observable level.

  5. Research on the photoelectric measuring method of warhead fragment velocity

    Science.gov (United States)

    Liu, Ji; Yu, Lixia; Zhang, Bin; Liu, Xiaoyan

    2016-09-01

    The velocity of warhead fragment is the key criteria to determine its mutilation efficiency. But owing to the small size, larger quantity, irregular shape, high speed, arbitrary direction, large dispersion of warhead fragment and adverse environment, the test of fragment velocity parameter is very difficult. The paper designed an optoelectronic system to measure the average velocity of warhead fragments accurately. The apparatus included two parallel laser screens spaced apart at a known fixed distance for providing time measurement between start and stop signals. The large effective screen area was composed of laser source, retro-reflector and large area photo-diode. Whenever a moving fragment interrupted two optical screens, the system would generate a target signal. Due to partial obscuration of the incident energy and the poor test condition of the explosion, fragment target signal is easily disturbed. Therefore, fragments signal processing technology has become a key technology of the system. The noise of signal was reduced by employing wavelet decomposition and reconstruction. The time of fragment passing though the target was obtained by adopting peak detection algorithm. Based on the method of search peak in different width scale and waveform trend by using optima wavelet, the problem of rolling waveform was solved. Lots of fragments experiments of the different types of the warheads were conducted. Experimental results show that: warhead fragments capture rate of system is better than 98%, which can give velocity of each fragment in the density of less than 20 pieces per m2.

  6. Estimation of peak discharges of historical floods

    Directory of Open Access Journals (Sweden)

    J. Herget

    2014-05-01

    Full Text Available There is no doubt, that the hazard assessment of future floods especially under consideration of the recent environmental change can be significantly improved by the consideration of historic flood events. While flood frequency inventories on local, regional and even European scale are already developed and published, the estimation of their magnitudes indicated by discharges is still challenging. Such data are required due to significant human impact on river channels and floodplains though historic flood levels cannot be related to recent ones or recent discharges. Based on own experiences from single local key studies the general outline of an approach to estimate the discharge of the previous flood based on handed down flood level and topographic data is presented. The model for one-dimensional steady flow is based on the empirical Manning equation for the mean flow velocity. Background and potential sources of information, acceptable simplifications and data transformation for each element of the model-equation are explained and discussed. Preliminary experiences on the accuracy of ±10% are documented and potential approaches for the validation of individual estimations given. A brief discussion on benefits and limitations including a generalized statement on alternative approaches closes the review presentation of the approach.

  7. Norwegian hydropower a valuable peak power source

    Energy Technology Data Exchange (ETDEWEB)

    Brekke, Hermod

    2010-07-01

    given on a possible increase of the Norwegian hydropower peak power production to meet the growing the European demand for peak power caused by the growing non stationary production from wind mills and ocean energy from waves and sea current. Also building of reversible pump turbine power plants will be discussed even if approximately 10% power will be consumed by loss in the pumping phase compared to direct use of the water from reservoirs. (Author)

  8. Variability of a "force signature" during windmill softball pitching and relationship between discrete force variables and pitch velocity.

    Science.gov (United States)

    Nimphius, Sophia; McGuigan, Michael R; Suchomel, Timothy J; Newton, Robert U

    2016-06-01

    This study assessed reliability of discrete ground reaction force (GRF) variables over multiple pitching trials, investigated the relationships between discrete GRF variables and pitch velocity (PV) and assessed the variability of the "force signature" or continuous force-time curve during the pitching motion of windmill softball pitchers. Intraclass correlation coefficient (ICC) for all discrete variables was high (0.86-0.99) while the coefficient of variance (CV) was low (1.4-5.2%). Two discrete variables were significantly correlated to PV; second vertical peak force (r(5)=0.81, p=0.03) and time between peak forces (r(5)=-0.79; p=0.03). High ICCs and low CVs support the reliability of discrete GRF and PV variables over multiple trials and significant correlations indicate there is a relationship between the ability to produce force and the timing of this force production with PV. The mean of all pitchers' curve-average standard deviation of their continuous force-time curves demonstrated low variability (CV=4.4%) indicating a repeatable and identifiable "force signature" pattern during this motion. As such, the continuous force-time curve in addition to discrete GRF variables should be examined in future research as a potential method to monitor or explain changes in pitching performance.

  9. Peak-valley-peak pattern of histone modifications delineates active regulatory elements and their directionality

    DEFF Research Database (Denmark)

    Pundhir, Sachin; Bagger, Frederik Otzen; Lauridsen, Felicia Kathrine Bratt

    2016-01-01

    Formation of nucleosome free region (NFR) accompanied by specific histone modifications at flanking nucleosomes is an important prerequisite for enhancer and promoter activity. Due to this process, active regulatory elements often exhibit a distinct shape of histone signal in the form of a peak...

