WorldWideScience

Sample records for ground vehicle power

  1. Modeling and Simulation of an Unmanned Ground Vehicle Power System

    Science.gov (United States)

    2014-03-28

    Wilhelm, A. N., Surgenor, B. W., and Pharoah, J. G., “Design and evaluation of a micro-fuel-cell-based power system for a mobile robot ,” Mechatronics ...of Michigan, Ann Arbor, MI, USA bU.S. Army RDECOM-TARDEC, Warren, MI, USA ABSTRACT Long-duration missions challenge ground robot systems with respect...to energy storage and efficient conversion to power on demand. Ground robot systems can contain multiple power sources such as fuel cell, battery and

  2. Ground Vehicle Power and Mobility (GVPM) Powertrain Overview

    Science.gov (United States)

    2011-08-11

    Transmission Multi K Factor Torque converter Powertrain Control and ECM Hardware Development Military Vehicle Fuel Economy Measurement Cycle...Military Engine Optimization Efficiency Gap Transmission -No Torque Converter - Multi-Cone clutches - Wide-spread, equally progressive gear ratios...advanced controls algorithms. • Improved torque capacity, better speed/load matching, reduced thermal loading, and improved control strategy for

  3. Ground Vehicle Robotics

    Science.gov (United States)

    2013-08-20

    Ground Vehicle Robotics Jim Parker Associate Director, Ground Vehicle Robotics UNCLASSIFIED: Distribution Statement A. Approved for public...DATE 20 AUG 2013 2. REPORT TYPE Briefing Charts 3. DATES COVERED 09-05-2013 to 15-08-2013 4. TITLE AND SUBTITLE Ground Vehicle Robotics 5a...Willing to take Risk on technology -User Evaluated -Contested Environments -Operational Data Applied Robotics for Installation & Base Ops -Low Risk

  4. Ground Vehicle Robotics Presentation

    Science.gov (United States)

    2012-08-14

    Mr. Jim Parker Associate Director Ground Vehicle Robotics Distribution Statement A. Approved for public release Report Documentation Page...Briefing 3. DATES COVERED 01-07-2012 to 01-08-2012 4. TITLE AND SUBTITLE Ground Vehicle Robotics Presentation 5a. CONTRACT NUMBER 5b. GRANT...ABSTRACT Provide Transition-Ready, Cost-Effective, and Innovative Robotics and Control System Solutions for Manned, Optionally-Manned, and Unmanned

  5. TARDEC Ground Vehicle Robotics

    Science.gov (United States)

    2013-05-30

    UNCLASSIFIED UNCLASSIFIED 10 Optionally Manned Vehicles OMV can be driven by a soldier; OMV can drive a soldier; OMV can be remotely operated; OMV can be...all missions for OMV (i.e. shared driving) (i.e. remotely operated) 2 m od al iti es Mission Payloads UNCLASSIFIED UNCLASSIFIED 11 Ground

  6. Test and Evaluation of Autonomous Ground Vehicles

    OpenAIRE

    Yang Sun; Guangming Xiong; Weilong Song; Jianwei Gong; Huiyan Chen

    2014-01-01

    A preestablished test and evaluation system will benefit the development of autonomous ground vehicles. This paper proposes a design method for a scientific and comprehensive test and evaluation system for autonomous ground vehicles competitions. It can better guide and regulate the development of China’s autonomous ground vehicles. The test and evaluation system includes the test contents, the test environment, the test methods, and the evaluation methods. Using a hierarchical design approac...

  7. Unmanned ground vehicles for integrated force protection

    Science.gov (United States)

    Carroll, Daniel M.; Mikell, Kenneth; Denewiler, Thomas

    2004-09-01

    The combination of Command and Control (C2) systems with Unmanned Ground Vehicles (UGVs) provides Integrated Force Protection from the Robotic Operation Command Center. Autonomous UGVs are directed as Force Projection units. UGV payloads and fixed sensors provide situational awareness while unattended munitions provide a less-than-lethal response capability. Remote resources serve as automated interfaces to legacy physical devices such as manned response vehicles, barrier gates, fence openings, garage doors, and remote power on/off capability for unmanned systems. The Robotic Operations Command Center executes the Multiple Resource Host Architecture (MRHA) to simultaneously control heterogeneous unmanned systems. The MRHA graphically displays video, map, and status for each resource using wireless digital communications for integrated data, video, and audio. Events are prioritized and the user is prompted with audio alerts and text instructions for alarms and warnings. A control hierarchy of missions and duty rosters support autonomous operations. This paper provides an overview of the key technology enablers for Integrated Force Protection with details on a force-on-force scenario to test and demonstrate concept of operations using Unmanned Ground Vehicles. Special attention is given to development and applications for the Remote Detection Challenge and Response (REDCAR) initiative for Integrated Base Defense.

  8. Test and Evaluation of Autonomous Ground Vehicles

    Directory of Open Access Journals (Sweden)

    Yang Sun

    2014-01-01

    Full Text Available A preestablished test and evaluation system will benefit the development of autonomous ground vehicles. This paper proposes a design method for a scientific and comprehensive test and evaluation system for autonomous ground vehicles competitions. It can better guide and regulate the development of China's autonomous ground vehicles. The test and evaluation system includes the test contents, the test environment, the test methods, and the evaluation methods. Using a hierarchical design approach, the test content is designed to be stage by stage, moving from simplicity to complexity and from individual modules to the entire vehicle. The hierarchical test environment is established according to the levels of test content. The test method based on multilevel platforms and sensors is put forward to ensure the accuracy of test results. A fuzzy comprehensive evaluation method combined with analytic hierarchy process (AHP is used for the comprehensive evaluation which can quantitatively evaluate the individual module and the overall technical performance of autonomous ground vehicles. The proposed test and evaluation system has been successfully applied to real autonomous ground vehicle competitions.

  9. Mission aware energy saving strategies for Army ground vehicles

    Science.gov (United States)

    Dattathreya, Macam S.

    Fuel energy is a basic necessity for this planet and the modern technology to perform many activities on earth. On the other hand, quadrupled automotive vehicle usage by the commercial industry and military has increased fuel consumption. Military readiness of Army ground vehicles is very important for a country to protect its people and resources. Fuel energy is a major requirement for Army ground vehicles. According to a report, a department of defense has spent nearly $13.6 billion on fuel and electricity to conduct ground missions. On the contrary, energy availability on this plant is slowly decreasing. Therefore, saving energy in Army ground vehicles is very important. Army ground vehicles are embedded with numerous electronic systems to conduct missions such as silent and normal stationary surveillance missions. Increasing electrical energy consumption of these systems is influencing higher fuel consumption of the vehicle. To save energy, the vehicles can use any of the existing techniques, but they require complex, expensive, and time consuming implementations. Therefore, cheaper and simpler approaches are required. In addition, the solutions have to save energy according to mission needs and also overcome size and weight constraints of the vehicle. Existing research in the current literature do not have any mission aware approaches to save energy. This dissertation research proposes mission aware online energy saving strategies for stationary Army ground vehicles to save energy as well as to meet the electrical needs of the vehicle during surveillance missions. The research also proposes theoretical models of surveillance missions, fuzzy logic models of engine and alternator efficiency data, and fuzzy logic algorithms. Based on these models, two energy saving strategies are proposed for silent and normal surveillance type of missions. During silent mission, the engine is on and batteries power the systems. During normal surveillance mission, the engine is

  10. Ground Processing Affordability for Space Vehicles

    Science.gov (United States)

    Ingalls, John; Scott, Russell

    2011-01-01

    Launch vehicles and most of their payloads spend the majority of their time on the ground. The cost of ground operations is very high. So, why so often is so little attention given to ground processing during development? The current global space industry and economic environment are driving more need for efficiencies to save time and money. Affordability and sustainability are more important now than ever. We can not continue to treat space vehicles as mere science projects. More RLV's (Reusable Launch Vehicles) are being developed for the gains of reusability which are not available for ELV's (Expendable Launch Vehicles). More human-rated vehicles are being developed, with the retirement of the Space Shuttles, and for a new global space race, yet these cost more than the many unmanned vehicles of today. We can learn many lessons on affordability from RLV's. DFO (Design for Operations) considers ground operations during design, development, and manufacturing-before the first flight. This is often minimized for space vehicles, but is very important. Vehicles are designed for launch and mission operations. You will not be able to do it again if it is too slow or costly to get there. Many times, technology changes faster than space products such that what is launched includes outdated features, thus reducing competitiveness. Ground operations must be considered for the full product Lifecycle, from concept to retirement. Once manufactured, launch vehicles along with their payloads and launch systems require a long path of processing before launch. Initial assembly and testing always discover problems to address. A solid integration program is essential to minimize these impacts, as was seen in the Constellation Ares I-X test rocket. For RLV's, landing/recovery and post-flight turnaround activities are performed. Multi-use vehicles require reconfiguration. MRO (Maintenance, Repair, and Overhaul) must be well-planned--- even for the unplanned problems. Defect limits and

  11. Ground Vehicle Navigation Using Magnetic Field Variation

    Science.gov (United States)

    Shockley, Jeremiah A.

    The Earth's magnetic field has been the bedrock of navigation for centuries. The latest research highlights the uniqueness of magnetic field measurements based on position due to large scale variations as well as localized perturbations. These observable changes in the Earth's magnetic field as a function of position provide distinct information which can be used for navigation. This dissertation describes ground vehicle navigation exploiting variation in Earth's magnetic field using a self-contained navigation system consisting of only a magnetometer and magnetic field maps. In order to achieve navigation, effective calibration enables repeatable magnetic field measurements from different vehicles and facilitates mapping of the observable magnetic field as a function of position. A new modified ellipsoid calibration technique for strapdown magnetometers in large vehicles is described, as well as analysis of position measurement generation comparing a multitude of measurement compositions using existing and newly developed likelihood techniques. Finally, navigation solutions are presented using both a position measurement and direct incorporation of the magnetometer measurements via a particle filter to demonstrate road navigation in three different environments. Emphatically, the results affirm that navigation using magnetic field variation in ground vehicles is viable and achieves adequate performance for road level navigation.

  12. Guidance and control for unmanned ground vehicles

    Science.gov (United States)

    Bateman, Peter J.

    1994-06-01

    Techniques for the guidance, control, and navigation of unmanned ground vehicles are described in terms of the communication bandwidth requirements for driving and control of a vehicle remote from the human operator. Modes of operation are conveniently classified as conventional teleoperation, supervisory control, and fully autonomous control. The fundamental problem of maintaining a robust non-line-of-sight communications link between the human controller and the remote vehicle is discussed, as this provides the impetus for greater autonomy in the control system and the greatest scope for innovation. While supervisory control still requires the man to be providing the primary navigational intelligence, fully autonomous operation requires that mission navigation is provided solely by on-board machine intelligence. Methods directed at achieving this performance are described using various active and passive sensing of the terrain for route navigation and obstacle detection. Emphasis is given to TV imagery and signal processing techniques for image understanding. Reference is made to the limitations of current microprocessor technology and suitable computer architectures. Some of the more recent control techniques involve the use of neural networks, fuzzy logic, and data fusion and these are discussed in the context of road following and cross country navigation. Examples of autonomous vehicle testbeds operated at various laboratories around the world are given.

  13. Mesh Optimization for Ground Vehicle Aerodynamics

    OpenAIRE

    Adrian Gaylard; Essam F Abo-Serie; Nor Elyana Ahmad

    2010-01-01

    Mesh optimization strategy for estimating accurate drag of a ground vehicle is proposed based on examining the effect of different mesh parameters.  The optimized mesh parameters were selected using design of experiment (DOE) method to be able to work in a...

  14. Estimating Hedonic Price Indices for Ground Vehicles

    Science.gov (United States)

    2015-06-01

    organizations use price indices to distinguish sector-specific real price growth from general inflation  OMB uses price indices to estimate the relative...I N S T I T U T E F O R D E F E N S E A N A L Y S E S Estimating Hedonic Price Indices for Ground Vehicles (Presentation) David M. Tate Stanley...currently valid OMB control number. 1. REPORT DATE JUN 2015 2. REPORT TYPE 3. DATES COVERED 4. TITLE AND SUBTITLE Estimating Hedonic Price

  15. Advanced Vehicle and Power Initiative

    Science.gov (United States)

    2010-07-29

    bases.) Qualifying advanced propulsion vehicles for this initiative are battery electric vehicles (BEV), hybrid electric vehicles (HEV), hybrid...hydraulic vehicles (HHV), plug-in hybrid electric vehicles (PHEV) and fuel cell electric vehicles (FCEV). The AVPI integrates use of renewable energy at

  16. Vehicle-to-Grid Power in Danish Electric Power Systems

    DEFF Research Database (Denmark)

    Pillai, Jayakrishnan Radhakrishna; Bak-Jensen, Birgitte

    2009-01-01

    The integration of renewable energy systems is often constrained by the variable nature of their output. This demands for the services of storing the electricity generated from most of the renewable energy sources. Vehicle-to-grid (V2G) power could use the inherent energy storage of electric...... vehicles and its quick response time to balance and stabilize a power system with fluctuating power. This paper outlines the use of battery electric vehicles in supporting large-scale integration of renewable energy in the Danish electric power systems. The reserve power requirements for a high renewable...... energy penetration could be met by an amount of V2G based electric vehicles less than 10% of the total vehicle need in Denmark. The participation of electric vehicle in ancillary services would earn significant revenues to the vehicle owner. The power balancing services of electric vehicles...

  17. Vehicle-to-Grid Power in Danish Electric Power Systems

    DEFF Research Database (Denmark)

    Pillai, Jayakrishnan Radhakrishna; Bak-Jensen, Birgitte

    2009-01-01

    The integration of renewable energy systems is often constrained by the variable nature of their output. This demands for the services of storing the electricity generated from most of the renewable energy sources. Vehicle-to-grid (V2G) power could use the inherent energy storage of electric...... vehicles and its quick response time to balance and stabilize a power system with fluctuating power. This paper outlines the use of battery electric vehicles in supporting large-scale integration of renewable energy in the Danish electric power systems. The reserve power requirements for a high renewable...... energy penetration could be met by an amount of V2G based electric vehicles less than 10% of the total vehicle need in Denmark. The participation of electric vehicle in ancillary services would earn significant revenues to the vehicle owner. The power balancing services of electric vehicles...

  18. Application of parallelized software architecture to an autonomous ground vehicle

    Science.gov (United States)

    Shakya, Rahul; Wright, Adam; Shin, Young Ho; Momin, Orko; Petkovsek, Steven; Wortman, Paul; Gautam, Prasanna; Norton, Adam

    2011-01-01

    This paper presents improvements made to Q, an autonomous ground vehicle designed to participate in the Intelligent Ground Vehicle Competition (IGVC). For the 2010 IGVC, Q was upgraded with a new parallelized software architecture and a new vision processor. Improvements were made to the power system reducing the number of batteries required for operation from six to one. In previous years, a single state machine was used to execute the bulk of processing activities including sensor interfacing, data processing, path planning, navigation algorithms and motor control. This inefficient approach led to poor software performance and made it difficult to maintain or modify. For IGVC 2010, the team implemented a modular parallel architecture using the National Instruments (NI) LabVIEW programming language. The new architecture divides all the necessary tasks - motor control, navigation, sensor data collection, etc. into well-organized components that execute in parallel, providing considerable flexibility and facilitating efficient use of processing power. Computer vision is used to detect white lines on the ground and determine their location relative to the robot. With the new vision processor and some optimization of the image processing algorithm used last year, two frames can be acquired and processed in 70ms. With all these improvements, Q placed 2nd in the autonomous challenge.

  19. The 18th Annual Intelligent Ground Vehicle Competition: trends and influences for intelligent ground vehicle control

    Science.gov (United States)

    Theisen, Bernard L.; Frederick, Philip; Smuda, William

    2011-01-01

    The Intelligent Ground Vehicle Competition (IGVC) is one of four, unmanned systems, student competitions that were founded by the Association for Unmanned Vehicle Systems International (AUVSI). The IGVC is a multidisciplinary exercise in product realization that challenges college engineering student teams to integrate advanced control theory, machine vision, vehicular electronics and mobile platform fundamentals to design and build an unmanned system. Teams from around the world focus on developing a suite of dual-use technologies to equip ground vehicles of the future with intelligent driving capabilities. Over the past 18 years, the competition has challenged undergraduate, graduate and Ph.D. students with real world applications in intelligent transportation systems, the military and manufacturing automation. To date, teams from over 75 universities and colleges have participated. This paper describes some of the applications of the technologies required by this competition and discusses the educational benefits. The primary goal of the IGVC is to advance engineering education in intelligent vehicles and related technologies. The employment and professional networking opportunities created for students and industrial sponsors through a series of technical events over the four-day competition are highlighted. Finally, an assessment of the competition based on participation is presented.

  20. The 19th Annual Intelligent Ground Vehicle Competition: student built autonomous ground vehicles

    Science.gov (United States)

    Theisen, Bernard L.

    2012-01-01

    The Intelligent Ground Vehicle Competition (IGVC) is one of four, unmanned systems, student competitions that were founded by the Association for Unmanned Vehicle Systems International (AUVSI). The IGVC is a multidisciplinary exercise in product realization that challenges college engineering student teams to integrate advanced control theory, machine vision, vehicular electronics and mobile platform fundamentals to design and build an unmanned system. Teams from around the world focus on developing a suite of dual-use technologies to equip ground vehicles of the future with intelligent driving capabilities. Over the past 19 years, the competition has challenged undergraduate, graduate and Ph.D. students with real world applications in intelligent transportation systems, the military and manufacturing automation. To date, teams from almost 80 universities and colleges have participated. This paper describes some of the applications of the technologies required by this competition and discusses the educational benefits. The primary goal of the IGVC is to advance engineering education in intelligent vehicles and related technologies. The employment and professional networking opportunities created for students and industrial sponsors through a series of technical events over the four-day competition are highlighted. Finally, an assessment of the competition based on participation is presented.

  1. Aluminum Rich Epoxy Primer for Ground and Air Vehicles

    Science.gov (United States)

    2017-03-01

    UNCLASSIFIED DOCUMENT Aluminum Rich Epoxy Primer for Ground and Air Vehicles Monthly Technical Report for the Period: January 20, 2017...Objective: To further develop the Aluminum Rich Epoxy Primer systems for Air and Ground Vehicles while addressing the objective requirements... Epoxy Primers in order to afford a lower initial viscosity allowing for better application properties; lower VOC; and the incorporation of various

  2. Frameworks and middleware for umanned ground vehicles

    Science.gov (United States)

    Broten, Greg S.; Monckton, Simon P.

    2005-05-01

    Modern unmanned vehicles (UV) are complex systems. The current generation of UVs have extensive capabilities allowing the UV to sense its environment, create an internal representation of the environment, navigate within this environment by commanding movement and accomplish this in real-time. This proliferation of UV capabilities has resulted in large and complex software systems that are often distributed across multiple processors. Such systems have a reputation for convoluted implementations that result in software that is difficult to understand, expand, debug and repair. In order for a UV to operate successfully this issue of complex distributed software systems must be mastered. The computing science field views a modular, component based design as the best approach for implementing complex distributed software systems. Methodologies and toolkits such as frameworks and middleware have been developed to enable and simplify the implementation of distributed software systems. DRDC and other research institutions are developing UVs frameworks using CORBA middleware. A CORBA interface enables location transparency, thus it does not matter whether the component is locally or remotely located. The UV autonomy framework developed at DRDC is based upon the Miro framework which was originally developed for soccer playing robots. The Miro framework implements many key features and methods required by autonomous systems and Miro's basis in CORBA allows it to be easily modified and extended to support the unique requirements of military UVs. DRDC has modified and extended Miro so that it now supports autonomous unmanned ground vehicles. The process of implementing these changes substantiated the advantages of frameworks and middleware since Miro proved to be highly flexible and easy to extend.

  3. Practicality study on air-powered vehicle

    Institute of Scientific and Technical Information of China (English)

    Lin LIU; Xiaoli YU

    2008-01-01

    To investigate the feasibility and outlook of air-powered vehicles including compressed air-powered vehicle and liquid nitrogen-powered vehicle, thermodyn-amic analysis and experiment data were used to analyze the energy density, performance, safety, running effi-ciency, fuel circulation economy and consumer accep-tance, etc. The results show that compressed air and liquid nitrogen have similar energy density as Ni-H battery; the characteristics of an air-powered engine is suitable for driving a vehicle; the circulation efficiency of liquid nitrogen is 3.6%-14% and that of compressed air is 25%-32.3% in practice, and existing technology can assure its safety. It is concluded that though the performance of an air-powered engine is inferior to that of the traditional inert combustion engine, an air-powered vehicle is fit for future green cars to realize the sustainable development of society and environment.

  4. Steerable wheel structure for ground vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Frye, N.V.

    1988-09-27

    This patent describes a ground vehicle having a fore-and-aft body including transversely spaced apart, right and left, fore-and-aft supports: steerable wheel structure comprising transverse axle means disposed between the supports and having right and left end portions respectively adjacent to the right and left supports, a wheel journaled on the axle means intermediate the supports on a transverse horizontal axis, right and left carriers respectively on the right and left supports, each including a fixed element mounted fixedly on the associated support and a movable member arranged for selective fore-and-aft movement relative to the support and relative to each other, right and left connecting means connecting the right and left movable members respectively to the right and left end portions of the axle means for effecting steering of the wheel as one carrier moves forward and the other moves simultaneously rearwardly, and vice versa, at least one of the members at each side of the body being constructed to accommodate fore-and-aft swinging of the axle means during steering of the wheel, and means for moving the movable members simultaneously, one forwardly and the other rearwardly.

  5. An unmanned ground vehicle for landmine remediation

    Science.gov (United States)

    Wasson, Steven R.; Guilberto, Jose; Ogg, Wade; Wedeward, Kevin; Bruder, Stephen; El-Osery, Aly

    2004-09-01

    Anti-tank (AT) landmines slow down and endanger military advances and present sizeable humanitarian problems. The remediation of these mines by direct human intervention is both dangerous and costly. The Intelligent Systems & Robotics Group (ISRG) at New Mexico Tech has provided a partial solution to this problem by developing an Unmanned Ground Vehicle (UGV) to remediate these mines without endangering human lives. This paper presents an overview of the design and operation of this UGV. Current results and future work are also described herein. To initiate the remediation process the UGV is given the GPS coordinates of previously detected landmines. Once the UGV autonomously navigates to an acceptable proximity of the landmine, a remote operator acquires control over a wireless network link using a joystick on a base station. Utilizing two cameras mounted on the UGV, the operator is able to accurately position the UGV directly over the landmine. The UGV houses a self-contained drill system equipped with its own processing resources, sensors, and actuators. The drill system deploys a neutralizing device over the landmine to neutralize it. One such device, developed by Science Applications International Corporation (SAIC), employs incendiary materials to melt through the container of the landmine and slowly burn the explosive material, thereby safely and remotely disabling the landmine.

  6. Mesh Optimization for Ground Vehicle Aerodynamics

    Directory of Open Access Journals (Sweden)

    Adrian Gaylard

    2010-04-01

    Full Text Available

    Mesh optimization strategy for estimating accurate drag of a ground vehicle is proposed based on examining the effect of different mesh parameters.  The optimized mesh parameters were selected using design of experiment (DOE method to be able to work in a limited memory environment and in a reasonable amount of time but without compromising the accuracy of results. The study was further extended to take into account the car model size effect. Three car model sizes have been investigated and compared with MIRA scale wind tunnel results. Parameters that lead to drag value closer to experiment with less memory and computational time have been identified. Scaling the optimized mesh size with the length of car model was successfully used to predict the drag of the other car sizes with reasonable accuracy. This investigation was carried out using STARCCM+ commercial software package, however the findings can be applied to any other CFD package.

  7. Technique applied in electrical power distribution for Satellite Launch Vehicle

    Directory of Open Access Journals (Sweden)

    João Maurício Rosário

    2010-09-01

    Full Text Available The Satellite Launch Vehicle electrical network, which is currently being developed in Brazil, is sub-divided for analysis in the following parts: Service Electrical Network, Controlling Electrical Network, Safety Electrical Network and Telemetry Electrical Network. During the pre-launching and launching phases, these electrical networks are associated electrically and mechanically to the structure of the vehicle. In order to succeed in the integration of these electrical networks it is necessary to employ techniques of electrical power distribution, which are proper to Launch Vehicle systems. This work presents the most important techniques to be considered in the characterization of the electrical power supply applied to Launch Vehicle systems. Such techniques are primarily designed to allow the electrical networks, when submitted to the single-phase fault to ground, to be able of keeping the power supply to the loads.

  8. Hybrid Power Management-Based Vehicle Architecture

    Science.gov (United States)

    Eichenberg, Dennis J.

    2011-01-01

    Hybrid Power Management (HPM) is the integration of diverse, state-of-the-art power devices in an optimal configuration for space and terrestrial applications (s ee figure). The appropriate application and control of the various power devices significantly improves overall system performance and efficiency. The basic vehicle architecture consists of a primary power source, and possibly other power sources, that provides all power to a common energy storage system that is used to power the drive motors and vehicle accessory systems. This architecture also provides power as an emergency power system. Each component is independent, permitting it to be optimized for its intended purpose. The key element of HPM is the energy storage system. All generated power is sent to the energy storage system, and all loads derive their power from that system. This can significantly reduce the power requirement of the primary power source, while increasing the vehicle reliability. Ultracapacitors are ideal for an HPM-based energy storage system due to their exceptionally long cycle life, high reliability, high efficiency, high power density, and excellent low-temperature performance. Multiple power sources and multiple loads are easily incorporated into an HPM-based vehicle. A gas turbine is a good primary power source because of its high efficiency, high power density, long life, high reliability, and ability to operate on a wide range of fuels. An HPM controller maintains optimal control over each vehicle component. This flexible operating system can be applied to all vehicles to considerably improve vehicle efficiency, reliability, safety, security, and performance. The HPM-based vehicle architecture has many advantages over conventional vehicle architectures. Ultracapacitors have a much longer cycle life than batteries, which greatly improves system reliability, reduces life-of-system costs, and reduces environmental impact as ultracapacitors will probably never need to be

  9. Virtual power plants with electric vehicles

    OpenAIRE

    Grau, Iñaki; Papadopoulos, Panagiotis; Skarvelis-Kazakos, Spyros; Cipcigan, Liana M.; Jenkins, Nick

    2010-01-01

    The benefits of integrating aggregated Electric Vehicles (EV) within the Virtual Power Plant (VPP) concept, are addressed. Two types of EV aggregators are identified: i) Electric Vehicle Residential Aggregator (EVRA), which is responsible for the management of dispersed and clustered EVs in a residential area and ii) Electric Vehicle Commercial Aggregator (EVCA), which is responsible for the management of EVs clustered in a single car park. A case study of a workplace EVCA is presented, provi...

  10. Calculation of ground vibration spectra from heavy military vehicles

    Science.gov (United States)

    Krylov, V. V.; Pickup, S.; McNuff, J.

    2010-07-01

    The demand for reliable autonomous systems capable to detect and identify heavy military vehicles becomes an important issue for UN peacekeeping forces in the current delicate political climate. A promising method of detection and identification is the one using the information extracted from ground vibration spectra generated by heavy military vehicles, often termed as their seismic signatures. This paper presents the results of the theoretical investigation of ground vibration spectra generated by heavy military vehicles, such as tanks and armed personnel carriers. A simple quarter car model is considered to identify the resulting dynamic forces applied from a vehicle to the ground. Then the obtained analytical expressions for vehicle dynamic forces are used for calculations of generated ground vibrations, predominantly Rayleigh surface waves, using Green's function method. A comparison of the obtained theoretical results with the published experimental data shows that analytical techniques based on the simplified quarter car vehicle model are capable of producing ground vibration spectra of heavy military vehicles that reproduce basic properties of experimental spectra.

  11. Electric vehicle integration into modern power networks

    CERN Document Server

    Garcia-Valle, Rodrigo

    2012-01-01

    Electric Vehicle Integration into Modern Power Networks provides coverage of the challenges and opportunities posed by the progressive integration of electric drive vehicles. Starting with a thorough overview of the current electric vehicle and battery state-of-the-art, this work describes dynamic software tools to assess the impacts resulting from the electric vehicles deployment on the steady state and dynamic operation of electricity grids, identifies strategies to mitigate them and the possibility to support simultaneously large-scale integration of renewable energy sources.New business mo

  12. Performance and Stability of a Winged Vehicle in Ground Effect

    CERN Document Server

    de Divitiis, Nicola

    2009-01-01

    Present work deals with the dynamics of vehicles which intentionally operate in the ground proximity. The dynamics in ground effect is influenced by the vehicle orientation with respect to the ground, since the aerodynamic force and moment coefficients, which in turn depend on height and angle of attack, also vary with the Euler angles. This feature, usually neglected in the applications, can be responsible for sizable variations of the aircraft performance and stability. A further effect, caused by the sink rate, determines unsteadiness that modifies the aerodynamic coefficients. In this work, an analytical formulation is proposed for the force and moment calculation in the presence of the ground and taking the aircraft attitude and sink rate into account. The aerodynamic coefficients are firstly calculated for a representative vehicle and its characteristics in ground effect are investigated. Performance and stability characteristics are then discussed with reference to significant equilibrium conditions, w...

  13. Ensuring Safe Exploration: Ares Launch Vehicle Integrated Vehicle Ground Vibration Testing

    Science.gov (United States)

    Tuma, M. L.; Chenevert, D. J.

    2010-01-01

    Integrated vehicle ground vibration testing (IVGVT) will be a vital component for ensuring the safety of NASA's next generation of exploration vehicles to send human beings to the Moon and beyond. A ground vibration test (GVT) measures the fundamental dynamic characteristics of launch vehicles during various phases of flight. The Ares Flight & Integrated Test Office (FITO) will be leading the IVGVT for the Ares I crew launch vehicle at Marshall Space Flight Center (MSFC) from 2012 to 2014 using Test Stand (TS) 4550. MSFC conducted similar GVT for the Saturn V and Space Shuttle vehicles. FITO is responsible for performing the IVGVT on the Ares I crew launch vehicle, which will lift the Orion crew exploration vehicle to low Earth orbit, and the Ares V cargo launch vehicle, which can launch the lunar lander into orbit and send the combined Orionilander vehicles toward the Moon. Ares V consists of a six-engine core stage with two solid rocket boosters and an Earth departure stage (EDS). The same engine will power the EDS and the Ares I second stage. For the Ares IVGVT, the current plan is to test six configurations in three unique test positions inside TS 4550. Position 1 represents the entire launch stack at liftoff (using inert first stage segments). Position 2 consists of the entire launch stack at first stage burn-out (using empty first stage segments). Four Ares I second stage test configurations will be tested in Position 3, consisting of the Upper Stage and Orion crew module in four nominal conditions: J-2X engine ignition, post Launch Abort System (LAS) jettison, critical slosh mass, and J-2X burn-out. Because of long disuse, TS 4550 is being repaired and reactivated to conduct the Ares I IVGVT. The Shuttle-era platforms have been removed and are being replaced with mast climbers that provide ready access to the test articles and can be moved easily to support different positions within the test stand. The electrical power distribution system for TS 4550 was

  14. Power Module Cooling for Future Electric Vehicle Applications: A Coolant Comparison of Oil and PGW

    Science.gov (United States)

    2006-11-01

    POWER MODULE COOLING FOR FUTURE ELECTRIC VEHICLE APPLICATIONS: A COOLANT COMPARISON OF OIL AND PGW T. E. Salem U. S. Naval Academy 105...and efficient power converters are being developed to support the needs of future ground vehicle systems. This progress is being driven by...2006 2. REPORT TYPE N/A 3. DATES COVERED - 4. TITLE AND SUBTITLE Power Module Cooling For Future Electric Vehicle Applications: A Coolant

  15. Objectives and Progress on Integrated Vehicle Ground Vibration Testing for the Ares Launch Vehicles

    Science.gov (United States)

    Tuma, Margaret L.; Asloms. Brice R.

    2009-01-01

    As NASA begins design and development of the Ares launch vehicles to replace the Space Shuttle and explore beyond low Earth orbit, Integrated Vehicle Ground Vibration Testing (IVGVT) will be a vital component of ensuring that those vehicles can perform the missions assigned to them. A ground vibration test (GVT) is intended to measure by test the fundamental dynamic characteristics of launch vehicles during various phases of flight. During the series of tests, properties such as natural frequencies, mode shapes, and transfer functions are measured directly. This data is then used to calibrate loads and control systems analysis models for verifying analyses of the launch vehicle. The Ares Flight & Integrated Test Office (FITO) will be conducting IVGVT for the Ares I crew launch vehicle at Marshall Space Flight Center (MSFC) from 2011 to 2012 using the venerable Test Stand (TS) 4550, which supported similar tests for the Saturn V and Space Shuttle vehicle stacks.

  16. DC Power System of Electric Vehicle

    Directory of Open Access Journals (Sweden)

    Zhang Liwei

    2013-11-01

    Full Text Available In recent years, environmental and energy problem has become one of the world's hot spot problems. Today, the road cars not only consume a lot of oil resource, but also cause serious pollution to human survival environment. Therefore, to save energy and protect environment, a green environmental friendly electric car instead of fuel car will be needed for sustainable development of the society. Electric vehicle has no pollution, low noise, high efficiency, diversification, simple structure and convenient maintaining; the development of green cleaning electric vehicle is the trend, and the inevitable choice. The power supply system of electric vehicle can be divided into three parts, the battery charging system, motor drive system and dc load power supply system. This paper mainly studies the dc load power supply system. Main function is to convert the high-voltage of the battery in the electric vehicle into low voltage output, provide the power supply for the low voltage dc load, including the car safety system, windshield wiper system, audio system. On the basis of the analysis of the parameters, this article designs the converter, sets up the principle prototype, analyzes the experimental results and finally makes conclusion. The vehicle power supply is green, environment friendly, high-efficiency, digital and intelligent.    

  17. Behaviour recognition of ground vehicle using airborne monitoring of unmanned aerial vehicles

    Science.gov (United States)

    Oh, Hyondong; Kim, Seungkeun; Shin, Hyo-Sang; Tsourdos, Antonios; White, Brian A.

    2014-12-01

    This paper proposes a behaviour recognition methodology for ground vehicles moving within road traffic using unmanned aerial vehicles in order to identify suspicious or abnormal behaviour. With the target information acquired by unmanned aerial vehicles and estimated by filtering techniques, ground vehicle behaviour is first classified into representative driving modes, and then a string pattern matching theory is applied to detect suspicious behaviours in the driving mode history. Furthermore, a fuzzy decision-making process is developed to systematically exploit all available information obtained from a complex environment and confirm the characteristic of behaviour, while considering spatiotemporal environment factors as well as several aspects of behaviours. To verify the feasibility and benefits of the proposed approach, numerical simulations on moving ground vehicles are performed using realistic car trajectory data from an off-the-shelf traffic simulation software.

  18. Hedonic Price Indices for Ground Vehicles

    Science.gov (United States)

    2015-05-01

    portion of price change that is unexplainable by other means. In previous work with aircraft, Harmon et al. (2014) found that cost progress curves...same time, we noticed that year-over-year price growth for most vehicle systems seemed higher than could be accounted for by simple inflation...quality growth terms attribute some of the observed price growth to that, leaving less unexplained price growth to be accounted for by the price index

  19. Electric powered vehicle: Tulip without direct plug

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1995-05-01

    Here is described the electric powered vehicle, called Tulip (for Urban Transport, free, Individual and Public) developed by PSA Peugeot Citroen, french automobile company. Its electric characteristics are based on induction. The refill system, by induction allows to the subscriber not to be concerned about it. On arriving to the relay station, it only takes to position the vehicle on the centre which puts in relation a captor with the inductor coupled to a generator plugged into the mains. The cadmium-nickel battery offers a 9.6 Kw power and gives a range longer than 60 kilometers. (N.C.). 1 fig., 1 photo.

  20. Design of a Smart Unmanned Ground Vehicle for Hazardous Environments

    CERN Document Server

    Chakraborty, Saurav

    2010-01-01

    A smart Unmanned Ground Vehicle (UGV) is designed and developed for some application specific missions to operate predominantly in hazardous environments. In our work, we have developed a small and lightweight vehicle to operate in general cross-country terrains in or without daylight. The UGV can send visual feedbacks to the operator at a remote location. Onboard infrared sensors can detect the obstacles around the UGV and sends signals to the operator.

  1. Flight Testing of Hybrid Powered Vehicles

    Science.gov (United States)

    Story, George; Arves, Joe

    2006-01-01

    Hybrid Rocket powered vehicles have had a limited number of flights. Most recently in 2004, Scaled Composites had a successful orbital trajectory that put a private vehicle twice to over 62 miles high, the edge of space to win the X-Prize. This endeavor man rates a hybrid system. Hybrids have also been used in a number of one time launch attempts - SET-1, HYSR, HPDP. Hybrids have also been developed for use and flown in target drones. This chapter discusses various flight-test programs that have been conducted, hybrid vehicles that are in development, other hybrid vehicles that have been proposed and some strap-on applications have also been examined.

  2. A usage-centered evaluation methodology for unmanned ground vehicles

    NARCIS (Netherlands)

    Diggelen, J. van; Looije, R.; Mioch, T.; Neerincx, M.A.; Smets, N.J.J.M.

    2012-01-01

    This paper presents a usage-centered evaluation method to assess the capabilities of a particular Unmanned Ground Vehicle (UGV) for establishing the operational goals. The method includes a test battery consisting of basic tasks (e.g., slalom, funnel driving, object detection). Tests can be of diffe

  3. A usage-centered evaluation methodology for unmanned ground vehicles

    NARCIS (Netherlands)

    Diggelen, J. van; Looije, R.; Mioch, T.; Neerincx, M.A.; Smets, N.J.J.M.

    2012-01-01

    This paper presents a usage-centered evaluation method to assess the capabilities of a particular Unmanned Ground Vehicle (UGV) for establishing the operational goals. The method includes a test battery consisting of basic tasks (e.g., slalom, funnel driving, object detection). Tests can be of diffe

  4. Power Gating Based Ground Bounce Noise Reduction

    Directory of Open Access Journals (Sweden)

    M. Uma Maheswari

    2014-08-01

    Full Text Available As low power circuits are most popular the decrease in supply voltage leads to increase in leakage power with respect to the technology scaling. So for removing this kind of leakages and to provide a better power efficiency many power gating techniques are used. But the leakage due to ground connection to the active part of the circuit is very high rather than all other leakages. As it is mainly due to the back EMF of the ground connection it was called it as ground bounce noise. To reduce this noise different methodologies are designed. In this paper the design of such an efficient technique related to ground bounce noise reduction using power gating circuits and comparing the results using DSCH and Microwind low power tools. In this paper the analysis of adders such as full adders using different types of power gated circuits using low power VLSI design techniques and to present the comparison results between different power gating methods.

  5. Fuel cell power system for utility vehicle

    Energy Technology Data Exchange (ETDEWEB)

    Graham, M.; Barbir, F.; Marken, F.; Nadal, M. [Energy Partners, Inc., West Palm Beach, FL (United States)

    1996-12-31

    Based on the experience of designing and building the Green Car, a fuel cell/battery hybrid vehicle, and Genesis, a hydrogen/oxygen fuel cell powered transporter, Energy Partners has developed a fuel cell power system for propulsion of an off-road utility vehicle. A 10 kW hydrogen/air fuel cell stack has been developed as a prototype for future mass production. The main features of this stack are discussed in this paper. Design considerations and selection criteria for the main components of the vehicular fuel cell system, such as traction motor, air compressor and compressor motor, hydrogen storage and delivery, water and heat management, power conditioning, and control and monitoring subsystem are discussed in detail.

  6. Modeling ground vehicle acoustic signatures for analysis and synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Haschke, G. [Sandia National Labs., Albuquerque, NM (United States); Stanfield, R. [US Army CECOM, Night Vision and Electronic Sensors Directorate, Fort Belvoir, VA (United States)

    1995-07-01

    Security and weapon systems use acoustic sensor signals to classify and identify moving ground vehicles. Developing robust signal processing algorithms for this is expensive, particularly in presence of acoustic clutter or countermeasures. This paper proposes a parametric ground vehicle acoustic signature model to aid the system designer in understanding which signature features are important, developing corresponding feature extraction algorithms and generating low-cost, high-fidelity synthetic signatures for testing. The authors have proposed computer-generated acoustic signatures of armored, tracked ground vehicles to deceive acoustic-sensored smart munitions. They have developed quantitative measures of how accurately a synthetic acoustic signature matches those produced by actual vehicles. This paper describes parameters of the model used to generate these synthetic signatures and suggests methods for extracting these parameters from signatures of valid vehicle encounters. The model incorporates wide-bandwidth and narrow- bandwidth components that are modulated in a pseudo-random fashion to mimic the time dynamics of valid vehicle signatures. Narrow- bandwidth feature extraction techniques estimate frequency, amplitude and phase information contained in a single set of narrow frequency- band harmonics. Wide-bandwidth feature extraction techniques estimate parameters of a correlated-noise-floor model. Finally, the authors propose a method of modeling the time dynamics of the harmonic amplitudes as a means adding necessary time-varying features to the narrow-bandwidth signal components. The authors present results of applying this modeling technique to acoustic signatures recorded during encounters with one armored, tracked vehicle. Similar modeling techniques can be applied to security systems.

  7. Power Sources for Micro-Autonomous Vehicles- Challenges and Prospects

    Science.gov (United States)

    Narayan, S. R.; Kisor, A.; Valdez, T. I.; Manohara, H.

    2009-01-01

    Micro-autonomous vehicle systems are expected to have expanded role in military missions by providing full spectrum intelligence, surveillance and reconnaissance support on the battlefield, suppression of enemy defenses, and enabling co-operative (swarm-like) configurations. Of the numerous demanding requirements of autonomy, sensing, navigation, mobility, etc., meeting the requirement of mission duration or endurance is a very challenging one. This requirement is demanding because of the constraints of mass and volume that limit the quantity of energy that can be stored on-board. Energy is required for mobility, payload operation, information processing, and communication. Mobility requirements typically place an extraordinary demand on the specific energy (Wh/kg) and specific power (W/kg) of the power source; the actual distribution of the energy between mobility and other system functions could vary substantially with the mission type. The power requirements for continuous mobility can vary from 100-1000 W/kg depending on the terrain, ground speed and flight speed. Even with the power source accounting for 30% of the mass of the vehicle, the best of rechargeable batteries can provide only up to 1-2 hours of run-time for a continuous power demand at 100W/kg. In the case of micro-aerial vehicles with flight speed requirements in the range of 5-15 m s-1, the mission times rarely exceed 20 minutes [2]. Further, the power required during take-off and hover can be twice or thrice that needed for steady level flight, and thus the number and sequence of such events is also limited by the mass and size of the power source. For operations such as "perch and stare" or "silent watch" the power demand is often only a tenth of that required during continuous flight. Thus, variation in power demand during various phases of the mission importantly affects the power source selection.

  8. Power Sources for Micro-Autonomous Vehicles- Challenges and Prospects

    Science.gov (United States)

    Narayan, S. R.; Kisor, A.; Valdez, T. I.; Manohara, H.

    2009-01-01

    Micro-autonomous vehicle systems are expected to have expanded role in military missions by providing full spectrum intelligence, surveillance and reconnaissance support on the battlefield, suppression of enemy defenses, and enabling co-operative (swarm-like) configurations. Of the numerous demanding requirements of autonomy, sensing, navigation, mobility, etc., meeting the requirement of mission duration or endurance is a very challenging one. This requirement is demanding because of the constraints of mass and volume that limit the quantity of energy that can be stored on-board. Energy is required for mobility, payload operation, information processing, and communication. Mobility requirements typically place an extraordinary demand on the specific energy (Wh/kg) and specific power (W/kg) of the power source; the actual distribution of the energy between mobility and other system functions could vary substantially with the mission type. The power requirements for continuous mobility can vary from 100-1000 W/kg depending on the terrain, ground speed and flight speed. Even with the power source accounting for 30% of the mass of the vehicle, the best of rechargeable batteries can provide only up to 1-2 hours of run-time for a continuous power demand at 100W/kg. In the case of micro-aerial vehicles with flight speed requirements in the range of 5-15 m s-1, the mission times rarely exceed 20 minutes [2]. Further, the power required during take-off and hover can be twice or thrice that needed for steady level flight, and thus the number and sequence of such events is also limited by the mass and size of the power source. For operations such as "perch and stare" or "silent watch" the power demand is often only a tenth of that required during continuous flight. Thus, variation in power demand during various phases of the mission importantly affects the power source selection.

  9. Electric Vehicles in Power Systems with 50% Wind Power Penetration

    DEFF Research Database (Denmark)

    Østergaard, Jacob; Foosnæs, Anders; Xu, Zhao

    2009-01-01

    . This paper analyse the potential for using EVs in Denmark and identify the benefits of the electric power system with high wind power generation by intelligent charging of the EVs. Based on the analysis important technology gabs are identified, and the corresponding research and development initiatives...... will be an important balancing measure to enable the Danish government’s energy strategy, which implies 50% wind power penetration in the electric power system. An EV will be a storage device for smoothing power fluctuations from renewable resources especially wind power and provide valuable system services...... for a reliable power system operation. Cost-benefit analysis shows that intelligent bidirectional charging – vehicle to grid (V2G) – provides a socio-economic profit of 150 million Euro/year in the Danish electric power system in 2025 assuming that 15% of the Danish road transport need is supplied by electricity...

  10. Space imaging infrared optical guidance for autonomous ground vehicle

    Science.gov (United States)

    Akiyama, Akira; Kobayashi, Nobuaki; Mutoh, Eiichiro; Kumagai, Hideo; Yamada, Hirofumi; Ishii, Hiromitsu

    2008-08-01

    We have developed the Space Imaging Infrared Optical Guidance for Autonomous Ground Vehicle based on the uncooled infrared camera and focusing technique to detect the objects to be evaded and to set the drive path. For this purpose we made servomotor drive system to control the focus function of the infrared camera lens. To determine the best focus position we use the auto focus image processing of Daubechies wavelet transform technique with 4 terms. From the determined best focus position we transformed it to the distance of the object. We made the aluminum frame ground vehicle to mount the auto focus infrared unit. Its size is 900mm long and 800mm wide. This vehicle mounted Ackerman front steering system and the rear motor drive system. To confirm the guidance ability of the Space Imaging Infrared Optical Guidance for Autonomous Ground Vehicle we had the experiments for the detection ability of the infrared auto focus unit to the actual car on the road and the roadside wall. As a result the auto focus image processing based on the Daubechies wavelet transform technique detects the best focus image clearly and give the depth of the object from the infrared camera unit.

  11. Improved obstacle avoidance and navigation for an autonomous ground vehicle

    Science.gov (United States)

    Giri, Binod; Cho, Hyunsu; Williams, Benjamin C.; Tann, Hokchhay; Shakya, Bicky; Bharam, Vishal; Ahlgren, David J.

    2015-01-01

    This paper presents improvements made to the intelligence algorithms employed on Q, an autonomous ground vehicle, for the 2014 Intelligent Ground Vehicle Competition (IGVC). In 2012, the IGVC committee combined the formerly separate autonomous and navigation challenges into a single AUT-NAV challenge. In this new challenge, the vehicle is required to navigate through a grassy obstacle course and stay within the course boundaries (a lane of two white painted lines) that guide it toward a given GPS waypoint. Once the vehicle reaches this waypoint, it enters an open course where it is required to navigate to another GPS waypoint while avoiding obstacles. After reaching the final waypoint, the vehicle is required to traverse another obstacle course before completing the run. Q uses modular parallel software architecture in which image processing, navigation, and sensor control algorithms run concurrently. A tuned navigation algorithm allows Q to smoothly maneuver through obstacle fields. For the 2014 competition, most revisions occurred in the vision system, which detects white lines and informs the navigation component. Barrel obstacles of various colors presented a new challenge for image processing: the previous color plane extraction algorithm would not suffice. To overcome this difficulty, laser range sensor data were overlaid on visual data. Q also participates in the Joint Architecture for Unmanned Systems (JAUS) challenge at IGVC. For 2014, significant updates were implemented: the JAUS component accepted a greater variety of messages and showed better compliance to the JAUS technical standard. With these improvements, Q secured second place in the JAUS competition.

  12. Fuel-Cell-Powered Vehicle with Hybrid Power Management

    Science.gov (United States)

    Eichenberg, Dennis J.

    2010-01-01

    Figure 1 depicts a hybrid electric utility vehicle that is powered by hydrogenburning proton-exchange-membrane (PEM) fuel cells operating in conjunction with a metal hydride hydrogen-storage unit. Unlike conventional hybrid electric vehicles, this vehicle utilizes ultracapacitors, rather than batteries, for storing electric energy. This vehicle is a product of continuing efforts to develop the technological discipline known as hybrid power management (HPM), which is oriented toward integration of diverse electric energy-generating, energy-storing, and energy- consuming devices in optimal configurations. Instances of HPM were reported in five prior NASA Tech Briefs articles, though not explicitly labeled as HPM in the first three articles: "Ultracapacitors Store Energy in a Hybrid Electric Vehicle" (LEW-16876), Vol. 24, No. 4 (April 2000), page 63; "Photovoltaic Power Station With Ultracapacitors for Storage" (LEW- 17177), Vol. 27, No. 8 (August 2003), page 38; "Flasher Powered by Photovoltaic Cells and Ultracapacitors" (LEW-17246), Vol. 27, No. 10 (October 2003), page 37; "Hybrid Power Management" (LEW-17520), Vol. 29, No. 12 (December 2005), page 35; and "Ultracapacitor-Powered Cordless Drill" (LEW-18116-1), Vol. 31, No. 8 (August 2007), page 34. To recapitulate from the cited prior articles: The use of ultracapacitors as energy- storage devices lies at the heart of HPM. An ultracapacitor is an electrochemical energy-storage device, but unlike in a conventional rechargeable electrochemical cell or battery, chemical reactions do not take place during operation. Instead, energy is stored electrostatically at an electrode/electrolyte interface. The capacitance per unit volume of an ultracapacitor is much greater than that of a conventional capacitor because its electrodes have much greater surface area per unit volume and the separation between the electrodes is much smaller.

  13. Unmanned Ground Vehicle Perception Using Thermal Infrared Cameras

    Science.gov (United States)

    Rankin, Arturo; Huertas, Andres; Matthies, Larry; Bajracharya, Max; Assad, Christopher; Brennan, Shane; Bellut, Paolo; Sherwin, Gary

    2011-01-01

    TIR cameras can be used for day/night Unmanned Ground Vehicle (UGV) autonomous navigation when stealth is required. The quality of uncooled TIR cameras has significantly improved over the last decade, making them a viable option at low speed Limiting factors for stereo ranging with uncooled LWIR cameras are image blur and low texture scenes TIR perception capabilities JPL has explored includes: (1) single and dual band TIR terrain classification (2) obstacle detection (pedestrian, vehicle, tree trunks, ditches, and water) (3) perception thru obscurants

  14. Hybrid electric vehicle power management system

    Energy Technology Data Exchange (ETDEWEB)

    Bissontz, Jay E.

    2015-08-25

    Level voltage levels/states of charge are maintained among a plurality of high voltage DC electrical storage devices/traction battery packs that are arrayed in series to support operation of a hybrid electric vehicle drive train. Each high voltage DC electrical storage device supports a high voltage power bus, to which at least one controllable load is connected, and at least a first lower voltage level electrical distribution system. The rate of power transfer from the high voltage DC electrical storage devices to the at least first lower voltage electrical distribution system is controlled by DC-DC converters.

  15. Intelligent Hybrid Vehicle Power Control - Part 1: Machine Learning of Optimal Vehicle Power

    Science.gov (United States)

    2012-06-30

    secondary power source, an HEV uses a smaller and more efficient engine in its drivetrain . Because of the dual-power-source nature, the design and...the motor or both can provide the traction power to the drivetrain . During vehicle deceleration, the regenerative braking power is captured to charge...is generated for each time step t as a function of Pbatt(t) and ωeng(t) for the given drivetrain power Pdrive-sh(t), and the electric load power

  16. Magnesium Technology and Manufacturing for Ultra Lightweight Armored Ground Vehicles

    Science.gov (United States)

    2009-02-01

    Bruce Davis and Rick DeLorme Magnesium Elektron North America, Inc. A reprint from the Proceedings of the 2008 Army Science Conference...SUPPLEMENTARY NOTES *Magnesium Elektron North America, Inc., 1001 College St., Madison, IL 62060 A reprint from the Proceedings of the 2008 Army Science...initial emphasis on the Elektron WE43 alloy system for lightweight armored ground vehicle applications. Engineering design factors are reviewed and

  17. Airport electric vehicle powered by fuel cell

    Science.gov (United States)

    Fontela, Pablo; Soria, Antonio; Mielgo, Javier; Sierra, José Francisco; de Blas, Juan; Gauchia, Lucia; Martínez, Juan M.

    Nowadays, new technologies and breakthroughs in the field of energy efficiency, alternative fuels and added-value electronics are leading to bigger, more sustainable and green thinking applications. Within the Automotive Industry, there is a clear declaration of commitment with the environment and natural resources. The presence of passenger vehicles of hybrid architecture, public transport powered by cleaner fuels, non-aggressive utility vehicles and an encouraging social awareness, are bringing to light a new scenario where conventional and advanced solutions will be in force. This paper presents the evolution of an airport cargo vehicle from battery-based propulsion to a hybrid power unit based on fuel cell, cutting edge batteries and hydrogen as a fuel. Some years back, IBERIA (Major Airline operating in Spain) decided to initiate the replacement of its diesel fleet for battery ones, aiming at a reduction in terms of contamination and noise in the surrounding environment. Unfortunately, due to extreme operating conditions in airports (ambient temperature, intensive use, dirtiness, …), batteries suffered a very severe degradation, which took its toll in terms of autonomy. This reduction in terms of autonomy together with the long battery recharge time made the intensive use of this fleet impractical in everyday demanding conditions.

  18. The on-line electric vehicle wireless electric ground transportation systems

    CERN Document Server

    Cho, Dong

    2017-01-01

    This book details the design and technology of the on-line electric vehicle (OLEV) system and its enabling wireless power-transfer technology, the “shaped magnetic field in resonance” (SMFIR). The text shows how OLEV systems can achieve their three linked important goals: reduction of CO2 produced by ground transportation; improved energy efficiency of ground transportation; and contribution to the amelioration or prevention of climate change and global warming. SMFIR provides power to the OLEV by wireless transmission from underground cables using an alternating magnetic field and the reader learns how this is done. This cable network will in future be part of any local smart grid for energy supply and use thereby exploiting local and renewable energy generation to further its aims. In addition to the technical details involved with design and realization of a fleet of vehicles combined with extensive subsurface charging infrastructure, practical issues such as those involved with pedestrian safety are c...

  19. Intelligent vehicle electrical power supply system with central coordinated protection

    Science.gov (United States)

    Yang, Diange; Kong, Weiwei; Li, Bing; Lian, Xiaomin

    2016-07-01

    The current research of vehicle electrical power supply system mainly focuses on electric vehicles (EV) and hybrid electric vehicles (HEV). The vehicle electrical power supply system used in traditional fuel vehicles is rather simple and imperfect; electrical/electronic devices (EEDs) applied in vehicles are usually directly connected with the vehicle's battery. With increasing numbers of EEDs being applied in traditional fuel vehicles, vehicle electrical power supply systems should be optimized and improved so that they can work more safely and more effectively. In this paper, a new vehicle electrical power supply system for traditional fuel vehicles, which accounts for all electrical/electronic devices and complex work conditions, is proposed based on a smart electrical/electronic device (SEED) system. Working as an independent intelligent electrical power supply network, the proposed system is isolated from the electrical control module and communication network, and access to the vehicle system is made through a bus interface. This results in a clean controller power supply with no electromagnetic interference. A new practical battery state of charge (SoC) estimation method is also proposed to achieve more accurate SoC estimation for lead-acid batteries in traditional fuel vehicles so that the intelligent power system can monitor the status of the battery for an over-current state in each power channel. Optimized protection methods are also used to ensure power supply safety. Experiments and tests on a traditional fuel vehicle are performed, and the results reveal that the battery SoC is calculated quickly and sufficiently accurately for battery over-discharge protection. Over-current protection is achieved, and the entire vehicle's power utilization is optimized. For traditional fuel vehicles, the proposed vehicle electrical power supply system is comprehensive and has a unified system architecture, enhancing system reliability and security.

  20. Power Conversion System Strategies for Fuel Cell Vehicles

    Institute of Scientific and Technical Information of China (English)

    Kaushik Rajashekara

    2005-01-01

    Power electronics is an enabling technology for the development of environmental friendly fuel cell vehicles, and to implement the various vehicle electrical architectures to obtain the best performance. In this paper, power conversion strategies for propulsion and auxiliary power unit applications are described. The power electronics strategies for the successful development of the fuel cell vehicles are presented. The fuel cell systems for propulsion and for auxiliary power unit applications are also discussed.

  1. Autonomous Underwater Vehicle Thermoelectric Power Generation

    Science.gov (United States)

    Buckle, J. R.; Knox, A.; Siviter, J.; Montecucco, A.

    2013-07-01

    Autonomous underwater vehicles (AUVs) are a vital part of the oceanographer's toolbox, allowing long-term measurements across a range of ocean depths of a number of ocean properties such as salinity, fluorescence, and temperature profile. Buoyancy-based gliding, rather than direct propulsion, dramatically reduces AUV power consumption and allows long-duration missions on the order of months rather than hours or days, allowing large distances to be analyzed or many successive analyses of a certain area without the need for retrieval. Recent versions of these gliders have seen the buoyancy variation system change from electrically powered to thermally powered using phase-change materials, however a significant battery pack is still required to power communications and sensors, with power consumption in the region of 250 mW. The authors propose a novel application of a thermoelectric generation system, utilizing the depth-related variation in oceanic temperature. A thermal energy store provides a temperature differential across which a thermoelectric device can generate from repeated dives, with the primary purpose of extending mission range. The system is modeled in Simulink to analyze the effect of variation in design parameters. The system proves capable of generating all required power for a modern AUV.

  2. Photovoltaic electric power applied to Unmanned Aerial Vehicles (UAV)

    Science.gov (United States)

    Geis, Jack; Arnold, Jack H.

    1994-01-01

    Photovoltaic electric-powered flight is receiving a great deal of attention in the context of the United States' Unmanned Aerial Vehicle (UAV) program. This paper addresses some of the enabling technical areas and their potential solutions. Of particular interest are the long-duration, high-altitude class of UAV's whose mission it is to achieve altitudes between 60,000 and 100,000 feet, and to remain at those altitudes for prolonged periods performing various mapping and surveillance activities. Addressed herein are studies which reveal the need for extremely light-weight and efficient solar cells, high-efficiency electric motor-driven propeller modules, and power management and distribution control elements. Since the potential payloads vary dramatically in their power consumption and duty cycles, a typical load profile has been selected to provide commonality for the propulsion power comparisons. Since missions vary widely with respect to ground coverage requirements, from repeated orbiting over a localized target to long-distance routes over irregular terrain, we have also averaged the power requirements for on-board guidance and control power, as well as ground control and communication link utilization. In the context of the national technology reinvestment program, wherever possible we modeled components and materials which have been qualified for space and defense applications, yet are compatible with civilian UAV activities. These include, but are not limited to, solar cell developments, electric storage technology for diurnal operation, local and ground communications, power management and distribution, and control servo design. And finally, the results of tests conducted by Wright Laboratory on ultralight, highly efficient MOCVD GaAs solar cells purchased from EPI Materials Ltd. (EML) of the UK are presented. These cells were also used for modeling the flight characteristics of UAV aircraft.

