WorldWideScience

Sample records for ground vehicles design

  1. Ground Vehicle System Integration (GVSI) and Design Optimization Model

    National Research Council Canada - National Science Library

    Horton, William

    1996-01-01

    This report documents the Ground Vehicle System Integration (GVSI) and Design Optimization Model GVSI is a top-level analysis tool designed to support engineering tradeoff studies and vehicle design optimization efforts...

  2. The Effect of Predicted Vehicle Displacement on Ground Crew Task Performance and Hardware Design

    Science.gov (United States)

    Atencio, Laura Ashley; Reynolds, David W.

    2011-01-01

    NASA continues to explore new launch vehicle concepts that will carry astronauts to low- Earth orbit to replace the soon-to-be retired Space Transportation System (STS) shuttle. A tall vertically stacked launch vehicle (> or =300 ft) is exposed to the natural environment while positioned on the launch pad. Varying directional winds and vortex shedding cause the vehicle to sway in an oscillating motion. Ground crews working high on the tower and inside the vehicle during launch preparations will be subjected to this motion while conducting critical closeout tasks such as mating fluid and electrical connectors and carrying heavy objects. NASA has not experienced performing these tasks in such environments since the Saturn V, which was serviced from a movable (but rigid) service structure; commercial launchers are likewise attended by a service structure that moves away from the vehicle for launch. There is concern that vehicle displacement may hinder ground crew operations, impact the ground system designs, and ultimately affect launch availability. The vehicle sway assessment objective is to replicate predicted frequencies and displacements of these tall vehicles, examine typical ground crew tasks, and provide insight into potential vehicle design considerations and ground crew performance guidelines. This paper outlines the methodology, configurations, and motion testing performed while conducting the vehicle displacement assessment that will be used as a Technical Memorandum for future vertically stacked vehicle designs.

  3. A study on the nondestructive test optimum design for a ground tracked combat vehicle

    Energy Technology Data Exchange (ETDEWEB)

    Kim Byeong Ho; Seo, Jae Hyun; Gil, Hyeon Jun [Defence Agency for Technology and Quality, Seoul (Korea, Republic of); Kim, Seon Hyeong [Hanwha Techwin Co.,Ltd., Changwon (Korea, Republic of); Seo, Sang Chul [Changwon National University, Changwon (Korea, Republic of)

    2015-10-15

    In this study, a nondestructive test (NDT) is performed to inspect the optimal design of a ground tracked combat vehicle for self-propelled artillery, tank, and armored vehicles. The minimum qualification required for personnel performing the NDT of a ground tracked combat vehicle was initially established in US military standards, and then applied to the Korean defense specifications to develop a ground tracked combat vehicle. However, the qualification standards of an NDT inspector have been integrated into NAS410 through the military and commercial specifications unification project that were applied in the existing aerospace/defense industry public standard. The design method for this study was verified by applying the optimal design to the liquid penetrant testing Al forging used in self-propelled artillery. This confirmed the reliability and soundness of the product.

  4. Ground control station software design for micro aerial vehicles

    Science.gov (United States)

    Walendziuk, Wojciech; Oldziej, Daniel; Binczyk, Dawid Przemyslaw; Slowik, Maciej

    2017-08-01

    This article describes the process of designing the equipment part and the software of a ground control station used for configuring and operating micro unmanned aerial vehicles (UAV). All the works were conducted on a quadrocopter model being a commonly accessible commercial construction. This article contains a characteristics of the research object, the basics of operating the micro aerial vehicles (MAV) and presents components of the ground control station model. It also describes the communication standards for the purpose of building a model of the station. Further part of the work concerns the software of the product - the GIMSO application (Generally Interactive Station for Mobile Objects), which enables the user to manage the actions and communication and control processes from the UAV. The process of creating the software and the field tests of a station model are also presented in the article.

  5. Ground Processing Affordability for Space Vehicles

    Science.gov (United States)

    Ingalls, John; Scott, Russell

    2011-01-01

    Launch vehicles and most of their payloads spend the majority of their time on the ground. The cost of ground operations is very high. So, why so often is so little attention given to ground processing during development? The current global space industry and economic environment are driving more need for efficiencies to save time and money. Affordability and sustainability are more important now than ever. We can not continue to treat space vehicles as mere science projects. More RLV's (Reusable Launch Vehicles) are being developed for the gains of reusability which are not available for ELV's (Expendable Launch Vehicles). More human-rated vehicles are being developed, with the retirement of the Space Shuttles, and for a new global space race, yet these cost more than the many unmanned vehicles of today. We can learn many lessons on affordability from RLV's. DFO (Design for Operations) considers ground operations during design, development, and manufacturing-before the first flight. This is often minimized for space vehicles, but is very important. Vehicles are designed for launch and mission operations. You will not be able to do it again if it is too slow or costly to get there. Many times, technology changes faster than space products such that what is launched includes outdated features, thus reducing competitiveness. Ground operations must be considered for the full product Lifecycle, from concept to retirement. Once manufactured, launch vehicles along with their payloads and launch systems require a long path of processing before launch. Initial assembly and testing always discover problems to address. A solid integration program is essential to minimize these impacts, as was seen in the Constellation Ares I-X test rocket. For RLV's, landing/recovery and post-flight turnaround activities are performed. Multi-use vehicles require reconfiguration. MRO (Maintenance, Repair, and Overhaul) must be well-planned--- even for the unplanned problems. Defect limits and

  6. The design and results of an algorithm for intelligent ground vehicles

    Science.gov (United States)

    Duncan, Matthew; Milam, Justin; Tote, Caleb; Riggins, Robert N.

    2010-01-01

    This paper addresses the design, design method, test platform, and test results of an algorithm used in autonomous navigation for intelligent vehicles. The Bluefield State College (BSC) team created this algorithm for its 2009 Intelligent Ground Vehicle Competition (IGVC) robot called Anassa V. The BSC robotics team is comprised of undergraduate computer science, engineering technology, marketing students, and one robotics faculty advisor. The team has participated in IGVC since the year 2000. A major part of the design process that the BSC team uses each year for IGVC is a fully documented "Post-IGVC Analysis." Over the nine years since 2000, the lessons the students learned from these analyses have resulted in an ever-improving, highly successful autonomous algorithm. The algorithm employed in Anassa V is a culmination of past successes and new ideas, resulting in Anassa V earning several excellent IGVC 2009 performance awards, including third place overall. The paper will discuss all aspects of the design of this autonomous robotic system, beginning with the design process and ending with test results for both simulation and real environments.

  7. Piecewise affine control for fast unmanned ground vehicles

    OpenAIRE

    Benine Neto , André; Grand , Christophe

    2012-01-01

    International audience; Unmanned ground vehicles (UGV) may experience skidding when moving at high speeds, and therefore have its safety jeopardized. For this reason the nonlinear dynamics of lateral tire forces must be taken into account into the design of steering controllers for autonomous vehicles. This paper presents the design of a state feedback piecewise affine controller applied to an UGV to coordinate the steering and torque distribution inputs in order to reduce vehicle skidding on...

  8. Formation keeping of unmanned ground vehicles

    Directory of Open Access Journals (Sweden)

    Muangmin Kamonwan

    2017-01-01

    Full Text Available Controlling motions of an unmanned ground vehicle becomes more popular in real world practices. Its application is useful for household chores, military services, medical purposes, and industrial revolutions, etc. An analysis of motions by using the Fundamental Equations of Constrained Motion (FECM is one effective tool to determine the motions. Its conceptualization is done in three-step procedure as follows: (I Determining an unconstrained motion (II Assigning constraint equations and (III Computing a constrained motion. The equations of motion obtained are expressed as liner functions of acceleration. Then other kinematical information of the unmanned ground vehicles can be obtained by integration its acceleration. In this work, the FECM is used as a tool to analyze motions of a group of unmanned ground vehicles in various forms. The simulation results show that control forces obtained from the approach can regulate motions of unmanned ground vehicles to maneuver in desired formations.

  9. Imaging of Moving Ground Vehicles

    National Research Council Canada - National Science Library

    Rihaczek, A

    1996-01-01

    ... requires that use be made of the complex image. The yaw/pitch/roll/bounce/flex motion of a moving ground vehicle demands that different motion compensations be applied to different parts of the vehicle...

  10. The 15th Annual Intelligent Ground Vehicle Competition: Intelligent Ground Robots Created by Intelligent Students

    National Research Council Canada - National Science Library

    Theisen, Bernard L

    2007-01-01

    ..., and mobile platform fundamentals to design and build an unmanned system. Teams from around the world focus on developing a suite of dual-use technologies to equip ground vehicles of the future with intelligent driving capabilities...

  11. Ground Vehicle Convoying

    Science.gov (United States)

    Gage, Douglas W.; Pletta, J. Bryan

    1987-01-01

    Initial investigations into two different approaches for applying autonomous ground vehicle technology to the vehicle convoying application are described. A minimal capability system that would maintain desired speed and vehicle spacing while a human driver provided steering control could improve convoy performance and provide positive control at night and in inclement weather, but would not reduce driver manpower requirements. Such a system could be implemented in a modular and relatively low cost manner. A more capable system would eliminate the human driver in following vehicles and reduce manpower requirements for the transportation of supplies. This technology could also be used to aid in the deployment of teleoperated vehicles in a battlefield environment. The needs, requirements, and several proposed solutions for such an Attachable Robotic Convoy Capability (ARCC) system will be discussed. Included are discussions of sensors, communications, computers, control systems and safety issues. This advanced robotic convoy system will provide a much greater capability, but will be more difficult and expensive to implement.

  12. Modeling ground vehicle acoustic signatures for analysis and synthesis

    International Nuclear Information System (INIS)

    Haschke, G.; Stanfield, R.

    1995-01-01

    Security and weapon systems use acoustic sensor signals to classify and identify moving ground vehicles. Developing robust signal processing algorithms for this is expensive, particularly in presence of acoustic clutter or countermeasures. This paper proposes a parametric ground vehicle acoustic signature model to aid the system designer in understanding which signature features are important, developing corresponding feature extraction algorithms and generating low-cost, high-fidelity synthetic signatures for testing. The authors have proposed computer-generated acoustic signatures of armored, tracked ground vehicles to deceive acoustic-sensored smart munitions. They have developed quantitative measures of how accurately a synthetic acoustic signature matches those produced by actual vehicles. This paper describes parameters of the model used to generate these synthetic signatures and suggests methods for extracting these parameters from signatures of valid vehicle encounters. The model incorporates wide-bandwidth and narrow- bandwidth components that are modulated in a pseudo-random fashion to mimic the time dynamics of valid vehicle signatures. Narrow- bandwidth feature extraction techniques estimate frequency, amplitude and phase information contained in a single set of narrow frequency- band harmonics. Wide-bandwidth feature extraction techniques estimate parameters of a correlated-noise-floor model. Finally, the authors propose a method of modeling the time dynamics of the harmonic amplitudes as a means adding necessary time-varying features to the narrow-bandwidth signal components. The authors present results of applying this modeling technique to acoustic signatures recorded during encounters with one armored, tracked vehicle. Similar modeling techniques can be applied to security systems

  13. Aeroelastic Ground Wind Loads Analysis Tool for Launch Vehicles

    Science.gov (United States)

    Ivanco, Thomas G.

    2016-01-01

    Launch vehicles are exposed to ground winds during rollout and on the launch pad that can induce static and dynamic loads. Of particular concern are the dynamic loads caused by vortex shedding from nearly-cylindrical structures. When the frequency of vortex shedding nears that of a lowly-damped structural mode, the dynamic loads can be more than an order of magnitude greater than mean drag loads. Accurately predicting vehicle response to vortex shedding during the design and analysis cycles is difficult and typically exceeds the practical capabilities of modern computational fluid dynamics codes. Therefore, mitigating the ground wind loads risk typically requires wind-tunnel tests of dynamically-scaled models that are time consuming and expensive to conduct. In recent years, NASA has developed a ground wind loads analysis tool for launch vehicles to fill this analytical capability gap in order to provide predictions for prelaunch static and dynamic loads. This paper includes a background of the ground wind loads problem and the current state-of-the-art. It then discusses the history and significance of the analysis tool and the methodology used to develop it. Finally, results of the analysis tool are compared to wind-tunnel and full-scale data of various geometries and Reynolds numbers.

  14. Calculation of ground vibration spectra from heavy military vehicles

    Science.gov (United States)

    Krylov, V. V.; Pickup, S.; McNuff, J.

    2010-07-01

    The demand for reliable autonomous systems capable to detect and identify heavy military vehicles becomes an important issue for UN peacekeeping forces in the current delicate political climate. A promising method of detection and identification is the one using the information extracted from ground vibration spectra generated by heavy military vehicles, often termed as their seismic signatures. This paper presents the results of the theoretical investigation of ground vibration spectra generated by heavy military vehicles, such as tanks and armed personnel carriers. A simple quarter car model is considered to identify the resulting dynamic forces applied from a vehicle to the ground. Then the obtained analytical expressions for vehicle dynamic forces are used for calculations of generated ground vibrations, predominantly Rayleigh surface waves, using Green's function method. A comparison of the obtained theoretical results with the published experimental data shows that analytical techniques based on the simplified quarter car vehicle model are capable of producing ground vibration spectra of heavy military vehicles that reproduce basic properties of experimental spectra.

  15. Mesh Optimization for Ground Vehicle Aerodynamics

    OpenAIRE

    Adrian Gaylard; Essam F Abo-Serie; Nor Elyana Ahmad

    2010-01-01

    Mesh optimization strategy for estimating accurate drag of a ground vehicle is proposed based on examining the effect of different mesh parameters.  The optimized mesh parameters were selected using design of experiment (DOE) method to be able to work in a...

  16. Design of an urban driverless ground vehicle

    OpenAIRE

    Benenson , Rodrigo; Parent , Michel ,

    2008-01-01

    International audience; This paper presents the design and implementation of a driverless car for populated urban environments. We propose a system that explicitly map the static obstacles, detects and track the moving obstacle, consider the unobserved areas, provide a motion plan with safety guarantees and executes it. All of it was implemented and integrated into a single computer maneuvering on real time an electric vehicle into an unvisited area with moving obstacles. The overview of the ...

  17. Low ground clearance vehicle detection and warning.

    Science.gov (United States)

    2015-06-01

    A Low Ground Clearance Vehicle Detection : System (LGCVDS) determines if a commercial : motor vehicle can successfully clear a highwayrail : grade crossing and notifies the driver when : his or her vehicle cannot safely traverse the : crossing. That ...

  18. The IXV Ground Segment design, implementation and operations

    Science.gov (United States)

    Martucci di Scarfizzi, Giovanni; Bellomo, Alessandro; Musso, Ivano; Bussi, Diego; Rabaioli, Massimo; Santoro, Gianfranco; Billig, Gerhard; Gallego Sanz, José María

    2016-07-01

    The Intermediate eXperimental Vehicle (IXV) is an ESA re-entry demonstrator that performed, on the 11th February of 2015, a successful re-entry demonstration mission. The project objectives were the design, development, manufacturing and on ground and in flight verification of an autonomous European lifting and aerodynamically controlled re-entry system. For the IXV mission a dedicated Ground Segment was provided. The main subsystems of the IXV Ground Segment were: IXV Mission Control Center (MCC), from where monitoring of the vehicle was performed, as well as support during pre-launch and recovery phases; IXV Ground Stations, used to cover IXV mission by receiving spacecraft telemetry and forwarding it toward the MCC; the IXV Communication Network, deployed to support the operations of the IXV mission by interconnecting all remote sites with MCC, supporting data, voice and video exchange. This paper describes the concept, architecture, development, implementation and operations of the ESA Intermediate Experimental Vehicle (IXV) Ground Segment and outlines the main operations and lessons learned during the preparation and successful execution of the IXV Mission.

  19. X-43A Vehicle During Ground Testing

    Science.gov (United States)

    1999-01-01

    The X-43A Hypersonic Experimental Vehicle, or 'Hyper-X' is seen here undergoing ground testing at NASA's Dryden Flight Research Center, Edwards, California in December 1999. The X-43A was developed to research a dual-mode ramjet/scramjet propulsion system at speeds from Mach 7 up to Mach 10 (7 to 10 times the speed of sound, which varies with temperature and altitude). Hyper-X, the flight vehicle for which is designated as X-43A, is an experimental flight-research program seeking to demonstrate airframe-integrated, 'air-breathing' engine technologies that promise to increase payload capacity for future vehicles, including hypersonic aircraft (faster than Mach 5) and reusable space launchers. This multiyear program is currently underway at NASA Dryden Flight Research Center, Edwards, California. The Hyper-X schedule calls for its first flight later this year (2000). Hyper-X is a joint program, with Dryden sharing responsibility with NASA's Langley Research Center, Hampton, Virginia. Dryden's primary role is to fly three unpiloted X-43A research vehicles to validate engine technologies and hypersonic design tools as well as the hypersonic test facility at Langley. Langley manages the program and leads the technology development effort. The Hyper-X Program seeks to significantly expand the speed boundaries of air-breathing propulsion by being the first aircraft to demonstrate an airframe-integrated, scramjet-powered free flight. Scramjets (supersonic-combustion ramjets) are ramjet engines in which the airflow through the whole engine remains supersonic. Scramjet technology is challenging because only limited testing can be performed in ground facilities. Long duration, full-scale testing requires flight research. Scramjet engines are air-breathing, capturing their oxygen from the atmosphere. Current spacecraft, such as the Space Shuttle, are rocket powered, so they must carry both fuel and oxygen for propulsion. Scramjet technology-based vehicles need to carry only

  20. TARDEC Ground Vehicle Robotics: Vehicle Dynamic Characterization and Research

    Science.gov (United States)

    2015-09-01

    subassemblies that would be common on ground vehicles. Powertrain Systems: Gas Powered, Diesel , Turbo Diesel , Gas Turbine, Hybrid: Gas- Electric...PROPULSE (Hybrid Diesel - Electric System with Export Power), Command Zone (integrated vehicle control and diagnostic system), and TerraMax (Unmanned... Diesel -Electric, Series, Parallel. Power Distribution: RWD, FWD, AWD, open diff, LSD, Torsen diff, differential braking (traction control), drive by

  1. The on-line electric vehicle wireless electric ground transportation systems

    CERN Document Server

    Cho, Dong

    2017-01-01

    This book details the design and technology of the on-line electric vehicle (OLEV) system and its enabling wireless power-transfer technology, the “shaped magnetic field in resonance” (SMFIR). The text shows how OLEV systems can achieve their three linked important goals: reduction of CO2 produced by ground transportation; improved energy efficiency of ground transportation; and contribution to the amelioration or prevention of climate change and global warming. SMFIR provides power to the OLEV by wireless transmission from underground cables using an alternating magnetic field and the reader learns how this is done. This cable network will in future be part of any local smart grid for energy supply and use thereby exploiting local and renewable energy generation to further its aims. In addition to the technical details involved with design and realization of a fleet of vehicles combined with extensive subsurface charging infrastructure, practical issues such as those involved with pedestrian safety are c...

  2. Visiting Vehicle Ground Trajectory Tool

    Science.gov (United States)

    Hamm, Dustin

    2013-01-01

    The International Space Station (ISS) Visiting Vehicle Group needed a targeting tool for vehicles that rendezvous with the ISS. The Visiting Vehicle Ground Trajectory targeting tool provides the ability to perform both realtime and planning operations for the Visiting Vehicle Group. This tool provides a highly reconfigurable base, which allows the Visiting Vehicle Group to perform their work. The application is composed of a telemetry processing function, a relative motion function, a targeting function, a vector view, and 2D/3D world map type graphics. The software tool provides the ability to plan a rendezvous trajectory for vehicles that visit the ISS. It models these relative trajectories using planned and realtime data from the vehicle. The tool monitors ongoing rendezvous trajectory relative motion, and ensures visiting vehicles stay within agreed corridors. The software provides the ability to update or re-plan a rendezvous to support contingency operations. Adding new parameters and incorporating them into the system was previously not available on-the-fly. If an unanticipated capability wasn't discovered until the vehicle was flying, there was no way to update things.

  3. Mission aware energy saving strategies for Army ground vehicles

    Science.gov (United States)

    Dattathreya, Macam S.

    Fuel energy is a basic necessity for this planet and the modern technology to perform many activities on earth. On the other hand, quadrupled automotive vehicle usage by the commercial industry and military has increased fuel consumption. Military readiness of Army ground vehicles is very important for a country to protect its people and resources. Fuel energy is a major requirement for Army ground vehicles. According to a report, a department of defense has spent nearly $13.6 billion on fuel and electricity to conduct ground missions. On the contrary, energy availability on this plant is slowly decreasing. Therefore, saving energy in Army ground vehicles is very important. Army ground vehicles are embedded with numerous electronic systems to conduct missions such as silent and normal stationary surveillance missions. Increasing electrical energy consumption of these systems is influencing higher fuel consumption of the vehicle. To save energy, the vehicles can use any of the existing techniques, but they require complex, expensive, and time consuming implementations. Therefore, cheaper and simpler approaches are required. In addition, the solutions have to save energy according to mission needs and also overcome size and weight constraints of the vehicle. Existing research in the current literature do not have any mission aware approaches to save energy. This dissertation research proposes mission aware online energy saving strategies for stationary Army ground vehicles to save energy as well as to meet the electrical needs of the vehicle during surveillance missions. The research also proposes theoretical models of surveillance missions, fuzzy logic models of engine and alternator efficiency data, and fuzzy logic algorithms. Based on these models, two energy saving strategies are proposed for silent and normal surveillance type of missions. During silent mission, the engine is on and batteries power the systems. During normal surveillance mission, the engine is

  4. Aircraft and ground vehicle friction measurements obtained under winter runway conditions

    Science.gov (United States)

    Yager, Thomas J.

    1989-01-01

    Tests with specially instrumented NASA B-737 and B-727 aircraft together with several different ground friction measuring devices have been conducted for a variety of runway surface types and wetness conditions. This effort is part of the Joint FAA/NASA Aircraft/Ground Vehicle Runway Friction Program aimed at obtaining a better understanding of aircraft ground handling performance under adverse weather conditions, and defining relationships between aircraft and ground vehicle tire friction measurements. Aircraft braking performance on dry, wet, snow-, and ice-covered runway conditions is discussed together with ground vehicle friction data obtained under similar runway conditions. For the wet, compacted snow- and ice-covered runway conditions, the relationship between ground vehicles and aircraft friction data is identified. The influence of major test parameters on friction measurements such as speed, test tire characteristics, and surface contaminant-type are discussed. The test results indicate that use of properly maintained and calibrated ground vehicles for monitoring runway friction conditions should be encouraged particularly under adverse weather conditions.

  5. Numerical Investigation of Aerodynamic Braking for a Ground Vehicle

    Science.gov (United States)

    Devanuri, Jaya Krishna

    2018-06-01

    The purpose of this article is to observe the effect of an air brake on the aerodynamics of a ground vehicle and also to study the influence of change in the parameters like the velocity of the vehicle, the angle of inclination, height, and position of the air brake on the aerodynamics of the vehicle body. The test subject used is an Ahmed body which is a generic 3D car body as it retains all the aerodynamic characteristics of a ground vehicle. Numerical investigation has been carried out by RNG k-ɛ turbulence model. Results are presented in terms of streamlines and drag coefficient to understand the influence of pertinent parameters on flow physics. It is found that with the use of an air brake, though the drag coefficient remains more or less constant with velocity, it increases with the increase in height and angle of inclination of the air brake. But the effect of position of air brake on the coefficient of drag is surprising since for certain heights of the air brake the drag coefficient is maximum at the foremost point and as the air brake moves towards the rear it is first observed to decrease and then increase. It is also observed that with the increase in height of the air brake the drag coefficient monotonically decreases as the position of the air brake is moved towards the rear. Taguchi method has been employed with L16 orthogonal array to obtain the optimal configuration for the air brake. For each of the selected parameters, four different levels have been chosen to obtain the maximum drag coefficient value. The study could provide an invaluable database for the optimal design of an airbrake for a ground vehicle.

  6. Preliminary development of a wing in ground effect vehicle

    Science.gov (United States)

    Abidin, Razali; Ahamat, Mohamad Asmidzam; Ahmad, Tarmizi; Saad, Mohd Rasdan; Hafizi, Ezzat

    2018-02-01

    Wing in ground vehicle is one of the mode of transportation that allows high speed movement over water by travelling few meters above the water level. Through this manouver strategy, a cushion of compressed air exists between the wing in ground vehicle wings and water. This significantly increase the lift force, thus reducing the necessity in having a long wing span. Our project deals with the development of wing in ground vehicle with the capability of transporting four people. The total weight of this wing in ground vehicle was estimated at 5.4 kN to enable the prediction on required wing area, minimum takeoff velocity, drag force and engine power requirement. The required takeoff velocity is decreases as the lift coefficient increases, and our current mathematical model shows the takeoff velocity at 50 m/s avoid the significant increase in lift coefficient for the wing area of 5 m2. At the velocity of 50 m/s, the drag force created by this wing in ground vehicle is well below 1 kN, which required a 100-120 kW of engine power if the propeller has the efficiency of 0.7. Assessment on the stresses and deflection of the hull structural indicate the capability of plywood to withstand the expected load. However, excessive deflection was expected in the rear section which requires a minor structural modification. In the near future, we expect that the wind tunnel tests of this wing in ground vehicle model would enable more definite prediction on the important parameters related to its performance.

  7. Exploring the mechanisms of vehicle front-end shape on pedestrian head injuries caused by ground impact.

    Science.gov (United States)

    Yin, Sha; Li, Jiani; Xu, Jun

    2017-09-01

    In pedestrian-vehicle accidents, pedestrians typically suffer from secondary impact with the ground after the primary contact with vehicles. However, information about the fundamental mechanism of pedestrian head injury from ground impact remains minimal, thereby hindering further improvement in pedestrian safety. This study addresses this issue by using multi-body modeling and computation to investigate the influence of vehicle front-end shape on pedestrian safety. Accordingly, a simulation matrix is constructed to vary bonnet leading-edge height, bonnet length, bonnet angle, and windshield angle. Subsequently, a set of 315 pedestrian-vehicle crash simulations are conducted using the multi-body simulation software MADYMO. Three vehicle velocities, i.e., 20, 30, and 40km/h, are set as the scenarios. Results show that the top governing factor is bonnet leading-edge height. The posture and head injury at the instant of head ground impact vary dramatically with increasing height because of the significant rise of the body bending point and the movement of the collision point. The bonnet angle is the second dominant factor that affects head-ground injury, followed by bonnet length and windshield angle. The results may elucidate one of the critical barriers to understanding head injury caused by ground impact and provide a solid theoretical guideline for considering pedestrian safety in vehicle design. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. INERTIAL TECHNOLOGIES IN SYSTEMS FOR STABILIZATION OF GROUND VEHICLES EQUIPMENT

    Directory of Open Access Journals (Sweden)

    Olha Sushchenko

    2016-12-01

    Full Text Available Purpose: The vibratory inertial technology is a recent modern inertial technology. It represents the most perspective approach to design of inertial sensors, which can be used in stabilization and tracking systems operated on vehicles of the wide class. The purpose of the research is to consider advantages of this technology in comparison with laser and fiber-optic ones. Operation of the inertial sensors on the ground vehicles requires some improvement of the Coriolis vibratory gyroscope with the goal to simplify information processing, increase reliability, and compensate bias. Methods: Improvement of the Coriolis vibratory gyroscope includes introducing of the phase detector and additional excitation unit. The possibility to use the improved Coriolis vibratory gyroscope in the stabilization systems operated on the ground vehicles is shown by means of analysis of gyroscope output signal. To prove efficiency of the Coriolis vibratory gyroscope in stabilization system the simulation technique is used. Results: The scheme of the improved Coriolis vibratory gyroscope including the phase detector and additional excitation unit is developed and analyzed. The way to compensate bias is determined. Simulation of the stabilization system with the improved Coriolis vibratory gyroscope is carried out. Expressions for the output signals of the improved Coriolis vibratory gyroscope are derived. The error of the output signal is estimated and the possibility to use the modified Coriolis vibratory gyroscope in stabilization systems is proved. The results of stabilization system simulation are given. Their analysis is carried out. Conclusions: The represented results prove efficiency of the proposed technical decisions. They can be useful for design of stabilization platform with instrumental equipment operated on moving vehicles of the wide class.

  9. Detail design of empennage of an unmanned aerial vehicle

    Science.gov (United States)

    Sarker, Md. Samad; Panday, Shoyon; Rasel, Md; Salam, Md. Abdus; Faisal, Kh. Md.; Farabi, Tanzimul Hasan

    2017-12-01

    In order to maintain the operational continuity of air defense systems, unmanned autonomous or remotely controlled unmanned aerial vehicle (UAV) plays a great role as a target for the anti-aircraft weapons. The aerial vehicle must comply with the requirements of high speed, remotely controlled tracking and navigational aids, operational sustainability and sufficient loiter time. It can also be used for aerial reconnaissance, ground surveillance and other intelligence operations. This paper aims to develop a complete tail design of an unmanned aerial vehicle using Systems Engineering approach. The design fulfils the requirements of longitudinal and directional trim, stability and control provided by the horizontal and vertical tail. Tail control surfaces are designed to provide sufficient control of the aircraft in critical conditions. Design parameters obtained from wing design are utilized in the tail design process as required. Through chronological calculations and successive iterations, optimum values of 26 tail design parameters are determined.

  10. Integrated Vehicle Ground Vibration Testing of Manned Spacecraft: Historical Precedent

    Science.gov (United States)

    Lemke, Paul R.; Tuma, Margaret L.; Askins, Bruce R.

    2008-01-01

    For the first time in nearly 30 years, NASA is developing a new manned space flight launch system. The Ares I will carry crew and cargo to not only the International Space Station, but onward for the future exploration of the Moon and Mars. The Ares I control system and structural designs use complex computer models for their development. An Integrated Vehicle Ground Vibration Test (IVGVT) will validate the efficacy of these computer models. The IVGVT will reduce the technical risk of unexpected conditions that could place the vehicle or crew in jeopardy. The Ares Project Office's Flight and Integrated Test Office commissioned a study to determine how historical programs, such as Saturn and Space Shuttle, validated the structural dynamics of an integrated flight vehicle. The study methodology was to examine the historical record and seek out members of the engineering community who recall the development of historic manned launch vehicles. These records and interviews provided insight into the best practices and lessons learned from these historic development programs. The information that was gathered allowed the creation of timelines of the historic development programs. The timelines trace the programs from the development of test articles through test preparation, test operations, and test data reduction efforts. These timelines also demonstrate how the historical tests fit within their overall vehicle development programs. Finally, the study was able to quantify approximate staffing levels during historic development programs. Using this study, the Flight and Integrated Test Office was able to evaluate the Ares I Integrated Vehicle Ground Vibration Test schedule and workforce budgets in light of the historical precedents to determine if the test had schedule or cost risks associated with it.

  11. The 21st annual intelligent ground vehicle competition: robotists for the future

    Science.gov (United States)

    Theisen, Bernard L.

    2013-12-01

    The Intelligent Ground Vehicle Competition (IGVC) is one of four, unmanned systems, student competitions that were founded by the Association for Unmanned Vehicle Systems International (AUVSI). The IGVC is a multidisciplinary exercise in product realization that challenges college engineering student teams to integrate advanced control theory, machine vision, vehicular electronics and mobile platform fundamentals to design and build an unmanned system. Teams from around the world focus on developing a suite of dual-use technologies to equip ground vehicles of the future with intelligent driving capabilities. Over the past 21 years, the competition has challenged undergraduate, graduate and Ph.D. students with real world applications in intelligent transportation systems, the military and manufacturing automation. To date, teams from over 80 universities and colleges have participated. This paper describes some of the applications of the technologies required by this competition and discusses the educational benefits. The primary goal of the IGVC is to advance engineering education in intelligent vehicles and related technologies. The employment and professional networking opportunities created for students and industrial sponsors through a series of technical events over the fourday competition are highlighted. Finally, an assessment of the competition based on participation is presented.

  12. The 15th Annual Intelligent Ground Vehicle Competition: Intelligent Ground Robots Created by Intelligent Students

    National Research Council Canada - National Science Library

    Theisen, Bernard L

    2007-01-01

    The Intelligent Ground Vehicle Competition (IGVC) is one of three, unmanned systems, student competitions that were founded by the Association for Unmanned Vehicle Systems International (AUVSI) in the 1990s...

  13. Modeling and Simulation of an Unmanned Ground Vehicle Power System

    Science.gov (United States)

    2014-03-28

    Wilhelm, A. N., Surgenor, B. W., and Pharoah, J. G., “Design and evaluation of a micro-fuel-cell-based power system for a mobile robot,” Mechatronics ... Embedded Control Systems ], Control Engineering, 91–116, Birkhuser Boston (2005). [12] Alur, R., Courcoubetis, C., Halbwachs, N., Henzinger, T., Ho, P.-H...Modeling and Simulation of an Unmanned Ground Vehicle Power System John Brodericka∗, Jack Hartnerb, Dawn Tilburya, and Ella Atkinsa aThe University

  14. Application of parallelized software architecture to an autonomous ground vehicle

    Science.gov (United States)

    Shakya, Rahul; Wright, Adam; Shin, Young Ho; Momin, Orko; Petkovsek, Steven; Wortman, Paul; Gautam, Prasanna; Norton, Adam

    2011-01-01

    This paper presents improvements made to Q, an autonomous ground vehicle designed to participate in the Intelligent Ground Vehicle Competition (IGVC). For the 2010 IGVC, Q was upgraded with a new parallelized software architecture and a new vision processor. Improvements were made to the power system reducing the number of batteries required for operation from six to one. In previous years, a single state machine was used to execute the bulk of processing activities including sensor interfacing, data processing, path planning, navigation algorithms and motor control. This inefficient approach led to poor software performance and made it difficult to maintain or modify. For IGVC 2010, the team implemented a modular parallel architecture using the National Instruments (NI) LabVIEW programming language. The new architecture divides all the necessary tasks - motor control, navigation, sensor data collection, etc. into well-organized components that execute in parallel, providing considerable flexibility and facilitating efficient use of processing power. Computer vision is used to detect white lines on the ground and determine their location relative to the robot. With the new vision processor and some optimization of the image processing algorithm used last year, two frames can be acquired and processed in 70ms. With all these improvements, Q placed 2nd in the autonomous challenge.

  15. Learning Mobility: Adaptive Control Algorithms for the Novel Unmanned Ground Vehicle (NUGV)

    National Research Council Canada - National Science Library

    Blackburn, Mike

    2003-01-01

    Mobility is a serious limiting factor in the usefulness of unmanned ground vehicles, This paper contains a description of our approach to develop control algorithms for the Novel Unmanned Ground Vehicle (NUGV...

  16. An SINS/GNSS Ground Vehicle Gravimetry Test Based on SGA-WZ02

    Directory of Open Access Journals (Sweden)

    Ruihang Yu

    2015-09-01

    Full Text Available In March 2015, a ground vehicle gravimetry test was implemented in eastern Changsha to assess the repeatability and accuracy of ground vehicle SINS/GNSS gravimeter—SGA-WZ02. The gravity system developed by NUDT consisted of a Strapdown Inertial Navigation System (SINS, a Global Navigation Satellite System (GNSS remote station on test vehicle, a GNSS static master station on the ground, and a data logging subsystem. A south-north profile of 35 km along the highway in eastern Changsha was chosen and four repeated available measure lines were obtained. The average speed of a vehicle is 40 km/h. To assess the external ground gravity disturbances, precise ground gravity data was built by CG-5 precise gravimeter as the reference. Under relative smooth conditions, internal accuracy among repeated lines shows an average agreement at the level of 1.86 mGal for half wavelengths about 1.1 km, and 1.22 mGal for 1.7 km. The root-mean-square (RMS of difference between calculated gravity data and reference data is about 2.27 mGal/1.1 km, and 1.74 mGal/1.7 km. Not all of the noises caused by vehicle itself and experiments environments were eliminated in the primary results. By means of selecting reasonable filters and improving the GNSS observation conditions, further developments in ground vehicle gravimetry are promising.

  17. The 20th annual intelligent ground vehicle competition: building a generation of robotists

    Science.gov (United States)

    Theisen, Bernard L.; Kosinski, Andrew

    2013-01-01

    The Intelligent Ground Vehicle Competition (IGVC) is one of four, unmanned systems, student competitions that were founded by the Association for Unmanned Vehicle Systems International (AUVSI). The IGVC is a multidisciplinary exercise in product realization that challenges college engineering student teams to integrate advanced control theory, machine vision, vehicular electronics and mobile platform fundamentals to design and build an unmanned system. Teams from around the world focus on developing a suite of dual-use technologies to equip ground vehicles of the future with intelligent driving capabilities. Over the past 20 years, the competition has challenged undergraduate, graduate and Ph.D. students with real world applications in intelligent transportation systems, the military and manufacturing automation. To date, teams from over 80 universities and colleges have participated. This paper describes some of the applications of the technologies required by this competition and discusses the educational benefits. The primary goal of the IGVC is to advance engineering education in intelligent vehicles and related technologies. The employment and professional networking opportunities created for students and industrial sponsors through a series of technical events over the four-day competition are highlighted. Finally, an assessment of the competition based on participation is presented.

  18. Space imaging infrared optical guidance for autonomous ground vehicle

    Science.gov (United States)

    Akiyama, Akira; Kobayashi, Nobuaki; Mutoh, Eiichiro; Kumagai, Hideo; Yamada, Hirofumi; Ishii, Hiromitsu

    2008-08-01

    We have developed the Space Imaging Infrared Optical Guidance for Autonomous Ground Vehicle based on the uncooled infrared camera and focusing technique to detect the objects to be evaded and to set the drive path. For this purpose we made servomotor drive system to control the focus function of the infrared camera lens. To determine the best focus position we use the auto focus image processing of Daubechies wavelet transform technique with 4 terms. From the determined best focus position we transformed it to the distance of the object. We made the aluminum frame ground vehicle to mount the auto focus infrared unit. Its size is 900mm long and 800mm wide. This vehicle mounted Ackerman front steering system and the rear motor drive system. To confirm the guidance ability of the Space Imaging Infrared Optical Guidance for Autonomous Ground Vehicle we had the experiments for the detection ability of the infrared auto focus unit to the actual car on the road and the roadside wall. As a result the auto focus image processing based on the Daubechies wavelet transform technique detects the best focus image clearly and give the depth of the object from the infrared camera unit.

  19. Teleoperated Visual Inspection and Surveillance with Unmanned Ground and Aerial Vehicles

    Directory of Open Access Journals (Sweden)

    Viatcheslav Tretyakov

    2008-11-01

    Full Text Available This paper introduces our robotic system named UGAV (Unmanned Ground-Air Vehicle consisting of two semi-autonomous robot platforms, an Unmanned Ground Vehicle (UGV and an Unmanned Aerial Vehicles (UAV. The paper focuses on three topics of the inspection with the combined UGV and UAV: (A teleoperated control by means of cell or smart phones with a new concept of automatic configuration of the smart phone based on a RKI-XML description of the vehicles control capabilities, (B the camera and vision system with the focus to real time feature extraction e.g. for the tracking of the UAV and (C the architecture and hardware of the UAV

  20. Assessing the ground vibrations produced by a heavy vehicle traversing a traffic obstacle.

    Science.gov (United States)

    Ducarne, Loïc; Ainalis, Daniel; Kouroussis, Georges

    2018-01-15

    Despite advancements in alternative transport networks, road transport remains the dominant mode in many modern and developing countries. The ground-borne motions produced by the passage of a heavy vehicle over a geometric obstacle (e.g. speed hump, train tracks) pose a fundamental problem in transport annoyance in urban areas. In order to predict the ground vibrations generated by the passage of a heavy vehicle over a geometric obstacle, a two-step numerical model is developed. The first step involves simulating the dynamic loads generated by the heavy vehicle using a multibody approach, which includes the tyre-obstacle-ground interaction. The second step involves the simulation of the ground wave propagation using a three dimensional finite element model. The simulation is able to be decoupled due to the large difference in stiffness between the vehicle's tyres and the road. First, the two-step model is validated using an experimental case study available in the literature. A sensitivity analysis is then presented, examining the influence of various factors on the generated ground vibrations. Factors investigated include obstacle shape, obstacle dimensions, vehicle speed, and tyre stiffness. The developed model can be used as a tool in the early planning stages to predict the ground vibrations generated by the passage of a heavy vehicle over an obstacle in urban areas. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. NASA Planning for Orion Multi-Purpose Crew Vehicle Ground Operations

    Science.gov (United States)

    Letchworth, Gary; Schlierf, Roland

    2011-01-01

    The NASA Orion Ground Processing Team was originally formed by the Kennedy Space Center (KSC) Constellation (Cx) Project Office's Orion Division to define, refine and mature pre-launch and post-landing ground operations for the Orion human spacecraft. The multidisciplined KSC Orion team consisted of KSC civil servant, SAIC, Productivity Apex, Inc. and Boeing-CAPPS engineers, project managers and safety engineers, as well as engineers from Constellation's Orion Project and Lockheed Martin Orion Prime contractor. The team evaluated the Orion design configurations as the spacecraft concept matured between Systems Design Review (SDR), Systems Requirement Review (SRR) and Preliminary Design Review (PDR). The team functionally decomposed prelaunch and post-landing steps at three levels' of detail, or tiers, beginning with functional flow block diagrams (FFBDs). The third tier FFBDs were used to build logic networks and nominal timelines. Orion ground support equipment (GSE) was identified and mapped to each step. This information was subsequently used in developing lower level operations steps in a Ground Operations Planning Document PDR product. Subject matter experts for each spacecraft and GSE subsystem were used to define 5th - 95th percentile processing times for each FFBD step, using the Delphi Method. Discrete event simulations used this information and the logic network to provide processing timeline confidence intervals for launch rate assessments. The team also used the capabilities of the KSC Visualization Lab, the FFBDs and knowledge of the spacecraft, GSE and facilities to build visualizations of Orion pre-launch and postlanding processing at KSC. Visualizations were a powerful tool for communicating planned operations within the KSC community (i.e., Ground Systems design team), and externally to the Orion Project, Lockheed Martin spacecraft designers and other Constellation Program stakeholders during the SRR to PDR timeframe. Other operations planning

  2. A model predictive speed tracking control approach for autonomous ground vehicles

    Science.gov (United States)

    Zhu, Min; Chen, Huiyan; Xiong, Guangming

    2017-03-01

    This paper presents a novel speed tracking control approach based on a model predictive control (MPC) framework for autonomous ground vehicles. A switching algorithm without calibration is proposed to determine the drive or brake control. Combined with a simple inverse longitudinal vehicle model and adaptive regulation of MPC, this algorithm can make use of the engine brake torque for various driving conditions and avoid high frequency oscillations automatically. A simplified quadratic program (QP) solving algorithm is used to reduce the computational time, and the approach has been applied in a 16-bit microcontroller. The performance of the proposed approach is evaluated via simulations and vehicle tests, which were carried out in a range of speed-profile tracking tasks. With a well-designed system structure, high-precision speed control is achieved. The system can robustly model uncertainty and external disturbances, and yields a faster response with less overshoot than a PI controller.

  3. Systems Engineering Approach To Ground Combat Vehicle Survivability In Urban Operations

    Science.gov (United States)

    2016-09-01

    GROUND COMBAT VEHICLE SURVIVABILITY IN URBAN OPERATIONS 5. FUNDING NUMBERS N/A 6. AUTHOR(S) Luhai Wong 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS...distance of 100m in the model , which is reasonable due to the constrained nature of an urban environment. This thesis also uses the key parameters...ENGINEERING APPROACH TO GROUND COMBAT VEHICLE SURVIVABILITY IN URBAN OPERATIONS by Luhai Wong September 2016 Thesis Advisor: Christopher A

  4. Investigations into near-real-time surveying for geophysical data collection using an autonomous ground vehicle

    Science.gov (United States)

    Phelps, Geoffrey A.; Ippolito, C.; Lee, R.; Spritzer, R.; Yeh, Y.

    2014-01-01

    The U.S. Geological Survey and the National Aeronautics and Space Administration are cooperatively investigating the utility of unmanned vehicles for near-real-time autonomous surveys of geophysical data collection. Initially focused on unmanned ground vehicle collection of magnetic data, this cooperative effort has brought unmanned surveying, precision guidance, near-real-time communication, on-the-fly data processing, and near-real-time data interpretation into the realm of ground geophysical surveying, all of which offer advantages over current methods of manned collection of ground magnetic data. An unmanned ground vehicle mission has demonstrated that these vehicles can successfully complete missions to collect geophysical data, and add advantages in data collection, processing, and interpretation. We view the current experiment as an initial phase in further unmanned vehicle data-collection missions, including aerial surveying.

  5. Wavelet-based ground vehicle recognition using acoustic signals

    Science.gov (United States)

    Choe, Howard C.; Karlsen, Robert E.; Gerhart, Grant R.; Meitzler, Thomas J.

    1996-03-01

    We present, in this paper, a wavelet-based acoustic signal analysis to remotely recognize military vehicles using their sound intercepted by acoustic sensors. Since expedited signal recognition is imperative in many military and industrial situations, we developed an algorithm that provides an automated, fast signal recognition once implemented in a real-time hardware system. This algorithm consists of wavelet preprocessing, feature extraction and compact signal representation, and a simple but effective statistical pattern matching. The current status of the algorithm does not require any training. The training is replaced by human selection of reference signals (e.g., squeak or engine exhaust sound) distinctive to each individual vehicle based on human perception. This allows a fast archiving of any new vehicle type in the database once the signal is collected. The wavelet preprocessing provides time-frequency multiresolution analysis using discrete wavelet transform (DWT). Within each resolution level, feature vectors are generated from statistical parameters and energy content of the wavelet coefficients. After applying our algorithm on the intercepted acoustic signals, the resultant feature vectors are compared with the reference vehicle feature vectors in the database using statistical pattern matching to determine the type of vehicle from where the signal originated. Certainly, statistical pattern matching can be replaced by an artificial neural network (ANN); however, the ANN would require training data sets and time to train the net. Unfortunately, this is not always possible for many real world situations, especially collecting data sets from unfriendly ground vehicles to train the ANN. Our methodology using wavelet preprocessing and statistical pattern matching provides robust acoustic signal recognition. We also present an example of vehicle recognition using acoustic signals collected from two different military ground vehicles. In this paper, we will

  6. 41 CFR 101-39.307 - Grounds for withdrawal of vehicle.

    Science.gov (United States)

    2010-07-01

    ... VEHICLES 39-INTERAGENCY FLEET MANAGEMENT SYSTEMS 39.3-Use and Care of GSA Interagency Fleet Management... 41 Public Contracts and Property Management 2 2010-07-01 2010-07-01 true Grounds for withdrawal of vehicle. 101-39.307 Section 101-39.307 Public Contracts and Property Management Federal Property...

  7. Design of Fuzzy Enhanced Hierarchical Motion Stabilizing Controller of Unmanned Ground Vehicle in Three DimensionalSpace

    Directory of Open Access Journals (Sweden)

    Yue Ma

    2011-12-01

    Full Text Available In this paper, stabilizing control of tracked unmanned ground vehicle in 3-D space was presented. Firstly, models of major modules of tracked UGV were established. Next, to reveal the mechanism of disturbances applied on the UGV, two kinds of representative disturbances (slope and general disturbances in yaw motion were discussed in depth. Consequently, an attempting PID method was employed to compensate the impacts of disturbances andsimulation results proved the validity for disturbance incited by slope force, but revealed the lack for general disturbance on yaw motion. Finally, a hierarchical fuzzy controller combined with PID controller was proposed. In lower level, there were two PID controllers to compensate the disturbance of slope force, and on top level, the fuzzy logic controller was employed to correct the yaw motion error based on the differences between the model and the real UGV, which was able to guide the UGV maintain on the stable state. Simulation results demonstrated the excellent effectiveness of the newly designed controller.

  8. Magneto-rheological suspensions for improving ground vehicle's ride comfort, stability, and handling

    Science.gov (United States)

    Ahmadian, Mehdi

    2017-10-01

    A state-of-the-art discussion on the applications of magneto-rheological (MR) suspensions for improving ride comfort, handling, and stability in ground vehicles is discussed for both road and rail applications. A historical perspective on the discovery and engineering development of MR fluids is presented, followed by some of the common methods for modelling their non-Newtonian behaviour. The common modes of the MR fluids are discussed, along with the application of the fluid in valve mode for ground vehicles' dampers (or shock absorbers). The applications span across nearly all road vehicles, including automobiles, trains, semi-trucks, motorcycles, and even bicycles. For each type of vehicle, the results of some of the past studies is presented briefly, with reference to the originating study. It is discussed that Past experimental and modelling studies have indicated that MR suspensions provide clear advantages for ground vehicles that far surpasses the performance of passive suspension. For rail vehicles, the primary advantage is in terms of increasing the speed at which the onset of hunting occurs, whereas for road vehicles - mainly automobiles - the performance improvements are in terms of a better balance between vehicle ride, handling, and stability. To further elaborate on this point, a single-suspension model is used to develop an index-based approach for studying the compromise that is offered by vehicle suspensions, using the H2 optimisation approach. Evaluating three indices based on the sprung-mass acceleration, suspension rattlespace, and tyre deflection, it is clearly demonstrated that MR suspensions significantly improve road vehicle's ride comfort, stability, and handling in comparison with passive suspensions. For rail vehicles, the simulation results indicate that using MR suspensions with an on-off switching control can increase the speed at which the on-set of hunting occurs by as much as 50% to more than 300%.

  9. Unmanned Ground Vehicle Perception Using Thermal Infrared Cameras

    Science.gov (United States)

    Rankin, Arturo; Huertas, Andres; Matthies, Larry; Bajracharya, Max; Assad, Christopher; Brennan, Shane; Bellut, Paolo; Sherwin, Gary

    2011-01-01

    TIR cameras can be used for day/night Unmanned Ground Vehicle (UGV) autonomous navigation when stealth is required. The quality of uncooled TIR cameras has significantly improved over the last decade, making them a viable option at low speed Limiting factors for stereo ranging with uncooled LWIR cameras are image blur and low texture scenes TIR perception capabilities JPL has explored includes: (1) single and dual band TIR terrain classification (2) obstacle detection (pedestrian, vehicle, tree trunks, ditches, and water) (3) perception thru obscurants

  10. Intelligence algorithms for autonomous navigation in a ground vehicle

    Science.gov (United States)

    Petkovsek, Steve; Shakya, Rahul; Shin, Young Ho; Gautam, Prasanna; Norton, Adam; Ahlgren, David J.

    2012-01-01

    This paper will discuss the approach to autonomous navigation used by "Q," an unmanned ground vehicle designed by the Trinity College Robot Study Team to participate in the Intelligent Ground Vehicle Competition (IGVC). For the 2011 competition, Q's intelligence was upgraded in several different areas, resulting in a more robust decision-making process and a more reliable system. In 2010-2011, the software of Q was modified to operate in a modular parallel manner, with all subtasks (including motor control, data acquisition from sensors, image processing, and intelligence) running simultaneously in separate software processes using the National Instruments (NI) LabVIEW programming language. This eliminated processor bottlenecks and increased flexibility in the software architecture. Though overall throughput was increased, the long runtime of the image processing process (150 ms) reduced the precision of Q's realtime decisions. Q had slow reaction times to obstacles detected only by its cameras, such as white lines, and was limited to slow speeds on the course. To address this issue, the image processing software was simplified and also pipelined to increase the image processing throughput and minimize the robot's reaction times. The vision software was also modified to detect differences in the texture of the ground, so that specific surfaces (such as ramps and sand pits) could be identified. While previous iterations of Q failed to detect white lines that were not on a grassy surface, this new software allowed Q to dynamically alter its image processing state so that appropriate thresholds could be applied to detect white lines in changing conditions. In order to maintain an acceptable target heading, a path history algorithm was used to deal with local obstacle fields and GPS waypoints were added to provide a global target heading. These modifications resulted in Q placing 5th in the autonomous challenge and 4th in the navigation challenge at IGVC.

  11. Infrared stereo calibration for unmanned ground vehicle navigation

    Science.gov (United States)

    Harguess, Josh; Strange, Shawn

    2014-06-01

    The problem of calibrating two color cameras as a stereo pair has been heavily researched and many off-the-shelf software packages, such as Robot Operating System and OpenCV, include calibration routines that work in most cases. However, the problem of calibrating two infrared (IR) cameras for the purposes of sensor fusion and point could generation is relatively new and many challenges exist. We present a comparison of color camera and IR camera stereo calibration using data from an unmanned ground vehicle. There are two main challenges in IR stereo calibration; the calibration board (material, design, etc.) and the accuracy of calibration pattern detection. We present our analysis of these challenges along with our IR stereo calibration methodology. Finally, we present our results both visually and analytically with computed reprojection errors.

  12. Pneumatic vehicle. Research and design

    Directory of Open Access Journals (Sweden)

    Lokodi Zsolt

    2011-12-01

    Full Text Available This experimental vehicle was designed for an international competition organized by Bosch Rexroth yearly in Hungary. The purpose of this competition is to design, build and race vehicles with a fuel source of compressed gas. The race consists of multiple events: longest run distance, the smartness track and the best acceleration event. These events test to the limit the capabilities of the designed vehicles.

  13. Deployment of Shaped Charges by a Semi-Autonomous Ground Vehicle

    National Research Council Canada - National Science Library

    Herkamp, John F

    2007-01-01

    .... BigFoot incorporates improved communication range over previous Autonomous Ground Vehicles and an updated user interface that includes controls for the arm and camera by interfacing multiple microprocessor...

  14. Hyper-X Mach 7 Scramjet Design, Ground Test and Flight Results

    Science.gov (United States)

    Ferlemann, Shelly M.; McClinton, Charles R.; Rock, Ken E.; Voland, Randy T.

    2005-01-01

    The successful Mach 7 flight test of the Hyper-X (X-43) research vehicle has provided the major, essential demonstration of the capability of the airframe integrated scramjet engine. This flight was a crucial first step toward realizing the potential for airbreathing hypersonic propulsion for application to space launch vehicles. However, it is not sufficient to have just achieved a successful flight. The more useful knowledge gained from the flight is how well the prediction methods matched the actual test results in order to have confidence that these methods can be applied to the design of other scramjet engines and powered vehicles. The propulsion predictions for the Mach 7 flight test were calculated using the computer code, SRGULL, with input from computational fluid dynamics (CFD) and wind tunnel tests. This paper will discuss the evolution of the Mach 7 Hyper-X engine, ground wind tunnel experiments, propulsion prediction methodology, flight results and validation of design methods.

  15. Real-Time and High-Fidelity Simulation Environment for Autonomous Ground Vehicle Dynamics

    Science.gov (United States)

    Cameron, Jonathan; Myint, Steven; Kuo, Calvin; Jain, Abhi; Grip, Havard; Jayakumar, Paramsothy; Overholt, Jim

    2013-01-01

    This paper reports on a collaborative project between U.S. Army TARDEC and Jet Propulsion Laboratory (JPL) to develop a unmanned ground vehicle (UGV) simulation model using the ROAMS vehicle modeling framework. Besides modeling the physical suspension of the vehicle, the sensing and navigation of the HMMWV vehicle are simulated. Using models of urban and off-road environments, the HMMWV simulation was tested in several ways, including navigation in an urban environment with obstacle avoidance and the performance of a lane change maneuver.

  16. A usage-centered evaluation methodology for unmanned ground vehicles

    NARCIS (Netherlands)

    Diggelen, J. van; Looije, R.; Mioch, T.; Neerincx, M.A.; Smets, N.J.J.M.

    2012-01-01

    This paper presents a usage-centered evaluation method to assess the capabilities of a particular Unmanned Ground Vehicle (UGV) for establishing the operational goals. The method includes a test battery consisting of basic tasks (e.g., slalom, funnel driving, object detection). Tests can be of

  17. Achieving integrated convoys: cargo unmanned ground vehicle development and experimentation

    Science.gov (United States)

    Zych, Noah; Silver, David; Stager, David; Green, Colin; Pilarski, Thomas; Fischer, Jacob

    2013-05-01

    The Cargo UGV project was initiated in 2010 with the aim of developing and experimenting with advanced autonomous vehicles capable of being integrated unobtrusively into manned logistics convoys. The intent was to validate two hypotheses in complex, operationally representative environments: first, that unmanned tactical wheeled vehicles provide a force protection advantage by creating standoff distance to warfighters during ambushes or improvised explosive device attacks; and second, that these UGVs serve as force multipliers by enabling a single operator to control multiple unmanned assets. To assess whether current state-of-the-art autonomous vehicle technology was sufficiently capable to permit resupply missions to be executed with decreased risk and reduced manpower, and to assess the effect of UGVs on customary convoy tactics, the Marine Corps Warfighting Laboratory and the Joint Ground Robotics Enterprise sponsored Oshkosh Defense and the National Robotics Engineering Center to equip two standard Marine Corps cargo trucks for autonomous operation. This paper details the system architecture, hardware implementation, and software modules developed to meet the vehicle control, perception, and planner requirements compelled by this application. Additionally, the design of a custom human machine interface and an accompanying training program are described, as is the creation of a realistic convoy simulation environment for rapid system development. Finally, results are conveyed from a warfighter experiment in which the effectiveness of the training program for novice operators was assessed, and the impact of the UGVs on convoy operations was observed in a variety of scenarios via direct comparison to a fully manned convoy.

  18. Creation of the Driver Fixed Heel Point (FHP) CAD Accommodation Model for Military Ground Vehicle Design

    Science.gov (United States)

    2016-08-04

    Standard: Human Engineering, 2012. The unifying factor amongst these is the requirement to accommodate the central 90% of the Soldier population. MIL...STD-1472G provides little quantitative guidance for vehicle layout , so it is open to interpretation and is difficult for designers to apply...seats, in which the crew are required to interact with vehicle controls and displays using hands and forward vision (Zerehsaz, Ebert, and Reed, 2014

  19. Design, testing, and performance of a hybrid micro vehicle---The Hopping Rotochute

    Science.gov (United States)

    Beyer, Eric W.

    The Hopping Rotochute is a new hybrid micro vehicle that has been developed to robustly explore environments with rough terrain while minimizing energy consumption over long periods of time. The device consists of a small coaxial rotor system housed inside a lightweight cage. The vehicle traverses an area by intermittently powering a small electric motor which drives the rotor system, allowing the vehicle to hop over obstacles of various shapes and sizes. A movable internal mass controls the direction of travel while the egg-like exterior shape and low mass center allows the vehicle to passively reorient itself to an upright attitude when in contact with the ground. This dissertation presents the design, fabrication, and testing of a radio-controlled Hopping Rotochute prototype as well as an analytical study of the flight performance of the device. The conceptual design iterations are first outlined which were driven by the mission and system requirements assigned to the vehicle. The aerodynamic, mechanical, and electrical design of a prototype is then described, based on the final conceptual design, with particular emphasis on the fundamental trades that must be negotiated for this type of hopping vehicle. The fabrication and testing of this prototype is detailed as well as experimental results obtained from a motion capture system. Basic flight performance of the prototype are reported which demonstrates that the Hopping Rotochute satisfies all appointed system requirements. A dynamic model of the Hopping Rotochute is also developed in this thesis and employed to predict the flight performance of the vehicle. The dynamic model includes aerodynamic loads from the body and rotor system as well as a soft contact model to estimate the forces and moments during ground contact. The experimental methods used to estimate the dynamic model parameters are described while comparisons between measured and simulated motion are presented. Good correlation between these motions

  20. Research on application of LADAR in ground vehicle recognition

    Science.gov (United States)

    Lan, Jinhui; Shen, Zhuoxun

    2009-11-01

    For the requirement of many practical applications in the field of military, the research of 3D target recognition is active. The representation that captures the salient attributes of a 3D target independent of the viewing angle will be especially useful to the automatic 3D target recognition system. This paper presents a new approach of image generation based on Laser Detection and Ranging (LADAR) data. Range image of target is obtained by transformation of point cloud. In order to extract features of different ground vehicle targets and to recognize targets, zernike moment properties of typical ground vehicle targets are researched in this paper. A technique of support vector machine is applied to the classification and recognition of target. The new method of image generation and feature representation has been applied to the outdoor experiments. Through outdoor experiments, it can be proven that the method of image generation is stability, the moments are effective to be used as features for recognition, and the LADAR can be applied to the field of 3D target recognition.

  1. Estimating Hedonic Price Indices for Ground Vehicles

    Science.gov (United States)

    2015-06-01

    I N S T I T U T E F O R D E F E N S E A N A L Y S E S Estimating Hedonic Price Indices for Ground Vehicles (Presentation) David M. Tate Stanley...gathering and maintaining the data needed , and completing and reviewing the collection of information. Send comments regarding this burden estimate or any...currently valid OMB control number. 1. REPORT DATE JUN 2015 2. REPORT TYPE 3. DATES COVERED 4. TITLE AND SUBTITLE Estimating Hedonic Price

  2. A Large-Scale Design Integration Approach Developed in Conjunction with the Ares Launch Vehicle Program

    Science.gov (United States)

    Redmon, John W.; Shirley, Michael C.; Kinard, Paul S.

    2012-01-01

    This paper presents a method for performing large-scale design integration, taking a classical 2D drawing envelope and interface approach and applying it to modern three dimensional computer aided design (3D CAD) systems. Today, the paradigm often used when performing design integration with 3D models involves a digital mockup of an overall vehicle, in the form of a massive, fully detailed, CAD assembly; therefore, adding unnecessary burden and overhead to design and product data management processes. While fully detailed data may yield a broad depth of design detail, pertinent integration features are often obscured under the excessive amounts of information, making them difficult to discern. In contrast, the envelope and interface method results in a reduction in both the amount and complexity of information necessary for design integration while yielding significant savings in time and effort when applied to today's complex design integration projects. This approach, combining classical and modern methods, proved advantageous during the complex design integration activities of the Ares I vehicle. Downstream processes, benefiting from this approach by reducing development and design cycle time, include: Creation of analysis models for the Aerodynamic discipline; Vehicle to ground interface development; Documentation development for the vehicle assembly.