  10. Peak phosphorus - peak food? The need to close the phosphorus cycle.

    Science.gov (United States)

    Rhodes, Christopher J

    2013-01-01

    The peak in the world production of phosphorus has been predicted to occur in 2033, based on world reserves of rock phosphate (URR) reckoned at around 24,000 million tonnes (Mt), with around 18,000 Mt remaining. This figure was reckoned-up to 71,000 Mt, by the USGS, in 2012, but a production maximum during the present century is still highly probable. There are complex issues over what the demand will be for phosphorus in the future, as measured against a rising population (from 7 billion to over 9 billion in 2050), and a greater per capita demand for fertiliser to grow more grain, in part to feed animals and meet a rising demand for meat by a human species that is not merely more populous but more affluent. As a counterweight to this, we may expect that greater efficiencies in the use of phosphorus - including recycling from farms and of human and animal waste - will reduce the per capita demand for phosphate rock. The unseen game changer is peak oil, since phosphate is mined and recovered using machinery powered by liquid fuels refined from crude oil. Hence, peak oil and peak phosphorus might appear as conjoined twins. There is no unequivocal case that we can afford to ignore the likelihood of a supply-demand gap for phosphorus occurring sometime this century, and it would be perilous to do so.

  11. Gait phase varies over velocities.

    Science.gov (United States)

    Liu, Yancheng; Lu, Kun; Yan, Songhua; Sun, Ming; Lester, D Kevin; Zhang, Kuan

    2014-02-01

    We sought to characterize the percent (PT) of the phases of a gait cycle (GC) as velocity changes to establish norms for pathological gait characteristics with higher resolution technology. Ninety five healthy subjects (49 males and 46 females with age 34.9 ± 11.8 yrs, body weight 64.0 ± 11.7 kg and BMI 23.5 ± 3.6) were enrolled and walked comfortably on a 10-m walkway at self-selected slower, normal, and faster velocities. Walking was recorded with a high speed camera (250 frames per second) and the eight phases of a GC were determined by examination of individual frames for each subject. The correlation coefficients between the mean PT of the phases of the three velocities gaits and PT defined by previous publications were all greater than 0.99. The correlation coefficient between velocity and PT of gait phases is -0.83 for loading response (LR), -0.75 for mid stance (MSt), and -0.84 for pre-swing (PSw). While the PT of the phases of three velocities from this study are highly correlated with PT described by Dr. Jacquenlin Perry decades ago, actual PT of each phase varied amongst these individuals with the largest coefficient variation of 24.31% for IC with slower velocity. From slower to faster walk, the mean PT of MSt diminished from 35.30% to 25.33%. High resolution recording revealed ambiguity of some gait phase definitions, and these data may benefit GC characterization of normal and pathological gait in clinical practice. The study results indicate that one should consider individual variations and walking velocity when evaluating gaits of subjects using standard gait phase classification.

  12. Analysis of the Peak Resistance Frequency Method.

    Science.gov (United States)

    Wang, Boshuo; Weiland, James D

    2016-10-01

    This study analyzes the peak resistance frequency (PRF) method described by Mercanzini et al., a method that can easily extract the tissue resistance from impedance spectroscopy for many neural engineering applications but has no analytical description thus far. Mathematical analyses and computer simulations were used to explore underlying principles, accuracy, and limitations of the PRF method. The mathematical analyses demonstrated that the PRF method has an inherent but correctable deviation dependent on the idealness of the electrode-tissue interface, which is validated by simulations. Further simulations show that both frequency sampling and noise affect the accuracy of the PRF method, and in general, it performs less accurately than least squares methods. However, the PRF method achieves simplicity and reduced measurement and computation time at the expense of accuracy. From the qualitative results, the PRF method can work with reasonable precision and simplicity, although its limitation and the idealness of the electrode-tissue interface involved should be taken into consideration. This paper provides a mathematical foundation for the PRF method and its practical implementation.

  13. Z-peaked excess in goldstini scenarios

    CERN Document Server

    Liew, Seng Pei; Mawatari, Kentarou; Sakurai, Kazuki; Vereecken, Matthias

    2015-01-01

    We study a possible explanation of a 3.0 $\\sigma$ excess recently reported by the ATLAS Collaboration in events with Z-peaked same-flavour opposite-sign lepton pair, jets and large missing transverse momentum in the context of gauge-mediated SUSY breaking with more than one hidden sector, the so-called goldstini scenario. In a certain parameter space, the gluino two-body decay chain $\\tilde g\\to g\\tilde\\chi^0_{1,2}\\to gZ\\tilde G'$ becomes dominant, where $\\tilde\\chi^0_{1,2}$ and $\\tilde G'$ are the Higgsino-like neutralino and the massive pseudo-goldstino, respectively, and gluino pair production can contribute to the signal. We find that a mass spectrum such as $m_{\\tilde g}\\sim 900$ GeV, $m_{\\tilde\\chi^0_{1,2}}\\sim 700$ GeV and $m_{\\tilde G'}\\sim 600$ GeV demonstrates the rate and the distributions of the excess, without conflicting with the stringent constraints from jets plus missing energy analyses and with the CMS constraint on the identical final state.