  3. Intelligent Vehicle Electrical Power Supply System with Central Coordinated Protection

    Institute of Scientific and Technical Information of China (English)

    YANG Diange; KONG Weiwei; LI Bing; LIAN Xiaomin

    2016-01-01

    The current research of vehicle electrical power supply system mainly focuses on electric vehicles (EV) and hybrid electric vehicles (HEV). The vehicle electrical power supply system used in traditional fuel vehicles is rather simple and imperfect;electrical/electronic devices (EEDs) applied in vehicles are usually directly connected with the vehicle’s battery. With increasing numbers of EEDs being applied in traditional fuel vehicles, vehicle electrical power supply systems should be optimized and improved so that they can work more safely and more effectively. In this paper, a new vehicle electrical power supply system for traditional fuel vehicles, which accounts for all electrical/electronic devices and complex work conditions, is proposed based on a smart electrical/electronic device (SEED) system. Working as an independent intelligent electrical power supply network, the proposed system is isolated from the electrical control module and communication network, and access to the vehicle system is made through a bus interface. This results in a clean controller power supply with no electromagnetic interference. A new practical battery state of charge (SoC) estimation method is also proposed to achieve more accurate SoC estimation for lead-acid batteries in traditional fuel vehicles so that the intelligent power system can monitor the status of the battery for an over-current state in each power channel. Optimized protection methods are also used to ensure power supply safety. Experiments and tests on a traditional fuel vehicle are performed, and the results reveal that the battery SoC is calculated quickly and sufficiently accurately for battery over-discharge protection. Over-current protection is achieved, and the entire vehicle’s power utilization is optimized. For traditional fuel vehicles, the proposed vehicle electrical power supply system is comprehensive and has a unified system architecture, enhancing system reliability and security.

  4. Achieving integrated convoys: cargo unmanned ground vehicle development and experimentation

    Science.gov (United States)

    Zych, Noah; Silver, David; Stager, David; Green, Colin; Pilarski, Thomas; Fischer, Jacob

    2013-05-01

    The Cargo UGV project was initiated in 2010 with the aim of developing and experimenting with advanced autonomous vehicles capable of being integrated unobtrusively into manned logistics convoys. The intent was to validate two hypotheses in complex, operationally representative environments: first, that unmanned tactical wheeled vehicles provide a force protection advantage by creating standoff distance to warfighters during ambushes or improvised explosive device attacks; and second, that these UGVs serve as force multipliers by enabling a single operator to control multiple unmanned assets. To assess whether current state-of-the-art autonomous vehicle technology was sufficiently capable to permit resupply missions to be executed with decreased risk and reduced manpower, and to assess the effect of UGVs on customary convoy tactics, the Marine Corps Warfighting Laboratory and the Joint Ground Robotics Enterprise sponsored Oshkosh Defense and the National Robotics Engineering Center to equip two standard Marine Corps cargo trucks for autonomous operation. This paper details the system architecture, hardware implementation, and software modules developed to meet the vehicle control, perception, and planner requirements compelled by this application. Additionally, the design of a custom human machine interface and an accompanying training program are described, as is the creation of a realistic convoy simulation environment for rapid system development. Finally, results are conveyed from a warfighter experiment in which the effectiveness of the training program for novice operators was assessed, and the impact of the UGVs on convoy operations was observed in a variety of scenarios via direct comparison to a fully manned convoy.

  5. Integrating intrinsic mobility into unmanned ground vehicle systems

    Science.gov (United States)

    Brosinsky, Chris A.; Penzes, Steven G.; Buehler, Martin G.; Steeves, Carl

    2001-09-01

    The ability of an Unmanned Ground Vehicle (UGV) to successfully move about in its environment is enabled by the synergistic combination of perception, control and platform (mobility and utility). Vast effort is being expended on the former technologies but little demonstrable evidence has been produced to indicate that the latter (mobility/utility) has been considered as an integral part of the UGV systems level capability; a concept commonly referred to as intrinsic mobility. While past work described the rationale for hybrid locomotion, this paper aims to demonstrate that integrating intrinsic mobility into a UGV systems mobility element or 'vehicle' will be a key contributor to the magnitude of autonomy that the system can achieve. This paper serves to provide compelling evidence that 1) intrinsic mobility improvements provided by hybrid locomotion configurations offer the best generic mobility, that 2) strict attention must be placed on the optimization of both utility (inherent vehicle capabilities) and mobility and that 3) the establishment of measures of performance for unmanned vehicle mobility is an unmet and latent need.

  6. Remote control of a small unmanned ground vehicle (SUGV)

    Science.gov (United States)

    Irimie, Nicolae; Zorila, Alexandru; Nan, Alexandru; Schiopu, Paul

    2010-11-01

    Developing robot technology has gained an increasing dynamics. Small unmanned ground vehicle - SUGV has gained a place in the robotics field. This paper describes the possibility of remote control of the SUGV using a fuzzy algorithm. This designed algorithm specifically for controlling of a semi-autonomous mobile robot for research, observation, and surveillance. The device can provide 360-degree panoramic images using an image system which includes a hyperboloid mirror and a CCD camera, designed for this specific purpose. Both components, fuzzy algorithm and image system were implemented, tested in the laboratory condition and outdoor on a mobile robot for research, observation, and surveillance.

  7. Development of a Self Powered Vehicle Detector

    Science.gov (United States)

    1978-10-01

    ground screenwhich in terms of electric field yields. 9. 70V•i n/50 E - . R volts/ men er where Pin = input power to the antenna If now the attenuation...95 NSWC1WOL TR 78-1 77 3 11/16" DIA. 2" HvP /E 7/16" H____________________i -rho.’ +3 + 0 0 FIGURE 85. LAYOUT OF SIGNAL PROCESSING/REGULATOR BOARD...TR 78-177 REFERENCES (Cont.) 32. Eveready Battery Engineering Data Book, Union Carbide Corp., 1976. 33. NSWC Men WR-33:DLW:mlf, from WR-33 to WR-30

  8. High Temperature Power Converters for Military Hybrid Electric Vehicles

    Science.gov (United States)

    2011-08-09

    M) MINI-SYMPOSIUM AUGUST 9-11 DEARBORN, MICHIGAN HIGH TEMPERATURE POWER CONVERTERS FOR MILITARY HYBRID ELECTRIC VEHICLES ABSTRACT...SUBTITLE High Temperature Power Converters for Military Hybrid Electric Vehicles 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6...public release High Temperature Power Converters for Military Hybrid Electric Vehicles Page 2 of 8 I. INTRODUCTION Today, wide bandgap devices

  9. Single Fuel Concept for Croatian Army Ground Vehicles

    Directory of Open Access Journals (Sweden)

    Robert Spudić

    2008-05-01

    Full Text Available During the process of approaching the European associationsand NATO the Republic of Croatia has accepted the singlefuel concept for all ground vehicles of the Croatian Army.Croatia has also undertaken to insure that all aircraft, motorvehicles and equipment with turbo-engines or with pressurizedfuel injection, for participation in NATO and PfP led operationscan • operate using the kerosene-based aviation fuel(NATO F-34. The paper gives a brief overview and the resultsof the earned out activities in the Armed Forces of the Republicof Croatia, the expected behaviour of the motor vehicle andpossible delays caused by the use of kerosene fuel (NATOF-34 as fuel for motor vehicles. The paper also gives the advantagesand the drawbacks of the single fuel concept. By acquiringnew data in the Croatian Armed Forces and experienceexchange with other nations about the method of using fuelF-34, the development of the technologies of engine manufacturingand its vital parts or by introducing new standards in theproductjon of fuels and additives new knowledge will certainlybe acquired for providing logistics support in the area of operations,and its final implementation will be a big step forward forthe Republic of Croatia towards Europe and NATO.

  10. Intelligence algorithms for autonomous navigation in a ground vehicle

    Science.gov (United States)

    Petkovsek, Steve; Shakya, Rahul; Shin, Young Ho; Gautam, Prasanna; Norton, Adam; Ahlgren, David J.

    2012-01-01

    This paper will discuss the approach to autonomous navigation used by "Q," an unmanned ground vehicle designed by the Trinity College Robot Study Team to participate in the Intelligent Ground Vehicle Competition (IGVC). For the 2011 competition, Q's intelligence was upgraded in several different areas, resulting in a more robust decision-making process and a more reliable system. In 2010-2011, the software of Q was modified to operate in a modular parallel manner, with all subtasks (including motor control, data acquisition from sensors, image processing, and intelligence) running simultaneously in separate software processes using the National Instruments (NI) LabVIEW programming language. This eliminated processor bottlenecks and increased flexibility in the software architecture. Though overall throughput was increased, the long runtime of the image processing process (150 ms) reduced the precision of Q's realtime decisions. Q had slow reaction times to obstacles detected only by its cameras, such as white lines, and was limited to slow speeds on the course. To address this issue, the image processing software was simplified and also pipelined to increase the image processing throughput and minimize the robot's reaction times. The vision software was also modified to detect differences in the texture of the ground, so that specific surfaces (such as ramps and sand pits) could be identified. While previous iterations of Q failed to detect white lines that were not on a grassy surface, this new software allowed Q to dynamically alter its image processing state so that appropriate thresholds could be applied to detect white lines in changing conditions. In order to maintain an acceptable target heading, a path history algorithm was used to deal with local obstacle fields and GPS waypoints were added to provide a global target heading. These modifications resulted in Q placing 5th in the autonomous challenge and 4th in the navigation challenge at IGVC.

  11. Effects of electric vehicles on power systems in Northern Europe

    DEFF Research Database (Denmark)

    Hedegaard, Karsten; Ravn, Hans; Juul, Nina

    2012-01-01

    In this study, it is analysed how a large-scale implementation of plug-in hybrid electric vehicles and battery electric vehicles towards 2030 would influence the power systems of five Northern European countries, Denmark, Finland, Germany, Norway, and Sweden. Increasing shares of electric vehicles...

  12. Advanced Wireless Power Transfer Vehicle and Infrastructure Analysis (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Gonder, J.; Brooker, A.; Burton, E.; Wang, J.; Konan, A.

    2014-06-01

    This presentation discusses current research at NREL on advanced wireless power transfer vehicle and infrastructure analysis. The potential benefits of E-roadway include more electrified driving miles from battery electric vehicles, plug-in hybrid electric vehicles, or even properly equipped hybrid electric vehicles (i.e., more electrified miles could be obtained from a given battery size, or electrified driving miles could be maintained while using smaller and less expensive batteries, thereby increasing cost competitiveness and potential market penetration). The system optimization aspect is key given the potential impact of this technology on the vehicles, the power grid and the road infrastructure.

  13. Probabilistic Tracking and Trajectory Planning for Autonomous Ground Vehicles in Urban Environments

    Science.gov (United States)

    2016-03-05

    SECURITY CLASSIFICATION OF: The aim of this research is to develop a unified theory for perception and planning in autonomous ground vehicles , with a...Pine Tree Road Ithaca, NY 14850 -2820 ABSTRACT Probabilistic Tracking and Trajectory Planning for Autonomous Ground Vehicles in Urban Environments...Report Title The aim of this research is to develop a unified theory for perception and planning in autonomous ground vehicles , with a specific focus on

  14. Dedicated auxiliary power units for Hybrid Electric Vehicles

    NARCIS (Netherlands)

    Mourad, S.; Weijer, C.J.T. van de

    1998-01-01

    The use of a dedicated auxiliary power unit is essential to utilize the potential that hybrid vehicles offer for efficient and ultra-clean transportation. An example of a hybrid project at the TNO Road-Vehicles Research Institute shows the development and the results of a dedicated auxiliary power

  15. Dedicated auxiliary power units for Hybrid Electric Vehicles

    NARCIS (Netherlands)

    Mourad, S.; Weijer, C.J.T. van de

    1998-01-01

    The use of a dedicated auxiliary power unit is essential to utilize the potential that hybrid vehicles offer for efficient and ultra-clean transportation. An example of a hybrid project at the TNO Road-Vehicles Research Institute shows the development and the results of a dedicated auxiliary power u

  16. Infrared stereo calibration for unmanned ground vehicle navigation

    Science.gov (United States)

    Harguess, Josh; Strange, Shawn

    2014-06-01

    The problem of calibrating two color cameras as a stereo pair has been heavily researched and many off-the-shelf software packages, such as Robot Operating System and OpenCV, include calibration routines that work in most cases. However, the problem of calibrating two infrared (IR) cameras for the purposes of sensor fusion and point could generation is relatively new and many challenges exist. We present a comparison of color camera and IR camera stereo calibration using data from an unmanned ground vehicle. There are two main challenges in IR stereo calibration; the calibration board (material, design, etc.) and the accuracy of calibration pattern detection. We present our analysis of these challenges along with our IR stereo calibration methodology. Finally, we present our results both visually and analytically with computed reprojection errors.

  17. Modeling and control for hydraulic transmission of unmanned ground vehicle

    Institute of Scientific and Technical Information of China (English)

    王岩; 张泽; 秦绪情

    2014-01-01

    Variable pump driving variable motor (VPDVM) is the future development trend of the hydraulic transmission of an unmanned ground vehicle (UGV). VPDVM is a dual-input single-output nonlinear system with coupling, which is difficult to control. High pressure automatic variables bang-bang (HABB) was proposed to achieve the desired motor speed. First, the VPDVM nonlinear mathematic model was introduced, then linearized by feedback linearization theory, and the zero-dynamic stability was proved. The HABB control algorithm was proposed for VPDVM, in which the variable motor was controlled by high pressure automatic variables (HA) and the variable pump was controlled by bang-bang. Finally, simulation of VPDVM controlled by HABB was developed. Simulation results demonstrate the HABB can implement the desired motor speed rapidly and has strong robustness against the variations of desired motor speed, load and pump speed.

  18. Ergonomic study on human-powered vehicles

    Directory of Open Access Journals (Sweden)

    Abdullah Mohd Azman

    2017-01-01

    Full Text Available In this paper, new methods for ergonomic analysis of cyclist for 4-wheel recumbent seat human-powered vehicle (HPV are performed. An ergonomic index with fundamental formulation is developed in order to determine the level of comfortness during handling of the HPV. Basic reference of sitting postures are produced from three HPVs for 20 different individuals. All the dimensions, angles and measurements are recorded. The same individuals are required to sit on the three HPV models to evaluate their comfortness and ergonomic by observing the same dimensions, angles and measurements of leg and hand postures. The data is compared with reference comfort sitting ergonomic. This study is limited to a number of individuals which are the students of a university in Malaysia with age range from 20 to 24 years old. However, the ergonomic index can be expanded for Asian people and with some improvement in the parameters, it can be used for other countries. Derivation of ergonomic index and formulation in determining the comfort level and ergonomic of HPV. Using the ergonomic index, a new improved HPV can be developed. The index is also applicable with modification on several parameters in the formulation for other countries.

  19. CO2 emission benefit of diesel (versus gasoline) powered vehicles.

    Science.gov (United States)

    Sullivan, J L; Baker, R E; Boyer, B A; Hammerle, R H; Kenney, T E; Muniz, L; Wallington, T J

    2004-06-15

    Concerns regarding global warming have increased the pressure on automobile manufacturers to decrease emissions of CO2 from vehicles. Diesel vehicles have higher fuel economy and lower CO2 emissions than their gasoline counterparts. Increased penetration of diesel powered vehicles into the market is a possible transition strategy toward a more sustainable transportation system. To facilitate discussions regarding the relative merits of diesel vehicles it is important to have a clear understanding of their CO2 emission benefits. Based on European diesel and gasoline certification data, this report quantifies such CO2 reduction opportunities for cars and light duty trucks in today's vehicles and those in the year 2015. Overall, on a well-to-wheels per vehicle per mile basis, the CO2 reduction opportunity for today's vehicles is approximately 24-33%. We anticipate that the gap between diesel and gasoline well-to-wheel vehicle CO2 emissions will decrease to approximately 14-27% by the year 2015.

  20. Auxiliary power unit for moving a vehicle

    Science.gov (United States)

    Akasam, Sivaprasad; Johnson, Kris W.; Johnson, Matthew D.; Slone, Larry M.; Welter, James Milton

    2009-02-03

    A power system is provided having at least one traction device and a primary power source configured to power the at least one traction device. In addition, the power system includes an auxiliary power source also configured to power the at least one traction device.

  1. A survey of unmanned ground vehicles with applications to agricultural and environmental sensing

    Science.gov (United States)

    Bonadies, Stephanie; Lefcourt, Alan; Gadsden, S. Andrew

    2016-05-01

    Unmanned ground vehicles have been utilized in the last few decades in an effort to increase the efficiency of agriculture, in particular, by reducing labor needs. Unmanned vehicles have been used for a variety of purposes including: soil sampling, irrigation management, precision spraying, mechanical weeding, and crop harvesting. In this paper, unmanned ground vehicles, implemented by researchers or commercial operations, are characterized through a comparison to other vehicles used in agriculture, namely airplanes and UAVs. An overview of different trade-offs of configurations, control schemes, and data collection technologies is provided. Emphasis is given to the use of unmanned ground vehicles in food crops, and includes a discussion of environmental impacts and economics. Factors considered regarding the future trends and potential issues of unmanned ground vehicles include development, management and performance. Also included is a strategy to demonstrate to farmers the safety and profitability of implementing the technology.

  2. Power for Vehicle Embedded MEMS Sensors Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Embedded wireless sensors of the future will enable flight vehicle systems to be "highly aware" of onboard health and performance parameters, as well as the external...

  3. Power for Vehicle Embedded MEMS Sensors Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Embedded wireless sensors of the future will enable flight vehicle systems to be "highly aware" of onboard health and performance parameters, as well as the...

  4. The influence of vehicle front-end design on pedestrian ground impact.

    Science.gov (United States)

    Crocetta, Gianmarco; Piantini, Simone; Pierini, Marco; Simms, Ciaran

    2015-06-01

    Accident data have shown that in pedestrian accidents with high-fronted vehicles (SUVs and vans) the risk of pedestrian head injuries from the contact with the ground is higher than with low-fronted vehicles (passenger cars). However, the reasons for this remain poorly understood. This paper addresses this question using multibody modelling to investigate the influence of vehicle front height and shape in pedestrian accidents on the mechanism of impact with the ground and on head ground impact speed. To this end, a set of 648 pedestrian/vehicle crash simulations was carried out using the MADYMO multibody simulation software. Impacts were simulated with six vehicle types at three impact speeds (20, 30, 40km/h) and three pedestrian types (50th % male, 5th % female, and 6-year-old child) at six different initial stance configurations, stationary and walking at 1.4m/s. Six different ground impact mechanisms, distinguished from each other by the manner in which the pedestrian impacted the ground, were identified. These configurations have statistically distinct and considerably different distributions of head-ground impact speeds. Pedestrian initial stance configuration (gait and walking speed) introduced a high variability to the head-ground impact speed. Nonetheless, the head-ground impact speed varied significantly between the different ground impact mechanisms identified and the distribution of impact mechanisms was strongly associated with vehicle type. In general, impact mechanisms for adults resulting in a head-first contact with the ground were more severe with high fronted vehicles compared to low fronted vehicles, though there is a speed dependency to these findings. With high fronted vehicles (SUVs and vans) the pedestrian was mainly pushed forward and for children this resulted in high head ground contact speeds. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Adaptive Neuro-Fuzzy Technique for Autonomous Ground Vehicle Navigation

    Directory of Open Access Journals (Sweden)

    Auday Al-Mayyahi

    2014-11-01

    Full Text Available This article proposes an adaptive neuro-fuzzy inference system (ANFIS for solving navigation problems of an autonomous ground vehicle (AGV. The system consists of four ANFIS controllers; two of which are used for regulating both the left and right angular velocities of the AGV in order to reach the target position; and other two ANFIS controllers are used for optimal heading adjustment in order to avoid obstacles. The two velocity controllers receive three sensor inputs: front distance (FD; right distance (RD and left distance (LD for the low-level motion control. Two heading controllers deploy the angle difference (AD between the heading of AGV and the angle to the target to choose the optimal direction. The simulation experiments have been carried out under two different scenarios to investigate the feasibility of the proposed ANFIS technique. The simulation results have been presented using MATLAB software package; showing that ANFIS is capable of performing the navigation and path planning task safely and efficiently in a workspace populated with static obstacles.

  6. Ground control stations for unmanned air vehicles (Review Paper

    Directory of Open Access Journals (Sweden)

    G. Natarajan

    2001-07-01

    Full Text Available "During the last five decades, the world has witnessed tremendous growth in the military aircraft technology and the air defence weapons technology. Use of manned aircraft for routine reconnaissance/surveillance missions has become a less preferred option due to possible high attrition rate. Currently, the high political cost of human life has practically earmarked the roles of reconnaissance and surveillance missions to the unmanned air vehicles (UAVs. Almost every major country has a UAV program of its own and this interest has spawned intensive research in the field of UAVs. Presently, the UAVs come in all shapes and sizes, from palm top micro UAVs to giant strategic UAVs that can loiter over targets for extended periods of time. Though UAVs are capable of operating at different levels of autonomy, these are generally controlled from a ground control station (GCS. The GCS is the nerve centre of activity during UAV missions and provides necessary capability to plan and execute UAV missions. The GCS incorporates facilities, such as communication, displays, mission planning and data exploitation. The GCS architecture is highly processor-oriented and hence the computer hardware and software technologies play a major role in the realisation of this vital system. This paper gives an overview of the GCS, its architecture and the current state-of-the-art in various subsystem technologies.

  7. Bipolar lead-acid power source (BILAPS) for hybrid vehicles

    NARCIS (Netherlands)

    Schmal, D.; Saakes, M.; Mourad, S.; Have, P. ten

    1999-01-01

    In hybrid electric vehicles (HEV's) the requirements on batteries for energy storage are completely different from those in battery powered electric vehicles (BEV's). In order to come to a succesful development of HEV's, beside fullfilling the technical requirements, the battery has to have a long

  8. Bipolar lead-acid power source (BILAPS) for hybrid vehicles

    NARCIS (Netherlands)

    Schmal, D.; Saakes, M.; Mourad, S.; Have, P. ten

    1999-01-01

    In hybrid electric vehicles (HEV's) the requirements on batteries for energy storage are completely different from those in battery powered electric vehicles (BEV's). In order to come to a succesful development of HEV's, beside fullfilling the technical requirements, the battery has to have a long l

  9. Bipolar lead-acid power source (BILAPS) for hybrid vehicles

    NARCIS (Netherlands)

    Schmal, D.; Saakes, M.

    1998-01-01

    In hybrid electric vehicles (HEV's) the requirements on batteries for energy storage are completely different from those in battery powered electric vehicles (BEV's). In order to come to a succesful development of HEV's, beside fullfilling the technical requirements, the battery has to have a long l

  10. Electric vehicles and large-scale integration of wind power

    DEFF Research Database (Denmark)

    Liu, Wen; Hu, Weihao; Lund, Henrik

    2013-01-01

    was 6.5% in 2009 and which has the plan to develop large-scale wind power. The results show that electric vehicles (EVs) have the ability to balance the electricity demand and supply and to further the wind power integration. In the best case, the energy system with EV can increase wind power...

  11. Modelling and simulation of vehicle electric power system

    Science.gov (United States)

    Lee, Wootaik; Choi, Daeho; Sunwoo, Myoungho

    In recent years, the demand for an increased number of vehicle functions by legislation and customer expectations has introduced many electronic control systems and electrical driven units in vehicles and has resulted in steadily increasing electrical loads. Moreover, due to heavy urban traffic conditions, the idling time fraction has increased and reduced the power generation of the alternator. In the vehicle design phase, in order to avoid an over- or under-design problem of the electric power system, it is necessary to understand both the characteristics of each component of the vehicle electric power system and the interactions between the components. For this purpose, model and simulation algorithms of the vehicle power system are required. In this study, the vehicle electric power system, which is mainly composed of a generator and battery, is modelled and evaluated. Among the various proposed battery models, two types are compared in terms of accuracy and ease-of-use. These two models are distinguished by the consideration of inrush current at the beginning of charging and discharging. In addition, a variable terminal voltage alternator model (VTVA model) is proposed, and is compared with a constant terminal voltage alternator model (CTVA model). Based on the major component model, a simulation algorithm is developed and used to perform a case study. Compared with real data from the vehicle, the simulation results of energy generation and consumption are comparable.

  12. ELF magnetic fields in electric and gasoline-powered vehicles.

    Science.gov (United States)

    Tell, R A; Sias, G; Smith, J; Sahl, J; Kavet, R

    2013-02-01

    We conducted a pilot study to assess magnetic field levels in electric compared to gasoline-powered vehicles, and established a methodology that would provide valid data for further assessments. The sample consisted of 14 vehicles, all manufactured between January 2000 and April 2009; 6 were gasoline-powered vehicles and 8 were electric vehicles of various types. Of the eight models available, three were represented by a gasoline-powered vehicle and at least one electric vehicle, enabling intra-model comparisons. Vehicles were driven over a 16.3 km test route. Each vehicle was equipped with six EMDEX Lite broadband meters with a 40-1,000 Hz bandwidth programmed to sample every 4 s. Standard statistical testing was based on the fact that the autocorrelation statistic damped quickly with time. For seven electric cars, the geometric mean (GM) of all measurements (N = 18,318) was 0.095 µT with a geometric standard deviation (GSD) of 2.66, compared to 0.051 µT (N = 9,301; GSD = 2.11) for four gasoline-powered cars (P electric vehicles covered the same range as personal exposure levels recorded in that study. All fields measured in all vehicles were much less than the exposure limits published by the International Commission on Non-Ionizing Radiation Protection (ICNIRP) and the Institute of Electrical and Electronics Engineers (IEEE). Future studies should include larger sample sizes representative of a greater cross-section of electric-type vehicles. Copyright © 2012 Wiley Periodicals, Inc.

  13. Lithium Battery Power Delivers Electric Vehicles to Market

    Science.gov (United States)

    2008-01-01

    Hybrid Technologies Inc., a manufacturer and marketer of lithium-ion battery electric vehicles, based in Las Vegas, Nevada, and with research and manufacturing facilities in Mooresville, North Carolina, entered into a Space Act Agreement with Kennedy Space Center to determine the utility of lithium-powered fleet vehicles. NASA contributed engineering expertise for the car's advanced battery management system and tested a fleet of zero-emission vehicles on the Kennedy campus. Hybrid Technologies now offers a series of purpose-built lithium electric vehicles dubbed the LiV series, aimed at the urban and commuter environments.

  14. Microgrid and Plug in Electric Vehicle (PEV) with Vehicle to Grid (V2G) Power Services Capability (Briefing Charts)

    Science.gov (United States)

    2015-09-01

    for public release Microgrid and Plug in Electric Vehicle (PEV) with Vehicle to Grid (V2G) Power Services Capability Shukri Kazbour PEV Lead Engineer...00-00-2015 to 00-00-2015 4. TITLE AND SUBTITLE Microgrid and Plug in Electric Vehicle (PEV) with Vehicle to Grid (V2G) Power Services Capability...Infrastructure Demonstration for Energy Reliability and Security Phase-II (SPIDERS-II) • Plug in Electric Vehicle (PEV) and V2G Power services 2. Tactical

  15. LWIR passive perception system for stealthy unmanned ground vehicle night operations

    Science.gov (United States)

    Lee, Daren; Rankin, Arturo; Huertas, Andres; Nash, Jeremy; Ahuja, Gaurav; Matthies, Larry

    2016-05-01

    Resupplying forward-deployed units in rugged terrain in the presence of hostile forces creates a high threat to manned air and ground vehicles. An autonomous unmanned ground vehicle (UGV) capable of navigating stealthily at night in off-road and on-road terrain could significantly increase the safety and success rate of such resupply missions for warfighters. Passive night-time perception of terrain and obstacle features is a vital requirement for such missions. As part of the ONR 30 Autonomy Team, the Jet Propulsion Laboratory developed a passive, low-cost night-time perception system under the ONR Expeditionary Maneuver Warfare and Combating Terrorism Applied Research program. Using a stereo pair of forward looking LWIR uncooled microbolometer cameras, the perception system generates disparity maps using a local window-based stereo correlator to achieve real-time performance while maintaining low power consumption. To overcome the lower signal-to-noise ratio and spatial resolution of LWIR thermal imaging technologies, a series of pre-filters were applied to the input images to increase the image contrast and stereo correlator enhancements were applied to increase the disparity density. To overcome false positives generated by mixed pixels, noisy disparities from repeated textures, and uncertainty in far range measurements, a series of consistency, multi-resolution, and temporal based post-filters were employed to improve the fidelity of the output range measurements. The stereo processing leverages multi-core processors and runs under the Robot Operating System (ROS). The night-time passive perception system was tested and evaluated on fully autonomous testbed ground vehicles at SPAWAR Systems Center Pacific (SSC Pacific) and Marine Corps Base Camp Pendleton, California. This paper describes the challenges, techniques, and experimental results of developing a passive, low-cost perception system for night-time autonomous navigation.

  16. Investigations into near-real-time surveying for geophysical data collection using an autonomous ground vehicle

    Science.gov (United States)

    Phelps, Geoffrey A.; Ippolito, C.; Lee, R.; Spritzer, R.; Yeh, Y.

    2014-01-01

    The U.S. Geological Survey and the National Aeronautics and Space Administration are cooperatively investigating the utility of unmanned vehicles for near-real-time autonomous surveys of geophysical data collection. Initially focused on unmanned ground vehicle collection of magnetic data, this cooperative effort has brought unmanned surveying, precision guidance, near-real-time communication, on-the-fly data processing, and near-real-time data interpretation into the realm of ground geophysical surveying, all of which offer advantages over current methods of manned collection of ground magnetic data. An unmanned ground vehicle mission has demonstrated that these vehicles can successfully complete missions to collect geophysical data, and add advantages in data collection, processing, and interpretation. We view the current experiment as an initial phase in further unmanned vehicle data-collection missions, including aerial surveying.

  17. Can Electricity Powered Vehicles Serve Traveler Needs?

    Directory of Open Access Journals (Sweden)

    Jianhe Du

    2013-06-01

    Full Text Available Electric vehicles (EV, Hybrid Electric Vehicles (HEV or Plug-in Hybrid Electric Vehicles (PHEV are believed to be a promising substitute for current gas-propelled vehicles. Previous research studied the attributes of different types of EVs and confirmed their advantages. The feasibility of EVs has also been explored using simulation, retrospective survey data, or a limited size of field travel data. In this study, naturalistic driving data collected from more than 100 drivers during one year are used to explore naturalistic driver travel patterns. Typical travel distance and time and qualified dwell times (i.e., the typical required EV battery recharging time between travels as based on most literature findings are investigated in this study. The viability of electric cars is discussed from a pragmatic perspective. The results of this research show that 90 percent of single trips are less than 25 miles; approximately 70 percent of the average annual daily travel is less than 60 miles. On average there are 3.62 trips made between four-hour dwell times as aggregated to 60 minutes and 50 miles of travel. Therefore, majority of trips are within the travel range provided by most of the currently available EVs. A well-organized schedule of recharging will be capable of covering even more daily travels.

  18. Intelligent Navigation for a Solar Powered Unmanned Underwater Vehicle

    Directory of Open Access Journals (Sweden)

    Francisco García-Córdova

    2013-04-01

    Full Text Available In this paper, an intelligent navigation system for an unmanned underwater vehicle powered by renewable energy and designed for shadow water inspection in missions of a long duration is proposed. The system is composed of an underwater vehicle, which tows a surface vehicle. The surface vehicle is a small boat with photovoltaic panels, a methanol fuel cell and communication equipment, which provides energy and communication to the underwater vehicle. The underwater vehicle has sensors to monitor the underwater environment such as sidescan sonar and a video camera in a flexible configuration and sensors to measure the physical and chemical parameters of water quality on predefined paths for long distances. The underwater vehicle implements a biologically inspired neural architecture for autonomous intelligent navigation. Navigation is carried out by integrating a kinematic adaptive neuro‐controller for trajectory tracking and an obstacle avoidance adaptive neuro‐controller. The autonomous underwater vehicle is capable of operating during long periods of observation and monitoring. This autonomous vehicle is a good tool for observing large areas of sea, since it operates for long periods of time due to the contribution of renewable energy. It correlates all sensor data for time and geodetic position. This vehicle has been used for monitoring the Mar Menor lagoon.

  19. Unmanned ground vehicle perception using thermal infrared cameras

    Science.gov (United States)

    Rankin, Arturo; Huertas, Andres; Matthies, Larry; Bajracharya, Max; Assad, Christopher; Brennan, Shane; Bellutta, Paolo; Sherwin, Gary W.

    2011-05-01

    The ability to perform off-road autonomous navigation at any time of day or night is a requirement for some unmanned ground vehicle (UGV) programs. Because there are times when it is desirable for military UGVs to operate without emitting strong, detectable electromagnetic signals, a passive only terrain perception mode of operation is also often a requirement. Thermal infrared (TIR) cameras can be used to provide day and night passive terrain perception. TIR cameras have a detector sensitive to either mid-wave infrared (MWIR) radiation (3-5μm) or long-wave infrared (LWIR) radiation (7-14μm). With the recent emergence of high-quality uncooled LWIR cameras, TIR cameras have become viable passive perception options for some UGV programs. The Jet Propulsion Laboratory (JPL) has used a stereo pair of TIR cameras under several UGV programs to perform stereo ranging, terrain mapping, tree-trunk detection, pedestrian detection, negative obstacle detection, and water detection based on object reflections. In addition, we have evaluated stereo range data at a variety of UGV speeds, evaluated dual-band TIR classification of soil, vegetation, and rock terrain types, analyzed 24 hour water and 12 hour mud TIR imagery, and analyzed TIR imagery for hazard detection through smoke. Since TIR cameras do not currently provide the resolution available from megapixel color cameras, a UGV's daytime safe speed is often reduced when using TIR instead of color cameras. In this paper, we summarize the UGV terrain perception work JPL has performed with TIR cameras over the last decade and describe a calibration target developed by General Dynamics Robotic Systems (GDRS) for TIR cameras and other sensors.

  20. Unmanned Ground Vehicle Perception Using Thermal Infrared Cameras

    Science.gov (United States)

    Rankin, Arturo; Huertas, Andres; Matthies, Larry; Bajracharya, Max; Assad, Christopher; Brennan, Shane; Bellutta, Paolo; Sherwin, Gary W.

    2011-01-01

    The ability to perform off-road autonomous navigation at any time of day or night is a requirement for some unmanned ground vehicle (UGV) programs. Because there are times when it is desirable for military UGVs to operate without emitting strong, detectable electromagnetic signals, a passive only terrain perception mode of operation is also often a requirement. Thermal infrared (TIR) cameras can be used to provide day and night passive terrain perception. TIR cameras have a detector sensitive to either mid-wave infrared (MWIR) radiation (3-5?m) or long-wave infrared (LWIR) radiation (8-12?m). With the recent emergence of high-quality uncooled LWIR cameras, TIR cameras have become viable passive perception options for some UGV programs. The Jet Propulsion Laboratory (JPL) has used a stereo pair of TIR cameras under several UGV programs to perform stereo ranging, terrain mapping, tree-trunk detection, pedestrian detection, negative obstacle detection, and water detection based on object reflections. In addition, we have evaluated stereo range data at a variety of UGV speeds, evaluated dual-band TIR classification of soil, vegetation, and rock terrain types, analyzed 24 hour water and 12 hour mud TIR imagery, and analyzed TIR imagery for hazard detection through smoke. Since TIR cameras do not currently provide the resolution available from megapixel color cameras, a UGV's daytime safe speed is often reduced when using TIR instead of color cameras. In this paper, we summarize the UGV terrain perception work JPL has performed with TIR cameras over the last decade and describe a calibration target developed by General Dynamics Robotic Systems (GDRS) for TIR cameras and other sensors.

  1. Environmental Perception and Sensor Data Fusion for Unmanned Ground Vehicle

    Directory of Open Access Journals (Sweden)

    Yibing Zhao

    2013-01-01

    Full Text Available Unmanned Ground Vehicles (UGVs that can drive autonomously in cross-country environment have received a good deal of attention in recent years. They must have the ability to determine whether the current terrain is traversable or not by using onboard sensors. This paper explores new methods related to environment perception based on computer image processing, pattern recognition, multisensors data fusion, and multidisciplinary theory. Kalman filter is used for low-level fusion of physical level, thus using the D-S evidence theory for high-level data fusion. Probability Test and Gaussian Mixture Model are proposed to obtain the traversable region in the forward-facing camera view for UGV. One feature set including color and texture information is extracted from areas of interest and combined with a classifier approach to resolve two types of terrain (traversable or not. Also, three-dimension data are employed; the feature set contains components such as distance contrast of three-dimension data, edge chain-code curvature of camera image, and covariance matrix based on the principal component method. This paper puts forward one new method that is suitable for distributing basic probability assignment (BPA, based on which D-S theory of evidence is employed to integrate sensors information and recognize the obstacle. The subordination obtained by using the fuzzy interpolation is applied to calculate the basic probability assignment. It is supposed that the subordination is equal to correlation coefficient in the formula. More accurate results of object identification are achieved by using the D-S theory of evidence. Control on motion behavior or autonomous navigation for UGV is based on the method, which is necessary for UGV high speed driving in cross-country environment. The experiment results have demonstrated the viability of the new method.

  2. Optimal Operation of Plug-In Electric Vehicles in Power Systems with High Wind Power Penetrations

    DEFF Research Database (Denmark)

    Hu, Weihao; Su, Chi; Chen, Zhe

    2013-01-01

    The Danish power system has a large penetration of wind power. The wind fluctuation causes a high variation in the power generation, which must be balanced by other sources. The battery storage based Plug-In Electric Vehicles (PEV) may be a possible solution to balance the wind power variations...... in the power systems with high wind power penetrations. In this paper, the integration of plug-in electric vehicles in the power systems with high wind power penetrations is proposed and discussed. Optimal operation strategies of PEV in the spot market are proposed in order to decrease the energy cost for PEV...

  3. Process modeling of fuel cell vehicle power system

    Institute of Scientific and Technical Information of China (English)

    CHEN LiMing; LIN ZhaoJia; MA ZiFeng

    2009-01-01

    Constructed here is a mathematic model of PEM Fuel Cell Vehicle Power System which is composed of fuel supply model, fuel cell stack model and water-heat management model. The model was developed by Matiab/Simulink to evaluate how the major operating variables affect the output performances. Itshows that the constructed model can represent characteristics of the power system closely by comparing modeling results with experimental data, and it can be used in the study and design of fuel cell vehicle power system.

  4. Longitudinal static stability requirements for wing in ground effect vehicle

    Science.gov (United States)

    Yang, Wei; Yang, Zhigang; Collu, Maurizio

    2015-06-01

    The issue of the longitudinal stability of a WIG vehicle has been a very critical design factor since the first experimental WIG vehicle has been built. A series of studies had been performed and focused on the longitudinal stability analysis. However, most studies focused on the longitudinal stability of WIG vehicle in cruise phase, and less is available on the longitudinal static stability requirement of WIG vehicle when hydrodynamics are considered: WIG vehicle usually take off from water. The present work focuses on stability requirement for longitudinal motion from taking off to landing. The model of dynamics for a WIG vehicle was developed taking into account the aerodynamic, hydrostatic and hydrodynamic forces, and then was analyzed. Following with the longitudinal static stability analysis, effect of hydrofoil was discussed. Locations of CG, aerodynamic center in pitch, aerodynamic center in height and hydrodynamic center in heave were illustrated for a stabilized WIG vehicle. The present work will further improve the longitudinal static stability theory for WIG vehicle.

  5. Longitudinal static stability requirements for wing in ground effect vehicle

    Directory of Open Access Journals (Sweden)

    Wei Yang

    2015-03-01

    Full Text Available The issue of the longitudinal stability of a WIG vehicle has been a very critical design factor since the first experimental WIG vehicle has been built. A series of studies had been performed and focused on the longitudinal stability analysis. However, most studies focused on the longitudinal stability of WIG vehicle in cruise phase, and less is available on the longitudinal static stability requirement of WIG vehicle when hydrodynamics are considered: WIG vehicle usually take off from water. The present work focuses on stability requirement for longitudinal motion from taking off to landing. The model of dynamics for a WIG vehicle was developed taking into account the aerodynamic, hydrostatic and hydrodynamic forces, and then was analyzed. Following with the longitudinal static stability analysis, effect of hydrofoil was discussed. Locations of CG, aerodynamic center in pitch, aerodynamic center in height and hydrodynamic center in heave were illustrated for a stabilized WIG vehicle. The present work will further improve the longitudinal static stability theory for WIG vehicle.

  6. Longitudinal static stability requirements for wing in ground effect vehicle

    Directory of Open Access Journals (Sweden)

    Yang Wei

    2015-06-01

    Full Text Available The issue of the longitudinal stability of a WIG vehicle has been a very critical design factor since the first experimental WIG vehicle has been built. A series of studies had been performed and focused on the longitudinal stability analysis. However, most studies focused on the longitudinal stability of WIG vehicle in cruise phase, and less is available on the longitudinal static stability requirement of WIG vehicle when hydrodynamics are considered: WIG vehicle usually take off from water. The present work focuses on stability requirement for longitudinal motion from taking off to landing. The model of dynamics for a WIG vehicle was developed taking into account the aerodynamic, hydrostatic and hydrodynamic forces, and then was analyzed. Following with the longitudinal static stability analysis, effect of hydrofoil was discussed. Locations of CG, aerodynamic center in pitch, aerodynamic center in height and hydrodynamic center in heave were illustrated for a stabilized WIG vehicle. The present work will further improve the longitudinal static stability theory for WIG vehicle.

  7. Measuring Power Flow in Electric Vehicles

    Science.gov (United States)

    Griffin, Daniel C., Jr; Wiker, G. A.

    1983-01-01

    Instrument accommodates fast rise and fall times of waveforms characteristic of modern, efficient power controllers. Power meter multiplies analog signals proportional to voltage and current, and converts resulting signal to frequency. Two mechanical counters provided: one for charging, one for discharging.

  8. Heavy Vehicle Essential Power Systems Workshop

    Energy Technology Data Exchange (ETDEWEB)

    Susan Rogers

    2001-12-12

    Essential power is a crosscutting technology area that addresses the efficient and practical management of electrical and thermal requirements on trucks. Essential Power Systems: any function on the truck, that is not currently involved in moving the truck, and requires electrical or mechanical energy; Truck Lights; Hotel Loads (HVAC, computers, appliances, lighting, entertainment systems); Pumps, starter, compressor, fans, trailer refrigeration; Engine and fuel heating; and Operation of power lifts and pumps for bulk fluid transfer. Transition from ''belt and gear driven'' to auxiliary power generation of electricity - ''Truck Electrification'' 42 volts, DC and/ or AC; All electrically driven auxiliaries; Power on demand - manage electrical loads; Benefits include: increased fuel efficiency, reduced emission both when truck is idling and moving down the road.

  9. Control strategies for power distribution networks with electric vehicles integration

    DEFF Research Database (Denmark)

    Hu, Junjie

    Demand side resources, like electric vehicles (EVs), can become integral parts of a smart grids because instead of just consuming power they are capable of providing valuable services to power systems. EVs can be used to balance the intermittent renewable energy resources such as wind and solar...... on designing control strategies for congestion control in distribution network with multiple actors, such as the distribution system operator (DSO), eet operators (FO), and electric vehicle owners (or prosumers), considering their self-interests and operational constraints. Note that the control problem...... scheme of EVs according to the users' energy driving requirements and the forecasted day-ahead electricity market price. Several electric vehicle eet operators are specied to manage the electric vehicle eets. The method of market based control can then be used by the DSO to interact with the electric...

  10. Logistics and Capability Implications of a Bradley Fighting Vehicle with a Fuel Cell Auxiliary Power Unit

    Science.gov (United States)

    2003-10-13

    Husted, John MacBain Delphi Corporation Heather McKee US Army TACOM Copyright © 2003 SAE International ABSTRACT Modern military ground vehicles are...WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Delphi Corporation,5725 Delphi Drive,Troy,Mi,48098 8. PERFORMING ORGANIZATION... injector hardware change. A single, 28V, 400A permanent-magnet direct current (DC) generator is driven by a power take off (PTO) directly connected to

  11. Driving Energy System Transformation with "Vehicle-to-Grid" Power

    OpenAIRE

    Moura, F

    2006-01-01

    Today's electricity and transport systems face a number of challenges related to reliability, security and environmental sustainability. New technologies may provide a means by which to overcome some of these challenges, yet many such technologies are confronted with substantial technical or commercial hurdles. This report explores one promising technology, "Vehicle-to-Grid" (V2G) power generation, whereby parked Electric-Drive Vehicles (EDVs) are used to provide electricity to the grid. EDV...

  12. Advanced Mobility Testbed for Dynamic Semi-Autonomous Unmanned Ground Vehicles

    Science.gov (United States)

    2015-04-24

    Introduction Integrated simulation capabilities that are high-fidelity, fast, and have scalable architecture are essential to support autonomous vehicle ...TARDEC has attempted to develop a high-fidelity mobility simulation of an autonomous vehicle in an off-road scenario using integrated sensor...for Dynamic Semi- Autonomous Unmanned Ground Vehicles 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT

  13. Navigation and Hazard Avoidance for High-Speed Unmanned Ground Vehicles in Rough Terrain

    Science.gov (United States)

    2008-07-07

    Potential Field Navigation of High Speed Vehicles on Rough Terrain,” Robotica , Vol. 25, No. 4, pp 409-424, July 2007 Udengaard, M., and Iagnemma, K...Navigation of Unmanned Ground Vehicles on Uneven Terrain using Potential Fields," to appear in Robotica , 2007 [16] Spenko, M., Kuroda, Y., Dubowsky, S

  14. An SINS/GNSS Ground Vehicle Gravimetry Test Based on SGA-WZ02

    Directory of Open Access Journals (Sweden)

    Ruihang Yu

    2015-09-01

    Full Text Available In March 2015, a ground vehicle gravimetry test was implemented in eastern Changsha to assess the repeatability and accuracy of ground vehicle SINS/GNSS gravimeter—SGA-WZ02. The gravity system developed by NUDT consisted of a Strapdown Inertial Navigation System (SINS, a Global Navigation Satellite System (GNSS remote station on test vehicle, a GNSS static master station on the ground, and a data logging subsystem. A south-north profile of 35 km along the highway in eastern Changsha was chosen and four repeated available measure lines were obtained. The average speed of a vehicle is 40 km/h. To assess the external ground gravity disturbances, precise ground gravity data was built by CG-5 precise gravimeter as the reference. Under relative smooth conditions, internal accuracy among repeated lines shows an average agreement at the level of 1.86 mGal for half wavelengths about 1.1 km, and 1.22 mGal for 1.7 km. The root-mean-square (RMS of difference between calculated gravity data and reference data is about 2.27 mGal/1.1 km, and 1.74 mGal/1.7 km. Not all of the noises caused by vehicle itself and experiments environments were eliminated in the primary results. By means of selecting reasonable filters and improving the GNSS observation conditions, further developments in ground vehicle gravimetry are promising.

  15. An SINS/GNSS Ground Vehicle Gravimetry Test Based on SGA-WZ02.

    Science.gov (United States)

    Yu, Ruihang; Cai, Shaokun; Wu, Meiping; Cao, Juliang; Zhang, Kaidong

    2015-09-16

    In March 2015, a ground vehicle gravimetry test was implemented in eastern Changsha to assess the repeatability and accuracy of ground vehicle SINS/GNSS gravimeter-SGA-WZ02. The gravity system developed by NUDT consisted of a Strapdown Inertial Navigation System (SINS), a Global Navigation Satellite System (GNSS) remote station on test vehicle, a GNSS static master station on the ground, and a data logging subsystem. A south-north profile of 35 km along the highway in eastern Changsha was chosen and four repeated available measure lines were obtained. The average speed of a vehicle is 40 km/h. To assess the external ground gravity disturbances, precise ground gravity data was built by CG-5 precise gravimeter as the reference. Under relative smooth conditions, internal accuracy among repeated lines shows an average agreement at the level of 1.86 mGal for half wavelengths about 1.1 km, and 1.22 mGal for 1.7 km. The root-mean-square (RMS) of difference between calculated gravity data and reference data is about 2.27 mGal/1.1 km, and 1.74 mGal/1.7 km. Not all of the noises caused by vehicle itself and experiments environments were eliminated in the primary results. By means of selecting reasonable filters and improving the GNSS observation conditions, further developments in ground vehicle gravimetry are promising.

  16. Computational architecture for image processing on a small unmanned ground vehicle

    Science.gov (United States)

    Ho, Sean; Nguyen, Hung

    2010-08-01

    Man-portable Unmanned Ground Vehicles (UGVs) have been fielded on the battlefield with limited computing power. This limitation constrains their use primarily to teleoperation control mode for clearing areas and bomb defusing. In order to extend their capability to include the reconnaissance and surveillance missions of dismounted soldiers, a separate processing payload is desired. This paper presents a processing architecture and the design details on the payload module that enables the PackBot to perform sophisticated, real-time image processing algorithms using data collected from its onboard imaging sensors including LADAR, IMU, visible, IR, stereo, and the Ladybug spherical cameras. The entire payload is constructed from currently available Commercial off-the-shelf (COTS) components including an Intel multi-core CPU and a Nvidia GPU. The result of this work enables a small UGV to perform computationally expensive image processing tasks that once were only feasible on a large workstation.

  17. Impacts of Electric Vehicle Loads on Power Distribution Systems

    DEFF Research Database (Denmark)

    Pillai, Jayakrishnan Radhakrishna; Bak-Jensen, Birgitte

    2010-01-01

    Electric vehicles (EVs) are the most promising alternative to replace a significant amount of gasoline vehicles to provide cleaner, CO2 free and climate friendly transportation. On integrating more electric vehicles, the electric utilities must analyse the related impacts on the electricity syste...... be accommodated in the network with the smart charging mode. The extent of integrating EVs in an area is constrained by the EV charging behavior and the safe operational limits of electricity system parameters....... operation. This paper investigates the effects on the key power distribution system parameters like voltages, line drops, system losses etc. by integrating electric vehicles in the range of 0-50% of the cars with different charging capacities. The dump as well as smart charging modes of electric vehicles......Electric vehicles (EVs) are the most promising alternative to replace a significant amount of gasoline vehicles to provide cleaner, CO2 free and climate friendly transportation. On integrating more electric vehicles, the electric utilities must analyse the related impacts on the electricity system...

  18. Electric Vehicles in Power Systems with 50% Wind Power Penetration

    DEFF Research Database (Denmark)

    Østergaard, Jacob; Foosnæs, Anders; Xu, Zhao

    2009-01-01

    Electric vehicles (EVs) provide a unique opportunity to reduce the CO2-emissions from the transport sector. At the same time, EVs have the potential to play an important role in an economic and reliable operation of an electricity system with high penetration of renewable energy. EVs...

  19. Advantages of ground-to-space laser power beaming

    Science.gov (United States)

    Rather, John D. G.

    1992-01-01

    NASA's current research activities to evaluate laser power beaming systems are reviewed. Applications of such systems are considered, including communications satellites, radar and direct broadcast satellites, space transfer vehicles lunar base operations and exploration, and optical technologies. The current laser power beaming program within the NASA Headquarters Office of Aeronautics and Space Technology is addressed.

  20. New vision system and navigation algorithm for an autonomous ground vehicle

    Science.gov (United States)

    Tann, Hokchhay; Shakya, Bicky; Merchen, Alex C.; Williams, Benjamin C.; Khanal, Abhishek; Zhao, Jiajia; Ahlgren, David J.

    2013-12-01

    Improvements were made to the intelligence algorithms of an autonomously operating ground vehicle, Q, which competed in the 2013 Intelligent Ground Vehicle Competition (IGVC). The IGVC required the vehicle to first navigate between two white lines on a grassy obstacle course, then pass through eight GPS waypoints, and pass through a final obstacle field. Modifications to Q included a new vision system with a more effective image processing algorithm for white line extraction. The path-planning algorithm adopted the vision system, creating smoother, more reliable navigation. With these improvements, Q successfully completed the basic autonomous navigation challenge, finishing tenth out of over 50 teams.

  1. The Integrated Solar Upper Stage engine ground demonstration power management and distribution subsystem design

    Science.gov (United States)

    Baez, Anastacio N.; Kimnach, Greg L.

    1997-01-01

    The National Aeronautics and Space Administration (NASA), the Air Force Phillips Laboratory (PL), and the Defense Special Weapons Agency (DSWA) in a joint effort are developing technologies for a solar bimodal system. A solar bimodal system combines thermal propulsion and electric power generation in a single integrated system. A spacecraft Integrated Solar Upper Stage (ISUS) bimodal system combines orbital transfer propulsion, electric power generation, and on-board propulsion into one overall system. A key benefit of such integrated system is the augmentation of payload to spacecraft mass ratio thus resulting in lower launch vehicle requirements. Scaling down to smaller launch vehicles increases space access by reducing overall mission cost. The NASA/PL/DSWA ISUS program is concentrating efforts on a near-term ground test demonstration of the bimodal concept. A successful ground demonstration of the ISUS various technologies will enable a full system flight demonstration of the bimodal concept. NASA Lewis Research Center in Cleveland Ohio will be the site for the engine ground demonstrator (EGD). The ISUS bimodal system uses solar concentrators to focus solar energy into an integrated receiver, absorber, and converter (RAC) power plant. The power plant main body is a graphite blackbody that stores thermal energy within a cavity in its main core. During the propulsion phase of the bimodal system a propellant flows into the graphite main core and is distributed uniformly through axial flow channels in the heated cavity. The blackbody core heats the propellant that is then discharged into an output tube thus creating thrust. An array of thermionic generators encircles the graphite core cavity and provides electrical energy conversion functions during the power generation phase. The power management and distribution subsystem's main functions are to condition raw electrical power generated by the RAC power plant and deliver it to the spacecraft payloads. This paper

  2. A study on the nondestructive test optimum design for a ground tracked combat vehicle

    Energy Technology Data Exchange (ETDEWEB)

    Kim Byeong Ho; Seo, Jae Hyun; Gil, Hyeon Jun [Defence Agency for Technology and Quality, Seoul (Korea, Republic of); Kim, Seon Hyeong [Hanwha Techwin Co.,Ltd., Changwon (Korea, Republic of); Seo, Sang Chul [Changwon National University, Changwon (Korea, Republic of)

    2015-10-15

    In this study, a nondestructive test (NDT) is performed to inspect the optimal design of a ground tracked combat vehicle for self-propelled artillery, tank, and armored vehicles. The minimum qualification required for personnel performing the NDT of a ground tracked combat vehicle was initially established in US military standards, and then applied to the Korean defense specifications to develop a ground tracked combat vehicle. However, the qualification standards of an NDT inspector have been integrated into NAS410 through the military and commercial specifications unification project that were applied in the existing aerospace/defense industry public standard. The design method for this study was verified by applying the optimal design to the liquid penetrant testing Al forging used in self-propelled artillery. This confirmed the reliability and soundness of the product.

  3. Power sources for autonomous underwater vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Hasvold, OEistein; Stoerkersen, Nils J.; Forseth, Sissel; Lian, Torleif [Forsvarets forskningsinstitutt, FFI (Norwegian Defence Research Establishment), P.O. Box 25, N-2027 Kjeller (Norway)

    2006-11-22

    The paper addresses the general requirements for power sources for AUVs, including battery and semi-fuel cell design and safety considerations. The focus is on the last AUV in the HUGIN family: the HUGIN 1000 mine reconnaissance system. For this AUV, FFI recently developed a pressure tolerant lithium ion battery based on commercially available polymer cells. The Royal Norwegian Navy has been operating HUGIN 1000 since February 2004. (author)

  4. Real-Time and High-Fidelity Simulation Environment for Autonomous Ground Vehicle Dynamics

    Science.gov (United States)

    Cameron, Jonathan; Myint, Steven; Kuo, Calvin; Jain, Abhi; Grip, Havard; Jayakumar, Paramsothy; Overholt, Jim

    2013-01-01

    This paper reports on a collaborative project between U.S. Army TARDEC and Jet Propulsion Laboratory (JPL) to develop a unmanned ground vehicle (UGV) simulation model using the ROAMS vehicle modeling framework. Besides modeling the physical suspension of the vehicle, the sensing and navigation of the HMMWV vehicle are simulated. Using models of urban and off-road environments, the HMMWV simulation was tested in several ways, including navigation in an urban environment with obstacle avoidance and the performance of a lane change maneuver.

  5. A new controller for battery-powered electric vehicles

    Science.gov (United States)

    Belsterling, C. A.; Stone, J.

    1980-01-01

    This paper describes the development, under a NASA/DOE contract, of a new concept for efficient and reliable control of battery-powered vehicles. It avoids the detrimental effects of pulsed-power controllers like the SCR 'chopper' by using rotating machines to meter continuous currents to the traction motor. The concept is validated in a proof-of-principle demonstration system and a complete vehicle is simulated on an analog computer. Test results show exceptional promise for a full-scale system. Optimum control strategies to minimize controller weight are developed by means of the simulated vehicle. The design for an Engineering Model is then prepared in the form of a practical, compact two-bearing package with forced air cooling. Predicted performance is outstanding, with controller efficiency of over 90% at high speed.

  6. Road-Following Formation Control of Autonomous Ground Vehicles

    Science.gov (United States)

    Ono, Masahiro; Droge, Greg; Grip, Havard; Toupet, Olivier; Scrapper, Chris; Rahmani, Amir

    2015-01-01

    This work presents a novel cooperative path planning for formation keeping robots traversing along a road with obstacles and possible narrow passages. A unique challenge in this problem is a requirement for spatial and temporal coordination between vehicles while ensuring collision and obstacle avoidance.

  7. Passive Fuel Tank Inerting Systems for Ground Combat Vehicles

    Science.gov (United States)

    1988-09-01

    34Fire Protection Handbook,"Natioaal girt Pro~dction Association (NFPA), 14th es., Dos on, cu (January 1976) 25 American Petroleum Institute, API ...System on the X60 Series Combat Vehicles," Report No. 79-04A, U.S. Army Tank Automotive Research and Development I Command, DRDTA-V, Warren, MI (October

  8. Landmark-Based Navigation of an Unmanned Ground Vehicle (UGV)

    Science.gov (United States)

    2009-03-01

    against large measurement errors. 20090710280 RELEASE LIMITATION Approved for public release 4p fv^-Jo-osiit? Published by Weapons Systems Division...achieved as numerous low cost gyroscopes in the market meet this requirement. 24 DSTO-TR-2260 3.5.4 Sensitivity to Vehicle Speed In this subsection

  9. Demonstration of Tar Removal from Paving Equipment and Ground Vehicles

    Science.gov (United States)

    2011-05-12

    difficult job . Red River Army Depot has about 25 vehicles for refurbishing. Other equipment can also be recovered if a convenient solvent and process...solvents including ethyl lactate , dibasic esters, and X-Force were tested with little success. An aqueous solution formulated with

  10. Space vehicle field unit and ground station system

    Energy Technology Data Exchange (ETDEWEB)

    Judd, Stephen; Dallmann, Nicholas; Delapp, Jerry; Proicou, Michael; Seitz, Daniel; Michel, John; Enemark, Donald

    2017-09-19

    A field unit and ground station may use commercial off-the-shelf (COTS) components and share a common architecture, where differences in functionality are governed by software. The field units and ground stations may be easy to deploy, relatively inexpensive, and be relatively easy to operate. A novel file system may be used where datagrams of a file may be stored across multiple drives and/or devices. The datagrams may be received out of order and reassembled at the receiving device.

  11. Space vehicle field unit and ground station system

    Science.gov (United States)

    Judd, Stephen; Dallmann, Nicholas; Delapp, Jerry; Proicou, Michael; Seitz, Daniel; Michel, John; Enemark, Donald

    2016-10-25

    A field unit and ground station may use commercial off-the-shelf (COTS) components and share a common architecture, where differences in functionality are governed by software. The field units and ground stations may be easy to deploy, relatively inexpensive, and be relatively easy to operate. A novel file system may be used where datagrams of a file may be stored across multiple drives and/or devices. The datagrams may be received out of order and reassembled at the receiving device.