  3. Advances in fuel cell vehicle design

    Science.gov (United States)

    Bauman, Jennifer

    Factors such as global warming, dwindling fossil fuel reserves, and energy security concerns combine to indicate that a replacement for the internal combustion engine (ICE) vehicle is needed. Fuel cell vehicles have the potential to address the problems surrounding the ICE vehicle without imposing any significant restrictions on vehicle performance, driving range, or refuelling time. Though there are currently some obstacles to overcome before attaining the widespread commercialization of fuel cell vehicles, such as improvements in fuel cell and battery durability, development of a hydrogen infrastructure, and reduction of high costs, the fundamental concept of the fuel cell vehicle is strong: it is efficient, emits zero harmful emissions, and the hydrogen fuel can be produced from various renewable sources. Therefore, research on fuel cell vehicle design is imperative in order to improve vehicle performance and durability, increase efficiency, and reduce costs. This thesis makes a number of key contributions to the advancement of fuel cell vehicle design within two main research areas: powertrain design and DC/DC converters. With regards to powertrain design, this research first analyzes various powertrain topologies and energy storage system types. Then, a novel fuel cell-battery-ultracapacitor topology is presented which shows reduced mass and cost, and increased efficiency, over other promising topologies found in the literature. A detailed vehicle simulator is created in MATLAB/Simulink in order to simulate and compare the novel topology with other fuel cell vehicle powertrain options. A parametric study is performed to optimize each powertrain and general conclusions for optimal topologies, as well as component types and sizes, for fuel cell vehicles are presented. Next, an analytical method to optimize the novel battery-ultracapacitor energy storage system based on maximizing efficiency, and minimizing cost and mass, is developed. This method can be applied

  4. Electrical Ground System Design of PEFP

    International Nuclear Information System (INIS)

    Mun, Kyeong Jun; Jeon, Gye Po; Park, Sung Sik; Min, Yi Sub; Nam, Jung Min; Cho, Jang Hyung; Kim, Jun Yeon

    2010-01-01

    Since host site host site was selected Gyeong-ju city in January, 2006. we need design revision of Proton Accelerator research center to reflect on host site characteristics and several conditions. In this paper, electrical grounding and lightning protection design scheme is introduced. In electrical grounding system design of PEFP, we classified electrical facilities into 4 groups; equipment grounding (type A), instrument grounding (Type A), high frequency instrument grounding (Type C) and lightning arrestor grounding (Type D). Lightning protection system is designed in all buildings of proton accelerator research center of PEFP, including switchyard

  5. Electrical Ground System Design of PEFP

    Energy Technology Data Exchange (ETDEWEB)

    Mun, Kyeong Jun; Jeon, Gye Po; Park, Sung Sik; Min, Yi Sub; Nam, Jung Min; Cho, Jang Hyung; Kim, Jun Yeon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2010-10-15

    Since host site host site was selected Gyeong-ju city in January, 2006. we need design revision of Proton Accelerator research center to reflect on host site characteristics and several conditions. In this paper, electrical grounding and lightning protection design scheme is introduced. In electrical grounding system design of PEFP, we classified electrical facilities into 4 groups; equipment grounding (type A), instrument grounding (Type A), high frequency instrument grounding (Type C) and lightning arrestor grounding (Type D). Lightning protection system is designed in all buildings of proton accelerator research center of PEFP, including switchyard

  6. An Artificial-Gravity Space-Settlement Ground-Analogue Design Concept

    Science.gov (United States)

    Dorais, Gregory A.

    2016-01-01

    The design concept of a modular and extensible hypergravity facility is presented. Several benefits of this facility are described including that the facility is suitable as a full-scale artificial-gravity space-settlement ground analogue for humans, animals, and plants for indefinite durations. The design is applicable as an analogue for on-orbit settlements as well as those on moons, asteroids, and Mars. The design creates an extremely long-arm centrifuge using a multi-car hypergravity vehicle travelling on one or more concentric circular tracks. This design supports the simultaneous generation of multiple-gravity levels to explore the feasibility and value of and requirements for such space-settlement designs. The design synergizes a variety of existing technologies including centrifuges, tilting trains, roller coasters, and optionally magnetic levitation. The design can be incrementally implemented such that the facility can be operational for a small fraction of the cost and time required for a full implementation. Brief concept of operation examples are also presented.

  7. Design And Ground Testing For The Expert PL4/PL5 'Natural And Roughness Induced Transition'

    Science.gov (United States)

    Masutti, Davie; Chazot, Olivier; Donelli, Raffaele; de Rosa, Donato

    2011-05-01

    Unpredicted boundary layer transition can impact dramatically the stability of the vehicle, its aerodynamic coefficients and reduce the efficiency of the thermal protection system. In this frame, ESA started the EXPERT (European eXPErimental Reentry Testbed) program to pro- vide and perform in-flight experiments in order to obtain aerothermodynamic data for the validation of numerical models and of ground-to-flight extrapolation methodologies. Considering the boundary layer transition investigation, the EXPERT vehicle is equipped with two specific payloads, PL4 and PL5, concerning respectively the study of the natural and roughness induced transition. The paper is a survey on the design process of these two in-flight experiments and it covers the major analyses and findings encountered during the development of the payloads. A large amount of transition criteria have been investigated and used to estimate either the dangerousness of the height of the distributed roughness, arising due to nose erosion, or the effectiveness of height of the isolated roughness element forcing the boundary layer transition. Supporting the PL4 design, linear stability computations and CFD analyses have been performed by CIRA on the EXPERT flight vehicle to determine the amplification factor of the boundary layer instabilities at different point of the re-entry trajectory. Ground test experiments regarding the PL5 are carried on in the Mach 6 VKI H3 Hypersonic Wind Tunnel with a Reynolds numbers ranging from 18E6/m to 26E6/m. Infrared measurements (Stanton number) and flow visualization are used on a 1/16 scaled model of the EXPERT vehicle and a flat plate to validate the Potter and Whitfield criterion as a suitable methodology for ground-to-flight extrapolation and the payload design.

  8. The design of electric vehicle intelligent charger

    Science.gov (United States)

    Xu, Yangyang; Wang, Ying

    2018-05-01

    As the situation of the lack of energy and environment pollution deteriorates rapidly, electric vehicle, a new type of traffic tool, is being researched worldwide. As the core components of electric vehicle, the battery and charger's performance play an important roles in the quality of electric vehicle. So the design of the Electric Vehicle Intelligent Charger based on language-C is designed in this paper. The hardware system is used to produce the input signals of Electric Vehicle Intelligent Charger. The software system adopts the language-C software as development environment. The design can accomplish the test of the parametric such as voltage-current and temperature.

  9. Standards and Specifications for Ground Processing of Space Vehicles: From an Aviation-Based Shuttle Project to Global Application

    Science.gov (United States)

    Ingalls, John; Cipolletti, John

    2011-01-01

    Proprietary or unique designs and operations are expected early in any industry's development, and often provide a competitive early market advantage. However, there comes a time when a product or industry requires standardization for the whole industry to advance...or survive. For the space industry, that time has come. Here, we will focus on standardization of ground processing for space vehicles and their ground systems. With the retirement of the Space Shuttle, and emergence of a new global space race, affordability and sustainability are more important now than ever. The growing commercialization of the space industry and current global economic environment are driving greater need for efficiencies to save time and money. More RLV's (Reusable Launch Vehicles) are being developed for the gains of reusability not achievable with traditional ELV's (Expendable Launch Vehicles). More crew/passenger vehicles are also being developed. All of this calls for more attention needed for ground processing-repeatedly before launch and after landing/recovery. RLV's should provide more efficiencies than ELV's, as long as MRO (Maintenance, Repair, and Overhaul) is well-planned-even for the unplanned problems. NASA's Space Shuttle is a primary example of an RLV which was supposed to thrive on reusability savings with efficient ground operations, but lessons learned show that costs were (and still are) much greater than expected. International standards and specifications can provide the commonality needed to simplify design and manufacturing as well as to improve safety, quality, maintenance, and operability. There are standards organizations engaged in the space industry, but ground processing is one of the areas least addressed. Challenges are encountered due to various factors often not considered during development. Multiple vehicle elements, sites, customers, and contractors pose various functional and integration difficulties. Resulting technical publication structures

  10. Probabilistic Tracking and Trajectory Planning for Autonomous Ground Vehicles in Urban Environments

    Science.gov (United States)

    2016-03-05

    Vehicles in Urban Environments The views, opinions and/or findings contained in this report are those of the author(s) and should not contrued as an...Pine Tree Road Ithaca, NY 14850 -2820 ABSTRACT Probabilistic Tracking and Trajectory Planning for Autonomous Ground Vehicles in Urban Environments...Probabilistic Anticipation for Autonomous Robots in Urban Environments, IEEE Transactions on Robotics, (04 2014): 0. doi: 10.1109/TRO.2013.2291620 Isaac

  11. Impact of mesh tracks and low-ground-pressure vehicle use on blanket peat hydrology

    Science.gov (United States)

    McKendrick-Smith, Kathryn; Holden, Joseph; Parry, Lauren

    2016-04-01

    Peatlands are subject to multiple uses including drainage, farming and recreation. Low-ground-pressure vehicle access is desirable by land owners and tracks facilitate access. However, there is concern that such activity may impact peat hydrology and so granting permission for track installation has been problematic, particularly without evidence for decision-making. We present the first comprehensive study of mesh track and low-ground-pressure vehicle impacts on peatland hydrology. In the sub-arctic oceanic climate of the Moor House World Biosphere Reserve in the North Pennines, UK, a 1.5 km long experimental track was installed to investigate hydrological impacts. Surface vegetation was cut and the plastic mesh track pinned into the peat surface. The experimental track was split into 7 treatments, designed to reflect typical track usage (0 - 5 vehicle passes per week) and varying vehicle weight. The greatest hydrological impacts were expected for sections of track subject to more frequent vehicle use and in close proximity to the track. In total 554 dipwells (including 15 automated recording at 15-min intervals) were monitored for water-table depth, positioned to capture potential spatial variability in response. Before track installation, samples for vertical and lateral hydraulic conductivity (Ks) analysis (using the modified cube method) were taken at 0-10 cm depth from a frequently driven treatment (n = 15), an infrequently driven treatment (0.5 passes per week) (n = 15) and a control site with no track/driving (n = 15). The test was repeated after 16 months of track use. We present a spatially and temporally rich water-table dataset from the study site showing how the impacts of the track on water table are spatially highly variable. Water-table depths across the site were shallow, typically within the upper 10 cm of the peat profile for > 75% of the time. We show that mesh track and low-ground-pressure vehicle impacts on water-table depth were small except

  12. Survivability design for a hybrid underwater vehicle

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Biao; Wu, Chao; Li, Xiang; Zhao, Qingkai; Ge, Tong [State Key Lab of Ocean Engineering, School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China)

    2015-03-10

    A novel hybrid underwater robotic vehicle (HROV) capable of working to the full ocean depth has been developed. The battery powered vehicle operates in two modes: operate as an untethered autonomous vehicle in autonomous underwater vehicle (AUV) mode and operate under remote control connected to the surface vessel by a lightweight, fiber optic tether in remotely operated vehicle (ROV) mode. Considering the hazardous underwater environment at the limiting depth and the hybrid operating modes, survivability has been placed on an equal level with the other design attributes of the HROV since the beginning of the project. This paper reports the survivability design elements for the HROV including basic vehicle design of integrated navigation and integrated communication, emergency recovery strategy, distributed architecture, redundant bus, dual battery package, emergency jettison system and self-repairing control system.

  13. Survivability design for a hybrid underwater vehicle

    International Nuclear Information System (INIS)

    Wang, Biao; Wu, Chao; Li, Xiang; Zhao, Qingkai; Ge, Tong

    2015-01-01

    A novel hybrid underwater robotic vehicle (HROV) capable of working to the full ocean depth has been developed. The battery powered vehicle operates in two modes: operate as an untethered autonomous vehicle in autonomous underwater vehicle (AUV) mode and operate under remote control connected to the surface vessel by a lightweight, fiber optic tether in remotely operated vehicle (ROV) mode. Considering the hazardous underwater environment at the limiting depth and the hybrid operating modes, survivability has been placed on an equal level with the other design attributes of the HROV since the beginning of the project. This paper reports the survivability design elements for the HROV including basic vehicle design of integrated navigation and integrated communication, emergency recovery strategy, distributed architecture, redundant bus, dual battery package, emergency jettison system and self-repairing control system

  14. Design of Launch Vehicle Flight Control Systems Using Ascent Vehicle Stability Analysis Tool

    Science.gov (United States)

    Jang, Jiann-Woei; Alaniz, Abran; Hall, Robert; Bedossian, Nazareth; Hall, Charles; Jackson, Mark

    2011-01-01

    A launch vehicle represents a complicated flex-body structural environment for flight control system design. The Ascent-vehicle Stability Analysis Tool (ASAT) is developed to address the complicity in design and analysis of a launch vehicle. The design objective for the flight control system of a launch vehicle is to best follow guidance commands while robustly maintaining system stability. A constrained optimization approach takes the advantage of modern computational control techniques to simultaneously design multiple control systems in compliance with required design specs. "Tower Clearance" and "Load Relief" designs have been achieved for liftoff and max dynamic pressure flight regions, respectively, in the presence of large wind disturbances. The robustness of the flight control system designs has been verified in the frequency domain Monte Carlo analysis using ASAT.

  15. Crewed Space Vehicle Battery Safety Requirements

    Science.gov (United States)

    Jeevarajan, Judith A.; Darcy, Eric C.

    2014-01-01

    This requirements document is applicable to all batteries on crewed spacecraft, including vehicle, payload, and crew equipment batteries. It defines the specific provisions required to design a battery that is safe for ground personnel and crew members to handle and/or operate during all applicable phases of crewed missions, safe for use in the enclosed environment of a crewed space vehicle, and safe for use in launch vehicles, as well as in unpressurized spaces adjacent to the habitable portion of a space vehicle. The required provisions encompass hazard controls, design evaluation, and verification. The extent of the hazard controls and verification required depends on the applicability and credibility of the hazard to the specific battery design and applicable missions under review. Evaluation of the design and verification program results shall be completed prior to certification for flight and ground operations. This requirements document is geared toward the designers of battery systems to be used in crewed vehicles, crew equipment, crew suits, or batteries to be used in crewed vehicle systems and payloads (or experiments). This requirements document also applies to ground handling and testing of flight batteries. Specific design and verification requirements for a battery are dependent upon the battery chemistry, capacity, complexity, charging, environment, and application. The variety of battery chemistries available, combined with the variety of battery-powered applications, results in each battery application having specific, unique requirements pertinent to the specific battery application. However, there are basic requirements for all battery designs and applications, which are listed in section 4. Section 5 includes a description of hazards and controls and also includes requirements.

  16. Model-based design approaches for plug-in hybrid vehicle design

    Energy Technology Data Exchange (ETDEWEB)

    Mendes, C.J. [CrossChasm Technologies, Cambridge, ON (Canada); Stevens, M.B.; Fowler, M.W. [Waterloo Univ., ON (Canada). Dept. of Chemical Engineering; Fraser, R.A. [Waterloo Univ., ON (Canada). Dept. of Mechanical Engineering; Wilhelm, E.J. [Paul Scherrer Inst., Villigen (Switzerland). Energy Systems Analysis

    2007-07-01

    A model-based design process for plug-in hybrid vehicles (PHEVs) was presented. The paper discussed steps between the initial design concept and a working vehicle prototype, and focused on an investigation of the software-in-the-loop (SIL), hardware-in-the-loop (HIL), and component-in-the-loop (CIL) design phases. The role and benefits of using simulation were also reviewed. A method for mapping and identifying components was provided along with a hybrid control strategy and component-level control optimization process. The role of simulation in component evaluation, architecture design, and de-bugging procedures was discussed, as well as the role simulation networks can play in speeding deployment times. The simulations focused on work performed on a 2005 Chevrolet Equinox converted to a fuel cell hybrid electric vehicle (FCHEV). Components were aggregated to create a complete virtual vehicle. A simplified vehicle model was implemented onto the on-board vehicle control hardware. Optimization metrics were estimated at 10 alpha values during each control loop iteration. The simulation was then used to tune the control system under a variety of drive cycles and conditions. A CIL technique was used to place a physical hybrid electric vehicle (HEV) component under the control of a real time HEV/PHEV simulation. It was concluded that controllers should have a standardized component description that supports integration into advanced testing procedures. 4 refs., 9 figs.

  17. Simulation of Ground Winds Time Series for the NASA Crew Launch Vehicle (CLV)

    Science.gov (United States)

    Adelfang, Stanley I.

    2008-01-01

    Simulation of wind time series based on power spectrum density (PSD) and spectral coherence models for ground wind turbulence is described. The wind models, originally developed for the Shuttle program, are based on wind measurements at the NASA 150-m meteorological tower at Cape Canaveral, FL. The current application is for the design and/or protection of the CLV from wind effects during on-pad exposure during periods from as long as days prior to launch, to seconds or minutes just prior to launch and seconds after launch. The evaluation of vehicle response to wind will influence the design and operation of constraint systems for support of the on-pad vehicle. Longitudinal and lateral wind component time series are simulated at critical vehicle locations. The PSD model for wind turbulence is a function of mean wind speed, elevation and temporal frequency. Integration of the PSD equation over a selected frequency range yields the variance of the time series to be simulated. The square root of the PSD defines a low-pass filter that is applied to adjust the components of the Fast Fourier Transform (FFT) of Gaussian white noise. The first simulated time series near the top of the launch vehicle is the inverse transform of the adjusted FFT. Simulation of the wind component time series at the nearest adjacent location (and all other succeeding next nearest locations) is based on a model for the coherence between winds at two locations as a function of frequency and separation distance, where the adjacent locations are separated vertically and/or horizontally. The coherence function is used to calculate a coherence weighted FFT of the wind at the next nearest location, given the FFT of the simulated time series at the previous location and the essentially incoherent FFT of the wind at the selected location derived a priori from the PSD model. The simulated time series at each adjacent location is the inverse Fourier transform of the coherence weighted FFT. For a selected

  18. An investigation of drag reduction on box-shaped ground vehicles

    Science.gov (United States)

    Muirhead, V. U.

    1976-01-01

    A wind tunnel investigation was conducted to determine the reduction in drag which could be obtained by making various configuration changes to a box-shaped ground vehicle. Tests were conducted at yaw (relative wind) angles of 0, 5, 10, 20, and 30 degrees and Reynolds numbers of 300,000 to 850,000. The power required to overcome the aerodynamic drag was reduced by a maximum of 73% for a head wind for the best configuration relative to the smooth bottom box-shape, or 75% relative to the rough bottom box-shape. The reduction for a 20 MPH wind at 30 deg to the vehicle path was, respectively, 77% and 79%.

  19. Unmanned Ground Vehicle for Autonomous Non-Destructive Testing of FRP Bridge Decks

    Science.gov (United States)

    Klinkhachorn, P.; Mercer, A. Scott; Halabe, Udaya B.; GangaRao, Hota V. S.

    2007-03-01

    Current non-destructive techniques for defect analysis of FRP bridge decks have a narrow scope. These techniques are very good at detecting certain types of defects but are not robust enough to detect all defects by themselves. For example, infrared thermography (IRT) can detect air filled defects and Ground Penetrating Radar (GPR) is good at detecting water filled ones. These technologies can be combined to create a more robust defect detection scheme. To accomplish this, an Unmanned Ground Vehicle (UGV) has been designed that incorporates both IR and GPR analysis to create a comprehensive defect map of a bridge deck. The UGV autonomously surveys the deck surface and acquires data. The UGV has two 1.5 GHz ground coupled GPR antennas that are mounted on the front of the UGV to collect GPR data. It also incorporates an active heating source and a radiometric IR camera to capture IR images of the deck, even in less than ideal weather scenarios such as cold cloudy days. The UGV is designed so that it can collect data in an assembly line fashion. It moves in 1 foot increments. When moving, it collects GPR data from the two antennas. When it stops it heats a section of the deck. The next time it stops to heat a section, the IR camera is analyzing the preheated deck section while preparing for the next section. Because the data is being continually collected using this method, the UGV can survey the entire deck in an efficient and timely manner.

  20. Comfort-oriented vehicle suspension design with skyhook inerter configuration

    Science.gov (United States)

    Hu, Yinlong; Chen, Michael Z. Q.; Sun, Yonghui

    2017-09-01

    This paper is concerned with the comfort-oriented vehicle suspension design problem by using a skyhook inerter configuration. The rationale of the skyhook inerter is to use a grounded inerter to virtually increase the sprung mass of a vehicle, as it is analytically demonstrated that increasing the sprung mass can always improve the ride comfort performance. Semi-active means to realize the skyhook inerter configuration are investigated by using semi-active inerters. Three control laws, that is the on-off control, the anti-chatter on-off control, and the continuous control, are proposed for the semi-active inerter to approximate the skyhook inerter. Numerical simulations are performed to demonstrate the effectiveness and performances of these control laws. It is shown that the semi-active realizations of the skyhook inerter by using the proposed control laws can achieve over 10% improvement compared with the traditional strut, and similar performances are obtained for these control laws, with slight differences with respect to different static stiffnesses of the suspension system.

  1. Automated mixed traffic vehicle design AMTV 2

    Science.gov (United States)

    Johnston, A. R.; Marks, R. A.; Cassell, P. L.

    1982-01-01

    The design of an improved and enclosed Automated Mixed Traffic Transit (AMTT) vehicle is described. AMTT is an innovative concept for low-speed tram-type transit in which suitable vehicles are equipped with sensors and controls to permit them to operate in an automated mode on existing road or walkway surfaces. The vehicle chassis and body design are presented in terms of sketches and photographs. The functional design of the sensing and control system is presented, and modifications which could be made to the baseline design for improved performance, in particular to incorporate a 20-mph capability, are also discussed. The vehicle system is described at the block-diagram-level of detail. Specifications and parameter values are given where available.

  2. Human-Automation Interaction Design for Adaptive Cruise Control Systems of Ground Vehicles

    Directory of Open Access Journals (Sweden)

    Hwisoo Eom

    2015-06-01

    Full Text Available A majority of recently developed advanced vehicles have been equipped with various automated driver assistance systems, such as adaptive cruise control (ACC and lane keeping assistance systems. ACC systems have several operational modes, and drivers can be unaware of the mode in which they are operating. Because mode confusion is a significant human error factor that contributes to traffic accidents, it is necessary to develop user interfaces for ACC systems that can reduce mode confusion. To meet this requirement, this paper presents a new human-automation interaction design methodology in which the compatibility of the machine and interface models is determined using the proposed criteria, and if the models are incompatible, one or both of the models is/are modified to make them compatible. To investigate the effectiveness of our methodology, we designed two new interfaces by separately modifying the machine model and the interface model and then performed driver-in-the-loop experiments. The results showed that modifying the machine model provides a more compact, acceptable, effective, and safe interface than modifying the interface model.

  3. Human-Automation Interaction Design for Adaptive Cruise Control Systems of Ground Vehicles.

    Science.gov (United States)

    Eom, Hwisoo; Lee, Sang Hun

    2015-06-12

    A majority of recently developed advanced vehicles have been equipped with various automated driver assistance systems, such as adaptive cruise control (ACC) and lane keeping assistance systems. ACC systems have several operational modes, and drivers can be unaware of the mode in which they are operating. Because mode confusion is a significant human error factor that contributes to traffic accidents, it is necessary to develop user interfaces for ACC systems that can reduce mode confusion. To meet this requirement, this paper presents a new human-automation interaction design methodology in which the compatibility of the machine and interface models is determined using the proposed criteria, and if the models are incompatible, one or both of the models is/are modified to make them compatible. To investigate the effectiveness of our methodology, we designed two new interfaces by separately modifying the machine model and the interface model and then performed driver-in-the-loop experiments. The results showed that modifying the machine model provides a more compact, acceptable, effective, and safe interface than modifying the interface model.

  4. Optimal Design of Integrated Systems Health Management (ISHM) Systems for improving safety in NASA's Exploration Vehicles: A Two-Level Multidisciplinary Design Approach

    Science.gov (United States)

    Mehr, Ali Farhang; Tumer, Irem; Barszcz, Eric

    2005-01-01

    Integrated Vehicle Health Management (ISHM) systems are used to detect, assess, and isolate functional failures in order to improve safety of space systems such as Orbital Space Planes (OSPs). An ISHM system, as a whole, consists of several subsystems that monitor different components of an OSP including: Spacecraft, Launch Vehicle, Ground Control, and the International Space Station. In this research, therefore, we propose a new methodology to design and optimize ISHM as a distributed system with multiple disciplines (that correspond to different subsystems of OSP safety). A paramount amount of interest has been given in the literature to the multidisciplinary design optimization of problems with such architecture (as will be reviewed in the full paper).

  5. The development of ground unmanned vehicles, driver assistance systems and components according to patent publications

    Science.gov (United States)

    Saykin, A. M.; Tuktakiev, G. S.; Zhuravlev, A. V.; Zaitseva, E. P.

    2018-02-01

    The paper contains the analysis of the main trends in the patenting of ground unmanned vehicles, driver assistance systems (ADAS) and unmanned vehicle components abroad during the period from 2010 to 2016. The conclusion was made that the intensity of their patenting abroad increased.

  6. Camouflage design and head measurement characteristic of Indonesian armoured vehicle helmet

    Science.gov (United States)

    Sya'bana, Yukhi Mustaqim Kusuma; Sanjaya, K. H.

    2017-01-01

    In this paper discussed camouflage design helmet for armored vehicles with comparing head measurement of Indonesian anthropometric. Design process conduct with considering of design aspects involves function, materials, operational, technology, user, and appearance (camouflage). As an application of Indonesian National Army that qualifies factors needs: safety, comfort, practical and service. MIL-H-44099A Military Specification: Helmet, Ground Troops And Parachutists is minimum limitation standard of military helmet production. Head measurement for product design process guide is presented. Model simulation and helmet measurement using the design for ego and design for more types ergonomics concept. Appearance shape concept is engaging camouflage towards background and environment to deceive enemy viewpoint. Helmet prototype has tested ergonomically to an Indonesian National Army soldier and stated that the helmet size is a comfort and fitted on the head when in use.

  7. Preventing passenger vehicle occupant injuries by vehicle design--a historical perspective from IIHS.

    Science.gov (United States)

    O'Neill, Brian

    2009-04-01

    Motor vehicle crashes result in some 1.2 million deaths and many more injuries worldwide each year and is one of the biggest public health problems facing societies today. This article reviews the history of, and future potential for, one important countermeasure-designing vehicles that reduce occupant deaths and injuries. For many years, people had urged automakers to add design features to reduce crash injuries, but it was not until the mid-1960s that the idea of pursuing vehicle countermeasures gained any significant momentum. In 1966, the U.S. Congress passed the National Traffic and Motor Vehicle Safety Act, requiring the government to issue a comprehensive set of vehicle safety standards. This was the first broad set of requirements issued anywhere in the world, and within a few years similar standards were adopted in Europe and Australia. Early vehicle safety standards specified a variety of safety designs resulting in cars being equipped with lap/shoulder belts, energy-absorbing steering columns, crash-resistant door locks, high-penetration-resistant windshields, etc. Later, the standards moved away from specifying particular design approaches and instead used crash tests and instrumented dummies to set limits on the potential for serious occupant injuries by crash mode. These newer standards paved the way for an approach that used the marketplace, in addition to government regulation, to improve vehicle safety designs-using crash tests and instrumented dummies to provide consumers with comparative safety ratings for new vehicles. The approach began in the late 1970s, when NHTSA started publishing injury measures from belted dummies in new passenger vehicles subjected to frontal barrier crash tests at speeds somewhat higher than specified in the corresponding regulation. This program became the world's first New Car Assessment Program (NCAP) and rated frontal crashworthiness by awarding stars (five stars being the best and one the worst) derived from head

  8. Single Fuel Concept for Croatian Army Ground Vehicles

    Directory of Open Access Journals (Sweden)

    Robert Spudić

    2008-05-01

    Full Text Available During the process of approaching the European associationsand NATO the Republic of Croatia has accepted the singlefuel concept for all ground vehicles of the Croatian Army.Croatia has also undertaken to insure that all aircraft, motorvehicles and equipment with turbo-engines or with pressurizedfuel injection, for participation in NATO and PfP led operationscan • operate using the kerosene-based aviation fuel(NATO F-34. The paper gives a brief overview and the resultsof the earned out activities in the Armed Forces of the Republicof Croatia, the expected behaviour of the motor vehicle andpossible delays caused by the use of kerosene fuel (NATOF-34 as fuel for motor vehicles. The paper also gives the advantagesand the drawbacks of the single fuel concept. By acquiringnew data in the Croatian Armed Forces and experienceexchange with other nations about the method of using fuelF-34, the development of the technologies of engine manufacturingand its vital parts or by introducing new standards in theproductjon of fuels and additives new knowledge will certainlybe acquired for providing logistics support in the area of operations,and its final implementation will be a big step forward forthe Republic of Croatia towards Europe and NATO.

  9. Effect of vertical ground motion on earthquake-induced derailment of railway vehicles over simply-supported bridges

    Science.gov (United States)

    Jin, Zhibin; Pei, Shiling; Li, Xiaozhen; Liu, Hongyan; Qiang, Shizhong

    2016-11-01

    The running safety of railway vehicles on bridges can be negatively affected by earthquake events. This phenomenon has traditionally been investigated with only the lateral ground excitation component considered. This paper presented results from a numerical investigation on the contribution of vertical ground motion component to the derailment of vehicles on simply-supported bridges. A full nonlinear wheel-rail contact model was used in the investigation together with the Hertzian contact theory and nonlinear creepage theory, which allows the wheel to jump vertically and separate from the rail. The wheel-rail relative displacement was used as the criterion for derailment events. A total of 18 ground motion records were used in the analysis to account for the uncertainty of ground motions. The results showed that inclusion of vertical ground motion will likely increase the chance of derailment. It is recommended to include vertical ground motion component in earthquake induced derailment analysis to ensure conservative estimations. The derailment event on bridges was found to be more closely related to the deck acceleration rather than the ground acceleration.

  10. Ground Vehicle System Integration (GVSI) and Design Optimization Model.

    Science.gov (United States)

    1996-07-30

    number of stowed kills Same basic load lasts longer range Gun/ammo parameters impact system weight, under - armor volume requirements Round volume...internal volume is reduced, the model assumes that the crew’s ability to operate while under armor will be impaired. If the size of a vehicle crew is...changing swept volume will alter under armor volume requirements for the total system; if system volume is fixed, changing swept volume will

  11. Optimization methods applied to hybrid vehicle design

    Science.gov (United States)

    Donoghue, J. F.; Burghart, J. H.

    1983-01-01

    The use of optimization methods as an effective design tool in the design of hybrid vehicle propulsion systems is demonstrated. Optimization techniques were used to select values for three design parameters (battery weight, heat engine power rating and power split between the two on-board energy sources) such that various measures of vehicle performance (acquisition cost, life cycle cost and petroleum consumption) were optimized. The apporach produced designs which were often significant improvements over hybrid designs already reported on in the literature. The principal conclusions are as follows. First, it was found that the strategy used to split the required power between the two on-board energy sources can have a significant effect on life cycle cost and petroleum consumption. Second, the optimization program should be constructed so that performance measures and design variables can be easily changed. Third, the vehicle simulation program has a significant effect on the computer run time of the overall optimization program; run time can be significantly reduced by proper design of the types of trips the vehicle takes in a one year period. Fourth, care must be taken in designing the cost and constraint expressions which are used in the optimization so that they are relatively smooth functions of the design variables. Fifth, proper handling of constraints on battery weight and heat engine rating, variables which must be large enough to meet power demands, is particularly important for the success of an optimization study. Finally, the principal conclusion is that optimization methods provide a practical tool for carrying out the design of a hybrid vehicle propulsion system.

  12. LWIR passive perception system for stealthy unmanned ground vehicle night operations

    Science.gov (United States)

    Lee, Daren; Rankin, Arturo; Huertas, Andres; Nash, Jeremy; Ahuja, Gaurav; Matthies, Larry

    2016-05-01

    Resupplying forward-deployed units in rugged terrain in the presence of hostile forces creates a high threat to manned air and ground vehicles. An autonomous unmanned ground vehicle (UGV) capable of navigating stealthily at night in off-road and on-road terrain could significantly increase the safety and success rate of such resupply missions for warfighters. Passive night-time perception of terrain and obstacle features is a vital requirement for such missions. As part of the ONR 30 Autonomy Team, the Jet Propulsion Laboratory developed a passive, low-cost night-time perception system under the ONR Expeditionary Maneuver Warfare and Combating Terrorism Applied Research program. Using a stereo pair of forward looking LWIR uncooled microbolometer cameras, the perception system generates disparity maps using a local window-based stereo correlator to achieve real-time performance while maintaining low power consumption. To overcome the lower signal-to-noise ratio and spatial resolution of LWIR thermal imaging technologies, a series of pre-filters were applied to the input images to increase the image contrast and stereo correlator enhancements were applied to increase the disparity density. To overcome false positives generated by mixed pixels, noisy disparities from repeated textures, and uncertainty in far range measurements, a series of consistency, multi-resolution, and temporal based post-filters were employed to improve the fidelity of the output range measurements. The stereo processing leverages multi-core processors and runs under the Robot Operating System (ROS). The night-time passive perception system was tested and evaluated on fully autonomous testbed ground vehicles at SPAWAR Systems Center Pacific (SSC Pacific) and Marine Corps Base Camp Pendleton, California. This paper describes the challenges, techniques, and experimental results of developing a passive, low-cost perception system for night-time autonomous navigation.

  13. Research overview : design specifications for hybrid vehicles

    NARCIS (Netherlands)

    Hofman, T.; Druten, van R.M.

    2004-01-01

    In this paper a method is proposed for determination of the design specifications regarding the energy exchange systems for different chargesustaining hybrid vehicles of different vehicle classes. Hybrid drivetrains for vehicles combine multiple power sources in order to increase the driving

  14. Robust H∞ output-feedback control for path following of autonomous ground vehicles

    Science.gov (United States)

    Hu, Chuan; Jing, Hui; Wang, Rongrong; Yan, Fengjun; Chadli, Mohammed

    2016-03-01

    This paper presents a robust H∞ output-feedback control strategy for the path following of autonomous ground vehicles (AGVs). Considering the vehicle lateral velocity is usually hard to measure with low cost sensor, a robust H∞ static output-feedback controller based on the mixed genetic algorithms (GA)/linear matrix inequality (LMI) approach is proposed to realize the path following without the information of the lateral velocity. The proposed controller is robust to the parametric uncertainties and external disturbances, with the parameters including the tire cornering stiffness, vehicle longitudinal velocity, yaw rate and road curvature. Simulation results based on CarSim-Simulink joint platform using a high-fidelity and full-car model have verified the effectiveness of the proposed control approach.

  15. Impact of Friction Reduction Technologies on Fuel Economy for Ground Vehicles

    Science.gov (United States)

    2009-08-13

    UNCLAS: Dist A. Approved for public release IMPACT OF FRICTION REDUCTION TECHNOLOGIES ON FUEL ECONOMY FOR GROUND VEHICLES G. R. Fenske , R. A. Erck...PROGRAM ELEMENT NUMBER 6. AUTHOR(S) G.R. Fenske ; R.A. Erck; O.O. Ajayi; A. Masoner’ A.S. Confort 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT

  16. Unmanned Ground Vehicle Navigation and Coverage Hole Patching in Wireless Sensor Networks

    Science.gov (United States)

    Zhang, Guyu

    2013-01-01

    This dissertation presents a study of an Unmanned Ground Vehicle (UGV) navigation and coverage hole patching in coordinate-free and localization-free Wireless Sensor Networks (WSNs). Navigation and coverage maintenance are related problems since coverage hole patching requires effective navigation in the sensor network environment. A…

  17. Application of a distributed systems architecture for increased speed in image processing on an autonomous ground vehicle

    Science.gov (United States)

    Wright, Adam A.; Momin, Orko; Shin, Young Ho; Shakya, Rahul; Nepal, Kumud; Ahlgren, David J.

    2010-01-01

    This paper presents the application of a distributed systems architecture to an autonomous ground vehicle, Q, that participates in both the autonomous and navigation challenges of the Intelligent Ground Vehicle Competition. In the autonomous challenge the vehicle is required to follow a course, while avoiding obstacles and staying within the course boundaries, which are marked by white lines. For the navigation challenge, the vehicle is required to reach a set of target destinations, known as way points, with given GPS coordinates and avoid obstacles that it encounters in the process. Previously the vehicle utilized a single laptop to execute all processing activities including image processing, sensor interfacing and data processing, path planning and navigation algorithms and motor control. National Instruments' (NI) LabVIEW served as the programming language for software implementation. As an upgrade to last year's design, a NI compact Reconfigurable Input/Output system (cRIO) was incorporated to the system architecture. The cRIO is NI's solution for rapid prototyping that is equipped with a real time processor, an FPGA and modular input/output. Under the current system, the real time processor handles the path planning and navigation algorithms, the FPGA gathers and processes sensor data. This setup leaves the laptop to focus on running the image processing algorithm. Image processing as previously presented by Nepal et. al. is a multi-step line extraction algorithm and constitutes the largest processor load. This distributed approach results in a faster image processing algorithm which was previously Q's bottleneck. Additionally, the path planning and navigation algorithms are executed more reliably on the real time processor due to the deterministic nature of operation. The implementation of this architecture required exploration of various inter-system communication techniques. Data transfer between the laptop and the real time processor using UDP packets

  18. Performance evaluation and design of flight vehicle control systems

    CERN Document Server

    Falangas, Eric T

    2015-01-01

    This book will help students, control engineers and flight dynamics analysts to model and conduct sophisticated and systemic analyses of early flight vehicle designs controlled with multiple types of effectors and to design and evaluate new vehicle concepts in terms of satisfying mission and performance goals. Performance Evaluation and Design of Flight Vehicle Control Systems begins by creating a dynamic model of a generic flight vehicle that includes a range of elements from airplanes and launch vehicles to re-entry vehicles and spacecraft. The models may include dynamic effects dealing with structural flexibility, as well as dynamic coupling between structures and actuators, propellant sloshing, and aeroelasticity, and they are typically used for control analysis and design. The book shows how to efficiently combine different types of effectors together, such as aero-surfaces, TVC, throttling engines and RCS, to operate as a system by developing a mixing logic atrix. Methods of trimming a vehicle controll...

  19. The Application of the Human Engineering Modeling and Performance Laboratory for Space Vehicle Ground Processing Tasks at Kennedy Space Center

    Science.gov (United States)

    Woodbury, Sarah K.

    2008-01-01

    The introduction of United Space Alliance's Human Engineering Modeling and Performance Laboratory began in early 2007 in an attempt to address the problematic workspace design issues that the Space Shuttle has imposed on technicians performing maintenance and inspection operations. The Space Shuttle was not expected to require the extensive maintenance it undergoes between flights. As a result, extensive, costly resources have been expended on workarounds and modifications to accommodate ground processing personnel. Consideration of basic human factors principles for design of maintenance is essential during the design phase of future space vehicles, facilities, and equipment. Simulation will be needed to test and validate designs before implementation.

  20. Vehicle systems design optimization study

    Energy Technology Data Exchange (ETDEWEB)

    Gilmour, J. L.

    1980-04-01

    The optimization of an electric vehicle layout requires a weight distribution in the range of 53/47 to 62/38 in order to assure dynamic handling characteristics comparable to current production internal combustion engine vehicles. It is possible to achieve this goal and also provide passenger and cargo space comparable to a selected current production sub-compact car either in a unique new design or by utilizing the production vehicle as a base. Necessary modification of the base vehicle can be accomplished without major modification of the structure or running gear. As long as batteries are as heavy and require as much space as they currently do, they must be divided into two packages - one at front under the hood and a second at the rear under the cargo area - in order to achieve the desired weight distribution. The weight distribution criteria requires the placement of batteries at the front of the vehicle even when the central tunnel is used for the location of some batteries. The optimum layout has a front motor and front wheel drive. This configuration provides the optimum vehicle dynamic handling characteristics and the maximum passsenger and cargo space for a given size vehicle.

  1. Wooden Spaceships: Human-Centered Vehicle Design for Space

    Science.gov (United States)

    Twyford, Evan

    2009-01-01

    Presentation will focus on creative human centered design solutions in relation to manned space vehicle design and development in the NASA culture. We will talk about design process, iterative prototyping, mockup building and user testing and evaluation. We will take an inside look at how new space vehicle concepts are developed and designed for real life exploration scenarios.

  2. An adaptable, low cost test-bed for unmanned vehicle systems research

    Science.gov (United States)

    Goppert, James M.

    2011-12-01

    An unmanned vehicle systems test-bed has been developed. The test-bed has been designed to accommodate hardware changes and various vehicle types and algorithms. The creation of this test-bed allows research teams to focus on algorithm development and employ a common well-tested experimental framework. The ArduPilotOne autopilot was developed to provide the necessary level of abstraction for multiple vehicle types. The autopilot was also designed to be highly integrated with the Mavlink protocol for Micro Air Vehicle (MAV) communication. Mavlink is the native protocol for QGroundControl, a MAV ground control program. Features were added to QGroundControl to accommodate outdoor usage. Next, the Mavsim toolbox was developed for Scicoslab to allow hardware-in-the-loop testing, control design and analysis, and estimation algorithm testing and verification. In order to obtain linear models of aircraft dynamics, the JSBSim flight dynamics engine was extended to use a probabilistic Nelder-Mead simplex method. The JSBSim aircraft dynamics were compared with wind-tunnel data collected. Finally, a structured methodology for successive loop closure control design is proposed. This methodology is demonstrated along with the rest of the test-bed tools on a quadrotor, a fixed wing RC plane, and a ground vehicle. Test results for the ground vehicle are presented.

  3. Improving Conceptual Design for Launch Vehicles

    Science.gov (United States)

    Olds, John R.

    1998-01-01

    This report summarizes activities performed during the second year of a three year cooperative agreement between NASA - Langley Research Center and Georgia Tech. Year 1 of the project resulted in the creation of a new Cost and Business Assessment Model (CABAM) for estimating the economic performance of advanced reusable launch vehicles including non-recurring costs, recurring costs, and revenue. The current year (second year) activities were focused on the evaluation of automated, collaborative design frameworks (computation architectures or computational frameworks) for automating the design process in advanced space vehicle design. Consistent with NASA's new thrust area in developing and understanding Intelligent Synthesis Environments (ISE), the goals of this year's research efforts were to develop and apply computer integration techniques and near-term computational frameworks for conducting advanced space vehicle design. NASA - Langley (VAB) has taken a lead role in developing a web-based computing architectures within which the designer can interact with disciplinary analysis tools through a flexible web interface. The advantages of this approach are, 1) flexible access to the designer interface through a simple web browser (e.g. Netscape Navigator), 2) ability to include existing 'legacy' codes, and 3) ability to include distributed analysis tools running on remote computers. To date, VAB's internal emphasis has been on developing this test system for the planetary entry mission under the joint Integrated Design System (IDS) program with NASA - Ames and JPL. Georgia Tech's complementary goals this year were to: 1) Examine an alternate 'custom' computational architecture for the three-discipline IDS planetary entry problem to assess the advantages and disadvantages relative to the web-based approach.and 2) Develop and examine a web-based interface and framework for a typical launch vehicle design problem.

  4. Aircraft and ground vehicle friction correlation test results obtained under winter runway conditions during joint FAA/NASA Runway Friction Program

    Science.gov (United States)

    Yager, Thomas J.; Vogler, William A.; Baldasare, Paul

    1988-01-01

    Aircraft and ground vehicle friction data collected during the Joint FAA/NASA Runway Friction Program under winter runway conditions are discussed and test results are summarized. The relationship between the different ground vehicle friction measurements obtained on compacted snow- and ice-covered conditions is defined together with the correlation to aircraft tire friction performance under similar runway conditions.

  5. A Review Of Design And Control Of Automated Guided Vehicle Systems

    NARCIS (Netherlands)

    T. Le-Anh (Tuan); M.B.M. de Koster (René)

    2004-01-01

    textabstractThis paper presents a review on design and control of automated guided vehicle systems. We address most key related issues including guide-path design, estimating the number of vehicles, vehicle scheduling, idle-vehicle positioning, battery management, vehicle routing, and conflict

  6. Characterizing Epistemic Uncertainty for Launch Vehicle Designs

    Science.gov (United States)

    Novack, Steven D.; Rogers, Jim; Hark, Frank; Al Hassan, Mohammad

    2016-01-01

    NASA Probabilistic Risk Assessment (PRA) has the task of estimating the aleatory (randomness) and epistemic (lack of knowledge) uncertainty of launch vehicle loss of mission and crew risk and communicating the results. Launch vehicles are complex engineered systems designed with sophisticated subsystems that are built to work together to accomplish mission success. Some of these systems or subsystems are in the form of heritage equipment, while some have never been previously launched. For these cases, characterizing the epistemic uncertainty is of foremost importance, and it is anticipated that the epistemic uncertainty of a modified launch vehicle design versus a design of well understood heritage equipment would be greater. For reasons that will be discussed, standard uncertainty propagation methods using Monte Carlo simulation produce counter intuitive results and significantly underestimate epistemic uncertainty for launch vehicle models. Furthermore, standard PRA methods such as Uncertainty-Importance analyses used to identify components that are significant contributors to uncertainty are rendered obsolete since sensitivity to uncertainty changes are not reflected in propagation of uncertainty using Monte Carlo methods.This paper provides a basis of the uncertainty underestimation for complex systems and especially, due to nuances of launch vehicle logic, for launch vehicles. It then suggests several alternative methods for estimating uncertainty and provides examples of estimation results. Lastly, the paper shows how to implement an Uncertainty-Importance analysis using one alternative approach, describes the results, and suggests ways to reduce epistemic uncertainty by focusing on additional data or testing of selected components.

  7. On the radar cross section (RCS) prediction of vehicles moving on the ground

    Energy Technology Data Exchange (ETDEWEB)

    Sabihi, Ahmad [Department of Mathematical Sciences, Sharif University of Technology, Tehran (Iran, Islamic Republic of)

    2014-12-10

    As readers should be aware, Radar Cross Section depends on the factors such as: Wave frequency and polarization, Target dimension, angle of ray incidence, Target’s material and covering, Type of radar system as monostatic or bistatic, space in which contains target and propagating waves, and etc. Having moved or stationed in vehicles can be effective in RCS values. Here, we investigate effective factors in RCS of moving targets on the ground or sea. Image theory in electromagnetic applies to be taken into account RCS of a target over the ground or sea.

  8. On the radar cross section (RCS) prediction of vehicles moving on the ground

    International Nuclear Information System (INIS)

    Sabihi, Ahmad

    2014-01-01

    As readers should be aware, Radar Cross Section depends on the factors such as: Wave frequency and polarization, Target dimension, angle of ray incidence, Target’s material and covering, Type of radar system as monostatic or bistatic, space in which contains target and propagating waves, and etc. Having moved or stationed in vehicles can be effective in RCS values. Here, we investigate effective factors in RCS of moving targets on the ground or sea. Image theory in electromagnetic applies to be taken into account RCS of a target over the ground or sea

  9. A Review Of Design And Control Of Automated Guided Vehicle Systems

    OpenAIRE

    Le-Anh, Tuan; Koster, René

    2004-01-01

    textabstractThis paper presents a review on design and control of automated guided vehicle systems. We address most key related issues including guide-path design, estimating the number of vehicles, vehicle scheduling, idle-vehicle positioning, battery management, vehicle routing, and conflict resolution. We discuss and classify important models and results from key publications in literature on automated guided vehicle systems, including often-neglected areas, such as idle-vehicle positionin...

  10. Control Relevant Modeling and Design of Scramjet-Powered Hypersonic Vehicles

    Science.gov (United States)

    Dickeson, Jeffrey James

    This report provides an overview of scramjet-powered hypersonic vehicle modeling and control challenges. Such vehicles are characterized by unstable non-minimum phase dynamics with significant coupling and low thrust margins. Recent trends in hypersonic vehicle research are summarized. To illustrate control relevant design issues and tradeoffs, a generic nonlinear 3DOF longitudinal dynamics model capturing aero-elastic-propulsive interactions for wedge-shaped vehicle is used. Limitations of the model are discussed and numerous modifications have been made to address control relevant needs. Two different baseline configurations are examined over a two-stage to orbit ascent trajectory. The report highlights how vehicle level-flight static (trim) and dynamic properties change over the trajectory. Thermal choking constraints are imposed on control system design as a direct consequence of having a finite FER margin. The implication of this state-dependent nonlinear FER margin constraint, the right half plane (RHP) zero, and lightly damped flexible modes, on control system bandwidth (BW) and FPA tracking has been discussed. A control methodology has been proposed that addresses the above dynamics while providing some robustness to modeling uncertainty. Vehicle closure (the ability to fly a trajectory segment subject to constraints) is provided through a proposed vehicle design methodology. The design method attempts to use open loop metrics whenever possible to design the vehicle. The design method is applied to a vehicle/control law closed loop nonlinear simulation for validation. The 3DOF longitudinal modeling results are validated against a newly released NASA 6DOF code.

  11. Flow Characteristics of Ground Vehicle Wake and Its Response to Flow Control

    Science.gov (United States)

    Sellappan, Prabu; McNally, Jonathan; Alvi, Farrukh

    2017-11-01

    Air pollution, fuel shortages, and cost savings are some of the many incentives for improving the aerodynamics of vehicles. Reducing wake-induced aerodynamic drag, which is dependent on flow topology, on modern passenger vehicles is important for improving fuel consumption rates which directly affect the environment. In this research, an active flow control technique is applied on a generic ground vehicle, a 25°Ahmed model, to investigate its effect on the flow topology in the near-wake. The flow field of this canonical bluff body is extremely rich, with complex and unsteady flow features such as trailing wake vortices and c-pillar vortices. The spatio-temporal response of these flow features to the application of steady microjet actuators is investigated. The responses are characterized independently through time-resolved and volumetric velocity field measurements. The accuracy and cost of volumetric measurements in this complex flow field through Stereoscopic- and Tomographic- Particle Image Velocimetry (PIV) will also be commented upon. National Science Foundation PIRE Program.

  12. Vehicle barrier systems

    International Nuclear Information System (INIS)

    Sena, P.A.

    1986-01-01

    The ground vehicle is one of the most effective tools available to an adversary force. Vehicles can be used to penetrate many types of perimeter barriers, transport equipment and personnel rapidly over long distances, and deliver large amounts of explosives directly to facilities in suicide missions. The function of a vehicle barrier system is to detain or disable a defined threat vehicle at a selected distance from a protected facility. Numerous facilities are installing, or planning to install, vehicle barrier systems and many of these facilities are requesting guidance to do so adequately. Therefore, vehicle barriers are being evaluated to determine their stopping capabilities so that systems can be designed that are both balanced and capable of providing a desired degree of protection. Equally important, many of the considerations that should be taken into account when establishing a vehicle barrier system have been identified. These considerations which pertain to site preparation, barrier selection, system integration and operation, and vehicle/barrier interaction, are discussed in this paper

  13. Personnel and Vehicle Data Collection at Aberdeen Proving Ground (APG) and its Distribution for Research

    Science.gov (United States)

    2015-10-01

    28 Magnetometer Applied Physics Model 1540-digital 3-axis fluxgate 5 Amplifiers Alligator Technologies USBPGF-S1 programmable instrumentation...Acoustic, Seismic, magnetic, footstep, vehicle, magnetometer , geophone, unattended ground sensor (UGS) 16. SECURITY CLASSIFICATION OF: 17. LIMITATION

  14. Mechatronical Aided Concept (MAC) in Intelligent Transport Vehicles Design

    OpenAIRE

    Pavel Pavlasek

    2003-01-01

    This article deals with the principles of synergy effect of mechatronical aided concept (MAC) to the design of intelligent transport vehicles products applying CA technologies and virtual reality design methods. Also includes presentation of intelligent railway vehicle development.

  15. Design study of flat belt CVT for electric vehicles

    Science.gov (United States)

    Kumm, E. L.

    1980-01-01

    A continuously variable transmission (CVT) was studied, using a novel flat belt pulley arrangement which couples the high speed output shaft of an energy storage flywheel to the drive train of an electric vehicle. A specific CVT arrangement was recommended and its components were selected and sized, based on the design requirements of a 1700 KG vehicle. A design layout was prepared and engineering calculations made of component efficiencies and operating life. The transmission efficiency was calculated to be significantly over 90% with the expected vehicle operation. A design consistent with automotive practice for low future production costs was considered, together with maintainability. The technology advancements required to develop the flat belt CVT were identified and an estimate was made of how the size of the flat belt CVT scales to larger and smaller design output torques. The suitability of the flat belt CVT for alternate application to an electric vehicle powered by an electric motor without flywheel and to a hybrid electric vehicle powered by an electric motor with an internal combustion engine was studied.

  16. Hybrid Underwater Vehicle: ARV Design and Development

    Directory of Open Access Journals (Sweden)

    Zhigang DENG

    2014-02-01

    Full Text Available The development of SMU-I, a new autonomous & remotely-operated vehicle (ARV is described. Since it has both the characteristics of autonomous underwater vehicle (AUV and remote operated underwater vehicle (ROV, it is able to achieve precision fix station operation and manual timely intervention. In the paper the initial design of basic components, such as vehicle, propulsion, batteries etc. and the control design of motion are introduced and analyzed. ROV’s conventional cable is replaced by a fiber optic cable, which makes it available for high-bandwidth real-time video, data telemetry and high-quality teleoperation. Furthermore, with the aid of the manual real-time remote operation and ranging sonar, it also resolves the AUV’s conflicting issue, which can absolutely adapt the actual complex sea environment and satisfy the unknown mission need. The whole battery system is designed as two-battery banks, whose voltages and temperatures are monitored through CAN (controller area network bus to avoid battery fire and explosion. A fuzzy-PID controller is designed for its motion control, including depth control and direction control. The controller synthesizes the advantage of fuzzy control and PID control, utilizes the fuzzy rules to on-line tune the parameters of PID controller, and achieves a better control effect. Experiment results demonstrate to show the effectiveness of the test-bed.

  17. Mechatronical Aided Concept (MAC in Intelligent Transport Vehicles Design

    Directory of Open Access Journals (Sweden)

    Pavel Pavlasek

    2003-01-01

    Full Text Available This article deals with the principles of synergy effect of mechatronical aided concept (MAC to the design of intelligent transport vehicles products applying CA technologies and virtual reality design methods. Also includes presentation of intelligent railway vehicle development.

  18. Launch vehicle design and GNC sizing with ASTOS

    Science.gov (United States)

    Cremaschi, Francesco; Winter, Sebastian; Rossi, Valerio; Wiegand, Andreas

    2018-03-01

    The European Space Agency (ESA) is currently involved in several activities related to launch vehicle designs (Future Launcher Preparatory Program, Ariane 6, VEGA evolutions, etc.). Within these activities, ESA has identified the importance of developing a simulation infrastructure capable of supporting the multi-disciplinary design and preliminary guidance navigation and control (GNC) design of different launch vehicle configurations. Astos Solutions has developed the multi-disciplinary optimization and launcher GNC simulation and sizing tool (LGSST) under ESA contract. The functionality is integrated in the Analysis, Simulation and Trajectory Optimization Software for space applications (ASTOS) and is intended to be used from the early design phases up to phase B1 activities. ASTOS shall enable the user to perform detailed vehicle design tasks and assessment of GNC systems, covering all aspects of rapid configuration and scenario management, sizing of stages, trajectory-dependent estimation of structural masses, rigid and flexible body dynamics, navigation, guidance and control, worst case analysis, launch safety analysis, performance analysis, and reporting.

  19. Magnetic Sensor for Detection of Ground Vehicles Based on Microwave Spin Wave Generation in Ferrite Films

    National Research Council Canada - National Science Library

    Slavin, A; Tiberkevich, V; Bankowski, E

    2006-01-01

    We propose to use the magnetic signatures, formed either by the residual magnetization or by deformation of the local Earth's magnetic field by large metal masses, for distant detection of ground vehicles...

  20. Design of Omni Directional Remotely Operated Vehicle (ROV)

    Science.gov (United States)

    Rahimuddin; Hasan, Hasnawiya; Rivai, Haryanti A.; Iskandar, Yanu; Claudio, P.

    2018-02-01

    Nowadays, underwater activities are increased with the increase of oil resources finding. The gap between demand and supply of oil and gas cause engineers to find oil and gas resources in deep water. In other side, high risk of working in deep underwater environment can cause a dangerous situation for human. Therefore, many research activities are developing an underwater vehicle to replace the human’s work such as ROV or Remotely Operated Vehicles. The vehicle operated using tether to transport the signals and electric power from the surface vehicle. Arrangements of weight, buoyancy, and the propeller placements are significant aspect in designing the vehicle’s performance. This paper presents design concept of ROV for survey and observation the underwater objects with interaction vectored propellers used for vehicle’s motions.

  1. Design, Analysis and Qualification of Elevon for Reusable Launch Vehicle

    Science.gov (United States)

    Tiwari, S. B.; Suresh, R.; Krishnadasan, C. K.

    2017-12-01

    Reusable launch vehicle technology demonstrator is configured as a winged body vehicle, designed to fly in hypersonic, supersonic and subsonic regimes. The vehicle will be boosted to hypersonic speeds after which the winged body separates and descends using aerodynamic control. The aerodynamic control is achieved using the control surfaces mainly the rudder and the elevon. Elevons are deflected for pitch and roll control of the vehicle at various flight conditions. Elevons are subjected to aerodynamic, thermal and inertial loads during the flight. This paper gives details about the configuration, design, qualification and flight validation of elevon for Reusable Launch Vehicle.

  2. A pose estimation method for unmanned ground vehicles in GPS denied environments

    Science.gov (United States)

    Tamjidi, Amirhossein; Ye, Cang

    2012-06-01

    This paper presents a pose estimation method based on the 1-Point RANSAC EKF (Extended Kalman Filter) framework. The method fuses the depth data from a LIDAR and the visual data from a monocular camera to estimate the pose of a Unmanned Ground Vehicle (UGV) in a GPS denied environment. Its estimation framework continuy updates the vehicle's 6D pose state and temporary estimates of the extracted visual features' 3D positions. In contrast to the conventional EKF-SLAM (Simultaneous Localization And Mapping) frameworks, the proposed method discards feature estimates from the extended state vector once they are no longer observed for several steps. As a result, the extended state vector always maintains a reasonable size that is suitable for online calculation. The fusion of laser and visual data is performed both in the feature initialization part of the EKF-SLAM process and in the motion prediction stage. A RANSAC pose calculation procedure is devised to produce pose estimate for the motion model. The proposed method has been successfully tested on the Ford campus's LIDAR-Vision dataset. The results are compared with the ground truth data of the dataset and the estimation error is ~1.9% of the path length.

  3. Hybrid Map-Based Navigation Method for Unmanned Ground Vehicle in Urban Scenario

    Directory of Open Access Journals (Sweden)

    Huiyan Chen

    2013-07-01

    Full Text Available To reduce the data size of metric map and map matching computational cost in unmanned ground vehicle self-driving navigation in urban scenarios, a metric-topological hybrid map navigation system is proposed in this paper. According to the different positioning accuracy requirements, urban areas are divided into strong constraint (SC areas, such as roads with lanes, and loose constraint (LC areas, such as intersections and open areas. As direction of the self-driving vehicle is provided by traffic lanes and global waypoints in the road network, a simple topological map is fit for the navigation in the SC areas. While in the LC areas, the navigation of the self-driving vehicle mainly relies on the positioning information. Simultaneous localization and mapping technology is used to provide a detailed metric map in the LC areas, and a window constraint Markov localization algorithm is introduced to achieve accurate position using laser scanner. Furthermore, the real-time performance of the Markov algorithm is enhanced by using a constraint window to restrict the size of the state space. By registering the metric maps into the road network, a hybrid map of the urban scenario can be constructed. Real unmanned vehicle mapping and navigation tests demonstrated the capabilities of the proposed method.

  4. Innovative control systems for tracked vehicle platforms

    CERN Document Server

    2014-01-01

     This book has been motivated by an urgent need for designing and implementation of innovative control algorithms and systems for tracked vehicles. Nowadays the unmanned vehicles are becoming more and more common. Therefore there is a need for innovative mechanical constructions capable of adapting to various applications regardless the ground, air or water/underwater environment. There are multiple various activities connected with tracked vehicles. They can be distributed among three main groups: design and control algorithms, sensoric and vision based in-formation, construction and testing mechanical parts of unmanned vehicles. Scientists and researchers involved in mechanics, control algorithms, image processing, computer vision, data fusion, or IC will find this book useful.

  5. Adaptive Modeling, Engineering Analysis and Design of Advanced Aerospace Vehicles

    Science.gov (United States)

    Mukhopadhyay, Vivek; Hsu, Su-Yuen; Mason, Brian H.; Hicks, Mike D.; Jones, William T.; Sleight, David W.; Chun, Julio; Spangler, Jan L.; Kamhawi, Hilmi; Dahl, Jorgen L.

    2006-01-01

    This paper describes initial progress towards the development and enhancement of a set of software tools for rapid adaptive modeling, and conceptual design of advanced aerospace vehicle concepts. With demanding structural and aerodynamic performance requirements, these high fidelity geometry based modeling tools are essential for rapid and accurate engineering analysis at the early concept development stage. This adaptive modeling tool was used for generating vehicle parametric geometry, outer mold line and detailed internal structural layout of wing, fuselage, skin, spars, ribs, control surfaces, frames, bulkheads, floors, etc., that facilitated rapid finite element analysis, sizing study and weight optimization. The high quality outer mold line enabled rapid aerodynamic analysis in order to provide reliable design data at critical flight conditions. Example application for structural design of a conventional aircraft and a high altitude long endurance vehicle configuration are presented. This work was performed under the Conceptual Design Shop sub-project within the Efficient Aerodynamic Shape and Integration project, under the former Vehicle Systems Program. The project objective was to design and assess unconventional atmospheric vehicle concepts efficiently and confidently. The implementation may also dramatically facilitate physics-based systems analysis for the NASA Fundamental Aeronautics Mission. In addition to providing technology for design and development of unconventional aircraft, the techniques for generation of accurate geometry and internal sub-structure and the automated interface with the high fidelity analysis codes could also be applied towards the design of vehicles for the NASA Exploration and Space Science Mission projects.

