WorldWideScience

Sample records for ground vehicle ugv

  1. Unmanned Ground Vehicle (UGV) Interoperability Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The UGV Interoperability Lab provides the capability to verify vendor conformance against government-defined interoperability profiles (IOPs). This capability allows...

  2. Landmark-Based Navigation of an Unmanned Ground Vehicle (UGV)

    Science.gov (United States)

    2009-03-01

    against large measurement errors. 20090710280 RELEASE LIMITATION Approved for public release 4p fv^-Jo-osiit? Published by Weapons Systems Division...achieved as numerous low cost gyroscopes in the market meet this requirement. 24 DSTO-TR-2260 3.5.4 Sensitivity to Vehicle Speed In this subsection

  3. Test Operations Procedure (TOP) 02-2-546 Teleoperated Unmanned Ground Vehicle (UGV) Latency Measurements

    Science.gov (United States)

    2017-01-11

    A. Approved for public release; distribution is unlimited. 13. SUPPLEMENTARY NOTES Defense Technical Information Center (DTIC), AD No.: 14. ABSTRACT...discrete system components or measurements of latency in autonomous systems. 15. SUBJECT TERMS Unmanned Ground Vehicles, Basic Video Latency, End -to... End System Latency, Command-to-Action Latency 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT SAR 18. NUMBER OF PAGES 23 19a

  4. A Navigation and Decision Making Architecture for Unmanned Ground Vehicles: Implementation and Results with the Raptor UGV

    Science.gov (United States)

    2007-12-01

    meilleur parcours vers un but en utilisant des données cartographiques à priori et/ou des données provenant des capteurs de bord. 6. Arbitre en arc...be employed in a variety of UGV applications . In a patrol mission scenario, the UGV may be tasked to follow a series of high level waypoints...detailed path described as a set of closely spaced nodes. However, for many UGV applications , the user will not want to specify an extremely detailed

  5. Comparison of real-time performance of Kalman filter-based slam methods for unmanned ground vehicle (UGV) navigation

    Science.gov (United States)

    Temeltaş, Hakan; Kavak, Deniz

    2009-05-01

    Simultaneous Localization and Mapping (SLAM) using for the mobile robot navigation has two main problems. First problem is the computational complexity due to the growing state vector with the added landmark in the environment. Second problem is data association which matches the observations and landmarks in the state vector. In this study, we compare Extended Kalman Filter (EKF) based SLAM which is well-developed and well-known algorithm, and Compressed Extended Kalman Filter (CEKF) based SLAM developed for decreasing of the computational complexity of the EKF based SLAM. We write two simulation program to investigate these techniques. Firts program is written for the comparison of EKF and CEKF based SLAM according to the computational complexity and covariance matrix error with the different numbers of landmarks. In the second program, EKF and CEKF based SLAM simulations are presented. For this simulation differential drive vehicle that moves in a 10m square trajectory and LMS 200 2-D laser range finder are modelled and landmarks are randomly scattered in that 10m square environment.

  6. Design of a Smart Unmanned Ground Vehicle for Hazardous Environments

    CERN Document Server

    Chakraborty, Saurav

    2010-01-01

    A smart Unmanned Ground Vehicle (UGV) is designed and developed for some application specific missions to operate predominantly in hazardous environments. In our work, we have developed a small and lightweight vehicle to operate in general cross-country terrains in or without daylight. The UGV can send visual feedbacks to the operator at a remote location. Onboard infrared sensors can detect the obstacles around the UGV and sends signals to the operator.

  7. An unmanned ground vehicle for landmine remediation

    Science.gov (United States)

    Wasson, Steven R.; Guilberto, Jose; Ogg, Wade; Wedeward, Kevin; Bruder, Stephen; El-Osery, Aly

    2004-09-01

    Anti-tank (AT) landmines slow down and endanger military advances and present sizeable humanitarian problems. The remediation of these mines by direct human intervention is both dangerous and costly. The Intelligent Systems & Robotics Group (ISRG) at New Mexico Tech has provided a partial solution to this problem by developing an Unmanned Ground Vehicle (UGV) to remediate these mines without endangering human lives. This paper presents an overview of the design and operation of this UGV. Current results and future work are also described herein. To initiate the remediation process the UGV is given the GPS coordinates of previously detected landmines. Once the UGV autonomously navigates to an acceptable proximity of the landmine, a remote operator acquires control over a wireless network link using a joystick on a base station. Utilizing two cameras mounted on the UGV, the operator is able to accurately position the UGV directly over the landmine. The UGV houses a self-contained drill system equipped with its own processing resources, sensors, and actuators. The drill system deploys a neutralizing device over the landmine to neutralize it. One such device, developed by Science Applications International Corporation (SAIC), employs incendiary materials to melt through the container of the landmine and slowly burn the explosive material, thereby safely and remotely disabling the landmine.

  8. Toward a generic UGV autopilot

    Science.gov (United States)

    Moore, Kevin L.; Whitehorn, Mark; Weinstein, Alejandro J.; Xia, Junjun

    2009-05-01

    Much of the success of small unmanned air vehicles (UAVs) has arguably been due to the widespread availability of low-cost, portable autopilots. While the development of unmanned ground vehicles (UGVs) has led to significant achievements, as typified by recent grand challenge events, to date the UGV equivalent of the UAV autopilot is not available. In this paper we describe our recent research aimed at the development of a generic UGV autopilot. Assuming we are given a drive-by-wire vehicle that accepts as inputs steering, brake, and throttle commands, we present a system that adds sonar ranging sensors, GPS/IMU/odometry, stereo camera, and scanning laser sensors, together with a variety of interfacing and communication hardware. The system also includes a finite state machine-based software architecture as well as a graphical user interface for the operator control unit (OCU). Algorithms are presented that enable an end-to-end scenario whereby an operator can view stereo images as seen by the vehicle and can input GPS waypoints either from a map or in the vehicle's scene-view image, at which point the system uses the environmental sensors as inputs to a Kalman filter for pose estimation and then computes control actions to move through the waypoint list, while avoiding obstacles. The long-term goal of the research is a system that is generically applicable to any drive-by-wire unmanned ground vehicle.

  9. Unmanned ground vehicles for integrated force protection

    Science.gov (United States)

    Carroll, Daniel M.; Mikell, Kenneth; Denewiler, Thomas

    2004-09-01

    The combination of Command and Control (C2) systems with Unmanned Ground Vehicles (UGVs) provides Integrated Force Protection from the Robotic Operation Command Center. Autonomous UGVs are directed as Force Projection units. UGV payloads and fixed sensors provide situational awareness while unattended munitions provide a less-than-lethal response capability. Remote resources serve as automated interfaces to legacy physical devices such as manned response vehicles, barrier gates, fence openings, garage doors, and remote power on/off capability for unmanned systems. The Robotic Operations Command Center executes the Multiple Resource Host Architecture (MRHA) to simultaneously control heterogeneous unmanned systems. The MRHA graphically displays video, map, and status for each resource using wireless digital communications for integrated data, video, and audio. Events are prioritized and the user is prompted with audio alerts and text instructions for alarms and warnings. A control hierarchy of missions and duty rosters support autonomous operations. This paper provides an overview of the key technology enablers for Integrated Force Protection with details on a force-on-force scenario to test and demonstrate concept of operations using Unmanned Ground Vehicles. Special attention is given to development and applications for the Remote Detection Challenge and Response (REDCAR) initiative for Integrated Base Defense.

  10. A usage-centered evaluation methodology for unmanned ground vehicles

    NARCIS (Netherlands)

    Diggelen, J. van; Looije, R.; Mioch, T.; Neerincx, M.A.; Smets, N.J.J.M.

    2012-01-01

    This paper presents a usage-centered evaluation method to assess the capabilities of a particular Unmanned Ground Vehicle (UGV) for establishing the operational goals. The method includes a test battery consisting of basic tasks (e.g., slalom, funnel driving, object detection). Tests can be of diffe

  11. A usage-centered evaluation methodology for unmanned ground vehicles

    NARCIS (Netherlands)

    Diggelen, J. van; Looije, R.; Mioch, T.; Neerincx, M.A.; Smets, N.J.J.M.

    2012-01-01

    This paper presents a usage-centered evaluation method to assess the capabilities of a particular Unmanned Ground Vehicle (UGV) for establishing the operational goals. The method includes a test battery consisting of basic tasks (e.g., slalom, funnel driving, object detection). Tests can be of diffe

  12. UGV: security analysis of subsystem control network

    Science.gov (United States)

    Abbott-McCune, Sam; Kobezak, Philip; Tront, Joseph; Marchany, Randy; Wicks, Al

    2013-05-01

    Unmanned Ground vehicles (UGVs) are becoming prolific in the heterogeneous superset of robotic platforms. The sensors which provide odometry, localization, perception, and vehicle diagnostics are fused to give the robotic platform a sense of the environment it is traversing. The automotive industry CAN bus has dominated the industry due to the fault tolerance and the message structure allowing high priority messages to reach the desired node in a real time environment. UGVs are being researched and produced at an accelerated rate to preform arduous, repetitive, and dangerous missions that are associated with a military action in a protracted conflict. The technology and applications of the research will inevitably be turned into dual-use platforms to aid civil agencies in the performance of their various operations. Our motivation is security of the holistic system; however as subsystems are outsourced in the design, the overall security of the system may be diminished. We will focus on the CAN bus topology and the vulnerabilities introduced in UGVs and recognizable security vulnerabilities that are inherent in the communications architecture. We will show how data can be extracted from an add-on CAN bus that can be customized to monitor subsystems. The information can be altered or spoofed to force the vehicle to exhibit unwanted actions or render the UGV unusable for the designed mission. The military relies heavily on technology to maintain information dominance, and the security of the information introduced onto the network by UGVs must be safeguarded from vulnerabilities that can be exploited.

  13. UGV navigation in wireless sensor and actuator network environments

    Science.gov (United States)

    Zhang, Guyu; Li, Jianfeng; Duncan, Christian A.; Kanno, Jinko; Selmic, Rastko R.

    2012-06-01

    We consider a navigation problem in a distributed, self-organized and coordinate-free Wireless Sensor and Ac- tuator Network (WSAN). We rst present navigation algorithms that are veried using simulation results. Con- sidering more than one destination and multiple mobile Unmanned Ground Vehicles (UGVs), we introduce a distributed solution to the Multi-UGV, Multi-Destination navigation problem. The objective of the solution to this problem is to eciently allocate UGVs to dierent destinations and carry out navigation in the network en- vironment that minimizes total travel distance. The main contribution of this paper is to develop a solution that does not attempt to localize either the UGVs or the sensor and actuator nodes. Other than some connectivity as- sumptions about the communication graph, we consider that no prior information about the WSAN is available. The solution presented here is distributed, and the UGV navigation is solely based on feedback from neigh- boring sensor and actuator nodes. One special case discussed in the paper, the Single-UGV, Multi-Destination navigation problem, is essentially equivalent to the well-known and dicult Traveling Salesman Problem (TSP). Simulation results are presented that illustrate the navigation distance traveled through the network. We also introduce an experimental testbed for the realization of coordinate-free and localization-free UGV navigation. We use the Cricket platform as the sensor and actuator network and a Pioneer 3-DX robot as the UGV. The experiments illustrate the UGV navigation in a coordinate-free WSAN environment where the UGV successfully arrives at the assigned destinations.

  14. Using acoustic sensor technologies to create a more terrain capable unmanned ground vehicle

    OpenAIRE

    Odedra, Sid; Prior, Stephen D.; Karamanoglu, Mehmet; Erbil, Mehmet Ali; Shen, Siu-Tsen; International Conference on Engineering Psychology and Cognitive Ergonomics

    2009-01-01

    Unmanned Ground Vehicle’s (UGV) have to cope with the most complex range of dynamic and variable obstacles and therefore need to be highly intelligent in order to cope with navigating in such a cluttered environment. When traversing over different terrains (whether it is a UGV or a commercial manned vehicle) different drive styles and configuration settings need to be selected in order to travel successfully over each terrain type. These settings are usually selected by a human operator in ma...

  15. Unmanned ground vehicle perception using thermal infrared cameras

    Science.gov (United States)

    Rankin, Arturo; Huertas, Andres; Matthies, Larry; Bajracharya, Max; Assad, Christopher; Brennan, Shane; Bellutta, Paolo; Sherwin, Gary W.

    2011-05-01

    The ability to perform off-road autonomous navigation at any time of day or night is a requirement for some unmanned ground vehicle (UGV) programs. Because there are times when it is desirable for military UGVs to operate without emitting strong, detectable electromagnetic signals, a passive only terrain perception mode of operation is also often a requirement. Thermal infrared (TIR) cameras can be used to provide day and night passive terrain perception. TIR cameras have a detector sensitive to either mid-wave infrared (MWIR) radiation (3-5μm) or long-wave infrared (LWIR) radiation (7-14μm). With the recent emergence of high-quality uncooled LWIR cameras, TIR cameras have become viable passive perception options for some UGV programs. The Jet Propulsion Laboratory (JPL) has used a stereo pair of TIR cameras under several UGV programs to perform stereo ranging, terrain mapping, tree-trunk detection, pedestrian detection, negative obstacle detection, and water detection based on object reflections. In addition, we have evaluated stereo range data at a variety of UGV speeds, evaluated dual-band TIR classification of soil, vegetation, and rock terrain types, analyzed 24 hour water and 12 hour mud TIR imagery, and analyzed TIR imagery for hazard detection through smoke. Since TIR cameras do not currently provide the resolution available from megapixel color cameras, a UGV's daytime safe speed is often reduced when using TIR instead of color cameras. In this paper, we summarize the UGV terrain perception work JPL has performed with TIR cameras over the last decade and describe a calibration target developed by General Dynamics Robotic Systems (GDRS) for TIR cameras and other sensors.

  16. Unmanned Ground Vehicle Perception Using Thermal Infrared Cameras

    Science.gov (United States)

    Rankin, Arturo; Huertas, Andres; Matthies, Larry; Bajracharya, Max; Assad, Christopher; Brennan, Shane; Bellutta, Paolo; Sherwin, Gary W.

    2011-01-01

    The ability to perform off-road autonomous navigation at any time of day or night is a requirement for some unmanned ground vehicle (UGV) programs. Because there are times when it is desirable for military UGVs to operate without emitting strong, detectable electromagnetic signals, a passive only terrain perception mode of operation is also often a requirement. Thermal infrared (TIR) cameras can be used to provide day and night passive terrain perception. TIR cameras have a detector sensitive to either mid-wave infrared (MWIR) radiation (3-5?m) or long-wave infrared (LWIR) radiation (8-12?m). With the recent emergence of high-quality uncooled LWIR cameras, TIR cameras have become viable passive perception options for some UGV programs. The Jet Propulsion Laboratory (JPL) has used a stereo pair of TIR cameras under several UGV programs to perform stereo ranging, terrain mapping, tree-trunk detection, pedestrian detection, negative obstacle detection, and water detection based on object reflections. In addition, we have evaluated stereo range data at a variety of UGV speeds, evaluated dual-band TIR classification of soil, vegetation, and rock terrain types, analyzed 24 hour water and 12 hour mud TIR imagery, and analyzed TIR imagery for hazard detection through smoke. Since TIR cameras do not currently provide the resolution available from megapixel color cameras, a UGV's daytime safe speed is often reduced when using TIR instead of color cameras. In this paper, we summarize the UGV terrain perception work JPL has performed with TIR cameras over the last decade and describe a calibration target developed by General Dynamics Robotic Systems (GDRS) for TIR cameras and other sensors.

  17. Achieving integrated convoys: cargo unmanned ground vehicle development and experimentation

    Science.gov (United States)

    Zych, Noah; Silver, David; Stager, David; Green, Colin; Pilarski, Thomas; Fischer, Jacob

    2013-05-01

    The Cargo UGV project was initiated in 2010 with the aim of developing and experimenting with advanced autonomous vehicles capable of being integrated unobtrusively into manned logistics convoys. The intent was to validate two hypotheses in complex, operationally representative environments: first, that unmanned tactical wheeled vehicles provide a force protection advantage by creating standoff distance to warfighters during ambushes or improvised explosive device attacks; and second, that these UGVs serve as force multipliers by enabling a single operator to control multiple unmanned assets. To assess whether current state-of-the-art autonomous vehicle technology was sufficiently capable to permit resupply missions to be executed with decreased risk and reduced manpower, and to assess the effect of UGVs on customary convoy tactics, the Marine Corps Warfighting Laboratory and the Joint Ground Robotics Enterprise sponsored Oshkosh Defense and the National Robotics Engineering Center to equip two standard Marine Corps cargo trucks for autonomous operation. This paper details the system architecture, hardware implementation, and software modules developed to meet the vehicle control, perception, and planner requirements compelled by this application. Additionally, the design of a custom human machine interface and an accompanying training program are described, as is the creation of a realistic convoy simulation environment for rapid system development. Finally, results are conveyed from a warfighter experiment in which the effectiveness of the training program for novice operators was assessed, and the impact of the UGVs on convoy operations was observed in a variety of scenarios via direct comparison to a fully manned convoy.

  18. Developing UGVs for the FCS program

    Science.gov (United States)

    Kamsickas, Gary M.; Ward, John N.

    2003-09-01

    The FCS Operational Requirements Document (ORD) identifies unmanned systems as a key component of the FCS Unit of Action. FCS unmanned systems include Unmanned Aerial Vehicles (UAV), Unmanned Ground Vehicles (UGV), Unattended Ground Sensors (UGS) and Unattended Munitions (UM). Unmanned systems are intended to enhance the Unit of Action across the full range of operations when integrated with manned platforms. Unmanned systems will provide the commander with tools to gather battlespace information while significantly reducing overall soldier risk. Unmanned systems will be used in some cases to augment or replace human intervention to perform many of the dirty, dull and dangerous missions presently performed by soldiers and to serve as a combat multiplier for mission performance, force protection and survivability. This paper focuses on the application of UGVs within the FCS Unit of Action. There are three different UGVs planned to support the FCS Unit of Action; the Soldier Unmanned Ground Vehicle (SUGV); The Multi-role Utility Logistics Equipment (MULE) platform; and the Armed Robotic Vehicle (ARV).

  19. Integrating intrinsic mobility into unmanned ground vehicle systems

    Science.gov (United States)

    Brosinsky, Chris A.; Penzes, Steven G.; Buehler, Martin G.; Steeves, Carl

    2001-09-01

    The ability of an Unmanned Ground Vehicle (UGV) to successfully move about in its environment is enabled by the synergistic combination of perception, control and platform (mobility and utility). Vast effort is being expended on the former technologies but little demonstrable evidence has been produced to indicate that the latter (mobility/utility) has been considered as an integral part of the UGV systems level capability; a concept commonly referred to as intrinsic mobility. While past work described the rationale for hybrid locomotion, this paper aims to demonstrate that integrating intrinsic mobility into a UGV systems mobility element or 'vehicle' will be a key contributor to the magnitude of autonomy that the system can achieve. This paper serves to provide compelling evidence that 1) intrinsic mobility improvements provided by hybrid locomotion configurations offer the best generic mobility, that 2) strict attention must be placed on the optimization of both utility (inherent vehicle capabilities) and mobility and that 3) the establishment of measures of performance for unmanned vehicle mobility is an unmet and latent need.

  20. Unmanned Ground Vehicle Navigation and Coverage Hole Patching in Wireless Sensor Networks

    Science.gov (United States)

    Zhang, Guyu

    2013-01-01

    This dissertation presents a study of an Unmanned Ground Vehicle (UGV) navigation and coverage hole patching in coordinate-free and localization-free Wireless Sensor Networks (WSNs). Navigation and coverage maintenance are related problems since coverage hole patching requires effective navigation in the sensor network environment. A…

  1. Ground Vehicle Robotics

    Science.gov (United States)

    2013-08-20

    Ground Vehicle Robotics Jim Parker Associate Director, Ground Vehicle Robotics UNCLASSIFIED: Distribution Statement A. Approved for public...DATE 20 AUG 2013 2. REPORT TYPE Briefing Charts 3. DATES COVERED 09-05-2013 to 15-08-2013 4. TITLE AND SUBTITLE Ground Vehicle Robotics 5a...Willing to take Risk on technology -User Evaluated -Contested Environments -Operational Data Applied Robotics for Installation & Base Ops -Low Risk

  2. Unmanned Ground Vehicle Perception Using Thermal Infrared Cameras

    Science.gov (United States)

    Rankin, Arturo; Huertas, Andres; Matthies, Larry; Bajracharya, Max; Assad, Christopher; Brennan, Shane; Bellut, Paolo; Sherwin, Gary

    2011-01-01

    TIR cameras can be used for day/night Unmanned Ground Vehicle (UGV) autonomous navigation when stealth is required. The quality of uncooled TIR cameras has significantly improved over the last decade, making them a viable option at low speed Limiting factors for stereo ranging with uncooled LWIR cameras are image blur and low texture scenes TIR perception capabilities JPL has explored includes: (1) single and dual band TIR terrain classification (2) obstacle detection (pedestrian, vehicle, tree trunks, ditches, and water) (3) perception thru obscurants

  3. Ground Vehicle Robotics Presentation

    Science.gov (United States)

    2012-08-14

    Mr. Jim Parker Associate Director Ground Vehicle Robotics Distribution Statement A. Approved for public release Report Documentation Page...Briefing 3. DATES COVERED 01-07-2012 to 01-08-2012 4. TITLE AND SUBTITLE Ground Vehicle Robotics Presentation 5a. CONTRACT NUMBER 5b. GRANT...ABSTRACT Provide Transition-Ready, Cost-Effective, and Innovative Robotics and Control System Solutions for Manned, Optionally-Manned, and Unmanned

  4. Environmental Perception and Sensor Data Fusion for Unmanned Ground Vehicle

    Directory of Open Access Journals (Sweden)

    Yibing Zhao

    2013-01-01

    Full Text Available Unmanned Ground Vehicles (UGVs that can drive autonomously in cross-country environment have received a good deal of attention in recent years. They must have the ability to determine whether the current terrain is traversable or not by using onboard sensors. This paper explores new methods related to environment perception based on computer image processing, pattern recognition, multisensors data fusion, and multidisciplinary theory. Kalman filter is used for low-level fusion of physical level, thus using the D-S evidence theory for high-level data fusion. Probability Test and Gaussian Mixture Model are proposed to obtain the traversable region in the forward-facing camera view for UGV. One feature set including color and texture information is extracted from areas of interest and combined with a classifier approach to resolve two types of terrain (traversable or not. Also, three-dimension data are employed; the feature set contains components such as distance contrast of three-dimension data, edge chain-code curvature of camera image, and covariance matrix based on the principal component method. This paper puts forward one new method that is suitable for distributing basic probability assignment (BPA, based on which D-S theory of evidence is employed to integrate sensors information and recognize the obstacle. The subordination obtained by using the fuzzy interpolation is applied to calculate the basic probability assignment. It is supposed that the subordination is equal to correlation coefficient in the formula. More accurate results of object identification are achieved by using the D-S theory of evidence. Control on motion behavior or autonomous navigation for UGV is based on the method, which is necessary for UGV high speed driving in cross-country environment. The experiment results have demonstrated the viability of the new method.

  5. The Role of Model Fidelity in Model Predictive Control Based Hazard Avoidance in Unmanned Ground Vehicles Using Lidar Sensors

    Science.gov (United States)

    2013-03-08

    for Mobile Robot Obstacle Avoidance", Proceedings of IEEE International Conference on Mechatronics and Automation, Harbin, China, pp. 2784-2788. [10...military and commercial applications. Although earlier UGV platforms were typically exclusively small ground robots , recent efforts started...targeting passenger vehicle and larger size platforms. Due to their size and speed, these platforms have significantly different dynamics than small robots

  6. Improving UGV teleoperation performance using novel visualization techniques and manual interfaces

    Science.gov (United States)

    Vozar, Steven; Tilbury, Dawn M.

    2012-06-01

    Unmanned ground vehicles (UGVs) are well-suited to a variety of tasks that are dangerous or repetitive for humans to perform. Despite recent advances, UGVs still suffer from reliability issues, and human operation failures have been identified as one root cause of UGV system failure. However, most literature relevant to UGV reliability does not address the effects of human errors or the user interface. Our previous work investigated the issue of user situational awareness and sense of presence in the robot workspace by implementing a Mixed Reality interface featuring a first-person video feed with an Augmented Reality overlay and a third-person Virtual Reality display. The interface was evaluated in a series of user tests in which users manually controlled a UGV with a manipulator arm using traditional input modalities including a computer mouse, keyboard and gamepad. In this study, we learned that users found it challenging to mentally map commands from the manual inputs to the robot arm behavior. Also, switching between control modalities seemed to add to the cognitive load during teleoperation tasks. A master-slave style manual controller can provide an intuitive one-to-one mapping from user input to robot pose, and has the potential to improve both operator situational awareness for teleoperation tasks and decrease mission completion time. This paper describes the design and implementation of a teleoperated UGV with a Mixed Reality visualization interface and a master-slave controller that is suitable for teleoperated mobile manipulation tasks.

  7. Towards collaboration between unmanned aerial and ground vehicles for precision agriculture

    Science.gov (United States)

    Bhandari, Subodh; Raheja, Amar; Green, Robert L.; Do, Dat

    2017-05-01

    This paper presents the work being conducted at Cal Poly Pomona on the collaboration between unmanned aerial and ground vehicles for precision agriculture. The unmanned aerial vehicles (UAVs), equipped with multispectral/hyperspectral cameras and RGB cameras, take images of the crops while flying autonomously. The images are post processed or can be processed onboard. The processed images are used in the detection of unhealthy plants. Aerial data can be used by the UAVs and unmanned ground vehicles (UGVs) for various purposes including care of crops, harvest estimation, etc. The images can also be useful for optimized harvesting by isolating low yielding plants. These vehicles can be operated autonomously with limited or no human intervention, thereby reducing cost and limiting human exposure to agricultural chemicals. The paper discuss the autonomous UAV and UGV platforms used for the research, sensor integration, and experimental testing. Methods for ground truthing the results obtained from the UAVs will be used. The paper will also discuss equipping the UGV with a robotic arm for removing the unhealthy plants and/or weeds.

  8. TARDEC Ground Vehicle Robotics

    Science.gov (United States)

    2013-05-30

    UNCLASSIFIED UNCLASSIFIED 10 Optionally Manned Vehicles OMV can be driven by a soldier; OMV can drive a soldier; OMV can be remotely operated; OMV can be...all missions for OMV (i.e. shared driving) (i.e. remotely operated) 2 m od al iti es Mission Payloads UNCLASSIFIED UNCLASSIFIED 11 Ground

  9. Real-Time and High-Fidelity Simulation Environment for Autonomous Ground Vehicle Dynamics

    Science.gov (United States)

    Cameron, Jonathan; Myint, Steven; Kuo, Calvin; Jain, Abhi; Grip, Havard; Jayakumar, Paramsothy; Overholt, Jim

    2013-01-01

    This paper reports on a collaborative project between U.S. Army TARDEC and Jet Propulsion Laboratory (JPL) to develop a unmanned ground vehicle (UGV) simulation model using the ROAMS vehicle modeling framework. Besides modeling the physical suspension of the vehicle, the sensing and navigation of the HMMWV vehicle are simulated. Using models of urban and off-road environments, the HMMWV simulation was tested in several ways, including navigation in an urban environment with obstacle avoidance and the performance of a lane change maneuver.

  10. A UGV-based laser scanner system for measuring tree geometric characteristics

    Science.gov (United States)

    Wang, Yonghui; Lan, Yubin; Zheng, Yongjun; Lee, Kevin; Cui, Suxia; Lian, Jian-ao

    2013-09-01

    This paper introduces a laser scanner based measurement system for measuring crop/tree geometric characteristics. The measurement system, which is mounted on a Unmanned Ground Vehicle (UGV), contains a SICK LMS511 PRO laser scanner, a GPS, and a computer. The LMS511 PRO scans objects within distance up to 80 meters with a scanning frequency of 25 up to 100Hz and with an angular resolution of 0.1667° up to 1°. With an Ethernet connection, this scanner can output the measured values in real time. The UGV is a WIFI based remotely controlled agricultural robotics system. During field tests, the laser scanner was mounted on the UGV vertically to scan crops or trees. The UGV moved along the row direction with certain average travel speed. The experimental results show that the UGV's travel speed significantly affects the measurement accuracy. A slower speed produces more accurate measuring results. With the developed measurement system, crop/tree canopy height, width, and volume can be accurately measured in a real-time manner. With a higher spatial resolution, the original data set may even provide useful information in predicting crop/tree growth and productivity. In summary, the UGV based measurement system developed in this research can measure the crop/tree geometric characteristics with good accuracy and will work as a step stone for our future UGV based intelligent agriculture system, which will include variable rate spray and crop/tree growth and productivity prediction through analyzing the measured results of the laser scanner system.

  11. Semi-autonomous UAV/UGV for dismounted urban operations

    Science.gov (United States)

    Trentini, Michael; Beckman, Blake

    2010-04-01

    Dismounted soldiers are clearly at the centre of modern asymmetric conflicts and unmanned systems of the future will play important roles in their support. Moreover, the nature of modern asymmetric conflicts requires dismounted soldiers to operate in urban environments with challenges of communication and limited situational awareness. To improve the situational awareness of dismounted soldiers in complex urban environments, Defence R&D Canada - Suffield (DRDC Suffield) envision Unmanned Air Vehicles (UAV) rotorcraft and Unmanned Ground Vehicles (UGV) cooperating in the battlespace. The capabilities provided to the UAV rotorcraft will include high speed maneuvers through urban terrain, overthe- horizon and loss of communications operations, and/or low altitude over-watch of dismounted units. This information is shared with both the dismounted soldiers and UGV. The man-sized, man-mobile UGV operates in close support to dismounted soldiers to provide a payload carrying capacity. Some of the possible payloads include chemical, biological, radiological and nuclear (CBRN) detection, intelligence, surveillance and reconnaissance (ISR), weapons, supplies, etc.. These unmanned systems are intended to increase situational awareness in urban environments and can be used to call upon nearby forces to react swiftly by providing acquired information to concentrate impact where required.

  12. Unmanned Ground Vehicle Navigation Using Brain Emotional Learning Based Intelligent Controller (BELBIC

    Directory of Open Access Journals (Sweden)

    Alvaro Vargas-Clara

    2015-02-01

    Full Text Available In this paper, we implement a novel control strategy for navigation of an Unmanned Ground Vehicle (UGV. This strategy consisted in the development and implementation of the Brain Emotional Learning Based Intelligent Controller (BELBIC for heading, and path control of a UGV. BELBIC is an intelligent controller based on the model of the Amygdala-Orbitofrontal system of mammalians, which is a region in the brain known to be responsible for emotional learning process. Simulation of this controller for the cases of heading, and path control showed to be very robust and adaptable to dynamical changes in the plant. A comparison between BELBIC and a traditional PID control is presented to illustrate the performance of this control strategy.

  13. Computational architecture for image processing on a small unmanned ground vehicle

    Science.gov (United States)

    Ho, Sean; Nguyen, Hung

    2010-08-01

    Man-portable Unmanned Ground Vehicles (UGVs) have been fielded on the battlefield with limited computing power. This limitation constrains their use primarily to teleoperation control mode for clearing areas and bomb defusing. In order to extend their capability to include the reconnaissance and surveillance missions of dismounted soldiers, a separate processing payload is desired. This paper presents a processing architecture and the design details on the payload module that enables the PackBot to perform sophisticated, real-time image processing algorithms using data collected from its onboard imaging sensors including LADAR, IMU, visible, IR, stereo, and the Ladybug spherical cameras. The entire payload is constructed from currently available Commercial off-the-shelf (COTS) components including an Intel multi-core CPU and a Nvidia GPU. The result of this work enables a small UGV to perform computationally expensive image processing tasks that once were only feasible on a large workstation.

  14. Modeling and control for hydraulic transmission of unmanned ground vehicle

    Institute of Scientific and Technical Information of China (English)

    王岩; 张泽; 秦绪情

    2014-01-01

    Variable pump driving variable motor (VPDVM) is the future development trend of the hydraulic transmission of an unmanned ground vehicle (UGV). VPDVM is a dual-input single-output nonlinear system with coupling, which is difficult to control. High pressure automatic variables bang-bang (HABB) was proposed to achieve the desired motor speed. First, the VPDVM nonlinear mathematic model was introduced, then linearized by feedback linearization theory, and the zero-dynamic stability was proved. The HABB control algorithm was proposed for VPDVM, in which the variable motor was controlled by high pressure automatic variables (HA) and the variable pump was controlled by bang-bang. Finally, simulation of VPDVM controlled by HABB was developed. Simulation results demonstrate the HABB can implement the desired motor speed rapidly and has strong robustness against the variations of desired motor speed, load and pump speed.

  15. Seamless Mode Switching for Shared Control of Semiautonomous Vehicles Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Whether it be a crew station, the Shuttle Remote Manipulator System (SRMS), an unmanned ground rover (UGV) or air vehicle (UAV), or teams thereof, the controllers...

  16. Distributed pheromone-based swarming control of unmanned air and ground vehicles for RSTA

    Science.gov (United States)

    Sauter, John A.; Mathews, Robert S.; Yinger, Andrew; Robinson, Joshua S.; Moody, John; Riddle, Stephanie

    2008-04-01

    The use of unmanned vehicles in Reconnaissance, Surveillance, and Target Acquisition (RSTA) applications has received considerable attention recently. Cooperating land and air vehicles can support multiple sensor modalities providing pervasive and ubiquitous broad area sensor coverage. However coordination of multiple air and land vehicles serving different mission objectives in a dynamic and complex environment is a challenging problem. Swarm intelligence algorithms, inspired by the mechanisms used in natural systems to coordinate the activities of many entities provide a promising alternative to traditional command and control approaches. This paper describes recent advances in a fully distributed digital pheromone algorithm that has demonstrated its effectiveness in managing the complexity of swarming unmanned systems. The results of a recent demonstration at NASA's Wallops Island of multiple Aerosonde Unmanned Air Vehicles (UAVs) and Pioneer Unmanned Ground Vehicles (UGVs) cooperating in a coordinated RSTA application are discussed. The vehicles were autonomously controlled by the onboard digital pheromone responding to the needs of the automatic target recognition algorithms. UAVs and UGVs controlled by the same pheromone algorithm self-organized to perform total area surveillance, automatic target detection, sensor cueing, and automatic target recognition with no central processing or control and minimal operator input. Complete autonomy adds several safety and fault tolerance requirements which were integrated into the basic pheromone framework. The adaptive algorithms demonstrated the ability to handle some unplanned hardware failures during the demonstration without any human intervention. The paper describes lessons learned and the next steps for this promising technology.

  17. A New Curb Detection Method for Unmanned Ground Vehicles Using 2D Sequential Laser Data

    Directory of Open Access Journals (Sweden)

    Jinling Wang

    2013-01-01

    Full Text Available Curb detection is an important research topic in environment perception, which is an essential part of unmanned ground vehicle (UGV operations. In this paper, a new curb detection method using a 2D laser range finder in a semi-structured environment is presented. In the proposed method, firstly, a local Digital Elevation Map (DEM is built using 2D sequential laser rangefinder data and vehicle state data in a dynamic environment and a probabilistic moving object deletion approach is proposed to cope with the effect of moving objects. Secondly, the curb candidate points are extracted based on the moving direction of the vehicle in the local DEM. Finally, the straight and curved curbs are detected by the Hough transform and the multi-model RANSAC algorithm, respectively. The proposed method can detect the curbs robustly in both static and typical dynamic environments. The proposed method has been verified in real vehicle experiments.

  18. Autonomous urban reconnaissance ingress system (AURIS): providing a tactically relevant autonomous door-opening kit for unmanned ground vehicles

    Science.gov (United States)

    Shane, David J.; Rufo, Michael A.; Berkemeier, Matthew D.; Alberts, Joel A.

    2012-06-01

    The Autonomous Urban Reconnaissance Ingress System (AURIS™) addresses a significant limitation of current military and first responder robotics technology: the inability of reconnaissance robots to open doors. Leveraging user testing as a baseline, the program has derived specifications necessary for military personnel to open doors with fielded UGVs (Unmanned Ground Vehicles), and evaluates the technology's impact on operational mission areas: duration, timing, and user patience in developing a tactically relevant, safe, and effective system. Funding is provided through the US ARMY Tank Automotive Research, Development and Engineering Center (TARDEC) and the project represents a leap forward in perception, autonomy, robotic implements, and coordinated payload operation in UGVs. This paper describes high level details of specification generation, status of the last phase of development, an advanced view of the system autonomy capability, and a short look ahead towards the ongoing work on this compelling and important technology.

  19. The development of a UGV-mounted automated refueling system for VTOL UAVs

    Science.gov (United States)

    Wills, Mike; Burmeister, Aaron; Nelson, Travis; Denewiler, Thomas; Mullens, Kathy

    2006-05-01

    This paper describes the latest efforts to develop an Automated UAV Mission System (AUMS) for small vertical takeoff and landing (VTOL) unmanned air vehicles (UAVs). In certain applications such as force protection, perimeter security, and urban surveillance a VTOL UAV can provide far greater utility than fixed-wing UAVs or ground-based sensors. The VTOL UAV can operate much closer to an object of interest and can provide a hover-and-stare capability to keep its sensors trained on an object, while the fixed wing UAV would be forced into a higher altitude loitering pattern where its sensors would be subject to intermittent blockage by obstacles and terrain. The most significant disadvantage of a VTOL UAV when compared to a fixed-wing UAV is its reduced flight endurance. AUMS addresses this disadvantage by providing forward staging, refueling, and recovery capabilities for the VTOL UAV through a host unmanned ground vehicle (UGV), which serves as a launch/recovery platform and service station. The UGV has sufficient payload capacity to carry UAV fuel for multiple launch, recovery, and refuel iterations. The UGV also provides a highly mobile means of forward deploying a small UAV into hazardous areas unsafe for personnel, such as chemically or biologically contaminated areas. Teaming small UAVs with large UGVs can decrease risk to personnel and expand mission capabilities and effectiveness. There are numerous technical challenges being addressed by these development efforts. Among the challenges is the development and integration of a precision landing system compact and light enough to allow it to be mounted on a small VTOL UAV while providing repeatable landing accuracy to safely land on the AUMS. Another challenge is the design of a UGV-transportable, expandable, self-centering landing pad that contains hardware and safety devices for automatically refueling the UAV. A third challenge is making the design flexible enough to accommodate different types of VTOL UAVs

  20. DDDAS-based Information-Aggregation for Crowd Dynamics Modeling with UAVs and UGVs

    Directory of Open Access Journals (Sweden)

    Yifei eYuan

    2015-04-01

    Full Text Available Unmanned aerial vehicles (UAVs and unmanned ground vehicles (UGVs collaboratively play important roles in crowd tracking for applications such as border patrol and crowd surveillance. Dynamic data-driven application systems (DDDAS paradigm has been developed for these applications to take advantage of real-time monitoring data. In the DDDAS paradigm, one crucial step in crowd surveillance is crowd dynamics modeling, which is based on multi-resolution crowd observation data collected from both UAVs and UGVs. Data collected from UAVs capture global crowd motion but have low resolution while those from UGVs have high resolution information of local crowd motion. This paper proposes an information-aggregation approach for crowd dynamics modeling by incorporating multi-resolution data, where a grid-based method is developed to model crowd motion with UAVs’ low-resolution global perception, and an autoregressive model is employed to model individuals’ motion based on UGVs’ detailed perception. A simulation experiment is provided to illustrate and demonstrate the effectiveness of the proposed approach.

  1. Field experiments using SPEAR: a speech control system for UGVs

    Science.gov (United States)

    Chhatpar, Siddharth R.; Blanco, Chris; Czerniak, Jeffrey; Hoffman, Orin; Juneja, Amit; Pruthi, Tarun; Liu, Dongqing; Karlsen, Robert; Brown, Jonathan

    2009-05-01

    This paper reports on a Field Experiment carried out by the Human Research and Engineering Directorate at Ft. Benning to evaluate the efficacy of using speech to control an Unmanned Ground Vehicle (UGV) concurrently with a handcontroller. The SPEAR system, developed by Think-A-Move, provides speech-control of UGVs. The system picks up user-speech in the ear canal with an in-ear microphone. This property allows it to work efficiently in high-noise environments, where traditional speech systems, employing external microphones, fail. It has been integrated with an iRobot PackBot 510 with EOD kit. The integrated system allows the hand-controller to be supplemented with speech for concurrent control. At Ft. Benning, the integrated system was tested by soldiers from the Officer Candidate School. The Experiment had dual focus: 1) Quantitative measurement of the time taken to complete each station and the cognitive load on users; 2) Qualitative evaluation of ease-of-use and ergonomics through soldier-feedback. Also of significant benefit to Think-A-Move was soldier-feedback on the speech-command vocabulary employed: What spoken commands are intuitive, and how the commands should be executed, e.g., limited-motion vs. unlimited-motion commands. Overall results from the Experiment are reported in the paper.

  2. Radical advancement in multi-spectral imaging for autonomous vehicles (UAVs, UGVs, and UUVs) using active compensation.

    Energy Technology Data Exchange (ETDEWEB)

    Clark, Brian F.; Bagwell, Brett E.; Wick, David Victor

    2007-01-01

    The purpose of this LDRD was to demonstrate a compact, multi-spectral, refractive imaging systems using active optical compensation. Compared to a comparable, conventional lens system, our system has an increased operational bandwidth, provides for spectral selectivity and, non-mechanically corrects aberrations induced by the wavelength dependent properties of a passive refractive optical element (i.e. lens). The compact nature and low power requirements of the system lends itself to small platforms such as autonomous vehicles. In addition, the broad spectral bandwidth of our system would allow optimized performance for both day/night use, and the multi-spectral capability allows for spectral discrimination and signature identification.

  3. Absolute High-Precision Localisation of an Unmanned Ground Vehicle by Using Real-Time Aerial Video Imagery for Geo-referenced Orthophoto Registration

    Science.gov (United States)

    Kuhnert, Lars; Ax, Markus; Langer, Matthias; Nguyen van, Duong; Kuhnert, Klaus-Dieter

    This paper describes an absolute localisation method for an unmanned ground vehicle (UGV) if GPS is unavailable for the vehicle. The basic idea is to combine an unmanned aerial vehicle (UAV) to the ground vehicle and use it as an external sensor platform to achieve an absolute localisation of the robotic team. Beside the discussion of the rather naive method directly using the GPS position of the aerial robot to deduce the ground robot's position the main focus of this paper lies on the indirect usage of the telemetry data of the aerial robot combined with live video images of an onboard camera to realise a registration of local video images with apriori registered orthophotos. This yields to a precise driftless absolute localisation of the unmanned ground vehicle. Experiments with our robotic team (AMOR and PSYCHE) successfully verify this approach.

  4. Test and Evaluation of Autonomous Ground Vehicles

    OpenAIRE

    Yang Sun; Guangming Xiong; Weilong Song; Jianwei Gong; Huiyan Chen

    2014-01-01

    A preestablished test and evaluation system will benefit the development of autonomous ground vehicles. This paper proposes a design method for a scientific and comprehensive test and evaluation system for autonomous ground vehicles competitions. It can better guide and regulate the development of China’s autonomous ground vehicles. The test and evaluation system includes the test contents, the test environment, the test methods, and the evaluation methods. Using a hierarchical design approac...

  5. UAV-UGV collaboration with a PackBot UGV and Raven SUAV for pursuit and tracking of a dynamic target

    Science.gov (United States)

    Cheung, Carol; Grocholsky, Benjamin

    2008-04-01

    Fielded military unmanned systems are currently extending the reach of the U.S. forces in surveillance and reconnaissance missions. Providing long-range eyes on enemy operations, unmanned aerial vehicles (UAVs), such as the AeroVironment Raven, have proven themselves indispensable without risking soldiers' lives. Meanwhile, unmanned ground vehicles (UGVs), such as the iRobot PackBot, are quickly joining ranks in Explosive Ordnance Disposal (EOD) missions to identify and dispose of ordnance or to clear roads and buildings. UAV-UGV collaboration and the benefit of force multiplication is increasingly more tangible. iRobot Corporation and CMU Robotics Institute are developing the capability to simultaneously control the Raven small UAV (SUAV) and PackBot UGV from a single operator control unit (OCU) via waypoint navigation. Techniques to support autonomous collaboration for pursuing and tracking a dismounted soldier will be developed and integrated on a Raven-PackBot team. The Raven will survey an area and geolocate an operator-selected target. The Raven will share this target location with the PackBot and together they will collaboratively pursue the target intelligently to maintain track on the target. We will accomplish this goal by implementing a decentralized control and data fusion software architecture. The PackBot will be equipped with on-board waypoint navigation algorithms, a Navigator Payload containing a stereo-vision system, GPS, and a high-accuracy IMU. The Raven will have two on-board cameras, a side-looking and a forward-looking optical camera. The Supervisor OCU will act as the central mission planner, allowing the operator to monitor mission events and override vehicle tasks.

  6. Remote Imagery for Unmanned Ground Vehicles (RIUGV)

    Science.gov (United States)

    2005-03-25

    intelligence, pipeline monitoring, urban mapping, natural hazard detection, coastal /marine mapping, exploration & mining, and disaster management. All...and loaded into the executive software of the UGV employed in the test environment. Landcover analysis Figure 4: Off-Road Course Images

  7. Test and Evaluation of Autonomous Ground Vehicles

    Directory of Open Access Journals (Sweden)

    Yang Sun

    2014-01-01

    Full Text Available A preestablished test and evaluation system will benefit the development of autonomous ground vehicles. This paper proposes a design method for a scientific and comprehensive test and evaluation system for autonomous ground vehicles competitions. It can better guide and regulate the development of China's autonomous ground vehicles. The test and evaluation system includes the test contents, the test environment, the test methods, and the evaluation methods. Using a hierarchical design approach, the test content is designed to be stage by stage, moving from simplicity to complexity and from individual modules to the entire vehicle. The hierarchical test environment is established according to the levels of test content. The test method based on multilevel platforms and sensors is put forward to ensure the accuracy of test results. A fuzzy comprehensive evaluation method combined with analytic hierarchy process (AHP is used for the comprehensive evaluation which can quantitatively evaluate the individual module and the overall technical performance of autonomous ground vehicles. The proposed test and evaluation system has been successfully applied to real autonomous ground vehicle competitions.

  8. Learned trafficability for UGVs: inferring geometry from imagery

    Science.gov (United States)

    Broten, Gregory S.; Mackay, David; Digney, Bruce

    2008-04-01

    Unmanned ground vehicles (UGV) operating in outdoor environments must traverse unstructured terrain. This terrain is diverse in nature and contains natural obstacles such as rocks, brushes, berms, and low lying wet areas. Outdoor terrain is not static as it varies on a seasonal basis due to the life cycle associated with natural vegetation. Additionally, outdoor terrain may change appearance due to variations in lighting conditions that result from the Sun's relative position and from weather conditions such as clouds, fog or rain. This environmental diversity has long caused researchers considerable grief, as developing a classical terrain classification algorithm has proven to be a very difficult if not an impossible task. Researchers have skirted this problem by relying upon ranging sensors and constructing 2 ½D or, more recently, 3D world representations. Although geometrical representations have been used extensively, the low data rates associated with laser rangefinders, the unreliability of stereo vision, and the interaction between geometry and orientation estimation errors have limited the lookahead distance, thereby reducing the maximum attainable vehicle speeds. Learning from experience, in a more human like manner, promises to reduce or alleviate many of the issues posed by unstructured outdoor terrain. Defence R&D Canada (DRDC) "Learned Trafficability" program researches learning from experience. The paper presents DRDC's progress in extending a 2 ½D world representation using vision and learning from experience.

  9. Landmark-based robust navigation for tactical UGV control in GPS-denied communication-degraded environments

    Science.gov (United States)

    Endo, Yoichiro; Balloch, Jonathan C.; Grushin, Alexander; Lee, Mun Wai; Handelman, David

    2016-05-01

    Control of current tactical unmanned ground vehicles (UGVs) is typically accomplished through two alternative modes of operation, namely, low-level manual control using joysticks and high-level planning-based autonomous control. Each mode has its own merits as well as inherent mission-critical disadvantages. Low-level joystick control is vulnerable to communication delay and degradation, and high-level navigation often depends on uninterrupted GPS signals and/or energy-emissive (non-stealth) range sensors such as LIDAR for localization and mapping. To address these problems, we have developed a mid-level control technique where the operator semi-autonomously drives the robot relative to visible landmarks that are commonly recognizable by both humans and machines such as closed contours and structured lines. Our novel solution relies solely on optical and non-optical passive sensors and can be operated under GPS-denied, communication-degraded environments. To control the robot using these landmarks, we developed an interactive graphical user interface (GUI) that allows the operator to select landmarks in the robot's view and direct the robot relative to one or more of the landmarks. The integrated UGV control system was evaluated based on its ability to robustly navigate through indoor environments. The system was successfully field tested with QinetiQ North America's TALON UGV and Tactical Robot Controller (TRC), a ruggedized operator control unit (OCU). We found that the proposed system is indeed robust against communication delay and degradation, and provides the operator with steady and reliable control of the UGV in realistic tactical scenarios.

  10. Forward-looking three dimensional imaging technique for InSAR mounted on ground vehicles%车载 InSAR 前视三维成像技术

    Institute of Scientific and Technical Information of China (English)

    王建; 李杨寰; 张汉华; 陆必应; 宋千; 周智敏

    2014-01-01

    It is a difficult task for an unmanned ground vehicle (UGV)to sense obstacles in out fields or unstructured environments.Because the height information is a vital feature to boost the performance of obstacle discrimination,the three-dimensional imaging technique for sensing obstacles ahead UGV of interferometric synthetic aperture radar (InSAR)was presented.The basic signal process flow of InSAR was reviewed. Special factors of the UGV platform that impact the digital elevation model (DEM)measurement precision were analyzed,such as the baseline length,platform motion errors.The DEMof a partial sight-blocked obstacle scene was obtained by processing the three-dimensional InSAR image, which proved the feasibility of applying InSAR to obstacle sensing of UGV.%野外和非结构化环境下的障碍探测是无人驾驶车(UGV)环境感知的难题之一。基于高度识别障碍是一种有效的解决途径,提出了干涉合成孔径雷达(InSAR)的三维障碍物成像策略,研究了 InSAR 信息处理流程,分析了干涉基线和运动误差对车载 InSAR 高程测量精度的影响,仿真了无人车前场景存在遮挡时的 InSAR 高程测量,证明了 InSAR 用于 UGV 前方环境感知的可行性。

  11. Remote Vision Systems for Teleoperated Ground Vehicles

    Science.gov (United States)

    1991-05-01

    Information Operations end Reports. 1215J1elterson Davis Highway. Suite 1204. Arlington. VA 22202-4302. and to the Offce of Management and Budget...Paperworkr Reductlo Proyect (0704-0188). Washingtont. DC 20503._____________________ I AGENCY USE ONLY (Leave bAW4V 2 REPORT DATE 3 REPORT TYPE AND DATES...and scannable panel displays require further development. 6.0 ACKNOWLEDEMENTS. The authors acknowledge NOSC UGV Program Manager , Thomas W. Hughes, for

  12. The Analytical Review of the Condition of Heavy Class Military and Dual-Purpose Unmanned Ground Vehicle

    Directory of Open Access Journals (Sweden)

    Blokhin Aleksandr

    2015-01-01

    Full Text Available The purpose of this article is the evaluation of the actual condition of heavy (weight more than 700 kg military robotics and dual-purpose robotics in the world. The extensive review of the world market of heavy class military unmanned ground vehicle was made. All reviewed robots are used at present time or exist like prototypes. All robots were systematized by most important technical characteristics. In the closing of article the analysis of the reviewed heavy class dual purpose UGVs are presented. Based on the analysis the conclusion about actual condition of the heavy military robotics and dual-purpose robotics was made. Also the most promising ways and tendencies of development are representeds.

  13. Ground Processing Affordability for Space Vehicles

    Science.gov (United States)

    Ingalls, John; Scott, Russell

    2011-01-01

    Launch vehicles and most of their payloads spend the majority of their time on the ground. The cost of ground operations is very high. So, why so often is so little attention given to ground processing during development? The current global space industry and economic environment are driving more need for efficiencies to save time and money. Affordability and sustainability are more important now than ever. We can not continue to treat space vehicles as mere science projects. More RLV's (Reusable Launch Vehicles) are being developed for the gains of reusability which are not available for ELV's (Expendable Launch Vehicles). More human-rated vehicles are being developed, with the retirement of the Space Shuttles, and for a new global space race, yet these cost more than the many unmanned vehicles of today. We can learn many lessons on affordability from RLV's. DFO (Design for Operations) considers ground operations during design, development, and manufacturing-before the first flight. This is often minimized for space vehicles, but is very important. Vehicles are designed for launch and mission operations. You will not be able to do it again if it is too slow or costly to get there. Many times, technology changes faster than space products such that what is launched includes outdated features, thus reducing competitiveness. Ground operations must be considered for the full product Lifecycle, from concept to retirement. Once manufactured, launch vehicles along with their payloads and launch systems require a long path of processing before launch. Initial assembly and testing always discover problems to address. A solid integration program is essential to minimize these impacts, as was seen in the Constellation Ares I-X test rocket. For RLV's, landing/recovery and post-flight turnaround activities are performed. Multi-use vehicles require reconfiguration. MRO (Maintenance, Repair, and Overhaul) must be well-planned--- even for the unplanned problems. Defect limits and

  14. LWIR passive perception system for stealthy unmanned ground vehicle night operations

    Science.gov (United States)

    Lee, Daren; Rankin, Arturo; Huertas, Andres; Nash, Jeremy; Ahuja, Gaurav; Matthies, Larry

    2016-05-01

    Resupplying forward-deployed units in rugged terrain in the presence of hostile forces creates a high threat to manned air and ground vehicles. An autonomous unmanned ground vehicle (UGV) capable of navigating stealthily at night in off-road and on-road terrain could significantly increase the safety and success rate of such resupply missions for warfighters. Passive night-time perception of terrain and obstacle features is a vital requirement for such missions. As part of the ONR 30 Autonomy Team, the Jet Propulsion Laboratory developed a passive, low-cost night-time perception system under the ONR Expeditionary Maneuver Warfare and Combating Terrorism Applied Research program. Using a stereo pair of forward looking LWIR uncooled microbolometer cameras, the perception system generates disparity maps using a local window-based stereo correlator to achieve real-time performance while maintaining low power consumption. To overcome the lower signal-to-noise ratio and spatial resolution of LWIR thermal imaging technologies, a series of pre-filters were applied to the input images to increase the image contrast and stereo correlator enhancements were applied to increase the disparity density. To overcome false positives generated by mixed pixels, noisy disparities from repeated textures, and uncertainty in far range measurements, a series of consistency, multi-resolution, and temporal based post-filters were employed to improve the fidelity of the output range measurements. The stereo processing leverages multi-core processors and runs under the Robot Operating System (ROS). The night-time passive perception system was tested and evaluated on fully autonomous testbed ground vehicles at SPAWAR Systems Center Pacific (SSC Pacific) and Marine Corps Base Camp Pendleton, California. This paper describes the challenges, techniques, and experimental results of developing a passive, low-cost perception system for night-time autonomous navigation.

  15. Adaptive representation for dynamic environment, vehicle, and mission complexity

    Science.gov (United States)

    Collier, Jack A.; Ricard, Benoit; Digney, Bruce L.; Cheng, David; Trentini, Michael; Beckman, Blake

    2004-09-01

    In order for an Unmanned Ground Vehicle (UGV) to operate effectively it must be able to perceive its environment in an accurate, robust and effective manner. This is done by creating a world representation which encompasses all the perceptual information necessary for the UGV to understand its surroundings. These perceptual needs are a function of the robots mobility characteristics, the complexity of the environment in which it operates, and the mission with which the UGV has been tasked. Most perceptual systems are designed with predefined vehicle, environmental, and mission complexity in mind. This can lead the robot to fail when it encounters a situation which it was not designed for since its internal representation is insufficient for effective navigation. This paper presents a research framework currently being investigated by Defence R&D Canada (DRDC), which will ultimately relieve robotic vehicles of this problem by allowing the UGV to recognize representational deficiencies, and change its perceptual strategy to alleviate these deficiencies. This will allow the UGV to move in and out of a wide variety of environments, such as outdoor rural to indoor urban, at run time without reprogramming. We present sensor and perception work currently being done and outline our research in this area for the future.

  16. Ground Vehicle Navigation Using Magnetic Field Variation

    Science.gov (United States)

    Shockley, Jeremiah A.

    The Earth's magnetic field has been the bedrock of navigation for centuries. The latest research highlights the uniqueness of magnetic field measurements based on position due to large scale variations as well as localized perturbations. These observable changes in the Earth's magnetic field as a function of position provide distinct information which can be used for navigation. This dissertation describes ground vehicle navigation exploiting variation in Earth's magnetic field using a self-contained navigation system consisting of only a magnetometer and magnetic field maps. In order to achieve navigation, effective calibration enables repeatable magnetic field measurements from different vehicles and facilitates mapping of the observable magnetic field as a function of position. A new modified ellipsoid calibration technique for strapdown magnetometers in large vehicles is described, as well as analysis of position measurement generation comparing a multitude of measurement compositions using existing and newly developed likelihood techniques. Finally, navigation solutions are presented using both a position measurement and direct incorporation of the magnetometer measurements via a particle filter to demonstrate road navigation in three different environments. Emphatically, the results affirm that navigation using magnetic field variation in ground vehicles is viable and achieves adequate performance for road level navigation.