  12. Impacts and Utilization of Electric Vehicles Integration Into Power Systems

    Institute of Scientific and Technical Information of China (English)

    HUZechun; SONG Yonghua; XU Zhiwei; LUO Zhuowei; ZHAN Kaiqiao; JIA Long

    2012-01-01

    With the increasing of electric vehicles (EVs) penetration in power grids, the charging of EVs will have significant impacts on power system planning and operation. It is necessary to note that the majority of EVs are not in use in most of the time in a day. Therefore, the onboard batteries can be utilized as energy storage devices. This article reviews and discusses the current related research in the following areas.

  13. Electrically powered automotive vehicle with an energy recovering apppartus

    OpenAIRE

    Chevroulet, Tristan; Damminger, Ludwig

    1994-01-01

    Electrically driven motor vehicle, comprising mechanical means for braking the driving wheel and at least one electric motor. System for transfering brake energy into air-conditioning device. Enhances electro brake capabilities, provides controlled dissipation means, enables energy recovery & management. Improves accumulator lifetime (limits power surges due to braking). SMH - MCC Smart car concepts (electic & hybrid)

  14. ADОPTIVE CONTROL OF THE HYBRID VEHICLE POWER UNIT

    Directory of Open Access Journals (Sweden)

    S. Serikov

    2014-10-01

    Full Text Available The problem of adaptive control of the hybrid vehicle power unit, which makes it possible to minimize the quality criterion under constraints on the state parameters and the control vector is considered. A formal statement of the optimization problem is given. The solution of this problem by the method of neural network control based on the adaptive criticism is considered.

  15. Wireless power transfer for electric vehicles and mobile devices

    CERN Document Server

    Rim, Chun T

    2017-01-01

    From mobile, cable-free re-charging of electric vehicles, smart phones and laptops to collecting solar electricity from orbiting solar farms, wireless power transfer (WPT) technologies offer consumers and society enormous benefits. Written by innovators in the field, this comprehensive resource explains the fundamental principles and latest advances in WPT and illustrates key applications of this emergent technology.

  16. Influence of wind power, plug-in electric vehicles, and heat storages on power system investments

    DEFF Research Database (Denmark)

    Kiviluoma, Juha; Meibom, Peter

    2010-01-01

    electric vehicles. The model runs in an hourly time scale in order to accommodate the impact of variable power production from wind power. Electric vehicles store electricity for later use and can thus serve to increase the flexibility of the power system. Flexibility can also be upgraded by using heat...... storages with heat from heat pumps, electric heat boilers and combined heat and power (CHP) plants. Results show that there is great potential for additional power system flexibility in the production and use of heat.......Due to rising fuel costs, the substantial price for CO2 emissions and decreasing wind power costs, wind power might become the least expensive source of power for an increasing number of power systems. This poses the questions of how wind power might change optimal investments in other forms...

  17. Power Base of Unmanned Aerial Vehicles

    Directory of Open Access Journals (Sweden)

    A. A. Laptsevich

    2011-01-01

    Full Text Available A molecular-kinetic approach to an analysis of thermal energy converters has been developed in the paper. The approach allows to carry out a computer simulation under various conditions of converter application. The paper considers possibilities to improve heat engines and electro-dynamic motors. It has been revealed that an increase of the UAV flight time can be achieved not only through an efficient usage of energy generated during fuel combustion but also through arrangement of open power systems that implement a heat pump principle. A prospect concerning energy development of transport facilities is to create interconnected systems of open-type with application of heat pumps. 

  18. Power productivity of the ground surface

    Directory of Open Access Journals (Sweden)

    Gutu A.I.

    2008-12-01

    Full Text Available Here there is presented an attempt to estimate the efficiency degree when working with soil surface through the different methods of valorization incident solar radiation. Such technical methods are being analyzed as (solar collectors, photovoltaic cells, solar thermal power plants, power cultures field (bushes, wheat, sunflower, maize, rape, sorghum as well as microalgae crops. Here is the description of advantages and disadvantages for each group in part out of these three. The technical methods are up to date from the efficiency utilization view-point of industrial area. Microalgae crops are similar to technical methods from this point of view.

  19. Simulation of Ground Winds Time Series for the NASA Crew Launch Vehicle (CLV)

    Science.gov (United States)

    Adelfang, Stanley I.

    2008-01-01

    Simulation of wind time series based on power spectrum density (PSD) and spectral coherence models for ground wind turbulence is described. The wind models, originally developed for the Shuttle program, are based on wind measurements at the NASA 150-m meteorological tower at Cape Canaveral, FL. The current application is for the design and/or protection of the CLV from wind effects during on-pad exposure during periods from as long as days prior to launch, to seconds or minutes just prior to launch and seconds after launch. The evaluation of vehicle response to wind will influence the design and operation of constraint systems for support of the on-pad vehicle. Longitudinal and lateral wind component time series are simulated at critical vehicle locations. The PSD model for wind turbulence is a function of mean wind speed, elevation and temporal frequency. Integration of the PSD equation over a selected frequency range yields the variance of the time series to be simulated. The square root of the PSD defines a low-pass filter that is applied to adjust the components of the Fast Fourier Transform (FFT) of Gaussian white noise. The first simulated time series near the top of the launch vehicle is the inverse transform of the adjusted FFT. Simulation of the wind component time series at the nearest adjacent location (and all other succeeding next nearest locations) is based on a model for the coherence between winds at two locations as a function of frequency and separation distance, where the adjacent locations are separated vertically and/or horizontally. The coherence function is used to calculate a coherence weighted FFT of the wind at the next nearest location, given the FFT of the simulated time series at the previous location and the essentially incoherent FFT of the wind at the selected location derived a priori from the PSD model. The simulated time series at each adjacent location is the inverse Fourier transform of the coherence weighted FFT. For a selected

  20. Coupling Electric Vehicles and Power Grid through Charging-In-Motion and Connected Vehicle Technology

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jan-Mou [ORNL; Jones, Perry T [ORNL; Onar, Omer C [ORNL; Starke, Michael R [ORNL

    2014-01-01

    A traffic-assignment-based framework is proposed to model the coupling of transportation network and power grid for analyzing impacts of energy demand from electric vehicles on the operation of power distribution. Although the reverse can be investigated with the proposed framework as well, electricity flowing from a power grid to electric vehicles is the focus of this paper. Major variables in transportation network (including link flows) and power grid (including electricity transmitted) are introduced for the coupling. Roles of charging-in-motion technology and connected vehicle technology have been identified in the framework of supernetwork. A linkage (i.e. individual energy demand) between the two networks is defined to construct the supernetwork. To determine equilibrium of the supernetwork can also answer how many drivers are going to use the charging-in-motion services, in which locations, and at what time frame. An optimal operation plan of power distribution will be decided along the determination simultaneously by which we have a picture about what level of power demand from the grid is expected in locations during an analyzed period. Caveat of the framework and possible applications have also been discussed.

  1. Simultaneous Planning and Control for Autonomous Ground Vehicles

    Science.gov (United States)

    2009-02-01

    obstacle avoidance were not part of the problem. Pioneering work was done by Dubins during the late 1950’s. He proved that optimal paths connecting a car...motion. Reeds and Shepp extended the work of Dubins to include motion for a vehicle traveling both forwards and backwards [REE91]. There are several...use of receding horizon control for electro -mechanical systems. This limitation is primarily due to the time critical nature of the required control

  2. Dynamic Wireless Power Transfer System For The Unmanned Aerial Vehicles

    OpenAIRE

    Lee, Tae Sup

    2014-01-01

    UAVs have limitless applications to help our daily lives for the autonomous operations. UAVs have a limited power capacity due to weight constraints and are therefore not able to travel long distances. Ground stations for recharging UAVs throughout different points can increase the flight time of the UAVs with the current UAV battery capacity. This study investigates how the wireless charging system for the ground station can be made more robust when there are misalignments. The wireless char...

  3. NASA Planning for Orion Multi-Purpose Crew Vehicle Ground Operations

    Science.gov (United States)

    Letchworth, Gary; Schlierf, Roland

    2011-01-01

    The NASA Orion Ground Processing Team was originally formed by the Kennedy Space Center (KSC) Constellation (Cx) Project Office's Orion Division to define, refine and mature pre-launch and post-landing ground operations for the Orion human spacecraft. The multidisciplined KSC Orion team consisted of KSC civil servant, SAIC, Productivity Apex, Inc. and Boeing-CAPPS engineers, project managers and safety engineers, as well as engineers from Constellation's Orion Project and Lockheed Martin Orion Prime contractor. The team evaluated the Orion design configurations as the spacecraft concept matured between Systems Design Review (SDR), Systems Requirement Review (SRR) and Preliminary Design Review (PDR). The team functionally decomposed prelaunch and post-landing steps at three levels' of detail, or tiers, beginning with functional flow block diagrams (FFBDs). The third tier FFBDs were used to build logic networks and nominal timelines. Orion ground support equipment (GSE) was identified and mapped to each step. This information was subsequently used in developing lower level operations steps in a Ground Operations Planning Document PDR product. Subject matter experts for each spacecraft and GSE subsystem were used to define 5th - 95th percentile processing times for each FFBD step, using the Delphi Method. Discrete event simulations used this information and the logic network to provide processing timeline confidence intervals for launch rate assessments. The team also used the capabilities of the KSC Visualization Lab, the FFBDs and knowledge of the spacecraft, GSE and facilities to build visualizations of Orion pre-launch and postlanding processing at KSC. Visualizations were a powerful tool for communicating planned operations within the KSC community (i.e., Ground Systems design team), and externally to the Orion Project, Lockheed Martin spacecraft designers and other Constellation Program stakeholders during the SRR to PDR timeframe. Other operations planning

  4. Unmanned air/ground vehicles heterogeneous cooperative techniques:Current status and prospects

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Multiple unmanned air/ground vehicles heterogeneous cooperation is a novel and challenging filed.Heterogeneous cooperative techniques can widen the application fields of unmanned air or ground vehicles,and enhance the effectiveness of implementing detection,search and rescue tasks.This paper mainly focused on the key issues in multiple unmanned air/ground vehicles heterogeneous cooperation,including heterogeneous flocking,formation control,formation stability,network control,and actual applications.The main problems and future directions in this field were also analyzed in detail.These innovative technologies can significantly enhance the effectiveness of implementing complicated tasks,which definitely provide a series of novel breakthroughs for the intelligence,integration and advancement of future robot systems.

  5. Power quality considerations for nuclear spectroscopy applications: Grounding

    Energy Technology Data Exchange (ETDEWEB)

    García-Hernández, J.M., E-mail: josemanuel.garcia@inin.gob.mx [Instituto Nacional de Investigaciones Nucleares, ININ, Carretera México-Toluca S/N, La Marquesa, Ocoyoacac, 52750 Estado de México, México (Mexico); Instituto Tecnológico de Toluca, Departamento de Estudios de Posgrado e Investigación, Av. Tecnológico S/N, ExRancho La Virgen, 52140 Metepec, México (Mexico); Ramírez-Jiménez, F.J., E-mail: fjr@ieee.org [Instituto Nacional de Investigaciones Nucleares, ININ, Carretera México-Toluca S/N, La Marquesa, Ocoyoacac, 52750 Estado de México, México (Mexico); Instituto Tecnológico de Toluca, Departamento de Estudios de Posgrado e Investigación, Av. Tecnológico S/N, ExRancho La Virgen, 52140 Metepec, México (Mexico); Mondragón-Contreras, L.; López-Callejas, R. [Instituto Nacional de Investigaciones Nucleares, ININ, Carretera México-Toluca S/N, La Marquesa, Ocoyoacac, 52750 Estado de México, México (Mexico); Instituto Tecnológico de Toluca, Departamento de Estudios de Posgrado e Investigación, Av. Tecnológico S/N, ExRancho La Virgen, 52140 Metepec, México (Mexico); Torres-Bribiesca, M.A. [Instituto Nacional de Investigaciones Nucleares, ININ, Carretera México-Toluca S/N, La Marquesa, Ocoyoacac, 52750 Estado de México, México (Mexico); and others

    2013-11-21

    Traditionally the electrical installations are designed for supplying power and to assure the personnel safety. In nuclear analysis laboratories, additional issues about grounding also must be considered for proper operation of high resolution nuclear spectroscopy systems. This paper shows the traditional ways of grounding nuclear spectroscopy systems and through different scenarios, it shows the effects on the more sensitive parameter of these systems: the energy resolution, it also proposes the constant monitoring of a power quality parameter as a way to preserve or to improve the resolution of the systems, avoiding the influence of excessive extrinsic noise. -- Highlights: •We analyze the performance of nuclear spectroscopy systems with different configurations of the grounding system. •The neutral to ground voltage is an indicator of the ground conditions, a high value may contribute to the increase of the FWHM in nuclear spectroscopy systems. •The use of an isolated ground system is the best option to preserve the best FWHM value. •The application of power quality concepts can help to guaranty the best configuration of the grounding system.

  6. Design and performance of a prototype fuel cell powered vehicle

    Energy Technology Data Exchange (ETDEWEB)

    Lehman, P.A.; Chamberlin, C.E. [Humboldt State Univ., Arcata, CA (United States)

    1996-12-31

    The Schatz Energy Research Center (SERC) is now engaged in the Palm Desert Renewable Hydrogen Transportation System Project. The Project involves a consortium which includes the City of Palm Desert, SERC, the U.S. Department of Energy, the South Coast Air Quality Management District, and Sandia and Lawrence Livermore National Laboratories. Its goal to develop a clean and sustainable transportation system for a community will be accomplished by producing a fleet of fuel cell vehicles, installing a refueling infrastructure utilizing hydrogen generated from solar and wind power, and developing and staffing a fuel cell service and diagnostic center. We will describe details of the project and performance goals for the fuel cell vehicles and associated peripheral systems. In the past year during the first stage in the project, SERC has designed and built a prototype fuel cell powered personal utility vehicle (PUV). These steps included: (1) Designing, building, and testing a 4.0 kW proton exchange membrane (PEM) fuel cell as a power plant for the PUV. (2) Designing, building and testing peripherals including the air delivery, fuel storage/delivery, refueling, water circulation, cooling, and electrical systems. (3) Devising a control algorithm for the fuel cell power plant in the PUV. (4) Designing and building a test bench in which running conditions in the PUV could be simulated and the fuel cell and its peripheral systems tested. (5) Installing an onboard computer and associated electronics into the PUV (6) Assembling and road testing the PUV.

  7. Design and performance of a prototype fuel cell powered vehicle

    Energy Technology Data Exchange (ETDEWEB)

    Lehman, P.A.; Chamberlin, C.E. [Humboldt State Univ., Arcata, CA (United States)

    1996-12-31

    The Schatz Energy Research Center (SERC) is now engaged in the Palm Desert Renewable Hydrogen Transportation System Project. The Project involves a consortium which includes the City of Palm Desert, SERC, the U.S. Department of Energy, the South Coast Air Quality Management District, and Sandia and Lawrence Livermore National Laboratories. Its goal to develop a clean and sustainable transportation system for a community will be accomplished by producing a fleet of fuel cell vehicles, installing a refueling infrastructure utilizing hydrogen generated from solar and wind power, and developing and staffing a fuel cell service and diagnostic center. We will describe details of the project and performance goals for the fuel cell vehicles and associated peripheral systems. In the past year during the first stage in the project, SERC has designed and built a prototype fuel cell powered personal utility vehicle (PUV). These steps included: (1) Designing, building, and testing a 4.0 kW proton exchange membrane (PEM) fuel cell as a power plant for the PUV. (2) Designing, building and testing peripherals including the air delivery, fuel storage/delivery, refueling, water circulation, cooling, and electrical systems. (3) Devising a control algorithm for the fuel cell power plant in the PUV. (4) Designing and building a test bench in which running conditions in the PUV could be simulated and the fuel cell and its peripheral systems tested. (5) Installing an onboard computer and associated electronics into the PUV (6) Assembling and road testing the PUV.

  8. Near real-time operation of public image database for ground vehicle navigation

    Science.gov (United States)

    Ali, E.; Kozaitis, S. P.

    2015-02-01

    An effective color night vision system for ground vehicle navigation should operate in near real-time to be practical. We described a system that uses a public database as a source of color information to colorize night vision imagery. Such an approach presents several problems due to differences between acquired and reference imagery. Our system performed registration, colorizing, and reference updating in near real-time in an effort to help drivers of ground vehicles during night to see a colored view of a scene.

  9. Reactor Power for Large Displacement Autonomous Underwater Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    McClure, Patrick Ray [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Reid, Robert Stowers [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Poston, David Irvin [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dasari, Venkateswara Rao [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-08-24

    This is a PentaChart on reactor power for large displacement autonomous underwater vehicles. Currently AUVs use batteries or combinations of batteries and fuel cells for power. Battery/fuel cell technology is limited by duration. Batteries and cell fuels are a good match for some missions, but other missions could benefit greatly by a longer duration. The goal is the following: to design nuclear systems to power an AUV and meet design constraints including non-proliferation issues, power level, size constraints, and power conversion limitations. The action plan is to continue development of a range of systems for terrestrial systems and focus on a system for Titan Moon as alternative to Pu-238 for NASA.

  10. Impact of grounding and filtering on power insulation monitoring in insulated terrestrial power networks

    NARCIS (Netherlands)

    van Vugt, Pieter Karel Anton; Bijman, Rob; Timens, R.B.; Leferink, Frank Bernardus Johannes

    2013-01-01

    Insulated terrestrial power networks are used for reliable systems such as large production plants, hospital operating rooms and naval ships. The system is isolated from ground and a first fault, such as a short circuit between a phase and ground, will not result in disconnection of the power via

  11. Review on Automotive Power Generation System on Plug-in Hybrid Electric Vehicles & Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Leong Yap Wee

    2016-01-01

    Full Text Available Regenerative braking is a function to recharge power bank on the Plug-in electric vehicles (PHEV and electric vehicles (EV. The weakness of this system is, it can only perform its function when the vehicle is slowing down or by stepping the brake foot pedal. In other words, the electricity recharging system is inconsistent, non-continuous and geography dependent. To overcome the weakness of the regenerative braking system, it is suggested that to apply another generator which is going to be parallel with the regenerative braking system so that continuous charging can be achieved. Since the ironless electricity generator has a less counter electromotive force (CEMF comparing to an ironcored electricity generator and no cogging torque. Applying the ironless electricity generator parallel to the regenerative braking system is seen one of the options which creates sustainable charging system compared to cored electricity generator.

  12. Cooperative Surveillance and Pursuit Using Unmanned Aerial Vehicles and Unattended Ground Sensors

    Science.gov (United States)

    Las Fargeas, Jonathan; Kabamba, Pierre; Girard, Anouck

    2015-01-01

    This paper considers the problem of path planning for a team of unmanned aerial vehicles performing surveillance near a friendly base. The unmanned aerial vehicles do not possess sensors with automated target recognition capability and, thus, rely on communicating with unattended ground sensors placed on roads to detect and image potential intruders. The problem is motivated by persistent intelligence, surveillance, reconnaissance and base defense missions. The problem is formulated and shown to be intractable. A heuristic algorithm to coordinate the unmanned aerial vehicles during surveillance and pursuit is presented. Revisit deadlines are used to schedule the vehicles' paths nominally. The algorithm uses detections from the sensors to predict intruders' locations and selects the vehicles' paths by minimizing a linear combination of missed deadlines and the probability of not intercepting intruders. An analysis of the algorithm's completeness and complexity is then provided. The effectiveness of the heuristic is illustrated through simulations in a variety of scenarios. PMID:25591168

  13. Advanced underground Vehicle Power and Control: The locomotive Research Platform

    Energy Technology Data Exchange (ETDEWEB)

    Vehicle Projects LLC

    2003-01-28

    Develop a fuelcell mine locomotive with metal-hydride hydrogen storage. Test the locomotive for fundamental limitations preventing successful commercialization of hydride fuelcells in underground mining. During Phase 1 of the DOE-EERE sponsored project, FPI and its partner SNL, completed work on the development of a 14.4 kW fuelcell power plant and metal-hydride energy storage. An existing battery-electric locomotive with similar power requirements, minus the battery module, was used as the base vehicle. In March 2001, Atlas Copco Wagner of Portland, OR, installed the fuelcell power plant into the base vehicle and initiated integration of the system into the vehicle. The entire vehicle returned to Sandia in May 2001 for further development and integration. Initial system power-up took place in December 2001. A revision to the original contract, Phase 2, at the request of DOE Golden Field Office, established Vehicle Projects LLC as the new prime contractor,. Phase 2 allowed industry partners to conduct surface tests, incorporate enhancements to the original design by SNL, perform an extensive risk and safety analysis, and test the fuelcell locomotive underground under representative production mine conditions. During the surface tests one of the fuelcell stacks exhibited reduced power output resulting in having to replace both fuelcell stacks. The new stacks were manufactured with new and improved technology resulting in an increase of the gross power output from 14.4 kW to 17 kW. Further work by CANMET and Hatch Associates, an engineering consulting firm specializing in safety analysis for the mining industry, both under subcontract to Vehicle Projects LLC, established minimum requirements for underground testing. CANMET upgraded the Programmable Logic Control (PLC) software used to monitor and control the fuelcell power plant, taking into account locomotive operator's needs. Battery Electric, a South Africa manufacturer, designed and manufactured (at no cost

  14. Cooling System Design for PEM Fuel Cell Powered Air Vehicles

    Science.gov (United States)

    2010-06-18

    radiator #7. The fan blades and shroud were formed using stereo lithography; the fan motor was a brushless DC motor with motor controller. These...Naval Research Laboratory Washington, DC 20375-5320 NRL/MR/6110--10-9253 Cooling System Design for PEM Fuel Cell Powered Air Vehicles June 18, 2010...Stroman, Michael W. Schuette,* and Gregory S. Page† Naval Research Laboratory 4555 Overlook Avenue, SW Washington, DC 20375-5342 NRL/MR/6110--10-9253

  15. Integrated vehicle control and guidance systems in unmanned ground vehicles for commercial applications

    Science.gov (United States)

    Kenyon, Chase H.

    1995-01-01

    While there is a lot of recent development in the entire IVHS field, very few have had the opportunity to combine the many areas of development into a single integrated `intelligent' unmanned vehicle. One of our systems was developed specifically to serve a major automobile manufacturer's need for an automated vehicle chassis durability test facility. Due to the severity of the road surface human drivers could not be used. A totally automated robotic vehicle driver and guidance system was necessary. In order to deliver fixed price commercial projects now, it was apparent system and component costs were of paramount importance. Cyplex has developed a robust, cost effective single wire guidance system. This system has inherent advantages in system simplicity. Multi-signal (per vehicle lane) systems complicate path planning and layout when multiple lanes and lane changes are required, as on actual highways. The system has demonstrated high enough immunity to rain and light snow cover that normal safety reductions in speed are adequate to stay within the required system performance envelope. This system and it's antenna interface have shown the ability to guide the vehicle at slow speeds (10 MPH) with a tracking repeatability of plus or minus 1/8 of an inch. The basic guide and antenna system has been tested at speeds up to 80 mph. The system has inherently superior abilities for lane changes and precision vehicle placement. The operation of this system will be described and the impact of a system that is commercially viable now for highway and off road use will be discussed.

  16. Electric vehicles to support large wind power penetration in future danish power systems

    DEFF Research Database (Denmark)

    Pillai, Jayakrishnan Radhakrishna; Bak-Jensen, Birgitte; Thøgersen, Paul

    2012-01-01

    Electric Vehicles (EVs) could play major role in the future intelligent grids to support a large penetration of renewable energy in Denmark, especially electricity production from wind turbines. The future power systems aims to phase-out big conventional fossil-fueled generators with large number...... and generation. This paper analyses power balancing support services from EVs and the feasible levels of electric vehicle integration possible to provide grid ancillary services in Danish power systems. This evaluation is conducted on typical wind dominated distribution and transmission networks in Denmark...

  17. Inexpensive semi-autonomous ground vehicles for defusing IEDs

    Science.gov (United States)

    Davenport, Chris; Lodmell, James; Womble, Phillip C.; Barzilov, Alexander; Paschal, Jon; Hernandez, Robert; Moss, Kyle T.; Hopper, Lindsay

    2008-04-01

    Improvised explosive devices (IEDs) are an important concern to coalition forces during the conflicts in the Middle East. These devices are responsible for many casualties to American armed forces in the Middle East. These explosives are particularly dangerous because they are improvised with materials readily available to the designer, and there is no systematic way of explosive ordinance disposal. IEDs can be made from things such as standard military ammunition and can be detonated with common electronic devices such as cell phones and garage door openers. There is a great need for a low cost solution to neutralize these IEDs. At the Applied Physics Institute we are building a single function disrupter robot whose sole purpose is to neutralize these IEDs. We are modifying a toy remote control car to control it either wirelessly using WI-FI (IEEE 802.11) or wired by tethering the vehicle with an Ethernet cable (IEEE 802.3). The robot will be equipped with a high velocity fuze disrupter to neutralize the IED as well as a video camera for inspection and aiming purposes. This robot utilizes commercial-off-the-shelf (COTS) components which keeps the cost relatively low. Currently, similar robot systems have been deployed in Iraq and elsewhere but their method of operation is such that it is impractical to use in non-combat situations. We will discuss our design and possible deployment scenarios.

  18. Color night vision system for ground vehicle navigation

    Science.gov (United States)

    Ali, E. A.; Qadir, H.; Kozaitis, S. P.

    2014-06-01

    Operating in a degraded visual environment due to darkness can pose a threat to navigation safety. Systems have been developed to navigate in darkness that depend upon differences between objects such as temperature or reflectivity at various wavelengths. However, adding sensors for these systems increases the complexity by adding multiple components that may create problems with alignment and calibration. An approach is needed that is passive and simple for widespread acceptance. Our approach uses a type of augmented display to show fused images from visible and thermal sensors that are continuously updated. Because the raw fused image gave an unnatural color appearance, we used a color transfer process based on a look-up table to replace the false colors with a colormap derived from a daytime reference image obtained from a public database using the GPS coordinates of the vehicle. Although the database image was not perfectly registered, we were able to produce imagery acquired at night that appeared with daylight colors. Such an approach could improve the safety of nighttime navigation.

  19. Analysis of the Effects of Vitiates on Surface Heat Flux in Ground Tests of Hypersonic Vehicles

    Science.gov (United States)

    Cuda, Vincent; Gaffney, Richard L

    2008-01-01

    To achieve the high enthalpy conditions associated with hypersonic flight, many ground test facilities burn fuel in the air upstream of the test chamber. Unfortunately, the products of combustion contaminate the test gas and alter gas properties and the heat fluxes associated with aerodynamic heating. The difference in the heating rates between clean air and a vitiated test medium needs to be understood so that the thermal management system for hypersonic vehicles can be properly designed. This is particularly important for advanced hypersonic vehicle concepts powered by air-breathing propulsion systems that couple cooling requirements, fuel flow rates, and combustor performance by flowing fuel through sub-surface cooling passages to cool engine components and preheat the fuel prior to combustion. An analytical investigation was performed comparing clean air to a gas vitiated with methane/oxygen combustion products to determine if variations in gas properties contributed to changes in predicted heat flux. This investigation started with simple relationships, evolved into writing an engineering-level code, and ended with running a series of CFD cases. It was noted that it is not possible to simultaneously match all of the gas properties between clean and vitiated test gases. A study was then conducted selecting various combinations of freestream properties for a vitiated test gas that matched clean air values to determine which combination of parameters affected the computed heat transfer the least. The best combination of properties to match was the free-stream total sensible enthalpy, dynamic pressure, and either the velocity or Mach number. This combination yielded only a 2% difference in heating. Other combinations showed departures of up to 10% in the heat flux estimate.

  20. Unmanned Ground Vehicle Navigation and Coverage Hole Patching in Wireless Sensor Networks

    Science.gov (United States)

    Zhang, Guyu

    2013-01-01

    This dissertation presents a study of an Unmanned Ground Vehicle (UGV) navigation and coverage hole patching in coordinate-free and localization-free Wireless Sensor Networks (WSNs). Navigation and coverage maintenance are related problems since coverage hole patching requires effective navigation in the sensor network environment. A…

  1. Foundations for learning and adaptation in a multi-degree-of-freedom unmanned ground vehicle

    Science.gov (United States)

    Blackburn, Michael R.; Bailey, Richard

    2004-04-01

    The real-time coordination and control of a many motion degrees of freedom (dof) unmanned ground vehicle under dynamic conditions in a complex environment is nearly impossible for a human operator to accomplish. Needed are adaptive on-board mechanisms to quickly complete sensor-effector loops to maintain balance and leverage. This paper contains a description of our approach to the control problem for a small unmanned ground vehicle with six dof in the three spatial dimensions. Vehicle control is based upon seven fixed action patterns that exercise all of the motion dof of which the vehicle is capable, and five basic reactive behaviors that protect the vehicle during operation. The reactive behaviors demonstrate short-term adaptations. The learning processes for long-term adaptations of the vehicle control functions that we are implementing are composed of classical and operant conditionings of novel responses to information available from distance sensors (vision and audition) built upon the pre-defined fixed action patterns. The fixed action patterns are in turn modulated by the pre-defined low-level reactive behaviors that, as unconditioned responses, continuously serve to maintain the viability of the robot during the activations of the fixed action patterns, and of the higher-order (conditioned) behaviors. The sensors of the internal environment that govern the low-level reactive behaviors also serve as the criteria for operant conditioning, and satisfy the requirement for basic behavioral motivation.

  2. Operational considerations for a crewed nuclear powered space transportation vehicle

    Science.gov (United States)

    Borrer, Jerry L.; Hoffman, Stephen J.

    1993-01-01

    Applying nuclear propulsion technology to human space travel will require new approaches to conducting human operations in space. Due to the remoteness of these types of missions, the crew and their vehicle must be capable of operating independent from Earth-based support. This paper discusses current operational studies which address methods for performing these types of remote and autonomous missions. Methods of managing the hazards to humans who will operate these high-energy nuclear-powered transportation vehicles also is reviewed. Crew training for both normal and contingency operations is considered. Options are evaluated on how best to train crews to operate and maintain the systems associated with a nuclear engine. Methods of maintaining crew proficiency during the long months of space travel are discussed. Vehicle health maintenance also will be a primary concern during these long missions. A discussion is presented on how on-board vehicle health maintenance systems will monitor system trends, identified system weaknesses, and either isolate critical failures or provide the crew with adequate warning of impending problems.

  3. A New Curb Detection Method for Unmanned Ground Vehicles Using 2D Sequential Laser Data

    Directory of Open Access Journals (Sweden)

    Jinling Wang

    2013-01-01

    Full Text Available Curb detection is an important research topic in environment perception, which is an essential part of unmanned ground vehicle (UGV operations. In this paper, a new curb detection method using a 2D laser range finder in a semi-structured environment is presented. In the proposed method, firstly, a local Digital Elevation Map (DEM is built using 2D sequential laser rangefinder data and vehicle state data in a dynamic environment and a probabilistic moving object deletion approach is proposed to cope with the effect of moving objects. Secondly, the curb candidate points are extracted based on the moving direction of the vehicle in the local DEM. Finally, the straight and curved curbs are detected by the Hough transform and the multi-model RANSAC algorithm, respectively. The proposed method can detect the curbs robustly in both static and typical dynamic environments. The proposed method has been verified in real vehicle experiments.

  4. Impact of Plug-in Hybrid Electric Vehicle on Power Distribution System Considering Vehicle to Grid Technology: A Review

    Directory of Open Access Journals (Sweden)

    A. Aljanad

    2015-08-01

    Full Text Available This study presents a comprehensive review of the potential technical impacts of plug-in hybrid electric vehicles on power distribution and transmission systems. This review also presents various power quality impacts on the power system in several aspects. This review conveys a detailed analysis of electric vehicle charging strategies on electrical distribution networks. The two charging aspects (coordinated/uncoordinated and intelligent scheduling of charging are discussed in terms of their impacts on power systems. Vehicle to grid technology are investigated, elaborated and evaluated based on technical, suitability and configuration aspects.

  5. Modeling of a Photovoltaic-Powered Electric Vehicle Charging Station with Vehicle-to-Grid Implementation

    Directory of Open Access Journals (Sweden)

    Azhar Ul-Haq

    2016-12-01

    Full Text Available This paper is aimed at modelling of a distinct smart charging station for electric vehicles (EVs that is suitable for DC quick EV charging while ensuring minimum stress on the power grid. Operation of the charging station is managed in such a way that it is either supplied by photovoltaic (PV power or the power grid, and the vehicle-to-grid (V2G is also implemented for improving the stability of the grid during peak load hours. The PV interfaced DC/DC converter and grid interfaced DC/AC bidirectional converter share a DC bus. A smooth transition of one operating mode to another demonstrates the effectiveness of the employed control strategy. Modelling and control of the different components are explained and are implemented in Simulink. Simulations illustrate the feasible behaviour of the charging station under all operating modes in terms of the four-way interaction among PV, EVs and the grid along with V2G operation. Additionally, a business model is discussed with comprehensive analysis of cost estimation for the deployment of charging facilities in a residential area. It has been recognized that EVs bring new opportunities in terms of providing regulation services and consumption flexibility by varying the recharging power at a certain time instant. The paper also discusses the potential financial incentives required to inspire EV owners for active participation in the demand response mechanism.

  6. MEASUREMENT OF AERODYNAMIC CHARACTERISTICS OF A HANG-GLIDER-WING BY GROUND RUN TESTS USING A TEST VEHICLE

    OpenAIRE

    Hozumi, Koki; KOMODA, Masaki; Ono, Takatsugu; TSUKANO, Yukichi; 穂積, 弘毅; 古茂田, 真幸; 小野, 孝次; 塚野, 雄吉

    1987-01-01

    In order to investigate longitudinal force and moment characteristics of a hang-glider-wing, ground run tests were conducted using a test vehicle. A hang-glider-wing was installed on a test vehicle using a six-components-balance for wind tunnel use. Aerodynamic force and moment were measrued during the vehicle run at various constant speeds. Geometrical twist distribution along the wing span was recorded as well. Measured force and moment data were corrected for possible ground effect and upw...

  7. Virtual Power Plants of Electric Vehicles in Sustainable Smart Electricity Markets

    NARCIS (Netherlands)

    M.T. Kahlen (Micha)

    2017-01-01

    markdownabstractThe batteries of electric vehicles can be used as Virtual Power Plants to balance out frequency deviations in the electricity grid. Carsharing fleet owners have the options to charge an electric vehicle's battery, discharge an electric vehicle's battery, or keep an electric vehicle i

  8. Virtual Power Plants of Electric Vehicles in Sustainable Smart Electricity Markets

    NARCIS (Netherlands)

    M.T. Kahlen (Micha)

    2017-01-01

    markdownabstractThe batteries of electric vehicles can be used as Virtual Power Plants to balance out frequency deviations in the electricity grid. Carsharing fleet owners have the options to charge an electric vehicle's battery, discharge an electric vehicle's battery, or keep an electric vehicle

  9. Function-based design process for an intelligent ground vehicle vision system

    Science.gov (United States)

    Nagel, Robert L.; Perry, Kenneth L.; Stone, Robert B.; McAdams, Daniel A.

    2010-10-01

    An engineering design framework for an autonomous ground vehicle vision system is discussed. We present both the conceptual and physical design by following the design process, development and testing of an intelligent ground vehicle vision system constructed for the 2008 Intelligent Ground Vehicle Competition. During conceptual design, the requirements for the vision system are explored via functional and process analysis considering the flows into the vehicle and the transformations of those flows. The conceptual design phase concludes with a vision system design that is modular in both hardware and software and is based on a laser range finder and camera for visual perception. During physical design, prototypes are developed and tested independently, following the modular interfaces identified during conceptual design. Prototype models, once functional, are implemented into the final design. The final vision system design uses a ray-casting algorithm to process camera and laser range finder data and identify potential paths. The ray-casting algorithm is a single thread of the robot's multithreaded application. Other threads control motion, provide feedback, and process sensory data. Once integrated, both hardware and software testing are performed on the robot. We discuss the robot's performance and the lessons learned.

  10. Towards collaboration between unmanned aerial and ground vehicles for precision agriculture

    Science.gov (United States)

    Bhandari, Subodh; Raheja, Amar; Green, Robert L.; Do, Dat

    2017-05-01

    This paper presents the work being conducted at Cal Poly Pomona on the collaboration between unmanned aerial and ground vehicles for precision agriculture. The unmanned aerial vehicles (UAVs), equipped with multispectral/hyperspectral cameras and RGB cameras, take images of the crops while flying autonomously. The images are post processed or can be processed onboard. The processed images are used in the detection of unhealthy plants. Aerial data can be used by the UAVs and unmanned ground vehicles (UGVs) for various purposes including care of crops, harvest estimation, etc. The images can also be useful for optimized harvesting by isolating low yielding plants. These vehicles can be operated autonomously with limited or no human intervention, thereby reducing cost and limiting human exposure to agricultural chemicals. The paper discuss the autonomous UAV and UGV platforms used for the research, sensor integration, and experimental testing. Methods for ground truthing the results obtained from the UAVs will be used. The paper will also discuss equipping the UGV with a robotic arm for removing the unhealthy plants and/or weeds.

  11. Vehicle routing for the last mile of power system restoration

    Energy Technology Data Exchange (ETDEWEB)

    Bent, Russell W [Los Alamos National Laboratory; Coffrin, Carleton [Los Alamos National Laboratory; Van Hentenryck, Pascal [BROWN UNIV.

    2010-11-23

    This paper studied a novel problem in power system restoration: the Power Restoration Vehicle Routing Problem (PRVRP). The goal of PRVRPs is to decide how coordinate repair crews effectively in order to recover from blackouts as fast as possible after a disaster has occurred. PRVRPs are complex problems that combine vehicle routing and power restoration scheduling problems. The paper proposed a multi-stage optimization algorithm based on the idea of constraint injection that meets the aggressive runtime constraints necessary for disaster recovery. The algorithms were validated on benchmarks produced by the Los Alamos National Laboratory, using the infrastructure of the United States. The disaster scenarios were generated by state-of-the-art hurricane simulation tools similar to those used by the National Hurricane Center. Experimental results show that the constraint-injection algorithms can reduce the blackouts by 50% or more over field practices. Moreover, the results show that the constraint-injection algorithm using large neighborhood search over a blackbox simulator provide competitive quality and scales better than using a MIP solver on the subproblems.

  12. The ZEBRA electric vehicle battery: power and energy improvements

    Science.gov (United States)

    Galloway, Roy C.; Haslam, Steven

    Vehicle trials with the first sodium/nickel chloride ZEBRA batteries indicated that the pulse power capability of the battery needed to be improved towards the end of the discharge. A research programme led to several design changes to improve the cell which, in combination, have improved the power of the battery to greater than 150 W kg -1 at 80% depth of discharge. Bench and vehicle tests have established the stability of the high power battery over several years of cycling. The gravimetric energy density of the first generation of cells was less than 100 Wh kg -1. Optimisation of the design has led to a cell with a specific energy of 120 Wh kg -1 or 86 Wh kg -1 for a 30 kWh battery. Recently, the cell chemistry has been altered to improve the useful capacity. The cell is assembled in the over-discharged state and during the first charge the following reactions occur: at 1.6 V: Al+4NaCl=NaAlCl 4+3Na; at 2.35 V: Fe+2NaCl=FeCl 2+2Na; at 2.58 V: Ni+2NaCl=NiCl 2+2 Na. The first reaction serves to prime the negative sodium electrode but occurs at too low a voltage to be of use in providing useful capacity. By minimising the aluminium content more NaCl is released for the main reactions to improve the capacity of the cell. This, and further composition optimisation, have resulted in cells with specific energies in excess of 140 Wh kg -1, which equates to battery energies>100 Wh kg -1. The present production battery, as installed in a Mercedes Benz A class electric vehicle, gives a driving range of 205 km (128 miles) in city and hill climbing. The cells with improved capacity will extend the practical driving range to beyond 240 km (150 miles).

  13. Dynamic Performance on Multi Storey Structure Due to Ground Borne Vibrations Input from Passing Vehicles

    Directory of Open Access Journals (Sweden)

    Tuan Norhayati Tuan Chik

    2013-12-01

    Full Text Available Ground borne vibration from passing vehicles could excite the adjacent ground, hence produces a vibration waves that will propagate through layers of soil towards the foundations of any adjacent building. This vibration could affects the structure of the building at some levels and even the low sensitivity equipment are also could be affected as well. The objectives of this study are to perform the structural response on multi storey building subjected to ground vibrations input and to determine the level of vibration at each floor from road traffic on the observed building. The scopes of the study are focused on the groundborne vibrations induced by the passing vehicles and analyse the data by using dynamic software such as ANSYSv14 and MATLAB. The selected building for this study is the Registrar Office building which is located in Universiti Tun Hussein Onn Malaysia (UTHM. The inputs of the vibration were measured by using Laser Doppler Vibrometer (LDV equipment. By conducting the field measurement, a real input of ground borne vibration from the loads of vehicle towards any adjacent building can be obtained. Finally, the vibration level from road traffic on office building can be determined using overseas generic criteria guidelines. The vibration level achieved for this building is at above the ISO level, which is suitable for office building and within acceptable limit.

  14. Effect of vehicle front end profiles leading to pedestrian secondary head impact to ground.

    Science.gov (United States)

    Gupta, Vishal; Yang, King H

    2013-11-01

    Most studies of pedestrian injuries focus on reducing traumatic injuries due to the primary impact between the vehicle and the pedestrian. However, based on the Pedestrian Crash Data Study (PCDS), some researchers concluded that one of the leading causes of head injury for pedestrian crashes can be attributed to the secondary impact, defined as the impact of the pedestrian with the ground after the primary impact of the pedestrian with the vehicle. The purpose of this study is to understand if different vehicle front-end profiles can affect the risk of pedestrian secondary head impact with the ground and thus help in reducing the risk of head injury during secondary head impact with ground. Pedestrian responses were studied using several front-end profiles based off a mid-size vehicle and a SUV that have been validated previously along with several MADYMO pedestrian models. Mesh morphing is used to explore changes to the bumper height, bonnet leading-edge height, and bonnet rear reference-line height. Simulations leading up to pedestrian secondary impact with ground are conducted at impact speeds of 40 and 30 km/h. In addition, three pedestrian sizes (50th, 5th and 6yr old child) are used to enable us to search for a front-end profile that performs well for multiple sizes of pedestrians, not just one particular size. In most of the simulations, secondary ground impact with pedestrian head/neck/shoulder region occurred. However, there were some front-end profiles that promoted secondary ground impact with pedestrian lower extremities, thus avoiding pedestrian secondary head impact with ground. Previous pedestrian safety research work has suggested the use of active safety methods, such as 'pop up hood', to reduce pedestrian head injury during primary impact. Accordingly, we also conducted simulations using a model with the hood raised to capture the effect of a pop-up hood. These simulations indicated that even though pop-up hood helped reducing the head injury

  15. Flight validation of ground-based assessment for control power requirements at high angles of attack

    Science.gov (United States)

    Ogburn, Marilyn E.; Ross, Holly M.; Foster, John V.; Pahle, Joseph W.; Sternberg, Charles A.; Traven, Ricardo; Lackey, James B.; Abbott, Troy D.

    1994-01-01

    A review is presented in viewgraph format of an ongoing NASA/U.S. Navy study to determine control power requirements at high angles of attack for the next generation high-performance aircraft. This paper focuses on recent flight test activities using the NASA High Alpha Research Vehicle (HARV), which are intended to validate results of previous ground-based simulation studies. The purpose of this study is discussed, and the overall program structure, approach, and objectives are described. Results from two areas of investigation are presented: (1) nose-down control power requirements and (2) lateral-directional control power requirements. Selected results which illustrate issues and challenges that are being addressed in the study are discussed including test methodology, comparisons between simulation and flight, and general lessons learned.

  16. Real-Time Tariffs for Electric Vehicles in Wind Power based Power Systems

    DEFF Research Database (Denmark)

    Morais, Hugo; Sousa, Tiago; Silva, Marco

    2013-01-01

    The use of Electric Vehicles (EVs) will change significantly the planning and management of power systems in a near future. This paper proposes a real-time tariff strategy for the charge process of the EVs. The main objective is to evaluate the influence of real-time tariffs in the EVs owners...

  17. Guidelines for Distribution System Operators on Reactive Power Provision by Electric Vehicles in Low Voltage Grids

    DEFF Research Database (Denmark)

    Zecchino, Antonio; Marinelli, Mattia; Træholt, Chresten

    2017-01-01

    The increasing success of electric vehicles is bringing new technical challenges to power system operators. This work intends to provide guidelines for distribution system operators in terms of reactive power requirements when evaluating and authorizing electric vehicles supply equipment with fast...... the amount of reactive power that an individual electric vehicle is expected to provide when connected to a low voltage feeder, in order to benefit of the desired voltage rise effect in comparison to the case of unitary power factor....

  18. Distributed pheromone-based swarming control of unmanned air and ground vehicles for RSTA

    Science.gov (United States)

    Sauter, John A.; Mathews, Robert S.; Yinger, Andrew; Robinson, Joshua S.; Moody, John; Riddle, Stephanie

    2008-04-01

    The use of unmanned vehicles in Reconnaissance, Surveillance, and Target Acquisition (RSTA) applications has received considerable attention recently. Cooperating land and air vehicles can support multiple sensor modalities providing pervasive and ubiquitous broad area sensor coverage. However coordination of multiple air and land vehicles serving different mission objectives in a dynamic and complex environment is a challenging problem. Swarm intelligence algorithms, inspired by the mechanisms used in natural systems to coordinate the activities of many entities provide a promising alternative to traditional command and control approaches. This paper describes recent advances in a fully distributed digital pheromone algorithm that has demonstrated its effectiveness in managing the complexity of swarming unmanned systems. The results of a recent demonstration at NASA's Wallops Island of multiple Aerosonde Unmanned Air Vehicles (UAVs) and Pioneer Unmanned Ground Vehicles (UGVs) cooperating in a coordinated RSTA application are discussed. The vehicles were autonomously controlled by the onboard digital pheromone responding to the needs of the automatic target recognition algorithms. UAVs and UGVs controlled by the same pheromone algorithm self-organized to perform total area surveillance, automatic target detection, sensor cueing, and automatic target recognition with no central processing or control and minimal operator input. Complete autonomy adds several safety and fault tolerance requirements which were integrated into the basic pheromone framework. The adaptive algorithms demonstrated the ability to handle some unplanned hardware failures during the demonstration without any human intervention. The paper describes lessons learned and the next steps for this promising technology.

  19. Influences on dispatch of power generation when introducing electric drive vehicles in an Irish power system year 2020

    DEFF Research Database (Denmark)

    Juul, Nina; Mullane, Alan; Meibom, Peter

    Increased focus on global warming and CO2 emissions imply increased focus on the energy system, consisting of the heat, power, and transport systems. Solutions for the heat and power system are increasing penetrations of renewable heat and power generation plants such as wind power and biomass heat...... plants. For the future transport system, electric drive vehicles are expected to be one of the solutions. Introducing different electric drive vehicle penetrations in a power system with a large amount of wind power, changes the usage of the predefined power system. This work presents investigations...... of different charging regimes’ influence of the power dispatch in the Irish power system. Analyses show an overall cost decrease and CO2 emission increase in the heat and power system with the introduction of electric drive vehicles. Furthermore, increased intelligence in the electric drive vehicle charging...

  20. Computational Simulation of Dynamic Response of Vehicle Tatra T815 and the Ground

    Science.gov (United States)

    Vlček, Jozef; Valašková, Veronika

    2016-10-01

    The effect of a moving load represents the actual problem which is analysed in engineering practice. The response of the vehicle and its dynamic effect on the pavement can be analysed by experimental or computational ways. The aim of this paper was to perform computer simulations of a vehicle-ground interaction. For this purpose, a half-part model of heavy lorry Tatra 815 and ground was modelled in computational programmes ADINA and PLAXIS based on FEM methods, utilizing analytical approaches. Two procedures were then selected for further calculations. The first one is based on the simplification of the stiffer pavement layers to the beam element supported by the springs simulating the subgrade layers using Winkler-Pasternak theory of elastic half-space. Modulus of subgrade reaction was determined in the standard programme trough the simulation of a plate load test. Second approach considers a multi-layered ground system with layers of different thicknesses and material properties. For comparison of outputs of both approaches, the same input values were used for every calculation procedure. Crucial parameter for the simulations was the velocity of the passing vehicle with regard to the ground response to the impulse of the pass. Lower velocities result in almost static response of the pavement, but higher velocities induce response that can be better described by the dynamic theory. For small deformations, an elastic material model seems to be sufficient to define the ground response to the moving load, but for larger deformations advanced material models for the ground environment would be more reliable.

  1. On the radar cross section (RCS) prediction of vehicles moving on the ground

    Energy Technology Data Exchange (ETDEWEB)

    Sabihi, Ahmad [Department of Mathematical Sciences, Sharif University of Technology, Tehran (Iran, Islamic Republic of)

    2014-12-10

    As readers should be aware, Radar Cross Section depends on the factors such as: Wave frequency and polarization, Target dimension, angle of ray incidence, Target’s material and covering, Type of radar system as monostatic or bistatic, space in which contains target and propagating waves, and etc. Having moved or stationed in vehicles can be effective in RCS values. Here, we investigate effective factors in RCS of moving targets on the ground or sea. Image theory in electromagnetic applies to be taken into account RCS of a target over the ground or sea.

  2. Protection against malevolent use of vehicles at Nuclear Power Plants. Vehicle barrier system selection guidance

    Energy Technology Data Exchange (ETDEWEB)

    Nebuda, D.T.

    1994-08-01

    This manual provides a simplified procedure for selecting land vehicle barriers that will stop the design basis vehicle threat adopted by the U.S. Nuclear Regulatory Commission. Proper selection and construction of vehicle barriers should prevent intrusion of the design basis vehicle. In addition, vital safety related equipment should survive a design basis vehicle bomb attack when vehicle barriers are properly selected, sited, and constructed. This manual addresses passive vehicle barriers, active vehicle barriers, and site design features that can be used to reduce vehicle impact velocity.

  3. Large eddy simulation of flows around ground vehicles and other bluff bodies.

    Science.gov (United States)

    Krajnovic, Sinisa

    2009-07-28

    A brief review of large eddy simulation (LES) applications for different bluff-body flows performed by the author and his co-workers is presented. Examples of flows range from simple cube flows characterized by sharp edge separation over a three-dimensional hill where LES relies on good near-wall resolution, to complex flows of a tall, finite cylinder that contains several flow regimes that cause different challenges to LES. The second part of the paper is devoted to flows around ground vehicles at moderate Reynolds numbers. Although the present review proves the applicability of LES for various bluff-body flows, an increase of the Reynolds number towards the operational speeds of ground vehicles requires accurate near-wall modelling for a successful LES.

  4. Study on shift schedule saving energy of automatic transmission of ground vehicles

    Institute of Scientific and Technical Information of China (English)

    龚捷; 赵丁选; 陈鹰; 陈宁

    2004-01-01

    To improve ground vehicle efficiency, shift schedule energy saving was proposed for the ground vehicle automatic transmission by studying the function of the torque converter and transmission in the vehicular drivetrain. The shift schedule can keep the torque converter working in the high efficiency range under all the working conditions except in the low efficiency range on the left when the transmission worked at the lowest shift, and in the low efficiency range on the right when the transmission worked at the highest shift. The shift quality key factors were analysed. The automatic trans-mission's bench-test adopting this shift schedule was made on the automatic transmission's test-bed. The experimental results showed that the shift schedule was correct and that the shift quality was controllable.

  5. Control and learning for intelligent mobility of unmanned ground vehicles in complex terrains

    Science.gov (United States)

    Trentini, M.; Beckman, B.; Digney, B.

    2005-05-01

    The Autonomous Intelligent Systems program at Defence R&D Canada-Suffield envisions autonomous systems contributing to decisive operations in the urban battle space. Creating effective intelligence for these systems demands advances in perception, world representation, navigation, and learning. In the land environment, these scientific areas have garnered much attention, while largely ignoring the problem of locomotion in complex terrain. This is a gap in robotics research, where sophisticated algorithms are needed to coordinate and control robotic locomotion in unknown, highly complex environments. Unlike traditional control problems, intuitive and systematic control tools for robotic locomotion do not readily exist thus limiting their practical application. This paper addresses the mobility problem for unmanned ground vehicles, defined here as the autonomous maneuverability of unmanned ground vehicles in unknown, highly complex environments. It discusses the progress and future direction of intelligent mobility research at Defence R&D Canada-Suffield and presents the research tools, topics and plans to address this critical research gap.

  6. Study on shift schedule saving energy of automatic transmission of ground vehicles

    Institute of Scientific and Technical Information of China (English)

    龚捷; 赵丁选; 陈鹰; 陈宁

    2004-01-01

    To improve ground vehicle efficiency,shift schedule energy saving was proposed for the ground vehicle automatic transmission by studying the function of the torque converter and transmission in the vehicular drivetrain.The shift schedule can keep the torque converter working in the high efficiency range under all the working conditions except in the low efficiency range on the left when the transmission worked at the lowest shift,and in the low efficiency range on the right when the transmission worked at the highest shift.The shift quality key factors were analysed.The automatic transmission's bench-test adopting this shift schedule was made on the automatic transmission's test-bed.The experimental results showed that the shift schedule was correct and that the shift quality was controllable.

  7. Smart charging of electric vehicles with photovoltaic power and vehicle-to-grid technology in a microgrid; a case study

    NARCIS (Netherlands)

    van der Kam, Mart; van Sark, Wilfried

    2015-01-01

    We present a model developed to study the increase of self-consumption of photovoltaic (PV) power by smart charging of electric vehicles (EVs) and vehicle-to-grid (V2G) technology. Whereas previous studies mostly use large EV fleets in their models, our focus is on a smaller scale. We apply the mode

  8. Robust H∞ output-feedback control for path following of autonomous ground vehicles

    Science.gov (United States)

    Hu, Chuan; Jing, Hui; Wang, Rongrong; Yan, Fengjun; Chadli, Mohammed

    2016-03-01

    This paper presents a robust H∞ output-feedback control strategy for the path following of autonomous ground vehicles (AGVs). Considering the vehicle lateral velocity is usually hard to measure with low cost sensor, a robust H∞ static output-feedback controller based on the mixed genetic algorithms (GA)/linear matrix inequality (LMI) approach is proposed to realize the path following without the information of the lateral velocity. The proposed controller is robust to the parametric uncertainties and external disturbances, with the parameters including the tire cornering stiffness, vehicle longitudinal velocity, yaw rate and road curvature. Simulation results based on CarSim-Simulink joint platform using a high-fidelity and full-car model have verified the effectiveness of the proposed control approach.

  9. Cooperative Surveillance and Pursuit Using Unmanned Aerial Vehicles and Unattended Ground Sensors

    Directory of Open Access Journals (Sweden)

    Jonathan Las Fargeas

    2015-01-01

    Full Text Available This paper considers the problem of path planning for a team of unmanned aerial vehicles performing surveillance near a friendly base. The unmanned aerial vehicles do not possess sensors with automated target recognition capability and, thus, rely on communicating with unattended ground sensors placed on roads to detect and image potential intruders. The problem is motivated by persistent intelligence, surveillance, reconnaissance and base defense missions. The problem is formulated and shown to be intractable. A heuristic algorithm to coordinate the unmanned aerial vehicles during surveillance and pursuit is presented. Revisit deadlines are used to schedule the vehicles’ paths nominally. The algorithm uses detections from the sensors to predict intruders’ locations and selects the vehicles’ paths by minimizing a linear combination of missed deadlines and the probability of not intercepting intruders. An analysis of the algorithm’s completeness and complexity is then provided. The effectiveness of the heuristic is illustrated through simulations in a variety of scenarios.

  10. Constrained low-cost GPS/INS filter with encoder bias estimation for ground vehicles' applications

    Science.gov (United States)

    Abdel-Hafez, Mamoun F.; Saadeddin, Kamal; Amin Jarrah, Mohammad

    2015-06-01

    In this paper, a constrained, fault-tolerant, low-cost navigation system is proposed for ground vehicle's applications. The system is designed to provide a vehicle navigation solution at 50 Hz by fusing the measurements of the inertial measurement unit (IMU), the global positioning system (GPS) receiver, and the velocity measurement from wheel encoders. A high-integrity estimation filter is proposed to obtain a high accuracy state estimate. The filter utilizes vehicle velocity constraints measurement to enhance the estimation accuracy. However, if the velocity measurement of the encoder is biased, the accuracy of the estimate is degraded. Therefore, a noise estimation algorithm is proposed to estimate a possible bias in the velocity measurement of the encoder. Experimental tests, with simulated biases on the encoder's readings, are conducted and the obtained results are presented. The experimental results show the enhancement in the estimation accuracy when the simulated bias is estimated using the proposed method.

  11. Integration of Vehicle-to-Grid in Western Danish Power System

    DEFF Research Database (Denmark)

    Pillai, Jayakrishnan Radhakrishna; Bak-Jensen, Birgitte

    2011-01-01

    capabilities of large power plants in the future, demands for new balancing solutions like Vehicle-to-Grid systems. In this article, aggregated electric vehicle based battery storage representing a Vehicle-to-Grid system is modelled for the use in long term dynamic power system simulations. Further...... Transmission) control areas are significantly minimized by the faster up and down regulation characteristics of the electric vehicle battery storage....

  12. Test Operations Procedure (TOP) 02-2-546 Teleoperated Unmanned Ground Vehicle (UGV) Latency Measurements

    Science.gov (United States)

    2017-01-11

    A. Approved for public release; distribution is unlimited. 13. SUPPLEMENTARY NOTES Defense Technical Information Center (DTIC), AD No.: 14. ABSTRACT...discrete system components or measurements of latency in autonomous systems. 15. SUBJECT TERMS Unmanned Ground Vehicles, Basic Video Latency, End -to... End System Latency, Command-to-Action Latency 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT SAR 18. NUMBER OF PAGES 23 19a

  13. Using acoustic sensor technologies to create a more terrain capable unmanned ground vehicle

    OpenAIRE

    Odedra, Sid; Prior, Stephen D.; Karamanoglu, Mehmet; Erbil, Mehmet Ali; Shen, Siu-Tsen; International Conference on Engineering Psychology and Cognitive Ergonomics

    2009-01-01

    Unmanned Ground Vehicle’s (UGV) have to cope with the most complex range of dynamic and variable obstacles and therefore need to be highly intelligent in order to cope with navigating in such a cluttered environment. When traversing over different terrains (whether it is a UGV or a commercial manned vehicle) different drive styles and configuration settings need to be selected in order to travel successfully over each terrain type. These settings are usually selected by a human operator in ma...

  14. Using High Performance Computing to Realize a System-Level RDDO for Military Ground Vehicles

    Science.gov (United States)

    2008-07-14

    Using High Performance Computing to Realize a System-Level RBDO for Military Ground Vehicles • David A. Lamb, Ph.D. • Computational Reliability and...fictitious load cases is number of design variables X number of static load cases (6 X 24 = 144 for Stryker A-arm). RBDO Flowchart Pre-processor Morpher...Based Geometry Morpher Mesh Finite Element Analysis Durability Sensitivity RBDO /PBDO FE Analysis FE re-analysis for DSA Sensitivity of SIC and Fatigue

  15. Determining the Forces Generated by the Contact of an Electrically-Operated Vehicle with the Ground

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    In this paper we analyse the motion of an electric vehicle,when there is only the pure rolling of the wheels on the ground.The equations of holonomic and non-holonomic constraints have been rendered explicitly obtaining 27 equations algebraic-differential system with the same number of unknowns.Besides,this system supplies a model to calculate the bonding reaction forces.

  16. The 21st annual intelligent ground vehicle competition: robotists for the future

    Science.gov (United States)

    Theisen, Bernard L.