  6. Sliding mode observer design for automatic steering of vehicle

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, J.R.; Rachid, A. [LSA, Amiens (France); Xu, S.J. [Harbin Inst. of Tech. (China)]|[IUT de Longwy, Cosnes et Romain (France); Darouach, M. [IUT de Longwy, Cosnes et Romain (France)

    2000-07-01

    This paper deals with the observer design problem for automatic steering of vehicles. The lateral motion of the vehicles is considered. A sliding mode observer is derived such that the observation errors converge to zero asymptotically in finite time. The simulation results have shown that the design is very effective. (orig.)

  7. Operations Assessment of Launch Vehicle Architectures using Activity Based Cost Models

    Science.gov (United States)

    Ruiz-Torres, Alex J.; McCleskey, Carey

    2000-01-01

    The growing emphasis on affordability for space transportation systems requires the assessment of new space vehicles for all life cycle activities, from design and development, through manufacturing and operations. This paper addresses the operational assessment of launch vehicles, focusing on modeling the ground support requirements of a vehicle architecture, and estimating the resulting costs and flight rate. This paper proposes the use of Activity Based Costing (ABC) modeling for this assessment. The model uses expert knowledge to determine the activities, the activity times and the activity costs based on vehicle design characteristics. The approach provides several advantages to current approaches to vehicle architecture assessment including easier validation and allowing vehicle designers to understand the cost and cycle time drivers.

  8. Inflatable Re-Entry Vehicle Experiment (IRVE) Design Overview

    Science.gov (United States)

    Hughes, Stephen J.; Dillman, Robert A.; Starr, Brett R.; Stephan, Ryan A.; Lindell, Michael C.; Player, Charles J.; Cheatwood, F. McNeil

    2005-01-01

    Inflatable aeroshells offer several advantages over traditional rigid aeroshells for atmospheric entry. Inflatables offer increased payload volume fraction of the launch vehicle shroud and the possibility to deliver more payload mass to the surface for equivalent trajectory constraints. An inflatable s diameter is not constrained by the launch vehicle shroud. The resultant larger drag area can provide deceleration equivalent to a rigid system at higher atmospheric altitudes, thus offering access to higher landing sites. When stowed for launch and cruise, inflatable aeroshells allow access to the payload after the vehicle is integrated for launch and offer direct access to vehicle structure for structural attachment with the launch vehicle. They also offer an opportunity to eliminate system duplication between the cruise stage and entry vehicle. There are however several potential technical challenges for inflatable aeroshells. First and foremost is the fact that they are flexible structures. That flexibility could lead to unpredictable drag performance or an aerostructural dynamic instability. In addition, durability of large inflatable structures may limit their application. They are susceptible to puncture, a potentially catastrophic insult, from many possible sources. Finally, aerothermal heating during planetary entry poses a significant challenge to a thin membrane. NASA Langley Research Center and NASA's Wallops Flight Facility are jointly developing inflatable aeroshell technology for use on future NASA missions. The technology will be demonstrated in the Inflatable Re-entry Vehicle Experiment (IRVE). This paper will detail the development of the initial IRVE inflatable system to be launched on a Terrier/Orion sounding rocket in the fourth quarter of CY2005. The experiment will demonstrate achievable packaging efficiency of the inflatable aeroshell for launch, inflation, leak performance of the inflatable system throughout the flight regime, structural

  9. Active debris removal GNC challenges over design and required ground validation

    Science.gov (United States)

    Colmenarejo, Pablo; Avilés, Marcos; di Sotto, Emanuele

    2015-06-01

    Because of the exponential growth of space debris, the access to space in the medium-term future is considered as being seriously compromised, particularly within LEO polar Sun-synchronous orbits and within geostationary orbits. The active debris removal (ADR) application poses new and challenging requirements on: first, the new required Guidance, Navigation and Control (GNC) technologies and, second, how to validate these new technologies before being applied in real missions. There is no doubt about the strong safety and collision risk aspects affecting the real operational ADR missions. But it shall be considered that even ADR demonstration missions will be affected by significant risk of collision during the demonstration, and that the ADR GNC systems/technologies to be used shall be well mature before using/demonstrating them in space. Specific and dedicated on-ground validation approaches, techniques and facilities are mandatory. The different ADR techniques can be roughly catalogued in three main groups (rigid capture, non-rigid capture and contactless). All of them have a strong impact on the GNC system of the active vehicle during the capture/proximity phase and, particularly, during the active vehicle/debris combo control phase after capture and during the de-orbiting phase. The main operational phases on an ADR scenario are: (1) ground controlled phase (ADR vehicle and debris are far), (2) fine orbit synchronization phase (ADR vehicle to reach debris ±V-bar), (3) short range phase (along track distance reduction till 10-100 s of metres), (4) terminal approach/capture phase and (5) de-orbiting. While phases 1-3 are somehow conventional and already addressed in detail during past/on-going studies related to rendezvous and/or formation flying, phases 4-5 are very specific and not mature in terms of GNC needed technologies and HW equipment. GMV is currently performing different internal activities and ESA studies/developments related to ADR mission, GNC and

  10. Ground motion prediction needs for nuclear engineering design

    International Nuclear Information System (INIS)

    Hadjian, A.H.

    1985-01-01

    The basic design philosophy of nuclear power plants stipulates that the risk to the public be as low as reasonably achievable. As a result of this philosophy, the seismic design of nuclear power plants has tended, over time, to diverge from that of other engineered structures. The emphasis at the present time is to specify ground motion at a nuclear facility site as realistically as possible and to design all safety-related structures to respond to the specified ground motion in the elastic range. The characteristics of this realistic design ground motion are discussed and present prediction needs identified

  11. [Design and application of portable rescue vehicle].

    Science.gov (United States)

    Guo, Ying; Qi, Huaying; Wang, Shen

    2017-12-01

    The disease of critically ill patients was with rapid changes, and at any time faced the risk of emergency. The current commonly used rescue vehicles were larger and bulky implementation, which were not conducive to the operation, therefore the design of a portable rescue vehicle was needed. This new type of rescue vehicle is multi-layer folding structure, with small footprint, large storage space, so a variety of first aid things can be classified and put, easy to be cleaned and disinfected. In the rescue process, the portable rescue vehicles can be placed in the required position; box of various emergency items can be found at a glance with easy access; the height of the infusion stand can adjust freely according to the user height; the rescue vehicle handle can be easy to pull and adjust accord with human body mechanics principle. The portable rescue vehicle facilitates the operation of medical staff, and is worthy of clinical application.

  12. Multi-Disciplinary Design Optimization of Hypersonic Air-Breathing Vehicle

    Science.gov (United States)

    Wu, Peng; Tang, Zhili; Sheng, Jianda

    2016-06-01

    A 2D hypersonic vehicle shape with an idealized scramjet is designed at a cruise regime: Mach number (Ma) = 8.0, Angle of attack (AOA) = 0 deg and altitude (H) = 30kms. Then a multi-objective design optimization of the 2D vehicle is carried out by using a Pareto Non-dominated Sorting Genetic Algorithm II (NSGA-II). In the optimization process, the flow around the air-breathing vehicle is simulated by inviscid Euler equations using FLUENT software and the combustion in the combustor is modeled by a methodology based on the well known combination effects of area-varying pipe flow and heat transfer pipe flow. Optimization results reveal tradeoffs among total pressure recovery coefficient of forebody, lift to drag ratio of vehicle, specific impulse of scramjet engine and the maximum temperature on the surface of vehicle.

  13. Terminal Sliding Mode Tracking Controller Design for Automatic Guided Vehicle

    Science.gov (United States)

    Chen, Hongbin

    2018-03-01

    Based on sliding mode variable structure control theory, the path tracking problem of automatic guided vehicle is studied, proposed a controller design method based on the terminal sliding mode. First of all, through analyzing the characteristics of the automatic guided vehicle movement, the kinematics model is presented. Then to improve the traditional expression of terminal sliding mode, design a nonlinear sliding mode which the convergence speed is faster than the former, verified by theoretical analysis, the design of sliding mode is steady and fast convergence in the limited time. Finally combining Lyapunov method to design the tracking control law of automatic guided vehicle, the controller can make the automatic guided vehicle track the desired trajectory in the global sense as well as in finite time. The simulation results verify the correctness and effectiveness of the control law.

  14. Research on Parameter Design of Multi - axis Hydrostatic Transmission Vehicle

    Directory of Open Access Journals (Sweden)

    Zhao Liang

    2017-01-01

    Full Text Available In order to obtain reasonable parameters in the design of driving system of multi-axis hydrostatic transmission vehicle, the working principle of single-side drive of hydrostatic transmission vehicle is introduced. The matching and control of engine and hydraulic pump are analyzed. According to the driving equation of vehicle, The driving force required for driving system is determined, and the parameters of hydraulic motor, hydraulic pump, system working pressure and braking system are designed and calculated, which provides the parameter design for driving system of multi-axis hydrostatic transmission Reliable theoretical basis.

  15. Small UAV Automatic Ground Collision Avoidance System Design Considerations and Flight Test Results

    Science.gov (United States)

    Sorokowski, Paul; Skoog, Mark; Burrows, Scott; Thomas, SaraKatie

    2015-01-01

    The National Aeronautics and Space Administration (NASA) Armstrong Flight Research Center Small Unmanned Aerial Vehicle (SUAV) Automatic Ground Collision Avoidance System (Auto GCAS) project demonstrated several important collision avoidance technologies. First, the SUAV Auto GCAS design included capabilities to take advantage of terrain avoidance maneuvers flying turns to either side as well as straight over terrain. Second, the design also included innovative digital elevation model (DEM) scanning methods. The combination of multi-trajectory options and new scanning methods demonstrated the ability to reduce the nuisance potential of the SUAV while maintaining robust terrain avoidance. Third, the Auto GCAS algorithms were hosted on the processor inside a smartphone, providing a lightweight hardware configuration for use in either the ground control station or on board the test aircraft. Finally, compression of DEM data for the entire Earth and successful hosting of that data on the smartphone was demonstrated. The SUAV Auto GCAS project demonstrated that together these methods and technologies have the potential to dramatically reduce the number of controlled flight into terrain mishaps across a wide range of aviation platforms with similar capabilities including UAVs, general aviation aircraft, helicopters, and model aircraft.

  16. Design of a stable fuzzy controller for an articulated vehicle.

    Science.gov (United States)

    Tanaka, K; Kosaki, T

    1997-01-01

    This paper presents a backward movement control of an articulated vehicle via a model-based fuzzy control technique. A nonlinear dynamic model of the articulated vehicle is represented by a Takagi-Sugeno fuzzy model. The concept of parallel distributed compensation is employed to design a fuzzy controller from the Takagi-Sugeno fuzzy model of the articulated vehicle. Stability of the designed fuzzy control system is guaranteed via Lyapunov approach. The stability conditions are characterized in terms of linear matrix inequalities since the stability analysis is reduced to a problem of finding a common Lyapunov function for a set of Lyapunov inequalities. Simulation results and experimental results show that the designed fuzzy controller effectively achieves the backward movement control of the articulated vehicle.

  17. Development of a Model-Based Systems Engineering Application for the Ground Vehicle Robotics Sustainment Industrial Base

    Science.gov (United States)

    2013-02-04

    Ground Vehicle Systems Engineering Technology Symposium HC Human Capital HIIT Helsinki Institute of Information Technology UNCLASSIFIED vii...Technology (TKK), and the Helsinki Institute of Information Technology ( HIIT ), the report introduced the concept and the state-of-the-art in the market

  18. The ironies of vehicle feedback in car design.

    Science.gov (United States)

    Walker, Guy H; Stanton, Neville A; Young, Mark S

    2006-02-10

    Car drivers show an acute sensitivity towards vehicle feedback, with most normal drivers able to detect 'the difference in vehicle feel of a medium-size saloon car with and without a fairly heavy passenger in the rear seat' (Joy and Hartley 1953-54). The irony is that this level of sensitivity stands in contrast to the significant changes in vehicle 'feel' accompanying modern trends in automotive design, such as drive-by-wire and increased automation. The aim of this paper is to move the debate from the anecdotal to the scientific level. This is achieved by using the Brunel University driving simulator to replicate some of these trends and changes by presenting (or removing) different forms of non-visual vehicle feedback, and measuring resultant driver situational awareness (SA) using a probe-recall method. The findings confirm that vehicle feedback plays a key role in coupling the driver to the dynamics of their environment (Moray 2004), with the role of auditory feedback particularly prominent. As a contrast, drivers in the study also rated their self-perceived levels of SA and a concerning dissociation occurred between the two sets of results. Despite the large changes in vehicle feedback presented in the simulator, and the measured changes in SA, drivers appeared to have little self-awareness of these changes. Most worryingly, drivers demonstrated little awareness of diminished SA. The issues surrounding vehicle feedback are therefore similar to the classic problems and ironies studied in aviation and automation, and highlight the role that ergonomics can also play within the domain of contemporary vehicle design.

  19. Design optimization of space launch vehicles using a genetic algorithm

    Science.gov (United States)

    Bayley, Douglas James

    The United States Air Force (USAF) continues to have a need for assured access to space. In addition to flexible and responsive spacelift, a reduction in the cost per launch of space launch vehicles is also desirable. For this purpose, an investigation of the design optimization of space launch vehicles has been conducted. Using a suite of custom codes, the performance aspects of an entire space launch vehicle were analyzed. A genetic algorithm (GA) was employed to optimize the design of the space launch vehicle. A cost model was incorporated into the optimization process with the goal of minimizing the overall vehicle cost. The other goals of the design optimization included obtaining the proper altitude and velocity to achieve a low-Earth orbit. Specific mission parameters that are particular to USAF space endeavors were specified at the start of the design optimization process. Solid propellant motors, liquid fueled rockets, and air-launched systems in various configurations provided the propulsion systems for two, three and four-stage launch vehicles. Mass properties models, an aerodynamics model, and a six-degree-of-freedom (6DOF) flight dynamics simulator were all used to model the system. The results show the feasibility of this method in designing launch vehicles that meet mission requirements. Comparisons to existing real world systems provide the validation for the physical system models. However, the ability to obtain a truly minimized cost was elusive. The cost model uses an industry standard approach, however, validation of this portion of the model was challenging due to the proprietary nature of cost figures and due to the dependence of many existing systems on surplus hardware.

  20. Unmanned Ground Vehicle

    Science.gov (United States)

    2001-11-01

    Systems ( JAUGS ). JAUGS is a JRP technology initiative under the cognizance of the Aviation and Missile Command Research, Development and Engineering Center...AMRDEC). The JAUGS focus is on developing a high-level command and control architecture for UGVs. As defined in the JRP Glossary, “ JAUGS is an upper...vehicle platforms and missions. JAUGS uses the Society of Automotive Engineers Generic Open Architecture framework to classify UGV interfaces and

  1. DUKSUP: A Computer Program for High Thrust Launch Vehicle Trajectory Design and Optimization

    Science.gov (United States)

    Spurlock, O. Frank; Williams, Craig H.

    2015-01-01

    From the late 1960s through 1997, the leadership of NASAs Intermediate and Large class unmanned expendable launch vehicle projects resided at the NASA Lewis (now Glenn) Research Center (LeRC). One of LeRCs primary responsibilities --- trajectory design and performance analysis --- was accomplished by an internally-developed analytic three dimensional computer program called DUKSUP. Because of its Calculus of Variations-based optimization routine, this code was generally more capable of finding optimal solutions than its contemporaries. A derivation of optimal control using the Calculus of Variations is summarized including transversality, intermediate, and final conditions. The two point boundary value problem is explained. A brief summary of the codes operation is provided, including iteration via the Newton-Raphson scheme and integration of variational and motion equations via a 4th order Runge-Kutta scheme. Main subroutines are discussed. The history of the LeRC trajectory design efforts in the early 1960s is explained within the context of supporting the Centaur upper stage program. How the code was constructed based on the operation of the AtlasCentaur launch vehicle, the limits of the computers of that era, the limits of the computer programming languages, and the missions it supported are discussed. The vehicles DUKSUP supported (AtlasCentaur, TitanCentaur, and ShuttleCentaur) are briefly described. The types of missions, including Earth orbital and interplanetary, are described. The roles of flight constraints and their impact on launch operations are detailed (such as jettisoning hardware on heating, Range Safety, ground station tracking, and elliptical parking orbits). The computer main frames on which the code was hosted are described. The applications of the code are detailed, including independent check of contractor analysis, benchmarking, leading edge analysis, and vehicle performance improvement assessments. Several of DUKSUPs many major impacts on

  2. Automated scheme to determine design parameters for a recoverable reentry vehicle

    International Nuclear Information System (INIS)

    Williamson, W.E.

    1976-01-01

    The NRV (Nosetip Recovery Vehicle) program at Sandia Laboratories is designed to recover the nose section from a sphere cone reentry vehicle after it has flown a near ICBM reentry trajectory. Both mass jettison and parachutes are used to reduce the velocity of the RV near the end of the trajectory to a sufficiently low level that the vehicle may land intact. The design problem of determining mass jettison time and parachute deployment time in order to ensure that the vehicle does land intact is considered. The problem is formulated as a min-max optimization problem where the design parameters are to be selected to minimize the maximum possible deviation in the design criteria due to uncertainties in the system. The results of the study indicate that the optimal choice of the design parameters ensures that the maximum deviation in the design criteria is within acceptable bounds. This analytically ensures the feasibility of recovery for NRV

  3. Impacts of Launch Vehicle Fairing Size on Human Exploration Architectures

    Science.gov (United States)

    Jefferies, Sharon; Collins, Tim; Dwyer Cianciolo, Alicia; Polsgrove, Tara

    2017-01-01

    Human missions to Mars, particularly to the Martian surface, are grand endeavors that place extensive demands on ground infrastructure, launch capabilities, and mission systems. The interplay of capabilities and limitations among these areas can have significant impacts on the costs and ability to conduct Mars missions and campaigns. From a mission and campaign perspective, decisions that affect element designs, including those based on launch vehicle and ground considerations, can create effects that ripple through all phases of the mission and have significant impact on the overall campaign. These effects result in impacts to element designs and performance, launch and surface manifesting, and mission operations. In current Evolvable Mars Campaign concepts, the NASA Space Launch System (SLS) is the primary launch vehicle for delivering crew and payloads to cis-lunar space. SLS is currently developing an 8.4m diameter cargo fairing, with a planned upgrade to a 10m diameter fairing in the future. Fairing diameter is a driving factor that impacts many aspects of system design, vehicle performance, and operational concepts. It creates a ripple effect that influences all aspects of a Mars mission, including: element designs, grounds operations, launch vehicle design, payload packaging on the lander, launch vehicle adapter design to meet structural launch requirements, control and thermal protection during entry and descent at Mars, landing stability, and surface operations. Analyses have been performed in each of these areas to assess and, where possible, quantify the impacts of fairing diameter selection on all aspects of a Mars mission. Several potential impacts of launch fairing diameter selection are identified in each of these areas, along with changes to system designs that result. Solutions for addressing these impacts generally result in increased systems mass and propellant needs, which can further exacerbate packaging and flight challenges. This paper

  4. Propulsion integration of hypersonic air-breathing vehicles utilizing a top-down design methodology

    Science.gov (United States)

    Kirkpatrick, Brad Kenneth

    In recent years, a focus of aerospace engineering design has been the development of advanced design methodologies and frameworks to account for increasingly complex and integrated vehicles. Techniques such as parametric modeling, global vehicle analyses, and interdisciplinary data sharing have been employed in an attempt to improve the design process. The purpose of this study is to introduce a new approach to integrated vehicle design known as the top-down design methodology. In the top-down design methodology, the main idea is to relate design changes on the vehicle system and sub-system level to a set of over-arching performance and customer requirements. Rather than focusing on the performance of an individual system, the system is analyzed in terms of the net effect it has on the overall vehicle and other vehicle systems. This detailed level of analysis can only be accomplished through the use of high fidelity computational tools such as Computational Fluid Dynamics (CFD) or Finite Element Analysis (FEA). The utility of the top-down design methodology is investigated through its application to the conceptual and preliminary design of a long-range hypersonic air-breathing vehicle for a hypothetical next generation hypersonic vehicle (NHRV) program. System-level design is demonstrated through the development of the nozzle section of the propulsion system. From this demonstration of the methodology, conclusions are made about the benefits, drawbacks, and cost of using the methodology.

  5. A solar vehicle based on sustainable design concept

    Energy Technology Data Exchange (ETDEWEB)

    Taha, Z.; Sah, J.M.; Passarella, R.; Ghazilla, R.A.R.; Ahmad, N.; Jen, Y.H.; Khai, T.T.; Kassim, Z.; Hasanuddin, I.; Yunus, M. [Malaya Univ., Kuala Lumpur (Malaysia). Faculty of Engineering, Centre for Product Design and Manufacture

    2009-07-01

    This paper described a newly constructed solar vehicle that was built specifically for the 2009 World Solar Challenge (WSC) using off-the-shelf parts. Researchers at the Centre for Product Design and Manufacture at the University of Malaya designed and built the solar car which uses solar energy to charge its batteries. Although the total investment for this sustainable product concept is small compared to other solar vehicles, the car's performance has met expectations. Most of the electrical and mechanical parts can be recycled and reused after the WSC event. The photovoltaic (PV) and maximum power point trackers (MPPT) can be re-used for home applications. The DC motor and the controller can be attached to a bicycle and the aluminium parts which make-up the main body structure can be recycled. The design will result in nearly zero waste. The study showed that the process of combining mechanical and electrical components is not an easy task, particularly at the design stage because of the specific characteristics and functions of the individual parts. This paper described how readily available, off-the-shelf mechanical and electrical components were integrated for the solar vehicle. The conceptual design and the performance of the prototype were also presented. 11 refs., 5 tabs., 11 figs.

  6. Model Design on Emergency Power Supply of Electric Vehicle

    Directory of Open Access Journals (Sweden)

    Yuanliang Zhao

    2017-01-01

    Full Text Available According to the mobile storage characteristic of electric vehicles, an emergency power supply model about the electric vehicles is presented through analyzing its storage characteristic. The model can ensure important consumer loss minimization during power failure or emergency and can make electric vehicles cost minimization about running, scheduling, and vindicating. In view of the random dispersion feature in one area, an emergency power supply scheme using the electric vehicles is designed based on the K-means algorithm. The purpose is to improve the electric vehicles initiative gathering ability and reduce the electric vehicles gathering time. The study can reduce the number of other emergency power supply equipment and improve the urban electricity reliability.

  7. Mobility Systems For Robotic Vehicles

    Science.gov (United States)

    Chun, Wendell

    1987-02-01

    The majority of existing robotic systems can be decomposed into five distinct subsystems: locomotion, control/man-machine interface (MMI), sensors, power source, and manipulator. When designing robotic vehicles, there are two main requirements: first, to design for the environment and second, for the task. The environment can be correlated with known missions. This can be seen by analyzing existing mobile robots. Ground mobile systems are generally wheeled, tracked, or legged. More recently, underwater vehicles have gained greater attention. For example, Jason Jr. made history by surveying the sunken luxury liner, the Titanic. The next big surge of robotic vehicles will be in space. This will evolve as a result of NASA's commitment to the Space Station. The foreseeable robots will interface with current systems as well as standalone, free-flying systems. A space robotic vehicle is similar to its underwater counterpart with very few differences. Their commonality includes missions and degrees-of-freedom. The issues of stability and communication are inherent in both systems and environment.

  8. Modeling Languages Refine Vehicle Design

    Science.gov (United States)

    2009-01-01

    Cincinnati, Ohio s TechnoSoft Inc. is a leading provider of object-oriented modeling and simulation technology used for commercial and defense applications. With funding from Small Business Innovation Research (SBIR) contracts issued by Langley Research Center, the company continued development on its adaptive modeling language, or AML, originally created for the U.S. Air Force. TechnoSoft then created what is now known as its Integrated Design and Engineering Analysis Environment, or IDEA, which can be used to design a variety of vehicles and machinery. IDEA's customers include clients in green industries, such as designers for power plant exhaust filtration systems and wind turbines.

  9. Near-term hybrid vehicle program, phase 1. Appendix C: Preliminary design data package

    Science.gov (United States)

    1979-01-01

    The design methodology, the design decision rationale, the vehicle preliminary design summary, and the advanced technology developments are presented. The detailed vehicle design, the vehicle ride and handling and front structural crashworthiness analysis, the microcomputer control of the propulsion system, the design study of the battery switching circuit, the field chopper, and the battery charger, and the recent program refinements and computer results are presented.

  10. A Summary of the NASA Design Environment for Novel Vertical Lift Vehicles (DELIVER) Project

    Science.gov (United States)

    Theodore, Colin R.

    2018-01-01

    The number of new markets and use cases being developed for vertical take-off and landing vehicles continues to explode, including the highly publicized urban air taxi and package deliver applications. There is an equally exploding variety of novel vehicle configurations and sizes that are being proposed to fill these new market applications. The challenge for vehicle designers is that there is currently no easy and consistent way to go from a compelling mission or use case to a vehicle that is best configured and sized for the particular mission. This is because the availability of accurate and validated conceptual design tools for these novel types and sizes of vehicles have not kept pace with the new markets and vehicles themselves. The Design Environment for Novel Vertical Lift Vehicles (DELIVER) project was formulated to address this vehicle design challenge by demonstrating the use of current conceptual design tools, that have been used for decades to design and size conventional rotorcraft, applied to these novel vehicle types, configurations and sizes. In addition to demonstrating the applicability of current design and sizing tools to novel vehicle configurations and sizes, DELIVER also demonstrated the addition of key transformational technologies of noise, autonomy, and hybrid-electric and all-electric propulsion into the vehicle conceptual design process. Noise is key for community acceptance, autonomy and the need to operate autonomously are key for efficient, reliable and safe operations, and electrification of the propulsion system is a key enabler for these new vehicle types and sizes. This paper provides a summary of the DELIVER project and shows the applicability of current conceptual design and sizing tools novel vehicle configurations and sizes that are being proposed for urban air taxi and package delivery type applications.

  11. Design optimisation of a flywheel hybrid vehicle

    Energy Technology Data Exchange (ETDEWEB)

    Kok, D.B.

    1999-11-04

    This thesis describes the design optimisation of a flywheel hybrid vehicle with respect to fuel consumption and exhaust gas emissions. The driveline of this passenger car uses two power sources: a small spark ignition internal combustion engine with three-way catalyst, and a highspeed flywheel system for kinetic energy storage. A custom-made continuously variable transmission (CVT) with so-called i{sup 2} control transports energy between these power sources and the vehicle wheels. The driveline includes auxiliary systems for hydraulic, vacuum and electric purposes. In this fully mechanical driveline, parasitic energy losses determine the vehicle's fuel saving potential to a large extent. Practicable energy loss models have been derived to quantify friction losses in bearings, gearwheels, the CVT, clutches and dynamic seals. In addition, the aerodynamic drag in the flywheel system and power consumption of auxiliaries are charted. With the energy loss models available, a calculation procedure is introduced to optimise the flywheel as a subsystem in which the rotor geometry, the safety containment, and the vacuum system are designed for minimum energy use within the context of automotive applications. A first prototype of the flywheel system was tested experimentally and subsequently redesigned to improve rotordynamics and safety aspects. Coast-down experiments with the improved version show that the energy losses have been lowered significantly. The use of a kinetic energy storage device enables the uncoupling of vehicle wheel power and engine power. Therefore, the engine can be smaller and it can be chosen to operate in its region of best efficiency in start-stop mode. On a test-rig, the measured engine fuel consumption was reduced with more than 30 percent when the engine is intermittently restarted with the aid of the flywheel system. Although the start-stop mode proves to be advantageous for fuel consumption, exhaust gas emissions increase temporarily

  12. Multidisciplinary Design Techniques Applied to Conceptual Aerospace Vehicle Design. Ph.D. Thesis Final Technical Report

    Science.gov (United States)

    Olds, John Robert; Walberg, Gerald D.

    1993-01-01

    Multidisciplinary design optimization (MDO) is an emerging discipline within aerospace engineering. Its goal is to bring structure and efficiency to the complex design process associated with advanced aerospace launch vehicles. Aerospace vehicles generally require input from a variety of traditional aerospace disciplines - aerodynamics, structures, performance, etc. As such, traditional optimization methods cannot always be applied. Several multidisciplinary techniques and methods were proposed as potentially applicable to this class of design problem. Among the candidate options are calculus-based (or gradient-based) optimization schemes and parametric schemes based on design of experiments theory. A brief overview of several applicable multidisciplinary design optimization methods is included. Methods from the calculus-based class and the parametric class are reviewed, but the research application reported focuses on methods from the parametric class. A vehicle of current interest was chosen as a test application for this research. The rocket-based combined-cycle (RBCC) single-stage-to-orbit (SSTO) launch vehicle combines elements of rocket and airbreathing propulsion in an attempt to produce an attractive option for launching medium sized payloads into low earth orbit. The RBCC SSTO presents a particularly difficult problem for traditional one-variable-at-a-time optimization methods because of the lack of an adequate experience base and the highly coupled nature of the design variables. MDO, however, with it's structured approach to design, is well suited to this problem. The result of the application of Taguchi methods, central composite designs, and response surface methods to the design optimization of the RBCC SSTO are presented. Attention is given to the aspect of Taguchi methods that attempts to locate a 'robust' design - that is, a design that is least sensitive to uncontrollable influences on the design. Near-optimum minimum dry weight solutions are

  13. 36 CFR 212.57 - Monitoring of effects of motor vehicle use on designated roads and trails and in designated areas.

    Science.gov (United States)

    2010-07-01

    ... motor vehicle use on designated roads and trails and in designated areas. 212.57 Section 212.57 Parks... Roads, Trails, and Areas for Motor Vehicle Use § 212.57 Monitoring of effects of motor vehicle use on designated roads and trails and in designated areas. For each administrative unit of the National Forest...

  14. Aerospace Vehicle Design, Spacecraft Section. Volume 1: Project Groups 3-5

    Science.gov (United States)

    1989-01-01

    Three groups of student engineers in an aerospace vehicle design course present their designs for a vehicle that can be used to resupply the Space Station Freedom and provide an emergency crew return to earth capability. The vehicle's requirements include a lifetime that exceeds six years, low cost, the capability for withstanding pressurization, launch, orbit, and reentry hazards, and reliability. The vehicle's subsystems are analyzed. These subsystems are structures, communication and command data systems, attitude and articulation control, life support and crew systems, power and propulsion, reentry and recovery systems, and mission management, planning, and costing.

  15. Kineto-dynamic design optimisation for vehicle-specific seat-suspension systems

    Science.gov (United States)

    Shangguan, Wen-Bin; Shui, Yijie; Rakheja, Subhash

    2017-11-01

    Designs and analyses of seat-suspension systems are invariably performed considering effective vertical spring rate and damping properties, while neglecting important contributions due to kinematics of the widely used cross-linkage mechanism. In this study, a kineto-dynamic model of a seat-suspension is formulated to obtain relations for effective vertical suspension stiffness and damping characteristics as functions of those of the air spring and the hydraulic damper, respectively. The proposed relations are verified through simulations of the multi-body dynamic model of the cross-linkage seat-suspension in the ADAMS platform. The validity of the kineto-dynamic model is also demonstrated through comparisons of its vibration transmission response with the experimental data. The model is used to identify optimal air spring coordinates to attain nearly constant natural frequency of the suspension, irrespective of the seated body mass and seated height. A methodology is further proposed to identify optimal damping requirements for vehicle-specific suspension designs to achieve minimal seat effective amplitude transmissibility (SEAT) and vibration dose value (VDV) considering vibration spectra of different classes of earthmoving vehicles. The shock and vibration isolation performance potentials of the optimal designs are evaluated under selected vehicle vibration superimposed with shock motions. Results show that the vehicle-specific optimal designs could provide substantial reductions in the SEAT and VDV values for the vehicle classes considered.

  16. Design for Safety - The Ares Launch Vehicles Paradigm Change

    Science.gov (United States)

    Safie, Fayssal M.; Maggio, Gaspare

    2010-01-01

    The lessons learned from the S&MA early involvement in the Ares I launch vehicle design phases proved that performing an in-line function jointly with engineering is critical for S&MA to have an effective role in supporting the system, element, and component design. These lessons learned were used to effectively support the Ares V conceptual design phase and planning for post conceptual design phases. The Top level Conceptual LOM assessment for Ares V performed by the S&MA community jointly with the engineering Advanced Concept Office (ACO) was influential in the final selection of the Ares V system configuration. Post conceptual phase, extensive reliability effort should be planned to support future Heavy Lift Launch Vehicles (HLLV) design. In-depth reliability analysis involving the design, manufacturing, and system engineering communities is critical to understand design and process uncertainties and system integrated failures.

  17. Monocular Camera/IMU/GNSS Integration for Ground Vehicle Navigation in Challenging GNSS Environments

    Directory of Open Access Journals (Sweden)

    Dennis Akos

    2012-03-01

    Full Text Available Low-cost MEMS-based IMUs, video cameras and portable GNSS devices are commercially available for automotive applications and some manufacturers have already integrated such facilities into their vehicle systems. GNSS provides positioning, navigation and timing solutions to users worldwide. However, signal attenuation, reflections or blockages may give rise to positioning difficulties. As opposed to GNSS, a generic IMU, which is independent of electromagnetic wave reception, can calculate a high-bandwidth navigation solution, however the output from a self-contained IMU accumulates errors over time. In addition, video cameras also possess great potential as alternate sensors in the navigation community, particularly in challenging GNSS environments and are becoming more common as options in vehicles. Aiming at taking advantage of these existing onboard technologies for ground vehicle navigation in challenging environments, this paper develops an integrated camera/IMU/GNSS system based on the extended Kalman filter (EKF. Our proposed integration architecture is examined using a live dataset collected in an operational traffic environment. The experimental results demonstrate that the proposed integrated system provides accurate estimations and potentially outperforms the tightly coupled GNSS/IMU integration in challenging environments with sparse GNSS observations.

  18. Monocular camera/IMU/GNSS integration for ground vehicle navigation in challenging GNSS environments.

    Science.gov (United States)

    Chu, Tianxing; Guo, Ningyan; Backén, Staffan; Akos, Dennis

    2012-01-01

    Low-cost MEMS-based IMUs, video cameras and portable GNSS devices are commercially available for automotive applications and some manufacturers have already integrated such facilities into their vehicle systems. GNSS provides positioning, navigation and timing solutions to users worldwide. However, signal attenuation, reflections or blockages may give rise to positioning difficulties. As opposed to GNSS, a generic IMU, which is independent of electromagnetic wave reception, can calculate a high-bandwidth navigation solution, however the output from a self-contained IMU accumulates errors over time. In addition, video cameras also possess great potential as alternate sensors in the navigation community, particularly in challenging GNSS environments and are becoming more common as options in vehicles. Aiming at taking advantage of these existing onboard technologies for ground vehicle navigation in challenging environments, this paper develops an integrated camera/IMU/GNSS system based on the extended Kalman filter (EKF). Our proposed integration architecture is examined using a live dataset collected in an operational traffic environment. The experimental results demonstrate that the proposed integrated system provides accurate estimations and potentially outperforms the tightly coupled GNSS/IMU integration in challenging environments with sparse GNSS observations.

  19. Monocular Camera/IMU/GNSS Integration for Ground Vehicle Navigation in Challenging GNSS Environments

    Science.gov (United States)

    Chu, Tianxing; Guo, Ningyan; Backén, Staffan; Akos, Dennis

    2012-01-01

    Low-cost MEMS-based IMUs, video cameras and portable GNSS devices are commercially available for automotive applications and some manufacturers have already integrated such facilities into their vehicle systems. GNSS provides positioning, navigation and timing solutions to users worldwide. However, signal attenuation, reflections or blockages may give rise to positioning difficulties. As opposed to GNSS, a generic IMU, which is independent of electromagnetic wave reception, can calculate a high-bandwidth navigation solution, however the output from a self-contained IMU accumulates errors over time. In addition, video cameras also possess great potential as alternate sensors in the navigation community, particularly in challenging GNSS environments and are becoming more common as options in vehicles. Aiming at taking advantage of these existing onboard technologies for ground vehicle navigation in challenging environments, this paper develops an integrated camera/IMU/GNSS system based on the extended Kalman filter (EKF). Our proposed integration architecture is examined using a live dataset collected in an operational traffic environment. The experimental results demonstrate that the proposed integrated system provides accurate estimations and potentially outperforms the tightly coupled GNSS/IMU integration in challenging environments with sparse GNSS observations. PMID:22736999

  20. Design Optimization of Space Launch Vehicles Using a Genetic Algorithm

    National Research Council Canada - National Science Library

    Bayley, Douglas J

    2007-01-01

    .... A genetic algorithm (GA) was employed to optimize the design of the space launch vehicle. A cost model was incorporated into the optimization process with the goal of minimizing the overall vehicle cost...

  1. A review of dynamic characteristics of magnetically levitated vehicle systems

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Y.; Chen, S.S.

    1995-11-01

    The dynamic response of magnetically levitated (maglev) ground transportation systems has important consequences for safety and ride quality, guideway design, and system costs. Ride quality is determined by vehicle response and by environmental factors such as humidity and noise. The dynamic response of the vehicles is the key element in determining ride quality, while vehicle stability is an important safety-related element. To design a guideway that provides acceptable ride quality in the stable region, vehicle dynamics must be understood. Furthermore, the trade-off between guideway smoothness and levitation and control systems must be considered if maglev systems are to be economically feasible. The link between the guideway and the other maglev components is vehicle dynamics. For a commercial maglev system, vehicle dynamics must be analyzed and tested in detail. This report, which reviews various aspects of the dynamic characteristics, experiments and analysis, and design guidelines for maglev systems, discusses vehicle stability, motion dependent magnetic force components, guideway characteristics, vehicle/ guideway interaction, ride quality, suspension control laws, aerodynamic loads and other excitations, and research needs.

  2. Advanced protection technology for ground combat vehicles.

    Science.gov (United States)

    Bosse, Timothy G

    2012-01-01

    Just as highway drivers use radar detectors to attempt to stay ahead of police armed with the latest radar technology, the Armed Forces are locked in a spiral to protect combat vehicles and their crews against the latest threats in both the contemporary operating environment and the anticipated operating environment (ie, beyond 2020). In response to bigger, heavier, or better-protected vehicles, adversaries build and deploy larger explosive devices or bombs. However, making improvements to combat vehicles is much more expensive than deploying larger explosives. In addition, demand is increasing for lighter-weight vehicles capable of rapid deployment. Together, these two facts give the threat a clear advantage in the future. To protect vehicles and crews, technologies focusing on detection and hit avoidance, denial of penetration, and crew survivability must be combined synergistically to provide the best chance of survival on the modern battlefield.

  3. Selecting Design Parameters for Flying Vehicles

    Science.gov (United States)

    Makeev, V. I.; Strel'nikova, E. A.; Trofimenko, P. E.; Bondar', A. V.

    2013-09-01

    Studying the influence of a number of design parameters of solid-propellant rockets on the longitudinal and lateral dispersion is an important applied problem. A mathematical model of a rigid body of variable mass moving in a disturbed medium exerting both wave drag and friction is considered. The model makes it possible to determine the coefficients of aerodynamic forces and moments, which affect the motion of vehicles, and to assess the effect of design parameters on their accuracy

  4. Parametric Design and Rapid Prototyping of Installation Box for Vehicle Terminal PCB

    Directory of Open Access Journals (Sweden)

    Wang Xingxing

    2016-01-01

    Full Text Available Installation box for vehicle terminal PCB (Printed Circuit Board was took as research object, which is encountered in the process of project developing. Vehicle terminal PCB in actual development process was set as an example, point cloud data were acquired by three coordinate measuring method; Imageware software was used to reconstruct the vehicle terminal PCB model, basic size parameters of vehicle terminal PCB can be got and then design parameters of installation box for vehicle terminal PCB can be determined. Design of the installation box for vehicle terminal PCB was completed based on Solidworks software, then 3D modeling and 2D drawing of installation box for vehicle terminal PCB was gained. Up Plus 2 rapid prototype machine was used to manufacture installation box for vehicle terminal PCB rapidly based on 3D printing technology, then prototype of installation box for vehicle terminal PCB was obtained. It is of certain engineering significant for single (small amount manufacturing of installation box for general PCB.

  5. REQUIREMENTS FOR DESIGN, EQUIPMENT AND OPERATION MODE OF TAXI VEHICLES

    Directory of Open Access Journals (Sweden)

    Norayr Oganesovich Bludyan

    2015-09-01

    Full Text Available The analysis of international experience in application of requirements for the taxi vehicles design and equipment. The approaches to improvement of cabbing have been defined by determination of requirements for taxi vehicles.

  6. The design of infrared laser radar for vehicle initiative safety

    Science.gov (United States)

    Gong, Ping; Xu, Xi-ping; Li, Xiao-yu; Li, Tian-zhi; Liu, Yu-long; Wu, Jia-hui

    2013-09-01

    Laser radar for vehicle is mainly used in advanced vehicle on-board active safety systems, such as forward anti-collision systems, active collision warning systems and adaptive cruise control systems, etc. Laser radar for vehicle plays an important role in the improvement of vehicle active safety and the reduction of traffic accidents. The stability of vehicle active anti-collision system in dynamic environment is still one of the most difficult problems to break through nowadays. According to people's driving habit and the existed detecting technique of sensor, combining the infrared laser range and galvanometer scanning technique , design a 3-D infrared laser radar which can be used to assist navigation, obstacle avoidance and the vehicle's speed control for the vehicle initiative safety. The device is fixed to the head of vehicle. Then if an accident happened, the device could give an alarm to remind the driver timely to decelerate or brake down, by which way can people get the purpose of preventing the collision accidents effectively. To accomplish the design, first of all, select the core components. Then apply Zemax to design the transmitting and receiving optical system. Adopt 1550 nm infrared laser transmitter as emission unit in the device, a galvanometer scanning as laser scanning unit and an InGaAs-APD detector as laser echo signal receiving unit. Perform the construction of experimental system using FPGA and ARM as the core controller. The system designed in this paper can not only detect obstacle in front of the vehicle and make the control subsystem to execute command, but also transfer laser data to PC in real time. Lots of experiments using the infrared laser radar prototype are made, and main performance of it is under tested. The results of these experiments show that the imaging speed of the laser radar can reach up to 25 frames per second, the frame resolution of each image can reach 30×30 pixels, the horizontal angle resolution is about 6. 98

  7. Design basis ground motion (Ss) required on new regulatory guide

    International Nuclear Information System (INIS)

    Kamae, Katsuhiro

    2013-01-01

    New regulatory guide is enforced on July 8. Here, it is introduced how the design basis ground motion (Ss) for seismic design of nuclear power reactor facilities was revised on the new guide. Ss is formulated as two types of earthquake ground motions, earthquake ground motions with site specific earthquake source and with no such specific source locations. The latter is going to be revised based on the recent observed near source ground motions. (author)

  8. The Role of Guidance, Navigation, and Control in Hypersonic Vehicle Multidisciplinary Design and Optimization

    Science.gov (United States)

    Ouzts, Peter J.; Soloway, Donald I.; Moerder, Daniel D.; Wolpert, David H.; Benavides, Jose Victor

    2009-01-01

    Airbreathing hypersonic systems offer distinct performance advantages over rocket-based systems for space access vehicles. However, these performance advantages are dependent upon advances in current state-of-the-art technologies in many areas such as ram/scramjet propulsion integration, high temperature materials, aero-elastic structures, thermal protection systems, transition to hypersonics and hypersonic control elements within the framework of complex physics and new design methods. The complex interactions between elements of an airbreathing hypersonic vehicle represent a new paradigm in vehicle design to achieve the optimal performance necessary to meet space access mission objectives. In the past, guidance, navigation, and control (GNC) analysis often follows completion of the vehicle conceptual design process. Individual component groups design subsystems which are then integrated into a vehicle configuration. GNC is presented the task of developing control approaches to meet vehicle performance objectives given that configuration. This approach may be sufficient for vehicles where significant performance margins exist. However, for higher performance vehicles engaging the GNC discipline too late in the design cycle has been costly. For example, the X-29 experimental flight vehicle was built as a technology demonstrator. One of the many technologies to be demonstrated was the use of light-weight material composites for structural components. The use of light-weight materials increased the flexibility of the X- 29 beyond that of conventional metal alloy constructed aircraft. This effect was not considered when the vehicle control system was designed and built. The impact of this is that the control system did not have enough control authority to compensate for the effects of the first fundamental structural mode of the vehicle. As a result, the resulting pitch rate response of the vehicle was below specification and no post-design changes could recover the

  9. Ground System Survivability Overview

    Science.gov (United States)

    2012-03-27

    Avoidance Blast Mitigation Optimization Customer ILIR RDT&E Funding 5.0 % 0.5% GSS has a proven, technically proficient workforce that meets...Evaluation of Defensive-Aid Suites (ARMED) Common Automatic Fire Extinguishing System ( CAFES ) Transparent Armor Development Ground Combat Vehicle...Survey TRADOC (WFO, CNA, etc) Voice of the Customer Sy st em s En gi ne er in g Publish overarching MIL-STD, design guidelines, technical

  10. Exploring Modeling Options and Conversion of Average Response to Appropriate Vibration Envelopes for a Typical Cylindrical Vehicle Panel with Rib-stiffened Design

    Science.gov (United States)

    Harrison, Phil; LaVerde, Bruce; Teague, David

    2009-01-01

    Although applications for Statistical Energy Analysis (SEA) techniques are more widely used in the aerospace industry today, opportunities to anchor the response predictions using measured data from a flight-like launch vehicle structure are still quite valuable. Response and excitation data from a ground acoustic test at the Marshall Space Flight Center permitted the authors to compare and evaluate several modeling techniques available in the SEA module of the commercial code VA One. This paper provides an example of vibration response estimates developed using different modeling approaches to both approximate and bound the response of a flight-like vehicle panel. Since both vibration response and acoustic levels near the panel were available from the ground test, the evaluation provided an opportunity to learn how well the different modeling options can match band-averaged spectra developed from the test data. Additional work was performed to understand the spatial averaging of the measurements across the panel from measured data. Finally an evaluation/comparison of two conversion approaches from the statistical average response results that are output from an SEA analysis to a more useful envelope of response spectra appropriate to specify design and test vibration levels for a new vehicle.

  11. Evaluation of two transport aircraft and several ground test vehicle friction measurements obtained for various runway surface types and conditions. A summary of test results from joint FAA/NASA Runway Friction Program

    Science.gov (United States)

    Yager, Thomas J.; Vogler, William A.; Baldasare, Paul

    1990-01-01

    Tests with specially instrumented NASA Boeing 737 and 727 aircraft together with several different ground friction measuring devices were conducted for a variety of runway surface types and conditions. These tests are part of joint FAA/NASA Aircraft/Ground Vehicle Runway Friction Program aimed at obtaining a better understanding of aircraft ground handling performance under adverse weather conditions and defining relationships between aircraft and ground vehicle tire friction measurements. Aircraft braking performance on dry, wet, snow and ice-covered runway conditions is discussed as well as ground vehicle friction data obtained under similar runway conditions. For a given contaminated runway surface condition, the correlation between ground vehicles and aircraft friction data is identified. The influence of major test parameters on friction measurements such as speed, test tire characteristics, type and amount of surface contaminant, and ambient temperature are discussed. The effect of surface type on wet friction levels is also evaluated from comparative data collected on grooved and ungrooved concrete and asphalt surfaces.

  12. Inviscid/Boundary-Layer Aeroheating Approach for Integrated Vehicle Design

    Science.gov (United States)

    Lee, Esther; Wurster, Kathryn E.

    2017-01-01

    A typical entry vehicle design depends on the synthesis of many essential subsystems, including thermal protection system (TPS), structures, payload, avionics, and propulsion, among others. The ability to incorporate aerothermodynamic considerations and TPS design into the early design phase is crucial, as both are closely coupled to the vehicle's aerodynamics, shape and mass. In the preliminary design stage, reasonably accurate results with rapid turn-representative entry envelope was explored. Initial results suggest that for Mach numbers ranging from 9-20, a few inviscid solutions could reasonably sup- port surface heating predictions at Mach numbers variation of +/-2, altitudes variation of +/-10 to 20 kft, and angle-of-attack variation of +/- 5. Agreement with Navier-Stokes solutions was generally found to be within 10-15% for Mach number and altitude, and 20% for angle of attack. A smaller angle-of-attack increment than the 5 deg around times for parametric studies and quickly evolving configurations are necessary to steer design decisions. This investigation considers the use of an unstructured 3D inviscid code in conjunction with an integral boundary-layer method; the former providing the flow field solution and the latter the surface heating. Sensitivity studies for Mach number, angle of attack, and altitude, examine the feasibility of using this approach to populate a representative entry flight envelope based on a limited set of inviscid solutions. Each inviscid solution is used to generate surface heating over the nearby trajectory space. A subset of a considered in this study is recommended. Results of the angle-of-attack sensitivity studies show that smaller increments may be needed for better heating predictions. The approach is well suited for application to conceptual multidisciplinary design and analysis studies where transient aeroheating environments are critical for vehicle TPS and thermal design. Concurrent prediction of aeroheating

  13. Pre-flight physical simulation test of HIMES reentry test vehicle

    Science.gov (United States)

    Kawaguchi, Jun'ichiro; Inatani, Yoshifumi; Yonemoto, Koichi; Hosokawa, Shigeru

    ISAS is now developing a small reentry test vehicle, which is 2m long with a 1.5m wing span and weighs about 170 kg, for the purpose of exploring high angle-of-attack aerodynamic attitude control issue in supersonic and hypersonic speed. The flight test, employing 'Rockoon' launch system, is planned as a preliminary design verification for a fully reusable winged rocket named HIMES (Highly Maneuverable Experimental Space) vehicle. This paper describes the results of preflight ground test using a motion table system. This ground system test is called 'physical simulation' aimed at: (1) functional verification of side-jet system, aerodynamic surface actuators, battery and onboard avionics; and (2) guidance and control law evaluation, in total hardware-in-the-loop system. The pressure of side-jet nozzles was measured to provide exact thrust characteristics of reaction control. The dynamics of vehicle motion was calculated in real-time by the ground simulation computer.

  14. A design approach for small vision-based autonomous vehicles

    Science.gov (United States)

    Edwards, Barrett B.; Fife, Wade S.; Archibald, James K.; Lee, Dah-Jye; Wilde, Doran K.

    2006-10-01

    This paper describes the design of a small autonomous vehicle based on the Helios computing platform, a custom FPGA-based board capable of supporting on-board vision. Target applications for the Helios computing platform are those that require lightweight equipment and low power consumption. To demonstrate the capabilities of FPGAs in real-time control of autonomous vehicles, a 16 inch long R/C monster truck was outfitted with a Helios board. The platform provided by such a small vehicle is ideal for testing and development. The proof of concept application for this autonomous vehicle was a timed race through an environment with obstacles. Given the size restrictions of the vehicle and its operating environment, the only feasible on-board sensor is a small CMOS camera. The single video feed is therefore the only source of information from the surrounding environment. The image is then segmented and processed by custom logic in the FPGA that also controls direction and speed of the vehicle based on visual input.

  15. Dynamic Design of Ground Transport With the Help of Computational Experiment

    Directory of Open Access Journals (Sweden)

    Kravets Victor

    2015-05-01

    Full Text Available Objectives of ground transport (motor transport vehicle have been considered. Mathematical model of nonlinear dynamics in spatial motion of asymmetric carriage in the form of Euler-Lagrange equations represented as symmetrical block structure in quaternion matrices has been developed. Kinematic equations and partition matrices of external action in which Rodrigues-Hamilton parameters have been applied describe quaternionic matrices.

  16. Robust Design of H-infinity Controller for a Launch Vehicle Autopilot against Disturbances

    OpenAIRE

    Graells, Antonio; Carrabina, Francisco

    2016-01-01

    Atmospheric flight phase of a launch vehicle is utilized to evaluate the performance of an H-infinity controller in the presence of disturbances. Dynamics of the vehicle is linearly modeled using time-varying parameters. An operating point was found to design a robust command tracker using H-infinity control theory that guarantees a stable maneuver. At the end, the controller was employed on the launch vehicle to assess the capability of control design on the linearized aerospace vehicle. Exp...

  17. Proposed design criteria for a fusion facility electrical ground system

    International Nuclear Information System (INIS)

    Armellino, C.A.

    1983-01-01

    Ground grid design considerations for a nuclear fusion reactor facility are no different than any other facility in that the basis for design must be safety first and foremost. Unlike a conventional industrial facility the available fault energy comes not only from the utility source and in-house rotating machinery, but also from energy storage capacitor banks, collapsing magnetic fields and D.C. transmission lines. It is not inconceivable for a fault condition occurrence where all available energy can be discharged. The ground grid must adequately shunt this sudden energy discharge in a way that personnel will not be exposed by step and/or touch to hazardous energy levels that are in excess of maximum tolerable levels for humans. Fault energy discharge rate is a function of the ground grid surge impedance characteristic. Closed loop paths must be avoided in the ground grid design so that during energy discharge no stray magnetic fields or large voltage potentials between remote points can be created by circulating currents. Single point connection of equipment to the ground grid will afford protection to personnel and sensitive equipment by reducing the probability of circulating currents. The overall ground grid system design is best illustrated as a wagon wheel concept with the fusion machine at the center. Radial branches or spokes reach out to the perimeter limits designated by step-and-touch high risk areas based on soil resistivity criteria considerations. Conventional methods for the design of a ground grid with all of its radial branches are still pertinent. The center of the grid could include a deep well single ground rod element the length of which is at least equivalent to the radius of an imaginary sphere that enshrouds the immediate machine area. Special facilities such as screen rooms or other shielded areas are part of the ground grid system by way of connection to radial branches

  18. Motion Control of Four-Wheel Independently Actuated Electric Ground Vehicles considering Tire Force Saturations

    Directory of Open Access Journals (Sweden)

    Rongrong Wang

    2013-01-01

    Full Text Available A vehicle stability control approach for four-wheel independently actuated (FWIA electric vehicles is presented. The proposed control method consists of a higher-level controller and a lower-level controller. An adaptive control-based higher-level controller is designed to yield the vehicle virtual control efforts to track the desired vehicle motions due to the possible modeling inaccuracies and parametric uncertainties. The lower-level controller considering tire force saturation is given to allocate the required control efforts to the four in-wheel motors for providing the desired tire forces. An analytic method is given to distribute the high-level control efforts, without using the numerical-optimization-based control allocation algorithms. Simulations based on a high-fidelity, CarSim, and full-vehicle model show the effectiveness of the control approach.

  19. Reliable CPS design for mitigating semiconductor and battery aging in electric vehicles

    NARCIS (Netherlands)

    Chang, W.; Proebstl, A.; Goswami, D.; Zamani, M.; Chakraborty, S.

    2015-01-01

    Reliability and performance of cyber-physical systems (CPS) in electric vehicles (EVs) are influenced by three design aspects: (i) controller design, (ii) battery usage, i.e., Battery rate capacity and aging effects, (iii) processor aging of the in-vehicle embedded platform. In this paper, we

  20. Ground motion and its effects in accelerator design

    International Nuclear Information System (INIS)

    Fischer, G.E.

    1985-07-01

    The effects of ground motion on accelerator design are discussed. The limitations on performance are discussed for various categories of motion. For example, effects due to ground settlement, tides, seismic disturbances and man-induced disturbances are included in this discussion. 42 figs., 7 tabs

  1. Trade-off results and preliminary designs of Near-Term Hybrid Vehicles

    Science.gov (United States)

    Sandberg, J. J.

    1980-01-01

    Phase I of the Near-Term Hybrid Vehicle Program involved the development of preliminary designs of electric/heat engine hybrid passenger vehicles. The preliminary designs were developed on the basis of mission analysis, performance specification, and design trade-off studies conducted independently by four contractors. THe resulting designs involve parallel hybrid (heat engine/electric) propulsion systems with significant variation in component selection, power train layout, and control strategy. Each of the four designs is projected by its developer as having the potential to substitute electrical energy for 40% to 70% of the petroleum fuel consumed annually by its conventional counterpart.

  2. Intelligent design of mechanical parameters of the joint in vehicle body concept design model

    Science.gov (United States)

    Hou, Wen-bin; Zhang, Hong-zhe; Hou, Da-jun; Hu, Ping

    2013-05-01

    In order to estimate the mechanical properties of the overall structure of the body accurately and quickly in conceptual design phase of the body, the beam and shell mixing elements was used to build simplified finite element model of the body. Through the BP neural network algorithm, the parameters of the mechanical property of joints element which had more affection on calculation accuracy were calculated and the joint finite element model based on the parameters was also constructed. The case shown that the method can improve the accuracy of the vehicle simulation results, while not too many design details were needed, which was fit to the demand in the vehicle body conceptual design phase.

  3. Applying Monte Carlo Simulation to Launch Vehicle Design and Requirements Verification

    Science.gov (United States)

    Hanson, John M.; Beard, Bernard B.

    2010-01-01

    This paper is focused on applying Monte Carlo simulation to probabilistic launch vehicle design and requirements verification. The approaches developed in this paper can be applied to other complex design efforts as well. Typically the verification must show that requirement "x" is met for at least "y" % of cases, with, say, 10% consumer risk or 90% confidence. Two particular aspects of making these runs for requirements verification will be explored in this paper. First, there are several types of uncertainties that should be handled in different ways, depending on when they become known (or not). The paper describes how to handle different types of uncertainties and how to develop vehicle models that can be used to examine their characteristics. This includes items that are not known exactly during the design phase but that will be known for each assembled vehicle (can be used to determine the payload capability and overall behavior of that vehicle), other items that become known before or on flight day (can be used for flight day trajectory design and go/no go decision), and items that remain unknown on flight day. Second, this paper explains a method (order statistics) for determining whether certain probabilistic requirements are met or not and enables the user to determine how many Monte Carlo samples are required. Order statistics is not new, but may not be known in general to the GN&C community. The methods also apply to determining the design values of parameters of interest in driving the vehicle design. The paper briefly discusses when it is desirable to fit a distribution to the experimental Monte Carlo results rather than using order statistics.

  4. The Design of an Autonomous Underwater Vehicle for Water Quality Monitoring

    Science.gov (United States)

    Li, Yulong; Liu, Rong; Liu, Shujin

    2018-01-01

    This paper describes the development of a civilian-used autonomous underwater vehicle (AUV) for water quality monitoring at reservoirs and watercourses that can obtain realtime visual and locational information. The mechanical design was completed with CAD software Solidworks. Four thrusters—two horizontal and two vertical—on board enable the vehicle to surge, heave, yaw, and pitch. A specialized water sample collection compartment is designed to perform water collection at target locations. The vehicle has a central controller—STM32—and a sub-coordinate controller—Arduino MEGA 2560—that coordinates multiple sensors including an inertial sensor, ultrasonic sensors, etc. Global Navigation Satellite System (GNSS) and the inertial sensor enable the vehicle’s localization. Remote operators monitor and control the vehicle via a host computer system. Operators choose either semi-autonomous mode in which they set target locations or manual mode. The experimental results show that the vehicle is able to perform well in either mode.

  5. A novel design method for ground source heat pump

    Directory of Open Access Journals (Sweden)

    Dong Xing-Jie

    2014-01-01

    Full Text Available This paper proposes a novel design method for ground source heat pump. The ground source heat pump operation is controllable by using several parameters, such as the total meters of buried pipe, the space between wells, the thermal properties of soil, thermal resistance of the well, the initial temperature of soil, and annual dynamic load. By studying the effect of well number and well space, we conclude that with the increase of the well number, the inlet and outlet water temperatures decrease in summer and increase in winter, which enhance the efficiency of ground source heat pump. The well space slightly affects the water temperatures, but it affects the soil temperature to some extent. Also the ground source heat pump operations matching with cooling tower are investigated to achieve the thermal balance. This method greatly facilitates ground source heat pump design.

  6. A study on model fidelity for model predictive control-based obstacle avoidance in high-speed autonomous ground vehicles

    Science.gov (United States)

    Liu, Jiechao; Jayakumar, Paramsothy; Stein, Jeffrey L.; Ersal, Tulga

    2016-11-01

    This paper investigates the level of model fidelity needed in order for a model predictive control (MPC)-based obstacle avoidance algorithm to be able to safely and quickly avoid obstacles even when the vehicle is close to its dynamic limits. The context of this work is large autonomous ground vehicles that manoeuvre at high speed within unknown, unstructured, flat environments and have significant vehicle dynamics-related constraints. Five different representations of vehicle dynamics models are considered: four variations of the two degrees-of-freedom (DoF) representation as lower fidelity models and a fourteen DoF representation with combined-slip Magic Formula tyre model as a higher fidelity model. It is concluded that the two DoF representation that accounts for tyre nonlinearities and longitudinal load transfer is necessary for the MPC-based obstacle avoidance algorithm in order to operate the vehicle at its limits within an environment that includes large obstacles. For less challenging environments, however, the two DoF representation with linear tyre model and constant axle loads is sufficient.

  7. Design and validation of a slender guideway for Maglev vehicle by simulation and experiment

    Science.gov (United States)

    Han, Jong-Boo; Han, Hyung-Suk; Kim, Sung-Soo; Yang, Seok-Jo; Kim, Ki-Jung

    2016-03-01

    Normally, Maglev (magnetic levitation) vehicles run on elevated guideways. The elevated guideway must satisfy various load conditions of the vehicle, and has to be designed to ensure ride quality, while ensuring that the levitation stability of the vehicle is not affected by the deflection of the guideway. However, because the elevated guideways of Maglev vehicles in South Korea and other countries fabricated so far have been based on over-conservative design criteria, the size of the structures has increased. Further, from the cost perspective, they are unfavourable when compared with other light rail transits such as monorail, rubber wheel, and steel wheel automatic guided transit. Therefore, a slender guideway that does have an adverse effect on the levitation stability of the vehicle is required through optimisation of design criteria. In this study, to predict the effect of various design parameters of the guideway on the dynamic behaviour of the vehicle, simulations were carried out using a dynamics model similar to the actual vehicle and guideway, and a limiting value of deflection ratio of the slender guideway to ensure levitation control is proposed. A guideway that meets the requirement as per the proposed limit for deflection ratio was designed and fabricated, and through a driving test of the vehicle, the validity of the slender guideway was verified. From the results, it was confirmed that although some increase in airgap and cabin acceleration was observed with the proposed slender guideway when compared with the conventional guideway, there was no notable adverse effect on the levitation stability and ride quality of the vehicle. Therefore, it can be inferred that the results of this study will become the basis for establishing design criteria for slender guideways of Maglev vehicles in future.