  17. Change detection on UGV patrols with respect to a reference tour using VIS imagery

    Science.gov (United States)

    Müller, Thomas

    2015-05-01

    Autonomous driving robots (UGVs, Unmanned Ground Vehicles) equipped with visual-optical (VIS) cameras offer a high potential to automatically detect suspicious occurrences and dangerous or threatening situations on patrol. In order to explore this potential, the scene of interest is recorded first on a reference tour representing the 'everything okay' situation. On further patrols changes are detected with respect to the reference in a two step processing scheme. In the first step, an image retrieval is done to find the reference images that are closest to the current camera image on patrol. This is done efficiently based on precalculated image-to-image registrations of the reference by optimizing image overlap in a local reference search (after a global search when that is needed). In the second step, a robust spatio-temporal change detection is performed that widely compensates 3-D parallax according to variations of the camera position. Various results document the performance of the presented approach.

  18. Study of high-definition and stereoscopic head-aimed vision for improved teleoperation of an unmanned ground vehicle

    Science.gov (United States)

    Tyczka, Dale R.; Wright, Robert; Janiszewski, Brian; Chatten, Martha Jane; Bowen, Thomas A.; Skibba, Brian

    2012-06-01

    Nearly all explosive ordnance disposal robots in use today employ monoscopic standard-definition video cameras to relay live imagery from the robot to the operator. With this approach, operators must rely on shadows and other monoscopic depth cues in order to judge distances and object depths. Alternatively, they can contact an object with the robot's manipulator to determine its position, but that approach carries with it the risk of detonation from unintentionally disturbing the target or nearby objects. We recently completed a study in which high-definition (HD) and stereoscopic video cameras were used in addition to conventional standard-definition (SD) cameras in order to determine if higher resolutions and/or stereoscopic depth cues improve operators' overall performance of various unmanned ground vehicle (UGV) tasks. We also studied the effect that the different vision modes had on operator comfort. A total of six different head-aimed vision modes were used including normal-separation HD stereo, SD stereo, "micro" (reduced separation) SD stereo, HD mono, and SD mono (two types). In general, the study results support the expectation that higher resolution and stereoscopic vision aid UGV teleoperation, but the degree of improvement was found to depend on the specific task being performed; certain tasks derived notably more benefit from improved depth perception than others. This effort was sponsored by the Joint Ground Robotics Enterprise under Robotics Technology Consortium Agreement #69-200902 T01. Technical management was provided by the U.S. Air Force Research Laboratory's Robotics Research and Development Group at Tyndall AFB, Florida.

  19. Guidance and control for unmanned ground vehicles

    Science.gov (United States)

    Bateman, Peter J.

    1994-06-01

    Techniques for the guidance, control, and navigation of unmanned ground vehicles are described in terms of the communication bandwidth requirements for driving and control of a vehicle remote from the human operator. Modes of operation are conveniently classified as conventional teleoperation, supervisory control, and fully autonomous control. The fundamental problem of maintaining a robust non-line-of-sight communications link between the human controller and the remote vehicle is discussed, as this provides the impetus for greater autonomy in the control system and the greatest scope for innovation. While supervisory control still requires the man to be providing the primary navigational intelligence, fully autonomous operation requires that mission navigation is provided solely by on-board machine intelligence. Methods directed at achieving this performance are described using various active and passive sensing of the terrain for route navigation and obstacle detection. Emphasis is given to TV imagery and signal processing techniques for image understanding. Reference is made to the limitations of current microprocessor technology and suitable computer architectures. Some of the more recent control techniques involve the use of neural networks, fuzzy logic, and data fusion and these are discussed in the context of road following and cross country navigation. Examples of autonomous vehicle testbeds operated at various laboratories around the world are given.

  20. Mesh Optimization for Ground Vehicle Aerodynamics

    OpenAIRE

    Adrian Gaylard; Essam F Abo-Serie; Nor Elyana Ahmad

    2010-01-01

    Mesh optimization strategy for estimating accurate drag of a ground vehicle is proposed based on examining the effect of different mesh parameters.  The optimized mesh parameters were selected using design of experiment (DOE) method to be able to work in a...

  1. Estimating Hedonic Price Indices for Ground Vehicles

    Science.gov (United States)

    2015-06-01

    organizations use price indices to distinguish sector-specific real price growth from general inflation  OMB uses price indices to estimate the relative...I N S T I T U T E F O R D E F E N S E A N A L Y S E S Estimating Hedonic Price Indices for Ground Vehicles (Presentation) David M. Tate Stanley...currently valid OMB control number. 1. REPORT DATE JUN 2015 2. REPORT TYPE 3. DATES COVERED 4. TITLE AND SUBTITLE Estimating Hedonic Price

  2. Multisensor Equipped Uav/ugv for Automated Exploration

    Science.gov (United States)

    Batzdorfer, S.; Bobbe, M.; Becker, M.; Harms, H.; Bestmann, U.

    2017-08-01

    The usage of unmanned systems for exploring disaster scenarios has become more and more important in recent times as a supporting system for action forces. These systems have to offer a well-balanced relationship between the quality of support and additional workload. Therefore within the joint research project ANKommEn - german acronym for Automated Navigation and Communication for Exploration - a system for exploration of disaster scenarios is build-up using multiple UAV und UGV controlled via a central ground station. The ground station serves as user interface for defining missions and tasks conducted by the unmanned systems, equipped with different environmental sensors like cameras - RGB as well as IR - or LiDAR. Depending on the exploration task results, in form of pictures, 2D stitched orthophoto or LiDAR point clouds will be transmitted via datalinks and displayed online at the ground station or will be processed in short-term after a mission, e.g. 3D photogrammetry. For mission planning and its execution, UAV/UGV monitoring and georeferencing of environmental sensor data, reliable positioning and attitude information is required. This is gathered using an integrated GNSS/IMU positioning system. In order to increase availability of positioning information in GNSS challenging scenarios, a GNSS-Multiconstellation based approach is used, amongst others. The present paper focuses on the overall system design including the ground station and sensor setups on the UAVs and UGVs, the underlying positioning techniques as well as 2D and 3D exploration based on a RGB camera mounted on board the UAV and its evaluation based on real world field tests.

  3. The 18th Annual Intelligent Ground Vehicle Competition: trends and influences for intelligent ground vehicle control

    Science.gov (United States)

    Theisen, Bernard L.; Frederick, Philip; Smuda, William

    2011-01-01

    The Intelligent Ground Vehicle Competition (IGVC) is one of four, unmanned systems, student competitions that were founded by the Association for Unmanned Vehicle Systems International (AUVSI). The IGVC is a multidisciplinary exercise in product realization that challenges college engineering student teams to integrate advanced control theory, machine vision, vehicular electronics and mobile platform fundamentals to design and build an unmanned system. Teams from around the world focus on developing a suite of dual-use technologies to equip ground vehicles of the future with intelligent driving capabilities. Over the past 18 years, the competition has challenged undergraduate, graduate and Ph.D. students with real world applications in intelligent transportation systems, the military and manufacturing automation. To date, teams from over 75 universities and colleges have participated. This paper describes some of the applications of the technologies required by this competition and discusses the educational benefits. The primary goal of the IGVC is to advance engineering education in intelligent vehicles and related technologies. The employment and professional networking opportunities created for students and industrial sponsors through a series of technical events over the four-day competition are highlighted. Finally, an assessment of the competition based on participation is presented.

  4. The 19th Annual Intelligent Ground Vehicle Competition: student built autonomous ground vehicles

    Science.gov (United States)

    Theisen, Bernard L.

    2012-01-01

    The Intelligent Ground Vehicle Competition (IGVC) is one of four, unmanned systems, student competitions that were founded by the Association for Unmanned Vehicle Systems International (AUVSI). The IGVC is a multidisciplinary exercise in product realization that challenges college engineering student teams to integrate advanced control theory, machine vision, vehicular electronics and mobile platform fundamentals to design and build an unmanned system. Teams from around the world focus on developing a suite of dual-use technologies to equip ground vehicles of the future with intelligent driving capabilities. Over the past 19 years, the competition has challenged undergraduate, graduate and Ph.D. students with real world applications in intelligent transportation systems, the military and manufacturing automation. To date, teams from almost 80 universities and colleges have participated. This paper describes some of the applications of the technologies required by this competition and discusses the educational benefits. The primary goal of the IGVC is to advance engineering education in intelligent vehicles and related technologies. The employment and professional networking opportunities created for students and industrial sponsors through a series of technical events over the four-day competition are highlighted. Finally, an assessment of the competition based on participation is presented.

  5. Aluminum Rich Epoxy Primer for Ground and Air Vehicles

    Science.gov (United States)

    2017-03-01

    UNCLASSIFIED DOCUMENT Aluminum Rich Epoxy Primer for Ground and Air Vehicles Monthly Technical Report for the Period: January 20, 2017...Objective: To further develop the Aluminum Rich Epoxy Primer systems for Air and Ground Vehicles while addressing the objective requirements... Epoxy Primers in order to afford a lower initial viscosity allowing for better application properties; lower VOC; and the incorporation of various

  6. Frameworks and middleware for umanned ground vehicles

    Science.gov (United States)

    Broten, Greg S.; Monckton, Simon P.

    2005-05-01

    Modern unmanned vehicles (UV) are complex systems. The current generation of UVs have extensive capabilities allowing the UV to sense its environment, create an internal representation of the environment, navigate within this environment by commanding movement and accomplish this in real-time. This proliferation of UV capabilities has resulted in large and complex software systems that are often distributed across multiple processors. Such systems have a reputation for convoluted implementations that result in software that is difficult to understand, expand, debug and repair. In order for a UV to operate successfully this issue of complex distributed software systems must be mastered. The computing science field views a modular, component based design as the best approach for implementing complex distributed software systems. Methodologies and toolkits such as frameworks and middleware have been developed to enable and simplify the implementation of distributed software systems. DRDC and other research institutions are developing UVs frameworks using CORBA middleware. A CORBA interface enables location transparency, thus it does not matter whether the component is locally or remotely located. The UV autonomy framework developed at DRDC is based upon the Miro framework which was originally developed for soccer playing robots. The Miro framework implements many key features and methods required by autonomous systems and Miro's basis in CORBA allows it to be easily modified and extended to support the unique requirements of military UVs. DRDC has modified and extended Miro so that it now supports autonomous unmanned ground vehicles. The process of implementing these changes substantiated the advantages of frameworks and middleware since Miro proved to be highly flexible and easy to extend.

  7. Steerable wheel structure for ground vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Frye, N.V.

    1988-09-27

    This patent describes a ground vehicle having a fore-and-aft body including transversely spaced apart, right and left, fore-and-aft supports: steerable wheel structure comprising transverse axle means disposed between the supports and having right and left end portions respectively adjacent to the right and left supports, a wheel journaled on the axle means intermediate the supports on a transverse horizontal axis, right and left carriers respectively on the right and left supports, each including a fixed element mounted fixedly on the associated support and a movable member arranged for selective fore-and-aft movement relative to the support and relative to each other, right and left connecting means connecting the right and left movable members respectively to the right and left end portions of the axle means for effecting steering of the wheel as one carrier moves forward and the other moves simultaneously rearwardly, and vice versa, at least one of the members at each side of the body being constructed to accommodate fore-and-aft swinging of the axle means during steering of the wheel, and means for moving the movable members simultaneously, one forwardly and the other rearwardly.

  8. Mesh Optimization for Ground Vehicle Aerodynamics

    Directory of Open Access Journals (Sweden)

    Adrian Gaylard

    2010-04-01

    Full Text Available

    Mesh optimization strategy for estimating accurate drag of a ground vehicle is proposed based on examining the effect of different mesh parameters.  The optimized mesh parameters were selected using design of experiment (DOE method to be able to work in a limited memory environment and in a reasonable amount of time but without compromising the accuracy of results. The study was further extended to take into account the car model size effect. Three car model sizes have been investigated and compared with MIRA scale wind tunnel results. Parameters that lead to drag value closer to experiment with less memory and computational time have been identified. Scaling the optimized mesh size with the length of car model was successfully used to predict the drag of the other car sizes with reasonable accuracy. This investigation was carried out using STARCCM+ commercial software package, however the findings can be applied to any other CFD package.

  9. Unmanned vehicle technology for networked non-line-of-sight sensing applications

    Science.gov (United States)

    Gates, Miguel; Pepper, Gary; Mitra, Atindra K.; Hu, Colin; Zein-Sabatto, Saleh; Rogers, Tamara; Selmic, Rastko; Hamdan, Elrasheed; Malkani, Mohan

    2010-04-01

    We discuss the development, design, implementation, and demonstration of a robotic UGV (Unmanned Ground Vehicle) system for networked and non-line-of-sight sensing applications. Our development team is comprised of AFRL Summer Interns, University Faculty, and Personnel from AFRL. The system concept is based on a previously published technique known as "Dual-UAV Tandems for Indirect Operator-Assisted Control" [1]. This architecture is based on simulating a Mini-UAV Helicopter with a building-mounted camera and simulating a low-flying QuadRotor Helicopter with a Robotics UGV. The Robotics UGV is fitted with a custom-designed sensor boom and a surrogate chem/bio (Carbon Monoxide) PCB sensor extracted from a COTS (Commercial-Off-The-Shelf) product. The CO Sensor apparatus is co-designed with the sensor boom and is fitted with a transparent covering for protection and to promote CO (surrogate chem/bio) flow onto the sensor. The philosophy behind this non-line-of-sight system is to relay video of the UGV to an Operator station for purposes of investigating "Indirect Operator-Assisted Control" of the UGV via observation of the relayed EO video at the operator station. This would serve as a sensor fusion, giving the operator visual cues of the chemical under detection, enabling him to position the UGV in areas of higher concentration. We recorded this data, and analyzed the best approach given a test matrix of multiple scenarios, with the goal of determining the feasibility of using this layered sensing approach and the system accuracy in open field tests. For purposes of collecting scientific data with this system, we developed a Test (data collection) Matrix with following three parameters: 1. Chem/Bio detection level with side-looking sensor boom and slowly traversing UGV; 2. Chem/Bio detection level with panning sensor boom and slowly traversing UGV; 3. Chem/Bio detection level with forward-looking sensor boom and operator-assisted steering based on onboard wind vane

  10. Calculation of ground vibration spectra from heavy military vehicles

    Science.gov (United States)

    Krylov, V. V.; Pickup, S.; McNuff, J.

    2010-07-01

    The demand for reliable autonomous systems capable to detect and identify heavy military vehicles becomes an important issue for UN peacekeeping forces in the current delicate political climate. A promising method of detection and identification is the one using the information extracted from ground vibration spectra generated by heavy military vehicles, often termed as their seismic signatures. This paper presents the results of the theoretical investigation of ground vibration spectra generated by heavy military vehicles, such as tanks and armed personnel carriers. A simple quarter car model is considered to identify the resulting dynamic forces applied from a vehicle to the ground. Then the obtained analytical expressions for vehicle dynamic forces are used for calculations of generated ground vibrations, predominantly Rayleigh surface waves, using Green's function method. A comparison of the obtained theoretical results with the published experimental data shows that analytical techniques based on the simplified quarter car vehicle model are capable of producing ground vibration spectra of heavy military vehicles that reproduce basic properties of experimental spectra.

  11. Stingray: high-speed control of small UGVs in urban terrain

    Science.gov (United States)

    Yamauchi, Brian; Massey, Kent

    2009-05-01

    For the TARDEC-funded Stingray Project, iRobot Corporation and Chatten Associates are developing technologies that will allow small UGVs to operate at tactically useful speeds. In previous work, we integrated a Chatten Head-Aimed Remote Viewer (HARV) with an iRobot Warrior UGV, and used the HARV to drive the Warrior, as well as a small, high-speed, gas-powered UGV surrogate. In this paper, we describe our continuing work implementing semiautonomous driver-assist behaviors to help an operator control a small UGV at high speeds. We have implemented an IMU-based heading control behavior that enables tracked vehicles to maintain accurate heading control even over rough terrain. We are also developing a low-latency, low-bandwidth, high-quality digital video protocol to support immersive visual telepresence. Our experiments show that a video compression codec using the H.264 algorithm can produce several times better resolution than a Motion JPEG video stream, while utilizing the same limited bandwidth, and the same low latency. With further enhancements, our H.264 codec will provide an order of magnitude greater quality, while retaining a low latency comparable to Motion JPEG, and operating within the same bandwidth.

  12. Performance and Stability of a Winged Vehicle in Ground Effect

    CERN Document Server

    de Divitiis, Nicola

    2009-01-01

    Present work deals with the dynamics of vehicles which intentionally operate in the ground proximity. The dynamics in ground effect is influenced by the vehicle orientation with respect to the ground, since the aerodynamic force and moment coefficients, which in turn depend on height and angle of attack, also vary with the Euler angles. This feature, usually neglected in the applications, can be responsible for sizable variations of the aircraft performance and stability. A further effect, caused by the sink rate, determines unsteadiness that modifies the aerodynamic coefficients. In this work, an analytical formulation is proposed for the force and moment calculation in the presence of the ground and taking the aircraft attitude and sink rate into account. The aerodynamic coefficients are firstly calculated for a representative vehicle and its characteristics in ground effect are investigated. Performance and stability characteristics are then discussed with reference to significant equilibrium conditions, w...

  13. NAVIS-An UGV Indoor Positioning System Using Laser Scan Matching for Large-Area Real-Time Applications

    Directory of Open Access Journals (Sweden)

    Jian Tang

    2014-07-01

    Full Text Available Laser scan matching with grid-based maps is a promising tool for real-time indoor positioning of mobile Unmanned Ground Vehicles (UGVs. While there are critical implementation problems, such as the ability to estimate the position by sensing the unknown indoor environment with sufficient accuracy and low enough latency for stable vehicle control, further development work is necessary. Unfortunately, most of the existing methods employ heuristics for quick positioning in which numerous accumulated errors easily lead to loss of positioning accuracy. This severely restricts its applications in large areas and over lengthy periods of time. This paper introduces an efficient real-time mobile UGV indoor positioning system for large-area applications using laser scan matching with an improved probabilistically-motivated Maximum Likelihood Estimation (IMLE algorithm, which is based on a multi-resolution patch-divided grid likelihood map. Compared with traditional methods, the improvements embodied in IMLE include: (a Iterative Closed Point (ICP preprocessing, which adaptively decreases the search scope; (b a totally brute search matching method on multi-resolution map layers, based on the likelihood value between current laser scan and the grid map within refined search scope, adopted to obtain the global optimum position at each scan matching; and (c a patch-divided likelihood map supporting a large indoor area. A UGV platform called NAVIS was designed, manufactured, and tested based on a low-cost robot integrating a LiDAR and an odometer sensor to verify the IMLE algorithm. A series of experiments based on simulated data and field tests with NAVIS proved that the proposed IMEL algorithm is a better way to perform local scan matching that can offer a quick and stable positioning solution with high accuracy so it can be part of a large area localization/mapping, application. The NAVIS platform can reach an updating rate of 12 Hz in a feature

  14. Objectives and Progress on Integrated Vehicle Ground Vibration Testing for the Ares Launch Vehicles

    Science.gov (United States)

    Tuma, Margaret L.; Asloms. Brice R.

    2009-01-01

    As NASA begins design and development of the Ares launch vehicles to replace the Space Shuttle and explore beyond low Earth orbit, Integrated Vehicle Ground Vibration Testing (IVGVT) will be a vital component of ensuring that those vehicles can perform the missions assigned to them. A ground vibration test (GVT) is intended to measure by test the fundamental dynamic characteristics of launch vehicles during various phases of flight. During the series of tests, properties such as natural frequencies, mode shapes, and transfer functions are measured directly. This data is then used to calibrate loads and control systems analysis models for verifying analyses of the launch vehicle. The Ares Flight & Integrated Test Office (FITO) will be conducting IVGVT for the Ares I crew launch vehicle at Marshall Space Flight Center (MSFC) from 2011 to 2012 using the venerable Test Stand (TS) 4550, which supported similar tests for the Saturn V and Space Shuttle vehicle stacks.

  15. Behaviour recognition of ground vehicle using airborne monitoring of unmanned aerial vehicles

    Science.gov (United States)

    Oh, Hyondong; Kim, Seungkeun; Shin, Hyo-Sang; Tsourdos, Antonios; White, Brian A.

    2014-12-01

    This paper proposes a behaviour recognition methodology for ground vehicles moving within road traffic using unmanned aerial vehicles in order to identify suspicious or abnormal behaviour. With the target information acquired by unmanned aerial vehicles and estimated by filtering techniques, ground vehicle behaviour is first classified into representative driving modes, and then a string pattern matching theory is applied to detect suspicious behaviours in the driving mode history. Furthermore, a fuzzy decision-making process is developed to systematically exploit all available information obtained from a complex environment and confirm the characteristic of behaviour, while considering spatiotemporal environment factors as well as several aspects of behaviours. To verify the feasibility and benefits of the proposed approach, numerical simulations on moving ground vehicles are performed using realistic car trajectory data from an off-the-shelf traffic simulation software.

  16. Hedonic Price Indices for Ground Vehicles

    Science.gov (United States)

    2015-05-01

    portion of price change that is unexplainable by other means. In previous work with aircraft, Harmon et al. (2014) found that cost progress curves...same time, we noticed that year-over-year price growth for most vehicle systems seemed higher than could be accounted for by simple inflation...quality growth terms attribute some of the observed price growth to that, leaving less unexplained price growth to be accounted for by the price index

  17. Fast Fingerprint Database Maintenance for Indoor Positioning Based on UGV SLAM

    Directory of Open Access Journals (Sweden)

    Jian Tang

    2015-03-01

    Full Text Available Indoor positioning technology has become more and more important in the last two decades. Utilizing Received Signal Strength Indicator (RSSI fingerprints of Signals of OPportunity (SOP is a promising alternative navigation solution. However, as the RSSIs vary during operation due to their physical nature and are easily affected by the environmental change, one challenge of the indoor fingerprinting method is maintaining the RSSI fingerprint database in a timely and effective manner. In this paper, a solution for rapidly updating the fingerprint database is presented, based on a self-developed Unmanned Ground Vehicles (UGV platform NAVIS. Several SOP sensors were installed on NAVIS for collecting indoor fingerprint information, including a digital compass collecting magnetic field intensity, a light sensor collecting light intensity, and a smartphone which collects the access point number and RSSIs of the pre-installed WiFi network. The NAVIS platform generates a map of the indoor environment and collects the SOPs during processing of the mapping, and then the SOP fingerprint database is interpolated and updated in real time. Field tests were carried out to evaluate the effectiveness and efficiency of the proposed method. The results showed that the fingerprint databases can be quickly created and updated with a higher sampling frequency (5Hz and denser reference points compared with traditional methods, and the indoor map can be generated without prior information. Moreover, environmental changes could also be detected quickly for fingerprint indoor positioning.

  18. Fast fingerprint database maintenance for indoor positioning based on UGV SLAM.

    Science.gov (United States)

    Tang, Jian; Chen, Yuwei; Chen, Liang; Liu, Jingbin; Hyyppä, Juha; Kukko, Antero; Kaartinen, Harri; Hyyppä, Hannu; Chen, Ruizhi

    2015-03-04

    Indoor positioning technology has become more and more important in the last two decades. Utilizing Received Signal Strength Indicator (RSSI) fingerprints of Signals of OPportunity (SOP) is a promising alternative navigation solution. However, as the RSSIs vary during operation due to their physical nature and are easily affected by the environmental change, one challenge of the indoor fingerprinting method is maintaining the RSSI fingerprint database in a timely and effective manner. In this paper, a solution for rapidly updating the fingerprint database is presented, based on a self-developed Unmanned Ground Vehicles (UGV) platform NAVIS. Several SOP sensors were installed on NAVIS for collecting indoor fingerprint information, including a digital compass collecting magnetic field intensity, a light sensor collecting light intensity, and a smartphone which collects the access point number and RSSIs of the pre-installed WiFi network. The NAVIS platform generates a map of the indoor environment and collects the SOPs during processing of the mapping, and then the SOP fingerprint database is interpolated and updated in real time. Field tests were carried out to evaluate the effectiveness and efficiency of the proposed method. The results showed that the fingerprint databases can be quickly created and updated with a higher sampling frequency (5Hz) and denser reference points compared with traditional methods, and the indoor map can be generated without prior information. Moreover, environmental changes could also be detected quickly for fingerprint indoor positioning.

  19. Fast Fingerprint Database Maintenance for Indoor Positioning Based on UGV SLAM

    Science.gov (United States)

    Tang, Jian; Chen, Yuwei; Chen, Liang; Liu, Jingbin; Hyyppä, Juha; Kukko, Antero; Kaartinen, Harri; Hyyppä, Hannu; Chen, Ruizhi

    2015-01-01

    Indoor positioning technology has become more and more important in the last two decades. Utilizing Received Signal Strength Indicator (RSSI) fingerprints of Signals of OPportunity (SOP) is a promising alternative navigation solution. However, as the RSSIs vary during operation due to their physical nature and are easily affected by the environmental change, one challenge of the indoor fingerprinting method is maintaining the RSSI fingerprint database in a timely and effective manner. In this paper, a solution for rapidly updating the fingerprint database is presented, based on a self-developed Unmanned Ground Vehicles (UGV) platform NAVIS. Several SOP sensors were installed on NAVIS for collecting indoor fingerprint information, including a digital compass collecting magnetic field intensity, a light sensor collecting light intensity, and a smartphone which collects the access point number and RSSIs of the pre-installed WiFi network. The NAVIS platform generates a map of the indoor environment and collects the SOPs during processing of the mapping, and then the SOP fingerprint database is interpolated and updated in real time. Field tests were carried out to evaluate the effectiveness and efficiency of the proposed method. The results showed that the fingerprint databases can be quickly created and updated with a higher sampling frequency (5Hz) and denser reference points compared with traditional methods, and the indoor map can be generated without prior information. Moreover, environmental changes could also be detected quickly for fingerprint indoor positioning. PMID:25746096

  20. Supporting the joint warfighter by development, training, and fielding of man-portable UGVs

    Science.gov (United States)

    Ebert, Kenneth A.; Stratton, Benjamin V.

    2005-05-01

    The Robotic Systems Pool (RSP), sponsored by the Joint Robotics Program (JRP), is an inventory of small robotic systems, payloads, and components intended to expedite the development and integration of technology into effective, supportable, fielded robotic assets. The RSP loans systems to multiple users including the military, first-responders, research organizations, and academia. These users provide feedback in their specific domain, accelerating research and development improvements of robotic systems, which in turn allow the joint warfighter to benefit from such changes more quickly than from traditional acquisition cycles. Over the past year, RSP assets have been used extensively for pre-deployment operator and field training of joint Explosive Ordnance Disposal (EOD) teams, and for the training of Navy Reservist repair technicians. These Reservists are part of the Robotic Systems Combat Support Platoon (RSCSP), attached to Space and Naval Warfare Systems Center, San Diego. The RSCSP maintains and repairs RSP assets and provides deployable technical support for users of robotic systems. Currently, a small team from the RSCSP is deployed at Camp Victory repairing and maintaining man-portable unmanned ground vehicles (UGVs) used by joint EOD teams in Operation Iraqi Freedom. The focus of this paper is to elaborate on the RSP and RSCSP and their role as invaluable resources for spiral development in the robotics community by gaining first-hand technical feedback from the warfighter and other users.

  1. Distributed control system for vehicles

    Science.gov (United States)

    Callen, Jeffrey N.; Iaconis, John M.

    1997-01-01

    Previously, control systems for remotely controlled vehicles (RCVs) and unmanned ground vehicles (UGVs) have largely been of a centralized design, in which all vehicles sensing and servo control systems are individually interfaces to a central computer. These controllers often have been completely redeveloped for each new application. This approach leads to increased development, installation, and maintenance costs, and to a product that is not easily adaptable to other platforms or tasks. Under a Phase II SBIR program, RedZone Robotics is developing a distributed control systems (DCS) that reduces development, installation, and maintenance costs while enhancing adaptability to other platforms or applications. The DCS consists of a distributed control network of small, intelligent local controller nodes acting on the vehicle motion and sensing system components. A central card oversees the network and handles higher level commands. The central card and local nodes are linked through the controller area network serial bus. The node hardware is of standardized design so that application specific tasks are largely accomplished in software. The standardized design makes the DCS potentially compatible with multiple UGV platforms and eventual dual-use applications in commercial vehicles. More sophisticated functionality, such as remote control or autonomous navigation can be layered on top of the low level control supplied by DCS. Thus, the DCS can be an enabling component for development of advanced UGV technologies. ALso, intelligent nodes enable fault identification and orderly shutdown to be accomplished directly at the vehicle actuators. This SBIR is sponsored by the US Army Tank-Automotive Research, Development and Engineering Center.

  2. Constraint Embedding for Vehicle Suspension Dynamics

    Directory of Open Access Journals (Sweden)

    Jain Abhinandan

    2016-06-01

    Full Text Available The goal of this research is to achieve close to real-time dynamics performance for allowing auto-pilot in-the-loop testing of unmanned ground vehicles (UGV for urban as well as off-road scenarios. The overall vehicle dynamics performance is governed by the multibody dynamics model for the vehicle, the wheel/terrain interaction dynamics and the onboard control system. The topic of this paper is the development of computationally efficient and accurate dynamics model for ground vehicles with complex suspension dynamics. A challenge is that typical vehicle suspensions involve closed-chain loops which require expensive DAE integration techniques. In this paper, we illustrate the use the alternative constraint embedding technique to reduce the cost and improve the accuracy of the dynamics model for the vehicle.

  3. Integrated long-range UAV/UGV collaborative target tracking

    Science.gov (United States)

    Moseley, Mark B.; Grocholsky, Benjamin P.; Cheung, Carol; Singh, Sanjiv

    2009-05-01

    Coordinated operations between unmanned air and ground assets allow leveraging of multi-domain sensing and increase opportunities for improving line of sight communications. While numerous military missions would benefit from coordinated UAV-UGV operations, foundational capabilities that integrate stove-piped tactical systems and share available sensor data are required and not yet available. iRobot, AeroVironment, and Carnegie Mellon University are working together, partially SBIR-funded through ARDEC's small unit network lethality initiative, to develop collaborative capabilities for surveillance, targeting, and improved communications based on PackBot UGV and Raven UAV platforms. We integrate newly available technologies into computational, vision, and communications payloads and develop sensing algorithms to support vision-based target tracking. We first simulated and then applied onto real tactical platforms an implementation of Decentralized Data Fusion, a novel technique for fusing track estimates from PackBot and Raven platforms for a moving target in an open environment. In addition, system integration with AeroVironment's Digital Data Link onto both air and ground platforms has extended our capabilities in communications range to operate the PackBot as well as in increased video and data throughput. The system is brought together through a unified Operator Control Unit (OCU) for the PackBot and Raven that provides simultaneous waypoint navigation and traditional teleoperation. We also present several recent capability accomplishments toward PackBot-Raven coordinated operations, including single OCU display design and operation, early target track results, and Digital Data Link integration efforts, as well as our near-term capability goals.

  4. Mission aware energy saving strategies for Army ground vehicles

    Science.gov (United States)

    Dattathreya, Macam S.

    Fuel energy is a basic necessity for this planet and the modern technology to perform many activities on earth. On the other hand, quadrupled automotive vehicle usage by the commercial industry and military has increased fuel consumption. Military readiness of Army ground vehicles is very important for a country to protect its people and resources. Fuel energy is a major requirement for Army ground vehicles. According to a report, a department of defense has spent nearly $13.6 billion on fuel and electricity to conduct ground missions. On the contrary, energy availability on this plant is slowly decreasing. Therefore, saving energy in Army ground vehicles is very important. Army ground vehicles are embedded with numerous electronic systems to conduct missions such as silent and normal stationary surveillance missions. Increasing electrical energy consumption of these systems is influencing higher fuel consumption of the vehicle. To save energy, the vehicles can use any of the existing techniques, but they require complex, expensive, and time consuming implementations. Therefore, cheaper and simpler approaches are required. In addition, the solutions have to save energy according to mission needs and also overcome size and weight constraints of the vehicle. Existing research in the current literature do not have any mission aware approaches to save energy. This dissertation research proposes mission aware online energy saving strategies for stationary Army ground vehicles to save energy as well as to meet the electrical needs of the vehicle during surveillance missions. The research also proposes theoretical models of surveillance missions, fuzzy logic models of engine and alternator efficiency data, and fuzzy logic algorithms. Based on these models, two energy saving strategies are proposed for silent and normal surveillance type of missions. During silent mission, the engine is on and batteries power the systems. During normal surveillance mission, the engine is

  5. Adaptive Surveying and Early Treatment of Crops with a Team of Autonomous Vehicles

    DEFF Research Database (Denmark)

    Kazmi, Wajahat; Bisgaard, Morten; Garcia-Ruiz, Francisco

    2011-01-01

    The ASETA project (acronym for Adaptive Surveying and Early treatment of crops with a Team of Autonomous vehicles) is a multi-disciplinary project combining cooperating airborne and ground-based vehicles with advanced sensors and automated analysis to implement a smart treatment of weeds in agric...... and allocation, remote sensing and 3D computer vision....... system (UAS) and unmanned ground vehicles (UGV) with advanced vision sensors for 3D and multispectral imaging. This paper presents the scientific and technological challenges in the project, which include multivehicle estimation and guidance, heterogeneous multi-agent systems, task generation...

  6. Self-organizing strategy design and validation for integrated air-ground detection swarm

    Institute of Scientific and Technical Information of China (English)

    Meiyan An; Zhaokui Wang; Yulin Zhang

    2016-01-01

    A self-organized integrated air-ground detection swarm is tentatively applied to achieve reentry vehicle landing detection, such as searching and rescuing a manned spaceship. The detec-tion swarm consists of multiple unmanned aerial vehicles (UAVs) and unmanned ground vehicles (UGVs). The UAVs can access a detected object quickly for high mobility, while the UGVs can comprehensively investigate the object due to the variety of car-ried equipment. In addition, the integrated air-ground detection swarm is capable of detecting from the ground and the air si-multaneously. To accomplish the coordination of the UGVs and UAVs, they are al regarded as individuals of the artificial swarm. Those individuals make control decisions independently of others based on the self-organizing strategy. The overal requirements for the detection swarm are analyzed, and the theoretical model of the self-organizing strategy based on a combined individual and environmental virtual function is established. The numerical in-vestigation proves that the self-organizing strategy is suitable and scalable to control the detection swarm. To further inspect the en-gineering reliability, an experiment set is established in laboratory, and the experimental demonstration shows that the self-organizing strategy drives the detection swarm forming a close range and mul-tiangular surveil ance configuration of a landing spot.

  7. Modeling ground vehicle acoustic signatures for analysis and synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Haschke, G. [Sandia National Labs., Albuquerque, NM (United States); Stanfield, R. [US Army CECOM, Night Vision and Electronic Sensors Directorate, Fort Belvoir, VA (United States)

    1995-07-01

    Security and weapon systems use acoustic sensor signals to classify and identify moving ground vehicles. Developing robust signal processing algorithms for this is expensive, particularly in presence of acoustic clutter or countermeasures. This paper proposes a parametric ground vehicle acoustic signature model to aid the system designer in understanding which signature features are important, developing corresponding feature extraction algorithms and generating low-cost, high-fidelity synthetic signatures for testing. The authors have proposed computer-generated acoustic signatures of armored, tracked ground vehicles to deceive acoustic-sensored smart munitions. They have developed quantitative measures of how accurately a synthetic acoustic signature matches those produced by actual vehicles. This paper describes parameters of the model used to generate these synthetic signatures and suggests methods for extracting these parameters from signatures of valid vehicle encounters. The model incorporates wide-bandwidth and narrow- bandwidth components that are modulated in a pseudo-random fashion to mimic the time dynamics of valid vehicle signatures. Narrow- bandwidth feature extraction techniques estimate frequency, amplitude and phase information contained in a single set of narrow frequency- band harmonics. Wide-bandwidth feature extraction techniques estimate parameters of a correlated-noise-floor model. Finally, the authors propose a method of modeling the time dynamics of the harmonic amplitudes as a means adding necessary time-varying features to the narrow-bandwidth signal components. The authors present results of applying this modeling technique to acoustic signatures recorded during encounters with one armored, tracked vehicle. Similar modeling techniques can be applied to security systems.

  8. Space imaging infrared optical guidance for autonomous ground vehicle

    Science.gov (United States)

    Akiyama, Akira; Kobayashi, Nobuaki; Mutoh, Eiichiro; Kumagai, Hideo; Yamada, Hirofumi; Ishii, Hiromitsu

    2008-08-01

    We have developed the Space Imaging Infrared Optical Guidance for Autonomous Ground Vehicle based on the uncooled infrared camera and focusing technique to detect the objects to be evaded and to set the drive path. For this purpose we made servomotor drive system to control the focus function of the infrared camera lens. To determine the best focus position we use the auto focus image processing of Daubechies wavelet transform technique with 4 terms. From the determined best focus position we transformed it to the distance of the object. We made the aluminum frame ground vehicle to mount the auto focus infrared unit. Its size is 900mm long and 800mm wide. This vehicle mounted Ackerman front steering system and the rear motor drive system. To confirm the guidance ability of the Space Imaging Infrared Optical Guidance for Autonomous Ground Vehicle we had the experiments for the detection ability of the infrared auto focus unit to the actual car on the road and the roadside wall. As a result the auto focus image processing based on the Daubechies wavelet transform technique detects the best focus image clearly and give the depth of the object from the infrared camera unit.

  9. Improved obstacle avoidance and navigation for an autonomous ground vehicle

    Science.gov (United States)

    Giri, Binod; Cho, Hyunsu; Williams, Benjamin C.; Tann, Hokchhay; Shakya, Bicky; Bharam, Vishal; Ahlgren, David J.

    2015-01-01

    This paper presents improvements made to the intelligence algorithms employed on Q, an autonomous ground vehicle, for the 2014 Intelligent Ground Vehicle Competition (IGVC). In 2012, the IGVC committee combined the formerly separate autonomous and navigation challenges into a single AUT-NAV challenge. In this new challenge, the vehicle is required to navigate through a grassy obstacle course and stay within the course boundaries (a lane of two white painted lines) that guide it toward a given GPS waypoint. Once the vehicle reaches this waypoint, it enters an open course where it is required to navigate to another GPS waypoint while avoiding obstacles. After reaching the final waypoint, the vehicle is required to traverse another obstacle course before completing the run. Q uses modular parallel software architecture in which image processing, navigation, and sensor control algorithms run concurrently. A tuned navigation algorithm allows Q to smoothly maneuver through obstacle fields. For the 2014 competition, most revisions occurred in the vision system, which detects white lines and informs the navigation component. Barrel obstacles of various colors presented a new challenge for image processing: the previous color plane extraction algorithm would not suffice. To overcome this difficulty, laser range sensor data were overlaid on visual data. Q also participates in the Joint Architecture for Unmanned Systems (JAUS) challenge at IGVC. For 2014, significant updates were implemented: the JAUS component accepted a greater variety of messages and showed better compliance to the JAUS technical standard. With these improvements, Q secured second place in the JAUS competition.

  10. An interactive physics-based unmanned ground vehicle simulator leveraging open source gaming technology: progress in the development and application of the virtual autonomous navigation environment (VANE) desktop

    Science.gov (United States)

    Rohde, Mitchell M.; Crawford, Justin; Toschlog, Matthew; Iagnemma, Karl D.; Kewlani, Guarav; Cummins, Christopher L.; Jones, Randolph A.; Horner, David A.

    2009-05-01

    It is widely recognized that simulation is pivotal to vehicle development, whether manned or unmanned. There are few dedicated choices, however, for those wishing to perform realistic, end-to-end simulations of unmanned ground vehicles (UGVs). The Virtual Autonomous Navigation Environment (VANE), under development by US Army Engineer Research and Development Center (ERDC), provides such capabilities but utilizes a High Performance Computing (HPC) Computational Testbed (CTB) and is not intended for on-line, real-time performance. A product of the VANE HPC research is a real-time desktop simulation application under development by the authors that provides a portal into the HPC environment as well as interaction with wider-scope semi-automated force simulations (e.g. OneSAF). This VANE desktop application, dubbed the Autonomous Navigation Virtual Environment Laboratory (ANVEL), enables analysis and testing of autonomous vehicle dynamics and terrain/obstacle interaction in real-time with the capability to interact within the HPC constructive geo-environmental CTB for high fidelity sensor evaluations. ANVEL leverages rigorous physics-based vehicle and vehicle-terrain interaction models in conjunction with high-quality, multimedia visualization techniques to form an intuitive, accurate engineering tool. The system provides an adaptable and customizable simulation platform that allows developers a controlled, repeatable testbed for advanced simulations. ANVEL leverages several key technologies not common to traditional engineering simulators, including techniques from the commercial video-game industry. These enable ANVEL to run on inexpensive commercial, off-the-shelf (COTS) hardware. In this paper, the authors describe key aspects of ANVEL and its development, as well as several initial applications of the system.

  11. Magnesium Technology and Manufacturing for Ultra Lightweight Armored Ground Vehicles

    Science.gov (United States)

    2009-02-01

    Bruce Davis and Rick DeLorme Magnesium Elektron North America, Inc. A reprint from the Proceedings of the 2008 Army Science Conference...SUPPLEMENTARY NOTES *Magnesium Elektron North America, Inc., 1001 College St., Madison, IL 62060 A reprint from the Proceedings of the 2008 Army Science...initial emphasis on the Elektron WE43 alloy system for lightweight armored ground vehicle applications. Engineering design factors are reviewed and

  12. Way-point navigation for a skid-steer vehicle in unknown environments

    Science.gov (United States)

    Chen, Peiyi; Das, Arun; Mukherjee, Prasenjit; Waslander, Steven

    2012-01-01

    Unmanned ground vehicles (UGVs) allow people to remotely access and perform tasks in dangerous or inconvenient locations more effectively. They have been successfully used for practical applications such as mine detection, sample retrieval, and exploration and mapping. One of the fundamental requirements for the autonomous operation of any vehicle is the capability to traverse its environment safely. To accomplish this, UGVs rely on the data from their on-board sensors to solve the problems of localization, mapping, path planning, and controls. This paper proposes a combined mapping, path planning, and controls solution that will allow a skidsteer UGV to navigate safely through unknown environments and reach a goal location. The mapping algorithm generates 2D maps of the traversable environment, the path planner uses these maps to find kinodynamically feasible paths to the goal, and the tracking controller ensures that the vehicle stays on the generated path during traversal. All of the algorithms are computationally efficient enough to run onboard the robot in real-time, and the proposed solution has been experimentally verified on a custom built skid-steer vehicle allowing it to navigate to desired GPS waypoints through a variety of unknown environments.

  13. Application of parallelized software architecture to an autonomous ground vehicle

    Science.gov (United States)

    Shakya, Rahul; Wright, Adam; Shin, Young Ho; Momin, Orko; Petkovsek, Steven; Wortman, Paul; Gautam, Prasanna; Norton, Adam

    2011-01-01

    This paper presents improvements made to Q, an autonomous ground vehicle designed to participate in the Intelligent Ground Vehicle Competition (IGVC). For the 2010 IGVC, Q was upgraded with a new parallelized software architecture and a new vision processor. Improvements were made to the power system reducing the number of batteries required for operation from six to one. In previous years, a single state machine was used to execute the bulk of processing activities including sensor interfacing, data processing, path planning, navigation algorithms and motor control. This inefficient approach led to poor software performance and made it difficult to maintain or modify. For IGVC 2010, the team implemented a modular parallel architecture using the National Instruments (NI) LabVIEW programming language. The new architecture divides all the necessary tasks - motor control, navigation, sensor data collection, etc. into well-organized components that execute in parallel, providing considerable flexibility and facilitating efficient use of processing power. Computer vision is used to detect white lines on the ground and determine their location relative to the robot. With the new vision processor and some optimization of the image processing algorithm used last year, two frames can be acquired and processed in 70ms. With all these improvements, Q placed 2nd in the autonomous challenge.

  14. Remote control of a small unmanned ground vehicle (SUGV)

    Science.gov (United States)

    Irimie, Nicolae; Zorila, Alexandru; Nan, Alexandru; Schiopu, Paul

    2010-11-01

    Developing robot technology has gained an increasing dynamics. Small unmanned ground vehicle - SUGV has gained a place in the robotics field. This paper describes the possibility of remote control of the SUGV using a fuzzy algorithm. This designed algorithm specifically for controlling of a semi-autonomous mobile robot for research, observation, and surveillance. The device can provide 360-degree panoramic images using an image system which includes a hyperboloid mirror and a CCD camera, designed for this specific purpose. Both components, fuzzy algorithm and image system were implemented, tested in the laboratory condition and outdoor on a mobile robot for research, observation, and surveillance.

  15. Single Fuel Concept for Croatian Army Ground Vehicles

    Directory of Open Access Journals (Sweden)

    Robert Spudić

    2008-05-01

    Full Text Available During the process of approaching the European associationsand NATO the Republic of Croatia has accepted the singlefuel concept for all ground vehicles of the Croatian Army.Croatia has also undertaken to insure that all aircraft, motorvehicles and equipment with turbo-engines or with pressurizedfuel injection, for participation in NATO and PfP led operationscan • operate using the kerosene-based aviation fuel(NATO F-34. The paper gives a brief overview and the resultsof the earned out activities in the Armed Forces of the Republicof Croatia, the expected behaviour of the motor vehicle andpossible delays caused by the use of kerosene fuel (NATOF-34 as fuel for motor vehicles. The paper also gives the advantagesand the drawbacks of the single fuel concept. By acquiringnew data in the Croatian Armed Forces and experienceexchange with other nations about the method of using fuelF-34, the development of the technologies of engine manufacturingand its vital parts or by introducing new standards in theproductjon of fuels and additives new knowledge will certainlybe acquired for providing logistics support in the area of operations,and its final implementation will be a big step forward forthe Republic of Croatia towards Europe and NATO.

  16. UGV application modeling and sensor simulation using a rapid prototyping testbed environment

    Science.gov (United States)

    Falasco, James; O'Leary, Steve

    2009-05-01

    This paper reviews hardware and software solutions that allow for rapid prototyping of new or modified UGV sensor designs, mission payloads and functional sub assemblies. We define reconfigurable computing in the context of being able to place various PMC modules depending upon mission scenarios onto a base SBC (Single Board Computer) or multiprocessor architectures to achieve maximum scalability. Also addressed are the sensor and computing packaging aspects and how such payloads could be integrated with unattended acoustic sensor topologies providing a more complete fused "picture" to decision makers. We review how these modular payloads could be integrated with unattended ground sensors to collaborate on mission requirements

  17. Intelligence algorithms for autonomous navigation in a ground vehicle

    Science.gov (United States)

    Petkovsek, Steve; Shakya, Rahul; Shin, Young Ho; Gautam, Prasanna; Norton, Adam; Ahlgren, David J.

    2012-01-01

    This paper will discuss the approach to autonomous navigation used by "Q," an unmanned ground vehicle designed by the Trinity College Robot Study Team to participate in the Intelligent Ground Vehicle Competition (IGVC). For the 2011 competition, Q's intelligence was upgraded in several different areas, resulting in a more robust decision-making process and a more reliable system. In 2010-2011, the software of Q was modified to operate in a modular parallel manner, with all subtasks (including motor control, data acquisition from sensors, image processing, and intelligence) running simultaneously in separate software processes using the National Instruments (NI) LabVIEW programming language. This eliminated processor bottlenecks and increased flexibility in the software architecture. Though overall throughput was increased, the long runtime of the image processing process (150 ms) reduced the precision of Q's realtime decisions. Q had slow reaction times to obstacles detected only by its cameras, such as white lines, and was limited to slow speeds on the course. To address this issue, the image processing software was simplified and also pipelined to increase the image processing throughput and minimize the robot's reaction times. The vision software was also modified to detect differences in the texture of the ground, so that specific surfaces (such as ramps and sand pits) could be identified. While previous iterations of Q failed to detect white lines that were not on a grassy surface, this new software allowed Q to dynamically alter its image processing state so that appropriate thresholds could be applied to detect white lines in changing conditions. In order to maintain an acceptable target heading, a path history algorithm was used to deal with local obstacle fields and GPS waypoints were added to provide a global target heading. These modifications resulted in Q placing 5th in the autonomous challenge and 4th in the navigation challenge at IGVC.

  18. Probabilistic Tracking and Trajectory Planning for Autonomous Ground Vehicles in Urban Environments

    Science.gov (United States)

    2016-03-05

    SECURITY CLASSIFICATION OF: The aim of this research is to develop a unified theory for perception and planning in autonomous ground vehicles , with a...Pine Tree Road Ithaca, NY 14850 -2820 ABSTRACT Probabilistic Tracking and Trajectory Planning for Autonomous Ground Vehicles in Urban Environments...Report Title The aim of this research is to develop a unified theory for perception and planning in autonomous ground vehicles , with a specific focus on

  19. Ensuring Safe Exploration: Ares Launch Vehicle Integrated Vehicle Ground Vibration Testing

    Science.gov (United States)

    Tuma, M. L.; Chenevert, D. J.

    2010-01-01

    Integrated vehicle ground vibration testing (IVGVT) will be a vital component for ensuring the safety of NASA's next generation of exploration vehicles to send human beings to the Moon and beyond. A ground vibration test (GVT) measures the fundamental dynamic characteristics of launch vehicles during various phases of flight. The Ares Flight & Integrated Test Office (FITO) will be leading the IVGVT for the Ares I crew launch vehicle at Marshall Space Flight Center (MSFC) from 2012 to 2014 using Test Stand (TS) 4550. MSFC conducted similar GVT for the Saturn V and Space Shuttle vehicles. FITO is responsible for performing the IVGVT on the Ares I crew launch vehicle, which will lift the Orion crew exploration vehicle to low Earth orbit, and the Ares V cargo launch vehicle, which can launch the lunar lander into orbit and send the combined Orionilander vehicles toward the Moon. Ares V consists of a six-engine core stage with two solid rocket boosters and an Earth departure stage (EDS). The same engine will power the EDS and the Ares I second stage. For the Ares IVGVT, the current plan is to test six configurations in three unique test positions inside TS 4550. Position 1 represents the entire launch stack at liftoff (using inert first stage segments). Position 2 consists of the entire launch stack at first stage burn-out (using empty first stage segments). Four Ares I second stage test configurations will be tested in Position 3, consisting of the Upper Stage and Orion crew module in four nominal conditions: J-2X engine ignition, post Launch Abort System (LAS) jettison, critical slosh mass, and J-2X burn-out. Because of long disuse, TS 4550 is being repaired and reactivated to conduct the Ares I IVGVT. The Shuttle-era platforms have been removed and are being replaced with mast climbers that provide ready access to the test articles and can be moved easily to support different positions within the test stand. The electrical power distribution system for TS 4550 was

  20. Infrared stereo calibration for unmanned ground vehicle navigation

    Science.gov (United States)

    Harguess, Josh; Strange, Shawn

    2014-06-01

    The problem of calibrating two color cameras as a stereo pair has been heavily researched and many off-the-shelf software packages, such as Robot Operating System and OpenCV, include calibration routines that work in most cases. However, the problem of calibrating two infrared (IR) cameras for the purposes of sensor fusion and point could generation is relatively new and many challenges exist. We present a comparison of color camera and IR camera stereo calibration using data from an unmanned ground vehicle. There are two main challenges in IR stereo calibration; the calibration board (material, design, etc.) and the accuracy of calibration pattern detection. We present our analysis of these challenges along with our IR stereo calibration methodology. Finally, we present our results both visually and analytically with computed reprojection errors.

  1. A survey of unmanned ground vehicles with applications to agricultural and environmental sensing

    Science.gov (United States)

    Bonadies, Stephanie; Lefcourt, Alan; Gadsden, S. Andrew

    2016-05-01

    Unmanned ground vehicles have been utilized in the last few decades in an effort to increase the efficiency of agriculture, in particular, by reducing labor needs. Unmanned vehicles have been used for a variety of purposes including: soil sampling, irrigation management, precision spraying, mechanical weeding, and crop harvesting. In this paper, unmanned ground vehicles, implemented by researchers or commercial operations, are characterized through a comparison to other vehicles used in agriculture, namely airplanes and UAVs. An overview of different trade-offs of configurations, control schemes, and data collection technologies is provided. Emphasis is given to the use of unmanned ground vehicles in food crops, and includes a discussion of environmental impacts and economics. Factors considered regarding the future trends and potential issues of unmanned ground vehicles include development, management and performance. Also included is a strategy to demonstrate to farmers the safety and profitability of implementing the technology.

  2. The influence of vehicle front-end design on pedestrian ground impact.

    Science.gov (United States)

    Crocetta, Gianmarco; Piantini, Simone; Pierini, Marco; Simms, Ciaran

    2015-06-01

    Accident data have shown that in pedestrian accidents with high-fronted vehicles (SUVs and vans) the risk of pedestrian head injuries from the contact with the ground is higher than with low-fronted vehicles (passenger cars). However, the reasons for this remain poorly understood. This paper addresses this question using multibody modelling to investigate the influence of vehicle front height and shape in pedestrian accidents on the mechanism of impact with the ground and on head ground impact speed. To this end, a set of 648 pedestrian/vehicle crash simulations was carried out using the MADYMO multibody simulation software. Impacts were simulated with six vehicle types at three impact speeds (20, 30, 40km/h) and three pedestrian types (50th % male, 5th % female, and 6-year-old child) at six different initial stance configurations, stationary and walking at 1.4m/s. Six different ground impact mechanisms, distinguished from each other by the manner in which the pedestrian impacted the ground, were identified. These configurations have statistically distinct and considerably different distributions of head-ground impact speeds. Pedestrian initial stance configuration (gait and walking speed) introduced a high variability to the head-ground impact speed. Nonetheless, the head-ground impact speed varied significantly between the different ground impact mechanisms identified and the distribution of impact mechanisms was strongly associated with vehicle type. In general, impact mechanisms for adults resulting in a head-first contact with the ground were more severe with high fronted vehicles compared to low fronted vehicles, though there is a speed dependency to these findings. With high fronted vehicles (SUVs and vans) the pedestrian was mainly pushed forward and for children this resulted in high head ground contact speeds. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Adaptive Neuro-Fuzzy Technique for Autonomous Ground Vehicle Navigation

    Directory of Open Access Journals (Sweden)

    Auday Al-Mayyahi

    2014-11-01

    Full Text Available This article proposes an adaptive neuro-fuzzy inference system (ANFIS for solving navigation problems of an autonomous ground vehicle (AGV. The system consists of four ANFIS controllers; two of which are used for regulating both the left and right angular velocities of the AGV in order to reach the target position; and other two ANFIS controllers are used for optimal heading adjustment in order to avoid obstacles. The two velocity controllers receive three sensor inputs: front distance (FD; right distance (RD and left distance (LD for the low-level motion control. Two heading controllers deploy the angle difference (AD between the heading of AGV and the angle to the target to choose the optimal direction. The simulation experiments have been carried out under two different scenarios to investigate the feasibility of the proposed ANFIS technique. The simulation results have been presented using MATLAB software package; showing that ANFIS is capable of performing the navigation and path planning task safely and efficiently in a workspace populated with static obstacles.

  4. Ground control stations for unmanned air vehicles (Review Paper

    Directory of Open Access Journals (Sweden)

    G. Natarajan

    2001-07-01

    Full Text Available "During the last five decades, the world has witnessed tremendous growth in the military aircraft technology and the air defence weapons technology. Use of manned aircraft for routine reconnaissance/surveillance missions has become a less preferred option due to possible high attrition rate. Currently, the high political cost of human life has practically earmarked the roles of reconnaissance and surveillance missions to the unmanned air vehicles (UAVs. Almost every major country has a UAV program of its own and this interest has spawned intensive research in the field of UAVs. Presently, the UAVs come in all shapes and sizes, from palm top micro UAVs to giant strategic UAVs that can loiter over targets for extended periods of time. Though UAVs are capable of operating at different levels of autonomy, these are generally controlled from a ground control station (GCS. The GCS is the nerve centre of activity during UAV missions and provides necessary capability to plan and execute UAV missions. The GCS incorporates facilities, such as communication, displays, mission planning and data exploitation. The GCS architecture is highly processor-oriented and hence the computer hardware and software technologies play a major role in the realisation of this vital system. This paper gives an overview of the GCS, its architecture and the current state-of-the-art in various subsystem technologies.