    2013-12-01

    The Intelligent Ground Vehicle Competition (IGVC) is one of four, unmanned systems, student competitions that were founded by the Association for Unmanned Vehicle Systems International (AUVSI). The IGVC is a multidisciplinary exercise in product realization that challenges college engineering student teams to integrate advanced control theory, machine vision, vehicular electronics and mobile platform fundamentals to design and build an unmanned system. Teams from around the world focus on developing a suite of dual-use technologies to equip ground vehicles of the future with intelligent driving capabilities. Over the past 21 years, the competition has challenged undergraduate, graduate and Ph.D. students with real world applications in intelligent transportation systems, the military and manufacturing automation. To date, teams from over 80 universities and colleges have participated. This paper describes some of the applications of the technologies required by this competition and discusses the educational benefits. The primary goal of the IGVC is to advance engineering education in intelligent vehicles and related technologies. The employment and professional networking opportunities created for students and industrial sponsors through a series of technical events over the fourday competition are highlighted. Finally, an assessment of the competition based on participation is presented.

  17. The 20th annual intelligent ground vehicle competition: building a generation of robotists

    Science.gov (United States)

    Theisen, Bernard L.; Kosinski, Andrew

    2013-01-01

    The Intelligent Ground Vehicle Competition (IGVC) is one of four, unmanned systems, student competitions that were founded by the Association for Unmanned Vehicle Systems International (AUVSI). The IGVC is a multidisciplinary exercise in product realization that challenges college engineering student teams to integrate advanced control theory, machine vision, vehicular electronics and mobile platform fundamentals to design and build an unmanned system. Teams from around the world focus on developing a suite of dual-use technologies to equip ground vehicles of the future with intelligent driving capabilities. Over the past 20 years, the competition has challenged undergraduate, graduate and Ph.D. students with real world applications in intelligent transportation systems, the military and manufacturing automation. To date, teams from over 80 universities and colleges have participated. This paper describes some of the applications of the technologies required by this competition and discusses the educational benefits. The primary goal of the IGVC is to advance engineering education in intelligent vehicles and related technologies. The employment and professional networking opportunities created for students and industrial sponsors through a series of technical events over the four-day competition are highlighted. Finally, an assessment of the competition based on participation is presented.

  18. Multi- and Hyper-Spectral Sensing for Autonomous Ground Vehicle Navigation

    Energy Technology Data Exchange (ETDEWEB)

    FOGLER, ROBERT J.

    2003-06-01

    Robotic vehicles that navigate autonomously are hindered by unnecessary avoidance of soft obstacles, and entrapment by potentially avoidable obstacles. Existing sensing technologies fail to reliably distinguish hard obstacles from soft obstacles, as well as impassable thickets and other sources of entrapment. Automated materials classification through advanced sensing methods may provide a means to identify such obstacles, and from their identity, to determine whether they must be avoided. Multi- and hyper-spectral electro-optic sensors are used in remote sensing applications to classify both man-made and naturally occurring materials on the earth's surface by their reflectance spectra. The applicability of this sensing technology to obstacle identification for autonomous ground vehicle navigation is the focus of this report. The analysis is restricted to system concepts in which the multi- or hyper-spectral sensor is on-board the ground vehicle, facing forward to detect and classify obstacles ahead of the vehicle. Obstacles of interest include various types of vegetation, rocks, soils, minerals, and selected man-made materials such as paving asphalt and concrete.

  19. Resolving ranges of layered objects using ground vehicle LiDAR

    Science.gov (United States)

    Hollinger, Jim; Kutscher, Brett; Close, Ryan

    2015-06-01

    Lidar systems are well known for their ability to measure three-dimensional aspects of a scene. This attribute of Lidar has been widely exploited by the robotics community, among others. The problem of resolving ranges of layered objects (such as a tree canopy over the forest floor) has been studied from the perspective of airborne systems. However, little research exists in studying this problem from a ground vehicle system (e.g., a bush covering a rock or other hazard). This paper discusses the issues involved in solving this problem from a ground vehicle. This includes analysis of extracting multi-return data from Lidar and the various laser properties that impact the ability to resolve multiple returns, such as pulse length and beam size. The impacts of these properties are presented as they apply to three different Lidar imaging technologies: scanning pulse Lidar, Geiger-mode flash Lidar, and Time-of-Flight camera. Tradeoffs associated with these impacts are then discussed for a ground vehicle Lidar application.

  20. 美军无人地面车辆发展综述%Development Survey of US Army Unmanned Ground Vehicles

    Institute of Scientific and Technical Information of China (English)

    陈欣; 王立操; 李联邦; 左志奇

    2012-01-01

    US army unmanned ground vehicles are primitively introduced. The development course of US army unmanned ground vehicles is expatiated, present condition and development trends are given. Some suggestions on developing military unmanned ground vehicles are presented.%对美军无人地面车辆进行简要介绍,阐述美军无人地面车辆发展历程,给出了其研究现状与趋势,提出了对我国无人地面车辆发展的几点启示。

  1. Control performance evaluation of railway vehicle MR suspension using fuzzy sky-ground hook control algorithm

    Science.gov (United States)

    Ha, S. H.; Choi, S. B.; Lee, G. S.; Yoo, W. H.

    2013-02-01

    This paper presents control performance evaluation of railway vehicle featured by semi-active suspension system using magnetorheological (MR) fluid damper. In order to achieve this goal, a nine degree of freedom of railway vehicle model, which includes car body and bogie, is established. The wheel-set data is loaded from measured value of railway vehicle. The MR damper system is incorporated with the governing equation of motion of the railway vehicle model which includes secondary suspension. To illustrate the effectiveness of the controlled MR dampers on suspension system of railway vehicle, the control law using the sky-ground hook controller is adopted. This controller takes into account for both vibration control of car body and increasing stability of bogie by adopting a weighting parameter between two performance requirements. The parameters appropriately determined by employing a fuzzy algorithm associated with two fuzzy variables: the lateral speed of the car body and the lateral performance of the bogie. Computer simulation results of control performances such as vibration control and stability analysis are presented in time and frequency domains.

  2. Spatial Power Combining Amplifier for Ground and Flight Applications

    Science.gov (United States)

    Velazco, J. E.; Taylor, M.

    2016-11-01

    Vacuum-tube amplifiers such as klystrons and traveling-wave tubes are the workhorses of high-power microwave radiation generation. At JPL, vacuum tubes are extensively used in ground and flight missions for radar and communications. Vacuum tubes use electron beams as the source of energy to achieve microwave power amplification. Such electron beams operate at high kinetic energies and thus require high voltages to function. In addition, vacuum tubes use compact cavity and waveguide structures that hold very intense radio frequency (RF) fields inside. As the operational frequency is increased, the dimensions of these RF structures become increasingly smaller. As power levels and operational frequencies are increased, the highly intense RF fields inside of the tubes' structures tend to arc and create RF breakdown. In the case of very high-power klystrons, electron interception - also known as body current - can produce thermal runaway of the cavities that could lead to the destruction of the tube. The high voltages needed to power vacuum tubes tend to require complicated and cumbersome power supplies. Consequently, although vacuum tubes provide unmatched high-power microwaves, they tend to arc, suffer from thermal issues, and require failure-prone high-voltage power supplies. In this article, we present a new concept for generating high-power microwaves that we refer to as the Spatial Power Combining Amplifier (SPCA). The SPCA is very compact, requires simpler, lower-voltage power supplies, and uses a unique power-combining scheme wherein power from solid-state amplifiers is coherently combined. It is a two-port amplifier and can be used inline as any conventional two-port amplifier. It can deliver its output power to a coaxial line, a waveguide, a feed, or to any microwave load. A key feature of this new scheme is the use of higher-order-mode microwave structures to spatially divide and combine power. Such higher-order-mode structures have considerably larger cross

  3. NASA advanced aeronautics design solar powered remotely piloted vehicle

    Science.gov (United States)

    Elario, David S.; Guillmette, Neal H.; Lind, Gregory S.; Webster, Jonathan D.; Ferreira, Michael J.; Konstantakis, George C.; Marshall, David L.; Windt, Cari L.

    1991-01-01

    Environmental problems such as the depletion of the ozone layer and air pollution demand a change in traditional means of propulsion that is sensitive to the ecology. Solar powered propulsion is a favorable alternative that is both ecologically harmless as well as cost effective. Integration of solar energy into designs ranging from futuristic vehicles to heating is beneficial to society. The design and construction of a Multi-Purpose Remotely Piloted Vehicle (MPRPV) seeks to verify the feasibility of utilizing solar propulsion as a primary fuel source. This task has been a year long effort by a group of ten students, divided into five teams, each dealing with different aspects of the design. The aircraft was designed to take-off, climb to the design altitude, fly in a sustained figure-eight flight path, and cruise for approximately one hour. This mission requires flight at Reynolds numbers between 150,000 and 200,000 and demands special considerations in the aerodynamic design in order to achieve flight in this regime. Optimal performance requires a light weight configuration with both structural integrity and maximum power availability. The structure design and choice of solar cells for the propulsion was governed by the weight, efficiency, and cost considerations. The final design is a MPRPV weighting 35 N which cruises 7 m/s at the design altitude of 50 m. The configuration includes a wing composed of balsa and foam NACA 6409 airfoil sections and carbon fiber spars, a tail of similar construction, and a truss structure fuselage. The propulsion system consists of 98 10 percent efficient solar cells donated by Mobil Solar, a NiCad battery for energy storage, and a folding propeller regulated by a lightweight and efficient control system. The airfoils and propeller chosen for the design were research and tested during the design process.

  4. Orbit-to-ground Wireless Power Transfer test mission

    Science.gov (United States)

    Bergsrud, C.; Noghanian, S.; Straub, J.; Whalen, D.; Fevig, R.

    Since the 1970s the concept of transferring power from orbit for use on Earth has had a great deal of consideration for future energy and environmental sustainability here on Earth. The cost, size and complexity of a production-grade system are extremely large, and have many environmental considerations. There has never been a publicly disclosed orbit-to-ground power transfer test mission. A proposed project provides an opportunity to test the conceptual operation of such a system, albeit at a much lower power level than the `grand' or `real scale' system. During this test, a small Solar Powered (SP) 6-U CubSat will be deployed into Low-Earth Orbit (LEO) (225 or 325 km) to collect and store 1 KW of power from solar energy as the satellite is orbiting. The goal is to transmit 1 KW of wireless power at a microwave frequency of 5.8 or 10 GHz to a ground antenna array system. This paper presents the architecture for the proposed mission and discusses the regulatory, legal, and environmental issues that such a mission poses. Furthermore, the gain of the transmitter is analyzed at 20 and 30 dB as well as the gain of the receiver is analyzed at 30, 40, and 50 dB. A SP 6-U CubeSat will have a Lithium Ion (LIon) battery capable of storing enough energy for 83.33 Whr charge to run the satellites controls, and 1 KW necessary for a 5-minute demonstration and test (in addition to power required for its own operational requirements). Once charged, the satellite will use highly accurate position and attitude knowledge provided by an onboard star-tracker, Global Positioning Satellite (GPS) and inertial measurement unit to determine the proper orientation for the power transfer test. The onboard Attitude Determination and Control (ADCS) will be utilized to achieve and maintain this orientation during the test period. A cold-gas propulsion system will be available to de-spin the reaction wheels to ensure that sufficient ADCS capabilities exist for attitude-stabilization use during

  5. POWER ELECTRONIC SYSTEM FOR POWER ELECTRIC VEHICLES WITH ALGORITHMS OF SYNCHRONOUS MODULATION

    Directory of Open Access Journals (Sweden)

    Oleschuk V.

    2014-04-01

    Full Text Available Schemes of synchronous space-vector modulation have been adapted for control of split-phase drive for electric vehicle with open-end windings of induction motor, supplied by several voltage source inverters. MATLAB-based simulation of processes in this system has been executed. It has been shown, that the use of algorithms of synchronous modulation provides symmetry of phase voltage waveforms for any ratio between the switching frequency and fundamental frequency, and for any voltage magnitudes of dc-sources. Spectra of the phase voltage of system do not contain even harmonics and subharmonics (of the fundamental frequency, which is especially important for drives for the medium-power and high-power electric vehicles.

  6. Analysis for Large Scale Integration of Electric Vehicles into Power Grids

    DEFF Research Database (Denmark)

    Hu, Weihao; Chen, Zhe; Wang, Xiaoru

    2011-01-01

    Electric Vehicles (EVs) provide a significant opportunity for reducing the consumption of fossil energies and the emission of carbon dioxide. With more and more electric vehicles integrated in the power systems, it becomes important to study the effects of EV integration on the power systems......, especially the low and middle voltage level networks. In the paper, the basic structure and characteristics of the electric vehicles are introduced. The possible impacts of large scale integration of electric vehicles on the power systems especially the advantage to the integration of the renewable energies...... are discussed. Finally, the research projects related to the large scale integration of electric vehicles into the power systems are introduced, it will provide reference for large scale integration of Electric Vehicles into power grids....

  7. Temperature effects on particulate matter emissions from light-duty, gasoline-powered motor vehicles.

    Science.gov (United States)

    Nam, Edward; Kishan, Sandeep; Baldauf, Richard W; Fulper, Carl R; Sabisch, Michael; Warila, James

    2010-06-15

    The Kansas City Light-Duty Vehicle Emissions Study (KCVES) measured exhaust emissions of regulated and unregulated pollutants from 496 vehicles recruited in the Kansas City metropolitan area in 2004 and 2005. Vehicle emissions testing occurred during the summer and winter, with the vehicles operated at ambient temperatures. One key component of this study was the investigation of the influence of ambient temperature on particulate matter (PM) emissions from gasoline-powered vehicles. A subset of the recruited vehicles were tested in both the summer and winter to further elucidate the effects of temperature on vehicle tailpipe emissions. The study results indicated that PM emissions increased exponentially as temperature decreased. In general, PM emissions doubled for every 20 degrees F drop in ambient temperature, with these increases independent of vehicle model year. The effects of temperature on vehicle emissions was most pronounced during the initial start-up of the vehicle (cold start phase) when the vehicle was still cold, leading to inefficient combustion, inefficient catalyst operation, and the potential for the vehicle to be operating under fuel-rich conditions. The large data set available from this study also allowed for the development of a model to describe temperature effects on PM emission rates due to changing ambient conditions. This study has been used as the foundation to develop PM emissions rates, and to model the impact of ambient temperature on these rates, for gasoline-powered vehicles in the EPA's new regulatory motor vehicle emissions model, MOVES.

  8. Hybrid Map-Based Navigation Method for Unmanned Ground Vehicle in Urban Scenario

    Directory of Open Access Journals (Sweden)

    Huiyan Chen

    2013-07-01

    Full Text Available To reduce the data size of metric map and map matching computational cost in unmanned ground vehicle self-driving navigation in urban scenarios, a metric-topological hybrid map navigation system is proposed in this paper. According to the different positioning accuracy requirements, urban areas are divided into strong constraint (SC areas, such as roads with lanes, and loose constraint (LC areas, such as intersections and open areas. As direction of the self-driving vehicle is provided by traffic lanes and global waypoints in the road network, a simple topological map is fit for the navigation in the SC areas. While in the LC areas, the navigation of the self-driving vehicle mainly relies on the positioning information. Simultaneous localization and mapping technology is used to provide a detailed metric map in the LC areas, and a window constraint Markov localization algorithm is introduced to achieve accurate position using laser scanner. Furthermore, the real-time performance of the Markov algorithm is enhanced by using a constraint window to restrict the size of the state space. By registering the metric maps into the road network, a hybrid map of the urban scenario can be constructed. Real unmanned vehicle mapping and navigation tests demonstrated the capabilities of the proposed method.

  9. Modeling and Simulation on the Underwater Trajectory of Non-Powered Vehicle Discharged from the Broadside

    Institute of Scientific and Technical Information of China (English)

    Huijuan Ye; Hao Zhou; Xinye Wang

    2016-01-01

    In order to study the underwater trajectory of the non⁃powered vehicle discharged from the broadside of the underwater platform, the simulation on the ascent process of non⁃powered vehicle was realized based on the mathematical model including the movement of the vehicle on the slope plate and in the seawater, the air chamber underwater working process etc. The simulation results show that the outlet speed and attitude of the vehicle meet the requirements of missile launching, the non⁃powered vehicle discharged from the broadside of the underwater platform is feasible. The simulation results with varying parameters show that the negative buoyancy of the vehicle imposes great impacts on the security of its discharge and the floating process, and the vehicle discharge depth is proportional to the floating time. The models and simulation result can be used in further research on the broadside discharging technology of the underwater platform.

  10. Passive Night Vision Sensor Comparison for Unmanned Ground Vehicle Stereo Vision Navigation

    Science.gov (United States)

    Owens, Ken; Matthies, Larry

    2000-01-01

    One goal of the "Demo III" unmanned ground vehicle program is to enable autonomous nighttime navigation at speeds of up to 10 m.p.h. To perform obstacle detection at night with stereo vision will require night vision cameras that produce adequate image quality for the driving speeds, vehicle dynamics, obstacle sizes, and scene conditions that will be encountered. This paper analyzes the suitability of four classes of night vision cameras (3-5 micrometer cooled FLIR, 8-12 micrometer cooled FLIR, 8-12 micrometer uncooled FLIR, and image intensifiers) for night stereo vision, using criteria based on stereo matching quality, image signal to noise ratio, motion blur and synchronization capability. We find that only cooled FLIRs will enable stereo vision performance that meets the goals of the Demo III program for nighttime autonomous mobility.

  11. Thermal Management of Power Electronics and Electric Motors for Electric-Drive Vehicles (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Narumanchi, S.

    2014-09-01

    This presentation is an overview of the power electronics and electric motor thermal management and reliability activities at NREL. The focus is on activities funded by the Department of Energy Vehicle Technologies Office Advanced Power Electronics and Electric Motors Program.

  12. Practical To Tactical: Making the Case for a Shift in Ground Vehicle Robotics

    Science.gov (United States)

    2012-05-10

    Active Safety Vehicle Controls Automotive Sensors (CMOS Stereo Camera, Single Chip Radar , Low Cost Lidar) Drive-By-Wire (Electronically...UNCLASSIFIED 15 Forward Automotive Radar Camera Electric Power Assist Steering (EPAS) Steering Position Sensor Steering Torque Sensor ESC...I C R M x x x V UNCLASSIFIED T 1 r t TECHNOLOGY DRNEN. WARF~n1a~ rUUI~~. 20 Automotive Radar Stereo Camera Side Blind Zone Radar RG31

  13. Ground state energies from converging and diverging power series expansions

    Science.gov (United States)

    Lisowski, C.; Norris, S.; Pelphrey, R.; Stefanovich, E.; Su, Q.; Grobe, R.

    2016-10-01

    It is often assumed that bound states of quantum mechanical systems are intrinsically non-perturbative in nature and therefore any power series expansion methods should be inapplicable to predict the energies for attractive potentials. However, if the spatial domain of the Schrödinger Hamiltonian for attractive one-dimensional potentials is confined to a finite length L, the usual Rayleigh-Schrödinger perturbation theory can converge rapidly and is perfectly accurate in the weak-binding region where the ground state's spatial extension is comparable to L. Once the binding strength is so strong that the ground state's extension is less than L, the power expansion becomes divergent, consistent with the expectation that bound states are non-perturbative. However, we propose a new truncated Borel-like summation technique that can recover the bound state energy from the diverging sum. We also show that perturbation theory becomes divergent in the vicinity of an avoided-level crossing. Here the same numerical summation technique can be applied to reproduce the energies from the diverging perturbative sums.

  14. Scalable SiC Power Switches for Applications in More Electric Vehicles (Preprint)

    Science.gov (United States)

    2007-06-01

    AFRL-PR-WP-TP-2007-237 SCALABLE SiC POWER SWITCHES FOR APPLICATIONS IN MORE ELECTRIC VEHICLES (PREPRINT) Michael S. Mazzola, Douglas Seale...SWITCHES FOR APPLICATIONS IN MORE ELECTRIC VEHICLES (PREPRINT) 5c. PROGRAM ELEMENT NUMBER 63175C 5d. PROJECT NUMBER 1168 5e. TASK NUMBER 13 6...Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std. Z39-18 1 Scalable SiC Power Switches for Applications in More Electric Vehicles Abstract

  15. 29 CFR 1918.65 - Mechanically powered vehicles used aboard vessels.

    Science.gov (United States)

    2010-07-01

    ... repair. (g) Parking brakes. All mechanically powered vehicles purchased after January 21, 1998, shall be equipped with parking brakes. (h) Operation. (1) Only stable and safely arranged loads within the rated..., brakes set and power shut off. Wheels shall be blocked or curbed if the vehicle is on an incline....

  16. Nano-based chemical sensor array systems for uninhabited ground and airborne vehicles

    Science.gov (United States)

    Brantley, Christina; Ruffin, Paul B.; Edwards, Eugene

    2009-03-01

    In a time when homemade explosive devices are being used against soldiers and in the homeland security environment, it is becoming increasingly evident that there is an urgent need for high-tech chemical sensor packages to be mounted aboard ground and air vehicles to aid soldiers in determining the location of explosive devices and the origin of bio-chemical warfare agents associated with terrorist activities from a safe distance. Current technologies utilize relatively large handheld detection systems that are housed on sizeable robotic vehicles. Research and development efforts are underway at the Army Aviation & Missile Research, Development, and Engineering Center (AMRDEC) to develop novel and less expensive nano-based chemical sensors for detecting explosives and chemical agents used against the soldier. More specifically, an array of chemical sensors integrated with an electronics control module on a flexible substrate that can conform to and be surface-mounted to manned or unmanned vehicles to detect harmful species from bio-chemical warfare and other explosive devices is being developed. The sensor system under development is a voltammetry-based sensor system capable of aiding in the detection of any chemical agent and in the optimization of sensor microarray geometry to provide nonlinear Fourier algorithms to characterize target area background (e.g., footprint areas). The status of the research project is reviewed in this paper. Critical technical challenges associated with achieving system cost, size, and performance requirements are discussed. The results obtained from field tests using an unmanned remote controlled vehicle that houses a CO2/chemical sensor, which detects harmful chemical agents and wirelessly transmits warning signals back to the warfighter, are presented. Finally, the technical barriers associated with employing the sensor array system aboard small air vehicles will be discussed.

  17. Portable ammonia-borane-based H2 power-pack for unmanned aerial vehicles

    Science.gov (United States)

    Seo, Jung-Eun; Kim, Yujong; Kim, Yongmin; Kim, Kibeom; Lee, Jin Hee; Lee, Dae Hyung; Kim, Yeongcheon; Shin, Seock Jae; Kim, Dong-Min; Kim, Sung-Yug; Kim, Taegyu; Yoon, Chang Won; Nam, Suk Woo

    2014-05-01

    An advanced ammonia borane (AB)-based H2 power-pack is designed to continually drive an unmanned aerial vehicle (UAV) for 57 min using a 200-We polymer electrolyte membrane fuel cell (PEMFC). In a flight test with the UAV platform integrated with the developed power-pack, pure hydrogen with an average flow rate of 3.8 L(H2) min-1 is generated by autothermal H2-release from AB with tetraethylene glycol dimethylether (T4EGDE) as a promoter. During take-off, a hybridized power management system (PMS) consisting of the fuel cell and an auxiliary lithium-ion battery supplies 500 We at full power simultaneously, while the fuel cell alone provides 150-200 We and further recharges the auxiliary battery upon cruising. Gaseous byproducts identified by in situ Fourier transform infrared (FT-IR) spectroscopy during AB dehydrogenation are sequestrated using a mixed absorbent in an H2 purification system. In addition, a real-time monitoring system is employed to determine the remaining filter capacity of the purifier at a ground control system for rapidly responding unpredictable circumstances during flight. Separate experiments are conducted to screen potential materials and methods for enhancing filter capacity in the current H2 refining system. A prospective reactor concept for long-term fuel cell applications is proposed based on the results.

  18. Impact of mesh tracks and low-ground-pressure vehicle use on blanket peat hydrology

    Science.gov (United States)

    McKendrick-Smith, Kathryn; Holden, Joseph; Parry, Lauren

    2016-04-01

    Peatlands are subject to multiple uses including drainage, farming and recreation. Low-ground-pressure vehicle access is desirable by land owners and tracks facilitate access. However, there is concern that such activity may impact peat hydrology and so granting permission for track installation has been problematic, particularly without evidence for decision-making. We present the first comprehensive study of mesh track and low-ground-pressure vehicle impacts on peatland hydrology. In the sub-arctic oceanic climate of the Moor House World Biosphere Reserve in the North Pennines, UK, a 1.5 km long experimental track was installed to investigate hydrological impacts. Surface vegetation was cut and the plastic mesh track pinned into the peat surface. The experimental track was split into 7 treatments, designed to reflect typical track usage (0 - 5 vehicle passes per week) and varying vehicle weight. The greatest hydrological impacts were expected for sections of track subject to more frequent vehicle use and in close proximity to the track. In total 554 dipwells (including 15 automated recording at 15-min intervals) were monitored for water-table depth, positioned to capture potential spatial variability in response. Before track installation, samples for vertical and lateral hydraulic conductivity (Ks) analysis (using the modified cube method) were taken at 0-10 cm depth from a frequently driven treatment (n = 15), an infrequently driven treatment (0.5 passes per week) (n = 15) and a control site with no track/driving (n = 15). The test was repeated after 16 months of track use. We present a spatially and temporally rich water-table dataset from the study site showing how the impacts of the track on water table are spatially highly variable. Water-table depths across the site were shallow, typically within the upper 10 cm of the peat profile for > 75% of the time. We show that mesh track and low-ground-pressure vehicle impacts on water-table depth were small except

  19. Estimation of longitudinal speed robust to road conditions for ground vehicles

    Science.gov (United States)

    Hashemi, Ehsan; Kasaiezadeh, Alireza; Khosravani, Saeid; Khajepour, Amir; Moshchuk, Nikolai; Chen, Shih-Ken

    2016-08-01

    This article seeks to develop a longitudinal vehicle velocity estimator robust to road conditions by employing a tyre model at each corner. Combining the lumped LuGre tyre model and the vehicle kinematics, the tyres internal deflection state is used to gain an accurate estimation. Conventional kinematic-based velocity estimators use acceleration measurements, without correction with the tyre forces. However, this results in inaccurate velocity estimation because of sensor uncertainties which should be handled with another measurement such as tyre forces that depend on unknown road friction. The new Kalman-based observer in this paper addresses this issue by considering tyre nonlinearities with a minimum number of required tyre parameters and the road condition as uncertainty. Longitudinal forces obtained by the unscented Kalman filter on the wheel dynamics is employed as an observation for the Kalman-based velocity estimator at each corner. The stability of the proposed time-varying estimator is investigated and its performance is examined experimentally in several tests and on different road surface frictions. Road experiments and simulation results show the accuracy and robustness of the proposed approach in estimating longitudinal speed for ground vehicles.

  20. Monocular Camera/IMU/GNSS Integration for Ground Vehicle Navigation in Challenging GNSS Environments

    Directory of Open Access Journals (Sweden)

    Dennis Akos

    2012-03-01

    Full Text Available Low-cost MEMS-based IMUs, video cameras and portable GNSS devices are commercially available for automotive applications and some manufacturers have already integrated such facilities into their vehicle systems. GNSS provides positioning, navigation and timing solutions to users worldwide. However, signal attenuation, reflections or blockages may give rise to positioning difficulties. As opposed to GNSS, a generic IMU, which is independent of electromagnetic wave reception, can calculate a high-bandwidth navigation solution, however the output from a self-contained IMU accumulates errors over time. In addition, video cameras also possess great potential as alternate sensors in the navigation community, particularly in challenging GNSS environments and are becoming more common as options in vehicles. Aiming at taking advantage of these existing onboard technologies for ground vehicle navigation in challenging environments, this paper develops an integrated camera/IMU/GNSS system based on the extended Kalman filter (EKF. Our proposed integration architecture is examined using a live dataset collected in an operational traffic environment. The experimental results demonstrate that the proposed integrated system provides accurate estimations and potentially outperforms the tightly coupled GNSS/IMU integration in challenging environments with sparse GNSS observations.

  1. Monocular camera/IMU/GNSS integration for ground vehicle navigation in challenging GNSS environments.

    Science.gov (United States)

    Chu, Tianxing; Guo, Ningyan; Backén, Staffan; Akos, Dennis

    2012-01-01

    Low-cost MEMS-based IMUs, video cameras and portable GNSS devices are commercially available for automotive applications and some manufacturers have already integrated such facilities into their vehicle systems. GNSS provides positioning, navigation and timing solutions to users worldwide. However, signal attenuation, reflections or blockages may give rise to positioning difficulties. As opposed to GNSS, a generic IMU, which is independent of electromagnetic wave reception, can calculate a high-bandwidth navigation solution, however the output from a self-contained IMU accumulates errors over time. In addition, video cameras also possess great potential as alternate sensors in the navigation community, particularly in challenging GNSS environments and are becoming more common as options in vehicles. Aiming at taking advantage of these existing onboard technologies for ground vehicle navigation in challenging environments, this paper develops an integrated camera/IMU/GNSS system based on the extended Kalman filter (EKF). Our proposed integration architecture is examined using a live dataset collected in an operational traffic environment. The experimental results demonstrate that the proposed integrated system provides accurate estimations and potentially outperforms the tightly coupled GNSS/IMU integration in challenging environments with sparse GNSS observations.

  2. Inter-Vehicle Communication System Utilizing Autonomous Distributed Transmit Power Control

    Science.gov (United States)

    Hamada, Yuji; Sawa, Yoshitsugu; Goto, Yukio; Kumazawa, Hiroyuki

    In ad-hoc network such as inter-vehicle communication (IVC) system, safety applications that vehicles broadcast the information such as car velocity, position and so on periodically are considered. In these applications, if there are many vehicles broadcast data in a communication area, congestion incurs a problem decreasing communication reliability. We propose autonomous distributed transmit power control method to keep high communication reliability. In this method, each vehicle controls its transmit power using feed back control. Furthermore, we design a communication protocol to realize the proposed method, and we evaluate the effectiveness of proposed method using computer simulation.

  3. Ground moving target geo-location from monocular camera mounted on a micro air vehicle

    Science.gov (United States)

    Guo, Li; Ang, Haisong; Zheng, Xiangming

    2011-08-01

    The usual approaches to unmanned air vehicle(UAV)-to-ground target geo-location impose some severe constraints to the system, such as stationary objects, accurate geo-reference terrain database, or ground plane assumption. Micro air vehicle(MAV) works with characteristics including low altitude flight, limited payload and onboard sensors' low accuracy. According to these characteristics, a method is developed to determine the location of ground moving target which imaged from the air using monocular camera equipped on MAV. This method eliminates the requirements for terrain database (elevation maps) and altimeters that can provide MAV's and target's altitude. Instead, the proposed method only requires MAV flight status provided by its inherent onboard navigation system which includes inertial measurement unit(IMU) and global position system(GPS). The key is to get accurate information on the altitude of the ground moving target. First, Optical flow method extracts background static feature points. Setting a local region around the target in the current image, The features which are on the same plane with the target in this region are extracted, and are retained as aided features. Then, inverse-velocity method calculates the location of these points by integrated with aircraft status. The altitude of object, which is calculated by using position information of these aided features, combining with aircraft status and image coordinates, geo-locate the target. Meanwhile, a framework with Bayesian estimator is employed to eliminate noise caused by camera, IMU and GPS. Firstly, an extended Kalman filter(EKF) provides a simultaneous localization and mapping solution for the estimation of aircraft states and aided features location which defines the moving target local environment. Secondly, an unscented transformation(UT) method determines the estimated mean and covariance of target location from aircraft states and aided features location, and then exports them for the

  4. Potential Analysis of Regulating Power from Electric Vehicle (EV) Integration in Denmark

    DEFF Research Database (Denmark)

    Wu, Qiuwei; Nielsen, Arne Hejde; Østergaard, Jacob

    2011-01-01

    The potential analysis of having electric vehicles (EVs) provide regulating power has been implemented. The possible regulating power capacity from EVs and the economic return for EV users by providing regulating power are obtained. A spot price based charging schedule scenario has been used to do....... The activated regulating power and regulating power prices in the Denmark West System in 2010 have been used to calculate the economic return for EV users if all the regulating power is provided by EVs....

  5. Battery-free power for unattended ground sensors

    Science.gov (United States)

    Moldt, Vera A.

    2003-09-01

    In our current military environment, many operations are fought with small, highly mobile reconnaissance and strike forces that must move in and out of hostile terrain, setting up temporary bases and perimeters. As such, today's warfighter has to be well equipped to insure independent operation and survival of small, deployed groups. The use of unattended ground sensors in reconfigurable sensor networks can provide portable perimeter security for such special operations. Since all of the equipment for the missions must be carried by the warfighter, weight is a critical issue. Currently, batteries constitute much of that weight, as batteries are short-lived and unreliable. An alternative power source is required to eliminate the need for carrying multiple replacement batteries to support special operations. Such a battery-free, replenishable, energy management technology has been developed by Ambient Control Systems. Ambient has developed an advanced mid-door photovoltaic technology, which converts light to energy over a wide range of lighting conditions. The energy is then stored in supercapacitors, a highly robust, long-term storage medium. Ambient's advanced energy management technology will power remote sensor and control systems 24 hours/day, 7 days/week for over 20 years, without batteries, providing for ongoing detection, surveillance and other remote operations.

  6. Charging Scheduling of Electric Vehicles with Local Renewable Energy under Uncertain Electric Vehicle Arrival and Grid Power Price

    OpenAIRE

    Zhang, Tian; Chen, Wei; Han, Zhu; Cao, Zhigang

    2013-01-01

    In the paper, we consider delay-optimal charging scheduling of the electric vehicles (EVs) at a charging station with multiple charge points. The charging station is equipped with renewable energy generation devices and can also buy energy from power grid. The uncertainty of the EV arrival, the intermittence of the renewable energy, and the variation of the grid power price are taken into account and described as independent Markov processes. Meanwhile, the charging energy for each EV is rand...

  7. Measurement of Required Power with Human-Powered Aircraft in Take-off Ground Running

    Science.gov (United States)

    Yoshikawa, Toshiaki; Sakamoto, Shinsuke; Hori, Kotono; Kusumoto, Hiroshi; Yamamoto, Yasushi; Hattori, Takashi; Sata, Kouta

    In this paper, we propose the method for the measurement of required power and the adjustment of optimum gear ratio in take-off ground running. To get the values of required power and speed, we measured torque of the left side and the right side of pedals, RPM of pedals, and speed of the cockpit frame. In order to improve the take-off speed, some drums were applied, and the optimum gear ratio of the front drum to the rear drum was determined.

  8. Theoretical and Experimental Aerodynamic Analysis for High-Speed Ground Vehicles

    Science.gov (United States)

    Farhan, Ismail Haider

    Available from UMI in association with The British Library. This thesis investigates the air flow around a proposed geometry for a high-speed electromagnetic suspension (EMS) train. A numerical technique called the panel method has been applied to the representation of the body shape and the prediction of the potential flow and pressure distribution. Two computer programmes have been written, one for a single vehicle in the presence of the ground at different yaw angles, and the second for two-body problems, e.g. a train passing a railway station or a train passing the central part of another train. Two methods based on the momentum integral equations for three-dimensional boundary layer flow have been developed for use with the potential flow analysis; these predict the development of the three-dimensional turbulent boundary layer on the central section (for the analysis of crosswind conditions) and on the nose of the train. Extensive wind tunnel tests were performed on four models of the high-speed train to measure aerodynamic forces, moments and pressures to establish ground effect characteristics. Flow visualisation showed that the wake vortices were stronger and larger in the presence of a ground. At small yaw angles ground clearance had little effect, but as yaw increased, larger ground clearance led to substantial increase in lift and side force coefficients. The tests also identified the differences between a moving and a fixed ground plane. Data showed that the type of ground simulation was significant only in the separated region. A comparison of the results predicted using potential flow theory for an EMS train model and the corresponding results from wind tunnel tests indicated good agreement in regions where the flow is attached. The turbulent boundary layer calculations for the train in a crosswind condition showed that the momentum thickness along the crosswind surface distance co-ordinate increased slowly at the beginning of the development of the

  9. ELECTRIC AND MAGNETIC FIELDS ELECTRIC AND GASOLINE-POWERED VEHICLES.

    Science.gov (United States)

    Tell, Richard A; Kavet, Robert

    2016-12-01

    Measurements were conducted to investigate electric and magnetic fields (EMFs) from 120 Hz to 10 kHz and 1.2 to 100 kHz in 9 electric or hybrid vehicles and 4 gasoline vehicles, all while being driven. The range of fields in the electric vehicles enclosed the range observed in the gasoline vehicles. Mean magnetic fields ranged from nominally 0.6 to 3.5 µT for electric/hybrids depending on the measurement band compared with nominally 0.4 to 0.6 µT for gasoline vehicles. Mean values of electric fields ranged from nominally 2 to 3 V m(-1) for electric/hybrid vehicles depending on the band, compared with 0.9 to 3 V m(-1) for gasoline vehicles. In all cases, the fields were well within published exposure limits for the general population. The measurements were performed with Narda model EHP-50C/EHP-50D EMF analysers that revealed the presence of spurious signals in the EHP-50C unit, which were resolved with the EHP-50D model.

  10. Method and appartus for converting static in-ground vehicle scales into weigh-in-motion systems

    Energy Technology Data Exchange (ETDEWEB)

    Muhs, Jeffrey D. (Lenior City, TN); Scudiere, Matthew B. (Oak Ridge, TN); Jordan, John K. (Oak Ridge, TN)

    2002-01-01

    An apparatus and method for converting in-ground static weighing scales for vehicles to weigh-in-motion systems. The apparatus upon conversion includes the existing in-ground static scale, peripheral switches and an electronic module for automatic computation of the weight. By monitoring the velocity, tire position, axle spacing, and real time output from existing static scales as a vehicle drives over the scales, the system determines when an axle of a vehicle is on the scale at a given time, monitors the combined weight output from any given axle combination on the scale(s) at any given time, and from these measurements automatically computes the weight of each individual axle and gross vehicle weight by an integration, integration approximation, and/or signal averaging technique.

  11. Electric Vehicle Based Battery Storages for Large Scale Wind Power Integration in Denmark

    DEFF Research Database (Denmark)

    Pillai, Jayakrishnan Radhakrishna

    solutions like the Vehicle-to-Grid systems. They could be aggregated as a large energy storage which could be an attractive alternative to the conventional generator reserves being replaced by the wind power. The role of electric vehicles as a provider of active power balancing reserve is analysed here...... or as a load to improve the frequency stability of large wind power integrated distribution networks. It provides smooth, robust and faster power system frequency regulation than the conventional generators in providing active power balancing. This superior performance of the Vehicle-to-Grid systems is also...... is improving on a rapid scale and the battery cost is also reducing which could enable the electric cars to be competitive in the market. The electric vehicles could also benefit the electricity sector in supporting more renewable energy which is also one of the most important driving forces in its promotion...

  12. Wireless Power Transfer for High-precision Position Detection of Railroad Vehicles

    CERN Document Server

    Ryu, Hyun-Gyu

    2015-01-01

    Detection of vehicle position is critical for successful operation of intelligent transportation system. In case of railroad transportation systems, position information of railroad vehicles can be detected by GPS, track circuits, and so on. In this paper, position detection based on tags onto sleepers of the track is investigated. Position information stored in the tags is read by a reader placed at the bottom of running railroad vehicle. Due to limited capacity of battery or its alternative in the tags, power required for transmission of position information to the reader is harvested by the tags from the power wirelessly transferred from the reader. Basic mechanism in wireless power transfer is magnetic induction and power transfer efficiency according to the relative location of the reader to a tag is discussed with simulation results. Since power transfer efficiency is significantly affected by the ferromagnetic material (steel) at the bottom of the railroad vehicle and the track, magnetic beam shaping b...

  13. System design specification Brayton Isotope Power System (BIPS) Flight System (FS), and Ground Demonstration System (GDS)

    Energy Technology Data Exchange (ETDEWEB)

    1976-06-14

    The system design specification for ground demonstration, development, and flight qualification of a Brayton Isotope Power System (BIPS) is presented. The requirements for both a BIPS conceptual Flight System (FS) and a Ground Demonstration System (GDS) are defined.

  14. Road simulation for four-wheel vehicle whole input power spectral density

    Science.gov (United States)

    Wang, Jiangbo; Qiang, Baomin

    2017-05-01

    As the vibration of running vehicle mainly comes from road and influence vehicle ride performance. So the road roughness power spectral density simulation has great significance to analyze automobile suspension vibration system parameters and evaluate ride comfort. Firstly, this paper based on the mathematical model of road roughness power spectral density, established the integral white noise road random method. Then in the MATLAB/Simulink environment, according to the research method of automobile suspension frame from simple two degree of freedom single-wheel vehicle model to complex multiple degrees of freedom vehicle model, this paper built the simple single incentive input simulation model. Finally the spectrum matrix was used to build whole vehicle incentive input simulation model. This simulation method based on reliable and accurate mathematical theory and can be applied to the random road simulation of any specified spectral which provides pavement incentive model and foundation to vehicle ride performance research and vibration simulation.

  15. Vehicle-to-Grid for islanded power system operation in Bornholm

    DEFF Research Database (Denmark)

    Pillai, Jayakrishnan Radhakrishna; Bak-Jensen, Birgitte

    2010-01-01

    a model of an aggregated electric vehicle based battery storage to support an isolated power system operating with a large wind power penetration in the Danish island of Bornholm. From the simulation results, the EV battery storages represented by the V2G systems are able to integrate more fluctuating......Vehicle-to-Grid (V2G) systems are an emerging concept of utilizing the battery storage of electric vehicles (EVs) for providing power system regulation services. This technology could be used to balance the variable electricity generated from various renewable energy sources. This article considers...

  16. Flight Testing a Real-Time Hazard Detection System for Safe Lunar Landing on the Rocket-Powered Morpheus Vehicle

    Science.gov (United States)

    Trawny, Nikolas; Huertas, Andres; Luna, Michael E.; Villalpando, Carlos Y.; Martin, Keith E.; Carson, John M.; Johnson, Andrew E.; Restrepo, Carolina; Roback, Vincent E.

    2015-01-01

    The Hazard Detection System (HDS) is a component of the ALHAT (Autonomous Landing and Hazard Avoidance Technology) sensor suite, which together provide a lander Guidance, Navigation and Control (GN&C) system with the relevant measurements necessary to enable safe precision landing under any lighting conditions. The HDS consists of a stand-alone compute element (CE), an Inertial Measurement Unit (IMU), and a gimbaled flash LIDAR sensor that are used, in real-time, to generate a Digital Elevation Map (DEM) of the landing terrain, detect candidate safe landing sites for the vehicle through Hazard Detection (HD), and generate hazard-relative navigation (HRN) measurements used for safe precision landing. Following an extensive ground and helicopter test campaign, ALHAT was integrated onto the Morpheus rocket-powered terrestrial test vehicle in March 2014. Morpheus and ALHAT then performed five successful free flights at the simulated lunar hazard field constructed at the Shuttle Landing Facility (SLF) at Kennedy Space Center, for the first time testing the full system on a lunar-like approach geometry in a relevant dynamic environment. During these flights, the HDS successfully generated DEMs, correctly identified safe landing sites and provided HRN measurements to the vehicle, marking the first autonomous landing of a NASA rocket-powered vehicle in hazardous terrain. This paper provides a brief overview of the HDS architecture and describes its in-flight performance.

  17. Flight Testing a Real-Time Hazard Detection System for Safe Lunar Landing on the Rocket-Powered Morpheus Vehicle

    Science.gov (United States)

    Trawny, Nikolas; Huertas, Andres; Luna, Michael E.; Villalpando, Carlos Y.; Martin, Keith E.; Carson, John M.; Johnson, Andrew E.; Restrepo, Carolina; Roback, Vincent E.

    2015-01-01

    The Hazard Detection System (HDS) is a component of the ALHAT (Autonomous Landing and Hazard Avoidance Technology) sensor suite, which together provide a lander Guidance, Navigation and Control (GN&C) system with the relevant measurements necessary to enable safe precision landing under any lighting conditions. The HDS consists of a stand-alone compute element (CE), an Inertial Measurement Unit (IMU), and a gimbaled flash LIDAR sensor that are used, in real-time, to generate a Digital Elevation Map (DEM) of the landing terrain, detect candidate safe landing sites for the vehicle through Hazard Detection (HD), and generate hazard-relative navigation (HRN) measurements used for safe precision landing. Following an extensive ground and helicopter test campaign, ALHAT was integrated onto the Morpheus rocket-powered terrestrial test vehicle in March 2014. Morpheus and ALHAT then performed five successful free flights at the simulated lunar hazard field constructed at the Shuttle Landing Facility (SLF) at Kennedy Space Center, for the first time testing the full system on a lunar-like approach geometry in a relevant dynamic environment. During these flights, the HDS successfully generated DEMs, correctly identified safe landing sites and provided HRN measurements to the vehicle, marking the first autonomous landing of a NASA rocket-powered vehicle in hazardous terrain. This paper provides a brief overview of the HDS architecture and describes its in-flight performance.

  18. 30 CFR 75.700 - Grounding metallic sheaths, armors, and conduits enclosing power conductors.

    Science.gov (United States)

    2010-07-01

    ... conduits enclosing power conductors. 75.700 Section 75.700 Mineral Resources MINE SAFETY AND HEALTH... Grounding § 75.700 Grounding metallic sheaths, armors, and conduits enclosing power conductors. All metallic sheaths, armors, and conduits enclosing power conductors shall be electrically continuous throughout...

  19. Evaluation of the Electric Vehicle Impact in the Power Demand Curve in a Smart Grid Environment

    DEFF Research Database (Denmark)

    Morais, Hugo; Sousa, Tiago; Vale, Zita

    2014-01-01

    and to minimize the difference between the minimum and maximum system demand (leveling the power demand curve). The proposed methodology perform the day-ahead scheduling of distributed energy resources in a distribution network with high penetration of DG and a large number of electric vehicles. It is used a 32......Smart grids with an intensive penetration of distributed energy resources will play an important role in future power system scenarios. The intermittent nature of renewable energy sources brings new challenges, requiring an efficient management of those sources. Additional storage resources can...... be beneficially used to address this problem; the massive use of electric vehicles, particularly of vehicle-to-grid (usually referred as gridable vehicles or V2G), becomes a very relevant issue. This paper addresses the impact of Electric Vehicles (EVs) in system operation costs and in power demand curve...

  20. Continual Energy Management System of Proton Exchange Membrane Fuel Cell Hybrid Power Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Ren Yuan

    2016-01-01

    Full Text Available Current research status in energy management of Proton Exchange Membrane (PEM fuel cell hybrid power electric vehicles are first described in this paper, and then build the PEMFC/ lithium-ion battery/ ultra-capacitor hybrid system model. The paper analysis the key factors of the continuous power available in PEM fuel cell hybrid power electric vehicle and hybrid power system working status under different driving modes. In the end this paper gives the working flow chart of the hybrid power system and concludes the three items of the system performance analysis.

  1. Medicare program; conditions for payment of power mobility devices, including power wheelchairs and power-operated vehicles. Final rule.

    Science.gov (United States)

    2006-04-05

    This final rule conforms our regulations to section 302(a)(2)(E)(iv) of the Medicare Prescription Drug, Improvement, and Modernization Act of 2003. This rule defines the term power mobility devices (PMDs) as power wheelchairs and power operated vehicles (POVs or scooters). It sets forth revised conditions for Medicare payment of PMDs and defines who may prescribe PMDs. This rule also requires a face-to-face examination of the beneficiary by the physician or treating practitioner, a written prescription, and receipt of pertinent parts of the medical record by the supplier within 45 days after the face-to-face examination that the durable medical equipment suppliers maintain in their records and make available to CMS or its agents upon request. Finally, this rule discusses CMS' policy on documentation that may be requested by CMS or its agents to support a Medicare claim for payment, as well as the elimination of the Certificate of Medical Necessity (CMN) for PMDs.

  2. Advances in ground vehicle-based LADAR for standoff detection of road-side hazards

    Science.gov (United States)

    Hollinger, Jim; Vessey, Alyssa; Close, Ryan; Middleton, Seth; Williams, Kathryn; Rupp, Ronald; Nguyen, Son

    2016-05-01

    Commercial sensor technology has the potential to bring cost-effective sensors to a number of U.S. Army applications. By using sensors built for a widespread of commercial application, such as the automotive market, the Army can decrease costs of future systems while increasing overall capabilities. Additional sensors operating in alternate and orthogonal modalities can also be leveraged to gain a broader spectrum measurement of the environment. Leveraging multiple phenomenologies can reduce false alarms and make detection algorithms more robust to varied concealment materials. In this paper, this approach is applied to the detection of roadside hazards partially concealed by light-to-medium vegetation. This paper will present advances in detection algorithms using a ground vehicle-based commercial LADAR system. The benefits of augmenting a LADAR with millimeter-wave automotive radar and results from relevant data sets are also discussed.

  3. Research of Obstacle Recognition Technology in Cross-Country Environment for Unmanned Ground Vehicle

    Directory of Open Access Journals (Sweden)

    Zhao Yibing

    2014-01-01

    Full Text Available Being aimed at the obstacle recognition problem of unmanned ground vehicles in cross-country environment, this paper uses monocular vision sensor to realize the obstacle recognition of typical obstacles. Firstly, median filtering algorithm is applied during image preprocessing that can eliminate the noise. Secondly, image segmentation method based on the Fisher criterion function is used to segment the region of interest. Then, morphological method is used to process the segmented image, which is preparing for the subsequent analysis. The next step is to extract the color feature S, color feature a and edge feature “verticality” of image are extracted based on the HSI color space, the Lab color space, and two value images. Finally multifeature fusion algorithm based on Bayes classification theory is used for obstacle recognition. Test results show that the algorithm has good robustness and accuracy.

  4. Unmanned Ground Vehicle Navigation Using Brain Emotional Learning Based Intelligent Controller (BELBIC

    Directory of Open Access Journals (Sweden)

    Alvaro Vargas-Clara

    2015-02-01

    Full Text Available In this paper, we implement a novel control strategy for navigation of an Unmanned Ground Vehicle (UGV. This strategy consisted in the development and implementation of the Brain Emotional Learning Based Intelligent Controller (BELBIC for heading, and path control of a UGV. BELBIC is an intelligent controller based on the model of the Amygdala-Orbitofrontal system of mammalians, which is a region in the brain known to be responsible for emotional learning process. Simulation of this controller for the cases of heading, and path control showed to be very robust and adaptable to dynamical changes in the plant. A comparison between BELBIC and a traditional PID control is presented to illustrate the performance of this control strategy.

  5. Results of the second (1996) experiment to lead cranes on migration behind a motorized ground vehicle

    Science.gov (United States)

    Ellis, D.H.; Clauss, B.; Watanabe, T.; Mykut, R.C.; Shawkey, M.; Mummert, D.P.; Sprague, D.T.; Ellis, Catherine H.; Trahan, F.B.

    2001-01-01

    Fourteen greater sandhill cranes (Grus canadensis tabida) were trained to follow a specially-equipped truck and 12 were led along a ca 620-km route from Camp Navajo in northern Arizona to the Buenos Aires National Wildlife Refuge near the Arizona/Mexico border. Ten survived the trek, 380 km of which were flown, although only a few cranes flew every stage of the route. Major problems during the migration were powerline collisions (ca 15, 2 fatal) and overheating (when air temperatures exceeded ca 25 C). The tenacity of the cranes in following both in 1995 and 1996 under unfavorable conditions (e.g., poor light, extreme dust, or heat) demonstrated that cranes could be led over long distances by motorized vehicles on the ground.

  6. Power quality issues into a Danish low-voltage grid with electric vehicles

    DEFF Research Database (Denmark)

    Marra, Francesco; Jensen, Morten M.; Garcia-Valle, Rodrigo

    2011-01-01

    An increased interest on electric vehicles (EVs) and plug-in hybrid electric vehicles (PHEVs) is dealing with their introduction into low voltage (LV) distribution grids. Lately, analysis on power quality issues has received attention when considering EVs as additional load. The charging of EVs...

  7. Phobetor: Princeton University's entry in the 2010 Intelligent Ground Vehicle Competition

    Science.gov (United States)

    Newman, Joshua; Zhu, Han; Partridge, Brenton A.; Szocs, Laszlo J.; Abiola, Solomon O.; Corey, Ryan M.; Suresh, Srinivasan A.; Yu, Derrick D.

    2011-01-01

    In this paper we present Phobetor, an autonomous outdoor vehicle originally designed for the 2010 Intelligent Ground Vehicle Competition (IGVC). We describe new vision and navigation systems that have yielded 3x increase in obstacle detection speed using parallel processing and robust lane detection results. Phobetor also uses probabilistic local mapping to learn about its environment and Anytime Dynamic A* (AD*) to plan paths to reach its goals. Our vision software is based on color stereo images and uses robust, RANSAC-based algorithms while running fast enough to support real-time autonomous navigation on uneven terrain. AD* allows Phobetor to respond quickly in all situations even when optimal planning takes more time, and uses incremental replanning to increase search efficiency. We augment the cost map of the environment with a potential field which addresses the problem of "wall-hugging" and smoothes generated paths to allow safe and reliable path-following. In summary, we present innovations on Phobetor that are relevant to real-world robotics platforms in uncertain environments.

  8. Space vehicle electrical power processing distribution and control study. Volume 1: Summary

    Science.gov (United States)

    Krausz, A.

    1972-01-01

    A concept for the processing, distribution, and control of electric power for manned space vehicles and future aircraft is presented. Emphasis is placed on the requirements of the space station and space shuttle configurations. The systems involved are referred to as the processing distribution and control system (PDCS), electrical power system (EPS), and electric power generation system (EPGS).

  9. Probabilistic Constrained Load Flow Considering Integration of Wind Power Generation and Electric Vehicles

    DEFF Research Database (Denmark)

    Vlachogiannis, Ioannis (John)

    2009-01-01

    A new formulation and solution of probabilistic constrained load flow (PCLF) problem suitable for modern power systems with wind power generation and electric vehicles (EV) demand or supply is represented. The developed stochastic model of EV demand/supply and the wind power generation model...

  10. 75 FR 33515 - Federal Motor Vehicle Safety Standards; Electric-Powered Vehicles; Electrolyte Spillage and...

    Science.gov (United States)

    2010-06-14

    ... issuing this final rule to facilitate the development and introduction of fuel cell vehicles, a type of... so by revising the agency's standard regulating electrolyte spillage and electrical shock...

  11. Intelligent Approaches in Improving In-vehicle Network Architecture and Minimizing Power Consumption in Combat Vehicles

    Science.gov (United States)

    2011-01-01

    include washing machines , rice cookers, image processing applications , anti-lock brake controls , and steering controls . In general, fuzzy logic...its cognitive information to other in-vehicle network systems. In [58] a Fuzzy Logic Controller for Hybrid Electric Vehicle is proposed to maximize...provided to describe what is meant by ―optimal torque value‖. All the 121 rules in this fuzzy logic controller are static and have no flexibility to

  12. Onboard power line conditioning system for an electric or hybrid vehicle

    Energy Technology Data Exchange (ETDEWEB)

    Kajouke, Lateef A.; Perisic, Milun

    2016-06-14

    A power line quality conditioning system for a vehicle includes an onboard rechargeable direct current (DC) energy storage system and an onboard electrical system coupled to the energy storage system. The energy storage system provides DC energy to drive an electric traction motor of the vehicle. The electrical system operates in a charging mode such that alternating current (AC) energy from a power grid external to the vehicle is converted to DC energy to charge the DC energy storage system. The electrical system also operates in a vehicle-to-grid power conditioning mode such that DC energy from the DC energy storage system is converted to AC energy to condition an AC voltage of the power grid.

  13. Wind Tunnel Investigation of Ground Wind Loads for Ares Launch Vehicle

    Science.gov (United States)

    Keller, Donald F.; Ivanco, Thomas G.

    2010-01-01

    A three year program was conducted at the NASA Langley Research Center (LaRC) Aeroelasticity Branch (AB) and Transonic Dynamics Tunnel (TDT) with the primary objective to acquire scaled steady and dynamic ground-wind loads (GWL) wind-tunnel data for rollout, on-pad stay, and on-pad launch configurations for the Ares I-X Flight Test Vehicle (FTV). The experimental effort was conducted to obtain an understanding of the coupling of aerodynamic and structural characteristics that can result in large sustained wind-induced oscillations (WIO) on such a tall and slender launch vehicle and to generate a unique database for development and evaluation of analytical methods for predicting steady and dynamic GWL, especially those caused by vortex shedding, and resulting in significant WIO. This paper summarizes the wind-tunnel test program that employed two dynamically-aeroelastically scaled GWL models based on the Ares I-X Flight Test Vehicle. The first model tested, the GWL Checkout Model (CM), was a relatively simple model with a secondary objective of restoration and development of processes and methods for design, fabrication, testing, and data analysis of a representative ground wind loads model. In addition, parametric variations in surface roughness, Reynolds number, and protuberances (on/off) were investigated to determine effects on GWL characteristics. The second windtunnel model, the Ares I-X GWL Model, was significantly more complex and representative of the Ares I-X FTV and included the addition of simplified rigid geometrically-scaled models of the Kennedy Space Center (KSC) Mobile Launch Platform (MLP) and Launch Complex 39B primary structures. Steady and dynamic base bending moment as well as model response and steady and unsteady pressure data was acquired during the testing of both models. During wind-tunnel testing of each model, flow conditions (speed and azimuth) where significant WIO occurred, were identified and thoroughly investigated. Scaled data from

  14. Models of ionospheric VLF absorption of powerful ground based transmitters

    Science.gov (United States)

    Cohen, M. B.; Lehtinen, N. G.; Inan, U. S.

    2012-12-01

    Ground based Very Low Frequency (VLF, 3-30 kHz) radio transmitters play a role in precipitation of energetic Van Allen electrons. Initial analyses of the contribution of VLF transmitters to radiation belt losses were based on early models of trans-ionospheric propagation known as the Helliwell absorption curves, but some recent studies have found that the model overestimates (by 20-100 dB) the VLF energy reaching the magnetosphere. It was subsequently suggested that conversion of wave energy into electrostatic modes may be responsible for the error. We utilize a newly available extensive record of VLF transmitter energy reaching the magnetosphere, taken from the DEMETER satellite, and perform a direct comparison with a sophisticated full wave model of trans-ionospheric propagation. Although the model does not include the effect of ionospheric irregularities, it correctly predicts the average total power injected into the magnetosphere within several dB. The results, particularly at nighttime, appear to be robust against the variability of the ionospheric electron density. We conclude that the global effect of irregularity scattering on whistler mode conversion to quasi-electrostatic may be no larger than 6 dB.

  15. Design of Solar/Electric Powered Hybrid Vehicle (SEPHV) System with Charge Pattern Optimization for Energy Cost

    OpenAIRE

    T Balamurugan; Dr.S.Manoharan

    2014-01-01

    This paper proposes a Solar Electric Powered Hybrid Vehicle (SEPHV) system which solves the major problems of fuel and pollution. An electric vehicle usually uses a battery which has been charged by external electrical power supply. All recent electric vehicles present a drive on AC power supplied motor. An inverter set is required to be connected with the battery through which AC power is converted to DC power. During this conversion many losses take place and also the maintenance cost of th...

  16. Solar powered hydrogen generating facility and hydrogen powered vehicle fleet. Final technical report, August 11, 1994--January 6, 1997

    Energy Technology Data Exchange (ETDEWEB)

    Provenzano, J.J.

    1997-04-01

    This final report describes activities carried out in support of a demonstration of a hydrogen powered vehicle fleet and construction of a solar powered hydrogen generation system. The hydrogen generation system was permitted for construction, constructed, and permitted for operation. It is not connected to the utility grid, either for electrolytic generation of hydrogen or for compression of the gas. Operation results from ideal and cloudy days are presented. The report also describes the achievement of licensing permits for their hydrogen powered trucks in California, safety assessments of the trucks, performance data, and information on emissions measurements which demonstrate performance better than the Ultra-Low Emission Vehicle levels.