  8. Representation of bidirectional ground motions for design spectra in building codes

    Science.gov (United States)

    Stewart, Jonathan P.; Abrahamson, Norman A.; Atkinson, Gail M.; Beker, Jack W.; Boore, David M.; Bozorgnia, Yousef; Campbell, Kenneth W.; Comartin, Craig D.; Idriss, I.M.; Lew, Marshall; Mehrain, Michael; Moehle, Jack P.; Naeim, Farzad; Sabol, Thomas A.

    2011-01-01

    The 2009 NEHRP Provisions modified the definition of horizontal ground motion from the geometric mean of spectral accelerations for two components to the peak response of a single lumped mass oscillator regardless of direction. These maximum-direction (MD) ground motions operate under the assumption that the dynamic properties of the structure (e.g., stiffness, strength) are identical in all directions. This assumption may be true for some in-plan symmetric structures, however, the response of most structures is dominated by modes of vibration along specific axes (e.g., longitudinal and transverse axes in a building), and often the dynamic properties (especially stiffness) along those axes are distinct. In order to achieve structural designs consistent with the collapse risk level given in the NEHRP documents, we argue that design spectra should be compatible with expected levels of ground motion along those principal response axes. The use of MD ground motions effectively assumes that the azimuth of maximum ground motion coincides with the directions of principal structural response. Because this is unlikely, design ground motions have lower probability of occurrence than intended, with significant societal costs. We recommend adjustments to make design ground motions compatible with target risk levels.

  9. Design of vehicle intelligent anti-collision warning system

    Science.gov (United States)

    Xu, Yangyang; Wang, Ying

    2018-05-01

    This paper mainly designs a low cost, high-accuracy, micro-miniaturization, and digital display and acousto-optic alarm features of the vehicle intelligent anti-collision warning system that based on MCU AT89C51. The vehicle intelligent anti-collision warning system includes forward anti-collision warning system, auto parking systems and reversing anti-collision radar system. It mainly develops on the basis of ultrasonic distance measurement, its performance is reliable, thus the driving safety is greatly improved and the parking security and efficiency enhance enormously.

  10. The Seismic Response of High-Speed Railway Bridges Subjected to Near-Fault Forward Directivity Ground Motions Using a Vehicle-Track-Bridge Element

    Directory of Open Access Journals (Sweden)

    Chen Ling-kun

    2014-01-01

    Full Text Available Based on the Next Generation Attenuation (NGA project ground motion library, the finite element model of the high-speed railway vehicle-bridge system is established. The model was specifically developed for such system that is subjected to near-fault ground motions. In addition, it accounted for the influence of the rail irregularities. The vehicle-track-bridge (VTB element is presented to simulate the interaction between train and bridge, in which a train can be modeled as a series of sprung masses concentrated at the axle positions. For the short period railway bridge, the results from the case study demonstrate that directivity pulse effect tends to increase the seismic responses of the bridge compared with far-fault ground motions or nonpulse-like motions and the directivity pulse effect and high values of the vertical acceleration component can notably influence the hysteretic behaviour of piers.

  11. Analysis Methodology for Optimal Selection of Ground Station Site in Space Missions

    Science.gov (United States)

    Nieves-Chinchilla, J.; Farjas, M.; Martínez, R.

    2013-12-01

    Optimization of ground station sites is especially important in complex missions that include several small satellites (clusters or constellations) such as the QB50 project, where one ground station would be able to track several spatial vehicles, even simultaneously. In this regard the design of the communication system has to carefully take into account the ground station site and relevant signal phenomena, depending on the frequency band. To propose the optimal location of the ground station, these aspects become even more relevant to establish a trusted communication link due to the ground segment site in urban areas and/or selection of low orbits for the space segment. In addition, updated cartography with high resolution data of the location and its surroundings help to develop recommendations in the design of its location for spatial vehicles tracking and hence to improve effectiveness. The objectives of this analysis methodology are: completion of cartographic information, modelling the obstacles that hinder communication between the ground and space segment and representation in the generated 3D scene of the degree of impairment in the signal/noise of the phenomena that interferes with communication. The integration of new technologies of geographic data capture, such as 3D Laser Scan, determine that increased optimization of the antenna elevation mask, in its AOS and LOS azimuths along the horizon visible, maximizes visibility time with spatial vehicles. Furthermore, from the three-dimensional cloud of points captured, specific information is selected and, using 3D modeling techniques, the 3D scene of the antenna location site and surroundings is generated. The resulting 3D model evidences nearby obstacles related to the cartographic conditions such as mountain formations and buildings, and any additional obstacles that interfere with the operational quality of the antenna (other antennas and electronic devices that emit or receive in the same bandwidth

  12. 3 tons pure electric vehicles power system design based on Cruise

    Directory of Open Access Journals (Sweden)

    Xinyu Liu

    2017-01-01

    Full Text Available The pure electric minivan is different from electric car. Combined with a given vehicle, vehicle simulation model established in Cruise software, complete simulation by setting tasks for the selected models designed drivetrain. Simulation results show that: The design of the transmission ratio can best meet the performance requirements of the matching target power analysis and simulation of electric minivan provides a new way, with practical guidance.

  13. Online Aerial Terrain Mapping for Ground Robot Navigation

    Directory of Open Access Journals (Sweden)

    John Peterson

    2018-02-01

    Full Text Available This work presents a collaborative unmanned aerial and ground vehicle system which utilizes the aerial vehicle’s overhead view to inform the ground vehicle’s path planning in real time. The aerial vehicle acquires imagery which is assembled into a orthomosaic and then classified. These terrain classes are used to estimate relative navigation costs for the ground vehicle so energy-efficient paths may be generated and then executed. The two vehicles are registered in a common coordinate frame using a real-time kinematic global positioning system (RTK GPS and all image processing is performed onboard the unmanned aerial vehicle, which minimizes the data exchanged between the vehicles. This paper describes the architecture of the system and quantifies the registration errors between the vehicles.

  14. Constraint Embedding for Vehicle Suspension Dynamics

    OpenAIRE

    Jain Abhinandan; Kuo Calvin; Jayakumar Paramsothy; Cameron Jonathan

    2016-01-01

    The goal of this research is to achieve close to real-time dynamics performance for allowing auto-pilot in-the-loop testing of unmanned ground vehicles (UGV) for urban as well as off-road scenarios. The overall vehicle dynamics performance is governed by the multibody dynamics model for the vehicle, the wheel/terrain interaction dynamics and the onboard control system. The topic of this paper is the development of computationally efficient and accurate dynamics model for ground vehicles with ...

  15. IPAD: Integrated Programs for Aerospace-vehicle Design

    Science.gov (United States)

    Miller, R. E., Jr.

    1985-01-01

    Early work was performed to apply data base technology in support of the management of engineering data in the design and manufacturing environments. The principal objective of the IPAD project is to develop a computer software system for use in the design of aerospace vehicles. Two prototype systems are created for this purpose. Relational Information Manager (RIM) is a successful commercial product. The IPAD Information Processor (IPIP), a much more sophisticated system, is still under development.

  16. Vehicle following controller design for autonomous intelligent vehicles

    Science.gov (United States)

    Chien, C. C.; Lai, M. C.; Mayr, R.

    1994-01-01

    A new vehicle following controller is proposed for autonomous intelligent vehicles. The proposed vehicle following controller not only provides smooth transient maneuvers for unavoidable nonzero initial conditions but also guarantees the asymptotic platoon stability without the availability of feedforward information. Furthermore, the achieved asymptotic platoon stability is shown to be robust to sensor delays and an upper bound for the allowable sensor delays is also provided in this paper.

  17. Preliminary Design of Monitoring and Control Subsystem for GNSS Ground Station

    Directory of Open Access Journals (Sweden)

    Seongkyun Jeong

    2008-06-01

    Full Text Available GNSS (Global Navigation Satellite System Ground Station monitors navigation satellite signal, analyzes navigation result, and uploads correction information to satellite. GNSS Ground Station is considered as a main object for constructing GNSS infra-structure and applied in various fields. ETRI (Electronics and Telecommunications Research Institute is developing Monitoring and Control subsystem, which is subsystem of GNSS Ground Station. Monitoring and Control subsystem acquires GPS and Galileo satellite signal and provides signal monitoring data to GNSS control center. In this paper, the configurations of GNSS Ground Station and Monitoring and Control subsystem are introduced and the preliminary design of Monitoring and Control subsystem is performed. Monitoring and Control subsystem consists of data acquisition module, data formatting and archiving module, data error correction module, navigation solution determination module, independent quality monitoring module, and system operation and maintenance module. The design process uses UML (Unified Modeling Language method which is a standard for developing software and consists of use-case modeling, domain design, software structure design, and user interface structure design. The preliminary design of Monitoring and Control subsystem enhances operation capability of GNSS Ground Station and is used as basic material for detail design of Monitoring and Control subsystem.

  18. Design and Construction of a Robotic Vehicle with Omni-directional Mecanum Wheels

    Directory of Open Access Journals (Sweden)

    Ján VACHÁLEK

    2014-06-01

    Full Text Available The paper deals with the design and construction of a universal robotic vehicle prototype, used for laboratory and educational purposes. The main goal is its use as a technology demonstrator for the needs of students, therefore it is equipped with several kinds of sensors and universal advanced control technologies and design solutions. Its basis is a control system and construction concept using mobile battery gear and omnidirectional Mecanum wheels. A manipulating arm and advanced tracking and spatial navigation systems are also components of the design. Since the problem of a customized design and construction of such a robotic vehicle is very complex and solved in various scientific fields, in this paper we will mainly focus on the detailed description of the control systems and subsystems of the vehicle.

  19. Developing a Blended Type Course of Introduction to Hybrid Vehicles

    Directory of Open Access Journals (Sweden)

    Na Zhu

    2016-02-01

    Full Text Available An innovative course of introduction to hybrid vehicles is developed for both associate and bachelor degree programs for engineering technology with automotive/mechanical concentration. The hybrid vehicle course content includes several topics, such as the rational of pure electric vehicle and hybrid vehicle, hybrid vehicle propulsion systems, fundamentals of motor/generator systems, fundamentals of battery and energy management system, and introduction to various configurations of hybrid vehicle systems available in market and under development. Hybrid vehicle technology is a new area and developed rapidly in the field of automotive and mechanical engineering. Students need not only the fundamentals and concepts from college, but also the ability to keep up with the latest technology after their graduation. Therefore, a blended course type is employed to help students have a better understanding of the fundamentals of hybrid vehicle and developing their self-studying ability. Topics in the course have three steps of learning. Firstly, on-ground lecture is given in class, where the instructor explains basic knowledge, such as principles, equations, and design rules.  In this way, the students will have enough background knowledge and be able to conduct further self-reading and research work. Secondly, students are required to go to university’s desire to learn (D2L online system and finish the online part of the topic. In the D2L system, students will find a quiz and its supporting materials. Thirdly, students come back to the on-ground lecture and discuss the quiz in groups with instructor. After the discussion, the instructor gives students a conclusion of the topic and moves forward to the next topic. A computer simulation class is also given to help student better understand the operation strategies of the hybrid vehicle systems and have a trial of design of hybrid vehicle.

  20. Electric-powered passenger vehicle design study program. Task 1. Tradeoff studies

    Energy Technology Data Exchange (ETDEWEB)

    Rowlett, B.H.

    1976-09-16

    Using the baseline vehicle and power system design established previously to meet the performance goals of the program, three power system computer simulation programs were prepared for the basic vehicle tradeoff studies. These programs simulate the performance of the power system and vehicle over different types of driving conditions such as maximum power acceleration, deceleration, city driving cycles, and hill climbing, and permit accurate determination of the benefits of the unique hybrid power system, the total energy required for the suburban city driving cycle, and the extremes of the operating envelopes of the components so that component design options can be defined and studied. Component design tradeoff studies were conducted, including sensitivity studies to show the criticality of the various losses and unknowns in the analytical models. Also, preliminary vehicle layout studies were performed to determine the best locations of the power system and the batteries. Three basic design options are identified for further study. Economic studies were initiated using analytical models to establish the complete vehicle weight and cost breakdowns. Preliminary reliability and safety studies were completed, and maintainability and safety certification criteria established. The detailed analysis of the power system has verified the feasibility of the system and of the performance expectations. Also, the feasibility of energy recovery from regenerative braking has been confirmed. The sensitivity analysis of the power system shows that sufficient margin for unknown design variables is provided. The preliminary economic analysis indicates that the most difficult objective of the study will be the selection of the cost and weight relationships which are required to achieve the overall cost objectives.

  1. Real-time Accurate Surface Reconstruction Pipeline for Vision Guided Planetary Exploration Using Unmanned Ground and Aerial Vehicles

    Science.gov (United States)

    Almeida, Eduardo DeBrito

    2012-01-01

    This report discusses work completed over the summer at the Jet Propulsion Laboratory (JPL), California Institute of Technology. A system is presented to guide ground or aerial unmanned robots using computer vision. The system performs accurate camera calibration, camera pose refinement and surface extraction from images collected by a camera mounted on the vehicle. The application motivating the research is planetary exploration and the vehicles are typically rovers or unmanned aerial vehicles. The information extracted from imagery is used primarily for navigation, as robot location is the same as the camera location and the surfaces represent the terrain that rovers traverse. The processed information must be very accurate and acquired very fast in order to be useful in practice. The main challenge being addressed by this project is to achieve high estimation accuracy and high computation speed simultaneously, a difficult task due to many technical reasons.

  2. Hypersonic drone vehicle design: A multidisciplinary experience

    Science.gov (United States)

    1988-01-01

    UCLA's Advanced Aeronautic Design group focussed their efforts on design problems of an unmanned hypersonic vehicle. It is felt that a scaled hypersonic drone is necesary to bridge the gap between present theory on hypersonics and the future reality of the National Aerospace Plane (NASP) for two reasons: (1) to fulfill a need for experimental data in the hypersonic regime, and (2) to provide a testbed for the scramjet engine which is to be the primary mode of propulsion for the NASP. The group concentrated on three areas of great concern to NASP design: propulsion, thermal management, and flight systems. Problem solving in these areas was directed toward design of the drone with the idea that the same design techniques could be applied to the NASP. A 70 deg swept double-delta wing configuration, developed in the 70's at the NASA Langley, was chosen as the aerodynamic and geometric model for the drone. This vehicle would be air launched from a B-1 at Mach 0.8 and 48,000 feet, rocket boosted by two internal engines to Mach 10 and 100,000 feet, and allowed to cruise under power of the scramjet engine until burnout. It would then return to base for an unpowered landing. Preliminary energy calculations based on flight requirements give the drone a gross launch weight of 134,000 pounds and an overall length of 85 feet.

  3. X-33/RLV System Health Management/Vehicle Health Management

    Science.gov (United States)

    Mouyos, William; Wangu, Srimal

    1998-01-01

    To reduce operations costs, Reusable Launch Vehicles (RLVS) must include highly reliable robust subsystems which are designed for simple repair access with a simplified servicing infrastructure, and which incorporate expedited decision-making about faults and anomalies. A key component for the Single Stage To Orbit (SSTO) RLV system used to meet these objectives is System Health Management (SHM). SHM incorporates Vehicle Health Management (VHM), ground processing associated with the vehicle fleet (GVHM), and Ground Infrastructure Health Management (GIHM). The primary objective of SHM is to provide an automated and paperless health decision, maintenance, and logistics system. Sanders, a Lockheed Martin Company, is leading the design, development, and integration of the SHM system for RLV and for X-33 (a sub-scale, sub-orbit Advanced Technology Demonstrator). Many critical technologies are necessary to make SHM (and more specifically VHM) practical, reliable, and cost effective. This paper will present the X-33 SHM design which forms the baseline for the RLV SHM, and it will discuss applications of advanced technologies to future RLVs. In addition, this paper will describe a Virtual Design Environment (VDE) which is being developed for RLV. This VDE will allow for system design engineering, as well as program management teams, to accurately and efficiently evaluate system designs, analyze the behavior of current systems, and predict the feasibility of making smooth and cost-efficient transitions from older technologies to newer ones. The RLV SHM design methodology will reduce program costs, decrease total program life-cycle time, and ultimately increase mission success.

  4. Introduction of Autonomous Vehicles: Roundabouts Design and Safety Performance Evaluation

    Directory of Open Access Journals (Sweden)

    Aleksandra Deluka Tibljaš

    2018-04-01

    Full Text Available Driving experiences provided by the introduction of new vehicle technologies are directly impacting the criteria for road network design. New criteria should be taken into consideration by designers, researchers and car owners in order to assure traffic safety in changed conditions that will appear with, for example, introduction of Autonomous Vehicles (AVs in everyday traffic. In this paper, roundabout safety level is analysed on the originally developed microsimulation model in circumstances where different numbers of AVs vehicles are mixed with Conventional Vehicles (CVs. Field data about speed and traffic volumes from existing roundabouts in Croatia were used for development of the model. The simulations done with the Surrogate Safety Assessment Model (SSAM give some relevant highlights on how the introduction of AVs could change both operational and safety parameters at roundabouts. To further explore the effects on safety of roundabouts with the introduction of different shares of AVs, hypothetical safety treatments could be tested to explore whether their effects may change, leading to the estimation of a new set of Crash Modification Factors.

  5. Vehicle systems design optimization study

    Science.gov (United States)

    Gilmour, J. L.

    1980-01-01

    The optimum vehicle configuration and component locations are determined for an electric drive vehicle based on using the basic structure of a current production subcompact vehicle. The optimization of an electric vehicle layout requires a weight distribution in the range of 53/47 to 62/38 in order to assure dynamic handling characteristics comparable to current internal combustion engine vehicles. Necessary modification of the base vehicle can be accomplished without major modification of the structure or running gear. As long as batteries are as heavy and require as much space as they currently do, they must be divided into two packages, one at front under the hood and a second at the rear under the cargo area, in order to achieve the desired weight distribution. The weight distribution criteria requires the placement of batteries at the front of the vehicle even when the central tunnel is used for the location of some batteries. The optimum layout has a front motor and front wheel drive. This configuration provides the optimum vehicle dynamic handling characteristics and the maximum passenger and cargo space for a given size vehicle.

  6. Design and analysis of a magneto-rheological damper for an all terrain vehicle

    Science.gov (United States)

    Krishnan Unni, R.; Tamilarasan, N.

    2018-02-01

    A shock absorber design intended to replace the existing conventional shock absorber with a controllable system using a Magneto-rheological damper is introduced for an All Terrain Vehicle (ATV) that was designed for Baja SAE competitions. Suspensions are a vital part of an All Terrain Vehicles as it endures various surfaces and requires utmost attention while designing. COMSOL multi-physics software is used for applications that have coupled physics problems and is a unique tool that is used for the designing and analysis phase of the Magneto-rheological damper for the considered application and the model is optimized based on Taguchi using DOE software. The magneto-rheological damper is designed to maximize the damping force with the measured geometric constraints for the All Terrain Vehicle.

  7. Design of a Tele-Control Electrical Vehicle System Using a Fuzzy Logic Control

    Directory of Open Access Journals (Sweden)

    M. Boukhnifer

    2012-11-01

    Full Text Available This paper presents a fuzzy logic design of a tele-control electrical vehicle system. We showed that the application of fuzzy logic control allows the stability of tele-vehicle system in spite of communication delays between the operator and the vehicle. A robust bilateral controller design using fuzzy logic frameworks was proposed. This approach allows a convenient means to trade off robustness and stability for a pre-specified time-delay margin. Both the performance and robustness of the proposed method were demonstrated by simulation results for a constant time delay between the operator and the electrical vehicle system.

  8. The Application of the NASA Advanced Concepts Office, Launch Vehicle Team Design Process and Tools for Modeling Small Responsive Launch Vehicles

    Science.gov (United States)

    Threet, Grady E.; Waters, Eric D.; Creech, Dennis M.

    2012-01-01

    The Advanced Concepts Office (ACO) Launch Vehicle Team at the NASA Marshall Space Flight Center (MSFC) is recognized throughout NASA for launch vehicle conceptual definition and pre-phase A concept design evaluation. The Launch Vehicle Team has been instrumental in defining the vehicle trade space for many of NASA s high level launch system studies from the Exploration Systems Architecture Study (ESAS) through the Augustine Report, Constellation, and now Space Launch System (SLS). The Launch Vehicle Team s approach to rapid turn-around and comparative analysis of multiple launch vehicle architectures has played a large role in narrowing the design options for future vehicle development. Recently the Launch Vehicle Team has been developing versions of their vetted tools used on large launch vehicles and repackaged the process and capability to apply to smaller more responsive launch vehicles. Along this development path the LV Team has evaluated trajectory tools and assumptions against sounding rocket trajectories and air launch systems, begun altering subsystem mass estimating relationships to handle smaller vehicle components, and as an additional development driver, have begun an in-house small launch vehicle study. With the recent interest in small responsive launch systems and the known capability and response time of the ACO LV Team, ACO s launch vehicle assessment capability can be utilized to rapidly evaluate the vast and opportune trade space that small launch vehicles currently encompass. This would provide a great benefit to the customer in order to reduce that large trade space to a select few alternatives that should best fit the customer s payload needs.

  9. Electric vehicle machines and drives design, analysis and application

    CERN Document Server

    Chau, K

    2015-01-01

    A timely comprehensive reference consolidates the research and development of electric vehicle machines and drives for electric and hybrid propulsions • Focuses on electric vehicle machines and drives • Covers the major technologies in the area including fundamental concepts and applications • Emphasis the design criteria, performance analyses and application examples or potentials of various motor drives and machine systems • Accompanying website includes the simulation models and outcomes as supplementary material

  10. Onboard guidance system design for reusable launch vehicles in the terminal area energy management phase

    Science.gov (United States)

    Mu, Lingxia; Yu, Xiang; Zhang, Y. M.; Li, Ping; Wang, Xinmin

    2018-02-01

    A terminal area energy management (TAEM) guidance system for an unpowered reusable launch vehicle (RLV) is proposed in this paper. The mathematical model representing the RLV gliding motion is provided, followed by a transformation of extracting the required dynamics for reference profile generation. Reference longitudinal profiles are conceived based on the capability of maximum dive and maximum glide that a RLV can perform. The trajectory is obtained by iterating the motion equations at each node of altitude, where the angle of attack and the flight-path angle are regarded as regulating variables. An onboard ground-track predictor is constructed to generate the current range-to-go and lateral commands online. Although the longitudinal profile generation requires pre-processing using the RLV aerodynamics, the ground-track prediction can be executed online. This makes the guidance scheme adaptable to abnormal conditions. Finally, the guidance law is designed to track the reference commands. Numerical simulations demonstrate that the proposed guidance scheme is capable of guiding the RLV to the desired touchdown conditions.

  11. Technology Improvement for the High Reliability LM-2F Launch Vehicle

    Institute of Scientific and Technical Information of China (English)

    QIN Tong; RONG Yi; ZHENG Liwei; ZHANG Zhi

    2017-01-01

    The Long March 2F (LM-2F) launch vehicle,the only launch vehicle designed for manned space flight in China,successfully launched the Tiangong 2 space laboratory and the Shenzhou ll manned spaceship into orbits in 2016 respectively.In this study,it introduces the technological improvements for enhancing the reliability of the LM-2F launch vehicle in the aspects of general technology,control system,manufacture and ground support system.The LM2F launch vehicle will continue to provide more contributions to the Chinese Space Station Project with its high reliability and 100% success rate.

  12. Vehicle Test Facilities at Aberdeen Proving Ground

    Science.gov (United States)

    1981-07-06

    warehouse and rough terrain forklifts. Two 5-ton-capacity manual chain hoists at the rear of the table regulate its slope from 0 to 40 percent. The overall...Capacity at 24-Inch Load Center. 5. TOP/ HTP 2-2-608, Braking, Wheeled Vehicles, 15 Jav.&ry 1971. 6. TOP 2-2-603, Vehicle Fuel Consumption, 1 November 1977. A-1 r -. ’,’

  13. Intercomparison of unmanned aerial vehicle and ground-based narrow band spectrometers applied to crop trait monitoring in organic potato production

    NARCIS (Netherlands)

    Domingues Franceschini, Marston; Bartholomeus, Harm; Apeldoorn, van Dirk; Suomalainen, Juha; Kooistra, Lammert

    2017-01-01

    Vegetation properties can be estimated using optical sensors, acquiring data on board of different platforms. For instance, ground-based and Unmanned Aerial Vehicle (UAV)-borne spectrometers can measure reflectance in narrow spectral bands, while different modelling approaches, like regressions

  14. Optimal Vehicle Design Using the Integrated System and Cost Modeling Tool Suite

    Science.gov (United States)

    2010-08-01

    Space Vehicle Costing ( ACEIT ) • New Small Sat Model Development & Production Cost O&M Cost Module  Radiation Exposure  Radiation Detector Response...Reliability OML Availability Risk l l Tools CEA, SRM Model, POST, ACEIT , Inflation Model, Rotor Blade Des, Microsoft Project, ATSV, S/1-iABP...space STK, SOAP – Specific mission • Space Vehicle Design (SMAD) • Space Vehicle Propulsion • Orbit Propagation • Space Vehicle Costing ( ACEIT ) • New

  15. Structural Design and Response in Collision and Grounding

    DEFF Research Database (Denmark)

    Brown, Alan; Tikka, Kirsi; Daidola, John C.

    2000-01-01

    on Collision and Grounding of Ships, to be held in Copenhagen, July 1-3,2001, will also present and discuss many of the results of this panel and other related research. The paper discusses four primary areas of panel work: collision and grounding models, data, accident scenarios and design applications....... A probabilistic framework for assessing the crashworthiness of ships is presented. Results obtained from various grounding and collision models are compared to validating cases and to each other. Data necessary for proper model validation and probabilistic accident scenario development are identified. Deformable...

  16. Numerical study for flame deflector design of a space launch vehicle

    Science.gov (United States)

    Oh, Hwayoung; Lee, Jungil; Um, Hyungsik; Huh, Hwanil

    2017-04-01

    A flame deflector is a structure that prevents damage to a launch vehicle and a launch pad due to exhaust plumes of a lifting-off launch vehicle. The shape of a flame deflector should be designed to restrain the discharged gas from backdraft inside the deflector and to reflect the impact to the surrounding environment and the engine characteristics of the vehicle. This study presents the five preliminary flame deflector configurations which are designed for the first-stage rocket engine of the Korea Space Launch Vehicle-II and surroundings of the Naro space center. The gas discharge patterns of the designed flame deflectors are investigated using the 3D flow field analysis by assuming that the air, in place of the exhaust gas, forms the plume. In addition, a multi-species unreacted flow model is investigated through 2D analysis of the first-stage engine of the KSLV-II. The results indicate that the closest Mach number and temperature distributions to the reacted flow model can be achieved from the 4-species unreacted flow model which employs H2O, CO2, and CO and specific heat-corrected plume.

  17. Assessment of modularity architecture for recovery process of electric vehicle in supporting sustainable design

    Science.gov (United States)

    Baroroh, D. K.; Alfiah, D.

    2018-05-01

    The electric vehicle is one of the innovations to reduce the pollution of the vehicle. Nevertheless, it still has a problem, especially for disposal stage. In supporting product design and development strategy, which is the idea of sustainable design or problem solving of disposal stage, assessment of modularity architecture from electric vehicle in recovery process needs to be done. This research used Design Structure Matrix (DSM) approach to deciding interaction of components and assessment of modularity architecture using the calculation of value from 3 variables, namely Module Independence (MI), Module Similarity (MS), and Modularity for End of Life Stage (MEOL). The result of this research shows that existing design of electric vehicles has the architectural design which has a high value of modularity for recovery process on disposal stage. Accordingly, so it can be reused and recycled in component level or module without disassembly process to support the product that is environmentally friendly (sustainable design) and able reduce disassembly cost.

  18. Habitability Designs for Crew Exploration Vehicle

    Science.gov (United States)

    Woolford, Barbara

    2006-01-01

    NASA's space human factors team is contributing to the habitability of the Crew Exploration Vehicle (CEV), which will take crews to low Earth orbit, and dock there with additional vehicles to go on to the moon's surface. They developed a task analysis for operations and for self-sustenance (sleeping, eating, hygiene), and estimated the volumes required for performing the various tasks and for the associated equipment, tools and supplies. Rough volumetric mockups were built for crew evaluations. Trade studies were performed to determine the size and location of windows. The habitability analysis also contributes to developing concepts of operations by identifying constraints on crew time. Recently completed studies provided stowage concepts, tools for assessing lighting constraints, and approaches to medical procedure development compatible with the tight space and absence of gravity. New work will be initiated to analyze design concepts and verify that equipment and layouts do meet requirements.

  19. Linking Symbolic Interactionism and Grounded Theory Methods in a Research Design

    Directory of Open Access Journals (Sweden)

    Jennifer Chamberlain-Salaun

    2013-09-01

    Full Text Available This article focuses on Corbin and Strauss’ evolved version of grounded theory. In the third edition of their seminal text, Basics of Qualitative Research: Techniques and Procedures for Developing Grounded Theory, the authors present 16 assumptions that underpin their conception of grounded theory methodology. The assumptions stem from a symbolic interactionism perspective of social life, including the themes of meaning, action and interaction, self and perspectives. As research design incorporates both methodology and methods, the authors aim to expose the linkages between the 16 assumptions and essential grounded theory methods, highlighting the application of the latter in light of the former. Analyzing the links between symbolic interactionism and essential grounded theory methods provides novice researchers and researchers new to grounded theory with a foundation from which to design an evolved grounded theory research study.

  20. Reentry Vehicle Flight Controls Design Guidelines: Dynamic Inversion

    Science.gov (United States)

    Ito, Daigoro; Georgie, Jennifer; Valasek, John; Ward, Donald T.

    2002-01-01

    This report addresses issues in developing a flight control design for vehicles operating across a broad flight regime and with highly nonlinear physical descriptions of motion. Specifically it addresses the need for reentry vehicles that could operate through reentry from space to controlled touchdown on Earth. The latter part of controlled descent is achieved by parachute or paraglider - or by all automatic or a human-controlled landing similar to that of the Orbiter. Since this report addresses the specific needs of human-carrying (not necessarily piloted) reentry vehicles, it deals with highly nonlinear equations of motion, and then-generated control systems must be robust across a very wide range of physics. Thus, this report deals almost exclusively with some form of dynamic inversion (DI). Two vital aspects of control theory - noninteracting control laws and the transformation of nonlinear systems into equivalent linear systems - are embodied in DI. Though there is no doubt that the mathematical tools and underlying theory are widely available, there are open issues as to the practicality of using DI as the only or primary design approach for reentry articles. This report provides a set of guidelines that can be used to determine the practical usefulness of the technique.

  1. Advanced Control System Design for Hypersonic Vehicles, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Guidance and control system design for hypersonic vehicles is more challenging than their subsonic and supersonic counterparts. Some of these challenges are (i)...

  2. Design optimization of zero-emission vehicle chassis

    Energy Technology Data Exchange (ETDEWEB)

    Smith, S.; Killing, D.; Saleh, F.; Kashani-Zadeh, H.; Kim, I.Y. [Queen' s Univ., Kingston, ON (Canada)

    2007-07-01

    This paper described the design of a zero emission chassis for a prototype 2-passenger, zero emission, 3 season drive-by-wire vehicle capable of driving at a speed of 60 km/h for up to 100 km. The chassis design was part of vehicle design project developed to improve collaboration tools and methodologies used by engineers in the automotive design field. The chassis was comprised of tube members in a truss structure to reduce equipment requirements. Design iterations were conducted to ensure that the chassis met with interior space requirements. Static and dynamic finite element analyses were used to minimize chassis weight, and to ensure that structural requirements were preserved. ANSYS implicit FEA simulation tools with specific loading configurations were then used to consider torsional stiffness, bending stiffness and natural frequency. A crashworthiness analysis was then conducted using explicit FEA analysis tools. The analysis focused on full frontal impact and considered maximum deceleration and the head injury criterion (HIC) over a specific time range. Non-structural mass elements were added in specific locations to address the low mass of the chassis. The chassis was then given an initial velocity of 48 km/h and impacted into a wall. Weight was chosen as the objective function for the pseudo-topology optimization process. Structural characteristics developed from the static and dynamic FEA were used as constraints, and cockpit dimensions were tracked. It was concluded that the weight of the chassis was reduced from 139 kg to 103.4 kg using the optimization process. 2 refs.

  3. Small Launch Vehicle Design Approaches: Clustered Cores Compared with Multi-Stage Inline Concepts

    Science.gov (United States)

    Waters, Eric D.; Beers, Benjamin; Esther, Elizabeth; Philips, Alan; Threet, Grady E., Jr.

    2013-01-01

    In an effort to better define small launch vehicle design options two approaches were investigated from the small launch vehicle trade space. The primary focus was to evaluate a clustered common core design against a purpose built inline vehicle. Both designs focused on liquid oxygen (LOX) and rocket propellant grade kerosene (RP-1) stages with the terminal stage later evaluated as a LOX/methane (CH4) stage. A series of performance optimization runs were done in order to minimize gross liftoff weight (GLOW) including alternative thrust levels, delivery altitude for payload, vehicle length to diameter ratio, alternative engine feed systems, re-evaluation of mass growth allowances, passive versus active guidance systems, and rail and tower launch methods. Additionally manufacturability, cost, and operations also play a large role in the benefits and detriments for each design. Presented here is the Advanced Concepts Office's Earth to Orbit Launch Team methodology and high level discussion of the performance trades and trends of both small launch vehicle solutions along with design philosophies that shaped both concepts. Without putting forth a decree stating one approach is better than the other; this discussion is meant to educate the community at large and let the reader determine which architecture is truly the most economical; since each path has such a unique set of limitations and potential payoffs.

  4. High clearance phenotyping systems for season-long measurement of corn, sorghum and other row crops to complement unmanned aerial vehicle systems

    Science.gov (United States)

    Murray, Seth C.; Knox, Leighton; Hartley, Brandon; Méndez-Dorado, Mario A.; Richardson, Grant; Thomasson, J. Alex; Shi, Yeyin; Rajan, Nithya; Neely, Haly; Bagavathiannan, Muthukumar; Dong, Xuejun; Rooney, William L.

    2016-05-01

    The next generation of plant breeding progress requires accurately estimating plant growth and development parameters to be made over routine intervals within large field experiments. Hand measurements are laborious and time consuming and the most promising tools under development are sensors carried by ground vehicles or unmanned aerial vehicles, with each specific vehicle having unique limitations. Previously available ground vehicles have primarily been restricted to monitoring shorter crops or early growth in corn and sorghum, since plants taller than a meter could be damaged by a tractor or spray rig passing over them. Here we have designed two and already constructed one of these self-propelled ground vehicles with adjustable heights that can clear mature corn and sorghum without damage (over three meters of clearance), which will work for shorter row crops as well. In addition to regular RGB image capture, sensor suites are incorporated to estimate plant height, vegetation indices, canopy temperature and photosynthetically active solar radiation, all referenced using RTK GPS to individual plots. These ground vehicles will be useful to validate data collected from unmanned aerial vehicles and support hand measurements taken on plots.

  5. Integrated vehicle control and guidance systems in unmanned ground vehicles for commercial applications

    Science.gov (United States)

    Kenyon, Chase H.

    1995-01-01

    While there is a lot of recent development in the entire IVHS field, very few have had the opportunity to combine the many areas of development into a single integrated `intelligent' unmanned vehicle. One of our systems was developed specifically to serve a major automobile manufacturer's need for an automated vehicle chassis durability test facility. Due to the severity of the road surface human drivers could not be used. A totally automated robotic vehicle driver and guidance system was necessary. In order to deliver fixed price commercial projects now, it was apparent system and component costs were of paramount importance. Cyplex has developed a robust, cost effective single wire guidance system. This system has inherent advantages in system simplicity. Multi-signal (per vehicle lane) systems complicate path planning and layout when multiple lanes and lane changes are required, as on actual highways. The system has demonstrated high enough immunity to rain and light snow cover that normal safety reductions in speed are adequate to stay within the required system performance envelope. This system and it's antenna interface have shown the ability to guide the vehicle at slow speeds (10 MPH) with a tracking repeatability of plus or minus 1/8 of an inch. The basic guide and antenna system has been tested at speeds up to 80 mph. The system has inherently superior abilities for lane changes and precision vehicle placement. The operation of this system will be described and the impact of a system that is commercially viable now for highway and off road use will be discussed.

  6. Design Processes and Criteria for the X-51A Flight Vehicle Airframe

    National Research Council Canada - National Science Library

    Lane, Jeffrey

    2007-01-01

    .... This paper summarizes the X-51A vehicle mission requirements, system design, design processes used for airframe synthesis, design safety factors, success criteria and issues facing the incorporation...

  7. Aerodynamic design of electric and hybrid vehicles: A guidebook

    Science.gov (United States)

    Kurtz, D. W.

    1980-01-01

    A typical present-day subcompact electric hybrid vehicle (EHV), operating on an SAE J227a D driving cycle, consumes up to 35% of its road energy requirement overcoming aerodynamic resistance. The application of an integrated system design approach, where drag reduction is an important design parameter, can increase the cycle range by more than 15%. This guidebook highlights a logic strategy for including aerodynamic drag reduction in the design of electric and hybrid vehicles to the degree appropriate to the mission requirements. Backup information and procedures are included in order to implement the strategy. Elements of the procedure are based on extensive wind tunnel tests involving generic subscale models and full-scale prototype EHVs. The user need not have any previous aerodynamic background. By necessity, the procedure utilizes many generic approximations and assumptions resulting in various levels of uncertainty. Dealing with these uncertainties, however, is a key feature of the strategy.

  8. VEHIOT: Design and Evaluation of an IoT Architecture Based on Low-Cost Devices to Be Embedded in Production Vehicles.

    Science.gov (United States)

    Redondo, Jonatan Pajares; González, Lisardo Prieto; Guzman, Javier García; Boada, Beatriz L; Díaz, Vicente

    2018-02-06

    Nowadays, the current vehicles are incorporating control systems in order to improve their stability and handling. These control systems need to know the vehicle dynamics through the variables (lateral acceleration, roll rate, roll angle, sideslip angle, etc.) that are obtained or estimated from sensors. For this goal, it is necessary to mount on vehicles not only low-cost sensors, but also low-cost embedded systems, which allow acquiring data from sensors and executing the developed algorithms to estimate and to control with novel higher speed computing. All these devices have to be integrated in an adequate architecture with enough performance in terms of accuracy, reliability and processing time. In this article, an architecture to carry out the estimation and control of vehicle dynamics has been developed. This architecture was designed considering the basic principles of IoT and integrates low-cost sensors and embedded hardware for orchestrating the experiments. A comparison of two different low-cost systems in terms of accuracy, acquisition time and reliability has been done. Both devices have been compared with the VBOX device from Racelogic, which has been used as the ground truth. The comparison has been made from tests carried out in a real vehicle. The lateral acceleration and roll rate have been analyzed in order to quantify the error of these devices.

  9. VEHIOT: Design and Evaluation of an IoT Architecture Based on Low-Cost Devices to Be Embedded in Production Vehicles

    Science.gov (United States)

    Díaz, Vicente

    2018-01-01

    Nowadays, the current vehicles are incorporating control systems in order to improve their stability and handling. These control systems need to know the vehicle dynamics through the variables (lateral acceleration, roll rate, roll angle, sideslip angle, etc.) that are obtained or estimated from sensors. For this goal, it is necessary to mount on vehicles not only low-cost sensors, but also low-cost embedded systems, which allow acquiring data from sensors and executing the developed algorithms to estimate and to control with novel higher speed computing. All these devices have to be integrated in an adequate architecture with enough performance in terms of accuracy, reliability and processing time. In this article, an architecture to carry out the estimation and control of vehicle dynamics has been developed. This architecture was designed considering the basic principles of IoT and integrates low-cost sensors and embedded hardware for orchestrating the experiments. A comparison of two different low-cost systems in terms of accuracy, acquisition time and reliability has been done. Both devices have been compared with the VBOX device from Racelogic, which has been used as the ground truth. The comparison has been made from tests carried out in a real vehicle. The lateral acceleration and roll rate have been analyzed in order to quantify the error of these devices. PMID:29415507

  10. VEHIOT: Design and Evaluation of an IoT Architecture Based on Low-Cost Devices to Be Embedded in Production Vehicles

    Directory of Open Access Journals (Sweden)

    Jonatan Pajares Redondo

    2018-02-01

    Full Text Available Nowadays, the current vehicles are incorporating control systems in order to improve their stability and handling. These control systems need to know the vehicle dynamics through the variables (lateral acceleration, roll rate, roll angle, sideslip angle, etc. that are obtained or estimated from sensors. For this goal, it is necessary to mount on vehicles not only low-cost sensors, but also low-cost embedded systems, which allow acquiring data from sensors and executing the developed algorithms to estimate and to control with novel higher speed computing. All these devices have to be integrated in an adequate architecture with enough performance in terms of accuracy, reliability and processing time. In this article, an architecture to carry out the estimation and control of vehicle dynamics has been developed. This architecture was designed considering the basic principles of IoT and integrates low-cost sensors and embedded hardware for orchestrating the experiments. A comparison of two different low-cost systems in terms of accuracy, acquisition time and reliability has been done. Both devices have been compared with the VBOX device from Racelogic, which has been used as the ground truth. The comparison has been made from tests carried out in a real vehicle. The lateral acceleration and roll rate have been analyzed in order to quantify the error of these devices.

  11. Aerospace Vehicle Design, Spacecraft Section. Final Project Reports. Volume 2; Project Groups 6-8

    Science.gov (United States)

    1989-01-01

    Three groups of student engineers in an aerospace vehicle design course present their designs for a vehicle that can be used to resupply the Space Station Freedam and provide emergency crew return to earth capability. The vehicle's requirements include a lifetime that exceeds six years, low cost, the capability for withstanding pressurization, launch, orbit, and reentry hazards, and reliability. The vehicle's subsystems are structures, communication and command data systems, attitude and articulation control, life support and crew systems, power and propulsion, reentry and recovery systems, and mission management, planning, and costing. Special attention is given to spacecraft communications.

  12. Easy-to-Use UAV Ground Station Software for Low-Altitude Civil Operations, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to design and develop easy-to-use Ground Control Station (GCS) software for low-altitude civil Unmanned Aerial Vehicle (UAV) operations. The GCS software...

  13. Slot Optimization Design of Induction Motor for Electric Vehicle

    Science.gov (United States)

    Shen, Yiming; Zhu, Changqing; Wang, Xiuhe

    2018-01-01

    Slot design of induction motor has a great influence on its performance. The RMxprt module based on magnetic circuit method can be used to analyze the influence of rotor slot type on motor characteristics and optimize slot parameters. In this paper, the authors take an induction motor of electric vehicle for a typical example. The first step of the design is to optimize the rotor slot by RMxprt, and then compare the main performance of the motor before and after the optimization through Ansoft Maxwell 2D. After that, the combination of optimum slot type and the optimum parameters are obtained. The results show that the power factor and the starting torque of the optimized motor have been improved significantly. Furthermore, the electric vehicle works at a better running status after the optimization.

  14. Using virtual environment for autonomous vehicle algorithm validation

    Science.gov (United States)

    Levinskis, Aleksandrs

    2018-04-01

    This paper describes possible use of modern game engine for validating and proving the concept of algorithm design. As the result simple visual odometry algorithm will be provided to show the concept and go over all workflow stages. Some of stages will involve using of Kalman filter in such a way that it will estimate optical flow velocity as well as position of moving camera located at vehicle body. In particular Unreal Engine 4 game engine will be used for generating optical flow patterns and ground truth path. For optical flow determination Horn and Schunck method will be applied. As the result, it will be shown that such method can estimate position of the camera attached to vehicle with certain displacement error respect to ground truth depending on optical flow pattern. For displacement rate RMS error is calculating between estimated and actual position.

  15. Guidelines for determining design basis ground motions

    International Nuclear Information System (INIS)

    1993-11-01

    This report develops and applies a method for estimating strong earthquake ground motion. The emphasis of this study is on ground motion estimation in Eastern North America (east of the Rocky Mountains), with particular emphasis on the Eastern United States and southeastern Canada. Specifically considered are ground motions resulting from earthquakes with magnitudes from 5 to 8, fault distances from 0 to 500 km, and frequencies from 1 to 35 Hz. The two main objectives were: (1) to develop generic relations for estimating ground motion appropriate for site screening; and (2) to develop a guideline for conducting a thorough site investigation needed to define the seismic design basis. For the first objective, an engineering model was developed to predict the expected ground motion on rock sites, with an additional set of amplification factors to account for the response of the soil column over rock at soil sites. The results incorporate best estimates of ground motion as well as the randomness and uncertainty associated with those estimates. For the second objective, guidelines were developed for gathering geotechnical information at a site and using this information in calculating site response. As a part of this development, an extensive set of geotechnical and seismic investigations was conducted at three reference sites. Together, the engineering model and guidelines provide the means to select and assess the seismic suitability of a site

  16. Novel Aerodynamic Design for Formula SAE Vehicles

    Science.gov (United States)

    Sentongo, Samuel; Carter, Austin; Cecil, Christopher; Feier, Ioan

    2017-11-01

    This paper identifies and evaluates the design characteristics of a novel airfoil that harnesses the Magnus Effect, applying a moving-surface boundary-layer control (MSBC) method to a Formula SAE Vehicle. The MSBC minimizes adverse pressure gradient and delays boundary layer separation through the use of a conveyor belt that interacts with the airfoil boundary layer. The MSBC allows dynamic control of the aerodynamic coefficients by variation of the belt speed, minimizing drag in high speed straights and maximizing downforce during vehicle cornering. A conveyer belt wing measuring approximately 0.9 x 0.9m in planform was designed and built to test the mechanical setup for such a MSBC wing. This study follows the relationship between inputted power and outputted surface velocity, with the goal being to maximize speed output vs. power input. The greatest hindrance to maximizing speed output is friction among belts, rollers, and stationary members. The maximum belt speed achieved during testing was 5.9 m/s with a power input of 48.8 W, which corresponds to 45.8 N of downforce based on 2D CFD results. Ongoing progress on this project is presented. United States Air Force Academy.

  17. Aircraft operability methods applied to space launch vehicles

    Science.gov (United States)

    Young, Douglas

    1997-01-01

    The commercial space launch market requirement for low vehicle operations costs necessitates the application of methods and technologies developed and proven for complex aircraft systems. The ``building in'' of reliability and maintainability, which is applied extensively in the aircraft industry, has yet to be applied to the maximum extent possible on launch vehicles. Use of vehicle system and structural health monitoring, automated ground systems and diagnostic design methods derived from aircraft applications support the goal of achieving low cost launch vehicle operations. Transforming these operability techniques to space applications where diagnostic effectiveness has significantly different metrics is critical to the success of future launch systems. These concepts will be discussed with reference to broad launch vehicle applicability. Lessons learned and techniques used in the adaptation of these methods will be outlined drawing from recent aircraft programs and implementation on phase 1 of the X-33/RLV technology development program.

  18. The driver workstation in commercial vehicles; Ergonomie und Design von Fahrerarbeitsplaetzen in Nutzfahrzeugen

    Energy Technology Data Exchange (ETDEWEB)

    Kraus, W. [HAW-Hamburg (Germany)

    2003-07-01

    Nowadays, ergonomics and design are quality factors and indispensable elements of commercial vehicle design and development. Whereas a vehicle's appearance, i.e. its outside design, produces fascination and image, the design of its passenger cell focuses entirely on drivers and their tasks. Today, passenger-cell design and the ergonomics of driver workstations in commercial vehicles are clearly becoming more and more important. This article concentrates above all on defining commercial vehicle drivers, which, within the scope of research projects on coach-driver workstations, has provided new insight into the design of driver workstations. In light of the deficits determined, the research project mainly focused on designing driver workstations which were in line with the latest findings in ergonomics and human engineering. References to the methodology of driver-workstation optimization seems important in this context. The afore-mentioned innovations in the passenger cells of commercial vehicles will be explained and described by means of topical and practical examples. (orig.) [German] Ergonomie und Design sind heute Qualitaetsfaktoren und unverzichtbarer Bestandteil bei der Entwicklung von Nutzfahrzeugen. Erzeugt das Erscheinungsbild, die Aussengestaltung des Fahrzeugs, die Faszination und das Image, so ist die Innengestaltung weitgehend ganz auf die Bedienpersonen und ihre Arbeitsaufgaben bezogen. Die Innenraumgestaltung und die Ergonomie von Fahrerarbeitsplaetzen in Nutzfahrzeugen sind heute in einer Phase der deutlichen Aufwertung zu sehen. Im Beitrag wird besonders auf die Definition der Bedienpersonen fuer Nutzfahrzeuge eingegangen, die im Rahmen des Forschungsprojekts Fahrerarbeitsplatz im Reisebus zu neuen Erkenntnissen bei der Auslegung von Arbeitsplaetzen fuehrte. Gemaess der ermittelten Defizite konzentriert sich die Studie im Kern auf das Gestaltungskonzept des Fahrerarbeitsplatzes nach ergonomischen und arbeitswissenschaftlichen Erkenntnissen

  19. Experimental investigation of a quad-rotor biplane micro air vehicle

    Science.gov (United States)

    Bogdanowicz, Christopher Michael

    Micro air vehicles are expected to perform demanding missions requiring efficient operation in both hover and forward flight. This thesis discusses the development of a hybrid air vehicle which seamlessly combines both flight capabilities: hover and high-speed forward flight. It is the quad-rotor biplane, which weighs 240 grams and consists of four propellers with wings arranged in a biplane configuration. The performance of the vehicle system was investigated in conditions representative of flight through a series of wind tunnel experiments. These studies provided an understanding of propeller-wing interaction effects and system trim analysis. This showed that the maximum speed of 11 m/s and a cruise speed of 4 m/s were achievable and that the cruise power is approximately one-third of the hover power. Free flight testing of the vehicle successfully highlighted its ability to achieve equilibrium transition flight. Key design parameters were experimentally investigated to understand their effect on overall performance. It was found that a trade-off between efficiency and compactness affects the final choice of the design. Design improvements have allowed for decreases in vehicle weight and ground footprint, while increasing structural soundness. Numerous vehicle designs, models, and flight tests have proven system scalability as well as versatility, including an upscaled model to be utilized in an extensive commercial package delivery system. Overall, the quad-rotor biplane is proven to be an efficient and effective multi-role vehicle.

  20. Designing interior space for drivers of passenger vehicle

    Directory of Open Access Journals (Sweden)

    Spasojević-Brkić Vesna K.

    2014-01-01

    Full Text Available The current study is a review of our previous papers with certain improvements, so it proves the hypothesis that passenger vehicles are still not sufficiently adapted to man in terms of ergonomics, especially from the aspect of interior space. In the ergonomic adjustment of passenger vehicles, the limits of anthropomeasures and technical limitations, are the most important. The methodology mainly uses operative investigations, and the 'man-vehicle' system is optimized within existing limitations. Here, we also explain original methodology for modeling that space. The fact that there is a point '0' as the origin point of a coordinate system with x, y and z axes of the man-vehicle system, which can be considered to be more or less fixed, enabled us to determine more accurately the mechanical and mathematical codependence in this system. The paper also proves that the anthropomeasures of length have mechanical and mathematical functions which also determine the width, i.e. all three dimensions and provides the design of the space behind the windscreen glass, the position of the steering wheel and the position of the foot commands with space for feet and knees determined, as well as the total space which the driver occupies. It is proved that the floor-ceiling height of a vehicle is primarily affected by the anthropomeasures of seating height and lower leg, while width is affected by the anthropomeasures of lower and upper leg and only then by shoulder width, so that the interior space for the driver of a passenger vehicle is 1250 mm and the width for knees spread at seat level is 926 mm maximum.

  1. The design and implementation of vehicle scrapping programs

    International Nuclear Information System (INIS)

    Sahu, R.; Baxter, R.A.

    1993-01-01

    A number of metropolitan air basins in the US are currently faced with increased difficulty in attaining national and regional clean air standards. Significant controls on stationary sources over the years have allowed mobile sources to become the primary source of air emission in many areas. Programs allowing the use of mobile source offsets for stationary source emission by removal of older, higher emitting vehicles through scrappage programs are, therefore, conceptually attractive and are starting to be implemented. However, achieving success in such scrappage programs is a challenge given the associated technical, economic and social issues. This paper presents a discussion of the important issues that must be considered if vehicle scrappage programs are to be successful, including recent guidance and views of the EPA and state governments on the credits associated with the programs. Although the main focus of such programs is the reduction of criteria pollutants (CO, ROG, NO x , and PM 10 ), the impact on air toxics also has to be considered. The paper will then focus on the technical design of vehicle scrappage programs such that the resulting credits are real, verifiable, enforceable, and cost-effective. Information available under existing vehicle I/M programs along with economic, vehicle maintenance, and geographic data will be used with statistical techniques in order to meet predetermined program goals regarding emissions reduction and cost-effectiveness. A later case-study paper will discuss the actual implementation of such as program in an ozone non-attainment area

  2. Constraint Embedding for Vehicle Suspension Dynamics

    Directory of Open Access Journals (Sweden)

    Jain Abhinandan

    2016-06-01

    Full Text Available The goal of this research is to achieve close to real-time dynamics performance for allowing auto-pilot in-the-loop testing of unmanned ground vehicles (UGV for urban as well as off-road scenarios. The overall vehicle dynamics performance is governed by the multibody dynamics model for the vehicle, the wheel/terrain interaction dynamics and the onboard control system. The topic of this paper is the development of computationally efficient and accurate dynamics model for ground vehicles with complex suspension dynamics. A challenge is that typical vehicle suspensions involve closed-chain loops which require expensive DAE integration techniques. In this paper, we illustrate the use the alternative constraint embedding technique to reduce the cost and improve the accuracy of the dynamics model for the vehicle.

  3. Design of Embedded System and Data Communication for an Agricultural Autonomous Vehicle

    DEFF Research Database (Denmark)

    Nielsen, Jens F. Dalsgaard; Nielsen, Kirsten Mølgaard; Bendtsen, Jan Dimon

    2005-01-01

    This paper describes an implemented design of an autonomous vehicle used in precision agriculture for weed and crop map construction with special focus on the onboard controlsystem, the embedded system and the datacommunication system. The vehicle is four wheel driven and four wheel steered (eight...

  4. Ground Vehicle Power and Mobility Overview - Germany Visit

    Science.gov (United States)

    2011-11-10

    the current and future force Survivability Robotics – Intelligent Systems Vehicle Electronics & Architecture Fuel, Water, Bridging ...Test Cell • Engine Generator Test Lab • Full Vehicle Environmental Test Cell • Hybrid Electric Reconfigurable Moveable Integration Testbed (HERMIT...Converter Conducted competitive runoff evaluations on Bridging Boat engine candidates Completed independent durability assessment of OEM

  5. Numerical study of flow control strategies for a simplified square back ground vehicle

    Energy Technology Data Exchange (ETDEWEB)

    Eulalie, Yoann; Gilotte, Philippe [Plastic Omnium, Avenue du bois des vergnes, F-01150 Sainte-Julie (France); Mortazavi, Iraj, E-mail: iraj.mortazavi@cnam.fr [Team M2N, CNAM Paris, 292 Rue St. Martin, 75003 Paris (France)

    2017-06-15

    Current automotive trends lead to vertical shapes in the region of the rear tailgates, which induce high aerodynamical losses at the rear wall of vehicles. It is therefore important to work on turbulent wake in order to find drag reduction solutions for the current vehicle design. This paper focuses on flow control strategies, which are designed to interact with shear layers backward from the detachment region, in order to increase pressure values in the wake of a square back bluff body. This study involves large eddy simulation results validated by experimental data. After the first section, which represents experimental validation of LES computations with and without active flow control on an Ahmed bluff body, we will present a wide range of numerical results describing several active and passive flow control solutions leading to drag reductions of up to 10%. The last part of this paper will focus on some fluid mechanisms, which could explain these aerodynamical performances. (paper)

  6. Numerical study of flow control strategies for a simplified square back ground vehicle

    International Nuclear Information System (INIS)

    Eulalie, Yoann; Gilotte, Philippe; Mortazavi, Iraj

    2017-01-01

    Current automotive trends lead to vertical shapes in the region of the rear tailgates, which induce high aerodynamical losses at the rear wall of vehicles. It is therefore important to work on turbulent wake in order to find drag reduction solutions for the current vehicle design. This paper focuses on flow control strategies, which are designed to interact with shear layers backward from the detachment region, in order to increase pressure values in the wake of a square back bluff body. This study involves large eddy simulation results validated by experimental data. After the first section, which represents experimental validation of LES computations with and without active flow control on an Ahmed bluff body, we will present a wide range of numerical results describing several active and passive flow control solutions leading to drag reductions of up to 10%. The last part of this paper will focus on some fluid mechanisms, which could explain these aerodynamical performances. (paper)

  7. Stirling engine electric hybrid vehicle propulsion system conceptual design study. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Dochat, G; Artiles, A; Killough, J; Ray, A; Chen, H S

    1978-08-01

    Results of a six-month study to characterize a series Stirling engine electric hybrid vehicle propulsion system are presented. The Stirling engine was selected as the heat conversion element to exploit the high efficiency (> .36), low pollution, multi-fuel and quiet operation of this machine. A free-piston Stirling engine driving a linear alternator in a hermatically sealed enclosure was chosen to gain the reliability, long life, and maintenance free characteristics of a sealed unit. The study performs trade off evaluations, selection of engine, battery, motor and inverter size, optimization of components, and develops a conceptual design and characterization of the total propulsion system. The conclusion of the study is that a Stirling engine electric hybrid propulsion system can be used successfully to augment the battery storage of a passenger vehicle and will result in significant savings of petroleum energy over present passenger vehicles. The performance and range augmentation of the hybrid design results in significant improvements over an all electric vehicle. The hybrid will be capable of performing 99% of the passenger vehicle annual trip distribution requirements with extremely low fuel usage. (TFD)

  8. Ground model and computer complex for designing underground explosions

    Energy Technology Data Exchange (ETDEWEB)

    Bashurov, V.V.; Vakhrameev, Yu.S.; Dem' yanovskii, S.V.; Ignatenko, V.V.; Simonova, T.V.

    1977-01-01

    A description is given of a ground model that accounts for large deformations, their irreversibility, loose rock, breakdown, resistance to internal friction, and other factors. Calculations from the American Sulky explosion and camouflage detonations of two spaced explosive charges are cited as examples illustrating the possibility of design methods and the suitability of ground state equations for describing underground detonations.

  9. Optimum design and research on novel vehicle hybrid excitation synchronous generator

    Directory of Open Access Journals (Sweden)

    Liu Zhong-Shu

    2017-01-01

    Full Text Available Hybrid excitation is an organic combination of permanent magnet excitation and electric excitation. Hybrid excitation synchronous generator (HESG both has the advantages of light quality, less losses and high efficiency like permanent magnet generator and the advantages of good magnetic field adjusting performance like electric excitation generator, so it is very suitable for the vehicle application. This paper presented a novel vehicle HESG which has skew stator core, permanent magnet rotor and both armature winding and field winding in the stator. Using ANSYS software, simulating the electric excitation field and the magnetic field, and finally the main parameters of HESG were designed. The simulation and the test results both show that the novel vehicle PMSG has the advantages of small cogging torque, high efficiency, small harmonic component output voltage and low waveform aberration, so as to meet the design requirements fully.

  10. Evaluation of design feature No.20 -- Ground support options

    International Nuclear Information System (INIS)

    Duan, F.

    2000-01-01

    Ground support options are primarily evaluated for emplacement drifts while ground support systems for non-emplacement openings such as access mains and ventilation drifts are not evaluated against LADS evaluation criteria in this report. Considerations include functional requirements for ground support, the use of a steel-lined system, and the feasibility of using an unlined ground support system principally with grouted rock bolts for permanent ground support. The feature evaluation also emphasizes the postclosure effects of ground support materials on waste isolation and the preclosure aspects such as durability, maintainability, constructibility, safety, engineering acceptability, and cost. This evaluation is to: (A) Review the existing analyses, reports, and studies regarding this design feature, and compile relevant information on performance characteristics. (B) Develop an appropriate evaluation approach for evaluating ground support options against evaluation criteria provided by the LADS team. (C) Evaluate ground support options not only for their preclosure performance in terms of drift stability, material durability, maintenance, constructibility, and cost, but also for their postclosure performance in terms of chemical effects of ground support materials (i.e., concrete, steel) on waste isolation and radionuclide transport. Specifically, the scope for ground support options evaluation include: (1) all steel-lined drifts (no cementitious materials), (2) unlined drifts with minimum cementitious materials (e.g., grout for rockbolts), and (3) concrete-lined drifts, with the focus on the postclosure acceptability evaluation. In addition, unlined drifts with zero cementitious materials (e.g., use of frictional bolts such as split sets, Swellex bolts) are briefly discussed. (D) Identify candidate ground support systems that have the potential to enhance the repository performance based on the feature evaluation. and (E) Provide conclusions and recommendations

  11. Stability control for high speed tracked unmanned vehicles

    Science.gov (United States)

    Pape, Olivier; Morillon, Joel G.; Houbloup, Philippe; Leveque, Stephane; Fialaire, Cecile; Gauthier, Thierry; Ropars, Patrice

    2005-05-01

    The French Military Robotic Study Program (introduced in Aerosense 2003), sponsored by the French Defense Procurement Agency and managed by Thales as the prime contractor, focuses on about 15 robotic themes which can provide an immediate "operational add-on value". The paper details the "automatic speed adjustment" behavior (named SYR4), developed by Giat Industries Company, which main goal is to secure the teleoperated mobility of high speed tracked vehicles on rough grounds; more precisely, the validated low level behavior continuously adjusts the vehicle speed taking into account the teleperator wish AND the maximum speed that the vehicle can manage safely according to the commanded radius of curvature. The algorithm is based on a realistic physical model of the ground-tracks relation, taking into account many vehicle and ground parameters (such as ground adherence and dynamic specificities of tracked vehicles). It also deals with the teleoperator-machine interface, providing a balanced strategy between both extreme behaviors: a) maximum speed reduction before initiating the commanded curve; b) executing the minimum possible radius without decreasing the commanded speed. The paper presents the results got from the military acceptance tests performed on tracked SYRANO vehicle (French Operational Demonstrator).