  5. 基于μ综合的无人驾驶车辆路径跟随串级鲁棒控制方法%UGV Robust Path Following Control under Double Loop Structure with μ Synthesis

    Institute of Scientific and Technical Information of China (English)

    宋彦; 赵盼; 陶翔; 李碧春; 梁华为; 梅涛

    2013-01-01

    For the problem that the path following performance is degraded due to model uncertainty of the unmanned ground vehicle (UGV) during lateral maneuvering,a double loop control structure is designed,in which the path following control is the external loop and the yaw stability control is the inner loop respectively.A robust yaw stability control based on μ synthesis is proposed.Simulation results show that the UGV based on this method has better performance than PID (proportional-integral-derivative) and H∞ controller when model parameters are changed.In comparison experiments,the root mean square error of this method is 1/3 less than PID.The result shows that this method also has robust stability and robust performance with respect to uncertain vehicle parameters.%无人驾驶车辆做横向机动过程中,会发生由模型不确定性引发的路径跟随性能下降,为解决这一问题,设计了以横摆稳定控制作为内环、路径跟随控制作为外环的串级控制结构.提出了基于u综合的横摆稳定控制方法.仿真表明,在模型参数发生变化时,对比H∞和PID控制,μ综合方法的控制效果受模型不确定性影响最小.在对比实验中,该方法的均方根误差比PID控制降低了1/3,证明该方法能够在车辆模型参数变化时保证控制系统的鲁棒稳定性与鲁棒性能.

  6. Investigations into near-real-time surveying for geophysical data collection using an autonomous ground vehicle

    Science.gov (United States)

    Phelps, Geoffrey A.; Ippolito, C.; Lee, R.; Spritzer, R.; Yeh, Y.

    2014-01-01

    The U.S. Geological Survey and the National Aeronautics and Space Administration are cooperatively investigating the utility of unmanned vehicles for near-real-time autonomous surveys of geophysical data collection. Initially focused on unmanned ground vehicle collection of magnetic data, this cooperative effort has brought unmanned surveying, precision guidance, near-real-time communication, on-the-fly data processing, and near-real-time data interpretation into the realm of ground geophysical surveying, all of which offer advantages over current methods of manned collection of ground magnetic data. An unmanned ground vehicle mission has demonstrated that these vehicles can successfully complete missions to collect geophysical data, and add advantages in data collection, processing, and interpretation. We view the current experiment as an initial phase in further unmanned vehicle data-collection missions, including aerial surveying.

  7. Longitudinal static stability requirements for wing in ground effect vehicle

    Science.gov (United States)

    Yang, Wei; Yang, Zhigang; Collu, Maurizio

    2015-06-01

    The issue of the longitudinal stability of a WIG vehicle has been a very critical design factor since the first experimental WIG vehicle has been built. A series of studies had been performed and focused on the longitudinal stability analysis. However, most studies focused on the longitudinal stability of WIG vehicle in cruise phase, and less is available on the longitudinal static stability requirement of WIG vehicle when hydrodynamics are considered: WIG vehicle usually take off from water. The present work focuses on stability requirement for longitudinal motion from taking off to landing. The model of dynamics for a WIG vehicle was developed taking into account the aerodynamic, hydrostatic and hydrodynamic forces, and then was analyzed. Following with the longitudinal static stability analysis, effect of hydrofoil was discussed. Locations of CG, aerodynamic center in pitch, aerodynamic center in height and hydrodynamic center in heave were illustrated for a stabilized WIG vehicle. The present work will further improve the longitudinal static stability theory for WIG vehicle.

  8. Longitudinal static stability requirements for wing in ground effect vehicle

    Directory of Open Access Journals (Sweden)

    Wei Yang

    2015-03-01

    Full Text Available The issue of the longitudinal stability of a WIG vehicle has been a very critical design factor since the first experimental WIG vehicle has been built. A series of studies had been performed and focused on the longitudinal stability analysis. However, most studies focused on the longitudinal stability of WIG vehicle in cruise phase, and less is available on the longitudinal static stability requirement of WIG vehicle when hydrodynamics are considered: WIG vehicle usually take off from water. The present work focuses on stability requirement for longitudinal motion from taking off to landing. The model of dynamics for a WIG vehicle was developed taking into account the aerodynamic, hydrostatic and hydrodynamic forces, and then was analyzed. Following with the longitudinal static stability analysis, effect of hydrofoil was discussed. Locations of CG, aerodynamic center in pitch, aerodynamic center in height and hydrodynamic center in heave were illustrated for a stabilized WIG vehicle. The present work will further improve the longitudinal static stability theory for WIG vehicle.

  9. Longitudinal static stability requirements for wing in ground effect vehicle

    Directory of Open Access Journals (Sweden)

    Yang Wei

    2015-06-01

    Full Text Available The issue of the longitudinal stability of a WIG vehicle has been a very critical design factor since the first experimental WIG vehicle has been built. A series of studies had been performed and focused on the longitudinal stability analysis. However, most studies focused on the longitudinal stability of WIG vehicle in cruise phase, and less is available on the longitudinal static stability requirement of WIG vehicle when hydrodynamics are considered: WIG vehicle usually take off from water. The present work focuses on stability requirement for longitudinal motion from taking off to landing. The model of dynamics for a WIG vehicle was developed taking into account the aerodynamic, hydrostatic and hydrodynamic forces, and then was analyzed. Following with the longitudinal static stability analysis, effect of hydrofoil was discussed. Locations of CG, aerodynamic center in pitch, aerodynamic center in height and hydrodynamic center in heave were illustrated for a stabilized WIG vehicle. The present work will further improve the longitudinal static stability theory for WIG vehicle.

  10. Advanced Mobility Testbed for Dynamic Semi-Autonomous Unmanned Ground Vehicles

    Science.gov (United States)

    2015-04-24

    Introduction Integrated simulation capabilities that are high-fidelity, fast, and have scalable architecture are essential to support autonomous vehicle ...TARDEC has attempted to develop a high-fidelity mobility simulation of an autonomous vehicle in an off-road scenario using integrated sensor...for Dynamic Semi- Autonomous Unmanned Ground Vehicles 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT

  11. Navigation and Hazard Avoidance for High-Speed Unmanned Ground Vehicles in Rough Terrain

    Science.gov (United States)

    2008-07-07

    Potential Field Navigation of High Speed Vehicles on Rough Terrain,” Robotica , Vol. 25, No. 4, pp 409-424, July 2007 Udengaard, M., and Iagnemma, K...Navigation of Unmanned Ground Vehicles on Uneven Terrain using Potential Fields," to appear in Robotica , 2007 [16] Spenko, M., Kuroda, Y., Dubowsky, S

  12. An SINS/GNSS Ground Vehicle Gravimetry Test Based on SGA-WZ02

    Directory of Open Access Journals (Sweden)

    Ruihang Yu

    2015-09-01

    Full Text Available In March 2015, a ground vehicle gravimetry test was implemented in eastern Changsha to assess the repeatability and accuracy of ground vehicle SINS/GNSS gravimeter—SGA-WZ02. The gravity system developed by NUDT consisted of a Strapdown Inertial Navigation System (SINS, a Global Navigation Satellite System (GNSS remote station on test vehicle, a GNSS static master station on the ground, and a data logging subsystem. A south-north profile of 35 km along the highway in eastern Changsha was chosen and four repeated available measure lines were obtained. The average speed of a vehicle is 40 km/h. To assess the external ground gravity disturbances, precise ground gravity data was built by CG-5 precise gravimeter as the reference. Under relative smooth conditions, internal accuracy among repeated lines shows an average agreement at the level of 1.86 mGal for half wavelengths about 1.1 km, and 1.22 mGal for 1.7 km. The root-mean-square (RMS of difference between calculated gravity data and reference data is about 2.27 mGal/1.1 km, and 1.74 mGal/1.7 km. Not all of the noises caused by vehicle itself and experiments environments were eliminated in the primary results. By means of selecting reasonable filters and improving the GNSS observation conditions, further developments in ground vehicle gravimetry are promising.

  13. An SINS/GNSS Ground Vehicle Gravimetry Test Based on SGA-WZ02.

    Science.gov (United States)

    Yu, Ruihang; Cai, Shaokun; Wu, Meiping; Cao, Juliang; Zhang, Kaidong

    2015-09-16

    In March 2015, a ground vehicle gravimetry test was implemented in eastern Changsha to assess the repeatability and accuracy of ground vehicle SINS/GNSS gravimeter-SGA-WZ02. The gravity system developed by NUDT consisted of a Strapdown Inertial Navigation System (SINS), a Global Navigation Satellite System (GNSS) remote station on test vehicle, a GNSS static master station on the ground, and a data logging subsystem. A south-north profile of 35 km along the highway in eastern Changsha was chosen and four repeated available measure lines were obtained. The average speed of a vehicle is 40 km/h. To assess the external ground gravity disturbances, precise ground gravity data was built by CG-5 precise gravimeter as the reference. Under relative smooth conditions, internal accuracy among repeated lines shows an average agreement at the level of 1.86 mGal for half wavelengths about 1.1 km, and 1.22 mGal for 1.7 km. The root-mean-square (RMS) of difference between calculated gravity data and reference data is about 2.27 mGal/1.1 km, and 1.74 mGal/1.7 km. Not all of the noises caused by vehicle itself and experiments environments were eliminated in the primary results. By means of selecting reasonable filters and improving the GNSS observation conditions, further developments in ground vehicle gravimetry are promising.

  14. Systems Engineering Approach to Develop Guidance, Navigation and Control Algorithms for Unmanned Ground Vehicle

    Science.gov (United States)

    2016-09-01

    direction of the Earth’s magnetic field to determine the geographic poles which is akin to a conventional compass. The use of magnetoresistive alloys ...requires proper design of the UGV to position the digital compass in a way that avoids interference from any surrounding ferrous material that might

  15. Indices and Computational Strategy for Unmanned Ground Wheeled Vehicle Mobility Estimation and Enhancement

    Science.gov (United States)

    2013-08-01

    proper tire to terrain interactions. The current work applies this strategic approach to both multi-wheel UGVs with mechanical/ mechatronic driveline...Coefficient”, IEEE/ASME Transactions of Mechatronics , Vol. 9, N 2, pp. 454-458. [37] Larin, V.V., 2010, “Theory of Motion of All-Wheel Drive

  16. New vision system and navigation algorithm for an autonomous ground vehicle

    Science.gov (United States)

    Tann, Hokchhay; Shakya, Bicky; Merchen, Alex C.; Williams, Benjamin C.; Khanal, Abhishek; Zhao, Jiajia; Ahlgren, David J.

    2013-12-01

    Improvements were made to the intelligence algorithms of an autonomously operating ground vehicle, Q, which competed in the 2013 Intelligent Ground Vehicle Competition (IGVC). The IGVC required the vehicle to first navigate between two white lines on a grassy obstacle course, then pass through eight GPS waypoints, and pass through a final obstacle field. Modifications to Q included a new vision system with a more effective image processing algorithm for white line extraction. The path-planning algorithm adopted the vision system, creating smoother, more reliable navigation. With these improvements, Q successfully completed the basic autonomous navigation challenge, finishing tenth out of over 50 teams.

  17. A study on the nondestructive test optimum design for a ground tracked combat vehicle

    Energy Technology Data Exchange (ETDEWEB)

    Kim Byeong Ho; Seo, Jae Hyun; Gil, Hyeon Jun [Defence Agency for Technology and Quality, Seoul (Korea, Republic of); Kim, Seon Hyeong [Hanwha Techwin Co.,Ltd., Changwon (Korea, Republic of); Seo, Sang Chul [Changwon National University, Changwon (Korea, Republic of)

    2015-10-15

    In this study, a nondestructive test (NDT) is performed to inspect the optimal design of a ground tracked combat vehicle for self-propelled artillery, tank, and armored vehicles. The minimum qualification required for personnel performing the NDT of a ground tracked combat vehicle was initially established in US military standards, and then applied to the Korean defense specifications to develop a ground tracked combat vehicle. However, the qualification standards of an NDT inspector have been integrated into NAS410 through the military and commercial specifications unification project that were applied in the existing aerospace/defense industry public standard. The design method for this study was verified by applying the optimal design to the liquid penetrant testing Al forging used in self-propelled artillery. This confirmed the reliability and soundness of the product.

  18. Some Reliability Considerations of UGV for Remote-response in Nuclear Emergency Situation

    Energy Technology Data Exchange (ETDEWEB)

    Eom, Heungseop; Cho, Jaiwan; Jeong, Kyungmin [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-05-15

    In Fukushima disaster, a number of different UGVs, such as Packbots, Warriors, Quince, and Survey Runner, are used for monitoring, collecting data, inspection, and cleaning up. In utilizing UGVs in a nuclear emergency situation, one of serious problems is reliability of UGVs which is not sufficient yet for required mission completion. In this paper we surveyed failures and reliability of field UGVs and draw some important reliability considerations of UGVs for remote-response in a nuclear emergency situation. We think that the findings in this study will be helpful for developers or researchers of UGVs for nuclear emergency situations. We studied failures and reliability of UGVs used in search/rescue, military, and nuclear field by literature survey. The results showed that a state of art field UGVs can't be expected to complete an entire mission without failures, which leads to needs of reliability improvement of them. Though part of failure data from the surveyed studies were not enough detailed to get reliability matrix, some meaningful insights were found through analysis. Based on these insights, we draw some important considerations for reliability improvement of UGVs for an NPP emergency situation, and those reliability considerations are classified according to life cycle of a UGV for developers and researchers. Finally, there were not reported failures related to radiation environments in surveyed literature, but radiation tolerant control boards and sensors are easily anticipated in a NPP emergency situation. Therefore studies about the radiation-tolerant design and the use of radiation-tolerant components also should be considered for high reliability of UGVs for a NPP application.

  19. Road-Following Formation Control of Autonomous Ground Vehicles

    Science.gov (United States)

    Ono, Masahiro; Droge, Greg; Grip, Havard; Toupet, Olivier; Scrapper, Chris; Rahmani, Amir

    2015-01-01

    This work presents a novel cooperative path planning for formation keeping robots traversing along a road with obstacles and possible narrow passages. A unique challenge in this problem is a requirement for spatial and temporal coordination between vehicles while ensuring collision and obstacle avoidance.

  20. Passive Fuel Tank Inerting Systems for Ground Combat Vehicles

    Science.gov (United States)

    1988-09-01

    34Fire Protection Handbook,"Natioaal girt Pro~dction Association (NFPA), 14th es., Dos on, cu (January 1976) 25 American Petroleum Institute, API ...System on the X60 Series Combat Vehicles," Report No. 79-04A, U.S. Army Tank Automotive Research and Development I Command, DRDTA-V, Warren, MI (October

  1. Ground Vehicle Power and Mobility (GVPM) Powertrain Overview

    Science.gov (United States)

    2011-08-11

    Transmission Multi K Factor Torque converter Powertrain Control and ECM Hardware Development Military Vehicle Fuel Economy Measurement Cycle...Military Engine Optimization Efficiency Gap Transmission -No Torque Converter - Multi-Cone clutches - Wide-spread, equally progressive gear ratios...advanced controls algorithms. • Improved torque capacity, better speed/load matching, reduced thermal loading, and improved control strategy for

  2. Demonstration of Tar Removal from Paving Equipment and Ground Vehicles

    Science.gov (United States)

    2011-05-12

    difficult job . Red River Army Depot has about 25 vehicles for refurbishing. Other equipment can also be recovered if a convenient solvent and process...solvents including ethyl lactate , dibasic esters, and X-Force were tested with little success. An aqueous solution formulated with

  3. Space vehicle field unit and ground station system

    Energy Technology Data Exchange (ETDEWEB)

    Judd, Stephen; Dallmann, Nicholas; Delapp, Jerry; Proicou, Michael; Seitz, Daniel; Michel, John; Enemark, Donald

    2017-09-19

    A field unit and ground station may use commercial off-the-shelf (COTS) components and share a common architecture, where differences in functionality are governed by software. The field units and ground stations may be easy to deploy, relatively inexpensive, and be relatively easy to operate. A novel file system may be used where datagrams of a file may be stored across multiple drives and/or devices. The datagrams may be received out of order and reassembled at the receiving device.

  4. Modeling and Simulation of an Unmanned Ground Vehicle Power System

    Science.gov (United States)

    2014-03-28

    Wilhelm, A. N., Surgenor, B. W., and Pharoah, J. G., “Design and evaluation of a micro-fuel-cell-based power system for a mobile robot ,” Mechatronics ...of Michigan, Ann Arbor, MI, USA bU.S. Army RDECOM-TARDEC, Warren, MI, USA ABSTRACT Long-duration missions challenge ground robot systems with respect...to energy storage and efficient conversion to power on demand. Ground robot systems can contain multiple power sources such as fuel cell, battery and

  5. Space vehicle field unit and ground station system

    Science.gov (United States)

    Judd, Stephen; Dallmann, Nicholas; Delapp, Jerry; Proicou, Michael; Seitz, Daniel; Michel, John; Enemark, Donald

    2016-10-25

    A field unit and ground station may use commercial off-the-shelf (COTS) components and share a common architecture, where differences in functionality are governed by software. The field units and ground stations may be easy to deploy, relatively inexpensive, and be relatively easy to operate. A novel file system may be used where datagrams of a file may be stored across multiple drives and/or devices. The datagrams may be received out of order and reassembled at the receiving device.

  6. Simultaneous Planning and Control for Autonomous Ground Vehicles

    Science.gov (United States)

    2009-02-01

    obstacle avoidance were not part of the problem. Pioneering work was done by Dubins during the late 1950’s. He proved that optimal paths connecting a car...motion. Reeds and Shepp extended the work of Dubins to include motion for a vehicle traveling both forwards and backwards [REE91]. There are several...use of receding horizon control for electro -mechanical systems. This limitation is primarily due to the time critical nature of the required control

  7. Unmanned air/ground vehicles heterogeneous cooperative techniques:Current status and prospects

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Multiple unmanned air/ground vehicles heterogeneous cooperation is a novel and challenging filed.Heterogeneous cooperative techniques can widen the application fields of unmanned air or ground vehicles,and enhance the effectiveness of implementing detection,search and rescue tasks.This paper mainly focused on the key issues in multiple unmanned air/ground vehicles heterogeneous cooperation,including heterogeneous flocking,formation control,formation stability,network control,and actual applications.The main problems and future directions in this field were also analyzed in detail.These innovative technologies can significantly enhance the effectiveness of implementing complicated tasks,which definitely provide a series of novel breakthroughs for the intelligence,integration and advancement of future robot systems.

  8. Near real-time operation of public image database for ground vehicle navigation

    Science.gov (United States)

    Ali, E.; Kozaitis, S. P.

    2015-02-01

    An effective color night vision system for ground vehicle navigation should operate in near real-time to be practical. We described a system that uses a public database as a source of color information to colorize night vision imagery. Such an approach presents several problems due to differences between acquired and reference imagery. Our system performed registration, colorizing, and reference updating in near real-time in an effort to help drivers of ground vehicles during night to see a colored view of a scene.

  9. Cooperative Surveillance and Pursuit Using Unmanned Aerial Vehicles and Unattended Ground Sensors

    Science.gov (United States)

    Las Fargeas, Jonathan; Kabamba, Pierre; Girard, Anouck

    2015-01-01

    This paper considers the problem of path planning for a team of unmanned aerial vehicles performing surveillance near a friendly base. The unmanned aerial vehicles do not possess sensors with automated target recognition capability and, thus, rely on communicating with unattended ground sensors placed on roads to detect and image potential intruders. The problem is motivated by persistent intelligence, surveillance, reconnaissance and base defense missions. The problem is formulated and shown to be intractable. A heuristic algorithm to coordinate the unmanned aerial vehicles during surveillance and pursuit is presented. Revisit deadlines are used to schedule the vehicles' paths nominally. The algorithm uses detections from the sensors to predict intruders' locations and selects the vehicles' paths by minimizing a linear combination of missed deadlines and the probability of not intercepting intruders. An analysis of the algorithm's completeness and complexity is then provided. The effectiveness of the heuristic is illustrated through simulations in a variety of scenarios. PMID:25591168

  10. Mobility Modeling and Estimation for Delay Tolerant Unmanned Ground Vehicle Networks

    Science.gov (United States)

    2013-06-01

    routing protocol such as Ad Hoc On Demand Distance Vector ( AODV ) or Dynamic Source Routing (DSR), both of which can be found in the NS2 software...problem of routing information between pairs of UGV nodes requires effective path planning protocols to be developed. In order to implement such... routing ) protocols in ad hoc networks: (1) A new mobility estimation algorithm is proposed based upon a constrained spatial grid of cells and

  11. Investigating the Usefulness of Soldier Aids for Autonomous Unmanned Ground Vehicles, Part 2

    Science.gov (United States)

    2015-03-01

    situation in which it could prove difficult for the autonomy to handle without operator intervention. In this study, we investigated the usefulness of...touch- screen capability. Autonomous navigation for the simulated UGV was handled using the Autonomous Navigation System (ANS) software. This...research. Proceedings of the 54nd Annual Meeting of the Human Factors and Ergonomics Society; 2010 Sep 27–Oct 1; San Francisco (CA). Evans AW

  12. Path Tracking for Unmanned Ground Vehicle Navigation: Implementation and Adaptation of the Pure Pursuit Algorithm

    Science.gov (United States)

    2005-12-01

    navigation autonome des Véhicules terrestres sans pilotes (UGV). Cet article résume l’état actuel de l’art de localiser des parcours avec la robotique ...continuait de fonctionner d’une manière stable et efficace. On peut en conclure que Pure Pursuit est utile à une grande variété d’applications robotiques

  13. Integrated vehicle control and guidance systems in unmanned ground vehicles for commercial applications

    Science.gov (United States)

    Kenyon, Chase H.

    1995-01-01

    While there is a lot of recent development in the entire IVHS field, very few have had the opportunity to combine the many areas of development into a single integrated `intelligent' unmanned vehicle. One of our systems was developed specifically to serve a major automobile manufacturer's need for an automated vehicle chassis durability test facility. Due to the severity of the road surface human drivers could not be used. A totally automated robotic vehicle driver and guidance system was necessary. In order to deliver fixed price commercial projects now, it was apparent system and component costs were of paramount importance. Cyplex has developed a robust, cost effective single wire guidance system. This system has inherent advantages in system simplicity. Multi-signal (per vehicle lane) systems complicate path planning and layout when multiple lanes and lane changes are required, as on actual highways. The system has demonstrated high enough immunity to rain and light snow cover that normal safety reductions in speed are adequate to stay within the required system performance envelope. This system and it's antenna interface have shown the ability to guide the vehicle at slow speeds (10 MPH) with a tracking repeatability of plus or minus 1/8 of an inch. The basic guide and antenna system has been tested at speeds up to 80 mph. The system has inherently superior abilities for lane changes and precision vehicle placement. The operation of this system will be described and the impact of a system that is commercially viable now for highway and off road use will be discussed.

  14. Inexpensive semi-autonomous ground vehicles for defusing IEDs

    Science.gov (United States)

    Davenport, Chris; Lodmell, James; Womble, Phillip C.; Barzilov, Alexander; Paschal, Jon; Hernandez, Robert; Moss, Kyle T.; Hopper, Lindsay

    2008-04-01

    Improvised explosive devices (IEDs) are an important concern to coalition forces during the conflicts in the Middle East. These devices are responsible for many casualties to American armed forces in the Middle East. These explosives are particularly dangerous because they are improvised with materials readily available to the designer, and there is no systematic way of explosive ordinance disposal. IEDs can be made from things such as standard military ammunition and can be detonated with common electronic devices such as cell phones and garage door openers. There is a great need for a low cost solution to neutralize these IEDs. At the Applied Physics Institute we are building a single function disrupter robot whose sole purpose is to neutralize these IEDs. We are modifying a toy remote control car to control it either wirelessly using WI-FI (IEEE 802.11) or wired by tethering the vehicle with an Ethernet cable (IEEE 802.3). The robot will be equipped with a high velocity fuze disrupter to neutralize the IED as well as a video camera for inspection and aiming purposes. This robot utilizes commercial-off-the-shelf (COTS) components which keeps the cost relatively low. Currently, similar robot systems have been deployed in Iraq and elsewhere but their method of operation is such that it is impractical to use in non-combat situations. We will discuss our design and possible deployment scenarios.

  15. Color night vision system for ground vehicle navigation

    Science.gov (United States)

    Ali, E. A.; Qadir, H.; Kozaitis, S. P.

    2014-06-01

    Operating in a degraded visual environment due to darkness can pose a threat to navigation safety. Systems have been developed to navigate in darkness that depend upon differences between objects such as temperature or reflectivity at various wavelengths. However, adding sensors for these systems increases the complexity by adding multiple components that may create problems with alignment and calibration. An approach is needed that is passive and simple for widespread acceptance. Our approach uses a type of augmented display to show fused images from visible and thermal sensors that are continuously updated. Because the raw fused image gave an unnatural color appearance, we used a color transfer process based on a look-up table to replace the false colors with a colormap derived from a daytime reference image obtained from a public database using the GPS coordinates of the vehicle. Although the database image was not perfectly registered, we were able to produce imagery acquired at night that appeared with daylight colors. Such an approach could improve the safety of nighttime navigation.

  16. Foundations for learning and adaptation in a multi-degree-of-freedom unmanned ground vehicle

    Science.gov (United States)

    Blackburn, Michael R.; Bailey, Richard

    2004-04-01

    The real-time coordination and control of a many motion degrees of freedom (dof) unmanned ground vehicle under dynamic conditions in a complex environment is nearly impossible for a human operator to accomplish. Needed are adaptive on-board mechanisms to quickly complete sensor-effector loops to maintain balance and leverage. This paper contains a description of our approach to the control problem for a small unmanned ground vehicle with six dof in the three spatial dimensions. Vehicle control is based upon seven fixed action patterns that exercise all of the motion dof of which the vehicle is capable, and five basic reactive behaviors that protect the vehicle during operation. The reactive behaviors demonstrate short-term adaptations. The learning processes for long-term adaptations of the vehicle control functions that we are implementing are composed of classical and operant conditionings of novel responses to information available from distance sensors (vision and audition) built upon the pre-defined fixed action patterns. The fixed action patterns are in turn modulated by the pre-defined low-level reactive behaviors that, as unconditioned responses, continuously serve to maintain the viability of the robot during the activations of the fixed action patterns, and of the higher-order (conditioned) behaviors. The sensors of the internal environment that govern the low-level reactive behaviors also serve as the criteria for operant conditioning, and satisfy the requirement for basic behavioral motivation.

  17. MEASUREMENT OF AERODYNAMIC CHARACTERISTICS OF A HANG-GLIDER-WING BY GROUND RUN TESTS USING A TEST VEHICLE

    OpenAIRE

    Hozumi, Koki; KOMODA, Masaki; Ono, Takatsugu; TSUKANO, Yukichi; 穂積, 弘毅; 古茂田, 真幸; 小野, 孝次; 塚野, 雄吉

    1987-01-01

    In order to investigate longitudinal force and moment characteristics of a hang-glider-wing, ground run tests were conducted using a test vehicle. A hang-glider-wing was installed on a test vehicle using a six-components-balance for wind tunnel use. Aerodynamic force and moment were measrued during the vehicle run at various constant speeds. Geometrical twist distribution along the wing span was recorded as well. Measured force and moment data were corrected for possible ground effect and upw...

  18. Function-based design process for an intelligent ground vehicle vision system

    Science.gov (United States)

    Nagel, Robert L.; Perry, Kenneth L.; Stone, Robert B.; McAdams, Daniel A.

    2010-10-01

    An engineering design framework for an autonomous ground vehicle vision system is discussed. We present both the conceptual and physical design by following the design process, development and testing of an intelligent ground vehicle vision system constructed for the 2008 Intelligent Ground Vehicle Competition. During conceptual design, the requirements for the vision system are explored via functional and process analysis considering the flows into the vehicle and the transformations of those flows. The conceptual design phase concludes with a vision system design that is modular in both hardware and software and is based on a laser range finder and camera for visual perception. During physical design, prototypes are developed and tested independently, following the modular interfaces identified during conceptual design. Prototype models, once functional, are implemented into the final design. The final vision system design uses a ray-casting algorithm to process camera and laser range finder data and identify potential paths. The ray-casting algorithm is a single thread of the robot's multithreaded application. Other threads control motion, provide feedback, and process sensory data. Once integrated, both hardware and software testing are performed on the robot. We discuss the robot's performance and the lessons learned.

  19. Dynamic Performance on Multi Storey Structure Due to Ground Borne Vibrations Input from Passing Vehicles

    Directory of Open Access Journals (Sweden)

    Tuan Norhayati Tuan Chik

    2013-12-01

    Full Text Available Ground borne vibration from passing vehicles could excite the adjacent ground, hence produces a vibration waves that will propagate through layers of soil towards the foundations of any adjacent building. This vibration could affects the structure of the building at some levels and even the low sensitivity equipment are also could be affected as well. The objectives of this study are to perform the structural response on multi storey building subjected to ground vibrations input and to determine the level of vibration at each floor from road traffic on the observed building. The scopes of the study are focused on the groundborne vibrations induced by the passing vehicles and analyse the data by using dynamic software such as ANSYSv14 and MATLAB. The selected building for this study is the Registrar Office building which is located in Universiti Tun Hussein Onn Malaysia (UTHM. The inputs of the vibration were measured by using Laser Doppler Vibrometer (LDV equipment. By conducting the field measurement, a real input of ground borne vibration from the loads of vehicle towards any adjacent building can be obtained. Finally, the vibration level from road traffic on office building can be determined using overseas generic criteria guidelines. The vibration level achieved for this building is at above the ISO level, which is suitable for office building and within acceptable limit.

  20. Effect of vehicle front end profiles leading to pedestrian secondary head impact to ground.

    Science.gov (United States)

    Gupta, Vishal; Yang, King H

    2013-11-01

    Most studies of pedestrian injuries focus on reducing traumatic injuries due to the primary impact between the vehicle and the pedestrian. However, based on the Pedestrian Crash Data Study (PCDS), some researchers concluded that one of the leading causes of head injury for pedestrian crashes can be attributed to the secondary impact, defined as the impact of the pedestrian with the ground after the primary impact of the pedestrian with the vehicle. The purpose of this study is to understand if different vehicle front-end profiles can affect the risk of pedestrian secondary head impact with the ground and thus help in reducing the risk of head injury during secondary head impact with ground. Pedestrian responses were studied using several front-end profiles based off a mid-size vehicle and a SUV that have been validated previously along with several MADYMO pedestrian models. Mesh morphing is used to explore changes to the bumper height, bonnet leading-edge height, and bonnet rear reference-line height. Simulations leading up to pedestrian secondary impact with ground are conducted at impact speeds of 40 and 30 km/h. In addition, three pedestrian sizes (50th, 5th and 6yr old child) are used to enable us to search for a front-end profile that performs well for multiple sizes of pedestrians, not just one particular size. In most of the simulations, secondary ground impact with pedestrian head/neck/shoulder region occurred. However, there were some front-end profiles that promoted secondary ground impact with pedestrian lower extremities, thus avoiding pedestrian secondary head impact with ground. Previous pedestrian safety research work has suggested the use of active safety methods, such as 'pop up hood', to reduce pedestrian head injury during primary impact. Accordingly, we also conducted simulations using a model with the hood raised to capture the effect of a pop-up hood. These simulations indicated that even though pop-up hood helped reducing the head injury

  1. UGS, UGV, and MAV in the 2007 C4ISR OTM Experiment

    Science.gov (United States)

    2008-04-01

    UGS, UGV, and MAV in the 2007 C4ISR OTM Experiment by Timothy G. Gregory, Jesse B. Kovach , Robert P. Winkler, and Christopher H. Winslow...20783-1197 ARL-TR-4419 April 2008 UGS, UGV, and MAV in the 2007 C4ISR OTM Experiment Timothy G. Gregory, Jesse B. Kovach , Robert P...AUTHOR(S) Timothy G. Gregory, Jesse B. Kovach , Robert P. Winkler, and Christopher H. Winslow 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S

  2. Computational Simulation of Dynamic Response of Vehicle Tatra T815 and the Ground

    Science.gov (United States)

    Vlček, Jozef; Valašková, Veronika

    2016-10-01

    The effect of a moving load represents the actual problem which is analysed in engineering practice. The response of the vehicle and its dynamic effect on the pavement can be analysed by experimental or computational ways. The aim of this paper was to perform computer simulations of a vehicle-ground interaction. For this purpose, a half-part model of heavy lorry Tatra 815 and ground was modelled in computational programmes ADINA and PLAXIS based on FEM methods, utilizing analytical approaches. Two procedures were then selected for further calculations. The first one is based on the simplification of the stiffer pavement layers to the beam element supported by the springs simulating the subgrade layers using Winkler-Pasternak theory of elastic half-space. Modulus of subgrade reaction was determined in the standard programme trough the simulation of a plate load test. Second approach considers a multi-layered ground system with layers of different thicknesses and material properties. For comparison of outputs of both approaches, the same input values were used for every calculation procedure. Crucial parameter for the simulations was the velocity of the passing vehicle with regard to the ground response to the impulse of the pass. Lower velocities result in almost static response of the pavement, but higher velocities induce response that can be better described by the dynamic theory. For small deformations, an elastic material model seems to be sufficient to define the ground response to the moving load, but for larger deformations advanced material models for the ground environment would be more reliable.

  3. On the radar cross section (RCS) prediction of vehicles moving on the ground

    Energy Technology Data Exchange (ETDEWEB)

    Sabihi, Ahmad [Department of Mathematical Sciences, Sharif University of Technology, Tehran (Iran, Islamic Republic of)

    2014-12-10

    As readers should be aware, Radar Cross Section depends on the factors such as: Wave frequency and polarization, Target dimension, angle of ray incidence, Target’s material and covering, Type of radar system as monostatic or bistatic, space in which contains target and propagating waves, and etc. Having moved or stationed in vehicles can be effective in RCS values. Here, we investigate effective factors in RCS of moving targets on the ground or sea. Image theory in electromagnetic applies to be taken into account RCS of a target over the ground or sea.

  4. Large eddy simulation of flows around ground vehicles and other bluff bodies.

    Science.gov (United States)

    Krajnovic, Sinisa

    2009-07-28

    A brief review of large eddy simulation (LES) applications for different bluff-body flows performed by the author and his co-workers is presented. Examples of flows range from simple cube flows characterized by sharp edge separation over a three-dimensional hill where LES relies on good near-wall resolution, to complex flows of a tall, finite cylinder that contains several flow regimes that cause different challenges to LES. The second part of the paper is devoted to flows around ground vehicles at moderate Reynolds numbers. Although the present review proves the applicability of LES for various bluff-body flows, an increase of the Reynolds number towards the operational speeds of ground vehicles requires accurate near-wall modelling for a successful LES.

  5. Study on shift schedule saving energy of automatic transmission of ground vehicles

    Institute of Scientific and Technical Information of China (English)

    龚捷; 赵丁选; 陈鹰; 陈宁

    2004-01-01

    To improve ground vehicle efficiency, shift schedule energy saving was proposed for the ground vehicle automatic transmission by studying the function of the torque converter and transmission in the vehicular drivetrain. The shift schedule can keep the torque converter working in the high efficiency range under all the working conditions except in the low efficiency range on the left when the transmission worked at the lowest shift, and in the low efficiency range on the right when the transmission worked at the highest shift. The shift quality key factors were analysed. The automatic trans-mission's bench-test adopting this shift schedule was made on the automatic transmission's test-bed. The experimental results showed that the shift schedule was correct and that the shift quality was controllable.

  6. Control and learning for intelligent mobility of unmanned ground vehicles in complex terrains

    Science.gov (United States)

    Trentini, M.; Beckman, B.; Digney, B.

    2005-05-01

    The Autonomous Intelligent Systems program at Defence R&D Canada-Suffield envisions autonomous systems contributing to decisive operations in the urban battle space. Creating effective intelligence for these systems demands advances in perception, world representation, navigation, and learning. In the land environment, these scientific areas have garnered much attention, while largely ignoring the problem of locomotion in complex terrain. This is a gap in robotics research, where sophisticated algorithms are needed to coordinate and control robotic locomotion in unknown, highly complex environments. Unlike traditional control problems, intuitive and systematic control tools for robotic locomotion do not readily exist thus limiting their practical application. This paper addresses the mobility problem for unmanned ground vehicles, defined here as the autonomous maneuverability of unmanned ground vehicles in unknown, highly complex environments. It discusses the progress and future direction of intelligent mobility research at Defence R&D Canada-Suffield and presents the research tools, topics and plans to address this critical research gap.

  7. The on-line electric vehicle wireless electric ground transportation systems

    CERN Document Server

    Cho, Dong

    2017-01-01

    This book details the design and technology of the on-line electric vehicle (OLEV) system and its enabling wireless power-transfer technology, the “shaped magnetic field in resonance” (SMFIR). The text shows how OLEV systems can achieve their three linked important goals: reduction of CO2 produced by ground transportation; improved energy efficiency of ground transportation; and contribution to the amelioration or prevention of climate change and global warming. SMFIR provides power to the OLEV by wireless transmission from underground cables using an alternating magnetic field and the reader learns how this is done. This cable network will in future be part of any local smart grid for energy supply and use thereby exploiting local and renewable energy generation to further its aims. In addition to the technical details involved with design and realization of a fleet of vehicles combined with extensive subsurface charging infrastructure, practical issues such as those involved with pedestrian safety are c...

  8. Study on shift schedule saving energy of automatic transmission of ground vehicles

    Institute of Scientific and Technical Information of China (English)

    龚捷; 赵丁选; 陈鹰; 陈宁

    2004-01-01

    To improve ground vehicle efficiency,shift schedule energy saving was proposed for the ground vehicle automatic transmission by studying the function of the torque converter and transmission in the vehicular drivetrain.The shift schedule can keep the torque converter working in the high efficiency range under all the working conditions except in the low efficiency range on the left when the transmission worked at the lowest shift,and in the low efficiency range on the right when the transmission worked at the highest shift.The shift quality key factors were analysed.The automatic transmission's bench-test adopting this shift schedule was made on the automatic transmission's test-bed.The experimental results showed that the shift schedule was correct and that the shift quality was controllable.

  9. Robust H∞ output-feedback control for path following of autonomous ground vehicles

    Science.gov (United States)

    Hu, Chuan; Jing, Hui; Wang, Rongrong; Yan, Fengjun; Chadli, Mohammed

    2016-03-01

    This paper presents a robust H∞ output-feedback control strategy for the path following of autonomous ground vehicles (AGVs). Considering the vehicle lateral velocity is usually hard to measure with low cost sensor, a robust H∞ static output-feedback controller based on the mixed genetic algorithms (GA)/linear matrix inequality (LMI) approach is proposed to realize the path following without the information of the lateral velocity. The proposed controller is robust to the parametric uncertainties and external disturbances, with the parameters including the tire cornering stiffness, vehicle longitudinal velocity, yaw rate and road curvature. Simulation results based on CarSim-Simulink joint platform using a high-fidelity and full-car model have verified the effectiveness of the proposed control approach.

  10. Cooperative Surveillance and Pursuit Using Unmanned Aerial Vehicles and Unattended Ground Sensors

    Directory of Open Access Journals (Sweden)

    Jonathan Las Fargeas

    2015-01-01

    Full Text Available This paper considers the problem of path planning for a team of unmanned aerial vehicles performing surveillance near a friendly base. The unmanned aerial vehicles do not possess sensors with automated target recognition capability and, thus, rely on communicating with unattended ground sensors placed on roads to detect and image potential intruders. The problem is motivated by persistent intelligence, surveillance, reconnaissance and base defense missions. The problem is formulated and shown to be intractable. A heuristic algorithm to coordinate the unmanned aerial vehicles during surveillance and pursuit is presented. Revisit deadlines are used to schedule the vehicles’ paths nominally. The algorithm uses detections from the sensors to predict intruders’ locations and selects the vehicles’ paths by minimizing a linear combination of missed deadlines and the probability of not intercepting intruders. An analysis of the algorithm’s completeness and complexity is then provided. The effectiveness of the heuristic is illustrated through simulations in a variety of scenarios.

  11. Constrained low-cost GPS/INS filter with encoder bias estimation for ground vehicles' applications

    Science.gov (United States)

    Abdel-Hafez, Mamoun F.; Saadeddin, Kamal; Amin Jarrah, Mohammad

    2015-06-01

    In this paper, a constrained, fault-tolerant, low-cost navigation system is proposed for ground vehicle's applications. The system is designed to provide a vehicle navigation solution at 50 Hz by fusing the measurements of the inertial measurement unit (IMU), the global positioning system (GPS) receiver, and the velocity measurement from wheel encoders. A high-integrity estimation filter is proposed to obtain a high accuracy state estimate. The filter utilizes vehicle velocity constraints measurement to enhance the estimation accuracy. However, if the velocity measurement of the encoder is biased, the accuracy of the estimate is degraded. Therefore, a noise estimation algorithm is proposed to estimate a possible bias in the velocity measurement of the encoder. Experimental tests, with simulated biases on the encoder's readings, are conducted and the obtained results are presented. The experimental results show the enhancement in the estimation accuracy when the simulated bias is estimated using the proposed method.

  12. Using High Performance Computing to Realize a System-Level RDDO for Military Ground Vehicles

    Science.gov (United States)

    2008-07-14

    Using High Performance Computing to Realize a System-Level RBDO for Military Ground Vehicles • David A. Lamb, Ph.D. • Computational Reliability and...fictitious load cases is number of design variables X number of static load cases (6 X 24 = 144 for Stryker A-arm). RBDO Flowchart Pre-processor Morpher...Based Geometry Morpher Mesh Finite Element Analysis Durability Sensitivity RBDO /PBDO FE Analysis FE re-analysis for DSA Sensitivity of SIC and Fatigue

  13. Determining the Forces Generated by the Contact of an Electrically-Operated Vehicle with the Ground

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    In this paper we analyse the motion of an electric vehicle,when there is only the pure rolling of the wheels on the ground.The equations of holonomic and non-holonomic constraints have been rendered explicitly obtaining 27 equations algebraic-differential system with the same number of unknowns.Besides,this system supplies a model to calculate the bonding reaction forces.

  14. The 21st annual intelligent ground vehicle competition: robotists for the future

    Science.gov (United States)

    Theisen, Bernard L.

    2013-12-01

    The Intelligent Ground Vehicle Competition (IGVC) is one of four, unmanned systems, student competitions that were founded by the Association for Unmanned Vehicle Systems International (AUVSI). The IGVC is a multidisciplinary exercise in product realization that challenges college engineering student teams to integrate advanced control theory, machine vision, vehicular electronics and mobile platform fundamentals to design and build an unmanned system. Teams from around the world focus on developing a suite of dual-use technologies to equip ground vehicles of the future with intelligent driving capabilities. Over the past 21 years, the competition has challenged undergraduate, graduate and Ph.D. students with real world applications in intelligent transportation systems, the military and manufacturing automation. To date, teams from over 80 universities and colleges have participated. This paper describes some of the applications of the technologies required by this competition and discusses the educational benefits. The primary goal of the IGVC is to advance engineering education in intelligent vehicles and related technologies. The employment and professional networking opportunities created for students and industrial sponsors through a series of technical events over the fourday competition are highlighted. Finally, an assessment of the competition based on participation is presented.

  15. The 20th annual intelligent ground vehicle competition: building a generation of robotists

    Science.gov (United States)

    Theisen, Bernard L.; Kosinski, Andrew

    2013-01-01

    The Intelligent Ground Vehicle Competition (IGVC) is one of four, unmanned systems, student competitions that were founded by the Association for Unmanned Vehicle Systems International (AUVSI). The IGVC is a multidisciplinary exercise in product realization that challenges college engineering student teams to integrate advanced control theory, machine vision, vehicular electronics and mobile platform fundamentals to design and build an unmanned system. Teams from around the world focus on developing a suite of dual-use technologies to equip ground vehicles of the future with intelligent driving capabilities. Over the past 20 years, the competition has challenged undergraduate, graduate and Ph.D. students with real world applications in intelligent transportation systems, the military and manufacturing automation. To date, teams from over 80 universities and colleges have participated. This paper describes some of the applications of the technologies required by this competition and discusses the educational benefits. The primary goal of the IGVC is to advance engineering education in intelligent vehicles and related technologies. The employment and professional networking opportunities created for students and industrial sponsors through a series of technical events over the four-day competition are highlighted. Finally, an assessment of the competition based on participation is presented.

  16. Multi- and Hyper-Spectral Sensing for Autonomous Ground Vehicle Navigation

    Energy Technology Data Exchange (ETDEWEB)

    FOGLER, ROBERT J.

    2003-06-01

    Robotic vehicles that navigate autonomously are hindered by unnecessary avoidance of soft obstacles, and entrapment by potentially avoidable obstacles. Existing sensing technologies fail to reliably distinguish hard obstacles from soft obstacles, as well as impassable thickets and other sources of entrapment. Automated materials classification through advanced sensing methods may provide a means to identify such obstacles, and from their identity, to determine whether they must be avoided. Multi- and hyper-spectral electro-optic sensors are used in remote sensing applications to classify both man-made and naturally occurring materials on the earth's surface by their reflectance spectra. The applicability of this sensing technology to obstacle identification for autonomous ground vehicle navigation is the focus of this report. The analysis is restricted to system concepts in which the multi- or hyper-spectral sensor is on-board the ground vehicle, facing forward to detect and classify obstacles ahead of the vehicle. Obstacles of interest include various types of vegetation, rocks, soils, minerals, and selected man-made materials such as paving asphalt and concrete.

  17. Resolving ranges of layered objects using ground vehicle LiDAR

    Science.gov (United States)

    Hollinger, Jim; Kutscher, Brett; Close, Ryan

    2015-06-01

    Lidar systems are well known for their ability to measure three-dimensional aspects of a scene. This attribute of Lidar has been widely exploited by the robotics community, among others. The problem of resolving ranges of layered objects (such as a tree canopy over the forest floor) has been studied from the perspective of airborne systems. However, little research exists in studying this problem from a ground vehicle system (e.g., a bush covering a rock or other hazard). This paper discusses the issues involved in solving this problem from a ground vehicle. This includes analysis of extracting multi-return data from Lidar and the various laser properties that impact the ability to resolve multiple returns, such as pulse length and beam size. The impacts of these properties are presented as they apply to three different Lidar imaging technologies: scanning pulse Lidar, Geiger-mode flash Lidar, and Time-of-Flight camera. Tradeoffs associated with these impacts are then discussed for a ground vehicle Lidar application.

  18. 美军无人地面车辆发展综述%Development Survey of US Army Unmanned Ground Vehicles

    Institute of Scientific and Technical Information of China (English)

    陈欣; 王立操; 李联邦; 左志奇

    2012-01-01

    US army unmanned ground vehicles are primitively introduced. The development course of US army unmanned ground vehicles is expatiated, present condition and development trends are given. Some suggestions on developing military unmanned ground vehicles are presented.%对美军无人地面车辆进行简要介绍,阐述美军无人地面车辆发展历程,给出了其研究现状与趋势,提出了对我国无人地面车辆发展的几点启示。

  19. Control performance evaluation of railway vehicle MR suspension using fuzzy sky-ground hook control algorithm

    Science.gov (United States)

    Ha, S. H.; Choi, S. B.; Lee, G. S.; Yoo, W. H.

    2013-02-01

    This paper presents control performance evaluation of railway vehicle featured by semi-active suspension system using magnetorheological (MR) fluid damper. In order to achieve this goal, a nine degree of freedom of railway vehicle model, which includes car body and bogie, is established. The wheel-set data is loaded from measured value of railway vehicle. The MR damper system is incorporated with the governing equation of motion of the railway vehicle model which includes secondary suspension. To illustrate the effectiveness of the controlled MR dampers on suspension system of railway vehicle, the control law using the sky-ground hook controller is adopted. This controller takes into account for both vibration control of car body and increasing stability of bogie by adopting a weighting parameter between two performance requirements. The parameters appropriately determined by employing a fuzzy algorithm associated with two fuzzy variables: the lateral speed of the car body and the lateral performance of the bogie. Computer simulation results of control performances such as vibration control and stability analysis are presented in time and frequency domains.

  20. An Analysis of the Best Available Unmanned Ground Vehicle in the Current Market with Respect to the Requirements of the Turkish Ministry of National Defense

    Science.gov (United States)

    2011-12-01

    TURKISH MND ...................................................................................61 1. History of the Turkish Defense Industry...readers with a background on UGVs and to conduct UGV market research. Chapter III introduces the history of the Turkish defense industry and the Under...SLAM cartography , indoor/outdoor localization, and a follower/leader module. Open architecture is dependent upon a Multi- Agent System (MAS) that

  1. Hybrid Map-Based Navigation Method for Unmanned Ground Vehicle in Urban Scenario

    Directory of Open Access Journals (Sweden)

    Huiyan Chen

    2013-07-01

    Full Text Available To reduce the data size of metric map and map matching computational cost in unmanned ground vehicle self-driving navigation in urban scenarios, a metric-topological hybrid map navigation system is proposed in this paper. According to the different positioning accuracy requirements, urban areas are divided into strong constraint (SC areas, such as roads with lanes, and loose constraint (LC areas, such as intersections and open areas. As direction of the self-driving vehicle is provided by traffic lanes and global waypoints in the road network, a simple topological map is fit for the navigation in the SC areas. While in the LC areas, the navigation of the self-driving vehicle mainly relies on the positioning information. Simultaneous localization and mapping technology is used to provide a detailed metric map in the LC areas, and a window constraint Markov localization algorithm is introduced to achieve accurate position using laser scanner. Furthermore, the real-time performance of the Markov algorithm is enhanced by using a constraint window to restrict the size of the state space. By registering the metric maps into the road network, a hybrid map of the urban scenario can be constructed. Real unmanned vehicle mapping and navigation tests demonstrated the capabilities of the proposed method.

  2. Passive Night Vision Sensor Comparison for Unmanned Ground Vehicle Stereo Vision Navigation

    Science.gov (United States)

    Owens, Ken; Matthies, Larry

    2000-01-01

    One goal of the "Demo III" unmanned ground vehicle program is to enable autonomous nighttime navigation at speeds of up to 10 m.p.h. To perform obstacle detection at night with stereo vision will require night vision cameras that produce adequate image quality for the driving speeds, vehicle dynamics, obstacle sizes, and scene conditions that will be encountered. This paper analyzes the suitability of four classes of night vision cameras (3-5 micrometer cooled FLIR, 8-12 micrometer cooled FLIR, 8-12 micrometer uncooled FLIR, and image intensifiers) for night stereo vision, using criteria based on stereo matching quality, image signal to noise ratio, motion blur and synchronization capability. We find that only cooled FLIRs will enable stereo vision performance that meets the goals of the Demo III program for nighttime autonomous mobility.

  3. An architecture for online semantic labeling on UGVs

    Science.gov (United States)

    Suppé, Arne; Navarro-Serment, Luis; Munoz, Daniel; Bagnell, Drew; Hebert, Martial

    2013-05-01

    We describe an architecture to provide online semantic labeling capabilities to field robots operating in urban environments. At the core of our system is the stacked hierarchical classifier developed by Munoz et al., which classifies regions in monocular color images using models derived from hand labeled training data. The classifier is trained to identify buildings, several kinds of hard surfaces, grass, trees, and sky. When taking this algorithm into the real world, practical concerns with difficult and varying lighting conditions require careful control of the imaging process. First, camera exposure is controlled by software, examining all of the image's pixels, to compensate for the poorly performing, simplistic algorithm used on the camera. Second, by merging multiple images taken with different exposure times, we are able to synthesize images with higher dynamic range than the ones produced by the sensor itself. The sensor 's limited dynamic range makes it difficult to, at the same time, properly expose areas in shadow along with high albedo surfaces that are directly illuminated by the sun. Texture is a key feature used by the classifier, and under /over exposed regions lacking texture are a leading cause of misclassifications. The results of the classifier are shared with higher-lev elements operating in the UGV in order to perform tasks such as building identification from a distance and finding traversable surfaces.

  4. Nano-based chemical sensor array systems for uninhabited ground and airborne vehicles

    Science.gov (United States)

    Brantley, Christina; Ruffin, Paul B.; Edwards, Eugene

    2009-03-01

    In a time when homemade explosive devices are being used against soldiers and in the homeland security environment, it is becoming increasingly evident that there is an urgent need for high-tech chemical sensor packages to be mounted aboard ground and air vehicles to aid soldiers in determining the location of explosive devices and the origin of bio-chemical warfare agents associated with terrorist activities from a safe distance. Current technologies utilize relatively large handheld detection systems that are housed on sizeable robotic vehicles. Research and development efforts are underway at the Army Aviation & Missile Research, Development, and Engineering Center (AMRDEC) to develop novel and less expensive nano-based chemical sensors for detecting explosives and chemical agents used against the soldier. More specifically, an array of chemical sensors integrated with an electronics control module on a flexible substrate that can conform to and be surface-mounted to manned or unmanned vehicles to detect harmful species from bio-chemical warfare and other explosive devices is being developed. The sensor system under development is a voltammetry-based sensor system capable of aiding in the detection of any chemical agent and in the optimization of sensor microarray geometry to provide nonlinear Fourier algorithms to characterize target area background (e.g., footprint areas). The status of the research project is reviewed in this paper. Critical technical challenges associated with achieving system cost, size, and performance requirements are discussed. The results obtained from field tests using an unmanned remote controlled vehicle that houses a CO2/chemical sensor, which detects harmful chemical agents and wirelessly transmits warning signals back to the warfighter, are presented. Finally, the technical barriers associated with employing the sensor array system aboard small air vehicles will be discussed.

  5. Impact of mesh tracks and low-ground-pressure vehicle use on blanket peat hydrology

    Science.gov (United States)

    McKendrick-Smith, Kathryn; Holden, Joseph; Parry, Lauren

    2016-04-01

    Peatlands are subject to multiple uses including drainage, farming and recreation. Low-ground-pressure vehicle access is desirable by land owners and tracks facilitate access. However, there is concern that such activity may impact peat hydrology and so granting permission for track installation has been problematic, particularly without evidence for decision-making. We present the first comprehensive study of mesh track and low-ground-pressure vehicle impacts on peatland hydrology. In the sub-arctic oceanic climate of the Moor House World Biosphere Reserve in the North Pennines, UK, a 1.5 km long experimental track was installed to investigate hydrological impacts. Surface vegetation was cut and the plastic mesh track pinned into the peat surface. The experimental track was split into 7 treatments, designed to reflect typical track usage (0 - 5 vehicle passes per week) and varying vehicle weight. The greatest hydrological impacts were expected for sections of track subject to more frequent vehicle use and in close proximity to the track. In total 554 dipwells (including 15 automated recording at 15-min intervals) were monitored for water-table depth, positioned to capture potential spatial variability in response. Before track installation, samples for vertical and lateral hydraulic conductivity (Ks) analysis (using the modified cube method) were taken at 0-10 cm depth from a frequently driven treatment (n = 15), an infrequently driven treatment (0.5 passes per week) (n = 15) and a control site with no track/driving (n = 15). The test was repeated after 16 months of track use. We present a spatially and temporally rich water-table dataset from the study site showing how the impacts of the track on water table are spatially highly variable. Water-table depths across the site were shallow, typically within the upper 10 cm of the peat profile for > 75% of the time. We show that mesh track and low-ground-pressure vehicle impacts on water-table depth were small except

  6. Estimation of longitudinal speed robust to road conditions for ground vehicles

    Science.gov (United States)

    Hashemi, Ehsan; Kasaiezadeh, Alireza; Khosravani, Saeid; Khajepour, Amir; Moshchuk, Nikolai; Chen, Shih-Ken

    2016-08-01

    This article seeks to develop a longitudinal vehicle velocity estimator robust to road conditions by employing a tyre model at each corner. Combining the lumped LuGre tyre model and the vehicle kinematics, the tyres internal deflection state is used to gain an accurate estimation. Conventional kinematic-based velocity estimators use acceleration measurements, without correction with the tyre forces. However, this results in inaccurate velocity estimation because of sensor uncertainties which should be handled with another measurement such as tyre forces that depend on unknown road friction. The new Kalman-based observer in this paper addresses this issue by considering tyre nonlinearities with a minimum number of required tyre parameters and the road condition as uncertainty. Longitudinal forces obtained by the unscented Kalman filter on the wheel dynamics is employed as an observation for the Kalman-based velocity estimator at each corner. The stability of the proposed time-varying estimator is investigated and its performance is examined experimentally in several tests and on different road surface frictions. Road experiments and simulation results show the accuracy and robustness of the proposed approach in estimating longitudinal speed for ground vehicles.

  7. Monocular Camera/IMU/GNSS Integration for Ground Vehicle Navigation in Challenging GNSS Environments

    Directory of Open Access Journals (Sweden)

    Dennis Akos

    2012-03-01

    Full Text Available Low-cost MEMS-based IMUs, video cameras and portable GNSS devices are commercially available for automotive applications and some manufacturers have already integrated such facilities into their vehicle systems. GNSS provides positioning, navigation and timing solutions to users worldwide. However, signal attenuation, reflections or blockages may give rise to positioning difficulties. As opposed to GNSS, a generic IMU, which is independent of electromagnetic wave reception, can calculate a high-bandwidth navigation solution, however the output from a self-contained IMU accumulates errors over time. In addition, video cameras also possess great potential as alternate sensors in the navigation community, particularly in challenging GNSS environments and are becoming more common as options in vehicles. Aiming at taking advantage of these existing onboard technologies for ground vehicle navigation in challenging environments, this paper develops an integrated camera/IMU/GNSS system based on the extended Kalman filter (EKF. Our proposed integration architecture is examined using a live dataset collected in an operational traffic environment. The experimental results demonstrate that the proposed integrated system provides accurate estimations and potentially outperforms the tightly coupled GNSS/IMU integration in challenging environments with sparse GNSS observations.