  14. Z-peaked excess in goldstini scenarios

    Directory of Open Access Journals (Sweden)

    Seng Pei Liew

    2015-11-01

    Full Text Available We study a possible explanation of a 3.0 σ excess recently reported by the ATLAS Collaboration in events with Z-peaked same-flavour opposite-sign lepton pair, jets and large missing transverse momentum in the context of gauge-mediated SUSY breaking with more than one hidden sector, the so-called goldstini scenario. In a certain parameter space, the gluino two-body decay chain g˜→gχ˜1,20→gZG˜′ becomes dominant, where χ˜1,20 and G˜′ are the Higgsino-like neutralino and the massive pseudo-goldstino, respectively, and gluino pair production can contribute to the signal. We find that a mass spectrum such as mg˜∼1000 GeV, mχ˜1,20∼800 GeV and mG˜′∼600 GeV demonstrates the rate and the distributions of the excess, without conflicting with the stringent constraints from jets plus missing energy analyses and with the CMS constraint on the identical final state.

  15. Asymmetry parameter of peaked Fano line shapes

    Science.gov (United States)

    Meierott, S.; Hotz, T.; Néel, N.; Kröger, J.

    2016-10-01

    The spectroscopic line shape of electronic and vibrational excitations is ubiquitously described by a Fano profile. In the case of nearly symmetric and peaked Fano line shapes, the fit of the conventional Fano function to experimental data leads to difficulties in unambiguously extracting the asymmetry parameter, which may vary over orders of magnitude without degrading the quality of the fit. Moreover, the extracted asymmetry parameter depends on initially guessed values. Using the spectroscopic signature of the single-Co Kondo effect on Au(110) the ambiguity of the extracted asymmetry parameter is traced to the highly symmetric resonance profile combined with the inevitable scattering of experimental data. An improved parameterization of the conventional Fano function is suggested that enables the nonlinear optimization in a reduced parameter space. In addition, the presence of a global minimum in the sum of squared residuals and thus the independence of start parameters may conveniently be identified in a two-dimensional plot. An angular representation of the asymmetry parameter is suggested in order to reliably determine uncertainty margins via linear error propagation.

  16. The effects of skiing velocity on mechanical aspects of diagonal cross-country skiing.

    Science.gov (United States)

    Andersson, Erik; Pellegrini, Barbara; Sandbakk, Oyvind; Stüggl, Thomas; Holmberg, Hans-Christer

    2014-09-01

    Cycle and force characteristics were examined in 11 elite male cross-country skiers using the diagonal stride technique while skiing uphill (7.5°) on snow at moderate (3.5 ± 0.3 m/s), high (4.5 ± 0.4 m/s), and maximal (5.6 ± 0.6 m/s) velocities. Video analysis (50 Hz) was combined with plantar (leg) force (100 Hz), pole force (1,500 Hz), and photocell measurements. Both cycle rate and cycle length increased from moderate to high velocity, while cycle rate increased and cycle length decreased at maximal compared to high velocity. The kick time decreased 26% from moderate to maximal velocity, reaching 0.14 s at maximal. The relative kick and gliding times were only altered at maximal velocity, where these were longer and shorter, respectively. The rate of force development increased with higher velocity. At maximal velocity, sprint-specialists were 14% faster than distance-specialists due to greater cycle rate, peak leg force, and rate of leg force development. In conclusion, large peak leg forces were applied rapidly across all velocities and the shorter relative gliding and longer relative kick phases at maximal velocity allow maintenance of kick duration for force generation. These results emphasise the importance of rapid leg force generation in diagonal skiing.

  17. Estimating ground water discharge by hydrograph separation.

    Science.gov (United States)

    Hannula, Steven R; Esposito, Kenneth J; Chermak, John A; Runnells, Donald D; Keith, David C; Hall, Larry E

    2003-01-01

    Iron Mountain is located in the West Shasta Mining District in California. An investigation of the generation of acid rock drainage and metals loading to Boulder Creek at Iron Mountain was conducted. As part of that investigation, a hydrograph separation technique was used to determine the contribution of ground water to total flow in Boulder Creek. During high-flow storm events in the winter months, peak flow in Boulder Creek can exceed 22.7 m3/sec, and comprises surface runoff, interflow, and ground water discharge. A hydrograph separation technique was used to estimate ground water discharge into Boulder Creek during high-flow conditions. Total ground water discharge to the creek approaches 0.31 m3/sec during the high-flow season. The hydrograph separation technique combined with an extensive field data set provided reasonable estimates of ground water discharge. These estimates are useful for other investigations, such as determining a corresponding metals load from the metal-rich ground water found at Iron Mountain and thus contributing to remedial alternatives.