  17. Trajectory Simulation for Underwater Vehicle with Power-Lunched

    Institute of Scientific and Technical Information of China (English)

    Chaoqian Chen; Wei Cao; Cong Wang∗and Yingjie Wei

    2016-01-01

    The motion of combustion gas bubble produced by underwater ignition was developed based on Rayleigh⁃Plesset equation. Combining the bubble motion equation with the underwater launched vehicle motion equation in the longitudinal plane, a trajectory simulation model with power⁃launched was established. The hydrodynamic characteristics of underwater ignition at different depths and the trajectory analysis of the underwater vehicle with power⁃launched were given by simulation. The simulation results have a good agreement with experimental results, and show that the thrust peak caused by underwater ignition and the stable thrust both decrease slightly with the increase of the water depth, and the thrust peak will decline obviously by enlarging the initial radius of gas bubble; the thrust peak generated at the instant of ignition and the low⁃frequency oscillation of the stable thrust have no significant influence on the trajectory of underwater vehicle.

  18. Vehicle to wireless power transfer coupling coil alignment sensor

    Energy Technology Data Exchange (ETDEWEB)

    Miller, John M.; Chambon, Paul H.; Jones, Perry T.; White, Clifford P.

    2016-02-16

    A non-contacting position sensing apparatus includes at least one vehicle-mounted receiver coil that is configured to detect a net flux null when the vehicle is optimally aligned relative to the primary coil in the charging device. Each of the at least one vehicle-mounted receiver coil includes a clockwise winding loop and a counterclockwise winding loop that are substantially symmetrically configured and serially connected to each other. When the non-contacting position sensing apparatus is located directly above the primary coil of the charging device, the electromotive forces from the clockwise winding loop and the counterclockwise region cancel out to provide a zero electromotive force, i.e., a zero voltage reading across the coil that includes the clockwise winding loop and the counterclockwise winding loop.

  19. Engine Optimization for a Solar Thermal Powered Orbit Transfer Vehicle

    Science.gov (United States)

    1998-06-01

    Recent technological advancements in solar thermal rocket propulsion and solar orbit transfer vehicles make it critical to perform additional engine performance analyses. Several system level flight demonstrations are imminent. Space flight hardware component testing is being conducted at the Air Force Research Laboratory, Edwards AFB, California. The focus of current research is engine and nozzle configurations for a solar orbit transfer vehicle. The optimal design must produce 1-10 pounds thrust, perform at high lsp and be compatible in a hybrid of spiral, perigee, and apogee (multi-burn) configurations. The nozzle material must not ablate when subjected to extreme thermal loading, yet be durable enough to withstand widely varying temperature differentials during frequent thermal cycling. This paper addresses propulsive needs in the orbit transfer arena and defines governing upper stage vehicle engine equations. These equations are modified versions of rocket engine equations used for chemical systems. The correction factors and modifications are for Solar Thermal Propulsion specific hardware.

  20. Development of Capacitors for Power Electronics in Hybrid Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Balachandran, U. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-02-16

    The purpose of this CRADA is to develop a fabrication process to reduce the manufacturing cost for a very compact, high temperature, film-on-foil high energy-density PLZT (Pb-La-Zr- Ti-O) capacitor. Motivation for this CRADA is derived from the DOE’s Office of Vehicle Technologies (OVT) program, which seeks to advance technologies to improve vehicle fuel efficiency in the mid-term and facilitate the transition to electric drive vehicles over the longterm. The objective of Argonne’s work is to develop and characterize high-performance capacitors on base-metal foils. The PLZT film-on-foil prepared using a spin-coating technique

  1. Power control apparatus and methods for electric vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Gadh, Rajit; Chung, Ching-Yen; Chu, Chi-Cheng; Qiu, Li

    2016-03-22

    Electric vehicle (EV) charging apparatus and methods are described which allow the sharing of charge current between multiple vehicles connected to a single source of charging energy. In addition, this charge sharing can be performed in a grid-friendly manner by lowering current supplied to EVs when necessary in order to satisfy the needs of the grid, or building operator. The apparatus and methods can be integrated into charging stations or can be implemented with a middle-man approach in which a multiple EV charging box, which includes an EV emulator and multiple pilot signal generation circuits, is coupled to a single EV charge station.

  2. The Role of Model Fidelity in Model Predictive Control Based Hazard Avoidance in Unmanned Ground Vehicles Using Lidar Sensors

    Science.gov (United States)

    2013-03-08

    for Mobile Robot Obstacle Avoidance", Proceedings of IEEE International Conference on Mechatronics and Automation, Harbin, China, pp. 2784-2788. [10...military and commercial applications. Although earlier UGV platforms were typically exclusively small ground robots , recent efforts started...targeting passenger vehicle and larger size platforms. Due to their size and speed, these platforms have significantly different dynamics than small robots

  3. Design and Application of a Power Unit to Use Plug-In Electric Vehicles as an Uninterruptible Power Supply

    Directory of Open Access Journals (Sweden)

    Gorkem Sen

    2016-03-01

    Full Text Available Grid-enabled vehicles (GEVs such as plug-in electric vehicles present environmental and energy sustainability advantages compared to conventional vehicles. GEV runs solely on power generated by its own battery group, which supplies power to its electric motor. This battery group can be charged from external electric sources. Nowadays, the interaction of GEV with the power grid is unidirectional by the charging process. However, GEV can be operated bi-directionally by modifying its power unit. In such operating conditions, GEV can operate as an uninterruptible power supply (UPS and satisfy a portion or the total energy demand of the consumption center independent from utility grid, which is known as vehicle-to-home (V2H. In this paper, a power unit is developed for GEVs in the laboratory to conduct simulation and experimental studies to test the performance of GEVs as a UPS unit in V2H mode at the time of need. The activation and deactivation of the power unit and islanding protection unit are examined when energy is interrupted.

  4. Power line field sensing to support autonomous navigation of small unmanned aerial vehicles

    Science.gov (United States)

    Matthews, John; Bukshpun, Leonid; Pradhan, Ranjit

    2013-06-01

    Autonomous navigation around power lines in a complex urban environment is a critical challenge facing small unmanned aerial vehicles (SUAVs). As part of an ongoing development of an electric and magnetic field sensor system designed to provide SUAVs with the capability to sense and avoid power transmission and distribution lines by monitoring their electric and magnetic field signatures, we have performed field measurements and analysis of power-line signals. We discuss the nature of the power line signatures to be detected, and optimal strategies for detecting these signals amid SUAV platform noise and environmental interference. Based on an analysis of measured power line signals and vehicle noise, we have found that, under certain circumstances, power line harmonics can be detected at greater range than the fundamental. We explain this phenomenon by combining a model of power line signal nonlinearity with the quasi-static electric and magnetic signatures of multiphase power lines.

  5. Extraction of Urban Power Lines from Vehicle-Borne LiDAR Data

    Directory of Open Access Journals (Sweden)

    Liang Cheng

    2014-04-01

    Full Text Available Airborne LiDAR has been traditionally used for power line cruising. Nevertheless, data acquisition with airborne LiDAR is constrained by the complex environments in urban areas as well as the multiple parallel line structures on the same power line tower, which means it is not directly applicable to the extraction of urban power lines. Vehicle-borne LiDAR system has its advantages upon airborne LiDAR and this paper tries to utilize vehicle-borne LiDAR data for the extraction of urban power lines. First, power line points are extracted using a voxel-based hierarchical method in which geometric features of each voxel are calculated. Then, a bottom-up method for filtering the power lines belonging to each power line is proposed. The initial clustering and clustering recovery procedures are conducted iteratively to identify each power line. The final experiment demonstrates the high precision of this technique.

  6. Optimal Operation of Electric Vehicles in Competitive Electricity Markets and Its Impact on Distribution Power Systems

    DEFF Research Database (Denmark)

    Hu, Weihao; Chen, Zhe; Bak-Jensen, Birgitte

    2011-01-01

    operation strategy for a Plug-In Electric Vehicle (PEV) in relation to the hourly electricity price in order to achieve minimum energy costs of the PEV. The western Danish power system, which is currently the grid area in the world that has the largest share of wind power in its generation profiles and may...... represent the future of electricity markets in some ways, is chosen as the studied power system in this paper. The impact of the optimal operation strategy for electric vehicles together with the optimal load response to spot market price on the distribution power system with high wind power penetrations......Since the hourly spot market price is available one day ahead in Denmark, the electricity price could be transferred to the consumers and they may make some optimal charge and discharge schedules for their electric vehicles in order to minimize their energy costs. This paper presents an optimal...

  7. Optimal Operation of Electric Vehicles in Competitive Electricity Markets and Its Impact on Distribution Power Systems

    DEFF Research Database (Denmark)

    Hu, Weihao; Chen, Zhe; Bak-Jensen, Birgitte

    2011-01-01

    Since the hourly spot market price is available one day ahead in Denmark, the electricity price could be transferred to the consumers and they may make some optimal charge and discharge schedules for their electric vehicles in order to minimize their energy costs. This paper presents an optimal...... operation strategy for a Plug-In Electric Vehicle (PEV) in relation to the hourly electricity price in order to achieve minimum energy costs of the PEV. The western Danish power system, which is currently the grid area in the world that has the largest share of wind power in its generation profiles and may...... represent the future of electricity markets in some ways, is chosen as the studied power system in this paper. The impact of the optimal operation strategy for electric vehicles together with the optimal load response to spot market price on the distribution power system with high wind power penetrations...

  8. AN ASSESSMENT OF FLYWHEEL HIGH POWER ENERGY STORAGE TECHNOLOGY FOR HYBRID VEHICLES

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, James Gerald [ORNL

    2012-02-01

    An assessment has been conducted for the DOE Vehicle Technologies Program to determine the state of the art of advanced flywheel high power energy storage systems to meet hybrid vehicle needs for high power energy storage and energy/power management. Flywheel systems can be implemented with either an electrical or a mechanical powertrain. The assessment elaborates upon flywheel rotor design issues of stress, materials and aspect ratio. Twelve organizations that produce flywheel systems submitted specifications for flywheel energy storage systems to meet minimum energy and power requirements for both light-duty and heavy-duty hybrid applications of interest to DOE. The most extensive experience operating flywheel high power energy storage systems in heavy-duty and light-duty hybrid vehicles is in Europe. Recent advances in Europe in a number of vehicle racing venues and also in road car advanced evaluations are discussed. As a frame of reference, nominal weight and specific power for non-energy storage components of Toyota hybrid electric vehicles are summarized. The most effective utilization of flywheels is in providing high power while providing just enough energy storage to accomplish the power assist mission effectively. Flywheels are shown to meet or exceed the USABC power related goals (discharge power, regenerative power, specific power, power density, weight and volume) for HEV and EV batteries and ultracapacitors. The greatest technical challenge facing the developer of vehicular flywheel systems remains the issue of safety and containment. Flywheel safety issues must be addressed during the design and testing phases to ensure that production flywheel systems can be operated with adequately low risk.

  9. A Multidisciplinary Optimization Framework for Occupant Centric Ground Vehicle System Design. Part 1: Vehicle Design Parameter Screening Study

    Science.gov (United States)

    2014-08-01

    measured, such as at the pelvis location. Tibia vertical forces and lower lumbar spine forces were also measured and used as the responses to an...are four pillars mounted to the roof and the crew floor along the center line of the crew cabin to increase the vertical stiffness of the cabin...components of the simplified vehicle structure used for this study, including seat mounting options, and vehicle interior arrangements . In this study

  10. 76 FR 45436 - Federal Motor Vehicle Safety Standards; Electric-Powered Vehicles; Electrolyte Spillage and...

    Science.gov (United States)

    2011-07-29

    ... located outside the occupant compartment shall not enter the occupant compartment. Clarifies the... S5.2 allowed a battery module located outside the passenger compartment to become dislodged as long... sport utility vehicles (SUV) or station wagons, a battery module located inside the occupant...

  11. Kinetic energy recovery and power management for hybrid electric vehicles

    OpenAIRE

    P. Suntharalingam

    2011-01-01

    The major contribution of the work presented in this thesis is a thorough investigation of the constraints on regenerative braking and kinetic energy recovery enhancement for electric/hybrid electric vehicles during braking. Regenerative braking systems provide an opportunity to recycle the braking energy, which is otherwise dissipated as heat in the brake pads. However, braking energy harnessing is a relatively new concept in the automotive sector which still requires further research and de...

  12. A novel lidar-driven two-level approach for real-time unmanned ground vehicle navigation and map building

    Science.gov (United States)

    Luo, Chaomin; Krishnan, Mohan; Paulik, Mark; Cui, Bo; Zhang, Xingzhong

    2013-12-01

    In this paper, a two-level LIDAR-driven hybrid approach is proposed for real-time unmanned ground vehicle navigation and map building. Top level is newly designed enhanced Voronoi Diagram (EVD) method to plan a global trajectory for an unmanned vehicle. Bottom level employs Vector Field Histogram (VFH) algorithm based on the LIDAR sensor information to locally guide the vehicle under complicated workspace, in which it autonomously traverses from one node to another within the planned EDV with obstacle avoidance. To find the least-cost path within the EDV, novel distance and angle based search heuristic algorithms are developed, in which the cost of an edge is the risk of traversing the edge. An EVD is first constructed based on the environment, which is utilized to generate the initial global trajectory with obstacle avoidance. The VFH algorithm is employed to guide the vehicle to follow the path locally. Its effectiveness and efficiency of real-time navigation and map building for unmanned vehicles have been successfully validated by simulation studies and experiments. The proposed approach is successfully experimented on an actual unmanned vehicle to demonstrate the real-time navigation and map building performance of the proposed method. The vehicle appears to follow a very stable path while navigating through various obstacles.

  13. The Harmonoise/IMAGINE model for traction noise of powered railway vehicles

    NARCIS (Netherlands)

    Dittrich, M.G.; Zhang, X.

    2006-01-01

    Traction noise is one of the noise sources of powered railway vehicles such as locomotives, electric- and diesel-powered multiple unit trains and high-speed trains. Especially at speeds below 60 km/h and at idling, but also at acceleration conditions for a wide range of speeds, traction noise can be

  14. Dynamic characteristics of hydraulic power steering system with accumulator in load-haul-dump vehicle

    Institute of Scientific and Technical Information of China (English)

    杨忠炯; 何清华; 柳波

    2004-01-01

    Using hydraulic power steering system of model EIMCO 922 load-haul-dump vehicle as a simulation example, the dynamic characteristics of hydraulic power steering system in load-haul-dump vehicle were simulated and discussed with SIMULINK software and hydraulic control theory. The results show that the dynamic characteristics of hydraulic power steering system are improved obviously by using bladder accumulator, the hydraulic power steering system of model EIMCO 922 load-haul-dump vehicle generates vibration at the initial stage under the normal steering condition of pulse input, and its static response time is 0.25 s shorter than that without bladder accumulator. Under the normal steering working condition, the capacity of steering accumulator for absorbing pulse is directly proportional to the cross section area of connecting pipeline, and inversely proportional to the length of connecting pipeline. At the same time, the precharge pressure of nitrogen in steering accumulator should be 60%- 80% of the rated minimum working pressure of hydraulic power steering system. Under the abnormal steering working condition, the steering cylinder piston may obtain higher motion velocity, and the dynamic response velocity of hydraulic power steering system can be increased by reducing the pressure drop of hydraulic pipelines between the accumulator and steering cylinder and by increasing the rated pressure of hydraulic power steering system, but the dynamic characteristics of hydraulic power steering system in load-haul-dump vehicle have nothing to do with the precharge pressure of nitrogen in steering accumulator.

  15. Power electronics and electric machinery challenges and opportunities in electric and hybrid vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Adams, D.J.; Hsu, J.S.; Young, R.W. [Oak Ridge National Lab., TN (United States); Peng, F.Z. [Univ. of Tennessee, Knoxville, TN (United States)

    1997-06-01

    The development of power electronics and electric machinery presents significant challenges to the advancement of electric and hybrid vehicles. Electronic components and systems development for vehicle applications have progressed from the replacement of mechanical systems to the availability of features that can only be realized through interacting electronic controls and devices. Near-term applications of power electronics in vehicles will enable integrated powertrain controls, integrated chassis system controls, and navigation and communications systems. Future applications of optimized electric machinery will enable highly efficient and lightweight systems. This paper will explore the areas where research and development is required to ensure the continued development of power electronics and electric machines to meet the rigorous demands of automotive applications. Additionally, recent advances in automotive related power electronics and electric machinery at Oak Ridge National Laboratory will be explained. 3 refs., 5 figs.

  16. Development of a vehicle capable of traveling on soft ground. Its application to investigation, survey and management of soft ground; Nanjakuchi sokosha no kaihatsu. Nanjakuchi deno chosa sokuryo kanri eno tekiyo

    Energy Technology Data Exchange (ETDEWEB)

    Kimura, R.; Yano, H. [Ministry of Construction, Tokyo (Japan)

    1998-07-25

    An experimental vehicle is built and tested, which utilizes hovercraft technology, capable of travelling on a soft ground surface and therefore usable in reclamation work. When the ground is soft and viscous, merely increasing the vehicle driving force will futilely add to the vehicle weight, and this causes an adverse effect with the vehicle sinking deeper into the ground and the ground presenting higher resistance. In an effort to decrease the weight and resistance, a vehicle is built, capable of levitating itself by use of hovercraft technology and provided with retractable tracks and wheels for travelling. The targets are mostly attained in the test run, as far as speeds (5.5km/h at the maximum across a muddy ground section) and trekking across ground including an undulated surface are concerned, although the levitation level is found to be somewhat lower than the design value. Operating across a hard ground surface with the body elevated, the vehicle exhibits a higher performance in speed and drivability when the hovercraft effect is utilized. When travelling on the hovercraft effect, the frictional resistance of the skirt decreases as the vehicle moves from a hard surface section into a soft surface section, and this allows the vehicle to run more smoothly at higher speeds. 1 refs., 6 figs.

  17. A framework for the natural-language-perception-based creative control of unmanned ground vehicles

    Science.gov (United States)

    Ghaffari, Masoud; Liao, Xiaoqun; Hall, Ernest L.

    2004-09-01

    Mobile robots must often operate in an unstructured environment cluttered with obstacles and with many possible action paths. That is why mobile robotics problems are complex with many unanswered questions. To reach a high degree of autonomous operation, a new level of learning is required. On the one hand, promising learning theories such as the adaptive critic and creative control have been proposed, while on other hand the human brain"s processing ability has amazed and inspired researchers in the area of Unmanned Ground Vehicles but has been difficult to emulate in practice. A new direction in the fuzzy theory tries to develop a theory to deal with the perceptions conveyed by the natural language. This paper tries to combine these two fields and present a framework for autonomous robot navigation. The proposed creative controller like the adaptive critic controller has information stored in a dynamic database (DB), plus a dynamic task control center (TCC) that functions as a command center to decompose tasks into sub-tasks with different dynamic models and multi-criteria functions. The TCC module utilizes computational theory of perceptions to deal with the high levels of task planning. The authors are currently trying to implement the model on a real mobile robot and the preliminary results have been described in this paper.

  18. Suborbital Reusable Launch Vehicles as an Opportunity to Consolidate and Calibrate Ground Based and Satellite Instruments

    Science.gov (United States)

    Papadopoulos, K.

    2014-12-01

    XCOR Aerospace, a commercial space company, is planning to provide frequent, low cost access to near-Earth space on the Lynx suborbital Reusable Launch Vehicle (sRLV). Measurements in the external vacuum environment can be made and can launch from most runways on a limited lead time. Lynx can operate as a platform to perform suborbital in situ measurements and remote sensing to supplement models and simulations with new data points. These measurements can serve as a quantitative link to existing instruments and be used as a basis to calibrate detectors on spacecraft. Easier access to suborbital data can improve the longevity and cohesiveness of spacecraft and ground-based resources. A study of how these measurements can be made on Lynx sRLV will be presented. At the boundary between terrestrial and space weather, measurements from instruments on Lynx can help develop algorithms to optimize the consolidation of ground and satellite based data as well as assimilate global models with new data points. For example, current tides and the equatorial electrojet, essential to understanding the Thermosphere-Ionosphere system, can be measured in situ frequently and on short notice. Furthermore, a negative-ion spectrometer and a Faraday cup, can take measurements of the D-region ion composition. A differential GPS receiver can infer the spatial gradient of ionospheric electron density. Instruments and optics on spacecraft degrade over time, leading to calibration drift. Lynx can be a cost effective platform for deploying a reference instrument to calibrate satellites with a frequent and fast turnaround and a successful return of the instrument. A calibrated reference instrument on Lynx can make collocated observations as another instrument and corrections are made for the latter, thus ensuring data consistency and mission longevity. Aboard a sRLV, atmospheric conditions that distort remotely sensed data (ground and spacecraft based) can be measured in situ. Moreover, an

  19. Optimal Strategy of Efficiency Power Plant with Battery Electric Vehicle in Distribution Network

    Science.gov (United States)

    Ma, Tao; Su, Su; Li, Shunxin; Wang, Wei; Yang, Tiantian; Li, Mengjuan; Ota, Yutaka

    2017-05-01

    With the popularity of electric vehicles (EVs), such as plug-in electric vehicles (PHEVs) and battery electric vehicles (BEVs), an optimal strategy for the coordination of BEVs charging is proposed in this paper. The proposed approach incorporates the random behaviours and regular behaviours of BEV drivers in urban environment. These behaviours lead to the stochastic nature of the charging demand. The optimal strategy is used to guide the coordinated charging at different time to maximize the efficiency of virtual power plant (VPP). An innovative peer-to-peer system is used with BEVs to achieve the goals. The actual behaviours of vehicles in a campus is used to validate the proposed approach, and the simulation results show that the optimal strategy can not only maximize the utilization ratio of efficiency power plant, but also do not need additional energies from distribution grid.

  20. A Multiconstrained Ascent Guidance Method for Solid Rocket-Powered Launch Vehicles

    Directory of Open Access Journals (Sweden)

    Si-Yuan Chen

    2016-01-01

    Full Text Available This study proposes a multiconstrained ascent guidance method for a solid rocket-powered launch vehicle, which uses a hypersonic glide vehicle (HGV as payload and shuts off by fuel exhaustion. First, pseudospectral method is used to analyze the two-stage launch vehicle ascent trajectory with different rocket ignition modes. Then, constraints, such as terminal height, velocity, flight path angle, and angle of attack, are converted into the constraints within height-time profile according to the second-stage rocket flight characteristics. The closed-loop guidance method is inferred by different spline curves given the different terminal constraints. Afterwards, a thrust bias energy management strategy is proposed to waste the excess energy of the solid rocket. Finally, the proposed method is verified through nominal and dispersion simulations. The simulation results show excellent applicability and robustness of this method, which can provide a valuable reference for the ascent guidance of solid rocket-powered launch vehicles.

  1. Real-Time Mobile Communication of Power Requirements for Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Derek Smith

    2012-12-01

    Full Text Available The periodic power requirements of an electric vehicle are difficult to predict because the vehicle's location, the amount of charge remaining in its batteries, and the timing of its next charge are not known. For clusters of electric vehicles, the problem is magnified, and there is a risk that the demand will strain and overload a power utility’s infrastructure. Operational managers are left with reactive management of the infrastructure that may defer or prevent a vehicle charge to balance power demands and safeguard the infrastructure. In this article, the following key concepts are analyzed to provide background on the problem and to outline the requirements of any solution: i demand uncertainty and reactive management approaches, ii electric vehicle power requirements, and iii demand-management telecommunication capabilities. Then, by abstraction, induction, and creative synthesis, a novel solution to the problem is proposed to provide real-time mobile communication of power requirements. The proposed solution has potential to create new service and business opportunities to managers and entrepreneurs.

  2. Strong ground movement induced by mining activities and its effect on power transmission structures

    Institute of Scientific and Technical Information of China (English)

    DAI Kao-shan; CHEN Shen-en

    2009-01-01

    Surface mining activities may introduce damages to nearby infrastructure. Concerns are put forward by the power company about structural integrity of electric power transmission structures in areas where coal mining activities cause strong ground vibrations. Common practice in the power industry is to limit ground motion by specifying maximum Peak Particle Velocity. So far, there is a lack of industry-wide recognized guidelines on how ground vibration limits should be set for the transmission structures. In order to develop a defense strategy to protect power transmission lines against strong ground motions in mining areas, a systematic research work was conducted to establish strong ground vibration characteristics and to study impacts of ground excitations on transmission pole structures. Ground movements were recorded using geophones and wireless tri-axial sensing units. The process of generating ground motion response spectra via analyzing actual ground motion measurements is described in the paper. These spectra developed based on peak particle velocities were used as a basis for spectral analysis performed using validated Finite Element models to obtain structural displacements, reactions and stress states of the transmission pole structures in the mining sites. A quantitative ground motion limit was established by comparing structural responses with the corresponding design requirements.

  3. Power Stabilization Strategy of Random Access Loads in Electric Vehicles Wireless Charging System at Traffic Lights

    Directory of Open Access Journals (Sweden)

    Linlin Tan

    2016-10-01

    Full Text Available An opportunity wireless charging system for electric vehicles when they stop and wait at traffic lights is proposed in this paper. In order to solve the serious power fluctuation caused by random access loads, this study presents a power stabilization strategy based on counting the number of electric vehicles in a designated area, including counting method, power source voltage adjustment strategy and choice of counting points. Firstly, the circuit model of a wireless power system with multi-loads is built and the equation of each load is obtained. Secondly, after the counting method of electric vehicles is stated, the voltage adjustment strategy, based on the number of electric vehicles when the system is at a steady state, is set out. Then, the counting points are chosen according to power curves when the voltage adjustment strategy is adopted. Finally, an experimental prototype is implemented to verify the power stabilization strategy. The experimental results show that, with the application of this strategy, the charging power is stabilized with the fluctuation of no more than 5% when loads access randomly.

  4. Wind Power: A Renewable Energy Source for Mars Transit Vehicle

    Science.gov (United States)

    Flynn, Michael; Kohout, Lisa; Kliss, Mark (Technical Monitor)

    1998-01-01

    The Martian environment presents significant design challenges for the development of power generation systems. Nuclear-based systems may not be available due to political and safety concerns. The output of photovoltaics are limited by a solar intensity of 580 W/sqm as compared to 1353 W/sqm on Earth. The presence of dust particles in the Mars atmosphere will further reduce the photovoltaic output. Also, energy storage for a 12-hour night period must be provided. In this challenging environment, wind power generation capabilities may provide a viable option as a Martian power generation system. This paper provides an analysis of the feasibility of such a system.

  5. A Witricity-Based High-Power Device for Wireless Charging of Electric Vehicles

    OpenAIRE

    Zhongyu Dai; Junhua Wang; Mengjiao Long; Hong Huang

    2017-01-01

    In this paper, a Witricity-based high-power device is proposed for wireless charging of electric vehicles. According to the specific requirements of three-stage charging for electric vehicles, four compensation modes of the Witricity system are analyzed by the Loosely Coupled Theory among transformer coils and the Substitution Theorem in circuit theory. In addition, when combining voltage withstand levels, the current withstand capability, the switching frequency of electronic switching tubes...

  6. Implementation of an Electric Vehicle Test Bed Controlled by a Virtual Power Plant for Contributing to Regulating Power Reserves

    DEFF Research Database (Denmark)

    Marra, Francesco; Sacchetti, Dario; Pedersen, Anders Bro

    2012-01-01

    as a multifunctional grid-interactive EV, which a Virtual Power Plant (VPP) or a generic EV coordinator could use for testing different control strategies, such as EV contribution to regulating power reserves. The EV coordination is realized using the IEC 61850 modeling standard in the communication. Regulating power......With the increased focus on Electric Vehicles (EV) research and the potential benefits they bring for smart grid applications, there is a growing need for an evaluation platform connected to the electricity grid. This paper addresses the design of an EV test bed, which using real EV components...... and communication interfaces, is able to respond in real-time to smart grid control signals. The EV test bed is equipped with a Lithium-ion battery pack, a Battery Management System (BMS), a charger and a Vehicle-to-Grid (V2G) unit for feeding power back to the grid. The designed solution serves...

  7. Simulation of a solar powered electric vehicle under the constraints of the world solar challenge

    Science.gov (United States)

    Roerig, Steven J.

    1995-03-01

    Development of an effective method for evaluation of alternative energy sources in the automotive industry has always been a necessity for cost efficient design analysis. One viable alternative energy source is electricity. In the present day environment of shrinking fossil fuel supplies and environmental awareness, electric powered vehicles are becoming a low cost, non-polluting, alternative means of transportation. The analysis of reliable electric propulsion can be expensive without a modeling tool for evaluating design strategies before vehicle construction. This thesis explores electricity as an alternative energy source for the automobile of tomorrow. Under the guidelines of the World Solar challenge, a solar powered electric vehicle, using a permanent-magnet brushless dc motor has be modeled and simulated in Simulink (Dynamic System Simulation Software). The simulations were performed with the goal of determining the optimum configuration to efficiently utilize the power supplied from the solar array, batteries, and motor. The simulated vehicle was 'driven' over various terrain's and at various speeds. The results obtained confirm this simulation as an efficient design tool and present an example of an optimum vehicle speed for one particular vehicle configuration.

  8. Integration of electric drive vehicles in the Danish electricity network with high wind power penetration

    DEFF Research Database (Denmark)

    Chandrashekhara, Divya K; Østergaard, Jacob; Larsen, Esben

    2010-01-01

    /conventional) which are likely to fuel these cars. The study was carried out considering the Danish electricity network state around 2025, when the EDV penetration levels would be significant enough to have an impact on the power system. Some of the interesting findings of this study are - EDV have the potential......This paper presents the results of a study carried out to examine the feasibility of integrating electric drive vehicles (EDV) in the Danish electricity network which is characterised by high wind power penetration. One of the main aims of this study was to examine the effect of electric drive...... vehicles on the Danish electricity network, wind power penetration and electricity market. In particular the study examined the effect of electric drive vehicles on the generation capacity constraints, load curve, cross border transmission capacity and the type of generating sources (renewable...

  9. Absolute High-Precision Localisation of an Unmanned Ground Vehicle by Using Real-Time Aerial Video Imagery for Geo-referenced Orthophoto Registration

    Science.gov (United States)

    Kuhnert, Lars; Ax, Markus; Langer, Matthias; Nguyen van, Duong; Kuhnert, Klaus-Dieter

    This paper describes an absolute localisation method for an unmanned ground vehicle (UGV) if GPS is unavailable for the vehicle. The basic idea is to combine an unmanned aerial vehicle (UAV) to the ground vehicle and use it as an external sensor platform to achieve an absolute localisation of the robotic team. Beside the discussion of the rather naive method directly using the GPS position of the aerial robot to deduce the ground robot's position the main focus of this paper lies on the indirect usage of the telemetry data of the aerial robot combined with live video images of an onboard camera to realise a registration of local video images with apriori registered orthophotos. This yields to a precise driftless absolute localisation of the unmanned ground vehicle. Experiments with our robotic team (AMOR and PSYCHE) successfully verify this approach.

  10. Investigation of Control Algorithms for Tracked Vehicle Mobility Load Emulation for a Combat Hybrid Electric Power System

    Science.gov (United States)

    2009-07-30

    Investigation of Control Algorithms for Tracked Vehicle Mobility Load Emulation for a Combat Hybrid Electric Power System Jarrett Goodell and...TITLE AND SUBTITLE Investigation of Control Algorithms for Tracked Vehicle Mobility Load Emulation for a Combat Hybrid Electric Power System 5a...for ~ 22 ton tracked vehicle • Tested and Developed: – Motors, Generators, Batteries, Inverters, DC-DC Converters , Thermal Management, Pulse Power

  11. 30 CFR 77.700 - Grounding metallic sheaths, armors, and conduits enclosing power conductors.

    Science.gov (United States)

    2010-07-01

    ... conduits enclosing power conductors. 77.700 Section 77.700 Mineral Resources MINE SAFETY AND HEALTH..., and conduits enclosing power conductors. Metallic sheaths, armors, and conduits enclosing power conductors shall be electrically continuous throughout and shall be grounded by methods approved by...

  12. Grid Interconnection and Performance Testing Procedures for Vehicle-To-Grid (V2G) Power Electronics: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Kramer, W.; Chakraborty, S.; Kroposki, B.; Hoke, A.; Martin, G.; Markel, T.

    2012-03-01

    Bidirectional power electronics can add vehicle-to-grid (V2G) capability in a plug-in vehicle, which then allows the vehicle to operate as a distributed resource (DR). The uniqueness of the battery-based V2G power electronics requires a test procedure that will not only maintain IEEE interconnection standards, but can also evaluate the electrical performance of the vehicle working as a DR. The objective of this paper is to discuss a recently published NREL technical report that provides interim test procedures for V2G vehicles for their integration into the electrical distribution systems and for their performance in terms of continuous output power, efficiency, and losses. Additionally, some other test procedures are discussed that are applicable to a V2G vehicle that desires to provide power reserve functions. A few sample test results are provided based on testing of prototype V2G vehicles at NREL.

  13. Real-time Accurate Surface Reconstruction Pipeline for Vision Guided Planetary Exploration Using Unmanned Ground and Aerial Vehicles

    Science.gov (United States)

    Almeida, Eduardo DeBrito

    2012-01-01

    This report discusses work completed over the summer at the Jet Propulsion Laboratory (JPL), California Institute of Technology. A system is presented to guide ground or aerial unmanned robots using computer vision. The system performs accurate camera calibration, camera pose refinement and surface extraction from images collected by a camera mounted on the vehicle. The application motivating the research is planetary exploration and the vehicles are typically rovers or unmanned aerial vehicles. The information extracted from imagery is used primarily for navigation, as robot location is the same as the camera location and the surfaces represent the terrain that rovers traverse. The processed information must be very accurate and acquired very fast in order to be useful in practice. The main challenge being addressed by this project is to achieve high estimation accuracy and high computation speed simultaneously, a difficult task due to many technical reasons.

  14. Vehicle-mounted ground penetrating radar (Mine Stalker III) field evaluation in Angola

    Science.gov (United States)

    Laudato, Stephen; Hart, Kerry; Nevard, Michael; Lauziere, Steven; Grant, Shaun

    2014-05-01

    The U.S. Department of Defense Humanitarian Demining Research and Development (HD R&D) Program, Non-Intrusive Inspection Technology (NIITEK), Inc. and The HALO Trust have over the last decade funded, developed and tested various prototype vehicle mounted ground penetrating radar (GPR) systems named the Mine Stalker. The HD R&D Program and NIITEK developed the Mine Stalker to detect low metal anti-tank (LM-AT) mines in roads. The country of Angola is severely affected by LM-AT mines in and off road, some of which are buried beyond the effective range of detection sensors current used in country. The threat from LM-AT mines such as the South African Number 8 (No. 8) and the Chinese Type 72 (72AT) still persist from Angola's 30 years of civil war. These LM-AT threats are undetectable at depths greater than 5 to 10 centimeters using metal detection technology. Clearing commerce routes are a critical requirement before Angola can rebuild its infrastructure and improve safety conditions for the local populace. The Halo Trust, a non-governmental demining organization (NGO) focused on demining and clearance of unexploded ordnance (UXO), has partnered with the HD R&D Program to conduct an operational field evaluation (OFE) of the Mine Stalker III (MS3) in Angola. Preliminary testing and training efforts yielded encouraging results. This paper presents a review of the data collected, testing results, system limitations and deficiencies while operating in a real world environment. Our goal is to demonstrate and validate this technology in live minefield environments, and to collect data to prompt future developments to the system.

  15. Life-cycle cost analysis of conventional and fuel cell/battery powered urban passenger vehicles

    Science.gov (United States)

    1992-11-01

    This Final Report summarizes the work on the life cycle cost (LCC) analysis of conventional and fuel cell/battery powered urban passenger vehicles. The purpose of the work is to support the Division in making sound economic comparisons between conventional and fuel cell/battery powered buses, passenger vans, and cars for strategic analysis of programmatic R&D goals. The LCC analysis can indicate whether paying a relatively high initial capital cost for advanced technology with low operating and/or environmental costs is advantageous over paying a lower initial cost for conventional technology with higher operating and/or environmental costs. While minimizing life cycle cost is an important consideration, it does not always result in technology penetration in the marketplace. The LCC analysis model developed under this contract facilitates consideration of all perspectives. Over 100 studies have been acquired and analyzed for their applicability. Drawing on prior work by JPL and Los Alamos National Laboratory as primary sources, specific analytical relationships and cost/performance data relevant to fuel cell/battery and intemal combustion engine (ICE) powered vehicles were selected for development of an LCC analysis model. The completed LCC model is structured around twelve integrated modules. Comparative analysis is made between conventional gasoline and diesel vehicles and fuel cell/battery vehicles using either phosphoric acid fuel cells or proton-exchange membrane fuel cells. In all, seven base vehicle configuration cases with a total of 21 vehicle class/powertrain/fuel combinations are analyzed. The LCC model represents a significant advance in comparative economic analysis of conventional and fuel cell/battery powered vehicle technologies embodying several unique features which were not included in prior models.

  16. Volatile organic compounds emissions from gasoline and diesel powered vehicle

    Energy Technology Data Exchange (ETDEWEB)

    Mugica, V [Universidad Autonoma Metropolitana, Mexico, D.F. (Mexico); Vega, E; Sanchez, G; Reyes, E; Arriaga, J. L [Instituto Mexicano del Petroleo, Mexico, D.F. (Mexico); Chow, J; Watson, J; Egami, R [Desert Research Institute, Reno, NV (United States)

    2001-01-01

    In this research, volatile organic compound emissions were characterized from gasoline and diesel vehicles. Sampling campaigns in the Metropolitan Area of Mexico City were designed and carried out in tunnels, crossroads, and truck and bus terminals. The samples were analyzed with gas chromatography getting more than 250 different compounds, being more or less 60 of them the 80% of all the emissions. The most abundant are the two carbon compounds, as a result of the combustion, and compounds related to fuels compositions, like isopentane, xylenes, toluene among others. The profiles obtained in tunnels and crossroads were very similar with the exception of the 3 and 4 carbon compounds, which were found in bigger proportion in the profiles at crossroads. This may probably be due to the blend with the ambient air. The profiles corresponding to trucks and buses have a smaller content of two carbon compounds and a bigger content of xylenes, toluene and ethylbenzene. The variations in the proportions of the compounds allow differentiating the profiles of vehicles using gasoline and diesel. [Spanish] En este trabajo se caracterizaron las emisiones de compuestos organicos volatiles provenientes de vehiculos a gasolina y a diesel. Para ello, se disenaron diversas campanas de muestreo en la zona Metropolitana de la Ciudad de Mexico, en tuneles, cruceros y estaciones de camiones de carga y autobuses. Las muestras se analizaron con cromatografia, de gases obteniendose mas de 250 compuestos distintos, de los cuales aproximadamente 60 corresponden a mas del 80% de las emisiones. Los compuestos mas abundantes son los de dos carbonos, resultado de la combustion, y 4 carbonos que se encontraron en mayor proporcion en los perfiles de cruceros, lo cual se debe probablemente a la mezcla con el aire ambiente. Los perfiles correspondientes a camiones de carga y autobuses tienen un menor contenido de compuestos de dos carbonos y un mayor contenido de xilenos, tolueno y etilbenceno. Estas

  17. Power Management Strategy of Hybrid Electric Vehicles Based on Quadratic Performance Index

    Directory of Open Access Journals (Sweden)

    Chaoying Xia

    2015-11-01

    Full Text Available An energy management strategy (EMS considering both optimality and real-time performance has become a challenge for the development of hybrid electric vehicles (HEVs in recent years. Previous EMSes based on the optimal control theory minimize the fuel consumption, but cannot be directly implemented in real-time because of the requirement for a prior knowledge of the entire driving cycle. This paper presents an innovative design concept and method to obtain a power management strategy for HEVs, which is independent of future driving conditions. A quadratic performance index is designed to ensure the vehicle drivability, maintain the battery energy sustainability and average and smooth the engine power and motor power to indirectly reduce fuel consumption. To further improve the fuel economy, two rules are adopted to avoid the inefficient engine operation by switching control modes between the electric and hybrid modes according to the required driving power. The derived power of the engine and motor are related to current vehicle velocity and battery residual energy, as well as their desired values. The simulation results over different driving cycles in Advanced Vehicle Simulator (ADVISOR show that the proposed strategy can significantly improve the fuel economy, which is very close to the optimal strategy based on Pontryagin’s minimum principle.

  18. Robust Stability and Control of Multi-Body Ground Vehicles with Uncertain Dynamics and Failures

    Science.gov (United States)

    2010-01-01

    Modeling for Heavy Articulated Tractor Semi- Trailer Vehicle 2.2.3.1 Rollover Index (RI) for A single Unit Vehicle 2.2.3.2...increasing complexity to capture Roll Over phenomenon and Other Performance and Ride Quality requirements. In this connection, first simple ` Bicycle ...methodology to a specific heavy articulated vehicle with tractor semi- trailer shows that a single active anti-roll bar system at the trailer unit gives

  19. Electric Vehicle Based Battery Storages for Future Power System Regulation Services

    DEFF Research Database (Denmark)

    Pillai, Jayakrishnan Radhakrishna; Bak-Jensen, Birgitte

    2009-01-01

    supplying the reserve power requirements. This limited regulation services from conventional generators in the future power system calls for other new reserve power solutions like Electric Vehicle (EV) based battery storages. A generic aggregated EV based battery storage for long-term dynamic load frequency......The large grid integration of variable wind power adds to the imbalance of a power system. This necessitates the need for additional reserve power for regulation. In Denmark, the growing wind penetration aims for an expedited change of displacing the traditional generators which are currently...... simulations is modelled. Further, it is analysed for regulation services using the case of a typical windy day in the West Denmark power system. The power deviations with other control areas in an interconnected system are minimised by the faster up and down regulation characteristics of the EV battery...

  20. Dynamic Modeling and Simulation on a Hybrid Power System for Electric Vehicle Applications

    Directory of Open Access Journals (Sweden)

    Hong-Wen He

    2010-11-01

    Full Text Available Hybrid power systems, formed by combining high-energy-density batteries and high-power-density ultracapacitors in appropriate ways, provide high-performance and high-efficiency power systems for electric vehicle applications. This paper first establishes dynamic models for the ultracapacitor, the battery and a passive hybrid power system, and then based on the dynamic models a comparative simulation between a battery only power system and the proposed hybrid power system was done under the UDDS (Urban Dynamometer Driving Schedule. The simulation results showed that the hybrid power system could greatly optimize and improve the efficiency of the batteries and their dynamic current was also decreased due to the participation of the ultracapacitors, which would have a good influence on batteries’ cycle life. Finally, the parameter matching for the passive hybrid power system was studied by simulation and comparisons.

  1. Electric Vehicle Based Battery Storages for Large Scale Wind Power Integration in Denmark

    DEFF Research Database (Denmark)

    Pillai, Jayakrishnan Radhakrishna

    In the recent years, the electric vehicles (EVs) have drawn great attention world wide as a feasible solution for clean transportation. The electric vehicle technology is not new as it was introduced in the mid 19th century. The low battery capacity, driving range and superior gasoline cars had...... the clean wind energy and latter could be expensive and limited as the neighbouring countries are also installing more renewable energy across their borders. One of the other alternative solutions lies with the local distributed storages which could be provided by the flexible, efficient and quick start....... The operation strategies of conventional Load Frequency Control and generation models are modified to validate the grid power regulation services from the Vehicle-to-Grid systems. The simulation results from the case studies demonstrate the flexibility of Vehicle-to-Grid systems in operating as a generator...

  2. A study on model fidelity for model predictive control-based obstacle avoidance in high-speed autonomous ground vehicles

    Science.gov (United States)

    Liu, Jiechao; Jayakumar, Paramsothy; Stein, Jeffrey L.; Ersal, Tulga

    2016-11-01

    This paper investigates the level of model fidelity needed in order for a model predictive control (MPC)-based obstacle avoidance algorithm to be able to safely and quickly avoid obstacles even when the vehicle is close to its dynamic limits. The context of this work is large autonomous ground vehicles that manoeuvre at high speed within unknown, unstructured, flat environments and have significant vehicle dynamics-related constraints. Five different representations of vehicle dynamics models are considered: four variations of the two degrees-of-freedom (DoF) representation as lower fidelity models and a fourteen DoF representation with combined-slip Magic Formula tyre model as a higher fidelity model. It is concluded that the two DoF representation that accounts for tyre nonlinearities and longitudinal load transfer is necessary for the MPC-based obstacle avoidance algorithm in order to operate the vehicle at its limits within an environment that includes large obstacles. For less challenging environments, however, the two DoF representation with linear tyre model and constant axle loads is sufficient.

  3. Review and Comparison of Power Management Approaches for Hybrid Vehicles with Focus on Hydraulic Drives

    Directory of Open Access Journals (Sweden)

    Mohammad Ali Karbaschian

    2014-05-01

    Full Text Available The main advantage of hybrid powertrains is based on the efficient transfer of power and torque from power sources to the powertrain as well as recapturing of reversible energies without effecting the vehicle performance. The benefits of hybrid hydraulic powertrains can be better utilized with an appropriate power management. In this paper, different types of power management algorithms like off-line and on-line methods are briefly reviewed and classified. Finally, the algorithms are evaluated and compared. Therefore, different related criteria are evaluated and applied.

  4. Design of Power Converters for Renewable Energy Sources and Electric Vehicles Charging

    Directory of Open Access Journals (Sweden)

    Martin Tvrdon

    2013-01-01

    Full Text Available This paper describes the design and construction of new series of power converters equipped with liquid cooling system. This power series is created for project ENET – Energy Units for Utilization of non Traditional Energy Sources. First power converter is determined for stationary battery system use, the second one is used as an inverter/rectifier for a small solar plant system and the last power inverter is used as a fast charger for electric vehicles. Energy balance is performed for the fast charger converter, which is solved using numerical simulations of the system.

  5. Predictive control strategy for power management in parallel hybrid-electric vehicle

    DEFF Research Database (Denmark)

    Nodeh, Mohammad Taqi; Gholizade, Hossein; Hajizadeh, Amin

    2016-01-01

    In this paper, a hybrid model-based nonlinear optimal control method is used to compute the optimal power distribution and power management in parallel hybrid electric vehicles. In the power management strategy, for optimal power distribution between the internal combustion engine, electrical...... system and the other subsystems, nonlinear predictive control is applied. In order to achieve this goal, a hierarchical control structure is utilized. This type of control structure consists of three levels of monitoring, coordinating and local controllers. Nonlinear modeling and performance index...... in the proposed method should be formulated at the regulatory level of the controller. Discrete dynamic mode of operation (motor-generator) in hybrid electric vehicle requires to use a dual-mode switch model and to define an alternative expression of performance index for the optimal control problem...

  6. The design of a human-powered vehicle

    Science.gov (United States)

    Wiederholt, J. V.; Pahle, J. W.

    1983-01-01

    Human power applied through a bicycle is perhaps the most efficient means of transport available today. Aerodynamic drag, however, limits the speed possible from the man/bicycle combination. An aerodynamically efficient body enclosing the system can reduce the drag and permit increased speeds. A study was conducted to determine an efficient body design for a high-speed bicycle. Wind tunnel and potential flow studies were conducted to evaluate the drag and lift characteristics of proposed shell designs. A proposed bicycle/shell design is presented.

  7. An adaptive finite element method for computing emergency manoeuvres of ground vehicles in complex driving scenarios

    NARCIS (Netherlands)

    Kanarachos, S.; Alirezaei, M.

    2015-01-01

    In emergency cases a vehicle has to avoid colliding with one or more obstacles, stay within road boundaries, satisfy acceleration and jerk limits, fulfil stability requirements and respect vehicle system dynamics limitations. The real time solution of such a problem is difficult and as a result vari

  8. FC/Battery Power Management for Electric Vehicle Based Interleaved DC-DC Boost Converter Topology

    OpenAIRE

    Benrabah, Ali; Khoucha, Farid; Herizi, Omar; Benbouzid, Mohamed; Kheloui, Abdelaziz

    2013-01-01

    International audience; Due to the fact that the environmental issues have become more serious recently, interest in renewable energy systems, such as, fuel-cells (FCs) has increased steadfastly. Among many types of FCs, proton exchange membrane FC (PEMFC) is one of the most promising power sources due to its advantages, such as, low operation temperature, high power density and low emission. However, using only PEMFC for electric vehicle may not be feasible to satisfy the peak demand changes...

  9. Magnetic Field Emissions for Ferrite and Non-Ferrite Geometries for Wireless Power Transfer to Vehicles

    DEFF Research Database (Denmark)

    Batra, Tushar; Schaltz, Erik

    2014-01-01

    . For geometries without ferrite, these zones can be defined only on basis of distance from coils. The simulation results indicate that magnetic field profile in the surroundings is influenced for ferrite based geometries and the three zones tend to overlap. This overlapping is studied via Comsol simulations...... profile of magnetic field emissions (with and without ferrite) for wireless power transfer to vehicles....

  10. Improved SCR ac Motor Controller for Battery Powered Urban Electric Vehicles

    Science.gov (United States)

    Latos, T. S.

    1982-01-01

    An improved ac motor controller, which when coupled to a standard ac induction motor and a dc propulsion battery would provide a complete electric vehicle power train with the exception of the mechanical transmission and drive wheels was designed. In such a system, the motor controller converts the dc electrical power available at the battery terminals to ac electrical power for the induction motor in response to the drivers commands. The performance requirements of a hypothetical electric vehicle with an upper weight bound of 1590 kg (3500 lb) were used to determine the power rating of the controller. Vehicle acceleration capability, top speed, and gradeability requisites were contained in the Society of Automotive Engineers (SAE) Schedule 227a(d) driving cycle. The important capabilities contained in this driving cycle are a vehicle acceleration requirement of 0 to 72.4 kmph (0 to 45 mph) in 28 seconds a top speed of 88.5 kmph (55 mph), and the ability to negotiate a 10% grade at 48 kmph (30 mph). A 10% grade is defined as one foot of vertical rise per 10 feet of horizontal distance.

  11. Location, duration, and power; How Americans' driving habits and charging infrastructure inform vehicle-grid interactions

    Science.gov (United States)

    Pearre, Nathaniel S.

    The substitution of electrical energy for gasoline as a transportation fuel is an initiative both with a long history, and one made both pressing and important in today's policy discussion by renewed interest in plug-in vehicles. The research presented in this dissertation attempts to inform the policy discussion for governments, for electric utilities, for the makers of electric cars, and for the industries developing and planning charging infrastructure. To that end, the impacts of variations to several possible system design parameters, on several metrics of evaluation, are assessed. The analysis is based on a dataset of vehicle trips collected by Georgia Institute of Technology, tracking almost 500 vehicles that commute to, from or within the Atlanta city center, comprising Atlanta `commuter-shed'. By assuming that this dataset of trips defines the desired travel behavior of urban and suburban American populations, the effects of travel electrification in personal vehicles can be assessed. Several significant and novel findings have emerged from this research. These include the conclusion that at-work charging is not necessarily the logical next step beyond home-charging, as it will in general add little to the substitutability of electric vehicles. In contrast, high power en-route charging, combined with modest power home charging is shown to be surprisingly effective, potentially requiring of EV drivers a total time spent at en-route recharging stations similar to that for liquid fueled cars. From the vehicle marketing perspective, a quantification of the hybrid household effect, wherein multi-vehicle households own one EV, showed that about a quarter of all households could adopt a vehicle with 80 miles of range with no changes to travel patterns. Of interest to grid management, this research showed an apparent maximum fleet-wide load from unregulated charging of about 1 kW per vehicle, regardless of EVSE power or EV battery size. This contrasts with a

  12. Feature Extraction Method for High Impedance Ground Fault Localization in Radial Power Distribution Networks

    DEFF Research Database (Denmark)

    Jensen, Kåre Jean; Munk, Steen M.; Sørensen, John Aasted

    1998-01-01

    processes and communication systems lead to demands for improved monitoring of power distribution networks so that the quality of power delivery can be kept at a controlled level. The ground fault localization method for each feeder in a network is based on the centralized frequency broadband measurement...... of three phase voltages and currents. The method consists of a feature extractor, based on a grid description of the feeder by impulse responses, and a neural network for ground fault localization. The emphasis of this paper is the feature extractor, and the detection of the time instance of a ground fault...

  13. An Interleaved Reduced-Component-Count Multivoltage Bus DC/DC Converter for Fuel Cell Powered Electric Vehicle Applications

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Lixin [ORNL; Su, Gui-Jia [ORNL

    2008-01-01

    An interleaved reduced-component-count dc/dc converter is proposed for power management in fuel cell powered vehicles with a multivoltage electric net. The converter is based on a simplified topology and can handle more power with less ripple current, therefore reducing the capacitor requirements, making it more suited for fuel cell powered vehicles in the near future. A prototype rated at 4.3 kW was built and tested to verify the proposed topology.

  14. Navigation of military and space unmanned ground vehicles in unstructured terrains

    Science.gov (United States)

    Lescoe, Paul; Lavery, David; Bedard, Roger

    1991-01-01

    Development of unmanned vehicles for local navigation in terrains unstructured by humans is reviewed. Modes of navigation include teleoperation or remote control, computer assisted remote driving (CARD), and semiautonomous navigation (SAN). A first implementation of a CARD system was successfully tested using the Robotic Technology Test Vehicle developed by Jet Propulsion Laboratory. Stereo pictures were transmitted to a remotely located human operator, who performed the sensing, perception, and planning functions of navigation. A computer provided range and angle measurements and the path plan was transmitted to the vehicle which autonomously executed the path. This implementation is to be enhanced by providing passive stereo vision and a reflex control system for autonomously stopping the vehicle if blocked by an obstacle. SAN achievements include implementation of a navigation testbed on a six wheel, three-body articulated rover vehicle, development of SAN algorithms and code, integration of SAN software onto the vehicle, and a successful feasibility demonstration that represents a step forward towards the technology required for long-range exploration of the lunar or Martian surface. The vehicle includes a passive stereo vision system with real-time area-based stereo image correlation, a terrain matcher, a path planner, and a path execution planner.

  15. Design, control and power management of a battery/ultra-capacitor hybrid system for small electric vehicles

    DEFF Research Database (Denmark)

    Li, Zhihao; Onar, Omer; Khaligh, Alireza

    2009-01-01

    This paper introduces design, control, and power management of a battery/ultra-capacitor hybrid system, utilized for small electric vehicles (EV). The batteries are designed and controlled to work as the main energy storage source of the vehicle, supplying average power to the load; and the ultra-capacitors...

  16. Design, control and power management of a battery/ultra-capacitor hybrid system for small electric vehicles

    DEFF Research Database (Denmark)

    Li, Zhihao; Onar, Omer; Khaligh, Alireza

    2009-01-01

    This paper introduces design, control, and power management of a battery/ultra-capacitor hybrid system, utilized for small electric vehicles (EV). The batteries are designed and controlled to work as the main energy storage source of the vehicle, supplying average power to the load; and the ultra...

  17. Electric Vehicles Integration in the Electric Power System with Intermittent Energy Sources - The Charge/Discharge infrastructure

    DEFF Research Database (Denmark)

    Marra, Francesco

    The replacement of conventional fuelled vehicles with electric vehicles (EVs) is going to increase in the coming years, following the trend seen for renewable energy sources (RES), as photovoltaic (PV) and wind power. In this scenario, the electric power systems in Europe are going to accommodate...

  18. Development and integration of a solar powered unmanned aerial vehicle and a wireless sensor network to monitor greenhouse gases.

    Science.gov (United States)

    Malaver, Alexander; Motta, Nunzio; Corke, Peter; Gonzalez, Felipe

    2015-02-11

    Measuring gases for environmental monitoring is a demanding task that requires long periods of observation and large numbers of sensors. Wireless Sensor Networks (WSNs) and Unmanned Aerial Vehicles (UAVs) currently represent the best alternative to monitor large, remote, and difficult access areas, as these technologies have the possibility of carrying specialized gas sensing systems. This paper presents the development and integration of a WSN and an UAV powered by solar energy in order to enhance their functionality and broader their applications. A gas sensing system implementing nanostructured metal oxide (MOX) and non-dispersive infrared sensors was developed to measure concentrations of CH4 and CO2. Laboratory, bench and field testing results demonstrate the capability of UAV to capture, analyze and geo-locate a gas sample during flight operations. The field testing integrated ground sensor nodes and the UAV to measure CO2 concentration at ground and low aerial altitudes, simultaneously. Data collected during the mission was transmitted in real time to a central node for analysis and 3D mapping of the target gas. The results highlights the accomplishment of the first flight mission of a solar powered UAV equipped with a CO2 sensing system integrated with a WSN. The system provides an effective 3D monitoring and can be used in a wide range of environmental applications such as agriculture, bushfires, mining studies, zoology and botanical studies using a ubiquitous low cost technology.

  19. Development and Integration of a Solar Powered Unmanned Aerial Vehicle and a Wireless Sensor Network to Monitor Greenhouse Gases

    Directory of Open Access Journals (Sweden)

    Alexander Malaver

    2015-02-01

    Full Text Available Measuring gases for environmental monitoring is a demanding task that requires long periods of observation and large numbers of sensors. Wireless Sensor Networks (WSNs and Unmanned Aerial Vehicles (UAVs currently represent the best alternative to monitor large, remote, and difficult access areas, as these technologies have the possibility of carrying specialized gas sensing systems. This paper presents the development and integration of a WSN and an UAV powered by solar energy in order to enhance their functionality and broader their applications. A gas sensing system implementing nanostructured metal oxide (MOX and non-dispersive infrared sensors was developed to measure concentrations of CH4 and CO2. Laboratory, bench and field testing results demonstrate the capability of UAV to capture, analyze and geo-locate a gas sample during flight operations. The field testing integrated ground sensor nodes and the UAV to measure CO2 concentration at ground and low aerial altitudes, simultaneously. Data collected during the mission was transmitted in real time to a central node for analysis and 3D mapping of the target gas. The results highlights the accomplishment of the first flight mission of a solar powered UAV equipped with a CO2 sensing system integrated with a WSN. The system provides an effective 3D monitoring and can be used in a wide range of environmental applications such as agriculture, bushfires, mining studies, zoology and botanical studies using a ubiquitous low cost technology.

  20. Development and Integration of a Solar Powered Unmanned Aerial Vehicle and a Wireless Sensor Network to Monitor Greenhouse Gases

    Science.gov (United States)

    Malaver, Alexander; Motta, Nunzio; Corke, Peter; Gonzalez, Felipe

    2015-01-01

    Measuring gases for environmental monitoring is a demanding task that requires long periods of observation and large numbers of sensors. Wireless Sensor Networks (WSNs) and Unmanned Aerial Vehicles (UAVs) currently represent the best alternative to monitor large, remote, and difficult access areas, as these technologies have the possibility of carrying specialized gas sensing systems. This paper presents the development and integration of a WSN and an UAV powered by solar energy in order to enhance their functionality and broader their applications. A gas sensing system implementing nanostructured metal oxide (MOX) and non-dispersive infrared sensors was developed to measure concentrations of CH4 and CO2. Laboratory, bench and field testing results demonstrate the capability of UAV to capture, analyze and geo-locate a gas sample during flight operations. The field testing integrated ground sensor nodes and the UAV to measure CO2 concentration at ground and low aerial altitudes, simultaneously. Data collected during the mission was transmitted in real time to a central node for analysis and 3D mapping of the target gas. The results highlights the accomplishment of the first flight mission of a solar powered UAV equipped with a CO2 sensing system integrated with a WSN. The system provides an effective 3D monitoring and can be used in a wide range of environmental applications such as agriculture, bushfires, mining studies, zoology and botanical studies using a ubiquitous low cost technology. PMID:25679312

  1. Comparing the Efficacy of Airpower and Heavy Ground Power

    Science.gov (United States)

    2011-12-01

    conflicts have weakened American power on the global stage over the last decade. Second, the lethality of modern weapons, as first seen during the Arab...airpower typically places top targeting priority on air defense systems during the opening stages of air operations. Therefore, most of an...would smash “the material and moral resources of a people caught up in a frightful cataclysm which haunts them everywhere without cease until the final

  2. Current State of Technology of Fuel Cell Power Systems for Autonomous Underwater Vehicles

    Directory of Open Access Journals (Sweden)

    Alejandro Mendez

    2014-07-01

    Full Text Available Autonomous Underwater Vehicles (AUVs are vehicles that are primarily used to accomplish oceanographic research data collection and auxiliary offshore tasks. At the present time, they are usually powered by lithium-ion secondary batteries, which have insufficient specific energies. In order for this technology to achieve a mature state, increased endurance is required. Fuel cell power systems have been identified as an effective means to achieve this endurance but no implementation in a commercial device has yet been realized. This paper summarizes the current state of development of the technology in this field of research. First, the most adequate type of fuel cell for this application is discussed. The prototypes and design concepts of AUVs powered by fuel cells which have been developed in the last few years are described. Possible commercial and experimental fuel cell stack options are analyzed, examining solutions adopted in the analogous aerial vehicle applications, as well as the underwater ones, to see if integration in an AUV is feasible. Current solutions in oxygen and hydrogen storage systems are overviewed and energy density is objectively compared between battery power systems and fuel cell power systems for AUVs. A couple of system configuration solutions are described including the necessary lithium-ion battery hybrid system. Finally, some closing remarks on the future of this technology are given.