  8. Monocular camera/IMU/GNSS integration for ground vehicle navigation in challenging GNSS environments.

    Science.gov (United States)

    Chu, Tianxing; Guo, Ningyan; Backén, Staffan; Akos, Dennis

    2012-01-01

    Low-cost MEMS-based IMUs, video cameras and portable GNSS devices are commercially available for automotive applications and some manufacturers have already integrated such facilities into their vehicle systems. GNSS provides positioning, navigation and timing solutions to users worldwide. However, signal attenuation, reflections or blockages may give rise to positioning difficulties. As opposed to GNSS, a generic IMU, which is independent of electromagnetic wave reception, can calculate a high-bandwidth navigation solution, however the output from a self-contained IMU accumulates errors over time. In addition, video cameras also possess great potential as alternate sensors in the navigation community, particularly in challenging GNSS environments and are becoming more common as options in vehicles. Aiming at taking advantage of these existing onboard technologies for ground vehicle navigation in challenging environments, this paper develops an integrated camera/IMU/GNSS system based on the extended Kalman filter (EKF). Our proposed integration architecture is examined using a live dataset collected in an operational traffic environment. The experimental results demonstrate that the proposed integrated system provides accurate estimations and potentially outperforms the tightly coupled GNSS/IMU integration in challenging environments with sparse GNSS observations.

  9. Ground moving target geo-location from monocular camera mounted on a micro air vehicle

    Science.gov (United States)

    Guo, Li; Ang, Haisong; Zheng, Xiangming

    2011-08-01

    The usual approaches to unmanned air vehicle(UAV)-to-ground target geo-location impose some severe constraints to the system, such as stationary objects, accurate geo-reference terrain database, or ground plane assumption. Micro air vehicle(MAV) works with characteristics including low altitude flight, limited payload and onboard sensors' low accuracy. According to these characteristics, a method is developed to determine the location of ground moving target which imaged from the air using monocular camera equipped on MAV. This method eliminates the requirements for terrain database (elevation maps) and altimeters that can provide MAV's and target's altitude. Instead, the proposed method only requires MAV flight status provided by its inherent onboard navigation system which includes inertial measurement unit(IMU) and global position system(GPS). The key is to get accurate information on the altitude of the ground moving target. First, Optical flow method extracts background static feature points. Setting a local region around the target in the current image, The features which are on the same plane with the target in this region are extracted, and are retained as aided features. Then, inverse-velocity method calculates the location of these points by integrated with aircraft status. The altitude of object, which is calculated by using position information of these aided features, combining with aircraft status and image coordinates, geo-locate the target. Meanwhile, a framework with Bayesian estimator is employed to eliminate noise caused by camera, IMU and GPS. Firstly, an extended Kalman filter(EKF) provides a simultaneous localization and mapping solution for the estimation of aircraft states and aided features location which defines the moving target local environment. Secondly, an unscented transformation(UT) method determines the estimated mean and covariance of target location from aircraft states and aided features location, and then exports them for the

  10. Theoretical and Experimental Aerodynamic Analysis for High-Speed Ground Vehicles

    Science.gov (United States)

    Farhan, Ismail Haider

    Available from UMI in association with The British Library. This thesis investigates the air flow around a proposed geometry for a high-speed electromagnetic suspension (EMS) train. A numerical technique called the panel method has been applied to the representation of the body shape and the prediction of the potential flow and pressure distribution. Two computer programmes have been written, one for a single vehicle in the presence of the ground at different yaw angles, and the second for two-body problems, e.g. a train passing a railway station or a train passing the central part of another train. Two methods based on the momentum integral equations for three-dimensional boundary layer flow have been developed for use with the potential flow analysis; these predict the development of the three-dimensional turbulent boundary layer on the central section (for the analysis of crosswind conditions) and on the nose of the train. Extensive wind tunnel tests were performed on four models of the high-speed train to measure aerodynamic forces, moments and pressures to establish ground effect characteristics. Flow visualisation showed that the wake vortices were stronger and larger in the presence of a ground. At small yaw angles ground clearance had little effect, but as yaw increased, larger ground clearance led to substantial increase in lift and side force coefficients. The tests also identified the differences between a moving and a fixed ground plane. Data showed that the type of ground simulation was significant only in the separated region. A comparison of the results predicted using potential flow theory for an EMS train model and the corresponding results from wind tunnel tests indicated good agreement in regions where the flow is attached. The turbulent boundary layer calculations for the train in a crosswind condition showed that the momentum thickness along the crosswind surface distance co-ordinate increased slowly at the beginning of the development of the

  11. Method and appartus for converting static in-ground vehicle scales into weigh-in-motion systems

    Energy Technology Data Exchange (ETDEWEB)

    Muhs, Jeffrey D. (Lenior City, TN); Scudiere, Matthew B. (Oak Ridge, TN); Jordan, John K. (Oak Ridge, TN)

    2002-01-01

    An apparatus and method for converting in-ground static weighing scales for vehicles to weigh-in-motion systems. The apparatus upon conversion includes the existing in-ground static scale, peripheral switches and an electronic module for automatic computation of the weight. By monitoring the velocity, tire position, axle spacing, and real time output from existing static scales as a vehicle drives over the scales, the system determines when an axle of a vehicle is on the scale at a given time, monitors the combined weight output from any given axle combination on the scale(s) at any given time, and from these measurements automatically computes the weight of each individual axle and gross vehicle weight by an integration, integration approximation, and/or signal averaging technique.

  12. Simulation of Ground Winds Time Series for the NASA Crew Launch Vehicle (CLV)

    Science.gov (United States)

    Adelfang, Stanley I.

    2008-01-01

    Simulation of wind time series based on power spectrum density (PSD) and spectral coherence models for ground wind turbulence is described. The wind models, originally developed for the Shuttle program, are based on wind measurements at the NASA 150-m meteorological tower at Cape Canaveral, FL. The current application is for the design and/or protection of the CLV from wind effects during on-pad exposure during periods from as long as days prior to launch, to seconds or minutes just prior to launch and seconds after launch. The evaluation of vehicle response to wind will influence the design and operation of constraint systems for support of the on-pad vehicle. Longitudinal and lateral wind component time series are simulated at critical vehicle locations. The PSD model for wind turbulence is a function of mean wind speed, elevation and temporal frequency. Integration of the PSD equation over a selected frequency range yields the variance of the time series to be simulated. The square root of the PSD defines a low-pass filter that is applied to adjust the components of the Fast Fourier Transform (FFT) of Gaussian white noise. The first simulated time series near the top of the launch vehicle is the inverse transform of the adjusted FFT. Simulation of the wind component time series at the nearest adjacent location (and all other succeeding next nearest locations) is based on a model for the coherence between winds at two locations as a function of frequency and separation distance, where the adjacent locations are separated vertically and/or horizontally. The coherence function is used to calculate a coherence weighted FFT of the wind at the next nearest location, given the FFT of the simulated time series at the previous location and the essentially incoherent FFT of the wind at the selected location derived a priori from the PSD model. The simulated time series at each adjacent location is the inverse Fourier transform of the coherence weighted FFT. For a selected

  13. Advances in ground vehicle-based LADAR for standoff detection of road-side hazards

    Science.gov (United States)

    Hollinger, Jim; Vessey, Alyssa; Close, Ryan; Middleton, Seth; Williams, Kathryn; Rupp, Ronald; Nguyen, Son

    2016-05-01

    Commercial sensor technology has the potential to bring cost-effective sensors to a number of U.S. Army applications. By using sensors built for a widespread of commercial application, such as the automotive market, the Army can decrease costs of future systems while increasing overall capabilities. Additional sensors operating in alternate and orthogonal modalities can also be leveraged to gain a broader spectrum measurement of the environment. Leveraging multiple phenomenologies can reduce false alarms and make detection algorithms more robust to varied concealment materials. In this paper, this approach is applied to the detection of roadside hazards partially concealed by light-to-medium vegetation. This paper will present advances in detection algorithms using a ground vehicle-based commercial LADAR system. The benefits of augmenting a LADAR with millimeter-wave automotive radar and results from relevant data sets are also discussed.

  14. Research of Obstacle Recognition Technology in Cross-Country Environment for Unmanned Ground Vehicle

    Directory of Open Access Journals (Sweden)

    Zhao Yibing

    2014-01-01

    Full Text Available Being aimed at the obstacle recognition problem of unmanned ground vehicles in cross-country environment, this paper uses monocular vision sensor to realize the obstacle recognition of typical obstacles. Firstly, median filtering algorithm is applied during image preprocessing that can eliminate the noise. Secondly, image segmentation method based on the Fisher criterion function is used to segment the region of interest. Then, morphological method is used to process the segmented image, which is preparing for the subsequent analysis. The next step is to extract the color feature S, color feature a and edge feature “verticality” of image are extracted based on the HSI color space, the Lab color space, and two value images. Finally multifeature fusion algorithm based on Bayes classification theory is used for obstacle recognition. Test results show that the algorithm has good robustness and accuracy.

  15. Results of the second (1996) experiment to lead cranes on migration behind a motorized ground vehicle

    Science.gov (United States)

    Ellis, D.H.; Clauss, B.; Watanabe, T.; Mykut, R.C.; Shawkey, M.; Mummert, D.P.; Sprague, D.T.; Ellis, Catherine H.; Trahan, F.B.

    2001-01-01

    Fourteen greater sandhill cranes (Grus canadensis tabida) were trained to follow a specially-equipped truck and 12 were led along a ca 620-km route from Camp Navajo in northern Arizona to the Buenos Aires National Wildlife Refuge near the Arizona/Mexico border. Ten survived the trek, 380 km of which were flown, although only a few cranes flew every stage of the route. Major problems during the migration were powerline collisions (ca 15, 2 fatal) and overheating (when air temperatures exceeded ca 25 C). The tenacity of the cranes in following both in 1995 and 1996 under unfavorable conditions (e.g., poor light, extreme dust, or heat) demonstrated that cranes could be led over long distances by motorized vehicles on the ground.

  16. NASA Planning for Orion Multi-Purpose Crew Vehicle Ground Operations

    Science.gov (United States)

    Letchworth, Gary; Schlierf, Roland

    2011-01-01

    tools included Kaizen/Lean events, mockups and human factors analysis. The majority of products developed by this team are applicable as KSC prepares 21st Century Ground Systems for the Orion Multi-Purpose Crew Vehicle and Space Launch System.

  17. Phobetor: Princeton University's entry in the 2010 Intelligent Ground Vehicle Competition

    Science.gov (United States)

    Newman, Joshua; Zhu, Han; Partridge, Brenton A.; Szocs, Laszlo J.; Abiola, Solomon O.; Corey, Ryan M.; Suresh, Srinivasan A.; Yu, Derrick D.

    2011-01-01

    In this paper we present Phobetor, an autonomous outdoor vehicle originally designed for the 2010 Intelligent Ground Vehicle Competition (IGVC). We describe new vision and navigation systems that have yielded 3x increase in obstacle detection speed using parallel processing and robust lane detection results. Phobetor also uses probabilistic local mapping to learn about its environment and Anytime Dynamic A* (AD*) to plan paths to reach its goals. Our vision software is based on color stereo images and uses robust, RANSAC-based algorithms while running fast enough to support real-time autonomous navigation on uneven terrain. AD* allows Phobetor to respond quickly in all situations even when optimal planning takes more time, and uses incremental replanning to increase search efficiency. We augment the cost map of the environment with a potential field which addresses the problem of "wall-hugging" and smoothes generated paths to allow safe and reliable path-following. In summary, we present innovations on Phobetor that are relevant to real-world robotics platforms in uncertain environments.

  18. Illumination compensation in ground based hyperspectral imaging

    Science.gov (United States)

    Wendel, Alexander; Underwood, James

    2017-07-01

    Hyperspectral imaging has emerged as an important tool for analysing vegetation data in agricultural applications. Recently, low altitude and ground based hyperspectral imaging solutions have come to the fore, providing very high resolution data for mapping and studying large areas of crops in detail. However, these platforms introduce a unique set of challenges that need to be overcome to ensure consistent, accurate and timely acquisition of data. One particular problem is dealing with changes in environmental illumination while operating with natural light under cloud cover, which can have considerable effects on spectral shape. In the past this has been commonly achieved by imaging known reference targets at the time of data acquisition, direct measurement of irradiance, or atmospheric modelling. While capturing a reference panel continuously or very frequently allows accurate compensation for illumination changes, this is often not practical with ground based platforms, and impossible in aerial applications. This paper examines the use of an autonomous unmanned ground vehicle (UGV) to gather high resolution hyperspectral imaging data of crops under natural illumination. A process of illumination compensation is performed to extract the inherent reflectance properties of the crops, despite variable illumination. This work adapts a previously developed subspace model approach to reflectance and illumination recovery. Though tested on a ground vehicle in this paper, it is applicable to low altitude unmanned aerial hyperspectral imagery also. The method uses occasional observations of reference panel training data from within the same or other datasets, which enables a practical field protocol that minimises in-field manual labour. This paper tests the new approach, comparing it against traditional methods. Several illumination compensation protocols for high volume ground based data collection are presented based on the results. The findings in this paper are

  19. Using probabilistic model as feature descriptor on a smartphone device for autonomous navigation of unmanned ground vehicles

    Science.gov (United States)

    Desai, Alok; Lee, Dah-Jye

    2013-12-01

    There has been significant research on the development of feature descriptors in the past few years. Most of them do not emphasize real-time applications. This paper presents the development of an affine invariant feature descriptor for low resource applications such as UAV and UGV that are equipped with an embedded system with a small microprocessor, a field programmable gate array (FPGA), or a smart phone device. UAV and UGV have proven suitable for many promising applications such as unknown environment exploration, search and rescue operations. These applications required on board image processing for obstacle detection, avoidance and navigation. All these real-time vision applications require a camera to grab images and match features using a feature descriptor. A good feature descriptor will uniquely describe a feature point thus allowing it to be correctly identified and matched with its corresponding feature point in another image. A few feature description algorithms are available for a resource limited system. They either require too much of the device's resource or too much simplification on the algorithm, which results in reduction in performance. This research is aimed at meeting the needs of these systems without sacrificing accuracy. This paper introduces a new feature descriptor called PRObabilistic model (PRO) for UGV navigation applications. It is a compact and efficient binary descriptor that is hardware-friendly and easy for implementation.

  20. Wind Tunnel Investigation of Ground Wind Loads for Ares Launch Vehicle

    Science.gov (United States)

    Keller, Donald F.; Ivanco, Thomas G.

    2010-01-01

    A three year program was conducted at the NASA Langley Research Center (LaRC) Aeroelasticity Branch (AB) and Transonic Dynamics Tunnel (TDT) with the primary objective to acquire scaled steady and dynamic ground-wind loads (GWL) wind-tunnel data for rollout, on-pad stay, and on-pad launch configurations for the Ares I-X Flight Test Vehicle (FTV). The experimental effort was conducted to obtain an understanding of the coupling of aerodynamic and structural characteristics that can result in large sustained wind-induced oscillations (WIO) on such a tall and slender launch vehicle and to generate a unique database for development and evaluation of analytical methods for predicting steady and dynamic GWL, especially those caused by vortex shedding, and resulting in significant WIO. This paper summarizes the wind-tunnel test program that employed two dynamically-aeroelastically scaled GWL models based on the Ares I-X Flight Test Vehicle. The first model tested, the GWL Checkout Model (CM), was a relatively simple model with a secondary objective of restoration and development of processes and methods for design, fabrication, testing, and data analysis of a representative ground wind loads model. In addition, parametric variations in surface roughness, Reynolds number, and protuberances (on/off) were investigated to determine effects on GWL characteristics. The second windtunnel model, the Ares I-X GWL Model, was significantly more complex and representative of the Ares I-X FTV and included the addition of simplified rigid geometrically-scaled models of the Kennedy Space Center (KSC) Mobile Launch Platform (MLP) and Launch Complex 39B primary structures. Steady and dynamic base bending moment as well as model response and steady and unsteady pressure data was acquired during the testing of both models. During wind-tunnel testing of each model, flow conditions (speed and azimuth) where significant WIO occurred, were identified and thoroughly investigated. Scaled data from

  1. A Multidisciplinary Optimization Framework for Occupant Centric Ground Vehicle System Design. Part 1: Vehicle Design Parameter Screening Study

    Science.gov (United States)

    2014-08-01

    measured, such as at the pelvis location. Tibia vertical forces and lower lumbar spine forces were also measured and used as the responses to an...are four pillars mounted to the roof and the crew floor along the center line of the crew cabin to increase the vertical stiffness of the cabin...components of the simplified vehicle structure used for this study, including seat mounting options, and vehicle interior arrangements . In this study

  2. Analysis of the Effects of Vitiates on Surface Heat Flux in Ground Tests of Hypersonic Vehicles

    Science.gov (United States)

    Cuda, Vincent; Gaffney, Richard L

    2008-01-01

    To achieve the high enthalpy conditions associated with hypersonic flight, many ground test facilities burn fuel in the air upstream of the test chamber. Unfortunately, the products of combustion contaminate the test gas and alter gas properties and the heat fluxes associated with aerodynamic heating. The difference in the heating rates between clean air and a vitiated test medium needs to be understood so that the thermal management system for hypersonic vehicles can be properly designed. This is particularly important for advanced hypersonic vehicle concepts powered by air-breathing propulsion systems that couple cooling requirements, fuel flow rates, and combustor performance by flowing fuel through sub-surface cooling passages to cool engine components and preheat the fuel prior to combustion. An analytical investigation was performed comparing clean air to a gas vitiated with methane/oxygen combustion products to determine if variations in gas properties contributed to changes in predicted heat flux. This investigation started with simple relationships, evolved into writing an engineering-level code, and ended with running a series of CFD cases. It was noted that it is not possible to simultaneously match all of the gas properties between clean and vitiated test gases. A study was then conducted selecting various combinations of freestream properties for a vitiated test gas that matched clean air values to determine which combination of parameters affected the computed heat transfer the least. The best combination of properties to match was the free-stream total sensible enthalpy, dynamic pressure, and either the velocity or Mach number. This combination yielded only a 2% difference in heating. Other combinations showed departures of up to 10% in the heat flux estimate.

  3. A novel lidar-driven two-level approach for real-time unmanned ground vehicle navigation and map building

    Science.gov (United States)

    Luo, Chaomin; Krishnan, Mohan; Paulik, Mark; Cui, Bo; Zhang, Xingzhong

    2013-12-01

    In this paper, a two-level LIDAR-driven hybrid approach is proposed for real-time unmanned ground vehicle navigation and map building. Top level is newly designed enhanced Voronoi Diagram (EVD) method to plan a global trajectory for an unmanned vehicle. Bottom level employs Vector Field Histogram (VFH) algorithm based on the LIDAR sensor information to locally guide the vehicle under complicated workspace, in which it autonomously traverses from one node to another within the planned EDV with obstacle avoidance. To find the least-cost path within the EDV, novel distance and angle based search heuristic algorithms are developed, in which the cost of an edge is the risk of traversing the edge. An EVD is first constructed based on the environment, which is utilized to generate the initial global trajectory with obstacle avoidance. The VFH algorithm is employed to guide the vehicle to follow the path locally. Its effectiveness and efficiency of real-time navigation and map building for unmanned vehicles have been successfully validated by simulation studies and experiments. The proposed approach is successfully experimented on an actual unmanned vehicle to demonstrate the real-time navigation and map building performance of the proposed method. The vehicle appears to follow a very stable path while navigating through various obstacles.

  4. Development of a vehicle capable of traveling on soft ground. Its application to investigation, survey and management of soft ground; Nanjakuchi sokosha no kaihatsu. Nanjakuchi deno chosa sokuryo kanri eno tekiyo

    Energy Technology Data Exchange (ETDEWEB)

    Kimura, R.; Yano, H. [Ministry of Construction, Tokyo (Japan)

    1998-07-25

    An experimental vehicle is built and tested, which utilizes hovercraft technology, capable of travelling on a soft ground surface and therefore usable in reclamation work. When the ground is soft and viscous, merely increasing the vehicle driving force will futilely add to the vehicle weight, and this causes an adverse effect with the vehicle sinking deeper into the ground and the ground presenting higher resistance. In an effort to decrease the weight and resistance, a vehicle is built, capable of levitating itself by use of hovercraft technology and provided with retractable tracks and wheels for travelling. The targets are mostly attained in the test run, as far as speeds (5.5km/h at the maximum across a muddy ground section) and trekking across ground including an undulated surface are concerned, although the levitation level is found to be somewhat lower than the design value. Operating across a hard ground surface with the body elevated, the vehicle exhibits a higher performance in speed and drivability when the hovercraft effect is utilized. When travelling on the hovercraft effect, the frictional resistance of the skirt decreases as the vehicle moves from a hard surface section into a soft surface section, and this allows the vehicle to run more smoothly at higher speeds. 1 refs., 6 figs.

  5. A framework for the natural-language-perception-based creative control of unmanned ground vehicles

    Science.gov (United States)

    Ghaffari, Masoud; Liao, Xiaoqun; Hall, Ernest L.

    2004-09-01

    Mobile robots must often operate in an unstructured environment cluttered with obstacles and with many possible action paths. That is why mobile robotics problems are complex with many unanswered questions. To reach a high degree of autonomous operation, a new level of learning is required. On the one hand, promising learning theories such as the adaptive critic and creative control have been proposed, while on other hand the human brain"s processing ability has amazed and inspired researchers in the area of Unmanned Ground Vehicles but has been difficult to emulate in practice. A new direction in the fuzzy theory tries to develop a theory to deal with the perceptions conveyed by the natural language. This paper tries to combine these two fields and present a framework for autonomous robot navigation. The proposed creative controller like the adaptive critic controller has information stored in a dynamic database (DB), plus a dynamic task control center (TCC) that functions as a command center to decompose tasks into sub-tasks with different dynamic models and multi-criteria functions. The TCC module utilizes computational theory of perceptions to deal with the high levels of task planning. The authors are currently trying to implement the model on a real mobile robot and the preliminary results have been described in this paper.

  6. Suborbital Reusable Launch Vehicles as an Opportunity to Consolidate and Calibrate Ground Based and Satellite Instruments

    Science.gov (United States)

    Papadopoulos, K.

    2014-12-01

    XCOR Aerospace, a commercial space company, is planning to provide frequent, low cost access to near-Earth space on the Lynx suborbital Reusable Launch Vehicle (sRLV). Measurements in the external vacuum environment can be made and can launch from most runways on a limited lead time. Lynx can operate as a platform to perform suborbital in situ measurements and remote sensing to supplement models and simulations with new data points. These measurements can serve as a quantitative link to existing instruments and be used as a basis to calibrate detectors on spacecraft. Easier access to suborbital data can improve the longevity and cohesiveness of spacecraft and ground-based resources. A study of how these measurements can be made on Lynx sRLV will be presented. At the boundary between terrestrial and space weather, measurements from instruments on Lynx can help develop algorithms to optimize the consolidation of ground and satellite based data as well as assimilate global models with new data points. For example, current tides and the equatorial electrojet, essential to understanding the Thermosphere-Ionosphere system, can be measured in situ frequently and on short notice. Furthermore, a negative-ion spectrometer and a Faraday cup, can take measurements of the D-region ion composition. A differential GPS receiver can infer the spatial gradient of ionospheric electron density. Instruments and optics on spacecraft degrade over time, leading to calibration drift. Lynx can be a cost effective platform for deploying a reference instrument to calibrate satellites with a frequent and fast turnaround and a successful return of the instrument. A calibrated reference instrument on Lynx can make collocated observations as another instrument and corrections are made for the latter, thus ensuring data consistency and mission longevity. Aboard a sRLV, atmospheric conditions that distort remotely sensed data (ground and spacecraft based) can be measured in situ. Moreover, an

  7. DDDAMS-based Urban Surveillance and Crowd Control via UAVs and UGVs

    Science.gov (United States)

    2015-12-04

    Systems, Man, and Cybernetics: Systems (Special Issue on Biomedical Robotics and Bio- mechatronics Systems and Application), Accepted, 2015. Figure...Special Issue on Biomedical Robotics and Bio- mechatronics Systems and Application), Accepted, 2015. • A. Khaleghi, D. Xu, S. Minaeian, M. Li, Y. Yuan, C...Aggregation for Crowd Dynamics Modeling with UAVs and UGVs, Frontiers in Robotics and AI (Sensor Fusion and Machine Perception Section), 2:8, 2015, 1-10

  8. Real-time Accurate Surface Reconstruction Pipeline for Vision Guided Planetary Exploration Using Unmanned Ground and Aerial Vehicles

    Science.gov (United States)

    Almeida, Eduardo DeBrito

    2012-01-01

    This report discusses work completed over the summer at the Jet Propulsion Laboratory (JPL), California Institute of Technology. A system is presented to guide ground or aerial unmanned robots using computer vision. The system performs accurate camera calibration, camera pose refinement and surface extraction from images collected by a camera mounted on the vehicle. The application motivating the research is planetary exploration and the vehicles are typically rovers or unmanned aerial vehicles. The information extracted from imagery is used primarily for navigation, as robot location is the same as the camera location and the surfaces represent the terrain that rovers traverse. The processed information must be very accurate and acquired very fast in order to be useful in practice. The main challenge being addressed by this project is to achieve high estimation accuracy and high computation speed simultaneously, a difficult task due to many technical reasons.

  9. Vehicle-mounted ground penetrating radar (Mine Stalker III) field evaluation in Angola

    Science.gov (United States)

    Laudato, Stephen; Hart, Kerry; Nevard, Michael; Lauziere, Steven; Grant, Shaun

    2014-05-01

    The U.S. Department of Defense Humanitarian Demining Research and Development (HD R&D) Program, Non-Intrusive Inspection Technology (NIITEK), Inc. and The HALO Trust have over the last decade funded, developed and tested various prototype vehicle mounted ground penetrating radar (GPR) systems named the Mine Stalker. The HD R&D Program and NIITEK developed the Mine Stalker to detect low metal anti-tank (LM-AT) mines in roads. The country of Angola is severely affected by LM-AT mines in and off road, some of which are buried beyond the effective range of detection sensors current used in country. The threat from LM-AT mines such as the South African Number 8 (No. 8) and the Chinese Type 72 (72AT) still persist from Angola's 30 years of civil war. These LM-AT threats are undetectable at depths greater than 5 to 10 centimeters using metal detection technology. Clearing commerce routes are a critical requirement before Angola can rebuild its infrastructure and improve safety conditions for the local populace. The Halo Trust, a non-governmental demining organization (NGO) focused on demining and clearance of unexploded ordnance (UXO), has partnered with the HD R&D Program to conduct an operational field evaluation (OFE) of the Mine Stalker III (MS3) in Angola. Preliminary testing and training efforts yielded encouraging results. This paper presents a review of the data collected, testing results, system limitations and deficiencies while operating in a real world environment. Our goal is to demonstrate and validate this technology in live minefield environments, and to collect data to prompt future developments to the system.

  10. OPART: an intelligent sensor dedicated to ground robotics

    Science.gov (United States)

    Dalgalarrondo, Andre; Luzeaux, Dominique; Hoffmann, Patrik W.

    2001-09-01

    We present an intelligent sensor, consisting in 2 CCDs with different field of view sharing the same optical motion, which can be controlled independently or not in their horizontal, vertical and rotational axis, and are connected in a closed loop to image processing resources. The goal of such a sensor is to be a testbed of image processing algorithms in real conditions. It illustrates the active perception paradigm and is used for autonomous navigation and target detection/tracking missions. Such a sensor has to meet many requirements : it is designed to be easily mounted on a standard tracked or wheeled military vehicle evolving in offroad conditions. Due to the rather wide range of missions UGVs may be involved in and to the computing cost of image processing, its computing resources have to be reprogrammable, of great power (real-time constraints), modular at the software level as well as at the hardware level and able to communicate with other systems. First, the paper details the mechanical, electronical and software design of the whole sensor. Then, we explain its functioning, the constraints due to its parallel processing architecture, the image processing algorithms that have been implemented for it and their current uses and performances. Finally, we describe experiments conducted on tracked and wheeled vehicles and conclude on the future development and use of this sensor for unmanned ground vehicles.

  11. Robust Stability and Control of Multi-Body Ground Vehicles with Uncertain Dynamics and Failures

    Science.gov (United States)

    2010-01-01

    Modeling for Heavy Articulated Tractor Semi- Trailer Vehicle 2.2.3.1 Rollover Index (RI) for A single Unit Vehicle 2.2.3.2...increasing complexity to capture Roll Over phenomenon and Other Performance and Ride Quality requirements. In this connection, first simple ` Bicycle ...methodology to a specific heavy articulated vehicle with tractor semi- trailer shows that a single active anti-roll bar system at the trailer unit gives

  12. A study on model fidelity for model predictive control-based obstacle avoidance in high-speed autonomous ground vehicles

    Science.gov (United States)

    Liu, Jiechao; Jayakumar, Paramsothy; Stein, Jeffrey L.; Ersal, Tulga

    2016-11-01

    This paper investigates the level of model fidelity needed in order for a model predictive control (MPC)-based obstacle avoidance algorithm to be able to safely and quickly avoid obstacles even when the vehicle is close to its dynamic limits. The context of this work is large autonomous ground vehicles that manoeuvre at high speed within unknown, unstructured, flat environments and have significant vehicle dynamics-related constraints. Five different representations of vehicle dynamics models are considered: four variations of the two degrees-of-freedom (DoF) representation as lower fidelity models and a fourteen DoF representation with combined-slip Magic Formula tyre model as a higher fidelity model. It is concluded that the two DoF representation that accounts for tyre nonlinearities and longitudinal load transfer is necessary for the MPC-based obstacle avoidance algorithm in order to operate the vehicle at its limits within an environment that includes large obstacles. For less challenging environments, however, the two DoF representation with linear tyre model and constant axle loads is sufficient.

  13. An adaptive finite element method for computing emergency manoeuvres of ground vehicles in complex driving scenarios

    NARCIS (Netherlands)

    Kanarachos, S.; Alirezaei, M.

    2015-01-01

    In emergency cases a vehicle has to avoid colliding with one or more obstacles, stay within road boundaries, satisfy acceleration and jerk limits, fulfil stability requirements and respect vehicle system dynamics limitations. The real time solution of such a problem is difficult and as a result vari

  14. Navigation of military and space unmanned ground vehicles in unstructured terrains

    Science.gov (United States)

    Lescoe, Paul; Lavery, David; Bedard, Roger

    1991-01-01

    Development of unmanned vehicles for local navigation in terrains unstructured by humans is reviewed. Modes of navigation include teleoperation or remote control, computer assisted remote driving (CARD), and semiautonomous navigation (SAN). A first implementation of a CARD system was successfully tested using the Robotic Technology Test Vehicle developed by Jet Propulsion Laboratory. Stereo pictures were transmitted to a remotely located human operator, who performed the sensing, perception, and planning functions of navigation. A computer provided range and angle measurements and the path plan was transmitted to the vehicle which autonomously executed the path. This implementation is to be enhanced by providing passive stereo vision and a reflex control system for autonomously stopping the vehicle if blocked by an obstacle. SAN achievements include implementation of a navigation testbed on a six wheel, three-body articulated rover vehicle, development of SAN algorithms and code, integration of SAN software onto the vehicle, and a successful feasibility demonstration that represents a step forward towards the technology required for long-range exploration of the lunar or Martian surface. The vehicle includes a passive stereo vision system with real-time area-based stereo image correlation, a terrain matcher, a path planner, and a path execution planner.

  15. Perception and mobility research at Defence R&D Canada for UGVs in complex terrain

    Science.gov (United States)

    Trentini, Michael; Collier, Jack; Beckman, Blake; Digney, Bruce; Vincent, Isabelle

    2007-04-01

    The Autonomous Intelligent Systems Section at Defence R&D Canada - Suffield envisions autonomous systems contributing to decisive operations in the urban battle space. In this vision, teams of unmanned ground, air, and marine vehicles, and unattended ground sensors will gather and coordinate information, formulate plans, and complete tasks. The mobility requirement for ground-based mobile systems operating in urban settings must increase significantly if robotic technology is to augment human efforts in military relevant roles and environments. In order to achieve its objective, the Autonomous Intelligent Systems Section is pursuing research that explores the use of intelligent mobility algorithms designed to improve robot mobility. Intelligent mobility uses sensing and perception, control, and learning algorithms to extract measured variables from the world, control vehicle dynamics, and learn by experience. These algorithms seek to exploit available world representations of the environment and the inherent dexterity of the robot to allow the vehicle to interact with its surroundings and produce locomotion in complex terrain. However, a disconnect exists between the current state-of-the-art in perception systems and the information required for novel platforms to interact with their environment to improve mobility in complex terrain. The primary focus of the paper is to present the research tools, topics, and plans to address this gap in perception and control research. This research will create effective intelligence to improve the mobility of ground-based mobile systems operating in urban settings to assist the Canadian Forces in their future urban operations.

  16. Demonstration of Biodiesel in Non-deployed Ground Tactical Vehicles/Equipment

    Science.gov (United States)

    2010-06-01

    tactical vehicles in their March 2006 Position Statement – Stability of the biodiesel – Accelerated deterioration in high temperature environments...Concerns – Stability of the biodiesel – All sites – Accelerated deterioration in high temperature environments – Moody AFB (hot/humid) and MCAGCC 29... Palms (hot/dry) – Vehicle operation and fuel properties in low temperatures – NSWC Crane – Water affinity and microbial degradation – All sites

  17. A Conformal, Fully-Conservative Approach for Predicting Blast Effects on Ground Vehicles

    Science.gov (United States)

    2014-02-09

    and hull. The decoupled inviscid CFD simulations (i.e. assuming a rigid vehicle) were used to examine the pressure variation and shock wave...interaction with the vehicle. Silver [8] used a commercial CFD code to predict the overpressure of a large caliber gun mounted on a simplified, rigid tank ...different locations under the crew cab and wheels. The pressures were calculated using the inviscid AUGUST-3D CFD code. The assessment of the structural

  18. Study of Model Predictive Control for Path-Following Autonomous Ground Vehicle Control under Crosswind Effect

    Directory of Open Access Journals (Sweden)

    Fitri Yakub

    2016-01-01

    Full Text Available We present a comparative study of model predictive control approaches of two-wheel steering, four-wheel steering, and a combination of two-wheel steering with direct yaw moment control manoeuvres for path-following control in autonomous car vehicle dynamics systems. Single-track mode, based on a linearized vehicle and tire model, is used. Based on a given trajectory, we drove the vehicle at low and high forward speeds and on low and high road friction surfaces for a double-lane change scenario in order to follow the desired trajectory as close as possible while rejecting the effects of wind gusts. We compared the controller based on both simple and complex bicycle models without and with the roll vehicle dynamics for different types of model predictive control manoeuvres. The simulation result showed that the model predictive control gave a better performance in terms of robustness for both forward speeds and road surface variation in autonomous path-following control. It also demonstrated that model predictive control is useful to maintain vehicle stability along the desired path and has an ability to eliminate the crosswind effect.

  19. A Nonlinear Model Predictive Control Algorithm for Obstacle Avoidance in Autonomous Ground Vehicles within Unknown Environments

    Science.gov (United States)

    2015-04-24

    Allgwer and A. Zheng, Nonlinear model predictive control vol. 26: Springer , 2000. [10] J. M. Park, D. W. Kim, Y. S. Yoon, H. J. Kim, and K. S. Yi...include modeling, simulation, and control of dynamic systems, with applications to energy systems, multibody dynamics, vehicle systems, and biomechanics

  20. The In-Transit Vigilant Covering Tour Problem of Routing Unmanned Ground Vehicles

    Science.gov (United States)

    2012-08-01

    15 Figure 2. A classic VRP ...17 Figure 3. Solution for a VRP ........................................................................................18 Figure 4. Solution...of NP-hard problems, such as the Traveling Salesman Problem (TSP), Vehicle Routing Problem ( VRP ), and Covering Salesman Problem (CSP) etc. We will

  1. Pheromone-based coordination strategy to static sensors on the ground and unmanned aerial vehicles carried sensors

    Science.gov (United States)

    Pignaton de Freitas, Edison; Heimfarth, Tales; Pereira, Carlos Eduardo; Morado Ferreira, Armando; Rech Wagner, Flávio; Larsson, Tony

    2010-04-01

    A current trend that is gaining strength in the wireless sensor network area is the use of heterogeneous sensor nodes in one coordinated overall network, needed to fulfill the requirements of sophisticated emerging applications, such as area surveillance systems. One of the main concerns when developing such sensor networks is how to provide coordination among the heterogeneous nodes, in order to enable them to efficiently respond the user needs. This study presents an investigation of strategies to coordinate a set of static sensor nodes on the ground cooperating with wirelessly connected Unmanned Aerial Vehicles (UAVs) carrying a variety of sensors, in order to provide efficient surveillance over an area of interest. The sensor nodes on the ground are set to issue alarms on the occurrence of a given event of interest, e.g. entrance of a non-authorized vehicle in the area, while the UAVs receive the issued alarms and have to decide which of them is the most suitable to handle the issued alarm. A bio-inspired coordination strategy based on the concept of pheromones is presented. As a complement of this strategy, a utility-based decision making approach is proposed.

  2. Standards and Specifications for Ground Processing of Space Vehicles: From an Aviation-Based Shuttle Project to Global Application

    Science.gov (United States)

    Ingalls, John; Cipolletti, John

    2011-01-01

    Proprietary or unique designs and operations are expected early in any industry's development, and often provide a competitive early market advantage. However, there comes a time when a product or industry requires standardization for the whole industry to advance...or survive. For the space industry, that time has come. Here, we will focus on standardization of ground processing for space vehicles and their ground systems. With the retirement of the Space Shuttle, and emergence of a new global space race, affordability and sustainability are more important now than ever. The growing commercialization of the space industry and current global economic environment are driving greater need for efficiencies to save time and money. More RLV's (Reusable Launch Vehicles) are being developed for the gains of reusability not achievable with traditional ELV's (Expendable Launch Vehicles). More crew/passenger vehicles are also being developed. All of this calls for more attention needed for ground processing-repeatedly before launch and after landing/recovery. RLV's should provide more efficiencies than ELV's, as long as MRO (Maintenance, Repair, and Overhaul) is well-planned-even for the unplanned problems. NASA's Space Shuttle is a primary example of an RLV which was supposed to thrive on reusability savings with efficient ground operations, but lessons learned show that costs were (and still are) much greater than expected. International standards and specifications can provide the commonality needed to simplify design and manufacturing as well as to improve safety, quality, maintenance, and operability. There are standards organizations engaged in the space industry, but ground processing is one of the areas least addressed. Challenges are encountered due to various factors often not considered during development. Multiple vehicle elements, sites, customers, and contractors pose various functional and integration difficulties. Resulting technical publication structures

  3. Multi-spectral synthetic image generation for ground vehicle identification training

    Science.gov (United States)

    May, Christopher M.; Pinto, Neil A.; Sanders, Jeffrey S.

    2016-05-01

    There is a ubiquitous and never ending need in the US armed forces for training materials that provide the warfighter with the skills needed to differentiate between friendly and enemy forces on the battlefield. The current state of the art in battlefield identification training is the Recognition of Combat Vehicles (ROC-V) tool created and maintained by the Communications - Electronics Research, Development and Engineering Center Night Vision and Electronic Sensors Directorate (CERDEC NVESD). The ROC-V training package utilizes measured visual and thermal imagery to train soldiers about the critical visual and thermal cues needed to accurately identify modern military vehicles and combatants. This paper presents an approach to augment the existing ROC-V imagery database with synthetically generated multi-spectral imagery that will allow NVESD to provide improved training imagery at significantly lower costs.

  4. A Conformal, Fully-Conservative Approach for Predicting Blast Effects on Ground Vehicles

    Science.gov (United States)

    2014-04-01

    time integration  Approximate Riemann Fluxes (HLLE, HLLC) ◦ Robust mixture model for multi-material flows  Multiple Equations of State ◦ Perfect Gas...Generic Hull geometry used to verify coupling for realistic configurations ◦ Qualitative results only UNCLASSIFIED UNCLASSIFIED  Large weight used to...UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED  Geometry represents a notional Army vehicle  Test conditions: ◦ Charge: 6kg cylinder of C4  STANAG 4569 Level 2 mine

  5. Creation of the Driver Fixed Heel Point (FHP) CAD Accommodation Model for Military Ground Vehicle Design

    Science.gov (United States)

    2016-08-04

    Standard: Human Engineering, 2012. The unifying factor amongst these is the requirement to accommodate the central 90% of the Soldier population . MIL...Heel Point (FHP), accommodation model, occupant work space, central 90% of the Soldier population , encumbrance, posture and position, computer aided...which the occupant is an integral element of vehicle workstation design. Ensuring that a given percentage of the population can sit safely and

  6. Understanding why a Ground Combat Vehicle that Carries Nine Dismounts is Important to the Army

    Science.gov (United States)

    2013-01-01

    cites a quote by GEN Donn Starry, TRADOC commander from 1977 to 1981, in which he notes, “We in TRADOC . . . decided to put the TOW on the MICV because...Carmichael, John M., “Devising Doctrine for the Bradley Fighting Vehicle Platoon Dismount Element—Finding the Right Starting Point,” Fort...Mahon, John K., and Romana Danysh, Army Lineage Series: Infantry, Part I: Regular Army, Washington, D.C.: Office of the Chief of Military History, United

  7. Practical To Tactical: Making the Case for a Shift in Ground Vehicle Robotics

    Science.gov (United States)

    2012-05-10

    Active Safety Vehicle Controls Automotive Sensors (CMOS Stereo Camera, Single Chip Radar , Low Cost Lidar) Drive-By-Wire (Electronically...UNCLASSIFIED 15 Forward Automotive Radar Camera Electric Power Assist Steering (EPAS) Steering Position Sensor Steering Torque Sensor ESC...I C R M x x x V UNCLASSIFIED T 1 r t TECHNOLOGY DRNEN. WARF~n1a~ rUUI~~. 20 Automotive Radar Stereo Camera Side Blind Zone Radar RG31

  8. H2 control of a one-quarter semi-active ground vehicle suspension

    Directory of Open Access Journals (Sweden)

    L.C. Félix-Herrán

    2016-06-01

    Full Text Available Magneto-rheological (MR dampers are effective solutions in improving vehicle stability and passenger comfort. However, handling these dampers implies a strong effort in modeling and control. This research proposes an H2 controller, based on a Takagi–Sugeno (T–S fuzzy model, for a two-degrees-of-freedom (2-DOF one-quarter vehicle semi-active suspension with an MR damper; a system with important applications in automotive industry. Regarding performance criteria (in frequency domain handled herein, the developed controller considerably improves the passive suspension's efficiency. Moreover, nonlinear actuator dynamics usually avoided in reported work, is included in controller's synthesis; improving the relevance of research outcomes because the controller is synthesized from a closer-to-reality suspension model. Going further, outcomes of this research are compared (based on frequency domain performance criteria and a common time domain test with reported work to highlight the outstanding results. H2 controller is given in terms of quadratic Lyapunov stability theory and carried out by means of Linear Matrix Inequalities (LMI, and the command signal is applied via the Parallel Distributed Compensation (PDC approach. A case of study, with real data, is developed and simulation work supports the results. The methodology applied herein can be extended to include other vehicle suspension's dynamics towards a general chassis control.

  9. NPSNET: Real-Time 3D Ground-Based Vehicle Dynamics

    Science.gov (United States)

    1992-03-01

    Meriam et.al., 86]1. Motion is produced by a simplified simulation of dynamics, that describes the linear and angular accelerations of a rigid body in...from the definition of the mass center as covered in statics, is given by 6 mr = Emir, (Eq. 2.1) where the total mass M = Emi [ Meriam et. al., 86]. At...Jurewicz, T., "A Real Time Autonomous Underwater Vehicle Dynamic Simulator," M.S. Thesis, Naval Postgraduate School, Monterey, CA., June 1989 [ Meriam et. al

  10. Situational awareness for unmanned ground vehicles in semi-structured environments

    Science.gov (United States)

    Goodsell, Thomas G.; Snorrason, Magnus; Stevens, Mark R.

    2002-07-01

    Situational Awareness (SA) is a critical component of effective autonomous vehicles, reducing operator workload and allowing an operator to command multiple vehicles or simultaneously perform other tasks. Our Scene Estimation & Situational Awareness Mapping Engine (SESAME) provides SA for mobile robots in semi-structured scenes, such as parking lots and city streets. SESAME autonomously builds volumetric models for scene analysis. For example, a SES-AME equipped robot can build a low-resolution 3-D model of a row of cars, then approach a specific car and build a high-resolution model from a few stereo snapshots. The model can be used onboard to determine the type of car and locate its license plate, or the model can be segmented out and sent back to an operator who can view it from different viewpoints. As new views of the scene are obtained, the model is updated and changes are tracked (such as cars arriving or departing). Since the robot's position must be accurately known, SESAME also has automated techniques for deter-mining the position and orientation of the camera (and hence, robot) with respect to existing maps. This paper presents an overview of the SESAME architecture and algorithms, including our model generation algorithm.

  11. An MPC Algorithm with Combined Speed and Steering Control for Obstacle Avoidance in Autonomous Ground Vehicles

    Science.gov (United States)

    2015-04-24

    be an adequate interpretation in certain applications such as small ground robots . However, for the AGVs that are at least the size of a passenger... problematic , because the OCP solver requires all functions to be twice continuously differentiable. To address this challenge, the safe region is...avoidance for manipulators and mobile robots ,” International Journal of Robotics Research, vol. 5, pp. 90-98, 1986. [4] S. Shimoda, Y. Kuroda, and K

  12. Systems Engineering Approach To Ground Combat Vehicle Survivability In Urban Operations

    Science.gov (United States)

    2016-09-01

    of global urbanization, planning for urban operations is critical to the execution and success of any military campaign. The U.S. Army describes...for the enemy to prepare for the likely attack direction and to plan coordinated attacks against the incoming ground force. Enemy sensors can also...The Israel Aerospace Industries (IAI) is developing an integrated counter IED suite known as the Counter IED & Mine Suite ( CIMS ). According to Eshel

  13. Finite Element Optimization for Nondestructive Evaluation on a Graphics Processing Unit for Ground Vehicle Hull Inspection

    Science.gov (United States)

    2013-08-22

    GPU ,GA, genetic algorithm, FE, optimization, CUDA , Damage, Evaluation 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER OF... GPU with CUDA architecture [4]). There is however a severe memory limit – 4 GB at present. This would limit large problems as well as optimization...August 2013 UNCLASSIFIED UNCLASSIFIED Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 FE Optimization for NDE on GPUs for Ground

  14. Optical embedded dust sensor for engine protection and early warning on M1 Abrams/ground combat vehicles

    Science.gov (United States)

    Lin, Hai; Waldherr, Gregor A.; Burch, Timothy

    2012-06-01

    The Dual Optical Embedded Dust Sensor (DOEDS) is designed for the sensitive, accurate detection of particles for preventive health monitoring of the AGT1500 engine and M1 Abrams/Ground Combat Vehicles (GCVs). DOEDS is a real-time sensor that uses an innovative combination of optical particle sensing technologies and mechanical packaging in a rugged, compact and non-intrusive optical design. The optical sensor, implementing both a single particle sensor and a mass sensor, can operate in harsh environments (up to 400°F) to meet the particle size, size distribution, mass concentration, and response time criteria. The sensor may be flush- or inline-mounted in multiple engine locations and environments.

  15. Leader Follower Formation Control of Ground Vehicles Using Dynamic Pixel Count and Inverse Perspective Mapping

    Directory of Open Access Journals (Sweden)

    S.M.Vaitheeswarana

    2014-10-01

    Full Text Available This paper deals with leader-follower formations of non-holonomic mobile robots, introducing a formation control strategy based on pixel counts using a commercial grade electro optics camera. Localization of the leader for motions along line of sight as well as the obliquely inclined directions are considered based on pixel variation of the images by referencing to two arbitrarily designated positions in the image frames. Based on an established relationship between the displacement of the camera movement along the viewing direction and the difference in pixel counts between reference points in the images, the range and the angle estimate between the follower camera and the leader is calculated. The Inverse Perspective Transform is used to account for non linear relationship between the height of vehicle in a forward facing image and its distance from the camera. The formulation is validated with experiments.

  16. Design of Secured Ground Vehicle Event Data Recorder for Data Analysis

    Directory of Open Access Journals (Sweden)

    Mr. Love Sharma

    2017-03-01

    Full Text Available The Event Data Recorder (EDR is now one of the important components installed in the vehicles by the automakers since it is helping in calculating an independent measurement of crash severity which is far better than the traditional systems used. There is limited research is done on the domain. In this paper we are going to propose an EDR which is based on ARM controller and will sense the alcohol, brake pressed, Speed, Location, Humidity, and Temperature. The data collected from the sensors is aggregated using a threshold-based technique, then the data is encrypted using RC6 and finally, the data is mined for knowledge using top k rules.

  17. Multi-Autonomous Ground-robotic International Challenge (MAGIC) 2010

    Science.gov (United States)

    2010-12-14

    the hybrid SLAM and (2) the Occupancy Grid Mapping ( OGM ) on the Graphic Processing Unit (GPU) after formulating them within a single recursive Bayesian...of the model-predictive control and the hybrid SLAM and (2) the Occupancy Grid Mapping ( OGM ) on the Graphic Processing Unit (GPU) after formulating...implemented into the multi-UGV system. Localization of OOI, the vehicle itself and landmarks, which achieves SLAM, and occupancy grid mapping ( OGM

  18. Human-Automation Interaction Design for Adaptive Cruise Control Systems of Ground Vehicles

    Science.gov (United States)

    Eom, Hwisoo; Lee, Sang Hun

    2015-01-01

    A majority of recently developed advanced vehicles have been equipped with various automated driver assistance systems, such as adaptive cruise control (ACC) and lane keeping assistance systems. ACC systems have several operational modes, and drivers can be unaware of the mode in which they are operating. Because mode confusion is a significant human error factor that contributes to traffic accidents, it is necessary to develop user interfaces for ACC systems that can reduce mode confusion. To meet this requirement, this paper presents a new human-automation interaction design methodology in which the compatibility of the machine and interface models is determined using the proposed criteria, and if the models are incompatible, one or both of the models is/are modified to make them compatible. To investigate the effectiveness of our methodology, we designed two new interfaces by separately modifying the machine model and the interface model and then performed driver-in-the-loop experiments. The results showed that modifying the machine model provides a more compact, acceptable, effective, and safe interface than modifying the interface model. PMID:26076406

  19. Proceedings of the 7th Annual TARDEC Ground Vehicle Survivability Symposium, March 26-28, 1996, Naval Postgraduate School, Monterey, CA Volume 1 - Unclassified Session Papers

    Science.gov (United States)

    1996-05-01

    Submitted J. Cardenas , U.S. Army TARDEC P-10 Ground Combat Vehicle Survivability Database Vol. 1 517 J. Olejar, C. Glausier, D. Brassard, K. Gantt, N. Funk... algebra . This change in methodology should go a long way toward alleviating the sampling problem that has been identi- fied in the IDA and SIRVICE studies

  20. The Seismic Response of High-Speed Railway Bridges Subjected to Near-Fault Forward Directivity Ground Motions Using a Vehicle-Track-Bridge Element

    Directory of Open Access Journals (Sweden)

    Chen Ling-kun

    2014-01-01

    Full Text Available Based on the Next Generation Attenuation (NGA project ground motion library, the finite element model of the high-speed railway vehicle-bridge system is established. The model was specifically developed for such system that is subjected to near-fault ground motions. In addition, it accounted for the influence of the rail irregularities. The vehicle-track-bridge (VTB element is presented to simulate the interaction between train and bridge, in which a train can be modeled as a series of sprung masses concentrated at the axle positions. For the short period railway bridge, the results from the case study demonstrate that directivity pulse effect tends to increase the seismic responses of the bridge compared with far-fault ground motions or nonpulse-like motions and the directivity pulse effect and high values of the vertical acceleration component can notably influence the hysteretic behaviour of piers.

  1. Counter tunnel exploration, mapping, and localization with an unmanned ground vehicle

    Science.gov (United States)

    Larson, Jacoby; Okorn, Brian; Pastore, Tracy; Hooper, David; Edwards, Jim

    2014-06-01

    Covert, cross-border tunnels are a security vulnerability that enables people and contraband to illegally enter the United States. All of these tunnels to-date have been constructed for the purpose of drug smuggling, but they may also be used to support terrorist activity. Past robotic tunnel exploration efforts have had limited success in aiding law enforcement to explore and map the suspect cross-border tunnels. These efforts have made use of adapted explosive ordnance disposal (EOD) or pipe inspection robotic systems that are not ideally suited to the cross-border tunnel environment. The Counter Tunnel project was sponsored by the Office of Secretary of Defense (OSD) Joint Ground Robotics Enterprise (JGRE) to develop a prototype robotic system for counter-tunnel operations, focusing on exploration, mapping, and characterization of tunnels. The purpose of this system is to provide a safe and effective solution for three-dimensional (3D) localization, mapping, and characterization of a tunnel environment. The system is composed of the robotic mobility platform, the mapping sensor payload, and the delivery apparatus. The system is able to deploy and retrieve the robotic mobility platform through a 20-cm-diameter borehole into the tunnel. This requirement posed many challenges in order to design and package the sensor and robotic system to fit through this narrow opening and be able to perform the mission. This paper provides a short description of a few aspects of the Counter Tunnel system such as mobility, perception, and localization, which were developed to meet the unique challenges required to access, explore, and map tunnel environments.

  2. Single-Frame Terrain Mapping Software for Robotic Vehicles

    Science.gov (United States)

    Rankin, Arturo L.

    2011-01-01

    This software is a component in an unmanned ground vehicle (UGV) perception system that builds compact, single-frame terrain maps for distribution to other systems, such as a world model or an operator control unit, over a local area network (LAN). Each cell in the map encodes an elevation value, terrain classification, object classification, terrain traversability, terrain roughness, and a confidence value into four bytes of memory. The input to this software component is a range image (from a lidar or stereo vision system), and optionally a terrain classification image and an object classification image, both registered to the range image. The single-frame terrain map generates estimates of the support surface elevation, ground cover elevation, and minimum canopy elevation; generates terrain traversability cost; detects low overhangs and high-density obstacles; and can perform geometry-based terrain classification (ground, ground cover, unknown). A new origin is automatically selected for each single-frame terrain map in global coordinates such that it coincides with the corner of a world map cell. That way, single-frame terrain maps correctly line up with the world map, facilitating the merging of map data into the world map. Instead of using 32 bits to store the floating-point elevation for a map cell, the vehicle elevation is assigned to the map origin elevation and reports the change in elevation (from the origin elevation) in terms of the number of discrete steps. The single-frame terrain map elevation resolution is 2 cm. At that resolution, terrain elevation from 20.5 to 20.5 m (with respect to the vehicle's elevation) is encoded into 11 bits. For each four-byte map cell, bits are assigned to encode elevation, terrain roughness, terrain classification, object classification, terrain traversability cost, and a confidence value. The vehicle s current position and orientation, the map origin, and the map cell resolution are all included in a header for each

  3. Seasonal associations and atmospheric transport distances of Fusarium collected with unmanned aerial vehicles and ground-based sampling devices

    Science.gov (United States)

    Schmale, David; Ross, Shane; Lin, Binbin

    2014-05-01

    Spores of fungi in the genus Fusarium may be transported through the atmosphere over long distances. Members of this genus are important pathogens and mycotoxin producers. New information is needed to characterize seasonal trends in atmospheric loads of Fusarium and to pinpoint the source(s) of inoculum at both local (farm) and regional (state or country) scales. Spores of Fusarium were collected from the atmosphere in an agricultural ecosystem in Blacksburg, VA, USA using a Burkard volumetric sampler (BVS) 1 m above ground level and autonomous unmanned aerial vehicles (UAVs) 100 m above ground level. More than 2,200 colony forming units (CFUs) of Fusarium were collected during 104 BVS sampling periods and 180 UAV sampling periods over four calendar years (2009-2012). Spore concentrations ranged from 0 to 13 and 0 to 23 spores m-3 for the BVS and the UAVs, respectively. Spore concentrations were generally higher in the fall, spring, and summer, and lower in the winter. Spore concentrations from the BVS were generally higher than those from the UAVs for both seasonal and hourly collections. Some of the species of Fusarium identified from our collections have not been previously reported in the state of Virginia. A Gaussian plume transport model was used to estimate distances to the potential inoculum source(s) by season. This work extends previous studies showing an association between atmospheric transport barriers (Lagrangian coherent structures or LCSs) and the movement of Fusarium in the lower atmosphere. An increased understanding of the aerobiology of Fusarium may contribute to new and improved control strategies for diseases causes by fusaria in the future.