  12. Multidisciplinary Modeling Software for Analysis, Design, and Optimization of HRRLS Vehicles

    Science.gov (United States)

    Spradley, Lawrence W.; Lohner, Rainald; Hunt, James L.

    2011-01-01

    The concept for Highly Reliable Reusable Launch Systems (HRRLS) under the NASA Hypersonics project is a two-stage-to-orbit, horizontal-take-off / horizontal-landing, (HTHL) architecture with an air-breathing first stage. The first stage vehicle is a slender body with an air-breathing propulsion system that is highly integrated with the airframe. The light weight slender body will deflect significantly during flight. This global deflection affects the flow over the vehicle and into the engine and thus the loads and moments on the vehicle. High-fidelity multi-disciplinary analyses that accounts for these fluid-structures-thermal interactions are required to accurately predict the vehicle loads and resultant response. These predictions of vehicle response to multi physics loads, calculated with fluid-structural-thermal interaction, are required in order to optimize the vehicle design over its full operating range. This contract with ResearchSouth addresses one of the primary objectives of the Vehicle Technology Integration (VTI) discipline: the development of high-fidelity multi-disciplinary analysis and optimization methods and tools for HRRLS vehicles. The primary goal of this effort is the development of an integrated software system that can be used for full-vehicle optimization. This goal was accomplished by: 1) integrating the master code, FEMAP, into the multidiscipline software network to direct the coupling to assure accurate fluid-structure-thermal interaction solutions; 2) loosely-coupling the Euler flow solver FEFLO to the available and proven aeroelasticity and large deformation (FEAP) code; 3) providing a coupled Euler-boundary layer capability for rapid viscous flow simulation; 4) developing and implementing improved Euler/RANS algorithms into the FEFLO CFD code to provide accurate shock capturing, skin friction, and heat-transfer predictions for HRRLS vehicles in hypersonic flow, 5) performing a Reynolds-averaged Navier-Stokes computation on an HRRLS

  13. Analysis and Design of Launch Vehicle Flight Control Systems

    Science.gov (United States)

    Wie, Bong; Du, Wei; Whorton, Mark

    2008-01-01

    This paper describes the fundamental principles of launch vehicle flight control analysis and design. In particular, the classical concept of "drift-minimum" and "load-minimum" control principles is re-examined and its performance and stability robustness with respect to modeling uncertainties and a gimbal angle constraint is discussed. It is shown that an additional feedback of angle-of-attack or lateral acceleration can significantly improve the overall performance and robustness, especially in the presence of unexpected large wind disturbance. Non-minimum-phase structural filtering of "unstably interacting" bending modes of large flexible launch vehicles is also shown to be effective and robust.

  14. Linear quadratic regulator design for an unpowered, winged re-entry vehicle

    NARCIS (Netherlands)

    Mooij, E.

    1998-01-01

    This report describes the design of an attitude controller for an unpowered, winged re-entry vehicle. The decoupling of the symmetric and asymmetric motion makes it possible to design two separate controllers, one for the pitch mot ion and one for the lateral motion. The design of the controller, a

  15. Design of inspection equipment vehicle of mobile cobalt-60 container scanner

    International Nuclear Information System (INIS)

    Zhang Yanmin; An Jigang; Zhou Liye; Liu Yisi; Wu Zhifang; Xiang Xincheng; Huang Songling

    2000-01-01

    The author introduced the design principle of Inspection Equipment Vehicle of TCM-SCAN Mobile 60 Co container inspection system. Three schemes had been compared. The scheme of scan gate in form of pucker-able rails standing on the vehicle was determined. Prototype was prepared in September 1999. Mobile 60 Co container inspection system had the same inspection performance of fixed 60 Co container inspection system

  16. Near Space Hypersonic Unmanned Aerial Vehicle Dynamic Surface Backstepping Control Design

    Directory of Open Access Journals (Sweden)

    Jinyong YU

    2014-07-01

    Full Text Available Compared with traditional aircraft, the near space hypersonic unmanned aerial vehicle control system design must deal with the extra prominent dynamics characters, which are differ from the traditional aircrafts control system design. A new robust adaptive control design method is proposed for one hypersonic unmanned aerial vehicle (HSUAV uncertain MIMO nonaffine block control system by using multilayer neural networks, feedback linearization technology, and dynamic surface backstepping. Multilayer neural networks are used to compensate the influence from the uncertain, which designs the robust terms to solve the problem from approach error. Adaptive backstepping is adopted designed to ensure control law, the dynamic surface control strategy to eliminate “the explosion of terms” by introducing a series of first order filters to obtain the differentiation of the virtual control inputs. Finally, nonlinear six-degree-of-freedom (6-DOF numerical simulation results for a HSUAV model are presented to demonstrate the effectiveness of the proposed method.

  17. Uncertainty analysis and design optimization of hybrid rocket motor powered vehicle for suborbital flight

    Directory of Open Access Journals (Sweden)

    Zhu Hao

    2015-06-01

    Full Text Available In this paper, we propose an uncertainty analysis and design optimization method and its applications on a hybrid rocket motor (HRM powered vehicle. The multidisciplinary design model of the rocket system is established and the design uncertainties are quantified. The sensitivity analysis of the uncertainties shows that the uncertainty generated from the error of fuel regression rate model has the most significant effect on the system performances. Then the differences between deterministic design optimization (DDO and uncertainty-based design optimization (UDO are discussed. Two newly formed uncertainty analysis methods, including the Kriging-based Monte Carlo simulation (KMCS and Kriging-based Taylor series approximation (KTSA, are carried out using a global approximation Kriging modeling method. Based on the system design model and the results of design uncertainty analysis, the design optimization of an HRM powered vehicle for suborbital flight is implemented using three design optimization methods: DDO, KMCS and KTSA. The comparisons indicate that the two UDO methods can enhance the design reliability and robustness. The researches and methods proposed in this paper can provide a better way for the general design of HRM powered vehicles.

  18. On the required complexity of vehicle dynamic models for use in simulation-based highway design.

    Science.gov (United States)

    Brown, Alexander; Brennan, Sean

    2014-06-01

    This paper presents the results of a comprehensive project whose goal is to identify roadway design practices that maximize the margin of safety between the friction supply and friction demand. This study is motivated by the concern for increased accident rates on curves with steep downgrades, geometries that contain features that interact in all three dimensions - planar curves, grade, and superelevation. This complexity makes the prediction of vehicle skidding quite difficult, particularly for simple simulation models that have historically been used for road geometry design guidance. To obtain estimates of friction margin, this study considers a range of vehicle models, including: a point-mass model used by the American Association of State Highway Transportation Officials (AASHTO) design policy, a steady-state "bicycle model" formulation that considers only per-axle forces, a transient formulation of the bicycle model commonly used in vehicle stability control systems, and finally, a full multi-body simulation (CarSim and TruckSim) regularly used in the automotive industry for high-fidelity vehicle behavior prediction. The presence of skidding--the friction demand exceeding supply--was calculated for each model considering a wide range of vehicles and road situations. The results indicate that the most complicated vehicle models are generally unnecessary for predicting skidding events. However, there are specific maneuvers, namely braking events within lane changes and curves, which consistently predict the worst-case friction margins across all models. This suggests that any vehicle model used for roadway safety analysis should include the effects of combined cornering and braking. The point-mass model typically used by highway design professionals may not be appropriate to predict vehicle behavior on high-speed curves during braking in low-friction situations. However, engineers can use the results of this study to help select the appropriate vehicle dynamic

  19. Definitive design status of the SP-100 Ground Engineering System Test Site

    International Nuclear Information System (INIS)

    Renkey, E.J. Jr.; Bazinet, G.D.; Bitten, E.J.; Brackenbury, P.J.; Carlson, W.F.; Irwin, J.J.; Edwards, P.A.; Shen, E.J.; Titzler, P.A.

    1989-05-01

    The SP-100 reactor will be ground tested at the SP-100 Ground Engineering System (GES) Test Site on the US Department of Energy (DOE) Hanford Site near Richland, Washington. Project direction and the flight system design evolution have resulted in a smaller reactor size and the consequential revision to Test Site features to accommodate the design changes and reduce Test Site costs. The significant design events since the completion of the Conceptual Design are discussed in this paper

  20. Definitive design status of the SP-100 Ground Engineering System Test Site

    Energy Technology Data Exchange (ETDEWEB)

    Renkey, E.J. Jr.; Bazinet, G.D.; Bitten, E.J.; Brackenbury, P.J.; Carlson, W.F.; Irwin, J.J.; Edwards, P.A.; Shen, E.J.; Titzler, P.A.

    1989-05-01

    The SP-100 reactor will be ground tested at the SP-100 Ground Engineering System (GES) Test Site on the US Department of Energy (DOE) Hanford Site near Richland, Washington. Project direction and the flight system design evolution have resulted in a smaller reactor size and the consequential revision to Test Site features to accommodate the design changes and reduce Test Site costs. The significant design events since the completion of the Conceptual Design are discussed in this paper.

  1. Techno–economic design of hybrid electric vehicles and possibilities of the multi-objective optimization structure

    International Nuclear Information System (INIS)

    Dimitrova, Zlatina; Maréchal, François

    2016-01-01

    Highlights: • The full hybrid electric vehicle suits for sustainable urban mobility and customer investment. • The full hybrid electric urban vehicle is efficient, with consumption less than 2 L/100 km. • The range extender vehicle is a technology for low CO_2 emissions – less than 20 g/km CO_2_. • The total CO_2 emissions for range extender and plug-in vehicles are sensitive to the use place. - Abstract: The design criteria for modern sustainable development of vehicle powertrain are the high energy efficiency of the conversion system, the competitive cost and the lowest possible environmental impacts. In this article a multi-objective optimization methodology is applied on hybrid electric vehicles study in order to define the optimal powertrain configurations of the vehicle, estimate the cost of the powertrain equipment and show the environmental impact of the technical choices on the lifecycle perspective of the vehicle. The study illustrates optimal design solutions for low fuel consumption vehicles – between 2 L/100 km and 3 L/100 km. For that a simulation model of a hybrid electric vehicle is made. This model is coupled with a cost model for the vehicle. The techno–economic optimizations are performed for two case studies, illustrating the possibilities of the optimization superstructure. Firstly the life cycle inventory is written as a function of the parameters of the techno–economic model. In this way, the obtained environmental indicators from the life cycle assessment are calculated as a function of the decision variables for the vehicle design. In the second example the parameters of the energy distribution function are included as decision variables in the techno–economic optimization and are simultaneously optimized.

  2. Routing the asteroid surface vehicle with detailed mechanics

    Science.gov (United States)

    Yu, Yang; Baoyin, He-Xi

    2014-06-01

    The motion of a surface vehicle on/above an irregular object is investigated for a potential interest in the insitu explorations to asteroids of the solar system. A global valid numeric method, including detailed gravity and geomorphology, is developed to mimic the behaviors of the test particles governed by the orbital equations and surface coupling effects. A general discussion on the surface mechanical environment of a specified asteroid, 1620 Geographos, is presented to make a global evaluation of the surface vehicle's working conditions. We show the connections between the natural trajectories near the ground and differential features of the asteroid surface, which describes both the good and bad of typical terrains from the viewpoint of vehicles' dynamic performances. Monte Carlo simulations are performed to take a further look at the trajectories of particles initializing near the surface. The simulations reveal consistent conclusions with the analysis, i.e., the open-field flat ground and slightly concave basins/valleys are the best choices for the vehicles' dynamical security. The dependence of decending trajectories on the releasing height is studied as an application; the results show that the pole direction (where the centrifugal force is zero) is the most stable direction in which the shift of a natural trajectory will be well limited after landing. We present this work as an example for pre-analysis that provides guidance to engineering design of the exploration site and routing the surface vehicles.

  3. Assessment of future natural gas vehicle concepts

    Science.gov (United States)

    Groten, B.; Arrigotti, S.

    1992-10-01

    The development of Natural Gas Vehicles is progressing rapidly under the stimulus of recent vehicle emission regulations. The development is following what can be viewed as a three step progression. In the first step, contemporary gasoline or diesel fueled automobiles are retrofitted with equipment enabling the vehicle to operate on either natural gas or standard liquid fuels. The second step is the development of vehicles which utilize traditional internal combustion engines that have been modified to operate exclusively on natural gas. These dedicated natural gas vehicles operate more efficiently and have lower emissions than the dual fueled vehicles. The third step is the redesigning, from the ground up, of a vehicle aimed at exploiting the advantages of natural gas as an automotive fuel while minimizing its disadvantages. The current report is aimed at identifying the R&D needs in various fuel storage and engine combinations which have potential for providing increased efficiency, reduced emissions, and reductions in vehicle weight and size. Fuel suppliers, automobile and engine manufacturers, many segments of the natural gas and other industries, and regulatory authorities will influence or be affected by the development of such a third generation vehicle, and it is recommended that GRI act to bring these groups together in the near future to begin, developing the focus on a 'designed-for-natural-gas' vehicle.

  4. Launch Vehicle Design and Optimization Methods and Priority for the Advanced Engineering Environment

    Science.gov (United States)

    Rowell, Lawrence F.; Korte, John J.

    2003-01-01

    NASA's Advanced Engineering Environment (AEE) is a research and development program that will improve collaboration among design engineers for launch vehicle conceptual design and provide the infrastructure (methods and framework) necessary to enable that environment. In this paper, three major technical challenges facing the AEE program are identified, and three specific design problems are selected to demonstrate how advanced methods can improve current design activities. References are made to studies that demonstrate these design problems and methods, and these studies will provide the detailed information and check cases to support incorporation of these methods into the AEE. This paper provides background and terminology for discussing the launch vehicle conceptual design problem so that the diverse AEE user community can participate in prioritizing the AEE development effort.

  5. The Design and Risk Management of Structured Finance Vehicles

    Directory of Open Access Journals (Sweden)

    Sanjiv Das

    2016-10-01

    Full Text Available Special investment vehicles (SIVs, extremely popular financial structures for the creation of highly-rated tranched securities, experienced spectacular demise in the 2007-2008 financial crisis. These financial vehicles epitomize the shadow banking sector, characterized by high leverage, undiversified asset pools, and long-dated assets supported by short-term debt, thus bearing material rollover risk on their liabilities which led to defeasance. This paper models these vehicles, and shows that imposing leverage risk control triggers can be optimal for all capital providers, though they may not always be appropriate. The efficacy of these risk controls varies depending on anticipated asset volatility and fire-sale discounts on defeasance. Despite risk management controls, we show that a high failure rate is inherent in the design of these vehicles, and may be mitigated to some extent by including contingent capital provisions in the ex-ante covenants. Post the recent subprime financial crisis, we inform the creation of safer SIVs in structured finance, and propose avenues of mitigating risks faced by senior debt through deleveraging policies in the form of leverage risk controls and contingent capital.

  6. Design of Hydraulic Bushing and Vehicle Testing for Reducing the Judder Vibration

    Directory of Open Access Journals (Sweden)

    Kim Youngman

    2018-01-01

    Full Text Available Generally, judder vibration is a low-frequency vibration phenomenon caused by a braking force imbalance that occurs when a vehicle is lightly decelerated within a range of 0.1 to 0.2g at a speed of 120 to 60 km/h. This comes from the change in the brake disk thickness (DTV, which is mainly caused by the side run-out (SRO and thermal deformation. The adoption of hydro-bushing in the low arm G bushings of the vehicle front suspension has been done in order to provide great damping in a particular frequency range (<20Hz in order to prevent this judder vibration from being transmitted to the body. The hydro bushing was formulated using a lumped parameter model. The fluid passage between the two chambers was modelled as a nonlinear element such as an orifice, and its important parameters (resistance, compliance were measured using a simplified experimental setup. The main design parameters are the ratio of the cross-sectional area of the chamber to the fluid passage, the length of the fluid passage, etc., and their optimal design is such that the loss angle is greater than 45 ° in the target frequency range of 10 to 20 Hz. The hydro bushing designed for reducing the judder vibration was prepared for the actual vehicle application test and applied to the actual vehicle test. In this study, the proposed hydro bushing was applied to the G bushing of the low arm of the front suspension system of the vehicle. The loss angle of the manufactured hydro bushing was measured using acceleration signals before and after passing through the bushing. The actual vehicle test was performed on the noise dynamometer for the performance analysis of the judder vibration reduction.

  7. Application of subharmonics for active sound design of electric vehicles.

    Science.gov (United States)

    Gwak, Doo Young; Yoon, Kiseop; Seong, Yeolwan; Lee, Soogab

    2014-12-01

    The powertrain of electric vehicles generates an unfamiliar acoustical environment for customers. This paper seeks optimal interior sound for electric vehicles based on psychoacoustic knowledge and musical harmonic theory. The concept of inserting a virtual sound, which consists of the subharmonics of an existing high-frequency component, is suggested to improve sound quality. Subjective evaluation results indicate that the impression of interior sound can be enhanced in this manner. Increased appeal is achieved through two designed stimuli, which proves the effectiveness of the method proposed.

  8. Cognitive Connected Vehicle Information System Design Requirement for Safety: Role of Bayesian Artificial Intelligence

    Directory of Open Access Journals (Sweden)

    Ata Khan

    2013-04-01

    Full Text Available Intelligent transportation systems (ITS are gaining acceptance around the world and the connected vehicle component of ITS is recognized as a high priority research and development area in many technologically advanced countries. Connected vehicles are expected to have the capability of safe, efficient and eco-driving operations whether these are under human control or in the adaptive machine control mode of operations. The race is on to design the capability to operate in connected traffic environment. The operational requirements can be met with cognitive vehicle design features made possible by advances in artificial intelligence-supported methodology, improved understanding of human factors, and advances in communication technology. This paper describes cognitive features and their information system requirements. The architecture of an information system is presented that supports the features of the cognitive connected vehicle. For better focus, information processing capabilities are specified and the role of Bayesian artificial intelligence is defined for data fusion. Example applications illustrate the role of information systems in integrating intelligent technology, Bayesian artificial intelligence, and abstracted human factors. Concluding remarks highlight the role of the information system and Bayesian artificial intelligence in the design of a new generation of cognitive connected vehicle.

  9. Design of Autonomous Underwater Vehicle

    Directory of Open Access Journals (Sweden)

    Tadahiro Hyakudome

    2011-03-01

    Full Text Available There are concerns about the impact that global warming will have on our environment, and which will inevitably result in expanding deserts and rising water levels. While a lot of underwater vehicles are utilized, AUVs (Autonomous Underwater Vehicle were considered and chosen, as the most suitable tool for conduction survey concerning these global environmental problems. AUVs can comprehensive survey because the vehicle does not have to be connected to the support vessel by tether cable. When such underwater vehicles are made, it is necessary to consider about the following things. 1 Seawater and Water Pressure Environment, 2 Sink, 3 There are no Gas or Battery Charge Stations, 4 Global Positioning System cannot use, 5 Radio waves cannot use. In the paper, outline of above and how deal about it are explained.

  10. Ergonomic evaluation of interior design of Shoka vehicle and proposing recommendations for improvement.

    Science.gov (United States)

    Mazloumi, Adel; Mohammadreze, Fallah

    2012-01-01

    One of the applications of ergonomics disciplinary is designing driver workstation compatible to users' characteristics. The aim of this study was evaluation of interior design of Shoka vehicle with respect to the accommodation for Iranian population and proposing suggestions for customizing design of this vehicle. This study was a descriptive-analytical study conducted among thirty men from Iranian drivers population in 5, 50, 95 percentiles of the stature variable. Objective variables related to the occupant packaging and vehicle visual aspects including anthropometric variables, frontal, lateral, and side view and so on were investigated first. Then, subjective variables related to the driver mental workload and body comfort discomfort were studied using BMDMW and comfort questionnaires during 2-hour driving trial sessions. Occupant packaging variables and hand-arm angle showed the least accommodation percent (%53). Seating angles showed low accommodation as well (%73). Among three percentile groups there were no significant differences between the mean values of mental workload during two hours driving task. And, the mean value related to the comfort discomfort was 3.9 during driving sessions. Considering the findings in this study, it can be conclude that seating angles need correction and optimization. Taking mental workload results into account, it can be concluded that the interior design of the studied car had no influence on drivers' mental workload. From the aspect of comfort discomfort, Shoka vehicle showed neutral state among drivers. Optimizing seating angles, decreasing vibration, correcting stiffness of seating pan are suggested for customization of the ergonomics aspect of this vehicle.

  11. Squid-inspired vehicle design using coupled fluid-solid analytical modeling

    Science.gov (United States)

    Giorgio-Serchi, Francesco; Weymouth, Gabriel

    2017-11-01

    The need for enhanced automation in the marine and maritime fields is fostering research into robust and highly maneuverable autonomous underwater vehicles. To address these needs we develop design principles for a new generation of soft-bodied aquatic vehicles similar to octopi and squids. In particular, we consider the capability of pulsed-jetting bodies to boost thrust by actively modifying their external body-shape and in this way benefit of the contribution from added-mass variation. We present an analytical formulation of the coupled fluid-structure interaction between the elastic body and the ambient fluid. The model incorporates a number of new salient contributions to the soft-body dynamics. We highlight the role of added-mass variation effects of the external fluid in enhancing thrust and assess how the shape-changing actuation is impeded by a confinement-related unsteady inertial term and by an external shape-dependent fluid stiffness contribution. We show how the analysis of these combined terms has guided us to the design of a new prototype of a squid-inspired vehicle tuning of the natural frequency of the coupled fluid-solid system with the purpose of optimizing its actuation routine.

  12. Preface to the special section on human factors and automation in vehicles: designing highly automated vehicles with the driver in mind.

    Science.gov (United States)

    Merat, Natasha; Lee, John D

    2012-10-01

    This special section brings together diverse research regarding driver interaction with advanced automotive technology to guide design of increasingly automated vehicles. Rapidly evolving vehicle automation will likely change cars and trucks more in the next 5 years than the preceding 50, radically redefining what it means to drive. This special section includes 10 articles from European and North American researchers reporting simulator and naturalistic driving studies. Little research has considered the consequences of fully automated driving, with most focusing on lane-keeping and speed control systems individually. The studies reveal two underlying design philosophies: automate driving versus support driving. Results of several studies, consistent with previous research in other domains, suggest that the automate philosophy can delay driver responses to incidents in which the driver has to intervene and take control from the automation. Understanding how to orchestrate the transfer or sharing of control between the system and the driver, particularly in critical incidents, emerges as a central challenge. Designers should not assume that automation can substitute seamlessly for a human driver, nor can they assume that the driver can safely accommodate the limitations of automation. Designers, policy makers, and researchers must give careful consideration to what role the person should have in highly automated vehicles and how to support the driver if the driver is to be responsible for vehicle control. As in other domains, driving safety increasingly depends on the combined performance of the human and automation, and successful designs will depend on recognizing and supporting the new roles of the driver.

  13. A comparison of hydrogen, methanol and gasoline as fuels for fuel cell vehicles: implications for vehicle design and infrastructure development

    Science.gov (United States)

    Ogden, Joan M.; Steinbugler, Margaret M.; Kreutz, Thomas G.

    All fuel cells currently being developed for near term use in electric vehicles require hydrogen as a fuel. Hydrogen can be stored directly or produced onboard the vehicle by reforming methanol, or hydrocarbon fuels derived from crude oil (e.g., gasoline, diesel, or middle distillates). The vehicle design is simpler with direct hydrogen storage, but requires developing a more complex refueling infrastructure. In this paper, we present modeling results comparing three leading options for fuel storage onboard fuel cell vehicles: (a) compressed gas hydrogen storage, (b) onboard steam reforming of methanol, (c) onboard partial oxidation (POX) of hydrocarbon fuels derived from crude oil. We have developed a fuel cell vehicle model, including detailed models of onboard fuel processors. This allows us to compare the vehicle performance, fuel economy, weight, and cost for various vehicle parameters, fuel storage choices and driving cycles. The infrastructure requirements are also compared for gaseous hydrogen, methanol and gasoline, including the added costs of fuel production, storage, distribution and refueling stations. The delivered fuel cost, total lifecycle cost of transportation, and capital cost of infrastructure development are estimated for each alternative. Considering both vehicle and infrastructure issues, possible fuel strategies leading to the commercialization of fuel cell vehicles are discussed.

  14. High-Throughput Phenotyping of Plant Height: Comparing Unmanned Aerial Vehicles and Ground LiDAR Estimates.

    Science.gov (United States)

    Madec, Simon; Baret, Fred; de Solan, Benoît; Thomas, Samuel; Dutartre, Dan; Jezequel, Stéphane; Hemmerlé, Matthieu; Colombeau, Gallian; Comar, Alexis

    2017-01-01

    The capacity of LiDAR and Unmanned Aerial Vehicles (UAVs) to provide plant height estimates as a high-throughput plant phenotyping trait was explored. An experiment over wheat genotypes conducted under well watered and water stress modalities was conducted. Frequent LiDAR measurements were performed along the growth cycle using a phénomobile unmanned ground vehicle. UAV equipped with a high resolution RGB camera was flying the experiment several times to retrieve the digital surface model from structure from motion techniques. Both techniques provide a 3D dense point cloud from which the plant height can be estimated. Plant height first defined as the z -value for which 99.5% of the points of the dense cloud are below. This provides good consistency with manual measurements of plant height (RMSE = 3.5 cm) while minimizing the variability along each microplot. Results show that LiDAR and structure from motion plant height values are always consistent. However, a slight under-estimation is observed for structure from motion techniques, in relation with the coarser spatial resolution of UAV imagery and the limited penetration capacity of structure from motion as compared to LiDAR. Very high heritability values ( H 2 > 0.90) were found for both techniques when lodging was not present. The dynamics of plant height shows that it carries pertinent information regarding the period and magnitude of the plant stress. Further, the date when the maximum plant height is reached was found to be very heritable ( H 2 > 0.88) and a good proxy of the flowering stage. Finally, the capacity of plant height as a proxy for total above ground biomass and yield is discussed.

  15. Principle and Design of a Single-phase Inverter-Based Grounding System for Neutral-to-ground Voltage Compensation in Distribution Networks

    DEFF Research Database (Denmark)

    Wang, Wen; Yan, Lingjie; Zeng, Xiangjun

    2017-01-01

    Neutral-to-ground overvoltage may occur in non-effectively grounded power systems because of the distributed parameters asymmetry and resonance between Petersen coil and distributed capacitances. Thus, the constraint of neutral-to-ground voltage is critical for the safety of distribution networks....... In this paper, an active grounding system based on single-phase inverter and its control parameter design method is proposed to achieve this objective. Relationship between its output current and neutral-to-ground voltage is derived to explain the principle of neutral-to-ground voltage compensation. Then...

  16. Preliminary Design of Reluctance Motors for Light Electric Vehicles Driving

    Directory of Open Access Journals (Sweden)

    TRIFA, V.

    2009-02-01

    Full Text Available The paper presents the aspects regarding FEM analysis of a reluctant motor for direct driving of the light electric vehicles. The reluctant motor take into study is of special construction suitable for direct drive of a light electric vehicle. It is an inverse radial reluctant motor, with a fixed stator mounted on front wheel shaft and an external toothed rotor fixed on the front wheel itself. A short presentation of preliminary design is continued with the FEM analysis in order to provide the optimal geometry of the motor and adequate windings.

  17. Multidisciplinary design of a rocket-based combined cycle SSTO launch vehicle using Taguchi methods

    Science.gov (United States)

    Olds, John R.; Walberg, Gerald D.

    1993-01-01

    Results are presented from the optimization process of a winged-cone configuration SSTO launch vehicle that employs a rocket-based ejector/ramjet/scramjet/rocket operational mode variable-cycle engine. The Taguchi multidisciplinary parametric-design method was used to evaluate the effects of simultaneously changing a total of eight design variables, rather than changing them one at a time as in conventional tradeoff studies. A combination of design variables was in this way identified which yields very attractive vehicle dry and gross weights.

  18. Designing a Fuzzy Logic Controller to Enhance Directional Stability of Vehicles under Difficult Maneuvers

    OpenAIRE

    Mehrdad N. Khajavi; Golamhassan Paygane; Ali Hakima

    2009-01-01

    Vehicle which are turning or maneuvering at high speeds are susceptible to sliding and subsequently deviate from desired path. In this paper the dynamics governing the Yaw/Roll behavior of a vehicle has been simulated. Two different simulations have been used one for the real vehicle, for which a fuzzy controller is designed to increase its directional stability property. The other simulation is for a hypothetical vehicle with much higher tire cornering stiffness which is ca...

  19. Design and Implementation of a Control System for Testing an Experimental Electrical Vehicle

    OpenAIRE

    Miranda Bermejo, Jorge

    2010-01-01

    The Research Institute of Vehicle Engines and Automotive Engineering (IVK) at the University of Stuttgart is developing an experimental electric vehicle. With that vehicle different research topics in the scope of e-mobility will be investigated. Some of these topics are range prediction and optimization issues, adapted control of inverter and electric motor, as well as, different battery charging techniques. The aim of this master thesis is to design and to implement the contr...

  20. Method of Controlling Steering of a Ground Vehicle

    Science.gov (United States)

    Dawson, Andrew D. (Inventor); Bluethmann, William J. (Inventor); Lee, Chunhao J. (Inventor); Vitale, Robert L. (Inventor); Guo, Raymond (Inventor); Atluri, Venkata Prasad (Inventor)

    2016-01-01

    A method of controlling steering of a vehicle through setting wheel angles of a plurality of modular electronic corner assemblies (eModules) is provided. The method includes receiving a driving mode selected from a mode selection menu. A position of a steering input device is determined in a master controller. A velocity of the vehicle is determined, in the master controller, when the determined position of the steering input device is near center. A drive mode request corresponding to the selected driving mode to the plurality of steering controllers is transmitted to the master controller. A required steering angle of each of the plurality of eModules is determined, in the master controller, as a function of the determined position of the steering input device, the determined velocity of the vehicle, and the selected first driving mode. The eModules are set to the respective determined steering angles.

  1. Design and optimization for the occupant restraint system of vehicle based on a single freedom model

    Science.gov (United States)

    Zhang, Junyuan; Ma, Yue; Chen, Chao; Zhang, Yan

    2013-05-01

    Throughout the vehicle crash event, the interactions between vehicle, occupant, restraint system (VOR) are complicated and highly non-linear. CAE and physical tests are the most widely used in vehicle passive safety development, but they can only be done with the detailed 3D model or physical samples. Often some design errors and imperfections are difficult to correct at that time, and a large amount of time will be needed. A restraint system concept design approach which based on single-degree-of-freedom occupant-vehicle model (SDOF) is proposed in this paper. The interactions between the restraint system parameters and the occupant responses in a crash are studied from the view of mechanics and energy. The discrete input and the iterative algorithm method are applied to the SDOF model to get the occupant responses quickly for arbitrary excitations (impact pulse) by MATLAB. By studying the relationships between the ridedown efficiency, the restraint stiffness, and the occupant response, the design principle of the restraint stiffness aiming to reduce occupant injury level during conceptual design is represented. Higher ridedown efficiency means more occupant energy absorbed by the vehicle, but the research result shows that higher ridedown efficiency does not mean lower occupant injury level. A proper restraint system design principle depends on two aspects. On one hand, the restraint system should lead to as high ridedown efficiency as possible, and at the same time, the restraint system should maximize use of the survival space to reduce the occupant deceleration level. As an example, an optimization of a passenger vehicle restraint system is designed by the concept design method above, and the final results are validated by MADYMO, which is the most widely used software in restraint system design, and the sled test. Consequently, a guideline and method for the occupant restraint system concept design is established in this paper.

  2. Nozzle design study for a quasi-axisymmetric scramjet-powered vehicle at Mach 7.9 flight conditions

    Science.gov (United States)

    Tanimizu, Katsuyoshi; Mee, David J.; Stalker, Raymond J.; Jacobs, Peter A.

    2013-09-01

    A nozzle shape optimization study for a quasi-axisymmetric scramjet has been performed for a Mach 7.9 operating condition with hydrogen fuel, aiming at the application of a hypersonic airbreathing vehicle. In this study, the nozzle geometry which is parameterized by a set of design variables, is optimized for the single objective of maximum net thrust using an in-house CFD solver for inviscid flowfields with a simple force prediction methodology. The combustion is modelled using a simple chemical reaction code. The effects of the nozzle design on the overall vehicle performance are discussed. For the present geometry, net thrust is achieved for the optimized vehicle design. The results of the nozzle-optimization study show that performance is limited by the nozzle area ratio that can be incorporated into the vehicle without leading to too large a base diameter of the vehicle and increasing the external drag of the vehicle. This study indicates that it is very difficult to achieve positive thrust at Mach 7.9 using the basic geometry investigated.

  3. Principle and Control Design of Active Ground-Fault Arc Suppression Device for Full Compensation of Ground Current

    DEFF Research Database (Denmark)

    Wang, Wen; Zeng, Xiangjun; Yan, Lingjie

    2017-01-01

    current into the neutral without any large-capacity reactors, and thus avoids the aforementioned overvoltage. It compensates all the active, reactive and harmonic components of the ground current to reliably extinguish the ground-fault arcs. A dual-loop voltage control method is proposed to realize arc...... suppression without capacitive current detection. Its time-based feature also brings the benefit of fast response on ground-fault arc suppression. The principle of full current compensation is analyzed, together with the controller design method of the proposed device. Experiment on a prototype was carried...

  4. Ground motion optimized orbit feedback design for the future linear collider

    Energy Technology Data Exchange (ETDEWEB)

    Pfingstner, J., E-mail: juergen.pfingstner@cern.ch [CERN, Geneva 23, CH-1211 (Switzerland); Vienna University of Technology, Karlsplatz 13, 1040 Wien (Austria); Snuverink, J. [CERN, Geneva 23, CH-1211 (Switzerland); John Adams Institute at Royal Holloway, University of London, Surrey (United Kingdom); Schulte, D. [CERN, Geneva 23, CH-1211 (Switzerland)

    2013-03-01

    The future linear collider has strong stability requirements on the position of the beam along the accelerator and at the interaction point (IP). The beam position will be sensitive to dynamic imperfections in particular ground motion. A number of mitigation techniques have been proposed to be deployed in parallel: active and passive quadrupole stabilization and positioning as well as orbit and IP feedback. This paper presents a novel design of the orbit controller in the main linac and beam delivery system. One global feedback controller is proposed based on an SVD-controller (Singular Value Decomposition) that decouples the large multi-input multi-output system into many independent single-input single-output systems. A semi-automatic procedure is proposed for the controller design of the independent systems by exploiting numerical models of ground motion and measurement noise to minimize a target parameter, e.g. luminosity loss. The novel design for the orbit controller is studied for the case of the Compact Linear Collider (CLIC) in integrated simulations, which include all proposed mitigation methods. The impact of the ground motion on the luminosity performance is examined in detail. It is shown that with the proposed orbit controller the tight luminosity budget for ground motion effects is fulfilled and accordingly, an essential feasibility issue of CLIC has been addressed. The orbit controller design is robust and allows for a relaxed BPM resolution, while still maintaining a strong ground motion suppression performance compared to traditional methods. We believe that the described method could easily be applied to other accelerators and light sources.

  5. Vehicle model for tyre-ground contact force evaluation

    OpenAIRE

    Jiao, Lejia

    2013-01-01

    Economic development and growing integration process of world trade increases the demand for road transport. In 2008, the freight transportation by road in Sweden reached 42 million tonne-kilometers. Sweden has a tradition of long and heavy trucks combinations. Lots of larger vehicles, with a maximum length of 25.25 meters and weight of 60 tonnes, are used in national traffic. Heavier road transport and widely use of large vehicles contribute to the damages of pavement. According to a recent ...

  6. NASA Ares I Launch Vehicle Roll and Reaction Control Systems Design Status

    Science.gov (United States)

    Butt, Adam; Popp, Chris G.; Pitts, Hank M.; Sharp, David J.

    2009-01-01

    This paper provides an update of design status following the preliminary design review of NASA s Ares I first stage roll and upper stage reaction control systems. The Ares I launch vehicle has been chosen to return humans to the moon, mars, and beyond. It consists of a first stage five segment solid rocket booster and an upper stage liquid bi-propellant J-2X engine. Similar to many launch vehicles, the Ares I has reaction control systems used to provide the vehicle with three degrees of freedom stabilization during the mission. During launch, the first stage roll control system will provide the Ares I with the ability to counteract induced roll torque. After first stage booster separation, the upper stage reaction control system will provide the upper stage element with three degrees of freedom control as needed. Trade studies and design assessments conducted on the roll and reaction control systems include: propellant selection, thruster arrangement, pressurization system configuration, and system component trades. Since successful completion of the preliminary design review, work has progressed towards the critical design review with accomplishments made in the following areas: pressurant / propellant tank, thruster assembly, and other component configurations, as well as thruster module design, and waterhammer mitigation approach. Also, results from early development testing are discussed along with plans for upcoming system testing. This paper concludes by summarizing the process of down selecting to the current baseline configuration for the Ares I roll and reaction control systems.

  7. 29 CFR 1910.304 - Wiring design and protection.

    Science.gov (United States)

    2010-07-01

    ... contacts effectively grounded except for receptacles mounted on portable and vehicle-mounted generators in... types of current (ac or dc) on the same premises shall be of such design that the attachment plugs used... premises wiring shall be grounded as follows: (i) All 3-wire dc systems shall have their neutral conductor...

  8. Conceptual design of shallow ground repository (SGR)

    International Nuclear Information System (INIS)

    Roehl, J.L.; Franzen, H.R.

    1986-01-01

    A conceptual design to guide the development of the preliminary and final designs of a shallow ground waste disposal site for low and intermediate level radioactive wastes, complying with the Brazilian necessities, interpreted by Brazilian CNEN, is discussed. The general and specific criteria for the design of such installations, considering the reposing period, the isolation of personnel and environment, the operational activities, the characteristics of the site and of the subsoil and the set of necessary installations and services, are presented. An aboveground landfill, with concrete monoliths and concrete packages arranged in stacks disposed on an impermeable soil layer, is proposed. The disposed elements are covered by another impermeable soil stratum. (Author) [pt

  9. Modelling and design optimization of low speed fuel cell - battery hybrid electric vehicles. Paper no. IGEC-1-125

    International Nuclear Information System (INIS)

    Guenther, M.; Dong, Z.

    2005-01-01

    A push for electric vehicles has occurred in the past several decades due to various concerns about air pollution and the contribution of emissions to global climate change. Although electric cars and buses have been the focus of much of electric vehicle development, smaller vehicles are used extensively for transportation and utility purposes in many countries. In order to explore the viability of fuel cell - battery hybrid electric vehicles, empirical fuel cell system data has been incorporated into the NREL's vehicle design and simulation tool, ADVISOR (ADvanced Vehicle SimulatOR), to predict the performance of a low-speed, fuel cell - battery electric vehicle through MATLAB Simulink. The modelling and simulation provide valuable feedback to the design optimization of the fuel cell power system. A sampling based optimization algorithm was used to explore the viability and options of a low cost design for urban use. (author)

  10. Optimal Signal Design for Mixed Equilibrium Networks with Autonomous and Regular Vehicles

    Directory of Open Access Journals (Sweden)

    Nan Jiang

    2017-01-01

    Full Text Available A signal design problem is studied for efficiently managing autonomous vehicles (AVs and regular vehicles (RVs simultaneously in transportation networks. AVs and RVs move on separate lanes and two types of vehicles share the green times at the same intersections. The signal design problem is formulated as a bilevel program. The lower-level model describes a mixed equilibrium where autonomous vehicles follow the Cournot-Nash (CN principle and RVs follow the user equilibrium (UE principle. In the upper-level model, signal timings are optimized at signalized intersections to allocate appropriate green times to both autonomous and RVs to minimize system travel cost. The sensitivity analysis based method is used to solve the bilevel optimization model. Various signal control strategies are evaluated through numerical examples and some insightful findings are obtained. It was found that the number of phases at intersections should be reduced for the optimal control of the AVs and RVs in the mixed networks. More importantly, incorporating AVs into the transportation network would improve the system performance due to the value of AV technologies in reducing random delays at intersections. Meanwhile, travelers prefer to choose AVs when the networks turn to be congested.

  11. Design Optimization of a Hybrid Electric Vehicle Powertrain

    Science.gov (United States)

    Mangun, Firdause; Idres, Moumen; Abdullah, Kassim

    2017-03-01

    This paper presents an optimization work on hybrid electric vehicle (HEV) powertrain using Genetic Algorithm (GA) method. It focused on optimization of the parameters of powertrain components including supercapacitors to obtain maximum fuel economy. Vehicle modelling is based on Quasi-Static-Simulation (QSS) backward-facing approach. A combined city (FTP-75)-highway (HWFET) drive cycle is utilized for the design process. Seeking global optimum solution, GA was executed with different initial settings to obtain sets of optimal parameters. Starting from a benchmark HEV, optimization results in a smaller engine (2 l instead of 3 l) and a larger battery (15.66 kWh instead of 2.01 kWh). This leads to a reduction of 38.3% in fuel consumption and 30.5% in equivalent fuel consumption. Optimized parameters are also compared with actual values for HEV in the market.

  12. Multi-Task Vehicle Detection with Region-of-Interest Voting.

    Science.gov (United States)

    Chu, Wenqing; Liu, Yao; Shen, Chen; Cai, Deng; Hua, Xian-Sheng

    2017-10-12

    Vehicle detection is a challenging problem in autonomous driving systems, due to its large structural and appearance variations. In this paper, we propose a novel vehicle detection scheme based on multi-task deep convolutional neural networks (CNN) and region-of-interest (RoI) voting. In the design of CNN architecture, we enrich the supervised information with subcategory, region overlap, bounding-box regression and category of each training RoI as a multi-task learning framework. This design allows the CNN model to share visual knowledge among different vehicle attributes simultaneously, thus detection robustness can be effectively improved. In addition, most existing methods consider each RoI independently, ignoring the clues from its neighboring RoIs. In our approach, we utilize the CNN model to predict the offset direction of each RoI boundary towards the corresponding ground truth. Then each RoI can vote those suitable adjacent bounding boxes which are consistent with this additional information. The voting results are combined with the score of each RoI itself to find a more accurate location from a large number of candidates. Experimental results on the real-world computer vision benchmarks KITTI and the PASCAL2007 vehicle dataset show that our approach achieves superior performance in vehicle detection compared with other existing published works.

  13. Design of power cable grounding wire anti-theft monitoring system

    Science.gov (United States)

    An, Xisheng; Lu, Peng; Wei, Niansheng; Hong, Gang

    2018-01-01

    In order to prevent the serious consequences of the power grid failure caused by the power cable grounding wire theft, this paper presents a GPRS based power cable grounding wire anti-theft monitoring device system, which includes a camera module, a sensor module, a micro processing system module, and a data monitoring center module, a mobile terminal module. Our design utilize two kinds of methods for detecting and reporting comprehensive image, it can effectively solve the problem of power and cable grounding wire box theft problem, timely follow-up grounded cable theft events, prevent the occurrence of electric field of high voltage transmission line fault, improve the reliability of the safe operation of power grid.

  14. Launch vehicle tracking enhancement through Global Positioning System Metric Tracking

    Science.gov (United States)

    Moore, T. C.; Li, Hanchu; Gray, T.; Doran, A.

    United Launch Alliance (ULA) initiated operational flights of both the Atlas V and Delta IV launch vehicle families in 2002. The Atlas V and Delta IV launch vehicles were developed jointly with the US Air Force (USAF) as part of the Evolved Expendable Launch Vehicle (EELV) program. Both Launch Vehicle (LV) families have provided 100% mission success since their respective inaugural launches and demonstrated launch capability from both Vandenberg Air Force Base (VAFB) on the Western Test Range and Cape Canaveral Air Force Station (CCAFS) on the Eastern Test Range. However, the current EELV fleet communications, tracking, & control architecture & technology, which date back to the origins of the space launch business, require support by a large and high cost ground footprint. The USAF has embarked on an initiative known as Future Flight Safety System (FFSS) that will significantly reduce Test Range Operations and Maintenance (O& M) cost by closing facilities and decommissioning ground assets. In support of the FFSS, a Global Positioning System Metric Tracking (GPS MT) System based on the Global Positioning System (GPS) satellite constellation has been developed for EELV which will allow both Ranges to divest some of their radar assets. The Air Force, ULA and Space Vector have flown the first 2 Atlas Certification vehicles demonstrating the successful operation of the GPS MT System. The first Atlas V certification flight was completed in February 2012 from CCAFS, the second Atlas V certification flight from VAFB was completed in September 2012 and the third certification flight on a Delta IV was completed October 2012 from CCAFS. The GPS MT System will provide precise LV position, velocity and timing information that can replace ground radar tracking resource functionality. The GPS MT system will provide an independent position/velocity S-Band telemetry downlink to support the current man-in-the-loop ground-based commanded destruct of an anomalous flight- The system

  15. Design and Simulation Tools for Planetary Atmospheric Entry Vehicles, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Atmospheric entry is one of the most critical phases of flight during planetary exploration missions. During the design of an entry vehicle, experimental and...

  16. Design considerations of the irradiation test vehicle for the advanced test reactor

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, H.; Gomes, I.C.; Smith, D.L. [Argonne National Lab., IL (United States)] [and others

    1997-08-01

    An irradiation test vehicle (ITV) for the Advanced Test Reactor (ATR) is being jointly developed by the Lockheed Martin Idaho Technologies Company (LMIT) and the U.S. Fusion Program. The vehicle is intended for neutron irradiation testing of candidate structural materials, including vanadium-based alloys, silicon carbide composites, and low activation steels. It could possibly be used for U.S./Japanese collaboration in the Jupiter Program. The first test train is scheduled to be completed by September 1998. In this report, we present the functional requirements for the vehicle and a preliminary design that satisfies these requirements.

  17. Design considerations of the irradiation test vehicle for the advanced test reactor

    International Nuclear Information System (INIS)

    Tsai, H.; Gomes, I.C.; Smith, D.L.

    1997-01-01

    An irradiation test vehicle (ITV) for the Advanced Test Reactor (ATR) is being jointly developed by the Lockheed Martin Idaho Technologies Company (LMIT) and the U.S. Fusion Program. The vehicle is intended for neutron irradiation testing of candidate structural materials, including vanadium-based alloys, silicon carbide composites, and low activation steels. It could possibly be used for U.S./Japanese collaboration in the Jupiter Program. The first test train is scheduled to be completed by September 1998. In this report, we present the functional requirements for the vehicle and a preliminary design that satisfies these requirements

  18. Storage evaporator for vehicles with start-stop technology; Speicherverdampfer fuer Fahrzeuge mit Start-Stopp-Funktion

    Energy Technology Data Exchange (ETDEWEB)

    Wawzyniak, Markus; Link, Joachim [Behr GmbH und Co. KG, Stuttgart (Germany)

    2013-04-15

    Today, the use of engine start-stop technology - a system designed to cut fuel consumption when the vehicle stops or, in future applications, when vehicles are in coasting or ''sailing'' mode - is gaining ground in more and more vehicle classes. Shutting off the internal combustion engine, though, detrimentally affects cabin air conditioning because the belt-driven A/C compressor is likewise deactivated, thus bringing the vapor compression process to a standstill. As a result, during extended stop periods and in warm weather vent temperatures and air humidity rapidly increase.

  19. A computer code to design liquid containers for vehicles

    International Nuclear Information System (INIS)

    Parizi, H.B.; Fard, M.P.; Dolatabadi, A.

    2003-01-01

    We are presenting the development of a modular code for the simulation of the fluid sloshing that occurs in the liquid containers in vehicles. Sloshing occurs when a partially filled container of liquid goes through transient or steady external forces. Under such conditions, the free surface of the liquid may move and the liquid may impact on the walls of the container, exchanging forces. These forces may cause numerous harmful and undesirable consequences in the operation of the vehicle, such as vehicle turn over. The fluid mechanic equations that describe the fluid sloshing in the container and the dynamic equations that describe the movement of the container are solved separately in two different codes. The codes are coupled weekly, such that the output of one code will be used as the input to the other code in the same time step. The outputs of the fluid code are the forces and torques that are applied to the body of the container due to sloshing, whereas the output of the dynamic code are the translational and rotational velocities and accelerations of the container. The proposed software can be used to test the performance of the designed container under various operating condition and allow effective improvements to the container design. The proposed code is different than the presently available codes, in that it will provide a true simulation of the coupled fluid and structure interaction. (author)

  20. Inexpensive semi-autonomous ground vehicles for defusing IEDs

    Science.gov (United States)

    Davenport, Chris; Lodmell, James; Womble, Phillip C.; Barzilov, Alexander; Paschal, Jon; Hernandez, Robert; Moss, Kyle T.; Hopper, Lindsay

    2008-04-01

    Improvised explosive devices (IEDs) are an important concern to coalition forces during the conflicts in the Middle East. These devices are responsible for many casualties to American armed forces in the Middle East. These explosives are particularly dangerous because they are improvised with materials readily available to the designer, and there is no systematic way of explosive ordinance disposal. IEDs can be made from things such as standard military ammunition and can be detonated with common electronic devices such as cell phones and garage door openers. There is a great need for a low cost solution to neutralize these IEDs. At the Applied Physics Institute we are building a single function disrupter robot whose sole purpose is to neutralize these IEDs. We are modifying a toy remote control car to control it either wirelessly using WI-FI (IEEE 802.11) or wired by tethering the vehicle with an Ethernet cable (IEEE 802.3). The robot will be equipped with a high velocity fuze disrupter to neutralize the IED as well as a video camera for inspection and aiming purposes. This robot utilizes commercial-off-the-shelf (COTS) components which keeps the cost relatively low. Currently, similar robot systems have been deployed in Iraq and elsewhere but their method of operation is such that it is impractical to use in non-combat situations. We will discuss our design and possible deployment scenarios.

  1. Research of Obstacle Recognition Technology in Cross-Country Environment for Unmanned Ground Vehicle

    Directory of Open Access Journals (Sweden)

    Zhao Yibing

    2014-01-01

    Full Text Available Being aimed at the obstacle recognition problem of unmanned ground vehicles in cross-country environment, this paper uses monocular vision sensor to realize the obstacle recognition of typical obstacles. Firstly, median filtering algorithm is applied during image preprocessing that can eliminate the noise. Secondly, image segmentation method based on the Fisher criterion function is used to segment the region of interest. Then, morphological method is used to process the segmented image, which is preparing for the subsequent analysis. The next step is to extract the color feature S, color feature a and edge feature “verticality” of image are extracted based on the HSI color space, the Lab color space, and two value images. Finally multifeature fusion algorithm based on Bayes classification theory is used for obstacle recognition. Test results show that the algorithm has good robustness and accuracy.

  2. Technique applied in electrical power distribution for Satellite Launch Vehicle

    Directory of Open Access Journals (Sweden)

    João Maurício Rosário

    2010-09-01

    Full Text Available The Satellite Launch Vehicle electrical network, which is currently being developed in Brazil, is sub-divided for analysis in the following parts: Service Electrical Network, Controlling Electrical Network, Safety Electrical Network and Telemetry Electrical Network. During the pre-launching and launching phases, these electrical networks are associated electrically and mechanically to the structure of the vehicle. In order to succeed in the integration of these electrical networks it is necessary to employ techniques of electrical power distribution, which are proper to Launch Vehicle systems. This work presents the most important techniques to be considered in the characterization of the electrical power supply applied to Launch Vehicle systems. Such techniques are primarily designed to allow the electrical networks, when submitted to the single-phase fault to ground, to be able of keeping the power supply to the loads.

  3. Design, control and power management of a battery/ultra-capacitor hybrid system for small electric vehicles

    DEFF Research Database (Denmark)

    Li, Zhihao; Onar, Omer; Khaligh, Alireza

    2009-01-01

    This paper introduces design, control, and power management of a battery/ultra-capacitor hybrid system, utilized for small electric vehicles (EV). The batteries are designed and controlled to work as the main energy storage source of the vehicle, supplying average power to the load; and the ultra...

  4. Design and Development of the Engine Unit for a Twin-Rotor Unmanned Aerial Vehicle

    Directory of Open Access Journals (Sweden)

    G. Avanzini

    2005-01-01

    Full Text Available Advanced computer-aided technologies played a crucial role in the design of an unconventional Uninhabited Aerial Vehicle (UAV, developed at the Turin Technical University and the University of Rome “La Sapienza”. The engine unit of the vehicle is made of a complex system of three two stroke piston engines coupled with two counter-rotating three-bladed rotors, controlled by rotary PWM servos. The focus of the present paper lies on the enabling technologies exploited in the framework of activities aimed at designing a suitable and reliable engine system, capable of performing the complex tasks required for operating the proposed rotorcraft. The synergic use of advanced computational tools for estimating the aerodynamic performance of the vehicle, solid modeling for mechanical components design, and rapid prototyping techniques for control system logic synthesis and implementation will be presented. 

  5. UAV-guided navigation for ground robot tele-operation in a military reconnaissance environment.

    Science.gov (United States)

    Chen, Jessie Y C

    2010-08-01

    A military reconnaissance environment was simulated to examine the performance of ground robotics operators who were instructed to utilise streaming video from an unmanned aerial vehicle (UAV) to navigate his/her ground robot to the locations of the targets. The effects of participants' spatial ability on their performance and workload were also investigated. Results showed that participants' overall performance (speed and accuracy) was better when she/he had access to images from larger UAVs with fixed orientations, compared with other UAV conditions (baseline- no UAV, micro air vehicle and UAV with orbiting views). Participants experienced the highest workload when the UAV was orbiting. Those individuals with higher spatial ability performed significantly better and reported less workload than those with lower spatial ability. The results of the current study will further understanding of ground robot operators' target search performance based on streaming video from UAVs. The results will also facilitate the implementation of ground/air robots in military environments and will be useful to the future military system design and training community.

  6. Integrated System Test Approaches for the NASA Ares I Crew Launch Vehicle

    Science.gov (United States)

    Cockrell, Charles

    2008-01-01

    NASA is maturing test and evaluation plans leading to flight readiness of the Ares I crew launch vehicle. Key development, qualification, and verification tests are planned . Upper stage engine sea-level and altitude testing. First stage development and qualification motors. Upper stage structural and thermal development and qualification test articles. Main Propulsion Test Article (MPTA). Upper stage green run testing. Integrated Vehicle Ground Vibration Testing (IVGVT). Aerodynamic characterization testing. Test and evaluation supports initial validation flights (Ares I-Y and Orion 1) and design certification.

  7. Design and development of electric vehicle charging station equipped with RFID

    Science.gov (United States)

    Panatarani, C.; Murtaddo, D.; Maulana, D. W.; Irawan, S.; Joni, I. M.

    2016-02-01

    This paper reports the development of electric charging station from distributed renewable for electric vehicle (EV). This designed refer to the input voltage standard of IEC 61851, plugs features of IEC 62196 and standard communication of ISO 15118. The developed electric charging station used microcontroller ATMEGA8535 and RFID as controller and identifier of the EV users, respectively. The charging station successfully developed as desired features for electric vehicle from renewable energy resources grid with solar panel, wind power and batteries storage.

  8. Learning from nuclear waste repository design: the ground-control plan

    International Nuclear Information System (INIS)

    Schmidt, B.

    1988-01-01

    At present, under a U.S. Department of Energy program, three repositories for commercial spent fuel-in salt, tuff and basalt-are in the phase of site characterization and conceptual design, and one pilot project for defense waste in salt is under development. Because of strict quality assurance requirements throughout design and construction, and the need to predict and ascertain in advance the satisfactory performance of the underground openings, underground openings in the unusual circumstances of the repository environment have been analysed. This will lead to an improved understanding of rock behavior and improved methods of underground analysis and design. A formalized ground control plan was developed, the principles of which may be applied to other types of projects. This paper summarizes the status of underground design and construction for nuclear waste repositories and presents some details of the ground control plan and its individual elements. (author)

  9. Design of an Autonomous Underwater Vehicle to Calibrate the Europa Clipper Ice-Penetrating Radar

    Science.gov (United States)

    Stone, W.; Siegel, V.; Kimball, P.; Richmond, K.; Flesher, C.; Hogan, B.; Lelievre, S.

    2013-12-01

    Jupiter's moon Europa has been prioritized as the target for the Europa Clipper flyby mission. A key science objective for the mission is to remotely characterize the ice shell and any subsurface water, including their heterogeneity, and the nature of surface-ice-ocean exchange. This objective is a critical component of the mission's overarching goal of assessing the habitability of Europa. The instrument targeted for addressing key aspects of this goal is an ice-penetrating radar (IPR). As a primary goal of our work, we will tightly couple airborne IPR studies of the Ross Ice Shelf by the Europa Clipper radar team with ground-truth data to be obtained from sub-glacial sonar and bio-geochemical mapping of the corresponding ice-water and water-rock interfaces using an advanced autonomous underwater vehicle (AUV). The ARTEMIS vehicle - a heavily morphed long-range, low drag variant of the highly successful 4-degree-of-freedom hovering sub-ice ENDURANCE bot -- will be deployed from a sea-ice drill hole adjacent the McMurdo Ice Shelf (MIS) and will perform three classes of missions. The first includes original exploration and high definition mapping of both the ice-water interface and the benthic interface on a length scale (approximately 10 kilometers under-ice penetration radius) that will definitively tie it to the synchronous airborne IPR over-flights. These exploration and mapping missions will be conducted at up to 10 different locations along the MIS in order to capture varying ice thickness and seawater intrusion into the ice shelf. Following initial mapping characterization, the vehicle will conduct astrobiology-relevant proximity operations using bio-assay sensors (custom-designed UV fluorescence and machine-vision-processed optical imagery) followed by point-targeted studies at regions of interest. Sample returns from the ice-water interface will be triggered autonomously using real-time-processed instrument data and onboard decision-to-collect algorithms

  10. Mechanical Design of a Manipulation System for Unmanned Aerial Vehicles

    NARCIS (Netherlands)

    Keemink, A.Q.L.; Fumagalli, M.; Stramigioli, S.; Carloni, R.

    In this paper, we present the mechanical design and modeling of a manipulation system for unmanned aerial vehicles, which have to physically interact with environments and perform ultrasonic non-destructive testing experiments and other versatile tasks at unreachable locations for humans. The

  11. Designing for sustainability - mobility systems based on electrical vehicles

    DEFF Research Database (Denmark)

    Søndergård, Bent; Hansen, Ole Erik

    in interaction with public authorities and transportation companies), configuring the electric car sharing system as an element in an alternative mobility service system, and designing the technical and organizational system The concluding discussion falls into two parts: an assessment of the design process......-design, concerned with design as meta-level processes of regime transformation and the constructive configuration of design spaces. The case study examines an attempt to integrate electric vehicles in the Danish mobility systems. It maps the framework conditions and contemporary (competing) strategies....../projects, but focuses on a specific car-sharing project (‘Cleardrive’), with the objective to examine the early and constitutive stages of the design-process. It is conducted as an intensive study tracing elements of interpretation, interaction and intervention, which have been part of the project formation process...

  12. A dual model approach to ground water recovery trench design

    International Nuclear Information System (INIS)

    Clodfelter, C.L.; Crouch, M.S.

    1992-01-01

    The design of trenches for contaminated ground water recovery must consider several variables. This paper presents a dual-model approach for effectively recovering contaminated ground water migrating toward a trench by advection. The approach involves an analytical model to determine the vertical influence of the trench and a numerical flow model to determine the capture zone within the trench and the surrounding aquifer. The analytical model is utilized by varying trench dimensions and head values to design a trench which meets the remediation criteria. The numerical flow model is utilized to select the type of backfill and location of sumps within the trench. The dual-model approach can be used to design a recovery trench which effectively captures advective migration of contaminants in the vertical and horizontal planes

  13. A hybrid multi-objective imperialist competitive algorithm and Monte Carlo method for robust safety design of a rail vehicle

    Science.gov (United States)

    Nejlaoui, Mohamed; Houidi, Ajmi; Affi, Zouhaier; Romdhane, Lotfi

    2017-10-01

    This paper deals with the robust safety design optimization of a rail vehicle system moving in short radius curved tracks. A combined multi-objective imperialist competitive algorithm and Monte Carlo method is developed and used for the robust multi-objective optimization of the rail vehicle system. This robust optimization of rail vehicle safety considers simultaneously the derailment angle and its standard deviation where the design parameters uncertainties are considered. The obtained results showed that the robust design reduces significantly the sensitivity of the rail vehicle safety to the design parameters uncertainties compared to the determinist one and to the literature results.

  14. Environomic design of vehicle energy systems for optimal mobility service

    OpenAIRE

    Dimitrova, Zlatina Kirilova; Maréchal, François

    2014-01-01

    The main design criteria for the modern sustainable development of vehicle powertrains are the high energy efficiency of the conversion system, the competitive cost and the lowest possible environmental impacts. An innovative decision making methodology, using multi-objective optimization technics is currently under development. The idea is to obtain a population of possible design solutions corresponding to the most efficient energy system definition. These solutions meet technical, economic...