  3. Feasibility Study of a Solar-Powered Electric Vehicle Charging Station Model

    Directory of Open Access Journals (Sweden)

    Bin Ye

    2015-11-01

    Full Text Available In China, the power sector is currently the largest carbon emitter and the transportation sector is the fastest-growing carbon emitter. This paper proposes a model of solar-powered charging stations for electric vehicles to mitigate problems encountered in China’s renewable energy utilization processes and to cope with the increasing power demand by electric vehicles for the near future. This study applies the proposed model to Shenzhen City to verify its technical and economic feasibility. Modeling results showed that the total net present value of a photovoltaic power charging station that meets the daily electricity demand of 4500 kWh is $3,579,236 and that the cost of energy of the combined energy system is $0.098/kWh. In addition, the photovoltaic powered electric vehicle model has pollutant reduction potentials of 99.8%, 99.7% and 100% for carbon dioxide, sulfur dioxide, and nitrogen oxides, respectively, compared with a traditional gasoline-fueled car. Sensitivity analysis results indicated that interest rate has a relatively strong influence on COE (Cost of Energy. An increase in the interest rate from 0% to 6% increases COE from $0.027/kWh to $0.097/kWh. This analysis also suggests that carbon pricing promotes renewable energy only when the price of carbon is above $20/t.

  4. Study on Impact of Electric Vehicles Charging Models on Power Load

    Science.gov (United States)

    Cheng, Chen; Hui-mei, Yuan

    2017-05-01

    With the rapid increase in the number of electric vehicles, which will lead the power load on grid increased and have an adversely affect. This paper gives a detailed analysis of the following factors, such as scale of the electric cars, charging mode, initial charging time, initial state of charge, charging power and other factors. Monte Carlo simulation method is used to compare the two charging modes, which are conventional charging and fast charging, and MATLAB is used to model and simulate the electric vehicle charging load. The results show that compared with the conventional charging mode, fast charging mode can meet the requirements of fast charging, but also bring great load to the distribution network which will affect the reliability of power grid.

  5. Photovoltaic Power System with MPPT Functionality for a Small-Size Electric Vehicle

    Directory of Open Access Journals (Sweden)

    Jianming Xu

    2014-01-01

    Full Text Available Electric vehicles are recognized as the best replacement of petrol vehicles in the future. However, there are several problems hampering their development, such as the short life span of batteries, poor performance of start-up, and a short driving range. In order to resolve these problems, a hybrid power system based on photovoltaic (PV cells, supercapacitors, and batteries is proposed. This paper focuses on PV cells using a maximum power point track (MPPT system based on a BUCK chopper circuit. Moreover, a novel MPPT algorithm named sectional variable step climbing (SVSC algorithm was proposed. To validate the proposed system, two main experiments have been done. The first experiment showed that the MPP of PV cells was tracked perfectly by use of this photovoltaic power system. The second one showed that the efficiency of SVSC was higher than two existing MPPT methods, the climbing algorithm and the open-circuit voltage (OCV algorithm.

  6. Real-time optimization power-split strategy for hybrid electric vehicles

    Institute of Scientific and Technical Information of China (English)

    XIA ChaoYing; ZHANG Cong

    2016-01-01

    Energy management strategies based on optimal control theory can achieve minimum fuel consumption for hybrid electric vehicles,but the requirement for driving cycles known in prior leads to a real-time problem.A real-time optimization power-split strategy is proposed based on linear quadratic optimal control.The battery state of charge sustainability and fuel economy are ensured by designing a quadratic performance index combined with two rules.The engine power and motor power of this strategy are calculated in real-time based on current system state and command,and not related to future driving conditions.The simulation results in ADVISOR demonstrate that,under the conditions of various driving cycles,road slopes and vehicle parameters,the proposed strategy significantly improves fuel economy,which is very close to that of the optimal control based on Pontryagin's minimum principle,and greatly reduces computation complexity.

  7. Prospects for the application of GaN power devices in hybrid electric vehicle drive systems

    Science.gov (United States)

    Su, Ming; Chen, Chingchi; Rajan, Siddharth

    2013-07-01

    GaN, a wide bandgap semiconductor successfully implemented in optical and high-speed electronic devices, has gained momentum in recent years for power electronics applications. Along with rapid progress in material and device processing technologies, high-voltage transistors over 600 V have been reported by a number of teams worldwide. These advances make GaN highly attractive for the growing market of electrified vehicles, which currently employ bipolar silicon devices in the 600-1200 V class for the traction inverter. However, to capture this billion-dollar power market, GaN has to compete with existing IGBT products and deliver higher performance at comparable or lower cost. This paper reviews key achievements made by the GaN semiconductor industry, requirements of the automotive electric drive system and remaining challenges for GaN power devices to fit in the inverter application of hybrid vehicles.

  8. Study on Power Switching Process of a Hybrid Electric Vehicle with In-Wheel Motors

    Directory of Open Access Journals (Sweden)

    Shaohua Wang

    2016-01-01

    Full Text Available Hybrid electric vehicles with in-wheel motors (IWM achieve a variety of driving modes by two power sources—the engine and the IWM. One of the critical problems that exists in such vehicle is the different transient characteristics between the engine and the IWM. Therefore, switching processes between the power sources have noteworthy impacts on vehicle dynamics and driving performance. For the particular switching process of the pure electric mode to the engine driving mode, a specific control strategy coordinating clutch torque, motor torque, and engine torque was proposed to solve drivability issues caused by inconsistent responses of different power sources during the mode transition. The specific switching process could be described as follows: the engine was started by IWM with the clutch serving as a key enabling actuator, dynamic torque compensation through IWM was implemented after engine started, and, meanwhile, engine speed was controlled to track the target speed through the closed loop PID control strategy. The bench tests results showed that the vehicle jerk caused during mode switching was reduced and fast and smooth mode switching was realized, which leads to the improvement of vehicle’s riding comfort.

  9. Nonlinear Motion Control of a Rotary Wing Vehicle Powered by Four Rotors

    Directory of Open Access Journals (Sweden)

    S. Araujo–Estrada

    2009-10-01

    Full Text Available This paper presents a solution to the motion control problem for a rotary wing vehicle powered by four rotors. It is considered that the rotary wing vehicle performs an indoor low speed flight mission so that aerodynamic effects are not taken into account. The proposed controller is based on a combination of the well–known backstepping nonlinear control design technique and bounded controllers. It is shown that the resulting closed—loop dynamics evolves inside a set where singularities are avoided. Numerical simulations show the performance of the proposed controller.

  10. Small UAV Research and Evolution in Long Endurance Electric Powered Vehicles

    Science.gov (United States)

    Logan, Michael J.; Chu, Julio; Motter, Mark A.; Carter, Dennis L.; Ol, Michael; Zeune, Cale

    2007-01-01

    This paper describes recent research into the advancement of small, electric powered unmanned aerial vehicle (UAV) capabilities. Specifically, topics include the improvements made in battery technology, design methodologies, avionics architectures and algorithms, materials and structural concepts, propulsion system performance prediction, and others. The results of prototype vehicle designs and flight tests are discussed in the context of their usefulness in defining and validating progress in the various technology areas. Further areas of research need are also identified. These include the need for more robust operating regimes (wind, gust, etc.), and continued improvement in payload fraction vs. endurance.

  11. Modularized multilevel and z-source power converter as renewable energy interface for vehicle and grid-connected applications

    Science.gov (United States)

    Cao, Dong

    Due the energy crisis and increased oil price, renewable energy sources such as photovoltaic panel, wind turbine, or thermoelectric generation module, are used more and more widely for vehicle and grid-connected applications. However, the output of these renewable energy sources varies according to different solar radiation, wind speed, or temperature difference, a power converter interface is required for the vehicle or grid-connected applications. Thermoelectric generation (TEG) module as a renewable energy source for automotive industry is becoming very popular recently. Because of the inherent characteristics of TEG modules, a low input voltage, high input current and high voltage gain dc-dc converters are needed for the automotive load. Traditional high voltage gain dc-dc converters are not suitable for automotive application in terms of size and high temperature operation. Switched-capacitor dc-dc converters have to be used for this application. However, high voltage spike and EMI problems exist in traditional switched-capacitor dc-dc converters. Huge capacitor banks have to be utilized to reduce the voltage ripple and achieve high efficiency. A series of zero current switching (ZCS) or zero voltage switching switched-capacitor dc-dc converters have been proposed to overcome the aforementioned problems of the traditional switched-capacitor dc-dc converters. By using the proposed soft-switching strategy, high voltage spike is reduced, high EMI noise is restricted, and the huge capacitor bank is eliminated. High efficiency, high power density and high temperature switched-capacitor dc-dc converters could be made for the TEG interface in vehicle applications. Several prototypes have been made to validate the proposed circuit and confirm the circuit operation. In order to apply PV panel for grid-connected application, a low cost dc-ac inverter interface is required. From the use of transformer and safety concern, two different solutions can be implemented, non

  12. Demonstration of Biodiesel in Non-deployed Ground Tactical Vehicles/Equipment

    Science.gov (United States)

    2010-06-01

    tactical vehicles in their March 2006 Position Statement – Stability of the biodiesel – Accelerated deterioration in high temperature environments...Concerns – Stability of the biodiesel – All sites – Accelerated deterioration in high temperature environments – Moody AFB (hot/humid) and MCAGCC 29... Palms (hot/dry) – Vehicle operation and fuel properties in low temperatures – NSWC Crane – Water affinity and microbial degradation – All sites

  13. A Conformal, Fully-Conservative Approach for Predicting Blast Effects on Ground Vehicles

    Science.gov (United States)

    2014-02-09

    and hull. The decoupled inviscid CFD simulations (i.e. assuming a rigid vehicle) were used to examine the pressure variation and shock wave...interaction with the vehicle. Silver [8] used a commercial CFD code to predict the overpressure of a large caliber gun mounted on a simplified, rigid tank ...different locations under the crew cab and wheels. The pressures were calculated using the inviscid AUGUST-3D CFD code. The assessment of the structural

  14. Using Electric Vehicles to Meet Balancing Requirements Associated with Wind Power

    Energy Technology Data Exchange (ETDEWEB)

    Tuffner, Francis K.; Kintner-Meyer, Michael CW

    2011-07-31

    Many states are deploying renewable generation sources at a significant rate to meet renewable portfolio standards. As part of this drive to meet renewable generation levels, significant additions of wind generation are planned. Due to the highly variable nature of wind generation, significant energy imbalances on the power system can be created and need to be handled. This report examines the impact on the Northwest Power Pool (NWPP) region for a 2019 expected wind scenario. One method for mitigating these imbalances is to utilize plug-in hybrid electric vehicles (PHEVs) or battery electric vehicles (BEVs) as assets to the grid. PHEVs and BEVs have the potential to meet this demand through both charging and discharging strategies. This report explores the usage of two different charging schemes: V2GHalf and V2GFull. In V2GHalf, PHEV/BEV charging is varied to absorb the additional imbalance from the wind generation, but never feeds power back into the grid. This scenario is highly desirable to automotive manufacturers, who harbor great concerns about battery warranty if vehicle-to-grid discharging is allowed. The second strategy, V2GFull, varies not only the charging of the vehicle battery, but also can vary the discharging of the battery back into the power grid. This scenario is currently less desirable to automotive manufacturers, but provides an additional resource benefit to PHEV/BEVs in meeting the additional imbalance imposed by wind. Key findings in the report relate to the PHEV/BEV population required to meet the additional imbalance when comparing V2GHalf to V2GFull populations, and when comparing home-only-charging and work-and-home-charging scenarios. Utilizing V2GFull strategies over V2GHalf resulted in a nearly 33% reduction in the number of vehicles required. This reduction indicates fewer vehicles are needed to meet the unhandled energy, but they would utilize discharging of the vehicle battery into the grid. This practice currently results in the

  15. Management of Power Quality Issues in Low Voltage Networks using Electric Vehicles: Experimental Validation

    DEFF Research Database (Denmark)

    Martinenas, Sergejus; Knezovic, Katarina; Marinelli, Mattia

    2016-01-01

    As Electric Vehicles (EVs) are becoming more wide spread, their high power consumption presents challenges for the residential low voltage networks, especially when connected to long feeders with unevenly distributed loads. However, if intelligently integrated, EVs can also partially solve...... the existing and future power quality problems. One of the main aspects of the power quality relates to voltage quality. The aim of this work is to experimentally analyse whether series-produced EVs, adhering to contemporary standard and without relying on any V2G capability, can mitigate line voltage drops...

  16. Passive Shielding Effect on Space Profile of Magnetic Field Emissions for Wireless Power Transfer to Vehicles

    DEFF Research Database (Denmark)

    Batra, Tushar; Schaltz, Erik

    2015-01-01

    Magnetic fields emitted by wireless power transfer systems are of high importance with respect to human safety and health. Aluminum and ferrite are used in the system to reduce the fields and are termed as passive shielding. In this paper, the influence of these materials on the space profile has...... fields for wireless power transfer for vehicle applications....... been investigated with the help of simulations on Comsol for the four possible geometries—no shielding, ferrite, aluminum, and full shielding. As the reflected impedance varies for the four geometries, the primary current is varied accordingly to maintain constant power transfer to the secondary side...

  17. Modeling and Nonlinear Control of Electric Power Stage in Hybrid Electric Vehicle

    DEFF Research Database (Denmark)

    Tahri, A.; El Fadil, H.; Guerrero, Josep M.;

    2014-01-01

    This paper deals with the problem of modeling and controlling the electric power stage of hybrid electric vehicle. The controlled system consists of a fuel cell (FC) as a main source, a supercapacitor as an auxiliary source, two DC-DC power converters, an inverter and a traction induction motor...... based approach is used to control the DC/DC power converters associated with the DC sources, the backstepping technique combined with the field oriented control strategy are invoked in order to control the induction motor. It is formally shown, using a theoretical analysis and simulation results...

  18. The Development Status and Key Technologies of Solar Powered Unmanned Air Vehicle

    Science.gov (United States)

    Sai, Li; Wei, Zhou; Xueren, Wang

    2017-03-01

    By analyzing the development status of several typical solar powered unmanned aerial vehicles (UAV) at home and abroad, the key technologies involved in the design and manufacture of solar powered UAV and the technical difficulties need to be solved at present are obtained. It is pointed out that with the improvement of energy system efficiency, advanced aerodynamic configuration design, realization of high applicability flight stability and control system, breakthrough of efficient propulsion system, the application prospect of solar powered UAV will be more extensive.

  19. Synchronous Study of Ferroresonance and Inrush Current Phenomena and their Related Reasons in Ground Power Networks

    Science.gov (United States)

    Akrami, Amin; Ghaderi, Mohammad; Ghadi, Saeed

    2010-01-01

    Energizing the power transformers usually results in flowing very high inrush currents. This harmful current can be minimized using controlled switching and considering the value of residual flux. But nowadays, developing the ground power networks results in high increment of ferroresonance phenomenon occurrence due to the line' capacitance reactance and nonlinear inductive reactance of power transformer's core. In this study, these transient phenomena and their cause have studied synchronously.

  20. Low Power Ground-Based Laser Illumination for Electric Propulsion Applications

    Science.gov (United States)

    Lapointe, Michael R.; Oleson, Steven R.

    1994-01-01

    A preliminary evaluation of low power, ground-based laser powered electric propulsion systems is presented. A review of available and near-term laser, photovoltaic, and adaptive optic systems indicates that approximately 5-kW of ground-based laser power can be delivered at an equivalent one-sun intensity to an orbit of approximately 2000 km. Laser illumination at the proper wavelength can double photovoltaic array conversion efficiencies compared to efficiencies obtained with solar illumination at the same intensity, allowing a reduction in array mass. The reduced array mass allows extra propellant to be carried with no penalty in total spacecraft mass. The extra propellant mass can extend the satellite life in orbit, allowing additional revenue to be generated. A trade study using realistic cost estimates and conservative ground station viewing capability was performed to estimate the number of communication satellites which must be illuminated to make a proliferated system of laser ground stations economically attractive. The required number of satellites is typically below that of proposed communication satellite constellations, indicating that low power ground-based laser beaming may be commercially viable. However, near-term advances in low specific mass solar arrays and high energy density batteries for LEO applications would render the ground-based laser system impracticable.

  1. Electric vehicles in Danish power system with large penetration of wind power

    DEFF Research Database (Denmark)

    Yang, Lihui; Xu, Zhao; Østergaard, Jacob

    2011-01-01

    Electric vehicles (EVs) provide a unique opportunity for reducing the CO2 emissions from the transport sector. At the same time, EVs have the potential to play an important role in the economical and reliable operation of an electricity system with high penetration of renewable energy. An analysis...

  2. Energy Management System Optimization for BatteryUltracapacitor Powered Electric Vehicle

    Directory of Open Access Journals (Sweden)

    Selim Koroglu

    2017-03-01

    Full Text Available Energy usage and environment pollution in the transportation are major problems of today’s world. Although electric vehicles are promising solutions to these problems, their energy management methods are complicated and need to be improved for the extensive usage. In this work, the heuristic optimization methods; Differential Evolution Algorithm, Genetic Algorithm and Particle Swarm Optimization, are used to provide an optimal energy management system for a battery/ultracapacitor powered electric vehicle without prior knowledge of the drive cycle. The proposed scheme has been simulated in Matlab and applied on the ECE driving cycle. The differences between optimization methods are compared with reproducible and measurable error criteria. Results and the comparisons show the effectiveness and the practicality of the applied methods for the energy management problem of the multi-source electric vehicles

  3. Methodology for modelling plug-in electric vehicles in the power system and cost estimates for a system with either smart or dumb electric vehicles

    DEFF Research Database (Denmark)

    Kiviluoma, Juha; Meibom, Peter

    2011-01-01

    The article estimates the costs of plug-in electric vehicles (EVs) in a future power system as well as the benefits from smart charging and discharging EVs (smart EVs). To arrive in a good estimate, a generation planning model was used to create power plant portfolios, which were operated in a more...

  4. Study of Model Predictive Control for Path-Following Autonomous Ground Vehicle Control under Crosswind Effect

    Directory of Open Access Journals (Sweden)

    Fitri Yakub

    2016-01-01

    Full Text Available We present a comparative study of model predictive control approaches of two-wheel steering, four-wheel steering, and a combination of two-wheel steering with direct yaw moment control manoeuvres for path-following control in autonomous car vehicle dynamics systems. Single-track mode, based on a linearized vehicle and tire model, is used. Based on a given trajectory, we drove the vehicle at low and high forward speeds and on low and high road friction surfaces for a double-lane change scenario in order to follow the desired trajectory as close as possible while rejecting the effects of wind gusts. We compared the controller based on both simple and complex bicycle models without and with the roll vehicle dynamics for different types of model predictive control manoeuvres. The simulation result showed that the model predictive control gave a better performance in terms of robustness for both forward speeds and road surface variation in autonomous path-following control. It also demonstrated that model predictive control is useful to maintain vehicle stability along the desired path and has an ability to eliminate the crosswind effect.

  5. A High-Power Wireless Charging System Development and Integration for a Toyota RAV4 Electric Vehicle

    Energy Technology Data Exchange (ETDEWEB)

    Onar, Omer C [ORNL; Seiber, Larry Eugene [ORNL; White, Cliff P [ORNL; Chinthavali, Madhu Sudhan [ORNL; Campbell, Steven L [ORNL

    2016-01-01

    Several wireless charging methods are underdevelopment or available as an aftermarket option in the light-duty automotive market. However, there are not many studies detailing the vehicle integrations, particularly a complete vehicle integration with higher power levels. This paper presents the development, implementation, and vehicle integration of a high-power (>10 kW) wireless power transfer (WPT)-based electric vehicle (EV) charging system for a Toyota RAV4 vehicle. The power stages of the system are introduced with the design specifications and control systems including the active front-end rectifier with power factor correction (PFC), high frequency power inverter, high frequency isolation transformer, coupling coils, vehicle side full-bridge rectifier and filter, and the vehicle battery. The operating principles of the control, communications, and protection systems are also presented in addition to the alignment and the driver interface system. The physical limitations of the system are also defined that would prevent the system operating at higher levels. The experiments are carried out using the integrated vehicle and the results obtained to demonstrate the system performance including the stage-by-stage efficiencies with matched and interoperable primary and secondary coils.

  6. Online Identification of Power Required for Self-Sustainability of the Battery in Hybrid Electric Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Malikopoulos, Andreas [ORNL

    2014-01-01

    Hybrid electric vehicles have shown great potential for enhancing fuel economy and reducing emissions. Deriving a power management control policy to distribute the power demanded by the driver optimally to the available subsystems (e.g., the internal combustion engine, motor, generator, and battery) has been a challenging control problem. One of the main aspects of the power management control algorithms is concerned with the self-sustainability of the electrical path, which must be guaranteed for the entire driving cycle. This paper considers the problem of identifying online the power required by the battery to maintain the state of charge within a range of the target value. An algorithm is presented that realizes how much power the engine needs to provide to the battery so that self-sustainability of the electrical path is maintained.

  7. Design and Control of a 3 kW Wireless Power Transfer System for Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Zhenshi Wang

    2015-12-01

    Full Text Available This paper aims to study a 3 kW wireless power transfer system for electric vehicles. First, the LCL-LCL topology and LC-LC series topology are analyzed, and their transfer efficiencies under the same transfer power are compared. The LC-LC series topology is validated to be more efficient than the LCL-LCL topology and thus is more suitable for the system design. Then a novel q-Zsource-based online power regulation method which employs a unique impedance network (two pairs of inductors and capacitors to couple the cascaded H Bridge to the power source is proposed. By controlling the shoot-through state of the H Bridge, the charging current can be adjusted, and hence, transfer power. Finally, a prototype is implemented, which can transfer 3 kW wirelessly with ~95% efficiency over a 20 cm transfer distance.

  8. Sensitivity Analysis of a Wireless Power Transfer (WPT) System for Electric Vehicle Application

    Energy Technology Data Exchange (ETDEWEB)

    Chinthavali, Madhu Sudhan [ORNL; Wang, Zhiqiang [ORNL

    2016-01-01

    This paper presents a detailed parametric sensitivity analysis for a wireless power transfer (WPT) system in electric vehicle application. Specifically, several key parameters for sensitivity analysis of a series-parallel (SP) WPT system are derived first based on analytical modeling approach, which includes the equivalent input impedance, active / reactive power, and DC voltage gain. Based on the derivation, the impact of primary side compensation capacitance, coupling coefficient, transformer leakage inductance, and different load conditions on the DC voltage gain curve and power curve are studied and analyzed. It is shown that the desired power can be achieved by just changing frequency or voltage depending on the design value of coupling coefficient. However, in some cases both have to be modified in order to achieve the required power transfer.

  9. Energy Management and Control of Electric Vehicles, Using Hybrid Power Source in Regenerative Braking Operation

    Directory of Open Access Journals (Sweden)

    Bo Long

    2014-07-01

    Full Text Available Today’s battery powered electric vehicles still face many issues: (1 Ways of improving the regenerative braking energy; (2 how to maximally extend the driving-range of electric vehicles (EVs and prolong the service life of batteries; (3 how to satisfy the energy requirements of the EVs both in steady and dynamic state. The electrochemical double-layer capacitors, also called ultra-capacitors (UCs, have the merits of high energy density and instantaneous power output capability, and are usually combined with power battery packs to form a hybrid power supply system (HPSS. The power circuit topology of the HPSS has been illustrated in this paper. In the proposed HPSS, all the UCs are in series, which may cause an imbalanced voltage distribution of each unit, moreover, the energy allocation between the batteries and UCs should also be considered. An energy-management scheme to solve this problem has been presented. Moreover, due to the parameter variations caused by temperature changes and produced errors, the modelling procedure of the HPSS becomes very difficult, so an H∞ current controller is presented. The proposed hybrid power source circuit is implemented on a laboratory hardware setup using a digital signal processor (DSP. Simulation and experimental results have been put forward to demonstrate the feasibility and validity of the approach.

  10. In-situ electric field in human body model in different postures for wireless power transfer system in an electrical vehicle.

    Science.gov (United States)

    Shimamoto, Takuya; Laakso, Ilkka; Hirata, Akimasa

    2015-01-07

    The in-situ electric field of an adult male model in different postures is evaluated for exposure to the magnetic field leaked from a wireless power transfer system in an electrical vehicle. The transfer system is located below the centre of the vehicle body and the transferred power and frequency are 7 kW and 85 kHz, respectively. The in-situ electric field is evaluated for a human model (i) crouching near the vehicle, (ii) lying on the ground with or without his arm stretched, (iii) sitting in the driver's seat, and (iv) standing on a transmitting coil without a receiving coil. In each scenario, the maximum in-situ electric fields are lower than the allowable limit prescribed by international guidelines, although the local magnetic field strength in regions of the human body is higher than the allowable external magnetic field strength. The highest in-situ electric field is observed when the human body model is placed on the ground with his arm extended toward the coils, because of a higher magnetic field around the arm.

  11. Reactive Power Support of Electrical Vehicle Charging Station Upgraded with Flywheel Energy Storage System

    DEFF Research Database (Denmark)

    SUN, BO; Dragicevic, Tomislav; Savaghebi, Mehdi

    2015-01-01

    the operation of each component in the system. As a result, the charging station could supply the reactive power support to the utility grid without compromising the charging algorithm and preserve the battery’s lifetime. Finally, the real-time simulation results based on dSPACE1006 verifies the proposed......Electrical vehicles (EVs) are presenting increasingly potential to replace the conventional fossil fuel based vehicles due to environmental friendly characteristic. Accordingly, Charging Stations (CS), as an intermediate between grid and large numbers of EVs, are supposed to have more critical...... influence on future smart transportation network. This paper explores an off-board charging station upgraded with flywheel energy storage system that could provide a reactive power support to the grid utility. A supervisory control scheme based on distributed bus signaling is proposed to coordinate...

  12. An Efficient Energy Management Strategy, Unique Power Split & Energy Distribution, Based on Calculated Vehicle Road Loads

    Science.gov (United States)

    2012-08-01

    gearbox with pneumatic shift actuator. The differential connects to the final drives at the front axle. There are wheel end reduction units (WERU) at...regenerative braking or simulated engine braking . AVL Hybrid Control System (HCU) coordinates and controls all system components as laid out in Figure...HMMWV for the current given inputs based on the current vehicle speed, acceleration pedal, and brake pedal. From this driver requested power at the

  13. Hybrid power train for light commercial vehicles; Hybridantriebsstrang fuer leichte Nutzfahrzeuge

    Energy Technology Data Exchange (ETDEWEB)

    Somschor, B.; Buchhold, O. (ZF Friedrichshafen AG, Friedrichshafen)

    2007-07-01

    Light commercial vehicles are a rapidly growing vehicle segment. These vehicles are used for several purposes e.g. supply of different goods, construction areas, special applications. A high number of vehicles are used in cities or in urban arena with a high density of traffic and typical environmental polluting. In the meantime legislation in several industrialized countries around the world have the target to protect environment, e.g., Euro 4 or 5 regulations or Japan 10. In parallel the automotive industries (ACEA) in Europe has given a self obligation to reduce the CO{sub 2} emission until 2008 to a value of 140 g/km. A lot of activities are started by automotive industry and there suppliers in the past to meet these requirements. Beside already well known development activities like weight optimisation, lower driving and air resistance or improved diesel engine the hybrid power train, a combination of electric motor generator and combustion engine seems to be in the future an imported solution to meet these requirements in the future. Several possibilities to realize a hybrid power train for these applications is shown including the possibilities ZF have to show a hybrid power train for these types of applications. Advantages and disadvantages of the several possibilities are discussed from different point of view. The needed basic functions of a hybrid power train are discussed and system is recommended to use for these types of applications. A simulation model is shown and described including the realisation and results for different driving cycles. The influence on fuel consumption and emissions divided by functions are shown. A solution optimised for light commercial application is shown. Further more first results based on practical experiences are described. (orig.)

  14. A Nonlinear Model Predictive Control Algorithm for Obstacle Avoidance in Autonomous Ground Vehicles within Unknown Environments

    Science.gov (United States)

    2015-04-24

    Allgwer and A. Zheng, Nonlinear model predictive control vol. 26: Springer , 2000. [10] J. M. Park, D. W. Kim, Y. S. Yoon, H. J. Kim, and K. S. Yi...include modeling, simulation, and control of dynamic systems, with applications to energy systems, multibody dynamics, vehicle systems, and biomechanics

  15. The In-Transit Vigilant Covering Tour Problem of Routing Unmanned Ground Vehicles

    Science.gov (United States)

    2012-08-01

    15 Figure 2. A classic VRP ...17 Figure 3. Solution for a VRP ........................................................................................18 Figure 4. Solution...of NP-hard problems, such as the Traveling Salesman Problem (TSP), Vehicle Routing Problem ( VRP ), and Covering Salesman Problem (CSP) etc. We will

  16. Uncertainty analysis and design optimization of hybrid rocket motor powered vehicle for suborbital flight

    Directory of Open Access Journals (Sweden)

    Zhu Hao

    2015-06-01

    Full Text Available In this paper, we propose an uncertainty analysis and design optimization method and its applications on a hybrid rocket motor (HRM powered vehicle. The multidisciplinary design model of the rocket system is established and the design uncertainties are quantified. The sensitivity analysis of the uncertainties shows that the uncertainty generated from the error of fuel regression rate model has the most significant effect on the system performances. Then the differences between deterministic design optimization (DDO and uncertainty-based design optimization (UDO are discussed. Two newly formed uncertainty analysis methods, including the Kriging-based Monte Carlo simulation (KMCS and Kriging-based Taylor series approximation (KTSA, are carried out using a global approximation Kriging modeling method. Based on the system design model and the results of design uncertainty analysis, the design optimization of an HRM powered vehicle for suborbital flight is implemented using three design optimization methods: DDO, KMCS and KTSA. The comparisons indicate that the two UDO methods can enhance the design reliability and robustness. The researches and methods proposed in this paper can provide a better way for the general design of HRM powered vehicles.

  17. Evaluation of the Plug-in Hybrid Electric Vehicle Considering Power Generation Best Mix

    Science.gov (United States)

    Shinoda, Yukio; Tanaka, Hideo; Akisawa, Atsushi; Kashiwagi, Takao

    In transport section, it is necessary to reduce amount of CO2 emissions and Oil dependence. Bio fuels and Fuel Cell Vehicle (FCV), Electric Vehicle (EV) and Plug-in Hybrid Electric Vehicle (PHEV) are expected to reduce CO2 emissions and Oil dependence. We focus on PHEV. PHEV can reduce total energy Consumptions because of its high efficiency and can run with both oil and electricity. Introduction of PHEV reduces oil consumptions, however it also increases electricity demands. Therefore we must evaluate PHEV's CO2 reduction potential, not only in transport section but also in power grid section. To take into account of the distribution of the daily travel distance is also very important. All energy charged in the PHEV's battery cannot always be used. That influences the evaluation. We formulate the total model that combines passenger car model and power utility grid model, and we also consider the distribution of the daily travel distance. With this model, we show the battery cost per kWh at which PHEV begins to be introduced and oil dependence in passenger car section is to be reduced to 80%. We also show PHEV's CO2 reduction potentials and effects on the power supply system.

  18. Pheromone-based coordination strategy to static sensors on the ground and unmanned aerial vehicles carried sensors

    Science.gov (United States)

    Pignaton de Freitas, Edison; Heimfarth, Tales; Pereira, Carlos Eduardo; Morado Ferreira, Armando; Rech Wagner, Flávio; Larsson, Tony

    2010-04-01

    A current trend that is gaining strength in the wireless sensor network area is the use of heterogeneous sensor nodes in one coordinated overall network, needed to fulfill the requirements of sophisticated emerging applications, such as area surveillance systems. One of the main concerns when developing such sensor networks is how to provide coordination among the heterogeneous nodes, in order to enable them to efficiently respond the user needs. This study presents an investigation of strategies to coordinate a set of static sensor nodes on the ground cooperating with wirelessly connected Unmanned Aerial Vehicles (UAVs) carrying a variety of sensors, in order to provide efficient surveillance over an area of interest. The sensor nodes on the ground are set to issue alarms on the occurrence of a given event of interest, e.g. entrance of a non-authorized vehicle in the area, while the UAVs receive the issued alarms and have to decide which of them is the most suitable to handle the issued alarm. A bio-inspired coordination strategy based on the concept of pheromones is presented. As a complement of this strategy, a utility-based decision making approach is proposed.

  19. A Comparative Performance Analysis of Two Printed Circular Arrays for Power-Based Vehicle Localization Applications

    Directory of Open Access Journals (Sweden)

    Mohammad S. Sharawi

    2012-01-01

    Full Text Available A comparative study of the performance characteristics of a printed 8-element V-shaped circular antenna array and an 8-element Yagi circular array operating at 2.45 GHz for vehicular direction finding applications is presented. Two operating modes are investigated; switched and phased modes. The arrays were fabricated on FR-4 substrates with 0.8 mm thickness. Measured and simulated results were compared. Radiation gain patterns were measured on a 1 m diameter ground plane that resembles the rooftop of a vehicle. The HPBW of the Yagi was found to be about 3° narrower than its V-shaped counterpart when measured above a reflecting ground plane and operated in switched mode. The printed V-shaped antenna array offers 2.5 dB extra gain compared to the printed Yagi array.

  20. A Reduced-Part, Triple-Voltage DC-DC Converter for Electric Vehicle Power Management

    Energy Technology Data Exchange (ETDEWEB)

    Su, Gui-Jia [ORNL; Tang, Lixin [ORNL

    2007-01-01

    Electrical power systems in future hybrid and fuel cell vehicles may consist of three voltage nets; 14 V, 42 V and high voltage (>200 V) buses. A soft-switched, bi-directional dc-dc converter using only four switches was proposed for interconnecting the three nets. This paper presents a reduced- part dc-dc converter, which decreases the converter cost while retaining all the favorable features of the original topology. Simulation and experimental data are included to verify a simple power flow control scheme.

  1. Cost-Effectiveness Comparison of Coupler Designs of Wireless Power Transfer for Electric Vehicle Dynamic Charging

    Directory of Open Access Journals (Sweden)

    Weitong Chen

    2016-11-01

    Full Text Available This paper presents a cost-effectiveness comparison of coupler designs for wireless power transfer (WPT, meant for electric vehicle (EV dynamic charging. The design comparison of three common types of couplers is first based on the raw material cost, output power, transfer efficiency, tolerance of horizontal offset, and flux density. Then, the optimal cost-effectiveness combination is selected for EV dynamic charging. The corresponding performances of the proposed charging system are compared and analyzed by both simulation and experimentation. The results verify the validity of the proposed dynamic charging system for EVs.

  2. Management of Power Quality Issues in Low Voltage Networks using Electric Vehicles: Experimental Validation

    DEFF Research Database (Denmark)

    Martinenas, Sergejus; Knezovic, Katarina; Marinelli, Mattia

    2017-01-01

    As Electric Vehicles (EVs) are becoming more wide spread, their high power consumption presents challenges for the residential low voltage networks, especially when connected to long feeders with unevenly distributed loads. However, if intelligently integrated, EVs can also partially solve...... and voltage unbalances by a local smart charging algorithm based on a droop controller. In order to validate this capability, a low-voltage grid with a share of renewable resources is recreated in SYSLAB PowerLabDK. The experimental results demonstrate the advantages of the intelligent EV charging...

  3. An efficient wireless power transfer system with security considerations for electric vehicle applications

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zhen; Chau, K. T., E-mail: ktchau@eee.hku.hk; Liu, Chunhua; Qiu, Chun; Lin, Fei [Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong (China)

    2014-05-07

    This paper presents a secure inductive wireless power transfer (WPT) system for electric vehicle (EV) applications, such as charging the electric devices inside EVs and performing energy exchange between EVs. The key is to employ chaos theory to encrypt the wirelessly transferred energy which can then be decrypted by specific receptors in the multi-objective system. In this paper, the principle of encrypted WPT is first revealed. Then, computer simulation is conducted to validate the feasibility of the proposed system. Moreover, by comparing the WPT systems with and without encryption, the proposed energy encryption scheme does not involve noticeable power consumption.

  4. Impact of the Air-Conditioning System on the Power Consumption of an Electric Vehicle Powered by Lithium-Ion Battery

    Directory of Open Access Journals (Sweden)

    Brahim Mebarki

    2013-01-01

    Full Text Available The car occupies the daily universe of our society; however, noise pollution, global warming gas emissions, and increased fuel consumption are constantly increasing. The electric vehicle is one of the recommended solutions by the raison of its zero emission. Heating and air-conditioning (HVAC system is a part of the power system of the vehicle when the purpose is to provide complete thermal comfort for its occupants, however it requires far more energy than any other car accessory. Electric vehicles have a low-energy storage capacity, and HVAC may consume a substantial amount of the total energy stored, considerably reducing the vehicle range, which is one of the most important parameters for EV acceptability. The basic goal of this paper is to simulate the air-conditioning system impact on the power energy source of an electric vehicle powered by a lithium-ion battery.

  5. Electric Vehicles for Improved Operation of Power Systems with High Wind Power Penetration

    DEFF Research Database (Denmark)

    Larsen, Esben; Chandrashekhara, Divya K; Østergaard, Jacob

    2008-01-01

    In a power system with a high share of wind energy the wind fluctuation causes a variation in the power generation, which must be compensated from other sources. The situation in Denmark with a penetration of more than 20% wind in yearly average is presented. The introduction of electric drive ve...

  6. FC vehicle hybridisation: an affordable solution for an energy-efficient FC powered drive train

    Science.gov (United States)

    Pede, G.; Iacobazzi, A.; Passerini, S.; Bobbio, A.; Botto, G.

    Fuel cells (FCs) have potential as clean and efficient energy sources for automotive applications without sacrifice in performance or driving range. However, the complete FC system must operate as efficiently as possible over the range of driving conditions that may be encountered while maintaining a low cost. To achieve this target, a storage unit can be introduced in the FC system to reduce the size of the fuel cell that is the most expensive component. This "hybrid" concept would not only reduce the drive train total cost but it also allow the recover of the braking energy and the operation at the voltage-current point of maximum efficiency for the FC system. Pro-and-cons of the "full-power" versus the "hybrid" configuration are shown in this work. The "Hybridisation rate" or "Hybridisation degree", a parameter expressed by the relationship between two installed powers, the generation power and the traction power, is also introduced and it is demonstrated that for each category of hybrid vehicles there is an optimal value of hybridisation degree. The storage systems considered are based on high power batteries or ultra capacitors (UCs) or a combination of them. A preliminary design of a sport utility vehicle (SUV) using a combined storage system and a FC energy source (called Triple Hybrid), is proposed. Finally, the experience of the Italian industry in this field is also reviewed.

  7. Feasibility assessment of a solar-powered charging station for electric vehicles in the North Central region of Bulgaria

    Directory of Open Access Journals (Sweden)

    Ilieva Liliya Mihaylova

    2016-01-01

    Full Text Available The paper discusses the topical issue related to the prospects of widespread deployment of electric vehicles and their associated infrastructure in Bulgaria. The main problems hindering the development of electric vehicle transport are summarized and the current status of charging infrastructure in the country is discussed. An approach is proposed for analysis and evaluation of the financial feasibility of investment in a solar-powered charging station for electric vehicles in North Central region of Bulgaria.

  8. Vehicle roof with solar power supply and contact device. Fahrzeugdach mit Solarstromquelle und Kontakteinrichtung

    Energy Technology Data Exchange (ETDEWEB)

    Paetz, W.; Meiler, K.; Schumacher, T.; Bienert, H.; Hirschberger, A.; Pfisterer, H.; Hoeller, M.

    1991-05-02

    Vehicle roof with at least one cover, carrying a solar power supply for optional covering or at least for partial uncovering of a roof opening. In addition, with at least one load driven by the solar power supply which is arranged separately from the cover and with a contact device for establishing of an electric connection between the solar power supply and the load. The contact device is designed as a switching configuration and the cover is a part of this switching configuration, so that depending on the adjustment motion of the cover, the load is connected to the solar power supply in one or several predetermined cover positions, and is disconnected in all other covert positions.

  9. On variable hydrostatic transmission for road vehicles, powered by supply of fluid at constant pressure

    Science.gov (United States)

    Magi, M.; Freivald, A.; Andersson, I.; Ericsson, U.

    1981-05-01

    Various hydrostatic power transmission systems for automotive applications with power supply at constant pressure and unrestricted flow and with a Volvo Flygmotor variable displacement motor as the principal unit were investigated. Two most promising concepts were analyzed in detail and their main components optimized for minimum power loss at the EPA Urban Driving Cycle. The best fuel consumption is less than 10 lit. per 100 kM for a 1542 kG vehicle with a hydrostatic motor and a two speed gear box in series (braking power not recovered). Realistic system pressure affects the fuel consumption just slightly, but the package volume/weight drastically. Back pressure increases losses significantly. Special attention was paid to description of the behavior and modeling of the losses of variable displacement hydrostatic machines.

  10. A fuzzy chance-constrained program for unit commitment problem considering demand response, electric vehicle and wind power

    DEFF Research Database (Denmark)

    Zhang, Ning; Hu, Zhaoguang; Han, Xue

    2015-01-01

    commitment model is proposed in this paper considering demand response and electric vehicles, which can promote the exploitation of wind power. On the one hand, demand response and electric vehicles have the feasi- bility to change the load demand curve to solve the mismatch problem. On the other hand......, they can serve as reserve for wind power. To deal with the unit commitment problem, authors use a fuzzy chance- constrained program that takes into account the wind power forecasting errors. The numerical study shows that the model can promote the utilization of wind power evidently, making the power...

  11. Standards and Specifications for Ground Processing of Space Vehicles: From an Aviation-Based Shuttle Project to Global Application

    Science.gov (United States)

    Ingalls, John; Cipolletti, John

    2011-01-01

    Proprietary or unique designs and operations are expected early in any industry's development, and often provide a competitive early market advantage. However, there comes a time when a product or industry requires standardization for the whole industry to advance...or survive. For the space industry, that time has come. Here, we will focus on standardization of ground processing for space vehicles and their ground systems. With the retirement of the Space Shuttle, and emergence of a new global space race, affordability and sustainability are more important now than ever. The growing commercialization of the space industry and current global economic environment are driving greater need for efficiencies to save time and money. More RLV's (Reusable Launch Vehicles) are being developed for the gains of reusability not achievable with traditional ELV's (Expendable Launch Vehicles). More crew/passenger vehicles are also being developed. All of this calls for more attention needed for ground processing-repeatedly before launch and after landing/recovery. RLV's should provide more efficiencies than ELV's, as long as MRO (Maintenance, Repair, and Overhaul) is well-planned-even for the unplanned problems. NASA's Space Shuttle is a primary example of an RLV which was supposed to thrive on reusability savings with efficient ground operations, but lessons learned show that costs were (and still are) much greater than expected. International standards and specifications can provide the commonality needed to simplify design and manufacturing as well as to improve safety, quality, maintenance, and operability. There are standards organizations engaged in the space industry, but ground processing is one of the areas least addressed. Challenges are encountered due to various factors often not considered during development. Multiple vehicle elements, sites, customers, and contractors pose various functional and integration difficulties. Resulting technical publication structures

  12. Multi-spectral synthetic image generation for ground vehicle identification training

    Science.gov (United States)

    May, Christopher M.; Pinto, Neil A.; Sanders, Jeffrey S.

    2016-05-01

    There is a ubiquitous and never ending need in the US armed forces for training materials that provide the warfighter with the skills needed to differentiate between friendly and enemy forces on the battlefield. The current state of the art in battlefield identification training is the Recognition of Combat Vehicles (ROC-V) tool created and maintained by the Communications - Electronics Research, Development and Engineering Center Night Vision and Electronic Sensors Directorate (CERDEC NVESD). The ROC-V training package utilizes measured visual and thermal imagery to train soldiers about the critical visual and thermal cues needed to accurately identify modern military vehicles and combatants. This paper presents an approach to augment the existing ROC-V imagery database with synthetically generated multi-spectral imagery that will allow NVESD to provide improved training imagery at significantly lower costs.

  13. A Conformal, Fully-Conservative Approach for Predicting Blast Effects on Ground Vehicles

    Science.gov (United States)

    2014-04-01

    time integration  Approximate Riemann Fluxes (HLLE, HLLC) ◦ Robust mixture model for multi-material flows  Multiple Equations of State ◦ Perfect Gas...Generic Hull geometry used to verify coupling for realistic configurations ◦ Qualitative results only UNCLASSIFIED UNCLASSIFIED  Large weight used to...UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED  Geometry represents a notional Army vehicle  Test conditions: ◦ Charge: 6kg cylinder of C4  STANAG 4569 Level 2 mine

  14. Creation of the Driver Fixed Heel Point (FHP) CAD Accommodation Model for Military Ground Vehicle Design

    Science.gov (United States)

    2016-08-04

    Standard: Human Engineering, 2012. The unifying factor amongst these is the requirement to accommodate the central 90% of the Soldier population . MIL...Heel Point (FHP), accommodation model, occupant work space, central 90% of the Soldier population , encumbrance, posture and position, computer aided...which the occupant is an integral element of vehicle workstation design. Ensuring that a given percentage of the population can sit safely and

  15. Understanding why a Ground Combat Vehicle that Carries Nine Dismounts is Important to the Army

    Science.gov (United States)

    2013-01-01

    cites a quote by GEN Donn Starry, TRADOC commander from 1977 to 1981, in which he notes, “We in TRADOC . . . decided to put the TOW on the MICV because...Carmichael, John M., “Devising Doctrine for the Bradley Fighting Vehicle Platoon Dismount Element—Finding the Right Starting Point,” Fort...Mahon, John K., and Romana Danysh, Army Lineage Series: Infantry, Part I: Regular Army, Washington, D.C.: Office of the Chief of Military History, United

  16. Application of positive matrix factorization to on-road measurements for source apportionment of diesel- and gasoline-powered vehicle emissions in Mexico City

    Directory of Open Access Journals (Sweden)

    D. A. Thornhill

    2009-12-01

    Full Text Available The goal of this research is to quantify diesel- and gasoline-powered motor vehicle emissions within the Mexico City Metropolitan Area (MCMA using on-road measurements captured by a mobile laboratory combined with positive matrix factorization (PMF receptor modeling. During the MCMA-2006 ground-based component of the MILAGRO field campaign, the Aerodyne Mobile Laboratory (AML measured many gaseous and particulate pollutants, including carbon dioxide, carbon monoxide (CO, nitrogen oxides (NOx, benzene, toluene, alkylated aromatics, formaldehyde, acetaldehyde, acetone, ammonia, particle number, fine particulate mass (PM2.5, and black carbon (BC. These serve as inputs to the receptor model, which is able to resolve three factors corresponding to gasoline engine exhaust, diesel engine exhaust, and the urban background. Using the source profiles, we calculate fuel-based emission factors for each type of exhaust. The MCMA's gasoline-powered vehicles are considerably dirtier, on average, than those in the US with respect to CO and aldehydes. Its diesel-powered vehicles have similar emission factors of NOx and higher emission factors of aldehydes, particle number, and BC. In the fleet sampled during AML driving, gasoline-powered vehicles are responsible for 97% of mobile source emissions of CO, 22% of NOx, 95–97% of aromatics, 72–85% of carbonyls, 74% of ammonia, negligible amounts of particle number, 26% of PM2.5, and 2% of BC; diesel-powered vehicles account for the balance. Because the mobile lab spent 17% of its time waiting at stoplights, the results may overemphasize idling conditions, possibly resulting in an underestimate of NOx and overestimate of CO emissions. On the other hand, estimates of the inventory that do not correctly account for emissions during idling are likely to produce bias in the opposite direction. Nevertheless, the fuel-based inventory suggests that mobile

  17. Application of positive matrix factorization to on-road measurements for source apportionment of diesel- and gasoline-powered vehicle emissions in Mexico City

    Directory of Open Access Journals (Sweden)

    D. A. Thornhill

    2010-04-01

    Full Text Available The goal of this research is to quantify diesel- and gasoline-powered motor vehicle emissions within the Mexico City Metropolitan Area (MCMA using on-road measurements captured by a mobile laboratory combined with positive matrix factorization (PMF receptor modeling. During the MCMA-2006 ground-based component of the MILAGRO field campaign, the Aerodyne Mobile Laboratory (AML measured many gaseous and particulate pollutants, including carbon dioxide, carbon monoxide (CO, nitrogen oxides (NOx, benzene, toluene, alkylated aromatics, formaldehyde, acetaldehyde, acetone, ammonia, particle number, fine particulate mass (PM2.5, and black carbon (BC. These serve as inputs to the receptor model, which is able to resolve three factors corresponding to gasoline engine exhaust, diesel engine exhaust, and the urban background. Using the source profiles, we calculate fuel-based emission factors for each type of exhaust. The MCMA's gasoline-powered vehicles are considerably dirtier, on average, than those in the US with respect to CO and aldehydes. Its diesel-powered vehicles have similar emission factors of NOx and higher emission factors of aldehydes, particle number, and BC. In the fleet sampled during AML driving, gasoline-powered vehicles are found to be responsible for 97% of total vehicular emissions of CO, 22% of NOx, 95–97% of each aromatic species, 72–85% of each carbonyl species, 74% of ammonia, negligible amounts of particle number, 26% of PM2.5, and 2% of BC; diesel-powered vehicles account for the balance. Because the mobile lab spent 17% of its time waiting at stoplights, the results may overemphasize idling conditions, possibly resulting in an underestimate of NOx and overestimate of CO emissions. On the other hand, estimates of the inventory that do not correctly account for emissions during idling are likely to produce bias in the opposite direction.The resulting fuel

  18. Application of positive matrix factorization to on-road measurements for source apportionment of diesel- and gasoline-powered vehicle emissions in Mexico City

    Science.gov (United States)

    Thornhill, D. A.; Williams, A. E.; Onasch, T. B.; Wood, E.; Herndon, S. C.; Kolb, C. E.; Knighton, W. B.; Zavala, M.; Molina, L. T.; Marr, L. C.

    2010-04-01

    The goal of this research is to quantify diesel- and gasoline-powered motor vehicle emissions within the Mexico City Metropolitan Area (MCMA) using on-road measurements captured by a mobile laboratory combined with positive matrix factorization (PMF) receptor modeling. During the MCMA-2006 ground-based component of the MILAGRO field campaign, the Aerodyne Mobile Laboratory (AML) measured many gaseous and particulate pollutants, including carbon dioxide, carbon monoxide (CO), nitrogen oxides (NOx), benzene, toluene, alkylated aromatics, formaldehyde, acetaldehyde, acetone, ammonia, particle number, fine particulate mass (PM2.5), and black carbon (BC). These serve as inputs to the receptor model, which is able to resolve three factors corresponding to gasoline engine exhaust, diesel engine exhaust, and the urban background. Using the source profiles, we calculate fuel-based emission factors for each type of exhaust. The MCMA's gasoline-powered vehicles are considerably dirtier, on average, than those in the US with respect to CO and aldehydes. Its diesel-powered vehicles have similar emission factors of NOx and higher emission factors of aldehydes, particle number, and BC. In the fleet sampled during AML driving, gasoline-powered vehicles are found to be responsible for 97% of total vehicular emissions of CO, 22% of NOx, 95-97% of each aromatic species, 72-85% of each carbonyl species, 74% of ammonia, negligible amounts of particle number, 26% of PM2.5, and 2% of BC; diesel-powered vehicles account for the balance. Because the mobile lab spent 17% of its time waiting at stoplights, the results may overemphasize idling conditions, possibly resulting in an underestimate of NOx and overestimate of CO emissions. On the other hand, estimates of the inventory that do not correctly account for emissions during idling are likely to produce bias in the opposite direction.The resulting fuel-based estimates of emissions are lower than in the official inventory for CO and NOx

  19. H2 control of a one-quarter semi-active ground vehicle suspension

    Directory of Open Access Journals (Sweden)

    L.C. Félix-Herrán

    2016-06-01

    Full Text Available Magneto-rheological (MR dampers are effective solutions in improving vehicle stability and passenger comfort. However, handling these dampers implies a strong effort in modeling and control. This research proposes an H2 controller, based on a Takagi–Sugeno (T–S fuzzy model, for a two-degrees-of-freedom (2-DOF one-quarter vehicle semi-active suspension with an MR damper; a system with important applications in automotive industry. Regarding performance criteria (in frequency domain handled herein, the developed controller considerably improves the passive suspension's efficiency. Moreover, nonlinear actuator dynamics usually avoided in reported work, is included in controller's synthesis; improving the relevance of research outcomes because the controller is synthesized from a closer-to-reality suspension model. Going further, outcomes of this research are compared (based on frequency domain performance criteria and a common time domain test with reported work to highlight the outstanding results. H2 controller is given in terms of quadratic Lyapunov stability theory and carried out by means of Linear Matrix Inequalities (LMI, and the command signal is applied via the Parallel Distributed Compensation (PDC approach. A case of study, with real data, is developed and simulation work supports the results. The methodology applied herein can be extended to include other vehicle suspension's dynamics towards a general chassis control.

  20. Energy management systems on board of electric vehicles, based on power electronics

    Energy Technology Data Exchange (ETDEWEB)

    Guidi, Giuseppe

    2009-03-15

    The core of any electric vehicle (EV) is the electric drive train, intended as the energy conversion chain from the energy tank (typically some kind of rechargeable battery) to the electric motor that converts the electrical energy into the mechanical energy needed for the vehicle motion. The need for on-board electrical energy storage is the factor that has so far prevented pure electric vehicles from conquering significant market share. In fact electrochemical batteries, which are currently the most suitable device for electrical energy storage, have serious limitations in terms of energy and/or power density, cost and safety. All those characteristics reflect in pure electric vehicles being outperformed by standard internal combustion engine (ICE) based vehicles in terms of driving range, time needed to refuel and purchase cost. Electric vehicles do have their distinctive advantages, being intrinsically much more efficient, operating at zero emissions at the pipe, and offering a higher degree of controllability that can potentially enhance driving safety. No wonder then, that electric energy storage technology has attracted considerable R&D investments, resulting in new traction battery packs that are getting closer and closer to the industrial targets. In this scenario of EV technology gaining momentum, power electronics engineers have to come up with newer solutions allowing for more efficient and more reliable utilization of the precious on-board energy that comes in a form that cannot be directly utilized by the motor. At present, most of the research in the area of power electronics for automotive is focused in volume and cost reduction techniques. The increase in power density is pursued by developing components that can be operated at higher temperature, thus relieving the requirements on cooling. In this thesis, the focus is on the development of alternative topologies for the power electronics converters that make use of some peculiarities of the energy

  1. Modeling Powered Aerodynamics for the Orion Launch Abort Vehicle Aerodynamic Database

    Science.gov (United States)

    Chan, David T.; Walker, Eric L.; Robinson, Philip E.; Wilson, Thomas M.

    2011-01-01

    Modeling the aerodynamics of the Orion Launch Abort Vehicle (LAV) has presented many technical challenges to the developers of the Orion aerodynamic database. During a launch abort event, the aerodynamic environment around the LAV is very complex as multiple solid rocket plumes interact with each other and the vehicle. It is further complicated by vehicle separation events such as between the LAV and the launch vehicle stack or between the launch abort tower and the crew module. The aerodynamic database for the LAV was developed mainly from wind tunnel tests involving powered jet simulations of the rocket exhaust plumes, supported by computational fluid dynamic simulations. However, limitations in both methods have made it difficult to properly capture the aerodynamics of the LAV in experimental and numerical simulations. These limitations have also influenced decisions regarding the modeling and structure of the aerodynamic database for the LAV and led to compromises and creative solutions. Two database modeling approaches are presented in this paper (incremental aerodynamics and total aerodynamics), with examples showing strengths and weaknesses of each approach. In addition, the unique problems presented to the database developers by the large data space required for modeling a launch abort event illustrate the complexities of working with multi-dimensional data.

  2. Accidents by electrical contact of heavy vehicles with the power distribution network overhead lines

    Energy Technology Data Exchange (ETDEWEB)

    Bourkas, P.D.; Tsarabaris, P.T.; Katsanis, J.S.; Polykrati, A.D. [National Technical Univ. of Athens (Greece). School of Electrical and Computer Engineering; Koufakis, E.I. [Public Power Corp., Crete (Greece)

    2009-07-01

    This paper examined an electrical accident that occurred when a heavy vehicle came into contact with a distribution overhead primary circuit transmission line protected by an oil circuit breaker. The back part of a concrete pump truck made contact with a bare conductor on the medium voltage line located in a city. The driver sustained an electrical shock when he tried to descend from his truck and touched the metallic part of the driver's cabin at the same time his feet touched the ground. The accident occurred as a result of the conductive path created between the conductor and the earth through the body of the driver. The thermal, electromechanical, thermochemical and partial discharge breakdowns of the truck's solid insulation tires were studied. The oil circuit breaker was also investigated. Experiments demonstrated that reductions in the dielectric strength of the tires were caused by the wire mesh materials used to reinforce mechanical strength. The old tires avoided static electricity as a result of their increased friction and ohmic resistance value. Thermal breakdown of the wheel rubber occurred when the vehicle came into contact with the medium voltage conductor. It was concluded that drivers must jump away from vehicles that come into contact with transmission lines. 12 refs., 5 figs.

  3. Design and Optimization of the Power Management Strategy of an Electric Drive Tracked Vehicle

    Directory of Open Access Journals (Sweden)

    Qunzhang Tu

    2016-01-01

    Full Text Available This article studies the power management control strategy of electric drive system and, in particular, improves the fuel economy for electric drive tracked vehicles. Combined with theoretical analysis and experimental data, real-time control oriented models of electric drive system are established. Taking into account the workloads of engine and the SOC (state of charge of battery, a fuzzy logic based power management control strategy is proposed. In order to achieve a further improvement in fuel economic, a DEHPSO algorithm (differential evolution based hybrid particle swarm optimization is adopted to optimize the membership functions of fuzzy controller. Finally, to verify the validity of control strategy, a HILS (hardware-in-the-loop simulation platform is built based on dSPACE and related experiments are carried out. The results indicate that the proposed strategy obtained good effects on power management, which achieves high working efficiency and power output capacity. Optimized by DEHPSO algorithm, fuel consumption of the system is decreased by 4.88% and the fuel economy is obviously improved, which will offer an effective way to improve integrated performance of electric drive tracked vehicles.

  4. Incorporating Charging/Discharging Strategy of Electric Vehicles into Security-Constrained Optimal Power Flow to Support High Renewable Penetration

    National Research Council Canada - National Science Library

    Kyungsung An; Kyung-Bin Song; Kyeon Hur

    2017-01-01

    This research aims to improve the operational efficiency and security of electric power systems at high renewable penetration by exploiting the envisioned controllability or flexibility of electric vehicles (EVs...