  4. Tip-over prevention through heuristic reactive behaviors for unmanned ground vehicles

    Science.gov (United States)

    Talke, Kurt; Kelley, Leah; Longhini, Patrick; Catron, Garret

    2014-06-01

    Skid-steer teleoperated robots are commonly used by military and civilian crews to perform high-risk, dangerous and critical tasks such as bomb disposal. Their missions are often performed in unstructured environments with irregular terrain, such as inside collapsed buildings or on rough terrain covered with a variety of media, such as sand, brush, mud, rocks and debris. During such missions, it is often impractical if not impossible to send another robot or a human operator to right a toppled robot. As a consequence, a robot tip-over event usually results in mission failure. To make matters more complicated, such robots are often equipped with heavy payloads that raise their centers of mass and hence increase their instability. Should the robot be equipped with a manipulator arm or flippers, it may have a way to self-right. The majority of manipulator arms are not designed for and are likely to be damaged during self-righting procedures, however, which typically have a low success rate. Furthermore, those robots not equipped with manipulator arms or flippers have no self-righting capabilities. Additionally, due to the on-board camera frame of reference, the video feed may cause the robot to appear to be on at level ground, when it actually may be on a slope nearing tip-over. Finally, robot operators are often so focused on the mission at hand they are oblivious to their surroundings, similar to a kid playing a video game. While this may not be an issue in the living room, it is not a good scenario to experience on the battlefield. Our research seeks to remove tip-over monitoring from the already large list of tasks an operator must perform. An autonomous tip-over prevention behavior for a mobile robot with a static payload has been developed, implemented and experimentally validated on two different teleoperated robotic platforms. Suitable for use with both teleoperated and autonomous robots, the prevention behavior uses the force-angle stability measure

  5. Rapid Detection Methods for Asphalt Pavement Thicknesses and Defects by a Vehicle-Mounted Ground Penetrating Radar (GPR) System.

    Science.gov (United States)

    Dong, Zehua; Ye, Shengbo; Gao, Yunze; Fang, Guangyou; Zhang, Xiaojuan; Xue, Zhongjun; Zhang, Tao

    2016-12-06

    The thickness estimation of the top surface layer and surface layer, as well as the detection of road defects, are of great importance to the quality conditions of asphalt pavement. Although ground penetrating radar (GPR) methods have been widely used in non-destructive detection of pavements, the thickness estimation of the thin top surface layer is still a difficult problem due to the limitations of GPR resolution and the similar permittivity of asphalt sub-layers. Besides, the detection of some road defects, including inadequate compaction and delamination at interfaces, require further practical study. In this paper, a newly-developed vehicle-mounted GPR detection system is introduced. We used a horizontal high-pass filter and a modified layer localization method to extract the underground layers. Besides, according to lab experiments and simulation analysis, we proposed theoretical methods for detecting the degree of compaction and delamination at the interface, respectively. Moreover, a field test was carried out and the estimated results showed a satisfactory accuracy of the system and methods.

  6. Rapid Detection Methods for Asphalt Pavement Thicknesses and Defects by a Vehicle-Mounted Ground Penetrating Radar (GPR System

    Directory of Open Access Journals (Sweden)

    Zehua Dong

    2016-12-01

    Full Text Available The thickness estimation of the top surface layer and surface layer, as well as the detection of road defects, are of great importance to the quality conditions of asphalt pavement. Although ground penetrating radar (GPR methods have been widely used in non-destructive detection of pavements, the thickness estimation of the thin top surface layer is still a difficult problem due to the limitations of GPR resolution and the similar permittivity of asphalt sub-layers. Besides, the detection of some road defects, including inadequate compaction and delamination at interfaces, require further practical study. In this paper, a newly-developed vehicle-mounted GPR detection system is introduced. We used a horizontal high-pass filter and a modified layer localization method to extract the underground layers. Besides, according to lab experiments and simulation analysis, we proposed theoretical methods for detecting the degree of compaction and delamination at the interface, respectively. Moreover, a field test was carried out and the estimated results showed a satisfactory accuracy of the system and methods.

  7. Force Limiting Vibration Tests Evaluated from both Ground Acoustic Tests and FEM Simulations of a Flight Like Vehicle System Assembly

    Science.gov (United States)

    Smith, Andrew; LaVerde, Bruce; Waldon, James; Hunt, Ron

    2014-01-01

    Marshall Space Flight Center has conducted a series of ground acoustic tests with the dual goals of informing analytical judgment, and validating analytical methods when estimating vibroacoustic responses of launch vehicle subsystems. The process of repeatedly correlating finite element-simulated responses with test-measured responses has assisted in the development of best practices for modeling and post-processing. In recent work, force transducers were integrated to measure interface forces at the base of avionics box equipment. Other force data was indirectly measured using strain gauges. The combination of these direct and indirect force measurements has been used to support and illustrate the advantages of implementing the Force Limiting approach for equipment qualification tests. The comparison of force response from integrated system level tests to measurements at the same locations during component level vibration tests provides an excellent illustration. A second comparison of the measured response cases from the system level acoustic tests to finite element simulations has also produced some principles for assessing the suitability of Finite Element Models (FEMs) for making vibroacoustics estimates. The results indicate that when FEM models are employed to guide force limiting choices, they should include sufficient detail to represent the apparent mass of the system in the frequency range of interest.

  8. Use of 3D laser radar for navigation of unmanned aerial and ground vehicles in urban and indoor environments

    Science.gov (United States)

    Uijt de Haag, Maarten; Venable, Don; Smearcheck, Mark

    2007-04-01

    This paper discusses the integration of Inertial measurements with measurements from a three-dimensional (3D) imaging sensor for position and attitude determination of unmanned aerial vehicles (UAV) and autonomous ground vehicles (AGV) in urban or indoor environments. To enable operation of UAVs and AGVs at any time in any environment a Precision Navigation, Attitude, and Time (PNAT) capability is required that is robust and not solely dependent on the Global Positioning System (GPS). In urban and indoor environments a GPS position capability may not only be unavailable due to shadowing, significant signal attenuation or multipath, but also due to intentional denial or deception. Although deep integration of GPS and Inertial Measurement Unit (IMU) data may prove to be a viable solution an alternative method is being discussed in this paper. The alternative solution is based on 3D imaging sensor technologies such as Flash Ladar (Laser Radar). Flash Ladar technology consists of a modulated laser emitter coupled with a focal plane array detector and the required optics. Like a conventional camera this sensor creates an "image" of the environment, but producing a 2D image where each pixel has associated intensity vales the flash Ladar generates an image where each pixel has an associated range and intensity value. Integration of flash Ladar with the attitude from the IMU allows creation of a 3-D scene. Current low-cost Flash Ladar technology is capable of greater than 100 x 100 pixel resolution with 5 mm depth resolution at a 30 Hz frame rate. The proposed algorithm first converts the 3D imaging sensor measurements to a point cloud of the 3D, next, significant environmental features such as planar features (walls), line features or point features (corners) are extracted and associated from one 3D imaging sensor frame to the next. Finally, characteristics of these features such as the normal or direction vectors are used to compute the platform position and attitude

  9. Software Systems for Robotics An Applied Research Perspective

    Directory of Open Access Journals (Sweden)

    Greg Broten

    2006-03-01

    Full Text Available Over the past 20 years, Defence Research and Development Canada has developed numerous tele-operated unmanned ground vehicles (UGV, many founded on the ANCÆUS command and control system. This paper relates how long experience with tele-operated UGVs influenced DRDC's shift in focus from tele-operated to autonomous unmanned vehicles (UV, the forces that guided DRDC's development approach and DRDC's experience adapting a specific tool set, MIRO, to a UGV implementation.

  10. Autonomy and manual operation in a small robotic system for under-vehicle inspections at security checkpoints

    Science.gov (United States)

    Smuda, William; Muench, Paul L.; Gerhart, Grant R.; Moore, Kevin L.

    2002-07-01

    Unmanned ground vehicle (UGV) technology can be used in a number of ways to assist in counter-terrorism activities. In addition to the conventional uses of tele-operated robots for unexploded ordinance handling and disposal, water cannons and other crowd control devices, robots can also be employed for a host of terrorism deterrence and detection applications. In previous research USU developed a completely autonomous prototype robot for performing under- vehicle inspections in parking areas (ODIS). Testing of this prototype and discussions with the user community indicated that neither the technology nor the users are ready for complete autonomy. In this paper we present a robotic system based on ODIS that balances the users' desire/need for tele- operation with a limited level of autonomy that enhances the performance of the robot. The system can be used by both civilian law enforcement and military police to replace the traditional mirror on a stick system of looking under cars for bombs and contraband.

  11. 螺旋地锚车的研制与应用%The Development and Application of the Spirally Mobile Ground Anchor Vehicle

    Institute of Scientific and Technical Information of China (English)

    翟建团; 李姣姣; 谢玉敏

    2012-01-01

    针对直臂地锚车在近距离无法完成施工作业和复合臂地锚车结构复杂、故障率高等问题,研制了螺旋地锚车。该地锚车主要由汽车底盘、副车架、吊臂总成、回转工作台、锚头加压钻进装置、液压系统及蛙形液压支腿等组成,不仅可用于普通地层打地锚,还可用于西南及东北地区冻土层地锚的钻进与拧出。现场应用情况表明,该地锚车可节省人力达90%以上,提高工作效率50%以上。%The straight arm cannot complete the short-distance construction operation. The composite arm ground anchor vehicle is complex in structure and high in failure rate. Considering these problems, the spirally mobile ground anchor vehicle was developed. The vehicle mainly consists of chassis, subframe, rotary worktable, anchor head pressure drilling device, hydraulic system and frog-shape hydraulic outrigger. It cannot only be used in ordi- nary formation ground anchoring but also in ground anchor drilling and pulling out in the frozen layers of southwest- ern and northeastern regions. The field application shows that the vehicle can save over 90% manpower and im- prove the operating efficiency by over 50%.

  12. Measuring Sunflower Nitrogen Status from AN Unmanned Aerial Vehicle-Based System and AN on the Ground Device

    Science.gov (United States)

    Agüera, F.; Carvajal, F.; Pérez, M.

    2011-09-01

    Precision agriculture recognizes the inherent spatial variability associated with soil characteristics, land morphology and crop growth, and uses this information to prescribe the most appropriate management strategy on a site-specific basis. To reach this task, the most important information related with crop growth is nutrient status, weed infestation, disease and pet affectation and water management. The application of fertilizer nitrogen to field crops is of critical importance because it determines plant's gro wth, vigour, colour and yield. Furthermore, nitrogen has been observed as a nutrient with high spatial variability in a single field, related to its high mobility. Some previous works have shown that is possible to measure crop nitrogen status with optical instruments. Since most leaf nitrogen is contained in chlorophyll molecules, there is a strong relationship between leaf nitrogen and leaf chlorophyll content, which is the basis for predicting crop nitrogen status by measuring leaf reflectance. So, sensors that can easily monitor crop nitrogen amount throughout the growing season at a high resolution to allow producers to reach their production goals, will give useful information to prescribe a crop management on a site-specific basis. Sunflower is a crop which is taking importance again because it can be used both for food and biofuel purposes, and it is widely cultivated in the South of Spain and other European countries.The aim of this work was to compare an index related with sunflower nitrogen status, deduced from multispectral images taken from an Unmanned Aerial Vehicle (UAV), with optical data collected with a ground-based platform.An ADC Lite Tetracam digital cam was mounted on a md4-200 Microdrones to take pictures of a sunflower field during the crop season. ADC Lite Tetracam is a single sensor digital camera designed for capture of visible light wavelength longer than 520 nm and near-infrared wavelength up to 920 nm. The md4

  13. MEASURING SUNFLOWER NITROGEN STATUS FROM AN UNMANNED AERIAL VEHICLE-BASED SYSTEM AND AN ON THE GROUND DEVICE

    Directory of Open Access Journals (Sweden)

    F. Agüera

    2012-09-01

    Full Text Available Precision agriculture recognizes the inherent spatial variability associated with soil characteristics, land morphology and crop growth, and uses this information to prescribe the most appropriate management strategy on a site-specific basis. To reach this task, the most important information related with crop growth is nutrient status, weed infestation, disease and pet affectation and water management. The application of fertilizer nitrogen to field crops is of critical importance because it determines plant's gro wth, vigour, colour and yield. Furthermore, nitrogen has been observed as a nutrient with high spatial variability in a single field, related to its high mobility. Some previous works have shown that is possible to measure crop nitrogen status with optical instruments. Since most leaf nitrogen is contained in chlorophyll molecules, there is a strong relationship between leaf nitrogen and leaf chlorophyll content, which is the basis for predicting crop nitrogen status by measuring leaf reflectance. So, sensors that can easily monitor crop nitrogen amount throughout the growing season at a high resolution to allow producers to reach their production goals, will give useful information to prescribe a crop management on a site-specific basis. Sunflower is a crop which is taking importance again because it can be used both for food and biofuel purposes, and it is widely cultivated in the South of Spain and other European countries.The aim of this work was to compare an index related with sunflower nitrogen status, deduced from multispectral images taken from an Unmanned Aerial Vehicle (UAV, with optical data collected with a ground-based platform.An ADC Lite Tetracam digital cam was mounted on a md4-200 Microdrones to take pictures of a sunflower field during the crop season. ADC Lite Tetracam is a single sensor digital camera designed for capture of visible light wavelength longer than 520 nm and near-infrared wavelength up to 920 nm. The

  14. UGV Interoperability Profile (IOP) - Overarching Profile JAUS Profiling Rules, Version 0

    Science.gov (United States)

    2011-12-21

    this is defined as any non-variable lights associated with the vehicle forward drive camera. - Left Turn Signal – the left turn signal will be used...to turn on and off a vehicle’s left turn signal . The left turn signal is defined as a visual signal presented to an observer behind the vehicle...that indicates the vehicle is about to or is turning left. In the case of a Unclassified 40 vehicle that has no left turn signal , this field

  15. Maglev vehicles and superconductor technology: Integration of high-speed ground transportation into the air travel system

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, L.R.; Rote, D.M.; Hull, J.R.; Coffey, H.T.; Daley, J.G.; Giese, R.F.

    1989-04-01

    This study was undertaken to (1) evaluate the potential contribution of high-temperature superconductors (HTSCs) to the technical and economic feasibility of magnetically levitated (maglev) vehicles, (2) determine the status of maglev transportation research in the United States and abroad, (3) identify the likelihood of a significant transportation market for high-speed maglev vehicles, and (4) provide a preliminary assessment of the potential energy and economic benefits of maglev systems. HTSCs should be considered as an enhancing, rather than an enabling, development for maglev transportation because they should improve reliability and reduce energy and maintenance costs. Superconducting maglev transportation technologies were developed in the United States in the late 1960s and early 1970s. Federal support was withdrawn in 1975, but major maglev transportation programs were continued in Japan and West Germany, where full-scale prototypes now carry passengers at speeds of 250 mi/h in demonstration runs. Maglev systems are generally viewed as very-high-speed train systems, but this study shows that the potential market for maglev technology as a train system, e.g., from one downtown to another, is limited. Rather, aircraft and maglev vehicles should be seen as complementing rather than competing transportation systems. If maglev systems were integrated into major hub airport operations, they could become economical in many relatively high-density US corridors. Air traffic congestion and associated noise and pollutant emissions around airports would also be reduced. 68 refs., 26 figs., 16 tabs.

  16. Reduced Order Modeling for Rapid Simulation of Blast Events of a Military Ground Vehicle and Its Occupants

    Science.gov (United States)

    2014-08-12

    event, 0-100ms (blastoff), 800-1000ms (slam-down) Prescribed accelerative vertical motion / PSM Prescribed structural motion was used to model the...motion ( PSM ) file to be input to MADYMO. The deformation of the hull floor in MADYMO is shown in Figure 19. PSM captures the deformation of the...structure in the model, but it does not allow the deformed parts of the model to move with the rest of the vehicle. In other words, the PSM method when

  17. Effects of image orientation and ground control points distribution on unmanned aerial vehicle photogrammetry projects on a road cut slope

    Science.gov (United States)

    Carvajal-Ramírez, Fernando; Agüera-Vega, Francisco; Martínez-Carricondo, Patricio J.

    2016-07-01

    The morphology of road cut slopes, such as length and high slopes, is one of the most prevalent causes of landslides and terrain stability troubles. Digital elevation models (DEMs) and orthoimages are used for land management purposes. Two flights with different orientations with respect to the target surface were planned, and four photogrammetric projects were carried out during these flights to study the image orientation effects. Orthogonal images oriented to the cut slope with only sidelaps were compared to the classical vertical orientation, with sidelapping, endlapping, and both types of overlapping simultaneously. DEM and orthoimages obtained from the orthogonal project showed smaller errors than those obtained from the other three photogrammetric projects, with the first one being much easier to manage. One additional flight and six photogrammetric projects were used to establish an objective criterion to locate the three ground control points for georeferencing and rectification DEMs and orthoimages. All possible sources of errors were evaluated in the DEMs and orthoimages.

  18. Multiple Views on Safety-Critical Automation: Aircraft, Autonomous Vehicles, Air Traffic Management and Satellite Ground Segments Perspectives

    Science.gov (United States)

    Feary, Michael S.; Palanque, Philippe Andre Rolan; Martinie, De Almeida; Tscheligi, Manfred

    2016-01-01

    This SIG focuses on the engineering of automation in interactive critical systems. Automation has already been studied in a number of (sub-) disciplines and application fields: design, human factors, psychology, (software) engineering, aviation, health care, games. One distinguishing feature of the area we are focusing on is that in the field of interactive critical systems properties such as reliability, dependability, fault-tolerance are as important as usability, user experience or overall acceptance issues. The SIG targets at two problem areas: first the engineering of the user interaction with (partly-) autonomous systems: how to design, build and assess autonomous behavior, especially in cases where there is a need to represent on the user interface both autonomous and interactive objects. An example of such integration is the representation of an unmanned aerial vehicle (UAV) (where no direct interaction is possible), together with aircrafts (that have to be instructed by an air traffic controller to avoid the UAV). Second the design and engineering of user interaction in general for autonomous objects systems (for example a cruise control in a car or an autopilot in an aircraft). The goal of the SIG is to raise interest in the CHI community on the general aspects of automation and to identify a community of researchers and practitioners interested in those increasingly prominent issues of interfaces towards (semi)-autonomous systems. The expected audience should be interested in addressing the issues of integration of mainly unconnected research domains to formulate a new joint research agenda.

  19. SIG: Multiple Views on Safety-Critical Automation: Aircraft, Autonomous Vehicles, Air Traffic Management and Satellite Ground Segments Perspectives

    Science.gov (United States)

    Feary, Michael; Palanque, Philippe; Martinie, Célia; Tscheligi, Manfred

    2016-01-01

    This SIG focuses on the engineering of automation in interactive critical systems. Automation has already been studied in a number of (sub-) disciplines and application fields: design, human factors, psychology, (software) engineering, aviation, health care, games. One distinguishing feature of the area we are focusing on is that in the field of interactive critical systems properties such as reliability, dependability, fault tolerance are as important as usability, user experience or overall acceptance issues. The SIG targets at two problem areas: first the engineering of the user interaction with (partly-) autonomous systems: how to design, build and assess autonomous behavior, especially in cases where there is a need to represent on the user interface both autonomous and interactive objects. An example of such integration is the representation of an unmanned aerial vehicle (UAV) (where no direct interaction is possible), together with aircrafts (that have to be instructed by an air traffic controller to avoid the UAV). Second the design and engineering of user interaction in general for autonomous objects/systems (for example a cruise control in a car or an autopilot in an aircraft). The goal of the SIG is to raise interest in the CHI community on the general aspects of automation and to identify a community of researchers and practitioners interested in those increasingly prominent issues of interfaces towards (semi)-autonomous systems. The expected audience should be interested in addressing the issues of integration of mainly unconnected research domains to formulate a new joint research agenda.

  20. Adaptive Swarm Formation Control for Hybrid Ground and Aerial Assets

    OpenAIRE

    Barnes, Laura; Garcia, Richard; Fields, Mary Anne; Valavanis, Kimon

    2010-01-01

    In this work, a methodology for control and coordination of UAVs and UGVs has been presented. UAVs and UGVs were integrated into a single team and were able to adapt their formation accordingly. Potential field functions together with limiting functions can be successfully utilized to control UGV and UAV swarm formation, obstacle avoidance and the overall swarm movement. A single UAV was also successfully used to pull the UGV swarm into formation. These formations can move as a un...

  1. Flight Test Result for the Ground-Based Radio Navigation System Sensor with an Unmanned Air Vehicle.

    Science.gov (United States)

    Jang, Jaegyu; Ahn, Woo-Guen; Seo, Seungwoo; Lee, Jang Yong; Park, Jun-Pyo

    2015-11-11

    The Ground-based Radio Navigation System (GRNS) is an alternative/backup navigation system based on time synchronized pseudolites. It has been studied for some years due to the potential vulnerability issue of satellite navigation systems (e.g., GPS or Galileo). In the framework of our study, a periodic pulsed sequence was used instead of the randomized pulse sequence recommended as the RTCM (radio technical commission for maritime services) SC (special committee)-104 pseudolite signal, as a randomized pulse sequence with a long dwell time is not suitable for applications requiring high dynamics. This paper introduces a mathematical model of the post-correlation output in a navigation sensor, showing that the aliasing caused by the additional frequency term of a periodic pulsed signal leads to a false lock (i.e., Doppler frequency bias) during the signal acquisition process or in the carrier tracking loop of the navigation sensor. We suggest algorithms to resolve the frequency false lock issue in this paper, relying on the use of a multi-correlator. A flight test with an unmanned helicopter was conducted to verify the implemented navigation sensor. The results of this analysis show that there were no false locks during the flight test and that outliers stem from bad dilution of precision (DOP) or fluctuations in the received signal quality.

  2. Flight Test Result for the Ground-Based Radio Navigation System Sensor with an Unmanned Air Vehicle

    Directory of Open Access Journals (Sweden)

    Jaegyu Jang

    2015-11-01

    Full Text Available The Ground-based Radio Navigation System (GRNS is an alternative/backup navigation system based on time synchronized pseudolites. It has been studied for some years due to the potential vulnerability issue of satellite navigation systems (e.g., GPS or Galileo. In the framework of our study, a periodic pulsed sequence was used instead of the randomized pulse sequence recommended as the RTCM (radio technical commission for maritime services SC (special committee-104 pseudolite signal, as a randomized pulse sequence with a long dwell time is not suitable for applications requiring high dynamics. This paper introduces a mathematical model of the post-correlation output in a navigation sensor, showing that the aliasing caused by the additional frequency term of a periodic pulsed signal leads to a false lock (i.e., Doppler frequency bias during the signal acquisition process or in the carrier tracking loop of the navigation sensor. We suggest algorithms to resolve the frequency false lock issue in this paper, relying on the use of a multi-correlator. A flight test with an unmanned helicopter was conducted to verify the implemented navigation sensor. The results of this analysis show that there were no false locks during the flight test and that outliers stem from bad dilution of precision (DOP or fluctuations in the received signal quality.

  3. The Oshkosh-VisLab Joint Efforts on UGVs: Architecture, Integration, and Results

    Science.gov (United States)

    2007-05-01

    information if it does not display a currently valid OMB control number. 1. REPORT DATE 01 NOV 2007 2. REPORT TYPE N/A 3. DATES COVERED - 4. TITLE...and the MilleMiglia in Automatico [1], [2], [3]) and other similar projects helped to demonstrate the possibility of performing vision-based...driver from operating the vehicle in a “conventional” fashion. The system should easily return “standard” of control engine and transmission to the

  4. Intercomparison of Unmanned Aerial Vehicle and Ground-Based Narrow Band Spectrometers Applied to Crop Trait Monitoring in Organic Potato Production.

    Science.gov (United States)

    Domingues Franceschini, Marston Héracles; Bartholomeus, Harm; van Apeldoorn, Dirk; Suomalainen, Juha; Kooistra, Lammert

    2017-06-18

    Vegetation properties can be estimated using optical sensors, acquiring data on board of different platforms. For instance, ground-based and Unmanned Aerial Vehicle (UAV)-borne spectrometers can measure reflectance in narrow spectral bands, while different modelling approaches, like regressions fitted to vegetation indices, can relate spectra with crop traits. Although monitoring frameworks using multiple sensors can be more flexible, they may result in higher inaccuracy due to differences related to the sensors characteristics, which can affect information sampling. Also organic production systems can benefit from continuous monitoring focusing on crop management and stress detection, but few studies have evaluated applications with this objective. In this study, ground-based and UAV spectrometers were compared in the context of organic potato cultivation. Relatively accurate estimates were obtained for leaf chlorophyll (RMSE = 6.07 µg·cm(-2)), leaf area index (RMSE = 0.67 m²·m(-2)), canopy chlorophyll (RMSE = 0.24 g·m(-2)) and ground cover (RMSE = 5.5%) using five UAV-based data acquisitions, from 43 to 99 days after planting. These retrievals are slightly better than those derived from ground-based measurements (RMSE = 7.25 µg·cm(-2), 0.85 m²·m(-2), 0.28 g·m(-2) and 6.8%, respectively), for the same period. Excluding observations corresponding to the first acquisition increased retrieval accuracy and made outputs more comparable between sensors, due to relatively low vegetation cover on this date. Intercomparison of vegetation indices indicated that indices based on the contrast between spectral bands in the visible and near-infrared, like OSAVI, MCARI2 and CIg provided, at certain extent, robust outputs that could be transferred between sensors. Information sampling at plot level by both sensing solutions resulted in comparable discriminative potential concerning advanced stages of late blight incidence. These results indicate that optical sensors

  5. The Apache Longbow-Hellfire Missile Test at Yuma Proving Ground: Ecological Risk Assessment for Tracked Vehicle Movement across Desert Pavement

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, Mark J [ORNL; Efroymson, Rebecca Ann [ORNL; Hargrove, William Walter [ORNL

    2008-01-01

    A multiple stressor risk assessment was conducted at Yuma Proving Ground, Arizona, as a demonstration of the Military Ecological Risk Assessment Framework. The focus was a testing program at Cibola Range, which involved an Apache Longbow helicopter firing Hellfire missiles at moving targets, M60-A1 tanks. This paper describes the ecological risk assessment for the tracked vehicle movement component of the testing program. The principal stressor associated with tracked vehicle movement was soil disturbance, and a resulting, secondary stressor was hydrological change. Water loss to washes and wash vegetation was expected to result from increased infiltration and/or evaporation associated with disturbances to desert pavement. The simulated exposure of wash vegetation to water loss was quantified using estimates of exposed land area from a digital ortho quarter quad aerial photo and field observations, a 30 30 m digital elevation model, the flow accumulation feature of ESRI ArcInfo, and a two-step process in which runoff was estimated from direct precipitation to a land area and from water that flowed from upgradient to a land area. In all simulated scenarios, absolute water loss decreased with distance from the disturbance, downgradient in the washes; however, percentage water loss was greatest in land areas immediately downgradient of a disturbance. Potential effects on growth and survival of wash trees were quantified by using an empirical relationship derived from a local unpublished study of water infiltration rates. The risk characterization concluded that neither risk to wash vegetation growth or survival nor risk to mule deer abundance and reproduction was expected. The risk characterization was negative for both the incremental risk of the test program and the combination of the test and pretest disturbances.

  6. 汽车经济性驾驶技术及应用概述%Overview of ecological driving technology and application for ground vehicles

    Institute of Scientific and Technical Information of China (English)

    李升波; 徐少兵; 王文军; 成波

    2014-01-01

    The ecological driving technology of ground vehicles is critical for energy-sustainable road transportation. This technology, centered on the optimization and the coordination of driver, vehicle, road infrastructure and trafifc lfow, aims to reduce the fuel consumption of vehicles in travel ing by reshaping drivers’ habits, assisting driving manipulation and implementing vehicular automation, etc. This paper summarizes the key aspects of vehicular eco-driving technology, including its history, the state of arts and the theoretical chal enges. Two major identiifcation methods of the eco-driving strategies are reviewed, i.e. the experiment based method and the optimization based method. The applications can be classiifed into the eco-driving education, the eco-driving assistance, and the eco-vehicular automation. The ifrst item is easy to be implemented and suitable for government promotion;the second item has most promising market prospect;and the last item wil become proper carrier for eco-driving technology with the popularity of vehicular automation.%汽车经济性驾驶是道路交通节能减排的重要方向。该技术以驾驶人与车辆/道路/交通流的优化与协调为核心,通过重塑驾驶员习惯、辅助驾驶员操作以及车辆自动化控制等手段,满足出行需求的同时降低行驶过程的油耗。该文综述了汽车经济性驾驶技术的发展历史、技术现状与理论难点;介绍了节油驾驶策略的实验型和理论型辨识方法。其应用可分为3类:易于实施、适合政府层面推动的驾驶员教育;最具产品化前景、值得业界关注的节油驾驶辅助;将是经济性驾驶技术的理想载体的自动驾驶。

  7. Seasonal associations and atmospheric transport distances of fungi in the genus Fusarium collected with unmanned aerial vehicles and ground-based sampling devices

    Science.gov (United States)

    Lin, Binbin; Ross, Shane D.; Prussin, Aaron J.; Schmale, David G.

    2014-09-01

    Spores of fungi in the genus Fusarium may be transported through the atmosphere over long distances. New information is needed to characterize seasonal trends in atmospheric loads of Fusarium and to pinpoint the source(s) of inoculum at both local (farm) and regional (state or country) scales. We hypothesized that (1) atmospheric concentrations of Fusarium spores in an agricultural ecosystem vary with height and season and (2) transport distances from potential inoculum source(s) vary with season. To test these hypotheses, spores of Fusarium were collected from the atmosphere in an agricultural ecosystem in Blacksburg, VA, USA using a Burkard volumetric sampler (BVS) 1 m above ground level and autonomous unmanned aerial vehicles (UAVs) 100 m above ground level. More than 2200 colony forming units (CFUs) of Fusarium were collected during 104 BVS sampling periods and 180 UAV sampling periods over four calendar years (2009-2012). Spore concentrations ranged from 0 to 13 and 0 to 23 spores m-3 for the BVS and the UAVs, respectively. Spore concentrations were generally higher in the fall, spring, and summer, and lower in the winter. Spore concentrations from the BVS were generally higher than those from the UAVs for both seasonal and hourly collections. A Gaussian plume transport model was used to estimate distances to the potential inoculum source(s) by season, and produced mean transport distances of 1.4 km for the spring, 1.7 km for the summer, 1.2 km for the fall, and 4.1 km for the winter. Environmental signatures that predict atmospheric loads of Fusarium could inform disease spread, air pollution, and climate change.

  8. Off-Road Terrain Traversability Analysis and Hazard Avoidance for UGVs

    Science.gov (United States)

    2011-01-01

    vehicle to perform hazard detection and avoidance at speeds of up to 10 mph (4.5 m/s), as long as the hazards can be detected at sufficient ranges. The...ranges of hazard detection in this data set are provided in table I. 6 Figure 10: Off-road course Google sky-view image Hazard Feature Max. Detection...Steep slope 115.1 Steep hill Table I: Hazard detection ranges V. FUTURE WORK We have noticed that even in off-road environments, there is usually some

  9. Successful marriage: American Panel Corporation and LG Philips LCD custom-designed avionic, shipboard, and rugged ground vehicle display modules from a consumer-oriented fabrication facility

    Science.gov (United States)

    Dunn, William; Garrett, Kimberly S.

    2001-09-01

    American panel corporation (APC) believes the use of custom designed (instead of ruggedized commercial) AMLCD cells is the only way to meet the specific environmental and performance requirements of the military/commercial avionic, shipboard and rugged ground vehicle markets. The APC/LG.Philips LCD (LG) custom approach mitigates risk to the end-user in many ways. As a part of the APC/LG long- term agreement LG has committed to provide module level equivalent (form, fit and function equivalent) panels for a period of ten years. No other commercial glass manufacturer has provided such an agreement. With the use of LG's commercial production manufacturing capabilities, APC/LG can provide the opportunity to procure a lifetime buy for any program with delivery of the entire lot within six months of order placement. This ensures that the entire production program will receive identical glass for every unit. The APC/LG relationship works where others have failed due to the number of years spent cultivating the mutual trust and respect necessary for establishing such a partnership, LG's interest in capturing the market share of this niche application, and the magnitude of the initial up-front investment by APC in engineering, tooling, facilities, production equipment, and LCD cell inventory.

  10. Hermes vehicle

    Science.gov (United States)

    Cretenet, J. C.

    1985-11-01

    The presence of Europe in the future developments of spatial programs, which are foreseen, for the 1990s and further, needs the availability of vehicles, modules and all related technologies adapted to operational use of low earth orbit station. The manned HERMES vehicle shall be part of the in-orbit infrastructure realized either in the European context or in cooperation between Europe and the United States. The main mission for this vehicle will be to run a shuttle with the station that means transport and change of the crews, its safe return in abort condition and cargo transport of consumable and experimental equipment. Secondary missions could be servicing on automatic platform, making autonomous scientific experiments. Lastly, the vehicle, by means of its on-board propulsion capability, could be used to accomplish in-orbit tow and assembly missions. Studies which are undertaken now about the vehicle are devoted to the aerodynamic shape (research of a compromise between aerothermic and overall fitting), the system (functional architecture, ground and flight configuration); further works dealing with technology are presently on hand in the field of thermal protection, aerodynamics, power generation with a high massic yield.

  11. Ground Vehicle CFD at TARDEC

    Science.gov (United States)

    2012-05-21

    or liquid+solid • Challenges • Multiphase + Lagrangian particles • Combustion (~9 reaction steps) • Initial fireball • Suppression chemistry...Iso-surface of Temperature 800K, FM200 Parcels Example: Testbed Fireball Generation - 10 Hole Showerhead FOUO • Traditional analysis evaluates a

  12. Heuristics-enhanced dead-reckoning (HEDR) for accurate position tracking of tele-operated UGVs

    Science.gov (United States)

    Borenstein, Johann; Borrell, Adam; Miller, Russell; Thomas, David

    2010-04-01

    This paper introduces a new approach for precision indoor tracking of tele-operated robots, called "Heuristics-Enhanced Dead-reckoning" (HEDR). HEDR does not rely on GPS, or external references; it uses odometry and a low-cost MEMS-based gyro. Our method corrects heading errors incurred by the high drift rate of the gyro by exploiting the structured nature of most indoor environments, but without having to directly measure features of the environment. The only operator feedback offered by most tele-operated robots is the view from a low to the ground onboard camera. Live video lets the operator observe the robot's immediate surroundings, but does not establish the orientation or whereabouts of the robot in its environment. Mentally keeping track of the robot's trajectory is difficult, and operators easily become disoriented. Our goal is to provide the tele-operator with a map view of the robot's current location and heading, as well as its previous trajectory, similar to the information provided by an automotive GPS navigation system. This frees tele-operators to focus on controlling the robot and achieving other mission goals, and provides the precise location of the robot if it becomes disabled and needs to be recovered.

  13. 越野环境中无人驾驶车的障碍目标识别%Obstacle Identification in Cross-Country Environment for Unmanned Ground Vehicles

    Institute of Scientific and Technical Information of China (English)

    赵一兵; 郭烈; 张明恒; 李琳辉

    2011-01-01

    针对无人驾驶车环境感知技术,基于D-S证据理论融合多传感器信息,旨在解决障碍物身份识别技术难点.基于CCD和激光传感器建立信息融合系统,并提取每种障碍物的5个特征证据,包括距离对比度特征、平行四边形特征、边缘形状特征、灰度纹理特征和颜色特征.再根据目标类型和环境加权系数选择经验公式,通过模糊插值法求取身份隶属度近似获得各特征对目标的相关系数构造基本概率赋值函数.最后制定Dempster组合规则,融合多传感器特征信息识别障碍身份.试验表明本文方法能够准确有效地获取基本概率赋值函数,D-S证据理论融合方法提高了障碍物身份识别的准确性和鲁棒性.%Autonomous navigation in cross-country environments presents many new challenges including obstacle perception for unmanned ground vehicle. A new method suitable for recognizing obstacle is proposed. The first step is to build the sensor fusion system by using sensors such as CCD and ladar, then to extract five different types of features, including distance contrast, parallelogram rate, edge-shape-factor, gray texture and HSV value. The experiment formula is selected according to the types of obstacle and weight efficiency to calculate basic probability assignment (BPA). The subordinatien to each event in identification framework is obtained by using the fuzzy interpolation. It is supposed that the subordination is equal to correlation coefficient in the formula. Finally, dempster rules are used to integrate sensors information and the obstacle is recognized based on the D-S theory of evidence. The test results indicate that the resolution of BPA is correct, thus improving the validity and robustness of cross-country environment perception based on the new method.

  14. An optimal solution for enhancing ambulance safety: implementing a driver performance feedback and monitoring device in ground emergency medical service vehicles.

    Science.gov (United States)

    Levick, Nadine R; Swanson, Jon

    2005-01-01

    A prospective study was conducted to determine if emergency vehicle driver risk behavior could be improved with an onboard computer-monitoring device, with real time auditory feedback. Data were collected over 18 months from 36 vehicles in a metropolitan EMS group, with >250 drivers. In >1.9 million recorded miles, performance improved from a baseline low of 0.018 miles between penalty counts to a high of 15.8 miles between counts. Seatbelt violations dropped from 13,500 to 4. There was a 20% saving in vehicle maintenance costs within 6 months. This technology demonstrated sustained cost savings in regards to vehicle maintenance as well as minimal retraining of drivers.

  15. Hierarchical flight control system synthesis for rotorcraft-based unmanned aerial vehicles

    Science.gov (United States)

    Shim, Hyunchul

    The Berkeley Unmanned Aerial Vehicle (UAV) research aims to design, implement, and analyze a group of autonomous intelligent UAVs and UGVs (Unmanned Ground Vehicles). The goal of this dissertation is to provide a comprehensive procedural methodology to design, implement, and test rotorcraft-based unmanned aerial vehicles (RUAVs). We choose the rotorcraft as the base platform for our aerial agents because it offers ideal maneuverability for our target scenarios such as the pursuit-evasion game. Aided by many enabling technologies such as lightweight and powerful computers, high-accuracy navigation sensors and communication devices, it is now possible to construct RUAVs capable of precise navigation and intelligent behavior by the decentralized onboard control system. Building a fully functioning RUAV requires a deep understanding of aeronautics, control theory and computer science as well as a tremendous effort for implementation. These two aspects are often inseparable and therefore equally highlighted throughout this research. The problem of multiple vehicle coordination is approached through the notion of a hierarchical system. The idea behind the proposed architecture is to build a hierarchical multiple-layer system that gradually decomposes the abstract mission objectives into the physical quantities of control input. Each RUAV incorporated into this system performs the given tasks and reports the results through the hierarchical communication channel back to the higher-level coordinator. In our research, we provide a theoretical and practical approach to build a number of RUAVs based on commercially available navigation sensors, computer systems, and radio-controlled helicopters. For the controller design, the dynamic model of the helicopter is first built. The helicopter exhibits a very complicated multi-input multi-output, nonlinear, time-varying and coupled dynamics, which is exposed to severe exogenous disturbances. This poses considerable difficulties for

  16. 装甲车辆与地面背景的热交互作用及红外仿真%Thermal interactions and infrared simulation of armored vehicles and ground background

    Institute of Scientific and Technical Information of China (English)

    韩玉阁; 成志铎; 任登凤; 宣益民

    2013-01-01

    为了全面揭示装甲车辆与地面背景之间热交互作用对地面背景温度以及红外辐射特性的影响,建立了装甲车辆和地面背景的温度和红外辐射特性的模型,重点考虑了装甲车辆与地面之间的传热.通过对地面和履带相关力学关系的引入,建立运动车辆和地面之间热学以及力学的模型,采用了动网格方法对车辆目标在运动后对地面所产生的沉陷现象及在地面上留下的热痕迹进行模拟仿真.基于红外辐射理论,综合考虑自身辐射、反射辐射以及大气传输特性,计算了车辆在3种不同状态下与地面背景之间的热交互作用及红外辐射特征分布,并比较了模拟温度与实验测量温度的误差,验证了模型的精度.仿真结果表明:该方法对地面目标的隐身设计和隐身技术评估具有十分重要的意义.%In order to fully reveal the influence of thermal interactions between the armored vehicles and ground background on ground background temperature and infrared radiation characteristics, the temperature and infrared signature model of armored vehicles and ground background were established, with focus on heat transfer between armored vehicles and ground.By introducing mechanical relationship between the road and the track, thermal and mechanical models between the moving vehicle and the road were established.Using method of the moving mesh, the subsidence phenomenon and thermal trace on the road after target vehicle moving were simulated.Based on the infrared radiation theory, considering the radiation, reflective radiation and atmospheric transmission characteristic, the thermal interactions and infrared radiation characteristics distribution of armored vehicles and terrain background under three different conditions were calculated.The simulated temperature and measured temperature in the experiment were compared.The model's precision was validated.The simulation results show that this method is

  17. Adaptable formations utilizing heterogeneous unmanned systems

    Science.gov (United States)

    Barnes, Laura E.; Garcia, Richard; Fields, MaryAnne; Valavanis, Kimon

    2009-05-01

    This paper addresses the problem of controlling and coordinating heterogeneous unmanned systems required to move as a group while maintaining formation. We propose a strategy to coordinate groups of unmanned ground vehicles (UGVs) with one or more unmanned aerial vehicles (UAVs). UAVs can be utilized in one of two ways: (1) as alpha robots to guide the UGVs; and (2) as beta robots to surround the UGVs and adapt accordingly. In the first approach, the UAV guides a swarm of UGVs controlling their overall formation. In the second approach, the UGVs guide the UAVs controlling their formation. The unmanned systems are brought into a formation utilizing artificial potential fields generated from normal and sigmoid functions. These functions control the overall swarm geometry. Nonlinear limiting functions are defined to provide tighter swarm control by modifying and adjusting a set of control variables forcing the swarm to behave according to set constraints. Formations derived are subsets of elliptical curves but can be generalized to any curvilinear shape. Both approaches are demonstrated in simulation and experimentally. To demonstrate the second approach in simulation, a swarm of forty UAVs is utilized in a convoy protection mission. As a convoy of UGVs travels, UAVs dynamically and intelligently adapt their formation in order to protect the convoy of vehicles as it moves. Experimental results are presented to demonstrate the approach using a fully autonomous group of three UGVs and a single UAV helicopter for coordination.

  18. Systems Engineering of Unmanned DoD Systems: Following the Joint Capabilities Integration and Development System/Defense Acquisition System Process to Develop an Unmanned Ground Vehicle System

    Science.gov (United States)

    2015-12-01

    Manual D-A-1). APAs are “Performance attributes of a system not important enough to be considered KPPs or KSAs, but still appropriate to include in...the CDD or CPD are designated as APAs ” (JCIDS Manual D-A-1). The requirements are expressed using Thresholds (T) and Objectives (O). “Performance...INTENTIONALLY LEFT BLANK xv LIST OF ACRONYMS AND ABBREVIATIONS ACV Autonomous Clearance Vehicle AOA analysis of alternatives APA additional

  19. Multi-unmanned vehicle systems (nUxV) at Defence R&D Canada

    Science.gov (United States)

    Verret, Sean R.; Monckton, Simon

    2006-05-01

    No single UxV is perfectly suited to all task assignments. A homogeneous UxV team, for example, a troop of identical UGVs, brings redundancy and reliability to a specific class of tasks. Heterogeneous UxV teams, for example, a troop of UGVs, a flight of low flying rotorcraft, and a high flying UAV, provide increased capability. They can tackle multiple tasks simultaneously through cooperative decision making, distributed task allocation, and collective mapping. Together, they can convoy payloads, provide communications, observe targets, shield troops, and, ultimately, deliver munitions. nUxVs have the potential to share, learn, and adapt information between like platforms and across platform types, to produce expanded capability and greater reliability. Current research exploits simple vehicle state exchange, communications relay and formation keeping. Our near-term research areas include map sharing and integration, task coordination, and heterogeneous nUxV teaming. Future research will address military nUxV C2; nUxV capability definition and understanding; behaviour-based and reactive nUxVs, emergence and stigmergy; and collaboration and interaction between human-robot teams.

  20. Vehicle to Vehicle Services

    DEFF Research Database (Denmark)

    Brønsted, Jeppe Rørbæk

    2008-01-01

    , mobility, and availability of services. The dissertation consists of two parts. Part I gives an overview of service oriented architecture for pervasive computing systems and describes the contributions of the publications listed in part II. We investigate architecture for vehicular technology applications......As computing devices, sensors, and actuators pervade our surroundings, new applications emerge with accompanying research challenges. In the transportation domain vehicles are being linked by wireless communication and equipped with an array of sensors and actuators that make is possible to provide...... location aware infotainment, increase safety, and lessen environmental strain. This dissertation is about service oriented architecture for pervasive computing with an emphasis on vehicle to vehicle applications. If devices are exposed as services, applications can be created by composing a set of services...

  1. 电动汽车车身平顺性及车轮接地性分析与优化%Analysis and Optimization of Ride Comfort and Wheel Ground Adhesion of Electric Vehicle

    Institute of Scientific and Technical Information of China (English)

    张擎宇; 陈辛波

    2014-01-01

    以某分布式四轮驱动电动汽车为研究对象,在Adams/car中建立了整车模型,通过对前、后悬架参数进行灵敏度分析,探讨其对车身平顺性与车轮接地性的影响。基于α法建立评价车身平顺性与车轮接地性指标的多目标函数,对灵敏度较高的悬架参数进行优化设计。结果表明,优化后前、后悬架的刚度减小,前悬架的阻尼增大。与优化前相比,车身垂向加速度均方根值减小16%,左、右前轮动载荷的均方根值均减小11%。%With a distributed 4WD electric vehicle as research object, a vehicle model is constructed in Adams/car environment. Sensitivity analysis is made to the front and rear suspension parameters, its effect on ride comfort and wheel ground adhesion is investigated. Multi-objective function to evaluate body ride comfort and wheel ground adhesion is established based on α method and suspension parameters with high sensitivity are optimized. The results indicate that stiffness of the optimized front and rear suspension descends, whereas damping of the front suspension ascends. Compared with the suspension before optimization, the root-mean-square value of body vertical acceleration is reduced by 16%, and that of the front wheels on both sides is reduced by 11%.

  2. Semantic perception for ground robotics

    Science.gov (United States)

    Hebert, M.; Bagnell, J. A.; Bajracharya, M.; Daniilidis, K.; Matthies, L. H.; Mianzo, L.; Navarro-Serment, L.; Shi, J.; Wellfare, M.

    2012-06-01

    Semantic perception involves naming objects and features in the scene, understanding the relations between them, and understanding the behaviors of agents, e.g., people, and their intent from sensor data. Semantic perception is a central component of future UGVs to provide representations which 1) can be used for higher-level reasoning and tactical behaviors, beyond the immediate needs of autonomous mobility, and 2) provide an intuitive description of the robot's environment in terms of semantic elements that can shared effectively with a human operator. In this paper, we summarize the main approaches that we are investigating in the RCTA as initial steps toward the development of perception systems for UGVs.

  3. The Special Purpose Vehicle

    DEFF Research Database (Denmark)

    Fomcenco, Alex

    2013-01-01

    The purpose of this article is to investigate whether the situation where two companies appear as originators or sponsors behind a Special Purpose Vehicle (SPV) can be described as a merger, although on micro scale. Are the underlying grounds behind the creation of an SPV much different than thos...

  4. 不平顺路面的车辆动载诱发饱和地基的动应力响应%Influences of vehicle dynamic load on dynamic stress in saturated poro-elastic ground

    Institute of Scientific and Technical Information of China (English)

    周仁义; 钱建固; 黄茂松

    2016-01-01

    对由于不平顺路面引起的车辆附加动荷载在饱和多孔地基中的动应力开展了解析理论研究。通过承受移动矩形垂直荷载的三维饱和多孔地基的基本解,采用矩阵递推法得到多层饱和半空间解,数值积分得到数值结果。将该方法运用于具有不平顺路面的饱和多孔半空间的情况,得到了附加动荷载在饱和多孔地基中所产生的动应力。计算结果分析了分层地基半空间计算模型的优点,还发现土体的软硬程度对地基动应力极为重要。附加动荷载的速度频率同步效应在地基中作用明显,尤其对于所产生的剪应力,在具有较硬较厚路面的情况下,附加动荷载所产生的剪应力的最大值已经超过自重恒载所产生的剪应力。不平顺波长对动应力也有很大影响,尤其是短波不平顺。在高速移动的四轮车辆荷载的情况下,不平顺的路面会造成地基的剧烈振动,不平顺波长越短(即路面越不平整),振动的越剧烈。%Here,the influences of dynamic component of vehicle load (caused by pavement roughness)on the dynamic stress responses in poroelastic ground were studied.By introducing an analytical solution to the three-dimensional dynamic stress in a saturated poroelastic half space subjected to a harmonic rectangular moving load,the solutions to a multi-layered saturated poroelastic half space under moving loading were derived using the transfer matrix method. Numerical results were obtained by performing inverse Fourier transformation.In the case of rough road in a saturated poroelastic half space,the numerical results were obtained and used to analyze the influences of the dynamic component of vehicle load (caused by pavement roughness)on the dynamic stress responses in the half space.The results showed that the advantages of the multi-layered poroelastic half space computing model and the stiffness of soil are important to the dynamic

  5. Cooperative ground moving target track method using two unmanned aerial vehicles%一种双无人机协同跟踪地面移动目标方法

    Institute of Scientific and Technical Information of China (English)

    符小卫; 侯建永; 高晓光; 刘重

    2013-01-01

    This paper investigated the cooperative tracking of a ground moving target using two unmanned aerial vehicles under communication delay,and constructed an algorithm model.Considering the communication delay,it proposed a data fusion method combined with the recursive least squares filtering and the weighted least squres.Then it built the recursive least squares filtering for the prediction of target states,designed a trajectory planning algorithm based on receding horizon and the distributed genetic algorithm to implement the task of cooperative target tracking using two unmanned aerial vehicles.The fitness function consisted of several components including the distance of vehicles and target,the communication distance of vehicles,the communication angle of vehicles.Simulation studies show the cooperative track algorithm can implement the track task well;compared to one vehicle track the target,the position error decreases obviously,the position error during to the communication delay can decrease.%针对通信延时情况下双无人机协同跟踪地面移动目标问题进行研究,构建了基于分布式遗传算法和滚动时域优化结合的目标跟踪航迹规划算法模型.考虑到通信延时会增加目标状态信息数据融合时的误差,导致无人机跟踪任务效果变差,结合递推最小二乘滤波和加权最小二乘估计设计了融合方法,来融合处理目标状态信息;考虑到无人机对目标的观测效果与未来时刻的目标状态信息密切相关,采用递推最小二乘滤波预测目标的状态信息,结合分布式遗传算法和滚动时域优化设计了双无人机目标跟踪航迹规划算法.适应度函数考虑了无人机和目标之间的距离、无人机之间的通信距离、无人机之间的通信角度.仿真结果表明:该协同跟踪方法能够较好地完成跟踪任务;与一架无人机跟踪相比误差明显减小,并且可以减小通信延时带来的跟踪误差.

  6. 2007 Tactical Wheeled Vehicles Conference (TWV)

    Science.gov (United States)

    2007-02-06

    Ground Mobility Enhancements 7322 Vehicles MRAP Vehicles Survivability Bridge to JLTV / MIC -- Current Theater Requirements Ground Mobility...DAB/MS B ASARC PROPOSAL SUBMISSION Stand-up JPO JROC ICD Approval 801/805/818 Certifications 1 2 3 TMA TRA Concept Decision/ MS A JLTV Acquisition

  7. LOAC: a small aerosol optical counter/sizer for ground-based and balloon measurements of the size distribution and nature of atmospheric particles – Part 2: First results from balloon and unmanned aerial vehicle flights

    Directory of Open Access Journals (Sweden)

    J.-B. Renard

    2015-09-01

    Full Text Available In the companion paper (Renard et al., 2015, we have described and evaluated a new versatile optical particle counter/sizer named LOAC (Light Optical Aerosol Counter based on scattering measurements at angles of 12 and 60° that allows some topology identification of particles (droplets, carbonaceous, salts, and mineral dust in addition to size segregated counting in a large diameter range from 0.2 up to possibly more than 100 μm depending on sampling conditions. Its capabilities overpass those of preceding optical particle counters (OPCs allowing the characterization of all kind of aerosols from submicronic-sized absorbing carbonaceous particles in polluted air to very coarse particles (> 10–20 μm in diameter in desert dust plumes or fog and clouds. LOAC's light and compact design allows measurements under all kinds of balloons, on-board unmanned aerial vehicles (UAV and at ground level. We illustrate here the first LOAC airborne results obtained from an unmanned aerial vehicle (UAV and a variety of scientific balloons. The UAV was deployed in a peri-urban environment near Bordeaux in France. Balloon operations include (i tethered balloons deployed in urban environments in Vienna (Austria and Paris (France, (ii pressurized balloons drifting in the lower troposphere over the western Mediterranean (during the Chemistry-Aerosol Mediterranean Experiment – ChArMEx campaigns, (iii meteorological sounding balloons launched in the western Mediterranean region (ChArMEx and from Aire-sur-l'Adour in south-western France (VOLTAIRE-LOAC campaign. More focus is put on measurements performed in the Mediterranean during (ChArMEx and especially during African dust transport events to illustrate the original capability of balloon-borne LOAC to monitor in situ coarse mineral dust particles. In particular, LOAC has detected unexpected large particles in desert sand plumes.

  8. Intelligent Vehicle Health Management

    Science.gov (United States)

    Paris, Deidre E.; Trevino, Luis; Watson, Michael D.

    2005-01-01

    As a part of the overall goal of developing Integrated Vehicle Health Management systems for aerospace vehicles, the NASA Faculty Fellowship Program (NFFP) at Marshall Space Flight Center has performed a pilot study on IVHM principals which integrates researched IVHM technologies in support of Integrated Intelligent Vehicle Management (IIVM). IVHM is the process of assessing, preserving, and restoring system functionality across flight and ground systems (NASA NGLT 2004). The framework presented in this paper integrates advanced computational techniques with sensor and communication technologies for spacecraft that can generate responses through detection, diagnosis, reasoning, and adapt to system faults in support of INM. These real-time responses allow the IIVM to modify the affected vehicle subsystem(s) prior to a catastrophic event. Furthermore, the objective of this pilot program is to develop and integrate technologies which can provide a continuous, intelligent, and adaptive health state of a vehicle and use this information to improve safety and reduce costs of operations. Recent investments in avionics, health management, and controls have been directed towards IIVM. As this concept has matured, it has become clear the INM requires the same sensors and processing capabilities as the real-time avionics functions to support diagnosis of subsystem problems. New sensors have been proposed, in addition, to augment the avionics sensors to support better system monitoring and diagnostics. As the designs have been considered, a synergy has been realized where the real-time avionics can utilize sensors proposed for diagnostics and prognostics to make better real-time decisions in response to detected failures. IIVM provides for a single system allowing modularity of functions and hardware across the vehicle. The framework that supports IIVM consists of 11 major on-board functions necessary to fully manage a space vehicle maintaining crew safety and mission

  9. Study on Ground Automatic Identification Technology for Intelligent Vehicle Based on Vision Sensor%基于视觉传感器的自主车辆地面自动辨识技术研究

    Institute of Scientific and Technical Information of China (English)

    崔根群; 余建明; 赵娴; 赵丛琳

    2011-01-01

    The ground automatic identification technology for intelligent vehicle is iaking Leobor-Edu autonomous vehicle as a test vector and using DH-HV2003UC-T vision sensor to collect image infarmaiion of five common lane roads( cobbled road, concrete road, dirt road, grass road, tile road) , then using MATLAB image processing module to perform coding compression, recovery reconstruction, smoothing, sharpening, enhancement, feature extraction and other related processing,then using MATLAB BP neural network module to carry on pattern recognition.Through analyzing the pattern recognition result, lt shows that the objective error is 20%, the road recognition rate has reached the intended requirement in the system,and it can be universally applied in the smart vehicle or robots and other related fields.%谊自主车辆地面自动辨识技术是以Leobot-Edu自主车辆作为试验载体,并应用DH-HV2003UC-T视觉传感器对常见的5种行车路面(石子路面、水泥路面、土壤路面、草地路面、砖地路面)进行图像信息的采集,应用Matlab图像处理模块对其依次进行压缩编码、复原重建、平滑、锐化、增强、特征提取等相关处理后,再应用Matlab BP神经网络模块进行模式识别.通过对模式识别结果分析可知,网络训练目标的函数误差为20%,该系统路面识别率达到预定要求,可以在智能车辆或移动机器人等相关领域普及使用.

  10. 地面无人作战系统机械臂运动学建模与仿真%Establishment and Simulation Study on Kinematics Model of Unmanned Ground Combat Vehicle Robot Manipulators

    Institute of Scientific and Technical Information of China (English)

    席雷平; 陈自力; 田庆民

    2012-01-01

    The correlative problem of robotic manipulators kinematics model is discussed for Unmanned Ground Combat Vehicle in this paper. Considering the structure of robotic manipulators, the kinematics model is established with D-H method. Based on it,the forward and inverse kinematics equations are solved. Then,simulation and verification is performed by Robotics Toolbox of Matlab software for the structure and kinematics analysis. The results show that this method is correct and feasible.%以某地面无人作战系统中的机械臂为研究对象,探讨其运动学模型建立中的相关问题.结合该机械臂的结构特点,利用D-H方法建立其相应的运动学模型,并在该基础上求解机械臂的正、逆运动学方程.最后在Matlab环境下,借助Robotics Toolbox工具箱对该机械臂的结构和运动学问题进行验证和仿真.仿真结果表明:该设计方法是正确可行的.