  18. Airport Ground Staff Scheduling

    DEFF Research Database (Denmark)

    Clausen, Tommy

    travels safely and efficiently through the airport. When an aircraft lands, a significant number of tasks must be performed by different groups of ground crew, such as fueling, baggage handling and cleaning. These tasks must be complete before the aircraft is able to depart, as well as check......-in and security services. These tasks are collectively known as ground handling, and are the major source of activity with airports. The business environments of modern airports are becoming increasingly competitive, as both airports themselves and their ground handling operations are changing to private...... ownership. As airports are in competition to attract airline routes, efficient and reliable ground handling operations are imperative for the viability and continued growth of both airports and airlines. The increasing liberalization of the ground handling market prompts ground handling operators...

  19. [Introduction to grounded theory].

    Science.gov (United States)

    Wang, Shou-Yu; Windsor, Carol; Yates, Patsy

    2012-02-01

    Grounded theory, first developed by Glaser and Strauss in the 1960s, was introduced into nursing education as a distinct research methodology in the 1970s. The theory is grounded in a critique of the dominant contemporary approach to social inquiry, which imposed "enduring" theoretical propositions onto study data. Rather than starting from a set theoretical framework, grounded theory relies on researchers distinguishing meaningful constructs from generated data and then identifying an appropriate theory. Grounded theory is thus particularly useful in investigating complex issues and behaviours not previously addressed and concepts and relationships in particular populations or places that are still undeveloped or weakly connected. Grounded theory data analysis processes include open, axial and selective coding levels. The purpose of this article was to explore the grounded theory research process and provide an initial understanding of this methodology.

  20. New method for lightning location using optical ground wire

    Institute of Scientific and Technical Information of China (English)

    Zhaoyu Qin; Zhaogu Cheng; Zhiping Zhang; Jianqiang Zhu; Feng Li

    2006-01-01

    A new technology of lightning location is described, which is based on detecting the state of polarization(SOP) fluctuation of the laser light in the optic ground wire (OPGW). Compared with the conventional lightning location method, the new method is more accurate, more stable, and cheaper. Theories of Stokes generated by lightning strike can still be accurately identified by detecting the velocity of polarization motion. A new algorithm to quantify the velocity is also introduced.

  1. Ground Vehicle Robotics

    Science.gov (United States)

    2013-08-20

    Ground Vehicle Robotics Jim Parker Associate Director, Ground Vehicle Robotics UNCLASSIFIED: Distribution Statement A. Approved for public...DATE 20 AUG 2013 2. REPORT TYPE Briefing Charts 3. DATES COVERED 09-05-2013 to 15-08-2013 4. TITLE AND SUBTITLE Ground Vehicle Robotics 5a...Willing to take Risk on technology -User Evaluated -Contested Environments -Operational Data Applied Robotics for Installation & Base Ops -Low Risk

  2. The Grounded Theory Bookshelf

    Directory of Open Access Journals (Sweden)

    Vivian B. Martin, Ph.D.

    2005-03-01

    Full Text Available Bookshelf will provide critical reviews and perspectives on books on theory and methodology of interest to grounded theory. This issue includes a review of Heaton’s Reworking Qualitative Data, of special interest for some of its references to grounded theory as a secondary analysis tool; and Goulding’s Grounded Theory: A practical guide for management, business, and market researchers, a book that attempts to explicate the method and presents a grounded theory study that falls a little short of the mark of a fully elaborated theory.Reworking Qualitative Data, Janet Heaton (Sage, 2004. Paperback, 176 pages, $29.95. Hardcover also available.

  3. Velocity requirements for causality violation

    CERN Document Server

    Modanese, Giovanni

    2013-01-01

    It is known that the hypothetical existence of superluminal signals would imply the logical possibility of active causal violation: an observer in relative motion with respect to a primary source could in principle emit secondary superluminal signals (triggered by the primary ones) which go back in time and deactivate the primary source before the initial emission. This is a direct consequence of the structure of the Lorentz transformations, sometimes called "Regge-Tolman paradox". It is straightforward to find a formula for the velocity of the moving observer required to produce the causality violation. When applied to some recent claims of slight superluminal propagation, this formula yields a required velocity very close to the speed of light; this raises some doubts about the real physical observability of such violations. We re-compute this velocity requirement introducing a realistic delay between the reception of the primary signal and the emission of the secondary. It turns out that for -any- delay it...