  15. Integrated guidance and control design of a flight vehicle with side-window detection

    Directory of Open Access Journals (Sweden)

    Tianyu ZHENG

    2018-04-01

    Full Text Available This paper considers the guidance and control problem of a flight vehicle with side-window detection. In order to guarantee the target remaining in the seeker's sight of view, the line of sight and the attitude of the flight vehicle should be under some constraints caused by the side-window, which leads to coupling between the guidance and the attitude dynamics model. To deal with the side-window constraints and the coupling, a novel Integrated Guidance and Control (IGC design approach is proposed. Firstly, the relative motion equations are derived in the body-Line of Sight (LOS coordinate system. And the guidance and control problem of the flight vehicle is formulated into an IGC problem with state constraints. Then, based on the singular perturbation method, the IGC problem is decomposed into the control design of the quasi-steady-state subsystem and the boundary-layer subsystem which can be designed separately. Finally, the receding horizon control is applied to the control design for the two subsystems. Simulation results show the effectiveness of the proposed approach. Keywords: Integrated guidance and control, Receding horizon control, Side-window detection, Singular perturbation, Terminal guidance

  16. Survivability Design of Ground Systems for Area Defense Operation in an Urban Scenario

    Science.gov (United States)

    2014-09-01

    vulnerability reduction techniques facilitates identification of important considerations to optimize platform design with a view of the current market ...source market research, equipment online technical specifications, previous studies (Treml 2013), and the intended variations of the identified... Armoured Infantry Fighting Vehicle.” Accessed August 6. http://www.armyrecognition.com/ united_states_american_army_light_armoured_vehicle

  17. Innovative Structural and Joining Concepts for Lightweight Design of Heavy Vehicle Systems

    Energy Technology Data Exchange (ETDEWEB)

    Jacky C. Prucz; Samir N. Shoukry; Gergis W. William

    2005-08-31

    heavy vehicles. The research work planed for the first year of this project (June 1, 2003 through May 30, 2004) focused on a theoretical investigation of weight benefits and structural performance tradeoffs associated with the design, fabrication, and joining of MMC components for heavy-duty vehicles. This early research work conducted at West Virginia University yielded the development of integrated material-structural models that predicted marginal benefits and significant barriers to MMC applications in heavy trailers. The results also indicated that potential applications of MMC materials in heavy vehicles are limited to components identified as critical for either loadings or weight savings. Therefore, the scope of the project was expanded in the following year (June 1, 2004 through May 30, 2005) focused on expanding the lightweight material-structural design concepts for heavy vehicles from the component to the system level. Thus, the following objectives were set: (1) Devise and evaluate lightweight structural configurations for heavy vehicles. (2) Study the feasibility of using Metal Matrix Composites (MMC) for critical structural components and joints in heavy vehicles. (3) Develop analysis tools, methods, and validated test data for comparative assessments of innovative design and joining concepts. (4) Develop analytical models and software for durability predictions of typical heavy vehicle components made of particulate MMC or fiber-reinforced composites. This report summarizes the results of the research work conducted during the past two years in this projects.

  18. Component design challenges for the ground-based SP-100 nuclear assembly test

    International Nuclear Information System (INIS)

    Markley, R.A.; Disney, R.K.; Brown, G.B.

    1989-01-01

    The SP-100 ground engineering system (GES) program involves a ground test of the nuclear subsystems to demonstrate their design. The GES nuclear assembly test (NAT) will be performed in a simulated space environment within a vessel maintained at ultrahigh vacuum. The NAT employs a radiation shielding system that is comprised of both prototypical and nonprototypical shield subsystems to attenuate the reactor radiation leakage and also nonprototypical heat transport subsystems to remove the heat generated by the reactor. The reactor is cooled by liquid lithium, which will operate at temperatures prototypical of the flight system. In designing the components for these systems, a number of design challenges were encountered in meeting the operational requirements of the simulated space environment (and where necessary, prototypical requirements) while also accommodating the restrictions of a ground-based test facility with its limited available space. This paper presents a discussion of the design challenges associated with the radiation shield subsystem components and key components of the heat transport systems

  19. Combustion Efficiency, Flameout Operability Limits and General Design Optimization for Integrated Ramjet-Scramjet Hypersonic Vehicles

    Science.gov (United States)

    Mbagwu, Chukwuka Chijindu

    High speed, air-breathing hypersonic vehicles encounter a varied range of engine and operating conditions traveling along cruise/ascent missions at high altitudes and dynamic pressures. Variations of ambient pressure, temperature, Mach number, and dynamic pressure can affect the combustion conditions in conflicting ways. Computations were performed to understand propulsion tradeoffs that occur when a hypersonic vehicle travels along an ascent trajectory. Proper Orthogonal Decomposition methods were applied for the reduction of flamelet chemistry data in an improved combustor model. Two operability limits are set by requirements that combustion efficiency exceed selected minima and flameout be avoided. A method for flameout prediction based on empirical Damkohler number measurements is presented. Operability limits are plotted that define allowable flight corridors on an altitude versus flight Mach number performance map; fixed-acceleration ascent trajectories were considered for this study. Several design rules are also presented for a hypersonic waverider with a dual-mode scramjet engine. Focus is placed on ''vehicle integration" design, differing from previous ''propulsion-oriented" design optimization. The well-designed waverider falls between that of an aircraft (high lift-to-drag ratio) and a rocket (high thrust-to-drag ratio). 84 variations of an X-43-like vehicle were run using the MASIV scramjet reduced order model to examine performance tradeoffs. Informed by the vehicle design study, variable-acceleration trajectory optimization was performed for three constant dynamic pressures ascents. Computed flameout operability limits were implemented as additional constraints to the optimization problem. The Michigan-AFRL Scramjet In-Vehicle (MASIV) waverider model includes finite-rate chemistry, applied scaling laws for 3-D turbulent mixing, ram-scram transition and an empirical value of the flameout Damkohler number. A reduced-order modeling approach is justified

  20. Protection against malevolent use of vehicles at Nuclear Power Plants. Vehicle barrier system selection guidance

    International Nuclear Information System (INIS)

    Nebuda, D.T.

    1994-08-01

    This manual provides a simplified procedure for selecting land vehicle barriers that will stop the design basis vehicle threat adopted by the U.S. Nuclear Regulatory Commission. Proper selection and construction of vehicle barriers should prevent intrusion of the design basis vehicle. In addition, vital safety related equipment should survive a design basis vehicle bomb attack when vehicle barriers are properly selected, sited, and constructed. This manual addresses passive vehicle barriers, active vehicle barriers, and site design features that can be used to reduce vehicle impact velocity

  1. Design and Analysis of an Airborne, solid Propelled, Nanosatellite Launch Vehicle using Multidisciplinary Design Optimization

    NARCIS (Netherlands)

    Van Kesteren, M.W.; Zandbergen, B.T.C.; Naeije, M.C.; Van Kleef, A.J.P.

    2015-01-01

    The work focusses on the use of multidisciplinary optimization to design a cost optimized airborne nanosatellite launch vehicle capable of bringing a 10 kg payload into low earth orbit (LEO). Piggyback or shared launch options currently available for nanosatellites are relatively low cost (~45,000

  2. Design, Modeling And Control Of Steering And Braking For An Urban Electric Vehicle

    OpenAIRE

    Maciua, Dragos

    1996-01-01

    This report describes research which involved the design modification, modeling and control of automatic steering and braking systems for an urban electric vehicle. The vehicle is equipped with four-wheel independent drive, four-wheel independent braking and four-wheel steering. Control algorithms were developed for steering and braking. Simulation results show the feasibility of the algorithms.

  3. Design of a Path-Tracking Steering Controller for Autonomous Vehicles

    Directory of Open Access Journals (Sweden)

    Chuanyang Sun

    2018-06-01

    Full Text Available This paper presents a linearization method for the vehicle and tire models under the model predictive control (MPC scheme, and proposes a linear model-based MPC path-tracking steering controller for autonomous vehicles. The steering controller is designed to minimize lateral path-tracking deviation at high speeds. The vehicle model is linearized by a sequence of supposed steering angles, which are obtained by assuming the vehicle can reach the desired path at the end of the MPC prediction horizon and stay in a steady-state condition. The lateral force of the front tire is directly used as the control input of the model, and the rear tire’s lateral force is linearized by an equivalent cornering stiffness. The course-direction deviation, which is the angle between the velocity vector and the path heading, is chosen as a control reference state. The linearization model is validated through the simulation, and the results show high prediction accuracy even in regions of large steering angle. This steering controller is tested through simulations on the CarSim-Simulink platform (R2013b, MathWorks, Natick, MA, USA, showing the improved performance of the present controller at high speeds.

  4. Unmanned Ground Vehicle Perception Using Thermal Infrared Cameras

    Science.gov (United States)

    Rankin, Arturo; Huertas, Andres; Matthies, Larry; Bajracharya, Max; Assad, Christopher; Brennan, Shane; Bellutta, Paolo; Sherwin, Gary W.

    2011-01-01

    The ability to perform off-road autonomous navigation at any time of day or night is a requirement for some unmanned ground vehicle (UGV) programs. Because there are times when it is desirable for military UGVs to operate without emitting strong, detectable electromagnetic signals, a passive only terrain perception mode of operation is also often a requirement. Thermal infrared (TIR) cameras can be used to provide day and night passive terrain perception. TIR cameras have a detector sensitive to either mid-wave infrared (MWIR) radiation (3-5?m) or long-wave infrared (LWIR) radiation (8-12?m). With the recent emergence of high-quality uncooled LWIR cameras, TIR cameras have become viable passive perception options for some UGV programs. The Jet Propulsion Laboratory (JPL) has used a stereo pair of TIR cameras under several UGV programs to perform stereo ranging, terrain mapping, tree-trunk detection, pedestrian detection, negative obstacle detection, and water detection based on object reflections. In addition, we have evaluated stereo range data at a variety of UGV speeds, evaluated dual-band TIR classification of soil, vegetation, and rock terrain types, analyzed 24 hour water and 12 hour mud TIR imagery, and analyzed TIR imagery for hazard detection through smoke. Since TIR cameras do not currently provide the resolution available from megapixel color cameras, a UGV's daytime safe speed is often reduced when using TIR instead of color cameras. In this paper, we summarize the UGV terrain perception work JPL has performed with TIR cameras over the last decade and describe a calibration target developed by General Dynamics Robotic Systems (GDRS) for TIR cameras and other sensors.

  5. Vision-based vehicle detection and tracking algorithm design

    Science.gov (United States)

    Hwang, Junyeon; Huh, Kunsoo; Lee, Donghwi

    2009-12-01

    The vision-based vehicle detection in front of an ego-vehicle is regarded as promising for driver assistance as well as for autonomous vehicle guidance. The feasibility of vehicle detection in a passenger car requires accurate and robust sensing performance. A multivehicle detection system based on stereo vision has been developed for better accuracy and robustness. This system utilizes morphological filter, feature detector, template matching, and epipolar constraint techniques in order to detect the corresponding pairs of vehicles. After the initial detection, the system executes the tracking algorithm for the vehicles. The proposed system can detect front vehicles such as the leading vehicle and side-lane vehicles. The position parameters of the vehicles located in front are obtained based on the detection information. The proposed vehicle detection system is implemented on a passenger car, and its performance is verified experimentally.

  6. High-Payoff Space Transportation Design Approach with a Technology Integration Strategy

    Science.gov (United States)

    McCleskey, C. M.; Rhodes, R. E.; Chen, T.; Robinson, J.

    2011-01-01

    A general architectural design sequence is described to create a highly efficient, operable, and supportable design that achieves an affordable, repeatable, and sustainable transportation function. The paper covers the following aspects of this approach in more detail: (1) vehicle architectural concept considerations (including important strategies for greater reusability); (2) vehicle element propulsion system packaging considerations; (3) vehicle element functional definition; (4) external ground servicing and access considerations; and, (5) simplified guidance, navigation, flight control and avionics communications considerations. Additionally, a technology integration strategy is forwarded that includes: (a) ground and flight test prior to production commitments; (b) parallel stage propellant storage, such as concentric-nested tanks; (c) high thrust, LOX-rich, LOX-cooled first stage earth-to-orbit main engine; (d) non-toxic, day-of-launch-loaded propellants for upper stages and in-space propulsion; (e) electric propulsion and aero stage control.

  7. Modeling Human Steering Behavior During Path Following in Teleoperation of Unmanned Ground Vehicles.

    Science.gov (United States)

    Mirinejad, Hossein; Jayakumar, Paramsothy; Ersal, Tulga

    2018-04-01

    This paper presents a behavioral model representing the human steering performance in teleoperated unmanned ground vehicles (UGVs). Human steering performance in teleoperation is considerably different from the performance in regular onboard driving situations due to significant communication delays in teleoperation systems and limited information human teleoperators receive from the vehicle sensory system. Mathematical models capturing the teleoperation performance are a key to making the development and evaluation of teleoperated UGV technologies fully simulation based and thus more rapid and cost-effective. However, driver models developed for the typical onboard driving case do not readily address this need. To fill the gap, this paper adopts a cognitive model that was originally developed for a typical highway driving scenario and develops a tuning strategy that adjusts the model parameters in the absence of human data to reflect the effect of various latencies and UGV speeds on driver performance in a teleoperated path-following task. Based on data collected from a human subject test study, it is shown that the tuned model can predict both the trend of changes in driver performance for different driving conditions and the best steering performance of human subjects in all driving conditions considered. The proposed model with the tuning strategy has a satisfactory performance in predicting human steering behavior in the task of teleoperated path following of UGVs. The established model is a suited candidate to be used in place of human drivers for simulation-based studies of UGV mobility in teleoperation systems.

  8. Design and research on the electronic parking brake system of the medium and heavy duty vehicles

    Directory of Open Access Journals (Sweden)

    Hongliang WANG

    2015-04-01

    Full Text Available Focusing on auto control of parking brake system of the medium and heavy duty vehicles, the key problems are studied including the system design and control strategies. The structure and working principle of the parking brake system of the medium and heavy duty vehicles are analyzed. The functions of EPB are proposed. The important information of the vehicle are analyzed which could influence the EPB system. The overall plan of the pneumatic EPB system is designed, which adopts the two-position three-way electromagnetic valve with double coil as actuator. The system could keep the vehicle parking brake status or parking release status for a long time without power supply. The function modules of the system are planned, and the control strategies of automatic parking brake and parking release are made. The experiment is performed on a medium-sized commercial vehicle which is experimentally modified. The overall plan of the pneumatic EPB system and the automatic parking function are proved through real vehicle tests.

  9. Simulation based design strategy for EMC compliance of components in hybrid vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Maass, Uwe; Ndip, Ivan; Hoene, Eckard; Guttowski, Stephan [Fraunhofer-Institut fuer Zuverlaessigkeit und Mikrointegration (IZM), Berlin (Germany); Tschoban, Christian; Lang, Klaus-Dieter [Technische Univ. Berlin (Germany)

    2012-11-01

    The design of components for the power train of hybrid vehicles needs to take into account EMC compliance standards related to hazardous electromagnetic fields. Using a simulation based design strategy allows for virtual EMC tests in parallel to the mechanical / electrical power design and thus reduces (re-)design time and costs. Taking as an example a high-voltage battery for a hybrid vehicle the emitted magnetic fields outside the battery are examined. The simulation stategy is based on 3D EM simulations using a full-wave and an eddy current solver. The simulation models are based on the actual CAD data from the mechanical construction resulting in and a high geometrical aspect ratio. The impact of simulation specific aspects such as boundary conditions and excitation is given. It was found that using field simulations it is possible to identify noise sources and coupling paths as well as aid the construction of the battery. (orig.)

  10. Future Vehicle Technologies : high performance transportation innovations

    Energy Technology Data Exchange (ETDEWEB)

    Pratt, T. [Future Vehicle Technologies Inc., Maple Ridge, BC (Canada)

    2010-07-01

    Battery management systems (BMS) were discussed in this presentation, with particular reference to the basic BMS design considerations; safety; undisclosed information about BMS; the essence of BMS; and Future Vehicle Technologies' BMS solution. Basic BMS design considerations that were presented included the balancing methodology; prismatic/cylindrical cells; cell protection; accuracy; PCB design, size and components; communications protocol; cost of manufacture; and expandability. In terms of safety, the presentation addressed lithium fires; high voltage; high voltage ground detection; crash/rollover shutdown; complete pack shutdown capability; and heat shields, casings, and impact protection. BMS bus bar engineering considerations were discussed along with good chip design. It was concluded that FVTs advantage is a unique skillset in automotive technology and the development of speed and cost effectiveness. tabs., figs.

  11. Cultivating Design Thinking in Students through Material Inquiry

    Science.gov (United States)

    Renard, Helene

    2014-01-01

    Design thinking is a way of understanding and engaging with the world that has received much attention in academic and business circles in recent years. This article examines a hands-on learning model as a vehicle for developing design thinking capacity in students. An overview of design thinking grounds the discussion of the material-based…

  12. Concept Design of High Power Solar Electric Propulsion Vehicles for Human Exploration

    Science.gov (United States)

    Hoffman, David J.; Kerslake, Thomas W.; Hojnicki, Jeffrey S.; Manzella, David H.; Falck, Robert D.; Cikanek, Harry A., III; Klem, Mark D.; Free, James M.

    2011-01-01

    Human exploration beyond low Earth orbit will require enabling capabilities that are efficient, affordable and reliable. Solar electric propulsion (SEP) has been proposed by NASA s Human Exploration Framework Team as one option to achieve human exploration missions beyond Earth orbit because of its favorable mass efficiency compared to traditional chemical propulsion systems. This paper describes the unique challenges associated with developing a large-scale high-power (300-kWe class) SEP vehicle and design concepts that have potential to meet those challenges. An assessment of factors at the subsystem level that must be considered in developing an SEP vehicle for future exploration missions is presented. Overall concepts, design tradeoffs and pathways to achieve development readiness are discussed.

  13. Design of driving control strategy of torque distribution for two - wheel independent drive electric vehicle

    Science.gov (United States)

    Zhang, Chuanwei; Zhang, Dongsheng; Wen, Jianping

    2018-02-01

    In order to coordinately control the torque distribution of existing two-wheel independent drive electric vehicle, and improve the energy efficiency and control stability of the whole vehicle, the control strategies based on fuzzy control were designed which adopt the direct yaw moment control as the main line. For realizing the torque coordination simulation of the two-wheel independent drive vehicle, the vehicle model, motor model and tire model were built, including the vehicle 7 - DOF dynamics model, motion equation, torque equation. Finally, in the Carsim - Simulink joint simulation platform, the feasibility of the drive control strategy was verified.

  14. An optimization design proposal of automated guided vehicles for mixed type transportation in hospital environments.

    Science.gov (United States)

    González, Domingo; Romero, Luis; Espinosa, María Del Mar; Domínguez, Manuel

    2017-01-01

    The aim of this paper is to present an optimization proposal in the automated guided vehicles design used in hospital logistics, as well as to analyze the impact of its implementation in a real environment. This proposal is based on the design of those elements that would allow the vehicles to deliver an extra cart by the towing method. So, the proposal intention is to improve the productivity and the performance of the current vehicles by using a transportation method of combined carts. The study has been developed following concurrent engineering premises from three different viewpoints. First, the sequence of operations has been described, and second, a proposal of design of the equipment has been undertaken. Finally, the impact of the proposal has been analyzed according to real data from the Hospital Universitario Rio Hortega in Valladolid (Spain). In this particular case, by the implementation of the analyzed proposal in the hospital a reduction of over 35% of the current time of use can be achieved. This result may allow adding new tasks to the vehicles, and according to this, both a new kind of vehicle and a specific module can be developed in order to get a better performance.

  15. An optimization design proposal of automated guided vehicles for mixed type transportation in hospital environments.

    Directory of Open Access Journals (Sweden)

    Domingo González

    Full Text Available The aim of this paper is to present an optimization proposal in the automated guided vehicles design used in hospital logistics, as well as to analyze the impact of its implementation in a real environment.This proposal is based on the design of those elements that would allow the vehicles to deliver an extra cart by the towing method. So, the proposal intention is to improve the productivity and the performance of the current vehicles by using a transportation method of combined carts.The study has been developed following concurrent engineering premises from three different viewpoints. First, the sequence of operations has been described, and second, a proposal of design of the equipment has been undertaken. Finally, the impact of the proposal has been analyzed according to real data from the Hospital Universitario Rio Hortega in Valladolid (Spain. In this particular case, by the implementation of the analyzed proposal in the hospital a reduction of over 35% of the current time of use can be achieved. This result may allow adding new tasks to the vehicles, and according to this, both a new kind of vehicle and a specific module can be developed in order to get a better performance.

  16. Semi-autonomous unmanned ground vehicle control system

    Science.gov (United States)

    Anderson, Jonathan; Lee, Dah-Jye; Schoenberger, Robert; Wei, Zhaoyi; Archibald, James

    2006-05-01

    Unmanned Ground Vehicles (UGVs) have advantages over people in a number of different applications, ranging from sentry duty, scouting hazardous areas, convoying goods and supplies over long distances, and exploring caves and tunnels. Despite recent advances in electronics, vision, artificial intelligence, and control technologies, fully autonomous UGVs are still far from being a reality. Currently, most UGVs are fielded using tele-operation with a human in the control loop. Using tele-operations, a user controls the UGV from the relative safety and comfort of a control station and sends commands to the UGV remotely. It is difficult for the user to issue higher level commands such as patrol this corridor or move to this position while avoiding obstacles. As computer vision algorithms are implemented in hardware, the UGV can easily become partially autonomous. As Field Programmable Gate Arrays (FPGAs) become larger and more powerful, vision algorithms can run at frame rate. With the rapid development of CMOS imagers for consumer electronics, frame rate can reach as high as 200 frames per second with a small size of the region of interest. This increase in the speed of vision algorithm processing allows the UGVs to become more autonomous, as they are able to recognize and avoid obstacles in their path, track targets, or move to a recognized area. The user is able to focus on giving broad supervisory commands and goals to the UGVs, allowing the user to control multiple UGVs at once while still maintaining the convenience of working from a central base station. In this paper, we will describe a novel control system for the control of semi-autonomous UGVs. This control system combines a user interface similar to a simple tele-operation station along with a control package, including the FPGA and multiple cameras. The control package interfaces with the UGV and provides the necessary control to guide the UGV.

  17. Design considerations for Mars transfer vehicles using nuclear thermal propulsion

    Science.gov (United States)

    Emrich, William J.

    1995-01-01

    The design of a Mars Transfer Vehicle (MTV) utilizing nuclear propulsion will require that careful consideration be given to the nuclear radiation environment in which it will operate. The extremely high neutron and gamma fluxes characteristic of nuclear thermal propulsion systems will cause significant heating of the fluid systems in close proximity to the reactor, especially in the lower propellant tanks. Crew radiation doses are also a concern particularly late in a mission when there is less shielding from the propellant tanks. In this study, various vehicle configuration and shielding strategies were examined and the resulting time dependent radiation fields evaluated. A common cluster of three particle bed reactor (PBR) engines were used in all configurations examined. In general, it appears that long, relatively narrow vehicles perform the best from a radiation standpoint, however, good shield optimization will be critical in maintaining a low radiation environment while minimizing the shield weight penalty.

  18. A nonlinear model predictive control formulation for obstacle avoidance in high-speed autonomous ground vehicles in unstructured environments

    Science.gov (United States)

    Liu, Jiechao; Jayakumar, Paramsothy; Stein, Jeffrey L.; Ersal, Tulga

    2018-06-01

    This paper presents a nonlinear model predictive control (MPC) formulation for obstacle avoidance in high-speed, large-size autono-mous ground vehicles (AGVs) with high centre of gravity (CoG) that operate in unstructured environments, such as military vehicles. The term 'unstructured' in this context denotes that there are no lanes or traffic rules to follow. Existing MPC formulations for passenger vehicles in structured environments do not readily apply to this context. Thus, a new nonlinear MPC formulation is developed to navigate an AGV from its initial position to a target position at high-speed safely. First, a new cost function formulation is used that aims to find the shortest path to the target position, since no reference trajectory exists in unstructured environments. Second, a region partitioning approach is used in conjunction with a multi-phase optimal control formulation to accommodate the complicated forms the obstacle-free region can assume due to the presence of multiple obstacles in the prediction horizon in an unstructured environment. Third, the no-wheel-lift-off condition, which is the major dynamical safety concern for high-speed, high-CoG AGVs, is ensured by limiting the steering angle within a range obtained offline using a 14 degrees-of-freedom vehicle dynamics model. Thus, a safe, high-speed navigation is enabled in an unstructured environment. Simulations of an AGV approaching multiple obstacles are provided to demonstrate the effectiveness of the algorithm.

  19. Conceptual design of a connected vehicle wrong-way driving detection and management system.

    Science.gov (United States)

    2016-04-01

    This report describes the tasks completed to develop a concept of operations, functional requirements, and : high-level system design for a Connected Vehicle (CV) Wrong-Way Driving (WWD) Detection and Management : System. This system was designed to ...

  20. Control of autonomous ground vehicles: a brief technical review

    Science.gov (United States)

    Babak, Shahian-Jahromi; Hussain, Syed A.; Karakas, Burak; Cetin, Sabri

    2017-07-01

    This paper presents a brief review of the developments achieved in autonomous vehicle systems technology. A concise history of autonomous driver assistance systems is presented, followed by a review of current state of the art sensor technology used in autonomous vehicles. Standard sensor fusion method that has been recently explored is discussed. Finally, advances in embedded software methodologies that define the logic between sensory information and actuation decisions are reviewed.

  1. Response of base isolated structure during strong ground motions beyond design earthquakes

    International Nuclear Information System (INIS)

    Yabana, Shuichi; Ishida, Katsuhiko; Shiojiri, Hiroo

    1991-01-01

    In Japan, some base isolated structures for fast breeder reactors (FBR) are tried to design. When a base isolated structure are designed, the relative displacement of isolators are generally limited so sa to be remain in linear state of those during design earthquakes. But to estimate safety margin of a base isolated structure, the response of that until the failure must be obtained experimentally to analytically during strong ground motions of beyond design earthquake. The aim of this paper is to investigate the response of a base isolated structure when the stiffness of the isolators hardens and to simulate the response during strong ground motions of beyond design earthquakes. The optimum characteristics of isolators, with which the margin of the structure are increased, are discussed. (author)

  2. Lightning and surge protection of large ground facilities

    Science.gov (United States)

    Stringfellow, Michael F.

    1988-04-01

    The vulnerability of large ground facilities to direct lightning strikes and to lightning-induced overvoltages on the power distribution, telephone and data communication lines are discussed. Advanced electrogeometric modeling is used for the calculation of direct strikes to overhead power lines, buildings, vehicles and objects within the facility. Possible modes of damage, injury and loss are discussed. Some appropriate protection methods for overhead power lines, structures, vehicles and aircraft are suggested. Methods to mitigate the effects of transients on overhead and underground power systems as well as within buildings and other structures are recommended. The specification and location of low-voltage surge suppressors for the protection of vulnerable hardware such as computers, telecommunication equipment and radar installations are considered. The advantages and disadvantages of commonly used grounding techniques, such as single point, multiple and isolated grounds are compared. An example is given of the expected distribution of lightning flashes to a large airport, its buildings, structures and facilities, as well as to vehicles on the ground.

  3. Design and Performance of Insect-Scale Flapping-Wing Vehicles

    Science.gov (United States)

    Whitney, John Peter

    Micro-air vehicles (MAVs)---small versions of full-scale aircraft---are the product of a continued path of miniaturization which extends across many fields of engineering. Increasingly, MAVs approach the scale of small birds, and most recently, their sizes have dipped into the realm of hummingbirds and flying insects. However, these non-traditional biologically-inspired designs are without well-established design methods, and manufacturing complex devices at these tiny scales is not feasible using conventional manufacturing methods. This thesis presents a comprehensive investigation of new MAV design and manufacturing methods, as applicable to insect-scale hovering flight. New design methods combine an energy-based accounting of propulsion and aerodynamics with a one degree-of-freedom dynamic flapping model. Important results include analytical expressions for maximum flight endurance and range, and predictions for maximum feasible wing size and body mass. To meet manufacturing constraints, the use of passive wing dynamics to simplify vehicle design and control was investigated; supporting tests included the first synchronized measurements of real-time forces and three-dimensional kinematics generated by insect-scale flapping wings. These experimental methods were then expanded to study optimal wing shapes and high-efficiency flapping kinematics. To support the development of high-fidelity test devices and fully-functional flight hardware, a new class of manufacturing methods was developed, combining elements of rigid-flex printed circuit board fabrication with "pop-up book" folding mechanisms. In addition to their current and future support of insect-scale MAV development, these new manufacturing techniques are likely to prove an essential element to future advances in micro-optomechanics, micro-surgery, and many other fields.

  4. Sensor Architecture and Task Classification for Agricultural Vehicles and Environments

    Directory of Open Access Journals (Sweden)

    Francisco Rovira-Más

    2010-12-01

    Full Text Available The long time wish of endowing agricultural vehicles with an increasing degree of autonomy is becoming a reality thanks to two crucial facts: the broad diffusion of global positioning satellite systems and the inexorable progress of computers and electronics. Agricultural vehicles are currently the only self-propelled ground machines commonly integrating commercial automatic navigation systems. Farm equipment manufacturers and satellite-based navigation system providers, in a joint effort, have pushed this technology to unprecedented heights; yet there are many unresolved issues and an unlimited potential still to uncover. The complexity inherent to intelligent vehicles is rooted in the selection and coordination of the optimum sensors, the computer reasoning techniques to process the acquired data, and the resulting control strategies for automatic actuators. The advantageous design of the network of onboard sensors is necessary for the future deployment of advanced agricultural vehicles. This article analyzes a variety of typical environments and situations encountered in agricultural fields, and proposes a sensor architecture especially adapted to cope with them. The strategy proposed groups sensors into four specific subsystems: global localization, feedback control and vehicle pose, non-visual monitoring, and local perception. The designed architecture responds to vital vehicle tasks classified within three layers devoted to safety, operative information, and automatic actuation. The success of this architecture, implemented and tested in various agricultural vehicles over the last decade, rests on its capacity to integrate redundancy and incorporate new technologies in a practical way.

  5. Design and analysis of biomimetic joints for morphing of micro air vehicles.

    Science.gov (United States)

    Grant, Daniel T; Abdulrahim, Mujahid; Lind, Rick

    2010-12-01

    Flight capability for micro air vehicles is rapidly maturing throughout the aviation community; however, mission capability has not yet matured at the same pace. Maintaining trim during a descent or in the presence of crosswinds remains challenging for fixed-wing aircraft but yet is routinely performed by birds. This paper presents an overview of designs that incorporate morphing to enhance their flight characteristics. In particular, a series of joints and structures is adopted from seagulls to alter either the dihedral or sweep of the wings and thus alter the flight characteristics. The resulting vehicles are able to trim with significantly increased angles of attack and sideslip compared to traditional fixed-wing vehicles.

  6. Design and analysis of biomimetic joints for morphing of micro air vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Grant, Daniel T; Abdulrahim, Mujahid; Lind, Rick, E-mail: ricklind@ufl.ed [Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL 32611 (United States)

    2010-12-15

    Flight capability for micro air vehicles is rapidly maturing throughout the aviation community; however, mission capability has not yet matured at the same pace. Maintaining trim during a descent or in the presence of crosswinds remains challenging for fixed-wing aircraft but yet is routinely performed by birds. This paper presents an overview of designs that incorporate morphing to enhance their flight characteristics. In particular, a series of joints and structures is adopted from seagulls to alter either the dihedral or sweep of the wings and thus alter the flight characteristics. The resulting vehicles are able to trim with significantly increased angles of attack and sideslip compared to traditional fixed-wing vehicles.

  7. Design and analysis of biomimetic joints for morphing of micro air vehicles

    International Nuclear Information System (INIS)

    Grant, Daniel T; Abdulrahim, Mujahid; Lind, Rick

    2010-01-01

    Flight capability for micro air vehicles is rapidly maturing throughout the aviation community; however, mission capability has not yet matured at the same pace. Maintaining trim during a descent or in the presence of crosswinds remains challenging for fixed-wing aircraft but yet is routinely performed by birds. This paper presents an overview of designs that incorporate morphing to enhance their flight characteristics. In particular, a series of joints and structures is adopted from seagulls to alter either the dihedral or sweep of the wings and thus alter the flight characteristics. The resulting vehicles are able to trim with significantly increased angles of attack and sideslip compared to traditional fixed-wing vehicles.

  8. Reusable launch vehicle development research

    Science.gov (United States)

    1995-01-01

    NASA has generated a program approach for a SSTO reusable launch vehicle technology (RLV) development which includes a follow-on to the Ballistic Missile Defense Organization's (BMDO) successful DC-X program, the DC-XA (Advanced). Also, a separate sub-scale flight demonstrator, designated the X-33, will be built and flight tested along with numerous ground based technologies programs. For this to be a successful effort, a balance between technical, schedule, and budgetary risks must be attained. The adoption of BMDO's 'fast track' management practices will be a key element in the eventual success of NASA's effort.

  9. Hot Ground Vibration Tests

    Data.gov (United States)

    National Aeronautics and Space Administration — Ground vibration tests or modal surveys are routinely conducted to support flutter analysis for subsonic and supersonic vehicles. However, vibration testing...

  10. 4g-Based Specialty Vehicles Real-Time Monitoring System Design and Implementation

    Directory of Open Access Journals (Sweden)

    Zhuang Yu-Feng

    2017-01-01

    Full Text Available In the future development of natural gas transportation industry, emerging ITS technology will be applied more and more, aiming at integrating precise positioning technology, geographic information system technology, database technology, multimedia technology and modern communication technology, sensor network technology and video capture technology, so as to achieve the transport steam (oil vehicles in real time monitoring and management. The main research content of this paper is to design and research the monitoring and locating system of luck (oil vehicle based on 4G on Android System. Real-time monitoring and alarming by sensor module, real-time video recording and uploading through camera module, real-time position recording and uploading through GPS module, vehicle navigation module and quick alarm module, which is composed of five parts. The system is the application of new intelligent transport technology in the field of special vehicle transport. It apply electronic information technology and internet of things technology to the vehicle system, so we can monitor natural gas and other special dangerous goods anytime, anywhere.

  11. Association of Prehospital Mode of Transport With Mortality in Penetrating Trauma: A Trauma System-Level Assessment of Private Vehicle Transportation vs Ground Emergency Medical Services.

    Science.gov (United States)

    Wandling, Michael W; Nathens, Avery B; Shapiro, Michael B; Haut, Elliott R

    2018-02-01

    Time to definitive care following injury is important to the outcomes of trauma patients. Prehospital trauma care is provided based on policies developed by individual trauma systems and is an important component of the care of injured patients. Given a paucity of systems-level trauma research, considerable variability exists in prehospital care policies across trauma systems, potentially affecting patient outcomes. To evaluate whether private vehicle prehospital transport confers a survival advantage vs ground emergency medical services (EMS) transport following penetrating injuries in urban trauma systems. Retrospective cohort study of data included in the National Trauma Data Bank from January 1, 2010, through December 31, 2012, comprising 298 level 1 and level 2 trauma centers that contribute data to the National Trauma Data Bank that are located within the 100 most populous metropolitan areas in the United States. Of 2 329 446 patients assessed for eligibility, 103 029 were included in this study. All patients were 16 years or older, had a gunshot wound or stab wound, and were transported by ground EMS or private vehicle. In-hospital mortality. Of the 2 329 446 records assessed for eligibility, 103 029 individuals at 298 urban level 1 and level 2 trauma centers were included in the analysis. The study population was predominantly male (87.6%), with a mean age of 32.3 years. Among those included, 47.9% were black, 26.3% were white, and 18.4% were Hispanic. Following risk adjustment, individuals with penetrating injuries transported by private vehicle were less likely to die than patients transported by ground EMS (odds ratio [OR], 0.38; 95% CI, 0.31-0.47). This association remained statistically significant on stratified analysis of the gunshot wound (OR,  0.45; 95% CI, 0.36-0.56) and stab wound (OR,  0.32; 95% CI, 0.20-0.52) subgroups. Private vehicle transport is associated with a significantly lower likelihood of death when compared with

  12. Robust Design Optimization of an Aerospace Vehicle Prolusion System

    Directory of Open Access Journals (Sweden)

    Muhammad Aamir Raza

    2011-01-01

    Full Text Available This paper proposes a robust design optimization methodology under design uncertainties of an aerospace vehicle propulsion system. The approach consists of 3D geometric design coupled with complex internal ballistics, hybrid optimization, worst-case deviation, and efficient statistical approach. The uncertainties are propagated through worst-case deviation using first-order orthogonal design matrices. The robustness assessment is measured using the framework of mean-variance and percentile difference approach. A parametric sensitivity analysis is carried out to analyze the effects of design variables variation on performance parameters. A hybrid simulated annealing and pattern search approach is used as an optimizer. The results show the objective function of optimizing the mean performance and minimizing the variation of performance parameters in terms of thrust ratio and total impulse could be achieved while adhering to the system constraints.

  13. Aerodynamic Problems of Launch Vehicles

    Directory of Open Access Journals (Sweden)

    Kyong Chol Chou

    1984-09-01

    Full Text Available The airflow along the surface of a launch vehicle together with vase flow of clustered nozzles cause problems which may affect the stability or efficiency of the entire vehicle. The problem may occur when the vehicle is on the launching pad or even during flight. As for such problems, local steady-state loads, overall steady-state loads, buffet, ground wind loads, base heating and rocket-nozzle hinge moments are examined here specifically.

  14. Using dual response surfaces to reduce variability in launch vehicle design: A case study

    International Nuclear Information System (INIS)

    Yeniay, Ozgur; Unal, Resit; Lepsch, Roger A.

    2006-01-01

    Space transportation system conceptual design is a multidisciplinary process containing considerable element of risk. Uncertainties from one engineering discipline may propagate to another through linking parameters and the final system output may have an accumulation of risk. This may lead to significant deviations from expected performance. An estimate of variability or design risk therefore becomes essential for a robust design. This study utilizes the dual response surface approach to quantify variability in critical performance characteristics during conceptual design phase of a launch vehicle. Using design of experiments methods and disciplinary design analysis codes, dual response surfaces are constructed for the mean and standard deviation to quantify variability in vehicle weight and sizing analysis. Next, an optimum solution is sought to minimize variability subject to a constraint on mean weight. In this application, the dual response surface approach lead to quantifying and minimizing variability without much increase in design effort

  15. Euler Calculations at Off-Design Conditions for an Inlet of Inward Turning RBCC-SSTO Vehicle

    Science.gov (United States)

    Takashima, N.; Kothari, A. P.

    1998-01-01

    The inviscid performance of an inward turning inlet design is calculated computationally for the first time. Hypersonic vehicle designs based on the inward turning inlets have been shown analytically to have increased effective specific impulse and lower heat load than comparably designed vehicles with two-dimensional inlets. The inward turning inlets are designed inversely from inviscid stream surfaces of known flow fields. The computational study is performed on a Mach 12 inlet design to validate the performance predicted by the design code (HAVDAC) and calculate its off-design Mach number performance. The three-dimensional Euler equations are solved for Mach 4, 8, and 12 using a software package called SAM, which consists of an unstructured mesh generator (SAMmesh), a three-dimensional unstructured mesh flow solver (SAMcfd), and a CAD-based software (SAMcad). The computed momentum averaged inlet throat pressure is within 6% of the design inlet throat pressure. The mass-flux at the inlet throat is also within 7 % of the value predicted by the design code thereby validating the accuracy of the design code. The off-design Mach number results show that flow spillage is minimal, and the variation in the mass capture ratio with Mach number is comparable to an ideal 2-D inlet. The results from the inviscid flow calculations of a Mach 12 inward turning inlet indicate that the inlet design has very good on and off-design performance which makes it a promising design candidate for future air-breathing hypersonic vehicles.

  16. Modeling an impact of road geometric design on vehicle energy consumption

    Science.gov (United States)

    Luin, Blaž; Petelin, Stojan; Al-Mansour, Fouad

    2017-11-01

    Some roads connect traffic origins and destinations directly, some use winding, indirect routes. Indirect connections result in longer distances driven and increased fuel consumption. A similar effect is observed on congested roads and mountain roads with many changes in altitude. Therefore a framework to assess road networks based on energy consumption is proposed. It has been shown that road geometry has significant impact on overall traffic energy consumption and emissions. The methodology presented in the paper analyzes impact of traffic volume, shares of vehicle classes, road network configuration on the energy used by the vehicles. It can be used to optimize energy consumption with efficient traffic management and to choose optimum new road in the design phase. This is especially important as the energy consumed by the vehicles shortly after construction supersedes the energy spent for the road construction.

  17. An Airbreathing Launch Vehicle Design with Turbine-Based Low-Speed Propulsion and Dual Mode Scramjet High-Speed Propulsion

    Science.gov (United States)

    Moses, P. L.; Bouchard, K. A.; Vause, R. F.; Pinckney, S. Z.; Ferlemann, S. M.; Leonard, C. P.; Taylor, L. W., III; Robinson, J. S.; Martin, J. G.; Petley, D. H.

    1999-01-01

    Airbreathing launch vehicles continue to be a subject of great interest in the space access community. In particular, horizontal takeoff and horizontal landing vehicles are attractive with their airplane-like benefits and flexibility for future space launch requirements. The most promising of these concepts involve airframe integrated propulsion systems, in which the external undersurface of the vehicle forms part of the propulsion flowpath. Combining of airframe and engine functions in this manner involves all of the design disciplines interacting at once. Design and optimization of these configurations is a most difficult activity, requiring a multi-discipline process to analytically resolve the numerous interactions among the design variables. This paper describes the design and optimization of one configuration in this vehicle class, a lifting body with turbine-based low-speed propulsion. The integration of propulsion and airframe, both from an aero-propulsive and mechanical perspective are addressed. This paper primarily focuses on the design details of the preferred configuration and the analyses performed to assess its performance. The integration of both low-speed and high-speed propulsion is covered. Structural and mechanical designs are described along with materials and technologies used. Propellant and systems packaging are shown and the mission-sized vehicle weights are disclosed.

  18. Life Science on the International Space Station Using the Next Generation of Cargo Vehicles

    Science.gov (United States)

    Robinson, J. A.; Phillion, J. P.; Hart, A. T.; Comella, J.; Edeen, M.; Ruttley, T. M.

    2011-01-01

    With the retirement of the Space Shuttle and the transition of the International Space Station (ISS) from assembly to full laboratory capabilities, the opportunity to perform life science research in space has increased dramatically, while the operational considerations associated with transportation of the experiments has changed dramatically. US researchers have allocations on the European Automated Transfer Vehicle (ATV) and Japanese H-II Transfer Vehicle (HTV). In addition, the International Space Station (ISS) Cargo Resupply Services (CRS) contract will provide consumables and payloads to and from the ISS via the unmanned SpaceX (offers launch and return capabilities) and Orbital (offers only launch capabilities) resupply vehicles. Early requirements drove the capabilities of the vehicle providers; however, many other engineering considerations affect the actual design and operations plans. To better enable the use of the International Space Station as a National Laboratory, ground and on-orbit facility development can augment the vehicle capabilities to better support needs for cell biology, animal research, and conditioned sample return. NASA Life scientists with experience launching research on the space shuttle can find the trades between the capabilities of the many different vehicles to be confusing. In this presentation we will summarize vehicle and associated ground processing capabilities as well as key concepts of operations for different types of life sciences research being launched in the cargo vehicles. We will provide the latest status of vehicle capabilities and support hardware and facilities development being made to enable the broadest implementation of life sciences research on the ISS.

  19. Noise control, sound, and the vehicle design process

    Science.gov (United States)

    Donavan, Paul

    2005-09-01

    For many products, noise and sound are viewed as necessary evils that need to be dealt with in order to bring the product successfully to market. They are generally not product ``exciters'' although some vehicle manufacturers do tune and advertise specific sounds to enhance the perception of their products. In this paper, influencing the design process for the ``evils,'' such as wind noise and road noise, are considered in more detail. There are three ingredients to successfully dealing with the evils in the design process. The first of these is knowing how excesses in noise effects the end customer in a tangible manner and how that effects customer satisfaction and ultimately sells. The second is having and delivering the knowledge of what is required of the design to achieve a satisfactory or even better level of noise performance. The third ingredient is having the commitment of the designers to incorporate the knowledge into their part, subsystem or system. In this paper, the elements of each of these ingredients are discussed in some detail and the attributes of a successful design process are enumerated.

  20. 3-D model-based vehicle tracking.

    Science.gov (United States)

    Lou, Jianguang; Tan, Tieniu; Hu, Weiming; Yang, Hao; Maybank, Steven J

    2005-10-01

    This paper aims at tracking vehicles from monocular intensity image sequences and presents an efficient and robust approach to three-dimensional (3-D) model-based vehicle tracking. Under the weak perspective assumption and the ground-plane constraint, the movements of model projection in the two-dimensional image plane can be decomposed into two motions: translation and rotation. They are the results of the corresponding movements of 3-D translation on the ground plane (GP) and rotation around the normal of the GP, which can be determined separately. A new metric based on point-to-line segment distance is proposed to evaluate the similarity between an image region and an instantiation of a 3-D vehicle model under a given pose. Based on this, we provide an efficient pose refinement method to refine the vehicle's pose parameters. An improved EKF is also proposed to track and to predict vehicle motion with a precise kinematics model. Experimental results with both indoor and outdoor data show that the algorithm obtains desirable performance even under severe occlusion and clutter.

  1. Reusable Launch Vehicle Technology Program

    Science.gov (United States)

    Freeman, Delma C., Jr.; Talay, Theodore A.; Austin, R. Eugene

    1997-01-01

    Industry/NASA reusable launch vehicle (RLV) technology program efforts are underway to design, test, and develop technologies and concepts for viable commercial launch systems that also satisfy national needs at acceptable recurring costs. Significant progress has been made in understanding the technical challenges of fully reusable launch systems and the accompanying management and operational approaches for achieving a low cost program. This paper reviews the current status of the RLV technology program including the DC-XA, X-33 and X-34 flight systems and associated technology programs. It addresses the specific technologies being tested that address the technical and operability challenges of reusable launch systems including reusable cryogenic propellant tanks, composite structures, thermal protection systems, improved propulsion and subsystem operability enhancements. The recently concluded DC-XA test program demonstrated some of these technologies in ground and flight test. Contracts were awarded recently for both the X-33 and X-34 flight demonstrator systems. The Orbital Sciences Corporation X-34 flight test vehicle will demonstrate an air-launched reusable vehicle capable of flight to speeds of Mach 8. The Lockheed-Martin X-33 flight test vehicle will expand the test envelope for critical technologies to flight speeds of Mach 15. A propulsion program to test the X-33 linear aerospike rocket engine using a NASA SR-71 high speed aircraft as a test bed is also discussed. The paper also describes the management and operational approaches that address the challenge of new cost effective, reusable launch vehicle systems.

  2. Control and design of multiple unmanned air vehicles for persistent surveillance

    Science.gov (United States)

    Nigam, Nikhil

    Control of multiple autonomous aircraft for search and exploration, is a topic of current research interest for applications such as weather monitoring, geographical surveys, search and rescue, tactical reconnaissance, and extra-terrestrial exploration, and the need to distribute sensing is driven by considerations of efficiency, reliability, cost and scalability. Hence, this problem has been extensively studied in the fields of controls and artificial intelligence. The task of persistent surveillance is different from a coverage/exploration problem, in that all areas need to be continuously searched, minimizing the time between visitations to each region in the target space. This distinction does not allow a straightforward application of most exploration techniques to the problem, although ideas from these methods can still be used. The use of aerial vehicles is motivated by their ability to cover larger spaces and their relative insensitivity to terrain. However, the dynamics of Unmanned Air Vehicles (UAVs) adds complexity to the control problem. Most of the work in the literature decouples the vehicle dynamics and control policies, but their interaction is particularly interesting for a surveillance mission. Stochastic environments and UAV failures further enrich the problem by requiring the control policies to be robust, and this aspect is particularly important for hardware implementations. For a persistent mission, it becomes imperative to consider the range/endurance constraints of the vehicles. The coupling of the control policy with the endurance constraints of the vehicles is an aspect that has not been sufficiently explored. Design of UAVs for desirable mission performance is also an issue of considerable significance. The use of a single monolithic optimization for such a problem has practical limitations, and decomposition-based design is a potential alternative. In this research high-level control policies are devised, that are scalable, reliable

  3. Intelligent Unmanned Vehicle Systems Suitable For Individual or Cooperative Missions

    Energy Technology Data Exchange (ETDEWEB)

    Matthew O. Anderson; Mark D. McKay; Derek C. Wadsworth

    2007-04-01

    The Department of Energy’s Idaho National Laboratory (INL) has been researching autonomous unmanned vehicle systems for the past several years. Areas of research have included unmanned ground and aerial vehicles used for hazardous and remote operations as well as teamed together for advanced payloads and mission execution. Areas of application include aerial particulate sampling, cooperative remote radiological sampling, and persistent surveillance including real-time mosaic and geo-referenced imagery in addition to high resolution still imagery. Both fixed-wing and rotary airframes are used possessing capabilities spanning remote control to fully autonomous operation. Patented INL-developed auto steering technology is taken advantage of to provide autonomous parallel path swathing with either manned or unmanned ground vehicles. Aerial look-ahead imagery is utilized to provide a common operating picture for the ground and air vehicle during cooperative missions. This paper will discuss the various robotic vehicles, including sensor integration, used to achieve these missions and anticipated cost and labor savings.

  4. Development and Validation of a Hypersonic Vehicle Design Tool Based On Waverider Design Technique

    Science.gov (United States)

    Dasque, Nastassja

    Methodologies for a tool capable of assisting design initiatives for practical waverider based hypersonic vehicles were developed and validated. The design space for vehicle surfaces was formed using an algorithm that coupled directional derivatives with the conservation laws to determine a flow field defined by a set of post-shock streamlines. The design space is used to construct an ideal waverider with a sharp leading edge. A blunting method was developed to modify the ideal shapes to a more practical geometry for real-world application. Empirical and analytical relations were then systematically applied to the resulting geometries to determine local pressure, skin-friction and heat flux. For the ideal portion of the geometry, flat plate relations for compressible flow were applied. For the blunted portion of the geometry modified Newtonian theory, Fay-Riddell theory and Modified Reynolds analogy were applied. The design and analysis methods were validated using analytical solutions as well as empirical and numerical data. The streamline solution for the flow field generation technique was compared with a Taylor-Maccoll solution and showed very good agreement. The relationship between the local Stanton number and skin friction coefficient with local Reynolds number along the ideal portion of the body showed good agreement with experimental data. In addition, an automated grid generation routine was formulated to construct a structured mesh around resulting geometries in preparation for Computational Fluid Dynamics analysis. The overall analysis of the waverider body using the tool was then compared to CFD studies. The CFD flow field showed very good agreement with the design space. However, the distribution of the surface properties was near CFD results but did not have great agreement.

  5. Role and design options of a logistics vehicle to support European and international space infrastructures in low earth orbit

    Science.gov (United States)

    Apel, U.; Ress, R.

    1991-10-01

    Design options for a low-cost logistic vehicle for transporting uploads in LEO are discussed. Preferable design features based on mission requirements and constraints are identified and it is shown that the ATV currently under study has a suitable design for such a vehicle.

  6. A study on optimization of hybrid drive train using Advanced Vehicle Simulator (ADVISOR)

    Energy Technology Data Exchange (ETDEWEB)

    Same, Adam; Stipe, Alex; Grossman, David; Park, Jae Wan [Department of Mechanical and Aeronautical Engineering, University of California, Davis, One Shields Ave, Davis, CA 95616 (United States)

    2010-10-01

    This study investigates the advantages and disadvantages of three hybrid drive train configurations: series, parallel, and ''through-the-ground'' parallel. Power flow simulations are conducted with the MATLAB/Simulink-based software ADVISOR. These simulations are then applied in an application for the UC Davis SAE Formula Hybrid vehicle. ADVISOR performs simulation calculations for vehicle position using a combined backward/forward method. These simulations are used to study how efficiency and agility are affected by the motor, fuel converter, and hybrid configuration. Three different vehicle models are developed to optimize the drive train of a vehicle for three stages of the SAE Formula Hybrid competition: autocross, endurance, and acceleration. Input cycles are created based on rough estimates of track geometry. The output from these ADVISOR simulations is a series of plots of velocity profile and energy storage State of Charge that provide a good estimate of how the Formula Hybrid vehicle will perform on the given course. The most noticeable discrepancy between the input cycle and the actual velocity profile of the vehicle occurs during deceleration. A weighted ranking system is developed to organize the simulation results and to determine the best drive train configuration for the Formula Hybrid vehicle. Results show that the through-the-ground parallel configuration with front-mounted motors achieves an optimal balance of efficiency, simplicity, and cost. ADVISOR is proven to be a useful tool for vehicle power train design for the SAE Formula Hybrid competition. This vehicle model based on ADVISOR simulation is applicable to various studies concerning performance and efficiency of hybrid drive trains. (author)

  7. Orbital transfer vehicle concept definition and system analysis study. Volume 2: OTV concept definition and evaluation. Book 1: Mission and system requirements

    Science.gov (United States)

    Kofal, Allen E.

    1987-01-01

    The mission and system requirements for the concept definition and system analysis of the Orbital Transfer Vehicle (OTV) are established. The requirements set forth constitute the single authority for the selection, evaluation, and optimization of the technical performance and design of the OTV. This requirements document forms the basis for the Ground and Space Based OTV concept definition analyses and establishes the physical, functional, performance and design relationships to STS, Space Station, Orbital Maneuvering Vehicle (OMV), and payloads.

  8. Hardware-Based Non-Optimum Factors for Launch Vehicle Structural Design

    Science.gov (United States)

    Wu, K. Chauncey; Cerro, Jeffrey A.

    2010-01-01

    During aerospace vehicle conceptual and preliminary design, empirical non-optimum factors are typically applied to predicted structural component weights to account for undefined manufacturing and design details. Non-optimum factors are developed here for 32 aluminum-lithium 2195 orthogrid panels comprising the liquid hydrogen tank barrel of the Space Shuttle External Tank using measured panel weights and manufacturing drawings. Minimum values for skin thickness, axial and circumferential blade stiffener thickness and spacing, and overall panel thickness are used to estimate individual panel weights. Panel non-optimum factors computed using a coarse weights model range from 1.21 to 1.77, and a refined weights model (including weld lands and skin and stiffener transition details) yields non-optimum factors of between 1.02 and 1.54. Acreage panels have an average 1.24 non-optimum factor using the coarse model, and 1.03 with the refined version. The observed consistency of these acreage non-optimum factors suggests that relatively simple models can be used to accurately predict large structural component weights for future launch vehicles.

  9. Low-level burial grounds dangerous waste permit application design documents

    International Nuclear Information System (INIS)

    1990-08-01

    This document serves a supplement to the already existing ''Low-Level Burial Ground Dangerous Waste Permit Application Design Documents.'' This paper contains information regarding drawings, construction specifications, and liner/leachate compatibility test plans

  10. Development of a new version of the Vehicle Protection Factor Code (VPF3)

    Science.gov (United States)

    Jamieson, Terrance J.

    1990-10-01

    The Vehicle Protection Factor (VPF) Code is an engineering tool for estimating radiation protection afforded by armoured vehicles and other structures exposed to neutron and gamma ray radiation from fission, thermonuclear, and fusion sources. A number of suggestions for modifications have been offered by users of early versions of the code. These include: implementing some of the more advanced features of the air transport rating code, ATR5, used to perform the air over ground radiation transport analyses; allowing the ability to study specific vehicle orientations within the free field; implementing an adjoint transport scheme to reduce the number of transport runs required; investigating the possibility of accelerating the transport scheme; and upgrading the computer automated design (CAD) package used by VPF. The generation of radiation free field fluences for infinite air geometries as required for aircraft analysis can be accomplished by using ATR with the air over ground correction factors disabled. Analysis of the effects of fallout bearing debris clouds on aircraft will require additional modelling of VPF.

  11. High-Energy Laser Weapon Integration with Ground Vehicles

    National Research Council Canada - National Science Library

    Hafften, Michael; Stratton, Robert

    2004-01-01

    .... The architecture of an electric, solid-state HEL weapon system would likely be based upon a hybrid electric vehicle that provides a common electrical power source for the propulsion and weapon subsystems...

  12. Hybrid-mode interleaved boost converter design for fuel cell electric vehicles

    International Nuclear Information System (INIS)

    Wen, Huiqing; Su, Bin

    2016-01-01

    Highlights: • A high power interleaved boost converter is designed for a 150 kW high-power fuel cell electric vehicle application. • A hybrid-mode scheme is used: Mode I and mode II are used with each boost converter operating in continuous conduction mode and discontinuous conduction mode. • Boundary conditions for different modes are determined with respect to switching duty ratio and load conditions. • With the proposed scheme, the power density is improved by 44.2% and 34.3% in terms of the converter volume and weight. - Abstract: For Fuel Cell Electric Vehicles, DC-DC power converters are essential to provide energy storage buffers between fuel cell stacks and the traction system because fuel cells show characteristics of low-voltage high-current output and wide output voltage variation. This paper presents a hybrid-mode two-phase interleaved boost converter for fuel cell electric vehicle application in order to improve the power density, minimize the input current ripple, and enhance the system efficiency. Two operation modes are adopted in the practical design: mode I and mode II are used with each boost converter operating in continuous conduction mode and discontinuous conduction mode. The operation, design and control of the interleaved boost converter for different operating modes are discussed with their equivalent circuits. The boundary conditions are distinguished with respect to switching duty ratio and load conditions. Transitions between continuous conduction mode and discontinuous conduction mode are illustrated for the whole duty ratio range. The expressions for inductor current ripple, input current ripple and output voltage ripple are derived and verified by simulation and experimental tests. The efficiency and power density improvements are illustrated to verify the effectiveness of the proposed design scheme.

  13. Design and Analysis of Multi-Phase BLDC Motors for Electric Vehicles

    OpenAIRE

    Boztas, Gullu; Yildirim, Merve; Aydogmus, Omur

    2018-01-01

    This paper presents a design and analysis of multiphase brushless direct current (BLDC) motor for electric vehicles (EV). In this work, hub-wheels having 110Nm, 900rpm rated values have been designed for the proposed EV. This EV can produce 440 Nm without using transmission, differential and other mechanical components which have very high losses due to the mechanical fraction. The motors to be used in the EV have been designed as 3-, 5- and 7-phase by Infolytica/Motor Solve Software to compa...

  14. Canadian high speed magnetically levitated vehicle system

    Energy Technology Data Exchange (ETDEWEB)

    Atherton, D L [Queen' s Univ., Kingston, Ont.; Belanger, P R; Burke, P E; Dawson, G E; Eastham, A R; Hayes, W F; Ooi, B T; Silvester, P; Slemon, G R

    1978-04-01

    A technically feasible high speed (400 to 480 km/h) guided ground transportation system, based on the use of the vehicle-borne superconducting magnets for electrodynamic suspension and guidance and for linear synchronous motor propulsion was defined as a future modal option for Canadian application. Analysis and design proposals were validated by large-scale tests on a rotating wheel facility and by modelling system components and their interactions. Thirty ton vehicles carrying 100 passengers operate over a flat-topped elevated guideway, which minimizes system down-time due to ice and snow accumulation and facilitates the design of turn-outs. A clearance of up to 15 cm is produced by the electrodynamic interaction between the vehicle-borne superconducting magnets and aluminum guideway strips. Propulsion and automatic system control is provided by the superconducting linear synchronous motor which operates at good efficiency (0.74) and high power factor (0.95). The vehicle is guided primarily by the interaction between the LSM field magnet array and flat null-flux loops overlying the stator windings in the guideway. The linear synchronous motor, electrodynamic suspension as well as levitation strip joints, parasitic LSM winding losses and limitations to the use of ferromagnetic guideway reinforcement were investigated experimentally on the test wheel facility. The use of a secondary suspension assures adequate dynamic stability, and good ride quality is achieved by optimized passive components with respect to lateral modes and by an actively controlled secondary suspension with respect to vertical motion.

  15. Noise, vibration and harshness (NVH) criteria as functions of vehicle design and consumer expectations

    Science.gov (United States)

    Raichel, Daniel R.

    2005-09-01

    The criteria for NVH design are to a large degree determined by the types of vehicles and the perceived desires of the purchasers of vehicles, as well as the cost of incorporating NVH measures. Vehicles may be classified into specific types, e.g., economy car, midsize passenger, near-luxury and luxury passenger cars, sports cars, vans, minivans, and sports utility vehicles of varying sizes. The owner of a luxury sedan would expect a quiet ride with minimal vibration and harshness-however, if that sedan is to display sporting characteristics, some aspects of NVH may actually have to be increased in order to enhance a feeling of driver exhilaration. A discussion of the requirements for specific types of vehicles is provided, with due regard for effects on the usability of installed sound/video systems, driver and passenger fatigue, feel of steering mechanisms and other mechanical components, consumer market research, etc. A number of examples of vehicles on the market are cited.

  16. Intelligent behaviors through vehicle-to-vehicle and vehicle-to-infrastructure communication

    Science.gov (United States)

    Garcia, Richard D.; Sturgeon, Purser; Brown, Mike

    2012-06-01

    The last decade has seen a significant increase in intelligent safety devices on private automobiles. These devices have both increased and augmented the situational awareness of the driver and in some cases provided automated vehicle responses. To date almost all intelligent safety devices have relied on data directly perceived by the vehicle. This constraint has a direct impact on the types of solutions available to the vehicle. In an effort to improve the safety options available to a vehicle, numerous research laboratories and government agencies are investing time and resources into connecting vehicles to each other and to infrastructure-based devices. This work details several efforts in both the commercial vehicle and the private auto industries to increase vehicle safety and driver situational awareness through vehicle-to-vehicle and vehicle-to-infrastructure communication. It will specifically discuss intelligent behaviors being designed to automatically disable non-compliant vehicles, warn tractor trailer vehicles of unsafe lane maneuvers such as lane changes, passing, and merging, and alert drivers to non-line-of-sight emergencies.

  17. Security credentials management system (SCMS) design and analysis for the connected vehicle system : draft.

    Science.gov (United States)

    2013-12-27

    This report presents an analysis by Booz Allen Hamilton (Booz Allen) of the technical design for the Security Credentials Management System (SCMS) intended to support communications security for the connected vehicle system. The SCMS technical design...

  18. Engineering and Design. Guidelines on Ground Improvement for Structures and Facilities

    National Research Council Canada - National Science Library

    Enson, Carl

    1999-01-01

    .... It addresses general evaluation of site and soil conditions, selection of improvement methods, preliminary cost estimating, design, construction, and performance evaluation for ground improvement...

  19. Electric-Drive Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Septon, Kendall K [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-09-11

    Electric-drive vehicles use electricity as their primary fuel or to improve the efficiency of conventional vehicle designs. These vehicles can be divided into three categories: Hybrid electric vehicles (HEVs), Plug-in hybrid electric vehicles (PHEVs), All-electric vehicles (EVs). Together, PHEVs and EVs can also be referred to as plug-in electric vehicles (PEVs).