  11. Cooperative tracking of ground moving target using unmanned aerial vehicles in cluttered environment%复杂环境下多无人机协作式地面移动目标跟踪

    Institute of Scientific and Technical Information of China (English)

    王林; 彭辉; 朱华勇; 沈林成

    2011-01-01

    针对多无人机(UAV)协同地面移动目标跟踪问题展开研究.提出一种基于主动感知的问题求解框架,建立多UAV协同目标跟踪问题模型;在此基础上,采用分布式无色信息滤波实现目标状态融合估计与预测;然后,基于预测目标状态,结合滚动时域控制与遗传算法设计一种多UAV在线协同航迹规划算法.仿真结果表明:结合预测目标状态在线优化UAV航迹能够获得更好的目标跟踪性能.%We investigate the cooperative tracking of a ground moving target in a cluttered environment by using unmanned aerial vehicles(UAV). Firstly, a model the cooperative target tracking by UAV is developed based on active sensing;secondly, a distributed unscented information filter is built for the estimation fusion and the prediction of target states. Finally, an online trajectory planning algorithm based on the receding horizon control and the genetic algorithm is designed and implemented, with the predicted target states as the inputs to this planning algorithm. Numerical simulations demonstrate that the proposed method effectively improves the performance of target tracking.

  12. Localizing Ground-Penetrating Radar

    Science.gov (United States)

    2014-11-01

    ing Ground-Penetrating Radar (LGPR) uses very high frequency (VHF) radar reflections of underground features to generate base- line maps and then...Innovative ground- penetrating radar that maps underground geological features provides autonomous vehicles with real-time localization. Localizing...NOV 2014 2. REPORT TYPE 3. DATES COVERED 00-00-2014 to 00-00-2014 4. TITLE AND SUBTITLE Localizing Ground-Penetrating Radar 5a. CONTRACT NUMBER

  13. Electric vehicles

    Science.gov (United States)

    1990-03-01

    Quiet, clean, and efficient, electric vehicles (EVs) may someday become a practical mode of transportation for the general public. Electric vehicles can provide many advantages for the nation's environment and energy supply because they run on electricity, which can be produced from many sources of energy such as coal, natural gas, uranium, and hydropower. These vehicles offer fuel versatility to the transportation sector, which depends almost solely on oil for its energy needs. Electric vehicles are any mode of transportation operated by a motor that receives electricity from a battery or fuel cell. EVs come in all shapes and sizes and may be used for different tasks. Some EVs are small and simple, such as golf carts and electric wheel chairs. Others are larger and more complex, such as automobile and vans. Some EVs, such as fork lifts, are used in industries. In this fact sheet, we will discuss mostly automobiles and vans. There are also variations on electric vehicles, such as hybrid vehicles and solar-powered vehicles. Hybrid vehicles use electricity as their primary source of energy, however, they also use a backup source of energy, such as gasoline, methanol or ethanol. Solar-powered vehicles are electric vehicles that use photovoltaic cells (cells that convert solar energy to electricity) rather than utility-supplied electricity to recharge the batteries. These concepts are discussed.

  14. The Special Purpose Vehicle

    DEFF Research Database (Denmark)

    Fomcenco, Alex

    2013-01-01

    The purpose of this article is to investigate whether the situation where two companies appear as originators or sponsors behind a Special Purpose Vehicle (SPV) can be described as a merger, although on micro scale. Are the underlying grounds behind the creation of an SPV much different than thos...... in a merger situation? What is actually happening when two enterprises originate an SPV? And what distinguishes an SPV from a joint venture, or is it the same thing?...

  15. Efficient Data Collection in Widely Distributed Wireless Sensor Networks with Time Window and Precedence Constraints

    Science.gov (United States)

    Liu, Peng; Fu, Tingting; Xu, Jia; Ding, Yue

    2017-01-01

    In addition to the traditional densely deployed cases, widely distributed wireless sensor networks (WDWSNs) have begun to emerge. In these networks, sensors are far away from each other and have no network connections. In this paper, a special application of data collection for WDWSNs is considered where each sensor (Unmanned Ground Vehicle, UGV) moves in a hazardous and complex terrain with many obstacles. They have their own work cycles and can be accessed only at a few locations. A mobile sink cruises on the ground to collect data gathered from these UGVs. Considerable delay is inevitable if the UGV and the mobile sink miss the meeting window or wait idly at the meeting spot. The unique challenge here is that, for each cycle of an UGV, there is only a limited time window for it to appear in front of the mobile sink. Therefore, we propose scheduling the path of a single mobile sink, targeted at visiting a maximum number of UGVs in a timely manner with the shortest path, according to the timing constraints bound by the cycles of UGVs. We then propose a bipartite matching based algorithm to reduce the number of mobile sinks. Simulation results show that the proposed algorithm can achieve performance close to the theoretical maximum determined by the duty cycle instance. PMID:28241415

  16. TARDEC Ground Vehicle Robotics: Vehicle Dynamic Characterization and Research

    Science.gov (United States)

    2015-09-01

    reason why most consumer automobiles come from the factory in an understeer configuration, so that if something goes wrong in a maneuver, the car will...This has a bit to do with suspension design, which isn’t something I want to dive into, so I’ll keep the explanations brief and google can fill... car loses traction and skids out. This test is essential in characterizing the UNCLASSIFIED UNCLASSIFIED steady state cornering capabilities of

  17. LOAC: a small aerosol optical counter/sizer for ground-based and balloon measurements of the size distribution and nature of atmospheric particles - Part 2: First results from balloon and unmanned aerial vehicle flights

    Science.gov (United States)

    Renard, Jean-Baptiste; Dulac, François; Berthet, Gwenaël; Lurton, Thibaut; Vignelles, Damien; Jégou, Fabrice; Tonnelier, Thierry; Jeannot, Matthieu; Couté, Benoit; Akiki, Rony; Verdier, Nicolas; Mallet, Marc; Gensdarmes, François; Charpentier, Patrick; Mesmin, Samuel; Duverger, Vincent; Dupont, Jean-Charles; Elias, Thierry; Crenn, Vincent; Sciare, Jean; Zieger, Paul; Salter, Matthew; Roberts, Tjarda; Giacomoni, Jérôme; Gobbi, Matthieu; Hamonou, Eric; Olafsson, Haraldur; Dagsson-Waldhauserova, Pavla; Camy-Peyret, Claude; Mazel, Christophe; Décamps, Thierry; Piringer, Martin; Surcin, Jérémy; Daugeron, Daniel

    2016-08-01

    In the companion (Part I) paper, we have described and evaluated a new versatile optical particle counter/sizer named LOAC (Light Optical Aerosol Counter), based on scattering measurements at angles of 12 and 60°. That allows for some typology identification of particles (droplets, carbonaceous, salts, and mineral dust) in addition to size-segregated counting in a large diameter range from 0.2 µm up to possibly more than 100 µm depending on sampling conditions (Renard et al., 2016). Its capabilities overpass those of preceding optical particle counters (OPCs) allowing the characterization of all kind of aerosols from submicronic-sized absorbing carbonaceous particles in polluted air to very coarse particles (> 10-20 µm in diameter) in desert dust plumes or fog and clouds. LOAC's light and compact design allows measurements under all kinds of balloons, on-board unmanned aerial vehicles (UAVs) and at ground level. We illustrate here the first LOAC airborne results obtained from a UAV and a variety of scientific balloons. The UAV was deployed in a peri-urban environment near Bordeaux in France. Balloon operations include (i) tethered balloons deployed in urban environments in Vienna (Austria) and Paris (France), (ii) pressurized balloons drifting in the lower troposphere over the western Mediterranean (during the Chemistry-Aerosol Mediterranean Experiment - ChArMEx campaigns), (iii) meteorological sounding balloons launched in the western Mediterranean region (ChArMEx) and from Aire-sur-l'Adour in south-western France (VOLTAIRE-LOAC campaign). More focus is put on measurements performed in the Mediterranean during (ChArMEx) and especially during African dust transport events to illustrate the original capability of balloon-borne LOAC to monitor in situ coarse mineral dust particles. In particular, LOAC has detected unexpected large particles in desert sand plumes.

  18. Advanced Composites for Air and Ground Vehicles

    Science.gov (United States)

    2015-08-01

    Progress in polymer science, 2003. 28(11): p. 1539–1641. 6. Kojima, Y., et al., “Mechanical properties of nylon 6-clay hybrid,” Journal of...Mechanical properties of nylon 6-clay hybrid,” Journal of Materials Research(USA), 1993. 8(5): p. 1185–1189. 41. Mesbah, A., et al., “Experimental...the sensors directly through cables and wires has a high installation and material cost. Wireless sensor networks (WSNs) offer a promising solution

  19. Unmanned Ground Vehicle Communications Relays: Lessons Learned

    Science.gov (United States)

    2014-04-01

    between the “ hello ” messages that are automatically sent to monitor the network status. Software modifications were made to enable sub-second “ hello ...intervals. Experimenting with different values of “ hello ” intervals showed that 10 “ hellos ” a second gave near real-time network convergence and

  20. Ground Vehicle Navigation Using Magnetic Field Variation

    Science.gov (United States)

    2012-09-13

    using three-axis magnetic field measurements for navigation. While Storms innovative work exposed the ability to navigate using three-axis magnetometer...level of difficulty, Ascher et al. combine a magnetometer with a pair of inertial measurement units, a barometer , and a laser for precise indoor

  1. International Assessment of Unmanned Ground Vehicles

    Science.gov (United States)

    2008-02-01

    toward civil applica- tions, advances in enabling technologies [e.g., sensors; propulsion and traction; autonomous navigation, command and control (C2...art. Laser radar and laser profiling also have numerous civil appli- cations. A strong market exists for precise, high spatial resolution (1.0 m to 0.3...Establishment for Applied Science)], Belgium (Royal Military Acad- emy), Italy (Oto Melara of Finmeccanica), and Spain (Sener Ingenieria y Sistemas SA

  2. Wall Climbing Micro Ground Vehicle (MGV)

    Science.gov (United States)

    2013-09-01

    into the preliminary design of the control platform. This concept is used on the City Climber robot from the City College of New York to redirect... Chennai , India, 2011. 6. Lee, Y.; Ahuja, V.; Hosangadi, A.; Slipper, M. E.; Mulvihill, L. P.; Birkbeck, R.; Coleman, R. M. Impeller Design of a...Teheran, Iran, 2011. 12. Xiao, J.; Sadegh, A. City -Climber: A New Generation Wall-Climbing Robots; The City College, City University of New York USA

  3. A Local Path Planning Algorithm for UGV Based on Multilayer Morphin Search Tree%基于多层Morphin搜索树的UGV局部路径规划算法

    Institute of Scientific and Technical Information of China (English)

    诸葛程晨; 唐振民; 石朝侠

    2014-01-01

    以地面自主车辆(UGV)为实际应用背景,提出了一种基于多层Morphin搜索树的局部路径规划算法.该算法结合车辆非完整性约束构造多层Morphin搜索树,通过模糊Q学习进行动态行为控制的学习,并以此为依据对搜索树进行评估,从而得到一条具备车辆非完整约束的平滑可跟踪路径,克服了传统Morphin算法搜索轨迹不灵活的缺点.最后,通过仿真实验以及实车实验验证了算法的有效性和正确性.

  4. Abandoned vehicles

    CERN Multimedia

    Relations with the Host States Service

    2004-01-01

    The services in charge of managing the CERN site have recently noted an increase in the number of abandoned vehicles. This poses a risk from the point of view of safety and security and, on the eve of several important events in honour of CERN's fiftieth anniversary, is detrimental to the Organization's image. Owners of vehicles that have been left immobile for some time on the CERN site, including on the external car park by the flags, are therefore invited to contact the Reception and Access Control Service (service-parking-longterm@cern.ch) before 1st October 2004 and, where appropriate, move their vehicle to a designated long-term parking area. After this date, any vehicle whose owner has failed to respond to this request and which is without a number plate, has been stationary for several weeks or is out of service, may be impounded at the owner's risk and expense. Relations with the Host States Service Tel. 72848

  5. Hybrid Turbine Electric Vehicle

    Science.gov (United States)

    Viterna, Larry A.

    1997-01-01

    Hybrid electric power trains may revolutionize today's ground passenger vehicles by significantly improving fuel economy and decreasing emissions. The NASA Lewis Research Center is working with industry, universities, and Government to develop and demonstrate a hybrid electric vehicle. Our partners include Bowling Green State University, the Cleveland Regional Transit Authority, Lincoln Electric Motor Division, the State of Ohio's Department of Development, and Teledyne Ryan Aeronautical. The vehicle will be a heavy class urban transit bus offering double the fuel economy of today's buses and emissions that are reduced to 1/10th of the Environmental Protection Agency's standards. At the heart of the vehicle's drive train is a natural-gas-fueled engine. Initially, a small automotive engine will be tested as a baseline. This will be followed by the introduction of an advanced gas turbine developed from an aircraft jet engine. The engine turns a high-speed generator, producing electricity. Power from both the generator and an onboard energy storage system is then provided to a variable-speed electric motor attached to the rear drive axle. An intelligent power-control system determines the most efficient operation of the engine and energy storage system.

  6. EyeRobot TBI unmanned TelePresence reconnaissance mission

    NARCIS (Netherlands)

    Breejen, E. den; Jansen, C.

    2008-01-01

    There is an increasing use of unmanned systems in military operations. Effective use of unmanned ground vehicles (UGVs) for counter IED and reconnaissance tasks under battlefield conditions has been reported. For operations in urban environment, good real time situational awareness for the operator

  7. EyeRobot TBI unmanned TelePresence reconnaissance mission

    NARCIS (Netherlands)

    Breejen, E. den; Jansen, C.

    2008-01-01

    There is an increasing use of unmanned systems in military operations. Effective use of unmanned ground vehicles (UGVs) for counter IED and reconnaissance tasks under battlefield conditions has been reported. For operations in urban environment, good real time situational awareness for the operator

  8. Grounded theory.

    Science.gov (United States)

    Harris, Tina

    2015-04-29

    Grounded theory is a popular research approach in health care and the social sciences. This article provides a description of grounded theory methodology and its key components, using examples from published studies to demonstrate practical application. It aims to demystify grounded theory for novice nurse researchers, by explaining what it is, when to use it, why they would want to use it and how to use it. It should enable nurse researchers to decide if grounded theory is an appropriate approach for their research, and to determine the quality of any grounded theory research they read.

  9. Tropic Testing of Vehicles

    Science.gov (United States)

    2014-08-27

    kilometer track running through tropical forest . The track is a combination of a bauxite/dirt base with grades on the road up to 20 percent and log...TYPE Final 3. DATES COVERED (From - To) 4. TITLE AND SUBTITLE Test Operations Procedure (TOP) 02-2-817A Tropic Testing of Vehicles 5a...PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) U.S. Army Yuma Proving Ground Tropic Regions Test Center (TEDT-YPT) 301 C. Street Yuma, AZ

  10. EADS Roadmap for Launch Vehicles

    Science.gov (United States)

    Eymar, Patrick; Grimard, Max

    2002-01-01

    still think about the future, especially at industry level in order to make the most judicious choices in technologies, vehicle types as well as human resources and facilities specialization (especially after recent merger moves). and production as prime contractor, industrial architect or stage provider have taken benefit of this expertise and especially of all the studies ran under national funding and own financing on reusable vehicles and ground/flight demonstrators have analyzed several scenarios. VEHICLES/ASTRIUM SI strategy w.r.t. launch vehicles for the two next decades. Among the main inputs taken into account of course visions of the market evolutions have been considered, but also enlargement of international cooperations and governments requests and supports (e.g. with the influence of large international ventures). 1 patrick.eymar@lanceurs.aeromatra.com 2

  11. electric vehicle

    Directory of Open Access Journals (Sweden)

    W. R. Lee

    1999-01-01

    Full Text Available A major problem facing battery-powered electric vehicles is in their batteries: weight and charge capacity. Thus, a battery-powered electric vehicle only has a short driving range. To travel for a longer distance, the batteries are required to be recharged frequently. In this paper, we construct a model for a battery-powered electric vehicle, in which driving strategy is to be obtained such that the total travelling time between two locations is minimized. The problem is formulated as an optimization problem with switching times and speed as decision variables. This is an unconventional optimization problem. However, by using the control parametrization enhancing technique (CPET, it is shown that this unconventional optimization is equivalent to a conventional optimal parameter selection problem. Numerical examples are solved using the proposed method.

  12. Hybrid vehicles

    Energy Technology Data Exchange (ETDEWEB)

    West, J.G.W. [Electrical Machines (United Kingdom)

    1997-07-01

    The reasons for adopting hybrid vehicles result mainly from the lack of adequate range from electric vehicles at an acceptable cost. Hybrids can offer significant improvements in emissions and fuel economy. Series and parallel hybrids are compared. A combination of series and parallel operation would be the ideal. This can be obtained using a planetary gearbox as a power split device allowing a small generator to transfer power to the propulsion motor giving the effect of a CVT. It allows the engine to run at semi-constant speed giving better fuel economy and reduced emissions. Hybrid car developments are described that show the wide range of possible hybrid systems. (author)

  13. Electric-Drive Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Septon, Kendall K [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-09-11

    Electric-drive vehicles use electricity as their primary fuel or to improve the efficiency of conventional vehicle designs. These vehicles can be divided into three categories: Hybrid electric vehicles (HEVs), Plug-in hybrid electric vehicles (PHEVs), All-electric vehicles (EVs). Together, PHEVs and EVs can also be referred to as plug-in electric vehicles (PEVs).

  14. New Command and Control Methods for Proximal Interaction between Soldiers and Robots

    Science.gov (United States)

    2013-06-01

    a 3 robot convoy where the first robot used ground penetrating radar (GPR) or some other means of explosives detection, the second robot used either...means to coordinate effective collaboration between humans and multiple unmanned ground vehicles (UGV) and aerial systems (UAS) assets as they move...formation where the first vehicle uses a flail to detonate IEDs and landmines while the second follows autonomously carrying gear in the rack on top. The

  15. Grounded cognition.

    Science.gov (United States)

    Barsalou, Lawrence W

    2008-01-01

    Grounded cognition rejects traditional views that cognition is computation on amodal symbols in a modular system, independent of the brain's modal systems for perception, action, and introspection. Instead, grounded cognition proposes that modal simulations, bodily states, and situated action underlie cognition. Accumulating behavioral and neural evidence supporting this view is reviewed from research on perception, memory, knowledge, language, thought, social cognition, and development. Theories of grounded cognition are also reviewed, as are origins of the area and common misperceptions of it. Theoretical, empirical, and methodological issues are raised whose future treatment is likely to affect the growth and impact of grounded cognition.

  16. 2011 Ground Testing Highlights Article

    Science.gov (United States)

    Ross, James C.; Buchholz, Steven J.

    2011-01-01

    Two tests supporting development of the launch abort system for the Orion MultiPurpose Crew Vehicle were run in the NASA Ames Unitary Plan wind tunnel last year. The first test used a fully metric model to examine the stability and controllability of the Launch Abort Vehicle during potential abort scenarios for Mach numbers ranging from 0.3 to 2.5. The aerodynamic effects of the Abort Motor and Attitude Control Motor plumes were simulated using high-pressure air flowing through independent paths. The aerodynamic effects of the proximity to the launch vehicle during the early moments of an abort were simulated with a remotely actuated Service Module that allowed the position relative to the Crew Module to be varied appropriately. The second test simulated the acoustic environment around the Launch Abort Vehicle caused by the plumes from the 400,000-pound thrust, solid-fueled Abort Motor. To obtain the proper acoustic characteristics of the hot rocket plumes for the flight vehicle, heated Helium was used. A custom Helium supply system was developed for the test consisting of 2 jumbo high-pressure Helium trailers, a twelve-tube accumulator, and a 13MW gas-fired heater borrowed from the Propulsion Simulation Laboratory at NASA Glenn Research Center. The test provided fluctuating surface pressure measurements at over 200 points on the vehicle surface that have now been used to define the ground-testing requirements for the Orion Launch Abort Vehicle.

  17. Ground Wars

    DEFF Research Database (Denmark)

    Nielsen, Rasmus Kleis

    Political campaigns today are won or lost in the so-called ground war--the strategic deployment of teams of staffers, volunteers, and paid part-timers who work the phones and canvass block by block, house by house, voter by voter. Ground Wars provides an in-depth ethnographic portrait of two...... infrastructures that utilize large databases with detailed individual-level information for targeting voters, and armies of dedicated volunteers and paid part-timers. Nielsen challenges the notion that political communication in America must be tightly scripted, controlled, and conducted by a select coterie...... of professionals. Yet he also quashes the romantic idea that canvassing is a purer form of grassroots politics. In today's political ground wars, Nielsen demonstrates, even the most ordinary-seeming volunteer knocking at your door is backed up by high-tech targeting technologies and party expertise. Ground Wars...

  18. Assessment of future natural gas vehicle concepts

    Science.gov (United States)

    Groten, B.; Arrigotti, S.

    1992-10-01

    The development of Natural Gas Vehicles is progressing rapidly under the stimulus of recent vehicle emission regulations. The development is following what can be viewed as a three step progression. In the first step, contemporary gasoline or diesel fueled automobiles are retrofitted with equipment enabling the vehicle to operate on either natural gas or standard liquid fuels. The second step is the development of vehicles which utilize traditional internal combustion engines that have been modified to operate exclusively on natural gas. These dedicated natural gas vehicles operate more efficiently and have lower emissions than the dual fueled vehicles. The third step is the redesigning, from the ground up, of a vehicle aimed at exploiting the advantages of natural gas as an automotive fuel while minimizing its disadvantages. The current report is aimed at identifying the R&D needs in various fuel storage and engine combinations which have potential for providing increased efficiency, reduced emissions, and reductions in vehicle weight and size. Fuel suppliers, automobile and engine manufacturers, many segments of the natural gas and other industries, and regulatory authorities will influence or be affected by the development of such a third generation vehicle, and it is recommended that GRI act to bring these groups together in the near future to begin, developing the focus on a 'designed-for-natural-gas' vehicle.

  19. Design of vehicle overload detection system based on geophone

    Science.gov (United States)

    Hu, Siquan; Kong, Min; She, Chundong

    2017-08-01

    A vehicle overload detection system is proposed based on geophone. Under normal circumstances, when overloaded vehicles and ordinary vehicles pass through the road, the amplitude of the ground vibration will be different, and the geophone sensor can detect tiny vibrations of the ground. The system includes information acquisition module, signal conditioning module and wireless transmission module. The collected vibration data is transmitted through the wireless transmission module to the background, and the SVM algorithm is used to classify the information and determine whether the vehicle is overloaded. Experiments show that the system can detect overload accurately.

  20. Surface and sub-surface anatomy of the landscape: integrating Unmanned Aerial Vehicle Structure from Motion (UAV-SfM) and Ground Penetrating Radar (GRP) to investigate sedimentary features in the field. - an example from NW Australia

    Science.gov (United States)

    Callow, Nik; Leopold, Matthias; May, Simon Matthias

    2015-04-01

    Geomorphology is confronted by the challenge of reconstructing landscape features at appropriate scales, resolution and accuracy, that allows meaningful analysis of environmental processes and their implications. Field geomorphology offers a discrete snapshot (i.e. one or two field campaigns) to reconstruct how features have changed, evolved or responded over time. We explore the application of an emerging photogrammetry technique called Structure-from-Motion (SfM), which uses multiple photographs of the same feature (but taken at different locations) to create high-accuracy three-dimensional models of surface of sedimentary fans formed by extreme wave events. This approach is complimented by investigation of the sub-surface morphology using Ground Penetrating Radar (GPR). Using an UAV "octocopter", we captured 1208 photos with a DSLR camera (Canon EoS-M) at the height of 50m with a ground pixel resolution of 9mm, above a cyclone wash-over fan in the Exmouth Gulf (Western Australia) that measured about 500m inland by 300m wide. Based on 38 ground control point targets (with between 4 and 45 individual photographs per target) the SfM surface had an absolute total (XYZ) accuracy of 51mm (39mm X, 29mm Y and 14mm Y), based on RTK-DGPS surveying from a local ground reference station (with an absolute AUSPOS accuracy of 57mm X, 6mm Y, 50mm Z to AHD) and an overall relative point accuracy of 7mm. A sparse point cloud of over 5.5 million data points was generated using only points with a reconstruction accuracy of RGB colour of each XYZ pixel) using K-Means clustering within Python. The output was then manually classified into ground and non-ground points, and the geostatistical analyst functionality of ArcGIS used to produce a final bare-earth DEM. This approach has allowed the study team to economically collect an unprecedented high-resolution and accuracy topographic model of this feature to compliment on-ground sediment, geophysics and dating work to analyse the

  1. Movable Ground Based Recovery System for Reuseable Space Flight Hardware

    Science.gov (United States)

    Sarver, George L. (Inventor)

    2013-01-01

    A reusable space flight launch system is configured to eliminate complex descent and landing systems from the space flight hardware and move them to maneuverable ground based systems. Precision landing of the reusable space flight hardware is enabled using a simple, light weight aerodynamic device on board the flight hardware such as a parachute, and one or more translating ground based vehicles such as a hovercraft that include active speed, orientation and directional control. The ground based vehicle maneuvers itself into position beneath the descending flight hardware, matching its speed and direction and captures the flight hardware. The ground based vehicle will contain propulsion, command and GN&C functionality as well as space flight hardware landing cushioning and retaining hardware. The ground based vehicle propulsion system enables longitudinal and transverse maneuverability independent of its physical heading.

  2. Canadair CL-227 Remotely Piloted Vehicle

    Science.gov (United States)

    Clark, Andrew S.

    1983-08-01

    The Canadair CL-227 is a rotary winged Remotely Piloted Vehicle (RPV) intended initially as the air-vehicle for a medium range battlefield surveillance and target acquisition system. The concept on which this vehicle is based brings together in-house expertise as a designer and manufacturer of surveillance drones (AN-USD-50l -MIDGE-) with experience in rigid rotor technology from the CL-84 tilt wing VTOL program. The vehicle is essentially modular in design with a power module containing the engine, fuel and related systems, a rotor module containing the two counter-rotating rotors and control actuators, and a control module containing the autopilot, data link and sensor system. The vehicle is a true RPV (as opposed to a drone) as it is flown in real time by an operator on the ground and requires relatively little skill to pilot.

  3. Architecture de contrôle / commande sûre et flexible pour la navigation en formation d'un groupe de véhicules

    OpenAIRE

    Vilca Ventura, José Miguel

    2015-01-01

    Beyond the interest of robotics laboratories for the development of dedicated strategies for single vehicle navigation, several laboratories around the world are more and more involved in the general challenging field of cooperative multi-robot navigation. In this context, this work deals with the navigation in formation of a group of Unmanned Ground Vehicles (UGVs) dedicated to structured environments. The complexity of this Multi-Robot System (MRS) does not permit the direct use of neither ...

  4. Design considerations to improve cognitive ergonomic issues of unmanned vehicle interfaces utilizing video game controllers.

    Science.gov (United States)

    Oppold, P; Rupp, M; Mouloua, M; Hancock, P A; Martin, J

    2012-01-01

    Unmanned (UAVs, UCAVs, and UGVs) systems still have major human factors and ergonomic challenges related to the effective design of their control interface systems, crucial to their efficient operation, maintenance, and safety. Unmanned system interfaces with a human centered approach promote intuitive interfaces that are easier to learn, and reduce human errors and other cognitive ergonomic issues with interface design. Automation has shifted workload from physical to cognitive, thus control interfaces for unmanned systems need to reduce mental workload on the operators and facilitate the interaction between vehicle and operator. Two-handed video game controllers provide wide usability within the overall population, prior exposure for new operators, and a variety of interface complexity levels to match the complexity level of the task and reduce cognitive load. This paper categorizes and provides taxonomy for 121 haptic interfaces from the entertainment industry that can be utilized as control interfaces for unmanned systems. Five categories of controllers were based on the complexity of the buttons, control pads, joysticks, and switches on the controller. This allows the selection of the level of complexity needed for a specific task without creating an entirely new design or utilizing an overly complex design.

  5. Vehicle Development Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Supports the development of prototype deployment platform vehicles for offboard countermeasure systems.DESCRIPTION: The Vehicle Development Laboratory is...

  6. Vehicle Development Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Supports the development of prototype deployment platform vehicles for offboard countermeasure systems. DESCRIPTION: The Vehicle Development Laboratory is...

  7. Joint Light Tactical Vehicle (JLTV): Background and Issues for Congress

    Science.gov (United States)

    2017-01-10

    3 Information in this section is taken from the Army Product Manager , Joint Light Tactical Vehicle website, http://peocscss.tacom.army.mil...10 Information in this section, unless otherwise noted is taken from a briefing from the Project Manager ...Joint Light Tactical Vehicle (JLTV): Background and Issues for Congress Andrew Feickert Specialist in Military Ground Forces January 10, 2017

  8. Medium Tactical Vehicle Underbody Armor Development

    Science.gov (United States)

    2010-06-01

    death through means of mechanical trauma resulting from blast, fragmentation, and secondary projectiles. IEDs can also be implemented to incapacitate...tests. Wood cribbing was used to level the vehicle, creating a standoff distance from the ground to the crew compartment equal to that of an actual

  9. Forecasting Vehicle Mobility in Remote Areas -An Aid to Military Vehicle Design

    Directory of Open Access Journals (Sweden)

    Tej Paul

    1985-01-01

    Full Text Available Military vehicles are designed for off the road mobility. These are liable for deployment on varying ground conditions. Terrain parameters effecting vehicle systems design are listed. To avoid large scale measurement of terrain parameters, use of physiographic maps in forecasting these parameters has been suggested. Field tests to ascertain the similarity of soil strength parameter between the similar physiographic terrain units, called land facets were conducted and the tests confirmed the usefulness of the technique.

  10. 'Grounded' Politics

    DEFF Research Database (Denmark)

    Schmidt, Garbi

    2012-01-01

    play within one particular neighbourhood: Nørrebro in the Danish capital, Copenhagen. The article introduces the concept of grounded politics to analyse how groups of Muslim immigrants in Nørrebro use the space, relationships and history of the neighbourhood for identity political statements....... The article further describes how national political debates over the Muslim presence in Denmark affect identity political manifestations within Nørrebro. By using Duncan Bell’s concept of mythscape (Bell, 2003), the article shows how some political actors idealize Nørrebro’s past to contest the present...

  11. The global armoured vehicles market / Dennis-P. Merklinghaus

    Index Scriptorium Estoniae

    Merklinghaus, Dennis-P.

    2017-01-01

    Ülevaade erinevate maailma riikide kaitsekulutustest, investeeringutest soomusmasinatesse ja sõjatehnikasse. Teiste riikide hulgas tutvustatakse ka Eesti kaitseväe käsutuses olevaid soomusmasinaid ning Milremi loodud relvasüsteemi THeMIS ja mehitamata roomiksõidukit UGV

  12. The global armoured vehicles market / Dennis-P. Merklinghaus

    Index Scriptorium Estoniae

    Merklinghaus, Dennis-P.

    2017-01-01

    Ülevaade erinevate maailma riikide kaitsekulutustest, investeeringutest soomusmasinatesse ja sõjatehnikasse. Teiste riikide hulgas tutvustatakse ka Eesti kaitseväe käsutuses olevaid soomusmasinaid ning Milremi loodud relvasüsteemi THeMIS ja mehitamata roomiksõidukit UGV

  13. Reduction of global effects on vehicles after IED detonations

    Institute of Scientific and Technical Information of China (English)

    V.DENEFELD; N.HEIDER; A.HOLZWARTH; A.S€ATTLER; M.SALK

    2014-01-01

    Global effects caused by the detonation of an IED near a military vehicle induce subsequent severe acceleration effects on the vehicle occupants. Two concepts to minimize these global effects were developed, with the help of a combined method based on a scaled experimental technology and numerical simulations. The first concept consists in the optimization of the vehicle shape to reduce the momentum transfer and thus the occupant loading. Three scaled V-shaped vehicles with different ground clearances were built and compared to a reference vehicle equipped with a flat floor. The second concept, called dynamic impulse compensation (DIC), is based on a momentum compensation technique. The principal possibility of this concept was demonstrated on a scaled vehicle. In addition, the numerical simulations have been performed with generic full size vehicles including dummy models, proving the capability of the DIC technology to reduce the occupant loading.

  14. Innovative control systems for tracked vehicle platforms

    CERN Document Server

    2014-01-01

     This book has been motivated by an urgent need for designing and implementation of innovative control algorithms and systems for tracked vehicles. Nowadays the unmanned vehicles are becoming more and more common. Therefore there is a need for innovative mechanical constructions capable of adapting to various applications regardless the ground, air or water/underwater environment. There are multiple various activities connected with tracked vehicles. They can be distributed among three main groups: design and control algorithms, sensoric and vision based in-formation, construction and testing mechanical parts of unmanned vehicles. Scientists and researchers involved in mechanics, control algorithms, image processing, computer vision, data fusion, or IC will find this book useful.

  15. Water Detection Based on Object Reflections

    Science.gov (United States)

    Rankin, Arturo L.; Matthies, Larry H.

    2012-01-01

    Water bodies are challenging terrain hazards for terrestrial unmanned ground vehicles (UGVs) for several reasons. Traversing through deep water bodies could cause costly damage to the electronics of UGVs. Additionally, a UGV that is either broken down due to water damage or becomes stuck in a water body during an autonomous operation will require rescue, potentially drawing critical resources away from the primary operation and increasing the operation cost. Thus, robust water detection is a critical perception requirement for UGV autonomous navigation. One of the properties useful for detecting still water bodies is that their surface acts as a horizontal mirror at high incidence angles. Still water bodies in wide-open areas can be detected by geometrically locating the exact pixels in the sky that are reflecting on candidate water pixels on the ground, predicting if ground pixels are water based on color similarity to the sky and local terrain features. But in cluttered areas where reflections of objects in the background dominate the appearance of the surface of still water bodies, detection based on sky reflections is of marginal value. Specifically, this software attempts to solve the problem of detecting still water bodies on cross-country terrain in cluttered areas at low cost.

  16. Multi-Sensor Mud Detection

    Science.gov (United States)

    Rankin, Arturo L.; Matthies, Larry H.

    2010-01-01

    Robust mud detection is a critical perception requirement for Unmanned Ground Vehicle (UGV) autonomous offroad navigation. A military UGV stuck in a mud body during a mission may have to be sacrificed or rescued, both of which are unattractive options. There are several characteristics of mud that may be detectable with appropriate UGV-mounted sensors. For example, mud only occurs on the ground surface, is cooler than surrounding dry soil during the daytime under nominal weather conditions, is generally darker than surrounding dry soil in visible imagery, and is highly polarized. However, none of these cues are definitive on their own. Dry soil also occurs on the ground surface, shadows, snow, ice, and water can also be cooler than surrounding dry soil, shadows are also darker than surrounding dry soil in visible imagery, and cars, water, and some vegetation are also highly polarized. Shadows, snow, ice, water, cars, and vegetation can all be disambiguated from mud by using a suite of sensors that span multiple bands in the electromagnetic spectrum. Because there are military operations when it is imperative for UGV's to operate without emitting strong, detectable electromagnetic signals, passive sensors are desirable. JPL has developed a daytime mud detection capability using multiple passive imaging sensors. Cues for mud from multiple passive imaging sensors are fused into a single mud detection image using a rule base, and the resultant mud detection is localized in a terrain map using range data generated from a stereo pair of color cameras.

  17. Vehicle/guideway interaction in maglev systems

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Y.; Chen, S.S.; Rote, D.M.

    1992-03-01

    Dynamic interactions between the vehicle and guideway in a high-speed ground transportation system based on magnetically levitated (maglev) vehicles were studied, with an emphasis on the effects of vehicle and guideway parameters. Two dynamic models for the vehicle are presented. In one model, the vehicle is considered to be a moving force traveling at various speeds on a simply supported single- or two-span beam. In the second model, the vehicle is considered to be one-dimensional and has two degrees of freedom; this model consists of the primary and secondary suspensions of the vehicle, with lumped masses, linear springs, and dampings. The Bernoulli-Euler beam equation is used to model the characteristics of a flexible guideway, and the guideway synthesis is based on modal analysis. Analyses were performed to gain an understanding of response characteristics under various loading conditions and to provide benchmark data for verification of existing comprehensive computer programs and some basic design guidelines for maglev systems. Finally, the German Transrapid maglev system was evaluated. 19 ref.

  18. Exploring Sound Signature for Vehicle Detection and Classification Using ANN

    Directory of Open Access Journals (Sweden)

    Jobin George

    2013-06-01

    Full Text Available This paper attempts to explore the possibility of using sound signatures for vehicle detection andclassification purposes. Sound emitted by vehicles are captured for a two lane undivided road carryingmoderate traffic. Simultaneous arrival of different types vehicles, overtaking at the study location, sound ofhorns, random but identifiable back ground noises, continuous high energy noises on the back ground arethe different challenges encountered in the data collection. Different features were explored out of whichsmoothed log energy was found to be useful for automatic vehicle detection by locating peaks. Mel-frequency ceptral coefficients extracted from fixed regions around the detected peaks along with themanual vehicle labels are utilised to train an Artificial Neural Network (ANN. The classifier for fourbroad classes heavy, medium, light and horns was trained. The ANN classifier developed was able topredict categories well.

  19. Networked unattented ground sensors assesment

    Science.gov (United States)

    Bouguereau, Julien; Gattefin, Christian; Dupuy, Gilles

    2003-09-01

    Within the framework of the NATO AC 323 / RTO TG 25 group, relating to advanced concepts of acoustic and seismic technology for military applications, Technical Establishment of Bourges welcomed and organized a joint campaign of experiment intending to demonstrate the interest of a networked unattented ground sensors for vehicles detection and tracking in an area defense context. Having reminded the principle of vehicles tracking, this paper describes the progress of the test campaign and details particularly sensors and participants deployment, the solution of interoperability chosen by the group and the instrumentation used to acquire, network, process and publish in real-time data available during the test: meteorological data, trajectography data and targets detection reports data. Finally, some results of the campaign are presented.

  20. 1025: MAGIC 2010 Multi Autonomous Ground International Challenge. Volume I

    Science.gov (United States)

    2010-10-22

    electrical design of the UGV for ease of use and component and human safety. As per the contract and for ease of use a very accesable on/off switch was...will be required to supply. Also, the wiring and cabling must be minimised and positioned such that it doesnt not interfer with whe accesability of the

  1. DynaMax+ ground-tracking algorithm

    Science.gov (United States)

    Smock, Brandon; Gader, Paul; Wilson, Joseph

    2011-06-01

    In this paper, we propose a new method for performing ground-tracking using ground-penetrating radar (GPR). Ground-tracking involves identifying the air-ground interface, which is usually the dominant feature in a radar image but frequently is obscured or mimicked by other nearby elements. It is an important problem in landmine detection using vehicle-mounted systems because antenna motion, caused by bumpy ground, can introduce distortions in downtrack radar images, which ground-tracking makes it possible to correct. Because landmine detection is performed in real-time, any algorithm for ground-tracking must be able to run quickly, prior to other, more computationally expensive algorithms for detection. In this investigation, we first describe an efficient algorithm, based on dynamic programming, that can be used in real-time for tracking the ground. We then demonstrate its accuracy through a quantitative comparison with other proposed ground-tracking methods, and a qualitative comparison showing that its ground-tracking is consistent with human observations in challenging terrain.

  2. Articulated navigation testbed (ANT): an example of adaptable intrinsic mobility

    Science.gov (United States)

    Brosinsky, Chris A.; Hanna, Doug M.; Penzes, Steven G.

    2000-07-01

    An important but oft overlooked aspect of any robotic system is the synergistic benefit of designing the chassis to have high intrinsic mobility which complements rather than limits, its system capabilities. This novel concept continues to be investigated by the Defence Research Establishment Suffield (DRES) with the Articulated Navigation Testbed (ANT) Unmanned Ground Vehicle (UGV). The ANT demonstrates high mobility through the combination of articulated steering and a hybrid locomotion scheme which utilizes individually powered wheels on the edge of rigid legs; legs which are capable of approximately 450 degrees of rotation. The configuration can be minimally configured as a 4x4 and modularly expanded to 6x6, 8x8, and so on. This enhanced mobility configuration permits pose control and novel maneuvers such as stepping, bridging, crawling, etc. Resultant mobility improvements, particularly in unstructured and off-road environments, will reduce the resolution with which the UGV sensor systems must perceive its surroundings and decreases the computational requirements of the UGV's perception systems1 for successful semi-autonomous or autonomous terrain negotiation. This paper reviews critical vehicle developments leading up to the ANT concept, describes the basis for its configuration and speculates on the impact of the intrinsic mobility concept for UGV effectiveness.

  3. Electric Vehicle Charging Modeling

    OpenAIRE

    Grahn, Pia

    2014-01-01

    With an electrified passenger transportation fleet, carbon dioxide emissions could be reduced significantly depending on the electric power production mix. Increased electric power consumption due to electric vehicle charging demands of electric vehicle fleets may be met by increased amount of renewable power production in the electrical systems. With electric vehicle fleets in the transportation system there is a need for establishing an electric vehicle charging infrastructure that distribu...

  4. Chemical Pollution from Transportation Vehicles

    Science.gov (United States)

    Starkman, Ernest S.

    1969-01-01

    Recent publicity on electrically powered vehicles notwithstanding, the gasoline engine will probably be the principal power plant for passenger cars for at least the next decade. Chemical pollutants discharged by the gasoline engine are now under partial control. Motor cars of 1968 and 1969 model discharge only about 30 percent as much carbon monoxide and unburned hydrocarbons as do older models. In theory, carbon monoxide, unburned hydrocarbons and oxides of nitrogen ultimately can be completely removed from gasoline engine exhaust. In order to accomplish this it would be necessary to modify cars to operate satisfactorily on a lean mixture and perhaps to use a catalyst in the exhaust system. Present designs of gas turbines for aircraft and for future projected application to ground vehicles yield pollutants (except for smoke) at levels below those of gasoline engines for a decade to come. It has also been shown possible to eliminate smoke as well as odor from the gas turbine. Thus with proper effort it is feasible to reduce pollution of the atmosphere due to transportation to an acceptable level, even if electrically or alternatively powered vehicles cannot be developed for a decade. PMID:4183827

  5. Electric Vehicle Technician

    Science.gov (United States)

    Moore, Pam

    2011-01-01

    With President Obama's goal to have one million electric vehicles (EV) on the road by 2015, the electric vehicle technician should have a promising and busy future. "The job force in the car industry is ramping up for a revitalized green car industry," according to Greencareersguide.com. An electric vehicle technician will safely troubleshoot and…

  6. Road-rail vehicle

    NARCIS (Netherlands)

    Evers, J.J.M.

    2002-01-01

    A transport vehicle equipped with a number of first wheel sets, having wheels provided with tires, to which steering means and driving means, if any, are coupled to enable the transport vehicle to be moved over a road surface. The transport vehicle further comprises at least one second wheel set, ha

  7. Electric vehicles: Driving range

    Science.gov (United States)

    Kempton, Willett

    2016-09-01

    For uptake of electric vehicles to increase, consumers' driving-range needs must be fulfilled. Analysis of the driving patterns of personal vehicles in the US now shows that today's electric vehicles can meet all travel needs on almost 90% of days from a single overnight charge.

  8. Vehicle chassis monitoring system

    Energy Technology Data Exchange (ETDEWEB)

    Pisu, P.; Soliman, A.; Rizzoni, G. [Ohio State Univ., Columbus (United States). Center for Automotive Research

    2001-07-01

    Fault detection and isolation is becoming one of the most important aspects in vehicle control system design. In order to achieve this FDI schemes, particular vehicle subsystems integrated with a controller have been proposed. This paper introduces a new model-based fault detection and fault diagnosis method for monitoring the vehicle chassis performance. (orig.)

  9. Electric Vehicle Technician

    Science.gov (United States)

    Moore, Pam

    2011-01-01

    With President Obama's goal to have one million electric vehicles (EV) on the road by 2015, the electric vehicle technician should have a promising and busy future. "The job force in the car industry is ramping up for a revitalized green car industry," according to Greencareersguide.com. An electric vehicle technician will safely troubleshoot and…

  10. Automotive vehicle sensors

    Energy Technology Data Exchange (ETDEWEB)

    Sheen, S.H.; Raptis, A.C.; Moscynski, M.J.

    1995-09-01

    This report is an introduction to the field of automotive vehicle sensors. It contains a prototype data base for companies working in automotive vehicle sensors, as well as a prototype data base for automotive vehicle sensors. A market analysis is also included.

  11. Passive Earth Entry Vehicle Landing Test

    Science.gov (United States)

    Kellas, Sotiris

    2017-01-01

    Two full-scale passive Earth Entry Vehicles (EEV) with realistic structure, surrogate sample container, and surrogate Thermal Protection System (TPS) were built at NASA Langley Research Center (LaRC) and tested at the Utah Test and Training Range (UTTR). The main test objective was to demonstrate structural integrity and investigate possible impact response deviations of the realistic vehicle as compared to rigid penetrometer responses. With the exception of the surrogate TPS and minor structural differences in the back shell construction, the two test vehicles were identical in geometry and both utilized the Integrated Composite Stiffener Structure (ICoSS) structural concept in the forward shell. The ICoSS concept is a lightweight and highly adaptable composite concept developed at NASA LaRC specifically for entry vehicle TPS carrier structures. The instrumented test vehicles were released from a helicopter approximately 400 m above ground. The drop height was selected such that at least 98% of the vehicles terminal velocity would be achieved. While drop tests of spherical penetrometers and a low fidelity aerodynamic EEV model were conducted at UTTR in 1998 and 2000, this was the first time a passive EEV with flight-like structure, surrogate TPS, and sample container was tested at UTTR for the purpose of complete structural system validation. Test results showed that at a landing vertical speed of approximately 30 m/s, the test vehicle maintained structural integrity and enough rigidity to penetrate the sandy clay surface thus attenuating the landing load, as measured at the vehicle CG, to less than 600 g. This measured deceleration was found to be in family with rigid penetrometer test data from the 1998 and 2000 test campaigns. Design implications of vehicle structure/soil interaction with respect to sample container and sample survivability are briefly discussed.

  12. A Critique of the Capacity of Strauss Grounded Theory for Prediction, Change, and Control in Organisational Strategy via a Grounded Theorisation of Leisure and Cultural Strategy

    Science.gov (United States)

    Bakir, Ali; Bakir, Vian

    2006-01-01

    In this paper we critique grounded theory's ability to fulfil its aim of offering a practical vehicle for prediction, change, and control as stipulated in grounded theory's original formulation by Glaser and Strauss, and later developed by Strauss. We do this through a case study approach, whereby we develop a grounded theory of leisure and…

  13. Space vehicle chassis

    Energy Technology Data Exchange (ETDEWEB)

    Judd, Stephen; Dallmann, Nicholas; Seitz, Daniel; Martinez, John; Storms, Steven; Kestell, Gayle

    2017-07-18

    A modular space vehicle chassis may facilitate convenient access to internal components of the space vehicle. Each module may be removable from the others such that each module may be worked on individually. Multiple panels of at least one of the modules may swing open or otherwise be removable, exposing large portions of the internal components of the space vehicle. Such chassis architectures may reduce the time required for and difficulty of performing maintenance or modifications, may allow multiple space vehicles to take advantage of a common chassis design, and may further allow for highly customizable space vehicles.

  14. Magnetic Launch Assist Vehicle-Artist's Concept

    Science.gov (United States)

    1999-01-01

    This artist's concept depicts a Magnetic Launch Assist vehicle clearing the track and shifting to rocket engines for launch into orbit. The system, formerly referred as the Magnetic Levitation (MagLev) system, is a launch system developed and tested by Engineers at the Marshall Space Flight Center (MSFC) that could levitate and accelerate a launch vehicle along a track at high speeds before it leaves the ground. Using an off-board electric energy source and magnetic fields, a Magnetic Launch Assist system would drive a spacecraft along a horizontal track until it reaches desired speeds. The system is similar to high-speed trains and roller coasters that use high-strength magnets to lift and propel a vehicle a couple of inches above a guideway. A full-scale, operational track would be about 1.5-miles long, capable of accelerating a vehicle to 600 mph in 9.5 seconds, and the vehicle would then shift to rocket engines for launch into orbit. The major advantages of launch assist for NASA launch vehicles is that it reduces the weight of the take-off, the landing gear, the wing size, and less propellant resulting in significant cost savings. The US Navy and the British MOD (Ministry of Defense) are planning to use magnetic launch assist for their next generation aircraft carriers as the aircraft launch system. The US Army is considering using this technology for launching target drones for anti-aircraft training.

  15. Advanced Vehicle and Power Initiative

    Science.gov (United States)

    2010-07-29

    bases.) Qualifying advanced propulsion vehicles for this initiative are battery electric vehicles (BEV), hybrid electric vehicles (HEV), hybrid...hydraulic vehicles (HHV), plug-in hybrid electric vehicles (PHEV) and fuel cell electric vehicles (FCEV). The AVPI integrates use of renewable energy at

  16. A Pictorial History of the Code 717 Unmanned Systems Group: Air, Land, and Sea. Volume 1: 1970-1999

    Science.gov (United States)

    2016-04-28

    intuitive control of teleoperated ground vehicles. Hosting an articulated dual -camera system with an associated helmet- mounted display, this small...general, and Code 534’s ability to design bidirectional telemetry systems with data rates up to 200 megabits per second. Challenges in this UGV...developed under the GATERS umbrella shared several common features: “Both are fiber optically tethered. Both use advanced high-speed telemetry

  17. Precision wildlife monitoring using unmanned aerial vehicles

    OpenAIRE

    Jarrod C. Hodgson; Baylis, Shane M.; Rowan Mott; Ashley Herrod; Clarke, Rohan H.

    2016-01-01

    Unmanned aerial vehicles (UAVs) represent a new frontier in environmental research. Their use has the potential to revolutionise the field if they prove capable of improving data quality or the ease with which data are collected beyond traditional methods. We apply UAV technology to wildlife monitoring in tropical and polar environments and demonstrate that UAV-derived counts of colony nesting birds are an order of magnitude more precise than traditional ground counts. The increased count pre...

  18. Flight and Integrated Vehicle Testing: Laying the Groundwork for the Next Generation of Space Exploration Launch Vehicles

    Science.gov (United States)

    Taylor, J. L.; Cockrell, C. E.

    2009-01-01

    Integrated vehicle testing will be critical to ensuring proper vehicle integration of the Ares I crew launch vehicle and Ares V cargo launch vehicle. The Ares Projects, based at Marshall Space Flight Center in Alabama, created the Flight and Integrated Test Office (FITO) as a separate team to ensure that testing is an integral part of the vehicle development process. As its name indicates, FITO is responsible for managing flight testing for the Ares vehicles. FITO personnel are well on the way toward assembling and flying the first flight test vehicle of Ares I, the Ares I-X. This suborbital development flight will evaluate the performance of Ares I from liftoff to first stage separation, testing flight control algorithms, vehicle roll control, separation and recovery systems, and ground operations. Ares I-X is now scheduled to fly in summer 2009. The follow-on flight, Ares I-Y, will test a full five-segment first stage booster and will include cryogenic propellants in the upper stage, an upper stage engine simulator, and an active launch abort system. The following flight, Orion 1, will be the first flight of an active upper stage and upper stage engine, as well as the first uncrewed flight of an Orion spacecraft into orbit. The Ares Projects are using an incremental buildup of flight capabilities prior to the first operational crewed flight of Ares I and the Orion crew exploration vehicle in 2015. In addition to flight testing, the FITO team will be responsible for conducting hardware, software, and ground vibration tests of the integrated launch vehicle. These efforts will include verifying hardware, software, and ground handling interfaces. Through flight and integrated testing, the Ares Projects will identify and mitigate risks early as the United States prepares to take its next giant leaps to the Moon and beyond.

  19. Simulation of energy consumption for quadruped walking vehicle

    Science.gov (United States)

    Lei, Jingtao; Gao, Feng; Xu, Guoyan

    2006-11-01

    Simulation of energy consumption for walking vehicle is one of the basic way to preliminarily estimate the energy that will be consumed before constructing the real vehicle, providing basis for the design of vehicle to minish energy consumption. One of the most influential factors of the accuracy dynamic simulation is the appropriate contact model between leg and ground. In this paper, we adopt virtual prototyping technique to develop the dynamic modeling of a quadruped walking vehicle considering contact force between legs and ground during walking, finish simulation of dynamics and obtain dynamics characteristics, investigate the effects of different contact condition and the energy consumption. The purpose is to analyze the relationship between energy consumption and relevant influence factors, and the energy efficiency during walking is discussed with different walking velocity, strokes, duty factors and different contact material. Moreover contact force is obtained from simulations. Commercial ADAMS package is used.

  20. UGV Control Interoperability Profile (IOP), Version 0

    Science.gov (United States)

    2011-12-21

    sections provide best practice information (articles, papers , website, etc.) 5.1.1 OCU Physical Attributes 5.1.1.1 Standards Number Document...information (articles, papers , website, etc.). In future versions of this document, additional tables will be developed, containing standards and guidelines...Mounted Display ICD Interface Control Document IEC International Electrotechnical Commission IMS Intelligent Munitions Systems IOP Interoperability

  1. Steering Performance, Tactical Vehicles

    Science.gov (United States)

    2015-07-29

    NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Automotive Instrumentation Division (TEDT-AT-AD-I) U.S. Army Aberdeen Test Center 400...characterize the on-center vehicle responses of military vehicles for the purposes of influencing vehicle design and ensuring military truck steering... mechanism attached to the test vehicle’s steering wheel (or replaces the steering wheel) that is strain gaged and calibrated to measure the steering effort

  2. Electric Vehicle Propulsion System

    OpenAIRE

    2014-01-01

    Electric vehicles are being considered as one of the pillar of eco-friendly solutions to overcome the problem of global pollution and radiations due to greenhouse gases. Present thesis work reports the improvement in overall performance of the propulsion system of an electric vehicle by improving autonomy and torque-speed characteristic. Electric vehicle propulsion system consists of supply and traction system, and are coordinated by the monitoring & control system. Case of light electric veh...

  3. Electric vehicle propulsion alternatives

    Science.gov (United States)

    Secunde, R. R.; Schuh, R. M.; Beach, R. F.

    1983-01-01

    Propulsion technology development for electric vehicles is summarized. Analytical studies, technology evaluation, and the development of technology for motors, controllers, transmissions, and complete propulsion systems are included.

  4. Reusable Space Vehicle Ground Operations Baseline Conceptual Model

    Science.gov (United States)

    2004-03-01

    detailed manufacturing process knowledge (e.g., Hubble telescope mirror fabrication process) among geographically dispersed units. - Determine the impact...take place in several different facilities located relatively close to each other with the exception of hazardous functions being geographically ...segments are ready, they are transported to the VAB for stacking as previously described. Store Segments 5.1.1.3 Inspect Segements 5.1.1.2 Transport

  5. Soldier Cognitive Processes: Supporting Teleoperated Ground Vehicle Operations

    Science.gov (United States)

    2014-12-01

    and to integrate new information with existing knowledge (Gyselinck, Ehrlich , Cornoldi, de Beni, & Dubois, 2000; Mayer & Moreno, 2003). Within...212, 212a, http://journalofvision.org/1/3/212/, doi:10.1167/1.3.212. Gyselinck, V., Ehrlich , M. F., Cornoldi, C., deBeni, R., & Dubois, V. (2000

  6. Kinematic Discrepancy of Hydrostatic Drive of Unmanned Ground Vehicle

    Directory of Open Access Journals (Sweden)

    Konopka Stanisław

    2015-12-01

    Full Text Available W opracowaniu przedstawiony został problem niezgodności kinematycznej hydrostatycznych układów napędowych pojazdów wysokiej mobilności oraz jej wpływ na występowanie niekorzystnego zjawiska mocy krążącej. Ponadto zaprezentowane zostały rozważania teoretyczne dotyczące zdolności kompensacji niezgodności kinematycznej przez hydrostatyczny układ napędowy na podstawie badań z wykorzystaniem charakterystyk statycznych.