  4. Signal velocity in oscillator arrays

    Science.gov (United States)

    Cantos, C. E.; Veerman, J. J. P.; Hammond, D. K.

    2016-09-01

    We investigate a system of coupled oscillators on the circle, which arises from a simple model for behavior of large numbers of autonomous vehicles where the acceleration of each vehicle depends on the relative positions and velocities between itself and a set of local neighbors. After describing necessary and sufficient conditions for asymptotic stability, we derive expressions for the phase velocity of propagation of disturbances in velocity through this system. We show that the high frequencies exhibit damping, which implies existence of well-defined signal velocitiesc+ > 0 and c- < 0 such that low frequency disturbances travel through the flock as f+(x - c+t) in the direction of increasing agent numbers and f-(x - c-t) in the other.

  5. Velocity encoded cardiovascular magnetic resonance to assess left atrial appendage emptying

    Directory of Open Access Journals (Sweden)

    Muellerleile Kai

    2012-06-01

    Full Text Available Abstract Background The presence of impaired left atrial appendage (LAA function identifies patients who are prone to thrombus formation in the LAA and therefore being at high risk for subsequent cardioembolic stroke. LAA function is typically assessed by measurements of LAA emptying velocities using transesophageal echocardiography (TEE in clinical routine. This study aimed at evaluating the feasibility of assessing LAA emptying by velocity encoded (VENC cardiovascular magnetic resonance (CMR. Methods This study included 30 patients with sinus rhythm (n = 18 or atrial fibrillation (n = 12. VENC-CMR velocity measurements were performed perpendicular to the orifice of the LAA. Peak velocities were measured of passive diastolic LAA emptying (e-wave in all patients. Peak velocities of active, late-diastolic LAA emptying (a-wave were assessed in patients with sinus rhythm. Correlation and agreement was analyzed between VENC-CMR and TEE measurements of e- and a-wave peak velocities. Results A significant correlation and good agreement was found between VENC-CMR and TEE measurements of maximal e-wave velocities (r = 0.61, P  Conclusions The assessment of active and passive LAA emptying by VENC-CMR is feasible. Further evaluation is required of potential future clinical applications such as risk stratification for cardioembolic stroke.

  6. Experimental and theoretical studies of transient electron velocity overshoot in GaN

    Energy Technology Data Exchange (ETDEWEB)

    Wraback, M.; Shen, H.; Rudin, S. [U.S. Army Research Laboratory, Sensors and Electron Devices Directorate, AMSRL-SE-EM, 2800 Powder Mill Road, Adelphi, MD 20783 (United States); Bellotti, E. [Electrical and Computer Engineering Department, Boston University, 8 Saint Mary' s Street, Boston, MA 02215-2421 (United States)

    2002-12-01

    We employ an optically detected time-of-flight technique with femtosecond resolution that monitors the change in the electroabsorption due to charge transport in an AlGaN/GaN heterojunction p-i-n diode to measure the electron velocity overshoot in GaN at room temperature. It has been found that electron velocity overshoot occurs at electric fields as low as 105 kV/cm, with the peak transient velocity increasing with E up to {proportional_to}320 kV/cm, at which field a peak velocity of 7.25 x 10{sup 7} cm/s is attained within the first 200 fs after photoexcitation. At higher fields, the increase in transit time with increasing field suggests the onset of negative differential resistance due to intervalley transfer. The existence of transient velocity overshoot at fields lower than the calculated peak steady-state velocity suggests that it occurs while the electrons are primarily in the {gamma} valley. Full zone Monte Carlo calculations imply that the overshoot is associated more with band nonparabolicity in the {gamma} valley than with intervalley transfer at fields less than 325 kV/cm, and, in conjunction with theoretical calculations employing a semiclassical transport model, confirm the importance of this nonparabolicity for the determination of the temporal shape of the transient velocity overshoot curves. (Abstract Copyright [2002], Wiley Periodicals, Inc.)

  7. Earthquake scenario ground motions for the urban area of Evansville, Indiana

    Science.gov (United States)

    Haase, Jennifer S.; Nowack, Robert L.; Cramer, Chris H.; Boyd, Oliver S.; Bauer, Robert A.