  5. Energy management of a power-split plug-in hybrid electric vehicle based on genetic algorithm and quadratic programming

    Science.gov (United States)

    Chen, Zheng; Mi, Chris Chunting; Xiong, Rui; Xu, Jun; You, Chenwen

    2014-02-01

    This paper introduces an online and intelligent energy management controller to improve the fuel economy of a power-split plug-in hybrid electric vehicle (PHEV). Based on analytic analysis between fuel-rate and battery current at different driveline power and vehicle speed, quadratic equations are applied to simulate the relationship between battery current and vehicle fuel-rate. The power threshold at which engine is turned on is optimized by genetic algorithm (GA) based on vehicle fuel-rate, battery state of charge (SOC) and driveline power demand. The optimal battery current when the engine is on is calculated using quadratic programming (QP) method. The proposed algorithm can control the battery current effectively, which makes the engine work more efficiently and thus reduce the fuel-consumption. Moreover, the controller is still applicable when the battery is unhealthy. Numerical simulations validated the feasibility of the proposed controller.

  6. DOE FreedomCAR and vehicle technologies program advanced power electronic and electrical machines annual review report

    Energy Technology Data Exchange (ETDEWEB)

    Olszewski, Mitch [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2006-10-11

    This report is a summary of the Review Panel at the FY06 DOE FreedomCAR and Vehicle Technologies (FCVT) Annual Review of Advanced Power Electronics and Electric Machine (APEEM) research activities held on August 15-17, 2006.

  7. Performance test results for the Eaton dc development power train in an electric test bed vehicle

    Science.gov (United States)

    Crumley, R. L.; Donaldson, M. R.

    1987-09-01

    This report presents the results of the tests performed on a direct current (dc) power train in a test bed vehicle developed by the Eaton Corporation for the U.S. Department of Energy (DOE). The tests were performed by EG and G Idaho, Inc. at the Idaho National Engineering Laboratory (INEL). The purpose of the INEL testing was to provide test results from which an evaluation of the performance capabilities of the Eaton dc power train could be made and compared with other vehicle propulsion systems. The planned tests were primarily oriented toward road testing, chassis dynamometer testing, and associated dynamometer coastdown tests for road loss determination. Range tests of the Eaton dc test bed vehicle using an ALCO 2200 lead acid battery pack, produced ranges of 97 km at 56 km/h (60 miles at 35 mph), 79 km at 72 km/h (49 miles at 45 mph), and 47 km at 88 km/h (29 miles at 55 mph). The corresponding net dc energy consumptions are 135 Wh/km (217 Wh/mile), 145 Wh/km (233 Wh/mile), and 178 Wh/km (287 Wh/mile). The energy consumption for the D-cycle test was 241 Wh/km (387 Wh/mile).

  8. Effects of wind-powered hydrogen fuel cell vehicles on stratospheric ozone and global climate

    Science.gov (United States)

    Jacobson, Mark Z.

    2008-10-01

    Converting the world's fossil-fuel onroad vehicles (FFOV) to hydrogen fuel cell vehicles (HFCV), where the H2 is produced by wind-powered electrolysis, is estimated to reduce global fossil, biofuel, and biomass-burning emissions of CO2 by ~13.4%, NOx ~23.0%, nonmethane organic gases ~18.9%, black carbon ~8% H2 ~3.2% (at 3% leakage), and H2O ~0.2%. Over 10 years, such reductions were calculated to reduce tropospheric CO ~5%, NOx ~5-13%, most organic gases ~3-15%, OH ~4%, ozone ~6%, and PAN ~13%, but to increase tropospheric CH4 ~0.25% due to the lower OH. Lower OH also increased upper tropospheric/lower stratospheric ozone, increasing its global column by ~0.41%. WHFCV cooled the troposphere and warmed the stratosphere, reduced aerosol and cloud surface areas, and increased precipitation. Other renewable-powered HFCV or battery electric vehicles should have similar impacts.

  9. Analysis of Off-Board Powered Thermal Preconditioning in Electric Drive Vehicles: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Barnitt, R. A.; Brooker, A. D.; Ramroth, L.; Rugh , J.; Smith, K. A.

    2010-12-01

    Following a hot or cold thermal soak, vehicle climate control systems (air conditioning or heat) are required to quickly attain a cabin temperature comfortable to the vehicle occupants. In a plug-in hybrid electric or electric vehicle (PEV) equipped with electric climate control systems, the traction battery is the sole on-board power source. Depleting the battery for immediate climate control results in reduced charge-depleting (CD) range and additional battery wear. PEV cabin and battery thermal preconditioning using off-board power supplied by the grid or a building can mitigate the impacts of climate control. This analysis shows that climate control loads can reduce CD range up to 35%. However, cabin thermal preconditioning can increase CD range up to 19% when compared to no thermal preconditioning. In addition, this analysis shows that while battery capacity loss over time is driven by ambient temperature rather than climate control loads, concurrent battery thermal preconditioning can reduce capacity loss up to 7% by reducing pack temperature in a high ambient temperature scenario.

  10. Design of Solar/Electric Powered Hybrid Vehicle (SEPHV System with Charge Pattern Optimization for Energy Cost

    Directory of Open Access Journals (Sweden)

    T.Balamurugan

    2014-01-01

    Full Text Available This paper proposes a Solar Electric Powered Hybrid Vehicle (SEPHV system which solves the major problems of fuel and pollution. An electric vehicle usually uses a battery which has been charged by external electrical power supply. All recent electric vehicles present a drive on AC power supplied motor. An inverter set is required to be connected with the battery through which AC power is converted to DC power. During this conversion many losses take place and also the maintenance cost of the AC System is very high. The proposed topology has the most feasible solar/electric power generation system mounted on the vehicle to charge the battery during all durations. With a view of providing ignited us to develop this “Solar/Electric Powered Hybrid Vehicle” [SEPHV].This multi charging vehicle can charge itself from both solar and electric power. The vehicle is altered out of a Maruti Omni vehicle by replacing its engine with a 1.2HP, 24V Permanent Magnet DC [PMDC] Motor. The Supply to the motor is obtained from a battery set of 12V, 150AH. The household electric supply of 230V is reduced with a step-down transformer to 48V and then it is converted to the DC with a rectifying unit to charge the battery. Two solar panels each with a rating of 230watts are attached to the top of the Vehicle to grab the solar energy and is controlled with a help of charge controller. The SEPHV can be driven by 1.2 HP PMDC motor consisting of two 230 watts PV panel in the voltage rating of 24 V. The power which is absorbed by the PV panel is stored into the four 150 AH 12 V batteries. When there is no presence of sun, electric power supply act as an auxiliary energy source. For controlling speed of the motor, a switch is designed with four tapping, provided with different values of resistance at each tapping. It acts as a speed control switch for Solar/Electric Powered Hybrid Vehicle. This type of technique is to reduce the running cost and increasing the running

  11. Hermes vehicle

    Science.gov (United States)

    Cretenet, J. C.

    1985-11-01

    The presence of Europe in the future developments of spatial programs, which are foreseen, for the 1990s and further, needs the availability of vehicles, modules and all related technologies adapted to operational use of low earth orbit station. The manned HERMES vehicle shall be part of the in-orbit infrastructure realized either in the European context or in cooperation between Europe and the United States. The main mission for this vehicle will be to run a shuttle with the station that means transport and change of the crews, its safe return in abort condition and cargo transport of consumable and experimental equipment. Secondary missions could be servicing on automatic platform, making autonomous scientific experiments. Lastly, the vehicle, by means of its on-board propulsion capability, could be used to accomplish in-orbit tow and assembly missions. Studies which are undertaken now about the vehicle are devoted to the aerodynamic shape (research of a compromise between aerothermic and overall fitting), the system (functional architecture, ground and flight configuration); further works dealing with technology are presently on hand in the field of thermal protection, aerodynamics, power generation with a high massic yield.

  12. Development of specific materials for the high power electronic components in electric vehicles

    Directory of Open Access Journals (Sweden)

    Kaabi Abderrahmen

    2013-11-01

    Full Text Available The powerchain in electric vehicles sets new demands on semi conductors and their packaging. The latter will be specifically addressed. The power density per cm2 in DC/DC or DC/AC converters requires a mastering of thermomecahnical aspects. The temperature cyling, the environment under the hood of the vehicles and the “hybrid” technology impose severe constraints on the assemblies which may be met by architectured substrates, new options for assemblies and efficient cooling systems. An optimised semi conductor substrate associating copper and invar in a will be developed, relying on roll bonding to produce the 3D architecture. Roll bonding may also be used to associate aluminium and iron to produce light laminates with a CEM performance.

  13. NPSNET: Real-Time 3D Ground-Based Vehicle Dynamics

    Science.gov (United States)

    1992-03-01

    Meriam et.al., 86]1. Motion is produced by a simplified simulation of dynamics, that describes the linear and angular accelerations of a rigid body in...from the definition of the mass center as covered in statics, is given by 6 mr = Emir, (Eq. 2.1) where the total mass M = Emi [ Meriam et. al., 86]. At...Jurewicz, T., "A Real Time Autonomous Underwater Vehicle Dynamic Simulator," M.S. Thesis, Naval Postgraduate School, Monterey, CA., June 1989 [ Meriam et. al

  14. Study on Site Specific Design Earthquake Ground Motion of Nuclear Power Plants in China1

    Institute of Scientific and Technical Information of China (English)

    Zhou Bochang; Li Xiaojun; Li Yaqi

    2008-01-01

    The main technical backgrounds and requirements are introduced with regard to earthquake ground motion design parameters in several domestic and American standards,codes and guides involved in the seismic analysis and design activities of nuclear power plants in China.Based on the research results from site seismic safety evaluation of domestic nuclear power plant projects in the last years,characteristics and differences of site specific design spectra are analyzed in comparison with standard response spectra,and the suitability of standard response spectra for domestic nuclear power plant projects is discussed.

  15. Direct power generation from waste coffee grounds in a biomass fuel cell

    Science.gov (United States)

    Jang, Hansaem; Ocon, Joey D.; Lee, Seunghwa; Lee, Jae Kwang; Lee, Jaeyoung

    2015-11-01

    We demonstrate the possibility of direct power generation from waste coffee grounds (WCG) via high-temperature carbon fuel cell technology. At 900 °C, the WCG-powered fuel cell exhibits a maximum power density that is twice than carbon black. Our results suggest that the heteroatoms and hydrogen contained in WCG are crucial in providing good cell performance due to its in-situ gasification, without any need for pre-reforming. As a first report on the use of coffee as a carbon-neutral fuel, this study shows the potential of waste biomass (e.g. WCG) in sustainable electricity generation in fuel cells.

  16. Auditory Power-Law Activation Avalanches Exhibit a Fundamental Computational Ground State

    Science.gov (United States)

    Stoop, Ruedi; Gomez, Florian

    2016-07-01

    The cochlea provides a biological information-processing paradigm that we are only beginning to understand in its full complexity. Our work reveals an interacting network of strongly nonlinear dynamical nodes, on which even a simple sound input triggers subnetworks of activated elements that follow power-law size statistics ("avalanches"). From dynamical systems theory, power-law size distributions relate to a fundamental ground state of biological information processing. Learning destroys these power laws. These results strongly modify the models of mammalian sound processing and provide a novel methodological perspective for understanding how the brain processes information.

  17. Control strategy of fuel cell/supercapacitors hybrid power sources for electric vehicle

    Energy Technology Data Exchange (ETDEWEB)

    Thounthong, Phatiphat; Raeel, Stephane; Davat, Bernard [Institut National Polytechnique de Lorraine (INPL), GREEN, CNRS (UMR 7037) 2, Avenue de la Foret de Haye, 54516 Vandoeuvre-les-Nancy (France)

    2006-07-14

    This paper presents a control principle for utilizing PEM fuel cell as main power source and supercapacitors as auxiliary power source for electric vehicle applications. The strategy is based on dc link voltage regulation, and fuel cell is simply operating in almost steady state conditions in order to minimize the mechanical stresses of fuel cell and to ensure a good synchronization between fuel flow and fuel cell current. Supercapacitors are functioning during transient energy delivery or transient energy recovery. To authenticate control algorithms, the system structure is realized by analogical current loops and digital voltage loops (dSPACE). The experimental results with a 500W PEM fuel cell point out the fuel cell starvation problem when operating with dynamic load, and also confirm that the supercapacitor can improve system performance for hybrid power sources. (author)

  18. Computational models of an inductive power transfer system for electric vehicle battery charge

    Science.gov (United States)

    Anele, A. O.; Hamam, Y.; Chassagne, L.; Linares, J.; Alayli, Y.; Djouani, K.

    2015-09-01

    One of the issues to be solved for electric vehicles (EVs) to become a success is the technical solution of its charging system. In this paper, computational models of an inductive power transfer (IPT) system for EV battery charge are presented. Based on the fundamental principles behind IPT systems, 3 kW single phase and 22 kW three phase IPT systems for Renault ZOE are designed in MATLAB/Simulink. The results obtained based on the technical specifications of the lithium-ion battery and charger type of Renault ZOE show that the models are able to provide the total voltage required by the battery. Also, considering the charging time for each IPT model, they are capable of delivering the electricity needed to power the ZOE. In conclusion, this study shows that the designed computational IPT models may be employed as a support structure needed to effectively power any viable EV.

  19. Analysis of overvoltages in overhead ground wires of extra high voltage (EHV) power transmission line under single-phase-to-ground faults

    NARCIS (Netherlands)

    Dudurych, [No Value; Rosolowski, E

    2000-01-01

    Overhead ground wires (GW) of extra high voltage (EHV) power transmission lines, apart from lightning-induced overvoltage protection are frequently used for carrier-current communication. In this case the ground wires are suspended on insulators, the dielectric strength of which should be sufficient

  20. Business Models for Solar Powered Charging Stations to Develop Infrastructure for Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Jessica Robinson

    2014-10-01

    Full Text Available Electric power must become less dependent on fossil fuels and transportation must become more electric to decrease carbon emissions and mitigate climate change. Increasing availability and accessibility of charging stations is predicted to increase purchases of electric vehicles. In order to address the current inadequate charging infrastructure for electric vehicles, major entities must adopt business models for solar powered charging stations (SPCS. These SPCS should be located in parking lots to produce electricity for the grid and provide an integrated infrastructure for charging electric vehicles. Due to the lack of information related to SPCS business models, this manuscript designs several models for major entities including industry, the federal and state government, utilities, universities, and public parking. A literature review of the available relevant business models and case studies of constructed charging stations was completed to support the proposals. In addition, a survey of a university’s students, staff, and faculty was conducted to provide consumer research on people’s opinion of SPCS construction and preference of business model aspects. Results showed that 69% of respondents would be more willing to invest in an electric vehicle if there was sufficient charging station infrastructure at the university. Among many recommendations, the business models suggest installing level 1 charging for the majority of entities, and to match entities’ current pricing structures for station use. The manuscript discusses the impacts of fossil fuel use, and the benefits of electric car and SPCS use, accommodates for the present gap in available literature on SPCS business models, and provides current consumer data for SPCS and the models proposed.

  1. VISTA -- A Vehicle for Interplanetary Space Transport Application Powered by Inertial Confinement Fusion

    Energy Technology Data Exchange (ETDEWEB)

    Orth, C D

    2005-03-31

    Inertial Confinement Fusion (ICF) is an ideal technology to power self-contained single-stage piloted (manned) spacecraft within the solar system because of its inherently high power/mass ratios and high specific impulses (i.e., high exhaust velocities). These technological advantages are retained when ICF is utilized with a magnetic thrust chamber, which avoids the plasma thermalization and resultant degradation of specific impulse that are unavoidable with the use of mechanical thrust chambers. We started with Rod Hyde's 1983 description of an ICF-powered engine concept using a magnetic thrust chamber, and conducted a more detailed systems study to develop a viable, realistic, and defensible spacecraft concept based on ICF technology projected to be available in the first half of the 21st century. The results include an entirely new conical spacecraft conceptual design utilizing near-existing radiator technology. We describe the various vehicle systems for this new concept, estimate the missions performance capabilities for general missions to the planets within the solar system, and describe in detail the performance for the baseline mission of a piloted roundtrip to Mars with a 100-ton payload. For this mission, we show that roundtrips totaling {ge}145 days are possible with advanced DT fusion technology and a total (wet) spacecraft mass of about 6000 metric tons. Such short-duration missions are advantageous to minimize the known cosmic-radiation hazards to astronauts, and are even more important to minimize the physiological deteriorations arising from zero gravity. These ICF-powered missions are considerably faster than those available using chemical or nuclear-electric-propulsion technologies with minimum-mass vehicle configurations. VISTA also offers onboard artificial gravity and propellant-based shielding from cosmic rays, thus reducing the known hazards and physiological deteriorations to insignificant levels. We emphasize, however, that the degree

  2. Situational awareness for unmanned ground vehicles in semi-structured environments

    Science.gov (United States)

    Goodsell, Thomas G.; Snorrason, Magnus; Stevens, Mark R.

    2002-07-01

    Situational Awareness (SA) is a critical component of effective autonomous vehicles, reducing operator workload and allowing an operator to command multiple vehicles or simultaneously perform other tasks. Our Scene Estimation & Situational Awareness Mapping Engine (SESAME) provides SA for mobile robots in semi-structured scenes, such as parking lots and city streets. SESAME autonomously builds volumetric models for scene analysis. For example, a SES-AME equipped robot can build a low-resolution 3-D model of a row of cars, then approach a specific car and build a high-resolution model from a few stereo snapshots. The model can be used onboard to determine the type of car and locate its license plate, or the model can be segmented out and sent back to an operator who can view it from different viewpoints. As new views of the scene are obtained, the model is updated and changes are tracked (such as cars arriving or departing). Since the robot's position must be accurately known, SESAME also has automated techniques for deter-mining the position and orientation of the camera (and hence, robot) with respect to existing maps. This paper presents an overview of the SESAME architecture and algorithms, including our model generation algorithm.

  3. An MPC Algorithm with Combined Speed and Steering Control for Obstacle Avoidance in Autonomous Ground Vehicles

    Science.gov (United States)

    2015-04-24

    be an adequate interpretation in certain applications such as small ground robots . However, for the AGVs that are at least the size of a passenger... problematic , because the OCP solver requires all functions to be twice continuously differentiable. To address this challenge, the safe region is...avoidance for manipulators and mobile robots ,” International Journal of Robotics Research, vol. 5, pp. 90-98, 1986. [4] S. Shimoda, Y. Kuroda, and K

  4. Systems Engineering Approach To Ground Combat Vehicle Survivability In Urban Operations

    Science.gov (United States)

    2016-09-01

    of global urbanization, planning for urban operations is critical to the execution and success of any military campaign. The U.S. Army describes...for the enemy to prepare for the likely attack direction and to plan coordinated attacks against the incoming ground force. Enemy sensors can also...The Israel Aerospace Industries (IAI) is developing an integrated counter IED suite known as the Counter IED & Mine Suite ( CIMS ). According to Eshel

  5. Finite Element Optimization for Nondestructive Evaluation on a Graphics Processing Unit for Ground Vehicle Hull Inspection

    Science.gov (United States)

    2013-08-22

    GPU ,GA, genetic algorithm, FE, optimization, CUDA , Damage, Evaluation 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER OF... GPU with CUDA architecture [4]). There is however a severe memory limit – 4 GB at present. This would limit large problems as well as optimization...August 2013 UNCLASSIFIED UNCLASSIFIED Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 FE Optimization for NDE on GPUs for Ground

  6. On-Road Driver Monitoring System Based on a Solar-Powered In-Vehicle Embedded Platform

    Directory of Open Access Journals (Sweden)

    Yen-Lin Chen

    2014-01-01

    Full Text Available This study presents an on-road driver monitoring system, which is implemented on a stand-alone in-vehicle embedded system and driven by effective solar cells. The driver monitoring function is performed by an efficient eye detection technique. Through the driver’s eye movements captured from the camera, the attention states of the driver can be determined and any fatigue states can be avoided. This driver monitoring technique is implemented on a low-power embedded in-vehicle platform. Besides, this study also proposed monitoring machinery that can detect the brightness around the car to effectively determine whether this in-vehicle system is driven by the solar cells or by the vehicle battery. On sunny days, the in-vehicle system can be powered by solar cell in places without the vehicle battery. While in the evenings or on rainy days, the ambient solar brightness is insufficient, and the system is powered by the vehicle battery. The proposed system was tested under the conditions that the solar irradiance is 10 to 113 W/m2 and solar energy and brightness at 10 to 170. From the testing results, when the outside solar radiation is high, the brightness of the inside of the car is increased, and the eye detection accuracy can also increase as well. Therefore, this solar powered driver monitoring system can be efficiently applied to electric cars to save energy consumption and promote the driving safety.

  7. Optical embedded dust sensor for engine protection and early warning on M1 Abrams/ground combat vehicles

    Science.gov (United States)

    Lin, Hai; Waldherr, Gregor A.; Burch, Timothy

    2012-06-01

    The Dual Optical Embedded Dust Sensor (DOEDS) is designed for the sensitive, accurate detection of particles for preventive health monitoring of the AGT1500 engine and M1 Abrams/Ground Combat Vehicles (GCVs). DOEDS is a real-time sensor that uses an innovative combination of optical particle sensing technologies and mechanical packaging in a rugged, compact and non-intrusive optical design. The optical sensor, implementing both a single particle sensor and a mass sensor, can operate in harsh environments (up to 400°F) to meet the particle size, size distribution, mass concentration, and response time criteria. The sensor may be flush- or inline-mounted in multiple engine locations and environments.

  8. Autonomous urban reconnaissance ingress system (AURIS): providing a tactically relevant autonomous door-opening kit for unmanned ground vehicles

    Science.gov (United States)

    Shane, David J.; Rufo, Michael A.; Berkemeier, Matthew D.; Alberts, Joel A.

    2012-06-01

    The Autonomous Urban Reconnaissance Ingress System (AURIS™) addresses a significant limitation of current military and first responder robotics technology: the inability of reconnaissance robots to open doors. Leveraging user testing as a baseline, the program has derived specifications necessary for military personnel to open doors with fielded UGVs (Unmanned Ground Vehicles), and evaluates the technology's impact on operational mission areas: duration, timing, and user patience in developing a tactically relevant, safe, and effective system. Funding is provided through the US ARMY Tank Automotive Research, Development and Engineering Center (TARDEC) and the project represents a leap forward in perception, autonomy, robotic implements, and coordinated payload operation in UGVs. This paper describes high level details of specification generation, status of the last phase of development, an advanced view of the system autonomy capability, and a short look ahead towards the ongoing work on this compelling and important technology.

  9. The Analytical Review of the Condition of Heavy Class Military and Dual-Purpose Unmanned Ground Vehicle

    Directory of Open Access Journals (Sweden)

    Blokhin Aleksandr

    2015-01-01

    Full Text Available The purpose of this article is the evaluation of the actual condition of heavy (weight more than 700 kg military robotics and dual-purpose robotics in the world. The extensive review of the world market of heavy class military unmanned ground vehicle was made. All reviewed robots are used at present time or exist like prototypes. All robots were systematized by most important technical characteristics. In the closing of article the analysis of the reviewed heavy class dual purpose UGVs are presented. Based on the analysis the conclusion about actual condition of the heavy military robotics and dual-purpose robotics was made. Also the most promising ways and tendencies of development are representeds.

  10. Human Power Vehicle Program. Final report, June 15, 1993--June 14, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Crowell, J.; Graves, P.

    1995-11-01

    The Human Power Vehicle Program was an intensive, five day a week, four week program designed to give middle school students the opportunity to ``be engineers``. During the month of July, Delta College, the Macro Michigan Multicultural Pre-Technical Education Partnership (M3PEP), and the United States Department of Energy sponsored a four-week learning experience in human-powered vehicles. This unique experience introduced students to the physiology of exercise, the mechanics of the bicycle, and the physics and mathematics of the bicycle. Students also participated in a three day bike tour. The Program used the Bike Lab facility at Delta College`s International Centre in Saginaw, Michigan. Students had the opportunity to explore the development and refinement of the bicycle design and to investigate it`s power machine-the human body. Interactive instruction was conducted in groups to assure that all students experienced the satisfaction of understanding the bicycle. The purpose of the Program was to increase minority students` awareness and appreciation of mathematics and science. The premise behind the Program was that engineers and scientists are made, not born. The Program was open to all minority youth, grades 8 and 9, and was limited to 25 students. Students were selected to participate based upon their interest, desire, maturity, and attitude.

  11. Integration of Electric Vehicles into the Power Distribution Network with a Modified Capacity Allocation Mechanism

    Directory of Open Access Journals (Sweden)

    Junjie Hu

    2017-02-01

    Full Text Available The growing penetration of electric vehicles (EVs represents an operational challenge to system operators, mainly at the distribution level by introducing congestion and voltage drop problems. To solve these potential problems, a two-level coordination approach is proposed in this study. An aggregation entity, i.e., an EV virtual power plant (EV-VPP, is used to facilitate the interaction between the distribution system operator (DSO and EV owners considering the decentralized electricity market structure. In level I, to prevent the line congestion and voltage drop problems, the EV-VPP internally respects the line and voltage constraints when making optimal charging schedules. In level II, to avoid power transformer congestion problems, this paper investigates three different coordination mechanisms, or power transformer capacity allocation mechanisms, between the DSO and the EV-VPPs, considering the case of EVs charging and discharging. The three mechanisms include: (1 a market-based approach; (2 a pro-rata approach; and (3 a newly-proposed constrained market-based approach. A case study considering a 37-bus distribution network and high penetration of electric vehicles is presented to demonstrate the effectiveness of the proposed coordination mechanism, comparing with the existing ones.

  12. Implementation Scenarios for Electric Vehicle Roadway Wireless Power Transfer; NREL (National Renewable Energy Laboratory)

    Energy Technology Data Exchange (ETDEWEB)

    Meintz, A.; Markel, T.; Burton, E.; Wang, L.; Gonder, J.; Brooker, A.

    2015-06-05

    Analysis has been performed on the Transportation Secure Data Center (TSDC) warehouse of collected GPS second-by-second driving profile data of vehicles in the Atlanta, Chicago, Fresno, Kansas City, Los Angeles, Sacramento, and San Francisco Consolidated Statistical Areas (CSAs) to understand in-motion wireless power transfer introduction scenarios. In this work it has been shown that electrification of 1% of road miles could reduce fuel use by 25% for Hybrid Electric Vehicles (HEVs) in these CSAs. This analysis of strategically located infrastructure offers a promising approach to reduced fuel consumption; however, even the most promising 1% of road miles determined by these seven analysis scenarios still represent an impressive 2,700 miles of roadway to electrify. Therefore to mitigate the infrastructure capital costs, integration of the grid-tied power electronics in the Wireless Power Transfer (WPT) system at the DC-link to photovoltaic and/or battery storage is suggested. The integration of these resources would allow for the hardware to provide additional revenue through grid services at times of low traffic volumes and conversely at time of high traffic volumes these resources could reduce the peak demand that the WPT system would otherwise add to the grid.

  13. A High Power Density Integrated Charger for Electric Vehicles with Active Ripple Compensation

    Directory of Open Access Journals (Sweden)

    Liwen Pan

    2015-01-01

    Full Text Available This paper suggests a high power density on-board integrated charger with active ripple compensation circuit for electric vehicles. To obtain a high power density and high efficiency, silicon carbide devices are reported to meet the requirement of high-switching-frequency operation. An integrated bidirectional converter is proposed to function as AC/DC battery charger and to transfer energy between battery pack and motor drive of the traction system. In addition, the conventional H-bridge circuit suffers from ripple power pulsating at second-order line frequency, and a scheme of active ripple compensation circuit has been explored to solve this second-order ripple problem, in which a pair of power switches shared traction mode, a ripple energy storage capacitor, and an energy transfer inductor. Simulation results in MATLAB/Simulink validated the eligibility of the proposed topology. The integrated charger can work as a 70 kW motor drive circuit or a converter with an active ripple compensation circuit for 3 kW charging the battery. The impact of the proposed topology and control strategy on the integrated charger power losses, efficiency, power density, and thermal performance has also been analysed and simulated.

  14. Ground state atomic oxygen in high-power impulse magnetron sputtering: a quantitative study

    Science.gov (United States)

    Britun, Nikolay; Belosludtsev, Alexandr; Silva, Tiago; Snyders, Rony

    2017-02-01

    The ground state density of oxygen atoms in reactive high-power impulse magnetron sputtering discharges has been studied quantitatively. Both time-resolved and space-resolved measurements were conducted. The measurements were performed using two-photon absorption laser-induced fluorescence (TALIF), and calibrated by optical emission actinometry with multiple Ar emission lines. The results clarify the dynamics of the O ground state atoms in the discharge afterglow significantly, including their propagation and fast decay after the plasma pulse, as well as the influence of gas pressure, O2 admixture, etc.

  15. Leader Follower Formation Control of Ground Vehicles Using Dynamic Pixel Count and Inverse Perspective Mapping

    Directory of Open Access Journals (Sweden)

    S.M.Vaitheeswarana

    2014-10-01

    Full Text Available This paper deals with leader-follower formations of non-holonomic mobile robots, introducing a formation control strategy based on pixel counts using a commercial grade electro optics camera. Localization of the leader for motions along line of sight as well as the obliquely inclined directions are considered based on pixel variation of the images by referencing to two arbitrarily designated positions in the image frames. Based on an established relationship between the displacement of the camera movement along the viewing direction and the difference in pixel counts between reference points in the images, the range and the angle estimate between the follower camera and the leader is calculated. The Inverse Perspective Transform is used to account for non linear relationship between the height of vehicle in a forward facing image and its distance from the camera. The formulation is validated with experiments.

  16. Design of Secured Ground Vehicle Event Data Recorder for Data Analysis

    Directory of Open Access Journals (Sweden)

    Mr. Love Sharma

    2017-03-01

    Full Text Available The Event Data Recorder (EDR is now one of the important components installed in the vehicles by the automakers since it is helping in calculating an independent measurement of crash severity which is far better than the traditional systems used. There is limited research is done on the domain. In this paper we are going to propose an EDR which is based on ARM controller and will sense the alcohol, brake pressed, Speed, Location, Humidity, and Temperature. The data collected from the sensors is aggregated using a threshold-based technique, then the data is encrypted using RC6 and finally, the data is mined for knowledge using top k rules.

  17. Hybrid PID and PSO-based control for electric power assist steering system for electric vehicle

    Science.gov (United States)

    Hanifah, R. A.; Toha, S. F.; Ahmad, S.

    2013-12-01

    Electric power assist steering (EPAS) system provides an important significance in enhancing the driving performance of a vehicle with its energy-conserving features. This paper presents a hybrid PID (Proportional-Integral-Derivative) and particle swarm optimization (PSO) based control scheme to minimize energy consumption for EPAS. This single objective optimization scheme is realized using the PSO technique in searching for best gain parameters of the PID controller. The fast tuning feature of this optimum PID controller produced high-quality solutions. Simulation results show the performance and effectiveness of the hybrid PSO-PID based controller as opposed to the conventional PID controller.

  18. LQR-Based Power Train Control Method Design for Fuel Cell Hybrid Vehicle

    Directory of Open Access Journals (Sweden)

    Yun Haitao

    2013-01-01

    Full Text Available Based on the mathematical model of fuel cell hybrid vehicle (FCHV proposed in our previous study, a multistate feedback control strategy of the hybrid power train is designed based on the linear quadratic regulator (LQR algorithm. A Kalman Filter (KF observer is introduced to estimate state of charge (SOC of the battery firstly, and then a linear quadratic regulator is constructed to compute the state feedback gain matrix of the closed-loop control system. At last, simulation and actual test are utilized to demonstrate this new approach.

  19. Design and Comparison of Power Systems for a Fuel Cell Hybrid Electric Vehicle

    DEFF Research Database (Denmark)

    Schaltz, Erik; Rasmussen, Peter Omand

    2008-01-01

    In a fuel cell hybrid electric vehicle (FCHEV) the fuel cell stack is assisted by one or more energy storage devices. Thereby the system cost, mass, and volume can be decreased, and a significant better performance can be obtained. Two often used energy storage devices are the battery...... ultracapacitors are the only energy storage device the system becomes too big and heavy. A fuel cell/battery/ultracapacitor hybrid provides the longest life time of the batteries. If the fuel cell stack power is too small, the system will be big, heavy, and have a poor efficiency....

  20. Analysis of test results of a ground demonstration of a Pluto/Express power generator

    Energy Technology Data Exchange (ETDEWEB)

    Tournier, J.-M.; El-Genk, M.S. [University of New Mexico, Dept. of Chemical and Nuclear Engineering, Albuquerque, NM (United States)

    1999-07-01

    Results of recent tests of a Pluto/Express electric power generator ground demonstration were analysed. The performance parameters of each of the eight ground demonstrations vapour anode, multitube alkali-metal thermal-to-electric conversion (AMTEC) cells, designated PX-3G, were analysed and compared. The ground demonstration cells produced a total peak electric power of 27 W{sub e} at a load voltage of 16 V when tested at hot and cold side temperatures of 1123 K and 553 K, respectively. The electric power output and terminal voltage of the individual cells, however, differed by as much as 25%, from 2.94 to 3.76 W{sub e}, and from 1.73 to 2.21 V, respectively. These variations were attributed to differences among the cells in the values of: (a) the contact resistance of the BASE/electrode and of the electrode/current collector; (b) the leakage current between the anode and cathode electrodes through the metal-ceramic braze joint between the BASE tubes and the metal support plate; and (c) the charge-exchange polarisation losses. Analysis of results suggested the existence of large electrical leakage currents in some of the PX-3G cells. The performance of the PX-3G cells was below that needed for meeting the Pluto/Express mission's electric power requirement. (Author)

  1. Ground heat flux and power sources of low-enthalpy geothermal systems

    Science.gov (United States)

    Bayer, Peter; Blum, Philipp; Rivera, Jaime A.

    2015-04-01

    Geothermal heat pumps commonly extract energy from the shallow ground at depths as low as approximately 400 m. Vertical borehole heat exchangers are often applied, which are seasonally operated for decades. During this lifetime, thermal anomalies are induced in the ground and surface-near aquifers, which often grow over the years and which alleviate the overall performance of the geothermal system. As basis for prediction and control of the evolving energy imbalance in the ground, focus is typically set on the ground temperatures. This is reflected in regulative temperature thresholds, and in temperature trends, which serve as indicators for renewability and sustainability. In our work, we examine the fundamental heat flux and power sources, as well as their temporal and spatial variability during geothermal heat pump operation. The underlying rationale is that for control of ground temperature evolution, knowledge of the primary heat sources is fundamental. This insight is also important to judge the validity of simplified modelling frameworks. For instance, we reveal that vertical heat flux from the surface dominates the basal heat flux towards a borehole. Both fluxes need to be accounted for as proper vertical boundary conditions in the model. Additionally, the role of horizontal groundwater advection is inspected. Moreover, by adopting the ground energy deficit and long-term replenishment as criteria for system sustainability, an uncommon perspective is adopted that is based on the primary parameter rather than induced local temperatures. In our synthetic study and dimensionless analysis, we demonstrate that time of ground energy recovery after system shutdown may be longer than what is expected from local temperature trends. In contrast, unrealistically long recovery periods and extreme thermal anomalies are predicted without account for vertical ground heat fluxes and only when the energy content of the geothermal reservoir is considered.

  2. Solar-to-vehicle (S2V) systems for powering commuters of the future

    Science.gov (United States)

    Birnie, Dunbar P.

    Hybrid electric vehicles are growing in popularity and significance in our marketplace as gasoline prices continue to rise. Consumers are also increasingly aware of their carbon "footprint" and seek ways of lowering their carbon dioxide output. Plug-in hybrid and electric vehicles appear to be the next wave in helping transition from a gasoline-based transportation infrastructure to an electric-grid-sourced mode, though most plug-in scenarios ultimately rely on having the electric utilities converted from fossil sources to renewable generation in the long run. At present, one of the key advantages of plug-in hybrid/electric vehicles is that they can be charged at home, at night, when lower off-peak rates could apply. The present analysis considers a further advancement: the impact of daytime recharging using solar arrays located at commuters' work sites. This would convert large parking areas into solar recharge stations for commuters. The solar power would be large enough to supply many commuters' needs. The implications for electric car design in relation to commuter range are discussed in detail.

  3. ON-BOARD MONITORING OF TECHNICAL STATE FOR POWER UNITS OF WHEELED AND TRACKED VEHICLES

    Directory of Open Access Journals (Sweden)

    Yu. D. Karpievich

    2016-01-01

    Full Text Available The paper considers new methodologies pertaining to on-board diagnosis of wear-out rate for friction linings of a clutch driven disk and friction discs of a hydraulic press clutch of transmission gear boxes which are based on physical process that uses friction work as an integrated indicator. A new methodology in determination of life-span rate for engine oil has been developed in the paper. The paper presents block schematic diagrams for on-board monitoring of technical state for power units of wheeled and tracked vehicles. Usage of friction work as an integrated indicator for determination of wear-out rate for friction linings of clutch driven disk and friction discs of a haydraulic press clutch makes it possible timely at any operational period of wheeled and tracked vehicles to determine their residual operation life and forecast their replacement.While taking volume of the used fuel for determination of engine oil life-span rate it permits quickly and effectively at any operational period of wheeled and tracked vehicles to determine residual useful life of the engine oil and also forecast its replacement.

  4. Increasing the Mobility of Dismounted Marines. Small Unit Mobility Enhancement Technologies: Unmanned Ground Vehicles Market Survey

    Science.gov (United States)

    2009-10-01

    a large dog or small mule, BigDog is about 3 feet long and 2.5 feet tall. It is powered by a small engine (a Leopard one-cylinder, two- stroke , water...DSTO http://www.dsto.defence.gov.au Austria Crayler BM Portable Forklift PALFINGER CRAYLER STAPLERTECHNIK GMBH www.palfinger.com Austria FMR

  5. OPTUM. Optimization of the potentials of environmental relief of electric-powered vehicles. Integrated view of vehicle utilization and energy industry; OPTUM. Optimierung der Umweltentlastungspotenziale von Elektrofahrzeugen. Integrierte Betrachtung von Fahrzeugnutzung und Energiewirtschaft. Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Zimmer, Wiebke; Buchert, Matthias; Dittrich, Stefanie [Oeko-Institut e.V., Berlin (DE)] (and others)

    2011-10-15

    Germany wants to reduce its greenhouse gas emissions by 40% up to 2020 compared to 1990. Although today's vehicles with combustion engines are more efficient than 15 years ago, still too much carbon dioxide is released. Under this aspect, the Federal Government promotes the electric mobility in a comprehensive manner. As part of the research project OPTUM (environmental relief potential of electric-powered vehicles - Integrated consideration of vehicle use and energy industry) an integrative approach to account for the potential environmental benefits of electric-powered vehicles was tracked. This research project has the following main contents: (a) Acceptance and attractiveness of electric-powered vehicles; (b) Market potential for electric vehicles; (c) Interaction with the electricity market; (d) Potentials of reduction of CO{sub 2} emissions of electric-powered vehicles; (e) Economic analysis of storage media; (f) Resource efficiency of the system of electromobility.

  6. Regulation of the wind power production. Contribution of the electric vehicles and other energy storage systems

    Energy Technology Data Exchange (ETDEWEB)

    Mateus, Carlos B. [Instituto de Meteorologia, Lisboa (Portugal); Estanqueiro, Ana [INETI/LNEG - National Laboratory for Energy and Geology, Lisbon (Portugal)

    2012-07-01

    The increase in penetration of variable renewable energy sources (RES) introduced additional difficulties regarding the management of the Portuguese Power System. This is mainly due to the high temporal variability and low controllability, characteristics of these kinds of sources. There is a real need to reduce the impact of non-dispatchable RES sources; maximizing their penetration and minimizing curtailment. This is especially true for wind power and run-of-the-river hydro (ROR); as it appears beneficial to combine their variable production with added capacity of energy storage and demand side management; thereby increasing the flexibility of the power system as a whole. This paper aims to assess the excess wind generation (and other non-dispatchable sources); this for periods of production's excess in a 2020 timeframe, and assuming different weather scenarios. The adjustment of wind power generation (WPG) profile to the load profile is also addressed; the result is computed in the form of the value of the energy temporally deferred, using Pumped Hydro Storage (PHS) power plants as well as electric Vehicles (EVs). (orig.)

  7. Operating characteristics of contactless power transfer for electric vehicle from HTS antenna to normal conducting receiver

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Yoon Do, E-mail: ydchung@ssc.ac.kr [Suwon Science College, Hwasung-si, Gyeonggi-do 445-742 (Korea, Republic of); Lee, Chang Young [Korea Railroad Research Institute, Uiwang-si, Gyeonggi-do 437-757 (Korea, Republic of); Jo, Hyun Chul; Park, Young Gun [Yonsei University, Seoul 120-749 (Korea, Republic of); Yim, Seong Woo [Korea Electric Power Corporation Research Institute, DaeJeon-si 305-760 (Korea, Republic of)

    2014-09-15

    As contactless power transfer (CPT) technology using strongly coupled electromagnetic resonators is a recently explored technique to realize the large power delivery and storage without any cable or wire, this technique is required for diffusion of electric vehicles (EVs) since it makes possible a convenient charging system. Typically, since the normal conducting coils are used as a transmitting coil in the CPT system, there is limited to deliver the large power promptly. From this reason, we proposed the combination CPT technology with HTS transmitting antenna, it is called as, superconducting contactless power transfer for EV (SUCPT4EV) system. As the HTS coil has an enough current density and high quality factor Q value, it can deliver a mass amount of electric energy and improved efficiency in spite of a small scale antenna. The SUCPT4EV system has been expected as a reasonable option to improve the transfer efficiency of large electric power. In this study, we examined the improvement of transmission efficiency and properties for HTS transmitted antenna coils within 40 cm distance at radio frequency (RF) generator of 60 W, 370 kHz. In addition, we achieved impedance matching conditions for different material coils between HTS and normal conductors.

  8. Design and Comparison of Power Systems for a Fuel Cell Hybrid Electric Vehicle

    DEFF Research Database (Denmark)

    Schaltz, Erik; Rasmussen, Peter Omand

    2008-01-01

    In a fuel cell hybrid electric vehicle (FCHEV) the fuel cell stack is assisted by one or more energy storage devices. Thereby the system cost, mass, and volume can be decreased, and a significant better performance can be obtained. Two often used energy storage devices are the battery...... and ultracapacitor. In this paper a design method to design the power system of a FCHEV is presented. 10 cases of combining the fuel stack with either the battery, ultracapacitor, or both are investigated. The system volume, mass, efficiency, and battery lifetime are also compared. It is concluded that when...... ultracapacitors are the only energy storage device the system becomes too big and heavy. A fuel cell/battery/ultracapacitor hybrid provides the longest life time of the batteries. If the fuel cell stack power is too small, the system will be big, heavy, and have a poor efficiency....

  9. Analytical Modelling of Wireless Power Transfer (WPT) Systems for Electric Vehicle Application

    Energy Technology Data Exchange (ETDEWEB)

    Chinthavali, Madhu Sudhan [ORNL; Campbell, Steven L [ORNL

    2016-01-01

    This paper presents an analytical model for wireless power transfer system used in electric vehicle application. The equivalent circuit model for each major component of the system is described, including the input voltage source, resonant network, transformer, nonlinear diode rectifier load, etc. Based on the circuit model, the primary side compensation capacitance, equivalent input impedance, active / reactive power are calculated, which provides a guideline for parameter selection. Moreover, the voltage gain curve from dc output to dc input is derived as well. A hardware prototype with series-parallel resonant stage is built to verify the developed model. The experimental results from the hardware are compared with the model predicted results to show the validity of the model.

  10. Demand Response and Economic Dispatch of Power Systems Considering Large-Scale Plug-in Hybrid Electric Vehicles/Electric Vehicles (PHEVs/EVs: A Review

    Directory of Open Access Journals (Sweden)

    Xiaohui Xu

    2013-08-01

    Full Text Available Increasing concerns about global environmental issues have led to the urgent development of green transportation. The enthusiasm of governments should encourage the prosperity of the plug-in hybrid electric vehicles/electric vehicles (PHEVs/EVs industry in the near future. PHEVs/EVs are not only an alternative to gasoline but are also burgeoning units for power systems. The impact of large-scale PHEVs/EVs on power systems is of profound significance. This paper discusses how to use PHEVs/EVs as a useful new tool for system operation and regulation from a review of recent studies and mainly considers two mainstream methods: demand response and economic dispatch. The potential of using PHEVs/EVs to coordinate renewable energy resources is also discussed in terms of accepting more renewable resources without violating the safety and the reliability of power systems or increasing the operation cost significantly.

  11. Powered ankle-foot prosthesis to assist level-ground and stair-descent gaits.

    Science.gov (United States)

    Au, Samuel; Berniker, Max; Herr, Hugh

    2008-05-01

    The human ankle varies impedance and delivers net positive work during the stance period of walking. In contrast, commercially available ankle-foot prostheses are passive during stance, causing many clinical problems for transtibial amputees, including non-symmetric gait patterns, higher gait metabolism, and poorer shock absorption. In this investigation, we develop and evaluate a myoelectric-driven, finite state controller for a powered ankle-foot prosthesis that modulates both impedance and power output during stance. The system employs both sensory inputs measured local to the external prosthesis, and myoelectric inputs measured from residual limb muscles. Using local prosthetic sensing, we first develop two finite state controllers to produce biomimetic movement patterns for level-ground and stair-descent gaits. We then employ myoelectric signals as control commands to manage the transition between these finite state controllers. To transition from level-ground to stairs, the amputee flexes the gastrocnemius muscle, triggering the prosthetic ankle to plantar flex at terminal swing, and initiating the stair-descent state machine algorithm. To transition back to level-ground walking, the amputee flexes the tibialis anterior muscle, triggering the ankle to remain dorsiflexed at terminal swing, and initiating the level-ground state machine algorithm. As a preliminary evaluation of clinical efficacy, we test the device on a transtibial amputee with both the proposed controller and a conventional passive-elastic control. We find that the amputee can robustly transition between the finite state controllers through direct muscle activation, allowing rapid transitioning from level-ground to stair walking patterns. Additionally, we find that the proposed finite state controllers result in a more biomimetic ankle response, producing net propulsive work during level-ground walking and greater shock absorption during stair descent. The results of this study highlight the

  12. Grid tied PV/battery system architecture and power management for fast electric vehicle charging

    Science.gov (United States)

    Badawy, Mohamed O.

    The prospective spread of Electric vehicles (EV) and plug-in hybrid electric vehicles (PHEV) arises the need for fast charging rates. Higher charging rates requirements lead to high power demands, which cant be always supported by the grid. Thus, the use of on-site sources alongside the electrical grid for EVs charging is a rising area of interest. In this dissertation, a photovoltaic (PV) source is used to support the high power EVs charging. However, the PV output power has an intermittent nature that is dependable on the weather conditions. Thus, battery storage are combined with the PV in a grid tied system, providing a steady source for on-site EVs use in a renewable energy based fast charging station. Verily, renewable energy based fast charging stations should be cost effective, efficient, and reliable to increase the penetration of EVs in the automotive market. Thus, this Dissertation proposes a novel power flow management topology that aims on decreasing the running cost along with innovative hardware solutions and control structures for the developed architecture. The developed power flow management topology operates the hybrid system at the minimum operating cost while extending the battery lifetime. An optimization problem is formulated and two stages of optimization, i.e online and offline stages, are adopted to optimize the batteries state of charge (SOC) scheduling and continuously compensate for the forecasting errors. The proposed power flow management topology is validated and tested with two metering systems, i.e unified and dual metering systems. The results suggested that minimal power flow is anticipated from the battery storage to the grid in the dual metering system. Thus, the power electronic interfacing system is designed accordingly. Interconnecting bi-directional DC/DC converters are analyzed, and a cascaded buck boost (CBB) converter is chosen and tested under 80 kW power flow rates. The need to perform power factor correction (PFC) on

  13. Human-Automation Interaction Design for Adaptive Cruise Control Systems of Ground Vehicles

    Science.gov (United States)

    Eom, Hwisoo; Lee, Sang Hun

    2015-01-01

    A majority of recently developed advanced vehicles have been equipped with various automated driver assistance systems, such as adaptive cruise control (ACC) and lane keeping assistance systems. ACC systems have several operational modes, and drivers can be unaware of the mode in which they are operating. Because mode confusion is a significant human error factor that contributes to traffic accidents, it is necessary to develop user interfaces for ACC systems that can reduce mode confusion. To meet this requirement, this paper presents a new human-automation interaction design methodology in which the compatibility of the machine and interface models is determined using the proposed criteria, and if the models are incompatible, one or both of the models is/are modified to make them compatible. To investigate the effectiveness of our methodology, we designed two new interfaces by separately modifying the machine model and the interface model and then performed driver-in-the-loop experiments. The results showed that modifying the machine model provides a more compact, acceptable, effective, and safe interface than modifying the interface model. PMID:26076406

  14. Benefits of Power and Propulsion Technology for a Piloted Electric Vehicle to an Asteroid

    Science.gov (United States)

    Mercer, Carolyn R.; Oleson, Steven R.; Pencil, Eric J.; Piszczor, Michael F.; Mason, Lee S.; Bury, Kristen M.; Manzella, David H.; Kerslake, Thomas W.; Hojinicki, Jeffrey S.; Brophy, John P.

    2012-01-01

    NASA s goal for human spaceflight is to expand permanent human presence beyond low Earth orbit (LEO). NASA is identifying potential missions and technologies needed to achieve this goal. Mission options include crewed destinations to LEO and the International Space Station; high Earth orbit and geosynchronous orbit; cis-lunar space, lunar orbit, and the surface of the Moon; near-Earth objects; and the moons of Mars, Mars orbit, and the surface of Mars. NASA generated a series of design reference missions to drive out required functions and capabilities for these destinations, focusing first on a piloted mission to a near-Earth asteroid. One conclusion from this exercise was that a solar electric propulsion stage could reduce mission cost by reducing the required number of heavy lift launches and could increase mission reliability by providing a robust architecture for the long-duration crewed mission. Similarly, solar electric vehicles were identified as critical for missions to Mars, including orbiting Mars, landing on its surface, and visiting its moons. This paper describes the parameterized assessment of power and propulsion technologies for a piloted solar electric vehicle to a near-Earth asteroid. The objective of the assessment was to determine technology drivers to advance the state of the art of electric propulsion systems for human exploration. Sensitivity analyses on the performance characteristics of the propulsion and power systems were done to determine potential system-level impacts of improved technology. Starting with a "reasonable vehicle configuration" bounded by an assumed launch date, we introduced technology improvements to determine the system-level benefits (if any) that those technologies might provide. The results of this assessment are discussed and recommendations for future work are described.

  15. NASA solar dynamic ground test demonstration (GTD) program and its application to space nuclear power

    Science.gov (United States)

    Harper, William B.; Shaltens, Richard K.

    1993-01-01

    Closed Brayton cycle power conversion systems are readily adaptable to any heat source contemplated for space application. The inert gas working fluid can be used directly in gas-cooled reactors and coupled to a variety of heat sources (reactor, isotope or solar) by a heat exchanger. This point is demonstrated by the incorporation in the NASA 2 kWe Solar Dynamic (SD) Space Power Ground Test Demonstration (GTD) Program of the turboalternator-compressor and recuperator from the Brayton Isotope Power System (BIPS) program. This paper will review the goals and status of the SD GTD Program, initiated in April 1992. The performance of the BIPS isotope-heated system will be compared to the solar-heated GTD system incorporating the BIPS components and the applicability of the GTD test bed to dynamics space nuclear power R&D will be discussed.

  16. Wind power integration with heat pumps, heat storages, and electric vehicles – Energy systems analysis and modelling

    DEFF Research Database (Denmark)

    Hedegaard, Karsten

    The fluctuating and only partly predictable nature of wind challenges an effective integration of large wind power penetrations. This PhD thesis investigates to which extent heat pumps, heat storages, and electric vehicles can support the integration of wind power. Considering the gaps in existin...

  17. Simulation of the PEM fuel cell hybrid power train of an automated guided vehicle and comparison with experimental results

    NARCIS (Netherlands)

    Bram Veenhuizen; J.C.N. Bosma

    2009-01-01

    At HAN University research has been started into the development of a PEM fuel cell hybrid power train to be used in an automated guided vehicle. For this purpose a test facility is used with the possibility to test all important functional aspects of a PEM fuel cell hybrid power train. In this

  18. Simulation of the PEM fuel cell hybrid power train of an automated guided vehicle and comparison with experimental results

    NARCIS (Netherlands)

    Veenhuizen, Bram; Bosma, J.C.N.

    2009-01-01

    At HAN University research has been started into the development of a PEM fuel cell hybrid power train to be used in an automated guided vehicle. For this purpose a test facility is used with the possibility to test all important functional aspects of a PEM fuel cell hybrid power train. In this pape

  19. A Witricity-Based High-Power Device for Wireless Charging of Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Zhongyu Dai

    2017-03-01

    Full Text Available In this paper, a Witricity-based high-power device is proposed for wireless charging of electric vehicles. According to the specific requirements of three-stage charging for electric vehicles, four compensation modes of the Witricity system are analyzed by the Loosely Coupled Theory among transformer coils and the Substitution Theorem in circuit theory. In addition, when combining voltage withstand levels, the current withstand capability, the switching frequency of electronic switching tubes, and the features of the resonant circuit, the series-parallel (SP compensation mode is selected as the best compensation mode for matching the capacitor of the system. The performances of coils with different ferrite core arrangements are compared by simulations and models. The feasibility of the system is verified theoretically and the system functions are evaluated by the joint simulation of Simplorer and Maxwell. Finally, a Witricity-based high-power device is proposed as designed, and the correctness of theoretical analyses and simulation results are verified.

  20. Design, fabrication and performance testing of a hydrogen powered urban vehicle

    Energy Technology Data Exchange (ETDEWEB)

    Zavaleta, D.; Brackett, S.; Hartoog, L.; Kopytoff, V.; Saczalski, K.J.

    1983-12-01

    In the search to find an energy storage system to replace petroleum for automobile propulsion, the chemical/energy potential of hydrogen in a hydride composition seems to be very promising. In addition to being a non-polluting energy source, the specific energy of the hydrogen/hydride system is quite high, when compared to electrochemical (batteries) energy storage devices, and about half the level of a conventional Internal Combustion (I.C.) engine. This paper discusses one phase of the research results of a alternate energy project initiated at the Northern Arizona University College of Engineering and Technology and funded by the Arizona Department of Transportation. This phase of the project involves the design and fabrication, from scratch, of a hydrogen powered urban vehicle. While some previous work has been conducted on hydrogen powered vehicles this study emphasizes safety as well as performance and efficiency. This paper also addresses key hydrogen fuel issues such as fuel storage, safety and use hazards, heat-transfer enhancement, hydrogen availability and cost comparisons with petroleum and other energy storage devices.

  1. A compact CO selective oxidation reactor for solid polymer fuel cell powered vehicle application

    Science.gov (United States)

    Dudfield, C. D.; Chen, R.; Adcock, P. L.

    Solid polymer fuel cells (SPFCs) are attractive as electrical power plants for vehicle applications since they offer the advantages of high efficiency, zero emissions, and mechanical robustness. Hydrogen is the ideal fuel, but is currently disadvantaged for automotive applications by the lack of refuelling infrastructure, bulky on-board storage, and safety concerns. On-board methanol reforming offers an attractive alternative due to its increased energy storage density. Since CO is always present as a by-product during the reforming reaction, it must be reduced to a level less than 20 ppm in order to avoid rapid deactivation of the platinum electro-catalyst in the fuel cells. In this paper, a compact CO selective oxidation unit based upon two coated aluminium heat exchangers, developed at Loughborough University, is reported. The geometric size of the whole unit is 4 litre and experimental results show that the selective oxidation unit can reduce the CO from up to 2% to less than 15 ppm and is suitable for a vehicle fuel cell power plant of 20 kW e.

  2. Artificial Neural Network Maximum Power Point Tracker for Solar Electric Vehicle

    Institute of Scientific and Technical Information of China (English)

    Theodore Amissah OCRAN; CAO Junyi; CAO Binggang; SUN Xinghua

    2005-01-01

    This paper proposes an artificial neural network maximum power point tracker (MPPT) for solar electric vehicles. The MPPT is based on a highly efficient boost converter with insulated gate bipolar transistor (IGBT) power switch. The reference voltage for MPPT is obtained by artificial neural network (ANN) with gradient descent momentum algorithm. The tracking algorithm changes the duty-cycle of the converter so that the PV-module voltage equals the voltage corresponding to the MPPT at any given insolation, temperature, and load conditions. For fast response, the system is implemented using digital signal processor (DSP). The overall system stability is improved by including a proportional-integral-derivative (PID) controller, which is also used to match the reference and battery voltage levels. The controller, based on the information supplied by the ANN, generates the boost converter duty-cycle. The energy obtained is used to charge the lithium ion battery stack for the solar vehicle. The experimental and simulation results show that the proposed scheme is highly efficient.

  3. A Single-Degree-of-Freedom Energy Optimization Strategy for Power-Split Hybrid Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Chaoying Xia

    2017-07-01

    Full Text Available This paper presents a single-degree-of-freedom energy optimization strategy to solve the energy management problem existing in power-split hybrid electric vehicles (HEVs. The proposed strategy is based on a quadratic performance index, which is innovatively designed to simultaneously restrict the fluctuation of battery state of charge (SOC and reduce fuel consumption. An extended quadratic optimal control problem is formulated by approximating the fuel consumption rate as a quadratic polynomial of engine power. The approximated optimal control law is obtained by utilizing the solution properties of the Riccati equation and adjoint equation. It is easy to implement in real-time and the engineering significance is explained in details. In order to validate the effectiveness of the proposed strategy, the forward-facing vehicle simulation model is established based on the ADVISOR software (Version 2002, National Renewable Energy Laboratory, Golden, CO, USA. The simulation results show that there is only a little fuel consumption difference between the proposed strategy and the Pontryagin’s minimum principle (PMP-based global optimal strategy, and the proposed strategy also exhibits good adaptability under different initial battery SOC, cargo mass and road slope conditions.

  4. Medicare program; conditions for payment of power mobility devices, including power wheelchairs and power-operated vehicles. Interim final rule with comment period.

    Science.gov (United States)

    2005-08-26

    This interim final rule conforms our regulations to section 302(a)(2)(E)(iv) of the Medicare Prescription Drug, Improvement, and Modernization Act of 2003 (Pub. L. 108-173). This rule defines the term power mobility devices (PMDs) as power wheelchairs and power operated vehicles (POVs or scooters). It sets forth revised conditions for Medicare payment of PMDs and defines who may prescribe PMDs. This rule also requires a face-to-face examination of the beneficiary by the physician or treating practitioner and a PMD prescription and pertinent parts of the medical record that the durable medical equipment supplier maintains in records and makes available to CMS or its agents upon request. Finally, this rule discusses CMS' policy on documentation that may be requested by CMS or its agents to support a Medicare claim for payment, as well as the elimination for the Certificate of Medical Necessity for PMDs.

  5. Ground return effect on wave propagation parameters of overhead power cables

    Energy Technology Data Exchange (ETDEWEB)

    Malo Machado, V.M.; Brandao Faria, J.A.; Borges da Silva, J.F. (Centro de Electrotecnia da Univ. Tecnia de Lisboa, Inst. Superior Tecnico, Dept. of Electrical Engineering, 1096 Lisboa Codex (PT))

    1990-04-01

    The propagation properties of overhead three-phase cables are usually analyzed assuming that the pipe conductor establishes a perfect shielding between the inner conductor set and any outer conductor, i.e., the power cable is assumed as an isolated system. The influence of a lossy ground plane in the neighborhood of the cable is examined in this paper. The propagation parameters for both approaches are compared---significative differences being found to exist, in the zero mode, at low working frequencies.