  20. Electric-Drive Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    None

    2017-09-01

    Electric-drive vehicles use electricity as their primary fuel or to improve the efficiency of conventional vehicle designs. These vehicles can be divided into three categories: Hybrid electric vehicles (HEVs), Plug-in hybrid electric vehicles (PHEVs), All-electric vehicles (EVs). Together, PHEVs and EVs can also be referred to as plug-in electric vehicles (PEVs).

  1. Electric/Hybrid Vehicle Simulation

    Science.gov (United States)

    Slusser, R. A.; Chapman, C. P.; Brennand, J. P.

    1985-01-01

    ELVEC computer program provides vehicle designer with simulation tool for detailed studies of electric and hybrid vehicle performance and cost. ELVEC simulates performance of user-specified electric or hybrid vehicle under user specified driving schedule profile or operating schedule. ELVEC performs vehicle design and life cycle cost analysis.

  2. Preliminary power train design for a state-of-the-art electric vehicle

    Science.gov (United States)

    Ross, J. A.; Wooldridge, G. A.

    1978-01-01

    The state-of-the-art (SOTA) of electric vehicles built since 1965 was reviewed to establish a base for the preliminary design of a power train for a SOTA electric vehicle. The performance of existing electric vehicles were evaluated to establish preliminary specifications for a power train design using state-of-the-art technology and commercially available components. Power train components were evaluated and selected using a computer simulation of the SAE J227a Schedule D driving cycle. Predicted range was determined for a number of motor and controller combinations in conjunction with the mechanical elements of power trains and a battery pack of sixteen lead-acid batteries - 471.7 kg at 0.093 MJ/Kg (1040 lbs. at 11.7 Whr/lb). On the basis of maximum range and overall system efficiency using the Schedule D cycle, an induction motor and 3 phase inverter/controller was selected as the optimum combination when used with a two-speed transaxle and steel belted radial tires. The predicted Schedule D range is 90.4 km (56.2 mi). Four near term improvements to the SOTA were identified, evaluated, and predicted to increase range approximately 7%.

  3. Older drivers' attitudes about instrument cluster designs in vehicles.

    Science.gov (United States)

    Owsley, Cynthia; McGwin, Gerald; Seder, Thomas

    2011-11-01

    Little is known about older drivers' preferences and attitudes about instrumentation design in vehicles. Yet visual processing impairments are common among older adults and could impact their ability to interface with a vehicle's dashboard. The purpose of this study is to obtain information from them about this topic, using focus groups and content analysis methodology. A trained facilitator led 8 focus groups of older adults. Discussion was stimulated by an outline relevant to dashboard interfaces, audiotaped, and transcribed. Using multi-step content analysis, a trained coder placed comments into thematic categories and coded comments as positive, negative, or neutral in meaning. Comments were coded into these categories: gauges, knobs/switches, interior lighting, color, lettering, symbols, location, entertainment, GPS, cost, uniformity, and getting information. Comments on gauges and knobs/switches represented half the comments. Women made more comments about getting information; men made more comments about uniformity. Positive and negative comments were made in each category; individual differences in preferences were broad. The results of this study will be used to guide the design of a population-based survey of older drivers about instrument cluster format, which will also examine how their responses are related to their visual processing capabilities. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Passive Earth Entry Vehicle Landing Test

    Science.gov (United States)

    Kellas, Sotiris

    2017-01-01

    Two full-scale passive Earth Entry Vehicles (EEV) with realistic structure, surrogate sample container, and surrogate Thermal Protection System (TPS) were built at NASA Langley Research Center (LaRC) and tested at the Utah Test and Training Range (UTTR). The main test objective was to demonstrate structural integrity and investigate possible impact response deviations of the realistic vehicle as compared to rigid penetrometer responses. With the exception of the surrogate TPS and minor structural differences in the back shell construction, the two test vehicles were identical in geometry and both utilized the Integrated Composite Stiffener Structure (ICoSS) structural concept in the forward shell. The ICoSS concept is a lightweight and highly adaptable composite concept developed at NASA LaRC specifically for entry vehicle TPS carrier structures. The instrumented test vehicles were released from a helicopter approximately 400 m above ground. The drop height was selected such that at least 98% of the vehicles terminal velocity would be achieved. While drop tests of spherical penetrometers and a low fidelity aerodynamic EEV model were conducted at UTTR in 1998 and 2000, this was the first time a passive EEV with flight-like structure, surrogate TPS, and sample container was tested at UTTR for the purpose of complete structural system validation. Test results showed that at a landing vertical speed of approximately 30 m/s, the test vehicle maintained structural integrity and enough rigidity to penetrate the sandy clay surface thus attenuating the landing load, as measured at the vehicle CG, to less than 600 g. This measured deceleration was found to be in family with rigid penetrometer test data from the 1998 and 2000 test campaigns. Design implications of vehicle structure/soil interaction with respect to sample container and sample survivability are briefly discussed.

  5. Design and Testing of a Thermal Storage System for Electric Vehicle Cabin Heating

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Mingyu [MAHLE Behr Troy Inc.; WolfeIV, Edward [MAHLE Behr Troy Inc.; Craig, Timothy [MAHLE Behr Troy Inc.; LaClair, Tim J [ORNL; Gao, Zhiming [ORNL; Abdelaziz, Omar [ORNL

    2016-01-01

    Without the waste heat available from the engine of a conventional automobile, electric vehicles (EVs) must provide heat to the cabin for climate control using energy stored in the vehicle. In current EV designs, this energy is typically provided by the traction battery. In very cold climatic conditions, the power required to heat the EV cabin can be of a similar magnitude to that required for propulsion of the vehicle. As a result, the driving range of an EV can be reduced very significantly during winter months, which limits consumer acceptance of EVs and results in increased battery costs to achieve a minimum range while ensuring comfort to the EV driver. To minimize the range penalty associated with EV cabin heating, a novel climate control system that includes thermal energy storage has been designed for use in EVs and plug-in hybrid electric vehicles (PHEVs). The system uses the stored latent heat of an advanced phase change material (PCM) to provide cabin heating. The PCM is melted while the EV is connected to the electric grid for charging of the electric battery, and the stored energy is subsequently transferred to the cabin during driving. To minimize thermal losses when the EV is parked for extended periods, the PCM is encased in a high performance insulation system. The electrical PCM-Assisted Thermal Heating System (ePATHS) was designed to provide enough thermal energy to heat the EV s cabin for approximately 46 minutes, covering the entire daily commute of a typical driver in the U.S.

  6. Design Multi-Sides System Unmanned Surface Vehicle (USV) Rocket

    Science.gov (United States)

    Syam, Rafiudin; Sutresman, Onny; Mappaita, Abdullah; Amiruddin; Wiranata, Ardi

    2018-02-01

    This study aims to design and test USV multislide forms. This system is excellent for maneuvering on the x-y-z coordinates. The disadvantage of a single side USV is that it is very difficult to maneuver to achieve very dynamic targets. While for multi sides system easily maneuvered though x-y-z coordinates. In addition to security defense purposes, multi-side system is also good for maritime intelligence, surveillance. In this case, electric deducted fan with Multi-Side system so that the vehicle can still operate even in reverse condition. Multipleside USV experiments have done with good results. In a USV study designed to use two propulsions.

  7. A multi-criteria decision aid methodology to design electric vehicles public charging networks

    Directory of Open Access Journals (Sweden)

    João Raposo

    2015-05-01

    Full Text Available This article presents a new multi-criteria decision aid methodology, dynamic-PROMETHEE, here used to design electric vehicle charging networks. In applying this methodology to a Portuguese city, results suggest that it is effective in designing electric vehicle charging networks, generating time and policy based scenarios, considering offer and demand and the city’s urban structure. Dynamic-PROMETHE adds to the already known PROMETHEE’s characteristics other useful features, such as decision memory over time, versatility and adaptability. The case study, used here to present the dynamic-PROMETHEE, served as inspiration and base to create this new methodology. It can be used to model different problems and scenarios that may present similar requirement characteristics.

  8. A multi-criteria decision aid methodology to design electric vehicles public charging networks

    Science.gov (United States)

    Raposo, João; Rodrigues, Ana; Silva, Carlos; Dentinho, Tomaz

    2015-05-01

    This article presents a new multi-criteria decision aid methodology, dynamic-PROMETHEE, here used to design electric vehicle charging networks. In applying this methodology to a Portuguese city, results suggest that it is effective in designing electric vehicle charging networks, generating time and policy based scenarios, considering offer and demand and the city's urban structure. Dynamic-PROMETHE adds to the already known PROMETHEE's characteristics other useful features, such as decision memory over time, versatility and adaptability. The case study, used here to present the dynamic-PROMETHEE, served as inspiration and base to create this new methodology. It can be used to model different problems and scenarios that may present similar requirement characteristics.

  9. Conceptual Design and Cost Estimate of a Subsonic NASA Testbed Vehicle (NTV) for Aeronautics Research

    Science.gov (United States)

    Nickol, Craig L.; Frederic, Peter

    2013-01-01

    A conceptual design and cost estimate for a subsonic flight research vehicle designed to support NASA's Environmentally Responsible Aviation (ERA) project goals is presented. To investigate the technical and economic feasibility of modifying an existing aircraft, a highly modified Boeing 717 was developed for maturation of technologies supporting the three ERA project goals of reduced fuel burn, noise, and emissions. This modified 717 utilizes midfuselage mounted modern high bypass ratio engines in conjunction with engine exhaust shielding structures to provide a low noise testbed. The testbed also integrates a natural laminar flow wing section and active flow control for the vertical tail. An eight year program plan was created to incrementally modify and test the vehicle, enabling the suite of technology benefits to be isolated and quantified. Based on the conceptual design and programmatic plan for this testbed vehicle, a full cost estimate of $526M was developed, representing then-year dollars at a 50% confidence level.

  10. Influence of Traffic Vehicles Against Ground Fundamental Frequency Prediction using Ambient Vibration Technique

    Science.gov (United States)

    Kamarudin, A. F.; Noh, M. S. Md; Mokhatar, S. N.; Anuar, M. A. Mohd; Ibrahim, A.; Ibrahim, Z.; Daud, M. E.

    2018-04-01

    Ambient vibration (AV) technique is widely used nowadays for ground fundamental frequency prediction. This technique is easy, quick, non-destructive, less operator required and reliable result. The input motions of ambient vibration are originally collected from surrounding natural and artificial excitations. But, careful data acquisition controlled must be implemented to reduce the intrusion of short period noise that could imply the quality of frequency prediction of an investigated site. In this study, investigation on the primary noise intrusion under peak (morning, afternoon and evening) and off peak (early morning) traffic flows (only 8 meter from sensor to road shoulder) against the stability and quality of ground fundamental frequency prediction were carried out. None of specific standard is available for AV data acquisition and processing. Thus, some field and processing parameters recommended by previous studies and guideline were considered. Two units of 1 Hz tri-axial seismometer sensor were closely positioned in front of the main entrance Universiti Tun Hussein Onn Malaysia. 15 minutes of recording length were taken during peak and off peak periods of traffic flows. All passing vehicles were counted and grouped into four classes. Three components of ambient vibration time series recorded in the North-South: NS, East-West: EW and vertical: UD directions were automatically computed into Horizontal to Vertical Spectral Ratio (HVSR), by using open source software of GEOPSY for fundamental ground frequency, Fo determination. Single sharp peak pattern of HVSR curves have been obtained at peak frequencies between 1.33 to 1.38 Hz which classified under soft to dense soil classification. Even identical HVSR curves pattern with close frequencies prediction were obtained under both periods of AV measurement, however the total numbers of stable and quality windows selected for HVSR computation were significantly different but both have satisfied the requirement

  11. Design of an Active Bumper with a Series Elastic Actuator for Pedestrian Protection of Small Unmanned Vehicles

    Science.gov (United States)

    Terumasa, Narukawa; Tomoki, Tsuge; Hiroshi, Yamamoto; Takahiro, Suzuki

    2016-09-01

    When autonomous unmanned vehicles are operated on sidewalks, the vehicles must have high safety standards such as avoiding injury when they come in contact with pedestrians. In this study, we established a design for preventing serious injury when such collisions occur. We designed an active bumper with a series elastic actuator, with the goal of avoiding serious injury to a pedestrian in a collision with a small unmanned vehicle. The series elastic actuator comprised an elastic element in series with a table driven by a ball screw and servo motor. The active bumper was used to control the contact force between a vehicle and a pedestrian. The optimal force for minimizing the deflection of the object of the collision was derived, and the actuator controlled to apply this optimal force. Numerical simulations showed that the active bumper was successful in improving the collision safety of small unmanned vehicles.

  12. Sustainable design for automotive products: dismantling and recycling of end-of-life vehicles.

    Science.gov (United States)

    Tian, Jin; Chen, Ming

    2014-02-01

    The growth in automotive production has increased the number of end-of-life vehicles (ELVs) annually. The traditional approach ELV processing involves dismantling, shredding, and landfill disposal. The "3R" (i.e., reduce, reuse, and recycle) principle has been increasingly employed in processing ELVs, particularly ELV parts, to promote sustainable development. The first step in processing ELVs is dismantling. However, certain parts of the vehicle are difficult to disassemble and use in practice. The extended producer responsibility policy requires carmakers to contribute in the processing of scrap cars either for their own developmental needs or for social responsibility. The design for dismantling approach can be an effective solution to the existing difficulties in dismantling ELVs. This approach can also provide guidelines in the design of automotive products. This paper illustrates the difficulty of handling polymers in dashboards. The physical properties of polymers prevent easy separation and recycling by using mechanical methods. Thus, dealers have to rely on chemical methods such as pyrolysis. Therefore, car designers should use a single material to benefit dealers. The use of materials for effective end-of-life processing without sacrificing the original performance requirements of the vehicle should be explored. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Design of a 200kW electric powertrain for a high performance electric vehicle

    Directory of Open Access Journals (Sweden)

    Wilmar Martinez

    2016-09-01

    Full Text Available With the purpose of designing the electric powertrain of a high performance electric vehicle capable of running a quarter mile in 10 seconds, firstly it is necessary to calculate the required energy, torque, and power in order to size and select the suitable storage components and electric motors. Secondly, an assessment of the powertrain arrangement is needed to choose the best internal configuration of the vehicle and guarantee the highest efficiency possible. Finally, a design of the power conversion stages, specifically the DC-DC converter that interfaces the storage unit with the electric motors, is required as well. This paper shows the energy calculation procedure based on a longitudinal dynamic model of the vehicle and the selection method of the storage components and motors needed for this application, as well as the design of two 100kW interleaved boost converters with coupled inductors. In addition, a novel operation of the interleaved boost converter is proposed in order to increase the efficiency of the converter. As a result, the designed converter achieved a power density of 24,2kW/kg with an efficiency of 98 %, which was validated by experimental tests of a low power prototype.

  14. Ares-I-X Vehicle Preliminary Range Safety Malfunction Turn Analysis

    Science.gov (United States)

    Beaty, James R.; Starr, Brett R.; Gowan, John W., Jr.

    2008-01-01

    Ares-I-X is the designation given to the flight test version of the Ares-I rocket (also known as the Crew Launch Vehicle - CLV) being developed by NASA. As part of the preliminary flight plan approval process for the test vehicle, a range safety malfunction turn analysis was performed to support the launch area risk assessment and vehicle destruct criteria development processes. Several vehicle failure scenarios were identified which could cause the vehicle trajectory to deviate from its normal flight path, and the effects of these failures were evaluated with an Ares-I-X 6 degrees-of-freedom (6-DOF) digital simulation, using the Program to Optimize Simulated Trajectories Version 2 (POST2) simulation framework. The Ares-I-X simulation analysis provides output files containing vehicle state information, which are used by other risk assessment and vehicle debris trajectory simulation tools to determine the risk to personnel and facilities in the vicinity of the launch area at Kennedy Space Center (KSC), and to develop the vehicle destruct criteria used by the flight test range safety officer. The simulation analysis approach used for this study is described, including descriptions of the failure modes which were considered and the underlying assumptions and ground rules of the study, and preliminary results are presented, determined by analysis of the trajectory deviation of the failure cases, compared with the expected vehicle trajectory.

  15. Current plans to characterize the design basis ground motion at the Yucca Mountain, Nevada Site

    International Nuclear Information System (INIS)

    Simecka, W.B.; Grant, T.A.; Voegele, M.D.; Cline, K.M.

    1992-01-01

    A site at Yucca Mountain Nevada is currently being studied to assess its suitability as a potential host site for the nation's first commercial high level waste repository. The DOE has proposed a new methodology for determining design-basis ground motions that uses both deterministic and probabilistic methods. The role of the deterministic approach is primary. It provides the level of detail needed by design engineers in the characterization of ground motions. The probabilistic approach provides a logical structured procedure for integrating the range of possible earthquakes that contribute to the ground motion hazard at the site. In addition, probabilistic methods will be used as needed to provide input for the assessment of long-term repository performance. This paper discusses the local tectonic environment, potential seismic sources and their associated displacements and ground motions. It also discusses the approach to assessing the design basis earthquake for the surface and underground facilities, as well as selected examples of the use of this type of information in design activities

  16. The Combat System Design and Test Criteria for Iguana TM Armored Vehicles

    National Research Council Canada - National Science Library

    Alper, Irfan

    1999-01-01

    ... acoustic/IR signatures. The Iguana(trademark), a tracked vehicle concept based on a recently patented suspension and track design, could deploy to hot spots world-wide on peacekeeping and combat missions which require extra flexibility to adapt...

  17. Design of synchromesh mechanism to optimization manual transmission's electric vehicle

    Science.gov (United States)

    Zainuri, Fuad; Sumarsono, Danardono A.; Adhitya, Muhammad; Siregar, Rolan

    2017-03-01

    Significant research has been attempted on a vehicle that lead to the development of transmission that can reduce energy consumption and improve vehicle efficiency. Consumers also expect safety, convenience, and competitive prices. Automatic transmission (AT), continuously variable transmission (CVT), and dual clutch transmission (DCT) is the latest transmission developed for road vehicle. From literature reviews that have been done that this transmission is less effective on electric cars which use batteries as a power source compared to type manual transmission, this is due to the large power losses when making gear changes. Zeroshift system is the transmission can do shift gears with no time (zero time). It was developed for the automatic manual transmission, and this transmission has been used on racing vehicles to eliminate deceleration when gear shift. Zeroshift transmission still use the clutch to change gear in which electromechanical be used to replace the clutch pedal. Therefore, the transmission is too complex for the transmission of electric vehicles, but its mechanism is considered very suitable to increase the transmission efficiency. From this idea, a new innovation design transmission will be created to electric car. The combination synchromesh with zeroshift mechanism for the manual transmission is a transmission that is ideal for improving the transmission efficiency. Installation synchromesh on zeroshift mechanism is expected to replace the function of the clutch MT, and assisted with the motor torque setting when to change gear. Additionally to consider is the weight of the transmission, ease of manufacturing, ease of installation with an electric motor, as well as ease of use by drivers is a matter that must be done to obtain a new transmission system that is suitable for electric cars.

  18. Asynchronous vehicle pose correction using visual detection of ground features

    International Nuclear Information System (INIS)

    Harnarinesingh, Randy E S; Syan, Chanan S

    2014-01-01

    The inherent noise associated with odometry manifests itself as errors in localization for autonomous vehicles. Visual odometry has been previously used in order to supplement classical vehicle odometry. However, visual odometry is limited in its ability to reduce errors in localization for large travel distances that entail the cumulative summing of individual frame-to-frame image errors. In this paper, a novel machine vision approach for tiled surfaces is proposed to address this problem. Tile edges in a laboratory environment are used to define a travel trajectory for the Quansar Qbot (autonomous vehicle) built on the iRobot iRoomba platform with a forward facing camera. Tile intersections are used to enable asynchronous error recovery for vehicle position and orientation. The proposed approach employs real-time image classification and is feasible for error mitigation for large travel distances. The average position error for an 8m travel distance using classical odometry was measured to be 0.28m. However, implementation of the proposed approach resulted in an error of 0.028m. The proposed approach therefore significantly reduces pose estimation error and could be used to supplement existing modalities such as GPS and Laser-based range sensors

  19. Effective teaming of airborne and ground assets for surveillance and interdiction

    OpenAIRE

    Muratore, Mark J.

    2010-01-01

    Approved for public release; distribution is unlimited As Unmanned Aerial Vehicles (UAVs) become more prevalent on the battlefield, ground forces will have to increasingly rely on them for intelligence, surveillance, and reconnaissance (ISR), as well as target marking, and overwatch operations. The Situational Awareness for Surveillance and Interdiction Operations (SASIO) simulation analysis tool uses Design of Experiments (DOX) to study of aspects of UAV surveillance characteristics in co...

  20. Mechanical design engineering. NASA/university advanced design program: Lunar Bulk Material Transport Vehicle

    Science.gov (United States)

    Daugherty, Paul; Griner, Stewart; Hendrix, Alan; Makarov, Chris; Martiny, Stephen; Meyhoefer, Douglas Ralph; Platt, Cody Claxton; Sivak, John; Wheeler, Elizabeth Fitch

    1988-01-01

    The design of a Lunar Bulk Material Transport Vehicle (LBMTV) is discussed. Goals set in the project include a payload of 50 cubic feet of lunar soil with a lunar of approximately 800 moon-pounds, a speed of 15 mph, and the ability to handle a grade of 20 percent. Thermal control, an articulated steering mechanism, a dump mechanism, a self-righting mechanism, viable power sources, and a probable control panel are analyzed. The thermal control system involves the use of small strip heaters to heat the housing of electronic equipment in the absence of sufficient solar radiation and multi-layer insulation during periods of intense solar radiation. The entire system uses only 10 W and weighs about 60 pounds, or 10 moon-pounds. The steering mechanism is an articulated steering joint at the center of the vehicle. It utilizes two actuators and yields a turning radius of 10.3 feet. The dump mechanism rotates the bulk material container through an angle of 100 degree using one actuator. The self-righting mechanism consists of two four bar linkages, each of which is powered by the same size actuator as the other linkages. The LBMTV is powered by rechargeable batteries. A running time of at least two hours is attained under a worst case analysis. The weight of the batteries is 100 pounds. A control panel consisting of feedback and control instruments is described. The panel includes all critical information necessary to control the vehicle remotely. The LBMTV is capable of handling many types of cargo. It is able to interface with many types of removable bulk material containers. These containers are made to interface with the three-legged walker, SKITTER. The overall vehicle is about 15 feet in length and has a weight of about 1000 pounds, or 170 lunar pounds.

  1. DESIGN AN INTELLIGENT CONTROLLER FOR FULL VEHICLE NONLINEAR ACTIVE SUSPENSION SYSTEMS

    OpenAIRE

    Aldair, A. A.; Wang, W. J.

    2011-01-01

    The main objective of designed the controller for a vehicle suspension system is to reduce the discomfort sensed by passengers which arises from road roughness and to increase the ride handling associated with the pitching and rolling movements. This necessitates a very fast and accurate controller to meet as much control objectives, as possible. Therefore, this paper deals with an artificial intelligence Neuro-Fuzzy (NF) technique to design a robust controller to meet the control objectives....

  2. PSO-Based Algorithm Applied to Quadcopter Micro Air Vehicle Controller Design

    Directory of Open Access Journals (Sweden)

    Huu-Khoa Tran

    2016-09-01

    Full Text Available Due to the rapid development of science and technology in recent times, many effective controllers are designed and applied successfully to complicated systems. The significant task of controller design is to determine optimized control gains in a short period of time. With this purpose in mind, a combination of the particle swarm optimization (PSO-based algorithm and the evolutionary programming (EP algorithm is introduced in this article. The benefit of this integration algorithm is the creation of new best-parameters for control design schemes. The proposed controller designs are then demonstrated to have the best performance for nonlinear micro air vehicle models.

  3. Self-tuning control algorithm design for vehicle adaptive cruise control system through real-time estimation of vehicle parameters and road grade

    Science.gov (United States)

    Marzbanrad, Javad; Tahbaz-zadeh Moghaddam, Iman

    2016-09-01

    The main purpose of this paper is to design a self-tuning control algorithm for an adaptive cruise control (ACC) system that can adapt its behaviour to variations of vehicle dynamics and uncertain road grade. To this aim, short-time linear quadratic form (STLQF) estimation technique is developed so as to track simultaneously the trend of the time-varying parameters of vehicle longitudinal dynamics with a small delay. These parameters are vehicle mass, road grade and aerodynamic drag-area coefficient. Next, the values of estimated parameters are used to tune the throttle and brake control inputs and to regulate the throttle/brake switching logic that governs the throttle and brake switching. The performance of the designed STLQF-based self-tuning control (STLQF-STC) algorithm for ACC system is compared with the conventional method based on fixed control structure regarding the speed/distance tracking control modes. Simulation results show that the proposed control algorithm improves the performance of throttle and brake controllers, providing more comfort while travelling, enhancing driving safety and giving a satisfactory performance in the presence of different payloads and road grade variations.

  4. MAIUS-1- Vehicle, Subsystems Design and Mission Operations

    Science.gov (United States)

    Stamminger, A.; Ettl, J.; Grosse, J.; Horschgen-Eggers, M.; Jung, W.; Kallenbach, A.; Raith, G.; Saedtler, W.; Seidel, S. T.; Turner, J.; Wittkamp, M.

    2015-09-01

    In November 2015, the DLR Mobile Rocket Base will launch the MAIUS-1 rocket vehicle at Esrange, Northern Sweden. The MAIUS-A experiment is a pathfinder atom optics experiment. The scientific objective of the mission is the first creation of a BoseEinstein Condensate in space and performing atom interferometry on a sounding rocket [3]. MAIUS-1 comprises a two-stage unguided solid propellant VSB-30 rocket motor system. The vehicle consists of a Brazilian 53 1 motor as 1 st stage, a 530 motor as 2nd stage, a conical motor adapter, a despin module, a payload adapter, the MAIUS-A experiment consisting of five experiment modules, an attitude control system module, a newly developed conical service system, and a two-staged recovery system including a nosecone. In contrast to usual payloads on VSB-30 rockets, the payload has a diameter of 500 mm due to constraints of the scientific experiment. Because of this change in design, a blunted nosecone is necessary to guarantee the required static stability during the ascent phase of the flight. This paper will give an overview on the subsystems which have been built at DLR MORABA, especially the newly developed service system. Further, it will contain a description of the MAIUS-1 vehicle, the mission and the unique requirements on operations and attitude control, which is additionally required to achieve a required attitude with respect to the nadir vector. Additionally to a usual microgravity environment, the MAIUS-l payload requires attitude control to achieve a required attitude with respect to the nadir vector.

  5. Obstacle detection system for underground mining vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, P.; Polotski, V.; Piotte, M.; Melamed, F. [Ecole Polytechnique de Montreal, Montreal, PQ (Canada)

    1998-01-01

    A device for detecting obstacles by autonomous vehicles navigating in mine drifts is described. The device is based upon structured lighting and the extraction of relevant features from images of obstacles. The system uses image profile changes, ground and wall irregularities, disturbances of the vehicle`s trajectory, and impaired visibility to detect obstacles, rather than explicit three-dimensional scene reconstruction. 7 refs., 5 figs.

  6. Lunar Navigation Architecture Design Considerations

    Science.gov (United States)

    D'Souza, Christopher; Getchius, Joel; Holt, Greg; Moreau, Michael

    2009-01-01

    The NASA Constellation Program is aiming to establish a long-term presence on the lunar surface. The Constellation elements (Orion, Altair, Earth Departure Stage, and Ares launch vehicles) will require a lunar navigation architecture for navigation state updates during lunar-class missions. Orion in particular has baselined earth-based ground direct tracking as the primary source for much of its absolute navigation needs. However, due to the uncertainty in the lunar navigation architecture, the Orion program has had to make certain assumptions on the capabilities of such architectures in order to adequately scale the vehicle design trade space. The following paper outlines lunar navigation requirements, the Orion program assumptions, and the impacts of these assumptions to the lunar navigation architecture design. The selection of potential sites was based upon geometric baselines, logistical feasibility, redundancy, and abort support capability. Simulated navigation covariances mapped to entry interface flightpath- angle uncertainties were used to evaluate knowledge errors. A minimum ground station architecture was identified consisting of Goldstone, Madrid, Canberra, Santiago, Hartebeeshoek, Dongora, Hawaii, Guam, and Ascension Island (or the geometric equivalent).

  7. 14 CFR 415.117 - Ground safety.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Ground safety. 415.117 Section 415.117... TRANSPORTATION LICENSING LAUNCH LICENSE Safety Review and Approval for Launch of an Expendable Launch Vehicle From a Non-Federal Launch Site § 415.117 Ground safety. (a) General. An applicant's safety review...

  8. Connected vehicle applications : safety.

    Science.gov (United States)

    2016-01-01

    Connected vehicle safety applications are designed to increase situational awareness : and reduce or eliminate crashes through vehicle-to-infrastructure, vehicle-to-vehicle, : and vehicle-to-pedestrian data transmissions. Applications support advisor...

  9. Seismic design technology for breeder reactor structures. Volume 1. Special topics in earthquake ground motion

    International Nuclear Information System (INIS)

    Reddy, D.P.

    1983-04-01

    This report is divided into twelve chapters: seismic hazard analysis procedures, statistical and probabilistic considerations, vertical ground motion characteristics, vertical ground response spectrum shapes, effects of inclined rock strata on site response, correlation of ground response spectra with intensity, intensity attenuation relationships, peak ground acceleration in the very mean field, statistical analysis of response spectral amplitudes, contributions of body and surface waves, evaluation of ground motion characteristics, and design earthquake motions

  10. Amphibious vehicles come of age

    Energy Technology Data Exchange (ETDEWEB)

    Mowers, J.

    2007-11-15

    This article highlighted the most popular amphibious vehicles used for oil patch applications. The Argo, designed and built by Ontario Drive and Gear Ltd. of New Hamburg, Ontario, was first introduced into the market in 1967. By 1994, it was commonly used by the oil patch when it was made more robust with a liquid-cooled engine. The all-season and all-terrain vehicle can carry up to 1,150 pounds and pull up to 1,800 pounds. More than 40,000 units have been sold for use in seismic, slashing, carrying in supplies for camps, pipeline and other facility maintenance. Its counterpart, the Centaur, has a bigger load capacity and more powerful liquid-cooled petrol or diesel engine that drives like a truck, with steering wheel and gas and brake pedals. It has certified rollover protection, can carry up to 1,500 pounds or pull 2,000 pounds and can travel at speeds of up to 28 miles per hour. The mammoth ARKTOS Craft was designed, engineered and built in British Columbia and can handle any terrain including thick mud, quicksand, muskeg, ice, water and snow. It is primarily used in the oil patch as an evacuation craft for offshore drilling in shallow waters. It has room for 52 passengers. With a 13-ton load capacity, the vehicle can manoeuvre through ice-water mixtures and can climb onto solid ice. Five units are being used as evacuation crafts on stand-by offshore drilling in shallow waters near Alaska, and 8 are being used for the same purpose for drilling beneath the Caspian Sea. It was also used in the Bohai Delta in China for a seismic survey. A modified craft is being developed for use in Fort McMurray's oil sand tailings ponds. This article also highlighted the prototype AmphibAlaska which has been under development for the past 25 years by an Alaskan entrepreneur. The utilitarian vehicle is being designed with a payload that can accommodate a crew of 5 and the gear needed for emergency response and fieldwork. It is designed to travel safely through hard ground

  11. Design and Implementation of an Emergency Vehicle Signal Preemption System Based on Cooperative Vehicle-Infrastructure Technology

    OpenAIRE

    Yinsong Wang; Zhizhou Wu; Xiaoguang Yang; Luoyi Huang

    2013-01-01

    Emergency vehicle is an important part of traffic flow. The efficiency, reliability, and safety of emergency vehicle operations dropped due to increasing traffic congestion. With the advancement of the wireless communication technologies and the development of the vehicle-to-vehicle (v2v) and vehicle-to-infrastructure (v2i) systems, called Cooperative Vehicle-Infrastructure System (CVIS), there is an opportunity to provide appropriate traffic signal preemption for emergency vehicle based on r...

  12. Approach to developing a ground-motion design basis for facilities important to safety at Yucca Mountain

    International Nuclear Information System (INIS)

    King, J.L.

    1990-01-01

    This paper discusses a methodology for developing a ground-motion design basis for prospective facilities at Yucca Mountain that are important to safety. The methodology utilizes a guasi-deterministic construct called the 10,000-year cumulative-slip earthquake that is designed to provide a conservative, robust, and reproducible estimate of ground motion that has a one-in-ten chance of occurring during the preclosure period. This estimate is intended to define a ground-motion level for which the seismic design would ensure minimal disruption to operations engineering analyses to ensure safe performance are included

  13. Remotely detected vehicle mass from engine torque-induced frame twisting

    Science.gov (United States)

    McKay, Troy R.; Salvaggio, Carl; Faulring, Jason W.; Sweeney, Glenn D.

    2017-06-01

    Determining the mass of a vehicle from ground-based passive sensor data is important for many traffic safety requirements. This work presents a method for calculating the mass of a vehicle using ground-based video and acoustic measurements. By assuming that no energy is lost in the conversion, the mass of a vehicle can be calculated from the rotational energy generated by the vehicle's engine and the linear acceleration of the vehicle over a period of time. The amount of rotational energy being output by the vehicle's engine can be calculated from its torque and angular velocity. This model relates remotely observed, engine torque-induced frame twist to engine torque output using the vehicle's suspension parameters and engine geometry. The angular velocity of the engine is extracted from the acoustic emission of the engine, and the linear acceleration of the vehicle is calculated by remotely observing the position of the vehicle over time. This method combines these three dynamic signals; engine induced-frame twist, engine angular velocity, and the vehicle's linear acceleration, and three vehicle specific scalar parameters, into an expression that describes the mass of the vehicle. This method was tested on a semitrailer truck, and the results demonstrate a correlation of 97.7% between calculated and true vehicle mass.

  14. Optimal design and allocation of electrified vehicles and dedicated charging infrastructure for minimum life cycle greenhouse gas emissions and cost

    International Nuclear Information System (INIS)

    Traut, Elizabeth; Hendrickson, Chris; Klampfl, Erica; Liu, Yimin; Michalek, Jeremy J.

    2012-01-01

    Electrified vehicles can reduce greenhouse gas (GHG) emissions by shifting energy demand from gasoline to electricity. GHG reduction potential depends on vehicle design, adoption, driving and charging patterns, charging infrastructure, and electricity generation mix. We construct an optimization model to study these factors by determining optimal design of conventional vehicles, hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and battery electric vehicles (BEVs) with optimal allocation of vehicle designs and dedicated workplace charging infrastructure in the fleet for minimum life cycle cost or GHG emissions over a range of scenarios. We focus on vehicles with similar body size and acceleration to a Toyota Prius under government 5-cycle driving conditions. We find that under the current US grid mix, PHEVs offer only small GHG emissions reductions compared to HEVs, and workplace charging is insignificant. With grid decarbonization, PHEVs and BEVs offer substantial GHG emissions reductions, and workplace charging provides additional benefits. HEVs are optimal or near-optimal for minimum cost in most scenarios. High gas prices and low vehicle and battery costs are the major drivers for PHEVs and BEVs to enter and dominate the cost-optimal fleet. Carbon prices have little effect. Cost and range restrictions limit penetration of BEVs. - Highlights: ► We pose an MINLP model to minimize cost and GHG emissions of electrified vehicles. ► We design PHEVs and BEVs and assign vehicles and charging infrastructure in US fleet. ► Under US grid mix, PEVs provide minor GHG reductions and work chargers do little. ► HEVs are robust; PEVs and work charging potential improve with a decarbonized grid. ► We quantify factors needed for PEVs to enter and dominate the optimal fleet.

  15. Intelligent Vehicle Health Management

    Science.gov (United States)

    Paris, Deidre E.; Trevino, Luis; Watson, Michael D.

    2005-01-01

    As a part of the overall goal of developing Integrated Vehicle Health Management systems for aerospace vehicles, the NASA Faculty Fellowship Program (NFFP) at Marshall Space Flight Center has performed a pilot study on IVHM principals which integrates researched IVHM technologies in support of Integrated Intelligent Vehicle Management (IIVM). IVHM is the process of assessing, preserving, and restoring system functionality across flight and ground systems (NASA NGLT 2004). The framework presented in this paper integrates advanced computational techniques with sensor and communication technologies for spacecraft that can generate responses through detection, diagnosis, reasoning, and adapt to system faults in support of INM. These real-time responses allow the IIVM to modify the affected vehicle subsystem(s) prior to a catastrophic event. Furthermore, the objective of this pilot program is to develop and integrate technologies which can provide a continuous, intelligent, and adaptive health state of a vehicle and use this information to improve safety and reduce costs of operations. Recent investments in avionics, health management, and controls have been directed towards IIVM. As this concept has matured, it has become clear the INM requires the same sensors and processing capabilities as the real-time avionics functions to support diagnosis of subsystem problems. New sensors have been proposed, in addition, to augment the avionics sensors to support better system monitoring and diagnostics. As the designs have been considered, a synergy has been realized where the real-time avionics can utilize sensors proposed for diagnostics and prognostics to make better real-time decisions in response to detected failures. IIVM provides for a single system allowing modularity of functions and hardware across the vehicle. The framework that supports IIVM consists of 11 major on-board functions necessary to fully manage a space vehicle maintaining crew safety and mission

  16. Design and analysis of control strategies for vehicle platooning

    NARCIS (Netherlands)

    Saxena, A.; Li, Hong; Goswami, D.; Math, C.B.

    2016-01-01

    This paper presents a novel vehicle platoon control algorithm using Vehicle to Vehicle (V2V) and Vehicle to Infrastructure (V2I) wireless communications between platoon members. A platoon forms a chain of vehicles (e.g., trucks) for improved traffic and fuel efficiency. Platooning algorithms aim to

  17. Road-Following Formation Control of Autonomous Ground Vehicles

    Science.gov (United States)

    Ono, Masahiro; Droge, Greg; Grip, Havard; Toupet, Olivier; Scrapper, Chris; Rahmani, Amir

    2015-01-01

    This work presents a novel cooperative path planning for formation keeping robots traversing along a road with obstacles and possible narrow passages. A unique challenge in this problem is a requirement for spatial and temporal coordination between vehicles while ensuring collision and obstacle avoidance.

  18. Space vehicle field unit and ground station system

    Science.gov (United States)

    Judd, Stephen; Dallmann, Nicholas; Delapp, Jerry; Proicou, Michael; Seitz, Daniel; Michel, John; Enemark, Donald

    2017-09-19

    A field unit and ground station may use commercial off-the-shelf (COTS) components and share a common architecture, where differences in functionality are governed by software. The field units and ground stations may be easy to deploy, relatively inexpensive, and be relatively easy to operate. A novel file system may be used where datagrams of a file may be stored across multiple drives and/or devices. The datagrams may be received out of order and reassembled at the receiving device.

  19. Layout design and energetic analysis of a complex diesel parallel hybrid electric vehicle

    International Nuclear Information System (INIS)

    Finesso, Roberto; Spessa, Ezio; Venditti, Mattia

    2014-01-01

    Highlights: • Layout design, energetic and cost analysis of complex parallel hybrid vehicles. • Development of global and real-time optimizers for control strategy identification. • Rule-based control strategies to minimize fuel consumption and NO x . • Energy share across each working mode for battery and thermal engine. - Abstract: The present paper is focused on the design, optimization and analysis of a complex parallel hybrid electric vehicle, equipped with two electric machines on both the front and rear axles, and on the evaluation of its potential to reduce fuel consumption and NO x emissions over several driving missions. The vehicle has been compared with two conventional parallel hybrid vehicles, equipped with a single electric machine on the front axle or on the rear axle, as well as with a conventional vehicle. All the vehicles have been equipped with compression ignition engines. The optimal layout of each vehicle was identified on the basis of the minimization of the overall powertrain costs during the whole vehicle life. These costs include the initial investment due to the production of the components as well as the operating costs related to fuel consumption and to battery depletion. Identification of the optimal powertrain control strategy, in terms of the management of the power flows of the engine and electric machines, and of gear selection, is necessary in order to be able to fully exploit the potential of the hybrid architecture. To this end, two global optimizers, one of a deterministic nature and another of a stochastic type, and two real-time optimizers have been developed, applied and compared. A new mathematical technique has been developed and applied to the vehicle simulation model in order to decrease the computational time of the optimizers. First, the vehicle model equations were written in order to allow a coarse time grid to be used, then, the control variables (i.e., power flow and gear number) were discretized, and the

  20. Design and control of automated guided vehicle systems: A case study

    NARCIS (Netherlands)

    Li, Q.; Adriaansen, A.C.; Udding, J.T.; Pogromski, A.Y.

    2011-01-01

    In this paper, we study the design and control of automated guided vehicle (AGV) systems, with the focus on the quayside container transport in an automated container terminal. We first set up an event-driven model for an AGV system in the zone control framework. Then a number of layouts of the road

  1. AWARE: Platform for Autonomous self-deploying and operation of Wireless sensor-actuator networks cooperating with unmanned AeRial vehiclEs

    NARCIS (Netherlands)

    Ollero, Anibal; Bernard, Markus; La Civita, Marco; van Hoesel, L.F.W.; Marron, Pedro J.; Lepley, Jason; de Andres, Eduardo

    This paper presents the AWARE platform that seeks to enable the cooperation of autonomous aerial vehicles with ground wireless sensor-actuator networks comprising both static and mobile nodes carried by vehicles or people. Particularly, the paper presents the middleware, the wireless sensor network,

  2. Design Tool for Estimating Chemical Hydrogen Storage System Characteristics for Light-Duty Fuel Cell Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Brooks, Kriston P.; Sprik, Sam; Tamburello, David; Thornton, Matthew

    2018-05-03

    The U.S. Department of Energy (DOE) has developed a vehicle framework model to simulate fuel cell-based light-duty vehicle operation for various hydrogen storage systems. This transient model simulates the performance of the storage system, fuel cell, and vehicle for comparison to DOE’s Technical Targets using four drive cycles/profiles. Chemical hydrogen storage models have been developed for the Framework model for both exothermic and endothermic materials. Despite the utility of such models, they require that material researchers input system design specifications that cannot be easily estimated. To address this challenge, a design tool has been developed that allows researchers to directly enter kinetic and thermodynamic chemical hydrogen storage material properties into a simple sizing module that then estimates the systems parameters required to run the storage system model. Additionally, this design tool can be used as a standalone executable file to estimate the storage system mass and volume outside of the framework model and compare it to the DOE Technical Targets. These models will be explained and exercised with existing hydrogen storage materials.

  3. Design Tool for Estimating Chemical Hydrogen Storage System Characteristics for Light-Duty Fuel Cell Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Thornton, Matthew J [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Sprik, Samuel [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Brooks, Kriston P. [Pacific Northwest National Laboratory; Tamburello, David A. [Savannah River National Laboratory

    2018-04-07

    The U.S. Department of Energy (DOE) developed a vehicle Framework model to simulate fuel cell-based light-duty vehicle operation for various hydrogen storage systems. This transient model simulates the performance of the storage system, fuel cell, and vehicle for comparison to Technical Targets established by DOE for four drive cycles/profiles. Chemical hydrogen storage models have been developed for the Framework for both exothermic and endothermic materials. Despite the utility of such models, they require that material researchers input system design specifications that cannot be estimated easily. To address this challenge, a design tool has been developed that allows researchers to directly enter kinetic and thermodynamic chemical hydrogen storage material properties into a simple sizing module that then estimates system parameters required to run the storage system model. Additionally, the design tool can be used as a standalone executable file to estimate the storage system mass and volume outside of the Framework model. These models will be explained and exercised with the representative hydrogen storage materials exothermic ammonia borane (NH3BH3) and endothermic alane (AlH3).

  4. Review of Optimization Strategies for System-Level Design in Hybrid Electric Vehicles

    NARCIS (Netherlands)

    Silvas, E.; Hofman, T.; Murgovski, N.; Etman, L.F.P.; Steinbuch, M.

    2017-01-01

    The optimal design of a hybrid electric vehicle (HEV) can be formulated as a multiobjective optimization problem that spreads over multiple levels (technology, topology, size, and control). In the last decade, studies have shown that by integrating these optimization levels, fuel benefits are

  5. A simple approach to a vision-guided unmanned vehicle

    Science.gov (United States)

    Archibald, Christopher; Millar, Evan; Anderson, Jon D.; Archibald, James K.; Lee, Dah-Jye

    2005-10-01

    This paper describes the design and implementation of a vision-guided autonomous vehicle that represented BYU in the 2005 Intelligent Ground Vehicle Competition (IGVC), in which autonomous vehicles navigate a course marked with white lines while avoiding obstacles consisting of orange construction barrels, white buckets and potholes. Our project began in the context of a senior capstone course in which multi-disciplinary teams of five students were responsible for the design, construction, and programming of their own robots. Each team received a computer motherboard, a camera, and a small budget for the purchase of additional hardware, including a chassis and motors. The resource constraints resulted in a simple vision-based design that processes the sequence of images from the single camera to determine motor controls. Color segmentation separates white and orange from each image, and then the segmented image is examined using a 10x10 grid system, effectively creating a low resolution picture for each of the two colors. Depending on its position, each filled grid square influences the selection of an appropriate turn magnitude. Motor commands determined from the white and orange images are then combined to yield the final motion command for video frame. We describe the complete algorithm and the robot hardware and we present results that show the overall effectiveness of our control approach.

  6. Overview of the relations earthquake source parameters and the specification of strong ground motion for design purposes

    International Nuclear Information System (INIS)

    Bernreuter, D.L.

    1977-08-01

    One of the most important steps in the seismic design process is the specification of the appropriate ground motion to be input into the design analysis. From the point-of-view of engineering design analysis, the important parameters are peak ground acceleration, spectral shape and peak spectral levels. In a few cases, ground displacement is a useful parameter. The earthquake is usually specified by giving its magnitude and either the epicentral distance or the distance of the closest point on the causitive fault to the site. Typically, the appropriate ground motion parameters are obtained using the specified magnitude and distance in equations obtained from regression analysis among the appropriate variables. Two major difficulties with such an approach are: magnitude is not the best parameter to use to define the strength of an earthquake, and little near-field data is available to establish the appropriate form for the attenuation of the ground motion with distance, source size and strength. These difficulties are important for designing a critical facility; i.e., one for which a very low risk of exceeding the design ground motion is required. Examples of such structures are nuclear power plants, schools and hospitals. for such facilities, a better understanding of the relation between the ground motion and the important earthquake source parameters could be very useful for several reasons

  7. Human-robot interaction modeling and simulation of supervisory control and situational awareness during field experimentation with military manned and unmanned ground vehicles

    Science.gov (United States)

    Johnson, Tony; Metcalfe, Jason; Brewster, Benjamin; Manteuffel, Christopher; Jaswa, Matthew; Tierney, Terrance

    2010-04-01

    The proliferation of intelligent systems in today's military demands increased focus on the optimization of human-robot interactions. Traditional studies in this domain involve large-scale field tests that require humans to operate semiautomated systems under varying conditions within military-relevant scenarios. However, provided that adequate constraints are employed, modeling and simulation can be a cost-effective alternative and supplement. The current presentation discusses a simulation effort that was executed in parallel with a field test with Soldiers operating military vehicles in an environment that represented key elements of the true operational context. In this study, "constructive" human operators were designed to represent average Soldiers executing supervisory control over an intelligent ground system. The constructive Soldiers were simulated performing the same tasks as those performed by real Soldiers during a directly analogous field test. Exercising the models in a high-fidelity virtual environment provided predictive results that represented actual performance in certain aspects, such as situational awareness, but diverged in others. These findings largely reflected the quality of modeling assumptions used to design behaviors and the quality of information available on which to articulate principles of operation. Ultimately, predictive analyses partially supported expectations, with deficiencies explicable via Soldier surveys, experimenter observations, and previously-identified knowledge gaps.

  8. Complex multidisciplinary system composition for aerospace vehicle conceptual design

    Science.gov (United States)

    Gonzalez, Lex

    Although, there exists a vast amount of work concerning the analysis, design, integration of aerospace vehicle systems, there is no standard for how this data and knowledge should be combined in order to create a synthesis system. Each institution creating a synthesis system has in house vehicle and hardware components they are attempting to model and proprietary methods with which to model them. This leads to the fact that synthesis systems begin as one-off creations meant to answer a specific problem. As the scope of the synthesis system grows to encompass more and more problems, so does its size and complexity; in order for a single synthesis system to answer multiple questions the number of methods and method interface must increase. As a means to curtail the requirement that the increase of an aircraft synthesis systems capability leads to an increase in its size and complexity, this research effort focuses on the idea that each problem in aerospace requires its own analysis framework. By focusing on the creation of a methodology which centers on the matching of an analysis framework towards the problem being solved, the complexity of the analysis framework is decoupled from the complexity of the system that creates it. The derived methodology allows for the composition of complex multi-disciplinary systems (CMDS) through the automatic creation and implementation of system and disciplinary method interfaces. The CMDS Composition process follows a four step methodology meant to take a problem definition and progress towards the creation of an analysis framework meant to answer said problem. The unique implementation of the CMDS Composition process take user selected disciplinary analysis methods and automatically integrates them, together in order to create a syntactically composable analysis framework. As a means of assessing the validity of the CMDS Composition process a prototype system (AVDDBMS) has been developed. AVD DBMS has been used to model the

  9. Thermal Protection for Mars Sample Return Earth Entry Vehicle: A Grand Challenge for Design Methodology and Reliability Verification

    Science.gov (United States)

    Venkatapathy, Ethiraj; Gage, Peter; Wright, Michael J.

    2017-01-01

    Mars Sample Return is our Grand Challenge for the coming decade. TPS (Thermal Protection System) nominal performance is not the key challenge. The main difficulty for designers is the need to verify unprecedented reliability for the entry system: current guidelines for prevention of backward contamination require that the probability of spores larger than 1 micron diameter escaping into the Earth environment be lower than 1 million for the entire system, and the allocation to TPS would be more stringent than that. For reference, the reliability allocation for Orion TPS is closer to 11000, and the demonstrated reliability for previous human Earth return systems was closer to 1100. Improving reliability by more than 3 orders of magnitude is a grand challenge indeed. The TPS community must embrace the possibility of new architectures that are focused on reliability above thermal performance and mass efficiency. MSR (Mars Sample Return) EEV (Earth Entry Vehicle) will be hit with MMOD (Micrometeoroid and Orbital Debris) prior to reentry. A chute-less aero-shell design which allows for self-righting shape was baselined in prior MSR studies, with the assumption that a passive system will maximize EEV robustness. Hence the aero-shell along with the TPS has to take ground impact and not break apart. System verification will require testing to establish ablative performance and thermal failure but also testing of damage from MMOD, and structural performance at ground impact. Mission requirements will demand analysis, testing and verification that are focused on establishing reliability of the design. In this proposed talk, we will focus on the grand challenge of MSR EEV TPS and the need for innovative approaches to address challenges in modeling, testing, manufacturing and verification.

  10. 75 FR 34483 - In the Matter of Certain Automotive Vehicles and Designs Therefore; Notice of Investigation

    Science.gov (United States)

    2010-06-17

    ... automotive vehicles and designs therefore that infringe U.S. Patent No. D513,395, and whether an industry in... Industry Zone, Yongkang, Zhejiang Province, China 321307. Shanghai Xingyue Power Machinery Co. Ltd., No... INTERNATIONAL TRADE COMMISSION [Inv. No. 337-TA-722] In the Matter of Certain Automotive Vehicles...

  11. Characterization of design ground motion for the central and eastern United States: licensing implications

    International Nuclear Information System (INIS)

    Litehiser, J.; Carrato, P.

    2005-01-01

    For the first time in decades several US utilities are exploring the possibility of building new Nuclear Power Plant (NPP) generating capacity in the Central and Eastern United States (CEUS). Among the many topics that must be considered to license a nuclear plant (NPP) is appropriate design to mitigate the potential effects of vibratory ground motion from earthquakes. Agreement on seismic design ground motion was not always easy during licensing of the last generation of NPPs. Therefore, over the last few decades both industry and the United States Nuclear Regulatory Commission (USNRC) have worked to find ground motion criteria that recognize and overcome earlier licensing difficulties. Such criteria should be stable and easily implemented. Important and complementary programs under the direction of the Lawrence Livermore National Laboratory (LLNL) and the Electric Power Research Institute (EPRI) were part of this effort, and these studies resulted in probabilistic seismic hazard assessments (PSHAs) for a number of CEUS NPP sites. These results and the concepts underlying them are now incorporated into both USNRC regulation and regulatory guidance. Nevertheless, as the utilities and the NRC begin a renewed licensing dialog, issues of regulatory interpretation of earthquake ground motion design criteria have emerged. These issues are as fundamental as the shape and amplitude of ground motion design response spectra and as significant as the impact of these spectra on structural design. Successful and timely resolution of these issues will significantly impact the future of nuclear power in the US. The purpose of this paper is to briefly describe some of these issues and the approaches that have been proposed for their resolution. (authors)

  12. Innovative Structural and Joining Concepts for Lightweight Design of Heavy Vehicle Systems

    Energy Technology Data Exchange (ETDEWEB)

    Prucz, Jacky C; Shoukry, Samir N; William, Gergis W; Evans, Thomas H

    2006-09-30

    The extensive research and development effort was initiated by the U.S. Department of Energy (DOE) in 2002 at West Virginia University (WVU) in order to investigate practical ways of reducing the structural weight and increasing the durability of heavy vehicles through the judicious use of lightweight composite materials. While this project was initially focused on specific Metal Matrix Composite (MMC) material, namely Aluminum/Silicon Carbide (Al/SiC) commercially referenced as ''LANXIDE'', the current research effort was expanded from the component level to the system level and from MMC to other composite material systems. Broadening the scope of this research is warranted not only by the structural and economical deficiencies of the ''LANXIDE'' MMC material, but also by the strong coupling that exists between the material and the geometric characteristics of the structure. Such coupling requires a truly integrated design approach, focused on the heaviest sections of a van trailer. Obviously, the lightweight design methods developed in this study will not be implemented by the commercial industry unless the weight savings are indeed impressive and proven to be economically beneficial in the context of Life Cycle Costs (LCC). ''Bulk Haul'' carriers run their vehicles at maximum certified weight, so that each pound saved in structural weight would translate into additional pound of cargo, and fewer vehicles necessary to transport a given amount of freight. It is reasonable to ascertain that a typical operator would be ready to pay a premium of about $3-4 for every additional pound of cargo, or every pound saved in structural weight. The overall scope of this project is to devise innovative, lightweight design and joining concepts for heavy vehicle structures, including cost effective applications of components made of metal matrix composite (MMC) and other composite materials in selected sections of such

  13. Development of a prototype radiation surveillance equipment for a mid-sized unmanned aerial vehicle

    International Nuclear Information System (INIS)

    Smolander, P.; Kurvinen, K.; Poellaenen, R.; Kettunen, M.; Lyytinen, J.

    2003-01-01

    A prototype radiation surveillance equipment has been developed to be used in a mid-sized Ranger unmanned aerial vehicle (UAV) acquired by the Finnish Defence Forces. A multi-detector assembly was designed for the acquisition of dose rate and radionuclide concentration in the release plume. Detector assembly includes a GM-tube based dose rate meter, an inorganic scintillator detector and a semiconductor detector operating at room temperature. A sampling unit was designed for the collection of an aerosol sample of the plume for a detailed analysis in a ground based laboratory. The measurement data from all three detectors and several environmental parameters are collected by the onboard data acquisition computer. Real-time data dissemination is implemented with a TETRA based radio network. Test flights have been carried out with target drones and a small manned airplane. The Northrop KD2R-5 target drones have been used to simulate the high-G launch and vibration environment of the Ranger aerial vehicle. Target drones have been used because their air vehicle classification allows small test packages to be installed without tedious air safety protocols. Stability and survivability of the detectors, GPS navigation and radio frequency communication have been studied with the target drone test flights. Ground station software was developed to visualise the measurement data and to track the position of the air vehicle on a digital map. Test flights with the small manned airplane have been used to study the operational aspects of the detectors with greater detail. The housing for the instruments has been designed and constructed based on the experiences gained with the test flights and the laboratory measurements. The housing satisfies the aviation authority standards. Special attention has been paid to the high modularity, quick installation and ease of use. (orig.)

  14. Development of a prototype radiation surveillance equipment for a mid-sized unmanned aerial vehicle

    Energy Technology Data Exchange (ETDEWEB)

    Smolander, P.; Kurvinen, K.; Poellaenen, R. [Radiation and Nuclear Safety Authority, Helsinki (Finland); Kettunen, M. [Forces Research Institute of Technology, Lakiala (Finland); Lyytinen, J. [Helsinki University of Technology, Laboratory of Lightweight Structures, Otaniemi (Finland)

    2003-06-01

    A prototype radiation surveillance equipment has been developed to be used in a mid-sized Ranger unmanned aerial vehicle (UAV) acquired by the Finnish Defence Forces. A multi-detector assembly was designed for the acquisition of dose rate and radionuclide concentration in the release plume. Detector assembly includes a GM-tube based dose rate meter, an inorganic scintillator detector and a semiconductor detector operating at room temperature. A sampling unit was designed for the collection of an aerosol sample of the plume for a detailed analysis in a ground based laboratory. The measurement data from all three detectors and several environmental parameters are collected by the onboard data acquisition computer. Real-time data dissemination is implemented with a TETRA based radio network. Test flights have been carried out with target drones and a small manned airplane. The Northrop KD2R-5 target drones have been used to simulate the high-G launch and vibration environment of the Ranger aerial vehicle. Target drones have been used because their air vehicle classification allows small test packages to be installed without tedious air safety protocols. Stability and survivability of the detectors, GPS navigation and radio frequency communication have been studied with the target drone test flights. Ground station software was developed to visualise the measurement data and to track the position of the air vehicle on a digital map. Test flights with the small manned airplane have been used to study the operational aspects of the detectors with greater detail. The housing for the instruments has been designed and constructed based on the experiences gained with the test flights and the laboratory measurements. The housing satisfies the aviation authority standards. Special attention has been paid to the high modularity, quick installation and ease of use. (orig.)

  15. DESIGN OF A REAL TIME REMOTE VEHICLE LOCATION SYSTEM

    Directory of Open Access Journals (Sweden)

    Ahmet Emir DİRİK

    2004-02-01

    Full Text Available In this study, a low-cost, real-time vehicle location system is developed. The vehicle location system includes three main modules, i.e. positioning, wireless communication and digital map modules. The positioning module used in location systems computes position of the mobile vehicle. These vehicle location data are transmitted through a wireless communication system to host. The host has a capability to monitor a fleet of vehicles by analyzing data collected from wireless communication system. In this project, mobile vehicle location positions can be computed in a range of 10m position error and by using these position data, its possible to monitor the fleet of mobile vehicles on a digital map in the observation and control center. In this study, vehicle analog mobile radios are used to establish wireless communication system. Thus, there is no need to use satellite or GSM systems for communication and a low-cost and high-performance vehicle location system is realized.

  16. Design and Analysis of a Single—Camera Omnistereo Sensor for Quadrotor Micro Aerial Vehicles (MAVs

    Directory of Open Access Journals (Sweden)

    Carlos Jaramillo

    2016-02-01

    Full Text Available We describe the design and 3D sensing performance of an omnidirectional stereo (omnistereo vision system applied to Micro Aerial Vehicles (MAVs. The proposed omnistereo sensor employs a monocular camera that is co-axially aligned with a pair of hyperboloidal mirrors (a vertically-folded catadioptric configuration. We show that this arrangement provides a compact solution for omnidirectional 3D perception while mounted on top of propeller-based MAVs (not capable of large payloads. The theoretical single viewpoint (SVP constraint helps us derive analytical solutions for the sensor’s projective geometry and generate SVP-compliant panoramic images to compute 3D information from stereo correspondences (in a truly synchronous fashion. We perform an extensive analysis on various system characteristics such as its size, catadioptric spatial resolution, field-of-view. In addition, we pose a probabilistic model for the uncertainty estimation of 3D information from triangulation of back-projected rays. We validate the projection error of the design using both synthetic and real-life images against ground-truth data. Qualitatively, we show 3D point clouds (dense and sparse resulting out of a single image captured from a real-life experiment. We expect the reproducibility of our sensor as its model parameters can be optimized to satisfy other catadioptric-based omnistereo vision under different circumstances.

  17. Connected vehicle application : safety.

    Science.gov (United States)

    2015-01-01

    Connected vehicle safety applications are designed to increase situational awareness : and reduce or eliminate crashes through vehicle-to-infrastructure (V2I), vehicle-to-vehicle (V2V), and vehicle-to-pedestrian (V2P) data transmissions. Applications...

  18. Review of optimization strategies for system-level design in hybrid electric vehicles

    NARCIS (Netherlands)

    Silvas, E.; Hofman, T.; Murgovski, N.; Etman, P.; Steinbuch, M.

    2017-01-01

    The optimal design of a hybrid electric vehicle can be formulated as a multi-objective optimization problem that spreads over multiple levels (technology, topology, size and control). In the last decade, studies have shown that, by integrating these optimization levels fuel benefits are obtained,

  19. Task and Motion Planning for Selective Weed Conrol using a Team of Autonomous Vehicles

    DEFF Research Database (Denmark)

    Hameed, Ibrahim; la Cour-Harbo, Anders; Hansen, Karl Damkjær

    2014-01-01

    with the right amount. In this article, a task and motion planning for a team of autonomous vehicles to reduce chemicals in farming is presented. Field data are collected by small unmanned helicopters equipped with a range of sensors, including multispectral and thermal cameras. Data collected are transmitted...... to a ground station to be analyzed and triggers aerial and ground-based vehicles to start close inspection and/or plant/weed treatment in specified areas. A complete trajectory is generated to enable ground-based vehicle to visit infested areas and start chemical/mechanical weed treatment....

  20. Cognitive Connected Vehicle Information System Design Requirement for Safety: Role of Bayesian Artificial Intelligence

    OpenAIRE

    Ata Khan

    2013-01-01

    Intelligent transportation systems (ITS) are gaining acceptance around the world and the connected vehicle component of ITS is recognized as a high priority research and development area in many technologically advanced countries. Connected vehicles are expected to have the capability of safe, efficient and eco-driving operations whether these are under human control or in the adaptive machine control mode of operations. The race is on to design the capability to operate in connected traffic ...