    2011-01-01

    The Wabash Valley seismic zone and the New Madrid seismic zone are the closest large earthquake source zones to Evansville, Indiana. The New Madrid earthquakes of 1811-1812, over 180 kilometers (km) from Evansville, produced ground motions with a Modified Mercalli Intensity of VII near Evansville, the highest intensity observed in Indiana. Liquefaction evidence has been documented less than 40 km away from Evansville resulting from two large earthquakes in the past 12,000 years in the Wabash Valley. Two earthquake scenarios are described in this paper that demonstrate the expected ground motions for a 33×42-km region around Evansville based on a repeat earthquake from each of these source regions. We perform a one-dimensional analysis for a grid of sites that takes into account the amplification or deamplification of ground motion in the unconsolidated soil layer using a new three-dimensional model of seismic velocity and bedrock depth. There are significant differences in the calculated amplification from that expected for National Earthquake Hazard Reduction Program site class D conditions, with deamplification at many locations within the ancient bedrock valley underlying Evansville. Ground motions relative to the acceleration of gravity (g) in the Evansville area from a simulation of a magnitude (M) 7.7 New Madrid earthquake range from 0.15 to 0.25 g for peak ground acceleration, 0.14 to 0.7 g for 0.2-second (s) spectral acceleration, and 0.05 to 0.25 g for 1.0-s spectral acceleration. Ground motions from a M6.8 Wabash Valley earthquake centered 40 km northwest of the city produce ground motions that decrease with distance from 1.5 to 0.3 g for 0.2-s spectral acceleration when they reach the main part of Evansville, but then increase in amplitude from 0.3 to 0.6 g south of the city and the Ohio River. The densest urbanization in Evansville and Henderson, Ky., is within the area of preferential amplification at 1.0-s period for both scenarios, but the area

  8. Angle independent velocity spectrum determination

    DEFF Research Database (Denmark)

    2014-01-01

    An ultrasound imaging system (100) includes a transducer array (102) that emits an ultrasound beam and produces at least one transverse pulse-echo field that oscillates in a direction transverse to the emitted ultrasound beam and that receive echoes produced in response thereto and a spectral vel...... velocity estimator (110) that determines a velocity spectrum for flowing structure, which flows at an angle of 90 degrees and flows at angles less than 90 degrees with respect to the emitted ultrasound beam, based on the received echoes....

  9. Three-dimensional crustal structure influences on wave propagation and generation of strong ground motion in the greater San Francisco Bay region

    Science.gov (United States)

    Stidham, Christiane Wilson

    sensitivity of the, synthetics to the major geologic structures in the velocity model, such as pronounced lateral velocity contrasts across the major strike-slip faults and extensive basins of alluvial velocities. Understanding the effects of such long wavelength structure is especially important when considering that most earthquakes locate on or close to faults' velocity contrasts, and often also near basins. For example, in simulations of the Loma Prieta earthquake, it is apparent that the refraction of energy by the San Andreas Fault serves to reduce ground motions at stations located along the San Francisco Peninsula, and the Quaternary and Tertiary alluvial basins of the San Francisco Bay Area are found to amplify and extend the duration of ground motions in the Santa Clara Valley, Livermore Valley and San Pablo Bay. In conclusion, it appears that the 3D model as it is currently defined accurately describes the spatial variation of peak ground velocity in the f < 0.5 Hz band, which suggests that this model may be used to estimate ground motions for future earthquake scenarios.

  10. Pairwise velocities in the Halo Model: Luminosity and Scale Dependence

    CERN Document Server

    Slosar, A; Tasitsiomi, A; Slosar, Anze; Seljak, Uros; Tasitsiomi, Argyro

    2006-01-01

    We investigate the properties of the pairwise velocity dispersion as a function of galaxy luminosity in the context of a halo model. We derive the distribution of velocities of pairs at a given separation taking into account both one-halo and two-halo contributions. We show that pairwise velocity distribution in real space is a complicated mixture of host-satellite, satellite-satellite and two-halo pairs. The peak value is reached at around 1 Mpc/h and does not reflect the velocity dispersion of a typical halo hosting these galaxies, but is instead dominated by the satellite-satellite pairs in high mass clusters. This is true even for cross-correlations between bins separated in luminosity. As a consequence the velocity dispersion at a given separation can decrease with luminosity, even if the underlying typical halo host mass is increasing, in agreement with some recent observations. We compare our findings to numerical simulations and find a good agreement. Numerical simulations also suggest a luminosity de...

  11. Ultrasonic attenuation peak in steel and aluminum alloy during rotating bending fatigue

    Science.gov (United States)

    Ogi, Hirotsugu; Hamaguchi, Takayuki; Hirao, Masahiko

    2000-04-01

    Using electromagnetic acoustic resonance (EMAR), we studied the evolution of the surface shearwave attenuation and phase velocity in a 0.45 pct C steel and a 5052 aluminum alloy exposed to rotating bending fatigue. In the EMAR method, we used electromagnetic acoustic transducers (EMATs) for the contactless measurements of the axial shear wave, which is a surface shear wave that propagates along a cylindrical surface in the circumferential direction, with an axial polarization. There has been no previous report of continuous and contactless monitoring of the surface wave attenuation and velocity being performed without interrupting the fatigue. The attenuation coefficient always showed sharp peaks around 90 pct of the fatigue life, independent of the fatigue-stress amplitude. To interpret this phenomenon, we made crack-growth observations using replicas and measurements of recovery of attenuation and velocity by stopping the cyclic loading before and after the peak. From these results, we concluded that the evolution of the ultrasonic properties is caused by a drastic change in dislocation mobility being accompanied by the crack growth at the final stage of the fatigue life.