  6. The Development of an Open Hardware and Software System Onboard Unmanned Aerial Vehicles to Monitor Concentrated Solar Power Plants

    Directory of Open Access Journals (Sweden)

    Francisco Javier Mesas-Carrascosa

    2017-06-01

    Full Text Available Concentrated solar power (CSP plants are increasingly gaining interest as a source of renewable energy. These plants face several technical problems and the inspection of components such as absorber tubes in parabolic trough concentrators (PTC, which are widely deployed, is necessary to guarantee plant efficiency. This article presents a system for real-time industrial inspection of CSP plants using low-cost, open-source components in conjunction with a thermographic sensor and an unmanned aerial vehicle (UAV. The system, available in open-source hardware and software, is designed to be employed independently of the type of device used for inspection (laptop, smartphone, tablet or smartglasses and its operating system. Several UAV flight missions were programmed as follows: flight altitudes at 20, 40, 60, 80, 100 and 120 m above ground level; and three cruising speeds: 5, 7 and 10 m/s. These settings were chosen and analyzed in order to optimize inspection time. The results indicate that it is possible to perform inspections by an UAV in real time at CSP plants as a means of detecting anomalous absorber tubes and improving the effectiveness of methodologies currently being utilized. Moreover, aside from thermographic sensors, this contribution can be applied to other sensors and can be used in a broad range of applications where real-time georeferenced data visualization is necessary.

  7. The Development of an Open Hardware and Software System Onboard Unmanned Aerial Vehicles to Monitor Concentrated Solar Power Plants.

    Science.gov (United States)

    Mesas-Carrascosa, Francisco Javier; Verdú Santano, Daniel; Pérez Porras, Fernando; Meroño-Larriva, José Emilio; García-Ferrer, Alfonso

    2017-06-08

    Concentrated solar power (CSP) plants are increasingly gaining interest as a source of renewable energy. These plants face several technical problems and the inspection of components such as absorber tubes in parabolic trough concentrators (PTC), which are widely deployed, is necessary to guarantee plant efficiency. This article presents a system for real-time industrial inspection of CSP plants using low-cost, open-source components in conjunction with a thermographic sensor and an unmanned aerial vehicle (UAV). The system, available in open-source hardware and software, is designed to be employed independently of the type of device used for inspection (laptop, smartphone, tablet or smartglasses) and its operating system. Several UAV flight missions were programmed as follows: flight altitudes at 20, 40, 60, 80, 100 and 120 m above ground level; and three cruising speeds: 5, 7 and 10 m/s. These settings were chosen and analyzed in order to optimize inspection time. The results indicate that it is possible to perform inspections by an UAV in real time at CSP plants as a means of detecting anomalous absorber tubes and improving the effectiveness of methodologies currently being utilized. Moreover, aside from thermographic sensors, this contribution can be applied to other sensors and can be used in a broad range of applications where real-time georeferenced data visualization is necessary.

  8. Ground moving target signal model and power calculation in forward scattering micro radar

    Institute of Scientific and Technical Information of China (English)

    LONG Teng; HU Cheng; MIKHAIL Cherniakov

    2009-01-01

    Forward scattering micro radar is used for situation awareness;its operational range is relatively short because of the battery power and local horizon,the free space propagation model is not appropriate.The ground moving targets,such as humans,cars and tanks,have only comparable size with the transmitted signal wavelength;the point target model and the linear change of observation angle are not applicable.In this paper,the signal model of ground moving target is developed based on the case of forward scattering micro radar,considering the two-ray propagation model and area target model,and nonlinear change of observation angle as well as high order phase error.Furthermore,the analytical form of the received power from moving target has been obtained.Using the simulated forward scattering radar cross section,the received power of theoretical calculation is near to that of measured data.In addition,the simulated signal model of ground moving target is perfectly matched with the experimented data.All these results show the correctness of analytical calculation completely.

  9. Proceedings of the 7th Annual TARDEC Ground Vehicle Survivability Symposium, March 26-28, 1996, Naval Postgraduate School, Monterey, CA Volume 1 - Unclassified Session Papers

    Science.gov (United States)

    1996-05-01

    Submitted J. Cardenas , U.S. Army TARDEC P-10 Ground Combat Vehicle Survivability Database Vol. 1 517 J. Olejar, C. Glausier, D. Brassard, K. Gantt, N. Funk... algebra . This change in methodology should go a long way toward alleviating the sampling problem that has been identi- fied in the IDA and SIRVICE studies

  10. Day-Ahead Coordination of Vehicle-to-Grid Operation and Wind Power in Security Constraints Unit Commitment (SCUC

    Directory of Open Access Journals (Sweden)

    Mohammad Javad Abdollahi

    2015-08-01

    Full Text Available In this paper security constraints unit commitment (SCUC in the presence of wind power resources and electrical vehicles to grid is presented. SCUC operation prepare an optimal time table for generation unit commitment in order to maximize security, minimize operation cost and satisfy the constraints of networks and units in a period of time, as one of the most important research interest in power systems. Today, the relationship between power network and energy storage systems is interested for many researchers and network operators. Using Electrical Vehicles (PEVs and wind power for energy production is one of the newest proposed methods for replacing fossil fuels.One of the effective strategies for analyzing of the effects of Vehicle 2 Grid (V2G and wind power in optimal operation of generation is running of SCUC for power systems that are equipped with V2G and wind power resources. In this paper, game theory method is employed for deterministic solution of day-ahead unit commitment with considering security constraints in the simultaneous presence of V2G and wind power units. This problem for two scenarios of grid-controlled mode and consumer-controlled mode in three different days with light, medium and heavy load profiles is analyzed. Simulation results show the effectiveness of the presence of V2G and wind power for decreasing of generation cost and improving operation indices of power systems.

  11. Low Power Greenhouse Gas Sensors for Unmanned Aerial Vehicles

    Directory of Open Access Journals (Sweden)

    David J. Lary

    2012-05-01

    Full Text Available We demonstrate compact, low power, lightweight laser-based sensors for measuring trace gas species in the atmosphere designed specifically for electronic unmanned aerial vehicle (UAV platforms. The sensors utilize non-intrusive optical sensing techniques to measure atmospheric greenhouse gas concentrations with unprecedented vertical and horizontal resolution (~1 m within the planetary boundary layer. The sensors are developed to measure greenhouse gas species including carbon dioxide, water vapor and methane in the atmosphere. Key innovations are the coupling of very low power vertical cavity surface emitting lasers (VCSELs to low power drive electronics and sensitive multi-harmonic wavelength modulation spectroscopic techniques. The overall mass of each sensor is between 1–2 kg including batteries and each one consumes less than 2 W of electrical power. In the initial field testing, the sensors flew successfully onboard a T-Rex Align 700E robotic helicopter and showed a precision of 1% or less for all three trace gas species. The sensors are battery operated and capable of fully automated operation for long periods of time in diverse sensing environments. Laser-based trace gas sensors for UAVs allow for high spatial mapping of local greenhouse gas concentrations in the atmospheric boundary layer where land/atmosphere fluxes occur. The high-precision sensors, coupled to the ease-of-deployment and cost effectiveness of UAVs, provide unprecedented measurement capabilities that are not possible with existing satellite-based and suborbital aircraft platforms.

  12. On-line Decentralized Charging of Plug-In Electric Vehicles in Power Systems

    CERN Document Server

    Li, Qiao; Negi, Rohit; Franchetti, Franz; Ilic, Marija D

    2011-01-01

    Plug-in electric vehicles (PEV) are gaining increasing popularity in recent years, due to the growing societal awareness of reducing greenhouse gas (GHG) emissions and the dependence on foreign oil or petroleum. Large-scale implementation of PEVs in the power system currently faces many challenges. One particular concern is that the PEV charging can potentially cause significant impact on the existing power distribution system, due to the increase in peak load. As such, this work tries to mitigate the PEV charging impact by proposing a decentralized smart PEV charging algorithm to minimize the distribution system load variance, so that a 'flat' total load profile can be obtained. The charging algorithm is on-line, in that it controls the PEV charging processes in each time slot based entirely on the current power system state. Thus, compared to other forecast based smart charging approaches in the literature, the charging algorithm is robust against various uncertainties in the power system, such as random PE...

  13. Wind power integration with heat pumps, heat storages, and electric vehicles - Energy systems analysis and modelling

    Energy Technology Data Exchange (ETDEWEB)

    Hedegaard, K.

    2013-09-15

    This PhD investigates to which extent heat pumps, heat storages, and electric vehicles can support the integration of wind power. Considering the gaps in existing research, the main focus is put on individual heat pumps in the residential sector (one-family houses) and the possibilities for flexible operation, using the heat storage options available. Several energy systems analyses are performed using the energy system models, Balmorel, developed at the former TSO, ElkraftSystem, and, EnergyPLAN, developed at Aalborg University. The Danish energy system towards 2030, with wind power penetrations of up to 60 %, is used as a case study in most of the analyses. Both models have been developed further, resulting in an improved representation of individual heat pumps and heat storages. An extensive model add-on for Balmorel renders it possible to optimise investment and operation of individual heat pumps and different types of heat storages, in integration with the energy system. Total costs of the energy system are minimised in the optimisation. The add-on incorporates thermal building dynamics and covers various different heat storage options: intelligent heat storage in the building structure for houses with radiator heating and floor heating, respectively, heat accumulation tanks on the space heating circuit, as well as hot water tanks. In EnergyPLAN, some of the heat storage options have been modelled in a technical optimisation that minimises fuel consumption of the energy system and utilises as much wind power as possible. The energy systems analyses reveal that in terms of supporting wind power integration, the installation of individual heat pumps is an important step, while adding heat storages to the heat pumps is less influential. When equipping the heat pumps with heat storages, only moderate system benefits can be gained. Hereof, the main system benefit is that the need for peak/reserve capacity investments can be reduced through peak load shaving; in

  14. Hierarchical Control Strategy of Heat and Power for Zero Energy Buildings including Hybrid Fuel Cell/Photovoltaic Power Sources and Plug-in Electric Vehicle

    DEFF Research Database (Denmark)

    Ghiasi, Mohammad Iman; Aliakbar Golkar, Masoud; Hajizadeh, Amin

    2016-01-01

    complexities and uncertainties in this kind of hybrid system, a hybrid supervisory control with an adaptive fuzzy sliding power control strategy is proposed to regulate the amount of requested fuel from a fuel cell power source to produce the electrical power and heat. Then, simulation results are used......This paper presents a hierarchical control strategy for heat and electric power control of a building integrating hybrid renewable power sources including photovoltaic, fuel cell and battery energy storage with Plug-in Electric Vehicles (PEV) in smart distribution systems. Because...... of the controllability of fuel cell power, this power sources plays the main role for providing heat and electric power to zero emission buildings. First, the power flow structure between hybrid power resources is described. To do so, all necessary electrical and thermal equations are investigated. Next, due to the many...

  15. Hierarchical Control Strategy of Heat and Power for Zero Energy Buildings including Hybrid Fuel Cell/Photovoltaic Power Sources and Plug-in Electric Vehicle

    DEFF Research Database (Denmark)

    Ghiasi, Mohammad Iman; Aliakbar Golkar, Masoud; Hajizadeh, Amin

    2016-01-01

    This paper presents a hierarchical control strategy for heat and electric power control of a building integrating hybrid renewable power sources including photovoltaic, fuel cell and battery energy storage with Plug-in Electric Vehicles (PEV) in smart distribution systems. Because...... of the controllability of fuel cell power, this power sources plays the main role for providing heat and electric power to zero emission buildings. First, the power flow structure between hybrid power resources is described. To do so, all necessary electrical and thermal equations are investigated. Next, due to the many...... complexities and uncertainties in this kind of hybrid system, a hybrid supervisory control with an adaptive fuzzy sliding power control strategy is proposed to regulate the amount of requested fuel from a fuel cell power source to produce the electrical power and heat. Then, simulation results are used...

  16. Monitoring switch-type sensors and powering autonomous sensors via inductive coupling: application to removable seats in vehicles

    OpenAIRE

    Albesa Querol, Joan

    2012-01-01

    This thesis explores the feasibility of using inductive links for a vehicle application where wiring an electronic control unit (ECU) to the sensors or detectors become unfeasible or unpractical. The selected application is occupancy and belt detection in removable vehicle seats. Two ways of using inductive links are considered: 1) passive detection of the state of the seat detectors from a readout unit and 2) remote power transmission to a detection unit and subsequent data transmission by a...

  17. Schemed Power-augmented Flow for Wing-in-ground Effect Craft in Cruise

    Institute of Scientific and Technical Information of China (English)

    YANG Wei; YANG Zhigang

    2011-01-01

    To provide detailed insight into schemed power-angmented flow for wing-in-ground effect (WIG) craft in view of the concept of cruising with power assistance, this paper presents a numerical study.The engine installed before the wing for power-augmented flow is replaced by a simplified engine model in the simulations, and is considered to be equipped with a thrust vector nozzle.Flow features with different deflected nozzle angles are studied.Comparisons are made on aerodynamics to evaluate performance of power-augmented ram (PAR) modes in cruise.Considerable schemes of power-augmented flow in cruise are described.The air blown from the PAR engine accelerates the flow around wing and a high-speed attached flow near the trailing edge is recorded for certain deflected nozzle angles.This effect takes place and therefore the separation is prevented not only at the trailing edge but also on the whole upper side.The realization of suction varies with PAR modes.It is also found that scheme of blowing air under the wing for PAR engine is aerodynamically not efficient in cruise.The power-augmented flow is extremely complicated.The numerical results give clear depiction of the flow.Optimal scheme of power-augmented flow with respect to the craft in cruise depends on the specific engines and the flight regimes.

  18. A Polar Fuzzy Control Scheme for Hybrid Power System Using Vehicle-To-Grid Technique

    Directory of Open Access Journals (Sweden)

    Mohammed Elsayed Lotfy

    2017-07-01

    Full Text Available A novel polar fuzzy (PF control approach for a hybrid power system is proposed in this research. The proposed control scheme remedies the issues of system frequency and the continuity of demand supply caused by renewable sources’ uncertainties. The hybrid power system consists of a wind turbine generator (WTG, solar photovoltaics (PV, a solar thermal power generator (STPG, a diesel engine generator (DEG, an aqua-electrolyzer (AE, an ultra-capacitor (UC, a fuel-cell (FC, and a flywheel (FW. Furthermore, due to the high cost of the battery energy storage system (BESS, a new idea of vehicle-to-grid (V2G control is applied to use the battery of the electric vehicle (EV as equivalent to large-scale energy storage units instead of small batteries to improve the frequency stability of the system. In addition, EV customers’ convenience is taken into account. A minimal-order observer is used to estimate the supply error. Then, the area control error (ACE signal is calculated in terms of the estimated supply error and the frequency deviation. ACE is considered in the frequency domain. Two PF approaches are utilized in the intended system. The mission of each controller is to mitigate one frequency component of ACE. The responsibility for ACE compensation is shared among all parts of the system according to their speed of response. The performance of the proposed control scheme is compared to the conventional fuzzy logic control (FLC. The effectiveness and robustness of the proposed control technique are verified by numerical simulations under various scenarios.

  19. A multi-port power electronics interface for battery powered electric vehicles: Application of inductively coupled wireless power transfer and hybrid energy storage system

    Science.gov (United States)

    McDonough, Matthew Kelly

    Climate change, pollution, and geopolitical conflicts arising from the extreme wealth concentrations caused by fossil fuel deposits are just a few of the side-effects of the way that we fuel our society. A new method to power our civilization is becoming more and more necessary. Research for new, more sustainable fuel sources is already underway due to research in wind, solar, geothermal, and hydro power. However this focus is mainly on stationary applications. A large portion of fossil fuel usage comes from transportation. Unfortunately, the transition to cleaner transportation fuels is being stunted by the inability to store adequate amounts of energy in electro-chemical batteries. The idea of charging while driving has been proposed by many researchers, however several challenges still exist. In this work some of these challenges are addressed. Specifically, the ability to route power from multiple sources/loads is investigated. Special attention is paid to adjusting the time constant of particular converters, namely the battery and ultra-capacitor converters to reduce the high frequency and high magnitude current components applied to the battery terminals. This is done by developing a closed loop model of the entire multi-port converter, including the state of charge of the ultra-capacitors. The development of closed loop models and two experimental testbeds for use as stationary vehicle charging platforms with their unique set of sources/loads are presented along-side an on-board charger to demonstrate the similarities and differences between stationary charging and mobile charging. Experimental results from each are given showing that it is not only possible, but feasible to utilize Inductively Coupled Wireless Power Transfer (ICWPT) to charge a battery powered electric vehicle while driving and still protect the life-span of the batteries under the new, harsher conditions generated by the ICWPT system.

  20. The Seismic Response of High-Speed Railway Bridges Subjected to Near-Fault Forward Directivity Ground Motions Using a Vehicle-Track-Bridge Element

    Directory of Open Access Journals (Sweden)

    Chen Ling-kun

    2014-01-01

    Full Text Available Based on the Next Generation Attenuation (NGA project ground motion library, the finite element model of the high-speed railway vehicle-bridge system is established. The model was specifically developed for such system that is subjected to near-fault ground motions. In addition, it accounted for the influence of the rail irregularities. The vehicle-track-bridge (VTB element is presented to simulate the interaction between train and bridge, in which a train can be modeled as a series of sprung masses concentrated at the axle positions. For the short period railway bridge, the results from the case study demonstrate that directivity pulse effect tends to increase the seismic responses of the bridge compared with far-fault ground motions or nonpulse-like motions and the directivity pulse effect and high values of the vertical acceleration component can notably influence the hysteretic behaviour of piers.

  1. Counter tunnel exploration, mapping, and localization with an unmanned ground vehicle

    Science.gov (United States)

    Larson, Jacoby; Okorn, Brian; Pastore, Tracy; Hooper, David; Edwards, Jim

    2014-06-01

    Covert, cross-border tunnels are a security vulnerability that enables people and contraband to illegally enter the United States. All of these tunnels to-date have been constructed for the purpose of drug smuggling, but they may also be used to support terrorist activity. Past robotic tunnel exploration efforts have had limited success in aiding law enforcement to explore and map the suspect cross-border tunnels. These efforts have made use of adapted explosive ordnance disposal (EOD) or pipe inspection robotic systems that are not ideally suited to the cross-border tunnel environment. The Counter Tunnel project was sponsored by the Office of Secretary of Defense (OSD) Joint Ground Robotics Enterprise (JGRE) to develop a prototype robotic system for counter-tunnel operations, focusing on exploration, mapping, and characterization of tunnels. The purpose of this system is to provide a safe and effective solution for three-dimensional (3D) localization, mapping, and characterization of a tunnel environment. The system is composed of the robotic mobility platform, the mapping sensor payload, and the delivery apparatus. The system is able to deploy and retrieve the robotic mobility platform through a 20-cm-diameter borehole into the tunnel. This requirement posed many challenges in order to design and package the sensor and robotic system to fit through this narrow opening and be able to perform the mission. This paper provides a short description of a few aspects of the Counter Tunnel system such as mobility, perception, and localization, which were developed to meet the unique challenges required to access, explore, and map tunnel environments.

  2. Ground acceleration in a nuclear power plant; Aceleracion del suelo en una central nuclear

    Energy Technology Data Exchange (ETDEWEB)

    Pena G, P.; Balcazar, M.; Vega R, E., E-mail: pablo.pena@inin.gob.mx [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2015-09-15

    A methodology that adopts the recommendations of international organizations for determining the ground acceleration at a nuclear power plant is outlined. Systematic presented here emphasizes the type of geological, geophysical and geotechnical studies in different areas of influence, culminating in assessments of Design Basis earthquake and the earthquake Operating Base. The methodology indicates that in regional areas where the site of the nuclear power plant is located, failures are identified in geological structures, and seismic histories of the region are documented. In the area of detail geophysical tools to generate effects to determine subsurface propagation velocities and spectra of the induced seismic waves are used. The mechanical analysis of drill cores allows estimating the efforts that generate and earthquake postulate. Studies show that the magnitude of the Fukushima earthquake, did not affect the integrity of nuclear power plants due to the rocky settlement found. (Author)

  3. Evaluating the Impact of Transmission Power on Selecting Tall Vehicles as Best Next Communication Hop

    NARCIS (Netherlands)

    Qiao, Yu; Klein Wolterink, Wouter; Karagiannis, Georgios; Heijenk, Geert

    2012-01-01

    The relatively low height of antennas on communicating vehicles in Vehicular Ad Hoc Networks (VANETs) makes one hop and as well multi-hop Vehicle-to-Vehicle (V2V) communication susceptible to obstruction by other vehicles on the road. When the transmitter or receiver (or both) is a Tall vehi- cle, (

  4. Study of high-definition and stereoscopic head-aimed vision for improved teleoperation of an unmanned ground vehicle

    Science.gov (United States)

    Tyczka, Dale R.; Wright, Robert; Janiszewski, Brian; Chatten, Martha Jane; Bowen, Thomas A.; Skibba, Brian

    2012-06-01

    Nearly all explosive ordnance disposal robots in use today employ monoscopic standard-definition video cameras to relay live imagery from the robot to the operator. With this approach, operators must rely on shadows and other monoscopic depth cues in order to judge distances and object depths. Alternatively, they can contact an object with the robot's manipulator to determine its position, but that approach carries with it the risk of detonation from unintentionally disturbing the target or nearby objects. We recently completed a study in which high-definition (HD) and stereoscopic video cameras were used in addition to conventional standard-definition (SD) cameras in order to determine if higher resolutions and/or stereoscopic depth cues improve operators' overall performance of various unmanned ground vehicle (UGV) tasks. We also studied the effect that the different vision modes had on operator comfort. A total of six different head-aimed vision modes were used including normal-separation HD stereo, SD stereo, "micro" (reduced separation) SD stereo, HD mono, and SD mono (two types). In general, the study results support the expectation that higher resolution and stereoscopic vision aid UGV teleoperation, but the degree of improvement was found to depend on the specific task being performed; certain tasks derived notably more benefit from improved depth perception than others. This effort was sponsored by the Joint Ground Robotics Enterprise under Robotics Technology Consortium Agreement #69-200902 T01. Technical management was provided by the U.S. Air Force Research Laboratory's Robotics Research and Development Group at Tyndall AFB, Florida.

  5. Seasonal associations and atmospheric transport distances of Fusarium collected with unmanned aerial vehicles and ground-based sampling devices

    Science.gov (United States)

    Schmale, David; Ross, Shane; Lin, Binbin

    2014-05-01

    Spores of fungi in the genus Fusarium may be transported through the atmosphere over long distances. Members of this genus are important pathogens and mycotoxin producers. New information is needed to characterize seasonal trends in atmospheric loads of Fusarium and to pinpoint the source(s) of inoculum at both local (farm) and regional (state or country) scales. Spores of Fusarium were collected from the atmosphere in an agricultural ecosystem in Blacksburg, VA, USA using a Burkard volumetric sampler (BVS) 1 m above ground level and autonomous unmanned aerial vehicles (UAVs) 100 m above ground level. More than 2,200 colony forming units (CFUs) of Fusarium were collected during 104 BVS sampling periods and 180 UAV sampling periods over four calendar years (2009-2012). Spore concentrations ranged from 0 to 13 and 0 to 23 spores m-3 for the BVS and the UAVs, respectively. Spore concentrations were generally higher in the fall, spring, and summer, and lower in the winter. Spore concentrations from the BVS were generally higher than those from the UAVs for both seasonal and hourly collections. Some of the species of Fusarium identified from our collections have not been previously reported in the state of Virginia. A Gaussian plume transport model was used to estimate distances to the potential inoculum source(s) by season. This work extends previous studies showing an association between atmospheric transport barriers (Lagrangian coherent structures or LCSs) and the movement of Fusarium in the lower atmosphere. An increased understanding of the aerobiology of Fusarium may contribute to new and improved control strategies for diseases causes by fusaria in the future.

  6. Losses Analysis of Different Grounding Schemes for Transformer-less Wind Turbine with Full-Scale Power Converter

    DEFF Research Database (Denmark)

    Sztykiel, Michal; Teodorescu, Remus; Munk-Nielsen, Stig;

    2013-01-01

    Following work examines IGBT power loss and temperature distribution with regard to specific grounding method for the future concept of transformer-less offshore wind turbine. Analysis is performed via steady-state IGBT power loss estimator, which is made based on averaging of repetitive pulse...... cycles. Obtained results are validated with the experimental test set-up consisting of high power IGBTs....

  7. Results of an experiment to lead cranes on migration behind motorized ground vehicles

    Science.gov (United States)

    Ellis, D.H.; Clauss, B.; Watanabe, T.; Mykut, R.C.; Kinloch, M.; Ellis, Catherine H.; Urbanek, Richard P.; Stahlecker, Dale W.

    1997-01-01

    Ten greater sandhill cranes (Grus canadensis tabida), trained to enter and ride in a specially equipped truck, were transported at 80? days of age from their rearing site at Patuxent Wildlife Research Center (Patuxent), Maryland, to a reintroduction site located within the species? former breeding range in northern Arizona. After 5 additional weeks of training, these juvenile cranes were led south ca 600 km to a wintering area on the Arizona/Mexico border. Nine of the 10 survived the trek, 495 km of which was flown, although only a few cranes flew every stage of the route. Their longest flight was 77 km. Major problems during the migration were power line collisions (three, one fatal), eagle attacks (none fatal), and overheating (when air temperatures exceeded ca 25?C). All cranes that entered training quickly learned to follow the truck, and their tenacity when following under unfavorable conditions (e.g., poor light, extreme dust, or heat) showed that cranes could consistently be led over long distances. We cannot predict if the cranes will retrace their route unassisted when adults, but 2 cranes returned 130 km to the starting point of the migration after the flock was scattered by an eagle during our migration south. Three other cranes were recovered 55 km from the attack site and on course toward the starting point.

  8. Analysis of environmental factors impacting the life cycle cost analysis of conventional and fuel cell/battery-powered passenger vehicles. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-01-31

    This report presents the results of the further developments and testing of the Life Cycle Cost (LCC) Model previously developed by Engineering Systems Management, Inc. (ESM) on behalf of the U.S. Department of Energy (DOE) under contract No. DE-AC02-91CH10491. The Model incorporates specific analytical relationships and cost/performance data relevant to internal combustion engine (ICE) powered vehicles, battery powered electric vehicles (BPEVs), and fuel cell/battery-powered electric vehicles (FCEVs).

  9. Seismic Response of Power Transmission Tower-Line System Subjected to Spatially Varying Ground Motions

    Directory of Open Access Journals (Sweden)

    Li Tian

    2010-01-01

    Full Text Available The behavior of power transmission tower-line system subjected to spatially varying base excitations is studied in this paper. The transmission towers are modeled by beam elements while the transmission lines are modeled by cable elements that account for the nonlinear geometry of the cables. The real multistation data from SMART-1 are used to analyze the system response subjected to spatially varying ground motions. The seismic input waves for vertical and horizontal ground motions are also generated based on the Code for Design of Seismic of Electrical Installations. Both the incoherency of seismic waves and wave travel effects are accounted for. The nonlinear time history analytical method is used in the analysis. The effects of boundary conditions, ground motion spatial variations, the incident angle of the seismic wave, coherency loss, and wave travel on the system are investigated. The results show that the uniform ground motion at all supports of system does not provide the most critical case for the response calculations.

  10. Evaluation of selected drive components for a flywheel powered commuter vehicle. Phase I. Final report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-06-30

    The results of tests performed to evaluate the performance of selected high-speed flywheel bearings and shaft seals are reported, and work performed on the development of a high-speed composite flywheel rotor is described. The overall program objective is to develop a composite flywheel system for primary energy storage in a flywheel powered vehicle. These initial tests were intended to evaluate the performance of full-size composite rotor elements, high-speed bearings and shaft seals for that system under conditions simulating as closely as possible those anticipated in a finished vehicle. Performance of the angular contact ball bearings is reported to be satisfactory at all speeds; a simplified lubrication system is recommended for second generation hardware. Performance of the ferrofluidic shaft seals is reported to be marginal, as they failed to hold a hard vacuum at the maximum design speed. Several concepts for improved seals are offered for second generation hardware. The test objectives for the high-speed composite flywheel rotor were not achieved due to dynamic instability problems with the test hardware. Recommendations are offered for the design of second generation hardware, and a scope of activities is proposed for the second phase of this program.

  11. Vehicle test report: South Coast Technology electric Volkswagen Rabbit with developmental low-power armature chopper

    Science.gov (United States)

    Marte, J. E.; Bryant, J. A.; Livingston, R.

    1983-01-01

    Dynamometer performance of a South Coast Technology electric conversion of a Volkswagen (VW) Rabbit designated SCT-8 was tested. The SCT-8 vehicle was fitted with a transistorized chopper in the motor armature circuit to supplement the standard motor speed control via field weakening. The armature chopper allowed speed control below the motor base speed. This low speed control was intended to reduce energy loss at idle during stop-and-go traffic; to eliminate the need for using the clutch below base motor speed; and to improve the drivability. Test results indicate an improvement of about 3.5% in battery energy economy for the SAE J227a-D driving cycle and 6% for the C-cycle with only a minor reduction in acceleration performance. A further reduction of about 6% would be possible if provision were made for shutting down field power during the idle phases of the driving cycles. Drivability of the vehicle equipped with the armature chopper was significantly improved compared with the standard SCT Electric Rabbit.

  12. Fuzzy logic speed control for the engine of an air-powered vehicle

    Directory of Open Access Journals (Sweden)

    Qihui Yu

    2016-03-01

    Full Text Available To improve the condition of air and eliminate exhaust gas pollution, this article proposes a compressed air power system. Instead of an internal combustion engine, the automobile is equipped with a compressed air engine, which transforms the energy of compressed air into mechanical motion energy. A prototype was built, and the compressed air engine was tested on an experimental platform. The output torque and energy efficiency were obtained from experimental results. When the supply pressure was set at 2 MPa and the speed was 420 r min−1, the output torque, the output power, and the energy efficiency were 56 N m, 1.93 kW, and 25%, respectively. To improve the efficiency of the system, a fuzzy logic speed control strategy is proposed and simulated. The experimental study verified that the theoretical evaluation of the system was reasonable, and this research can be referred to as the design and control of air-powered vehicles.

  13. Failure modes in high-power lithium-ion batteries for use inhybrid electric vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Kostecki, R.; Zhang, X.; Ross Jr., P.N.; Kong, F.; Sloop, S.; Kerr, J.B.; Striebel, K.; Cairns, E.; McLarnon, F.

    2001-06-22

    The Advanced Technology Development (ATD) Program seeks to aid the development of high-power lithium-ion batteries for hybrid electric vehicles. Nine 18650-size ATD baseline cells were tested under a variety of conditions. The cells consisted of a carbon anode, LiNi{sub 0.8}Co{sub 0.2}O{sub 2} cathode and DEC-EC-LiPF{sub 6} electrolyte, and they were engineered for high-power applications. Selected instrumental techniques such as synchrotron IR microscopy, Raman spectroscopy, scanning electron microscopy, atomic force microscopy, gas chromatography, etc. were used to characterize the anode, cathode, current collectors and electrolyte from these cells. The goal was to identify detrimental processes which lead to battery failure under a high-current cycling regime as well as during storage at elevated temperatures. The diagnostic results suggest that the following factors contribute to the cell power loss: (a) SEI deterioration and non-uniformity on the anode, (b) morphology changes, increase of impedance and phase separation on the cathode, (c) pitting corrosion on the cathode Al current collector, and (d) decomposition of the LiPF{sub 6} salt in the electrolyte at elevated temperature.

  14. Survey of technology for hybrid vehicle auxiliary power units. Interim report, April 1994-June 1995

    Energy Technology Data Exchange (ETDEWEB)

    Widener, S.K.

    1995-10-01

    The state-of-the-art of heat engines for use as auxiliary power units in hybrid vehicles is surveyed. The study considers reciprocating or rotary heat engines, excluding gas turbines and fuel cells. The relative merits of various engine-generator concepts are compared. The concepts are ranked according to criteria tailored for a series-type hybrid drive. The two top APU concepts were the free-piston engine/linear generator (FPELG) and the Wankel rotary` engine. The FPELG is highly ranked primarily because of thermal efficiency cost, producibility. reliability, and transient response advantages; it is a high risk concept because of unproven technology. The Wankel engine is proven. with high power density, low cost and low noise. Four additional competitive concepts include two-stroke spark-ignition engine. two-stroke gas generator with turboalternator, free-piston engine gas generator with turboalternator, and homogeneous charge compression ignition engine. This study recommends additional work, including cycle simulation development and preliminary design to better quantify thermal efficiency and power density. Auxiliary concepts were also considered, including two which warrant further study: electrically actuated valves, and lean turndown of a normally stoichiometric engine. These concepts should be evaluated by retrofitting to existing engines.

  15. Tip-over prevention through heuristic reactive behaviors for unmanned ground vehicles

    Science.gov (United States)

    Talke, Kurt; Kelley, Leah; Longhini, Patrick; Catron, Garret

    2014-06-01

    Skid-steer teleoperated robots are commonly used by military and civilian crews to perform high-risk, dangerous and critical tasks such as bomb disposal. Their missions are often performed in unstructured environments with irregular terrain, such as inside collapsed buildings or on rough terrain covered with a variety of media, such as sand, brush, mud, rocks and debris. During such missions, it is often impractical if not impossible to send another robot or a human operator to right a toppled robot. As a consequence, a robot tip-over event usually results in mission failure. To make matters more complicated, such robots are often equipped with heavy payloads that raise their centers of mass and hence increase their instability. Should the robot be equipped with a manipulator arm or flippers, it may have a way to self-right. The majority of manipulator arms are not designed for and are likely to be damaged during self-righting procedures, however, which typically have a low success rate. Furthermore, those robots not equipped with manipulator arms or flippers have no self-righting capabilities. Additionally, due to the on-board camera frame of reference, the video feed may cause the robot to appear to be on at level ground, when it actually may be on a slope nearing tip-over. Finally, robot operators are often so focused on the mission at hand they are oblivious to their surroundings, similar to a kid playing a video game. While this may not be an issue in the living room, it is not a good scenario to experience on the battlefield. Our research seeks to remove tip-over monitoring from the already large list of tasks an operator must perform. An autonomous tip-over prevention behavior for a mobile robot with a static payload has been developed, implemented and experimentally validated on two different teleoperated robotic platforms. Suitable for use with both teleoperated and autonomous robots, the prevention behavior uses the force-angle stability measure

  16. Analysis of Electric Vehicle Charging Impact on the Electric Power Grid

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Zeming [Ming Hsieh Department of Electrical Engineering; Tian, Hao [Ming Hsieh Department of Electrical Engineering; Beshir, Mohammed J. [Ming Hsieh Department of Electrical Engineering; Vohra, Surendra [Los Angeles Department of Water and Power; Mazloomzadeh, Ali [Smart Utility Systems

    2016-09-24

    In order to evaluate the impact of electric vehicles (EVs) on the distribution grid and assess their potential benefits to the future smart grid, it is crucial to study the EV charging patterns and the usage charging station. Though EVs are not yet widely adopted nationwide, a valuable methodology to conduct such studies is the statistical analysis of real-world charging data. This paper presents actual EV charging behavior of 64 EVs (5 brands, 8 models) from EV users and charging stations at Los Angeles Department of Water and Power for more than one year. Twenty-four-hour EV charging load curves have been generated and studied for various load periods: daily, monthly, seasonally and yearly. Finally, the effect and impact of EV load on the California distribution network are evaluated at different EV penetration rates.

  17. Electric-powered vehicles in Italy; Les vehicules electriques en Italie

    Energy Technology Data Exchange (ETDEWEB)

    Bordel, St.; Carles, R.

    2003-09-01

    The aim of this study is to make a synthesis about the development of electric-powered vehicles, in particular in Italy. After a brief historical review of this type of propulsion system, a state-of-the-art review is made which allows to show up the different existing architectures and their characteristic specificities. This review allows to identify the key scientific and technical domains in the existing research programs in progress in order to make these 'alternative' transportation systems economically viable. The second part of the study explains the situation of Italy with respect to these propulsion systems. The political commitments are analyzed first and then some of the university and industry centers of competences for these key domains are presented. Finally, some trans-national collaborations in progress are shown. (J.S.)

  18. Optimal Energy Management for a Complex Hybrid Electric Vehicle:Tolerating Power-loss of Motor

    Institute of Scientific and Technical Information of China (English)

    ZHANG Pei-zhi; YIN Cheng-liang; ZHANG Yong; WU Zhi-wei

    2009-01-01

    The energy management may perform well under normal conditions, but may lead to poor behavior under abnormal situations. To tackle this problem, an optimal control strategy called rule-based equivalent fuel consumption minimization strategy (RECMS) is developed for a new complex hybrid electric vehicle (CHEV).It optimizes the energy efficiency and drive performance to cater for normal and power-loss operations of the tractive motor. Firstly, the strategy formulates a novel objective function based on the equivalent fuel concept.By accounting for the actual fuel cost, the equivalent fuel cost for the electric machines and virtual fuel cost for the drivability, the cost function is obtained. Furthermore, some penalty factors are presented to optimize the performance target. Finally, experiments for a practical CHEV are performed to validate a simulation model.Then simulations are carried out for both rule-based and RECMS. The results show that the optimal energy management is working well.

  19. Rapid Detection Methods for Asphalt Pavement Thicknesses and Defects by a Vehicle-Mounted Ground Penetrating Radar (GPR) System.

    Science.gov (United States)

    Dong, Zehua; Ye, Shengbo; Gao, Yunze; Fang, Guangyou; Zhang, Xiaojuan; Xue, Zhongjun; Zhang, Tao

    2016-12-06

    The thickness estimation of the top surface layer and surface layer, as well as the detection of road defects, are of great importance to the quality conditions of asphalt pavement. Although ground penetrating radar (GPR) methods have been widely used in non-destructive detection of pavements, the thickness estimation of the thin top surface layer is still a difficult problem due to the limitations of GPR resolution and the similar permittivity of asphalt sub-layers. Besides, the detection of some road defects, including inadequate compaction and delamination at interfaces, require further practical study. In this paper, a newly-developed vehicle-mounted GPR detection system is introduced. We used a horizontal high-pass filter and a modified layer localization method to extract the underground layers. Besides, according to lab experiments and simulation analysis, we proposed theoretical methods for detecting the degree of compaction and delamination at the interface, respectively. Moreover, a field test was carried out and the estimated results showed a satisfactory accuracy of the system and methods.

  20. Rapid Detection Methods for Asphalt Pavement Thicknesses and Defects by a Vehicle-Mounted Ground Penetrating Radar (GPR System

    Directory of Open Access Journals (Sweden)

    Zehua Dong

    2016-12-01

    Full Text Available The thickness estimation of the top surface layer and surface layer, as well as the detection of road defects, are of great importance to the quality conditions of asphalt pavement. Although ground penetrating radar (GPR methods have been widely used in non-destructive detection of pavements, the thickness estimation of the thin top surface layer is still a difficult problem due to the limitations of GPR resolution and the similar permittivity of asphalt sub-layers. Besides, the detection of some road defects, including inadequate compaction and delamination at interfaces, require further practical study. In this paper, a newly-developed vehicle-mounted GPR detection system is introduced. We used a horizontal high-pass filter and a modified layer localization method to extract the underground layers. Besides, according to lab experiments and simulation analysis, we proposed theoretical methods for detecting the degree of compaction and delamination at the interface, respectively. Moreover, a field test was carried out and the estimated results showed a satisfactory accuracy of the system and methods.

  1. Force Limiting Vibration Tests Evaluated from both Ground Acoustic Tests and FEM Simulations of a Flight Like Vehicle System Assembly

    Science.gov (United States)

    Smith, Andrew; LaVerde, Bruce; Waldon, James; Hunt, Ron

    2014-01-01

    Marshall Space Flight Center has conducted a series of ground acoustic tests with the dual goals of informing analytical judgment, and validating analytical methods when estimating vibroacoustic responses of launch vehicle subsystems. The process of repeatedly correlating finite element-simulated responses with test-measured responses has assisted in the development of best practices for modeling and post-processing. In recent work, force transducers were integrated to measure interface forces at the base of avionics box equipment. Other force data was indirectly measured using strain gauges. The combination of these direct and indirect force measurements has been used to support and illustrate the advantages of implementing the Force Limiting approach for equipment qualification tests. The comparison of force response from integrated system level tests to measurements at the same locations during component level vibration tests provides an excellent illustration. A second comparison of the measured response cases from the system level acoustic tests to finite element simulations has also produced some principles for assessing the suitability of Finite Element Models (FEMs) for making vibroacoustics estimates. The results indicate that when FEM models are employed to guide force limiting choices, they should include sufficient detail to represent the apparent mass of the system in the frequency range of interest.

  2. Protection Method of Biological Lightning Safety around Power Grid Based on Grounding Electrode Structure

    Science.gov (United States)

    Sixiang, Chen; Daopin, Chen; Ming, Zhang; Xiao, Huang; Jian, He; Zhijie, He

    2017-05-01

    Aimed at the actual situation of fish death in fish ponds near the power transmission line towers after the thunderstorm happened in Guangdong Province in China, this paper studied the influence of the ground current on fish in the pond. Firstly, This paper studied the current density of the fish without protection. On this basis, paper studied the horizontal pole with full-shielded, the vertical pole with half-shielded, the horizontal pole with extension three kinds of protective measures and effects. Finally an effective protection scheme was put forward according to the engineering practice. The results can provide some engineering guidance and quantitative basis for the design and modification of grounding devices when the tower is adjacent to the fish ponds in southern China.

  3. Low-speed aerodynamic characteristics of a powered NASP-like configuration in ground effect

    Science.gov (United States)

    Gatlin, Gregory M.

    1989-01-01

    Results are presented on the low-speed aerodynamic characteristics of a simplified NASP (for National Aerospace Plane Program)-like configuration, obtained in the NASA-Langley 14-by-22-foot subsonic tunnel. The model consisted of a triangular wedge forebody, a rectangular midsection housing the propulsion simulation system, and a rectangular wedge aftbody; it also included a delta wing, exhaust flow deflectors, and aftbody fences. Flow visualization was obtained by injecting water into the engine simulator inlets and using a laser light sheet to illuminate the resulting exhaust flow. It was found that power-on ground effects for NASP-like configuration can be substantial; these effects can be reduced by increasing the angle-of-attack to the value of the aftbody ramp angle. Power-on lift losses in ground effect increased with increasing thrust, but could be reduced by the addition of a delta wing to the configuration. Power-on lift losses also increased with use of aftbody fences.

  4. PEMFC Optimization Strategy with Auxiliary Power Source in Fuel Cell Hybrid Vehicle

    Directory of Open Access Journals (Sweden)

    Tinton Dwi Atmaja

    2012-02-01

    Full Text Available Page HeaderOpen Journal SystemsJournal HelpUser You are logged in as...aulia My Journals My Profile Log Out Log Out as UserNotifications View (27 new ManageJournal Content SearchBrowse By Issue By Author By Title Other JournalsFont SizeMake font size smaller Make font size default Make font size largerInformation For Readers For Authors For LibrariansKeywords CBPNN Displacement FLC LQG/LTR Mixed PMA Ventilation bottom shear stress direct multiple shooting effective fuzzy logic geoelectrical method hourly irregular wave missile trajectory panoramic image predator-prey systems seawater intrusion segmentation structure development pattern terminal bunt manoeuvre Home About User Home Search Current Archives ##Editorial Board##Home > Vol 23, No 1 (2012 > AtmajaPEMFC Optimization Strategy with Auxiliary Power Source in Fuel Cell Hybrid VehicleTinton Dwi Atmaja, Amin AminAbstractone of the present-day implementation of fuel cell is acting as main power source in Fuel Cell Hybrid Vehicle (FCHV. This paper proposes some strategies to optimize the performance of Polymer Electrolyte Membrane Fuel Cell (PEMFC implanted with auxiliary power source to construct a proper FCHV hybridization. The strategies consist of the most updated optimization method determined from three point of view i.e. Energy Storage System (ESS, hybridization topology and control system analysis. The goal of these strategies is to achieve an optimum hybridization with long lifetime, low cost, high efficiency, and hydrogen consumption rate improvement. The energy storage system strategy considers battery, supercapacitor, and high-speed flywheel as the most promising alternative auxiliary power source. The hybridization topology strategy analyzes the using of multiple storage devices injected with electronic components to bear a higher fuel economy and cost saving. The control system strategy employs nonlinear control system to optimize the ripple factor of the voltage and the current

  5. Use of 3D laser radar for navigation of unmanned aerial and ground vehicles in urban and indoor environments

    Science.gov (United States)

    Uijt de Haag, Maarten; Venable, Don; Smearcheck, Mark

    2007-04-01

    This paper discusses the integration of Inertial measurements with measurements from a three-dimensional (3D) imaging sensor for position and attitude determination of unmanned aerial vehicles (UAV) and autonomous ground vehicles (AGV) in urban or indoor environments. To enable operation of UAVs and AGVs at any time in any environment a Precision Navigation, Attitude, and Time (PNAT) capability is required that is robust and not solely dependent on the Global Positioning System (GPS). In urban and indoor environments a GPS position capability may not only be unavailable due to shadowing, significant signal attenuation or multipath, but also due to intentional denial or deception. Although deep integration of GPS and Inertial Measurement Unit (IMU) data may prove to be a viable solution an alternative method is being discussed in this paper. The alternative solution is based on 3D imaging sensor technologies such as Flash Ladar (Laser Radar). Flash Ladar technology consists of a modulated laser emitter coupled with a focal plane array detector and the required optics. Like a conventional camera this sensor creates an "image" of the environment, but producing a 2D image where each pixel has associated intensity vales the flash Ladar generates an image where each pixel has an associated range and intensity value. Integration of flash Ladar with the attitude from the IMU allows creation of a 3-D scene. Current low-cost Flash Ladar technology is capable of greater than 100 x 100 pixel resolution with 5 mm depth resolution at a 30 Hz frame rate. The proposed algorithm first converts the 3D imaging sensor measurements to a point cloud of the 3D, next, significant environmental features such as planar features (walls), line features or point features (corners) are extracted and associated from one 3D imaging sensor frame to the next. Finally, characteristics of these features such as the normal or direction vectors are used to compute the platform position and attitude

  6. Mitigation Emission Strategy Based on Resonances from a Power Inverter System in Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Li Zhai

    2016-05-01

    Full Text Available Large dv/dt and di/dt outputs of power devices in the DC-fed motor power inverter can generate conducted and/or radiated emissions through parasitics that interfere with low voltage electric systems in electric vehicles (EVs and nearby vehicles. The electromagnetic interference (EMI filters, ferrite chokes, and shielding added in the product process based on the “black box” approach can reduce the emission levels in a specific frequency range. However, these countermeasures may also introduce an unexpected increase in EMI noises in other frequency ranges due to added capacitances and inductances in filters resonating with elements of the power inverter, and even increase the weight and dimension of the power inverter system in EVs with limited space. In order to predict the interaction between the mitigation techniques and power inverter geometry, an accurate model of the system is needed. A power inverter system was modeled based on series of two-port network measurements to study the impact of EMI generated by power devices on radiated emission of AC cables. Parallel resonances within the circuit can cause peaks in the S21 (transmission coefficient between the phase-node-to-chassis voltage and the center-conductor-to-shield voltage of the AC cable connecting to the motor and Z11 (input impedance at Port 1 between the Insulated gate bipolar transistor (IGBT phase node and chassis at those resonance frequencies and result in enlarged noise voltage peaks at Port 1. The magnitude of S21 between two ports was reduced to decrease the amount of energy coupled from the noise source between the phase node and chassis to the end of the AC cable by lowering the corresponding quality factor. The equivalent circuits were built by analyzing current-following paths at three critical resonance frequencies. Interference voltage peaks can be suppressed by mitigating the resonances. The capacitances and inductances generating the parallel resonances and

  7. Ground States for the Schrödinger Systems with Harmonic Potential and Combined Power-Type Nonlinearities

    Directory of Open Access Journals (Sweden)

    Baiyu Liu

    2014-01-01

    Full Text Available We consider a class of coupled nonlinear Schrödinger systems with potential terms and combined power-type nonlinearities. We establish the existence of ground states, by using a variational method. As an application, some symmetry results for ground states of Schrödinger systems with harmonic potential terms are obtained.

  8. The alkaline aluminium/hydrogen peroxide power source in the Hugin II unmanned underwater vehicle

    Science.gov (United States)

    Hasvold, Øistein; Johansen, Kjell Håvard; Mollestad, Ole; Forseth, Sissel; Størkersen, Nils

    In 1993, The Norwegian Defence Research Establishment (FFI) demonstrated AUV-Demo, an unmanned (untethered) underwater vehicle (UUV), powered by a magnesium/dissolved oxygen seawater battery (SWB). This technology showed that an underwater range of at least 1000 nautical miles at a speed of 4 knots was possible, but also that the maximum hotel load this battery system could support was very limited. Most applications for UUV technology need more power over a shorter period of time. Seabed mapping using a multibeam echo sounder mounted on an UUV was identified as a viable application and the Hugin project was started in 1995 in cooperation with Norwegian industry. For this application, an endurance of 36 h at 4 knots was required. Development of the UUV hull and electronics system resulted in the UUV Hugin I. It carries a Ni/Cd battery of 3 kW h, allowing up to 6 h under-water endurance. In parallel, we developed a battery based on a combination of alkaline Al/air and SWB technology, using a circulating alkaline electrolyte, aluminium anodes and maintaining the oxidant concentration in the electrolyte by continuously adding hydrogen peroxide (HP) to the electrolyte. This concept resulted in a safe battery, working at ambient pressure (balanced) and with sufficient power and energy density to allow the UUV Hugin II to make a number of successive dives, each of up to 36 h duration and with only 1 h deck time between dives for HP refill and electrolyte exchange. After 100 h, an exchange of anodes takes place. The power source consists of a four-cell Al/HP battery, a DC/DC converter delivering 600 W at 30 V, circulation and dosing pumps and a battery control unit. Hugin II is now in routine use by the Norwegian Underwater Intervention AS (NUI) which operates the UUV for high-precision seabed mapping down to a water depth of 600 m.

  9. The alkaline aluminium/hydrogen peroxide power source in the Hugin II unmanned underwater vehicle

    Energy Technology Data Exchange (ETDEWEB)

    Hasvold, Oe.; Johansen, K.H.; Mollestad, O.; Forseth, S.; Stoerkersen, N. [Forsvarets Forskningsinstitutt, Kjeller (Norway)

    1999-07-01

    In 1993, the Norwegian Defence Research Establishment (FFI) demonstrated AUV-Demo, an unmanned (untethered) underwater vehicle (UUV), powered by a magnesium/dissolved oxygen seawater battery (SWB). This technology showed that an underwater range of at least 1000 nautical miles at a speed of 4 knots was possible, but also that the maximum hotel load this battery system could support was very limited. Most applications for UUV technology need more power over a shorter period of time. Seabed mapping using a multibeam echo sounder mounted on a UUV was identified as a viable application and the Hugin project was started in 1995 in cooperation with Norwegian industry. For this application, an endurance of 36 h at 4 knots was required. Development of the UUV hull and electronics system resulted in the UUV Hugin I. It carries a Ni/Cd battery of 3 kW h, allowing up to 6 h under-water endurance. In parallel, we developed a battery based on a combination of alkaline Al/air and SWB technology, using a circulating alkaline electrolyte, aluminium anodes and maintaining the oxidant concentration in the electrolyte by continuously adding hydrogen peroxide (HP) to the electrolyte. This concept resulted in a safe battery, working at ambient pressure (balanced) and with sufficient power and energy density to allow the UUV Hugin II to make a number of successive dives, each of up to 36 h duration and with only 1 h deck time between dives for HP refill and electrolyte exchange. After 100 h, an exchange of anodes takes place. The power source consists of a four-cell Al/HP battery, a DC/DC converter delivering 600 W at 30 V, circulation and dosing pumps and a battery control unit. Hugin II is now in routine use by the Norwegian Underwater Intervention AS (NUI) which operates the UUV for high-precision seabed mapping down to a water depth of 600 m. (orig.)

  10. Estimation of CO2 reduction by parallel hard-type power hybridization for gasoline and diesel vehicles.

    Science.gov (United States)

    Oh, Yunjung; Park, Junhong; Lee, Jong Tae; Seo, Jigu; Park, Sungwook

    2017-10-01

    The purpose of this study is to investigate possible improvements in ICEVs by implementing fuzzy logic-based parallel hard-type power hybrid systems. Two types of conventional ICEVs (gasoline and diesel) and two types of HEVs (gasoline-electric, diesel electric) were generated using vehicle and powertrain simulation tools and a Matlab-Simulink application programming interface. For gasoline and gasoline-electric HEV vehicles, the prediction accuracy for four types of LDV models was validated by conducting comparative analysis with the chassis dynamometer and OBD test data. The predicted results show strong correlation with the test data. The operating points of internal combustion engines and electric motors are well controlled in the high efficiency region and battery SOC was well controlled within ±1.6%. However, for diesel vehicles, we generated virtual diesel-electric HEV vehicle because there is no available vehicles with similar engine and vehicle specifications with ICE vehicle. Using a fuzzy logic-based parallel hybrid system in conventional ICEVs demonstrated that HEVs showed superior performance in terms of fuel consumption and CO2 emission in most driving modes. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Design and experiment for realization of laser wireless power transmission for small unmanned aerial vehicles

    Science.gov (United States)

    Chen, Qi; Zhang, Dechen; Zhu, Dandi; Shi, Qianyun; Gu, Jian; Ai, Yong

    2015-10-01

    Currently various types of aircraft booming and maturing, however, their long-time navigational capability should be improved urgently. This paper aims at studying laser power beaming, which includes the technology of high-efficient photoelectric conversion and APT(acquiring, pointing and tracking) technology, to provide power for flying UAV(unmanned aerial vehicles) and improve their flight endurance. The experiment of testing different types of solar cells under various conditions has been done to choose the solar cell which has the highest photoelectric conversion rate and find its most sensitive wavelength. In addition, the charge management module has been chose on the base of the characteristics of lithium batteries. Besides, a laser APT system was designed and set up, at the same time FSM (Fast Scan Mirror) control program and digital image processing program were used to control the system. The success of the indoor experiment of scan-tracking and charging for the moving UAV model via laser proves that this system is workable. And in this experiment, the photoelectric conversion rate of the whole system is up to 17.55%.

  12. Feasibility Study of a Three-Stage Radioisotope-Powered Mars Ascent Vehicle

    Science.gov (United States)

    Chalpek, T. M.; Allen, R. E.; Guan, J. Y.; Rao, S. S.; Howe, S. D.

    Recent advancements in methods of housing radioisotopes at the Center for Space Nuclear Research have led to the concept of a radioisotope thermal rocket--a rocket powered by the accumulated heat of radioisotope decay. Heat energy from the decay can be accumulated over long periods of time in a material of high heat capacity to create a thermal capacitor. The capacitor can then be discharged at such a rate as to provide high power for short periods of time; in this case, the heat is transferred to a gas propellant. This paper explores the feasibility of using a radioisotope thermal rocket with in-situ atmospheric CO2 propellant to deliver a 10 kg payload from the Martian surface to a 200 km circular orbit about Mars. Models of heat transfer, gas dynamics, and ascent mechanics are constructed to test performance of different core materials and geometries. Of the configurations tested, the best simulation results fail to meet the altitude and velocity requirements by 12 km and 50 m/s respectively. The proximity to success indicates that the given models are capable of reaching orbital parameters if optimization algorithms and closed-loop guidance methods are employed. It is believed, however, that the current models underestimate expansion losses to the degree that if more realistic and computationally-intensive models are incorporated, the effect will definitively disprove the concept with currently available technology. Based on this preliminary research, radioisotope thermal rockets utilizing current technology are not capable of serving as Mars ascent vehicles.

  13. Design and evaluation metrology for electric power supply in motor vehicles; Auslegungs- und Bewertungsmetrik fuer die elektrische Energieversorgung von Kraftfahrzeugen

    Energy Technology Data Exchange (ETDEWEB)

    Cierullies, J.

    2006-07-01

    Electric power systems in motor vehicles are subject to increasingly complex requirements. On the one hand, electricity consumption increases with the new comfort and safety systems which involve complex control algorithms. On the other hand, there is the problem of weight which prevents design of power generation and storage systems for maximum load. The publication attempts to estimate the required component size and assess the overall system of electronic components and intelligent algorithms. (orig.)

  14. Development of traction power supply for d.c. light rail vehicles; Entwicklung der Bahnenergieversorgung fuer Gleichstrom-Nahverkehrsbahnen

    Energy Technology Data Exchange (ETDEWEB)

    Becker, W.; George, G. [Balfour Beatty Rail GmbH Power Systems, Offenbach/Main (Germany); Schlechter, E. [ELBAS GmbH, Berlin (Germany)

    2003-06-01

    The generation, supply, conversion and distribution of traction power has undergone a basic change since 1879. Instead of the d.c. power stations of the early times use was later on made of substations with rotating converters and ultimately of converters equipped with semiconductor rectifiers and controlled double-way converters. The vehicles are no longer supplied via the rails but from contact lines of single-wire and catenary trolley wire design or third rails. (orig.)

  15. The Power of Electric Vehicles - Exploring the Value of Flexible Electricity Demand in a Multi-actor Context

    NARCIS (Netherlands)

    Verzijlbergh, R.A.

    2013-01-01

    Electric vehicles (EVs) have the potential to play a crucial role in clean and intelligent power systems. The key to this potential lies in the flexibility that EVs provide by the ability to shift their electricity demand in time. This flexibility can be used to facilitate the integration of renewab

  16. Electric vehicle charging in China's power system : Energy, economic and environmental trade-offs and policy implications

    NARCIS (Netherlands)

    Li, Ying; Davis, Chris; Lukszo, Zofia; Weijnen, Margot

    2016-01-01

    This work investigates different scenarios for electric vehicle (EV) deployment in China and explores the implications thereof with regard to energy portfolio, economics and the environment. Specifically, we investigate how to better deliver the value of EVs by improving designs in the power system

  17. The Power of Electric Vehicles - Exploring the Value of Flexible Electricity Demand in a Multi-actor Context

    NARCIS (Netherlands)

    Verzijlbergh, R.A.

    2013-01-01

    Electric vehicles (EVs) have the potential to play a crucial role in clean and intelligent power systems. The key to this potential lies in the flexibility that EVs provide by the ability to shift their electricity demand in time. This flexibility can be used to facilitate the integration of

  18. Electric vehicle charging in China's power system : Energy, economic and environmental trade-offs and policy implications

    NARCIS (Netherlands)

    Li, Ying; Davis, Chris; Lukszo, Zofia; Weijnen, Margot

    2016-01-01

    This work investigates different scenarios for electric vehicle (EV) deployment in China and explores the implications thereof with regard to energy portfolio, economics and the environment. Specifically, we investigate how to better deliver the value of EVs by improving designs in the power system

  19. Development of an Auxiliary Power Unit Specification for Medium Duty Series Hybrid Electric Vehicles

    Science.gov (United States)

    1998-06-01

    As a part of the Defense Advanced Research Projects Agency (DARPA) program to develop hybrid and electric vehicles , a specification for medium duty...hybrid electric vehicles . Intended applications include medium duty commercial vehicles and buses. For the purposes of this specification an APU is

  20. Autonomous Inspection Robot for Power Transmission Lines Maintenance While Operating on the Overhead Ground Wires

    Directory of Open Access Journals (Sweden)

    Zheng Li

    2011-01-01

    Full Text Available This paper describes the development of a mobile robot capable of clearing such obstacles as counterweights, anchor clamps, and torsion tower. The mobile robot walks on overhead ground wires in 500KV power tower. Its ultimate purpose is to automate to inspect the defect of power transmission line. The robot with 13 motors is composed of two arms, two wheels, two claws, two wrists, etc. Each arm has 4 degree of freedom. Claws are also mounted on the arms. An embedded computer based on PC/104 is chosen as the core of control system. Visible light and thermal infrared cameras are installed to obtain the video and temperature information, and the communication system is based on wireless LAN TCP/IP protocol. A prototype robot was developed with careful considerations of mobility. The new sensor configuration is used for the claw to grasp the overhead ground wires. The bridge is installed in the torsion tower for the robot easy to cross obstacles. The new posture plan is proposed for obstacles cleaning in the torsion tower. Results of experiments demonstrate that the robot can be applied to execute the navigation and inspection tasks.