  1. Design for human factors (DfHF): a grounded theory for integrating human factors into production design processes.

    Science.gov (United States)

    Village, Judy; Searcy, Cory; Salustri, Filipo; Patrick Neumann, W

    2015-01-01

    The 'design for human factors' grounded theory explains 'how' human factors (HF) went from a reactive, after-injury programme in safety, to being proactively integrated into each step of the production design process. In this longitudinal case study collaboration with engineers and HF Specialists in a large electronics manufacturer, qualitative data (e.g. meetings, interviews, observations and reflections) were analysed using a grounded theory methodology. The central tenet in the theory is that when HF Specialists acclimated to the engineering process, language and tools, and strategically aligned HF to the design and business goals of the organisation, HF became a means to improve business performance. This led to engineers 'pulling' HF Specialists onto their team. HF targets were adopted into engineering tools to communicate HF concerns quantitatively, drive continuous improvement, visibly demonstrate change and lead to benchmarking. Senior management held engineers accountable for HF as a key performance indicator, thus integrating HF into the production design process. Practitioner Summary: Research and practice lack explanations about how HF can be integrated early in design of production systems. This three-year case study and the theory derived demonstrate how ergonomists changed their focus to align with design and business goals to integrate HF into the design process.

  2. A Primer on Autonomous Aerial Vehicle Design.

    Science.gov (United States)

    Coppejans, Hugo H G; Myburgh, Herman C

    2015-12-02

    There is a large amount of research currently being done on autonomous micro-aerial vehicles (MAV), such as quadrotor helicopters or quadcopters. The ability to create a working autonomous MAV depends mainly on integrating a simultaneous localization and mapping (SLAM) solution with the rest of the system. This paper provides an introduction for creating an autonomous MAV for enclosed environments, aimed at students and professionals alike. The standard autonomous system and MAV automation are discussed, while we focus on the core concepts of SLAM systems and trajectory planning algorithms. The advantages and disadvantages of using remote processing are evaluated, and recommendations are made regarding the viability of on-board processing. Recommendations are made regarding best practices to serve as a guideline for aspirant MAV designers.

  3. Preliminary design for spent fuel canister handling systems in a canister transfer and installation vehicle

    International Nuclear Information System (INIS)

    Wendelin, T.; Suikki, M.

    2008-12-01

    The report presents a spent fuel canister transfer and installation vehicle. The vehicle is used for carrying the fuel canister into a disposal tunnel and installing it into a deposition hole. The report outlines basic requirements and a design for canister handling equipment used in a canister transfer and installation vehicle, a description regarding the operation and maintenance of the equipment, as well as a cost estimate. Specific vehicles will be manufactured for all canister types in order to minimize the height of the disposal tunnels. This report is only focused on a transfer and installation vehicle for OL1-2 fuel canisters. Detailed designing and selection of final components have not yet been carried out. The report also describes the vehicle's requirements for the structures of a repository system, as well as actions in possible malfunction or fault situations. The spent fuel canister is brought from an encapsulation plant by a canister lift down to the repository level. The fuel canister is driven from the canister lift by an automated guided vehicle onto a canister hoist at a canister loading station. The canister transfer and installation vehicle is waiting for the canister with its radiation shield in an upright position above the canister hoist. The hoist carries the canister upward until the vehicle's own lifting means grab hold of the canister and raise it up into the vehicle's radiation shield. This is followed by turning the radiation shield to a transport position and by closing it in a radiation-proof manner against a rear radiation shield. The vehicle is driven along the central tunnel into the disposal tunnel and parked on top of the deposition hole. The vehicle's radiation shield is turned to the upright position and the canister is lowered with the vehicle's hydraulic winches into a bentonite-lined deposition hole. The radiation shield is turned back to the transport position and the vehicle can be driven out of the disposal tunnel

  4. Design and development of a continuously variable ratio transmission for automotive vehicles. Final report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-09-30

    Work accomplished between July 1974 and October 1978 in a program directed toward the design and development of a continuously variable ratio transmission (CVT) for an automotive vehicle is reported. The following major accomplishments were achieved: the laboratory and mathematical projections establishing the viability of the program and the predicted attainment of the primary goal of fuel economy were verified; the proposed Concept Demonstration prototype hydromechanical transmission (HMT) was completed from design to operation; the HMT was thoroughly tested in the laboratory and on the road and its in-vehicle performance was verified by independent testing laboratories; and design of a second generation Pre-Production HMT has proceeded to the point of confirming the practicality of the automotive HMT size and weight; most of the necessary information has been generated which could permit its production cost/competitiveness to be evaluated. (LCL)

  5. Design and Analysis of Subscale and Full-Scale Buckling-Critical Cylinders for Launch Vehicle Technology Development

    Science.gov (United States)

    Hilburger, Mark W.; Lovejoy, Andrew E.; Thornburgh, Robert P.; Rankin, Charles

    2012-01-01

    NASA s Shell Buckling Knockdown Factor (SBKF) project has the goal of developing new analysis-based shell buckling design factors (knockdown factors) and design and analysis technologies for launch vehicle structures. Preliminary design studies indicate that implementation of these new knockdown factors can enable significant reductions in mass and mass-growth in these vehicles. However, in order to validate any new analysis-based design data or methods, a series of carefully designed and executed structural tests are required at both the subscale and full-scale levels. This paper describes the design and analysis of three different orthogrid-stiffeNed metallic cylindrical-shell test articles. Two of the test articles are 8-ft-diameter, 6-ft-long test articles, and one test article is a 27.5-ft-diameter, 20-ft-long Space Shuttle External Tank-derived test article.

  6. Structural design and fabrication techniques of composite unmanned aerial vehicles

    Science.gov (United States)

    Hunt, Daniel Stephen

    Popularity of unmanned aerial vehicles has grown substantially in recent years both in the private sector, as well as for government functions. This growth can be attributed largely to the increased performance of the technology that controls these vehicles, as well as decreasing cost and size of this technology. What is sometimes forgotten though, is that the research and advancement of the airframes themselves are equally as important as what is done with them. With current computer-aided design programs, the limits of design optimization can be pushed further than ever before, resulting in lighter and faster airframes that can achieve longer endurances, higher altitudes, and more complex missions. However, realization of a paper design is still limited by the physical restrictions of the real world and the structural constraints associated with it. The purpose of this paper is to not only step through current design and manufacturing processes of composite UAVs at Oklahoma State University, but to also focus on composite spars, utilizing and relating both calculated and empirical data. Most of the experience gained for this thesis was from the Cessna Longitude project. The Longitude is a 1/8 scale, flying demonstrator Oklahoma State University constructed for Cessna. For the project, Cessna required dynamic flight data for their design process in order to make their 2017 release date. Oklahoma State University was privileged enough to assist Cessna with the mission of supporting the validation of design of their largest business jet to date. This paper will detail the steps of the fabrication process used in construction of the Longitude, as well as several other projects, beginning with structural design, machining, molding, skin layup, and ending with final assembly. Also, attention will be paid specifically towards spar design and testing in effort to ease the design phase. This document is intended to act not only as a further development of current

  7. IPAD applications to the design, analysis, and/or machining of aerospace structures. [Integrated Program for Aerospace-vehicle Design

    Science.gov (United States)

    Blackburn, C. L.; Dovi, A. R.; Kurtze, W. L.; Storaasli, O. O.

    1981-01-01

    A computer software system for the processing and integration of engineering data and programs, called IPAD (Integrated Programs for Aerospace-Vehicle Design), is described. The ability of the system to relieve the engineer of the mundane task of input data preparation is demonstrated by the application of a prototype system to the design, analysis, and/or machining of three simple structures. Future work to further enhance the system's automated data handling and ability to handle larger and more varied design problems are also presented.

  8. An investigation of the effects of pneumatic actuator design on slip control for heavy vehicles

    Science.gov (United States)

    Miller, Jonathan I.; Cebon, David

    2013-01-01

    Progress in reducing actuator delays in pneumatic brake systems is opening the door for advanced anti-lock braking algorithms to be used on heavy goods vehicles. However, little has been published on slip controllers for air-braked heavy vehicles, or the effects of slow pneumatic actuation on their design and performance. This paper introduces a sliding mode slip controller for air-braked heavy vehicles. The effects of pneumatic actuator delays and flow rates on stopping performance and air (energy) consumption are presented through vehicle simulations. Finally, the simulations are validated with experiments using a hardware-in-the-loop rig. It is shown that for each wheel, pneumatic valves with delays smaller than 3 ms and orifice diameters around 8 mm provide the best performance.

  9. Hyper-X Vehicle Model - Top Rear View

    Science.gov (United States)

    1996-01-01

    This aft-quarter model view of NASA's X-43A 'Hyper-X' or Hypersonic Experimental Vehicle shows its sleek, geometric design. The X-43A was developed to flight test a dual-mode ramjet/scramjet propulsion system at speeds from Mach 7 up to Mach 10 (7 to 10 times the speed of sound, which varies with temperature and altitude). Hyper-X, the flight vehicle for which is designated as X-43A, is an experimental flight-research program seeking to demonstrate airframe-integrated, 'air-breathing' engine technologies that promise to increase payload capacity for future vehicles, including hypersonic aircraft (faster than Mach 5) and reusable space launchers. This multiyear program is currently underway at NASA Dryden Flight Research Center, Edwards, California. The Hyper-X schedule calls for its first flight later this year (2000). Hyper-X is a joint program, with Dryden sharing responsibility with NASA's Langley Research Center, Hampton, Virginia. Dryden's primary role is to fly three unpiloted X-43A research vehicles to validate engine technologies and hypersonic design tools as well as the hypersonic test facility at Langley. Langley manages the program and leads the technology development effort. The Hyper-X Program seeks to significantly expand the speed boundaries of air-breathing propulsion by being the first aircraft to demonstrate an airframe-integrated, scramjet-powered free flight. Scramjets (supersonic-combustion ramjets) are ramjet engines in which the airflow through the whole engine remains supersonic. Scramjet technology is challenging because only limited testing can be performed in ground facilities. Long duration, full-scale testing requires flight research. Scramjet engines are air-breathing, capturing their oxygen from the atmosphere. Current spacecraft, such as the Space Shuttle, are rocket powered, so they must carry both fuel and oxygen for propulsion. Scramjet technology-based vehicles need to carry only fuel. By eliminating the need to carry oxygen

  10. Near-term hybrid vehicle program, phase 1. Appendix B: Design trade-off studies report. Volume 3: Computer program listings

    Science.gov (United States)

    1979-01-01

    A description and listing is presented of two computer programs: Hybrid Vehicle Design Program (HYVELD) and Hybrid Vehicle Simulation Program (HYVEC). Both of the programs are modifications and extensions of similar programs developed as part of the Electric and Hybrid Vehicle System Research and Development Project.

  11. Design and Implementation of Vehicle Navigation System in Urban Environments using Internet of Things (Iot)

    Science.gov (United States)

    Godavarthi, Bhavana; Nalajala, Paparao; Ganapuram, Vasavi

    2017-08-01

    Advanced vehicle monitoring and tracking system based on embedded Linux board and android application is designed and implemented for monitoring the school vehicle from any location A to location B at real time. The present system would make good use of new technology that based on embedded Linux namely Raspberry Pi and Smartphone android application. This system works on GPS/GPRS/GSM SIM900A. GPS finds the current location of the vehicle, GPRS sends the tracking information to the server and the GSM is used for sending alert message to vehicle’s owner mobile. This system is placed inside the vehicle whose position is to be determined on the web page and monitored at real time. There is a comparison between the current vehicle path already specified paths into the file system. Inside the raspberry pi’s file system taken from vehicle owners through android phone using android application. Means the selection of path from location A to B takes place from vehicle owner’s android application which gives more safety and secures traveling to the traveler. Hence the driver drives the vehicle only on the vehicle owner’s specified path. The driver drives the vehicle only on the vehicle owner’s specified path but if the driver drives in wrong path the message alert will be sent from this system to the vehicle owners mobile and also sent speakers alert to driver through audio jack. If the vehicles speed goes beyond the specified value of the speed, then warning message will be sent to owner mobile. This system also takes care of the traveler’s safety by using Gas leakage and Temperature sensors

  12. SPAD array based TOF SoC design for unmanned vehicle

    Science.gov (United States)

    Pan, An; Xu, Yuan; Xie, Gang; Huang, Zhiyu; Zheng, Yanghao; Shi, Weiwei

    2018-03-01

    As for the requirement of unmanned-vehicle mobile Lidar system, this paper presents a SoC design based on pulsed TOF depth image sensor. This SoC has a detection range of 300m and detecting resolution of 1.5cm. Pixels are made of SPAD. Meanwhile, SoC adopts a structure of multi-pixel sharing TDC, which significantly reduces chip area and improve the fill factor of light-sensing surface area. SoC integrates a TCSPC module to achieve the functionality of receiving each photon, measuring photon flight time and processing depth information in one chip. The SOC is designed in the SMIC 0.13μm CIS CMOS technology

  13. Design of electric vehicle charging station based on wind and solar complementary power supply

    Science.gov (United States)

    Wang, Li

    2018-05-01

    Electric vehicles have become a major trend in the development of the automobile industry. Green energy saving is an important feature of their development. At the same time, the related charging facilities construction is also critical. If we improve the charging measures to adapt to its green energy-saving features, it will be to a greater extent to promote its further development. This article will propose a highly efficient green energy-saving charging station designed for the electric vehicles.

  14. Fuel cell mining vehicles: design, performance and advantages

    International Nuclear Information System (INIS)

    Betournay, M.C.; Miller, A.R.; Barnes, D.L.

    2003-01-01

    The potential for using fuel cell technology in underground mining equipment was discussed with reference to the risks associated with the operation of hydrogen vehicles, hydrogen production and hydrogen delivery systems. This paper presented some of the initiatives for mine locomotives and fuel cell stacks for underground environments. In particular, it presents the test results of the first applied industrial fuel cell vehicle in the world, a mining and tunneling locomotive. This study was part of an international initiative managed by the Fuel Cell Propulsion Institute which consists of several mining companies, mining equipment manufacturers, and fuel cell technology developers. Some of the obvious benefits of fuel cells for underground mining operations include no exhaust gases, lower electrical costs, significantly reduced maintenance, and lower ventilation costs. Another advantage is that the technology can be readily automated and computer-based for tele-remote operations. This study also quantified the cost and operational benefits associated with fuel cell vehicles compared to diesel vehicles. It is expected that higher vehicle productivity could render fuel cell underground vehicles cost-competitive. 6 refs., 1 tab

  15. Early Site Permit Demonstration Program: Guidelines for determining design basis ground motions

    International Nuclear Information System (INIS)

    1993-01-01

    This report develops and applies a methodology for estimating strong earthquake ground motion. The motivation was to develop a much needed tool for use in developing the seismic requirements for structural designs. An earthquake's ground motion is a function of the earthquake's magnitude, and the physical properties of the earth through which the seismic waves travel from the earthquake fault to the site of interest. The emphasis of this study is on ground motion estimation in Eastern North America (east of the Rocky Mountains), with particular emphasis on the Eastern United States and southeastern Canada. Eastern North America is a stable continental region, having sparse earthquake activity with rare occurrences of large earthquakes. While large earthquakes are of interest for assessing seismic hazard, little data exists from the region to empirically quantify their effects. Therefore, empirically based approaches that are used for other regions, such as Western North America, are not appropriate for Eastern North America. Moreover, recent advances in science and technology have now made it possible to combine theoretical and empirical methods to develop new procedures and models for estimating ground motion. The focus of the report is on the attributes of ground motion in Eastern North America that are of interest for the design of facilities such as nuclear power plants. Specifically considered are magnitudes M from 5 to 8, distances from 0 to 500 km, and frequencies from 1 to 35 Hz

  16. Design of a data-driven predictive controller for start-up process of AMT vehicles.

    Science.gov (United States)

    Lu, Xiaohui; Chen, Hong; Wang, Ping; Gao, Bingzhao

    2011-12-01

    In this paper, a data-driven predictive controller is designed for the start-up process of vehicles with automated manual transmissions (AMTs). It is obtained directly from the input-output data of a driveline simulation model constructed by the commercial software AMESim. In order to obtain offset-free control for the reference input, the predictor equation is gained with incremental inputs and outputs. Because of the physical characteristics, the input and output constraints are considered explicitly in the problem formulation. The contradictory requirements of less friction losses and less driveline shock are included in the objective function. The designed controller is tested under nominal conditions and changed conditions. The simulation results show that, during the start-up process, the AMT clutch with the proposed controller works very well, and the process meets the control objectives: fast clutch lockup time, small friction losses, and the preservation of driver comfort, i.e., smooth acceleration of the vehicle. At the same time, the closed-loop system has the ability to reject uncertainties, such as the vehicle mass and road grade.

  17. Design of outer-rotor type multipolar SR motor for electric vehicle

    International Nuclear Information System (INIS)

    Nakamura, Kenji; Suzuki, Yosuke; Goto, Hiroki; Ichinokura, Osamu

    2005-01-01

    In this paper, we design an outer-rotor type multipolar switched reluctance (SR) motor, and examine an application of the SR motor to an electric vehicle (EV). The design is based on a nonlinear magnetic circuit model proposed by the authors. Using the model, we can calculate dynamic characteristics of a SR motor accurately. Furthermore, by combining the nonlinear magnetic circuit model with a motor drive circuit and motion equation of an EV, we can predict dynamic characteristics such as the maximum speed, acceleration torque, and a battery current of the EV

  18. Early Site Permit Demonstration Program: Guidelines for determining design basis ground motions

    International Nuclear Information System (INIS)

    1993-01-01

    This report develops and applies a methodology for estimating strong earthquake ground motion. The motivation was to develop a much needed tool for use in developing the seismic requirements for structural designs. An earthquake's ground motion is a function of the earthquake's magnitude, and the physical properties of the earth through which the seismic waves travel from the earthquake fault to the site of interest. The emphasis of this study is on ground motion estimation in Eastern North America (east of the Rocky Mountains), with particular emphasis on the Eastern United States and southeastern Canada. Eastern North America is a stable continental region, having sparse earthquake activity with rare occurrences of large earthquakes. While large earthquakes are of interest for assessing seismic hazard, little data exists from the region to empirically quantify their effects. The focus of the report is on the attributes of ground motion in Eastern North America that are of interest for the design of facilities such as nuclear power plants. This document, Volume II, contains Appendices 2, 3, 5, 6, and 7 covering the following topics: Eastern North American Empirical Ground Motion Data; Examination of Variance of Seismographic Network Data; Soil Amplification and Vertical-to-Horizontal Ratios from Analysis of Strong Motion Data From Active Tectonic Regions; Revision and Calibration of Ou and Herrmann Method; Generalized Ray Procedure for Modeling Ground Motion Attenuation; Crustal Models for Velocity Regionalization; Depth Distribution Models; Development of Generic Site Effects Model; Validation and Comparison of One-Dimensional Site Response Methodologies; Plots of Amplification Factors; Assessment of Coupling Between Vertical ampersand Horizontal Motions in Nonlinear Site Response Analysis; and Modeling of Dynamic Soil Properties

  19. Timing system design and tests for the Gravity Probe B relativity mission

    International Nuclear Information System (INIS)

    Li, J; Keiser, G M; Ohshima, Y; Shestople, P; Lockhart, J M

    2015-01-01

    In this paper, we discuss the timing system design and tests for the NASA/Stanford Gravity Probe B (GP-B) relativity mission. The primary clock of GP-B, called the 16f o clock, was an oven-controlled crystal oscillator that produced a 16.368 MHz master frequency 3 . The 16f o clock and the 10 Hz data strobe, which was divided down from the 16f o clock, provided clock signals to all GP-B components and synchronized the data collection, transmission, and processing. The sampled data of science signals were stamped with the vehicle time, a counter of the 10 Hz data strobe. The time latency between the time of data sampling and the stamped vehicle time was compensated in the ground data processing. Two redundant global positioning system receivers onboard the GP-B satellite supplied an external reference for time transfer between the vehicle time and coordinated universal time (UTC), and the time conversion was established in the ground preprocessing of the telemetry timing data. The space flight operation showed that the error of time conversion between the vehicle time and UTC was less than 2 μs. Considering that the constant timing offsets were compensated in the ground processing of the GP-B science data, the time latency between the effective sampling time of GP-B science signals and the stamped vehicle time was verified to within 1 ms in the ground tests. (paper)

  20. Preliminary Assessment of Artificial Gravity Impacts to Deep-Space Vehicle Design

    Science.gov (United States)

    Joosten, B. Kent

    2007-01-01

    Even after more than thirty years of scientific investigation, serious concerns regarding human physiological effects of long-duration microgravity exposure remain. These include loss of bone mineral density, skeletal muscle atrophy, and orthostatic hypertension, among others. In particular, "Safe Passage: Astronaut Care for Exploration Missions," states "loss of bone density, which apparently occurs at a rate of 1% per month in microgravity, is relatively manageable on the short-duration missions of the space shuttle, but it becomes problematic on the ISS [International Space Station]. ...If this loss is not mitigated, interplanetary missions will be impossible." While extensive investigations into potential countermeasures are planned on the ISS, the delay in attaining full crew complement and onboard facilities, and the potential for extending crews tours of duty threaten the timely (definitive design requirements, especially acceptable artificial gravity levels and rotation rates, the perception of high vehicle mass and performance penalties, the incompatibility of resulting vehicle configurations with space propulsion options (i.e., aerocapture), the perception of complications associated with de-spun components such as antennae and photovoltaic arrays, and the expectation of effective crew micro-gravity countermeasures. These perception and concerns may have been overstated, or may be acceptable alternatives to countermeasures of limited efficacy. This study was undertaken as an initial step to try to understand the implications of and potential solutions to incorporating artificial gravity in the design of human deep-space exploration vehicles. Of prime interest will be the mass penalties incurred by incorporating AG, along with any mission performance degradation.

  1. Reduction of Ground Vibration by Means of Barriers or Soil Improvement along a Railway Track

    DEFF Research Database (Denmark)

    Andersen, Lars; Nielsen, Søren R.K.

    2005-01-01

    Trains running in built-up areas are a source to ground-borne noise. A careful design of the track may be one way of minimizing the vibrations in the surroundings. For example, open or infilled trenches may be constructed along the track, or the soil underneath the track may be improved...... the vehicle. The computations are carried out in the frequency domain for various combinations of the vehicle speed and the excitation frequency. The analyses indicate that open trenches are more efficient than infilled trenches or soil stiffening–even at low frequencies. However, the direction of the load...

  2. TCM Analysis of Defected Ground Structures for MIMO Antenna Designs in Mobile Terminals

    KAUST Repository

    Ghalib, Asim; Sharawi, Mohammad S.

    2017-01-01

    In this paper, the theory of characteristic modes (TCM) is used for the first time to analyze the behavior of defected ground structures (DGS) when added to antenna designs. A properly designed DGS introduces currents opposite in direction

  3. Method of Estimating the Principal Characteristics of an Infantry Fighting Vehicle from Basic Performance Requirements

    Science.gov (United States)

    2013-08-01

    in a linear scaling with vehicle weight. • Counter-examples to linear scaling, such as torsion rods , account only for a small fraction (< 10%) of...at the maximum cabin height comes out to be 61 cm which is consistent with previous designs. We wish to keep as much flexibility for the designer...the ground via the track shoe(s). If we assume the track is perfectly flexible , one can estimate the sinkage by:10 0 = 6 5 √

  4. Development of Matlab Simulink model for dynamics analysis of passive suspension system for lightweight vehicle

    Science.gov (United States)

    Jamali, M. S.; Ismail, K. A.; Taha, Z.; Aiman, M. F.

    2017-10-01

    In designing suitable isolators to reduce unwanted vibration in vehicles, the response from a mathematical model which characterizes the transmissibility ratio of the input and output of the vehicle is required. In this study, a Matlab Simulink model is developed to study the dynamic behaviour performance of passive suspension system for a lightweight electric vehicle. The Simulink model is based on the two degrees of freedom system quarter car model. The model is compared to the theoretical plots of the transmissibility ratios between the amplitudes of the displacements and accelerations of the sprung and unsprung masses to the amplitudes of the ground, against the frequencies at different damping values. It was found that the frequency responses obtained from the theoretical calculations and from the Simulink simulation is comparable to each other. Hence, the model may be extended to a full vehicle model.

  5. Mechatronics design and experimental verification of an electric-vehicle-based hybrid thermal management system

    Directory of Open Access Journals (Sweden)

    Yi-Hsuan Hung

    2016-02-01

    Full Text Available In this study, an electric-vehicle-based thermal management system was designed for dual energy sources. An experimental platform developed in a previous study was modified. Regarding the mechanical components, a heat exchanger with a radiator, proportional valve, coolant pipes, and coolant pump was appropriately integrated. Regarding the electric components, two heaters emulating waste heat were controlled using two programmable power supply machines. A rapid-prototyping controller with two temperature inputs and three outputs was designed. Rule-based control strategies were coded to maintain optimal temperatures for the emulated proton exchange membrane fuel cells and lithium batteries. To evaluate the heat power of dual energy sources, driving cycles, energy management control, and efficiency maps of energy sources were considered for deriving time-variant values. The main results are as follows: (a an advanced mechatronics platform was constructed; (b a driving cycle simulation was successfully conducted; and (c coolant temperatures reached their optimal operating ranges when the proportional valve, radiator, and coolant pump were sequentially controlled. The benefits of this novel electric-vehicle-based thermal management system are (a high-efficiency operation of energy sources, (b low occupied volume integrated with energy sources, and (c higher electric vehicle traveling mileage. This system will be integrated with real energy sources and a real electric vehicle in the future.

  6. Crew emergency return vehicle - Electrical power system design study

    Science.gov (United States)

    Darcy, E. C.; Barrera, T. P.

    1989-01-01

    A crew emergency return vehicle (CERV) is proposed to perform the lifeboat function for the manned Space Station Freedom. This escape module will be permanently docked to Freedom and, on demand, will be capable of safely returning the crew to earth. The unique requirements that the CERV imposes on its power source are presented, power source options are examined, and a baseline system is selected. It consists of an active Li-BCX DD-cell modular battery system and was chosen for the maturity of its man-rated design and its low development costs.

  7. A Primer on Autonomous Aerial Vehicle Design

    Directory of Open Access Journals (Sweden)

    Hugo H. G. Coppejans

    2015-12-01

    Full Text Available There is a large amount of research currently being done on autonomous micro-aerial vehicles (MAV, such as quadrotor helicopters or quadcopters. The ability to create a working autonomous MAV depends mainly on integrating a simultaneous localization and mapping (SLAM solution with the rest of the system. This paper provides an introduction for creating an autonomous MAV for enclosed environments, aimed at students and professionals alike. The standard autonomous system and MAV automation are discussed, while we focus on the core concepts of SLAM systems and trajectory planning algorithms. The advantages and disadvantages of using remote processing are evaluated, and recommendations are made regarding the viability of on-board processing. Recommendations are made regarding best practices to serve as a guideline for aspirant MAV designers.

  8. Hydrogen vehicle fueling station

    Energy Technology Data Exchange (ETDEWEB)

    Daney, D.E.; Edeskuty, F.J.; Daugherty, M.A. [Los Alamos National Lab., NM (United States)] [and others

    1995-09-01

    Hydrogen fueling stations are an essential element in the practical application of hydrogen as a vehicle fuel, and a number of issues such as safety, efficiency, design, and operating procedures can only be accurately addressed by a practical demonstration. Regardless of whether the vehicle is powered by an internal combustion engine or fuel cell, or whether the vehicle has a liquid or gaseous fuel tank, the fueling station is a critical technology which is the link between the local storage facility and the vehicle. Because most merchant hydrogen delivered in the US today (and in the near future) is in liquid form due to the overall economics of production and delivery, we believe a practical refueling station should be designed to receive liquid. Systems studies confirm this assumption for stations fueling up to about 300 vehicles. Our fueling station, aimed at refueling fleet vehicles, will receive hydrogen as a liquid and dispense it as either liquid, high pressure gas, or low pressure gas. Thus, it can refuel any of the three types of tanks proposed for hydrogen-powered vehicles -- liquid, gaseous, or hydride. The paper discusses the fueling station design. Results of a numerical model of liquid hydrogen vehicle tank filling, with emphasis on no vent filling, are presented to illustrate the usefulness of the model as a design tool. Results of our vehicle performance model illustrate our thesis that it is too early to judge what the preferred method of on-board vehicle fuel storage will be in practice -- thus our decision to accommodate all three methods.

  9. Design and characterization of an electromagnetic energy harvester for vehicle suspensions

    International Nuclear Information System (INIS)

    Zuo, Lei; Scully, Brian; Shestani, Jurgen; Zhou, Yu

    2010-01-01

    During the everyday usage of an automobile, only 10–16% of the fuel energy is used to drive the car—to overcome the resistance from road friction and air drag. One important loss is the dissipation of vibration energy by shock absorbers in the vehicle suspension under the excitation of road irregularity and vehicle acceleration or deceleration. In this paper we design, characterize and test a retrofit regenerative shock absorber which can efficiently recover the vibration energy in a compact space. Rare-earth permanent magnets and high permeable magnetic loops are used to configure a four-phase linear generator with increased efficiency and reduced weight. The finite element method is used to analyze the magnetic field and guide the design optimization. A theoretical model is created to analytically characterize the waveforms and regenerated power of the harvester at various vibration amplitudes, frequencies, equilibrium positions and design parameters. It was found that the waveform and RMS voltage of the individual coils will depend on the equilibrium position but the total energy will not. Experimental studies of a 1:2 scale prototype are conducted and the results agree very well with the theoretical predictions. Such a regenerative shock absorber will be able to harvest 16–64 W power at 0.25–0.5 m s −1 RMS suspension velocity

  10. Orion Crew Module / Service Module Structural Weight and Center of Gravity Simulator and Vehicle Motion Simulator Hoist Structure for Orion Service Module Umbilical Testing

    Science.gov (United States)

    Ascoli, Peter A.; Haddock, Michael H.

    2014-01-01

    An Orion Crew Module Service Module Structural Weight and Center of Gravity Simulator and a Vehicle Motion Simulator Hoist Structure for Orion Service Module Umbilical Testing were designed during a summer 2014 internship in Kennedy Space Centers Structures and Mechanisms Design Branch. The simulator is a structure that supports ballast, which will be integrated into an existing Orion mock-up to simulate the mass properties of the Exploration Mission-1 flight vehicle in both fueled and unfueled states. The simulator mimics these configurations through the use of approximately 40,000 lbf of steel and water ballast, and a steel support structure. Draining four water tanks, which house the water ballast, transitions the simulator from the fueled to unfueled mass properties. The Ground Systems Development and Operations organization will utilize the simulator to verify and validate equipment used to maneuver and transport the Orion spacecraft in its fueled and unfueled configurations. The second design comprises a cantilevered tripod hoist structure that provides the capability to position a large Orion Service Module Umbilical in proximity to the Vehicle Motion Simulator. The Ground Systems Development and Operations organization will utilize the Vehicle Motion Simulator, with the hoist structure attached, to test the Orion Service Module Umbilical for proper operation prior to installation on the Mobile Launcher. Overall, these two designs provide NASA engineers viable concepts worthy of fabricating and placing into service to prepare for the launch of Orion in 2017.

  11. The scalable design of flapping micro air vehicles inspired by insect flight

    NARCIS (Netherlands)

    Lentink, D.; Jongerius, S.R.; Bradshaw, N.L.

    2009-01-01

    Here we explain how flapping micro air vehicles (MAVs) can be designed at different scales, from bird to insect size. The common believe is that micro fixed wing airplanes and helicopters outperform MAVs at bird scale, but become inferior to flapping MAVs at the scale of insects as small as fruit

  12. A Numerical Study on the Light-Weight Design of PTC Heater for an Electric Vehicle Heating System

    Directory of Open Access Journals (Sweden)

    Hyun Sung Kang

    2018-05-01

    Full Text Available As the market for electric vehicles grows at a remarkable rate, various models of electric vehicles are currently in development, in parallel to the commercialization of components for diverse types of power supply. Cabin heating and heat management components are essential to electric vehicles. Any design for such components must consider the requirements for heating capacity and power density, which need to reflect both the power source and weight reduction demand of any electric vehicle. In particular, design developments in electric heaters have predominantly focused on experimental values because of structural characteristics of the heater and the variability of heat sources, requiring considerable cost and duration. To meet the ever-changing demands of the market, an improved design process for more efficient models is essential. To improve the efficacy of the design process for electric heaters, this study conducted a Computational Fluid Dynamics (CFD analysis of an electric heater with specific dimensions by changing design parameters and operating conditions of key components. The CFD analysis modeled heat characteristics through the application of user-defined functions (UDFs to reflect temperature properties of Positive Temperature Coefficient (PTC elements, which heat an electric heater. Three analysis models, which included fin as well as PTC elements and applied different spaces between the heat rods, were compared in terms of heating performance. In addition, the heat performance and heat output density of each analysis model was analyzed according to the variation of air flow at the inlet of the radiation section of an electric heater. Model B was selected, and a prototype was fabricated based on the model. The performance of the prototype was evaluated, and the correlation between the analysis results and the experimental ones was identified. The error rate between performance change rates was approximately 4%, which indicated

  13. Integration of uniform design and quantum-behaved particle swarm optimization to the robust design for a railway vehicle suspension system under different wheel conicities and wheel rolling radii

    Science.gov (United States)

    Cheng, Yung-Chang; Lee, Cheng-Kang

    2017-10-01

    This paper proposes a systematic method, integrating the uniform design (UD) of experiments and quantum-behaved particle swarm optimization (QPSO), to solve the problem of a robust design for a railway vehicle suspension system. Based on the new nonlinear creep model derived from combining Hertz contact theory, Kalker's linear theory and a heuristic nonlinear creep model, the modeling and dynamic analysis of a 24 degree-of-freedom railway vehicle system were investigated. The Lyapunov indirect method was used to examine the effects of suspension parameters, wheel conicities and wheel rolling radii on critical hunting speeds. Generally, the critical hunting speeds of a vehicle system resulting from worn wheels with different wheel rolling radii are lower than those of a vehicle system having original wheels without different wheel rolling radii. Because of worn wheels, the critical hunting speed of a running railway vehicle substantially declines over the long term. For safety reasons, it is necessary to design the suspension system parameters to increase the robustness of the system and decrease the sensitive of wheel noises. By applying UD and QPSO, the nominal-the-best signal-to-noise ratio of the system was increased from -48.17 to -34.05 dB. The rate of improvement was 29.31%. This study has demonstrated that the integration of UD and QPSO can successfully reveal the optimal solution of suspension parameters for solving the robust design problem of a railway vehicle suspension system.

  14. Design and Research on Vehicles Motor Testing System Based on Improvement PID

    Directory of Open Access Journals (Sweden)

    Fan Kuangang

    2014-08-01

    Full Text Available Motor is the important parts in vehicles. It is the key parts for achieving automation. It is the critical technology to test vehicle motors. We take the PID (Proportion Integration Differentiation as based fundamental controlling algorithm, and we test motor parameters through LabVIEW for single-chip AT89C52. According to practical working condition, we build circuit electric field boundary, and analyze electric field distribution of hard circuit. In addition, we also design filtering circuit for main interrupt frequency (below 1 kHz, and we improved PID for direct motor speed which is controlled by PWM (pulse-width modulation to reach speed astatic regulation. At the same time, the system achieves soft start-up.

  15. Guidelines of the Design of Electropyrotechnic Firing Circuit for Unmanned Flight and Ground Test Projects

    Science.gov (United States)

    Gonzalez, Guillermo A.; Lucy, Melvin H.; Massie, Jeffrey J.

    2013-01-01

    The NASA Langley Research Center, Engineering Directorate, Electronic System Branch, is responsible for providing pyrotechnic support capabilities to Langley Research Center unmanned flight and ground test projects. These capabilities include device selection, procurement, testing, problem solving, firing system design, fabrication and testing; ground support equipment design, fabrication and testing; checkout procedures and procedure?s training to pyro technicians. This technical memorandum will serve as a guideline for the design, fabrication and testing of electropyrotechnic firing systems. The guidelines will discuss the entire process beginning with requirements definition and ending with development and execution.

  16. Optimal Ground Source Heat Pump System Design

    Energy Technology Data Exchange (ETDEWEB)

    Ozbek, Metin [Environ Holdings Inc., Princeton, NJ (United States); Yavuzturk, Cy [Univ. of Hartford, West Hartford, CT (United States); Pinder, George [Univ. of Vermont, Burlington, VT (United States)

    2015-04-01

    Despite the facts that GSHPs first gained popularity as early as the 1940’s and they can achieve 30 to 60 percent in energy savings and carbon emission reductions relative to conventional HVAC systems, the use of geothermal energy in the U.S. has been less than 1 percent of the total energy consumption. The key barriers preventing this technically-mature technology from reaching its full commercial potential have been its high installation cost and limited consumer knowledge and trust in GSHP systems to deliver the technology in a cost-effective manner in the market place. Led by ENVIRON, with support from University Hartford and University of Vermont, the team developed and tested a software-based a decision making tool (‘OptGSHP’) for the least-cost design of ground-source heat pump (‘GSHP’) systems. OptGSHP combines state of the art optimization algorithms with GSHP-specific HVAC and groundwater flow and heat transport simulation. The particular strength of OptGSHP is in integrating heat transport due to groundwater flow into the design, which most of the GSHP designs do not get credit for and therefore are overdesigned.

  17. Design of γ-ray vehicle patrol system based on GPS

    International Nuclear Information System (INIS)

    Zhang Wen; Li Changjin

    2011-01-01

    In order to detect the radiation in the surrounding environment of Nuclear facilities in a wide range, the γ-Ray vehicle patrol system based radiation on GPS and composed of γ-Ray detection terminal and PC is designed. The γ-Ray detection terminal uses controller ATmega128L as control core, detecting the radiation intensity of γ-Ray with G-M counter tube and getting the location with GPS module LR9548S, packing a data frame with γ-Ray radiation and location information according to the agreed protocol which will be sent to PC through UART interface; The PC can processes, display and analyze the data, backup to database Access2003, also can paint the measuring track and distributed picture of radiation intensity. The system can be equipped with a variety of vehicles for mobile patrol to use in the fields of searching radioactive sources, emergency monitoring and measurement of environmental radiation levels. (authors)

  18. Test bed for applications of heterogeneous unmanned vehicles

    Directory of Open Access Journals (Sweden)

    Filiberto Muñoz Palacios

    2017-01-01

    Full Text Available This article addresses the development and implementation of a test bed for applications of heterogeneous unmanned vehicle systems. The test bed consists of unmanned aerial vehicles (Parrot AR.Drones versions 1 or 2, Parrot SA, Paris, France, and Bebop Drones 1.0 and 2.0, Parrot SA, Paris, France, ground vehicles (WowWee Rovio, WowWee Group Limited, Hong Kong, China, and the motion capture systems VICON and OptiTrack. Such test bed allows the user to choose between two different options of development environments, to perform aerial and ground vehicles applications. On the one hand, it is possible to select an environment based on the VICON system and LabVIEW (National Instruments or robotics operating system platforms, which make use the Parrot AR.Drone software development kit or the Bebop_autonomy Driver to communicate with the unmanned vehicles. On the other hand, it is possible to employ a platform that uses the OptiTrack system and that allows users to develop their own applications, replacing AR.Drone’s original firmware with original code. We have developed four experimental setups to illustrate the use of the Parrot software development kit, the Bebop Driver (AutonomyLab, Simon Fraser University, British Columbia, Canada, and the original firmware replacement for performing a strategy that involves both ground and aerial vehicle tracking. Finally, in order to illustrate the effectiveness of the developed test bed for the implementation of advanced controllers, we present experimental results of the implementation of three consensus algorithms: static, adaptive, and neural network, in order to accomplish that a team of multiagents systems move together to track a target.

  19. Conceptual design for relocation of the underground monitoring systems to ground surface

    International Nuclear Information System (INIS)

    Toya, Naruhisa; Ogawa, Ken; Iwatsuki, Teruki; Ohnuki, Kenji

    2015-09-01

    One of the major subjects of the ongoing geoscientific research program, the Mizunami Underground Research Laboratory (MIU) Project in the Tono area, central Japan, is accumulation of knowledge on a recovery of the geological environment during and after the facility closure. Then it is necessary to plan the observation system which can be use of after the backfill of research tunnels. The main purpose of this report is contribution to the detailed design for relocation of the underground monitoring systems to ground surface. We discussed the restriction and requirement for the underground monitoring systems which can be use of after the backfill. Furthermore, we made the conceptual design for relocation of the current underground monitoring systems to ground surface. (author)

  20. Early Site Permit Demonstration Program: Guidelines for determining design basis ground motions

    International Nuclear Information System (INIS)

    1993-01-01

    This report develops and applies a methodology for estimating strong earthquake ground motion. The motivation was to develop a much needed tool for use in developing the seismic requirements for structural designs. An earthquake's ground motion is a function of the earthquake's magnitude, and the physical properties of the earth through which the seismic waves travel from the earthquake fault to the site of interest. The emphasis of this study is on ground motion estimation in Eastern North America (east of the Rocky Mountains), with particular emphasis on the Eastern United States and southeastern Canada. Eastern North America is a stable continental region, having sparse earthquake activity with rare occurrences of large earthquakes. While large earthquakes are of interest for assessing seismic hazard, little data exists from the region to empirically quantify their effects. Therefore, empirically based approaches that are used for other regions, such as Western North America, are not appropriate for Eastern North America. Moreover, recent advances in science and technology have now made it possible to combine theoretical and empirical methods to develop new procedures and models for estimating ground motion. The focus of the report is on the attributes of ground motion in Eastern North America that are of interest for the design of facilities such as nuclear power plants. Specifically considered are magnitudes M from 5 to 8, distances from 0 to 500 km, and frequencies from 1 to 35 Hz. This document, Volume IV, provides Appendix 8.B, Laboratory Investigations of Dynamic Properties of Reference Sites

  1. Design Of An Aerodynamic Measurement System For Unmanned Aerial Vehicle Airfoils

    Directory of Open Access Journals (Sweden)

    L. Velázquez-Araque

    2012-10-01

    Full Text Available This paper presents the design and validation of a measurement system for aerodynamic characteristics of unmanned aerial vehicles. An aerodynamic balance was designed in order to measure the lift, drag forces and pitching moment for different airfoils. During the design process, several aspects were analyzed in order to produce an efficient design, for instance the range of changes of the angle of attack with and a small increment and the versatility of being adapted to different type of airfoils, since it is a wire balance it was aligned and calibrated as well. Wind tunnel tests of a two dimensional NACA four digits family airfoil and four different modifications of this airfoil were performed to validate the aerodynamic measurement system. The modification of this airfoil was made in order to create a blowing outlet with the shape of a step on the suction surface. Therefore, four different locations along the cord line for this blowing outlet were analyzed. This analysis involved the aerodynamic performance which meant obtaining lift, drag and pitching moment coefficients curves as a function of the angle of attack experimentally for the situation where the engine of the aerial vehicle is turned off, called the no blowing condition, by means of wind tunnel tests. The experiments were performed in a closed circuit wind tunnel with an open test section. Finally, results of the wind tunnel tests were compared with numerical results obtained by means of computational fluid dynamics as well as with other experimental references and found to be in good agreement.

  2. Near-term hybrid vehicle program, phase 1. Appendix B: Design trade-off studies report. Volume 2: Supplement to design trade-off studies

    Science.gov (United States)

    1979-01-01

    Results of studies leading to the preliminary design of a hybrid passenger vehicle which is projected to have the maximum potential for reducing petroleum consumption in the near term are presented. Heat engine/electric hybrid vehicle tradeoffs, assessment of battery power source, and weight and cost analysis of key components are among the topics covered. Performance of auxiliary equipment, such as power steering, power brakes, air conditioning, lighting and electrical accessories, heating and ventilation is discussed along with the selection of preferred passenger compartment heating procedure for the hybrid vehicle. Waste heat from the engine, thermal energy storage, and an auxiliary burner are among the approaches considered.

  3. Technologies for low-bandwidth high-latency unmanned ground vehicle control

    Science.gov (United States)

    Pace, Teresa; Cogan, Ken; Hunt, Lee; Restine, Paul

    2014-05-01

    Automation technology has evolved at a rapid pace in recent years; however, many real-world problems require contextual understanding, problem solving, and other forms of higher-order thinking that extends beyond the capabilities of robots for the foreseeable future. This limits the complexity of automation which can be supplied to modern unmanned ground robots (UGV) and necessitates human-in-the-loop monitoring and control for some portions of missions. In order for the human operator to make decisions and provide tasking during key portions of the mission, existing solutions first derive significant information from a potentially dense reconstruction of the scene utilizing LIDAR, video, and other onboard sensors. A dense reconstruction contains too much data for real-time transmission over a modern wireless data link, so the robot electronics must first condense the scene representation prior to transmission. The control station receives this condensed scene representations and provides visual information to the human operator; the human operator then provides tele-operation commands in real-time to the robot. This paper discusses approaches to dense scene reduction of the data required to transmit to a human-in-the loop as well as the challenges associated with them. In addition, the complex and unstructured nature of real-world environments increases the need for tele-operation. Furthermore, many environments reduce the bandwidth and increase the latency of the link. Ultimately, worsening conditions will cause the tele-operation control process to break down, rendering the robot ineffective. In a worst-case scenario, extreme conditions causing a complete loss-of-communications could result in mission failure and loss of the vehicle.

  4. The impact of vehicle appearance and vehicle behavior on pedestrian interaction with autonomous vehicles

    NARCIS (Netherlands)

    Dey, D.; Martens, M.H.; Eggen, J.H.; Terken, J.M.B.

    2017-01-01

    In this paper, we present the preliminary results of a study that aims to investigate the role of an approaching vehicle's behavior and outer appearance in determining pedestrians' decisions while crossing a street. Concerning appearance, some vehicles are designed to look more assertive than

  5. The Impact of Vehicle Appearance and Vehicle Behavior on Pedestrian Interaction with Autonomous Vehicles

    NARCIS (Netherlands)

    Dey, Debargha; Martens, Marieke; Eggen, Berry; Terken, Jacques

    2017-01-01

    In this paper, we present the preliminary results of a study that aims to investigate the role of an approaching vehicle's behavior and outer appearance in determining pedestrians' decisions while crossing a street. Concerning appearance, some vehicles are designed to look more assertive than

  6. Full-Scale Passive Earth Entry Vehicle Landing Tests: Methods and Measurements

    Science.gov (United States)

    Littell, Justin D.; Kellas, Sotiris

    2018-01-01

    During the summer of 2016, a series of drop tests were conducted on two passive earth entry vehicle (EEV) test articles at the Utah Test and Training Range (UTTR). The tests were conducted to evaluate the structural integrity of a realistic EEV vehicle under anticipated landing loads. The test vehicles were lifted to an altitude of approximately 400m via a helicopter and released via release hook into a predesignated 61 m landing zone. Onboard accelerometers were capable of measuring vehicle free flight and impact loads. High-speed cameras on the ground tracked the free-falling vehicles and data was used to calculate critical impact parameters during the final seconds of flight. Additional sets of high definition and ultra-high definition cameras were able to supplement the high-speed data by capturing the release and free flight of the test articles. Three tests were successfully completed and showed that the passive vehicle design was able to withstand the impact loads from nominal and off-nominal impacts at landing velocities of approximately 29 m/s. Two out of three test resulted in off-nominal impacts due to a combination of high winds at altitude and the method used to suspend the vehicle from the helicopter. Both the video and acceleration data captured is examined and discussed. Finally, recommendations for improved release and instrumentation methods are presented.

  7. Launch and Landing Effects Ground Operations (LLEGO) Model

    Science.gov (United States)

    2008-01-01

    LLEGO is a model for understanding recurring launch and landing operations costs at Kennedy Space Center for human space flight. Launch and landing operations are often referred to as ground processing, or ground operations. Currently, this function is specific to the ground operations for the Space Shuttle Space Transportation System within the Space Shuttle Program. The Constellation system to follow the Space Shuttle consists of the crewed Orion spacecraft atop an Ares I launch vehicle and the uncrewed Ares V cargo launch vehicle. The Constellation flight and ground systems build upon many elements of the existing Shuttle flight and ground hardware, as well as upon existing organizations and processes. In turn, the LLEGO model builds upon past ground operations research, modeling, data, and experience in estimating for future programs. Rather than to simply provide estimates, the LLEGO model s main purpose is to improve expenses by relating complex relationships among functions (ground operations contractor, subcontractors, civil service technical, center management, operations, etc.) to tangible drivers. Drivers include flight system complexity and reliability, as well as operations and supply chain management processes and technology. Together these factors define the operability and potential improvements for any future system, from the most direct to the least direct expenses.

  8. Design And Implementation Of Pc Based Over Speed Violation Management For Vehicles On Highway

    Directory of Open Access Journals (Sweden)

    Ni Ni Hlaing

    2015-07-01

    Full Text Available Abstract In the present day scenario traffic rules are frequently violated by the drivers and over speeding occur due to bad driving behavior. So a driver assistance system is provided to prevent over speeding violation of road rules also to display alert messages and gives alerts like road works steep slope school zone in the form of acoustical messages and also in LCD. The proposed system has a reporting displaying and database systemfor over speed violation management. This designed system has the ability to detect the speed of the vehicle in the roads and the main highways and the places where the drivers can use of more speed while driving. The laser transmitter senses the load entered by the vehicle and then the receiver unit sends to the microcontroller. The receiver unit is used by Light Dependent Resistor LDR. If the speed of vehicle exceeds the permissible speed for the highway this information will sent to PC which starts the camera to capture the vehicle. And all the information of vehicle are sent to database system. Then also shows the speed information on LCD.

  9. Life-cycle energy optimisation : A proposed methodology for integrating environmental considerations early in the vehicle engineering design process

    OpenAIRE

    O'Reilly, Ciarán J.; Göransson, Peter; Funazaki, Atsushi; Suzuki, Tetsuya; Edlund, Stefan; Gunnarsson, Cecilia; Lundow, Jan-Olov; Cerin, Pontus; Cameron, Christopher J.; Wennhage, Per; Potting, José

    2016-01-01

    To enable the consideration of life cycle environmental impacts in the early stages of vehicle design, a methodology using the proxy of life cycle energy is proposed in this paper. The trade-offs in energy between vehicle production, operational performance and end-of-life are formulated as a mathematical problem, and simultaneously balanced with other transport-related functionalities, and may be optimised. The methodology is illustrated through an example design study, which is deliberately...

  10. Long life reaction control system design

    Science.gov (United States)

    Fanciullo, Thomas J.; Judd, Craig

    1993-02-01

    Future single stage to orbit systems will utilize oxygen/hydrogen propellants in their main propulsion means due to the propellant's high energy content and environmental acceptability. Operational effectiveness studies and life cycle cost studies have indicated that minimizing the number of different commodities on a given vehicle not only reduces cost, but reduces the ground span times in both the pre- and postflight operations. Therefore, oxygen and hydrogen should be used for the reaction controls systems, eliminating the need to deal with toxic or corrosive fluids. When the hydrogen scramjet powered NASP design development began in 1985, new system design studies considered overall integration of subsystems; in the context of that approach, O2/H2 reaction controls system were more than competitive with storable propellant systems and had the additional benefits of lower life cycle cost, rapid turnaround times, and O2 and H2 commodities for use throughout the vehicle. Similar benefits were derived in rocket-powered SSTO vehicles.

  11. US Army TARDEC Ground Vehicle Mobility: Dynamics Modeling, Simluation, and Research

    Science.gov (United States)

    2011-10-24

    DRIVEN. WARFIGHTER FOCUSED. For official use only Stair Climbing of a Small Robot Robotic Vehicle Step Climbing UNCLASSIFIED For official use only...NOTES NASA Jet Propulsion Laboratory, mobility, and robotics section. Briefing to the jet propulsion lab. 14. ABSTRACT N/A 15. SUBJECT TERMS 16...JLTV GCV M2 M915 ASV FTTS HMMWV Platforms Supported APDSmall Robot UNCLASSIFIED For official use only Mobility Events • Vehicle stability • Ride

  12. Design of modern vehicle electrical systems based on co-simulation and a model library; Entwurf moderner Bordnetze mittels Co-Simulation und Modellbibliothek

    Energy Technology Data Exchange (ETDEWEB)

    Zehetner, Josef; Lu, Di Wenpu; Watzenig, Daniel [Virtual Vehicle Research Center, Graz (Austria)

    2013-08-15

    The complexity of vehicle electrical and electronic systems, components, and functions is growing as they become increasingly networked with each other and with the internet. Vehicle electrical systems developers can manage this complexity now and in the future by employing simulation as a central tool in designing powerful and reliable vehicle electrical systems. Bosch Engineering offers a powerful simulation tool to support the design of vehicle power nets from initial requirements to final series approval, now being used also for hybrid and electric drive train development. (orig.)

  13. Hyper-X Vehicle Model - Side View

    Science.gov (United States)

    1996-01-01

    A side-view of an early desk-top model of NASA's X-43A 'Hyper-X,' or Hypersonic Experimental Vehicle, which has been developed to flight test a dual-mode ramjet/scramjet propulsion system at speeds from Mach 7 up to Mach 10 (7 to 10 times the speed of sound, which varies with temperature and altitude). Hyper-X, the flight vehicle for which is designated as X-43A, is an experimental flight-research program seeking to demonstrate airframe-integrated, 'air-breathing' engine technologies that promise to increase payload capacity for future vehicles, including hypersonic aircraft (faster than Mach 5) and reusable space launchers. This multiyear program is currently underway at NASA Dryden Flight Research Center, Edwards, California. The Hyper-X schedule calls for its first flight later this year (2000). Hyper-X is a joint program, with Dryden sharing responsibility with NASA's Langley Research Center, Hampton, Virginia. Dryden's primary role is to fly three unpiloted X-43A research vehicles to validate engine technologies and hypersonic design tools as well as the hypersonic test facility at Langley. Langley manages the program and leads the technology development effort. The Hyper-X Program seeks to significantly expand the speed boundaries of air-breathing propulsion by being the first aircraft to demonstrate an airframe-integrated, scramjet-powered free flight. Scramjets (supersonic-combustion ramjets) are ramjet engines in which the airflow through the whole engine remains supersonic. Scramjet technology is challenging because only limited testing can be performed in ground facilities. Long duration, full-scale testing requires flight research. Scramjet engines are air-breathing, capturing their oxygen from the atmosphere. Current spacecraft, such as the Space Shuttle, are rocket powered, so they must carry both fuel and oxygen for propulsion. Scramjet technology-based vehicles need to carry only fuel. By eliminating the need to carry oxygen, future hypersonic

  14. Hyper-X Vehicle Model - Front View

    Science.gov (United States)

    1996-01-01

    A front view of an early desk-top model of NASA's X-43A 'Hyper-X,' or Hypersonic Experimental Vehicle, which has been developed to flight test a dual-mode ramjet/scramjet propulsion system at speeds from Mach 7 up to Mach 10 (7 to 10 times the speed of sound, which varies with temperature and altitude). Hyper-X, the flight vehicle for which is designated as X-43A, is an experimental flight-research program seeking to demonstrate airframe-integrated, 'air-breathing' engine technologies that promise to increase payload capacity for future vehicles, including hypersonic aircraft (faster than Mach 5) and reusable space launchers. This multiyear program is currently underway at NASA Dryden Flight Research Center, Edwards, California. The Hyper-X schedule calls for its first flight later this year (2000). Hyper-X is a joint program, with Dryden sharing responsibility with NASA's Langley Research Center, Hampton, Virginia. Dryden's primary role is to fly three unpiloted X-43A research vehicles to validate engine technologies and hypersonic design tools as well as the hypersonic test facility at Langley. Langley manages the program and leads the technology development effort. The Hyper-X Program seeks to significantly expand the speed boundaries of air-breathing propulsion by being the first aircraft to demonstrate an airframe-integrated, scramjet-powered free flight. Scramjets (supersonic-combustion ramjets) are ramjet engines in which the airflow through the whole engine remains supersonic. Scramjet technology is challenging because only limited testing can be performed in ground facilities. Long duration, full-scale testing requires flight research. Scramjet engines are air-breathing, capturing their oxygen from the atmosphere. Current spacecraft, such as the Space Shuttle, are rocket powered, so they must carry both fuel and oxygen for propulsion. Scramjet technology-based vehicles need to carry only fuel. By eliminating the need to carry oxygen, future hypersonic

  15. A Dynamic Programming-Based Heuristic for the Shift Design Problem in Airport Ground Handling

    DEFF Research Database (Denmark)

    Clausen, Tommy

    We consider the heterogeneous shift design problem for a workforce with multiple skills, where work shifts are created to cover a given demand as well as possible while minimizing cost and satisfying a flexible set of constraints. We focus mainly on applications within airport ground handling whe...... programming that allows flexibility in modeling the workforce. Parameters allow a planner to determine the level of demand coverage that best fulfills the requirements of the organization. Results are presented from several diverse real-life ground handling instances.......We consider the heterogeneous shift design problem for a workforce with multiple skills, where work shifts are created to cover a given demand as well as possible while minimizing cost and satisfying a flexible set of constraints. We focus mainly on applications within airport ground handling where...

  16. Use of Probabilistic Engineering Methods in the Detailed Design and Development Phases of the NASA Ares Launch Vehicle

    Science.gov (United States)

    Fayssal, Safie; Weldon, Danny

    2008-01-01

    The United States National Aeronautics and Space Administration (NASA) is in the midst of a space exploration program called Constellation to send crew and cargo to the international Space Station, to the moon, and beyond. As part of the Constellation program, a new launch vehicle, Ares I, is being developed by NASA Marshall Space Flight Center. Designing a launch vehicle with high reliability and increased safety requires a significant effort in understanding design variability and design uncertainty at the various levels of the design (system, element, subsystem, component, etc.) and throughout the various design phases (conceptual, preliminary design, etc.). In a previous paper [1] we discussed a probabilistic functional failure analysis approach intended mainly to support system requirements definition, system design, and element design during the early design phases. This paper provides an overview of the application of probabilistic engineering methods to support the detailed subsystem/component design and development as part of the "Design for Reliability and Safety" approach for the new Ares I Launch Vehicle. Specifically, the paper discusses probabilistic engineering design analysis cases that had major impact on the design and manufacturing of the Space Shuttle hardware. The cases represent important lessons learned from the Space Shuttle Program and clearly demonstrate the significance of probabilistic engineering analysis in better understanding design deficiencies and identifying potential design improvement for Ares I. The paper also discusses the probabilistic functional failure analysis approach applied during the early design phases of Ares I and the forward plans for probabilistic design analysis in the detailed design and development phases.

  17. Development of heavy load carrying vehicle for nuclear power station

    International Nuclear Information System (INIS)

    Terabayashi, Yasuharu; Oono, Hiroo; Aizu, Takao; Kawaguchi, Kaname; Yamanaka, Masayuki; Hirobe, Tamio; Inagaki, Yoshiaki.

    1985-01-01

    In nuclear power stations, in order to carry out sound and stable operation, the routine inspection and regular inspection of machinery and equipment are performed, therefore, the transportation of heavy things is frequently carried out. Especially, the transportation of heavy things over the steps of passages and stairs requires much labor. Therefore, Chubu Electric Power Co., Inc. and Chubu Plant Service Co., Ltd. carried out the research on the development of a vehicle for transporting heavy components of nuclear power plants. In this research, it was aimed at developing a vehicle which can carry heavy components and get over a step, climb and descend stairs, and run through a narrow passage having many curves as well as running on flat ground. For this purpose, the actual state of the transportation of heavy things was investigated during the regular inspection of a nuclear power station, and on the basis of this results, a prototype vehicle was made and tested. Thereafter, a transporting vehicle of actual scale was made and tested. The investigation of actual state and the examination of the fundamental concept, the design, trial manufacture and verifying test are reported. (Kako, I.)

  18. Advanced Space Vehicle Design Taking into Account Multidisciplinary Couplings and Mixed Epistemic/Aleatory Uncertainties

    OpenAIRE

    Balesdent , Mathieu; Brevault , Loïc; Price , Nathaniel; Defoort , Sébastien; Le Riche , Rodolphe; Kim , Nam-Ho; Haftka , Raphael T.; Bérend , Nicolas

    2016-01-01

    International audience; Space vehicle design is a complex process involving numerous disciplines such as aerodynamics, structure, propulsion and trajectory. These disciplines are tightly coupled and may involve antagonistic objectives that require the use of specific methodologies in order to assess trade-offs between the disciplines and to obtain the global optimal configuration. Generally, there are two ways to handle the system design. On the one hand, the design may be considered from a d...

  19. Design of Sail-Assisted Unmanned Surface Vehicle Intelligent Control System

    OpenAIRE

    Ma, Yong; Zhao, Yujiao; Diao, Jiantao; Gan, Langxiong; Bi, Huaxiong; Zhao, Jingming

    2016-01-01

    To achieve the wind sail-assisted function of the unmanned surface vehicle (USV), this work focuses on the design problems of the sail-assisted USV intelligent control systems (SUICS) and illustrates the implementation process of the SUICS. The SUICS consists of the communication system, the sensor system, the PC platform, and the lower machine platform. To make full use of the wind energy, in the SUICS, we propose the sail angle of attack automatic adjustment (Sail_4A) algorithm and present ...

  20. EADS Roadmap for Launch Vehicles

    Science.gov (United States)

    Eymar, Patrick; Grimard, Max

    2002-01-01

    still think about the future, especially at industry level in order to make the most judicious choices in technologies, vehicle types as well as human resources and facilities specialization (especially after recent merger moves). and production as prime contractor, industrial architect or stage provider have taken benefit of this expertise and especially of all the studies ran under national funding and own financing on reusable vehicles and ground/flight demonstrators have analyzed several scenarios. VEHICLES/ASTRIUM SI strategy w.r.t. launch vehicles for the two next decades. Among the main inputs taken into account of course visions of the market evolutions have been considered, but also enlargement of international cooperations and governments requests and supports (e.g. with the influence of large international ventures). 1 patrick.eymar@lanceurs.aeromatra.com 2