  7. Tactical Unmanned Ground Vehicle Related Research References (BTA Study)

    Science.gov (United States)

    1993-03-01

    80. Merritt, John 0., " Autostereoscopic 3D Display System by Dimension Technologies, Incorporat (DTI)," Unpublished Memorandum, 7 December 1988. 8I...PAPER SUMMARY REFERENCE: Title: Common Problems in the Evaluation of 3D Displays, 1983 Author(s): John 0. Merritt OBJECTIVE: The potential benefits of...pegboard and square background tests will compare stereopsis to the monoscopic depth cues. The goal of the tests conducted is to determine if the 3D

  8. Infrared Stereo Calibration for Unmanned Ground Vehicle Navigation

    Science.gov (United States)

    2014-05-01

    for avoidance and path planning. The use of laser-based sensors, such as Lidar , has become quite common for assisting in such a task, however, Lidar ...systems may be too expensive for certain application and are active, not passive, sensors, so they may not be desirable in some missions. Lidars are...black and white squares using packages such as the Camera Calibration Toolbox for Matlab R©,3 OpenCV,4 and the Robot Operating System (ROS).5 However

  9. Unmanned Ground Vehicle Two-Level Planning Technology Assessment

    Science.gov (United States)

    2010-09-01

    XUV bounced down path, saw blockage, backed up in a zig zag fashion, backed into brush, backed in a circle, E-Stop, E.O.M. Scenario 2 not what...RESEARCH LAB IMNE ALC HRR 2800 POWDER MILL RD ADELPHI MD 20783-1197 1 DIRECTOR US ARMY RESEARCH LAB RDRL CIM L 2800 POWDER MILL ...RD ADELPHI MD 20783-1197 1 DIRECTOR US ARMY RESEARCH LAB RDRL CIM P 2800 POWDER MILL RD ADELPHI MD 20783-1197 1 DIRECTOR US

  10. Collaborative Autonomous Unmanned Aerial - Ground Vehicle Systems for Field Operations

    Science.gov (United States)

    2007-08-31

    decentralized PID controllers , decentralized PID-like Fuzzy Logic controllers, and a centralized LQR controller. A comparison was made between the three...others who may not be experts in the design of MPC. The MPC controller was compared to the previously designed PID controllers for both an ascending

  11. Investigation of Terrain Analysis and Classification Methods for Ground Vehicles

    Science.gov (United States)

    2012-08-27

    dry bentonite clay , modeling clay , orange sand, dry topsoil, and wet topsoil. The dry bentonite clay was a tan colored fine-grained material with the...tested: bentonite at 21.4 N; clay at 53.2 N, 68.4 N, and 83.5 N; orange sand at 53.2 N, dry topsoil at 53.2 N, 60.8 N, 68.4 N, 76.0 N, and 83.5 N; and...appearance of fine-grained sand. The modeling clay was a medium gray, damp, highly cohesive material that was flexible enough to be formed by hand

  12. Traversability Analysis for Unmanned Ground Vehicles: Interpreting the Environment

    Science.gov (United States)

    2006-12-01

    Koren, Y. (1991), The Vector Field Histogram - Fast Obstacle Avoidance for Mobile Robots, IEEE Transactions on Robotics and Automation, 7(3), 535–539...Utz, H., Sablatnog, S., Enderle, S., and Kraetzschmar, G. (2002), Miro - MIddleware for Mobile Robot Applications, IEEE Transactions on Robotics and

  13. Quadrotor for Increased Situational Awareness for Ground Vehicles

    Science.gov (United States)

    2015-01-26

    exhibit different effects we placed the mannequins in the following situations: on a 2 nd story balcony; on a 3 rd story roof partially obscured by...resolution sensor technology comes to market, an adjustable lens may be required. One key takeaway regarding altitude is that there is no perfect

  14. Daytime Mud Detection for Unmanned Ground Vehicle Autonomous Navigation

    Science.gov (United States)

    2008-12-01

    dry soil during nominal weather, i.e., no precipitation , calm wind, and near average temperatures. 2. MUD CUES FROM COLOR It is commonly...disambiguate shadows from wet soil than shadows from dry soil. (a) Red band (b) NIR band (c) NDVI image (d) Brightness image wet soil Red...spectral bands to segment wet soil. Red and NIR bands (Figures 5a and 5b) can be used to generate a Normalized Difference Vegetation Index ( NDVI

  15. Study and Analysis of Heating Concepts for Military Ground Vehicles

    Science.gov (United States)

    1986-06-30

    of a Catalytic Heater with Hydrogen Fuel," International Journal of Hydrogen Energy , Vol. 7, No. 9, p. 737-740 (1982) 26 Locklin and Hazard, p. 95-106...Combustion of Hydrogen. III. Advantages and Disadvwntages of a Catalytic Heater With Hydrogen Fuel," International Journal of Hydrogen Energy , Vol. 7, No. 9, p

  16. Mobility Performance Algorithms for Small Unmanned Ground Vehicles

    Science.gov (United States)

    2009-05-01

    following: min , BFMX MAX T SFTYPC B DCL W æ ö÷ç= ´ ÷ç ÷çè ø100 (5) where: BMX = total braking force used DCLMAX = maximum braking...V = maximum speed limited by visibility BMX = braking force (Equation 5). The reaction time between recognition and application of the brakes

  17. Vector Pursuit Path Tracking for Autonomous Ground Vehicles

    Science.gov (United States)

    2000-08-01

    collision avoidance for a mobile robot,” Robotica , v12, 1994, p521-527. [30] Saffiotti, A., Ruspini, E. H. and Konolige, K., “Blending Reactivity and...based collision avoidance for a mobile robot,” Robotica , v15, 1997, p627-632. [43] Hoffman, F. and Pfister, G., “Evolutionary Design of a Fuzzy...DeSantis, R. M., “Modeling and path-tracking control of a mobile wheeled robot with a differential drive,” Robotica , v13, 1995, p401-410. [49

  18. Nearly time-optimal paths for a ground vehicle

    Institute of Scientific and Technical Information of China (English)

    David A. ANISI; Johan HAMBERG; Xiaoming HU

    2003-01-01

    It is well known that the sufficient family of time-optimal paths for both Dubins' as well as Reeds-Shepp' s car models consist of the concatenation of circular arcs with maxmum curvature and straight line segments, all tangentially connected.These time-optimal solutions suffer from some drawbacks. Their discontinuous curvature profde, together with the wear and impairment on the control equipment that the bang-bang solutions induce, calls for "smoother" and more supple reference paths to follow. Avoiding the bang-bang solutions also raises the robustness with respect to any possible uncertainties. In this paper, our main tool for generating these "nearly time-optimal", but nevertheless continuous-curvature paths, is to use the Pontryagin Maximum Principle (PMP) and make an appropriate and cunning choice of the Lagrangian function. Despite some rewarding simuhtion results, this concept tums out to be numerically divergent at some instances. Upon a more careful investigation, it can be concluded that the problem at hand is nearly singular. This is seen by applying the PMP to Dubins' car and studying the corresponding two point boundary value problem, which turn out to be singuhr. Realizing this, one is able to contradict the widespread belief that all the information about the motion of a mobile platform lies in the initial values of the auxiliary variables associated with the PMP.

  19. Mechatronics Design of an Unmanned Ground Vehicle for Military Applications

    OpenAIRE

    Appelqvist, Pekka; Knuuttila, Jere; Ahtiainen, Juhana

    2010-01-01

    Our research was funded by the Finnish Defence Forces' technology program and additionally by the Scientific Advisory Board for Defence. The authors also want to thank other project partners, especially Patria Group and VTT (Dr. Hannu Lehtinen, Dr. Ilkka Kauppi, Petri Kaarmila and Jarmo Prokkola).

  20. U.S. Army’s Ground Vehicle Energy Storage

    Science.gov (United States)

    2013-04-16

    platforms. • TARDEC Energy Storage Team Role is the Engineering Support Activity (ESA) to ensure conformance with the specification & recommendation...for QPL acceptance. • TARDEC Standardization Team Role is the Qualifying Activity that maintains the modifications to the MIL-PRF 32143B and QPL

  1. 75 FR 76692 - Federal Motor Vehicle Safety Standards; Small Business Impacts of Motor Vehicle Safety

    Science.gov (United States)

    2010-12-09

    ..., and 571 Federal Motor Vehicle Safety Standards; Small Business Impacts of Motor Vehicle Safety AGENCY... passenger vehicles, trucks, buses, trailers, incomplete vehicles, motorcycles, and motor vehicle...

  2. Factors influencing aircraft ground handling performance

    Science.gov (United States)

    Yager, T. J.

    1983-01-01

    Problems associated with aircraft ground handling operations on wet runways are discussed and major factors which influence tire/runway braking and cornering traction capability are identified including runway characteristics, tire hydroplaning, brake system anomalies, and pilot inputs. Research results from tests with instrumented ground vehicles and aircraft, and aircraft wet runway accident investigation are summarized to indicate the effects of different aircraft, tire, and runway parameters. Several promising means are described for improving tire/runway water drainage capability, brake system efficiency, and pilot training to help optimize aircraft traction performance on wet runways.

  3. R-Gator: an unmanned utility vehicle

    Science.gov (United States)

    Moorehead, Stewart J.; Wellington, Carl K.; Paulino, Heidi; Reid, John F.

    2010-04-01

    The R-Gator is an unmanned ground vehicle built on the John Deere 6x4 M-Gator utility vehicle chassis. The vehicle is capable of operating in urban and off-road terrain and has a large payload to carry supplies, wounded, or a marsupial robot. The R-Gator has 6 modes of operation: manual driving, teleoperation, waypoint, direction drive, playback and silent sentry. In direction drive the user specifies a direction for the robot. It will continue in that direction, avoiding obstacles, until given a new direction. Playback allows previously recorded paths, from any other mode including manual, to be played back and repeated. Silent sentry allows the engine to be turned off remotely while cameras, computers and comms remain powered by batteries. In this mode the vehicle stays quiet and stationary, collecting valuable surveillance information. The user interface consists of a wearable computer, monocle and standard video game controller. All functions of the R-Gator can be controlled by the handheld game controller, using at most 2 button presses. This easy to use user interface allows even untrained users to control the vehicle. This paper details the systems developed for the R-Gator, focusing on the novel user interface and the obstacle detection system, which supports safeguarded teleoperation as well as full autonomous operation in off-road terrain. The design for a new 4-wheel, independent suspension chassis version of the R-Gator is also presented.

  4. Design criteria for light high speed desert air cushion vehicles

    Science.gov (United States)

    Abulnaga, B. E.

    An evaluation is made of the applicability and prospective performance of ACVs in trans-Saharan cargo transport, in view of the unique characteristics of the dry sand environment. The lightweight/high-speed ACV concept envisioned is essentially ground effect aircraftlike, with conventional wheels as a low-speed backup suspension system. A propeller is used in ground effect cruise. Attention is given to the effects on vehicle stability and performance of sandy surface irregularities of the desert topography and of cross-winds from various directions relative to vehicle movement.

  5. Experimental Evaluation of the Scale Model Method to Simulate Lunar Vehicle Dynamics

    Science.gov (United States)

    Johnson, Kyle; Asnani, Vivake; Polack, Jeff; Plant, Mark

    2016-01-01

    As compared to driving on Earth, the presence of lower gravity and uneven terrain on planetary bodies makes high speed driving difficult. In order to maintain ground contact and control vehicles need to be designed with special attention to dynamic response. The challenge of maintaining control on the Moon was evident during high speed operations of the Lunar Roving Vehicle (LRV) on Apollo 16, as at one point all four tires were off the ground; this event has been referred to as the Lunar Grand Prix. Ultimately, computer simulation should be used to examine these phenomena during the vehicle design process; however, experimental techniques are required for the validation and elucidation of key issues. The objectives of this study were to evaluate the methodology for developing a scale model of a lunar vehicle using similitude relationships and to test how vehicle configuration, six or eight wheel pods, and local tire compliance, soft or stiff, affect the vehicles dynamic performance. A wheel pod consists of a drive and steering transmission and wheel. The Lunar Electric Rover (LER), a human driven vehicle with a pressurized cabin, was selected as an example for which a scale model was built. The scaled vehicle was driven over an obstacle and the dynamic response was observed and then scaled to represent the full-size vehicle in lunar gravity. Loss of ground contact, in terms of vehicle travel distance with tires off the ground, was examined. As expected, local tire compliance allowed ground contact to be maintained over a greater distance. However, switching from a six-tire configuration to an eight-tire configuration with reduced suspension stiffness had a negative effect on ground contact. It is hypothesized that this was due to the increased number or frequency of impacts. The development and testing of this scale model provided practical lessons for future low-gravity vehicle development.

  6. Yield estimation of winter wheat in early growth periods by vehicle-borne ground-based remote sensing system%基于车载近地遥感系统的冬小麦生育早期产量估测方法

    Institute of Scientific and Technical Information of China (English)

    李树强; 李民赞

    2014-01-01

    冬小麦生育早期的产量估测对于制定冬小麦整个生长期的精准管理策略具有重要的参考意义。该文利用车载近地遥感估产系统对冬小麦生育早期冠层叶片光谱信息进行动态获取,提出了一种基于冠层光谱信息的动态光化学植被指数MPRI(mobile photochemical reflectance index),构建了基于MPRI的冬小麦产量车载近地遥感估产模型,分析了估测效果,结合GIS手段对估产数据进行了空间分析。研究结果表明:冬小麦生育早期冠层指数MPRI对冬小麦的产量单点估测具有一定的效果,决定系数R2约为0.78。车载近地遥感估产系统动态测量时,MPRI表现出良好的数据识别能力。通过设置阈值能够剔除动态测量中的土壤背景干扰信息,说明MPRI对于冬小麦生育早期产量具有较好的估测效果。对动态估产结果进行空间分析,能够掌握小区域内小麦生育早期产量的空间分布情况,为冬小麦生育早期产量估测提供了新的思路和方法。%The index of crop growth monitoring has a close relationship with crop yield. It could forecast a large-scale food state that indicates a possibility of either a missing or surplus yield as early as possible, and it is therefore important for the macro control of food. Using near-ground remote sensing is significant to understanding the growth of crops and providing accurate and scientific data for precision agriculture. For the small area growers, the vehicle-borne system shows the good prospects and has gradually become the first choice method. This paper discusses a method that is one of the most important tools for yield prediction for winter wheat in the jointing stage. It is an efficient, flexible, and economical operation for a small region. Usually the vehicle-borne growth monitoring system cannot maintain steady operations due to the row spacing of winter wheat in the jointing stage. The background

  7. Vehicle usage verification system

    NARCIS (Netherlands)

    Scanlon, William G.; McQuiston, Jonathan; Cotton, Simon L.

    2012-01-01

    EN)A computer-implemented system for verifying vehicle usage comprising a server capable of communication with a plurality of clients across a communications network. Each client is provided in a respective vehicle and with a respective global positioning system (GPS) by which the client can determi

  8. Electric Vehicle Battery Challenge

    Science.gov (United States)

    Roman, Harry T.

    2014-01-01

    A serious drawback to electric vehicles [batteries only] is the idle time needed to recharge their batteries. In this challenge, students can develop ideas and concepts for battery change-out at automotive service stations. Such a capability would extend the range of electric vehicles.

  9. The Electric Vehicle Development

    DEFF Research Database (Denmark)

    Wang, Jingyu; Liu, Yingqi; Kokko, Ari

    2014-01-01

    In order to respond to the energy crisis and environment problem, countries carry out their research and promotion about electric vehicles. As the ten cities one thousand new energy buses started in 2009, the new energy vehicles have been greatly developed in China, while the development of elect...

  10. Vehicle Routing Problem Models

    Directory of Open Access Journals (Sweden)

    Tonči Carić

    2004-01-01

    Full Text Available The Vehicle Routing Problem cannot always be solved exactly,so that in actual application this problem is solved heuristically.The work describes the concept of several concrete VRPmodels with simplified initial conditions (all vehicles are ofequal capacity and start from a single warehouse, suitable tosolve problems in cases with up to 50 users.

  11. Motor Vehicle Safety

    Science.gov (United States)

    ... to prevent these crashes is one part of motor vehicle safety. Here are some things you can do to be safer on the road: Make sure your vehicle is safe and in working order Use car seats for children Wear your seat belt Don' ...

  12. Electric Vehicle Battery Challenge

    Science.gov (United States)

    Roman, Harry T.

    2014-01-01

    A serious drawback to electric vehicles [batteries only] is the idle time needed to recharge their batteries. In this challenge, students can develop ideas and concepts for battery change-out at automotive service stations. Such a capability would extend the range of electric vehicles.

  13. Whither electric vehicles?

    OpenAIRE

    Shukla, AK

    2002-01-01

    In the late 1890s, at the dawn of the automobile era, steam, gasoline and electric vehicles all competed to become the dominant automobile technology. By the early 1900s, the battle was over and Internal Combustion Engine Vehicles (ICEVs) were poised to become the prime movers of the twentieth century.

  14. Operator Informational Needs for Multiple Autonomous Small Vehicles

    Science.gov (United States)

    Trujillo, Anna C.; Fan, Henry; Cross, Charles D.; Hempley, Lucas E.; Cichella, Venanzio; Puig-Navarro, Javier; Mehdi, Syed Bilal

    2015-01-01

    With the anticipated explosion of small unmanned aerial vehicles, it is highly likely that operators will be controlling fleets of autonomous vehicles. To fulfill the promise of autonomy, vehicle operators will not be concerned with manual control of the vehicle; instead, they will deal with the overall mission. Furthermore, the one operator to many vehicles is becoming a constant meme with various industries including package delivery, search and rescue, and utility companies. In order for an operator to concurrently control several vehicles, his station must look and behave very differently than the current ground control station instantiations. Furthermore, the vehicle will have to be much more autonomous, especially during non-normal operations, in order to accommodate the knowledge deficit or the information overload of the operator in charge of several vehicles. The expected usage increase of small drones requires presenting the operational information generated by a fleet of heterogeneous autonomous agents to an operator. NASA Langley Research Center's Autonomy Incubator has brought together researchers in various disciplines including controls, trajectory planning, systems engineering, and human factors to develop an integrated system to study autonomy issues. The initial human factors effort is focusing on mission displays that would give an operator the overall status of all autonomous agents involved in the current mission. This paper will discuss the specifics of the mission displays for operators controlling several vehicles.

  15. Integrated analysis of hydrogen passenger vehicle transportation pathways

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, C.E.; James, B.D.; Lomax, F.D. Jr.; Kuhn, I.F. Jr. [Directed Technologies, Inc., Arlington, VA (United States)

    1998-08-01

    Hydrogen-powered fuel cell vehicles will reduce local air pollution, greenhouse gas emissions and oil imports. Other alternative vehicles such as gasoline- or methanol-powered fuel cell vehicles, natural gas vehicles and various hybrid electric vehicles with internal combustion engines may also provide significant environmental and national security advantages. This report summarizes a two-year project to compare the direct hydrogen fuel cell vehicle with other alternatives in terms of estimated cost and estimated societal benefits, all relative to a conventional gasoline-powered internal combustion engine vehicle. The cost estimates used in this study involve ground-up, detailed analysis of the major components of a fuel cell vehicle system, assuming mass production in automotive quantities. The authors have also estimated the cost of both gasoline and methanol onboard fuel processors, as well as the cost of stationary hydrogen fueling system components including steam methane reformers, electrolyzers, compressors and stationary storage systems. Sixteen different vehicle types are compared with respect to mass production cost, local air pollution and greenhouse gas emissions.

  16. Automated Vehicles Symposium 2015

    CERN Document Server

    Beiker, Sven

    2016-01-01

    This edited book comprises papers about the impacts, benefits and challenges of connected and automated cars. It is the third volume of the LNMOB series dealing with Road Vehicle Automation. The book comprises contributions from researchers, industry practitioners and policy makers, covering perspectives from the U.S., Europe and Japan. It is based on the Automated Vehicles Symposium 2015 which was jointly organized by the Association of Unmanned Vehicle Systems International (AUVSI) and the Transportation Research Board (TRB) in Ann Arbor, Michigan, in July 2015. The topical spectrum includes, but is not limited to, public sector activities, human factors, ethical and business aspects, energy and technological perspectives, vehicle systems and transportation infrastructure. This book is an indispensable source of information for academic researchers, industrial engineers and policy makers interested in the topic of road vehicle automation.

  17. Automated Vehicles Symposium 2014

    CERN Document Server

    Beiker, Sven; Road Vehicle Automation 2

    2015-01-01

    This paper collection is the second volume of the LNMOB series on Road Vehicle Automation. The book contains a comprehensive review of current technical, socio-economic, and legal perspectives written by experts coming from public authorities, companies and universities in the U.S., Europe and Japan. It originates from the Automated Vehicle Symposium 2014, which was jointly organized by the Association for Unmanned Vehicle Systems International (AUVSI) and the Transportation Research Board (TRB) in Burlingame, CA, in July 2014. The contributions discuss the challenges arising from the integration of highly automated and self-driving vehicles into the transportation system, with a focus on human factors and different deployment scenarios. This book is an indispensable source of information for academic researchers, industrial engineers, and policy makers interested in the topic of road vehicle automation.

  18. Ground water and energy

    Energy Technology Data Exchange (ETDEWEB)

    1980-11-01

    This national workshop on ground water and energy was conceived by the US Department of Energy's Office of Environmental Assessments. Generally, OEA needed to know what data are available on ground water, what information is still needed, and how DOE can best utilize what has already been learned. The workshop focussed on three areas: (1) ground water supply; (2) conflicts and barriers to ground water use; and (3) alternatives or solutions to the various issues relating to ground water. (ACR)

  19. Hydrogen vehicle fueling station

    Energy Technology Data Exchange (ETDEWEB)

    Daney, D.E.; Edeskuty, F.J.; Daugherty, M.A. [Los Alamos National Lab., NM (United States)] [and others

    1995-09-01

    Hydrogen fueling stations are an essential element in the practical application of hydrogen as a vehicle fuel, and a number of issues such as safety, efficiency, design, and operating procedures can only be accurately addressed by a practical demonstration. Regardless of whether the vehicle is powered by an internal combustion engine or fuel cell, or whether the vehicle has a liquid or gaseous fuel tank, the fueling station is a critical technology which is the link between the local storage facility and the vehicle. Because most merchant hydrogen delivered in the US today (and in the near future) is in liquid form due to the overall economics of production and delivery, we believe a practical refueling station should be designed to receive liquid. Systems studies confirm this assumption for stations fueling up to about 300 vehicles. Our fueling station, aimed at refueling fleet vehicles, will receive hydrogen as a liquid and dispense it as either liquid, high pressure gas, or low pressure gas. Thus, it can refuel any of the three types of tanks proposed for hydrogen-powered vehicles -- liquid, gaseous, or hydride. The paper discusses the fueling station design. Results of a numerical model of liquid hydrogen vehicle tank filling, with emphasis on no vent filling, are presented to illustrate the usefulness of the model as a design tool. Results of our vehicle performance model illustrate our thesis that it is too early to judge what the preferred method of on-board vehicle fuel storage will be in practice -- thus our decision to accommodate all three methods.

  20. Developing a Blended Type Course of Introduction to Hybrid Vehicles

    Directory of Open Access Journals (Sweden)

    Na Zhu

    2016-02-01

    Full Text Available An innovative course of introduction to hybrid vehicles is developed for both associate and bachelor degree programs for engineering technology with automotive/mechanical concentration. The hybrid vehicle course content includes several topics, such as the rational of pure electric vehicle and hybrid vehicle, hybrid vehicle propulsion systems, fundamentals of motor/generator systems, fundamentals of battery and energy management system, and introduction to various configurations of hybrid vehicle systems available in market and under development. Hybrid vehicle technology is a new area and developed rapidly in the field of automotive and mechanical engineering. Students need not only the fundamentals and concepts from college, but also the ability to keep up with the latest technology after their graduation. Therefore, a blended course type is employed to help students have a better understanding of the fundamentals of hybrid vehicle and developing their self-studying ability. Topics in the course have three steps of learning. Firstly, on-ground lecture is given in class, where the instructor explains basic knowledge, such as principles, equations, and design rules.  In this way, the students will have enough background knowledge and be able to conduct further self-reading and research work. Secondly, students are required to go to university’s desire to learn (D2L online system and finish the online part of the topic. In the D2L system, students will find a quiz and its supporting materials. Thirdly, students come back to the on-ground lecture and discuss the quiz in groups with instructor. After the discussion, the instructor gives students a conclusion of the topic and moves forward to the next topic. A computer simulation class is also given to help student better understand the operation strategies of the hybrid vehicle systems and have a trial of design of hybrid vehicle.

  1. Selected Foreign Counterparts of U.S. Army Ground Combat Systems and Implications for Combat Operations and Modernization

    Science.gov (United States)

    2017-01-18

    not have a new ground combat vehicle under development and “at current funding levels, the Bradley and Abrams will remain in the inventory for 50...time since World War I, that the Army does not have a new ground combat vehicle under development and “at current funding levels, the Bradley and...Jane’s Land Warfare Platforms Armoured Fighting Vehicles, 2016-2017; IHS Jane’s Armour and Artillery, 2011-2012; and unclassified information provided to

  2. Land, sea, and air unmanned systems research and development at SPAWAR Systems Center Pacific

    Science.gov (United States)

    Nguyen, Hoa G.; Laird, Robin; Kogut, Greg; Andrews, John; Fletcher, Barbara; Webber, Todd; Arrieta, Rich; Everett, H. R.

    2009-05-01

    The Space and Naval Warfare (SPAWAR) Systems Center Pacific (SSC Pacific) has a long and extensive history in unmanned systems research and development, starting with undersea applications in the 1960s and expanding into ground and air systems in the 1980s. In the ground domain, we are addressing force-protection scenarios using large unmanned ground vehicles (UGVs) and fixed sensors, and simultaneously pursuing tactical and explosive ordnance disposal (EOD) operations with small man-portable robots. Technology thrusts include improving robotic intelligence and functionality, autonomous navigation and world modeling in urban environments, extended operational range of small teleoperated UGVs, enhanced human-robot interaction, and incorporation of remotely operated weapon systems. On the sea surface, we are pushing the envelope on dynamic obstacle avoidance while conforming to established nautical rules-of-the-road. In the air, we are addressing cooperative behaviors between UGVs and small vertical-takeoff- and-landing unmanned air vehicles (UAVs). Underwater applications involve very shallow water mine countermeasures, ship hull inspection, oceanographic data collection, and deep ocean access. Specific technology thrusts include fiber-optic communications, adaptive mission controllers, advanced navigation techniques, and concepts of operations (CONOPs) development. This paper provides a review of recent accomplishments and current status of a number of projects in these areas.

  3. Active detection of drivable surfaces in support of robotic disaster relief missions

    Science.gov (United States)

    Wang, Maxwell B.; Chu, Albert; Bush, Lawrence A.; Williams, Brian C.

    Over the past few decades, the usage of unmanned vehicles has grown exponentially, expanding into applications such as the automation of industrial processes and automobiles. However, their utility has often been limited by operational concerns. Fully controlled unmanned vehicles require multiple human operators, while their fully autonomous counterparts lack the ability to handle the complex maneuvers necessary in natural disaster relief and/or search and rescue situations. Semi-autonomous UAVs offer a feasible compromise between the two extremes. In this scenario, an unmanned aerial vehicle (UAV) sends birds-eye images of the terrain beneath it to a computing cluster, which will identify easily traversable terrain and generate a path of least risk to an unmanned ground vehicle (UGV). If the path's risk is below a certain threshold, then the UGV will be permitted to proceed on its own. Otherwise, a human operator will be notified, so that he or she may control the UGV directly until it exits the most dangerous terrain. This paradigm allows a single operator to manage several UAVs simultaneously.

  4. High-Fidelity Prediction of Launch Vehicle Lift-off Acoustic Environment Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Launch vehicles experience extreme acoustic loads during liftoff driven by the interaction of rocket plumes and plume-generated acoustic waves with ground...

  5. Cumulative Vehicle Routing Problems

    OpenAIRE

    Kara, &#;mdat; Kara, Bahar Yeti&#;; Yeti&#;, M. Kadri

    2008-01-01

    This paper proposes a new objective function and corresponding formulations for the vehicle routing problem. The new cost function defined as the product of the distance of the arc and the flow on that arc. We call a vehicle routing problem with this new objective function as the Cumulative Vehicle Routing Problem (CumVRP). Integer programming formulations with O(n2) binary variables and O(n2) constraints are developed for both collection and delivery cases. We show that the CumVRP is a gener...

  6. Blast resistant vehicle seat

    Energy Technology Data Exchange (ETDEWEB)

    Ripley, Edward B

    2013-02-12

    Disclosed are various seats for vehicles particularly military vehicles that are susceptible to attack by road-bed explosive devices such as land mines or improvised explosive devices. The seats often have rigid seat shells and may include rigid bracing for rigidly securing the seat to the chassis of the vehicle. Typically embodiments include channels and particulate media such as sand disposed in the channels. A gas distribution system is generally employed to pump a gas through the channels and in some embodiments the gas is provided at a pressure sufficient to fluidize the particulate media when an occupant is sitting on the seat.

  7. Real-Time Identification of Wheel Terrain Interaction Models for Enhanced Autonomous Vehicle Mobility

    Science.gov (United States)

    2014-04-24

    capable instrumentation. • A system reliant on RTK GPS would not be very practical and we show it to be unnecessary. 7/6/2014 Vehicle - Ground...includes: – Moblility logs (post-processed RTK - GPS pose, wheel odometry) for 3 different terrain (grass, dirt, parking lot) on the LandTamer (6x6...Platform Retrofit 7/6/2014 Vehicle - Ground Model Identification 12 AVT GT1920C GigE Camera Pose System: Novatel OEMV-3 GPS Receiver + Honeywell

  8. Circular Path and Linear Momentum (CPLM Method for Seismic Response Analysis of Vehicles

    Directory of Open Access Journals (Sweden)

    Rishi Ram Parajuli

    2016-07-01

    Full Text Available We propose a circular path and linear momentum method for the seismic response analysis of vehicles. This method considers the momentum induced by earthquake excitation and applies the concept of centripetal force acting laterally on the vehicle in addition to longitudinal forces. This method is valid for vehicles at rest as well as those moving at a range of speeds. The vertical responses are calculated using a quarter vehicle model. We also calculate the translational motion of the vehicle using a model with six degrees of freedom. Three vehicle types (car, bus, and truck were used in the analysis. We compared the result with analysis of the response of a shaking vehicle from video footage recorded during the Gorkha earthquake. We used the input ground motion from 10 large earthquakes of moment magnitudes 6.7 to 9.0. All three components of the ground motion were used in the analysis. Vehicles at rest and moving at various speeds were analysed. The lateral and longitudinal responses of the vehicles were calculated for different vehicle speeds ranging from 0 to 30.0 m/s, PGA excitations and orientations of the vehicle.

  9. Vehicle Dynamics and Control

    CERN Document Server

    Rajamani, Rajesh

    2012-01-01

    Vehicle Dynamics and Control provides a comprehensive coverage of vehicle control systems and the dynamic models used in the development of these control systems. The control system applications covered in the book include cruise control, adaptive cruise control, ABS, automated lane keeping, automated highway systems, yaw stability control, engine control, passive, active and semi-active suspensions, tire-road friction coefficient estimation, rollover prevention, and hybrid electric vehicle. In developing the dynamic model for each application, an effort is made to both keep the model simple enough for control system design but at the same time rich enough to capture the essential features of the dynamics. A special effort has been made to explain the several different tire models commonly used in literature and to interpret them physically. In the second edition of the book, chapters on roll dynamics, rollover prevention and hybrid electric vehicles have been added, and the chapter on electronic stability co...

  10. Hybrid vehicle control

    Energy Technology Data Exchange (ETDEWEB)

    Shallvari, Iva; Velnati, Sashidhar; DeGroot, Kenneth P.

    2015-07-28

    A method and apparatus for heating a catalytic converter's catalyst to an efficient operating temperature in a hybrid electric vehicle when the vehicle is in a charge limited mode such as e.g., the charge depleting mode or when the vehicle's high voltage battery is otherwise charge limited. The method and apparatus determine whether a high voltage battery of the vehicle is incapable of accepting a first amount of charge associated with a first procedure to warm-up the catalyst. If it is determined that the high voltage battery is incapable of accepting the first amount of charge, a second procedure with an acceptable amount of charge is performed to warm-up the catalyst.

  11. Hybrid vehicle control

    Science.gov (United States)

    Shallvari, Iva; Velnati, Sashidhar; DeGroot, Kenneth P.

    2015-07-28

    A method and apparatus for heating a catalytic converter's catalyst to an efficient operating temperature in a hybrid electric vehicle when the vehicle is in a charge limited mode such as e.g., the charge depleting mode or when the vehicle's high voltage battery is otherwise charge limited. The method and apparatus determine whether a high voltage battery of the vehicle is incapable of accepting a first amount of charge associated with a first procedure to warm-up the catalyst. If it is determined that the high voltage battery is incapable of accepting the first amount of charge, a second procedure with an acceptable amount of charge is performed to warm-up the catalyst.

  12. Aerodynamics of Small Vehicles

    Science.gov (United States)

    Mueller, Thomas J.

    In this review we describe the aerodynamic problems that must be addressed in order to design a successful small aerial vehicle. The effects of Reynolds number and aspect ratio (AR) on the design and performance of fixed-wing vehicles are described. The boundary-layer behavior on airfoils is especially important in the design of vehicles in this flight regime. The results of a number of experimental boundary-layer studies, including the influence of laminar separation bubbles, are discussed. Several examples of small unmanned aerial vehicles (UAVs) in this regime are described. Also, a brief survey of analytical models for oscillating and flapping-wing propulsion is presented. These range from the earliest examples where quasi-steady, attached flow is assumed, to those that account for the unsteady shed vortex wake as well as flow separation and aeroelastic behavior of a flapping wing. Experiments that complemented the analysis and led to the design of a successful ornithopter are also described.

  13. Hydraulic Hybrid Vehicles

    Science.gov (United States)

    EPA and the United Parcel Service (UPS) have developed a hydraulic hybrid delivery vehicle to explore and demonstrate the environmental benefits of the hydraulic hybrid for urban pick-up and delivery fleets.

  14. TRACKED VEHICLE Rev 75

    Energy Technology Data Exchange (ETDEWEB)

    2007-05-08

    Revision 75 of the Tracked Vehicle software is a soft real-time simulation of a differentially steered, tracked mobile robot, which, because of the track flippers, resembles the iRobot PackBot (http://www.irobot.com/). Open source libraries are used for the physics engine (http://www.ode.org/), the display and user interface (http://www.mathies.com/cpw/), and the program command line and configuration file parameters (http://www.boost.org/). The simulation can be controlled by a USB joystick or the keyboard. The configuration file contains demonstration model parameters of no particular vehicle. This simulation can be used as a starting point for those doing tracked vehicle simulations. This simulation software is essentially a research tool which can be modified and adapted for certain types of tracked vehicle research. An open source license allows an individual researchers to tailor the code to their specific research needs.

  15. Handbook of Intelligent Vehicles

    CERN Document Server

    2012-01-01

    The Handbook of Intelligent Vehicles provides a complete coverage of the fundamentals, new technologies, and sub-areas essential to the development of intelligent vehicles; it also includes advances made to date, challenges, and future trends. Significant strides in the field have been made to date; however, so far there has been no single book or volume which captures these advances in a comprehensive format, addressing all essential components and subspecialties of intelligent vehicles, as this book does. Since the intended users are engineering practitioners, as well as researchers and graduate students, the book chapters do not only cover fundamentals, methods, and algorithms but also include how software/hardware are implemented, and demonstrate the advances along with their present challenges. Research at both component and systems levels are required to advance the functionality of intelligent vehicles. This volume covers both of these aspects in addition to the fundamentals listed above.

  16. Abandoned vehicles REMINDER

    CERN Document Server

    Relations with the Host States Service

    2004-01-01

    The services in charge of managing the CERN site have recently noted an increase in the number of abandoned vehicles. This poses a risk from the point of view of safety and security and, on the eve of several important events in honour of CERN's fiftieth anniversary, is detrimental to the Organization's image. Owners of vehicles that have been left immobile for some time on the CERN site, including on the external car park by the flags, are therefore invited to contact the Reception and Access Control Service (service-parking-longterm@cern.ch) before 1st October 2004 and, where appropriate, move their vehicle to a designated long-term parking area. After this date, any vehicle whose owner has failed to respond to this request and which is without a number plate, has been stationary for several weeks or is out of service, may be impounded at the owner's risk and expense. Relations with the Host States Service Tel. 72848

  17. Abandoned vehicles - Reminder

    CERN Document Server

    Relations with the Host States Service

    2004-01-01

    The services in charge of managing the CERN site have recently noted an increase in the number of abandoned vehicles. This poses a risk from the point of view of safety and security and, on the eve of several important events in honour of CERN's fiftieth anniversary, is detrimental to the Organization's image. Owners of vehicles that have been left immobile for some time on the CERN site, including on the external car park by the flags, are therefore invited to contact the Reception and Access Control Service (service-parking-longterm@cern.ch) before 1st October 2004 and, where appropriate, move their vehicle to a designated long-term parking area. After this date, any vehicle whose owner has failed to respond to this request and which is without a number plate, has been stationary for several weeks or is out of service, may be impounded at the owner's risk and expense. Relations with the Host States Service Tel. 72848

  18. Abandonned vehicles - REMINDER

    CERN Document Server

    Relations with the Host States Service

    2004-01-01

    The services in charge of managing the CERN site have recently noted an increase in the number of abandoned vehicles. This poses a risk from the point of view of safety and security and, on the eve of several important events in honour of CERN's fiftieth anniversary, is detrimental to the Organization's image. Owners of vehicles that have been left immobile for some time on the CERN site, including on the external car park by the flags, are therefore invited to contact the Reception and Access Control Service (service-parking-longterm@cern.ch) before 1st October 2004 and, where appropriate, move their vehicle to a designated long-term parking area. After this date, any vehicle whose owner has failed to respond to this request and which is without a number plate, has been stationary for several weeks or is out of service, may be impounded at the owner's risk and expense. Relations with the Host States Service Tel. 72848

  19. Power Module Cooling for Future Electric Vehicle Applications: A Coolant Comparison of Oil and PGW

    Science.gov (United States)

    2006-11-01

    POWER MODULE COOLING FOR FUTURE ELECTRIC VEHICLE APPLICATIONS: A COOLANT COMPARISON OF OIL AND PGW T. E. Salem U. S. Naval Academy 105...and efficient power converters are being developed to support the needs of future ground vehicle systems. This progress is being driven by...2006 2. REPORT TYPE N/A 3. DATES COVERED - 4. TITLE AND SUBTITLE Power Module Cooling For Future Electric Vehicle Applications: A Coolant

  20. Application of nodes with multiple orthogonal sensors in moving light vehicles study

    Science.gov (United States)

    Ekimov, Alexander

    2012-06-01

    A sensor node having two types of sensors: sound and seismic units was used for signal collection in a test with different moving light vehicles on a gravel road in a quiet area. An analysis of signals from the node at low frequencies (less than 100 Hz) shows the possibility of tested vehicles detection at long distance. The sound signals for the vehicle motion were detected above the lowest frequencies of 15-20 Hz only while the seismic signals had the maxima in that frequency band. Another test was conducted on the ground to find the common vibrations of a light vehicle and the ground due to vehicle passby in frequencies below 100 Hz. For this signal collection the same sensor node was used. An additional 3-x accelerometer was installed in the vehicle cabin above the transmission. For start time synchronization of recorded signals from the node on the ground and 3-x accelerometer in the vehicle cabin a radio channel was used. Results for this test revealed the vehicle vibrations due to motion were detected on the ground with all three components of the 3-axes geophone for the test track entire distance.

  1. Nuclear air cushion vehicles.

    Science.gov (United States)

    Anderson, J. L.

    1973-01-01

    This paper serves several functions. It identifies the 'state-of-the-art' of the still-conceptual nuclear air cushion vehicle, particularly the nuclear powerplant. Using mission studies and cost estimates, the report describes some of the advantages of nuclear power for large air cushion vehicles. The paper also summarizes the technology studies on mobile nuclear powerplants and conceptual ACV systems/missions studies that have been performed at NASA Lewis Research Center.

  2. HYBRID VEHICLE CONTROL SYSTEM

    Directory of Open Access Journals (Sweden)

    V. Dvadnenko

    2016-06-01

    Full Text Available The hybrid vehicle control system includes a start–stop system for an internal combustion engine. The system works in a hybrid mode and normal vehicle operation. To simplify the start–stop system, there were user new possibilities of a hybrid car, which appeared after the conversion. Results of the circuit design of the proposed system of basic blocks are analyzed.

  3. Electric vehicles in action

    OpenAIRE

    Wikström, Martina

    2015-01-01

    This thesis analyses the political and practical conditions for introducing electric vehicles in Swedish public authorites and discusses the potential for using electric vehicles in public transport and public fleets. The work has been carried out using an interdisciplinary research approach. Such an approach brings new insights to energy studies; the combination of technical methods and methods from social science allows the technology to be studied in its societal context. Local self-govern...

  4. Vehicle Based Vector Sensor

    Science.gov (United States)

    2015-09-28

    300001 1 of 16 VEHICLE-BASED VECTOR SENSOR STATEMENT OF GOVERNMENT INTEREST [0001] The invention described herein may be manufactured and...unmanned underwater vehicle that can function as an acoustic vector sensor . (2) Description of the Prior Art [0004] It is known that a propagating...mechanics. An acoustic vector sensor measures the particle motion via an accelerometer and combines Attorney Docket No. 300001 2 of 16 the

  5. Vehicle Routing in Practice

    OpenAIRE

    Hasle, Geir

    2010-01-01

    Solving the Vehicle Routing Problem (VRP) is a key to efficiency in transportation and supply chain management. The VRP is a computationally hard problem that comes in many guises. The VRP literature contains thousands of papers, and VRP research is regarded as one of the great successes of OR. In industry and the public sector, vehicle routing tools provide substantial savings every day. An industry of routing tool vendors has emerged. Exact optimization methods of today cannot consistently ...

  6. A review of dynamic characteristics of magnetically levitated vehicle systems

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Y.; Chen, S.S.

    1995-11-01

    The dynamic response of magnetically levitated (maglev) ground transportation systems has important consequences for safety and ride quality, guideway design, and system costs. Ride quality is determined by vehicle response and by environmental factors such as humidity and noise. The dynamic response of the vehicles is the key element in determining ride quality, while vehicle stability is an important safety-related element. To design a guideway that provides acceptable ride quality in the stable region, vehicle dynamics must be understood. Furthermore, the trade-off between guideway smoothness and levitation and control systems must be considered if maglev systems are to be economically feasible. The link between the guideway and the other maglev components is vehicle dynamics. For a commercial maglev system, vehicle dynamics must be analyzed and tested in detail. This report, which reviews various aspects of the dynamic characteristics, experiments and analysis, and design guidelines for maglev systems, discusses vehicle stability, motion dependent magnetic force components, guideway characteristics, vehicle/ guideway interaction, ride quality, suspension control laws, aerodynamic loads and other excitations, and research needs.

  7. A Study of Lane Detection Algorithm for Personal Vehicle

    Science.gov (United States)

    Kobayashi, Kazuyuki; Watanabe, Kajiro; Ohkubo, Tomoyuki; Kurihara, Yosuke

    By the word “Personal vehicle”, we mean a simple and lightweight vehicle expected to emerge as personal ground transportation devices. The motorcycle, electric wheelchair, motor-powered bicycle, etc. are examples of the personal vehicle and have been developed as the useful for transportation for a personal use. Recently, a new types of intelligent personal vehicle called the Segway has been developed which is controlled and stabilized by using on-board intelligent multiple sensors. The demand for needs for such personal vehicles are increasing, 1) to enhance human mobility, 2) to support mobility for elderly person, 3) reduction of environmental burdens. Since rapidly growing personal vehicles' market, a number of accidents caused by human error is also increasing. The accidents are caused by it's drive ability. To enhance or support drive ability as well as to prevent accidents, intelligent assistance is necessary. One of most important elemental functions for personal vehicle is robust lane detection. In this paper, we develop a robust lane detection method for personal vehicle at outdoor environments. The proposed lane detection method employing a 360 degree omni directional camera and unique robust image processing algorithm. In order to detect lanes, combination of template matching technique and Hough transform are employed. The validity of proposed lane detection algorithm is confirmed by actual developed vehicle at various type of sunshined outdoor conditions.

  8. Intelligent Unmanned Vehicle Systems Suitable For Individual or Cooperative Missions

    Energy Technology Data Exchange (ETDEWEB)

    Matthew O. Anderson; Mark D. McKay; Derek C. Wadsworth

    2007-04-01

    The Department of Energy’s Idaho National Laboratory (INL) has been researching autonomous unmanned vehicle systems for the past several years. Areas of research have included unmanned ground and aerial vehicles used for hazardous and remote operations as well as teamed together for advanced payloads and mission execution. Areas of application include aerial particulate sampling, cooperative remote radiological sampling, and persistent surveillance including real-time mosaic and geo-referenced imagery in addition to high resolution still imagery. Both fixed-wing and rotary airframes are used possessing capabilities spanning remote control to fully autonomous operation. Patented INL-developed auto steering technology is taken advantage of to provide autonomous parallel path swathing with either manned or unmanned ground vehicles. Aerial look-ahead imagery is utilized to provide a common operating picture for the ground and air vehicle during cooperative missions. This paper will discuss the various robotic vehicles, including sensor integration, used to achieve these missions and anticipated cost and labor savings.

  9. A Quarter Active Suspension System Based Ground-Hook Controller

    OpenAIRE

    Turnip Arjon

    2016-01-01

    An alternative design technique for active suspension system of vehicle using a developved ground-hook damping system as a reference is proposed. The controller parameters are determined using Lyapunov method and can be tuned to precisely achieve the type of desired response which given by reference model. The simulation result show that the designed active suspension system based ground-hook reference model is able to significantly improve the ride comfort and the road holding compared with ...

  10. Easy-to-Use UAV Ground Station Software for Low-Altitude Civil Operations Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to design and develop easy-to-use Ground Control Station (GCS) software for low-altitude civil Unmanned Aerial Vehicle (UAV) operations. The GCS software...

  11. Active Damping of Oscillations in Off-Road Vehicles

    DEFF Research Database (Denmark)

    Andersen, T. O.; Hansen, M. R.; Conrad, Finn

    2003-01-01

    This paper relates to analyse and control of the oscillations occuring in many off-road vehicles, which are designed without any suspension. Without suspension, the tire is the only elastic element acting between the vichle and the ground, but the suspension and damping properties of the tires...

  12. Vehicle state estimation using GPS/IMU integration

    NARCIS (Netherlands)

    Wang, Y.; Mangnus, J.; Kostić, D.; Nijmeijer, H.; Jansen, S.T.H.

    2011-01-01

    New driver support systems require knowledge of the vehicle position with great accuracy and reliability. Satellite navigation (GNSS) is generally insufficiently accurate for positioning and as an alternative to using a ground station, combinations with high quality motion sensors are used in so-cal

  13. Multi-Purpose Crew Vehicle Camera Asset Planning: Imagery Previsualization

    Science.gov (United States)

    Beaulieu, K.

    2014-01-01

    Using JSC-developed and other industry-standard off-the-shelf 3D modeling, animation, and rendering software packages, the Image Science Analysis Group (ISAG) supports Orion Project imagery planning efforts through dynamic 3D simulation and realistic previsualization of ground-, vehicle-, and air-based camera output.

  14. Vehicle Detection for RCTA/ANS (Autonomous Navigation System)

    Science.gov (United States)

    Brennan, Shane; Bajracharya, Max; Matthies, Larry H.; Howard, Andrew B.

    2012-01-01

    Using a stereo camera pair, imagery is acquired and processed through the JPLV stereo processing pipeline. From this stereo data, large 3D blobs are found. These blobs are then described and classified by their shape to determine which are vehicles and which are not. Prior vehicle detection algorithms are either targeted to specific domains, such as following lead cars, or are intensity- based methods that involve learning typical vehicle appearances from a large corpus of training data. In order to detect vehicles, the JPL Vehicle Detection (JVD) algorithm goes through the following steps: 1. Take as input a left disparity image and left rectified image from JPLV stereo. 2. Project the disparity data onto a two-dimensional Cartesian map. 3. Perform some post-processing of the map built in the previous step in order to clean it up. 4. Take the processed map and find peaks. For each peak, grow it out into a map blob. These map blobs represent large, roughly vehicle-sized objects in the scene. 5. Take these map blobs and reject those that do not meet certain criteria. Build descriptors for the ones that remain. Pass these descriptors onto a classifier, which determines if the blob is a vehicle or not. The probability of detection is the probability that if a vehicle is present in the image, is visible, and un-occluded, then it will be detected by the JVD algorithm. In order to estimate this probability, eight sequences were ground-truthed from the RCTA (Robotics Collaborative Technology Alliances) program, totaling over 4,000 frames with 15 unique vehicles. Since these vehicles were observed at varying ranges, one is able to find the probability of detection as a function of range. At the time of this reporting, the JVD algorithm was tuned to perform best at cars seen from the front, rear, or either side, and perform poorly on vehicles seen from oblique angles.

  15. Electric/Hybrid Vehicle Simulation

    Science.gov (United States)

    Slusser, R. A.; Chapman, C. P.; Brennand, J. P.

    1985-01-01

    ELVEC computer program provides vehicle designer with simulation tool for detailed studies of electric and hybrid vehicle performance and cost. ELVEC simulates performance of user-specified electric or hybrid vehicle under user specified driving schedule profile or operating schedule. ELVEC performs vehicle design and life cycle cost analysis.

  16. Dynamic tire pressure sensor for measuring ground vibration.

    Science.gov (United States)

    Wang, Qi; McDaniel, James Gregory; Wang, Ming L

    2012-11-07

    This work presents a convenient and non-contact acoustic sensing approach for measuring ground vibration. This approach, which uses an instantaneous dynamic tire pressure sensor (DTPS), possesses the capability to replace the accelerometer or directional microphone currently being used for inspecting pavement conditions. By measuring dynamic pressure changes inside the tire, ground vibration can be amplified and isolated from environmental noise. In this work, verifications of the DTPS concept of sensing inside the tire have been carried out. In addition, comparisons between a DTPS, ground-mounted accelerometer, and directional microphone are made. A data analysis algorithm has been developed and optimized to reconstruct ground acceleration from DTPS data. Numerical and experimental studies of this DTPS reveal a strong potential for measuring ground vibration caused by a moving vehicle. A calibration of transfer function between dynamic tire pressure change and ground acceleration may be needed for different tire system or for more accurate application.

  17. Localizing Ground Penetrating RADAR: A Step Towards Robust Autonomous Ground Vehicle Localization

    Science.gov (United States)

    2016-07-14

    error and transition period between 50 s and 60 s corresponds to the northern 7 m radius U-turn. Journal of Field Robotics DOI 10.1002/rob Cornick et...estimating time-related bias errors . Journal of Field Robotics DOI 10.1002/rob 96 • Journal of Field Robotics —2016 Figure 17. Cumulative distribution of...the LIDAR systems be- cause of their use of optics and their operation in dynamic environments. Journal of Field Robotics 33(1), 82–102 (2016) C

  18. Crewed Space Vehicle Battery Safety Requirements Revision D

    Science.gov (United States)

    Russell, Samuel

    2017-01-01

    The Crewed Space Vehicle Battery Safety Requirements document has been prepared for use by designers of battery-powered vehicles, portable equipment, and experiments intended for crewed spaceflight. The purpose of the requirements document is to provide battery designers with information on design provisions to be incorporated in and around the battery and on the verification to be undertaken to demonstrate a safe battery is provided. The term "safe battery" means that the battery is safe for ground personnel and crew members to handle and use; safe to be used in the enclosed environment of a crewed space vehicle; and safe to be mounted or used in unpressurized spaces adjacent to habitable areas. Battery design review, approval, and certification is required before the batteries can be used for ground operations and be certified for flight.

  19. ELECTROMAGNETIC BIOSPHERE POLLUTION BY MOTOR TRANSPORT (VEHICLES, ELECTRIC VEHICLES, HYBRID VEHICLES

    Directory of Open Access Journals (Sweden)

    S. Selivanov

    2009-01-01

    Full Text Available The physics of the electromagnetic field is considered. The analysis of electromagnetic radiation on the human-being, the origin of which is the vehicle the electric vehicle, the hybrid vehicle is being considered. The monitoring of electromagnetic radiation of vehicles is carried out.

  20. Traffic Information Unit, Traffic Information System, Vehicle Management System, Vehicle, and Method of Controlling a Vehicle

    NARCIS (Netherlands)

    Papp, Z.; Doodeman, G.J.N.; Nelisse, M.W.; Sijs, J.; Theeuwes, J.A.C.; Driessen, B.J.F.

    2010-01-01

    A traffic information unit (MD1, MD2, MD3) according to the invention comprises a facility (MI) for tracking vehicle state information of individual vehicles present at a traffic infrastructure and a facility (T) for transmitting said vehicle state information to a vehicle (70B, 70E). A traffic

  1. Challenges to autonomous navigation in complex urban terrain

    Science.gov (United States)

    Gray, Jeremy P.; Karlsen, Robert E.; DiBerardino, Chip; Mottern, Edward; Kott, N. Joseph, III

    2012-06-01

    In the field of military Unmanned Ground Vehicles (UGV), military units are adapting their concept of operations to focus on their mission capabilities within populated cities and towns. These types of operations are referred to as MOUT (Military Operations on Urban Terrain). As more Soldiers seek to incorporate technology to enhance their mission capabilities, there then becomes a need for UGV systems to encompass an ability to autonomously navigate through urban terrains. Autonomous systems have the potential to increase Soldier safety by mitigating the risk of unnecessary enemy exposure during routine urban reconnaissance. This paper presents the development and methodology that the military has sought to increase mission capabilities by incorporating autonomy into manned/unmanned ground vehicles. The presented solution that has been developed through the Safe Operations of Unmanned systems for Reconnaissance in Complex Environments (SOURCE) Army Technology Objective (ATO) has the ability and has been tested to safely navigate through complex urban environments. This paper will also focus on the challenges the military has faced to develop the presented autonomous UGV.

  2. Analysis and control of high-speed wheeled vehicles

    Science.gov (United States)

    Velenis, Efstathios

    In this work we reproduce driving techniques to mimic expert race drivers and obtain the open-loop control signals that may be used by auto-pilot agents driving autonomous ground wheeled vehicles. Race drivers operate their vehicles at the limits of the acceleration envelope. An accurate characterization of the acceleration capacity of the vehicle is required. Understanding and reproduction of such complex maneuvers also require a physics-based mathematical description of the vehicle dynamics. While most of the modeling issues of ground-vehicles/automobiles are already well established in the literature, lack of understanding of the physics associated with friction generation results in ad-hoc approaches to tire friction modeling. In this work we revisit this aspect of the overall vehicle modeling and develop a tire friction model that provides physical interpretation of the tire forces. The new model is free of those singularities at low vehicle speed and wheel angular rate that are inherent in the widely used empirical static models. In addition, the dynamic nature of the tire model proposed herein allows the study of dynamic effects such as transients and hysteresis. The trajectory-planning problem for an autonomous ground wheeled vehicle is formulated in an optimal control framework aiming to minimize the time of travel and maximize the use of the available acceleration capacity. The first approach to solve the optimal control problem is using numerical techniques. Numerical optimization allows incorporation of a vehicle model of high fidelity and generates realistic solutions. Such an optimization scheme provides an ideal platform to study the limit operation of the vehicle, which would not be possible via straightforward simulation. In this work we emphasize the importance of online applicability of the proposed methodologies. This underlines the need for optimal solutions that require little computational cost and are able to incorporate real, unpredictable

  3. Ares I-X Ground Diagnostic Prototype

    Science.gov (United States)

    Schwabacher, Mark A.; Martin, Rodney Alexander; Waterman, Robert D.; Oostdyk, Rebecca Lynn; Ossenfort, John P.; Matthews, Bryan

    2010-01-01

    The automation of pre-launch diagnostics for launch vehicles offers three potential benefits: improving safety, reducing cost, and reducing launch delays. The Ares I-X Ground Diagnostic Prototype demonstrated anomaly detection, fault detection, fault isolation, and diagnostics for the Ares I-X first-stage Thrust Vector Control and for the associated ground hydraulics while the vehicle was in the Vehicle Assembly Building at Kennedy Space Center (KSC) and while it was on the launch pad. The prototype combines three existing tools. The first tool, TEAMS (Testability Engineering and Maintenance System), is a model-based tool from Qualtech Systems Inc. for fault isolation and diagnostics. The second tool, SHINE (Spacecraft Health Inference Engine), is a rule-based expert system that was developed at the NASA Jet Propulsion Laboratory. We developed SHINE rules for fault detection and mode identification, and used the outputs of SHINE as inputs to TEAMS. The third tool, IMS (Inductive Monitoring System), is an anomaly detection tool that was developed at NASA Ames Research Center. The three tools were integrated and deployed to KSC, where they were interfaced with live data. This paper describes how the prototype performed during the period of time before the launch, including accuracy and computer resource usage. The paper concludes with some of the lessons that we learned from the experience of developing and deploying the prototype.