  12. Ground Truth Collections at the MTI Core Sites

    Energy Technology Data Exchange (ETDEWEB)

    Garrett, A.J.

    2001-01-25

    The Savannah River Technology Center (SRTC) selected 13 sites across the continental US and one site in the western Pacific to serve as the primary or core site for collection of ground truth data for validation of MTI science algorithms. Imagery and ground truth data from several of these sites are presented in this paper. These sites are the Comanche Peak, Pilgrim and Turkey Point power plants, Ivanpah playas, Crater Lake, Stennis Space Center and the Tropical Western Pacific ARM site on the island of Nauru. Ground truth data includes water temperatures (bulk and skin), radiometric data, meteorological data and plant operating data. The organizations that manage these sites assist SRTC with its ground truth data collections and also give the MTI project a variety of ground truth measurements that they make for their own purposes. Collectively, the ground truth data from the 14 core sites constitute a comprehensive database for science algorithm validation.

  13. Characteristics of ground motion at permafrost sites along the Qinghai-Tibet railway

    Science.gov (United States)

    Wang, L.; Wu, Z.; Sun, Jielun; Liu, Xiuying; Wang, Z.

    2009-01-01

    Based on 14 typical drilling holes distributed in the permafrost areas along the Qinghai-Tibet railway, the distribution of wave velocities of soils in the permafrost regions were determined. Using results of dynamic triaxial tests, the results of dynamic triaxiality test and time histories of ground motion acceleration in this area, characteristics of ground motion response were analyzed for these permafrost sites for time histories of ground accelerations with three exceedance probabilities (63%, 10% and 2%). The influence of ground temperature on the seismic displacement, velocity, acceleration and response spectrum on the surface of permafrost were also studied. ?? 2008 Elsevier Ltd. All rights reserved.

  14. Fatigue affects peak joint torque angle in hamstrings but not in quadriceps.

    Science.gov (United States)

    Coratella, Giuseppe; Bellin, Giuseppe; Beato, Marco; Schena, Federico

    2015-01-01

    Primary aim of this study was to investigate peak joint torque angle (i.e. the angle of peak torque) changes recorded during an isokinetic test before and after a fatiguing soccer match simulation. Secondarily we want to investigate functional Hecc:Qconc and conventional Hconc:Qconc ratio changes due to fatigue. Before and after a standardised soccer match simulation, twenty-two healthy male amateur soccer players performed maximal isokinetic strength tests both for hamstrings and for quadriceps muscles at 1.05 rad · s(‒1), 3.14 rad · s(‒1) and 5.24 rad · s(‒1). Peak joint torque angle, peak torque and both functional Hecc:Qconc and conventional Hconc:Qconc ratios were examined. Both dominant and non-dominant limbs were tested. Peak joint torque angle significantly increased only in knee flexors. Both eccentric and concentric contractions resulted in such increment, which occurred in both limbs. No changes were found in quadriceps peak joint torque angle. Participants experienced a significant decrease in torque both in hamstrings and in quadriceps. Functional Hecc:Qconc ratio was lower only in dominant limb at higher velocities, while Hconc:Qconc did not change. This study showed after specific fatiguing task changes in hamstrings only torque/angle relationship. Hamstrings injury risk could depend on altered torque when knee is close to extension, coupled with a greater peak torque decrement compared to quadriceps. These results suggest the use eccentric based training to prevent hamstrings shift towards shorter length.

  15. Meaningful use of peak particle velocities at excavation surfaces for the optimisation of the rockburst criteria for tunnels and stopes

    CSIR Research Space (South Africa)

    Cichowicz, A

    2001-03-01

    Full Text Available :E#-',*&%)#=%-'7#&8%#$&'1%+#H_/#(.'/#$&.'23#3.'92) /'&!'2#$%2$'.$+#01'2%23#0!2%+#]'6%/=%.#E\\+#E@@@+#BBaE\\aEE:#P*23!237*--#MPN+#$911'.& MSB+SE+SFN+#*2)#(''&7*--#MTN: ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::B...::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::E@ T!39.%#H:B:#S%!$/!,#$%2$'.$#7%.%#1-*,%)#!2#&8%#8*23!237*--+#&8%#$911'.&#*2)#&8%#(''&7*--:##" $%!$/!,#%6%2&+#'(#/*32!&9)%#B:E+#&8*&#,*9$%)#$&.'23#3.'92)#/'&!'2+#7!&8#1%*<#3.'92) 6%-',!&>#'(#@:FG#/D$+#7*$#-',*&%)#!2#&8%#(''&7*--#?C/#(.'/#&8%#$%2...