  4. Distributed Propulsion Vehicles

    Science.gov (United States)

    Kim, Hyun Dae

    2010-01-01

    Since the introduction of large jet-powered transport aircraft, the majority of these vehicles have been designed by placing thrust-generating engines either under the wings or on the fuselage to minimize aerodynamic interactions on the vehicle operation. However, advances in computational and experimental tools along with new technologies in materials, structures, and aircraft controls, etc. are enabling a high degree of integration of the airframe and propulsion system in aircraft design. The National Aeronautics and Space Administration (NASA) has been investigating a number of revolutionary distributed propulsion vehicle concepts to increase aircraft performance. The concept of distributed propulsion is to fully integrate a propulsion system within an airframe such that the aircraft takes full synergistic benefits of coupling of airframe aerodynamics and the propulsion thrust stream by distributing thrust using many propulsors on the airframe. Some of the concepts are based on the use of distributed jet flaps, distributed small multiple engines, gas-driven multi-fans, mechanically driven multifans, cross-flow fans, and electric fans driven by turboelectric generators. This paper describes some early concepts of the distributed propulsion vehicles and the current turboelectric distributed propulsion (TeDP) vehicle concepts being studied under the NASA s Subsonic Fixed Wing (SFW) Project to drastically reduce aircraft-related fuel burn, emissions, and noise by the year 2030 to 2035.

  5. VEHICLES LICENSED IN SWITZERLAND

    CERN Multimedia

    Service des Relations avec les Pays-Hôtes

    2000-01-01

    1.\tVehicle licensinga)\tTime limitsVehicles must have a Swiss registration document and Swiss number plates: -\tif the owner has been residing in Switzerland for more than one year without a break of more than three consecutive months and has been using it for more than one month on Swiss territory, or -\tif the vehicle itself has been on Swiss territory for more than one year without a break of more than three consecutive months. b)\tTechnical details Vehicles belonging to non-Swiss members of the personnel who hold a carte de légitimation issued by the Swiss Federal Department of Foreign Affairs (hereinafter referred to as 'DFAE') and who were not permanently resident in Switzerland before taking up their appointment may be licensed in Switzerland with virtually no restrictions provided that their owner produces: -\tthe vehicle registration document and number plates of the country in which the car was previously registered, or -\ta manufacturer's certi...

  6. Methylotroph cloning vehicle

    Science.gov (United States)

    Hanson, Richard S.; Allen, Larry N.

    1989-04-25

    A cloning vehicle comprising: a replication determinant effective for replicating the vehicle in a non-C.sub.1 -utilizing host and in a C.sub.1 -utilizing host; DNA effective to allow the vehicle to be mobilized from the non-C.sub.1 -utilizing host to the C.sub.1 -utilizing host; DNA providing resistance to two antibiotics to which the wild-type C.sub.1 -utilizing host is susceptible, each of the antibiotic resistance markers having a recognition site for a restriction endonuclease; a cos site; and a means for preventing replication in the C.sub.1 -utilizing host. The vehicle is used for complementation mapping as follows. DNA comprising a gene from the C.sub.1 -utilizing organism is inserted at the restriction nuclease recognition site, inactivating the antibiotic resistance marker at that site. The vehicle can then be used to form a cosmid structure to infect the non-C.sub.1 -utilizing (e.g., E. coli) host, and then conjugated with a selected C.sub.1 -utilizing mutant. Resistance to the other antibiotic by the mutant is a marker of the conjugation. Other phenotypical changes in the mutant, e.g., loss of an auxotrophic trait, is attributed to the C.sub.1 gene. The vector is also used to inactivate genes whose protein products catalyze side reactions that divert compounds from a biosynthetic pathway to a desired product, thereby producing an organism that makes the desired product in higher yields.

  7. Poster Abstract: Automatic Calibration of Device Attitude in Inertial Measurement Unit Based Traffic Probe Vehicles

    KAUST Repository

    Mousa, Mustafa

    2016-04-28

    Probe vehicles consist in mobile traffic sensor networks that evolve with the flow of vehicles, transmitting velocity and position measurements along their path, generated using GPSs. To address the urban positioning issues of GPSs, we propose to replace them with inertial measurement units onboard vehicles, to estimate vehicle location and attitude using inertial data only. While promising, this technology requires one to carefully calibrate the orientation of the device inside the vehicle to be able to process the acceleration and rate gyro data. In this article, we propose a scheme that can perform this calibration automatically by leveraging the kinematic constraints of ground vehicles, and that can be implemented on low-end computational platforms. Preliminary testing shows that the proposed scheme enables one to accurately estimate the actual accelerations and rotation rates in the vehicle coordinates. © 2016 IEEE.

  8. The ARM unpiloted aerospace vehicle (UAV) program

    Energy Technology Data Exchange (ETDEWEB)

    Sowle, D. [Mission Research Corporation, Santa Barbara, CA (United States)

    1995-09-01

    Unmanned aerospace vehicles (UAVs) are an important complement to the DOE`s Atmospheric Radiation Measurement (ARM) Program. ARM is primarily a ground-based program designed to extensively quantify the radiometric and meteorological properties of an atmospheric column. There is a need for airborne measurements of radiative profiles, especially flux at the tropopause, cloud properties, and upper troposphere water vapor. There is also a need for multi-day measurements at the tropopause; for example, in the tropics, at 20 km for over 24 hours. UAVs offer the greatest potential for long endurance at high altitudes and may be less expensive than piloted flights. 2 figs.

  9. Air cushion vehicles - Any potential for Canada?

    Science.gov (United States)

    Laframboise, J. F.

    1987-09-01

    The present evaluation of air cushion vehicle (ACV) operational and commercial suitability in the Canadian context notes that the most successful and durable ACV applications are those in which only ACVs can perform the required mission. An important factor is the reliability of the craft being tested in a given field of operations. Because of their low ground pressure, ACVs can operate over low-cost trails with an efficiency that compares with that of trucks over conventional roads; this renders them especially attractive for transportation networks in the North West Territories.

  10. Road boundary detection for autonomous vehicle navigation

    Energy Technology Data Exchange (ETDEWEB)

    Davis, L.S.; Kushner, T.R.; LeMoigne, J.J.; Waxman, A.M.

    1986-03-01

    The Computer Vision Laboratory at the University Maryland for the past year has been developing a computer vision system for autonomous ground navigation of roads and road networks for the Defense Advanced Research Projects Agency's Strategic Computing Program. The complete system runs on a VAX 11/785, but certain parts of it have been reimplemented on a VICOM image processing sysem for experimentation on an autonomous vehicle built for the Martin Marietta Corp., Aerospace Division, in Denver, Colorado. A brief overview is given of the principal software components of the system and the VICOM implementation in detail.

  11. Development of a remote digital augmentation system and application to a remotely piloted research vehicle

    Science.gov (United States)

    Edwards, J. W.; Deets, D. A.

    1975-01-01

    A cost-effective approach to flight testing advanced control concepts with remotely piloted vehicles is described. The approach utilizes a ground based digital computer coupled to the remotely piloted vehicle's motion sensors and control surface actuators through telemetry links to provide high bandwidth feedback control. The system was applied to the control of an unmanned 3/8-scale model of the F-15 airplane. The model was remotely augmented; that is, the F-15 mechanical and control augmentation flight control systems were simulated by the ground-based computer, rather than being in the vehicle itself. The results of flight tests of the model at high angles of attack are discussed.

  12. Technique applied in electrical power distribution for Satellite Launch Vehicle

    Directory of Open Access Journals (Sweden)

    João Maurício Rosário

    2010-09-01

    Full Text Available The Satellite Launch Vehicle electrical network, which is currently being developed in Brazil, is sub-divided for analysis in the following parts: Service Electrical Network, Controlling Electrical Network, Safety Electrical Network and Telemetry Electrical Network. During the pre-launching and launching phases, these electrical networks are associated electrically and mechanically to the structure of the vehicle. In order to succeed in the integration of these electrical networks it is necessary to employ techniques of electrical power distribution, which are proper to Launch Vehicle systems. This work presents the most important techniques to be considered in the characterization of the electrical power supply applied to Launch Vehicle systems. Such techniques are primarily designed to allow the electrical networks, when submitted to the single-phase fault to ground, to be able of keeping the power supply to the loads.

  13. Electric vehicle station equipment for grid-integrated vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Kempton, Willett; Kiamilev, Fouad; McGee, Rodney; Waite, Nick

    2017-09-05

    Methods, systems, and apparatus transferring power between the grid and an electric vehicle are disclosed. The apparatus may include at least one vehicle communication port for interfacing with electric vehicle equipment (EVE) and a processor coupled to the at least one vehicle communication port to establish communication with the EVE, receive EVE attributes from the EVE, and transmit electric vehicle station equipment (EVSE) attributes to the EVE. Power may be transferred between the grid and the electric vehicle by maintaining EVSE attributes, establishing communication with the EVE, and transmitting the EVSE maintained attributes to the EVE.

  14. Rail vehicle dynamics

    CERN Document Server

    Knothe, Klaus

    2017-01-01

    This book on the dynamics of rail vehicles is developed from the manuscripts for a class with the same name at TU Berlin. It is directed mainly to master students with pre-knowledge in mathematics and mechanics and engineers that want to learn more. The important phenomena of the running behaviour of rail vehicles are derived and explained. Also recent research results and experience from the operation of rail vehicles are included. One focus is the description of the complex wheel-rail contact phenomena that are essential to understand the concept of running stability and curving. A reader should in the end be able to understand the background of simulation tools that are used by the railway industry and universities today.

  15. Dynamics of aerospace vehicles

    Science.gov (United States)

    Schmidt, David K.

    1991-01-01

    The focus of this research was to address the modeling, including model reduction, of flexible aerospace vehicles, with special emphasis on models used in dynamic analysis and/or guidance and control system design. In the modeling, it is critical that the key aspects of the system being modeled be captured in the model. In this work, therefore, aspects of the vehicle dynamics critical to control design were important. In this regard, fundamental contributions were made in the areas of stability robustness analysis techniques, model reduction techniques, and literal approximations for key dynamic characteristics of flexible vehicles. All these areas are related. In the development of a model, approximations are always involved, so control systems designed using these models must be robust against uncertainties in these models.

  16. Advanced Tracking of Vehicles

    DEFF Research Database (Denmark)

    Jensen, Christian Søndergaard; Li, K.-J.; Pakalnis, Stardas

    2005-01-01

    With the continued advances in wireless communications, geo-location technologies, and consumer electronics, it is becoming possible to accurately track the time-varying location of each vehicle in a population of vehicles. This paper reports on ongoing research that has as it objective to develop...... efficient tracking techniques. More specifically, while almost all commercially available tracking solutions simply offer time-based sampling of positions, this paper's techniques aim to offer a guaranteed tracking accuracy for each vehicle at the lowest possible costs, in terms of network traffic...... and server-side updates. This is achieved by designing, prototyping, and testing novel tracking techniques that exploit knowledge of the road network and past movement. These resulting tracking techniques are to support mobile services that rely on the existence of a central server that continuously tracks...

  17. Precision wildlife monitoring using unmanned aerial vehicles.

    Science.gov (United States)

    Hodgson, Jarrod C; Baylis, Shane M; Mott, Rowan; Herrod, Ashley; Clarke, Rohan H

    2016-03-17

    Unmanned aerial vehicles (UAVs) represent a new frontier in environmental research. Their use has the potential to revolutionise the field if they prove capable of improving data quality or the ease with which data are collected beyond traditional methods. We apply UAV technology to wildlife monitoring in tropical and polar environments and demonstrate that UAV-derived counts of colony nesting birds are an order of magnitude more precise than traditional ground counts. The increased count precision afforded by UAVs, along with their ability to survey hard-to-reach populations and places, will likely drive many wildlife monitoring projects that rely on population counts to transition from traditional methods to UAV technology. Careful consideration will be required to ensure the coherence of historic data sets with new UAV-derived data and we propose a method for determining the number of duplicated (concurrent UAV and ground counts) sampling points needed to achieve data compatibility.

  18. Precision wildlife monitoring using unmanned aerial vehicles

    Science.gov (United States)

    Hodgson, Jarrod C.; Baylis, Shane M.; Mott, Rowan; Herrod, Ashley; Clarke, Rohan H.

    2016-03-01

    Unmanned aerial vehicles (UAVs) represent a new frontier in environmental research. Their use has the potential to revolutionise the field if they prove capable of improving data quality or the ease with which data are collected beyond traditional methods. We apply UAV technology to wildlife monitoring in tropical and polar environments and demonstrate that UAV-derived counts of colony nesting birds are an order of magnitude more precise than traditional ground counts. The increased count precision afforded by UAVs, along with their ability to survey hard-to-reach populations and places, will likely drive many wildlife monitoring projects that rely on population counts to transition from traditional methods to UAV technology. Careful consideration will be required to ensure the coherence of historic data sets with new UAV-derived data and we propose a method for determining the number of duplicated (concurrent UAV and ground counts) sampling points needed to achieve data compatibility.

  19. Sustainable ground transportation – review of technologies, challenges and opportunities

    Energy Technology Data Exchange (ETDEWEB)

    Agarwal, Ramesh K. [Department of Mechanical Engineering and Materials Science, Washington University, St. Louis, MO 63130 (United States)

    2013-07-01

    Currently there are nearly 750 million ground vehicles in service worldwide. They are responsible for 50% of petroleum (oil) consumption and 60% of all greenhouse gas (GHG) emissions worldwide. The number of vehicles is forecasted to double by 2050. Therefore the environmental issues such as noise, emissions and fuel burn have become important for energy and environmental sustainability. This paper provides an overview of specific energy and environmental issues related to ground transportation. The technologies related to reduction in energy requirements such as reducing the vehicle mass by using the high strength low weight materials and reducing the viscous drag by active flow control and smoothing the operational profile, and reducing the contact friction by special tire materials are discussed along with the portable energy sources for reducing the GHG emissions such as low carbon fuels (biofuels), Lithium-ion batteries with high energy density and stability, and fuel cells. The technological challenges and opportunities for innovations are discussed.

  20. Sustainable ground transportation – review of technologies, challenges and opportunities

    Directory of Open Access Journals (Sweden)

    Ramesh K. Agarwal

    2013-01-01

    Full Text Available Currently there are nearly 750 million ground vehicles in service worldwide. They are responsible for 50% of petroleum (oil consumption and 60% of all greenhouse gas (GHG emissions worldwide. The number of vehicles is forecasted to double by 2050. Therefore the environmental issues such as noise, emissions and fuel burn have become important for energy and environmental sustainability. This paper provides an overview of specific energy and environmental issues related to ground transportation. The technologies related to reduction in energy requirements such as reducing the vehicle mass by using the high strength low weight materials and reducing the viscous drag by active flow control and smoothing the operational profile, and reducing the contact friction by special tire materials are discussed along with the portable energy sources for reducing the GHG emissions such as low carbon fuels (biofuels, Lithium-ion batteries with high energy density and stability, and fuel cells. The technological challenges and opportunities for innovations are discussed.

  1. Scalability studies and performance comparison of vehicles with two different suspensions

    Science.gov (United States)

    Lin, Chuen-Sen; Ian, Wiexin

    2000-07-01

    In this paper, performances of two vehicles with different suspension systems are compared. One of the vehicles has six wheels and six standard independent suspensions, which move along vehicle body lift coordinate. The other vehicle has four wheels and four independent suspensions to form an A-frame system. Each of the four suspensions can have large rotations around the join joining the vehicle body and the suspension. Based on kinematics analysis, the A-frame suspension vehicle has advantages in vertical position adjustment, stability for side slope surface crossing, hill climbing and descending, cornering, and isolation of body from acceleration and braking. The standard suspension vehicle has advantages in constant wheelbase, no sideslip while vehicle body changing its positions, simplicity in structure and mathematical modeling. According to dynamic response analysis for passive mode, the A-frame vehicle is better in handling and clearance maintenance and the standard independent suspension vehicle is better in ground irregularity isolation and traction force maintenance. This paper also introduces the applications of isometric charts for standard suspension vehicles. Each chart can be used to select spring and damper pairs for a group of standard suspension vehicles, which have different inertia and geometry properties.

  2. Road and off-road vehicle system dynamics. Understanding the future from the past

    Science.gov (United States)

    Vantsevich, Vladimir V.

    2015-02-01

    A detailed analysis of scientific research directions and methods in ground vehicle dynamics and vehicle system dynamics during the past century is presented in this article. What started as peculiarities of vehicle motion, dynamics of vehicles went through extensive research and engineering work and was established as an applied science - vehicle dynamics. Steady motion and transient manoeuvres, multi-flexible-body dynamics, nonlinear and stochastic dynamics, terramechanics, vehicle operational properties and their multi-criterion optimisation, computer modelling and simulation, analysis and optimal synthesis, various controls, inverse vehicle dynamics, open architecture-type, and multi-domain vehicle systems - these are the milestones of developments over the past century. This article considers the subject-matter and the substance of vehicle dynamics in general, and new research directions of modern vehicle dynamics in particular. It is shown that modern vehicle dynamics is acquiring principally new features including agile dynamics of multi-physics mechatronic systems (including cyber-type systems), coupled and interactive vehicle system dynamics.

  3. Hybrid electric vehicles TOPTEC

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-06-21

    This one-day TOPTEC session began with an overview of hybrid electric vehicle technology. Updates were given on alternative types of energy storage, APU control for low emissions, simulation programs, and industry and government activities. The keynote speech was about battery technology, a key element to the success of hybrids. The TOPEC concluded with a panel discussion on the mission of hybrid electric vehicles, with a perspective from industry and government experts from United States and Canada on their view of the role of this technology.

  4. Algorithms for vehicle navigation

    OpenAIRE

    Storandt, Sabine

    2012-01-01

    Nowadays, navigation systems are integral parts of most cars. They allow the user to drive to a preselected destination on the shortest or quickest path by giving turn-by-turn directions. To fulfil this task the navigation system must be aware of the current position of the vehicle at any time, and has to compute the optimal route to the destination on that basis. Both of these subproblems have to be solved frequently, because the navigation system must react immediately if the vehicle leaves...

  5. Trends in Hydrogen Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Hoevenaars, A.J.; Weeda, M. [ECN Hydrogen and Clean Fossil Fuels, Petten (Netherlands)

    2009-09-15

    This report intends to provide an update of the latest developments that have recently occurred within car industry within the field of Hydrogen powered fuel cell vehicles (FCVs) to date, October 2009. In attempts to provide a clear and logical overview, the report starts with an overview of the OEMs (Original Equipment Manufacturers) that are actually active within the Hydrogen vehicle business, and provides an overview of the intensity of FCV activity per OEM. This overview shows that there is a pool of distinctively most active OEMs, and that others have tried to create exposure for themselves, but have not seriously been involved in in-house technology development in support of FCV manufacturing. Furthermore, some manufacturers chose a different path when it comes to using hydrogen for vehicle propulsion and use Hydrogen gas as a fuel for a conventional Internal Combustion Engine (ICE). In the field of FCVs, Most FCV activities are displayed by Honda, Daimler, Opel/GM, Hyundai/Kia, Toyota, Nissan and Ford. Volkswagen has given less priority to FCV development and has not been profiling itself as a very Hydrogen-prone OEM. Mazda and BMW chose to put their efforts in the development of Hydrogen fuelled ICE vehicles. Also Ford has put efforts in Hydrogen fuelled ICE vehicles. After the active OEMs are mapped, an overview is given on how active they have been in terms of cars produced. It appeared difficult to come up with reliable estimations on the basis of numbers available for public. The sum of vehicles produced by all OEMs together was estimated on about 515 vehicles. This estimation however was much lower than the figures published by Fuel Cell Today (FCT). FCT projects accumulated vehicles shipped in 2009 around 1100 units, the double of the numbers found for this study. Communication with FCT learned us that FCT has access to confidential information from the OEMs. Especially the Asian OEMs do not provide transparency when it comes to FCVs shipped, however

  6. Affordable Vehicle Avionics Overview

    Science.gov (United States)

    Cockrell, James J.

    2015-01-01

    Public and private launch vehicle developers are reducing the cost of propulsion for small commercial launchers, but conventional high-performance, high-reliability avionics remain the disproportionately high cost driver for launch. AVA technology performs as well or better than conventional launch vehicle avionics, but with a fraction of the recurring costs. AVA enables small launch providers to offer affordable rides to LEO to nano-satellites as primary payloads meaning, small payloads can afford to specify their own launch and orbit parameters

  7. Prediction of Ground Vibration from Freight Trains

    Science.gov (United States)

    Jones, C. J. C.; Block, J. R.

    1996-05-01

    Heavy freight trains emit ground vibration with predominant frequency components in the range 4-30 Hz. If the amplitude is sufficient, this may be felt by lineside residents, giving rise to disturbance and concern over possible damage to their property. In order to establish the influence of parameters of the track and rolling stock and thereby enable the design of a low vibration railway, a theoretical model of both the generation and propagation of vibration is required. The vibration is generated as a combination of the effects of dynamic forces, due to the unevenness of the track, and the effects of the track deformation under successive axle loads. A prediction scheme, which combines these effects, has been produced. A vehicle model is used to predict the dynamic forces at the wheels. This includes the non-linear effects of friction damped suspensions. The loaded track profile is measured by using a track recording coach. The dynamic loading and the effects of the moving axles are combined in a track response model. The predicted track vibration is compared to measurements. The transfer functions from the track to a point in the ground can be calculated by using a coupled track and a three-dimensional layered ground model. The propagation effects of the ground layers are important but the computation of the transfer function from each sleeper, which would be required for a phase coherent summation of the vibration in the ground, would be prohibitive. A compromise summation is used and results are compared with measurements.

  8. Sensor Architecture and Task Classification for Agricultural Vehicles and Environments

    Directory of Open Access Journals (Sweden)

    Francisco Rovira-Más

    2010-12-01

    Full Text Available The long time wish of endowing agricultural vehicles with an increasing degree of autonomy is becoming a reality thanks to two crucial facts: the broad diffusion of global positioning satellite systems and the inexorable progress of computers and electronics. Agricultural vehicles are currently the only self-propelled ground machines commonly integrating commercial automatic navigation systems. Farm equipment manufacturers and satellite-based navigation system providers, in a joint effort, have pushed this technology to unprecedented heights; yet there are many unresolved issues and an unlimited potential still to uncover. The complexity inherent to intelligent vehicles is rooted in the selection and coordination of the optimum sensors, the computer reasoning techniques to process the acquired data, and the resulting control strategies for automatic actuators. The advantageous design of the network of onboard sensors is necessary for the future deployment of advanced agricultural vehicles. This article analyzes a variety of typical environments and situations encountered in agricultural fields, and proposes a sensor architecture especially adapted to cope with them. The strategy proposed groups sensors into four specific subsystems: global localization, feedback control and vehicle pose, non-visual monitoring, and local perception. The designed architecture responds to vital vehicle tasks classified within three layers devoted to safety, operative information, and automatic actuation. The success of this architecture, implemented and tested in various agricultural vehicles over the last decade, rests on its capacity to integrate redundancy and incorporate new technologies in a practical way.

  9. Airport Ground Staff Scheduling

    DEFF Research Database (Denmark)

    Clausen, Tommy

    travels safely and efficiently through the airport. When an aircraft lands, a significant number of tasks must be performed by different groups of ground crew, such as fueling, baggage handling and cleaning. These tasks must be complete before the aircraft is able to depart, as well as check......-in and security services. These tasks are collectively known as ground handling, and are the major source of activity with airports. The business environments of modern airports are becoming increasingly competitive, as both airports themselves and their ground handling operations are changing to private...... ownership. As airports are in competition to attract airline routes, efficient and reliable ground handling operations are imperative for the viability and continued growth of both airports and airlines. The increasing liberalization of the ground handling market prompts ground handling operators...

  10. [Introduction to grounded theory].

    Science.gov (United States)

    Wang, Shou-Yu; Windsor, Carol; Yates, Patsy

    2012-02-01

    Grounded theory, first developed by Glaser and Strauss in the 1960s, was introduced into nursing education as a distinct research methodology in the 1970s. The theory is grounded in a critique of the dominant contemporary approach to social inquiry, which imposed "enduring" theoretical propositions onto study data. Rather than starting from a set theoretical framework, grounded theory relies on researchers distinguishing meaningful constructs from generated data and then identifying an appropriate theory. Grounded theory is thus particularly useful in investigating complex issues and behaviours not previously addressed and concepts and relationships in particular populations or places that are still undeveloped or weakly connected. Grounded theory data analysis processes include open, axial and selective coding levels. The purpose of this article was to explore the grounded theory research process and provide an initial understanding of this methodology.

  11. Challenging of path planning algorithms for autonomous robot in known environment

    Science.gov (United States)

    Farah, R. N.; Irwan, N.; Zuraida, Raja Lailatul; Shaharum, Umairah; Hanafi@Omar, Hafiz Mohd

    2014-06-01

    Most of the mobile robot path planning is estimated to reach its predetermined aim through the shortest path and avoiding the obstacles. This paper is a survey on path planning algorithms of various current research and existing system of Unmanned Ground Vehicles (UGV) where their challenging issues to be intelligent autonomous robot. The focuses are some short reviews on individual papers for UGV in the known environment. Methods and algorithms in path planning for the autonomous robot had been discussed. From the reviews, we obtained that the algorithms proposed are appropriate for some cases such as single or multiple obstacles, static or movement obstacle and optimal shortest path. This paper also describes some pros and cons for every reviewed paper toward algorithms improvement for further work.

  12. Launch and Landing Effects Ground Operations (LLEGO) Model

    Science.gov (United States)

    2008-01-01

    LLEGO is a model for understanding recurring launch and landing operations costs at Kennedy Space Center for human space flight. Launch and landing operations are often referred to as ground processing, or ground operations. Currently, this function is specific to the ground operations for the Space Shuttle Space Transportation System within the Space Shuttle Program. The Constellation system to follow the Space Shuttle consists of the crewed Orion spacecraft atop an Ares I launch vehicle and the uncrewed Ares V cargo launch vehicle. The Constellation flight and ground systems build upon many elements of the existing Shuttle flight and ground hardware, as well as upon existing organizations and processes. In turn, the LLEGO model builds upon past ground operations research, modeling, data, and experience in estimating for future programs. Rather than to simply provide estimates, the LLEGO model s main purpose is to improve expenses by relating complex relationships among functions (ground operations contractor, subcontractors, civil service technical, center management, operations, etc.) to tangible drivers. Drivers include flight system complexity and reliability, as well as operations and supply chain management processes and technology. Together these factors define the operability and potential improvements for any future system, from the most direct to the least direct expenses.

  13. Environmental Evaluation of New Generation Vehicles and Vehicle Components

    Energy Technology Data Exchange (ETDEWEB)

    Schexnayder, S.M.

    2002-02-06

    This report documents assessments that address waste issues and life cycle impacts associated with the vehicle materials and vehicle technologies being developed under the Partnership for a New Generation of Vehicles (PNGV) program. We refer to these vehicles as 3XVs, referring to the PNGV goal that their fuel mileage be three times better than the baseline vehicle. To meet the program's fuel consumption goals, these vehicles substitute lightweight materials for heavier materials such as steel and iron that currently dominate the composition of vehicles, and use engineering and power system changes. Alternative power systems being developed through the PNGV program include batteries for hybrid electric vehicles and fuel cells. With respect to all these developments, it is imperative to learn what effects they will have on the environment before adopting these designs and technologies on a large-scale basis.

  14. The Grounded Theory Bookshelf

    Directory of Open Access Journals (Sweden)

    Vivian B. Martin, Ph.D.

    2005-03-01

    Full Text Available Bookshelf will provide critical reviews and perspectives on books on theory and methodology of interest to grounded theory. This issue includes a review of Heaton’s Reworking Qualitative Data, of special interest for some of its references to grounded theory as a secondary analysis tool; and Goulding’s Grounded Theory: A practical guide for management, business, and market researchers, a book that attempts to explicate the method and presents a grounded theory study that falls a little short of the mark of a fully elaborated theory.Reworking Qualitative Data, Janet Heaton (Sage, 2004. Paperback, 176 pages, $29.95. Hardcover also available.

  15. Emerging Needs for Pervasive Passive Wireless Sensor Networks on Aerospace Vehicles

    Science.gov (United States)

    Wilson, William C.; Juarez, Peter D.

    2014-01-01

    NASA is investigating passive wireless sensor technology to reduce instrumentation mass and volume in ground testing, air flight, and space exploration applications. Vehicle health monitoring systems (VHMS) are desired on all aerospace programs to ensure the safety of the crew and the vehicles. Pervasive passive wireless sensor networks facilitate VHMS on aerospace vehicles. Future wireless sensor networks on board aerospace vehicles will be heterogeneous and will require active and passive network systems. Since much has been published on active wireless sensor networks, this work will focus on the need for passive wireless sensor networks on aerospace vehicles. Several passive wireless technologies such as microelectromechanical systems MEMS, SAW, backscatter, and chipless RFID techniques, have all shown potential to meet the pervasive sensing needs for aerospace VHMS applications. A SAW VHMS application will be presented. In addition, application areas including ground testing, hypersonic aircraft and spacecraft will be explored along with some of the harsh environments found in aerospace applications.

  16. The IXV Ground Segment design, implementation and operations

    Science.gov (United States)

    Martucci di Scarfizzi, Giovanni; Bellomo, Alessandro; Musso, Ivano; Bussi, Diego; Rabaioli, Massimo; Santoro, Gianfranco; Billig, Gerhard; Gallego Sanz, José María

    2016-07-01

    The Intermediate eXperimental Vehicle (IXV) is an ESA re-entry demonstrator that performed, on the 11th February of 2015, a successful re-entry demonstration mission. The project objectives were the design, development, manufacturing and on ground and in flight verification of an autonomous European lifting and aerodynamically controlled re-entry system. For the IXV mission a dedicated Ground Segment was provided. The main subsystems of the IXV Ground Segment were: IXV Mission Control Center (MCC), from where monitoring of the vehicle was performed, as well as support during pre-launch and recovery phases; IXV Ground Stations, used to cover IXV mission by receiving spacecraft telemetry and forwarding it toward the MCC; the IXV Communication Network, deployed to support the operations of the IXV mission by interconnecting all remote sites with MCC, supporting data, voice and video exchange. This paper describes the concept, architecture, development, implementation and operations of the ESA Intermediate Experimental Vehicle (IXV) Ground Segment and outlines the main operations and lessons learned during the preparation and successful execution of the IXV Mission.

  17. Multiple environment unmanned vehicle

    Energy Technology Data Exchange (ETDEWEB)

    Hobart, Clinton G.; Morse, William D.; Bickerstaff, Robert James

    2017-02-28

    A MEUV that is able to navigate aerial, aquatic, and terrestrial environments through the use of different mission mobility attachments is disclosed. The attachments allow the MEUV to be deployed from the air or through the water prior to any terrestrial navigation. The mobility attachments can be removed or detached by and from the vehicle during a mission.

  18. Vehicle recycling regulations

    DEFF Research Database (Denmark)

    Smink, Carla

    2007-01-01

    The number of end-of-life vehicles (ELVs) in the EU is increasing continously. Around 75 percent of an ELV are recyclable metals. The forecast growth in the number of ELVs calls for regulation that aims to minimise the environmental impact of a car. Using Denmark as an example, this article...

  19. Experimental Autonomous Vehicle Systems

    DEFF Research Database (Denmark)

    Ravn, Ole; Andersen, Nils Axel

    1998-01-01

    The paper describes the requirements for and a prototype configuration of a software architecture for control of an experimental autonomous vehicle. The test bed nature of the system is emphasised in the choice of architecture making re-configurability, data logging and extendability simple...

  20. The Electric Vehicle Challenge

    Science.gov (United States)

    Roman, Harry T.

    2010-01-01

    This article describes a design activity that provides students with a solid understanding of the many issues involved with alternate energy system design. In this activity, students will be able to learn about electric vehicles and have the opportunity to design a way to recharge the batteries while the cars are parked in a commuter garage. The…

  1. Communication Technologies for Vehicles

    DEFF Research Database (Denmark)

    Vinel, Alexey

    This book constitutes the proceedings of the 8th International Workshop on Communication Technologies for Vehicles, Nets4Cars/Nets4Trains/Nets4Aircraft 2015, held in Sousse, Tunisia, in May 2015. The 20 papers presented in this volume were carefully reviewed and selected from 27 submissions...

  2. 2011 Combat Vehicles Conference

    Science.gov (United States)

    2011-10-26

    Capability-Platform (JBC-P) • Light-weight Crew-served Weapons • Joint Capability Release ( JCR ) • Combat Vehicle Improvements Mr. Scott Davis PEO...WIN-T INC 3 JTRS CREW V2 Relocation/V3 CS 11-12 OoC ( JCR ) BFT II VRC 103 & 104 CS 13-14 MSS Duke TI OSRVT (Rover 6) Nett

  3. The Vehicle Rescheduling Problem

    NARCIS (Netherlands)

    R. Spliet (Remy); A.F. Gabor (Adriana); R. Dekker (Rommert)

    2009-01-01

    textabstractThe capacitated vehicle routing problem is to find a routing schedule describing the order in which geographically dispersed customers are visited to satisfy demand by supplying goods stored at the depot, such that the traveling costs are minimized. In many practical applications, a long

  4. The Electric Vehicle Challenge

    Science.gov (United States)

    Roman, Harry T.

    2010-01-01

    This article describes a design activity that provides students with a solid understanding of the many issues involved with alternate energy system design. In this activity, students will be able to learn about electric vehicles and have the opportunity to design a way to recharge the batteries while the cars are parked in a commuter garage. The…

  5. Implementing Vehicle Routing Algorithms

    Science.gov (United States)

    1975-09-01

    Multiple Depot Vehicle Dispatch Problem," presented at the URSA/TIMS meeting San Juan, Puerto Rico, Oct. 1974. 28. Gillett, B., and Miller, L., " A Heuristic Algorithm for...45. Lam, T., "Comments on a Heuristic Algorithm for the Multiple Terminal Delivery Problem," Transportation Science, Vol. 4, No. 4, Nov. 1970, p. 403

  6. Autonomous Vehicle Navigation

    Science.gov (United States)

    1986-01-31

    obtain the new estimate of vehicle position and position uncertainty. 13. Matti Pietikainen and David Harwood, "Edge Information in Color Images Based on...of correspondence. 10. Matti Pietik:inen and David Harwood, "Multiple-Camera Contour Stereo." CAR-TR-151. CS-TR-1559. September 1985. ABSTRACT: A

  7. Batteries for Electric Vehicles

    Science.gov (United States)

    Conover, R. A.

    1985-01-01

    Report summarizes results of test on "near-term" electrochemical batteries - (batteries approaching commercial production). Nickel/iron, nickel/zinc, and advanced lead/acid batteries included in tests and compared with conventional lead/acid batteries. Batteries operated in electric vehicles at constant speed and repetitive schedule of accerlerating, coasting, and braking.

  8. Experimental Investigation Into the Aerodynamic Ground Effect of a Tailless Chevron and Lambda-shaped UCAVs

    Science.gov (United States)

    2006-03-01

    Significant advances during the last quarter-century in computing capabilities, electronics miniaturization, communications , guidance, navigation, and...Grumman X-47. The X-45 will combine advance air vehicle hardware, including integrated sensors, communication , navigation equipment and low...USNR for UCAV Ground Effects Test**** %****** Re-adapted by Won In, Capt, USAF for UCAV Ground Efects Test ****** %******************* Calculation

  9. Green Vehicle Guide Data Downloads

    Data.gov (United States)

    U.S. Environmental Protection Agency — The U.S. Environmental Protection Agency's Green Vehicle Guide provides vehicle ratings based on emissions and fuel economy. The downloadable data are available in...

  10. Hybrid-Vehicle Transmission System

    Science.gov (United States)

    Lupo, G.; Dotti, G.

    1985-01-01

    Continuously-variable transmission system for hybrid vehicles couples internal-combustion engine and electric motor section, either individually or in parallel, to power vehicle wheels during steering and braking.

  11. Household vehicles energy consumption 1991

    Energy Technology Data Exchange (ETDEWEB)

    1993-12-09

    The purpose of this report is to provide information on the use of energy in residential vehicles in the 50 States and the District of Columbia. Included are data about: the number and type of vehicles in the residential sector, the characteristics of those vehicles, the total annual Vehicle Miles Traveled (VMT), the per household and per vehicle VMT, the vehicle fuel consumption and expenditures, and vehicle fuel efficiencies. The data for this report are based on the household telephone interviews from the 1991 RTECS, conducted during 1991 and early 1992. The 1991 RTECS represents 94.6 million households, of which 84.6 million own or have access to 151.2 million household motor vehicles in the 50 States and the District of Columbia.

  12. Hybrid-Vehicle Transmission System

    Science.gov (United States)

    Lupo, G.; Dotti, G.

    1985-01-01

    Continuously-variable transmission system for hybrid vehicles couples internal-combustion engine and electric motor section, either individually or in parallel, to power vehicle wheels during steering and braking.

  13. DVE: ground and airborne visualization functionalities

    Science.gov (United States)

    Barratt, Nick; Mise, Olegs; Franklin, Dustin; Preece, Andy; Schaffer, Larry

    2014-06-01

    This paper describes functional blocks (hardware and software functionalities) applicable to several forms of indirect vision enhancement in DVE (Degraded Vision Environment for pilotage, Driver's Vision Enhancement for ground vehicle Situational Awareness). These functionalities are the result of the increased processing power of General Purpose Graphics Processing Units (GPGPUs) and improvements in mosaic stitch processing, image fusion and analytics of both live and synthetic imagery. We deploy GPUs into low-latency embedded systems with decreased SWaP (Size, Weight and Power) and high-bandwidth interconnectivity via RDMA (Remote Direct Memory Access).

  14. Martian Swarm Exploration and Mapping Using Laser Slam

    Science.gov (United States)

    Nowak, S.; Krüger, T.; Matthaei, J.; Bestmann, U.

    2013-08-01

    In order to explore planet Mars in detail and search for extra-terrestrial life the observation from orbit is not sufficient. To realize complex exploration tasks the use of automatic operating robots with a robust fault-tolerant method of navigation, independent of any infrastructure is a possibility. This work includes a concept of rotary-wing Unmanned Aerial Vehicles (UAVs) and Unmanned Ground Vehicles (UGVs) for Martian exploration in a swarm. Besides the scenario of Martian surrounding, with a small number of distinctive landmarks, the challenge consists of a Simultaneous Localization and Mapping (SLAM) concept using laser data of all swarm members.

  15. Solid Rocket Launch Vehicle Explosion Environments

    Science.gov (United States)

    Richardson, E. H.; Blackwood, J. M.; Hays, M. J.; Skinner, T.

    2014-01-01

    Empirical explosion data from full scale solid rocket launch vehicle accidents and tests were collected from all available literature from the 1950s to the present. In general data included peak blast overpressure, blast impulse, fragment size, fragment speed, and fragment dispersion. Most propellants were 1.1 explosives but a few were 1.3. Oftentimes the data from a single accident was disjointed and/or missing key aspects. Despite this fact, once the data as a whole was digitized, categorized, and plotted clear trends appeared. Particular emphasis was placed on tests or accidents that would be applicable to scenarios from which a crew might need to escape. Therefore, such tests where a large quantity of high explosive was used to initiate the solid rocket explosion were differentiated. Also, high speed ground impacts or tests used to simulate such were also culled. It was found that the explosions from all accidents and applicable tests could be described using only the pressurized gas energy stored in the chamber at the time of failure. Additionally, fragmentation trends were produced. Only one accident mentioned the elusive "small" propellant fragments, but upon further analysis it was found that these were most likely produced as secondary fragments when larger primary fragments impacted the ground. Finally, a brief discussion of how this data is used in a new launch vehicle explosion model for improving crew/payload survival is presented.

  16. Orbital Maneuvering Vehicle (OMV) remote servicing kit

    Science.gov (United States)

    Brown, Norman S.

    1988-01-01

    With the design and development of the Orbital Maneuvering Vehicle (OMV) progressing toward an early 1990 initial operating capability (IOC), a new era in remote space operations will evolve. The logical progression to OMV front end kits would make available in situ satellite servicing, repair, and consummables resupply to the satellite community. Several conceptual design study efforts are defining representative kits (propellant tanks, debris recovery, module servicers); additional focus must also be placed on an efficient combination module servicer and consummables resupply kit. A remote servicer kit of this type would be designed to perform many of the early maintenance/resupply tasks in both nominal and high inclination orbits. The kit would have the capability to exchange Orbital Replacement Units (ORUs), exchange propellant tanks, and/or connect fluid transfer umbilicals. Necessary transportation system functions/support could be provided by interfaces with the OMV, Shuttle (STS), or Expendable Launch Vehicle (ELV). Specific remote servicer kit designs, as well as ground and flight demonstrations of servicer technology are necessary to prepare for the potential overwhelming need. Ground test plans should adhere to the component/system/breadboard test philosophy to assure maximum capability of one-g testing. The flight demonstration(s) would most likely be a short duration, Shuttle-bay experiment to validate servicer components requiring a micro-g environment.

  17. Pesticides in Ground Water

    DEFF Research Database (Denmark)

    Bjerg, Poul Løgstrup

    1996-01-01

    Review af: Jack E. Barbash & Elizabeth A. Resek (1996). Pesticides in Ground Water. Distribution trends and governing factors. Ann Arbor Press, Inc. Chelsea, Michigan. pp 588.......Review af: Jack E. Barbash & Elizabeth A. Resek (1996). Pesticides in Ground Water. Distribution trends and governing factors. Ann Arbor Press, Inc. Chelsea, Michigan. pp 588....

  18. Pesticides in Ground Water

    DEFF Research Database (Denmark)

    Bjerg, Poul Løgstrup

    1996-01-01

    Review af: Jack E. Barbash & Elizabeth A. Resek (1996). Pesticides in Ground Water. Distribution trends and governing factors. Ann Arbor Press, Inc. Chelsea, Michigan. pp 588.......Review af: Jack E. Barbash & Elizabeth A. Resek (1996). Pesticides in Ground Water. Distribution trends and governing factors. Ann Arbor Press, Inc. Chelsea, Michigan. pp 588....

  19. Life Science on the International Space Station Using the Next Generation of Cargo Vehicles

    Science.gov (United States)

    Robinson, J. A.; Phillion, J. P.; Hart, A. T.; Comella, J.; Edeen, M.; Ruttley, T. M.

    2011-01-01

    With the retirement of the Space Shuttle and the transition of the International Space Station (ISS) from assembly to full laboratory capabilities, the opportunity to perform life science research in space has increased dramatically, while the operational considerations associated with transportation of the experiments has changed dramatically. US researchers have allocations on the European Automated Transfer Vehicle (ATV) and Japanese H-II Transfer Vehicle (HTV). In addition, the International Space Station (ISS) Cargo Resupply Services (CRS) contract will provide consumables and payloads to and from the ISS via the unmanned SpaceX (offers launch and return capabilities) and Orbital (offers only launch capabilities) resupply vehicles. Early requirements drove the capabilities of the vehicle providers; however, many other engineering considerations affect the actual design and operations plans. To better enable the use of the International Space Station as a National Laboratory, ground and on-orbit facility development can augment the vehicle capabilities to better support needs for cell biology, animal research, and conditioned sample return. NASA Life scientists with experience launching research on the space shuttle can find the trades between the capabilities of the many different vehicles to be confusing. In this presentation we will summarize vehicle and associated ground processing capabilities as well as key concepts of operations for different types of life sciences research being launched in the cargo vehicles. We will provide the latest status of vehicle capabilities and support hardware and facilities development being made to enable the broadest implementation of life sciences research on the ISS.

  20. Kinodynamic Motion Planning for Autonomous Vehicles

    Directory of Open Access Journals (Sweden)

    Jiwung Choi

    2014-06-01

    Full Text Available This article proposes a computationally effective motion planning algorithm for autonomous ground vehicles operating in a semi-structured environment with a mission specified by waypoints, corridor widths and obstacles. The algorithm switches between two kinds of planners, (i static planners and (ii moving obstacle avoidance manoeuvre planners, depending on the mobility of any detected obstacles. While the first is broken down into a path planner and a controller, the second generates a sequence of controls without global path planning. Each subsystem is implemented as follows. The path planner produces an optimal piecewise linear path by applying a variant of cell decomposition and dynamic programming. The piecewise linear path is smoothed by Bézier curves such that the maximum curvatures of the curves are minimized. The controller calculates the highest allowable velocity profile along the path, consistent with the limits on both tangential and radial acceleration and the steering command for the vehicle to track the trajectory using a pure pursuit method. The moving obstacle avoidance manoeuvre produces a sequence of time-optimal local velocities, by minimizing the cost as determined by the safety of the current velocity against obstacles in the velocity obstacle paradigm and the deviation of the current velocity relative to the desired velocity, to satisfy the waypoint constraint. The algorithms are shown to be robust and computationally efficient, and to demonstrate a viable methodology for autonomous vehicle control in the presence of unknown obstacles.

  1. Communication, concepts and grounding.

    Science.gov (United States)

    van der Velde, Frank

    2015-02-01

    This article discusses the relation between communication and conceptual grounding. In the brain, neurons, circuits and brain areas are involved in the representation of a concept, grounding it in perception and action. In terms of grounding we can distinguish between communication within the brain and communication between humans or between humans and machines. In the first form of communication, a concept is activated by sensory input. Due to grounding, the information provided by this communication is not just determined by the sensory input but also by the outgoing connection structure of the conceptual representation, which is based on previous experiences and actions. The second form of communication, that between humans or between humans and machines, is influenced by the first form. In particular, a more successful interpersonal communication might require forms of situated cognition and interaction in which the entire representations of grounded concepts are involved.

  2. Stochastic ground motion simulation

    Science.gov (United States)

    Rezaeian, Sanaz; Xiaodan, Sun; Beer, Michael; Kougioumtzoglou, Ioannis A.; Patelli, Edoardo; Siu-Kui Au, Ivan

    2014-01-01

    Strong earthquake ground motion records are fundamental in engineering applications. Ground motion time series are used in response-history dynamic analysis of structural or geotechnical systems. In such analysis, the validity of predicted responses depends on the validity of the input excitations. Ground motion records are also used to develop ground motion prediction equations(GMPEs) for intensity measures such as spectral accelerations that are used in response-spectrum dynamic analysis. Despite the thousands of available strong ground motion records, there remains a shortage of records for large-magnitude earthquakes at short distances or in specific regions, as well as records that sample specific combinations of source, path, and site characteristics.

  3. Ground energy coupling

    Science.gov (United States)

    Metz, P. D.

    The feasibility of ground coupling for various heat pump systems was investigated. Analytical heat flow models were developed to approximate design ground coupling devices for use in solar heat pump space conditioning systems. A digital computer program called GROCS (GRound Coupled Systems) was written to model 3-dimensional underground heat flow in order to simulate the behavior of ground coupling experiments and to provide performance predictions which have been compared to experimental results. GROCS also has been integrated with TRNSYS. Soil thermal property and ground coupling device experiments are described. Buried tanks, serpentine earth coils in various configurations, lengths and depths, and sealed vertical wells are being investigated. An earth coil used to heat a house without use of resistance heating is described.

  4. Method of steering a vehicle

    NARCIS (Netherlands)

    Della Penna, M.; Van Passen, M.M.; Abbink, D.A.; Mulder, M.

    2011-01-01

    Vehicle and method of steering such a vehicle, wherein the vehicle has a steering wheel and steerable driving wheels and a transfer system for converting steering wheel actions to a steering angle of the steerable driving wheels, and wherein the transfer system is provided with a predefined stiffnes

  5. Electric vehicle - near or far

    Energy Technology Data Exchange (ETDEWEB)

    Laiho, Y.

    1997-11-01

    Traffic is rapidly becoming the number one environmental problem, especially in metropolitan areas. Electric vehicles have many important advantages to offer. Air quality would be improved, since electric vehicles do not pollute the environment. The improvement obtained might be equated with that resulting from the introduction of district heat for the heating of residential buildings. Electric vehicles also present considerable potential for energy conservation

  6. Knowledge Navigation for Virtual Vehicles

    Science.gov (United States)

    Gomez, Julian E.

    2004-01-01

    A virtual vehicle is a digital model of the knowledge surrounding a potentially real vehicle. Knowledge consists not only of the tangible information, such as CAD, but also what is known about the knowledge - its metadata. This paper is an overview of technologies relevant to building a virtual vehicle, and an assessment of how to bring those technologies together.

  7. Visibility-constrained routing of unmanned aerial vehicles

    Science.gov (United States)

    Buck, Keith R.; Gassner, Richard R.; Poore, Aubrey B.; Yan, Xin

    1999-07-01

    Standard vehicle routing problems have been studied for decades in fields such as transportation, manufacturing, and commodity distribution. In this work, we proposed a variation of these problems that arise in routing Unmanned Aerial Vehicles (UAV's) in the presence of terrain obscuration. Specifically, the UAV must visit a location from which the object on the ground in mountainous regions can be viewed without actually flying over the object. Numerical results are presented for near optimal and real time algorithms which have been developed using Lagrangian relaxation techniques. Directions for future work that include priorities, time windows, and routing multiple UAV's with periodic and dynamic changes in the object locations are discussed.

  8. Radar Sensing for Intelligent Vehicles in Urban Environments

    Directory of Open Access Journals (Sweden)

    Giulio Reina

    2015-06-01

    Full Text Available Radar overcomes the shortcomings of laser, stereovision, and sonar because it can operate successfully in dusty, foggy, blizzard-blinding, and poorly lit scenarios. This paper presents a novel method for ground and obstacle segmentation based on radar sensing. The algorithm operates directly in the sensor frame, without the need for a separate synchronised navigation source, calibration parameters describing the location of the radar in the vehicle frame, or the geometric restrictions made in the previous main method in the field. Experimental results are presented in various urban scenarios to validate this approach, showing its potential applicability for advanced driving assistance systems and autonomous vehicle operations.

  9. Smart suspension systems for bridge-friendly vehicles

    Science.gov (United States)

    Chen, Yonghong; Tan, Chin An; Bergman, Larry A.; Tsao, T. C.

    2002-06-01

    In this paper, the effects of using semi-active control strategy (such as MR dampers) in vehicle suspensions on the coupled vibrations of a vehicle traversing a bridge are examined in order to develop various designs of smart suspension systems for bridge-friendly vehicles. The bridge-vehicle coupled system is modeled as a simply supported beam traversed by a two-degree-of-freedom quarter-car model. The surface unevenness on the bridge deck is modeled as a deterministic profile of a sinusoidal wave. As the vehicle travels along the bridge, the system is excited as a result of the surface unevenness and this excitation is characterized by a frequency defined by the speed of travel and the wavelength of the profile. The dynamic interactions between the bridge and the vehicle due to surface deck irregularities are obtained by solving the coupled equations of motion. Numerical results of a passive control strategy show that, when the lower natural frequency of the vehicle matches with a natural frequency (usually the first frequency) of the bridge and the excitation frequency, the maximum response of the bridge is large while the response of the vehicle is relatively smaller, meaning that the bridge behaves like a vibration absorber. This is undesirable from a bridge design viewpoint. Comparative studies of passive and semi-active controls for the vehicle suspension are performed. It is demonstrated that skyhook control can significantly mitigate the response of the bridge, while ground-hook control reduces the tire force impacted onto the bridge.

  10. Appendix J - GPRA06 vehicle technologies program

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2009-01-18

    The target market for the Office of FreedomCAR and Vehicle Technologies (FCVT) program include light vehicles (cars and light trucks) and heavy vehicles (trucks more than 10,000 pounds Gross Vehicle Weight).

  11. Ground Object Recognition using Laser Radar Data : Geometric Fitting, Performance Analysis, and Applications

    OpenAIRE

    Grönwall, Christna

    2006-01-01

    This thesis concerns detection and recognition of ground object using data from laser radar systems. Typical ground objects are vehicles and land mines. For these objects, the orientation and articulation are unknown. The objects are placed in natural or urban areas where the background is unstructured and complex. The performance of laser radar systems is analyzed, to achieve models of the uncertainties in laser radar data. A ground object recognition method is presented. It handles general,...

  12. Postures and Motions Library Development for Verification of Ground Crew Human Systems Integration Requirements

    Science.gov (United States)

    Jackson, Mariea Dunn; Dischinger, Charles; Stambolian, Damon; Henderson, Gena

    2012-01-01

    Spacecraft and launch vehicle ground processing activities require a variety of unique human activities. These activities are being documented in a Primitive motion capture library. The Library will be used by the human factors engineering in the future to infuse real to life human activities into the CAD models to verify ground systems human factors requirements. As the Primitive models are being developed for the library the project has selected several current human factors issues to be addressed for the SLS and Orion launch systems. This paper explains how the Motion Capture of unique ground systems activities are being used to verify the human factors analysis requirements for ground system used to process the STS and Orion vehicles, and how the primitive models will be applied to future spacecraft and launch vehicle processing.

  13. Postures and Motions Library Development for Verification of Ground Crew Human Factors Requirements

    Science.gov (United States)

    Stambolian, Damon; Henderson, Gena; Jackson, Mariea Dunn; Dischinger, Charles

    2013-01-01

    Spacecraft and launch vehicle ground processing activities require a variety of unique human activities. These activities are being documented in a primitive motion capture library. The library will be used by human factors engineering analysts to infuse real to life human activities into the CAD models to verify ground systems human factors requirements. As the primitive models are being developed for the library, the project has selected several current human factors issues to be addressed for the Space Launch System (SLS) and Orion launch systems. This paper explains how the motion capture of unique ground systems activities is being used to verify the human factors engineering requirements for ground systems used to process the SLS and Orion vehicles, and how the primitive models will be applied to future spacecraft and launch vehicle processing.

  14. Miniature Autonomous Robotic Vehicle (MARV)

    Energy Technology Data Exchange (ETDEWEB)

    Feddema, J.T.; Kwok, K.S.; Driessen, B.J.; Spletzer, B.L.; Weber, T.M.

    1996-12-31

    Sandia National Laboratories (SNL) has recently developed a 16 cm{sup 3} (1 in{sup 3}) autonomous robotic vehicle which is capable of tracking a single conducting wire carrying a 96 kHz signal. This vehicle was developed to assess the limiting factors in using commercial technology to build miniature autonomous vehicles. Particular attention was paid to the design of the control system to search out the wire, track it, and recover if the wire was lost. This paper describes the test vehicle and the control analysis. Presented in the paper are the vehicle model, control laws, a stability analysis, simulation studies and experimental results.

  15. 2006 Combat Vehicles Conference

    Science.gov (United States)

    2006-10-25

    and Agreements Supply Chain Management Logistics Solutions for the Warfighter Guam & Saipan Diego Garcia Mediterranean SS KOCAK MV PHILLIPS MV...BUTTON MV LOPEZ USNS STOCKHAM SS PLESS MV HAUGE MV LUMMUS MV ANDERSON MV BONNYMAN USNS MARTIN SS OBREGON MV BAUGH MV WILLIAMS MV BOBO USNS WHEAT MPS...importantly it delivers the most valuable weapon on the battlefield – a soldier. LTC Erik Kurilla CDR, 1-24 Infantry Stryker Vehicles are 312 pieces

  16. Military Hybrid Vehicle Survey

    Science.gov (United States)

    2011-08-03

    Furthermore, a standard duty cycle that is accepted for measuring fuel economy does not exist nor does a focus towards a particular technology. This...expanded into mild hybrid with the addition of a clutch connecting the generator to the transmission and additional energy storage [16-17...speed control and one for engine/generator torque [35]. Urban, Highway, Composite 33%, 27.9%, 49% General vehicle simulation [30]. Urban 19.0

  17. Vehicle Tracking and Security

    Science.gov (United States)

    Scorer, A. G.

    1998-09-01

    This paper covers the wide area and short range locational technologies that are available for vehicle tracking in particular and mobile user security in general. It also summarises the radio communications services that can deliver information to the user. It considers the use that can be made of these technologies, when combined with procedures for delivering a response, in the security field, notably in relation to personal security, high-value load protection and the after-theft tracking markets.

  18. Industrial Vehicle Routing

    OpenAIRE

    Hasle, Geir

    2008-01-01

    Solving the Vehicle Routing Problem (VRP) is a key to efficiency in transportation and supply chain management. The VRP is a computationally hard problem that comes in many guises. The VRP literature contains thousands of papers, and VRP research is regarded as one of the great successes of OR. An industry of routing tool vendors has emerged. Exact optimization methods of today cannot consistently solve VRP instances with more than 50-100 customers in reasonable time, which is generally a sma...

  19. Vehicle state estimator based regenerative braking implementation on an electric vehicle to improve lateral vehicle stability

    NARCIS (Netherlands)

    Jansen, S.T.H.; Boekel, J.J.P. van; Iersel, S.S. van; Besselink, I.J.M.; Nijmeijer, H.

    2013-01-01

    The driving range of electric vehicles can be extended using regenerative braking. Regenerative braking uses the elctric drive system, and therefore only the driven wheels, for decelerating the vehicle. Braking on one axle affects the stability of the vehicle, especially for road conditions with

  20. Operations Assessment of Launch Vehicle Architectures using Activity Based Cost Models

    Science.gov (United States)

    Ruiz-Torres, Alex J.; McCleskey, Carey

    2000-01-01

    The growing emphasis on affordability for space transportation systems requires the assessment of new space vehicles for all life cycle activities, from design and development, through manufacturing and operations. This paper addresses the operational assessment of launch vehicles, focusing on modeling the ground support requirements of a vehicle architecture, and estimating the resulting costs and flight rate. This paper proposes the use of Activity Based Costing (ABC) modeling for this assessment. The model uses expert knowledge to determine the activities, the activity times and the activity costs based on vehicle design characteristics. The approach provides several advantages to current approaches to vehicle architecture assessment including easier validation and allowing vehicle designers to understand the cost and cycle time drivers.