  16. Measurements of Ion Stopping around the Bragg Peak in High-Energy-Density Plasmas (HEDP)

    Science.gov (United States)

    Frenje, J.; Li, C. K.; Seguin, F. H.; Gatu Johnson, M.; Petrasso, R.; Nagayama, T.; Mancini, R.; Hernandez, R.; Grabowski, P.; Yu Glebov, V.

    2016-10-01

    Ion stopping around the Bragg peak and its dependence on plasma conditions was recently measured for the first time in HEDP. The data support most stopping-power models for ion velocities (vi) larger than the average velocity of the thermal electrons (vth), but there are some differences at vi vth, which could not be validated. The work described here makes significant advances over the first experimental effort by quantitatively assessing the characteristics of the ion stopping around the Bragg peak while at the same time more accurately characterizing the plasma conditions. This effort represents the most sensitive test of plasma-stopping-power models around the Bragg peak to date, which is an important first step in our efforts of getting a fundamental understanding of DT-alpha stopping in HEDP, a prerequisite for understanding ignition margins in various implosion designs. The work was performed under NLUF and supported by DOE, LLNL and LLE. This work was supported in part by LLE, the U.S. DoE (NNSA, NLUF) and LLNL.

  17. Effect of starting distance on vertical ground reaction forces in the normal dog.

    Science.gov (United States)

    DuLaney, D; Purinton, T; Dookwah, H; Budsberg, S

    2005-01-01

    The purpose of this study was to evaluate the effect of starting distance on the peak vertical force (PVF) and associated vertical impulses (VI) of normal dogs. Five dogs of similar weight and body type were trotted at a velocity of 1.6-2.2 m/s from each of three starting distances; 2, 4, and 6 m, from the first plate in a two plate test field. A total of ten trials were recorded from each starting distance, five left first contacts and five right first contacts. Each ground reaction force (GRF) of interest was evaluated both within and between the three starting distances using a complete block ANOVA. There was not any significant effect of distance found on peak vertical forces in our study. However, distance did affect VI. Forelimb VI generated at a 2 m trot was significantly less than VI generated at a 6 m trot. Neither extreme distance was found to be significantly different than the 4 m VI. The VI of the hind limb was not significantly affected.

  18. Pesticides in Ground Water

    DEFF Research Database (Denmark)

    Bjerg, Poul Løgstrup

    1996-01-01

    Review af: Jack E. Barbash & Elizabeth A. Resek (1996). Pesticides in Ground Water. Distribution trends and governing factors. Ann Arbor Press, Inc. Chelsea, Michigan. pp 588.......Review af: Jack E. Barbash & Elizabeth A. Resek (1996). Pesticides in Ground Water. Distribution trends and governing factors. Ann Arbor Press, Inc. Chelsea, Michigan. pp 588....

  19. Pesticides in Ground Water

    DEFF Research Database (Denmark)

    Bjerg, Poul Løgstrup

    1996-01-01

    Review af: Jack E. Barbash & Elizabeth A. Resek (1996). Pesticides in Ground Water. Distribution trends and governing factors. Ann Arbor Press, Inc. Chelsea, Michigan. pp 588.......Review af: Jack E. Barbash & Elizabeth A. Resek (1996). Pesticides in Ground Water. Distribution trends and governing factors. Ann Arbor Press, Inc. Chelsea, Michigan. pp 588....

  20. Tachoastrometry: astrometry with radial velocities

    CERN Document Server

    Pasquini, L; Lombardi, M; Monaco, L; Leão, I C; Delabre, B

    2014-01-01

    Spectra of composite systems (e.g., spectroscopic binaries) contain spatial information that can be retrieved by measuring the radial velocities (i.e., Doppler shifts) of the components in four observations with the slit rotated by 90 degrees in the sky. By using basic concepts of slit spectroscopy we show that the geometry of composite systems can be reliably retrieved by measuring only radial velocity differences taken with different slit angles. The spatial resolution is determined by the precision with which differential radial velocities can be measured. We use the UVES spectrograph at the VLT to observe the known spectroscopic binary star HD 188088 (HIP 97944), which has a maximum expected separation of 23 milli-arcseconds. We measure an astrometric signal in radial velocity of 276 \\ms, which corresponds to a separation between the two components at the time of the observations of 18 $\\pm2$ milli-arcseconds. The stars were aligned east-west. We describe a simple optical device to simultaneously record p...